
REFERENCE

OPERATING
SYSTEM
API REFERENCE
UNIX® SVR4.2

• ~ UNIX
PRESS

REFERENCE MANUAL DESCRIPTION SECTIONS

Command Reference General-Purpose User Commands 1
(Commands a - I) Basic Networking Commands 1C

Form and Menu Language Interpreter 1F
System Maintenance Commands 1M

Command Reference (same as above)
(Commands m - z)

Operating System API System Calls 2
Reference BSD System Compatibility Library 3

Standard C Library 3C
ETI-curses Library 3curses
Executable and Linking Format Library 3E
General-Purpose Library 3G
Identification and Authentication Library 31
Math Library 3M
Networking Library 3N
Standard liD Library 3S
Multibyte/wide Character Conversion Library 3W
Specialized Libraries 3X

Windowing System API Desktop Metaphor 3Dt
Reference Drag and Drop 3DnD

MoOLIT 30lit
ETI-curses Library 3curses

System Files and Devices System File Formats 4
Reference Miscellaneous Facilities 5

Special Files (Devices) 7

Device Driver DDI/DKI Driver Data Definitions D1
Reference DDt/DKI Driver Entry Point Routines D2

DOI/DKI Kernel Utility Routines D3
Portable Device Interface (PDI) Routines D3G
SCSI Device Interface (SOl) Routines D31
OOI/DKI Kernel Data Structures D4
SCSI Device Interface (SOl) Data Structures D41
DOI/DKI Kernel Defines D5

OPERATING
SYSTEM API
REFERENCE

UNIX SVR4.2

Edited by Lynda Feng

,~~
~

UNIX
Press

Copyright © 1992,1991 UNIX System Laboratories, Inc.
Copyright © 1990, 1989, 1988, 1987,1986,1985,1984 AT&T
Portions Copyright © 1988-1990 Sun Microsystems, Inc.
Portions Copyright © 1980-1985 Regents of the University of California
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means~raphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from UNIX System Laboratories, Inc. (USL).

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy and completeness of all information in this
document, USL assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in this document, its updates, supplements, or special editions, whether
such errors, omissions, or statements result from negligence, accident, or any other cause. USL furth
er assumes no liability arising out of the application or use of any product or system described herein;
nor any liability for incidental or consequential damages arising from the use of this document. USL
disclaims all warranties regarding the information contained herein, whether expressed, implied
or statutory, including Implied warranties of merchantability or fitness for a particular purpose.
USL makes no representation that the interconnection of products in the manner described herein will
not infringe on existing or future patent rights, nor do the descriptions contained herein imply the grant
ing of any license to make, use or sell equipment constructed in accordance with this description.

USL reserves the right to make changes to any products herein without further notice.

TRADEMARKS

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other countries.
WE is a registered trademark of AT&T.
XENIX is a registered trademark of Microsoft Corporation.

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-017658-3

UNIX
PRESS

A Prentice Hall Title

PRENTICE HALL

ORDERING INFORMATION

UNIX® SYSTEM V RELEASE 4.2 DOCUMENTATION

To order single copies of UNIX® SYSTEM V Release 4.2 documentation, please
call (515) 284-6761.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies, please write to:

Corporate Sales Department
PTR Prentice Hall
113 Sylvan Avenue
Englewood Cliffs, N.J. 07632

or

Phone: (201) 592-2863
FAX: (201) 592-2249

ATTENTION GOVERNMENT CUSTOMERS:

For GSA and other pricing information, please call (201) 461-7107.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Table of Contents

Section 2 - System Calls

intro (2) ... introduction to system calls, error numbers, and privileges
access (2) ... : determine accessibility of a file
acct(2) ... enable or disable process accounting
adjtime (2) correct the time to allow synchronization of the system clock
alarm (2) ... set a process alarm clock
auditbuf(2) ... get or set the audit buffer attributes
auditctl (2) get or set the status of auditing
auditdmp(2) ... write audit record to audit buffer
auditevt(2) .. get or set auditable events
auditlog(2) .. get or set audit log file attributes
brk, sbrk(2) ... change data segment space allocation
chdir, fchdir(2) ... change working directory
chmod, fchmod (2) .. change mode of file
chown, lchown, fchown(2) ... change owner and group of a file
chroot (2) ... change root directory
chsize(2) ... (XENIX) change the size of a file
close (2) .. close a file descriptor
creat(2) .. create a new file or rewrite an existing one
creatsem(2) .. (XENIX) create an instance of a binary semaphore
dup (2) .. duplicate an open file descriptor
exec: execl, execv, execle, execve, execlp, execvp(2) .. execute a file
exit, _ exit (2) .. terminate process
fcntl (2) ... file control
filepriv(2) ... set, retrieve, or count the privileges associated with a file
fork (2) ... create a new process
fpathconf, pathconf(2) .. get configurable pathname variables
fsync(2) synchronize a file's in-memory state with that on the physical medium
ftime(2) .. (XENIX) get time and date
getcontext, setcontext(2) ... get and set current user context
getdents(2) read directory entries and put in a file system independent format
getgroups, setgroups(2) ... get or set supplementary group access list IDs
getksym (2) ... get information for a global kernel symbol
getrnsg(2) .. get next message off a stream
getpid, getpgrp, getppid, getpgid(2) get process, process group, and parent process IDs
getrlimit, setrlimit(2) .. control maximum system resource consumption
getsid (2) ... get session ID

Table of Contents v

getuid, geteuid, getgid, getegid (2)
.. get real user, effective user, real group, and effective group IDs

ioctl (2) .. control device
kill (2) ... send a signal to a process or a group of processes
link (2) .. link to a file
lock (2) ... (XENIX) lock a process in primary memory
locking(2) .. (XENIX) lock or unlock a file region for reading or writing
Iseek(2) ... move read/write file pointer
memcntl(2) ... memory management control
mincore (2) ... determine residency of memory pages
mkdir (2) .. make a directory
mknod(2) ... make a directory, or a special or ordinary file
mknod(2) ... (XENIX) make a directory, or a special or ordinary file
mmap (2) .. map pages of memory
modload (2) ... load a loadable kernel module on demand
modpath(2) ... change load able kernel modules search path
modstat(2) ... get information for loadable kernel modules
moduload(2) .. unload a loadable kernel module on demand
mount (2) ; ... mount a file system
mprotect (2) ... set protection of memory mapping
msgctl(2) ... message control operations
msgget(2) .. get message queue
msgop: msgsnd, msgrcv (2) ... message operations
munmap(2) .. unmap pages of memory
nap(2) .. (XENIX) suspend execution for a ~hort interval
nice (2) ... change priority of a time-sharing process
open (2) ... open for reading or writing
opensem(2) .. (XENIX) open a semaphore
pause (2) .. suspend process until signal
pipe (2) .. create an interprocess channel
plock (2) ... lock into memory or unlock process, text, or data
poll (2) .. input/ output multiplexing
priocntl(2) .. process scheduler control
priocntlset(2) .. generalized process scheduler control
procpriv, procprivc(2)

............... add, retrieve, remove, count, or put privileges associated with the calling process
profil(2) .. execution time profile
ptrace (2) .. process trace
putmsg(2) .. send a message on a stream
rdchk(2) ... (XENIX) check to see if there is data to be read
read (2) .. read from file
readlink(2) ... read the value of a symbolic link
rename (2) .. change the name of a file
rmdir (2) remove a directory

vi Table of Contents

sdenter, sdleave(2) (XENIX) synchronize access to a shared data segment
sdget, sdfree (2) ... (XENIX) attach and detach a shared data segment
sdgetv(2) .. (XENIX) synchronize shared data access
sec advise (2) .. get kernel advisory access information
semctl(2) ... semaphore control operations
semget(2) .. get set of semaphores
semop (2) .. semaphore operations
setpgid (2) ... set process group ID
setpgrp(2) ... set process group ID
setsid (2) .. set session ID
setuid, setgid (2) ... set user and group IDs
shmctl(2) .. shared memory control operations
shmget(2) ... get shared memory segment identifier
shmop: shmat, shmdt(2) ... shared memory operations
sigaction(2) ... detailed signal management
sigaltstack(2) .. set or get signal alternate stack context
signal, sigset, sighold, sigrelse, sigignore, sigpause (2) simplified signal management
sigpending(2) ... examine signals that are blocked and pending
sigprocmask(2) ... change or examine signal mask
sigsem(2) .. (XENIX) signal a process waiting on a semaphore
sigsend, sigsendset(2) send a signal to a process or a group of processes
sigsuspend(2) ... install a signal mask and suspend process until signal
stat, lstat, fstat(2) .. get file status
stat, lstat, fstat(2) .. (XENIX) get file status
statvfs, fstatvfs(2) ... get file system information
stime(2) ... set time
swapctl(2) .. manage swap space
symlink(2) ... make a symbolic link to a file
sync (2) .. update super block
sysfs (2) .. get file system type information
sysi86 (2) ... machine specific functions
sysinfo(2) ... get and set system information strings
termios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed,

cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid (2)
... general terminal interface

time (2) .. get time
times (2) ... get process and child process times
uadmin(2) ... administrative control
ulimit(2) ... get and set user limits
umask(2) .. set and get file creation mask
umount(2) ... unmount a file system
uname(2) ... get name of current UNIX system
unlink (2) .. remove directory entry
ustat(2) .. get file system statistics

Table of Contents vii

utime(2) .. set file access and modification times
vfork(2) ... spawn new process in a virtual memory efficient way
wait (2) ... wait for child process to stop or terminate
waitid(2) .. wait for child process to change state
waitpid (2) .. wait for child process to change state
waits em, nbwaitsem (2)

............................... (XENIX) await and check access to a resource governed by a semaphore
write, writev (2) ... write on a file

Section 3 - Library Functions

intro (3) ... introduction to functions and libraries
a641, 164a (3C) .. convert between long integer and base-64 ASCII string
abort (3C) ... generate an abnormal termination signal
abs, labs (3C) .. return integer absolute value
accept (3N) : ... accept a connection on a socket
addsev (3C) .. define additional severities
addseverity(3C) build a list of severity levels for an application for use with fmtmsg
alloca(3) .. (BSD) memory allocator
assert (3X) .. verify program assertion
atexit (3C) ... add program termination routine
attrmap (31) ... map an attribute
basename(3G) ... return the last element of a path name
bessel: jO, jl, jn, yO, yl, yn(3M) .. Bessel functions
bgets (3G) ... read stream up to next delimiter
bind (3N) .. bind a name to a socket
bsearch(3C) .. binary search a sorted table
bstring: bcopy, bcmp, bzero(3) ... (BSD) bit and byte string operations
bufsplit(3G) .. split buffer into fields
byteorder, htonl, htons, ntohl, ntohs(3N)

.................. .. convert values between host and network byte order
catgets (3C) : ... read a program message
catopen, catclose(3C) .. open/ close a message catalog
cd_defs(3X) set or get default CD-ROM file permissions, user IDs, and group IDs
cd _ drec, cd _ cdrec (3X) ... read Directory Record from CD-ROM directory
cd_getdevmap(3X) get the major and minor numbers assigned to a CD-ROM device
cd Jdmap (3X) ... set or get mappings of CD-ROM user and group IDs
cd_nmconv(3X) ... set or get CD-ROM name conversion flag
cd.Ytrec, cd_cptrec(3X) ... read CD-ROM Path Table Record
cd 'yvd, cd _ cpvd(3X) read CD-ROM Primary Volume Descriptor (PVD)
cd_setdevmap(3X) .. set or unset major and minor numbers assignments for a CD-ROM device
cd_suf (3X) reads the cdfs System Use Field from the specified System Use Area

viii Table of Contents

cd_type(3X) .. get CD-ROM format identification
cd _xar, cd _cxar(3X) ... read CD-ROM Extended Attribute Record (XAR)
clock (3C) .. report CPU time used
connect (3N) .. initiate a connection on a socket
cony: toupper, tolower, _toupper, _tolower, toascii(3C) translate characters
copylist(3G) .. copy a file into memory
crypt, setkey, encrypt(3C) ... generate encryption
crypt (3X) .. password and file encryption functions
cs _connect, cs ""perror (3N) application interface to the Connection Server
ctermid (3S) ... generate file name for terminal
ctime, localtime, gmtime, asctime, tzset(3C) convert date and time to string
ctype: isdigit, isxdigit, is lower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,

isprint, isgraph, isascii(3C) .. character handling
curses (3curses) ... CRT screen handling and optimization package
curs_addch: addch, waddch, mvaddch, mvwaddch, echochar, wechochar(3curses)

.............................. add a character (with attributes) to a curses window and advance cursor
curs _addchstr: addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,

mvaddchnstr, mvwaddchstr, mvwaddchnstr(3curses)
.. add string of characters (and attributes) to a curses window

curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr, mvwaddstr,
mvwaddnstr(3curses)
.. add a string of characters to a curses window and advance cursor

curs _ addwch: addwch, waddwch, mvaddwch, mvwaddwch, echowchar,
wechowchar (3curses)
............... add a wchar _ t character (with attributes) to a curses window and advance cursor

curs_addwchstr: addwchstr, addwchnstr, waddwchstr, waddwchnstr, mvaddwchstr,
mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr(3curses)
..................................... add string of wchar _t characters (and attributes) to a curses window

curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr, mvaddnwstr,
mvwaddwstr, mvwaddnwstr(3curses)
........................... add a string of wchar _ t characters to a curses window and advance cursor

curs _ attr: attroff, wattroff, attron, wattron, attrset, wattrset, standend, wstandend,
standout, wstandout(3curses) curses character and window attribute control routines

curs_beep: beep, flash (3curses) .. curses bell and screen flash routines
curs _ bkgd: bkgdset, wbkgdset, bkgd, wbkgd (3curses)

...... curses window background manipulation routines
curs_border: border, wborder, box, hline, whline, vline, wvline(3curses)

.. create curses borders, horizontal and vertical lines
curs _clear: erase, werase, clear, wclear, clrtobot, wclrtobot, clrtoeol,

wclrtoeol(3curses) ... clear all or part of a curses window
curs _color: start_color, init""pair, init_ color, has_colors, can_change _color,

color_content, pair_content (3curses) curses color manipulation routines

Table of Contents ix

curs_de1ch: de1ch, wde1ch, mvde1ch, mvwdelch(3curses)
........... delete character under cursor in a curses window

curs _ deleteln: deleteln, wdeleteln, insdelln, winsdelln, insertln, winsertln (3curses)
.. delete and insert lines in a curses window

curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch(3curses)
... get (or push back) characters from curses terminal keyboard

curs_getstr: getstr, wgetstr, mvgetstr, mvwgetstr, wgetnstr(3curses)
.................... .. get character strings from curses terminal keyboard

curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch(3curses)
.................................... get (or push back) wchar_t characters from curses terminal keyboard

curs _getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr,
mvwgetwstr, mvwgetnwstr(3curses)
................. get wchar _ t character strings from curses terminal keyboard

curs _getyx: getyx, getparyx, getbegyx, getmaxyx (3curses)
............ get curses cursor and window coordinates

curs _inch: inch, winch, mvinch, mvwinch (3curses)
... get a character and its attributes from a curses window

curs _inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr, mvinchnstr,
mvwinchstr, mvwinchnstr (3curses)
... get a string of characters (and attributes) from a curses window

curs_initscr: initscr, newterm, endwin, isendwin, set_term, delscreen(3curses)
.. curses screen initialization and manipulation routines

curs _ inopts: cbreak, nocbreak, echo, noecho, halfdelay, intrflush, keypad, meta,
nodelay, notimeout, raw, noraw, noqiflush, qiflush, timeout, wtimeout,
typeahead(3curses) ... curses terminal input option control routines

curs_insch: insch, winsch, mvinsch, mvwinsch(3curses)
.......................... insert a character before the character under the cursor in a curses window

curs _ insstr: insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr, mvwinsstr,
mvwinsnstr(3curses)
... insert string before character under the cursor in a curses window

curs)nstr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr,
mvwinnstr(3curses) get a string of characters from a curses window

curs _ inswch: inswch, winswch, mvinswch, mvwinswch (3curses)
........... insert a wchar t character before the character under the cursor in a curses window

curs _ inswstr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr, mvinsnwstr,
mvwinswstr, mvwinsnwstr (3curses)
............... , insert wchar _ t string before character under the cursor in a curses window

curs _inwch: inwch, winwch, mvinwch, mvwinwch(3curses)
............ get a wchar _ t character and its attributes from a curses window

curs _ inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr(3curses)
.............................. get a string ofwchar_t characters (and attributes) from a curses window

x Table of Contents

curs _inwstr: inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr, mvwinwstr,
mvwinnwstr(3curses) get a string of wchar _ t characters from a curses window

curs_kernel: detprog_ mode, deCshell_ mode, resetyrog_ mode, reset_shell_ mode,
resetty, savetty, getsyx, setsyx, rip offline, curs_set, napms(3curses)
.. low-level curses routines

curs_move: move, wmove (3curses) .. move curses window cursor
curs _ outopts: dearok, idlok, idcok immedok, leaveok, setscrreg, wsetscrreg, scrollok,

nl, nonl(3curses) ... curses terminal output option control routines
curs_overlay: overlay, overwrite, copywin(3curses)

.. overlap and manipulate overlapped curses windows
cursyad: newpad, subpad, prefresh, pnoutrefresh, pechochar, pechowchar(3curses)

.. '" create and display curses pads
cursyrintw: printw, wprintw, mvprintw, mvwprintw, vwprintw(3curses)

.. print formatted output in curses windows
curs Jefresh: refresh, wrefresh, wnoutrefresh, doupdate, redrawwin,

wredrawln(3curses) .. refresh curses windows and lines
curs_scanw:scanw,wscanw,mvscanw,mvwscanw,vwscanw(3curses)

........ convert formatted input from a curses widow
curs_scroll: scroll, srd, wscrl (3curses) .. scroll a curses window
curs_scr_dump: scr_dump, scrJestore, scr_init, scr_set(3curses)

.. read (write) a curses screen from (to) a file
curs _slk: slk _ init, slk _set, slk Jefresh, slk _ noutrefresh, slk Jabel, slk _dear,

slk Jestore, slk _touch, slk _attron, slk _ attrset, slk_attroff(3curses)
.................... curses soft label routines

curs _ termattrs: baudrate, erasechar, has _ie, has _il, killchar, longname, termattrs,
termname (3curses) ... curses environment query routines

curs_termcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs(3curses)
.. curses interfaces (emulated) to the termcap library

curs _ terminfo: setup term, setterm, set_ curterm, del_ curterm, restartterm, tparm,
tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr(3curses)
.. curses interfaces to terminfo database

curs _touch: touchwin, touchline, untouchwin, wtouchln, is _linetouched,
is _ wintouched (3curses) ... curses refresh control routines

curs _ util: unctrl, keyname, filter, use _ env, putwin, getwin, delay_output, draino,
flushinp (3curses) .. miscellaneous curses utility routines

curs _window: newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin,
wsyncup, syncok, wcursyncup, wsyncdown(3curses) create curses windows

cuserid (35) ... get character login name of the user
dbm, dbminit, dbmdose, fetch, store, delete, firstkey, nextkey(3N) database subroutines
dbm: dbminit, dbmdose, fetch, store, delete, firstkey, nextkey(3) .. (B5D) data base subroutines
decimat to _floating: decimal_to _ single, decimal_to _double, decimal_to _extended (3)

.. (B5D) convert decimal record to floating-point value
dial (3N) .. establish an outgoing terrninalline connection
difftime (3C) ... compute the difference between two calendar times

Table of Contents xi

directory: opendir, readdir, telldir, seekdir, rewinddir, closedir(3C) directory operations
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir(3C)

... (BSD) directory operations
dimame(3G) .. report the parent directory name of a file path name
div,ldiv(3C) .. compute the quotient and remainder
dlclose(3X) ... close a shared object
dlerror (3X) ... get diagnostic information
dlopen(3X) ... open a shared object
dlsym (3X) .. get the address of a symbol in shared object
doconfig(3N) .. execute a configuration script
drand48, erand48,lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48(3C)

...... .. generate uniformly distributed pseudo-random numbers
dup2(3C) .. duplicate an open file descriptor
econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert(3) (BSD) output conversion
ecvt, ecvtl, fcvt, fcvtl, gcvt, gcvtl(3C) convert floating-point number to string
elf (3E) .. object file access library
elC begin (3E) .. make a file descriptor
eICcntl(3E) .. control a file descriptor
elf_end (3E) ... finish using an object file
elf_error: elC errmsg, elC errno (3E) ... error handling
elf_fill (3E) ... set fill byte
elf_flag: elC flagdata, elC flagehdr, elC flagelf, elC flagphdr, elC flagscn,

elf_ flagshdr(3E) .. manipulate flags
elf jsize: elf32 _fsize(3E) .. return the size of an object file type
elf_getarhdr(3E) ... retrieve archive member header
elCgetarsym (3E) ... retrieve archive symbol table
elCgetbase (3E) .. get the base offset for an object file
elf _getdata, elf _ new data, elC raw data (3E) ... get section data
elf _getehdr: elf32 _getehdr, elf32 _ newehdr (3E) retrieve class-dependent object file header
eICgetident(3E) .. retrieve file identification data
elCgetphdr: elf32_getphdr, elf32 _ newphdr(3E)

.................................... retrieve class-dependent program header table
elCgetscn, elC ndxscn, elC newscn, elC nextscn(3E) get section information
elCgetshdr: elf32 _getshdr(3E) .. retrieve class-dependent section header
elf_hash (3E) .. compute hash value
elf_kind (3E) .. determine file type
elf _ next (3E) ... sequential archive member access
elf_rand (3E) .. random archive member access
eICrawfile(3E) .. retrieve uninterpreted file contents
elf_strptr(3E) .. make a string pointer
elC update (3E) ... update an ELF descriptor
elf _ version (3E) ... coordinate ELF library and application versions
elC xlate: elf32 _ xlatetof, elf32 _ xlatetom (3E) class-dependent data translation
end, etext, edata (3C) ... last locations in program

xii Table of Contents

erf, erfc (3M) ... error function and complementary error function
ethers (3N) .. Ethernet address mapping operations
exp, expf, cbrt, log, logf, loglO, loglOf, pow, powf, sqrt, sqrtf(3M)

.. exponential, logarithm, power, square root functions
fattach(3C) ... attach STREAMS-based file descriptor to file system object
fclose, fflush (3S) ... close or flush a stream
fdetach(3C) ... detach a name from a STREAMS-based file descriptor
ferror, feof, clearerr, fileno (3S) .. stream status inquiries
ffs(3C) .. find first set bit
floatingpoint(3) ... (BSD) IEEE floating point definitions
floor, floorf, ceil, ceilf, copysign, fmod, fmodf, fabs, fabsf, rint, remainder(3M)

... floor, ceiling, remainder, absolute value functions
floating_to _decimal: single_to _decimal, double_to _decimal, extended_to _ decimal (3)

..... (BSD) convert floating-point value to decimal record
fmtmsg(3C) .. display a message on stderr or system console
fop en, freopen, fdopen (3S) ... open a stream
fop en, freopen, fdopen(3S) .. (BSD) open a stream
forms (3curses) ... character based forms package
form_cursor: pos _form_cursor (3curses) ... position forms window cursor
form_data: data_ahead, data_behind (3curses)

... tell if forms field has off-screen data ahead or behind
form_driver(3curses) .. command processor for the forms subsystem
form_field: setjorm_fields, form_fields, field_count, move_field(3curses)

.. connect fields to forms
form _ fieldtype: new _fieldtype, free _fieldtype, set_fieldtype _arg,

set_ field type _choice, link _ fieldtype (3curses) forms field type routines
form_field _attributes: set_field _fore, field _ fore, set_field _back, field_back,

set_field ""pad, field ""pad(3curses) format the general display attributes of forms
form_field_buffer: set_ field _buffer, field _buffer, set_field _status, field_status,

set_max jield (3curses) ... set and get forms field attributes
form_field_info: field_info , dynamic_field _info (3curses) get forms field characteristics
form_fieldjust: set_fieldjust, fieldjust(3curses) format the general appearance of forms
form_field_new: new_field, dup _ field, link_field, free_field, (3curses)

........ ~... create and destroy forms fields
form_field_opts: set_field_opts, field_opts _on, field_opts _off, field_opts (3curses)

.... forms field option routines
form_field _ userptr: set_field _ userptr, field _ userptr (3curses)

... associate application data with forms
form_field_validation: set_field_type, field_type, field _ arg (3curses)

... forms field data type validation
form_hook: set_form_init, form_init, set_form_term, form_term, set_field_init,

field _ ini t, set_field _ term, field_term (3curses)
.... assign application-specific routines for invocation by forms

form_new: new_form, free_form(3curses) ... create and destroy forms

Table of Contents xiii

form_new ---page: set_new ---page, new ---page(3curses) ... forms pagination
form_opts: set_form_ opts, form_opts _on, form_opts _off, form_opts (3curses)

......................... forms option routines
form ---page: setjorm ---page, form ---page, set_ current_field, current_field,

field_index (3curses) .. set forms current page and field
form ---post: post_form, unpost jorm (3curses)

.......... write or erase forms from associated subwindows
form_ userptr: set_form _ userptr, form _ userptr(3curses) .. associate application data with forms
form_win: set_form_win,form_win,set_form_sub,form_sub,scale_form(3curses)

... forms window and subwindow association routines
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky(3C)

............................. IEEE floating-point environment control
fread, fwrite(3S) .. binary input/output
frexp, frexpl, ldexp, ldexpl, 10gb, modf, modff, modfl, nextafter, scalb, scalbl(3C)

................... manipulate parts of floating-point numbers
fseek, rewind, ftell (3S) ... reposition a file pointer in a stream
fsetpos, fgetpos (3C) ... reposition a file pointer in a stream
ftime(3) ... (BSD) get date and time
ftw, nftw(3C) ... walk a file tree
gamma, 19amma (3M) .. log gamma function
getava, putava, retava, setava (31) library functions used by IAF schemes
getc, getchar, fgetc, getw(3S) .. get character or word from a stream
getcwd (3C) .. get pathname of current working directory
getdate (3C) ... convert user format date and time
getdtablesize(3) ... (BSD) get descriptor table size
getenv(3C) .. return value for environment name
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent(3C) get group file entry
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent(3N)

. get network host entry
gethostid(3) .. (BSD) get unique identifier of current host
gethostname, sethostname(3) ... (BSD) get/set name of current host
getitimer, setitimer(3C) .. get/set value of interval timer
getkey(3N) ... retrieve an authentication key
getlogin (3C) ... get login name
getmntent, getmntany(3C) ... get mnttab file entry
getnetconfig(3N) ... get network configuration database entry
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent(3N) get network entry
getnetpath(3N) get netconfig entry corresponding to NETPATH component
getopt (3C) ... get option letter from argument vector
getpagesize(3) ... (BSD) get system page size
getpass (3C) ... read a password
getpeername (3N) .. get name of connected peer
getpriority, setpriority(3) .. (BSD) get/set program scheduling priority

xiv Table of Contents

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent(3N)
......... get protocol entry

getpw (3C) .. get name from UID
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent(3C)

......... manipulate password file entry
getrusage(3) ... (BSD) get information about resource utilization
gets, fgets(3S) .. get a string from a stream
getservent, getservbyport, getservbyname, setservent, endservent(3N) get service entry
getsockname (3N) .. get socket name
getsockopt, setsockopt(3N) ... get and set options on sockets
getspent, getspnam, setspent, endspent, fgetspent,lckpwdf, ulckpwdf(3C)

... manipulate shadow password file entry
getsubopt (3C) .. parse sub options from a string
gettimeofday, settimeofday(3C) .. get or set the date and time
gettimeofday, settimeofday(3) .. (BSD) get or set the date and time
gettxt (3C) .. retrieve a text string
getusershell, setusershell, endusershell(3) .. (BSD) get legal user shells
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname(3C)

.. access utmp file entry
getutx: getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,

getutmp, getutmpx, updwtmp, updwtmpx(3C) access utmpx file entry
getvfsent, getvfsfile, getvfsspec, getvfsany(3C) ... get vfstab file entry
getwc, getwchar, fgetwc (3W) get wchar _ t character or word from a stream
getwd (3) ... (BSD) get current working directory pathname
getwidth(3W) .. get information on supplementary code sets
getws, fgetws (3W) .. get a wchar _ t string from a stream
gmatch(3G) ... shell global pattern matching
grantpt(3C) .. grant access to the slave pseudo-terminal device
hsearch, hcreate, hdestroy(3C) .. manage hash search tables
hypot (3M) .. Euclidean distance function
ia _ uinfo: ia _ openinfo, ia _ closeinfo, ia _get_ uid, ia _get_gid, ia _get_sgid, ia _getJvl,

ia _get_lvI, ia _get_mask, ia _get_ dir, ia _get_sh, ia _getJogpwd, ia _getJogchg,
ia _get_Iogmin, ia _get_Iogmax, ia _get_Iogwarn, ia _get_Ioginact,
ia _getJogexpire (31) get user identification and authentication information

ieee_functions, fp _class, isnan, copysign, scalbn (3)
.......... (BSD) miscellaneous functions for IEEE arithmetic

ieee_handler (3) .. (BSD) IEEE exception trap handler function
index, rindex(3) .. (BSD) string operations
inet: inet_addr, inet_network, inet_makeaddr, inetJnaof, inet_netof, inet_ntoa(3N)

.. Internet address manipulation
initgroups (3C) ... initialize the supplementary group access list
insque, remque(3C) .. insert/remove element from a queue
invoke (31) .. IAF function for invoking authentication schemes
isastream(3C) .. test a file descriptor

Table of Contents xv

isencrypt(3G) .. determine whether a character buffer is encrypted
isnan, isnand, isnanf, finite, fpclass, unordered (3C) determine type of floating-point number
killpg(3) .. (BSD) send signal to a process group
13tol, Itol3 (3C) ... convert between 3-byte integers and long integers
listen (3N) .. listen for connections on a socket
localeconv(3C) .. get numeric formatting information
lockf(3C) .. record locking on files
lsearch, Hind (3C) .. linear search and update
maillock (3X) ... manage lockfile for user's mailbox
makecontext, swapcontext(3C) ... manipulate user contexts
makedev, major, minor(3C) ... manage a device number
malloc, free, realloc, calloc, memalign, valloc, (3C) .. memory allocator
malloc, free, realloc, calloc, mallopt, mallinfo (3X) ... memory allocator
matherr (3M) ... error-handling function
mbchar: mbtowc, mblen, wctomb(3C) .. multibyte character handling
mbstring: mbstowcs, wcstombs (3C) ... multibyte string functions
mctl(3) ... (BSD) memory management control
memory: memccpy, memchr, memcmp, memcpy, memmove, memset(3C)

....... memory operations
menus (3curses) .. character based menus package
menu_attributes: set_menujore, menu_fore, set_menu_back, menu_back,

set_menu_grey, menu_grey, set_menuyad, menuj)ad(3curses)
... control menus display attributes

menu_cursor: pos _menu_cursor (3curses) correctly position a menus cursor
menu _ driver(3curses) ... command processor for the menus subsystem
menu_format: set_menu_format, menu_format (3curses)

... set and get maximum numbers of rows and columns in menus
menu_hook: set_item _ init, item_ init, set_item _ term, item_term, set_menu _ init,

menu_init, set_menu_term, menu_term(3curses)
................................. assign application-specific routines for automatic invocation by menus

menu_items: set_menu_items, menu_items, item_count (3curses)
..... connect and disconnect items to and from menus

menu)tem_current: set_current_item, current_item, set_topJow, tOPJow,
item_index (3curses) .. set and get current menus items

menu_item _ name: item_name, item _ description (3curses)
......... get menus item name and description

menu_item _ new: new_item, free_item (3curses) create and destroy menus items
menu _item_opts: set_item_ opts, item _opts _on, item _opts _off, item _ opts (3curses)

......................... menus item option routines
menu_item _ userptr: set_item _ userptr, item_ userptr(3curses)

...... associate application data with menus items
menu)tem_value: set_item_value, item_value (3curses) set and get menus item values
menu)tem _visible: item _ visible(3curses) ... tell if menus item is visible
menu_mark: set_menu_mark, menu_mark(3curses) menus mark string routines

xvi Table of Contents

menu_new: new_menu, free _ menu (3curses) ... create and destroy menus
menu_opts: set_menu _opts, menu _opts _on, menu_opts _off, menu_opts (3curses)

. menus option routines
menu yattern: set_menu yattern, menu yattern(3curses)

... set and get menus pattern match buffer
menuyost: post_menu, unpost_menu(3curses)

...................... write or erase menus from associated subwindows
menu _ userptr: set_menu _ userptr, menu _ userptr (3curses)

... associate application data with menus
menu_win: set_menu _ win, menu_win, set_menu _sub, menu_sub,

scale_menu(3curses) menus window and subwindow association routines
mkdirp, rmdirp(3G) .. create, remove directories in a path
mkfifo (3C) .. ~ ... create a new FIFO
mkstemp (3) .. (BSD) make a unique file name
mktemp (3C) '" ... make a unique file name
mktime (3C) ... converts a tm structure to a calendar time
mlock, munlock(3C) .. lock (or unlock) pages in memory
mlockall, munlockall (3C) ... lock or unlock address space
monitor (3C) ... '" prepare execution profile
mp: madd, msub, mult, mdiv, mcmp, min, mout, pow, gcd, rpow, msqrt, sdiv, itom,

xtom, mtox, mfree(3) ... (BSD) multiple precision integer arithmetic
msync(3C) ... synchronize memory with physical storage
namemap (31) .. map a name
ndbm: dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey,

dbm_nextkey, dbm_open, dbm_store(3) (BSD) data base subroutines
netdir _getbyname, netdir _getbyaddr, netdir _free, netdir _options, taddr2uaddr,

uaddr2taddr, netdir yerror, netdir _sperror (3N)
.. generic transport name-to-address translation

nice (3C) ... (BSD) change priority of a process
nlist (3E) ... get entries from name list
nlsgetcall(3N) ... get client's data passed via the listener
nlsprovider (3N) '" .. get name of transport provider
nlsrequest(3N) .. format and send listener service request message
nl_langinfo (3C) ... language information
offsetof (3C) .. offset of structure member
p2open, p2close(3G) .. open, close pipes to and from a command
panels (3curses) ... character based panels package
panel_above: panetabove, panel_ below(3curses) panels deck traversal primitives
panel_move: moveyanel(3curses) move a panels window on the virtual screen
panel_new: new yanel, del yanel(3curses) .. create and destroy panels
panel_show: show yanel, hide yanel, panel_hidden (3curses)

.. panels deck manipulation routines
panel_top: top yanel, bottom yanel (3curses) panels deck manipulation routines
panel_update: updateyanels(3curses) panels virtual screen refresh routine

Table of Contents xvii

panel_ userptr: setpanet userptr, panet userptr (3curses)
.. ,. associate application data with a panels panel

panet window: panet window, replace yanel(3curses)
... ,. get or set the current window of a panels panel

pathfind (3G) ... search for named file in named directories
perror (3C) ... print system error messages
pfmt, vpfmt (3C) display error message in standard format
popen, pelose (3S) .. initiate pipe to I from a process
printf, fprintf, sprintf(3S) ... print formatted output
printf: sprintf, vsprintf(3S) ... (BSD) formatted output conversion
procprivl(3C) add, remove, count, or put privileges associated with the calling process
psignal, psiginfo (3C) .. , system signal messages
psignal, sys_siglist(3) .. (BSD) system signal messages
ptsname (3C) ... get name of the slave pseudo-terminal device
publickey: getpublickey, getsecretkey(3N) ... retrieve public or secret key
putc, putchar, fputc, putw(3S) ... put character or word on a stream
putenv(3C) ... change or add value to environment
putpwent(3C) .. write password file entry
puts, fputs(3S) .. put a string on a stream
putspent(3C) ... write shadow password file entry
putwc, putwchar, fputwc(3W) .. put wchar_t character on a stream
putws, fputws (3W) ... put a wchar _t string on a stream
qsort(3C) ... quicker sort
raise (3C) .. send signal to program
rand, srand (3C) ... , simple random-number generator
rand, srand(3) .. (BSD) simple random number generator
random, srandom, initstate, setstate(3)

............................ (BSD) better random number generator; routines for changing generators
rcmd, rresvport, ruserok (3N) routines for returning a stream to a remote command
realpath (3C) ... returns the real file name
reboot (3) .. reboot system or halt processor
recv, recvfrom, recvmsg(3N) ... receive a message from a socket
regcmp, regex(3G) ... compile and execute regular expression
regex: re_comp, re_exec(3) .. (BSD) regular expression handler
regexpr: compile, step, advance (3G) regular expression compile and match routines
remove (3C) .. remove file
resolver, res_mkquery, res_send, res_init, dn_comp, dn_expand(3N) resolver routines
rexec (3N) .. return stream to a remote command
rexecve, rx_set_ioctl_hand, rx_set_write_hand, rx_fd, rxyroc_msg, rx_write,

rx_signal, rx_ack_exit, rc_free_conn(3N) .. REXEC support routines
rpc(3N) ... library routines for remote procedure calls
rpcbind: rpcb _getmaps, rpcb _getaddr, rpcb _gettime, rpcb Jmtcall, rpcb _set,

rpcb _ unset(3N) .. library routines for RPC bind service

xviii Table of Contents

rpc _ clnt_auth: auth _destroy, authnone _create, authsys _create,
authsys _create _ default (3N)
....................................... library routines for client side remote procedure call authentication

rpc_clnt_calls: clnt_call, clnt_freeres, clnt_geterr, clntyermo, clntyerror,
clnt_sperrno, clnt_sperror, rpc_broadcast, rpc_ call (3N)
......... library routines for client side calls

rpc _ clnt_ create: clnt_ control, clnt_ create, clnt_ destroy, clnt_ dg_ create,
clntycreateerror, clntJaw _create, clnt_spcreateerror, clnt_tli_ create,
clnt_ tp _create, clnt_ vc _create (3N)
.................. library routines for dealing with creation and manipulation of CLIENT handles

rpc_svc_calls: rpcJeg, svcJeg, svc_unreg, xprtJegister, xprt_unregister(3N)
..... library routines for registering servers

rpc_svc_create: svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc Jaw _create, svc _ tli _create, svc _ tp _ crea te, svc _ vc _create (3N)
........ library routines for dealing with the creation of server handles

rpc _svc_ err: svcerr _auth, svcerr _decode, svcerr _ noproc, svcerr _noprog,
svcerr yrogvers, svcerr _systemerr, svcerr _ weakauth(3N)
.. library routines for server side remote procedure call errors

rpc_svcJeg: svc_freeargs, svc_getargs, svc_getreqset, svc_getrpccaller, svcJun,
svc_sendreply(3N) ... library routines for RPC servers

rpc _ xdr: xdr _accepted Jeply, xdr _ authsys yarms, xdr _ callhdr, xdr _ callmsg,
xdr _opaque _auth, xdr Jejected Jeply, xdr Jeplymsg(3N)
.. XDR library routines for remote procedure calls

rusers(3N) .. return information about users on remote machines
rwall (3N) ... write to specified remote machines
scandir, alphasort(3) .. (BSD) scan a directory
scan£, fscan£, sscanf(3S) .. convert formatted input
secure Jpc: authdes _seccreate, authdes _getucred, getnetname, host2netname,

key _ decryptsession, key _ encryptsession, key _gendes, key _ setsecret,
netname2host, netname2user, user2netname (3N)
... library routines for secure remote procedure calls

select (3C) .. synchronous I/O multiplexing
send, sendto, sendmsg(3N) .. send a message from a socket
setbuf, setvbuf (3S) .. assign buffering to a stream
setbuffer, setlinebuf(3S) .. (BSD) assign buffering to a stream
setcat(3C) ... define default catalog
setjmp, longjmp(3C) .. non-local goto
setjmp, longjmp, _setjmp, Jongjmp, sigsetjmp, siglongjmp(3) (BSD) non-local goto
setlabel (3C) .. define the label for pfmt
setlocale (3C) .. modify and query a program's locale
setregid (3) .. (BSD) set real and effective group IDs
setreuid(3) ... (BSD) set real and effective user IDs
set_env(3I) ... set the user's environment
set_id(3I) ... set the user's identity

Table of Contents xix

shutdown (3N) .. shut down part of a full-duplex connection
sigblock, sigmask(3) .. (BSD) block signals
sigfpe(3) .. (BSD) signal handling for specific SIGFPE codes
siginterrupt(3) .. (BSD) allow signals to interrupt system calls
signal (3) .. (BSD) simplified software signal facilities
sigpause(3) (BSD) automatically release blocked signals and wait for interrupt
sigseljmp, siglongjmp(3C) .. a non-local goto with signal state
sigsetmask(3) ... (BSD) set current signal mask
sigsetops: sigemptyset, sigfiIlset, sigaddset, sigdelset, sigismember(3C)

................... manipulate sets of signals
sigstack(3) ... (BSD) set and/ or get signal stack context
sigvec(3) .. (BSD) software signal facilities
sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh(3M) hyperbolic functions
sleep (3C) ... suspend execution for interval
sleep (3) ... (BSD) suspend execution for interval
socket (3N) ... create an endpoint for communication
socketpair (3N) .. create a pair of connected sockets
spray (3N) .. scatter data in order to check the network
sputl, sgetl(3X) access long integer data in a machine-independent fashion
ssignal, gsignal (3C) .. software signals
stdio (3S) .. standard buffered input/ output package
stdipc: ftok(3C) .. standard interprocess communication package
str: strfind, strrspn, strtrns (3G) ... string manipulations
strccpy, strcadd, strecpy, streadd (3G) copy strings, compressing or expanding escape codes
strcoll (3C) .. string collation
strerror (3C) .. get error message string
strftime, cftime, ascftime (3C) ... convert date and time to string
string: strcat, strncat, strcmp, strncmp, strcpy, strncpy, strdup, strlen, strchr, strrchr,

strpbrk, strspn, strcspn, strtok, strstr(3C) .. string operations
string: strcasecmp, strncasecmp(3) .. (BSD) string operations
strtod, strtold, atof(3C) ... convert string to double-precision number
strtol, strtoul, atol, atoi (3C) ... convert string to integer
strxfrm (3C) ... string transformation
swab (3C) .. swap bytes
syscall(3) .. (BSD) indirect system call
sysconf(3C) .. get configurable system variables
syslog, openlog, closelog, setlogmask(3) .. (BSD) control system log
system (3S) .. issue a shell command
tam (3curses) ... , TAM transition libraries
tcsetpgrp (3C) .. set terminal foreground process group ID
times (3C) ... (BSD) get process times
timezone(3) .. (B5D) get time zone name given offset from GMT
tmpfile (3S) .. create a temporary file
tmpnam, tempnam (35) .. create a name for a temporary file

xx Table of Contents

trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf, atan2, atan2f(3M)
.. trigonometric functions

truncate, ftruncate (3C) ... set a file to a specified length
tsearch, tfind, tdelete, twalk(3C) ... manage binary search trees
ttyname, isatty(3C) .. find name of a terminal
ttyslot(3C) .. find the slot in the utrnp file of the current user
t_accept(3N) .. accept a connect request
t_alloc(3N) ... allocate a library structure
t_bind(3N) .. bind an address to a transport endpoint
t_ close (3N) '" ... close a transport endpoint
t_ connect (3N) ... establish a connection with another transport user
t_ error (3N) ... produce error message
t_ free (3N) ... free a library structure
t_getinfo (3N) ... get protocol-specific service information
t_getstate (3N) .. '" get the current state
t_listen(3N) ... listen for a connect request
t_Iook(3N) ... look at the current event on a transport endpoint
t_ open (3N) .. establish a transport endpoint
t_optrngmt(3N) .. manage options for a transport endpoint
tJcv(3N) ... receive data or expedited data sent over a connection
tJcvconnect(3N) .. receive the confirmation from a connect request
tJcvdis(3N) .. retrieve information from disconnect
tJcvrel(3N) .. acknowledge receipt of an orderly release indication
t_rcvudata(3N) .. receive a data unit
tJcvuderr(3N) .. receive a unit data error indication
t_snd(3N) ... send data or expedited data over a connection
t_snddis(3N) .. send user-initiated disconnect request
t_sndrel(3N) .. initiate an orderly release
t_sndudata(3N) ... send a data unit
t_sync(3N) .. synchronize transport library
t_ unbind (3N) ... disable a transport endpoint
ualarm(3) ... (BSD) schedule signal after interval in microseconds
ungetc (3S) '" ... push character back onto input stream
ungetwc (3W) ... push wchar _ t character back into input stream
unlockpt(3C) ... unlock a pseudo-terminal master/slave pair
usleep(3) ... (BSD) suspend execution for interval in microseconds
utimes(3) ... (BSD) set file times
vprintf, vfprintf, vsprintf(3S) print formatted output of a variable argument list
wait: wait3, WIFSTOPPED, WIFSIGNALED, WIFEXITED(3)

... (BSD) wait for process to terminate or stop
wconv: towupper, towlower (3W) ... translate characters
wctype: iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace,

iswpunct, iswprint, iswgraph, iswcntrl, iswascii, isphonogram, isideogram,
isenglish, isnumber, isspecial(3W)

Table of Contents xxi

· classify ASCII and supplementary code set characters
widec (3W) ... multibyte character I/O routines
wstring: wscat, wsncat, wscmp, wsncmp, wscpy, wsncpy, wslen, wschr, wsrchr,

wspbrk, wsspn, wscspn, wstok, wstostr, strtows(3W)
.. wchar _ t string operations and type transformation

xdr (3N) .. library routines for external data representation
xdr _ admin: xdr _getpos, xdr _ inline, xdrrec _ eof, xdr _ setpos (3N)

................................ .. library routines for external data representation
xdr_complex: xdr_array, xdr_bytes, xdr_opaque, xdr-pointer, xdr_reference,

xdr_string, xdr_union, xdr_vector, xdr_wrapstring(3N)
.. library routines for external data representation

xdr _create: xdr_ destroy, xdrmem _create, xdrrec _create, xdrstdio _create (3N)
... library routines for external data representation stream creation

xdr_simple: xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdrjree, xdr_int,
xdr _long, xdr _short, xdr _ u _char, xdr_ u _long, xdr _ u _short, xdr _void (3N)
.. library routines for external data representation

xdr _sizeof(3N) ... library routine for external data representation
ypclnt, yp _get_ default_domain, yp _bind, yp _unbind, yp _match, yp _first, yp _next,

yp_all, yp_order, yp _master, yperr_string, ypprot_err(3N) NIS client interface
yp _update (3N) .. change NIS information
Oal,2

Permuted Index

xxii Table of Contents

Introduction

This reference manual describes the C language interface used by application pro
grams to access the operating system services of UNIX System V. The UNIX
operating system application program interface (API) described in this reference
manual includes UNIX system calls and C library functions.

Not all facilities, features, and functions described in this manual are available in
every UNIX system implementation. Some of the features require additional facil
ities that may not exist on your system.

Organization of This Reference Manual

This manual contains the following sections (all section 3 manual pages are sorted
alphabetically in one section):

Table 1: Operating System API Components

Section

2

3
3curses

3C
3E
3G
31

3M
3N
3S
3W
3X

Component Type

System Calls

BSD System Compatibility Library
ETI/ curses Libraries
Standard C Library
Executable and Linking Format Library
General Purpose Library
Identification and Authentication Library
Math Library
Networking Library
Standard I/O Library
Multibyte/Wide Character Conversion Library
Specialized Libraries

Section 2 - System Calls describes the access to the services provided by the
UNIX system kernel, including the C language interface [see intro(2)].

Section 3 - Library Functions describes the available general library routines. In
many cases, several related routines are described on the same manual page.
Their binary versions reside in various system libraries. See intro(3) for descrip
tions of these libraries and the files in which they are stored.

Introduction 1

Manual Page Format

Manual pages follow a common format; although, some manual pages may omit
some sections:

• The NAME section names the component(s) and briefly states its purpose.

• The SYNOPSIS section specifies the C language programming interface(s).

• The DESCRIPTION section details the behavior of the component(s).

• The RETURN VALUES section outlines return values and error conditions.

• The EXAMPLES section gives examples, caveats and guidance on usage.

• The FILES section gives the file names that are built into the program.

• The SEE ALSO section lists related component interface descriptions.

• The DIAGNOSTICS section outlines return values and error conditions.

• The NOTES section gives generally helpful hints about the use of the utility.

The NAME section lists the names of components described in that manual page
with a brief, one-line statement of the nature and purpose of those components.

The SYNOPSIS section summarizes the component interface by compactly
representing the order of any arguments for the component, the type of each argu
ment (if any) and the type of value the component returns.

The DESCRIPTION section specifies the functionality of components without
stipulating the implementation; it excludes the details of how UNIX System V
implements these components and concentrates on defining the external features
of a standard computing environment instead of the internals of the operating sys
tem, such as the scheduler or memory manager. Portable software should avoid
using any features or side-effects not explicitly defined.

The SEE ALSO section refers the reader to other related manual pages in the
UNIX System V Reference Manual Set as well as other documents. The SEE ALSO
section identifies manual pages by the title that appears in the upper corner of
each page of a manual page.

Some manual pages cover several functions, in which case, those functions defined
along with other related functions share the same manual page title. For example,
many references to the function ealloe cite malloe(3) because the function eal
loe is described with the function malloe in the manual page entitled malloe(3).

2 Introduction

How to Use a Manual Page

The manual page for each function describes how you should use the function in
your program. As an example, we'll look at the streng;> function, which compares
character strings. The function is described on the string(3C) manual page in
Section 3 of the Operating System API Reference. Related functions are described
there as well, but only the sections relevant to streng;> are shown in the following
figure.

Figure 1: Excerpt from string(3C) Manual Page

NAME

SYNOPSIS

string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strok - string operations.

#include <string.h>

int strcmp(const char *sptrl, const char *sptr2);

DESCRIPTION

strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as the first argument is lexicographically less than,
equal to, or greater than the second.

As shown, the DESCRIPTION section tells you what the function or macro does.
It's the SYNOPSIS section, though, that contains the critical information about
how you use the function or macro in your program. Note that the first line in the
SYNOPSIS is

#include <string.h>

That means that you should include the header file string. h in your program
because it contains useful definitions or declarations relating to strcmp.

IntrodUction 3

In fact, string.h contains the strcmp "function prototype" as follows:

extern int strcmp(const char *, const char *);

A function prototype describes the kinds of arguments expected and returned by a
C language function. Function prototypes afford a greater degree of argument
type checking than old-style function declarations, and reduce the chance of using
the function incorrectly. Including string. h, assures that the C compiler checks
calls to strcmp against the official interface. You can, of course, examine
string. h in the standard place for header files on your system, usually the
lusr/include directory.

The SYNOPSIS for a C library function closely resembles the C language declara
tion of the function and its arguments. The SYNOPSIS tells the reader:

• the type of value returned by the function;

• the arguments the function expects to receive when called, if any;

• the argument types.

For example, the SYNOPSIS for the macro feof is:

#include <stdio.h>

int feof(FILE *sJP);

The SYNOPSIS section for feof shows that:

• The macro feof requires the header file stdio. h

• The macro feof returns a value of type int

• The argument sJP is a pointer to an object of type FILE

To use feof in a program, you need only write the macro call, preceded at some
point by the #include control line, as in the following:

#include <stdio.h> 1* include definitions *1

main() {
FILE *infile; 1* define a file pointer *1

while (!feof(infile» { 1* until end-of-file *1
1* operations on the file *1

}

}

4 Introduction

The format of a SYNOPSIS section only resembles, but does not duplicate, the for
mat of C language declarations. To show that some components take varying
numbers of arguments, the SYNOPSIS section uses additional conventions not
found in actual C function declarations:

• Text in constant width represents source-code typed just as it appears.

• Text in italic usually represents substitutable argument prototypes.

• Square brackets [] around arguments indicate optional arguments.

• Ellipses ... indicate that the previous arguments may repeat.

• If the type of an argument may vary, the SYNOPSIS omits the type.

For example, the SYNOPSIS for the function printf is:

#include <stdio.h>

int printf (const char *fmt [, arg • • •]);

The SYNOPSIS section for printf shows that the argument arg is optional, may
be repeated and is not always of the same data type. The DESCRIPTION section
of the manual page provides any remaining information about the function
printf and the arguments to it.

Either the RETURN VALUES section or the DIAGNOSTICS section specifies
return values and possible error conditions. Text in the these sections take a con
ventional form which describes the return value in case of successful completion
followed by the consequences of an unsuccessful completion, as in the following
example:

On success, Iseek returns the value of the resulting file-offset, as
measured in bytes from the beginning of the file.

On failure, Iseek returns -1, it does not change the file-offset, and
errno equals:

EBADF if fildes is not a valid open file-descriptor.

EINVAL if whence is not SEEK_SET, SEEK_CUR or SEEK_END.

ESPIPE if fildes denotes a pipe or FIFO.

The errno. h header file defines symbolic names for error conditions described in
intro(2).

The SEE ALSO section may refer to manual pages in another reference manual.
References to manual pages with section numbers other than 2 or 3 mean that the
manual page is described in another reference manual. You can find the appropri
ate volume by checking the table on the inside front cover of this book or referring

Introduction 5

to the section numbers printed on the spine of each manual. For example, you'll
find all section 1 manual pages (including sections I, IC, IF, and 1M) in the Com
mand Reference. You'll find sections 4, 5 and 7 manual pages in the System Files and
Devices Reference.

Each reference manual section consists of a number of independent entries.
Entries within each section are alphabetized. Some entries may describe several
routines, commands, and so on. In such cases, the entry appears only once, alpha
betized under its "primary" name, the name that appears in the upper corner of
each manual page.

The center top of a manual page is normally empty. It can be used to designate
that a manual page is associated with a software compatibility package or a
specific file system type. Your system mayor may not support this particular
software. For example, if the center top of a page contains "BSD System Compati
bility," this means that the software described on the manual page is part of the
BSD Compatibility package. If that package is installed, then the software should
function as described.

6 Introduction

intro (2)

NAME
intro - introduction to system calls, error numbers, and privileges

SYNOPSIS
#include <errno.h>
#include <limits.h>
#include <priv.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value. This is almost always -lor the NULL pointer; the individual descriptions
specify the details. An error number is also made available in the external variable
errno. errno is not cleared on successful calls, so it should be tested only after an
error has been indicated.

The constants ARG_MAX, SYS_OPEN, OPEN_MAX, and so on, are implementation
specific constants defined in limits.h. See limits(4).

Each system call description attempts to list all possible error numbers. The follow
ing is a complete list of the error numbers and their names as defined in errno.h.

1 EPERM Not privileged
Typically this error indicates an attempt to modify a file in some way forbid
den by the privilege mechanism, or restricted to the owner of the file. It is
also returned when an attempt is made to open a device already open by
another process. See the PRIVILEGES section and "Access Permissions" in
the DEFINITIONS section below.

2 ENOENT No such file or directory
A file name is specified and the file should exist but doesn't, or one of the
directories in a pathname does not exist.

3 ESRCH No such process
No process can be found corresponding to the process identifier specified.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system service routine. If execution is
resumed after processing the signal, it will appear as if the interrupted rou
tine call returned this error condition.

S EIO I/O error
Some physical I/O error has occurred. This error may in some cases occur
on a call following the one to which it actually applies.

6 ENXIO No such device or address
1/ 0 on a special file refers to a sub device which does not exist, or exists
beyond the limit of the device. It may also occur when, for example, a tape
drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than ARG_MAX bytes is presented to a member of the
exec family of routines. The argument list limit is the sum of the size of the
argument list plus the size of the environment's exported shell variables.

7

intra (2)

8

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate
permissions, does not start with a valid format [see a.out(4)].

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write)
request is made to a file that is open only for writing (respectively, reading).

10 ECHILD No child processes
A wait routine was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN Resource is temporarily unavailable; try again later
For example, the fork routine failed because the system's process table is
full or the user is not allowed to create any more processes, or a system call
failed because of insufficient memory or swap space.

12 ENOMEM Not enough space
During execution of an exec, brk, or sbrk routine, a program asks for more
space than the system is able to supply. This is not a temporary condition;
the maximum size is a system parameter. The error may also occur if the
arrangement of text, data, and stack segments requires too many segmenta
tion registers, or if there is not enough swap space during the fork routine.
If this error occurs on a resource associated with Remote File Sharing (RFS),
it indicates a memory depletion which may be temporary, dependent on
system activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection
system. The access control mechanism grants and denies a process permis
sion to access an object based on a comparison of the attributes of the pro
cess (real and effective user IDs) and the attributes of the object (access per
missions). Failure of any of these checks causes denial of the requested
access and the return of EACCES. See" Access Permissions" in the DEFINI
TIONS section below for more information.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument
of a routine. For example, ermo potentially may be set to EFAULT any time
a routine that takes a pointer argument is passed an invalid address, if the
system can detect the condition. Because systems will differ in their ability
to reliably detect a bad address, on some implementations passing a bad
address to a routine will result in undefined behavior.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required (for
example, in a call to the mount routine).

16 EBUSY Device busy
The device or resource is currently unavailable. An attempt was made to do
one of the following: mount a device that was already mounted; unmount a
device on which there is an active file (open file, current directory,
mounted-on file, active text segment); enable accounting when it is already
enabled; or, open a device that is in the process of closing.

intra (2)

17 EEXIST File exists
An existing file was mentioned in an inappropriate context (for example,
call to the link routine).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate operation to a device (for
example, read a write-only device, open a device not yet allocated). An
attempt was made to apply an inappropriate operation to a device (for
example, read a write-only device, open a device not yet allocated).

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required (for example, in
a path prefix or as an argument to the chdir routine).

21 EISDIR Is a directory
An attempt was made to perform an operation not appropriate for a direc
tory, such as write(2).

22 EINVAL Invalid argument
An invalid argument was specified [for example, unmounting a non
mounted device or specifying an undefined signal in a call to sigaction(2)
or kill(2)].

23 ENFILE File table overflow
The system file table is full (that is, SYS_OPEN files are open, and temporarily
no more files can be opened).

24 EMFILE Too many open files
No process may have more than OPEN_MAX file descriptors open at a time.

25 ENOTTY Not a typewriter
A call was made to the ioctl routine specifying a file that is not a special
character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is currently
open for writing. Also an attempt to open for writing or to remove a pure
procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size, FCHR_MAX [see
getrlimit].

28 ENOSPC No space left on device
While writing an ordinary file or creating a directory entry, there is no free
space left on the device. In the fcntl routine, the setting or removing of
record locks on a file cannot be accomplished because there are no more
record entries left on the system.

9

intro (2)

10

29 ESPIPE Illegal seek
A call to the lseek routine was issued to a pipe.

30 EROFS Read-only filesystem
An attempt to modify a file or directory was made on a filesystem which
was mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links, LINK_MAX, to
a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condi
tion normally generates a signal; the error is returned if the signal is
ignored.

33 EDOM Math argument out of domain of func
The argument of a function in the math package (3M) is out of the domain
of the function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not representable within
machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on
the specified message queue [see msgop(2)].

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the removal
of a message or semaphore identifier from the system [see msgop(2),
semop(2), msgctl(2), and semctl(2)].

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition
A deadlock situation was detected and avoided. This error pertains to file
and record locking.

46 ENOLCK No record locks available
There are no more locks available. The system lock table is full [see
fcntl(2)].

47-49 Reserved

58-59 Reserved

60 ENOSTR Device not a stream

intro (2)

A putmsg or getmsg system call was attempted on a file descriptor that is
not a STREAMS device.

61 ENODATA No data available

62 ETlME Timer expired
The timer set for a STREAMS ioctl call has expired. The cause of this error
is device specific and could indicate either a hardware or software failure, or
perhaps a timeout value that is too short for the specific operation. The
status of the ioctl operation is indeterminate.

63 ENOSR Out of stream resources
During a STREAMS open, either no STREAMS queues or no STREAMS head
data structures were available. This is a temporary condition; one may
recover from it if other processes release resources.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when users try to
advertise, unadvertise, mount, or unmount remote resources while the
machine has not done the proper startup to connect to the network.

65 ENOPKG Package not installed
This error occurs when users attempt to use a system call from a package
which has not been installed.

66 EREMOTE Object is remote
This error is RFS specific. It occurs when users try to advertise a resource
which is not on the local machine, or try to mount/unmount a device (or
pathname) that is on a remote machine.

67 ENOLINK Link has been severed
This error is RFS specific. It occurs when the link (virtual circuit) connecting
to a remote machine is gone.

68 EADV Advertise error
This error is RFS specific. It occurs when users try to advertise a resource
which has been advertised already, or try to stop RFS while there are
resources still advertised, or try to force unmount a resource when it is still
advertised.

69 ESRMNT Srmount error
This error is RFS specific. It occurs when an attempt is made to stop RFS
while resources are still mounted by remote machines, or when a resource is
readvertised with a client list that does not include a remote machine that
currently has the resource mounted.

70 ECOMM Communication error on send
This error is RFS specific. It occurs when the current process is waiting for a
message from a remote machine, and the virtual circuit fails.

11

intro (2)

12

71 EPROTO Protocol error
Some protocol error occurred. This error is device specific, but is generally
not related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS specific. It occurs when users try to access remote
resources which are not directly accessible.

76 EDOTDOT Error 76
This error is RFS specific. A way for the server to tell the client that a pro
cess has transferred back from mount point.

77 EBADMSG Not a data message
During a read, getmsg, or ioctl I_RECVFD system call to a STREAMS
device, something has come to the head of the queue that can't be processed.
That something depends on the system call:

read control information or a passed file descriptor
getmsg passed file descriptor
ioctl control or data information

78 ENAMETOOLONG File name too long
The length of the path argument exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while _POSIX_NO_TRUNC is in effect; see
limits(4).

79 EOVERFLOW Value too large for defined data type

80 ENOTUNIQ Name not unique on network
Given log name not unique.

81 EBADFD File descriptor in bad state
Either a file descriptor refers to no open file or a read request was made to a
file that is open only for writing.

82 EREMCHG Remote address changed

83 ELlBACC Cannot access a needed shared library
Trying to exec an a.out that requires a static shared library and the static
shared library doesn't exist or the user doesn't have permission to use it.

84 ELIBBAD Accessing a corrupted shared library
Trying to exec an a.out that requires a static shared library (to be linked in)
and exec could not load the static shared library. The static shared library
is probably corrupted.

85 ELIBSCN .lib section in a. out corrupted
Trying to exec an a.out that requires a static shared library (to be linked in)
and there was erroneous data in the .lib section of the a. out. The .lib
section tells exec what static shared libraries are needed. The a. out is
probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec an a. out that requires more static shared libraries than is
allowed on the current configuration of the system. See your system
administration guide.

87 ELIBEXEC Cannot exec a shared library directly
Attempting to exec a shared library directly.

88 EILSEQ Illegal byte sequence

intro(2)

Illegal byte sequence. Handle multiple characters as a single character.

89 ENOSYS Operation not applicable

90 ELOOP Too many symbolic links in path name traversal

91 ESTART Restartable system call
Interrupted system call should be restarted.

92 ESTRPIPE Streams pipe error
Streams pipe error (not externally visible).

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users

95 ENOTSOCK Socket operation on non-socket

96 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a transport endpoint.
Destination address required.

97 EMSGSIZE Message too long
A message sent on a transport provider was larger than the internal message
buffer or some other network limit.

98 EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket
type requested.

99 ENOPROTOOPT Protocol not available
A bad option or level was specified when getting or setting options for a
protocoL

120 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation
for it exists.

121 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or
no implementation for it exists.

122 EOPNOTSUPP Operation not supported on transport endpoint
For example, trying to accept a connection on a datagram transport end
point.

123 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no imple
mentation for it exists. Used for the Internet protocols.

124 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used.

13

intro(2)

14

125 EADDRlNUSE Address already in use
User attempted to use an address already in use, and the protocol does not
allow this.

126 EADDRNOTAVAIL Cannot assign requested address
Results from an attempt to create a transport endpoint with an address not
on the current machine.

127 ENETOOWN Network is down
Operation encountered a dead network.

128 ENETUNREACH Network is unreachable
Operation was attempted to an unreachable network.

129 ENETRESET Network dropped connection because of reset
The host you were connected to crashed and rebooted.

130 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

131 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a
loss of the connection on the remote host due to a timeout or a reboot.

132 ENOBUFS No buffer space available
An operation on a transport endpoint or pipe was not performed because
the system lacked sufficient buffer space or because a queue was full.

133 EISCONN Transport endpoint is already connected
A connect request was made on an already connected transport endpoint;
or, a sendto or sendmsg request on a connected transport endpoint
specified a destination when already connected.

134 ENOTCONN Transport endpoint is not connected
A request to send or receive data was disallowed because the transport end
point is not connected and (when sending a datagram) no address was sup
plied.

137 ENOTNAM Not a XENIX system named type file
A XENIX system "named" file (semaphore, shared data, and so forth) was
expected, but the specified object was not a XENIX system named file.

138 ENAVAIL No XENIX system semaphores available
An opensem(2), waitsem(2), or sigsem(2) was issued to a XENIX system
semaphore that has not been initialized by a call to creatsem(2). A sigsem
was issued to a XENIX system semaphore out of sequence; that is, before the
process has issued the corresponding wai tsem to the semaphore. An
nbwai tsem was issued to a semaphore guarding a resource that is currently
in use by another process. The semaphore that a process was waiting on has
been left in an inconsistent state when the process controlling the semaphore
exited without relinquishing control properly; that is, without issuing a
wai tsem on the semaphore.

intro (2)

139 EISNAM Is a XENIX system named type file
An attempt was made to perform an operation not appropriate for a XENIX
system "named" file, such as opeo(2).

143 ESHUTDOWN Cannot send after transport endpoint shutdown
A request to send data was disallowed because the transport endpoint has
already been shut down.

144 ETOOMANYREFS Too many references: cannot splice

145 ETlMEOOUT Connection timed out
A connect or send request failed because the connected party did not prop
erly respond after a period of time. (The timeout period is dependent on the
communication protocol.)

146 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a service that is inactive on the
remote host.

147 EHOSTDOWN Host is down
A transport provider operation failed because the destination host was
down.

148 EHOSTUNREACH No route to host
A transport provider operation was attempted to an unreachable host.

149 EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an
operation in progress.

150 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect) was
attempted on a non-blocking object.

151 ESTALE Stale NFS file handle

152 ENOLOAD Could not load the required loadable module

153 ERELOC Relocation error when module being loaded

154 ENOMATCH No symbol was found matching the given specification

156 EBADVER Version number mismatch

157 ECONFIG Configured kernel resource exhausted

PRIVILEGES
All of the sensitive system operations that require special privileges have been
identified and specific privileges defined for one or more of these services. A pro
cess may perform a sensitive service only if it has the required privilege.

If the system is running the Super User Module (SUM), the privileged user ID (uid
o in the delivered system), has all of these privileges.

Following is a list of privileges as defined in sys/pri vilege. h:

15

intro (2)

16

o P_OWNER
Required to change the attributes of a file (that is, information kept in the
file's inode) that is not owned by the effective uid of the calling process.
See" Access Permissions" in the DEFINITIONS section below.

1 P_AUDIT
Required to manipulate the security audit mechanisms.

2 P_COMPAT
Overrides specific restrictions that are imposed solely for the confinement of
covert channels.

3 P_DACREAD
Overrides Discretionary Access Control (DAC) restrictions but only for
operations that do not alter objects (that is, read and execute permissions).
See" Access Permissions" in the DEFINITIONS section below.

4 P_DACWRITE
Overrides Discretionary Access Control restrictions but only for operations
that alter objects (that is, write permission). See" Access Permissions" in the
DEFINITIONS section below.

5 P_DEV

Required to set or get device security attributes to change the device level
when it is in private state, and to access a device when it is in private state.
This privilege is also used for special ioctl for window management and to
download trusted software to a terminal driver.

6 P_FILESYS

Required for privileged operations on a filesystem that have relatively low
sensitivity, including the creation of links to directories, setting the effective
root directory, and making special files.

7 P_MACREAD
Overrides Mandatory Access Control (MAC) restrictions but only for certain
operations that do not alter objects. See /I Access Permissions" in the DEFINI
TIONS section below.

8 P _MACWRITE
Overrides Mandatory Access Control restrictions that involve the alteration
of objects or other MAC-related attributes. See /I Access Permissions" in the
DEFINITIONS section below.

9 P_MOUNT
Mount or unmount a filesystem or set and get the ceiling level of a filesys
tern.

10 P_MULTIDIR
Required for creation of multilevel directories.

11 P _SETPLEVEL
Required to change the security level of a process (including the process's
own level), subject to some restrictions.

intro(2)

12 P_SETSPRIV
Administrative privilege required to set the inheritable and fixed privileges
on files. This privilege overrides access and ownership restrictions.

13 P_SETtJID
Required in order to set the real and effective user and group IDs of a pro
cess.

14 P_SYSOPS
Required to perform several general system operations that have only minor
security implications.

15 P_SETUPRIV
Privilege required for an otherwise unprivileged process to set the inherit
able and fixed privileges on a file. This privilege does not override access or
ownership restrictions. -

16 P_DRlVER
Provides compatibility with device drivers developed by third party ven
dors. It is used when a sensitive operation needs to be limited to a
privileged process.

17 P_RTlME
Required by processes that do real-time operations.

18 P _MACUPGRADE
Allows processes to upgrade (change the eXisting level to a new dominating
level) files.

19 P_FSYSRANGE
Override filesystem range restrictions.

20 P_SETFLEVEL
Required to change the security level of objects (for block or character
special files that are in the public state only), subject to some restrictions.

21 P_AUDITWR
Required to write miscellaneous audit records to the audit trail.

22 P_TSHAR
Required to raise the priority of a time sharing process or to set the user
priority limit to a value greater than O.

23 P_PLOCK
Required to lock a process in memory.

24 P_CORE
Required to dump a core image of a process that is either privileged, setuid,
or setgid. This privilege is not required to dump the core image of a process
that does not meet the above conditions.

25 P _LOADMOD
Required to perform selective operations associated with loadable modules.

17

intro (2)

P_ALLPRIVS
Represents all possible privileges.

DEFINITIONS

18

Access Permissions
Access checking is performed whenever a subject (a process) tries to access an
object (such as a file or directory). Permission to access an object is granted or
denied on the basis of mode bits.

The mode bits are known as Discretionary Access Control (DAC). Mandatory
Access Control (MAC) privileges are defined; however, they may not be supported
on the system you are using.

The standard file access permission bit checks are performed to determine if the
process requesting access to the object has permission to access it in the manner
(read, write, and/or execute/search) requested. Each access mode requested is
checked separately using the following three-step algorithm:

If the effective user ID of the process is equal to the user ID of the owner of
the file, and the requested access mode bit is set in the "owner" bits of the
mode, access is granted; otherwise access checking continues.

If the effective group ID (or any of the supplementary group IDs of the pro
cess) matches the owning group of the file and the requested access mode
bit is set in the "group" bits of the mode, access is granted; otherwise, access
checking continues.

If the above checks fail, and the requested access mode bit is set in the
"other" bits of the mode, access is granted; otherwise, access is denied
(EACCES is returned).

These checks are performed on every component of the pathname, including the
object itself. If any of the checks fail, the privileges of the calling process are exam
ined to determine if the calling process has the appropriate privilege for the mode
requested (P_DACREAD for read and execute/search access, P_DACWRITE for write
access).

Background Process Group
Any process group that is not the foreground process group of a session that has
established a connection with a controlling terminal.

Controlling Process
A session leader that established a connection to a controlling terminal.

Controlling Terminal
A terminal that is associated with a session. Each session may have, at most, one
controlling terminal associated with it and a controlling terminal may be associated
with only one session. Certain input sequences from the controlling terminal cause
signals to be sent to process groups in the session associated with the controlling
terminal; see tennio(7).

Directory
Directories organize files into a hierarchical system where directories are the nodes
in the hierarchy. A directory is a file that catalogues the list of files, including direc
tories (sub-directories), that are directly beneath it in the hierarchy. Entries in a
directory file are called links. A link associates a file identifier with a filename. By

intro (2)

convention, a directory contains at least two links, . (dot) and .. (dot-dot). The
link called dot refers to the directory itself while dot-dot refers to its parent direc
tory. The root directory, which is the top-most node of the hierarchy, has itself as
its parent directory. The pathname of the root directory is / and the parent direc
tory of the root directory is /.

Downstream
In a stream, the direction from stream head to driver.

Driver
In a stream, the driver provides the interface between peripheral hardware and the
stream. A driver can also be a pseudo-driver, such as a multiplexor or log driver
[see 10g(7)], which is not associated with a hardware device.

Effective User 10 and Effective Group 10
An active process has an effective user ID and an effective group ID that are used to
determine file access permissions (see below). The effective user ID and effective
group ID are equal to the process's real user ID and real group ID respectively,
unless the process or one of its ancestors evolved from a file that had the set-user-ID
bit or set-group ID bit set [see exec(2)].

File Descriptor
A file descriptor is a small integer used to do II 0 on a file. The value of a file
descriptor is from 0 to (NOFILES-l). A process may have no more than NOFILES
file descriptors open simultaneously. See getr1imit(2). A file descriptor is
returned by system calls such as open, or pipe. The file descriptor is used as an
argument by calls such as read, write, ioct1, and close.

File Name
Names consisting of 1 to NAME_MAX characters may be used to name an ordinary
file, special file or directory.

These characters may be selected from the set of all character values excluding \0
(null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names because of
the special meaning attached to these characters by the shell [see sh(l)]. Although
permitted, the use of unprintable characters in file names should be avoided.

A file name is sometimes referred to as a pathname component. The interpretation
of a pathname component is dependent on the values of NAME_MAX and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any path
name component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect for the
path prefix of that component [see fpathconf(2) and 1imits(4)], it shall be con
sidered an error condition in that implementation. Otherwise, the implementation
shall use the first NAME_MAX bytes of the pathname component.

Foreground Process Group
Each session that has established a connection with a controlling terminal will dis
tinguish one process group of the session as the foreground process group of the
controlling terminal. This group has certain privileges when accessing its control
ling terminal that are denied to background process groups.

19

intro (2)

20

Message
In a stream, one or more blocks of data or information, with associated STREAMS
control structures. Messages can be of several defined types, which identify the
message contents. Messages are the only means of transferring data and communi
cating within a stream.

Message Queue
In a stream, a linked list of messages awaiting processing by a module or driver.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a msgget
system call. Each msqid has a message queue and a data structure associated with
it. The data structure is referred to as msqid_ds and contains the following
members:

struct
struct
struct
ushort
ushort
ushort
pid_t
pid_t
time_t
time_t
time_t

ipc-perm msg-perm;
msg *msg_first;
msg *msg_last;
msg_cbytes;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

Here are descriptions of the fields of the msqid_ds structure:

msg-perm is an ipc-perm structure that specifies the message operation per
mission (see below). This structure includes the following members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */
gid_t gid; /* group id */
mode_t mode; /* r/w permission */
ushort seq; /* slot usage sequence # */
key_t key; /* key */

*msg_first is a pointer to the first message on the queue.

*msg_last is a pointer to the last message on the queue.

msg_cbytes is the current number of bytes on the queue.

msg_qnum is the number of messages currently on the queue.

msg_qbytes is the maximum number of bytes allowed on the queue.

msg_lspid is the process ID of the last process that performed a msgsnd
operation.

intro (2)

msg_lrpid is the process ID of the last process that performed a msgrcv
operation.

msg_stime is the time of the last msgsnd operation.

msg_rtime is the time of the last msgrcv operation

msg_ctime is the time of the last msgctl operation that changed a member
of the above structure.

Message Operation Permissions
In the msgop and msgctl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed, inter
preted as follows:

00400
00200
00040
00020
00004
00002

READ by user
WRITE by user
READ by group
WRITE by group
READ by others
WRITE by others

Read and write permissions on a msqid are granted to a process if one or more of
the following are true:

The calling process has the P _OWNER privilege.

The effective user ID of the process matches msg-penn. cuid or
msg-penn. uid in the data structure associated with msqid and the
appropriate bit of the "user" portion (0600) of msg-penn.mode is set.

The effective group ID of the process matches msg-penn.cgid or
msg-penn.gid and the appropriate bit of the "group" portion (060) of
msg-penn.mode is set.

The appropriate bit of the "other" portion (006) of msg-penn.mode is set.

Otherwise, the corresponding permissions are denied.

Module
A module is an entity containing processing routines for input and output data. It
always exists in the middle of a stream, between the stream's head and a driver. A
module is the STREAMS counterpart to the commands in a shell pipeline except that
a module contains a pair of functions which allow independent bidirectional
(downstream and upstream) data flow and processing.

Multiplexor
A multiplexor is a driver that allows streams associated with several user processes
to be connected to a single driver, or several drivers to be connected to a single user
process. STREAMS does not provide a general multiplexing driver, but does provide
the facilities for constructing them and for connecting multiplexed configurations of
streams.

Orphaned Process Group
A process group in which the parent of every member in the group is either itself a
member of the group, or is not a member of the process group's session.

21

intro(2)

22

Path name
A pathname is a null-terminated character string starting with an optional slash (I),
followed by zero or more directory names separated by slashes, optionally followed
by a filename.

If a pathname begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null pathname is treated as if it named a
non-existent file.

Process 10
Each process in the system is uniquely identified during its lifetime by a positive
integer called a process ID. A process ID may not be reused by the system until the
process lifetime, process group lifetime and session lifetime ends for any process ID,
process group ID and session ID equal to that process ID.

Parent Process 10
A new process is created by a currently active process [see fork(2)]. The parent
process ID of a process is the process ID of its creator.

Privilege
Having appropriate privilege means having the capability to perform sensitive sys
tem operations [see procpriv(2)] or having the ability to override system restric
tions.

Process Group
Each process in the system is a member of a process group that is identified by a
process group ID. Any process that is not a process group leader may create a new
process group and become its leader. Any process that is not a process group
leader may join an existing process group that shares the same session as the pro
cess. A newly created process joins the process group of its parent.

Process Group Leader
A process group leader is a process whose process ID is the same as its process
group ID.

Process Group 10
Each active process is a member of a process group and is identified by a positive
integer called the process group ID. This ID is the process ID of the group leader.
This grouping permits the signaling of related processes [see kill(2)].

Process Lifetime
A process lifetime begins when the process is forked and ends after it exits, when its
termination has been acknowledged by its parent process. See wait(2).

Process Group Lifetime
A process group lifetime begins when the process group is created by its process
group leader, and ends when the lifetime of the last process in the group ends or
when the last process in the group leaves the group.

intro (2)

Read Queue
In a stream, the message queue in a module or driver containing messages moving
upstream.

Real User 10 and Real Group 10
Each user allowed on the system is identified by a positive integer (0 to UlD_MAX)
called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user ID
and real group ID, respectively, of the user responsible for the creation of the pro
cess.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving pathname searches. The root direc
tory of a process need not be the root directory of the root filesystem.

Saved User 10 and Saved Group 10
The saved user ID and saved group ID are the values of the effective user ID and
effective group ID prior to an exec of a file [see exec(2)].

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a semget
system call. Each semid has a set of semaphores and a data structure associated
with it. The data structure is referred to as semid_ds and contains the following
members:

struct ipc-penn SeIn-penn;
struct SeIn * seIn_base;
ushort SeIn_nsems;
tirne_t seIn_otime;
time_t seIn_ctime;

/* operation pennission struct */
/* ptr to first semaphore in set */
/* number of sems in set */
/* last operation time */
/* last change time */
/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Here are descriptions of the fields of the semid_ds structure:

SeIn-penn is an ipc-penn structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

uid_t uid; /* user id */
gid_t gid; /* group id */
uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
mode_t mode; /* ria pennission */
ushort seq; /* slot usage sequence number */
key_t key; /* key */

seIn_nsems is equal to the number of semaphores in the set. Each sema
phore in the set is referenced by a nonnegative integer referred to as a
SeIn_num. SeIn_num values run sequentially from 0 to the value of
SeIn_nsems minus 1.

23

intro(2)

24

sem_otime is the time of the last sernop operation.

sem_etime is the time of the last sernetl operation that changed a member
of the above structure.

A semaphore is a data structure called sem that contains the following members:

ushort semval; /* semaphore value */
pid_t sempid; /* pid of last operation */
ushort semnent; /* # awaiting semval > eval */
ushort semzent; /* # awaiting semval = 0 */

semval is a non-negative integer that is the actual value of the semaphore.

sempid is equal to the process 10 of the last process that performed a sema
phore operation on this semaphore.

semnent is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become greater than its current value.

semzent is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become o.

Semaphore Operation Permissions
In the sernop and semetl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed inter
preted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

Read and alter permissions on a semid are granted to a process if one or more of the
following are true:

The calling process has the P _OWNER privilege.

The effective user 1D of the process matches sem-penn. euid or
sem-penn. uid in the data structure associated with semid and the
appropriate bit of the "user" portion (0600) of sem-penn.m.ode is set.

The effective group 1D of the process matches sem-penn. egid or
sem-penn.gid and the appropriate bit of the "group" portion (060) of
sem-penn.m.ode is set.

The appropriate bit of the "other" portion (06) of sem-penn.m.ode is set.

Otherwise, the corresponding permissions are denied.

Session
A session is a group of processes identified by a common 1D called a session 10,
capable of establishing a connection with a controlling terminal. Any process that is J

not a process group leader may create a new session and process group, becoming
the session leader of the session and process group leader of the process group. A
newly created process joins the session of its creator.

intro (2)

Session 10
Each session in the system is uniquely identified during its lifetime by a positive
integer called a session ID, the process ID of its session leader.

Session Leader
A session leader is a process whose session ID is the same as its process and process
groupID.

Session Lifetime
A session lifetime begins when the session is created by its session leader, and ends
when the lifetime of the last process that is a member of the session ends, or when
the last process that is a member in the session leaves the session.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a
shmget system call. Each shmid has a segment of memory (referred to as a shared
memory segment) and a data structure associated with it. (Note that these shared
memory segments must be explicitly removed by the user after the last reference to
them is removed.) The data structure is referred to as shmid_ds and contains the
following members:

struct ipcj>erm shmj>erm; /* operation permission struct */
int shm_segsz; /* size of segment */
struct region *shm_aIli>; /* ptr to region structure */
char pad[4] ; /* for swap compatibility */
pid_t shm_lpid; /* pid of last operation */
pid_t shm_cpid; /* creator pid */
ushort shm_nattch; /* number of current attaches */
ushort shm_cnattch; /* used only for sbminfo */
time_t shm_atime; /* last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Here are descriptions of the fields of the shmid_ds structure:

shmj>erm is an ipcj>erm structure that specifies the shared memory opera
tion permission (see below). This structure includes the following members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */
gid_t gid; /* group id * /
mode_t mode; /* r/w permission */
ushort seq; /* slot usage sequence # */
key_t key; /* key */

shm_segsz specifies the size of the shared memory segment in bytes.

shm_cpid is the process ID of the process that created the shared memory
identifier.

25

intra (2)

26

shm_lpid is the process ID of the last process that performed a shmop opera
tion.

shm_nat tch is the number of processes that currently have this segment
attached.

shm_atime is the time of the last shmat operation [see shmop(2)].

shm_dtime is the time of the last shmdt operation [see shmop(2)].

shm_ctime is the time of the last shmctl operation that changed one of the
members of the above structure.

Shared Memory Operation Permissions
In the shmop and shmctl system call descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed inter
preted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a shmid are granted to a process if one or more of
the following are true:

The calling process has the P_OWNER privilege.

The effective user ID of the process matches shm-penn.cuid or
shm-penn. uid in the data structure associated with shmid and the
appropriate bit of the "user" portion (0600) of shm-penn.mode is set.

The effective group ID of the process matches shm-penn.cgid or
shnL.penn.gid and the appropriate bit of the "group" portion (060) of
shm-penn. mode is set.

The appropriate bit of the "other" portion (06) of shm-penn.mode is set.

Otherwise, the corresponding permissions are denied.

Special Processes
The process with ID 0 and the process with ID 1 are special processes referred to as
procO and proc1; see kill(2). procO is the process scheduler. proc1 is the initializa
tion process (init); procl is the ancestor of every other process in the system and is
used to control the process structure.

STREAMS
A set of kernel mechanisms that support the development of network services and
data communication drivers. It defines interface standards for character
input! output within the kernel and between the kernel and user level processes.
The STREAMS mechanism is composed of utility routines, kernel facilities and a set
of data structures.

intro (2)

Stream
A stream is a full-duplex data path within the kernel between a user process and
driver routines. The primary components are a stream head, a driver and zero or
more modules between the stream head and driver. A stream is analogous to a
shell pipeline except that data flow and processing are bidirectional.

Stream Head
In a stream, the stream head is the end of the stream that provides the interface
between the stream and a user process. The principal functions of the stream head
are processing STREAMS-related system calls, and passing data and information
between a user process and the stream.

Superuser and Privilege
If the system is running with the Super User Module (SUM) installed as the
privilege module, a process is recognized as a superuser process and is granted all
the privileges listed in the PRIVILEGES section above, if its effective user ID is O. The
superuser has unrestricted access to the system. In addition, because the system
supports the discrete privileges defined in the PRIVILEGES section, a user can
acquire a subset of the recognized privileges through the Trusted Facilities Manage
ment Database. See tfadmin(lM), adminrole(lM), and adminuser(lM) for more
information.

Upstream
In a stream, the direction from driver to stream head.

Write Queue
In a stream, the message queue in a module or driver containing messages moving
downstream.

SEE ALSO
"Glossary" in administration and programming books.

27

access (2)

NAME
access - determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access (const char *path, int amode) ;

DESCRIPTION

28

path points to a path name naming a file. access checks the named file for accessi
bility according to the bit pattern contained in amode, using the real user 10 in place
of the effective user 10 and the real group 10 in place of the effective group ID. The
bit pattern contained in amode is constructed by an OR of the following constants
(defined in <unistd.h»:

R_OK test for read permission

W_OK test for write permission

X_OK test for execute (search) permission

F_OK test for existence of file

EXEC_OK test for regular, executable file

EFF_ONLY_OK test using effective IDs

Note that successful checking of the EXEC_OK file does not imply that the exec(2)
system call will succeed on the file named by path, since the check succeeds if at
least one execute bit is set; there are also additional checks made for execute per
mission by exec.

Access to the file is denied if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EACCES

EACCES

EFAULT

EINTR

EINVAL

ELOOP

Access permission is denied.

The file is not a regular file.

path points outside the allocated address space for the process.

A signal was caught during the access system call.

amode is invalid.

Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines.

ENAMETOOLONG

ENOTDIR

ENOENT

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

A component of the path prefix is not a directory.

Read, write, or execute (search) permission is requested for a null path
name.

ENOENT

ENOLINK

EROFS

SEE ALSO

access (2)

The named file does not exist.

path points to a remote machine and the link to that machine is no
longer active.

Write access is requested for a file on a read-only file system.

chmod(2), intro(2), stat(2)

DIAGNOSTICS
If the requested access is permitted, a value of a is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

29

acct(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
#include <unistd.h>

int acct (const char *path);

DESCRIPTION
acct enables or disables the system process accounting routine. If the routine is
enabled, an accounting record will be written in an accounting file for each process
that terminates. The termination of a process can be caused by one of two things:
an exit call or a signal [see exit(2) and signal(2)]. The calling process must have
the appropriate privilege (p _SYSOPS) to enable or disable accounting.

path points to a pathname naming the accounting file. The accounting file format is
given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the
system calL It is disabled if path is (char *)NULL and no errors occur during the
system calL

acct will fail if one or more of the following are true:

EACCES The file named by path is not an ordinary file.

EACCES

EACCES

EBUSY

EFAULT

ELOQP

ENAMETOOLONG

ENOTDIR

ENOENT

EPERM

EROFS

Search permission is denied on a component of the path
prefix.

Write permission on the name file is denied.

An attempt is being made to enable accounting using the
same file that is currently being used.

path points to an illegal address.

Too many symbolic links were encountered in translating
path.

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

A component of the path prefix is not a directory.

One or more components of the accounting file pathname do
not exist.

The calling process does not have the appropriate privilege
(p_SYSOPs) to enable or disable accounting.

The named file resides on a read-only file system.

SEE ALSO
acct(4), exit(2), signal(2)

DIAGNOSTICS

30

Upon successful completion, a value of a is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

adjtime(2)

NAME
adj time - correct the time to allow synchronization of the system clock

SYNOPSIS
#include <sys/time.h>

int adjtime(st:ruct timeval *delta, st:ruct timeval *olddelta>;

DESCRIPTION
adj time adjusts the system's notion of the current time, as returned by
gettimeofday(3C), advancing or retarding it by the amount of time specified in the
st:ruct timeval pointed to by delta.

This call may be used in time servers that synchronize the clocks of computers in a
local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network
time.

The adjustment is effected by speeding up (if the adjustment is positive) or slowing
down (if the adjustment is negative) the system's clock by some small percentage,
generally a fraction of one percent; the clock may be speeded up at a faster rate for a
large positive adjustment. Thus, the time is always a monotonically increasing
function.

A time correction from an earlier call to adj time may not be finished when
adj time is called again. If delta is NULL, then olddelta returns information on the
previous adjtime call and there is no effect on the time correction as a result of this
call. If olddelta is not NULL, then the structure it points to contains, on return, the
time still to be corrected from the earlier call. If olddelta is NULL, the information is
not returned.

Only a process with the appropriate privilege (p_SYSOPS) can adjust the time of
day.

The adjustment value is silently rounded to the resolution of the system clock.

RETURN VALUES
On success, adjtime returns O. On failure, adjtime returns -1 and sets errno to
identify the error.

ERRORS
The following error codes may be set in errno:

EFAULT delta or olddelta points outside the process's allocated address space, or
olddelta points to a region of the process's allocated address space that
is not writable.

EPERM

SEE ALSO

The calling process does not have the appropriate privilege
(p_SYSOPS) to change the time of day.

date(1), gettimeofday(3C)

31

alarm (2)

NAME
alarm - set a process alarm clock

SYNOPSIS
#include <unistd.h>

unsigned alarm(unsignedsec);

DESCRIPTION
alarm instructs the alarm clock of the calling process to send the signal SIGALRM to
the calling process after the number of real time seconds specified by sec have
elapsed [see signal(2)].

Alarm requests are not stacked; successive calls reset the alarm clock of the calling
process.

If sec is 0, any previously made alarm request is canceled.

fork sets the alarm clock of a new process to 0 [see fork(2)]. A process created by
the exec family of routines inherits the time left on the old process's alarm clock.

SEE ALSO
exec(2), fork(2), pause(2), signal(2)

DIAGNOSTICS

32

alarm returns the amount of time previously remaining in the alarm clock of the
calling process.

auditbuf (2)

NAME
auditbuf - get or set the audit buffer attributes

SYNOPSIS
#include <sys/types.h>
#include <sys/audit.h>

int audi tbuf (int cmd, struct abuf * bufp, int size);

DESCRIPTION
The audi tbuf system call is used to get or set the high_water _mark (vhigh) and size
(bsize) of the audit buffer(s). The high_water_mark limits the amount of memory that
can be held within the audit buffer.

The default high_water _mark is equal to the size of an audit buffer (ADT_BSIZE). The
valid range of values for vhigh is greater than or equal to zero and less than or equal
to ADT_BSIZE. If vhigh is equal to zero, the audit buffer mechanism is bypassed and
all records are written directly to the audit log file. The size of the audit buffer
(ADT_BSIZE) is a tunable parameter found in /etc/conf/mtune.d/audit and can
not be modified by the audi tbuf system call.

Two values for cmd are supported: ABUFGET and ABUFSET. When the specified cmd
is ABUFGET, the value of the high_water _mark is returned in vhigh, and the size of the
audit buffer is returned in bsize.

When the specified cmd is ABUFSET, the value of the high_water _mark is changed to
vhigh, and the bsize of the audit buffer is ignored.

The bufp argument points to a structure of type abuf that contains the following ele
ments:

struct abuf {
int vhigh; /* audit buffer high_water_mark */
int bsize; /* audit buffer size */

Auditing must be installed on the system before this system call can be used. Use
of the auditbuf system call requires the appropriate privilege(p~UDIT).

The auditbuf system call returns zero on success. When unsuccessful, auditbuf
returns a value of -1 and sets errno to indicate the error.

EFAULT The cmd is ABUFGET and abufp is invalid.

EFAULT The cmd is ABUFSET and abufp is invalid.

EINVAL The size of abuf is not equal to size.

EINVAL The cmd is ABUFSET and the value of vhigh is less than zero or greater
than ADT_BSIZE.

EINVAL The cmd is invalid.

EPERM The process does not have the appropriate privilege(p _AUDIT).

SEE AlSO
auditctl(2), auditdmp(2), auditevt(2), auditlog(2)

33

auditctl (2)

NAME
auditctl- get or set the status of auditing

SYNOPSIS
#include <sys/types.h>
#include <sys/audit.h>

int auditctl (int cmd, struct actl *actlp, int size);

DESCRIPTION

34

The audi tctl system call fills the appropriate audit control structures or reports
the status of auditing, depending on the values of cmd. Three values of cmd are sup
ported: AUDlTON, AUDlTOFF, and ASTATUS. A zero value for auditon in the actl
structure indicates that auditing is disabled, and a value of one indicates that audit
ing is enabled.

When the specified cmd is AUDlTON, the auditctl system call performs the follow
ing actions:

Copies in the offset in seconds from the Greenwich mean time. It initializes
the vnode for the primary audit log file. It initializes the audit buffer and
log control structures. It creates process audit structures. It exempts system
resident processes and /sbin/init from auditing. It writes a machine
specific header record. It sets the audi ton flag to l.

When the specified cmd is AUDlTOFF, the auditctl system call sets the auditon
field to zero; frees all process audit structures; and locks, flushes, and releases the
audit buffers.

When the specified cmd is ASTATUS, the auditctl system call returns the current
status of auditing.

The actlp argument points to a structure of type actl that contains the following
elements:

struct actl {
int auditon;
char version[ADT_VERLEN];
long gmtsecoff;

/* audit status variable */
/* audit version */
/* GMT offset in seconds */

Auditing must be installed on the system for this system call to be used. The use of
the auditctl system call requires the appropriate privilege(p_AUDIT).

The auditctl system call returns zero on success. When unsuccessful, auditctl
returns a value of -1 and sets ermo to indicate the error.

EAGAIN The cmd is AUDlTON and it is not possible to allocate space in memory for
various data structures.

EEXIST All the possible log files exist when attempting to enable auditing.

EFAULT The cmd is AUDlTON and the actlp argument is invalid.

EFAULT The cmd is ASTATUS and the actlp argument is invalid.

auditctl (2)

EINVAL The size of actl is not equal to size.

EINVAL An attempt was made to disable auditing while it was already dis
abled.

EINVAL An attempt was made to enable auditing while it was already
enabled.

EINVAL The cmd is invalid.

EINVAL The cmd is AUDITON and it is not possible to initialize the audit buffers.

EINVAL The cmd is AUDITOFF and it is not possible to lock the audit buffers,
because auditing is already disabled.

ENOENT It is not possible to access the primary event log path.

EPERM The invoking subject does not have the appropriate privilege(p _AUDIT).

EROFS If the primary audit log file resides within a file system that is mounted
read-only.

EIO If an I/O error occurred while performing a write to the audit log file.

SEE ALSO
auditbuf(2), auditdmp(2), auditevt(2), auditlog(2)

35

auditdmp (2)

NAME
audi t~ - write audit record to audit buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/audit.h>

int auditdmp(struct arec *arecp, int size);

DESCRIPTION

36

The auditdmp system call is used to write an audit record to the audit buffer.
Trusted user-level commands with the appropriate privilege(p _AUDIT) append
user-level event records to the audit buffer. Privileged applications append only
records of type misc to the audit buffer if they have the appropriate
privilege(p _AUDITWR).

The arecp argument points to a structure of type arec that contains the following
elements:

typedef struct arec
int rtype; 1* audit record event type */
int rstatus; 1* audit record event status *1
int rsize; 1* audit records size of argp */
char *argp; 1* audit record data */

} arec_t

The rtype element of the arec structure specifies the event type of the audit record.
If the rtype argument is valid (one of the user-level events) and if its corresponding
bit is set in the process emask for the invoking process, the system generates an
audit record. The rstatus element of the arec structure is the status of the user-level
event. The rsize element of the arec structure specifies the size of memory required
to record the data to be written. The argp element of the arec structure is a charac
ter pointer to the audit data.

The size argument is used to verify the size of the arec structure being passed to
determine the version of auditing.

The audi tdmp system call returns zero on success. When unsuccessful, audi tdmp
returns a value of -1 and sets errno to indicate the error.

EAGAIN It is not possible to allocate memory for the size of rsize.

EAGAIN It is not possible to allocate memory for the arecp.

EFAULT The arecp is invalid.

EFAULT The argp is invalid.

EFAULT The rtype is ADT_BAD_AUTH, ADT_BAD_LVL, ADT_DEF _LVL, or
ADT_LOGIN and an invalid bamsg [] or tty [] is passed.

EFAULT

EINVAL

EINVAL

The rtype is ADT_CRON and an invalid cronj ob [] is passed.

The system call is invoked while auditing is disabled.

The size of arec is not equal to size.

auditdmp (2)

EINVAL The rtype is invalid or not in the audit mask for the invoking process.

EPERM The invoking subject does not have the appropriate privilege(p _AUDIT
or P _AUDITWR).

SEE ALSO
auditbuf(2), auditctl(2), auditevt(2), auditlog(2)

37

auditevt (2)

NAME
auditevt - get or set auditable events

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/audit.h>

int auditevt(int cmd, struct aevt *aevtp, int size);

DESCRIPTION

38

The auditevt system call gets or sets auditable events, depending on the value of
cmd. The following values of cmd are supported: AGETSYS, ASETSYS, AGETUSR,
ASETME, AGETME, AGETLVL, ACNTLVL, ASETLVL, ASETUSR, AYAUDIT, and ANAUDIT.
The auditable event bit mask (emask) is represented by a hexadecimal number. The
value of uid in the aevt structure is used to identify users to be audited on the sys
tem.

The aevtp argument points to a structure of type aevt that contains the fol
lowing elements:

struct aevt {

adtemask_t emask; 1* event mask to be set or retrieved *1
uid_t uid; 1* user's event mask to be set

or retrieved *1
uint flags; 1* event mask flags *1
uint n1v1s; 1* size of the individual object level

table */
1eve1_t *lvl_minp; 1* minimum object level range criteria *1
1eve1_t *lvl_maxp; 1* maximum. object level range criteria *1
1eve1_t *lv1_tb1p; 1* address of the individual object level

table */

When the specified cmd is AGETSYS, the system wide event mask (adt_sysemask) is
copied to emask in the aevt structure, and the entire structure is returned. All ele
ments of the aevt structure except emask are ignored.

When the specified cmd is ASETSYS, the value of emask in the aevt structure is
OR' ed with the fixed auditable events and then copied into the system wide event
mask. If auditing is enabled, then every process audit structure is updated to reflect
the change. All elements in the aevt structure except emask are ignored.

When the specified cmd is AGETUSR, the active process list is searched for a process
that belongs to the uid given in the aevt structure. If one is located, the value of the
user's emask is copied into the emask field in the aevt structure, and the entire
structure is returned. All elements of the structure except for emask and uid are
ignored. Auditing must be enabled for this value of cmd to be used.

When the specified cmd is AGETME, the invoking process' user's emask is retrieved
and copied into the emask field in the aevt structure. All elements of the structure
except emask are ignored. Auditing must be enabled for this value of cmd to be
used.

auditevt (2)

When the specified cmd is ASETME, the value of emask is copied into the user's event
mask field of the user's process audit structure and then combined by a bitwise OR
with the system wide event mask to create a new process event mask for the invok
ing process only. All elements of the structure except for emask are ignored. Audit
ing must be enabled for this value of cmd to be used.

When the specified cmd is ASETUSR, the active process list is searched for every pro
cess belonging to the given uid. When a valid active process is located, the value of
emask is copied into the user's event mask field of the process audit structure and
then combined by a bitwise OR with the system wide event mask to create a new
process event mask. This processing continues until it finds and sets every valid
active process belonging to the specified uid. All elements of the structure except
for emask and uid are ignored. Auditing must be enabled for this value of cmd to be
used.

When the specified cmd is ANAUDIT, the current process and any later forked pro
cess is exempt from auditing. All elements of the structure are ignored. Auditing
must be enabled for this value of cmd to be used.

When the specified cmd is AYAUDIT, the current process is made auditable again.
All elements of the structure are ignored. Auditing must be enabled for this value
of cmd to be used.

Auditing must be installed on the system for this system call to be used. Use of the
auditevt system call requires the appropriate privilege(p_AUDIT).

The audi tevt system call returns zero on success. When unsuccessful, audi tevt
returns a value of -1 and sets ermo to indicate the error.

EAGAIN The cmd is AGETSYS, ASETSYS, AGETUSR, ASETUSR, ACNTLVL, AGETLVL,
ASETLVL, ASETME or AGETME, and it is not possible to allocate memory
for the aevtp.

EAGAIN The cmd is ASETLVL, the flags field contains ADT_RMASK, and is it not pos
sible to allocate memory for either the tmp_l vlminp or the
tmp_lvlmaxp.

EFAULT The cmd is AGETSYS, ASETSYS, AGETUSR, ASETUSR, ACNTLVL, AGETLVL,
ASETLVL, ASETME or AGETME, and aevtp is invalid.

EFAULT The cmd is AGETLVL or ASETLVL, and lvl_minp, lvl_maxp, or lvl_thlp is
invalid.

EINVAL The size of aevt is not equal to size.

EINVAL Either 1 vl_minp or 1 vl_maxp points to an invalid level.

EINVAL The cmd is ASETLVL, the flags field is ADT_RMASK, and 1 vl_maxp does not
dominate 1 vl_minp.

EINVAL The cmd is ASETLVL, the flags field is ADT_RMASK, and 1 vl_IOaXP and
1 vl_minp are not both NULL.

EINVAL The auditevt call is invoked while auditing is disabled, and cmd is
AGETUSR,ASETUSR,ASETME,AGETME,ANAUDIT,orAYAUDIT.

39

auditevt (2)

EINVAL The cmd is invalid.

ENOl>KG The cmd is ACNTLVL, AGETLVL, and ASETLVL, and the MAC feature is not
installed.

EPERM The invoking subject does not have the appropriate privilege(p _AUDIT).

ESRCH The cmd is ASETUSR and the specified uid value is not active.

SEE ALSO
auditbuf(2), auditctl(2), auditdni>(2), auditlog(2) .

40

auditlog (2)

NAME
auditlog - get or set audit log file attributes

SYNOPSIS
#include <limits.h>
#include <sys/types.h>
#include <sys/audit.h>

int auditlog(int cmd, st:ruct alog *alogp, int size};

DESCRIPTION
The auditlog system call is used to get or to set the audit log file attributes,
depending on whether the cmd field is ALOOGET or ALOGSET. Use of the auditlog
system call requires the appropriate privilege(p_AUDIT). The alogp argument points
to a structure of type alog that contains the following elements:

st:ruct alog {
int flags;
int onfull;
int onerr;
int maxsize;
int seqnum.;

1* log file attributes *1

1*
1*

1* action on log file full *1
action on log file error *1
maximum log file size *1

1*
char romp [ADT_DATESZ] ; 1*

log file sequence number 001-999 *1
current month time stamp *1

char ddp[ADT_DATESZ]; 1* current day time stamp *1
char pnodep[ADT_NODESZ]; 1* optional primary log file node name *1

optional alternate log file node name *1
optional primary log file pathname *1
optional alternate primary log file
pathname *1

char anodep[ADT_NODESZ]; 1*
char *ppathp;
char *apathp;

char *progp;

char *defpathp;
char *defnodep;
char *defp~;

int defonfull;

1*
1*

1*

1*
1*
1*

1*

optional program to run during log file
switch *1
default primary log file pathname *1
default primary log file node name *1
default program to run during log file
switch *1
default action on log file full *1

The following elements and corresponding values of the alog structure may be
either modified or retrieved:

flags
PPATH
PNODE
APATH
ANODE
PSIZE
PSPECIAL
ASPECIAL

onfull
ASHUT
ADISA

1* log file attributes *1
1* primary log file pathname *1
1* primary log file nodename *1
1* alternate log file pathname *1
1* alternate log file nodename *1
1* maximum size for primary log file *1
1* character special primary log file *1
1* character special alternate log file *1
1* action taken on log file full *1
1* shutdown to Firmware Mode *1
1* disable auditing *1

41

auditlog (2)

42

AALOG
APROG

1* switch to alternate log file *1
1* run log file switch program{only valid

with AALOG) *1
onerr 1* action taken on log file error *1

ASHUT 1* shutdown to Firmware Mode *1
ADISA 1* disable auditing *1

maxsize integer 1* Zero or >= audit buffer size *1
pnodep eharaeter[sl 1* nodename that may be .appended *1
anodep eharacter[sl 1* nodename that may be appended *1
ppathp lfull/pathname 1* directory or nSF <= ADT_MAXPATHLEN * I
apathp Ifull/pathname 1* directory or nSF <= ADT_MAXPATHLEN *1
progp lfull/pathname 1* executable program <= PATH_MAX *1

The following elements and corresponding values of the alog structure may only
be retrieved because they can only be set internally:

seqnum integer 1* log file number [001-999] * I
mmp eharaeter[sl 1* current month time stamp [01-12] *1
ddp eharaeter[sl 1* current day time stamp[01-31] *1

The following elements and corresponding values of the alog structure may only
be set because the defaults are read from the jete/default directory:

defpathp Ifull/pathname 1* directory or nSF <= ADT_MAXPATHLEN *1
defnodep eharaeter[sl 1* nodename that may be appended *1
defpgmp Ifull/pathname 1* executable program <= PATH_MAX *1
defonfull

ASHUT
ADlSA
AALOG
APROG

1* shutdown to Firmware Mode *1
1* disable auditing *1
1* switch to alternate log file *1
1* run log file switch program

(valid with AALOG only) *1

When the specified value of emd is ALOGGET, the current values of the flags, onfull,
onerr, maxsize, mmp, ddp, seqnum, pnodep, anodep, ppathp, apathp and progp elements
are returned in the alog structure. Note that the space required for the ppathp,
apathp and progp must be allocated by the invoking process. The values of the
defpathp, defnodep, defpgmp and defonfull elements are ignored since they are only
valid for the ALOGSET emd.

When the value of emd is ALOGSET, the elements of the alog structure determine
what actions are to be performed.

The PPATH bit is used to set the pathname to the primary audit log file and is invalid
while auditing is enabled. An error is returned if the ppathp element cannot be
copied into an internal storage area for further validation; if the ppathp element does
not point to a valid directory or character special device; or if the ppathp element
exceeds ADT_MAXPATHLEN (1009) characters.

Setting ppathp to a character special device can not be used with the PNonE or PSIZE
flags bits, or maxsize element. If the ppathp element points to a character special
device, the PSPECIAL flags bit is set, and any log file restrictions are cleared. This is
done by turning off the internal PSIZE flags bit and setting the maxsize element to
ZERO. A ZERO setting ,indicates that the log file is limited by the available file system

auditlog (2)

space or device. If the PNODE flags bit was previously set, it must be turned off
because node names for character special devices are invalid. Turning off the PNODE
bit involves turning off, freeing, and clearing the pnodep element of its internal data
storage.

The PSIZE flags bit is used to set the maximum size of the primary audit log file. If
the ppathp element points to a valid directory, then the PNODE and PSIZE flags are
also valid. The maxsize element must be either ZERO or greater than or equal to the
size of an audit buffer(ADT_BSIZE). If maxsize is ZERO, then the PSIZE flags bit is
turned off internally to indicate that the log file is limited by the available file sys
tem space or device.

The PNODE flags bit is used to append a machine specific node name to the primary
audit log file and is invalid while auditing is enabled. If the PNODE flags bit is set,
the internal storage is updated and no validation of the pnodep pointer is done.

The onfull element is used to set the action to be taken on audit log file full. If the
onfull element is not equal to ASHUT, ADISA, AALOG or the combination of AALOG
and APROG an error is returned. If the ASHUT or ADISA values are specified, then any
alternate log file criteria is cleared. This is done by turning off the AALOG, APROG
and ANODE flags and freeing the internal storage associated with the corresponding
fields.

The AALOG value of the flags element is used to indicate that an alternate log file
should be used when the primary log file becomes full. The APROG value is used to
indicate that an executable program will be executed on audit log file switch. If the
AALOG onfull element and the APATH flags bit is set, an error is returned if the apathp
element can not be copied into an internal storage area for further validation; if the
apathp element does not point to a valid directory or character special device; or if
the apathp element exceeds ADT_MAXPATHLEN (1009) characters.

Setting apathp to a character special device can not be used in with the ANODE flags
bit element. If the apathp element points to a character special device, the ASPECIAL
flags bit is set. If the ANODE flags bit was previously set, it must be turned off
because node names for character special devices are invalid. Turning off the ANODE
bit involves turning off, freeing, and clearing the anodep element of its internal data
storage.

After the AALOG onfull validation completes, the onfull mask element is checked for
APROG. If set, an error is returned if unable to read in the progp element into an
internal storage area or if it is greater than PATH_MAX(1024).

If the defpathp element is not NULL, an error is returned if it cannot be copied into an
internal storage area for further validation; if the defpathp element does not point to
a valid directory or character special device; or if the defpathp element exceeds
ADT_MAXPATHLEN (1009) characters.

If the defnodep element is not NULL, the internal storage area is updated and no vali
dation of the defnodep pointer is done.

If the defpgmp element is not NULL and the AALOG onfull bit is set, an error is returned
if unable to read in the defpgmp element into an internal storage area or if it is
greater than PATH_MAX(1024).

43

auditlog (2)

If the defonfull element is invalid, it defaults to ADISA.

When invoked successfully, the auditlog system call returns zero and sets the
appropriate audit log file attributes. When unsuccessful, auditlog returns a value
of -1 and sets errno to indicate the error.

EACCES The cmd is ALOGSET, and ppathp, apathp, or aprogp cannot be accessed.

EAGAIN It is not possible to allocate memory for the alogp.

EAGAIN The cmd is ALOGSET, and it is not possible to allocate memory for various
elements used to fill in the alog structure.

EFAULT The value of alogp ppathp, apathp, progp, defprogp, defnodep, or defpathp is
invalid.

EINVAL The size of alog does not equal size.

EINVAL The value of cmd is invalid.

EINVAL The cmd is ALOGSET, and the value of onfull is not either zero or ASHUT,
AALOG, or ADISA.

EINVAL The cmd is ALOGSET, and the value of onerr is not either ASHUT or ADISA.

EINVAL The cmd is ALOGSET and the value of maxsize is greater than zero and less
than the size of the audit buffer (ADT_BSIZE).

EINVAL The cmd is ALOGSET, and an onfull value of APROG is specified without
the alternate log switch, AALOG.

EINVAL The cmd is ALOGSET, and the flags field contains PPATH or NODE when
auditrg is enabled.

ENOENT The cmd is ALOGSETf and the pathname to the primary log file, alternate
log file, or program to be run during a log switch does not exist.

ENAMETOOLONG
The cmd is ALOGSET, and the ppathp, apathp, or defpathp fields are longer
than ADT_MAXPATHLEN.

ENOTBLK The cmd is ALOGSET, the flags field contains PSIZE, and the maxsize value
is not zero.

EPERM The invoking subject does not have the appropriate privilege(p _AUDIT).

SEE ALSO
auditbuf(2), auditctl(2), auditdnQ;>(2), aUditevt(2)

44

brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
#include <unistd.h>

int brk(void *endds);

void *sbrk(int incr);

DESCRIPTION
brk and sbrk are used to change dynamically the amount of space allocated for the
calling process's data segment [see exec(2)]. The change is made by resetting the
process's break value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data segment. The
amount of allocated space increases as the break value increases. Newly allocated
space is set to zero. If, however, the same memory space is reallocated to the same
process its contents are undefined.

brk sets the break value to endds and changes the allocated space accordingly.

sbrk adds incr bytes to the break value and changes the allocated space accord
ingly. incr can be negative, in which case the amount of allocated space is
decreased.

brk and sbrk will fail without making any change in the allocated space if one or
more of the following are true:

SEE ALSO

ENOMEM Such a change would result in more space being allocated
than is allowed by the system-imposed maximum process
size [see ulimit(2)].

EAGAIN Total amount of system memory or swap space available is
temporarily insufficient [see shmop(2)]. This may occur even
though the space requested was less than the system-imposed
maximum process size [see ulimit(2)].

end(3C), exec(2), shmop(2), ulimit(2)

DIAGNOSTICS
Upon successful completion, brk returns a value of 0 and sbrk returns the old
break value. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

45

chdir (2)

NAME
chdir, fchdir - change working directory

SYNOPSIS
#include <unistd.h>

int chdir (const char *path);

int fchdir (int fi1des) ;

DESCRIPTION

46

chdir and fchdir cause a directory pointed to by path or fildes to become the
current working directory, the starting point for path searches for path names not
beginning with /. path points to the path name of a directory. The fildes argument
to fchdir is an open file descriptor of a directory.

In order for a directory to become the current directory, a process must have exe
cute (search) access to the directory.

chdir will fail and the current working directory will be unchanged if one or more
of the following are true:

EACCES Search permission is denied for any component of the path name.

EFAULT path points outside the allocated address space of the process.

EINTR A signal was caught during the execution of the chdir system call.

EIO An I/O error occurred while reading from or writing to the file sys
tem.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

ENOTDIR A component of the path name is not a directory.

ENOENT Either a component of the path prefix or the directory named by path
does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

EMULTIHOP Components of path require hopping to multiple remote machines and
file system type does not allow it.

fchdir will fail and the current working directory will be unchanged if one or
more of the following are true:

EACCES Search permission is denied for fildes.

EBADF

EINTR

EIO

fildes is not an open file descriptor.

A signal was caught during the execution of the fchdir system call.

An I/O error occurred while reading from or writing to the file sys
tem.

ENOLINK

ENOTDIR

ENOENT

SEE ALSO
chroot(2)

DIAGNOSTICS

chdir(2)

fildes points to a remote machine and the link to that machine is no
longer active.

The open file descriptor fildes does not refer to a directory.

The directory pointed to by fildes does not exist.

Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

47

chmod(2)

NAME
chmod, fchmod - change mode of file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(intjildes, mode_t mode};

DESCRIPTION

48

chmod and fchmod set the access permission portion of the mode of the file whose
name is given by path or referenced by the descriptor jildes to the bit pattern con
tained in mode. If path or jildes are symbolic links, the access permissions of the tar
get of the symbolic links are set. Access permission bits are interpreted as follows:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if # is 7,5,3, or 1

S_ISVTX 01000
S_IRWXU 00700
S_IRUSR 00400
S_IWUSR 00200
S_IXUSR 00100
S_IRWXG 00070
S_IRGRP 00040
S_IWGRP 00020
S_IXGRP 00010
S_IRWXO 00007
S_IROTH 00004
S_IWOTH 00002
S_IXOTH 00001

Enable mandatory file/record locking if # is 6, 4, 2, or 0
Save text image after execution.
Read, write, execute by owner.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute by group.
Read by group.
Write by group.
Execute by group.
Read, write, execute (search) by others.
Read by others.
Write by others
Execute by others.

Modes are constructed by OR' ing the access permission bits.

The effective user ID of the process must match the owner of the file or the process
must have the appropriate privilege to change the mode of a file.

If the process does not have appropriate privilege and the file is not a directory,
mode bit 01000 (save text image on execution) is cleared.

If the effective group ID of the process does not match the group ID of the file, and
the process does not have appropriate privilege mode bit 02000 (set group ID on
execution) is cleared.

If a 0410 executable file has the sticky bit (mode bit 01000) set, the operating system
will not delete the program text from the swap area when the last user process ter
minates. If a 0413 or ELF executable file has the sticky bit set, the operating system
will not delete the program text from memory when the last user process ter
minates. In either case, if the sticky bit is set the text will already be available
(either in a swap area or in memory) when the next user of the file executes it, thus
making execution faster.

chmod(2)

If a directory is writable and the sticky bit, S_ISVTX, is set on the directory, a pro
cess may remove or rename files within that directory only if one or more of the fol
lowing is true:

the effective user ID of the process is the same as that of the owner ID of the
file

the effective user ID of the process is the same as that of the owner ID of the
directory

the process has write permission for the file.

the process has appropriate privileges

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010 (exe
cute or search by group) is not set, mandatory file/record locking will exist on a
regular file. This may affect future calls to open(2), creat(2), read(2), and write(2)
on this file.

Upon successful completion, chmod and fchmod mark for update the st_ctime
field of the file.

chmod will fail and the file mode will be unchanged if one or more of the following
are true:

EACCES

EACCES

EFAULT

EINTR

EIO

Search permission is denied on a component of the path prefix of path.

Write permission on the named file is denied.

path points outside the allocated address space of the process.

A signal was caught during execution of the system call.

An I/O error occurred while reading from or writing to the file sys
tem.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines and
file system type does not allow it.

ENAMETOOLONG

ENOTDIR

ENOENT

ENOLINK

EPERM

EROFS

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

A component of the prefix of path is not a directory.

Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

fildes points to a remote machine and the link to that machine is no
longer active.

The effective user ID does not match the owner of the file and the pro
cess does not have appropriate privilege (P_OWNER).

The file referred to by path resides on a read-only file system.

49

chmod(2)

fchmod will fail and the file mode will be unchanged if:

EBADF

EIO

EINTR

ENOLIN!{

EPERM

EROFS

fildes is not an open file descriptor

An II 0 error occurred while reading from or writing to the file sys
tem.

A signal was caught during execution of the fchmod system call.

path points to a remote machine and the link to that machine is no
longer active.

The effective user ID does not match the owner of the file and the pro
cess does not have appropriate privilege (P_OWNER).

The file referred to by fildes resides on a read-only file system.

SEE ALSO
access(2), chmod(1) chown(2), creat(2), exec(2), fcntl(2), mkfifo(3C), mknod(2),
open(2), read(2), stat(2), stat(5), write(2)

DIAGNOSTICS

50

Upon successful completion, a value of a is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

chown(2)

NAME
chown, lchown, fchown - change owner and group of a file

SYNOPSIS
#include <unistd.h>
#include <sys/stat.h>

int chown(const char *path, uid_t owner, gid_t group};

int lchown(const char *path, uid_t owner, gid_t group};

int fchown (int fildes, uid_t owner, gid_t group) ;

DESCRIPTION
The owner ID and group ID of the file specified by path or referenced by the descrip
tor fildes, are set to owner and group respectively. If owner or group is specified as -1,
the corresponding ID of the file is not changed.

The function lchown sets the owner ID and group ID of the named file just as chown
does, except in the case where the named file is a symbolic link. In this case lchown
changes the ownership of the symbolic link file itself, while chown changes the own
ership of the file or directory to which the symbolic link refers.

If chown, lchown, or fchown is invoked by a process without the P_OWNER privilege,
the set-user-ID and set-group-ID bits of the file mode, S_ISUID and S_ISGID respec
tively, are cleared [see chmod(2)].

The operating system has a configuration option, LpOSIX_CHOWN_RESTRICTED},
that restricts ownership changes for the chown, lchown, and fchown system calls.

When LpOSIX_CHOWN_RESTRICTED} is not in effect, the effective user ID of the cal
ling process must match the owner of the file or the process must have the P _OWNER
privilege to change the ownership of a file.

When LpOSIX_CHOWN-.RESTRICTED} is in effect, the chown, lchown, and fchown
system calls prevent the owner of the file from changing the owner ID of the file and
restrict the change of the group of the file to the list of supplementary group IDs.
This restriction does not apply to calling processes with the P _OWNER privilege.

Upon successful completion, chown, fchown and lchown mark for update the
st_ctime field of the file.

chown and lchown fail and the owner and group of the named file remain
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of path.

EACCES

EFAULT

EINTR

EINVAL

EIO

Write permission on the named file is denied.

path points outside the allocated address space of the process.

A signal was caught during the chown or lchown system calls.

group or owner is out of range.

An I/O error occurred while reading from or writing to the file sys
tem.

51

chown(2)

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines and
file system type does not allow it. Too many symbolic links were
encountered in translating path.

ENAMETOOLONG

ENOLINK

ENOTDIR

ENOENT

EPERM

EROFS

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

path points to a remote machine and the link to that machine is no
longer active.

A component of the path prefix of path is not a directory.

Either a component of the path prefix or the file referred to by path
does not exist or is a null pathname.

The effective user ID of the calling process does not match the owner
of the file and the calling process does not have the appropriate
privilege (p _OWNER) for changing file ownership.

The named file resides on a read-only file system.

fchown fails and the owner and group of the named file remain unchanged if one or
more of the following are true:

EBADF fildes is not an open file descriptor.

EINVAL

EPERM

EROFS

EINTR

EIO

ENOLINK

group or owner is out of range.

The effective user ID of the calling process does not match the owner
of the file and the calling process does not have the appropriate
privilege (p _OWNER) for changing file ownership.

The named file referred to by fildes resides on a read-only file system.

A signal was caught during execution of the system call.

An I/O error occurred while reading from or writing to the file sys
tem.

fildes points to a remote machine and the link to that machine is no
longer active.

SEE ALSO
chgrp(l), chmod(2), chown(l)

DIAGNOSTICS

52

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

chroot(2)

NAME
chroot - change root directory

SYNOPSIS
#include <unistd.h>

int chroot (const char *path);

DESCRIPTION
path points to a path name naming a directory. chroot causes the named directory
to become the root directory, the starting point for path searches for path names
beginning with /. The user's working directory is unaffected by the chroot system
call.

The calling process must have the appropriate privilege (p _FlLESYS) to change the
root directory.

The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the subtree rooted at the root direc
tory.

chroot will fail and the root directory will remain unchanged if one or more of the
following are true:

EACCES Search permission is denied on a component of the pathname.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the length
of a path component exceeds {NAMl!LMAX} while _POSIX_NO_TRUNC
is in effect.

EFAULT path points outside the allocated address space of the process.

EINTR

EMULTIHOP

ENOLINK

ENOTDIR

ENOENT

EPERM

SEE ALSO
chdir(2)

DIAGNOSTICS

A signal was caught during the chroot system call.

Components of path require hopping to multiple remote machines
and file system type does not allow it.

path points to a remote machine and the link to that machine is no
longer active.

Any component of the path name is not a directory.

The named directory does not exist or is a null pathname.

The calling process does not have the appropriate privilege
(p _FlLESYS) for changing the root directory.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

53

chsize(2) (XENIX System Compatibility)

NAME
chsize - (XENIX) change the size of a file

SYNOPSIS
cc fflag ...] file ... -Ix
int chsize (int fildes, long size) ;

DESCRIPTION
fildes is a file descriptor obtained from a create, open, dup, fcntl, or pipe system
call. chsize changes the size of the file associated with the file descriptor fildes to
be exactly size bytes in length. The routine either truncates the file, or pads it with
an appropriate number of bytes. If size is less than the initial size of the file, then all
allocated disk blocks between size and the initial file size are freed.

The maximum file size as set by ulimit(2) is enforced when chsize is called, rather
than on subsequent writes. Thus chsize fails, and the file size remains unchanged
if the new changed file size would exceed the ulimit.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, the value -1 is
returned and errno is set to indicate the error.

SEE ALSO

NOTES

54

creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2)

In general if chsize is used to expand the size of a file, when data is written to the
end of the file, intervening blocks are filled with zeros. In a some cases, reducing
the file size may not remove the data beyond the new end-of-file.

close (2)

NAME
close - close a file descriptor

SYNOPSIS
#include <unistd.h>
int close (int fildes) ;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or iocntl
system call. close closes the file descriptor indicated by fildes. All outstanding
record locks owned by the process (on the file indicated by fildes) are removed.

When all file descriptors associated with the open file description have been closed,
the open file description is freed.

If the link count of the file is zero, when all file descriptors associated with the file
have been closed, the space occupied by the file is freed and the file is no longer
accessible.

If a STREAMS-based [see intro(2)] fildes is closed, and the calling process had previ
ously registered to receive a SIGPOLL signal [see signal(5)] for events associated
with that stream [see I_SETSIG in streamio(7)], the calling process will be unre
gistered for events associated with the stream. The last close for a stream causes
the stream associated with fildes to be dismantled. If O_NDELAY and O_NONBLOCK
are clear and there have been no signals posted for the stream, and if there are data
on the module's write queue, close waits up to 15 seconds (for each module and
driver) for any output to drain before dismantling the stream. The time delay can
be changed via an I_SETCLTIME ioctl request [see streamio(7)]. If O_NDELAY or
O_NONBLOCK is set, or if there are any pending signals, close does not wait for out
put to drain, and dismantles the stream immediately.

If fildes is associated with one end of a pipe, the last close causes a hangup to occur
on the other end of the pipe. In addition, if the other end of the pipe has been
named [see fattach(3C)], the last close forces the named end to be detached [see
fdetach(3C)]. If the named end has no open processes associated with it and
becomes detached, the stream associated with that end is also dismantled.

The named file is closed unless one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EINTR

ENOLINK

SEE ALSO

A signal was caught during the close system call.

fildes is on a remote machine and the link to that machine is no
longer active.

creat(2), dup(2), exec(2), fattach(3C), fcntl(2), fdetach(3C), intro(2), open(2),
pipe(2), signal(2), signal(5), streamio(7)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

55

creat(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat (const char *path, mode_t mode) ;

DESCRIPTION

56

creat creates a new ordinary file or prepares to rewrite an existing file named by
the path name pointed to by path.

If the file exists, the length is truncated to a and the mode and owner are
unchanged.

If the file does not exist the file's owner ID is set to the effective user ID of the pro
cess. The group ID of the file is set to the effective group ID of the process, or if the
S_ISGID bit is set in the parent directory then the group ID of the file is inherited
from the parent directory.

The mode bits of the file are based on the value of mode, modified as follows:

If the group ID of the new file does not match the effective group ID or one
of the supplementary group IDs, the S_ISGID bit is cleared.

All bits set in the process file mode creation mask are cleared [see umask(2)].

The "save text image after execution bit" of the mode is cleared [see
chmod(2) for the values of mode]

Upon successful completion, a write-only file descriptor is returned and the
file is open for writing, even if the mode does not permit writing. The file
pointer is set to the beginning of the file. The file descriptor is set to remain
open across exec system calls [see fcntl(2)]. A new file may be created
with a mode that forbids writing.

The call creat (path, mode) is equivalent to:

open (path, O_WRONLY I O_CREAT I O_TRUNC, mode)

creat fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EACCES

EACCES

EAGAIN

EFAULT

EISDIR

The file does not exist and write permission on the directory in which
the file is to be created is denied.

The file exists and write permission is denied.

The file exists, mandatory file/record locking is set, and there are out
standing record locks on the file [see chmod(2)].

path points outside the allocated address space of the process.

The named file is an existing directory.

EINTR

ELOOP

EMFlLE

creat (2)

A signal was caught during the creat system call.

Too many symbolic links were encountered in translating path.

The process has too many open files [see getrlimit(2)].

ENAMETOOLONG

ENOTDIR

ENOENT

ENOENT

EROFS

ETXTBSY

ENFILE

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The path name is null.

The named file resides or would reside on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

The system file table is full.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

EMULTIHOP Components of path require hopping to multiple remote machines.

ENOSPC The file system is out of inodes.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), getrlimit(2), lseek(2), open(2), read(2),
umask(2), write(2), stat(5)

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the lowest numbered
unused file descriptor, is returned. Otherwise, a value of -1 is returned, no files are
created or modified, and errno is set to indicate the error.

57

creatsem (2) (XENIX System Compatibility)·

NAME
creatsem - (XENIX) create an instance of a binary semaphore

SYNOPSIS
cc fflag . . .]file ... -Ix
int creatsem(char *sem_name, int mode);

DESCRIPTION
creatsem defines a binary semaphore named by sem_name to be used bywaitsem
and sigsem to manage mutually exclusive access to a resource, shared variable, or
critical section of a program. creatsem returns a unique semaphore number,
sem_num, which may then be used as the parameter in waitsem and sigsem calls.
Semaphores are special files of a length. The filename space is used to provide
unique identifiers for semaphores. mode sets the accessibility of the semaphore
using the same format as file access bits. Access to a semaphore is granted only on
the basis of the read access bit; the write and execute bits are ignored.

A semaphore can be operated on only by a synchronizing primitive, such as
waitsem or sigsem, by creatsem which initializes it to some value, or by opens em
which opens the semaphore for use by a process. Synchronizing primitives are
guaranteed to be executed without interruption once started. These primitives are
used by associating a semaphore with each resource (including critical code sec
tions) to be protected.

The process controlling the semaphore should issue:

sem_num = creatsem("semaphore", mode);

to create, initialize, and open the semaphore for that process. All other processes
using the semaphore should issue:

sem_num = opens em (II semaphore") ;

to access the semaphore's identification value. Note that a process cannot open and
use a semaphore that has not been initialized by a call to creatsem, nor should a
process open a semaphore more than once in one period of execution. Both the
creating and opening processes use wai tsem and sigsem to use the semaphore
sem num.

DIAGNOSTICS
creatsem returns the value -1 if an error occurs. If the semaphore named by
sem_name is already open for use by other processes, ermo is set to EEXIST. If the
file specified exists but is not a semaphore type, ermo is set to ENOTNAM. If the
semaphore has not been initialized by a call to creatsem, ermo is set to EINVAL.

SEE ALSO
opensem(2), sigsem(2), waitsem(2)

NOTES
After a creatsem, you must do a waitsem to gain control of a given resource.

58

dup(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup (int fi1des) ;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or ioctl
system call. dup returns a new file descriptor having the following in common with
the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls [see
fcntl(2)].

The file descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

A signal was caught during the dup system call.

The process has too many open files [see getrlimit(2)].

EINTR

EMFILE

ENOL INK fildes is on a remote machine and the link to that machine is no
longer active.

SEE ALSO
close(2), creat(2), exec(2), fcntl(2), getrlimit(2), open(2), pipe(2), dup2(3C),
lockf(3C).

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

59

exec (2)

NAME
exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
#include <unistd.h>

int execl (const char *path, const char *argO, ••. ,
const char *argn, (char *)0);

int execv (const char *path, char *const *argv);

int execle (const char *path, const char *argO, •.. ,
const char *argn, (char *0), const char *envp[]);

int execve (const char *path, char *const *argv,
char *const *envp);

int execlp (const char *file, const char *argO, •.. ,
const char *argn, (char *)0);

int execvp (const char *file, char *const *argv);

DESCRIPTION

60

exec in all its forms overlays a new process image on an old process. The new pro
cess image is constructed from an ordinary executable file. This file is either an exe
cutable object file or a file of data for an interpreter. There can be no return from a
successful exec because the calling process image is overlaid by the new process
image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument.
When you exec an interpreter file, the system execs the specified interpreter. The
pathname specified in the interpreter file is passed as argO to the interpreter. If arg
was specified in the interpreter file, it is passed as argl to the interpreter. The
remaining arguments to the interpreter are argO through argn of the originally exe
cuted file.

When a C program is executed, it is called as follows:

int main (int argc, char *argv [], char *envp []) ;

where argc is the argument count, argv is an array of character pointers to the argu
ments themselves, and envp is an array of character pointers to the environment
strings. As indicated, argc is at least one, and the first member of the array points to
a string containing the name of the file.

path points to a pathname that identifies the executable file.

file points to a filename that identifies the executable file. If file does not contain a
slash character, the path prefix for this file is obtained by a search of the directories
passed in the PATH environment variable; see environ(5). The environment is
supplied typically by the shell; see sh(l).

exec (2)

If the new executable file is not an executable object file, execlp and execvp use the
contents of that file as standard input to sh(l).

The arguments argO, . . . , argn point to null-terminated character strings. These
strings constitute the argument list available to the new process image. Minimally,
argO must be present. It will become the name of the process, as displayed by the
ps command. Conventionally, argO points to a string that is the same as path (or the
last component of path). The list of argument strings is terminated by a (char *) 0
argument.

argv is an array of character pointers to null-terminated strings. These strings con
stitute the argument list available to the new process image. By convention, argv
must have at least one member, and it should point to a string that is the same as
path (or its last component). argv is terminated by a null pointer.

envp is an array of character pointers to null-terminated strings. These strings con
stitute the environment for the new process image. envp is terminated by a null
pointer. For execl, execv, execvp, and execlp, the C run-time start-off routine
places a pointer to the environment of the calling process in the global object
extern char * * environ, and it is used to pass the environment of the calling
process to the new process image.

File descriptors open in the calling process remain open in the new process image,
except for those whose close-on-exec flag is set; see fcntl(2). For those file descrip
tors that remain open, the file pointer is unchanged.

Signals being caught by the calling process are set to the default disposition in the
new process image; see signal(2). Otherwise, the new process image inherits the
signal dispositions of the calling process.

If the set-user-ID mode bit of the new executable file is set, exec sets the effective
user ID of the new process image to the owner ID of the new executable file; see
chmod(2). Similarly, if the set-group-ID mode bit of the new executable file is set,
the effective group ID of the new process image is set to the group ID of the new
executable file.

The real user ID and real group ID of the new process image remain the same as
those of the calling process.

The saved user and group IDs of the new process image are set to the effective user
and group IDs of the calling process.

If the effective user-ID is 0, the set-user-ID and set-group-ID bits are honored when
the process is being controlled by ptrace.

The shared memory segments attached to the calling process will not be attached to
the new process image; see shmop(2).

Profiling is disabled for the new process image; see profil(2).

The new process image also inherits the following attributes from the calling
process:

nice value [see nice(2)]
scheduler class and priority [see priocntl(2)]
process ID
parent process ID

61

exec (2)

process group 10
supplementary group IDs
semadj values [see semop(2)]
session 10
[see exit(2) and signal(2)]
trace flag [see ptrace(2) request 0]
time left until an alarm clock signal [see alann(2)]
current directory
root directory
file mode creation mask [see umask(2)]
resource limits [see getrlimit(2)]
utime, stime, cutime, and cstime [see times(2)]
file-locks [see fcntl(2) and lockf(3C)]
controlling terminal
process signal mask [see sigprocmask(2)]
pending signals [see sigpending(2)]

If exec succeeds, it marks for update the
st_atime field of the file.

If exec succeeds, the process image file is considered
to have been opened.
The corresponding close is considered
to occur at a time after this open, but before process termination
or successful completion of a subsequent call to exec.

RETURN VALUES
If exec succeeds, it overlays the calling process image with the new process image
and there is no return to the calling process. If exec fails while it can still return to
the calling process, it returns -1 and sets errno to identify the error. If exec fails
after a point when it can return to the calling process, the calling process is sent a
SIGKILL signal.

ERRORS

62

exec fails and returns to the calling process if one or more of the following are true:

EACCES Search permission is denied for a directory listed in the new
executable file's path prefix.

EACCES

EACCES

E2BIG

EAGAIN

The new executable file is not an ordinary file.

Execute permission on the new executable file is denied.

The number of bytes in the argument list of the new process
image is greater than the system-imposed limit of {ARG_MAX.}
bytes. The argument list limit is sum of the size of the argu
ment list plus the size of the environment's exported shell
variables.

Total amount of system memory available when reading via
raw I/O is temporarily insufficient.

EFAULT

EFAULT

EFAULT

EINTR

ELlBACC

ELIBEXEC

ELOOP

EMOLTIHOP

ENAMETOOLONG

ENOENT

ENOTDIR

ENOEXEC

ENOMEM

ENOLINK

SEE ALSO

exec (2)

Required hardware is not present.

An executable file compiled with the MAU or 32B flag is run
ning on a machine without a MAU or 32B.

An argument points to an illegal address.

A signal was caught during the exec system call.

A required shared library does not have execute permission.

Trying to exec(2) a shared library directly.

Too many symbolic links were encountered in translating
path or file.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

The length of the file or path argument exceeds {PATH_MAX},
or the length of a file or path component exceeds
{NAME_MAX} while _POSIX_NO_TRUNC is in effect.

One or more components of the pathname of the executable
file do not exist, or path or file points to an empty string.

A component of the pathname of the executable file is not a
directory.

The exec is not an execlp or execvp, and the new execut
able file has the appropriate access permission but an invalid
magic number in its header.

The new process image requires more memory than allowed
by RLIMIT_VMEMi see getrlimit(2).

path points to a remote machine and the link to that machine
is no longer active.

a.out(4), alann(2), environ(5), exit (2), fcntl(2), fork(2), getrlimit(2),
lockf(3C), nice(2), priocntl(2), ps(l), ptrace(2), semop(2), sh(l), s ignal (2),
sigpending(2), sigprocmask(2), system(3S), times(2), umask(2)

63

exit (2)

NAME
exi t, _exi t - terminate process

SYNOPSIS
#include <stdlib.h>

void exit (int status) ;

#include <unistd.h>

void _exit (int status);

DESCRIPTION

64

_exit terminates the calling process with the following consequences:

All of the file descriptors, directory streams and message catalogue descrip
tors open in the calling process are closed.

A SIGCHLD signal is sent to the calling process's parent process.

If the parent process of the calling process has not specified the
SA_NOCLDWAIT flag [see sigaction(2)], the calling process is transformed
into a "zombie process." A zombie process is a process that only occupies a
slot in the process table. It has no other space allocated either in user or ker
nel space. The process table slot that it occupies is partially overlaid with
time accounting information [see <sys/proc.h>] to be used by the times
system call.

The parent process ID of all of the calling process's existing child processes
and zombie processes is set to 1. This means the initialization process [see
intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value
[see semop(2)], that semadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed [see
plock(2)].

An accounting record is written on the accounting file if the system's
accounting routine is enabled [see acct(2)].

If the process is a controlling process, SIGHUP is sent to the foreground pro
cess group of its controlling terminal and its controlling terminal is deallo
cated.

If the calling process has any stopped children whose process group will be
orphaned when the calling process exits, or if the calling process is a
member of a process group that will be orphaned when the calling process
exits, that process group will be sent SIGHUP and SIGCONT signals.

The C function exit calls any functions registered through the atexi t function in
the reverse order of their registration. The function _exit circumvents all such
functions and cleanup.

exit (2)

The symbols EXIT_SUCCESS and EXIT_FAILURE are defined in stdlib. h and may
be used as the value of status to indicate successful or unsuccessful termination,
respectively.

SEE ALSO

NOTES

acct(2), atexit(3C) intro(2), plock(2), semop(2), sigaction(2), s ignal (2),
times(2), wait(2),

See signal(2) NOTES.

65

fcntl (2)

NAME
fcntl - file control

SYNOPSIS
#include <sys/types.h>
#include <sys/fcntl.h>
#include <unistd.h>

int fcntl (int fildes, int cmd, / * arg * /) ;
DESCRIPTION

66

fcntl provides for control over open files. fildes is an open file descriptor [see
intro(2)].

fcntl may take a third argument, arg, whose data type, value and use depend
upon the value of cmd. cmd specifies the operation to be performed by fcntl and
may be one of the following:

F_GETOWN

F_SETOWN

F_FREESP

Return a new file descriptor with the following characteristics:

Lowest numbered available file descriptor greater than or equal
to the integer value given as the third argument.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file descrip
tors share one file pointer).

Same access mode (read, write, or read/write) as the original
file.

Shares any locks associated with the original file descriptor.

Same file status flags (that is, both file descriptors share the
same file status flags) as the original file.

The close-on-exec flag [see F_GETFD] associated with the new
file descriptor is set to remain open across exec(2) system calls.

Get the close-on-exec flag associated withfildes. If the low-order bit
is 0, the file will remain open across exec. Otherwise, the file will
be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to the low-order bit
of the integer value given as the third argument (0 or 1 as above).

Get fildes status flags.

Set fildes status flags to the integer value given as the third argu
ment. Only certain flags can be set [see fcntl(5)].

Get the designated owner of the file.

Set the owner field of the file descriptor.

Free storage space associated with a section of the ordinary file
fildes. The section is specified by a variable of data type struct
flock pointed to by the third argument argo The data type struct
flock is defined in the sys/fcntl.h header file [see fcntl(5)] and
contains the following members: I_whence is 0, I, or 2 to indicate
that the relative offset I_start will be measured from the start of

fentl (2)

the file, the current position, or the end of the file, respectively.
I_start is the offset from the position specified in I_whence.
I_len is the size of the section. An I_len of 0 frees up to the end of
the file; in this case, the end of file (that is, file size) is set to the
beginning of the section freed. Any data previously written into
this section is no longer accessible.

The following commands are used for record-locking. Locks may be placed on an
entire file or on segments of a file.

F _SETLK Set or clear a file segment lock according to the flock structure that
arg points to [see fcntl(5)]. The cmd F_SETLK is used to establish
read (F _RDLCK) and write (F _WRLCK) locks, as well as remove either
type of lock (F _UNLCK). H a read or write lock cannot be set, fcntl
will return immediately with an error value of -1.

This cmd is the same as F _SETLK except that if a read or write lock is
blocked by other locks, fcntl will block until the segment is free to
be locked.

If the lock request described by the flock structure that arg points
to could be created, then the structure is passed back unchanged
except that the lock type is set to F_UNLCK and the I_whence field
will be set to SEEK_SET.

H a lock is found that would prevent this lock from being created,
then the structure is overwritten with a description of the first lock
that is preventing such a lock from being created. The structure
also contains the process ID and the system ID of the process hold
ing the lock.

This command never creates a lock; it tests whether a particular lock
could be created.

Used by the network lock daemon, lockd(lM), to communicate
with the NFS server kernel to handle locks on NFS files.

Used by the network lock daemon, lockd(lM), to communicate
with the NFS server kernel to handle locks on NFS files.

Used by the network lock daemon, lockd(lM), to communicate
with the NFS server kernel to handle locks on NFS files.

A read lock prevents any process from write locking the protected area. More than
one read lock may exist for a given segment of a file at a given time. The file
descriptor on which a read lock is being placed must have been opened with read
access.

A write lock prevents any process from read locking or write locking the protected
area. Only one write lock and no read locks may exist for a given segment of a file
at a given time. The file descriptor on which a write lock is being placed must have
been opened with write access.

67

fentl (2)

68

The flock structure describes the type (I_type), starting offset (I_whence), relative
offset (I_start), size (I_len), process ID (I-pid), and system ID (I_sysid) of the
segment of the file to be affected. The process ID and system ID fields are used only
with the F _GETLK cmd to return the values for a blocking lock. Locks may start and
extend beyond the current end of a file, but may not be negative relative to the
beginning of the file. A lock may be set to always extend to the end of file by
setting I_len to o. If such a lock also has I_whence and I_start set to 0, the
whole file will be locked. Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments at either end. Locking a seg
ment that is already locked by the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks associated with a file for a
given process are removed when a file descriptor for that file is closed by that pro
cess or the process holding that file descriptor terminates. Locks are not inherited
by a child process in a fork(2) system call.

When mandatory file and record locking is active on a file [see chmod(2)], creat(2),
open(2), read(2) and write(2) system calls issued on the file will be affected by the
record locks in effect.

fcntl will fail if one or more of the following are true:

EACCES cmd is F _SETLK, the type of lock (I_type) is a read lock (F _RDLCK)
and the segment of a file to be locked is already write locked by
another process, or the type is a write lock (F _WRLCK) and the seg
ment of a file to be locked is already read or write locked by another
process.

EACCES cmd is F_SETFD, Fj)ETFL, F_SETLK, or F_SETLKW, and either
write permission on fildes is denied or fildes is already open for writ
ing.

EAGAIN

EAGAIN

EBADF

EBADF

EBADF

EBADF

EDEADLK

cmd is F _FREESP, the file exists, mandatory file/record locking is
set, and there are outstanding record locks on the file.

cmd is F _SETLK or F _SETLKW, mandatory file locking bit is set for
the file, and the file is currently being mapped to virtual memory
via mmap [see mmap(2)].

fildes is not a valid open file descriptor.

cmd is F _SETLK or F _SETLKW, the type of lock (I_type) is a read
lock (F _RDLCK), and fildes is not a valid file descriptor open for read
ing.

cmd is F _SETLK or F _SETLKW, the type of lock (I_type) is a write
lock (F _WRLCK), and fildes is not a valid file descriptor open for writ
ing.

cmd is F _FREESP, and fildes is not a valid file descriptor open for
writing.

cmd is F _SETLKW, the lock is blocked by some lock from another
process, and if fcntl blocked the calling process waiting for that
lock to become free, a deadlock would occur.

EDEADLK

EFAULT

EFAULT

EINTR

EIO

EMFILE

EINVAL

EINVAL

EINVAL

ENOLCK

ENOLINK

ENOLINK

EOVERFLOW

DIAGNOSTICS

fcntl (2)

cmd is F_FREESP, mandatory record locking is enabled, O_NDELAY
and O_NONBLOCK are clear and a deadlock condition was detected.

cmd is F _FREESP and the value pointed to by the third argument arg
resulted in an address outside the process's allocated address space.

cmd is F _GETLK, F _SETLK or F _SETLKW and the value pointed to by
the third argument resulted in an address outside the program
address space.

A signal was caught during execution of the fent! system call.

An I/O error occurred while reading from or writing to the file
system.

cmd is F _DUPFD and the number of file descriptors currently open in
the calling process is the configured value for the maximum number
of open file descriptors allowed each user.

cmd is F_DUPFD and the third argument is either negative, or greater
than or equal to the configured value for the maximum number of
open file descriptors allowed each user.

cmd is not a valid value.

cmd is F_GETLK, F_SETLK, or F_SETLKW and the third argument or
the data it points to is not valid, or fildes refers to a file that does not
support locking.

cmd is F _SETLK or F _SETLKW, the type of lock is a read or write lock,
and there are no more record locks available (too many file seg
ments locked) because the system maximum has been exceeded.

fildes is on a remote machine and the link to that machine is no
longer active.

cmd is F_FREESP, the file is on a remote machine, and the link to
that machine is no longer active.

cmd is F _GETLK and the process ID of the process holding the
requested lock is too large to be stored in the I yid field.

On success, fent! returns a value that depends on cmd:

F _DUPFD A new file descriptor.

F_GETFD Value of flag (only the low-order bit is defined). The return value
will not be negative.

F _SETFD Value other than -1.

F_FREESP Value of o.
Value of file status flags. The return value will not be negative.

Value other than-1.

69

fentl (2)

F_GETOWN

F_SETOWN

F_GETLK

F_SETLK

F_SETLKW

Value of the owner field.

Value other than-1.

Value other than-1.

Value other than-1.

Value other than-1.

On failure, fcntl returns -1 and sets errno to indicate the error.

NOTICES
Future Directions

In the future, the variable errno will be set to EAGAIN rather than EACCES when a
section of a file is already locked by another process. Therefore, portable applica
tion programs should expect and test for either value.

REFERENCES
chown(2), close(2), creat(2), dup(2), exec(2), fcntl(5), fork(2), open(2), pipe(2)

70

filepriv (2)

NAME
filepriv - set, retrieve, or count the privileges associated with a file

SYNOPSIS
#include <priv.h>

int filepriv(const char *path, int cmd, priv_t *privp,
int nentries) ;

DESCRIPTION
The filepriv system call is used to set, retrieve, or count the privileges associated
with a file. privp is defined as a pointer to an array of privilege descriptors each of
which contains a privilege set and the identity of the requested privilege.

The path argument specifies an executable file. nentries is the number of entries con
tained in privp.

When setting privileges, filepriv changes the kernel privilege table, but not the
Privilege Data File (PDF) file that is used to initialize privileges at system startup
time. Privileges changed with filepri v are valid only until the next reboot, at
which time the changes are lost and the privileges are as defined in the PDF.

The recognized cmds and their functions are described below:

PUTPRV

GETPRV

CNTPRV

the fixed and inheritable privilege sets associated with the file indicated
by path are set based on the privilege descriptor(s) contained in privp.
The fixed and inheritable privilege sets resulting from the privilege
descriptor(s) contained in privp must be disjoint. Privileges contained in
either privilege set that are not in the maximum set of the calling pro
cess are ignored. The calling process must have the either the
P_SETSPRIV privilege or the P_SETUPRIV privilege in its working set; if
the privilege is P_SETUPRIV, the process must also have write access to
the file named by path. If any argument is invalid, none of the file
privileges is changed. The setting is absolute.

the fixed and inheritable privilege sets associated with the file indicated
by path are returned in privp in the form of privilege descriptors. The
calling process must have read access to the file named by path. None of
the file privileges is changed.

the return value is set to the number of privileges associated with the
named file. The privp and nentries arguments are ignored. The calling
process must have read access to the file named by path. None of the
file privileges is changed.

filepriv fails if one or more of the following is true:

ENOENT A component of path does not exist.

ENOTDIR A component of path is not a directory.

The cmd is invalid. EINVAL

EINVAL The cmd is GETPRV and privp is not large enough to hold the number of
privileges associated with the named file.

71

filepriv (2)

EINVAL

EINVAL

EFAULT

EACCES

EACCES

EPERM

EAGAIN

ENOPKG

SEE ALSO

The cmd is PUTPRV and (1) the file pointed to by path is not a regular exe
cutable file, (2) the fixed and inheritable privilege sets are not disjoint,
(3) nentries is less than 0, or (4) privp includes undefined privileges.

The cmd is GETPRV or CNTPRV and the file pointed to by path is not a reg
ular executable file.

An internal routine to retrieve file privileges or copy privileges to the
calling process failed.

The cmd is GETPRV or CNTPRV and the calling process does not have read
access to the file named by path.

The cmd is SETPRV, the calling process has only the P _SETUPRIV
privilege, and write access is denied on the file named by path.

The calling process does not have the P _SETSPRIV or the P _SETUPRIV
privilege.

There is insufficient kernel memory to allocate a privilege table entry
when setting file privileges.

The filepriv system call is not supported by the installed privilege
mechanism.

intro(2), procpri v(2), procpri vI (3C), pri v(5), pri vilege(5)

DIAGNOSTICS

72

A value of -1 is returned and ermo is set to indicate the error if filepriv is un
successful. If successful, filepri v returns the number of privilege file descriptors.

fork(2)

NAME
fork - create a new process

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t fork(void};

DESCRIPTION
fork causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process:

real user 1D, real group 1D, effective user 1D, effective group 1D
environment
close-on-exec flag [see exec(2)]
signal handling settings (that is, SIG_DFL, SIG_IGN, SIG_HOLD, function
address)
supplementary group IDs
set-user-1D mode bit
set-group-1D mode bit
profiling on/ off status
nice value [see nice(2)]
scheduler class [see priocntl(2)]
all attached shared memory segments [see shmop(2)]
process group 1D
session 1D [see exit(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
resource limits [see getrlimit(2)]
controlling terminal
working and maximum privilege sets
Mandatory Access Control level

Mandatory Access Control levels apply only if the Enhanced Security Package is
installed and running.

Scheduling priority and any per-process scheduling parameters that are specific to a
given scheduling class mayor may not be inherited according to the policy of that
particular class [see priocntl(2)].

The child process differs from the parent process in the following ways:

The child process has a unique process 1D which does not match any active
process group 1D.

The child process has a different parent process 10 (that is, the process 1D of
the parent process).

The child process has its own copy of the parent's file descriptors and direc
tory streams. Each of the child's file descriptors shares a common file
pointer with the corresponding file descriptor of the parent.

73

fork(2)

All semadj values are cleared [see semop(2)].

Process locks, text locks and data locks are not inherited by the child [see
plock(2)].

The child process's tms structure is cleared: tms_utime, stime, cutime, and
cstime are set to a [see times(2)].

The time left until an alarm clock signal is reset to O.

The set of signals pending for the child process· is initialized to the empty
set.

Record locks set by the parent process are not inherited by the child process [see
fcnt 1 (2)].

fork will fail and no child process will be created if one or more of the following
are true:

EAGAIN

EAGAIN

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded and the calling pro
cess does not have the P _SYSOPS privilege. The system lacked the
necessary resources to create another process.

Total amount of system memory available when reading via raw
II 0 is temporarily insufficient.

SEE ALSO
alarm(2), exec(2), fcntl(2), getrl imit (2), nice(2), plock(2), priocntl(2),
ptrace(2), semop(2), shmop(2), signal(2), times(2), wnask(2), wait(2), system(3S)

DIAGNOSTICS

74

Upon successful completion, fork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of (pid_t) -1 is returned to the parent process, no child process is created, and
ermo is set to indicate the error.

fpathconf(2)

NAME
fpathconf, pathconf - get configurable pathname variables

SYNOPSIS
#include <unistd.h>

long fpathconf (int fildes, int name);

long pathconf (const char *path, int name);

DESCRIPTION
The functions fpathconf and pathconf return the current value of a configurable
limit or option associated with a file or directory. The path argument points to the
pathname of a file or directory; fildes is an open file descriptor; and name is the sym
bolic constant (defined in unistd.h [see unistd(4)]) representing the configurable
system limit or option to be returned.

The values returned by pathconf and fpathconf depend on the type of file
specified by path or fildes. The following table contains the symbolic constants sup
ported by pathconf and fpathconf along with the POSIX defined return value.
The return value is based on the type of file specified by path or fildes.

Value of name See Note

_PC_LINK_MAX 1

_PC_MAX_CANNON 2

_PC_MAX_INPUT 2

_PC_NAME_MAX 3,4

_PC_PATH_MAX 4,5

- PC_PIPE_BUF 6

_PC_CHOWN_RESTRICTED 7

_PC_NO_TRUNC 3,4

_PC_VDISABLE 2

Notes:

1 If path or fildes refers to a directory, the value returned applies to the direc
tory itself.

2 The behavior is undefined if path or fildes does not refer to a terminal file.

3 If path or fildes refers to a directory, the value returned applies to the
filenames within the directory.

4 The behavior is undefined if path or fildes does not refer to a directory.

5 If path or fildes refers to a directory, the value returned is the maximum
length of a relative pathname when the specified directory is the current
directory.

75

fpathconf (2)

6 If path or fildes refers to a pipe or FIFO, the value returned applies to the
FIFO itself. If path or fildes refers to a directory, the value returned applies to
any FIFOs that exist or can be created within the directory. If path or fildes
refer to any other type of file, the behavior is undefined.

7 If path or fildes refers to a directory, the value returned applies to any files,
other than directories, that exist or can be created within the directory.

The value of the configurable system limit or option specified by name does not
change during the lifetime of the calling process.

fpathconf fails if the following is true:

EACCES Read permission is denied on the named file.

EBADF fildes is not a valid file descriptor.

pathconf fails if one or more of the following are true:

EACCES search permission is denied for a component of the path prefix.

ELOOP too many symbolic links are encountered while translating path.

EMULTIHOP components of path require hopping to multiple remote machines and
file system type does not allow it.

ENAMETOOLONG

ENOENT

ENOLIN!{

the length of a pathname exceeds {PATH_MAX}, or pathname com
ponent is longer than {NAME_MAX} while <_POSIX_NO_TRUNC) is in
effect.

path is needed for the command specified and the named file does not
exist or if the path argument points to an empty string.

path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR a component of the path prefix is not a directory.

Both fpathconf and pathconf fail if the following is true:

EINVAL The implementation does not support an association of the name with
the specified path or fildes.

RETURN VALUES
If fpathconf or pathconf are invoked with an invalid symbolic constant or the
symbolic constant corresponds to a configurable system limit or option not sup
ported on the system, a value of -1 is returned to the invoking process. If the func
tion fails because the configurable system limit or option corresponding to name is
not supported on the system the value of ermo is not changed.

SEE ALSO
limits(4), sysconf(3C), unistd(4)

76

fsync (2)

NAME
fsync - synchronize a file's in-memory state with that on the physical medium

SYNOPSIS
#include <unistd.h>

int fsync (int fi1des) ;

DESCRIPTION
fsync moves all modified data and attributes of fildes to a storage device. When
fsync returns, all in-memory modified copies of buffers associated withfildes have
been written to the physical medium. fsync is different from sync, which
schedules disk I/O for all files but returns before the I/O completes.

fsync should be used by programs that require that a file be in a known state. For
example, a program that contains a simple transaction facility might use fsync to
ensure that all changes to a file or files caused by a given transaction were recorded
on a storage medium.

f sync fails if one or more of the following are true:

EBADF fildes is not a valid file descriptor open for writing.

ENOLINK

EINTR

EIO

fildes is on a remote machine and the link on that machine is no
longer active.

A signal was caught during execution of the fsync system call.

An I/O error occurred while reading from or writing to the file
system.

DIAGNOSTICS

NOTES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and erma is set to indicate the error.

The way the data reach the physical medium depends on both implementation and
hardware. fsync returns when the device driver tells it that the write has taken
place.

SEE ALSO
sync (2)

77

ftime(2) (XENIX System Compatibility)

NAME
ftime - (XENIX) get time and date

SYNOPSIS
cc fflag . . .]file ... -Ix [library . ..]

#include <sys/times.h>

ftime (struct timeb *tp);
DESCRIPTION

ftime returns the time in a structure (see DIAGNOSTICS below). ftime will fail if
tp points to an illegal address [EFAULT].

DIAGNOSTICS
The ftime entry fills in a structure pointed to by its argument, as defined by
sys/timeb.h:

/* Structure returned by ftime system call */

struct timeb {

};

long time;
unsigned short milli tm;
short timezone;
short dstflag;

Note that the timezone value is a system default timezone and not the value of the
TZ environment variable.

The structure contains the time since the 00:00:00 GMT, January 1, 1970 up to 1000
milliseconds of more-precise interval, the local time zone (measured in minutes of
time westward from Greenwich), and a flag that, if nonzero, indicates that Daylight
Saving time applies locally during the appropriate part of the year.

SEE ALSO

NOTES

78

cc(l), ctime(3C), stime(2)

Since ftime does not return the correct timezone value, its use is not recom
mended. See ctime(3C) for accurate use of the TZ variable.

getcontext (2)

NAME
getcontext, setcontext - get and set current user context

SYNOPSIS
#include <ucontext.h>

int getcontext(ucontext_t *ucp);

int setcontext(ucontext_t *ucp);

DESCRIPTION

NOTES

These functions, along with those defined in makecontext(3C), are useful for
implementing user level context switching between multiple threads of control
within a process.

getcontext initializes the structure pointed to by ucp to the current user context of
the calling process. The user context is defined by ucontext(5) and includes the
contents of the calling process's machine registers, signal mask and execution stack.

setcontext restores the user context pointed to by ucp. The call to setcontext
does not return; program execution resumes at the point specified by the context
structure passed to setcontext. The context structure should have been one
created either by a prior call to getcontext or makecontext or passed as the third
argument to a signal handler [see sigaction(2)]. If the context structure was one
created with getcontext, program execution continues as if the corresponding call
of get context had just returned. If the context structure was one created with
makecontext, program execution continues with the function specified to makecon
text.

When a signal handler is executed, the current user context is saved and a new con
text is created by the kernel. If the process leaves the signal handler via longjIri>
[see setjIri>(3)] the original context will not be restored, and future calls to get
context will not be reliable. Signal handlers should use siglongjIri> [see
setjIri>(3)] or setcontext instead.

DIAGNOSTICS
On successful completion, setcontext does not return and getcontext returns o.
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
makecontext(3C), setjIri>(3), sigaction(2), sigaltstack(2), sigprocmask(2),
ucontext(5)

79

getdents (2)

NAME
getdents - read directory entries and put in a file system independent format

SYNOPSIS
#include <sys/types.h>#include <sys/dirent.h>

int getdents (int fildes, struct dirent *buf,
unsigned int size_t nbyte> ;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup, fcntl, pipe, or ioctl
system call.

getdents attempts to read nbyte bytes from the directory associated with fildes and
to format them as file system independent directory entries in the buffer pointed to
by buf. Since the file system independent directory entries are of variable length, in
most cases the actual number of bytes returned will be strictly less than nbyte. See
dirent(4) to calculate the number of bytes.

The file system independent directory entry is specified by the dirent structure.
For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given by the
file pointer associated with fildes. Upon return from getdents, the file pointer is
incremented to point to the next directory entry.

This system call was developed in order to implement the readdir routine [for a
description, see directory(3C)], and should not be used for other purposes.

getdents will fail if one or more of the following are true:

EBADF fildes is not a valid file descriptor open for reading.

EFAULT

EINVAL

ENOENT

ENOLINK

ENOTDIR

EIO

buf points outside the allocated address space.

nbyte is not large enough for one directory entry.

The current file pointer for the directory is not located at a valid entry.

fildes points to a remote machine and the link to that machine is no
longer active.

fildes is not a directory.

An II a error occurred while accessing the file system.

SEE ALSO
directory(3C), dirent(4)

DIAGNOSTICS

80

Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. A value of 0 indicates the end of the directory has
been reached. If the system call failed, a -1 is returned and ermo is set to indicate
the error.

getgroups (2)

NAME
getgroups, setgroups - get or set supplementary group access list IDs

SYNOPSIS
#include <unistd.h>

int get groups (int gidsetsize, gid_t *grouplist)

int set groups (int ngroups, const gid_t *grouplist)

DESCRIPTION
getgroups gets the current supplemental group access list of the calling process
and stores the result in the array of group IDs specified by group lis t . This array has
gidsetsize entries and must be large enough to contain the entire list. This list cannot
be greater than {NGROUPS_MAX}. If gidsetsize equals 0, getgroups will return the
number of groups to which the calling process belongs without modifying the array
pointed to by grouplist.

setgroups sets the supplementary group access list of the calling process from the
array of group IDs specified by group list. The number of entries is specified by
ngroups and can not be greater than {NGROUPS_MAX}. This function may be invoked
only by a process with the P_SETUID privilege.

getgroups will fail if:

EINVAL The value of gidsetsize is non-zero and less than the number of sup
plementary group IDs set for the calling process.

setgroups will fail if:

EINVAL The value of ngroups is greater than {NGROUPS_MAX}.

EPERM The calling process does not have the P _SETUID privilege.

Either call will fail if:

EFAULT A referenced part of the array pointed to by group list is outside of
the allocated address space of the process.

SEE ALSO
chown(2), getuid(2), groups(1), initgroups(3C), setuid(2)

DIAGNOSTICS
Upon successful completion, getgroups returns the number of supplementary
group IDs set for the calling process and setgroups returns the value O. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

81

getksym (2)

NAME
getksym - get information for a global kernel symbol

SYNOPSIS
#include <sys/ksym.h>
#include <sys/elf.h>

int getksym(char *symname, unsigned long *value, unsigned long *info>;

DESCRIPTION
getksym, given a symname, looks for a global (STB_GLOBAL or STB_WEAK) symbol of
that name in the symbol table of the running kernel (including all currently loaded
kernel modules). If it finds a match, getksym returns the value associated with that
symbol (typically its address) in the space pointed to by value, and the type of that
symbol in the space pointed to by info. The types returned are:

STT_NOTYPE unknown type
STT_FUNC text symbol (typically function)
STT_OBJECT data symbol

The symbol name can be no more than MAXSYMNMLEN characters. If more than one
symbol of the given name exists in the search space, the one (if any) in the statically
bound kernel or, if not there, the first one found among the loaded modules will be
returned.

If getksym is given a valid address in the running kernel in the space pointed to by
value, it will return, in the space pointed to by symname, the name of the symbol
whose value is the closest one less than or equal to the given value and, in space
pointed to by info, the difference between the address given and the value of the
symbol found. The space pointed to by symname must be at least MAXSYMNMLEN
characters long.

RETURN VALUES
Given a symbol name greater in length than MAXSYMNMLEN, getksym returns the
value -1 and sets errno to ENAMETOOLONG.

DIAGNOSTICS
EFAULT Invalid pointer for symname, value, or info
ENAMETOOLONG Symbol name is longer than MAXSYMNMLEN characters
ENOMATCH symname is not found in the running kernel (includ-

ing loaded modules) or value is outside the range of
the static kernel and any loaded modules

SEE ALSO

NOTES

82

nlist(3E), kroem(7)

As a consequence of the dynamically loadable kernel modules feature, a dynamic
symbol table is now kept in the kernel address space representing all defined global
symbols in the static kernel and all currently loaded modules. When a module is
loaded, its symbol information is added to this table; when a module is unloaded,
its symbol information is deleted.

getksym (2)

Finding out the address of a particular kernel variable was commonly done by
using nlist(3E) on / stand/unix. This is no longer an accurate way to get that
information, since / stand/unix only contains the symbol table for the static kernel.
The symbol tables for the loadable modules are elsewhere on the system, but which
modules are loaded and from where changes over time. So, as part of this feature,
two new ways of getting at information associated with kernel symbols have been
provided.

The getksym(2) system call provides the kind of information on a given kernel sym
bol or address that nlist(3E) provided. However, the symbol name/ address asso
ciation may not be valid by the time it is returned to the user (for example, if the
symbol is defined in a loadable module and that module is unloaded), unless the
user takes special steps like keeping the module loaded by making sure there is an
outstanding open, mount, ...

Because of this later complication and because most interest in kernel addresses is
related to reading or writing from /dev/kmem, an alternate atomic method of read
ing and writing in the kernel address space based on a symbol name is provided.
Three new ioctl commands now exist in the :mm memory driver for the / dev /km.em
minor device [see kmem(7)]. In this way, a user gets the desired 10 operation accom
plished without fear that a module may be unloaded in the middle. Of course, this
user must still open / dev /kmem for the correct type of 10 and so the appropriate
protections against unauthorized access still exist.

83

getmsg (2)

NAME
getmsg - get next message off a stream

SYNOPSIS
#include <stropts.h>

int getmsg(int fd, struct strbuf *ctlptr,
struct strbuf *dataptr, int *flagsp);

int getpmsg (int fd, struct strbuf *ctlptr,
struct strbuf *dataptr, int *bandp, int *flagsp);

DESCRIPTION

84

getmsg retrieves the contents of a message [see intro(2)] located at the stream
head read queue from a STREAMS file, and places the contents into user specified
buffer(s). The message must contain either a data part, a control part, or both. The
data and control parts of the message are placed into separate buffers, as described
below. The semantics of each part is defined by the STREAMS module that gen
erated the message.

The function getpmsg does the same thing as getmsg, but provides finer control
over the priority of the messages received. Except where noted, all information
pertaining to getmsg also pertains to getpmsg.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a strbuf structure, which contains the following members:

int maxlen;
int len;
char *buf;

1* maximum buffer length *1
1* length of data *1
1* ptr to buffer *1

buf points to a buffer in which the data or control information is to be placed, and
maxlen indicates the maximum number of bytes this buffer can hold. On return,
len contains the number of bytes of data or control information actually received,
or 0 if there is a zero-length control or data part, or -1 if no data or control informa
tion is present in the message. flagsp should point to an integer that indicates the
type of message the user is able to receive. This is described later.

ctlptr is used to hold the control part from the message and dataptr is used to hold
the data part from the message. If ctlptr (or dataptr) is NULL or the maxlen field is
-1, the control (or data) part of the message is not processed and is left on the
stream head read queue. If ctlptr (or dataptr) is not NULL and there is no correspond
ing control (or data) part of the messages on the stream head read queue, len is set
to -1. If the maxlen field is set to 0 and there is a zero-length control (or data) part,
that zero-length part is removed from the read queue and len is set to o. If the
maxlen field is set to 0 and there are more than zero bytes of control (or data) infor
mation, that information is left on the read queue and len is set to o. If the maxlen
field in ctlptr or dataptr is less than, respectively, the control or data part of the mes
sage, maxlen bytes are retrieved. In this case, the remainder of the message is left
on the stream head read queue and a non-zero return value is provided, as
described below under DIAGNOSTICS.

getmsg (2)

By default, getmsg processes the first available message on the stream head read
queue. However, a user may choose to retrieve only high priority messages by set
ting the integer pointed by flagsp to RS_HIPRI. In this case, getmsg processes the
next message only if it is a high priority message. If the integer pointed by flagsp is
0, getmsg retrieves any message available on the stream head read queue. In this
case, on return, the integer pointed to by flagsp will be set to RS_HIPRI if a high
priority message was retrieved, or 0 otherwise.

For getpmsg, the flags are different. flagsp points to a bitmask with the following
mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like
getmsg, getpmsg processes the first available message on the stream head read
queue. A user may choose to retrieve only high-priority messages by setting the
integer pointed to by flagsp to MSG_HIPRI and the integer pointed to by bandp to o.
In this case, getpmsg will only process the next message if it is a high-priority mes
sage. In a similar manner, a user may choose to retrieve a message from a particu
lar priority band by setting the integer pointed to by flagsp to MSG_BAND and the
integer pointed to by bandp to the priority band of interest. In this case, getpmsg
will only process the next message if it is in a priority band equal to, or greater than,
the integer pointed to by bandp, or if it is a high-priority message. If a user just
wants to get the first message off the queue, the integer pointed to by flagsp should
be set to MSG_ANY and the integer pointed to by bandp should be set to o. On return,
if the message retrieved was a high-priority message, the integer pointed to by
flagsp will be set to MSG_HIPRI and the integer pointed to by bandp will be set to O.
Otherwise, the integer pointed to by flagsp will be set to MSG_BAND and the integer
pointed to by bandp will be set to the priority band of the message.

If O_NDELAY and O_NONBLOCK are clear, getmsg blocks until a message of the type
specified by flagsp is available on the stream head read queue. If O_NDELAY or
O_NONBLOCK has been set and a message of the specified type is not present on the
read queue, getmsg fails and sets erma to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved, getmsg
continues to operate normally, as described above, until the stream head read
queue is empty. Thereafter, it returns 0 in the len fields of ctIptr and dataptr.

getmsg or getpmsg will fail if one or more of the following are true:

EAGAIN The O_NDELAY or O_NONBLOCK flag is set, and no messages are
available.

EBADF

EBADMSG

EFAULT

EINTR

EINVAL

ENOSTR

fd is not a valid file descriptor open for reading.

Queued message to be read is not valid for getmsg.

ctIptr, dataptr, bandp, or flagsp points to a location outside the allo
cated address space.

A signal was caught during the getmsg system call.

An illegal value was specified inflagsp, or the stream referenced by
fd is linked under a multiplexor.

A stream is not associated with fd.

85

getmsg(2)

EIO

EACCES

fildes points to an open device that is in the process of closing.

fildes points to a dynamic device and read permission on the device
is denied.

getmsg can also fail if a STREAMS error message had been received at the stream
head before the call to getmsg. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
intro(2), poll(2), putmsg(2), read(2), write(2)

DIAGNOSTICS

86

Upon successful completion, a non-negative value is returned. A value of a indi
cates that a full message was read successfully. A return value of MORECTL indicates
that more control information is waiting for retrieval. A return value of MOREDATA
indicates that more data is waiting for retrieval. A return value of MORECTL I
MOREDATA indicates that both types of information remain. Subsequent getmsg
calls retrieve the remainder of the message. However, if a message of higher prior
ity has come in on the stream head read queue, the next call to getmsg will retrieve
that higher priority message before retrieving the remainder of the previously
received partial message.

NAME

getpid(2)

getpid, getpgrp, getppid, getpgid - get process, process group, and parent pro
cess IDs

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

DESCRIPTION
getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.

getppid returns the parent process ID of the calling process.

getpgid returns the process group ID of the process whose process ID is equal to
pid, or the process group ID of the calling process, if pid is equal to zero.

getpgid will fail if one or more of the following is true:

EPERM

ESRCH

SEE ALSO

The process whose process ID is equal to pid is not in the same
session as the calling process, and the implementation does not
allow access to the process group ID of that process from the call
ing process.

There is no process with a process ID equal to pid.

exec(2), fork(2), getpid(2), getsid(2), intro(2), setpgid(2), setpgrp(2),
setsid(2), signal(2)

DIAGNOSTICS
Upon successful completion, getpgid returns a process group ID. Otherwise, a
value of (pid_t) -1 is returned and errno is set to indicate the error.

87

getrlimit (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

int getrlimit (int resource, struct rlimit *rZp) i

int setrlimit (int resource, const struct rlimit *rZp) i

DESCRIPTION

88

Limits on the consumption of a variety of system resources by a process and each
process it creates may be obtained with getrlimit and set with setrlimit.

Each call to either getrlimit or setrlimit identifies a specific resource to be
operated upon as well as a resource limit. A resource limit is a pair of values: one
specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits
may be changed by a process to any value that is less than or equal to the hard
limit. A process may (irreversibly) lower its hard limit to any value that is greater
than or equal to the soft limit.

Both hard and soft limits can be changed in a single call to setrlimit subject to the
constraints described above.

Limits may have an infinite value of RLIM_INFINITY. rZp is a pointer to struct
rlimit that includes the following members:

rl~_t rlim_cur; /* current (soft) limit */
rlim_t rlim_maxi /* hard limit */

rlim_t is an arithmetic data type to which objects of type int, size_t, and off_t
can be cast without loss of information.

The possible resources, their descriptions, and the actions taken when current limit
is exceeded, are summarized in the table below:

Resources Description
The maximum size of a
core file in bytes that may
be created by a process. A
limit of 0 will prevent the
creation of a core file.

The maximum amount of
CPU time in seconds used
by a process.

The maximum size of a
process's heap in bytes.

Action
The writing of a core file
will terminate at this size.

SIGXCPU is sent to the pro
cess. If the process is
holding or ignoring
SIGXCPU, the behavior is
scheduling class defined.

brk(2) will fail with ermo
set to ENOMEM.

Resources Description
The maximum size of a file
in bytes that may be
created by a process. A
limit of 0 will prevent the
creation of a file.

The maximum number of
open file descriptors that
the process can have.

The maximum size of a
process's stack in bytes.
The system will not
automatically grow the
stack beyond this limit.

The maximum size of a
process's mapped address
space in bytes.

getrlimit (2)

Action
SIGXFSZ is sent to the pro
cess. If the process is
holding or ignoring
SIGXFSZ, continued
attempts to increase the
size of a file beyond the
limit will fail with ermo
set to EFBIG.

Functions that create new
file descriptors will fail
with errno set to EMFILE.

SIGSEGV is sent to the
process. If the process is
holding or ignoring
SIGSEGV, or is catching
SIGSEGV and has not
made arrangements to use
an alternate stack [see
sigaltstack(2)], the
disposition of SIGSEGV
will be set to SIG_DFL
before it is sent.

brk(2) and mmap(2) func
tions will fail with errno
set to ENOMEM. In addition,
the automatic stack
growth will fail with the
effects outlined above.

Because limit information is stored in the per-process information, the shell builtin
ulimit must directly execute this system call if it is to affect all future processes
created by the shell.

The value of the current limit of the following resources affect these implementation
defined constants:

RETURN VALUE

Limit
RLIMIT_FSIZE
RLIMIT_NOFILE

Implementation Defined Constant

Upon successful completion, the function getrlimit returns a value of 0; other
wise, it returns a value of -1 and sets ermo to indicate an error.

89

getrlimit (2)

ERRORS
Under the following conditions, the functions getrlimit and setrlimit fail and
set ermo to:

EINVAL if an invalid resource was specified; or in a setrlimit call, the new
rlim_cur exceeds the new rlim_max.

SEE ALSO
malloc(3C),open(2), sigaltstack(2), signal(5)

90

getsid (2)

NAME
getsid - get session ID

SYNOPSIS
#include <sys/types.h>

pid_t getsid(pid_t pid);

DESCRIPTION
The function getsid returns the session ID of the process whose process ID is equal
to pid. If pid is equal to (pid_t) 0, getsid returns the session ID of the calling
process.

RETURN VALUE
Upon successful completion, the function getsid returns the session ID of the
specified process; otherwise, it returns a value of (pid_t) -1 and sets ermo to
indicate an error.

ERRORS
Under the following conditions, the function getsid fails and sets ermo to:

EPERM

ESRCH

SEE ALSO

if the process whose process ID is equal to pid is not in the same session
as the calling process, and the implementation does not allow access to
the session ID of that process from the calling process.

if there is no process with a process ID equal to pid.

exec(2), fork(2), getpid(2), setpgid(2), setsid(2)

91

getuid (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

uid_t getuid (void);

uid_t geteuid (void);

gid_t getgid (void);

gid_t getegid (void);

DESCRIPTION
getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.

getgid returns the real group ID of the calling process.

getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2)

92

ioctl (2)

NAME
ioctl - control device

SYNOPSIS
#include <unistd.h>

int ioctl (intfildes, int request, ••• 1* arg *f);

DESCRIPTION
ioctl performs a variety of control functions on devices and STREAMS. For non
STREAMS files, the functions performed by this call are device-specific control func
tions. request and an optional third argument with varying type are passed to the
file designated by fildes and are interpreted by the device driver. This control is not
frequently used on non-STREAMS devices, where the basic input/output functions
are usually performed through the read(2) and write(2) system calls.

For STREAMS files, specific functions are performed by the ioctl call as described
in streamio(7).

fildes is an open file descriptor that refers to a device. request selects the control
function to be performed and depends on the device being addressed. arg
represents a third argument that has additional information that is needed by this
specific device to perform the requested function. The data type of arg depends on
the particular control request, but it is either an int or a pointer to a device-specific
data structure.

In addition to device-specific and STREAMS functions, generic functions are pro
vided by more than one device driver, for example, the general terminal interface
[see termio(7)].

ioctl fails for any type of file if one or more of the following are true:

EACCES The type of access requested on the file designated by fildes is denied.

EBADF

ENOTTY

EINTR

fildes is not a valid open file descriptor.

fildes is not associated with a character-special file that accepts control
functions.

A signal was caught during the ioctl system call.

ioctl also fails if the device driver detects an error. In this case, the error is passed
through ioctl without change to the caller. A particular driver might not have all
the following error cases. Under the following conditions, requests to device
drivers may fail and set ermo to:

EFAULT request requires a data transfer to or from a buffer pointed to by arg,
but some part of the buffer is outside the process's allocated space.

EINVAL

EIO

request or arg is not valid for this device.

Some physical I/O error has occurred.

ENXIO The request and arg are valid for this device driver, but the ser
vice requested can not be performed on this particular subdevice.

93

ioctl (2)

ENOLINK fildes is on a remote machine and the link to that machine is no longer
active.

STREAMS errors are described in streamio(7).

Return Values
On successful completion, the value returned depends on the device control func
tion, but must be a non-negative integer. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

REFERENCES
streamio(7), tennio(7)

94

kill (2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int sig);

DESCRIPTION
kill sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is to be
sent is specified by sig and is either one from the list given in signal [see
signal(5)], or O. If sig is 0 (the null signal), error checking is performed but no
signal is actually sent. This can be used to check the validity of pid.

In order to send the signal to the target process (pid), the sending process must have
permission to do so, subject to the following ownership restrictions:

The real or effective user ID of the sending process must match the real or
saved [from exec(2)] user ID of the receiving process, unless the sending
process has the P _OWNER privilege, or sig is SIGCONT and the sending pro
cess has the same session ID as the receiving process.

The process with ID 0 and the process with ID 1 are special processes [see intro(2)]
and will be referred to below as procO and prod, respectively.

If pid is greater than 0, sig will be sent to the process whose process ID is equal to
pid, subject to the ownership restrictions, above. pid may equal 1.

If pid is negative but not (pid_t) -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid and for which the process has permis
sion to send a signal.

If pid is 0, sig will be sent to all processes excluding procO and prod whose process
group ID is equal to the process group ID of the sender. Permission is needed to
send a signal to process groups.

If pid is (pid_t) -1 and the sending process does not have the P_OWNER privilege,
sig will be sent to all processes excluding procO and prod whose real user ID is
equal to the effective user ID of the sender.

If pid is (pid_t) -1 and the sending process has the P_OWNER privilege, sig will be
sent to all processes excluding procO and prod.

kill will fail and no signal will be sent if one or more of the following are true:

EINVAL sig is not a valid signal number.

EPERM sig is SIGKILL and pid is (pid_t) 1 (i.e., pid specifies prod).

EPERM The sending process does not have the P _OWNER privilege, the real
or effective user ID of the sending process does not match the real
or saved user ID of the receiving process, and the calling process is
not sending SIGCONT to a process that shares the same session ID.

95

kill (2)

ESRCH No process or process group can be found corresponding to that
specified by pid.

SEE ALSO

NOTES

getpid(2), getsid(2), kill(l), intro(2), setpgrp(2), sigaction(2), signal (2),
sigsend(2)

sigsend is a more versatile way to send signals to processes. The user is
encouraged to use sigsend instead of kill.

DIAGNOSTICS

96

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Iink(2)

NAME
1 ink - link to a file

SYNOPSIS
#include <unistd.h>

int link (const char *pathl, const char *path2);

DESCRIPTION
pathl points to a path name naming an existing file. path2 points to a path name
naming the new directory entry to be created. link creates a new link (directory
entry) for the existing file and increments its link count by one.

Upon successful completion, link marks for update the st_ctime field of the file.
Also, the st_ctime and st_mtime fields of the directory that contains the new
entry are marked for update.

link will fail and no link will be created if one or more of the following are true:

EACCES Search permission is denied on a component of one of the path
prefixes.

EACCES

EACCES

EEXIST

EFAULT

EINTR

ELOOP

Write permission is denied on the directory in which the link is to be
created.

The file pointed to by pathl has discrete privileges and write permis
sion is denied.

The link named by path2 exists.

path points outside the allocated address space of the process.

A signal was caught during the link system call.

Too many symbolic links were encountered in translating path.

EMLINK The maximum number of links to a file would be exceeded.

EMULTIHOP Components of path require hopping to multiple remote machines and
file system type does not allow it.

ENAMETOOLONG

ENOTDIR

ENOENT

ENOENT

ENOENT

ENOL INK

ENOSPC

The length of the pathl or path2 argument exceeds {PATH_MAX}, or the
length of a pathl or path2 component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

A component of either path prefix is not a directory.

pathl or path2 is a null path name.

A component of either path prefix does not exist.

The file named by pathl does not exist.

path points to a remote machine and the link to that machine is no
longer active.

the directory that would contain the link cannot be extended.

97

Iink(2)

EPERM

EROFS

EXDEV

SEE ALSO

The file named by pathl is a directory; hard links may not refer to
directories.

The requested link requires writing in a directory on a read-only file
system.

The link named by path2 and the file named by pathl are on different
logical devices (file systems).

realpath(3C), symlink(2), unlink(2)

DIAGNOSTICS

98

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

(XENIX System Compatibility) lock(2)

NAME
lock - (XENIX) lock a process in primary memory

SYNOPSIS
cc fflag . . .]file ... -Ix
int lock <flag) ;

DESCRIPTION
If the flag argument is nonzero, the process executing this call will not be swapped
unless it is required to grow. If the argument is zero, the process is unlocked. This
call may only be executed by the super-user. If someone other than the super-user
tries to execute this call, a value of -1 is returned and the ermo is set to EPERM.

99

locking (2) (XENIX System Compatibility)

NAME
locking - (XENIX) lock or unlock a file region for reading or writing

SYNOPSIS
cc (flag ...] file ... -lx
locking (int fildes, int mode, long size) ;

DESCRIPTION

100

locking allows a specified number of bytes in a file to be controlled by the locking
process. Other processes which attempt to read or write a portion of the file con
taining the locked region may sleep until the area become unlocked depending
upon the mode in which the file region was locked.

A process that attempts to write to or read a file region that has been locked against
reading and writing by another process (using the LK_LOCK or LK_NBLCK mode)
with sleep until the region of the file has been released by the locking process.

A process that attempts to write to a file region that has been locked against writing
by another process (using the LK_RLCK or LK_NBRLCK mode) will sleep until the
region of the file has been released by the locking process, but a read request for
that file region will proceed normally.

A process that attempts to lock a region of a file that contains areas that have been
locked by other processes will sleep if it has specified the LK_LOCK or LK_RLCK
mode in its lock request, but will return with the error EACCES if it specified
LK_NBLCK or LK_NBRLCK.

fildes is the value returned from a successful create, open, dup, or pipe system call.

mode specifies the type of lock operation to be performed on the file region. The
available values for mode are:

LICRLCK 3

Unlocks the specified region. The calling process releases a
region of the file it has previously locked.

Locks the specified region. The calling process will sleep until the
entire region is available if any part of it has been locked by a dif-
ferent process. The region is then locked for the calling process
and no other process may read or write in any part of the locked
region (lock against read and write).

Locks the specified region. If any part of the region is already
locked by a different process, return the error EACCES instead
of waiting for the region to become available for
locking (nonblocking lockrequest).

Same as LK_LOCK except that the locked region may be read by
other processes (read permitted lock).

Same as LK_NBLCK except that the locked region may be read by
other processes (nonblocking, read permitted lock).

The locking utility uses the current file pointer position as the starting point for
the locking of the file segment. So a typical sequence of commands to lock a
specific range within a file might be as follows:

(XENIX System Compatibility)

fd=open(Idatafile",O_RDWR);
lseek(fd, 200L, 0);
locking (fd, LK_LOCK, 200L);

locking (2)

Accordingly, to lock or unlock an entire file a seek to the beginning of the file (posi
tion 0) must be done and then a locking call must be executed with a size of O.

size is the number of contiguous bytes to be locked for unlocked. The region to be
locked starts at the current offset in the file. If size is 0, the entire file is locked or
unlocked. size may extend beyond the end of the file, in which case only the pro
cess issuing the lock call may access or add information to the file within the boun
dary defined by size.

The potential for a deadlock occurs when a process controlling a locked area is put
to sleep by accessing another process's locked area. Thus calls to locking, read, or
wri te scan for a deadlock prior to sleeping on a locked region. An EDEADLK error
return is made if sleeping on the locked region would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a previously locked
region for the same process. When this occurs, or when adjacent regions are locked,
the regions are combined into a single area if the mode of the lock is the same (that
is, either read permitted or regular lock). If the mode of the overlapping locks
differ, the locked areas will be assigned assuming that the most recent request must
be satisfied. Thus if a read only lock is applied to a region, or part of a region, that
had been previously locked by the same process against both reading and writing,
the area of the file specified by the new lock will be locked for read only, while the
remaining region, if any, will remain locked against reading and writing. There is
no arbitrary limit to the number of regions which may be locked in a file.

Unlock requests may, in whole or part, release one or more locked regions con
trolled by the process. When regions are not fully released, the remaining areas are
still locked by the process. Release of the center section of a locked area requires an
additional locked element to hold the separated section. If the lock table is full, an
error is returned, and the requested region is not released. Only the process which
locked the file region may unlock it. An unlock request for a region that the pro
cess does not have locked, or that is already unlocked, has no effect. When a pro
cess terminates, all locked regions controlled by that process are unlocked.

If a process has done more than one open on a file, all locks put on the file by that
process will be released on the first close of the file.

Although no error is returned if locks are applied to special files or pipes,
read/write operations on these types of files will ignore the locks. Locks may not
be applied to a directory.

SEE ALSO
close(2), creat(2), dup(2), lseek(2), open(2), read(2), write(2)

DIAGNOSTICS
locking returns the value (int) -1 if an error occurs. If any portion of the region
has been locked by another process for the LK_LOCK and LK_RLCK actions and the
lock request is to test only, ermo is set to EAGAIN. If locking the region would
cause a deadlock, ermo is set to EDEADLK If an internal lock cannot be allocated,
ermo is set to ENOLCK.

101

Iseek(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

off_t lseek (int fildes, off_t offset, int whence) ;

DESCRIPTION
fildes is a file descriptor returned from a creat, open, dup, fcntl, pipe, or ioctl
system call. lseek sets the file pointer associated with fildes as follows:

If whence is SEEK_SET, the pointer is set to offset bytes.

If whence is SEEK_CUR, the pointer is set to its current location plus offset.

If whence is SEEK_END, the pointer is set to the size of the file plus offset.

On success, lseek returns the resulting pointer location, as measured in bytes from
the beginning of the file.

lseek allows the file pointer to be set beyond the existing data in the file. If data is
later written at this point, subsequent reads in the gap between the previous end of
data and the newly written data will return bytes of value a until data is written
into the gap.

lseek fails and the file pointer remains unchanged if one or more of the following
are true:

EBADF

ESPIPE

EINVAL

EINVAL

fildes is not an open file descriptor.

fildes is associated with a pipe or fifo.

whence is not SEEK_SET, SEEK_CUR, or SEEK_END. The process also
gets a SIGSYS signal.

The resulting file pointer would be negative.

fildes is a remote file descriptor accessed using NFS, the Network
File System, and the resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

DIAGNOSTICS

NOTES

On successful completion, a non-negative integer indicating the file pointer value is
returned. Otherwise, a value of -1 is returned and errno is set to identify the error.

On systems that support Remote File Sharing (RFS), the behavior of lseek(2) is dif
ferent for files accessed using RFS. For other files, the file pointer can be positioned
to negative values where attempts to write will fail. For fifo's, lseek will return
successfully, for both positive and negative offsets, instead of failing with ESPIP.
These semantics can be used to identify files that are being accessed using RFS.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2)

102

memcntl(2)

NAME
memcntl - memory management control

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,
int attr, int mask);

DESCRIPTION
The function memcntl allows the calling process to apply a variety of control opera
tions over the address space identified by the mappings established for the address
range [addr, addr + len).

addr must be a multiple of the pagesize as returned by sysconf(3C). The scope of
the control operations can be further defined with additional selection criteria (in
the form of attributes) according to the bit pattern contained in attr.

The following attributes specify page mapping selection criteria:

SHARED Page is mapped shared.
PRIVATE Page is mapped private.

The following attributes specify page protection selection criteria:

PROT_READ
PROT_WRITE
PROT_EXEC

Page can be read.
Page can be written.
Page can be executed.

The selection criteria are constructed by an OR of the attribute bits and must match
exactly.

In addition, the following criteria may be specified:

PROC_TEXT process text
PROC_DATA process data

where PROC_TEXT specifies all privately mapped segments with read and execute
permission, and PROC_DATA specifies all privately mapped segments with write per
mission.

Selection criteria can be used to describe various abstract memory objects within the
address space on which to operate. If an operation shall not be constrained by the
selection criteria, attr must have the value o.
The operation to be performed is identified by the argument cmd. The symbolic
names for the operations are defined in <sys/mman.h> as follows:

MC_LOCK Lock in memory all pages in the range with attributes attr. A
given page may be locked multiple times through different map
pings; however, within a given mapping, page locks do not nest.
Multiple lock operations on the same address in the same process
will all be removed with a single unlock operation. A page
locked in one process and mapped in another (or visible through
a different mapping in the locking process) is locked in memory
as long as the locking process does neither an implicit nor explicit

103

memcntl (2)

104

unlock operation. If a locked mapping is removed, or a page is
deleted through file removal or truncation, an unlock operation is
implicitly performed. If a writable MAP_PRIVATE page in the
address range is changed, the lock will be transferred to the
private page.

At present arg is unused, but must be 0 to ensure compatibility
with potential future enhancements.

Lock in memory all pages mapped by the address space with
attributes attr. At present addr and len are unused, but must be
NULL and 0 respectively, to ensure compatibility with potential
future enhancements. arg is a bit pattern built from the flags:

Lock current mappings
Lock future mappings

The value of arg determines whether the pages to be locked are
those currently mapped by the address space, those that will be
mapped in the future, or both. If MCL_FUTURE is specified, then
all mappings subsequently added to the address space will be
locked, provided sufficient memory is available.

Write to their backing storage locations all modified pages in the
range with attributes attr. Optionally, invalidate cache copies.
The backing storage for a modified MAP_SHARED mapping is the
file the page is mapped to; the backing storage for a modified
MAP_PRIVATE mapping is its swap area. arg is a bit pattern built
from the flags used to control the behavior of the operation:

MS_ASYNC perform asynchronous writes
MS_SYNC perform synchronous writes
MS_INVALIDATE invalidate mappings

MS_ASYNC returns immediately once all write operations are
scheduled; with MS_SYNC the system call will not return until all
write operations are completed.

MS_INVALIDATE invalidates all cached copies of data in memory,
so that further references to the pages will be obtained by the sys
tem from their backing storage locations. This operation should
be used by applications that require a memory object to be in a
known state.

Unlock all pages in the range with attributes attr. At present arg
is unused, but must be 0 to ensure compatibility with potential
future enhancements.

Remove address space memory locks, and locks on all pages in
the address space with attributes attr. At present addr, len, and
arg are unused, but must be NULL, 0 and 0 respectively, to ensure
compatibility with potential future enhancements.

memcntl (2)

The mask argument must be zero; it is reserved for future use.

Locks established with the lock operations are not inherited by a child process after
fork. memcntl fails if it attempts to lock more memory than a system-specific limit.

Due to the potential impact on system resources, all operations, with the exception
of MC_SYNC, are restricted to processes with appropriate privileges (P_PLOCK).

The mem.cntl function subsumes the operations of plock and metl.

RETURN VALUE
On success, memcntl returns 0; on failure, memcntl returns -1 and sets errno to
indicate an error.

ERRORS
Under the following conditions, the function memcntl fails and sets errno to:

EAGAIN Some or all of the memory identified by the operation could not be
locked when MC_LOCK or MC_LOCKAS is specified.

EBUSY Some or all the addresses in the range [addr, addr + len) are locked and
MC_SYNC with MS_INVALIDATE option is specified.

EFAULT The page to be locked has been aborted (e.g. by a file truncate opera
tion), or pages following the end of an object are not allocated.

EINVAL

EINVAL

EINVAL

EINVAL

EIO

ENOMEM

ENOMEM

EPERM

SEE ALSO

addr is not a multiple of the page size as returned by sysconf.

addr and/or len do not have the value 0 when MC_LOCKAS or
MC_UNLOCKAS is specified.

arg is not valid for the function specified.

Invalid selection criteria are specified in attr.

An II 0 error occurred when attempting to read the page from a
device or a network.

The argument len has a value less than or equal to o.
Some or all the addresses in the range [addr, addr + len) are invalid for
the address space of the process or pages not mapped are specified.

The process does not have appropriate privilege (p _PLOCK) and one of
MC_LOCK, MC_LOCKAS, MC_UNLOCK, MC_UNLOCKAS was specified.

mlock(3C), mlockall(3C), mmap(2), mprotect(2), msync(3C), plock(2),
sysconf(3C)

105

mincore(2)

NAME
mincore - determine residency of memory pages

SYNOPSIS
#include <unistd.h>
int mincore(caddr_t addr, size_t len, char *vec};

DESCRIPTION
mincore returns the primary memory residency status of pages in the address
space covered by mappings in the range [addr, addr + len). The status is returned as
a character-per-page in the character array referenced by *vec (which the system
assumes to be large enough to encompass all the pages in the address range). The
least significant bit of each character is set to 1 to indicate that the referenced page is
in primary memory, 0 if it is not. The settings of other bits in each character are
undefined and may contain other information in future implementations.

mincore returns residency information that is accurate at an instant in time.
Because the system may frequently adjust the set of pages in memory, this informa
tion may quickly be outdated. Only locked pages are guaranteed to remain in
memory; see memcntl(2).

RETURN VALUE
mincore returns 0 on success, -Ion failure.

ERRORS
mincore fails if:

EFAULT

EINVAL

ENOMEM

ENOMEM

SEE ALSO

*vec includes an out-of-range or otherwise inaccessible address.

addr is not a multiple of the page size as returned by sysconf(3C).

The argument len has a value less than or equal to o.
Addresses in the range [addr, addr + len) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

memcntl(2), mlock(3C), mmap(2), sysconf(3C)

106

mkdir(2)

NAME
mkdir - make a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

DESCRIPTION
mkdir creates a new directory named by the path name pointed to by path. The
mode of the new directory is initialized from mode [see chmod(2) for the values of
mode.]

The protection part of the mode argument is modified by the process's file create
mask [see umask(2)].

The directory's owner ID is set to the process's effective user ID. The directory's
group ID is set to the process's effective group ID, or if the S_ISGID bit is set in the
parent directory, then the group ID of the directory is inherited from the parent.
The S_ISGID bit of the new directory is inherited from the parent directory.

If path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.) and
its parent directory (..).

Upon successful completion, mkdir marks for update the st_atime, st_ctime and
st_mtime fields of the directory. Also, the st_ctime and st_mtime fields of the
directory that contains the new entry are marked for update.

mkdir fails and creates no directory if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EACCES

EEXIST

EFAULT

EIO

ELOOP

Write permission is denied on the parent directory in which the direc
tory is to be created.

The named file already exists.

path points outside the allocated address space of the process.

An I/O error has occurred while accessing the file system.

Too many symbolic links were encountered in translating path.

EMLINK The maximum number of links to the parent directory would be
exceeded.

EMULTIHOP Components of path require hopping to multiple remote machines and
the file system type does not allow it.

ENAMETOOLONG

ENOENT

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

A component of the path prefix does not exist or is a null pathname.

107

mkdir(2)

ENOL INK

ENOSPC

ENOTDIR

path points to a remote machine and the link to that machine is no
longer active.

No free space is available on the device containing the directory.

A component of the path prefix is not a directory.

EROFS The path prefix resides on a read-only file system.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and erma is set to indicate the error.

SEE ALSO
chmod(2), directary(3C), mkdirp(3G), mknod(2), rmdir(2), stat(S), umask(2)

108

mknod(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

DESCRIPTION
mknod creates a new file named by the path name pointed to by path. The file type
and permissions of the new file are initialized from mode.

The file type is specified in mode by the S_IFMT bits, which must be set to one of the
following values:

S_IFIFO fifo special
S_IFCHR character special
S_IFDIR directory
S_IFBLK block special
S_IFREG ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by an OR of the following values:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if # is 7,5,3, or 1

S_ISVTX 01000
S_IRWXU 00700
S_IRUSR 00400
S_IWUSR 00200
S_IXUSR 00100
S_IRWXG 00070
S_IRGRP 00040
S_IWGRP 00020
S_IXGRP 00010
S_IRWXO 00007
S_IROTH 00004
S_IWOTH 00002
S_IXOTH 00001

Enable mandatory file/record locking if # is 6,4,2, or 0
Save text image after execution.
Read, write, execute by owner.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute by group.
Read by group.
Write by group.
Execute by group.
Read, write, execute (search) by others.
Read by others.
Write by others
Execute by others.

The owner ID of the file is set to the effective user ID of the process. The group ID of
the file is set to the effective group ID of the process. However, if the S_ISGID bit is
set in the parent directory, then the group ID of the file is inherited from the parent.
If the group ID of the new file does not match the effective group ID or one of the
supplementary group IDs, the S_ISGID bit is cleared.

The access permission bits of mode are modified by the process's file mode creation
mask: all bits set in the process's file mode creation mask are cleared [see umask(2)].
If mode indicates a block or character special file, dev is a configuration-dependent
specification of a character or block I/O device. If mode does not indicate a block
special or character special device, dev is ignored. See makedev(3C).

109

mknod(2)

mknod checks to see if the driver has been installed and whether or not it is an old
style driver. If the driver is installed and it is an old-style driver, the minor number
is limited to 255. If it's not an old-style driver, then it must be a new-style driver or
uninstalled, and the minor number is limited to the current value of the MAXMINOR
tunable. Of course, this tunable is set to 255 by default. If the range check fails,
mknod fails with EINVAL.

mknod may be invoked only by a privileged user for file types other than FIFO spe
cial.

If path is a symbolic link, it is not followed.

mknod fails and creates no new file if one or more of the following are true:

EEXIST The named file exists.

EINVAL

EFAULT

ELOOP

dev is invalid.

path points outside the allocated address space of the process.

Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines and
the file system type does not allow it.

ENAMETOOLONG

ENOTDIR

ENOENT

EPERM

EROFS

ENOSPC

EINTR

ENOLINK

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

A component of the path prefix is not a directory.

A component of the path prefix does not exist or is a null pathname.

The effective user ID of the process is not super-user.

The directory in which the file is to be created is located on a read
only file system.

No space is available.

A signal was caught during the mknod system call.

path points to a remote machine and the link to that machine is no
longer active.

SEE ALSO
chmod(2), exec(2), makedev(3C), mkdir(l), mkfifo(3C), stat(5), umask(2)

DIAGNOSTICS

NOTES

110

Upon successful completion a value of a is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

If mknod creates a device in a remote directory using Remote File Sharing, the major
and minor device numbers are interpreted by the server.

(XENIX System Compatibility) mknod (2)

NAME
mknod. - (XENIX) make a directory, or a special or ordinary file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mknod. (const char *path, mode_t mode, dev_t dev);

DESCRIPTION
mknod. creates a new file named by the path name pointed to by path. The file type
and permissions of the new file are initialized from mode.

The file type is specified in mode by the S_IFMT bits, which must be set to one of the
following values:

S_IFIFO fifo special
S_IFCHR character special
S_IFDIR directory
S_IFBLK block special
S_IFREG ordinary file
S_IFNAM name special file

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by an OR of the following values:

S_ISUID 04000 Set user ID on execution.
S_ISGID 020#0 Set group ID on execution if # is 7,5,3, or 1

S_ISVTX 01000
S_IRUSR 00400
S_IWUSR 00200
S_IXUSR 00100
S_IRWXG 00070
S_IRGRP 00040
S_IWGRP 00020
S_IXGRP 00010
S_IRWXO 00007
S_IROTH 00004
S_IWOTH 00002
S_IXOTH 00001

Enable mandatory file/record locking if # is 6,4,2, or 0
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute by group.
Read by group.
Write by group.
Execute by group.
Read, write, execute (search) by others.
Read by others.
Write by others
Execute by others.

The owner ID of the file is set to the effective user ID of the process. The group ID of
the file is set to the effective group ID of the process. However, if the S_ISGID bit is
set in the parent directory, then the group ID of the file is inherited from the parent.
If the group ID of the new file does not match the effective group ID or one of the
supplementary group IDs, the S_ISGID bit is cleared.

Values of mode other than those above are undefined and should not be used. The
access permission bits of mode are modified by the process's file mode creation
mask: all bits set in the process's file mode creation mask are cleared [see umask(2)].
For block and character special files, dev is the special file's device number. For
name special files, dev is the file type of the name file, either a XENIX shared data
file or a XENIX semaphore. Otherwise, dev is ignored.

111

mknod(2) (XENIX System Compatibility)

mknod may be invoked only by the privileged user for file types other than FIFO
special.

mknod fails and creates no new file if one or more of the following are true:

EEXIST The named file exists.

EINVAL

EFAULT

ELOOP

Invalid arg value.

path points outside the allocated address space of the process.

Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines.

ENAMETOOLONG

ENOTDIR

ENOENT

EPERM

EROFS

ENOSPC

EINTR

ENOLINK

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while C POSIX_NO_TRUNC) is in
effect.

A component of the path prefix is not a directory.

A component of the path prefix does not exist or is a null pathname.

The effective user ID of the process is not super-user.

The directory in which the file is to be created is located on a read
only file system.

No space is available.

A signal was caught during the mknod system call.

path points to a remote machine and the link to that machine is no
longer active.

SEE ALSO
creatsem(2), chmod(2), exec(2), mkdir(l), mkfifo(3C), sdget(2) stat(S), umask(2)

DIAGNOSTICS

NOTES

112

Upon successful completion a value of a is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

If mknod creates a device in a remote directory using Remote File Sharing, the major
and minor device numbers are interpreted by the server.

Semaphore files should be created with the creatsem system call. Shared data files
should be created with the sdget system call.

mmap(2)

NAME
nunap - map pages of memory

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

caddr_t nunap(caddr_t addr, size_t len, int prot, intfLags, intfd, off_t
Off) ;

DESCRIPTION
The function nunap establishes a mapping between a process's address space and a
virtual memory object. The format of the call is as follows:

pa =nunap(addr, len, prot, flags, fd, off>;

nunap establishes a mapping between the process's address space at an address pa
for len bytes to the memory object represented by the file descriptor fd at offset off
for len bytes. The value of pa is an implementation-dependent function of the
parameter addr and values offLags, further described below. A successful mmap call
returns pa as its result. The address ranges covered by [pa, pa + len) and [off, off +
len) must be legitimate for the possible (not necessarily current) address space of a
process and the object in question, respectively. nunap cannot grow a file.

The mapping established by nunap replaces any previous mappings for the process's
pages in the range [pa, pa + len).

The parameter prot determines whether read, write, execute, or some combination
of accesses are permitted to the pages being mapped. The protection options are
defined in sys/mman.h as:

PROT_READ Page can be read.
PROT_WRITE Page can be written.
PROT_EXEC Page can be executed.
PROT_NONE Page can not be accessed.

Not all implementations literally provide all possible combinations. PROT_WRITE is
often implemented as PROT_READ I PROT_WRITE and PROT_EXEC as
PROT_READ I PROT_EXEC. However, no implementation will permit a write to
succeed where PROT_WRITE has not been set. The behavior of PROT_WRITE can be
influenced by setting MAP_PRIVATE in the flags parameter, described below.

The parameter flags provides other information about the handling of the mapped
pages. The options are defined in sys/mman.h as:

MAP_SHARED Share changes.
MAP_PRIVATE Changes are private.
MAP_FIXED Interpret addr exactly.

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the
memory object. If MAP_SHARED is specified, write references will change the
memory object. If MAP_PRIVATE is specified, the initial write reference will create a
private copy of the memory object page and redirect the mapping to the copy.
Either MAP_SHARED or MAP_PRIVATE must be specified, but not both. The mapping
type is retained across a fork(2).

113

mmap(2)

Note that the private copy is not created until the first write; until then, other users
who have the object mapped MAP_SHARED can change the object.

MAP_FIXED informs the system that the value of pa must be addr, exactly. The use of
MAP_FIXED is discouraged, as it may prevent an implementation from making the
most effective use of system resources.

When MAP_FIXED is not set, the system uses addr in an implementation-defined
manner to arrive at pa. The pa so chosen will be an area of the address space which
the system deems suitable for a mapping of len bytes to the specified object. All
im !ementations interpret an addr value of zero as rantin the s stem c I e
f_eedo . selecting pa, subject to cons ram s eSCrI e elow. A non-zero value of

aken to be a suggestion of a process address near which the mapping
should be placed. When the system selects a value for pa, it will never place a map
ping at address 0, nor will it replace any extant mapping, nor map into areas con
sidered part of the potential data or stack segments.

The parameter off is constrained to be aligned and sized according to the value
returned by sysconf. When MAP_FIXED is specified, the parameter addr must also
meet these constraints. The system performs mapping operations over whole
pages. Thus, while the parameter len need not meet a size or alignment constraint,
the system will include, in any mapping operation, any partial page specified by the
range [pa, pa + len).

The system will always zero-fill any partial page at the end of an object. Further,
the system will never write out any modified portions of the last page of an object
which are beyond its end. References to whole pages following the end of an object
will result in the delivery of a SIGBUS signal. SIGBUS signals may also be delivered
on various file system conditions, including quota exceeded errors.

RETURN VALUE
On success, rmnap returns the address at which the mapping was placed (pa). On
failure it returns (caddr_t) -1 and sets errno to indicate an error.

ERRORS

114

Under the following conditions, rmnap fails and sets errno to:

EAGAIN The mapping could not be locked in memory or MAP_FIXED was not
specified and there is insufficient room in the address space to effect
the mapping.

EBADF

EACCES

ENXIO

EINVAL

EINVAL

fd is not open.

fd is not open for read, regardless of the protection specified, or fd is
not open for write and PROT_WRITE was specified for a MAP_SHARED
type mapping.

Addresses in the range [off, off + len) are invalid for fd .

The arguments addr (if MAP_FIXED was specified) or off are not multi
ples of the page size as returned by sysconf.

The field in flags is invalid (neither MAP_PRIVATE or MAP_SHARED).

NOTES

EINVAL

ENODEV

ENOMEM

mmap(2)

The argument len has a value less than or equal to o.
fd refers to an object for which mmap is meaningless, such as a termi
nal.

MAP_FIXED was specified and the range [addr, addr + len) exceeds that
allowed for the address space of a process, or MAP_FIXED was not
specified and there is insufficient room in the address space to effect
the mapping.

mmap allows access to resources via address space manipulations instead of the
read/write interface. Once a file is mapped, all a process has to do to access it is
use the data at the address to which the object was mapped. Consider the follow
ing pseudo-code:

fd = open (•.. }
lseek(fd, offset}
read (fd, bUf, len}
1* use data in buf *1

Here is a rewrite using mmap:

fd = open (... }
address = mmap«caddr_t} 0, len, (PROT_READ I PROT_WRITE),

MAP_PRIVATE, fd, offset}
1* use data at address *1

SEE ALSO
fcntl(2), fork(2), lockf(3C), mlockall(3C), mprotect(2), munmap(2), plock(2),
sysconf(3C).

115

mod load (2)

NAME
modload -load a load able kernel module on demand

SYNOPSIS
#include <sys/mod.h>

int modload (const char *pathname);

DESCRIPTION
modload allows processes with privilege P _LOADMOD to demand load a loadable
module into a running system.

pathname gives the pathname of the module to be loaded, specified either as a
module name or as an absolute pathname. If pathname specifies a module name,
modload searches for the module's object file on disk in the list of directories set by
modpath(2) (including the default directory /etc/conf/mod.d). If pathname
specifies an absolute pathname, only pathname is used to locate the module's object
file.

Tasks performed during the load operation include:
open the module's object file on disk
allocate kernel memory to hold the module
read the module's object file into memory
load any modules upon which the module depends that are not already
loaded
relocate the module's symbols
resolve any external references to kernel symbols made by the module
execute the module's wrapper routine to perform any setup the module
requires to initialize itself
logically link the module to the running kernel by creating the module's
switch table entries
set a flag that prevents the module from being unloaded by the kernel auto
unload mechanism

RETURN VALUES
On success, mod.load returns the integer module id of the loaded module. On
failure, mod.load returns -1 and sets ermo to identify the error.

ERRORS

116

In the following conditions, mod.load fails and sets ermo to:

EACCES Search permission was denied by a pathname component.

ENOENT The file pathname does not exist.

EINVAL

EPERM

ERELOC

The file pathname is not preconfigured for dynamic loading or has
invalid dependencies on other modules (such as a circular depen
dency).

The caller does not possess P _LOADMOD privileges.

Error occurred processing the module's object file, or the module
references symbols not defined in the running kernel, or the
module references symbols in another loadable module, but it did
not define its dependence on this module in its Master file.

modload(2)

EBADVER The version number specified in the module's wrapper routine
does not match the version number for the running kernel.

ENAMETOOLONG pathname is more than 1024 characters long.

ENOSYS Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

SEE ALSO
idbuild(lM), idmodload(lM), idmodreg(lM), idtune(lM), modadmin(lM),
modpath(2), modstat(2), moduload(2)

117

modpath(2)

NAME
modpath - change loadable kernel modules search path

SYNOPSIS
#include <sys/mod.h>

int modpath(const char *pathname);

DESCRIPTION
modpath allows processes with privilege P_LOADMOD to modify the global search
path used to locate object files for load able kernel modules on disk. The search path
modifications take effect immediately and affect all subsequent loads and all users
on the system. Affected loads include all auto-loads performed by the kernel auto
load mechanism and all demand-loads performed by modload(2) using a module
name.

pathname can specify a colon-separated list of absolute pathnames, or an absolute
pathname, or NULL.

If pathname specifies a pathname, the named directories:
will be searched prior to searching any directories specified by previous
calls to modpath
will be searched prior to searching the default loadable modules search
path, which is always searched and always searched last
do not have to exist on the system at the time modpath is called
do not have to exist on the system at the time the load takes place

If pathname is equal to NULL, the loadable modules search path is reset to its default
value, /etc/conf/mod.d.

RETURN VALUES
On success, modpath returns O. On failure, modpath returns -1 and sets ermo to
identify the error.

ERRORS
In the following conditions, modpath fails and sets ermo to:

EINVAL List of directories specified by pathname is malformed.

EPERM The caller does not possess P _LOADMOD privileges.

ENAMETOOLONG pathname is more than 1024 characters long.

ENOSYS Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

SEE ALSO
modadmin(lM), modload(2)

118

modstat(2)

NAME
modstat - get information for loadable kernel modules

SYNOPSIS
#include <sys/mod.h>

int modstat(int madid, struct modstatus *stbuf, boolean_t next_modid>;

DESCRIPTION
modstat allows processes with privilege P _LOADMOD to obtain information about
the currently loaded loadable kernel modules. Any module that has been loaded by
the kernel auto-load mechanism or demand-loaded by modload(2) may be queried
bymodstat.

When passed the module identifier madid, modstat fills up the members of the
modstatus structure pointed to by strbuf with information about that module.

If the value of next _ modid is B_TRUE, modstat fills up a modstatus structure with
information about the module whose module identifier is greater than or equal to
madid.

RETURN VALUES
On success, modstat returns one or more modstatus structures. On failure,
modstat returns -1 and sets errno to identify the error.

ERRORS
In the following conditions, modstat fails and sets errno to:

EINVAL modid does not match the identifier for any currently loaded
module when next _ modid is B_FALSE or modid is greater than the
identifier for any currently loaded module when next _ modid is
B_TRUE.

EPERM

ENOSYS

SEE ALSO

The caller does not possess P _LOADMOD privileges.

Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

modadmin(lM), modload(2), modstat(2), moduload(2)

119

moduload (2)

NAME
moduload - unload a loadable kernel module on demand

SYNOPSIS
#include <sys/mod.h>

int moduload (int modid);

DESCRIPTION
moduload allows processes with privilege P _LOADMOD to demand unload a loadable
module-or allloadable modules-from a running system.

If modid specifies a module identifier, moduload attempts to unload that module. If
modid specifies 0 (zero), moduload attempts to unload allloadable modules.

Loadable modules are considered unload able if all of the following conditions are
true:

the module is not currently being used
the module is not currently being loaded or unloaded
no module that depends on the module is currently loaded
profiling is disabled

When moduload finds that it cannot demand-unload a module for one of the rea
sons cited above, it flags the module as a candidate for subsequent unloading by the
kernel's auto-unload mechanism.

Tasks performed during the unload operation include:
logically disconnect the module from the running system by removing the
module's switch table entry
execute the module's wrapper routine to perform any cleanup the module
requires to remove itself from the system
free kernel memory allocated for the module

RETURN VALUES
On success, moduload returns zero. On failure, moduload returns -1 and sets errno
to identify the error.

ERRORS

120

In the following conditions, moduload fails and sets errno to:

EBUSY Outstanding references to this module exist, or modules that
depend on this module are currently loaded, or profiling is not
enabled, or this module is in the process of being loaded or
unloaded.

EINVAL

EPERM

ENOSYS

modid does not specify a valid loadable module identifier, or
modid is not currently loaded.

The caller does not possess P _LOADMOD privileges.

Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

moduload (2)

SEE ALSO
modadmin(lM), modload(2), modpath(2), modstat(2)

121

mount(2)

NAME
mount - mount a file system

SYNOPSIS
#include <sys/types.h>
#include <sys/mount.h>

int mount (const char * spec , const char *dir, int mflag,
... /* char *fstyp, const char *dataptr, int datalen*/);

DESCRIPTION

122

mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are
pointers to path names. fstyp is the file system type number. The sysfs(2) system
call can be used to determine the file system type number. If both the MS_DATA and
MS_FSS flag bits of mflag are off, the file system type defaults to the root file system
type. Only if either flag is on is fstyp used to indicate the file system type.

If the MS_DATA flag is set in mflag the system expects the dataptr and datalen argu
ments to be present. Together they describe a block of file-system specific data at
address dataptr of length datalen. This is interpreted by file-system specific code
within the operating system and its format depends on the file system type. If a
particular file system type does not require this data, dataptr and datalen should
both be zero. Note that MS_FSS is obsolete and is ignored if MS_DATA is also set, but
if MS_FSS is set and MS_DATA is not, dataptr and datalen are both assumed to be zero.

After a successful call to mount, all references to the file dir refer to the root direc
tory on the mounted file system.

The low-order bit of mflag is used to control write permission on the mounted file
system: if 1, writing is forbidden; otherwise writing is permitted according to indi
vidual file accessibility.

mount may be invoked only by a process with the P _MOUNT privilege. It is intended
for use only by the mount utility.

mount fails if one or more of the following are true:

EACCES Search permission is denied on a component of dir or spec.

EPERM The calling process does not have the P _MOUNT privilege.

EBUSY

EBUSY

EBUSY

EFAULT

EINVAL

ELOOP

dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

The device associated with spec is currently mounted.

There are no more mount table entries.

spec, dir, or datalen points outside the allocated address space
of the process.

The super block has an invalid magic number or the fstyp is
invalid.

Too many symbolic links were encountered in translating
spec or dir.

ENAMETOOLONG

ENOENT

ENOLOAD

ENOTDIR

EREMOTE

ENOL INK

EMOLTIHOP

ENOTBLK

ENXIO

ENOTDIR

EROFS

ENOSPC

SEE ALSO

mount(2)

The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

None of the named files exists or is a null pathname.

Cannot load file system name.

A component of a path prefix is not a directory.

spec is remote and cannot be mounted.

path points to a remote machine and the link to that machine
is no longer active.

Components of path require hopping to multiple remote
machines and the file system type does not allow it.

spec is not a block special device.

The device associated with spec does not exist.

dir is not a directory.

spec is write protected and mflag requests write permission.

The file system state in the super-block is not FsOKAY and
there is no space left on the device.

mount(lM), sysfs(2), umount(2)

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

123

mprotect (2)

NAME
mprotect - set protection of memory mapping

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int mprotect (caddr_t addr, size_t len, int prot);

DESCRIPTION
The function mprotect changes the access protections on the mappings specified by
the range [addr, addr + len] to be that specified by prot. Legitimate values for prot
are the same as those permitted for mmap and are defined in sys/roman. has:

PROT_READ /* page can be read */
PROT_WRITE /* page can be written */
PROT_EXEC /* page can be executed */
PROT_NONE /* page can not be accessed */

RETURN VALUE
On success, mprotect returns 0; on failure, mprotect returns -1 and sets ermo to
indicate an error.

ERRORS
Under the following conditions, the function mprotect fails and sets ermo to:

EACCES prot specifies a protection that violates the access permission the pro
cess has to the underlying memory object.

EAGAIN

EINVAL

ENOMEM

ENOMEM

prot specifies PROT_WRITE over a MAP_PRIVATE mapping and there are
insufficient memory resources to reserve for locking the private page.

addr is not a multiple of the page size as returned by sysconf.

The argument len has a value less than or equal to o.
Addresses in the range [addr, addr + len] are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

When mprotect fails for reasons other than EINVAL, the protections on some of the
pages in the range [addr, addr + len] may have been changed. If the error occurs on
some page at addr2, then the protections of all whole pages in the range [addr, addr2]
will have been modified.

SEE ALSO
mlock(3C), mlockall(3C), memcntl(2), mmap(2), plock(2), sysconf(3C)

124

msgctl (2)

NAME
msgctl- message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (int msqid, int cmd, •.. / * struct msqid_ds * buf * /) ;
DESCRIPTION

msgctl provides a variety of message control operations as specified by cmd. The
following cmd s are available:

I PC_STAT Place the current value of each member of the data structure associ
ated with msqid into the structure pointed to by buf. The contents of
this structure are defined in intro(2).

I PC_SET Set the value of the following members of the data structure associ
ated with msqid to the corresponding value found in the structure
pointed to by buf:

IPC_RMID

msg-perm.uid
msg-perm.gid
msg-perm.mode /* only access permission bits * /
msg_qbytes

This cmd can only be executed by a process that has an effective user
ID equal to the value of msg-perm. cuid or msg-perm. uid in the data
structure associated with msqid, or by a process that has the P_OWNER

privilege.

Remove the message queue identifier specified by msqid from the system
and destroy the message queue and data structure associated with it. This
cmd can only be executed by a process that has an effective user ID equal to
either that of super user, or to the value of msg-perm. cuid or
msg-perm.uid in the data structure associated with msqid.

msgctl fails if one or more of the following are true:

EACCES cmd is IPC_STAT and operation permission is denied to the calling
process [see intro(2)].

EFAULT

EINVAL

EINVAL

EINVAL

EOVERFLOW

EPERM

buf points to an illegal address.

msqid is not a valid message queue identifier.

cmd is not a valid command.

cmd is IPC_SET and msg-perm. uid or msg-perm. gid is not valid.

cmd is IPC_STAT and uid or gid is too large to be stored in the
structure pointed to by buf.

cmd is IPC_RMID or IPC_SET, the effective user ID of the calling
process is not equal to the value of msg-perm.cuid or
msg-perm. uid in the data structure associated with msqid and the
process does not have the P_OWNER privilege.

125

msgctl(2)

SEE ALSO
intro(2), msgget(2), msgop(2)

DIAGNOSTICS

126

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

msgget(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key_t key, int msgflg>;

DESCRIPTION
msgget returns the message queue identifier associated with key. A successful call
to msgget () does not imply access to the queue in question, only a successful name
mapping from key to ID.

A message queue identifier and associated message queue and data structure [see
intro(2)] are created for key if one of the following are true:

key is IPC_PRIVATE.

key does not already have a message queue identifier associated with it, and
(msgflg&IPC_CREAT) is true.

On creation, the data structure associated with the new message queue identifier is
initialized as follows:

msg-perm. cuid, msg-perm. uid, msg-perm. cgid, and msg-perm. gid are
set to the effective user ID and effective group ID, respectively, of the calling
process.

The low-order 9 bits of msg-perm.mode are set to the low-order 9 bits of
msgflg.

msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to o.
msg_ctime is set to the current time.

msg_qbytes is set to the system limit.

msgget fails if one or more of the following are true:

EACCES A message queue identifier exists for key, but the queue was not
created supporting the specified operation permissions.

ENOENT A message queue identifier does not exist for key and
(msgflg&IPC_CREAT) is false.

ENOSPC

EEXIST

SEE ALSO

A message queue identifier is to be created but the system
imposed limit on the maximum number of allowed message queue
identifiers system wide would be exceeded.

A message queue identifier exists for key but (msgflg&IPC_CREAT)
and (msgflg&IPC_EXCL) are both true.

intro(2), msgctl(2), msgop(2), stdipc(3C)

127

msgget(2)

DIAGNOSTICS

128

Upon successful completion, a non-negative integer, namely a message queue
identifier, is returned. Otherwise, a value of -1 is returned and errno is set to indi
cate the error.

msgop(2)

NAME
msgop: msgsnd, msgrcv - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd{int msqid, const void *msgp,
size_t msgsz, int msgflg};

int msgrcv{int msqid, void *msgp,
size_t msgsz, long msgtyp, int msgflg};

DESCRIPTION
msgsnd sends a message to the queue associated with the message queue identifier
specified by msqid. msgp points to a user defined buffer that must contain first a
field of type long integer that will specify the type of the message, and then a data
portion that will hold the text of the message. The following is an example of
members that might be in a user defined buffer.

long mtype; /* message type */
char mtext[]; /* message text */

mtype is a positive integer that can be used by the receiving process for message
selection. mtext is any text of length msgsz bytes. msgsz can range from 0 to a sys
tem imposed maximum.

msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes [see
intro(2)].

The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

If (msgflg&IPC_NOWAIT) is true, the message is not sent and the calling pro
cess returns immediately.

If (msgflg&IPC_NOWAIT) is false, the calling process suspends execution until
one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.

msqid is removed from the system [see msgctl(2)]. When this
occurs, ermo is set to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case the message is not sent and the calling process resumes execu
tion in the manner prescribed in signal(2).

msgsnd fails and sends no message if one or more of the following are true:

129

msgop(2)

130

EINVAL

EACCES

EINVAL

EAGAIN

EINVAL

EFAULT

msqid is not a valid message queue identifier.

Write permission is denied to the calling process [see intro(2)].

mtype is less than l.

The message cannot be sent for one of the reasons cited above and
(msgf!g&IPC_NOWAIT) is true.

msgsz is less than zero or greater than the system-imposed limit.

msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro (2)].

msg_qnum is incremented by l.

msg_lspid is set to the process ID of the calling process.

msg_stime is set to the current time.

msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the user defined structure pointed to by
msgp. The structure must contain a message type field followed by the area for the
message text (see the structure ~g above). mtype is the received message's type
as specified by the sending process. mtext is the text of the message. msgsz
specifies the size in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgf!g&MSG_NOERROR) is true. The truncated part
of the message is lost and no indication of the truncation is given to the calling
process.

msgtyp specifies the type of message requested as follows:

If msgtyp is 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than
or equal to the absolute value of msgtyp is received.

msgf!g specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

If (msgf!g&IPC_NOWAIT) is true, the calling process returns immediately with
a return value of -1 and sets ermo to ENOMSG.

If (msgf!g&IPC_NOWAIT) is false, the calling process suspends execution until
one of the following occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs, ermo is set
to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this
case a message is not received and the calling process resumes exe
cution in the manner prescribed in signal(2).

msgop(2)

msgrcv fails and receives no message if one or more of the following are true:

EINVAL msqid is not a valid message queue identifier.

Read permission is denied to the calling process.

msgsz is less than O.

EACCES

EINVAL

E2BIG The length of mtext is greater than msgsz and
(msgflg&MSG_NOERROR) is false.

ENOMSG The queue does not contain a message of the desired type and
(msgtyp&IPC_NOWAIT) is true.

EFAULT msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid [see intro (2)].

SEE ALSO

msg_qnum is decremented by 1.

msg_lrpid is set to the process ID of the calling process.

msg_rtime is set to the current time.

intro(2), msgctl(2), msgget(2), signal(2)

DIAGNOSTICS
If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned to
the calling process and errno is set to EINTR. If they return due to removal of msqid
from the system, a value of -1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

msgsnd returns a value of O.

msgrcv returns the number of bytes actually placed into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

131

munmap(2)

NAME
munmap - unmap pages of memory

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int munmap(caddr_t addr, size_t len};

DESCRIPTION
The function munmap removes the mappings for pages in the range (addr, addr + len).
Further references to these pages will result in the delivery of a SIQSEGV signal to
the process.

The function mmap often performs an implicit munmap.

RETURN VALUE
On success, munmap returns 0; on failure, munmap returns -1 and sets ermo to indi
cate an error.

ERRORS
Under the following conditions, the function munmap fails and sets ermo to:

EINVAL addr is not a multiple of the page size as returned by sysconf.

EINVAL Addresses in the range (addr, addr + len) are outside the valid range
for the address space of a process.

EINVAL The argument len has a value less than or equal to o.
SEE ALSO

mmap(2), sysconf(3C)

132

(XENIX System Compatibility) nap(2)

NAME
nap - (XENIX) suspend execution for a short interval

SYNOPSIS
cc fflag .. .]ftle ... -Ix
long nap (long period);

DESCRIPTION
The current process is suspended from execution for at least the number of
milliseconds specified by period, or until a signal is received.

DIAGNOSTICS
On successful completion, a long integer indicating the number of milliseconds
actually slept is returned. If the process received a signal while napping, the return
value will be -1, and ermo will be set to EINTR.

SEE ALSO
sleep(3C)

NOTES
This function is driven by the system clock, which in most cases has a granularity of
tens of milliseconds.

133

nice (2)

NAME
nice - change priority of a time-sharing process

SYNOPSIS
#include <unistd.h>

int nice (int incr);

DESCRIPTION
nice allows a process in the time-sharing scheduling class to change its priority.
The priocntl system call is a more general interface to scheduler functions.

nice adds the value of incr to the nice value of the calling process. A process's nice
value is a non-negative number for which a more positive value results in lower
CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the
system. (The default nice value is 20.) Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

EPERM nice fails and does not change the nice value if incr is negative or
greater than 39 and the effective user ID of the calling process is not
super-user.

EINVAL nice fails if called by a process in a scheduling class other than
time-sharing.

SEE ALSO
exec(2), nice(l), priocntl(2)

DIAGNOSTICS

134

Upon successful completion, nice returns the new nice value minus 20. Otherwise,
a value of -1 is returned and ermo is set to indicate the error.

open (2)

NAME
open - open for reading or writing

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *path, int oflag, ••• /* mode_t mode */);

DESCRIPTION
path points to a path name naming a file. open opens a file descriptor for the
named file and sets the file status flags according to the value of oflag. oflag values
are constructed by OR-ing Flags from the following list (only one of the first three
flags below may be used):

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAYOrO_NONBLOCK
These flags may affect subsequent reads and writes [see read(2) and
write(2)]. If both O_NDELAY and O_NONBLOCK are set, O_NONBLOCK
will take precedence.

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELAY or O_NONBLOCK is set: An open for reading-only will
return without delay; an open for writing-only will return an error
if no process currently has the file open for reading.

If O_NDELAY and O_NONBLOCK are clear: An open for reading-only
will block until a process opens the file for writing; an open for
writing-only will block until a process opens the file for reading.

When opening a file associated with a terminal line:

If O_NDELAY or O_NONBLOCK is set: The open will return without
waiting for the device to be ready or available; subsequent
behavior of the device is device specific.

If O_NDELAY and O_NONBLOCK are clear: The open will block until
the device is ready or available.

O_APPEND If set, the file pointer will be set to the end of the file prior to each
write.

O_SYNC When opening a regular file, this flag affects subsequent writes. If set,
each wri te(2) will wait for both the file data and file status to be phy
sically updated.

O_NOCTTY If set and the file is a terminal, the terminal will not be allocated as the
calling process's controlling terminal.

135

open (2)

136

If the file exists, this flag has no effect, except as noted under O_EXCL
below. Otherwise, the file is created and the owner ID of the file is set
to the effective user IDs of the process, the group ID of the file is set to
the effective group IDs of the process, or if the S_ISGID bit is set in the
directory in which the file is being created, the file's group ID is set to
the group ID of its parent directory. If the group ID of the new file
does not match the effective group ID or one of the supplementary
groups IDs, the S_ISGID bit is cleared. The access permission bits of
the file mode are set to the value of mode, modified as follows [see
creat(2)]:

All bits set in the file mode creation mask of the process are cleared
[see umask(2)].

The "save text image after execution bit" of the mode is cleared
[see chmod(2)].

O_TRONC If the file exists, its length is truncated to a and the mode and owner
are unchanged. O_TRONC has no effect on special files or directories.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file exists. The
check for the existence of the file and the creation of the file if it does
not exist is atomic with respect to other processes executing open
naming the same filename in the same directory with O_EXCL and
O_CREAT set.

When opening a STREAMS file, oflag may be constructed from O_NDELAY or
O_NONBLOCK OR-ed with either O_RDONLY, O_WRONLY I or O_RDWR. Other flag
values are not applicable to STREAMS devices and have no effect on them. The
values of O_NDELAY and O_NONBLOCK affect the operation of STREAMS drivers and
certain system calls [see read(2), getmsg(2), putmsg(2), and write(2)]. For drivers,
the implementation of O_NDELAY and O_NONBLOCK is device specific. Each
STREAMS device driver may treat these options differently.

When open is invoked to open a named stream, and the connld module [see
connld(7)] has been pushed on the pipe, open blocks until the server process has
issued an I_RECVFD ioctl [see streamio(7)] to receive the file descriptor.

If path is a symbolic link and O_CREAT and O_EXCL are set, the link is not followed.

The file pointer used to mark the current position within the file is set to the begin
ning of the file.

The new file descriptor is the lowest numbered file descriptor available and is set to
remain open across exec system calls [see fcntl(2)].

Certain flag values can be set following open as described in fcntl(2).

If O_CREAT is set and the file did not previously exist, upon successful completion
open marks for update the st_atirne, st_ctime and st_mtime fields of the file and
the st_ctime and st_mtime fields of the parent directory.

If O_TRONC is set and the file did previously exist, upon successful completion open
marks for update the st_ctime and st_mtime fields of the file.

open (2)

The named file is opened unless one or more of the following are true:

EACCES The file does not exist and write permission is denied by the parent
directory of the file to be created.

EACCES

EACCES

EACCES

EAGAIN

EBUSY

EEXIST

EFAULT

EINTR

EIO

EISDIR

ELOOP

EMFILE

O_CREAT or O_TRUNC is specified and write permission is denied.

A component of the path prefix denies search permission.

oflag permission is denied for an existing file.

The file exists, mandatory file/record locking is set, and there are out
standing record locks on the file [see chmod(2)].

path points to a device special file and the device is in the closing state.

O_CREAT and O_EXCL are set, and the named file exists.

path points outside the allocated address space of the process.

A signal was caught during the open system call.

A hangup or error occurred during the open of the STREAMS-based
device.

The named file is a directory and oflag is write or read/write.

Too many symbolic links were encountered in translating path.

The process has too many open files [see getrlimit(2)].

EMULTIHOP Components of path require hopping to multiple remote machines and
the file system does not allow it.

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while LpOSIX_NO_TRUNC} is in
effect.

ENFlLE The system file table is full.

ENODEV

ENOENT

ENOENT

ENOLINK

ENOMEM

ENOSPC

ENOSPC

ENOSR

path points to a device special file and the device is not in the activated
state.

O_CREAT is not set and the named file does not exist.

O_CREAT is set and a component of the path prefix does not exist or is
the null pathname.

path points to a remote machine, and the link to that machine is no
longer active.

The system is unable to allocate a send descriptor.

O_CREAT and O_EXCL are set, and the file system is out of inodes.

O_CREAT is set and the directory that would contain the file cannot be
extended.

Unable to allocate a stream.

137

open (2)

ENOTDIR

ENXIO

ENXIO

ENXIO

EPERM

EROFS

ETXTBSY

A component of the path prefix is not a directory.

The named file is a character special or block special file, and the
device associated with this special file does not exist.

O_NDELAY or O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading.

A STREAMS module or driver open routine failed.

path points to a device special file, the device is in the setup state, and
the calling process does not have the P _DEV privilege.

The named file resides on a read-only file system and either
O_WRONLY, O_RDWR, O_CREAT, or O_TRUNC is set in oflag (if the file does
not exist).

The file is a pure procedure (shared text) file that is being executed
and oflag is write or read/write.

SEE ALSO
clunod(2), close(2), creat(2), dup(2), exec(2), fcntl(2), getmsg(2), getrlimit(2),
intro(2), lseek(2), putmsg(2), read(2), stat(2), stat(5), umask(2), write(2)

DIAGNOSTICS

138

Upon successful completion, the file descriptor is returned. Otherwise, a value of
-1 is returned and ermo is set to indicate the error.

(XENIX System Compatibility) opensem (2)

NAME
opensem- (XENIX) open a semaphore

SYNOPSIS
cc [flag . . .]file ... -Ix
int opensem(char *sem_name);

DESCRIPTION
opensem opens a semaphore named by sem _name and returns the unique sema
phore identification number sem _ num used by wai tsem and sigsem. creatsem
should always be called to initialize the semaphore before the first attempt to open
it.

DIAGNOSTICS
opensem returns a value of -1 if an error occurs. If the semaphore named does not
exist, ermo is set to ENOENT. If the file specified is not a semaphore file (that is, a
file previously created by a process using a call to creatsem), ermo is set to ENOT
NAM. If the semaphore has become invalid due to inappropriate use, ermo is set to
ENAVAIL.

SEE ALSO

NOTES

creatsem(2), sigsem(2), waitsem(2)

It is not advisable to open the same semaphore more than once. Although it is pos
sible to do this, it may result in a deadlock.

139

pause(2)

NAME
pause - suspend process until signal

SYNOPSIS
#include <unistd.h>

int pause (void) ;

DESCRIPTION
pause suspends the calling process until it receives a signal. The signal must be one
that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause does not return.

If the signal is caught by the calling process and control is returned from the
signal-catching function [see signal(2)], the calling process resumes execution from
the point of suspension; with a return value of -1 from pause and ermo set to
EINTR.

SEE ALSO
alann(2), kill(2), signal(2), sigpause(3), wait(2)

140

pipe(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
#include <unistd.h>

int pipe (int fildes [2]) ;

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes [0] andfildes [1]. The files associated withfildes [0] andfildes [1] are streams
and are both opened for reading and writing. The O_NDELAY and O_NONBLOCK flags
are cleared.

A read from fildes [0] accesses the data written to fildes [1] on a first-in-first-out
(FIFO) basis and a read from fildes [1] accesses the data written to fildes [0] also on a
FIFO basis.

The FD_CLOEXEC flag will be clear on both file descriptors.

Upon successful completion pipe marks for update the st_atime, st_ctime, and
st_mtime fields of the pipe.

pipe fails if:

EMFILE

ENFILE

The maximum number of file descriptors are currently open.

A file table entry could not be allocated.

SEE ALSO
fcntl(2), getmsg(2), poll(2), putmsg(2), read(2), sh(1), stat(2), streamio(7),
write(2)

DIAGNOSTICS

NOTES

Upon successful completion, a value of a is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

Since a pipe is bi-directional, there are two separate flows of data. Therefore, the
size (st_size) returned by a call to fstat with argument fildes [0] or fildes [1] is
the number of bytes available for reading from fildes [0] or fildes [1] respectively.
Previously, the size (st_size) returned by a call to fstat with argumentfildes[l]
(the write-end) was the number of bytes available for reading from fildes [0] (the
read-end). See stat(2).

141

plock (2)

NAME
plock - lock into memory or unlock process, text, or data

SYNOPSIS
#include <sys/lock.h>

int plock (int op) ;

DESCRIPTION
plock allows the calling process to lock into memory or unlock its text segment
(text lock), its data segment (data lock), or both its text and data segments (process
lock). Locked segments are immune to all routine swapping. The calling process
must have the P _PLOCK privilege to use this call.

plock performs the function specified by op:
PROCLOCK Lock text and data segments into memory (process lock).

TXTLOCK

DATLOCK

UNLOCK

Lock text segment into memory (text lock).

Lock data segment into memory (data lock).

Remove locks.

plock fails and does not perform the requested operation if one or more of the fol
lowing are true:

EPERM The calling process does not have the P _PLOCK privilege.

EFAULT The segment to be locked has been aborted (e.g. by a file truncate
operation), or pages following the end of an object are not allo
cated.

EIO

EINVAL

EINVAL

EINVAL

EINVAL

EAGAIN

An I/O error occurred when attempting to read the page from a
device or a network.

op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process.

op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process.

op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process.

op is equal to UNLOCK and no lock exists on the calling process.

Not enough memory.

SEE ALSO
exec(2), exit(2), fork(2), memcntl(2)

DIAGNOSTICS

NOTES

142

Upon successful completion, a value of a is returned to the calling process. Other
wise, a value of -1 is returned and ermo is set to indicate the error.

memcntl is the preferred interface to process locking.

poll (2)

NAME
poll - input/ output multiplexing

SYNOPSIS
#include <stropts.h>
#include <poll.h>

int poll (struct pollfd *fds, unsigned long nfds, int timeout);

DESCRIPTION
poll provides users with a mechanism for multiplexing input/output over a set of
file descriptors that reference open files. poll identifies those files on which a user
can send or receive messages, or on which certain events have occurred.

fds specifies the file descriptors to be examined and the events of interest for each
file descriptor. It is a pointer to an array with one element for each open file
descriptor of interest. The array's elements are pollfd structures, which contain
the following members:

int fd;
short events;
short revents;

/* file descriptor */
/* requested events */
/* returned events */

fd specifies an open file descriptor and events and revents are bitmasks con
structed by an OR of any combination of the following event flags:

POLLIN Data other than high priority data may be read without blocking.
For STREAMS, this flag is set even if the message is of zero length.

POLLRDNORM Normal data (priority band = 0) may be read without blocking.

POLLRDBAND

POLLPRI

POLLOUT

POLLWRNORM

POLLWRBAND

POLLERR

POLLHUP

POLLNVAL

For STREAMS, this flag is set even if the message is of zero length.

Data from a non-zero priority band may be read without blocking
For STREAMS, this flag is set even if the message is of zero length.

High priority data may be received without blocking. For
STREAMS, this flag is set even if the message is of zero length.

Normal data may be written without blocking.

The same as POLLOUT.

Priority data (priority band> 0) may be written. This event only
examines bands that have been written to at least once.

An error has occurred on the device or stream. This flag is only
valid in the revents bitmask; it is not used in the events field.

A hangup has occurred on the stream. This event and POLLOUT are
mutually exclusive; a stream can never be writable if a hangup has
occurred. However, this event and POLLIN, POLLRDNORM,
POLLRDBAND, or POLLPRI are not mutually exclusive. This flag is
only valid in the revents bitmask; it is not used in the events
field.

The specified fd value does not belong to an open file. This flag is
only valid in the revents field; it is not used in the events field.

143

poll (2)

For each element of the array pointed to by fds, poll examines the given file
descriptor for the event(s) specified in events. The number of file descriptors to be
examined is specified by nfds.

If the value fd is less than zero, events is ignored and revents is set to 0 in that
entry on return from poll.

The results of the poll query are stored in the revents field in the pollfd struc
ture. Bits are set in the revents bitmask to indicate which of the requested events
are true. If none are true, none of the specified bits are set in revents when the
poll call returns. The event flags POLLHUP, POLLERR, and POLLNVAL are always set
in revents if the conditions they indicate are true; this occurs even though these
flags were not present in events.

If none of the defined events have occurred on any selected file descriptor, poll
waits at least timeout milliseconds for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout is rounded up to the nearest legal value available on that system. If the
value timeout is 0, poll returns immediately. If the value of timeout is INFTIM (or
-I), poll blocks until a requested event occurs or until the call is interrupted. poll
is not affected by the O_NDELAY and O_NONBLOCK flags.

poll fails if one or more of the following are true:

EAGAIN Allocation of internal data structures failed, but the request may be
attempted again.

EFAULT

EINTR

EINVAL

Some argument points outside the allocated address space.

A signal was caught during the poll system call.

The argument nfds is greater than the maximum number of open
files allowed; see getrlimit(2).

SEE ALSO
intro(2), getmsg(2), getrlimit(2), putmsg(2), read(2), write(2)

DIAGNOSTICS

144

Upon successful completion, a non-negative value is returned. A positive value
indicates the total number of file descriptors that has been selected (that is, file
descriptors for which the revents field is non-zero). A value of 0 indicates that the
call timed out and no file descriptors have been selected. Upon failure, a value of -1
is returned and errno is set to indicate the error.

priocntl (2)

NAME
priocntl- process scheduler control

SYNOPSIS
#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntl (idtype_t idtype, id_t id, int cmd, ••• /* arg * /);

DESCRIPTION
priocntl provides for control over the scheduling of active processes.

Processes fall into distinct classes with a separate scheduling policy applied to each
class. The two classes currently supported are the real-time class and the time
sharing class. The characteristics of these classes are described under the
corresponding headings below. The class attribute of a process is inherited across
the fork(2) and exec(2) system calls. priocntl can be used to dynamically change
the class and other scheduling parameters associated with a running process or set
of processes given the appropriate permissions as explained below.

In the default configuration, a runnable real-time process runs before any other pro
cess. Therefore, inappropriate use of real-time processes can have a dramatic nega
tive impact on system performance.

priocntl provides an interface for specifying a process or set of processes to which
the system call is to apply. The priocntlset system call provides the same func
tions as priocntl, but allows a more general interface for specifying the set of
processes to which the system call is to apply.

For priocntl, the idtype and id arguments are used together to specify the set of
processes. The interpretation of id depends on the value of idtype. The possible
values for idtype and corresponding interpretations of id are as follows:

P _PID id is a process ID specifying a single process to which the priocntl
system call is to apply.

id is a parent process ID. The priocntl system call applies to all
processes with the specified parent process ID.

id is a process group ID. The priocntl system call applies to all
processes in the specified process group.

id is a session ID. The priocntl system call applies to all processes in
the specified session.

id is a class ID (returned by priocntl PC_GETCID as explained below).
The priocntl system call applies to all processes in the specified
class.

id is a user ID. The priocntl system call applies to all processes with
this effective user ID.

145

priocntl (2)

146

id is a group 1D. The priocntl system call applies to all processes
with this effective group 1D.

The priocntl system call applies to all existing processes. The value
of id is ignored. The permission restrictions described below still
apply.

An id value of P _MYID can be used in conjunction with the idtype value to specify
the calling process's process 1D, parent process 1D, process group 10, session 10,
class 1D, user 1D, or group 1D.

In order to change the scheduling parameters of a process (using the PC_SETPARMS
command as explained below) the real or effective user 1D of the process calling
priocntl must match the real or effective user 1D of the receiving process or the
calling process must have appropriate privilege. See the subsections below for
details for each class. These are the minimum permission requirements enforced for
all classes. An individual class may impose additional permissions requirements
when setting processes to that class and! or when setting class-specific scheduling
parameters.

A special sys scheduling class exists for the purpose of scheduling the execution of
certain special system processes (such as the swapper process). It is not possible to
change the class of any process to sys. In addition, any processes in the sys class
that are included in a specified set of processes are disregarded by priocntl. For
example, an idtype of P_UID and an id value of zero would specify all processes with
a user 1D of zero except processes in the sys class and (if changing the parameters
using PC_SETPARMS) the ini t process.

The ini t process is a special case. In order for a priocntl call to change the class
or other scheduling parameters of the init process (process 1D 1), it must be the
only process specified by idtype and id. The init process may be assigned to any
class configured on the system, but the time-sharing class is almost always the
appropriate choice. (Other choices may be highly undesirable; see your system
administration guide for more information.)

The data type and value of arg are specific to the type of command specified by cmd.

The following structure is used by the PC_GETCID and PC_GETCLINFO commands.

typedef struct {

id_t pc_cid; /* Class id */
char pc_clname[PC_CLNMSZ]; /* Class name */
long pc_clinfo[PC_CLINFOSZ]; /* Class information */

} pcinfo_t;

pc_cid is a class 1D returned by priocntl PC_GETCID. pc_clname is a buffer of
size PC_CLNMSZ (defined in sys/priocnt1.h) used to hold the class name (RT for
real-time or TS for time-sharing).

pc_clinfo is a buffer of size PC_CLINFOSZ (defined in sys/priocntl.h) used to
return data describing the attributes of a specific class. The format of this data is
class-specific and is described under the appropriate heading (REAL-TIME CLASS or
TIME-SHARING CLASS) below.

priocntl (2)

The following structure is used by the PC_SETPARMS and PC_GETPARMS commands.

typedef struct {

pc_cid;
pc_clparms[PC_CLPARMSZ];

pcparms_t;

/* Process class */
/* Class-specific params */

pc_cid is a class ID (returned by priocntl PC_GETCID). The special class ID
PC_CLNULL can also be assigned to pc_cid when using the PC_GETPARMS command
as explained below.

The pc_clparms buffer holds class-specific scheduling parameters. The format of
this parameter data for a particular class is described under the appropriate head
ing below. PC_CLPARMSZ is the length of the pc_clparms buffer and is defined in
sys/priocntl.h.

Commands
Available priocntl commands are:

PC_GETCID
Get class ID and class attributes for a specific class given class name. The idtype
and id arguments are ignored. If arg is non-null, it points to a structure of type
pcinfo_t. The pc_clname buffer contains the name of the class whose attri
butes you are getting.

On success, the class ID is returned in pc_cid, the class attributes are returned in
the pc_clinfo buffer, and the priocntl call returns the total number of classes
configured in the system (including the sys class). If the class specified by
pc_clname is invalid or is not currently configured the priocntl call returns -1
with ermo set to EINVAL. The format of the attribute data returned for a given
class is defined in the sys/rtpriocnt1.h or sys/tspriocnt1.h header file
and described under the appropriate heading below.

If arg is a NULL pointer, no attribute data is returned but the priocntl call still
returns the number of configured classes.

PC_GETCLINFO
Get class name and class attributes for a specific class given class ID. The idtype
and id arguments are ignored. If arg is non-null, it points to a structure of type
pcinfo_t. pc_cid is the class ID of the class whose attributes you are getting.

On success, the class name is returned in the pc_clname buffer, the class attri
butes are returned in the pc_clinfo buffer, and the priocntl call returns the
total number of classes configured in the system (including the sys class). The
format of the attribute data returned for a given class is defined in the
sys/rtpriocnt1.h or sys/tspriocnt1.h header file and described under the
appropriate heading below.

If arg is a NULL pointer, no attribute data is returned but the priocntl call still
returns the number of configured classes.

PC_SETPARMS
Set the class and class-specific scheduling parameters of the specified
process(es). arg points to a structure of type pcparms_t. pc_cid specifies the
class you are setting and the pc_clparms buffer contains the class-specific

147

priocntl (2)

parameters you are setting. The format of the class-specific parameter data is
defined in the sys/rtpriocntl.h or sys/tspriocntl.h header file and
described under the appropriate class heading below.

When setting parameters for a set of processes, priocntl acts on the processes
in the set in an implementation-specific order. If priocntl encounters an error
for one or more of the target processes, it mayor may not continue through the
set of processes, depending on the nature of the error. If the error is related to
permissions (EPERM), priocntl continues through the process set, resetting the
parameters for all target processes for which the calling process has appropriate
permissions. priocntl then returns -1 with ermo set to EPERM to indicate that
the operation failed for one or more of the target processes. If priocntl
encounters an error other than permissions, it does not continue through the set
of target processes but returns the error immediately.

PC_GETPARMS
Get the class and/or class-specific scheduling parameters of a process. arg
points the a structure of type pcparms_t.

If pc_cid specifies a configured class and a single process belonging to that class
is specified by the idtype and id values or the procset structure, then the
scheduling parameters of that process are returned in the pc_clparms buffer. If
the process specified does not exist or does not belong to the specified class, the
priocntl call returns -1 with ermo set to ESRCH.

If pc_cid specifies a configured class and a set of processes is specified, the
scheduling parameters of one of the specified processes belonging to the
specified class are returned in the pc_clparms buffer and the priocntl call
returns the process ID of the selected process. The criteria for selecting a process
to return in this case is class dependent. If none of the specified processes exist
or none of them belong to the specified class the priocntl call returns -1 with
ermo set to ESRCH.

If pc_cid is PC_CLNULL and a single process is specified the class of the specified
process is returned in pc_cid and its scheduling parameters are returned in the
pc_clparms buffer.

PC_ADMIN
This command provides functionality needed for the implementation of the
dispadmin(1M) command. It is not intended for general use by other applica
tions.

REAL-TIME CLASS

148

The real-time class provides a fixed priority preemptive scheduling policy for those
processes requiring fast and deterministic response and absolute user/application
control of scheduling priorities. If the real-time class is configured in the system it
should have exclusive control of the highest range of scheduling priorities on the
system. This ensures that a runnable real-time process is given CPU service before
any process belonging to any other class.

The real-time class has a range of real-time priority (rt-pri) values that may be
assigned to processes within the class. Real-time priorities range from a to x, where
the value of x is configurable and can be determined for a specific installation by
using the priocntl PC_GETCID or PC_GETCLINFO command.

priocntl (2)

The real-time scheduling policy is a fixed priority policy. The scheduling priority of
a real-time process is never changed except as the result of an explicit request by the
user / application to change the rt-pri value of the process.

For processes in the real-time class, the rt-pri value is, for all practical purposes,
equivalent to the scheduling priority of the process. The rt-pri value completely
determines the scheduling priority of a real-time process relative to other processes
within its class. Numerically higher rt-pri values represent higher priorities.
Since the real-time class controls the highest range of scheduling priorities in the
system it is guaranteed that the runnable real-time process with the highest rt-pri
value is always selected to run before any other process in the system.

In addition to providing control over priority, priocntl provides for control over
the length of the time quantum allotted to processes in the real-time class. The time
quantum value specifies the maximum amount of time a process may run assuming
that it does not complete or enter a resource or event wait state (sleep). Note that
if another process becomes runnable at a higher priority the currently running pro
cess may be preempted before receiving its full time quantum.

The system's process scheduler keeps the runnable real-time processes on a set of
scheduling queues. There is a separate queue for each configured real-time priority
and all real-time processes with a given rt-pri value are kept together on the
appropriate queue. The processes on a given queue are ordered in FIFO order (that
is, the process at the front of the queue has been waiting longest for service and
receives the CPU first). Real-time processes that wake up after sleeping, processes
which change to the real-time class from some other class, processes which have
used their full time quantum, and runnable processes whose priority is reset by
priocntl are all placed at the back of the appropriate queue for their priority. A
process that is preempted by a higher priority process remains at the front of the
queue (with whatever time is remaining in its time quantum) and runs before any
other process at this priority. Following a fork(2) system call by a real-time pro
cess, the parent process continues to run while the child process (which inherits its
parent's rt-pri value) is placed at the back of the queue.

The following structure (defined in sys/rtpriocnt1.h) defines the format used for
the attribute data for the real-time class.

typedef struct

short /* Maximum real-time priority */

rtinfo_t;

The priocntl PC_GETCID and PC_GETCLINFO commands return real-time class
attributes in the pc_clinfo buffer in this format.

rt_maxpri specifies the configured maximum rt-pri value for the real-time class
(if rt_maxpri is x, the valid real-time priorities range from a to x).

The following structure (defined in sys/rtpriocnt1.h) defines the format used to
specify the real-time class-specific scheduling parameters of a process.

149

priocntl (2)

150

typedef struct
short
ulong
long

rtparmsLt;

rt-pri;
rt_tqsecs;
rt_tqnsecs;

/* Real-Time priority */
/* Seconds in time quantum */
/* Additional nanoseconds in quantum */

When using the priocntl PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the real-time class, the data in the pc_clparms buffer is in this format.

The above commands can be used to set the real-time priority to the specified value
or get the current rt-pri value. Setting the rt-pri value of a process that is
currently running or runnable (not sleeping) causes the process to be placed at the
back of the scheduling queue for the specified priority. The process is placed at the
back of the appropriate queue regardless of whether the priority being set is dif
ferent from the previous rt-pri value of the process. Note that a running process
can voluntarily release the CPU and go to the back of the scheduling queue at the
same priority by resetting its rt-pri value to its current real-time priority value. In
order to change the time quantum of a process without setting the priority or affect
ing the process's position on the queue, the rt-pri field should be set to the special
value RT_NOCHANGE (defined in sys/rtpriocntl.h). Specifying RT_NOCHANGE
when changing the class of a process to real-time from some other class results in
the real-time priority being set to zero.

For the priocntl PC_GETPARMS command, if pc_cid specifies the real-time class
and more than one real-time process is specified, the scheduling parameters of the
real-time process with the highest rt-pri value among the specified processes are
returned and the process ID of this process is returned by the priocntl call. If
there is more than one process sharing the highest priority, the one returned is
implementation-dependent.

The rt_tqsecs and rt_tqnsecs fields are used for getting or setting the time
quantum associated with a process or group of processes. rt_tqsecs is the
number of seconds in the time quantum and rt_tqnsecs is the number of addi
tional nanoseconds in the quantum. For example setting rt_tqsecs to 2 and
rt_tqnsecs to 500,000,000 (decimal) would result in a time quantum of two and
one-half seconds. Specifying a value of 1,000,000,000 or greater in the rt_tqnsecs
field results in an error return with errno set to EINVAL. Although the resolution of
the t<;Lnsecs field is very fine, the specified time quantum length is rounded up by
the system to the next integral multiple of the system clock's resolution. For exam
ple, the finest resolution currently available on a system is 10 milliseconds (1
"tick"). Setting rt_tqsecs to a and rt_tqnsecs to 34,000,000 would specify a time
quantum of 34 milliseconds, which would be rounded up to 4 ticks (40 mil
liseconds) on a machine with la-millisecond resolution. The maximum time quan
tum that can be specified is implementation-specific and equal to LONG_MAX ticks
(defined in limits.h). Requesting a quantum greater than this maximum results in
an error return with errno set to ERANGE (although infinite quantums may be
requested using a special value as explained below). Requesting a time quantum of
zero (setting both rt_tqsecs and rt_tqnsecs to 0) results in an error return with
errno set to EINVAL.

priocntl (2)

The rt_tqnsecs field can also be set to one of the following special values (defined
in sys/rtpriocntl.h), in which case the value of rt_tqsecs is ignored.

RT_TQINF Set an infinite time quantum.

RT_TQDEF Set the time quantum to the default for this priority [see
rt_dptbl(4)].

Don't set the time quantum. This value is useful when
you wish to change the real-time priority of a process
without affecting the time quantum. Specifying this value
when changing the class of a process to real-time from
some other class is equivalent to specifying RT_TQDEF.

In order to change the class of a process to real-time (from any other class), or to
change the priority or time quantum setting of a real-time process, the following
conditions must be true:

The calling process must have the P _RTlME privilege.

The effective user ID of the calling process must match the effective user ID
of the target process (or the calling process have the P_OWNER privilege).

The real-time priority and time quantum are inherited across the fork(2) and
exec(2) system calls.

TIME-SHARING CLASS
The time-sharing scheduling policy provides for a fair and effective allocation of the
CPU resource among processes with varying CPU consumption characteristics. The
objectives of the time-sharing policy are to provide good response time
to interactive processes and good throughput to CPU-bound jobs while providing a
degree of user / application control over scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri
below) values that may be assigned to processes within the class. A ts_upri value
of zero is defined as the default base priority for the time-sharing class. User priori
ties range from -x to +x where the value of x is configurable and can be determined
for a specific installation by using the priocntl PC_GETCID or PC_GETCLINFO com
mand.

The purpose of the user priority is to provide some degree of user / application con
trol over the scheduling of processes in the time-sharing class. Raising or lowering
the ts_upri value of a process in the time-sharing class raises or lowers the
scheduling priority of the process. It is not guaranteed, however, that a process
with a higher ts_upri value will run before one with a lower ts_upri value. This
is because the ts_upri value is just one factor used to determine the scheduling
priority of a time-sharing process. The system may dynamically adjust the internal
scheduling priority of a time-sharing process based on other factors such as recent
CPU usage.

In addition to the system-wide limits on user priority (returned by the PC_GETCID
and PC_GETCLINFO commands) there is a per process user priority limit (see
ts_uprilim below), which specifies the maximum ts_upri value that may be set
for a given process; by default, ts_uprilim is zero.

151

priocntl (2)

152

The following structure (defined in sys/tspriocntl.h) defines the format used for
the attribute data for the time-sharing class.

typedef struct {

short 1* Limits of user priority range *1
} tsinfo_t;

The priocntl PC_GETCID and PC_GETCLINFO commands return time-sharing class
attributes in the pc_clinfo buffer in this format.

ts_maxupri specifies the configured maximum user priority value for the time
sharing class. If ts_maxupri is x, the valid range for both user priorities and user
priority limits is from -x to +x.

The following structure (defined in sys/tspriocntl.h) defines the format used to
specify the time-sharing class-specific scheduling parameters of a process.
typedef struct {

short
short

tsparms_t;

ts_uprilim;
ts_upri;

1* Time-Sharing user priority limit *1
1* Time-Sharing user priority *1

When using the priocntl PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the time-sharing class, the data in the pc_clparms buffer is in this format.

For the priocntl PC_GETPARMS command, if pc_cid specifies the time-sharing
class and more than one time-sharing process is specified, the scheduling parame
ters of the time-sharing process with the highest ts_upri value among the specified
processes is returned and the process 10 of this process is returned by
the priocntl call. If there is more than one process sharing the highest user prior
ity, the one returned is implementation-dependent.

Any time-sharing process may lower its own ts_uprilim (or that of another
process with the same user 1D).

If the priority of the target process is to be raised above its current value, or if the
target process's ts_uprilim is to be raised above a value of 0, the following
conditions must be true:

The calling process must have the P _RTlME privilege.

The effective user ID of the calling process must match the effective user ID
of the target process (or the calling process have the P_OWNER privilege).

Attempts by a unprivileged user process to raise a ts_uprilim or set an initial
ts_uprilim greater than zero fail with a return value of -1 and ermo set to EPERM.

Any time-sharing process may set its own ts_upri (or that of another process with
the same user 10) to any value less than or equal to the process's ts_uprilim.
Attempts to set the ts_upri above the ts_uprilim (and/or set the ts_uprilim
below the ts_upri) result in the ts_upri being set equal to the ts_uprilim.

Either of the ts_uprilim or ts_upri fields may be set to the special value
TS_NOCHANGE (defined in sys/tspriocntl.h) in order to set one of the values
without affecting the other. Specifying TS_NOCHANGE for the ts_upri when the
ts_uprilim is being set to a value below the current ts_upri causes the ts_upri
to be set equal to the ts_uprilim being set. Specifying TS_NOCHANGE for a

priocntl (2)

parameter when changing the class of a process to time-sharing (from some other
class) causes the parameter to be set to a default value. The default value for the
ts_uprilim is 0 and the default for the ts_upri is to set it equal to the
ts_uprilim which is being set.

The time-sharing user priority and user priority limit are inherited across the fork
and exec system calls.

RETURN VALUE
Unless otherwise noted above, priocntl returns a value of 0 on success. priocntl
returns -Ion failure and sets errno to indicate the error.

ERRORS
priocntl fails if one or more of the following are true:

EPERM An attempt was made to change the system time-sharing or real
time defaults, and the calling process does not have the P_TSHAR
or P_RTlME privileges (respectively, for the two classes).

EPERM

EPERM

EPERM

EPERM

EINVAL

ERANGE

ESRCH

EFAULT

ENOMEM

EAGAIN

SEE ALSO

The effective user ID of the calling process does not match the
effective user ID of the target process, and the calling process
does not have the P _OWNER privilege.

An attempt was made to change the class of the target process to
real time (from any class) and the calling process does not have
the P _OWNER and the P _RTlME privileges.

An attempt was made to change the priority of a real-time pro
cess and the calling process does not have the P _OWNER and the
P _RTlME privileges.

An attempt was made to raise the priority of a time-sharing pro
cess, or raise the ts-prilim of the process above 0, and the cal
ling process does not have the P_OWNER and the P_TSHAR
privileges.

The argument cmd was invalid, an invalid or unconfigured class
was specified, or one of the parameters specified was invalid.

The requested time quantum is out of range.

None of the specified processes exist.

All or part of the area pointed to by one of the data pointers is
outside the process's address space.

An attempt to change the class of a process failed because of
insufficient memory.

An attempt to change the class of a process failed because of
insufficient resources other than memory (for example, class
specific kernel data structures).

dispadmin(lM), exec (2), fork(2), nice(2), priocntl(l) priocntlset(2)
rt_dptbl(4), tS_dptbl(4)

153

priocntlset (2)

NAME
priocntlset - generalized process scheduler control

SYNOPSIS
#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>
#include <sys/tspriocntl.h>

long priocntlset(procset_t *psp, int cmd, ••• /* arg */);

DESCRIPTION

154

priocntlset changes the scheduling properties of running processes.
priocntlset has the same functions as the priocntl system call, but a more gen
eral way of specifying the set of processes whose scheduling properties are to be
changed.

cmd specifies the function to be performed. arg is a pointer to a structure whose
type depends on cmd. See priocntl(2) for the valid values of cmd and the
corresponding arg structures.

psp is a pointer to a procset structure, which priocntlset uses to specify the set
of processes whose scheduling properties are to be changed.

typedef struct procset
idop_t p_op; /* operator connecting left/right sets */
idtype_t p_lidtype; /* left set IO type */
id_t p_lid; /* left set IO */
idtype_t p_ridtype; /* right set ID type */
id_t p_rid; /* right set ID */

} procset_t;

p_lidtype and p_lid specify the 10 type and ID of one ("left") set of processes;
p_ridtype and p_rid specify the ID type and ID of a second ("right") set of
processes. 10 types and IDs are specified just as for the priocntl system call. p_op
specifies the operation to be performed on the two sets of processes to get the set of
processes the system call is to apply to. The valid values for p_op and the processes
they specify are:

POP_OIFF

POP_AND

POP_OR

POP_XOR

set difference: processes in left set and not in right set

set intersection: processes in both left and right sets

set union: processes in either left or right sets or both

set exclusive-or: processes in left or right set but not in both

The following macro, which is defined in procset.h, offers a convenient way to
initialize a procset structure:

#define setprocset{psp, op, ltype, lid, rtype, rid) \
(psp)->p_op (op), \
(psp)->p_lidtype (ltype), \
(psp)->p_lid (lid), \
(psp)->p_ridtype (rtype), \
(psp)->p_rid (rid);

priocntlset (2)

DIAGNOSTICS
priocntlset has the same return values and errors as priocntl.

SEE ALSO
priocntl(l), priocntl(2)

155

procpriv (2)

NAME
procpri v, procpri vc - add, retrieve, remove, count, or put privileges associated
with the calling process

SYNOPSIS
#include <priv.h>

int procpriv(int cmd, priv_t *privp, int nentries)

int procpri vc (int cmd, •••)

DESCRIPTION

156

The procpri v system call is used to add, remove, retrieve, count, or put the
privileges associated with the calling process. privp is a pointer to an array of
privilege descriptors, each of which contains the privilege set and identity of the
requested privilege. nentries is the number of entries contained in privp.

The recognized cmds and their functions are described below:

SETPRV the working privilege set for the current process is set based on the
privilege descriptor(s) contained in privp. All requested privileges not
contained in the current maximum privilege set are ignored. All
requested working privileges that are in the current maximum set are
added to the working set. If any argument is invalid, none of the pro
cess privileges is changed.

CLRPRV

PUTPRV

GETPRV

CNTPRV

the working and maximum privilege sets for the current process are
cleared based on the privilege descriptor(s) contained in privp. All
requested privileges are removed from their respective sets. The work
ing set is adjusted to be a subset of the resulting maximum set. If any
argument is invalid, none of the process privileges is changed.

the working and maximum privilege sets for the current process are set
based on the privilege descriptor(s) contained in privp. The setting is
absolute. The working set is adjusted to be a subset of the resulting
maximum set. Privileges contained in either privilege set that are not in
the maximum set of the calling process are ignored. If any argument is
invalid, none of the process privileges is changed.

the working and maximum privilege sets for the current process are
returned in privp in the form of privilege descriptors. None of the pro
cess privileges is changed.

returns the number of privileges associated with the current process.
The privp and nentries arguments are ignored. None of the process
privileges is changed.

procpri v fails if the following is true:

EINVAL cmd or privilege specified is invalid, or nentries is less than 0, or cmd is
GETPRVand the process privileges exceeds nentries.

procprivc is similar to the procprivl(3C) library function, except that procprivc
is only effective if the process calling it is privileged and the configuration parame
ter PRVMODE is greater than zero.

procpriv (2)

SEE ALSO
intro(2), filepriv(2), procprivl(3C), priv(5), privilege(5)

DIAGNOSTICS
A value of -1 is returned and ermo is set to indicate the error if procpri v is unsuc
cessful. If successful, procpri v returns the number of privileges associated with
the current process (SETPRV, CLRPRV, PUTPRV GETPRV CNTPRV).

157

profil (2)

NAME
prbfil- execution time profile

SYNOPSIS
#include <unistd.h>

void profil (unsigned short * buff, unsigned int bufsiz,
unsigned int offset, unsigned int scale);

DESCRIPTION

158

profil provides CPU-use statistics by profiling the amount of CPU time expended
by a program. profil generates the statistics by creating an execution histogram
for a current process. The histogram is defined for a specific region of program
code to be profiled, and the identified region is logically broken up into a set of
equal size subdivisions, each of which corresponds to a count in the histogram.
With each clock tick, the current subdivision is identified and its corresponding his
togram count is incremented. These counts establish a relative measure of how
much time is being spent in each code subdivision. The resulting histogram counts
for a profiled region can be used to identify those functions that consume a dispro
portionately high percentage of CPU time.

buff is a buffer of bufsiz bytes in which the histogram counts are stored in an array of
unsigned short into

offset, scale, and bufsiz specify the region to be profiled.

offset is effectively the start address of the region to be profiled.

scale, broadly speaking, is a contraction factor that indicates how much smaller the
histogram buffer is than the region to be profiled. More precisely, scale is inter
preted as an unsigned 16-bit fixed-point fraction with the decimal point implied on
the left. Its value is the reciprocal of the number of bytes in a subdivision, per byte
of histogram buffer. Since there are two bytes per histogram counter, the effective
ratio of subdivision bytes per counter is one half the scale.

Several observations can be made:

The maximal value of scale, Oxffff (approximately 1), maps subdivisions 2
bytes long to each counter.

The minimum value of scale (for which profiling is performed), Ox0002
(1/32,768), maps subdivision 65,536 bytes long to each counter.

The default value of scale (currently used by cc -qp), Ox4000, maps subdi
visions 8 bytes long to each counter.

The values are used within the kernel as follows: when the process is interrupted
for a clock tick, the value of offset is subtracted from the current value of the pro
gram counter (pc), and the remainder is multiplied by scale to derive a result. That
result is used as an index into the histogram array to locate the cell to be incre
mented. Therefore, the cell count represents the number of times that the process
was executing code in the subdivision associated with that cell when the process
was interrupted.

profil (2)

scale can be computed as (RATIO * 0200000L), where RATIO is the desired ratio
of bufsiz to profiled region size, and has a value between 0 and 1. Qualitatively
speaking, the closer RATIO is to 1, the higher the resolution of the profile informa
tion.

bufsiz can be computed as (size _ofJegion _to_be yrofiled * RATIO).

SEE ALSO

NOTES

monitor(3C), prof(l), times(2)

Profiling is turned off by giving a scale of 0 or 1, and is rendered ineffective by giv
ing a bufsiz of o. Profiling is turned off when an exec(2) is executed, but remains on
in both child and parent processes after a fork(2). Profiling is turned off if a buff
update would cause a memory fault.

159

ptrace(2)

NAME
ptrace - process trace

SYNOPSIS
#include <unistd.h>
#include <sys/types.h>

int ptrace(int request, pid_t pid, int addr, int data);

DESCRIPTION

160

ptrace allows a parent process to control the execution of a child process. Its pri
mary use is for the implementation of breakpoint debugging [see sdb(l)]. The child
process behaves normally until it encounters a signal [see signal(5)], at which time
it enters a stopped state and its parent is notified via the wait(2) system call. When
the child is in the stopped state, its parent can examine and modify its II core image"
using ptrace. Also, the parent can cause the child either to terminate or continue,
with the possibility of ignoring the signal that caused it to stop.

The request argument determines the action to be taken by ptrace and is one of the
following:

o This request must be issued by the child process if it is to be traced by its
parent. It turns on the child's trace flag that stipulates that the child
should be left in a stopped state on receipt of a signal rather than the state
specified by June [see signal(2)]. The pid, addr, and data arguments are
ignored, and a return value is not defined for this request. Peculiar results
ensue if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For each, pid
is the process ID of the child. The child must be in a stopped state before these
requests are made.

1, 2 With these requests, the word at location addr in the address space of the
child is returned to the parent process. If instruction and data space are
separated, request 1 returns a word from instruction space, and request 2
returns a word from data space. If instruction and data space are not
separated, either request 1 or request 2 may be used with equal results.
The data argument is ignored. These two requests fail if addr is not the
start
address of a word, in which case a value of -1 is returned to the parent
process and the parent's errno is set to EIO.

3 With this request, the word at location addr in the child's user area in the
system's address space [see <sys/user.h>] is returned to the parent pro
cess. The data argument is ignored. This request fails if addr is not the
start address of a word or is outside the user area, in which case a value of
-1 is returned to the parent process and the parent's errno is set to EIO.

4, 5 With these requests, the value given by the data argument is written into
the address space of the child at location addr. If instruction and data
space are separated, request 4 writes a word into instruction space, and
request 5 writes a word into data space. If instruction and data space are
not separated, either request 4 or request 5 may be used with equal
results. On success, the value written into the address space of the child is
returned to the parent. These two requests fail if addr is not the start

ptrace(2)

address of a word. On failure a value of -1 is returned to the parent pro
cess and the parent's ermo is set to EIO.

6 With this request, a few entries in the child's user area can be written.
data gives the value that is to be written and addr is the location of the
entry. The few entries that can be written are the general registers and the
condition codes of the Processor Status Word.

7 This request causes the child to resume execution. If the data argument is
0, the signal that caused the child to stop is canceled before it resumes
execution. If the data argument is a valid signal number, the child
resumes execution as if it had incurred that signal, and any other pending
signals are canceled. The addr argument must be equal to 1 for this
request. On success, the value of data is returned to the parent. This
request fails if data is not 0 or a valid signal number, in which case a value
of -1 is returned to the parent process and the parent's ermo is set to
EIO.

S This request causes the child to terminate with the same consequences as
exit(2).

9 This request sets the trace bit in the Processor Status Word of the child
and then executes the same steps as listed above for request 7. The trace
bit causes an interrupt on completion of one machine instruction. This
effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-ID facility on subsequent
exec(2) calls. If a traced process calls exec(2), it stops before executing the first
instruction of the new image showing signal SIGTRAP. ptrace in general fails if
one or more of the following are true:

EIO request is an illegal number.

ESRCH

SEE ALSO

pid identifies a child that does not exist or has not executed a ptrace
with request o.

exec(2), sdb(l), signal(2), wait(2)

161

putmsg(2)

NAME
putmsg - send a message on a stream

SYNOPSIS
#include <stropts.h>

int putmsg(int fd, const struct strbuf *ctIptr,
const struct strbuf *dataptr, int flags};

int putpmsg(int fd, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags};

DESCRIPTION

162

putmsg creates a message from user-specified buffer(s) and sends the message to a
STREAMS file. The message may contain either a data part, a control part, or both.
The data and control parts to be sent are distinguished by placement in separate
buffers, as described below. The semantics of each part is defined by the STREAMS
module that receives the message.

The function putpmsg does the same thing as putmsg, but provides the user the
ability to send messages in different priority bands. Except where noted, all infor
mation pertaining to putmsg also pertains to putpmsg.

fd specifies a file descriptor referencing an open stream. ctIptr and dataptr each
point to a strbuf structure, which contains the following members:

int maxlen; /* not used */
int len; /* length of data */
void *buf; /* ptr to buffer */

ctlptr points to the structure describing the control part, if any, to be included in the
message. The buf field in the strbuf structure points to the buffer where the con
trol information resides, and the len field indicates the number of bytes to be sent.
The maxlen field is not used in putmsg [see getmsg(2)]. In a similar manner, dataptr
specifies the data, if any, to be included in the message. flags indicates what type of
message should be sent and is described later.

To send the data part of a message, dataptr must not be NULL and the len field of
dataptr must have a value of 0 or greater. To send the control part of a message, the
corresponding values must be set for ctIptr. No data (control) part is sent if either
dataptr (ctIptr) is NULL or the len field of dataptr (ctIptr) is set to-l.

For putmsg, if a control part is specified, and flags is set to RS_HIPRI, a high priority
message is sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg
fails and sets ermo to EINVAL. If flags is set to 0, a normal (non-priority) message is
sent. If no control part and no data part are specified, and flags is set to 0, no mes
sage is sent, and 0 is returned.

The stream head guarantees that the control part of a message generated by putmsg
is at least 64 bytes in length.

For putpmsg, the flags are different. flags is a bitmask with the following mutually
exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg fails
and sets ermo to EINVAL. If a control part is specified and flags is set to MSG_HIPRI
and band is set to 0, a high-priority message is sent. If flags is set to MSG_HIPRI and
either no control part is specified or band is set to a non-zero value, putpmsg fails

putmsg(2)

and sets ermo to EINVAL. If flags is set to MSG_BAND, then a message is sent in the
priority band specified by band. If a control part and data part are not specified and
flags is set to MSG_BAND, no message is sent and a is returned.

Normally, putmsg will block if the stream write queue is full due to internal flow
control conditions. For high-priority messages, putmsg does not block on this con
dition. For other messages, putmsg does not block when the write queue is full and
O_NDELAY or O_NONBLOCK is set. Instead, it fails and sets ermo to EAGAIN.

putmsg or putpmsg also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the stream, regardless of priority or
whether O_NDELAY or O_NONBLOCK has been specified. No partial message is sent.

putmsg fails if one or more of the following are true:

EACCES fildes is open to a dynamic device, and write permission on the device
is denied.

EAGAIN

EBADF

EFAULT

EINTR

EINVAL

EINVAL

EINVAL

EIO

ENOSR

ENOSTR

A non-priority message was specified, the O_NDELAY or O_NONBLOCK
flag is set and the stream write queue is full due to internal flow con
trol conditions.

fd is not a valid file descriptor open for writing.

ctlptr or dataptr points outside the allocated address space.

A signal was caught during the putmsg system call.

An undefined value was specified inflags, or flags is set to RS_HIPRI
and no control part was supplied.

The stream referenced by fd is linked below a multiplexor.

For putpmsg, if flags is set to MSG_HIPRI and band is nonzero.

fildes is open to a device that is in the process of closing.

Buffers could not be allocated for the message that was to be created
due to insufficient STREAMS memory resources.

A stream is not associated with fd.

ENXIO A hangup condition was generated downstream for the specified
stream, or the other end of the pipe is closed.

ERANGE The size of the data part of the message does not fall within the range
specified by the maximum and minimum packet sizes of the topmost
stream module. This value is also returned if the control part of the
message is larger than the maximum configured size of the control
part of a message, or if the data part of a message is larger than the
maximum configured size of the data part of a message.

putmsg also fails if a STREAMS error message had been processed by the stream
head before the call to putmsg. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
getmsg(2), intro(2), poll(2), putmsg(2), read(2), write(2)

163

putmsg (2)

DIAGNOSTICS

164

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

(XENIX System Compatibility)

NAME
rdchk - (XENIX) check to see if there is data to be read

SYNOPSIS
cc [flag . . .]file ... -Ix
rdchk (int fdes) ;

DESCRIPTION

rdchk(2)

rdchk checks to see if a process will block if it attempts to read the file designated
by fdes. rdchk returns 1 if there is data to be read or if it is the end of the file (EOF).
In this context, the proper sequence of calls using rdchk is:

if (rdchk(fildes) > 0)
read (fildes, buffer, nbytes)i

DIAGNOSTICS
rdchk returns -1 if an error occurs (for example, EBADF), 0 if the process will block
if it issues a read and 1 if it is okay to read. EBADF is returned if a rdchk is done on
a semaphore file or if the file specified doesn't exist.

SEE ALSO
read(2)

165

read (2)

NAME
read - read from file

SYNOPSIS
#inelude <sys/types.h>
#inelude <sys/uio.h>
#inelude <unistd.h>

ssize_t read (intfildes, void *buf, size_t nbyte);

int readv (int fildes, struct iovec *iov, int iovcnt);

DESCRIPTION

166

read attempts to read nbyte bytes from the file associated with fildes into the buffer
pointed to by buf. If nbyte is zero, read returns zero and has no other results. fildes
is a file descriptor obtained from a ereat, open, dup, fentl, pipe, or ioetl system
call.

On devices capable of seeking, the read starts at a position in the file given by the
file pointer associated with fildes. On return from read, the file pointer is incre
mented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The
value of a file pointer associated with such a file is undefined.

readv performs the same action as read, but places the input data into the iovcnt
buffers specified by the members of the iov array: iov[O], iov[l], ... , iov[iovcnt-l].

For readv, the iovee structure contains the following members:

addr_t iov_base;
size_t iov_len;

Each iovee entry specifies the base address and length of an area in memory where
data should be placed. readv always fills one buffer completely before proceeding
to the next.

On success, read and readv return the number of bytes actually read and placed in
the buffer; this number may be less than nbyte if the file is associated with a com
munication line [see ioetl(2) and termio(7)], or if the number of bytes left in the
file is less than nbyte, or if the file is a pipe or a special file. A value of 0 is returned
when an end-of-file has been reached.

read reads data previously written to a file. If any portion of an ordinary file prior
to the end of file has not been written, read returns the number of bytes read as O.
For example, the lseek routine allows the file pointer to be set beyond the end of
existing data in the file. If additional data is written at this point, later reads in the
gap between the previous end of data and newly written data return bytes with a
value of 0 until data is written into the gap.

A read or readv from a STREAMS [see intro(2)] file can operate in three different
modes: byte-stream mode, message-nondiscard mode, and message-discard mode.
The default is byte-stream mode. This can be changed using the I_SRDOPT
ioetl(2) request [see streamio(7)], and can be tested with the I_GRDOPT ioetl(2)
request. In byte-stream mode, read and readv usually retrieve data from the
stream until they have retrieved nbyte bytes, or until there is no more data to be
retrieved. Byte-stream mode usually ignores message boundaries.

read (2)

In STREAMS message-nondiscard mode, read and readv retrieve data until they
have read nbyte bytes, or until they reach a message boundary. If read or readv
does not retrieve all the data in a message, the remaining data is replaced on the
stream and can be retrieved by the next read or readv call. Message-discard mode
also retrieves data until it has retrieved nbyte bytes, or it reaches a message boun
dary. However, unread data remaining in a message after the read or readv
returns is discarded, and is not available for a later read, readv, or getmsg [see
getmsg(2)].

When attempting to read from a regular file with mandatory file/record locking set
[see chmod(2)], and there is a write lock owned by another process on the segment
of the file to be read:

If O_NDELAY or O_NONBLOCK is set, read returns -1 and sets errno to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read sleeps until the blocking
record lock is removed.

When attempting to read from an empty pipe (or FIFO):

If no process has the pipe open for writing, read returns 0 to indicate end
of-file.

If some process has the pipe open for writing and O_NDELAY is set, read
returns O.

If some process has the pipe open for writing and O_NONBLOCK is set, read
returns -1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read blocks until data is written to
the pipe or the pipe is closed by all processes that had opened the pipe for
writing.

When attempting to read a file associated with a terminal that has no data currently
available:

If O_NDELAY is set, read returns O.

If O_NONBLOCK is set, read returns -1 and sets errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read blocks until data becomes
available.

When attempting to read a file associated with a stream that is not a pipe or FIFO, or
terminal, and that has no data currently available:

If O_NDELAY or O_NONBLOCK is set, read returns -1 and sets errno to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, read blocks until data becomes
available.

When reading from a STREAMS file, handling of zero-byte messages is determined
by the current read mode setting. In byte-stream mode, read accepts data until it
has read nbyte bytes, or until there is no more data to read, or until a zero-byte mes
sage block is encountered. read then returns the number of bytes read, and places
the zero-byte message back on the stream to be retrieved by the next read or
getmsg [see getmsg(2)]. In the two other modes, a zero-byte message returns a

167

read (2)

168

value of 0 and the message is removed from the stream. When a zero-byte message
is read as the first message on a stream, a value of 0 is returned regardless of the
read mode.

A read or readv from a STREAMS file returns the data in the message at the front of
the stream head read queue, regardless of the priority band of the message.

Normally, a read from a STREAMS file can only process messages with data and
without control information. The read fails if a message containing control infor
mation is encountered at the stream head. This default action can be changed by
placing the stream in either control-data mode or control-discard mode with the
I_SRDOPT ioctl(2). In control-data mode, control messages are converted to data
messages by read. In control-discard mode, control messages are discarded by
read, but any data associated with the control messages is returned to the user.

read and readv fail if one or more of the following are true:

EACCES fildes is open to a dynamic device and read permission is denied.

EAGAIN Mandatory file/record locking was set, O_NDELAY or O_NONBLOCK
was set, and there was a blocking record lock.

EAGAIN

EAGAIN

EAGAIN

EBADF

EBADMSG

EDEADLK

EFAULT

EINTR

EINVAL

EIO

EIO

ENOLCK

ENOLINK

Total amount of system memory available when reading via raw
I/O is temporarily insufficient.

No data is waiting to be read on a file associated with a tty device
and O_NONBLOCK was set.

No message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

fildes is not a valid file descriptor open for reading.

Message waiting to be read on a stream is not a data message.

The read was going to go to sleep and cause a deadlock to occur.

buf points outside the allocated address space.

A signal was caught during the read or readv system call.

Attempted to read from a stream linked to a multiplexor.

A physical I/O error has occurred, or the process is in a back
ground process group and is attempting to read from its control-
ling terminal, and either the process is ignoring or blocking the
SIGTTIN signal or the process group of the process is orphaned.

fildes is open to a device that is in the process of closing.

The system record lock table was full, so the read or readv could
not go to sleep until the blocking record lock was removed.

fildes is on a remote machine and the link to that machine is no
longer active.

In addition, readv may return one of the following errors:

EFAULT

EINVAL

EINVAL

iov points outside the allocated address space.

iovcnt was less than or equal to a or greater than 16.

read (2)

The sum of the iov_len values in the iov array overflowed a 32-bit
integer.

A read from a STREAMS file also fails if an error message is received at the stream
head. In this case, ermo is set to the value returned in the error message. If a
hangup occurs on the stream being read, read continues to operate normally until
the stream head read queue is empty. Thereafter, it returns O.

DIAGNOSTICS

NOTES

On success a non-negative integer is returned indicating the number of bytes actu
ally read. Otherwise, a -1 is returned and ermo is set to identify the error.

read updates the time of last access (see stat(2)) of the file.

SEE ALSO
creat(2), dup(2), fcntl(2), getmsg(2), intro(2), ioctl(2), open(2), pipe(2),
streamio(7), termio(7), tYPes(5)

169

readlink (2)

NAME
readlink - read the value of a symbolic link

SYNOPSIS
#include <unistd.h>

int readlink(const char *path, void *buf,
unsigned int size_t bufSiz) ;

DESCRIPTION
readlink places the contents of the symbolic link referred to by path in the buffer
buf, which has size bufsiz. The contents of the link are not null-terminated when
returned.

readl ink fails and the buffer remains unchanged if:

EACCES Search permission is denied for a component of the path prefix of path.

EACCES

EFAULT

EINVAL

EIO

Read permission is denied on the file named by path.

path or buf extends outside the allocated address space of the process.

The named file is not a symbolic link.

An I/O error occurs while reading from or writing to the file system.

ELOQP Too many symbolic links are encountered in translating path.

ENAMETOOLONG

ENOENT

ENOSYS

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

The named file does not exist.

The file system does not support symbolic links.

DIAGNOSTICS
Upon successful completion readlink returns the number of characters placed in
the buffer; otherwise, it returns -1 and places an error code in errno.

SEE ALSO
realpath(3C), stat(2), symlink(2)

170

rename (2)

NAME
rename - change the name of a file

SYNOPSIS
#include <stdio.h>

int rename(const char *old, const char *new);

DESCRIPTION
rename renames a file. old is a pointer to the pathname of the file or directory to be
renamed. new is a pointer to the new pathname of the file or directory. Both old
and new must be of the same type (either both files, or both directories) and must
reside on the same file system.

If new already exists, it is removed. Thus, if new names an existing directory, the
directory must not have any entries other than, possibly, 1/." and " .. ". When
renaming directories, the new pathname must not name a descendant of old. The
implementation of rename ensures that upon successful completion a link named
new will always exist.

If the final component of old is a symbolic link, the symbolic link is renamed, not the
file or directory to which it points.

Write permission is required for both the directory containing old and the directory
containing new.

rename fails, old is not changed, and no new file is created if one or more of the fol
lowing are true:

EACCES A component of either path prefix denies search permission; one of
the directories containing old or new denies write permission; one of
the directories pointed to by old or new denies write permission; or
new exists and write permission is denied on new.

EBUSY new is a directory and the mount point for a mounted file system.

EDQUOT The directory in which the entry for the new name is being placed
cannot be extended because the user's quota of disk blocks on the file
system containing the directory has been exhausted.

EEXIST

EFAULT

EINVAL

EINTR

EIO

EISDIR

The link named by new is a directory containing entries other than" . "
and" .. ".

old or new points outside the process's allocated address space.

old is a parent directory of new, or an attempt is made to rename" . "
or " •. ".

A signal was caught during execution of the rename system call.

An I/O error occurred while making or updating a directory entry.

new points to a directory but old points to a file that is not a directory.

ELOOP Too many symbolic links were encountered in translating old or new.

EMULTIHOP Components of pathnames require hopping to multiple remote
machines and the file system type does not allow it.

171

rename (2)

ENAMETOOLONG

ENOENT

ENOLINK

ENOSPC

ENOTDIR

EROFS

EXDEV

The length of the old or new argument exceeds {PATH_MAX}, or the
length of a old or new component exceeds {NAMELMAX} while
_POSIX_NO_TRUNC is in effect.

A component of either old or new does not exist, or the file referred to
by either old or new does not exist.

Pathnames point to a remote machine and the link to that machine is
no longer active.

The directory that would contain new is out of space.

A component of either path prefix is not a directory; or the old param
eter names a directory and the new parameter names a file.

The requested operation requires writing in a directory on a read-only
file system.

The links named by old and new are on different file systems.

DIAGNOSTICS

NOTES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

The system can deadlock if there is a loop in the file system graph. Such a loop
takes the form of an entry in directory a, say a/foo, being a hard link to directory b,
and an entry in directory b, say b/bar, being a hard link to directorya. When such a
loop exists and two separate processes attempt to perform rename a/foo b/bar and
rename b/bar a/foo, respectively, the system may deadlock attempting to lock both
directories for modification. The system administrator should replace hard links to
directories by symbolic links.

SEE ALSO
link(2), unlink(2)

172

rmdir(2)

NAME
nndir - remove a directory

SYNOPSIS
#include <unistd.h>

int nndir(const char *path);

DESCRIPTION
rmdir removes the directory named by the path name pointed to by path. The
directory must not have any entries other than" ." and " .. ".

If the directory's link count becomes zero and no process has the directory open,
the space occupied by the directory is freed and the directory is no longer accessi
ble. If one or more processes have the directory open when the last link is removed,
the " ." and " .• " entries, if present, are removed before nndir returns and no new
entries may be created in the directory, but the directory is not removed until all
references to the directory have been closed.

If path is a symbolic link, it is not followed.

Upon successful completion nndir marks for update the st_ctime and st_mtime
fields of the parent directory.

The named directory is removed unless one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix.

EACCES

EACCES

EBUSY

EEXIST

EFAULT

EINVAL

EINVAL

EIO

ELOOP

Write permission is denied on the directory containing the directory
to be removed. .

The parent directory has the sticky bit set and is not owned by the
user; the directory is not owned by the user and is not writable by the
user; the calling process does not have the P _COMPAT privilege.

The directory to be removed is the mount point for a mounted file sys
tem.

The directory contains entries other than those for " ." and " •. ".

path points outside the process's allocated address space.

The directory to be removed is the current directory.

The directory to be removed is the " . " entry of a directory.

An I/O error occurred while accessing the file system.

Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines and
the file system does not allow it.

ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

173

rmdir(2)

ENOTDIR

ENOENT

EROFS

ENOLINK

A component of the path prefix is not a directory.

The named directory does not exist or is the null pathname.

The directory entry to be removed is part of a read-only file system.

path points to a remote machine, and the link to that machine is no
longer active.

DIAGNOSTICS

FILES

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

Message catalog: uxcore. abi

SEE ALSO
directozy(3C), mkdir(l), mkdir(2), mkdirp(3G), nn(l)

174

(XENIX System Compatibility) sdenter(2)

NAME
sdenter, sdIeave - (XENIX) synchronize access to a shared data segment

SYNOPSIS
cc ffLag ...] file . . . -Ix

#include <sys/sd.h>

int sdenter (char *addr I int flags) ;

int sdIeave(char *addr);

DESCRIPTION
sdenter is used to indicate that the current process is about to access the contents
of a shared data segment. The actions performed depend on the value of flags. flags
values are formed by OR-ing together entries from the following list:

SD_NOWAIT If another process has called sdenter but not sdleave for the indi
cated segment, and the segment was not created with the SD_UNLOCK
flag set, return an ENAVAIL error instead of waiting for the segment to
become free.

SD_WRITE Indicates that the process wants to write data to the shared data seg
ment. A process that has attached to a shared data segment with the
SD_RDONLY flag set will not be allowed to enter with the SD_WRITE
flag set.

sdIeave is used to indicate that the current process is done modifying the contents
of a shared data segment.

Only changes made between invocations of sdenter and sdIeave are guaranteed
to be reflected in other processes. sdenter and sdIeave are very fast; conse
quently, it is recommended that they be called frequently rather than leave sdenter
in effect for any period of time. In particular, system calls should be avoided
between sdenter and sdIeave calls.

The fork system call is forbidden between calls to sdenter and sdIeave if the seg
ment was created without the SD_UNLOCK flag.

DIAGNOSTICS
Successful calls return O. Unsuccessful calls return -1 and set ermo to indicate the
error. ermo is set to EINVAL if a process does an sdenter with the SD_WRITE flag
set and the segment is already attached with the SD_RDONLY flag set. ermo is set to
ENAVAIL if the SD_NOWAIT flag is set for sdenter and the shared data segment is
not free.

SEE ALSO
sdget(2), sdgetv(2)

175

sdget (2) (XENIX System Compatibility)

NAME
sdget, sdfree - (XENIX) attach and detach a shared data segment

SYNOPSIS
cc fflag ...] file ... -lx
#inc1ude <sys/sd.h>

char *sdget (char *path, int flags, /* long size, int mode * /) ;

int sdfree(char *addr);

DESCRIPTION
sdget attaches a shared data segment to the data space of the current process. The
actions performed are controlled by the value of flags. flags values are constructed
by an OR of flags from the following list:

SD_RDONLY Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writing.

SD_CREAT If the segment named by path exists and is not in use (active), this flag
will have the same effect as creating a segment from scratch. Other
wise, the segment is created according to the values of size and mode.
Read and write access to the segment is granted to other processes
based on the permissions passed in mode, and functions the same as
those for regular files. Execute permission is meaningless. The seg
ment is initialized to contain all zeroes.

SD_UNLOCK If the segment is created because of this call, the segment will be made
so that more than one process can be between sdenter and sd1eave
calls.

The mode parameter must be included on the first call of the sdget function.

sdfree detaches the current process from the shared data segment that is attached
at the specified address. If the current process has done sdenter but not an
sd1eave for the specified segment, sd1eave will be done before detaching the seg
ment.

When no process remains attached to the segment, the contents of that segment
disappear, and no process can attach to the segment without creating it by using the
SD_CREAT flag in sdget.

RETURN VALUE
On successful completion, the address at which the segment was attached is
returned. Otherwise, -1 is returned, and errno is set to indicate the error.

ERRORS

176

sdget will fail if one or more of the following are true:

ENAMETOOLONG The file name specified is too long.

ELOOP

ENOTDIR

The file name specified is resolvable due to a lengthy symbolic
link.

The path specified contains a non-directory component.

EEXIST

ENOTNAM

EINVAL

SEE ALSO

(XENIX System Compatibility) sdget(2)

A process tried to create a shared data segment that exists and is in
use.

A process attempted an sdget on a file that exists but is not a
shared data type.

A process attempted an sdget on a shared data segment to which
it is already attached.

sdenter(2), sdgetv(2)

177

sdgetv(2) (XENIX System Compatibility)

NAME
sdgetv - (XENIX) synchronize shared data access

SYNOPSIS
cc fflag . . .].file ... -Ix

#include <sys/sd.h>

int sdgetv (addr)

int sdwaitv(char *addr, int vnum);

DESCRIPTION
sdgetv and sdwai tv may be used to synchronize cooperating processes that are
using shared data segments. The return value of both routines is the version
number of the shared data segment attached to the process at address addr. The
version number of a segment changes whenever some process does an sdIeave for
that segment.

sdgetv simply returns the version number of the indicated segment.

sdwai tv forces the current process to sleep until the version number for the indi
cated segment is no longer equal to vnum.

DIAGNOSTICS
Upon successful completion, both sdgetvand sdwaitv return a positive integer
that is the current version number for the indicated shared data segment. Other
wise, a value of -1 is returned, and ermo is set to indicate the error.

SEE ALSO
sdenter(2), sdget(2)

178

secadvise (2)

NAME
secadvise - get kernel advisory access information

SYNOPSIS
#include <sys/secsys.h>

int secadvise(struct obj_attr *oq, int cmd, struct sub_attr *sub);

DESCRIPTION
The secadvise system call is used to get advisory access information from the ker
nel.

The obj argument points to a structure containing the attributes for an object. This
structure is defined in secsys . h as follows:

struct obj_attr
uid_t uid;
gid_t gid;
mode_t mode;
level_t lid;
char filler[8];

};

The level_t argument is ignored unless the Enhanced Security Utilities are
installed.

The cmd argument determines the requested access. The sub argument points to a
structure containing the attributes for a subject. The subject structure is retrieved
through the I_S_RECVFD command of the ioctl system call.

secadvise the following commands:

SA_SUBSIZE Returns the size of the subject attributes structure. The obj and
sub arguments are ignored. This command is provided so that
future changes to the kernel can happen without recompilation of
the application program.

Determines whether sub has read access to obj. If this command
succeeds, it returns 0 to the calling process.

This call will fail, returning -1, if one or more of the following is
true:

[EACCES]

[EFAULT]

if sub does not have read access to obj.

if obj or sub points outside the allocated address
space for the process.

Determines whether sub has write access to obj. If this command
succeeds, it returns 0 to the calling process.

This call will fail, returning -1, if one or more of the following is
true:

[EACCES] if sub does not have write access to obj.

179

secadvise (2)

SEE ALSO

[EFAULT] if obj or sub points outside the allocated address
space for the process.

Determines whether sub has execute access to obj. If this com
mand succeeds, it returns 0 to the calling process.

This call will fait returning -I, if one or more of the following is
true:

[EACCES]

[EPAULT]

if sub does not have execute access to obj.

if obj or sub points outside the allocated address
space for the process.

ioctl(2), streamio(7)

180

semetl (2)

NAME
semctl- semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

union sermm {

} ;

int val;
struct semid_ds *buf;
ushort * array;

int semctl (int semid, int semnum, int cmd, • • • / * union senru.n arg * /) ;
DESCRIPTION

semctl provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid
and semnum:

GETVAL Return the value of sermral [see intro(2)]. {READ}

SETVAL Set the value of sermral to arg.val. {ALTER}. When this com
mand is successfully executed, the semadj value corresponding
to the specified semaphore in all processes is cleared.

GETPID Return the value of (int) seropid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every sermral in the set of sema
phores.

GETALL Place sermrals into array pointed to by arg.array. {READ}

SETALL Set sermrals according to the array pointed to by arg.array.
{ALTER}. When this cmd is successfully executed, the semadj
values corresponding to each specified semaphore in all
processes are cleared.

The following cmds are also available:

IPC_STAT Place the current value of each member of the data structure
associated with semid into the structure pointed to by arg.buf.
The contents of this structure are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data structure
associated with semid to the corresponding value found in the
structure pointed to by arg.buf:

sem-penn. uid
sem-penn.gid
sem-penn.mode /* only access permission bits */

181

semetl (2)

This command can be executed only by a process that has an
effective user ID equal to the value of sem-pe:r:m. cuid or
sem-pe:r:m. uid in the data structure associated with sernid or to a
process that has the P _OWNER privilege.

IPC_RMID Remove the semaphore identifier specified by sernid from the
system and destroy the set of semaphores and data structure
associated with it. This command can be executed only by a
process that has an effective user ID equal to the value of
sem-pe:r:m.cuid or sem-penn.uid in the data structure associ
ated with sernid or to a process that has the P _OWNER privilege.

semctl fails if one or more of the following are true:

EACCES Operation permission is denied to the calling process [see
intro(2)].

EINVAL

EINVAL

EINVAL

EINVAL

EOVERFLOW

ERANGE

EPERM

EFAULT

sernid is not a valid semaphore identifier.

sernnum is less than a or greater than sem_nsems.

cmd is not a valid command.

cmd is IPC_SET and sem-pe:r:m. uid or sem-pe:r:m. gid is not valid.

cmd is IPC_STAT and uid or gid is too large to be stored in the
structure pointed to by arg.buf

crnd is SETVAL or SETALL and the value to which semval is to be
set is greater than the system imposed maximum.

crnd is equal to IPC_RMID or IPC_SET and the effective user ID of
the calling process is not equal to the value of sem-pe:r:m. cuid or
sem-pe:r:m. uid in the data structure associated with sernid and the
calling process does not have P _OWNER privilege.

arg • buf points to an illegal address.

SEE ALSO
intro(2), semget(2), semop(2)

DIAGNOSTICS
Upon successful completion, the value returned depends on crnd as follows:

GETVAL the value of semval
GETPID the value of (int) sempid
GETNCNT the value of semncnt
GETZCNT the value of semzcnt
all others a value of a

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

182

semget(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <~s/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

DESCRIPTION
semget returns the semaphore identifier associated with key .

A semaphore identifier and associated data structure and set containing nsems
semaphores [see intro(2)] are created for key if one of the following is true:

key is equal to IPC_PRIVATE.

key does not already have a semaphore identifier associated with it, and
(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is ini
tialized as follows:

sem-perm.cuid, sem-perm.uid, sem-perm.cgid, and sem-perm.gid are
set equal to the effective user ID and effective group ID, respectively, of the
calling process.

The access permission bits of sem-penn.mode are set equal to the access per
mission bits of semflg.

sem_nsems is set equal to the value of nsems.

sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

semget fails if one or more of the following are true:

EINVAL nsems is either less than or equal to zero or greater than the
system-imposed limit.

EACCES

EINVAL

ENOENT

ENOSPC

ENOSPC

A semaphore identifier exists for key, but operation permission
[see intro(2)] as specified by the low-order 9 bits of semflg would
not be granted.

A semaphore identifier exists for key, but the number of sema
phores in the set associated with it is less than nsems, and nsems is
not equal to zero.

A semaphore identifier does not exist for key and
(semflg&IPC_CREAT) is false.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphore identifiers
system wide would be exceeded.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores system
wide would be exceeded.

183

semget(2)

EEXIST A semaphore identifier exists for key but both (semjlg&IPC_CREAT)
and (semjlg&IPC_EXCL) are both true.

SEE ALSO
intro(2), semctl(2), semop(2), stdipc(3C)

DIAGNOSTICS

184

Upon successful completion, a non-negative integer, namely a semaphore identifier,
is returned. Otherwise, a value of -1 is returned and ermo is set to indicate the
error.

semop(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(int semid, struct sambuf *sops, size_t nsops);

DESCRIPTION
semop is used to perform atomically an array of semaphore operations on the set of
semaphores associated with the semaphore identifier specified by semid. sops is a
pointer to the array of semaphore-operation structures. nsops is the number of such
structures in the array. The contents of each structure includes the following
members:

short sem_num; / * semaphore number * /
short sem_QP; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding
semaphore specified by semid and sem_num.

sem _op specifies one of three semaphore operations as follows, depending on
whether its value is negative, positive, or zero:

If sem_op is a negative integer, one of the following occurs: {ALTER}

If semval [see intro(2)] is greater than or equal to the absolute value of
sem_op, the absolute value of sem_op is subtracted from semval. Also, if
(semJ!g&SEM_UNDO) is true, the absolute value of sem_op is added to the calling
process's semadj value [see exit(2)] for the specified semaphore.

If semval is less than the absolute value of sem_op and (semJ!g&IPC_NOWAIT)
is true, semop returns immediately.

If semval is less than the absolute value of sem_op and (semJ!g&IPC_NOWAIT)
is false, Semop increments the senm.cnt associated with the specified sema
phore and suspends execution of the calling process until one of the following
conditions occur.

semval becomes greater than or equal to the absolute value of sem_op.
When this occurs, the value of senm.cnt associated with the specified sema
phore is decremented, the absolute value of sem _op is subtracted from sem
val and, if (semJ!g&SEM_UNDO) is true, the absolute value of sem_op is
added to the calling process's semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from
the system [see semctl(2)]. When this occurs, ermo is set equal to EIDRM,
and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs,
the value of senm.cnt associated with the specified semaphore is decre
mented, and the calling process resumes execution in the manner
prescribed in signal(2).

185

semop(2)

186

If sem_op is a positive integer, the value of sem_op is added to semval and, if
(semJig&SErfCUNOO) is true, the value of sem_op is subtracted from the calling
process's semadj value for the specified semaphore. {ALTER}

If sem_op is zero, one of the following occurs: {READ}

If semval is zero, semop returns immediately.

If semval is not equal to zero and (sem Jig& I PC_NOWAIT) is true, semop
returns immediately.

If semval is not equal to zero and (sem Jig& I PC_NOWAIT) is false, sem.op incre
ments the sem.zcnt associated with the specified semaphore and suspends
execution of the calling process until one of the following occurs:

semval becomes zero, at which time the value of sem.zcnt associated with
the specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed from
the system. When this occurs, ermo is set equal to EIDRM, and a value of
-1 is returned.

The calling process receives a signal that is to be caught. When this occurs,
the value of sem.zcnt associated with the specified semaphore is decre
mented, and the calling process resumes execution in the manner
prescribed in signal(2).

semop fails if one or more of the following are true for any of the semaphore opera
tions specified by sops:

EINVAL

EFBIG

E2BIG

EACCES

EAGAIN

ENOSPC

EINVAL

ERANGE

ERANGE

semid is not a valid semaphore identifier.

sem _ num is less than zero or greater than or equal to the number of
semaphores in the set associated with semid. In this instance, the
signal SIGXFSZ will not be generated. However, if file sizes are too
big, the signal SIGXFSZ will be generated.

nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process [see
intro(2)].

The operation would result in suspension of the calling process but
(sem Jig&IPC_NOWAIT) is true.

The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.

The number of individual semaphores for which the calling pro
cess requests a SEl·CUNOO would exceed the limit.

An operation would cause a semval to overflow the system
imposed limit.

An operation would cause a semadj value to overflow the
system-imposed limit.

semop(2)

EFAULT sops points to an illegal address.

Upon successful completion, the value of seIli>id for each semaphore specified in
the array pointed to by sops is set equal to the process ID of the calling process.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2)

DIAGNOSTICS
If semop returns due to the receipt of a signal, a value of -1 is returned to the calling
process and ermo is set to EINTR. If it returns due to the removal of a semid from
the system, a value of -1 is returned and ermo is set to EIDRM.

Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

187

setpgid (2)

NAME
setpgid - set process group ID

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION
setpgid sets the process group IO of the process with IO pid to pgid. If pgid is equal
to pid, the process becomes a process group leader. If pgid is not equal to pid, the
process becomes a member of an existing process group.

If pid is equal to 0, the process IO of the calling process is used. If pgid is equal to 0,
the process specified by pid becomes a process group leader.

setpgid fails and returns an error if one or more of the following are true:

EACCES pid matches the process IO of a child process of the calling process
and the child process has successfully executed an exec(2) func
tion.

EINVAL

EINVAL

EPERM

EPERM

EPERM

ESRCH

pgid is less than (pid_t) 0, or greater than or equal to {PID_MAX}.

The calling process has a controlling terminal that does not sup
port job control.

The process indicated by the pid argument is a session leader.

pid matches the process IO of a child process of the calling process
and the child process is not in the same session as the calling pro
cess.

pgid does not match the process IO of the process indicated by the
pid argument and there is no process with a process group IO that
matches pgid in the same session as the calling process.

pid does not match the process IO of the calling process or of a
child process of the calling process.

SEE ALSO
exec(2), exit(2), fork(2), getpid(2), setsid(2)

DIAGNOSTICS

188

Upon successful completion, setpgid returns a value of 0. Otherwise, a value of-1
is returned and errno is set to indicate the error.

NAME
setpgrp - set process group ID

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t setpgrp (void);

DESCRIPTION

setpgrp(2)

If the calling process is not already a session leader, setpgrp sets the process group
ID and session ID of the calling process to the process ID of the calling process, and
releases the calling process's controlling terminal.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), setsid(2), signal(2)

DIAGNOSTICS
setpgrp returns the value of the new process group ID.

NOTES
setpgrp will be phased out in favor of the setsid(2) function.

189

setsid (2)

NAME
setsid - set session ID

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
If the calling process is not already a process group leader, setsid sets the process
group ID and session ID of the calling process to the process ID of the calling pro
cess, and releases the process's controlling terminal.

setsid will fail and return an error if the following is true:

EPERM The calling process is already a process group leader, or there are
processes other than the calling process whose process group ID is
equal to the process ID of the calling process.

SEE ALSO

NOTES

exec(2), exit(2), fork(2), getpid(2), getsid(2), intro(2), setpgid(2), setpgrp,
signal(2), sigsend(2)

If the calling process is the last member of a pipeline started by a job control shell,
the shell may make the calling process a process group leader. The other processes
of the pipeline become members of that process group. In this case, the call to set
sid will fail. For this reason, a process that calls setsid and expects to be part of a
pipeline should always first fork; the parent should exit and the child should call
setsid, thereby insuring that the process will work reliably when started by both
job control shells and non-job control shells.

DIAGNOSTICS

190

Upon successful completion, setsid returns the calling process's session rD.
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

setuid (2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

DESCRIPTION
The setuid system call sets the real user ID, effective user ID, and saved user ID of
the calling process. The setgid system call sets the real group ID, effective group
ID, and saved group ID of the calling process.

At login time, the real user ID, effective user ID, and saved user ID of the login pro
cess are set to the login ID of the user responsible for the creation of the process.
The same is true for the real, effective, and saved group IDs; they are set to the
group ID of the user responsible for the creation of the process.

When a process calls exec(2) to execute a file (program), the user and/or group
identifiers associated with the process can change:

The real user and group IDs are always set to the real user and group IDs of
the process calling exec.

The saved user and group IDs of the new process are always set to the effec
tive user and group IDs of the process calling exec.

If the file executed is not a set-user-ID or set-group-ID file, the effective user
and group IDs of the new process are set to the effective user and group IDs
of the process calling exec.

If the file executed is a set-user-ID file, the effective user ID of the new pro
cess is set to the owner ID of the executed file.

If the file executed is a set-group-ID file, the effective group ID of the new
process is set to the group ID of the executed file.

The following subsections describe the behavior of setuid and setgid with respect
to the three types of user and group IDs.

setuid
If the calling process has the P_SETUID privilege, the real, effective, and saved user
IDs are set to the uid parameter.

If the calling process does not have the P _SETUID privilege, but uid is either the real
user ID or the saved user ID of the calling process, the effective user ID is set to uid.

setgid
If the calling process has the P _SETUID privilege, the real, effective, and saved
group IDs are set to the gid parameter.

If the calling process does not have the P _SETUID privilege, but gid is either the real
group ID or the saved group ID of the calling process, the effective group ID is set to
gid.

191

setuid (2)

setuid and setgid fail if one or more of the following is true:

EPERM For setuid, the calling process does not have the P _SETUID privilege
and the uid parameter does not match either the real or saved user IDs.
For setgid, the calling process does not have the P _SETUID privilege
and the gid parameter does not match either the real or saved group IDs.

EINVAL The uid or gid is out of range.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
exec(2), getgroups(2), getuid(2), intro(2), stat(5)

192

shmctl(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid, int cmd, •.. /* struct shmid_ds *buf * /) ;

DESCRIPTION
shmctl provides a variety of shared memory control operations as specified by
cmd. The following cmds are available:

Place the current value of each member of the data structure asso
ciated with shmid into the structure pointed to by buf The con
tents of this structure are defined in intro(2). {READ}

Set the value of the following members of the data structure asso
ciated with shmid to the corresponding value found in the struc
ture pointed to by buf

shm-penn.uid
shm-penn.gid
shm-penn.mode /* only access pennission bits */

This command can be executed only by a process that has an
effective user ID equal to the value of shm-penn. cuid or
shm-penn. uid in the data structure associated with shmid or to a
process that has the P_OWNER privilege.

Remove the shared memory identifier specified by shmid from the
system and destroy the shared memory segment and data struc
ture associated with it. This command can be executed only by a
process that has an effective user ID equal to the value of
shm-penn. cuid or shm-penn. uid in the data structure associated
with shmid or to a process that has the P_OWNER privilege.

shmctl fails if one or more of the following are true:

EACCES cmd is equal to IPC_STAT and {READ} operation permission is denied
to the calling process [see intro(2)].

EINVAL

EINVAL

EINVAL

shmid is not a valid shared memory identifier.

cmd is not a valid command.

cmd is IPC_SET and shm-penn. uid or shm-penn. gid is not valid.

EOVERFLOW cmd is IPC_STAT and uid or gid is too large to be stored in the structure
pointed to by buf

EPERM cmd is equal to IPC_RMID or IPC_SET and the effective user is not
equal to the value of shm-penn.cuid or shm-penn.uid in the data
structure associated with shmid and the process does not have the
P _OWNER privilege.

193

shmctl(2)

EFAULT

ENOMEM

buj points to an illegal address.

cmd is equal to Sm-CLOCK and there is not enough memory.

seE ALSO
shmget(2), shmop(2)

DIAGNOSTICS

NOTES

194

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

The user must explicitly remove shared memory segments after the last reference to
them has been removed.

shmget(2)

NAME
shmget - get shared memory segment identifier

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, int size, int shmflg);

DESCRIPTION
shmget returns the shared memory identifier associated with key .

A shared memory identifier and associated data structure and shared memory seg
ment of at least size bytes [see intro(2)] are created for key if one of the following
are true:

key is equal to I PC_PRIVATE.

key does not already have a shared memory identifier associated with it, and
(shmflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier
is initialized as follows:

shm-perm.cuid, shm-perm.uid, shm-perm.cgid, and shm-perm.gid are
set equal to the effective user ID and effective group ID, respectively, of the
calling process.

The access permission bits of shm-perm.mode are set equal to the access per
mission bits of shmflg. shm_segsz is set equal to the value of size.

shm_lpid, shm_nattch shm_atime, and shm_dtime are set equal to O.

shm_ctime is set equal to the current time.

shmget fails if one or more of the following are true:

EINVAL size is less than the system-imposed minimum or greater than the
system-imposed maximum.

EACCES A shared memory identifier exists for key but operation permission
[see intro(2)] as specified by the low-order 9 bits of shmflg would
not be granted.

EINVAL

ENOENT

ENOS PC

ENOMEM

A shared memory identifier exists for key but the size of the seg
ment associated with it is less than size and size is not equal to zero.

A shared memory identifier does not exist for key and
(shmflg&IPC_CREAT) is false.

A shared memory identifier is to be created but the system
imposed limit on the maximum number of allowed shared
memory identifiers system wide would be exceeded.

A shared memory identifier and associated shared memory seg
ment are to be created but the amount of available memory is not
sufficient to fill the request.

195

shmget(2)

EEXIST A shared memory identifier exists for key but both
(shmflg&IPC_CREAT) and (shmflg&IPC_EXCL) are true.

SEE ALSO
intro(2), shmctl(2), shmop(2), stdipc(3C)

DIAGNOSTICS

NOTES

196

Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of -1 is returned and ermo is set to indi-
cate the error. .

The user must explicitly remove shared memory segments after the last reference to
them has been removed.

shmop(2)

NAME
shmop: shmat, shmdt - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void * shmat (int shmid, void *shmaddr, int shmjlg);

int shmdt (void *shmaddr);

DESCRIPTION
shmat attaches the shared memory segment associated with the shared memory
identifier specified by shmid to the data segment of the calling process. The segment
is attached at the address specified by one of the following criteria:

If shmaddr is equal to (void *) 0, the segment is attached at the first avail
able address as selected by the system.

If shmaddr is not equal to (void *) 0 and (shmjlg&sH1'CRND) is true, the seg
ment is attached at the address given by (shmaddr - (shmaddr modulus
SHMLBA)).

If shmaddr is not equal to (void *) 0 and (shmjlg&SHbICRND) is false, the seg
ment is attached at the address given by shmaddr.

shmdt detaches from the calling process's data segment the shared memory seg
ment located at the address specified by shmaddr.

The segment is attached for reading if (shmjlg&SHJ.lCRDONLY) is true {READ}, other
wise it is attached for reading and writing {READ/WRITE}.

shmat fails and does not attach the shared memory segment if one or more of the
following are true:

EINVAL

EACCES

ENOMEM

EINVAL

EINVAL

EMFILE

EINVAL

shmid is not a valid shared memory identifier.

Operation permission is denied to the calling process [see
intro(2)].

The available data space is not large enough to accommodate the
shared memory segment.

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr
modulus SHMLBA)). is an illegal address.

shmaddr is not equal to zero, (shmjlg&SID/CRNO) is false, and the
value of shmaddr is an illegal address.

The number of shared memory segments attached to the calling
process would exceed the system-imposed limit.

shmdt fails and does not detach the shared memory segment if
shmaddr is not the data segment start address of a shared memory
segment.

197

shmop(2)

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2)

DIAGNOSTICS

NOTES

198

Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached shared
memory segment.

shmdt returns a value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

The user must explicitly remove shared memory segments after the last reference to
them has been removed.

sigaction (2)

NAME
sigaction - detailed signal management

SYNOPSIS
#include <signal.h>

int sigaction (int sig, const struct sigaction *act,
struct sigaction *oact);

DESCRIPTION
sigaction allows the calling process to examine and/or specify the action to be
taken on delivery of a specific signaL [See signal(5) for an explanation of general
signal concepts.]

sig specifies the signal and can be assigned any of the signals specified in signal(5)
except SIGKILL and SIGSTOP

If the argument act is not NULL, it points to a structure specifying the new action to
be taken when delivering sig. If the argument oact is not NULL, it points to a struc
ture where the action previously associated with sig is to be stored on return from
sigaction.

The sigaction structure includes the following members:

void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;

sa_handler specifies the disposition of the signal and may take any of the values
specified in signal(5).

sa_mask specifies a set of signals to be blocked while the signal handler is active.
On entry to the signal handler, that set of signals is added to the set of signals
already being blocked when the signal is delivered. In addition, the signal that
caused the handler to be executed will also be blocked, unless the SA_NODEFER flag
has been specified. SIGSTOP and SIGKILL cannot be blocked (the system silently
enforces this restriction).

sa_flags specifies a set of flags used to modify the delivery of the signaL It is
formed by a logical OR of any of the following values:

SA_ONSTACK If set and the signal is caught and an alternate signal stack has
been declared with sigaltstack(2), the signal is delivered to the
calling process on that stack. Otherwise, the signal should be
delivered on the current stack.

SA_RESETHAND If set and the signal is caught, the disposition of the signal is reset
to SIG_DFL and the signal will not be blocked on entry to the sig
nal handler (SIGILL, SIGTRAP, and SIGPWR cannot be automati
cally reset when delivered; the system silently enforces this res
triction).

SA_NODEFER If set and the signal is caught, the signal will not be automatically
blocked by the kernel while it is being caught.

199

sigaction (2)

If set and the signal is caught, a system call that is interrupted by
the execution of this signal's handler is transparently restarted by
the system. Otherwise, that system call returns an EINTR error.

If cleared and the signal is caught, sig is passed as the only argu
ment to the signal-catching function. If set and the signal is
caught, two additional arguments are passed to the signal
catching function. If the second argument is not equal to NULL, it
points to a siginfo_t structure containing the reason why the
signal was generated [see siginfo(5)]; the third argument points
to a ucontext_t structure containing the receiving process's con
text when the signal was delivered [see ucontext(5)].

SA_NOCLDWAIT If set and sig equals SIGCHLD, the system will not create zombie
processes when children of the calling process exit. If the calling
process subsequently issues a wait(2), it blocks until all of the cal
ling process's child processes terminate, and then returns a value
of -1 with errno set to ECHILD.

SA_NOCLDSTOP If set and sig equals SIGCHLD, sig will not be sent to the calling
process when its child processes stop or continue.

sigaction fails if any of the following is true:

EINVAL The value of the sig argument is not a valid signal number or is
equal to SIGKILL or SIGSTOP.

EFAULT

DIAGNOSTICS

act or oact points outside the process's allocated address space.

On success, sigaction returns zero. On failure, it returns -1 and sets errno to
indicate the error.

SEE ALSO

NOTES

200

exit(2), intro(2), kill(l), kil1(2), pause(2), sigaltstack(2), siginfo(5), sig
nal(2), signal(5), sigprocmask(2), sigsend(2), sigsetops(3C), sigsuspend(2),
ucontext(5), wait(2)

If the system call is reading from or writing to a terminal and the terminal's NOFLSH
bit is cleared, data may be flushed [see tennio(7)].

sigaltstack (2)

NAME
sigaltstack - set or get signal alternate stack context

SYNOPSIS
#include <signal.h>

int sigaltstack(const stack_t *ss, stack_t *oss);

DESCRIPTION
sigaltstack allows users to define an alternate stack area on which signals are to
be processed. If ss is non-zero, it specifies a pointer to, and the size of a stack area
on which to deliver signals, and tells the system if the process is currently executing
on that stack. When a signal's action indicates its handler should execute on the
alternate signal stack [specified with a sigaction(2) call], the system checks to see
if the process is currently executing on that stack. If the process is not currently
executing on the signal stack, the system arranges a switch to the alternate signal
stack for the duration of the signal handler's execution.

The structure sigal tstack includes the following members.

char *ss_sp
int ss_size
int ss_flags

If ss is not NULL, it points to a structure specifying the alternate signal stack that will
take effect upon return from sigaltstack. The ss_sp and ss_size fields specify
the new base and size of the stack, which is automatically adjusted for direction of
growth and alignment. The ss_flags field specifies the new stack state and may
be set to the following:

SS_DISABLE The stack is to be disabled and ss_sp and ss_size are ignored. If
SS_DISABLE is not set, the stack will be enabled. SS_DISABLE is the
only way users can disable the alternate signal stack.

If ass is not NULL, it points to a structure specifying the alternate signal stack that
was in effect prior to the call to sigaltstack. The ss_sp and ss_size fields
specify the base and size of that stack. The ss_flags field specifies the stack's
state, and may contain the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack.
Attempts to modify the alternate signal stack while the process is
executing on it will fail. SS_ONSTACK cannot be modified by users.

SS_DISABLE The alternate signal stack is currently disabled.

sigal tstack fails if any of the following is true:

EFAULT

EINVAL

Either ss or ass points outside the process's allocated address space.

If ss is non-null, and the ss_flags field pointed to by ss contains
invalid flags. The only flag considered valid is SS_DISABLE.

201

sigaltstack (2)

NOTES

EPERM

ENOMEM

If an attempt was made to modify an active stack.

The size of the alternate stack area is less than MINSIGSTKSZ.

The value SIGSTKSZ is defined to be the number of bytes that would be used to
cover the usual case when allocating an alternate stack area. The value
MINSIGSTKSZ is defined to be the minimum stack size for a signal handler. In com
puting an alternate stack size, a program should adc:l that amount to its stack
requirements to allow for the operating system overhead.

The following code fragment is typically used to allocate an alternate stack.

if «sigstk.ss_sp = (char *)malloc(SIGSTKSZ» == NULL)
/* error return */;

sigstk.ss_size = SIGSTKSZ;
sigstk.ss_flags = 0;
if (sigaltstack(&sigstk, (stack_t *)0) < 0)

perror(Jlsigaltstack");

SEE ALSO
getcontext(2), sigaction(2), sigsetjlli>(3C), ucontext(5)

DIAGNOSTICS

202

On success, sigaltstack returns zero. On failure, it returns -1 and sets errno to
indicate the error.

NAME

signal (2)

signal, sigset, sighold, sigrelse, sigignore, sigpause - simplified signal
management

SYNOPSIS
#include <signal.h>

void (* signal (int sig, void (*disp) (int))) (int) ;

void (* sigset (int sig, void (*disp) (int))) (int) ;

int sighold(int sig);

int sigrelse (int sig);

int sigignore (int sig);

int sigpause (int sig);

DESCRIPTION

NOTES

These functions provide simplified signal management for application processes.
See signal(5) for an explanation of general signal concepts.

signal and sigset are used to modify signal dispositions. sig specifies the signal,
which may be any signal except SIGKILL and SIGSTOP. disp specifies the signal's
disposition, which may be SIG_DFL, SIG_IGN, or the address of a signal handler. If
signal is used, disp is the address of a signal handler, and sig is not SIGILL,
SIGTRAP, or SIGPWR, the system first sets the signal's disposition to SIG_DFL before
executing the signal handler. If sigset is used and disp is the address of a signal
handler, the system adds sig to the calling process's signal mask before executing
the signal handler; when the signal handler returns, the system restores the calling
process's signal mask to its state prior to the delivery of the signal. In addition, if
sigset is used and disp is equal to SIG_HOLD, sig is added to the calling process's
signal mask and the signal's disposition remains unchanged. However, if sigset is
used and disp is not equal to SIG_HOLD, sig will be removed from the calling
process's signal mask.

sighold adds sig to the calling process's signal mask.

sigrelse removes sig from the calling process's signal mask.

sigignore sets the disposition of sig to SIG_IGN.

sigpause removes sig from the calling process's signal mask and suspends the cal
ling process until a signal is received.

These functions fail if any of the following are true.

EINVAL

EINTR

The value of the sig argument is not a valid signal or is equal to
SIGKILL or SIGSTOP.

A signal was caught during the system call sigpause.

sighold in conjunction with sigrelse or sigpause may be used to establish criti
cal regions of code that require the delivery of a signal to be temporarily deferred.

203

signal (2)

If signal or sigset is used to set SIGCHLD's disposition to a signal handler,
SIGCHLD will not be sent when the calling process's children are stopped or
continued.

If any of the above functions are used to set SIGCHLD's disposition to SIG_IGN, the
calling process's child processes will not create zombie processes when they ter
minate [see exit(2)]. If the calling process subsequently waits for its children, it
blocks until all of its children terminate; it then returns a value of -1 with ermo set
to ECHILD [see wait(2), waitid(2)].

DIAGNOSTICS
On success, signal returns the signal's previous disposition. On failure, it returns
SIG_ERR and sets ermo to indicate the error.

On success, sigset returns SIG_HOLD if the signal had been blocked or the signal's
previous disposition if it had not been blocked. On failure, it returns SIG_ERR and
sets ermo to indicate the error.

All other functions return zero on success. On failure, they return -1 and set ermo
to indicate the error.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(5), sigsend(2), wait(2), waitid(2)

204

sigpending (2)

NAME
sigpending - examine signals that are blocked and pending

SYNOPSIS
#include <signal.h>

int sigpending(sigset_t *set);

DESCRIPTION
The sigpending function retrieves those signals that have been sent to the calling
process but are being blocked from delivery by the calling process's signal mask.
The signals are stored in the space pointed to by the argument set.

sigpending fails if the following is true:

EFAULT

SEE ALSO

The set argument points outside the process's allocated address
space.

sigaction(2), sigprocmask(2), sigsetops(3C)

DIAGNOSTICS
On success, sigpending returns zero. On failure, it returns -1 and sets ermo to
indicate the error.

205

sigprocmask (2)

NAME
sigprocmask - change or examine signal mask

SYNOPSIS
#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

DESCRIPTION
The sigprocmask function is used to examine and/or change the calling process's
signal mask. If the value is SIG_BLOCK, the set pointed to by the argument set is
added to the current signal mask. If the value is SIG_UNBLOCK, the set pointed by
the argument set is removed from the current signal mask. If the value is
SIG_SETMASK, the current signal mask is replaced by the set pointed to by the argu
ment set. If the argument oset is not NULL, the previous mask is stored in the space
pointed to by oset. If the value of the argument set is NULL, the value how is not
significant and the process's signal mask is unchanged; thus, the call can be used to
enquire about currently blocked signals.

If there are any pending unblocked signals after the call to sigprocmask, at least
one of those signals will be delivered before the call to sigprocmask returns.

It is not possible to block those signals that cannot be ignored [see sigaction(2)];
this restriction is silently imposed by the system.

If sigprocmask fails, the process's signal mask is not changed.

sigprocmask fails if any of the following is true:

EINVAL The value of the how argument is not equal to one of the defined
values.

EFAULT The value of set or oset points outside the process's allocated
address space.

SEE ALSO
sigaction(2), signal(2), signal(5), sigsetops(3C)

DIAGNOSTICS

206

On success, sigprocmask returns zero. On failure, it returns -1 and sets errno to
indicate the error.

(XENIX System Compatibility) sigsem (2)

NAME
sigsem - (XENIX) signal a process waiting on a semaphore

SYNOPSIS
cc fflag . . .]file ... -Ix
sigsem (int sem _ num) ;

DESCRIPTION
sigsem signals a process that is waiting on the semaphore sem _num that it may
proceed and use the resource governed by the semaphore. sigsem is used in con
junction with waitsem to allow synchronization of processes wishing to access a
resource. One or more processes may wai tsem on the given semaphore and will be
put to sleep until the process which currently has access to the resource issues a
sigsem call. If there are any waiting processes, sigsem causes the process which is
next in line on the semaphore's queue to be rescheduled for execution. The
semaphore's queue is organized in First In, First Out (FIFO) order.

DIAGNOSTICS
sigsem returns the value (int) -1 if an error occurs. If sem num does not refer to a
semaphore type file, ermo is set to ENOTNAM. If sem _ num has not been previously
opened by opens em, ermo is set to EBADF. If the process issuing a sigsem call is
not the current "owner" of the semaphore (that is, if the process has not issued a
waitsem call before the sigsem), ermo is set to ENAVAIL.

SEE ALSO
creatsem(2), opensem(2), waitsem(2)

207

sigsend (2)

NAME
sigsend, sigsendset - send a signal to a process or a group of processes

SYNOPSIS
#include <sys/types.h>
#include <signal.h>
#include <sys/procset.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(const procset_t *psp, int sig);

DESCRIPTION

208

sigsend sends a signal to the process or group of processes specified by id and
idtype. The signal to be sent is specified by sig and is either zero or one of the values
listed in signal(5). If sig is zero (the null signal), error checking is performed but
no signal is actually sent. This value can be used to check the validity of id and
idtype.

In order to send the signal to the target process (pid), the sending process must have
permission to do so, subject to the following ownership restrictions:

The real or effective user ID of the sending process must match the real or
saved [from exec(2)] user ID of the receiving process, unless the sending
process has the P _OWNER privilege, or sig is SIGCONT and the sending pro
cess has the same session ID as the receiving process.

If idtype is P _PIO, sig is sent to the process with process ID id.

If idtype is P_PGIO, sig is sent to any process with process group ID id.

If idtype is P _SIO, sig is sent to any process with session ID id.

If idtype is P_UIO, sig is sent to any process with effective user ID id.

If idtype is P _GIO, sig is sent to any process with effective group ID id.

If idtype is P_CIO, sig is sent to any process with scheduler class ID id [see
priocntl(2)].

If idtype is P _ALL, sig is sent to all processes and id is ignored.

If id is P_MYIO, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process
ID of 1 is excluded unless idtype is equal to P _PIO.

sigsendset provides an alternate interface for sending signals to sets of processes.
This function sends signals to the set of processes specified by psp. psp is a pointer
to a structure of type procset_t, defined in sys/procset .h, which includes the
following members:

idop_t
idtype_t
id_t
idtype_t
id_t

p_op;
p_lidtype;
p_lid;
p_ridtype;
p_rid;

sigsend (2)

p_lidtype and p_lid specify the ID type and ID of one ("left") set of processes;
p_ridtype and p_rid specify the ID type and ID of a second ("right") set of
processes. ID types and IDs are specified just as for the idtype and id arguments to
sigsend. p_op specifies the operation to be performed on the two sets of processes
to get the set of processes the system call is to apply to. The valid values for p_op
and the processes they specify are:

POP _DIFF set difference: processes in left set and not in right set

POP_AND set intersection: processes in both left and right sets

POP_OR set union: processes in either left or right set or both

POP _XOR set exclusive-or: processes in left or right set but not in both

sigsend and sigsendset fail if one or more of the following are true:

EINVAL sig is not a valid signal number.

EINVAL idtype is not a valid idtype field.

EPERM sig is SIGKILL, idtype is P_PID and id is 1 (proc1).

EPERM The calling process does not have the P _OWNER privilege, the real or
effective user ID of the sending process does not match the real or

ESRCH

effective user ID of the receiving process, and the calling process is not
sending SIGCONT to a process that shares the same session.

No process can be found corresponding to that specified by id and
idtype.

In addition, sigsendset fails if:

EFAULT psp points outside the process's allocated address space.

SEE ALSO
getpid(2), kill(l), kill(2), priocntl(2), signal(2), signal(5)

DIAGNOSTICS
On success, sigsend returns zero. On failure, it returns -1 and sets errno to
indicate the error.

209

sigsuspend (2)

NAME
sigsuspend - install a signal mask and suspend process until signal

SYNOPSIS
#include <signal.h>

int sigsuspend (const sigset_t *set);

DESCRIPTION
sigsuspend replaces the process's signal mask with the set of signals pointed to by
the argument set and then suspends the process until delivery of a signal whose
action is either to execute a signal catching function or to terminate the process.

If the action is to terminate the process, sigsuspend does not return. If the action is
to execute a signal catching function, sigsuspend returns after the signal catching
function returns. On return, the signal mask is restored to the set that existed
before the call to sigsuspend.

It is not possible to block those signals that cannot be ignored [see signal(5)]; this
restriction is silently imposed by the system.

sigsuspend fails if either of the following is true:

EINTR A signal is caught by the calling process and control is returned
from the signal catching function.

EFAULT The set argument points outside the process's allocated address
space.

DIAGNOSTICS
Since sigsuspend suspends process execution indefinitely, there is no successful
completion return value. On failure, it returns -1 and sets errno to indicate the
error.

SEE ALSO
sigaction(2), signal(5) sigpause(3), sigprocmask(2), sigsetops(3C)

210

stat (2)

NAME
stat, 1stat, fstat - get file status

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/stat.h>

int stat (canst char *path, struct stat *bUf);

int 1stat (canst char *path, struct stat *buf>;

int f stat (int fildes, struct stat * buf) ;

DESCRIPTION
path points to a path name naming a file. Read, write, or execute permission of the
named file is not required, but all directories listed in the path name leading to the
file must be searchable. stat obtains information about the named file.

Note that in a Remote File Sharing environment, the information returned by stat
depends on the user/group mapping set up between the local and remote comput
ers. [See id10ad(lM).]

1stat obtains file attributes similar to stat, except when the named file is a sym
bolic link; in that case 1stat returns information about the link, while stat returns
information about the file the link references.

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful creat, open, dup, fcnt1, pipe, or ioct1 system call.

buf is a pointer to a stat structure into which information is placed concerning the
file.

The contents of the structure pointed to by buf include the following members:

mode_t
ino_t
dev_t

st_ino;
st_dev;

n1ink_t st_n1ink;
uid_t st_uid;
gid_t st~id;

off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

/* File mode [see mknod(2)] */
/* Inode number */
/* ID of device containing */
/* a directory entry for this file */
/* ID of device */
/* This entry is defined only for */
/* char special or block special files */
/* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group */
/* File size in bytes */
/* Time of last access */
/* Time of last data modification */
/* Time of last file status change */
/* Times measured in seconds since */

long
long

/* 00:00:00 UTC, Jan. 1, 1970 */
st_b1ksize; /* Preferred I/O block size */
st_b10cks; /* Number st_b1ksize blocks allocated */

211

stat (2)

212

st_nlink

st_uid

st-9i d

st_size

The mode of the file as described in mknod(2). In addition to the
modes described in mknod(2), the mode of a file may also be
S_IFLNK if the file is a symbolic link. (Note that S_IFLNK may
only be returned by lstat.)

This field uniquely identifies the file in a given file system. The
pair st_ino and st_dev uniquely identifies regular files.

This field uniquely identifies the file system that contains the file.
Its value may be used as input to the ustat system call to deter
mine more information about this file system. No other meaning
is associated with this value.

This field should be used only by administrative commands. It is
valid only for block special or character special files and only has
meaning on the system where the file was configured.

This field should be used only by administrative commands.

The user ID of the file's owner.

The group ID of the file's group.

For regular files, this is the address of the end of the file. For
block special or character special, this is not defined. See also
pipe(2).

Time when file data was last accessed. Changed by the following
system calls: creat, mknod, pipe, utim.e, and read.

Time when data was last modified. Changed by the following
system calls: creat, mknod, pipe, utim.e, and write.

Time when file status was last changed. Changed by the follow
ing system calls: chmod, chown, creat, link, mknod, pipe,
unlink, utim.e, and write.

A hint as to the "best" unit size for II 0 operations. This field is
not defined for block-special or character-special files.

The total number of physical blocks of size 512 bytes actually allo
cated on disk. This field is not defined for block-special or
character-special files.

_S_IBMOUNTED indicates that path is a block or character special
file that contains a mounted file system. This flag is reserved for
use by administrative commands and is not intended for general
application use. I

stat and lstat fail if one or more of the followjng are true:

EACCES Search permission is denied for a component of the path prefix.

EACCES

EFAULT

Read permission is denied on the named file.

buf or path points to an invalid address.

stat (2)

EINTR A signal was caught during the stat or lstat system call.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

ENOENT The named file does not exist or is the null pathname.

ENOTDIR A component of the path prefix is not a directory.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

EOVERFLOW A component is too large to store in the structure pointed to by
buf

fstat fails if one or more of the following are true:

EBADF

EFAULT

EINTR

ENOLINK

EOVERFLOW

SEE ALSO

fildes is not a valid open file descriptor.

buf points to an invalid address.

A signal was caught during the fstat system call.

fildes points to a remote machine and the link to that machine
is no longer active.

A component is too large to store in the structure pointed to
bybuf

clunod(2), chown(2), creat(2), fattach(3C), link(2), mknod(2), pipe(2), read(2),
realpath(3C), stat(5), tirne(2), unlink(2), utirne(2), write(2)

DIAGNOSTICS
Upon successful completion a value of a is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

213

stat (2) (XENIX System Compatibility)

NAME
stat, lstat, fstat - (XENIX) get file status

SYNOPSIS
cc [flag . . .]file ... -Ix

#include <sys/types.h>
#include <sys/stat.h>

int stat (const char *path, struct stat *buf>;

int lstat (const char *path, struct stat *buf>;

int fstat (intfildes, struct stat *buf>;

DESCRIPTION

214

path points to a path name naming a file. Read, write, or execute permission of the
named file is not required, but all directories listed in the path name leading to the
file must be searchable. stat obtains information about the named file.

Note that in a Remote File Sharing environment, the information returned by stat
depends on the user/group mapping set up between the local and remote comput
ers. [See idload(lM).]

lstat obtains file attributes similar to stat, except when the named file is a sym
bolic link; in that case lstat returns information about the link, while stat returns
information about the file the link references.

fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fcntl, or pipe system call.

buf is a pointer to a stat structure into which information is placed concerning the
file.

The contents of the structure pointed to by bUf include the following members:

st_ino;
st_dev;

nlink_tst_nlink;
uid_t st_uid;
gid_t st_gid;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

/* File mode [see mknod(2)] */
/* Inode number */
/* ID of device containing */
/* a directory entry for this file */
/* ID of device */
/* This entry is defined only for */
/* character special files */,
/* XENIX special named files or block
/* special files */
/* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group */
/* File size in bytes */
/* Time of last access */
/* Time of last data modification */
/* Time of last file status change */
/* Times measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

(XENIX System Compatibility) stat (2)

The mode of the file as described in mknod(2).

This field uniquely identifies the file in a given file system. The
pair st_ino and st_dev uniquely identifies regular files.

This field uniquely identifies the file system that contains the file.
Its value may be used as input to the ustat system call to deter-
mine more information about this file system. No other meaning
is associated with this value.

This field should be used only by administrative commands. It is
valid only for block special files or character special files or
XENIX special named files. The st Jdev field for block special and
character special files only has meaning on the system where the
file was configured.

If the file is a XENIX special named file, it contains the type code
[see stat(4) for the XENIX semaphore and shared data type code
values S_INSEM and S_INSHD].

This field should be used only by administrative commands.

The user ID of the file's owner.

The group ID of the file's group.

For regular files, this is the address of the end of the file. For
pipes or FIFOs, this is the count of the data currently in the file.
For block special character special, or XENIX special named files.
this is not defined.

Time when file data was last accessed. Changed by the following
system calls: creat, mknod, pipe, utime, read, creatsem, open
sem, sigsem, wai tsem, sdget and sdfree.

st_mtime Time when data was last modified. Changed by the following
system calls: creat, mknod, pipe, utime, write.

st_ctime Time when file status was last changed. Changed by the follow
ing system calls: chmod, chown, creat, link, mknod, pipe,
unlink, utime, write, creatsem, sdget and sdfree.

stat and lstat fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix.

EBADF fildes is not a valid open file descriptor.

EFAULT buf or path points to an invalid address.

EINTR A signal was caught during the stat system call.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote
machines.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}, or the
length of a path component exceeds {NAME_MAX} while
CPOSIX_NO_TRUNC) is in effect.

215

stat (2) (XENIX System Compatibility)

ENOENT

ENOTDIR

ENOLINK

EOVERFLOW

The named file does not exist or is the null pathname.

A component of the path prefix is not a directory.

path points to a remote machine and the link to that machine is no
longer active.

A component is too large to store in the structure pointed to by
buf

fstat fails if one or more of the following are true:

ENOLINK fildes points to a remote machine and the link to that machine is
no longer active.

EOVERFLOW A component is too large to store in the structure pointed to by
buf

SEE ALSO
chmod(2).. chown(2), creat(2), link(2), mknod(2) , pipe(2), read(2), time(2),
unlink(2), utime(2), write(2), stat(5)

DIAGNOSTICS

216

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

statvfs (2)

NAME
statvfs, fstatvfs - get file system information

SYNOPSIS
#include <sys/types.h>
#include <sys/statvfs.h>

int statvfs (const char *path, struct statvfs *buJ>;

int fstatvfs (int fildes, struct statvfs *buf);

DESCRIPTION
statvfs returns a "generic superblock" describing a file system; it can be used to
acquire information about mounted file systems. buf is a pointer to a structure
(described below) that is filled by the system call.

path should name a file that resides on that file system. The file system type is
known to the operating system. Read, write, or execute permission for the named
file is not required, but all directories listed in the path name leading to the file must
be searchable.

The statvfs structure pointed to by buf includes the following members:

ulong
ulong

f_bsize;
f_frsize;

/* preferred file system block size */
/* fundamental filesystem block size
(if supported) */

ulong

ulong
ulong

ulong
ulong
ulong

f_bfree;
f_bavail;

f_files;
f_ffree;
f_favail;

/* total # of blocks on file system
in units of f_frsize */
/* total # of free blocks */
/* # of free blocks avail to

non-superuser */
/* total # of file nodes (inodes) */
/* total # of free file nodes */
/* # of inodes avail to

non-superuser*/
fsid_t f_fsid; /* file system id (dev for now) */
char f_basetype[FSTYPSZ]; /* target fs type name,

null-terminated */
ulong f_flag; /* bit mask of flags */
ulong f_namemax; / * maximum file name length * /
char f_fstr[32]; /* file system specific string */
ulong f_filler[16]; /* reserved for future expansion */

f_basetype contains a null-terminated FSType name of the mounted target (e.g. ss
mounted over rfs will contain sS).

The following flags can be returned in the f_flag field:

ST_RDONLY OxOl /* read-only file system */
ST_NOSUID Ox02 /* does not support setuid/setgid

semantics */
ST_NOTRUNC Ox04 /* does not truncate file names

longer than {NAME_MAX}*/

217

statvfs (2)

fstatvfs is similar to statvfs, except that the file named by path in statvfs is
instead identified by an open file descriptor fildes obtained from a successful open,
creat, dup, fcntl, or pipe system call.

statvfs fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EFAULT path or buf points outside the process's allocated address space.

EINTR

EIO

ELOOP

EMULTIHOP

A signal was caught during statvfs execution.

An II 0 error occurred while reading the file system.

Too many symbolic links were encountered in translating path.

Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of a path component exceeds {NAME_MAX} characters, or
the length of path exceeds {PATH_MAX} characters.

ENOENT

ENOLINK

ENOTDIR

Either a component of the path prefix or the file referred to by path
does not exist.

path points to a remote machine and the link to that machine is no
longer active.

A component of the path prefix of path is not a directory.

fstatvfs fails if one or more of the following are true:

EFAULT buf points to an invalid address.

EBADF

EINTR

EIO

fildes is not an open file descriptor.

A signal was caught during fstatvfs execution.

An I/O error occurred while reading the file system.

DIAGNOSTICS
Upon successful completion a value of a is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO

218

clnnod(2), chown(2), creat(2), 1 ink(2) , mlmod(2), pipe(2), read(2), tirne(2),
unlink(2), utime(2), write(2).

NAME
stime - set time

SYNOPSIS
#include <unistd.h>

int stime(const time_t *tp);

DESCRIPTION

stime (2)

stime sets the system's idea of the time and date. tp points to the value of time as
measured in seconds from 00:00:00 UTe January 1, 1970.

SEE ALSO
time(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

219

swapctl (2)

NAME
swapctl - manage swap space

SYNOPSIS
#include <sys/stat.h>
#include <sys/swap.h>

int swapctl(int cmd, void *arg);

DESCRIPTION

220

swapctl adds, deletes, or returns information about swap resources. cmd specifies
one of the following options contained in <sys/swap.h>:

SC_ADD 1* add a resource for swapping *1
SC_LIST 1* list the resources for swapping *1
SC_REMOVE 1* remove a resource for swapping *1
SC_GETNSWP 1* return number of swap resources *1

When SC_ADD or SC_REMOVE is specified, arg is a pointer to a swapres structure
containing the following members:

*sr_name;
sr_start;
sr_length;

1* pathname of resource *1
1* offset to start of swap area *1
1* length of swap area *1

sr_start and sr_length are specified in 512-byte blocks.

When SC_LIST is specified, arg is a pointer to a swaptable structure containing the
following members:

int swt_n; 1* number of swapents following *1
struct swapent swt_ent [] ; 1* array of swt_n swapents * I

A swapent structure contains the following members:

char *ste-path; 1* name of the swap file *1
off_t ste_start; 1* starting block for swapping *1
off_t ste_length; 1* length of swap area *1
long ste-pages; 1* number of pages for swapping *1
long ste_free; 1* number of ste-pages free *1
long ste_flags; 1* ST_INDEL bit set if swap file *1

1* is now being deleted *1

SC_LIST causes swapctl to return at most swt_n entries. The return value of
swapctl is the number actually returned. The ST_INDEL bit is turned on in
ste_flags if the swap file is in the process of being deleted.

When SC_GETNSWP is specified, swapctl returns as its value the number of swap
resources in use. arg is ignored for this operation.

The SC_LIST, SC_ADD, and SC_REMOVE functions will fail if the calling process does
not have appropriate privilege (p _SYSOPs).

USAGE

swapctl (2)

Upon successful completion, the function swapctl returns a value of 0 for SC_ADD
or SC_REMOVE, the number of struct swapent entries actually returned for
SC_LIST, or the number of swap resources in use for SC_GETNSWP. Upon failure,
the function swapctl returns a value of -1 and sets ermo to indicate an error.

Errors
Under the following conditions, the function swapctl fails and sets ermo to:

EEXIST Part of the range specified by sr_start and sr_length is
already being used for swapping on the specified resource
(SC_ADD).

EFAULT

EINVAL

EISDIR

ELOOP

ENAMETOOLONG

ENOENT

ENOMEM

ENOSYS

ENOTDIR

EPERM

EROFS

arg, sr_name, or ste-path points outside the allocated
address space.

The specified function value is not valid, the path specified is
not a swap resource (SC_REMOVE), part of the range specified
by sr_start and sr_length lies outside the resource
specified (SC_ADD), or the specified swap area is less than one
page (SC_ADD).

The path specified for SC_ADD is a directory.

Too many symbolic links were encountered in translating the
pathname provided to SC_ADD or SC_REMOVE .

The length of a component of the path specified for SC_ADD
or SC_REMOVE exceeds {NAME_MAX} characters or the length
of the path exceeds {PATH_MAX} characters and
{_POSIX_NO_TRUNC} is in effect.

The pathname specified for SC_ADD or SCJtEMOVE does not
exist.

An insufficient number of struct swapent structures were
provided to SC_LIST, or there were insufficient system
storage resources available during an SC_ADD or SCJtEMOVE,
or the system would not have enough swap space after an
SC_REMOVE.

The pathname specified for SC_ADD or SC_REMOVE is not a file
or block special device.

Pathname provided to SC_ADD or SC_REMOVE contained a
component in the path prefix that was not a directory.

The process does not have appropriate privilege (p _SYSOPs).

The pathname specified for SC_ADD is a read-only file system.

221

symlink (2)

NAME
symlink - make a symbolic link to a file

SYNOPSIS
#include <unistd.h>

int symlink(const char *namel, const char *name2);

DESCRIPTION

222

symlink creates a symbolic link name2 to the file namel. Either name may be an
arbitrary pathname, the files need not be on the same file system, and namel may be
nonexistent.

The file to which the symbolic link points is used when an open(2) operation is per
formed on the link. A stat(2) on a symbolic link returns the linked-to file, while an
lstat returns information about the link itself. This can lead to surprising results
when a symbolic link is made to a directory. To avoid confusion in programs, the
readlink(2) call can be used to read the contents of a symbolic link.

If the file named by name2 does not exist, it is created. The permission mode of
name2 is 777 [see creat(2)].

The symbolic link is made unless one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
name2.

EACCES Write access is denied on the directory in which the new file is to
be created.

EACCES The level of the new file is not within the file system's level range,
and the calling process does not have appropriate privilege
(P_FSYSRANGE).

EDQUOT

EDQUOT

EDQUOT

EEXIST

EFAULT

EIO

ELOOP

The directory in which the entry for the new symbolic link is
being placed cannot be extended because the user's quota of disk
blocks on the file system containing the directory has been
exhausted.

The new symbolic link cannot be created because the user's quota
of disk blocks on the file system which will contain the link has
been exhausted.

The user's quota of inodes on the file system on which the file is
being created has been exhausted.

The file referred to by name2 already exists.

namel or name2 points outside the allocated address space for the
process.

An I/O error occurs while reading from or writing to the file sys
tem.

Too many symbolic links are encountered in translating name2.

symlink(2)

ENAMETOOLONG The length of the namel or name2 argument exceeds {PATH_MAX},
or the length of a namel or name2 component exceeds {NAME_MAX}
while CPOSIX_NO_TRUNC) is in effect.

ENOENT A component of the path prefix of name2 does not exist.

ENOSPC The directory in which the entry for the new symbolic link is
being placed cannot be extended because no space is left on the
file system containing the directory.

ENOSPC The new symbolic link cannot be created because no space is left
on the file system which will contain the link.

ENOSPC There are no free inodes on the file system on which the file is
being created.

ENOSYS The file system does not support symbolic links

ENOTDIR A component of the path prefix of name2 is not a directory.

EROFS The file name2 would reside on a read-only file system.

DIAGNOSTICS
Upon successful completion symlink returns a value of 0; otherwise, it returns -1
and places an error code in errno.

SEE ALSO
cp(1), link(2), readlink(2), realpath(3C), unlink(2)

223

sync (2)

NAME
sync - update super block

SYNOPSIS
#include <unistd.h>

void sync(void)i

DESCRIPTION
sync causes all information in memory that should be on disk to be written out.
This includes modified super blocks, modified i-nodes, and delayed block I/O.

lt should be used by programs that examine a file system, such as fsck(lM),
df(lM), and so on. lt is mandatory before are-boot.

The writing, although scheduled, is not necessarily completed before sync returns.
The fsync system call completes the writing before it returns.

SEE ALSO
f sync (2)

224

sysfs (2)

NAME
sysfs - get file system type information

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs (int apcade, const char *fsname);

int sysf s (int apcade, int fs _index, char * bUf) ;

int sysfs (int apcade) ;

DESCRIPTION
sysfs returns information about the file system types configured in the system.
The number of arguments accepted by sysfs varies and depends on the apcade.
The currently recognized apcades and their functions are:

GETFSIND Translate fsname, a null-terminated file-system type identifier, into a
file-system type index.

GETFSTYP

GETNFSTYP

Translate fs _index, a file-system type index, into a null-terminated
file-system type identifier and write it into the buffer pointed to by
buf; this buffer must be at least of size FSTYPSZ as defined in
sys/fstyp.h.

Return the total number of file system types configured in the
system.

sysfs fails if one or more of the following are true:

EINVAL fsname points to an invalid file-system identifier; fs _index is zero, or
invalid; apcade is invalid.

EFAULT buf or fsname points to an invalid user address.

DIAGNOSTICS
Upon successful completion, sysfs returns the file-system type index if the apcade
is GETFSIND, a value of 0 if the apcade is GETFSTYP, or the number of file system
types configured if the apcade is GETNFSTYP. Otherwise, a value of -1 is returned
and ermo is set to indicate the error.

225

sysi86 (2)

NAME
sysi86 - machine specific functions

SYNOPSIS
#include <sys/sysi86.h>

int sysi86 (int cmd, ...);

DESCRIPTION

226

The sysi86 system call implements machine specific functions. The cmd argument
determines the function to be performed. The types of the arguments expected
depend on the function.

Command RTODC
When cmd is RTODC, the expected argument is the address of a struct rtc_t (from
the header file sys/rtc.h):

struct rtc_t {

};

char rtc_sec, rtc_asec, rtc_min, rtc_amin,
rtc_hr, rtc_ahr, rtc_dow, rtc_dam,
rtc_mon, rtc-Yr, rtc_statusa,
rtc_statusb, rtc_statusc, rtc_statusd;

This function reads the hardware time-of-day clock and returns the data in the
structure referenced by the argument. The calling process must have the P _SYSOPS
privilege to use this command.

RDUBLK
This command reads the u-block (per process user information as defined by
structuser in the sys/user header file) for a given process. When cmd is RDUBLK,
sysi86 takes three additional arguments: the process ID, the address of a buffer,
and the number of bytes to read; that is,

sysi86(RDULBK, pid, buf, n)
pid_t pid;
char *buf;
int n;

Command SI86FPHW
This command expects the address of an integer as its argument. After successful
return from the system call, the integer specifies how floating-point computation is
supported.

The low-order byte of the integer contains the value of "fpkind," a variable that
specifies whether an 80287 or 80387 floating-point coprocessor is present, emulated
in software, or not supported. The values are defined in the header file sys/fp.h.

FP_NO no fp chip, no emulator (no fp support)
FP_SW no fp chip, using software emulator
FP _HW chip present bit
FP_287 80287 chip present
FP_387 80387 chip present

sysi86 (2)

Command SElNAME
The calling process must have the P _ SYSOPS privilege to use this command.
Expects an argument of type char * which points to a NULL terminated string of at
most 7 characters. The command will change the running system's sysname and
nodename [see uname(2)] to this string.

Command SliME
When cmd is STIME, an argument of type long is expected. This function sets the
system time and date (not the hardware clock). The argument contains the time as
measured in seconds from 00:00:00 GMT January 1, 1970. The calling process must
have the P _ SYSOPS privilege to use this command.

Command SI86DSCR
This command sets a segment or gate descriptor in the kernel. The following
descriptor types are accepted:

executable and data segments in the LDT at DPL 3
a call gate in the GDT at DPL 3 that points to a segment in the LDT

The argument is a pointer to a request structure that contains the values to be
placed in the descriptor. The request structure is declared in the sys/sysi86.h
header file.

Command SI86MEM
This command returns the size of available memory in bytes.

Command SI86SWPI
When cmd is SI86SWPI, individual swapping areas may be added, deleted or the
current areas determined. The address of an appropriately primed swap buffer is
passed as the only argument. (Refer to the sys / swap. h header file for details of
loading the buffer.)

The format of the swap buffer is:

stzuct swapint {
char
char
int
int

si_crnd;
*si_buf;

si_swplo;
si_nblks;

/*command: SI_LIST, SI_ADD, SI_DEL*/
/*swap file path pointer*/
/*start block*/
/*swap size*/

Typically, a swap area is added by a single call to sysi86. First, the swap buffer is
primed with appropriate entries for the structure members. Then sysi86 is
invoked.

The calling process must have the P _ SYSOPS privilege to use this command.

#include <sys/sysi86.h>
#include <sys/swap.h>

stzuct swapint swapbuf; /*swap into buffer ptr*/

sysi86(SI86SWPI, &swapbuf);

227

sysi86 (2)

If this command succeeds, it returns a to the calling process. This command fails,
returning -1, if one or more of the following is true:

[EFAULT] swapbuf points to an invalid address

[EFAULT]

[ENOTBLK]

[EEXIST]

[ENOSPC]

[ENOMEM]

[EINVAL]

[ENOMEM]

swapbufsi _buf points to an invalid address

Swap area specified is not a block special device

Swap area specified has already b~en added

Too many swap areas in use (if adding)

Tried to delete last remaining swap area

Bad arguments

No place to put swapped pages when deleting a swap area

RETURN VALUES
Upon successful completion, zero is returned; otherwise, -1 is returned, and ermo
is set to indicate the error. When the cmd is invalid, ermo is set to EINVAL.

SEE ALSO
swap(IM), uname(2)

228

sysinfo (2)

NAME
sysinfo - get and set system information strings

SYNOPSIS
#include <sys/ systeminfo. h>

long sysinfo (int command, char *buf, long count);

DESCRIPTION
sysinfo copies information relating to the UNIX system on which the process is
executing into the buffer pointed to by buf; sysinfo can also set certain information
where appropriate commands are available. count is the size of the buffer.

The POSIX PI003.1 interface sysconf [see sysconf(3C)] provides a similar class of
configuration information, but returns long.

The command s available are:

SI_SYSNAME Copy into the array pointed to by buf the string that would be
returned by uname [see uname(2)] in the sysname field. This is the
name of the implementation of the operating system, for example,
UNIX_SV.

SI_HOSTNAME Copy into the array pointed to by buf a string that names the
present host machine. This is the string that would be returned by
uname in the nodename field. This hostname or nodename is often
the name the machine is known by locally.

The hostname is the name of this machine as a node in some net
work; different networks may have different names for the node,
but presenting the nodename to the appropriate network Directory
or name-to-address mapping service should produce a transport
end point address. The name may not be fully qualified.

Internet host names may be up to 256 bytes in length (plus the ter
minating null).

SI_SET_HOSTNAME
Copy the null-terminated contents of the array pointed to by buf
into the string maintained by the kernel whose value will be
returned by succeeding calls to sysinfo with the command
SI_HOSTNAME. This command requires that the effective-user-id be
super-user.

SI_RELEASE Copy into the array pointed to by buf the string that would be
returned by uname in the release field. Typical values might be 4.2,
4.0,3.2.

SI_ VERSION Copy into the array pointed to by buf the string that would be
returned by uname in the version field. The syntax and semantics of
this string are defined by the system provider.

SI_MACHINE Copy into the array pointed to by buf the string that would be
returned by uname in the machine field, for example, i486.

229

sysinfo (2)

230

SI_ARCHITECTURE
Copy into the array pointed to by buf a string describing the instruc
tion set architecture of the current system, for example, mc68030,
i80486. These names may not match predefined names in the C
language compilation system.

SI_HW_PROVIDER
Copies the name of the hardware manufacturer into the array
pointed to by buf.

SI_SET HW PROVIDER

SI_HW_SERIAL

Copy the null-terminated contents of the array pointed to by bUf
into the string maintained by the kernel whose value will be
returned by succeeding calls to sysinfo with the command
SI_HW_PROVIDER. This command requires that the effective-user-id
be super-user.

Copy into the array pointed to by buf a string which is the ASCII
representation of the hardware-specific serial number of the physi
cal machine on which the system call is executed. Note that this
may be implemented in Read-Only Memory, via software constants
set when building the operating system, or by other means, and
may contain non-numeric characters. It is anticipated that manufac
turers will not issue the same "serial number" to more than one
physical machine. The pair of strings returned by SI_HW_PROVIDER
and SI_HW_SERIAL is likely to be unique across all vendor's System
V implementations.

SI_SET_HW_SERIAL
Copy the null-terminated contents of the array pointed to by bUf
into the string maintained by the kernel whose value will be
returned by succeeding calls to sysinfo with the command
SI_HW_SERIAL. This command requires that the effective-user-id be
super-user.

SI_SRPC_OOMAIN
Copies the Secure Remote Procedure Call domain name into the
array pointed to by buf.

SI_SET_SRPC_OOMAIN
Set the string to be returned by sysinfo with the SI_SRPC_OOMAIN
command to the value contained in the array pointed to by buf.
This command requires that the effective-user-id be super-user.

SI_INITTAB Copy into the array pointed to by buf a string that is the pathname
of the inittab file used by the currently running bootable operat
ing system.

sysinfo fails if one or both of the following are true:

EPERM The process does not have appropriate privilege for a SET
command.

EINVAL

sysinfo(2)

buf does not point to a valid address, or the data for a SET
command exceeds the limits established by the implementation.

RETURN VALUES
Upon successful completion, the value returned indicates the buffer. size in bytes
required to hold the complete value and the terminating null character. If this value
is no greater than the value passed in count, the entire string was copied; if this
value is greater than count, the string copied into bufhas been truncated to count-l
bytes plus a terminating null character.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

NOTES

gethostid(3), gethostname(3), sysconf(3C), System(4), uname(2)

There is in many cases no corresponding programmatic interface to set these values;
such strings are typically settable only by· the system administrator modifying
entries in the master. d directory or the code provided by the particular OEM read
ing a serial number or code out of read-only memory, or hard-coded in the version
of the operating system.

A good starting guess for count is 257, which is likely to cover all strings returned
by this interface in typical installations.

231

termios(2)

NAME
ter.mios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow,
cfgetospeed,cfgetispeed,cfsetispeed,cfsetospeed,tcgetpgrp,tcsetpgrp,
tcgetsid - general terminal interface

SYNOPSIS
#include <ter.mios.h>

int tcgetattr(int fildes, struct ter.mios *termios.y);

int tcsetattr(int fildes, int optionatactions,
const stl:'Uct ter.mios *termios y) ;

int tcsendbreak (int fildes, int duration);

int tcdrain (int fildes) ;

int tcflush(int fildes, int queue_selector);

int tcflow{int fildes, int action);

speed_t cfgetospeed (const struct ter.mios *termios y) ;

int cfsetospeed(struct ter.mios *termiosy, speed_t speed);

speed_t cfgetispeed(const struct tennios *termiosy);

int cfsetispeed(struct ter.mios *termiosy, speed_t speed);

#include <sys/types.h>
#include <ter.mios.h>

pid_t tcgetpgrp (int fildes) ;

int tcsetpgrp(int fildes, pid_t pgid);

pid_t tcgetsid(int fildes);

DESCRIPTION

232

These functions describe a general terminal interface for controlling asynchronous
communications ports. A more detailed overview of the terminal interface can be
found in tennio(7), which also describes an ioctl(2) interface that provides the
same functionality. However, the function interface described here is the preferred
user interface.

Many of the functions described here have a termios y argument that is a pointer to
a ter.mios structure. This structure contains the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc[NCCS]; /* control chars */

These structure members are described in detail in tennio(7).

Get and Set Terminal Attributes
The tcgetattr function gets the parameters associated with the object referred by
fildes and stores them in the ter.mios structure referenced by termios y. This

termios(2)

function may be invoked from a background process; however, the terminal attri
butes may be subsequently changed by a foreground process.

The tcsetattr function sets the parameters associated with the terminal (unless
support is required from the underlying hardware that is not available) from the
tennies structure referenced by termios y as follows:

If optional_actions is TCSANOW, the change occurs immediately.

If optional_actions is TCSADRAIN, the change occurs after all output written to
fildes has been transmitted. This function should be used when changing
parameters that affect output.

If optional_actions is TCSAFLUSH, the change occurs after all output written to
the object referred by fildes has been transmitted, and all input that has been
received but not read is discarded before the change is made.

The symbolic constants for the values of optional_actions are defined in tennies. h.

Line Control
If the terminal is using asynchronous serial data transmission, the tcsendbreak
function causes transmission of a continuous stream of zero-valued bits for a
specific duration. If duration is zero, it causes transmission of zero-valued bits for at
least 0.25 seconds, and not more than 0.5 seconds. If duration is not zero, it behaves
in a way similar to tcdrain. .

If the terminal is not using asynchronous serial data transmission, the tcsendbreak
function sends data to generate a break condition or returns without taking any
action.

The tcdrain function waits until all output written to the object referred to by fildes
has been transmitted.

The tcflush function discards data written to the object referred to by fildes but not
transmitted, or data received but not read, depending on the value of queue_selector:

If queue _selector is TCIFLUSH, it flushes data received but not read.

If queue _selector is TCOFLUSH, it flushes data written but not transmitted.

If queue _selector is TCIOFLUSH, it flushes both data received but not read, and
data written but not transmitted.

The tcflow function suspends transmission or reception of data on the object
referred to by fildes, depending on the value of action:

If action is TCOOFF, it suspends output.

If action is TCOON, it restarts suspended output.

If action if TCIOFF, the system transmits a STOP character, which causes the
terminal device to stop transmitting data to the system.

If action is TCION, the system transmits a START character, which causes the
terminal device to start transmitting data to the system.

Get and Set Baud Rate
The baud rate functions get and set the values of the input and output baud rates in
the tennies structure. The effects on the terminal device described below do not
become effective until the tcsetattr function is successfully called.

233

termios(2)

The input and output baud rates are stored in the termios structure. The values
shown in the table are supported. The names in this table are defined in
termios . h.

Name Description Name Description
BO Hang up B600 600 baud
B50 50 baud B1200 1200 baud
B75 75 baud B1800 1800 baud
B110 110 baud B2400 '2400 baud
B134 134.5 baud B4800 4800 baud
B150 150 baud B9600 9600 baud
B200 200 baud B19200 19200 baud
B300 300 baud B38400 38400 baud

cfgetospeed gets the output baud rate stored in the termios structure pointed to
by termios y.

cfsetospeed sets the output baud rate stored in the termios structure pointed to
by termios y to speed. The zero baud rate, BO, is used to terminate the connection. If
BO is specified, the modem control lines are no longer asserted. Normally, this
disconnects the line.

cfgetispeed gets the input baud rate and stores it in the termios structure
pointed to by termiosy.

cfsetispeed sets the input baud rate stored in the termios structure pointed to by
termios y to speed. If the input baud rate is set to zero, the input baud rate is
specified by the value of the output baud rate. Both cfsetispeed and
cfsetospeed return a value of zero if successful and -1 to indicate an error.
Attempts to set unsupported baud rates are ignored. This refers both to changes to
baud rates not supported by the hardware, and to changes setting the input and
output baud rates to different values if the hardware does not support this.

Get and Set Terminal Foreground Process Group 10
tcsetpgrp sets the foreground process group ID of the terminal specified by fildes
to pgid. The file associated with fildes must be the controlling terminal of the calling
process and the controlling terminal must be currently associated with the session
of the calling process. pgid must match a process group ID of a process in the same
session as the calling process.

tcgetpgrp returns the foreground process group ID of the terminal specified by
fildes. tcgetpgrp is allowed from a process that is a member of a background pro
cess group; however, the information may be subsequently changed by a process
that is a member of a foreground process group.

Get Terminal Session 10
tcgetsid returns the session ID of the terminal specified by fildes.

RETURN VALUES

234

On success, tcgetpgrp returns the process group ID of the foreground process
group associated with the specified terminaL Otherwise, it returns -1 and sets
ermo to indicate the error.

termios(2)

On success, tcgetsid returns the session ID associated with the specified terminal.
Otherwise, it returns -1 and sets ermo to indicate the error.

On success, cfgetispeed returns the input baud rate from the tennios structure.

On success, cfgetospeed returns the output baud rate from the tennios structure.

On success, all other functions return a value of O. Otherwise, they return -1 and
set ermo to indicate the error.

ERRORS
All of the functions fail if one of more of the following is true:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file associated with fildes is not a terminaL

tcsetattr also fails if the following is true:

EINVAL The optional_actions argument is not a proper value, or an attempt
was made to change an attribute represented in the tennios struc
ture to an unsupported value.

tcsendbreak also fails if the following is true:

EINVAL The device does not support the tcsendbreak function.

tcdrain also fails if one or more of the following is true:

EINTR A signal interrupted the tcdrain function.

EINVAL The device does not support the tcdrain function.

tcflush also fails if the following is true:

EINVAL The device does not support the tcflush function or the
queue _selector argument is not a proper value.

tcflow also fails if the following is true:

EINVAL The device does not support the tcflow function or the action
argument is not a proper value.

tcgetpgrp also fails if the following is true:

ENOTTY the calling process does not have a controlling terminal, or fildes
does not refer to the controlling terminal.

tcsetpgrp also fails if the following is true:

EINVAL

ENOTTY

EPERM

pgid is not a valid process group ID .

the calling process does not have a controlling terminal, or fildes
does not refer to the controlling terminal, or the controlling termi
nal is no longer associated with the session of the calling process.

pgid does not match the process group of an existing process in the
same session as the calling process.

235

termios(2)

tcgetsid also fails if the following is true:

EACCES fildes is a terminal that is not allocated to a session.

SEE ALSO
setpgid(2), setsid(2), termio(7)

236

NAME
time - get time

SYNOPSIS
#include <sys/types.h>
#include <time.h>

time_t time (time_t *tloc);

DESCRIPTION

time(2)

time returns the value of time in seconds since 00:00:00 UTe, January 1, 1970.

If tloc is non-zero, the return value is also stored in the location to which tloc points.

SEE ALSO
ctime(3C), stime(2)

NOTES
time fails and its actions are undefined if tloc points to an illegal address.

DIAGNOSTICS
Upon successful completion, time returns the value of time. Otherwise, a value of
(time_t) -1 is returned and ermo is set to indicate the error.

237

times (2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

clock_t times(struct tms *bujfer);

DESCRIPTION
times fills the tms structure pointed to by bujfer with time-accounting information.
The tms structure is defined in sys/times.h as follows:

struct tms {

};

clock_t
clock_t
clock_t
clock_t

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait routine. All times are reported in clock
ticks. The clock ticks at a system-dependent rate. The specific value of this rate for
an implementation is defined, in ticks per second, by the variable CLK_TCK, found in
the include file limits .h.

tms_utime is the CPU time used while executing instructions in the user space of
the calling process.

tms_stime is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the tms_utime and the tms_cutime of the child
processes.

tms_cstime is the sum of the tms_stime and the tms_cstime of the child
processes.

RETURN VALUES
If times succeeds, it returns the elapsed real time in clock ticks from an arbitrary
point in the past (for example, system start-up time). This point does not change
from one invocation of times to another. If times fails, it returns -1 and sets errno
to identify the error.

ERRORS
times fails if:

EFAULT bujfer points to an invalid address.

SEE ALSO
exec(2), fork(2), time(l), time(2), timex(l) wait(2), waitid(2), waitpid(2)

238

uadmin(2)

NAME
uadmin - administrative control

SYNOPSIS
#include <sys/uadmin.h>

int uadmin(int emd, intfen, int mdep);

DESCRIPTION
uadmin provides control for basic administrative functions. This system call is
tightly coupled to the system administrative procedures and is not intended for
general use. The argument mdep is provided for machine-dependent use; for ex
ample, see A_SETCONFIG, below.

emd can take on one of the following values:

A_SHUTDOWN The system is shut down. All user processes are killed, the buffer
cache is flushed, and the root file system is unmounted. The action
to be taken after the system has been shut down is specified by fen.
The functions are generic; the hardware capabilities vary on
specific machines.

AD_HALT Halt the processor and tum off the power.

AD_BOOT Reboot the system, using / stand/unix.

AD_IBOOT Interactive reboot; the system goes to firmware mode
and, if the user strikes any key immediately after
Booting UNIX is displayed, the system prompts for
a bootable program name. If fen is not supplied or is
invalid, AD_I BOOT is used as the default.

A_REBOOT The system stops immediately without any further processing.
The action to be taken next is specified by fen as above.

A_REMOUNT The root file system is mounted again after having been fixed. This
should be used only during the startup process.

A_CLOCK The argument fen is the number of seconds to adjust the clock.

A_SETCONFIG Currently this command supports the single function
AD_PANICBOOT, which determines the system's behavior following
a system panic. If mdep is 1, the system will automatically reboot
following a panic; if mdep is 0, the system will remain in firmware
mode following a panic.

uadmin fails if any of the following are true:

EPERM The calling process does not have the P_SYSOPS privilege.

RETURN VALUES
Upon successful completion, the value returned depends on emd as follows:

239

uadmin(2)

A_SHUTDOWN
A_REBOOT
A_REMOUNT
A_CLOCK
A_SETCONFIG

Never returns.
Never returns.
o
o
o

Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
sysi86(2)

240

ulimit (2)

NAME
ulimit - get and set user limits

SYNOPSIS
#include <ulimit.h>

long ulimit (int cmd, • • • 1* newlimit *1);

DESCRIPTION
This function provides for control over process limits. The cmd values available are:

UL_SFILLIM Get the regular file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of any
size can be read.

Set the regular file size limit of the process to the value of newlimit ,
taken as a long. Any process may decrease this limit, but only a
process with an effective user ID of super-user may increase the
limit.

Get the maximum possible break value [see brk(2)].

Get the current value of the maximum number of open files per
process configured in the system.

The getrlimit system call provides a more general interface for controlling pro
cess limits.

ulimit fails if the following is true:

EINVAL The cmd argument is not valid.

Output
Upon successful completion, a non-negative value is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

NOTICES
ulimi t is effective in limiting the growth of regular files. Pipes are currently lim
ited to {PIPE_MAX}.

REFERENCES
brk(2), getrlimit(2), write(2)

241

umask(2)

NAME
wnask - set and get file creation mask

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

mode_t wnask (mode_t cmask) ;

DESCRIPTION

FILES

wnask sets the process's file mode creation mask to cmask and returns the previous
value of the mask. . Only the access permission bits of cmask and the file mode crea
tion mask are used.

Message catalog: uxcore. abi

SEE ALSO
chmod(2), creat(2), mkdir(l), mknod(2), open(2), sh(l), stat(5)

DIAGNOSTICS
The previous value of the file mode creation mask is returned.

242

umount(2)

NAME
umount - unmount a file system

SYNOPSIS
#include <sys/mount.h>

int umount(const char *file);

DESCRIPTION
umount requests that a previously mounted file system contained on the block spe
cial device or directory identified by file be unmounted. file is a pointer to a path
name. After unmounting the file system, the directory upon which the file system
was mounted reverts to its ordinary interpretation.

umount may be invoked only by a process with the P _MOUNT privilege.

umount will fail if one or more of the following are true:

EPERM The calling process does not have the P _MOUNT privilege.

EINVAL

ELOQP

ENAMETOOLONG

ENOTDIR

ENOENT

ENOTBLK

EINVAL

EBUSY

EFAULT

EREMOTE

ENOLINK

EMULTIHOP

SEE ALSO
mount (2)

DIAGNOSTICS

file does not exist.

Too many symbolic links were encountered in translating the
path pointed to by file.

The length of the file argument exceeds {PATH_MAX}, or the
length of a file component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

file does not point to a directory.

A component of the path prefix does not exist or is a null
pathname.

file is not a block special device.

file is not mounted.

A file onfile is busy.

file points to an illegal address.

file is remote.

file is on a remote machine, and the link to that machine is no
longer active.

Components of the path pointed to by file require hopping to
multiple remote machines.

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

243

uname(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name);
DESCRIPTION

uname stores information identifying the current UNIX system in the structure
pointed to by name.

uname uses the structure utsname defined in sys/utsname.h whose members are:

char sysname[SYS_NMLN];
char nodename [SYS_NMLN] ;
char release [SYS_NMLN] ;
char version [SYS_NMLN] ;
char machine [SYS_NMLN] ;

uname returns a null-terminated character string naming the current UNIX system in
the character array sysname. Similarly, nodename contains the name that the sys
tem is known by on a communications network. release and version further
identify the operating system. machine contains a standard name that identifies the
hardware that the UNIX system is running on.

EFAULT uname fails if name points to an invalid address.

RETURN VALUES

FILES

Upon successful completion, a non-negative value is returned. Otherwise, a value
of -1 is returned and ermo is set to indicate the error.

Message catalog: uxcore. abi

SEE ALSO
uname(l)

244

unlink(2)

NAME
unlink - remove directory entry

SYNOPSIS
#include <unistd.h>

int unlink (const char *path);

DESCRIPTION
unlink removes the directory entry named by the path name pointed to by path.
and decrements the link count of the file referenced by the directory entry. When
all links to a file have been removed and no process has the file open, the space
occupied by the file is freed and the file ceases to exist. If one or more processes
have the file open when the last link is removed, space occupied by the file is not
released until all references to the file have been closed. If path is a symbolic link,
the symbolic link is removed. path should not name a directory unless the process
has the P _FILESYS privilege. Applications should use rmdir to remove directories.

Upon successful completion unlink marks for update the st_ctime and st_mtime
fields of the parent directory. Also, if the file's link count is not zero, the st_ctime
field of the file is marked for update.

The named file is unlinked unless one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix.

EACCES

EACCES

EBUSY

EFAULT

EINTR

ELOOP

Write permission is denied on the directory containing the link to be
removed and the process does not have the P _COMPAT privilege.

The parent directory has the sticky bit set and the file is not writable
by the user; the user does not own the parent directory and the user
does not own the file; EACCES Write permission is denied on the file
named by path.

The entry to be unlinked is the mount point for a mounted file system.

path points outside the process's allocated address space.

A signal was caught during the unlink system call.

Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines and
the file system does not allow it.

ENAMETOOLONG

ENOENT

ENOTDIR

EPERM

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

The named file does not exist or is a null pathname. The user is not a
super-user.

A component of the path prefix is not a directory.

The named file is a directory and the calling process does not have the
P _FlLESYS privilege.

245

unlink(2)

ETXTBSY

EROFS

ENOLINK

SEE ALSO

The entry to be unlinked is the last link to a pure procedure (shared
text) file that is being executed.

The directory entry to be unlinked is part of a read-only file system.

path points to a remote machine and the link to that machine is no
longer active.

close(2), link(2), open(2), nn(l), nndir(2)

DIAGNOSTICS

246

Upon successful completion, a value of a is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

ustat (2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev_t dev, struct ustat *buf>;

DESCRIPTION
ustat returns information about a mounted file system. dev is a device number
identifying a device containing a mounted file system [see makedev(3C)]. buf is a
pointer to a ustat structure that includes the following elements:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name */
char f_fpack[6]; /* Filsys pack name */

ustat fails if one or more of the following are true:

EINVAL

EFAULT

EINTR

ENOLINK

ECOMM

dev is not the device number of a device containing a mounted file sys
tem.

buf points outside the process's allocated address space.

A signal was caught during a ustat system call.

dev is on a remote machine and the link to that machine is no longer
active.

dev is on a remote machine and the link to that machine is no longer
active.

SEE ALSO

NOTES

makedev(3C), stat(2), statvfs(2)

The ustat(2) interface was defined obsolete in UNIX System V Release 4. Although
support for ustat is maintained in Release 4, support will be discontinued in the
next major release. All remaining code using this interface must be converted to
use the replacement interface statvfs(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

247

utime(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
#include <utime.h>

int utime(const char *path, const struct utimbuf *times);
DESCRIPTION

248

path points to a path name naming a file. utime sets the access and modification
times of the named file.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write permission to use
utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure (defined
in utime. h) and the access and modification times are set to the values contained in
the designated structure. Only the owner of the file may use utime this way.

The times in the following structure are measured in seconds since 00:00:00 UTC,
Jan. 1, 1970.

struct utimbuf {

};

time_t actime;
time_t modtime;

/* access time */
/* modification time */

utime also causes the time of the last file status change (st_ctime) to be updated.

utime will fail if one or more of the following are true:

EACCES Search permission is denied by a component of the path prefix.

EACCES

EACCES

EFAULT

EFAULT

EINTR

Write permission on the file named by path is denied.

The effective user ID is not the owner of the file, times is NULL, and
write access is denied.

times is not NULL and points outside the process's allocated address
space.

path points outside the process's allocated address space.

A signal was caught during the utime system call.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines and
the file system does not allow it.

ENAMETOOLONG

ENOENT

The length of the path argument exceeds {PATH_MAX}, or the length of a
path component exceeds {NAME_MAX} while _POSIX_NO_TRUNC is in
effect.

The named file does not exist or is a null pathname.

ENOLIN!{

ENOTDIR

EPERM

EPERM

EROFS

SEE ALSO
stat(2)

DIAGNOSTICS

utime(2)

path points to a remote machine and the link to that machine is no
longer active.

A component of the path prefix is not a directory.

The calling process does not have the P _OWNER privilege, the effective
user ID is not the owner of the file, and times is not NULL.

The calling process does not have the P _OWNER privilege, the effective
user ID is not the owner of the file, times is NULL, and write permission
on the file named by path is denied.

The file system containing the file is mounted read-only.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

249

vfork (2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
#ioclude <uoistd.h>

pid_t vfork (void);

DESCRIPTION
vfork can be used to create new processes without fully copying the address space
of the old process. It is useful when the purpose of fork would have been to create
a new system context for an execve. vfork differs from fork in that the child
borrows the parent's memory and thread of control until a call to execve or an exit
(either by a call to exit or abnormally.) The parent process is suspended while the
child is using its resources.

vfork returns a in the child's context and (later) the process ID (PID of the child in
the parent's context.

vfork can normally be used just like fork. It does not work, however, to return
while running in the child's context from the procedure which called vfork since
the eventual return from vfork would then return to a no longer existent stack
frame. Be careful, also, to call_exit rather than exit if you cannot execve, since
exit will flush and close standard I/O channels, and thereby mess up the parent
processes standard I/O data structures. Even with fork it is wrong to call exit
since buffered data would then be flushed twice.

DIAGNOSTICS
Upon successful completion, vfork returns a value of a to the child process and
returns the process ID of the child process to the parent process. Otherwise, a value
of -1 is returned to the parent process, no child process is created, and the global
variable ermo is set to indicate the error.

vfork will fail and no child process will be created if one or more of the following
are true:

EAGAIN

EAGAIN

ENOMEM

The system-imposed limit on the total number of processes under
execution would be exceeded. This limit is determined when the
system is generated.

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded. This limit is deter
mined when the system is generated.

There is insufficient swap space for the new process.

SEE ALSO

NOTES

250

exec(2), exit(2), fork(2), ioctl(2), wait(2)

This system call will be eliminated in a future release. System implementation
changes are making the efficiency gain of vfork over fork smaller. The memory
sharing semantics of vfork can be obtained through other mechanisms.

vfork(2)

To avoid a possible deadlock situation, processes that are children in the middle of
a vfork are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are
allowed and input attempts result in an EOF indication.

On some systems, the implementation of vfork causes the parent to inherit register
values from the child. This can create problems for certain optimizing compilers if
unistd.h is not included in the source calling vfork.

251

wait (2)

NAME
wai t - wait for child process to stop or terminate

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t wait (int *statJoe);

DESCRIPTION

FILES

wait suspends the calling process until one of its immediate children terminates or
until a child that is being traced stops because it has received a signal. The wait
system call will return prematurely if a signal is received. If all child processes
stopped or terminated prior to the call on wait, return is immediate.

If wait returns because the status of a child process is available, it returns the pro
cess ID of the child process. If the calling process had specified a non-zero value for
stat Joe, the status of the child process will be stored in the location pointed to by
stat Joe. It may be evaluated with the macros described on wstat(5). In the follow
ing, status is the object pointed to by stat Joe:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8 bits
will be set equal to WSTOPFLG.

If the child process terminated due to an exit call, the low order 8 bits of
status will be 0 and the high order 8 bits will contain the low order 8 bits of
the argument that the child process passed to exit; see exit(2).

If the child process terminated due to a signal, the high order 8 bits of status
will be 0 and the low order 8 bits will contain the number of the signal that
caused the termination. In addition, if WCOREFLG is set, a "core image" will
have been produced; see signal(2).

If wait returns because the status of a child process is available, then that status
may be evaluated with the macros defined by wstat(5).

If a parent process terminates without waiting for its child processes to terminate,
the parent process ID of each child process is set to 1. This means the initialization
process inherits the child processes; see intro(2).

wai t will fail if one or both of the following is true:

ECHILD The calling process has no existing unwaited-for child processes.

EINTR The function was interrupted by a signal.

Message catalog: uxcore. abi

SEE ALSO

NOTES

252

exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2), signal(5),
wstat(5)

See NOTES in signal(2).

If SIGCLD is held, then wait does not recognize death of children.

wait (2)

DIAGNOSTICS
If wait returns due to a stopped or terminated child process, the process ID of the
child is returned to the calling process. Otherwise, a value of -1 is returned and
ermo is set to indicate the error.

253

waitid (2)

NAME
waitid - wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop,
int options};

DESCRIPTION

254

waitid suspends the calling process until one of its children changes state. It
records the current state of a child in the structure pointed to by infop. If a child
process changed state prior to the call to waitid, waitid returns immediately.

The idtype and id arguments specify which children waitid is to wait for.

If idtype is P_PID, waitid waits for the child with a process ID equal to
(pid_t) id.

If idtype is P _PGID, wai tid waits for any child with a process group ID equal
to (pid_t) id.

If idtype is P_ALL, waitid waits for any children and id is ignored.

The options argument is used to specify which state changes waitid is to wait for. It
is formed by an OR of any of the following flags:

WEXITED

WTRAPPED

WSTOPPED

WCONTlNUED

WNOHANG

Wait for process(es) to exit.

Wait for traced process(es) to become trapped or reach a break
point [see ptrace(2)].

Wait for and return the process status of any child that has
stopped upon receipt of a signal.

Return the status for any child that was stopped and has been con
tinued.

Return immediately.

WNOWAIT Keep the process in a waitable state. This will not affect the state
of the process on subsequent waits.

infop must point to a siginfo_t structure, as defined in siginfo(5). siginfo_t is
filled in by the system with the status of the process being waited for.

wai tid fails if one or more of the following is true.

EFAULT infop points to an invalid address.

EINTR

EINVAL

EINVAL

ECHILD

waitid was interrupted due to the receipt of a signal by the calling
process.

o or another invalid value was specified for options.

idtype and id specify an invalid set of processes.

The set of processes specified by idtype and id does not contain any
unwaited-for processes.

waitid (2)

DIAGNOSTICS
If waitid returns due to a change of state of one of its children, a value of a is
returned. Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), sigaction(2),
siginfo(5) signal(2), wait(2)

255

waitpid (2)

NAME
wai tpid - wait for child process to change state

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid (pid_t pid, int *stat Joe, int options) ;

DESCRIPTION

256

wai tpid suspends the calling process until one of its children changes state; if a
child process changed state prior to the call to wai tpid, return is immediate. pid
specifies a set of child processes for which status is requested.

If pid is equal to (pid_t) -1, status is requested for any child process.

If pid is greater than (pid_t) 0, it specifies the process ID of the child process
for which status is requested.

If pid is equal to (pid_t) 0 status is requested for any child process whose
process group ID is equal to that of the calling process.

If pid is less than (pid_t) -1, status is requested for any child process whose
process group ID is equal to the absolute value of pid.

If waitpid returns because the status of a child process is available, then that status
may be evaluated with the macros defined by wstat(5) . If the calling process had
specified a non-zero value of stat Joe, the status of the child process will be stored in
the location pointed to by stat Joe.

The options argument is constructed from the bitwise inclusive OR of zero or more of
the following flags, defined in the header file sys/wait .h:

WCONTlNUED

WNOHANG

WNOWAIT

WUNTRACED

the status of any continued child process specified by pid, whose
status has not been reported since it continued (from a job control
stop), shall also be reported to the calling process.

wai tpid will not suspend execution of the calling process if status
is not immediately available for one of the child processes
specified by pid.

keep the process whose status is returned in stat Joe in a waitable
state. The process may be waited for again with identical results.

the status of any child processes specified by pid that are stopped,
and whose status has not yet been reported since they stopped,
shall also be reported to the calling process.

waitpid with options equal to WUNTRACED and pid equal to (pid_t)-l is identical to
a call to wait(2).

wai tpid will fail if one or more of the following is true:

EINTR waitpid was interrupted due to the receipt of a signal sent by the
calling process.

EINVAL

ECHILD

SEE ALSO

waitpid (2)

An invalid value was specified for options.

The process or process group specified by pid does not exist or is
not a chlld of the calling process or can never be in the states
specified by options.

. exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2), sigaction(2),
siginfo(5), wstat(5)

DIAGNOSTICS
If waitpid returns because the status of a chlld process is available, thls function
shall return a value equal to the process ID of the chlld process for whlch status is
reported. If waitpid returns due to the delivery of a signal to the calling process, a
value of -1 shall be returned and errno shall be set to EINTR. If this function was
invoked with WNOHANG set in options, it has at least one chlld process specified by pid
for which status is not available, and status is not available for any process specified
by pid, a value of a shall be returned. Otherwise, a value of -1 shall be returned,
and errno shall be set to indicate the error.

257

waitsem(2) (XENIX System Compatibility)

NAME
waitsem, nbwaitsem - (XENIX) await and check access to a resource governed by a
semaphore

SYNOPSIS
cc fflag ...] file ... -Ix

waitsem(int sem_num);

nbwai tsem (int sem _ num) ;

DESCRIPTION
wai tsem gives the calling process access to the resource governed by the semaphore
sem_num. If the resource is in use by another process, waitsem will put the process
to sleep until the resource becomes available; nbwaitsem will return the error ENA
VAIL. waitsem and nbwaitsem are used in conjunction with sigsem to allow syn
chronization of processes waiting to access a resource. One or more processes may
wai tsem on the given semaphore and will be put to sleep until the process which
currently has access to the resource issues sigsem. sigsem causes the process
which is next in line on the semaphore's queue to be rescheduled for execution. The
semaphore's queue is organized in First In, First Out (FIFO) order.

DIAGNOSTICS
waitsem returns the value (int) -1 if an error occurs. If sem num has not been
previously opened by a call to opens em or creatsem, errno is set to EBADF. If
sem_num does not refer to a semaphore type file, errno is set to ENOTNAM. All
processes waiting (or attempting to wait) on the semaphore return with errno set
to ENAVAIL when the process controlling the semaphore exits without relinquishing
control (thereby leaving the resource in an undeterminate state). If a process does
two waitsems in a row without doing a intervening sigsem, errno is set to EIN
VAL.

SEE ALSO
creatsem(2), opensem(2)

258

write (2)

NAME
write, writev - write on a file

SYNOPSIS
#include <unistd.h>
ssize_t write (int fildes, const void *buf, size_t nbyte>;

#include <sys/types.h>
#include <sys/uio.h>

int wri tev (int fildes, const struct iovec *iov, int iovcnt>;

DESCRIPTION
wri te attempts to write nbyte bytes from the buffer pointed to by buf to the file
associated with fildes . If nbyte is zero and the file is a regular file, write returns
zero and has no other results. fildes is a file descriptor obtained from a creat, open,
dup, fcntl, pipe, or ioctl system call.

writev performs the same action as write, but gathers the output data from the
iovcnt buffers specified by the members of the iov array: iov[O], iov[l], ... ,
iov[iovcnt-l]. The iovcnt is valid only if greater than 0 and less than or equal to
{lOV_MAX}.

For wri tev, the iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from
which data should be written. wri tev always writes a complete area before
proceeding to the next.

On devices capable of seeking, the writing of data proceeds from the position in the
file indicated by the file pointer. On return from write, the file pointer is incre
mented by the number of bytes actually written. On a regular file, if the incre
mented file pointer is greater than the length of the file, the length of the file is set to
the new file pointer.

On devices incapable of seeking, writing always takes place starting at the current
position. The value of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer is set to the end of
the file before each write.

For regular files, if the O_SYNC flag of the file status flags is set, write does not
return until both the file data and file status have been physically updated. This
function is for special applications that require extra reliability at the cost of perfor
mance. For block special files, if O_SYNC is set, write does not return until the data
has been physically updated.

A write to a regular file is blocked if mandatory file/record locking is set [see
chmod(2)], and there is a record lock owned by another process on the segment of
the file to be written:

259

write (2)

260

If O_NDELAY or O_NONBLOCK is set, write returns -1 and sets errno to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, write sleeps until all blocking locks
are removed or the write is terminated by a signal.

If a write requests that more bytes be written than there is room for-for example,
if the write would exceed the process file size limit [see getrlimit(2) and
ulimit(2)], the system file size limit, or the free space on the device-only as many
bytes as there is room for will be written. For example~ suppose there is space for
20 bytes more in a file before reaching a limit. A write of 512-bytes returns 20. The
next write of a non-zero number of bytes gives a failure return (except as noted for
pipes and FIFO below).

Write requests to a pipe or FIFO are handled the same as a regular file with the fol
lowing exceptions:

There is no file offset associated with a pipe, hence each write request
appends to the end of the pipe.

Write requests of {PIPE_BUF} bytes or less are guaranteed not to be inter
leaved with data from other processes doing writes on the same pipe.
Writes of greater than {PIPE_BUF} bytes may have data interleaved, on
arbitrary boundaries, with writes by other processes, whether the
O_NONBLOCK or O_NDELAY flags are set.

If O_NONBLOCK and O_NDELAY are clear, a write request may cause the pro
cess to block, but on normal completion it returns nbyte.

If O_NONBLOCK is set, write requests are handled in the following way: the
write does not block the process; write requests for {PIPE_BUF} or fewer
bytes either succeed completely and return nbyte, or return -1 and set errno
to EAGAIN. A write request for greater than {PIPE_BUF} bytes either
transfers what it can and returns the number of bytes written, or transfers
no data and returns -1 with errno set to EAGAIN. Also, if a request is
greater than {PIPE_BUF} bytes and all data previously written to the pipe
has been read, write transfers at least {PIPE_BUF} bytes.

If O_NDELAY is set, write requests are handled in the following way: the
write does not block the process; write requests for {PIPE_BUF} or fewer
bytes either succeed completely and return nbyte, or return O. A write
request for greater than {PIPE_BUF} bytes either transfers what it can and
returns the number of bytes written, or transfers no data and returns O.
Also, if a request is greater than {PIPE_BUF} bytes and all data previously
written to the pipe has been read, write transfers at least {PIPE_BUF}
bytes.

When attempting to write to a file descriptor (other than a pipe or FIFO) that sup
ports nonblocking writes and cannot accept the data immediately:

If O_NONBLOCK and O_NDELAY are clear, write blocks until the data can be
accepted.

write (2)

If O_NONBLOCK or O_NDELAY is set, write does not block the process. If
some data can be written without blocking the process, write writes what it
can and returns the number of bytes written. Otherwise, if O_NONBLOCK is
set, it returns -1 and sets ermo to EAGAIN or if O_NDELAY is set, it returns O.

For STREAMS files [see intro(2)], the operation of write is determined by the
values of the minimum and maximum nbyte range ("packet size") accepted by the
stream. These values are contained in the topmost stream module. Unless the user
pushes the topmost module [see I_PUSH in streamio(7)], these values can not be
set or tested from user level. If nbyte falls within the packet size range, nbyte bytes
are written. If nbyte does not fall within the range and the minimum packet size
value is zero, write breaks the buffer into maximum packet size segments prior to
sending the data downstream (the last segment may be smaller than the maximum
packet size). If nbyte does not fall within the range and the minimum value is non
zero, write fails and sets ermo to ERANGE. Writing a zero-length buffer (nbyte is
zero) to a STREAMS device sends a zero length message with zero returned. How
ever, writing a zero-length buffer to a pipe or FIFO sends no message and zero is
returned. The user program may issue the I_SWROPT ioctl(2) to enable zero
length messages to be sent across the pipe or FIFO [see streamio(7)].

When writing to a stream, data messages are created with a priority band of zero.
When writing to a stream that is not a pipe or FIFO:

If O_NDELAY and O_NONBLOCK are not set, and the stream cannot accept data
(the stream write queue is full because of internal flow control conditions),
wri te blocks until data can be accepted.

If O_NDELAY or O_NONBLOCK is set and the stream cannot accept data, write
returns -1 and sets ermo to EAGAIN.

If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been
written when a condition occurs in which the stream cannot accept addi
tional data, write terminates and returns the number of bytes written.

wri te and wri tev fail and the file pointer remains unchanged if one or more of the
following are true:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK is
set, and there is a blocking record lock.

EAGAIN

EAGAIN

EAGAIN

EBADF

EDEADLK

EFAULT

Total amount of system memory available when reading via raw
II 0 is temporarily insufficient.

An attempt is made to write to a stream that can not accept data
with the O_NDELAY or O_NONBLOCK flag set.

H a write to a pipe or FIFO of {PIPE_BUF} bytes or less is
requested and less than nbytes of free space is available.

fildes is not a valid file descriptor open for writing.

The write was going to go to sleep and cause a deadlock to occur.

buf points outside the process's allocated address space.

261

write (2)

262

EFBIG

EINTR

EINVAL

EIO

EIO

ENOLCK

ENOL INK

ENOSR

ENOSPC

An attempt is made to write a file that exceeds the process's file
size limit or the maximum file size [see getrlimit(2) and
ulimit(2)].

A signal was caught during the write system call.

An attempt is made to write to a stream linked below a multi
plexor.

The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set; the process is neither
ignoring nor blocking SIGTTOU signals, and the process group of
the process is orphaned.

fildes points to a device special file that is in the closing state.

The system record lock table was full, so the write could not go to
sleep until the blocking record lock was removed.

fildes is on a remote machine and the link to that machine is no
longer active.

An attempt is made to write to a stream with insufficient STREAMS
memory resources available in the system.

During a wri te to an ordinary file, there is no free space left on the
device.

ENXIO The device associated with the file descriptor is a block-special or
character-special file and the file-pointer value is out of range.

EPIPE and SIGPIPE signal

EPIPE

EPIPE

ERANGE

ENOLCK

An attempt is made to write to a pipe that is not open for reading
by any process.

An attempt is made to write to a FIFO that is not open for reading
by any process.

An attempt is made to write to a pipe that has only one end open.

An attempt is made to write to a stream with nbyte outside
specified minimum and maximum write range, and the minimum
value is non-zero.

Enforced record locking was enabled and {LOCK_MAX} regions are
already locked in the system.

In addition, wri tev may return one of the following errors:

EINVAL iovcnt was less than or equal to 0, or greater than 16.

EINVAL

EINVAL

An iov_len value in the iov array was negative.

The sum of the iov _len values in the iov array overflowed a 32-bit
integer.

A write to a STREAMS file can fail if an error message has been received at the
stream head. In this case, ermo is set to the value included in the error message.

FILES

write (2)

After carrier loss, M_HANGUP is set, and a subsequent write will return -1 with errno
set to EIO. To write after disconnecting and reconnecting the line, set the CLOCAL
flag to tell the driver to ignore the state of the line and the driver will not send
M_HANGUP to the stream head. If CLOCAL is not set, and hangup occurs, the applica
tion is responsible for re-establishing the connection.

On successful completion write and writev mark for update the st_ctime and
st_mtime fields of the file.

SEE ALSO
creat(2), dup(2), fcntl(2), getrlimit(2), intro(2), lseek(2), open(2), pipe(2),
types(5), ulimit(2)

DIAGNOSTICS
On success, write returns the number of bytes actually written. Otherwise, it
returns -1 and sets errno to identify the error.

263

REPLACE THIS WITH A BLANK PAGE

264

intro(3)

NAME
intro - introduction to functions and libraries

DESCRIPTION
This section describes functions found in various libraries, other than those func
tions that directly invoke UNIX system primitives, which are described in Section 2
manual pages. Function declarations can be obtained from the #inelude files indi
cated on each page. Certain major collections of functions are identified by a letter
after the section number; however, all Section 3 manual pages are sorted together
alphabetically, without regard to this letter.

Some libraries are available in both a shared object version and an archive version.
By default, C programs will be linked with the shared object version of the standard
C library (functions in Sections 2, 3C, and 35). Other libraries can be searched by
using the -1 option on your ee command line. If a shared object version of the
specified library exists, it will be searched. To force your executable to be linked
with the archive version of all libraries being searched, specify the -dn option on
the ee command line. [See ee(l) for other overrides.]

(3C) These functions, together with those of Section 2 and those marked (3S),
constitute the standard C library, libe, which is automatically linked by
the C compilation system. The standard C library, libe. so, is searched
at compile time by default. Specify -dn on the ee command line to link
with the archive version of this library, libe. a, and the archive version
of all other libraries being searched.

(3curses) These functions provide character user interface capabilities in five
libraries, all provided in archive versions. They are not linked automati
cally by the C compilation system. Specify -leurses on the ee com
mand line to link with all these functions. In addition, to link with the
forms, menus, panels, and tam functions, specify -lfonns, -lmenus,
-lpanels, or -ltam, respectively. [See eurses(3curses),
forms(3curses), menus(3curses), panels(3curses), and tam(3curses)].

(3S) These functions constitute the "standard I/O package" [see stdio(3S)],
and are part of the standard C library, as described above.

(3E) These functions constitute the Executable and Linking Format (ELF)
access library, libelf [see elf(3E)]. This library is not implemented as
a shared object and is not automatically linked by the C compilation sys
tem. Specify -lelf on the ee command line to link with this library.

(3G) These functions constitute the general-purpose library, libgen. This
library is not implemented as a shared object and is not automatically
linked by the C compilation system. Specify -lgen on the ee command
line to link with this library.

(31) These functions constitute the Identification and Authentication Facility
library, libiaf. This library is implemented as a shared object,
libiaf. so, and an archive, libiaf . a. It is not automatically linked by
the C compilation system. Specify -liaf on the ee command line to
link with the shared object version of the library. Specify -dn -liaf on
the ee command line to link with the archive version of this library and
the archive version of all other libraries being searched.

265

intro (3)

266

(3M) These functions constitute the math library, libm [see math(5)]. This
library is not implemented as a shared object and is not automatically
linked by the C compilation system. Specify -1m on the cc command
line to link with this library.

libm contains the full set of double-precision routines plus some single
precision routines (designated by the suffix f) that give better perfor
mance with less precision. Selected routines are hand-optimized for per
formance. The optimized routines include sin, cos, tan, atan, atan2,
exp, log, loglO, pow, and sqrt and their single-precision equivalents.

(3N) The networking functions are contained in three libraries: the Network
Services library, libnsl; the Sockets Interface library, libsocket; and
the Internet Domain Name Server library, libresol v.

The following functions constitute the libnsllibrary:

crl crl authentication library

cs Connection Server library interface

des Data Encryption Standards library

netdir Network Directory functions. This contains look-up func
tions and the access point to network directory libraries for
various network transports.

netselect Network Selection routines. These functions manipulate
the /etc/netconfig file and return entries.

nsl Transport Level Interface (TLI). These functions contain
the implementation of X/OPEN's Transport Level Inter
face.

rexec REXEC library interface

rpc User-level Remote Procedure Call library

saf Service Access Facility library

yp Network Information Service functions

The libsocket library has two components: inet, containing the Inter
net library routines, and socket, containing the Socket Interface rou
tines. The libresol v library contains the resolver routines.

The standard networking libraries are implemented as a shared object
(libns1.so, libresolv.so, and libsocket.so) and/or an archive file
(libresol v. a and libsocket. a). They are not automatically linked by
the C compilation system. To link with the shared object version of
these libraries, specify the cc command line with -lnsl, -lsocket, or
-lresolv, respectively. To link with the archive version of -lnsl
-lsocket, and the archive version of all other libraries being searched,
also specify -dn on the cc command line.

(3W) The functions in libw provide conversion between multibyte and 32-bit
wide characters. This library is not implemented as a shared object and
is not automatically linked by the C compilation system. Specify -lw on
the cc command line to link with this library.

intro (3)

(3X) Specialized libraries. The files in which these libraries are found are
given on each Section 3X manual page.

(3) These functions are provided in the BSD Compatibility Package in three
libraries: libucb [for most (3) manual pages], libdbm [see dbm(3)], and
libmp [see mp(3)]. These libraries are not implemented as a shared
objects. When C programs are compiled by invoking /usr /ucb/ ec,
libucb is automatically linked by the C compilation system. Even when
/usr /ucb/ cc is invoked, libdbm and libmp are not automatically
linked, so specify -ldbm or -Imp on the /usr/ucb/cc command line to
link with these libraries.

DEFINITIONS
A character [except a multibyte character; see mbchar(3C)] is any bit pattern able to
fit into a byte on the machine. The null character is a character with value 0, con
ventionally represented in the C language as \0. A character array is a sequence of
characters. A null-terminated character array (a string) is a sequence of characters,
the last of which is the null character. The null string is a character array containing
only the terminating null character. A NULL pointer is the value that is obtained by
casting 0 into a pointer. C guarantees that this value will not match that of any legi
timate pointer, so many functions that return pointers return NULL to indicate an
error. The macro NULL is defined in stdio.h. Types of the form size_t are
defined in the appropriate header files.

In the Network Services library, netbuf is a structure used in various TLI functions
to send and receive data and information. netbuf is defined in sys/tiuser .h, and
includes the following members:

struct netbuf {

} ;

unsigned int maxlen; /* The physical size of the buffer */
unsigned int len; /* The nwnber of bytes in the buffer */
char *buf; /* Points to user input and/or output buffer */

If netbuf is used for output, the function will set the user value of len on return.
maxlen generally has significance only when buf is used to receive output from the
TLI function. In this case, it specifies the maximum value of len that can be set by
the function. If maxlen is not large enough to hold the returned information, an
TBUFOVFLW error will generally result. However, certain functions may return part
of the data and not generate an error.

RETURN VALUES
For functions that return floating-point values, error handling varies according to
compilation mode. Under the -Xt (default) option to cc, these functions return the
conventional values 0, ±HUGE, or NaN when the function is undefined for the given
arguments or when the value is not representable. In the -Xa and -xc compilation
modes, the returned value will compare equal to ±HUGE_VAL instead of ±HUGE.
(HUGE_VAL and HUGE are defined in math.h to be infinity and the largest-magnitude
single-precision number, respectively.) In every case, the external variable errno
[see intro(2)] is set to the value EOOM or ERANGE, although the value may vary for a
given error, depending on the compilation mode. [See the table under
matherr(3M)].

267

intro(3)

FILES
INCDIR
LIBDIR
LIBDIR/1ibc. so
LIBDIR/1ibc. a
/usr/1ib/1ibc.so.l
LIBDIR/1ibcurses . a
LIBDIR/1ibe1f. a
LIBDIR/1ibform. a
LIBDIR/1ibgen.a
/usr/1ib/1ibiaf.so

/usr/1ib/1ibiaf.a

LIBDIR/1ibm. a
LIBDIR/1ibmenu.a
/usr/1ib/1ibns1.so
LIBDIR/1ibpane1.a
/usr/1ib/1ibreso1v.so
/usr/1ib/1ibreso1v.a
/usr/1ib/1ibsocket.so
/usr/1ib/1ibsocket.a
LIBDIR/1ibtam. a
/usr/1ib/1ibw.a

usually /usr / include
usually /usr/ccs/1ib
Compile-time Standard C Library
Compile-time Standard C Library (archive)
Run-time Standard C Library
ETl! curses Curses Library (archive)
Executable and Linking Format Library (archive)
Form Library (archive)
General-Purpose Library (archive)
Identification and Authentication Library

(shared object)
Identification and Authentication Library

(archive)
Mathematical Library (archive)
Menu Library (archive)
Network Services Library (shared object)
Panel Library (archive)
Internet Domain Name Server Library (shared object)
Internet Domain Name Server Library (archive)
Sockets Interface Library (shared object)
Sockets Interface Library (archive)
Tam Library (archive)
Multibyte/Wide Character Conversion Library (archive)

SEE ALSO

NOTES

268

ar(l), cc(l), curses(3curses), dbm(3), e1f(3E), forms(3curses), intro(2), 1d(1),
1int(1), math(5) mbchar(3C), menus(3curses), mp(3), nm(l), pane1s(3curses),
stdio(3S), tam(3curses)

None of the functions, external variables, or macros should be redefined in the
user's programs. Any other name may be redefined without affecting the behavior
of other library functions, but such redefinition may conflict with a declaration in
an included header file.

The header files in INCDIR provide function prototypes (function declarations
including the types of arguments) for most of the functions listed in this manual.
Function prototypes allow the compiler to check for correct usage of these functions
in the user's program. The lint program checker may also be used and will report
discrepancies even if the header files are not included with #inc1ude statements.
Definitions for Sections 2, 3C, and 3S are checked automatically. Other definitions
can be included by using the -1 option to lint. (For example, -1m includes
definitions for 1ibm.) Use of lint is highly recommended.

Users should carefully note the difference between STREAMS and stream. STREAMS
is a set of kernel mechanisms that support the development of network services and
data communication drivers. It is composed of utility routines, kernel facilities, and
a set of data structures. A stream is a file with its associated buffering. It is declared
to be a pointer to an object of type FILE defined in stdio. h.

intro (3)

In detailed definitions of components, it is sometimes necessary to refer to symbolic
names that are implementation-specific, but which are not necessarily expected to
be accessible to an application program. Many of these symbolic names describe
boundary conditions and system limits.

In this section, for readability, these implementation-specific values are given sym
bolic names. These names always appear enclosed in curly brackets to distinguish
them from symbolic names of other implementation-specific constants that are
accessible to application programs by header files. These names are not necessarily
accessible to an application program through a header file, although they may be
defined in the documentation for a particular system.

In general, a portable application program should not refer to these symbolic names
in its code. For example, an application program would not be expected to test the
length of an argument list given to a routine to determine if it was greater than
{ARG_MAX}.

Applications should restrict their use of the standard I/O package [see stdio(3S)] to
the interfaces documented on the Section 35 manual pages. They should not
depend on individual members of the internal structures found in stdio. h.

269

a641 (3e)

NAME
a64l, l64a - convert between long integer and base-64 ASCII string

SYNOPSIS
#include <stdlib.h>

long a64l (const char *s);

char *164a (longl);

DESCRIPTION

NOTES

270

These functions are used to maintain numbers stored in base-64 ASCII characters.
These characters define a notation by which long integers can be represented by up
to six characters; each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1, 0 through 9 for 2-11, A
through Z for 12-37, and a through z for 38-63.

a64l takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a64l will use the first six.

a64l scans the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number.

164a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, l64a returns a pointer to a null string.

The value returned by l64a is a pointer into a static buffer, the contents of which
are overwritten by each call.

abort (3C)

NAME
abort - generate an abnormal termination signal

SYNOPSIS
#include <stdlib.h>

void abort (void);

DESCRIPTION
abort first closes all open files, stdio(3S) streams, directory streams and message
catalogue descriptors, if possible, then causes the signal SIGABRT to be sent to the
calling process.

SEE ALSO
catopen(3C), exit(2), kill(2), sdb(l), sh(l) signal(2), stdio(3S)

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writable, a
core dump is produced and the message abort - core durrg;>ed is' written by the
shell [see sh(l)].

271

abs(3C)

NAME
abs, labs - return integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs (int val) ;

long labs (long IvaI) ;

DESCRIPTION
abs returns the absolute value of its int operand. labs returns the absolute value
of its long operand.

SEE ALSO
floor(3M)

NOTES

272

In 2' s-complement representation, the absolute value of the largest magnitude
negative integral value is undefined.

accept (3N)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>

int accept (int 5, caddr_t addr, int *addrlen);

DESCRIPTION
The argument 5 is a socket that has been created with socket and bound to an
address with bind, and that is listening for connections after a call to listen.
accept extracts the first connection on the queue of pending connections, creates a
new socket with the properties of 5, and allocates a new file descriptor, n5, for the
socket. If no pending connections are present on the queue and the socket is not
marked as non-blocking, accept blocks the caller until a connection is present. If
the socket is marked as non-blocking and no pending connections are present on
the queue, accept returns an error as described below. accept uses the
netconf ig file to determine the STREAMS device file name associated with 5. This
is the device on which the connect indication will be accepted. The accepted socket,
n5, is used to read and write data to and from the socket that connected to n5; it is
not used to accept more connections. The original socket (5) remains open for
accepting further connections.

The argument addr is a result parameter that is filled in with the address of the con
necting entity as it is known to the communications layer. The exact format of the
addr parameter is determined by the domain in which the communication occurs.

addrlen is a value-result parameter. Initially, it contains the amount of space
pointed to by addr; on return it contains the length in bytes of the address returned.

accept is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select a socket for the purpose of an accept by selecting it for
read. However, this will only indicate when a connect indication is pending; it is
still necessary to call accept.

RETURN VALUE
accept returns -1 on error. If it succeeds, it returns a non-negative integer that is a
descriptor for the accepted socket.

ERRORS
accept will fail if:

EBADF

ENOTSOCK

EOPNOTSUPP

EWOULDBLOCK

EPROTO

The descriptor is invalid.

The descriptor does not reference a socket.

The referenced socket is not of type SOCK_STREAM.

The socket is marked as non-blocking and no connections are
present to be accepted.

A protocol error has occurred; for example, the STREAMS
protocol stack has not been initialized.

273

accept (3N)

ENODEV

ENOMEM

ENOSR

The protocol family and type corresponding to s could not be
found in the netconfig file.

There was insufficient user memory available to complete the
operation.

There were insufficient STREAMS resources available to com
plete the operation.

SEE ALSO

NOTES

274

bind(3N), connect(3N), listen(3N), netconfig(4), socket(3N)

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF_UNIX) require a sockaddr_un structure
as defined in sys/un.h; Internet domain sockets (address family AF_lNET) require
a sockaddr_in structure as defined in netinet/in.h. Other address families may
require other structures. Use the structure appropriate to the address family; cast
the structure address to a generic caddr_t in the call to accept and pass the size of
the structure in the addrlen argument.

addsev(3C)

NAME
addsev - define additional severities

SYNOPSIS
int addsev(int int _val, const char * string);

DESCRIPTION
The function addsev defines additional severities for use in subsequent calls to
pfmt. addsev associates an integer value int_val in the range [5-255] with a charac
ter string. It overwrites any previous string association between int _val and string.

If int _val is ORed with the flags passed to subsequent calls to pfmt, string will be
used as the severity.

Passing a N.ULL string removes the severity.

Add-on severities are only effective within the applications defining them.

EXAMPLE
#define Panic 5
set label ("APPL");
setcat ("my _appl") ;
addsev(Panic, gettxt(":26", "PANIC"»;
/* ... */

SEE ALSO
gettxt(l), pfmt(3C)

DIAGNOSTICS

NOTES

addsev returns 0 in case of success, -1 otherwise.

Only the standard severities are automatically displayed per the locale in effect at
run time. An application must provide the means for displaying locale-specific
versions of add-on severities.

275

addseverity (3C)

NAME
addseverity - build a list of severity levels for an application for use with fmtmsg

SYNOPSIS
#include <fmtmsg.h>

int addseverity(int severity, const char *string);

DESCRIPTION
The addseveri ty function builds a list of severity levels for an application to be
used with the message formatting facility, fmtmsg. severity is an integer value indi
cating the seriousness of the condition, and string is a pointer to a string describing
the condition (string is not limited to a specific size).

If addseverity is called with an integer value that has not been previously defined,
the function adds that new severity value and print string to the existing set of stan
dard severity levels.

If addseveri ty is called with an integer value that has been previously defined, the
function redefines that value with the new print string. Previously defined severity
levels may be removed by supplying the NULL string. If addseverity is called with
a negative number or an integer value of 0, I, 2, 3, or 4, the function fails and
returns -1. The values 0--4 are reserved for the standard severity levels and cannot
be modified. Identifiers for the standard levels of severity are:

Ml'CHALT indicates that the application has encountered a severe fault and is
halting. Produces the print string HALT.

MM_ERROR indicates that the application has detected a fault. Produces the
print string ERROR.

MM_WARNING indicates a condition that is out of the ordinary, that might be a
problem, and should be watched. Produces the print string WARN
ING.

MM_INFO provides information about a condition that is not in error. Pro-
duces the print string INFO.

MM_NOSEV indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV_LEVEL environment
variable [see fmtmsg(3C)].

EXAMPLES

276

When the function addseveri ty is used as follows:

addseverity(7,"ALERT")

the following call to fmtmsg:

fmtmsg(MM_PRINT, "UX:cat", 7, "invalid syntax", "refer to
manual", "UX:cat:001")

produces:

UX: cat: ALERT: invalid syntax
TO FIX: refer to manual UX:cat:OOl

NOTES

addseverity (3C)

A slightly different standard error message format and new developer interfaces,
pfmt and addsev, are being introduced as the replacements for fmtmsg and
addseverity. fmtmsg and addseveritywill be removed at a future time.

SEE ALSO
fmtmsg(l), fmtmsg(3C), gettxt(3C), printf(3S)

DIAGNOSTICS
addseveri ty returns Mt<COK on success or Ml>CNOTOK on failure.

277

alloca(3) (BSO System Compatibility)

NAME
alloca - (BSD) memory allocator

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

#include <alloca.h>

char *alloca(int size);

DESCRIPTION
alloca allocates size bytes of space in the stack frame of the caller, and returns a
pointer to the allocated block. This temporary space is automatically freed when
the caller returns. Note: if the allocated block is beyond the current stack limit, the
resulting behavior is undefined.

SEE ALSO

NOTES

278

brk(2), csh(l), getrlimit(2), Id(l), malloc(3C), sigstack(3), sigvec(3)

Stephenson, c.J., Fast Fits, in Proceedings of the ACM 9th Symposium on Operating Sys
tems, SIGOPS Operating Systems Review, vol. 17, no. 5, October 1983

Core Wars, in Scientific American, May 1984

alloca is machine-, compiler-, and most of all, system-dependent. Its use is
strongly discouraged.

assert (3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

void assert (int expression) ;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is executed, if
expression is false (zero), assert prints

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert statement. The latter
are respectively the values of the preprocessor macros _FILE_ and _LINE_.

Compiling with the preprocessor option -DNDEBUG [see cc(l)], or with the prepro
cessor control statement #def ine NDEBUG ahead of the #include assert. h state
ment, will stop assertions from being compiled into the program.

SEE ALSO

NOTES

abort(3C), cc(l)

Since assert is implemented as a macro, the expression may not contain any string
literals.

279

atexit(3C)

NAME
atexi t - add program termination routine

SYNOPSIS
#include <stdlib.h>

int atexit (void (*jUne) (void))i

DESCRIPTION
atexi t adds the function jUne to a list of functions to be called without arguments
on normal termination of the program. Normal termination occurs by either a call
to the exit system call or a return from main. At most 32 functions may be
registered by atexit; the functions will be called in the reverse order of their
registration.

atexit returns a if the registration succeeds, nonzero if it fails.

SEE ALSO
exit(2)

280

attrmap (31)

NAME
attrmap - map an attribute

SYNOPSIS
int attrmap (char *attr_name, char *attr_in, char *attr_out)i

DESCRIPTION

FILES

The attrmap routine takes remote (global) attribute values that define an attribute
on a remote system and maps them into local attribute values. It takes a remote
attribute as input and returns the corresponding local attribute after consulting the
local attribute mapping file attr _name • map.

attr _name is the attribute name, attr _in is the remote (global) attribute value, and
attr _out is the location where attrmap places the local, mapped attribute value.

/etc/idmap/attrmap/attr _name . map map file for attribute attr _name

SEE ALSO
uidadmin(l), attradmin(lM), idadmin(lM), namemap(3I)

DIAGNOSTICS
Upon successful completion, attrmap returns 0; otherwise, it returns -1.

281

basename (3G)

NAME
basenam.e - return the last element of a path name

SYNOPSIS
cc [flag . . .]file ... -lgen [library . ..]

#include <libgen.h>

char *basename (char *path);

DESCRIPTION
Given a pointer to a null-terminated character string that contains a path name,
basename returns a pointer to the last element of path. Trailing II I" characters are
deleted.

If path or *path is zero, pointer to a static constant 1/ ." is returned.

EXAMPLES

SEE ALSO
basename(l), dirname(3G)

282

Input string
lusr/lib
lusrl
I

Output pointer
lib
usr
I

bessel (3M)

NAME
bessel: j 0, j 1, jn, yO, yl, yn - Bessel functions

SYNOPSIS
cc [flag . . .]file ... -1m [library . ..]

#include <math.h>

double j 0 (double x) ;

double j 1 (double x) ;

double jn (int n, double x);

double yO (double x) ;

double yl (double x) ;

double yn (int n, double x) ;

DESCRIPTION
j 0 and j 1 return Bessel functions of x of the first kind of orders 0 and 1, respec
tively. jn returns the Bessel function of x of the first kind of order n.

yO and yl return Bessel functions of x of the second kind of orders 0 and I, respec
tively. yn returns the Bessel function of x of the second kind of order n. The value
of x must be positive.

SEE ALSO
cc(l), matherr(3M)

DIAGNOSTICS
Non-positive arguments cause yO, yl, and yn to return a value that will compare
equal to -HUGE and to set errno to EOOM. In addition, a message indicating DOMAIN

error is printed on the standard error output.

Arguments too large in magnitude cause jO, jl, yO, and yl to return 0 and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the
standard error output.

Except when the -Xc compilation option is used [see cc(l)], these error-handling
procedures may be changed with the function matherr. When the -Xa or -Xc com
pilation options are used [see cc(l)], the returned value will compare equal to
HUGE_VAL instead of HUGE and no error messages are printed.

283

bgets(3G)

NAME
bgets - read stream up to next delimiter

SYNOPSIS
cc rJIag .. .]file ... -lgen [library ...]

#include <libgen.h>

char *bgets (char * buffer, size_t *count, FILE *stream,
const char *breakstring);

DESCRIPTION
bgets reads characters from stream into buffer until either count is exhausted or one
of the characters in breakstring is encountered in the stream. The read data is ter
minated with a null byte ('\ 0') and a pointer to the trailing null is returned. If a
breakstring character is encountered, the last non-null is the delimiter character that
terminated the scan.

Note that, except for the fact that the returned value points to the end of the read
string rather than to the beginning, the call

bgets (buffer, sizeof buffer, stream, "\n");

is identical to

fgets (buffer, sizeof buffer, stream);

There is always enough room reserved in the buffer for the trailing null.

If breakstring is a null pointer, the value of breakstring from the previous call is used.
If breakstring is null at the first call, no characters will be used to delimit the string.

RETURN VALUES
NULL is returned on error or end-of-file. Reporting the condition is delayed to the
next call if any characters were read but not yet returned.

EXAMPLES
#include <libgen.h>

char buffer[8];
/* read in first user name from /etc/passwd */
fp = fopen(" /etc/passwd", "r");
bgets(buffer, 8, fp, ":");

SEE ALSO
gets(3S)

284

bind (3N)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>

int bind(int s, caddr_tr name, int namelen);

DESCRIPTION
bind assigns a name to an unnamed socket. When a socket is created with socket,
it exists in a name space (address family) but has no name assigned. bind requests
that the name pointed to by name be assigned to the socket.

RETURN VALUE
If the bind is successful, a a value is returned. A return value of -1 indicates an
error, which is further specified in the global ermo.

ERRORS
The bind call will fail if:

EBADF

ENOTSOCK

EADDRNOTAVAIL

EADDRINUSE

EINVAL

EINVAL

EACCES

ENOSR

s is not a valid descriptor.

s is a descriptor for a file, not a socket.

The specified address is not available on the local machine.

The specified address is already in use.

name len is not the size of a valid address for the specified
address family.

The socket is already bound to an address.

The requested address is protected and the current user has
inadequate permission to access it.

There were insufficient STREAMS resources for the operation
to complete.

The following errors are specific to binding names in the UNIX domain:

ENOTDIR A component of the path prefix of the pathname in name is
not a directory.

ENOENT A component of the path prefix of the pathname in name
does not exist.

EACCES Search permission is denied for a component of the path
prefix of the pathname in name.

ELOOP

EIO

EROFS

EISDIR

Too many symbolic links were encountered in translating the
pathname in name.

An 110 error occurred while making the directory entry or
allocating the inode.

The inode would reside on a read-only file system.

A null pathname was specified.

285

bind(3N)

SEE ALSO
unlink(2)

NOTES

286

Binding a name in the UNIX domain creates a socket in the file system that must be
deleted by the caller when it is no longer needed [see unlink(2)].

The rules used in name binding vary between communication domains.

The type of address structure passed to bind depends on the address family. UNIX
domain sockets (address family AF _UNIX) require a str:uct sockaddr_un as
defined in sys/un.h; Internet domain sockets (address family AF_lNET) require a
str:uct sockaddr_in as defined in netinet/in.h. Other address families may
require other structures. Use the structure appropriate to the address family; cast
the structure address to a generic caddr_t in the call to bind and pass the size of
the structure in the namlen argument.

bsearch (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch (const void *key, const void *base, size_t nel,
size_t size, int (*compar) (const void *, const void *));

DESCRIPTION
bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It
returns a pointer into a table (an array) indicating where a datum may be found or a
null pointer if the datum cannot be found. The table must be previously sorted in
increasing order according to a comparison function pointed to by compar. key
points to a datum instance to be sought in the table. base points to the element at
the base of the table. nel is the number of elements in the table. size is the number
of bytes in each element. The function pointed to by compar is called with two argu
ments that point to the elements being compared. The function must return an
integer less than, equal to, or greater than 0 as accordingly the first argument is to
be considered less than, equal to, or greater than the second.

RETURN VALUES
A null pointer is returned if the key cannot be found in the table.

EXAMPLES
The example below searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry.

This program reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct node { /* these are stored in the table */

};

char *string;
int length;

static struct node table[]
{

};

{ "asparagus", 10 },
{ "beans", 6 },
{ "tomato", 7 },
{ "watermelon", 11 },

maine)
{

/* table to be searched */

struct node *node-ptr, node;
/* routine to campare 2 nodes */
static int node_campare(const void *, const void *);

287

bsearch (3C)

char str_space[20]; /* space to read string into */

node. string = str_space;
while (scanf("%20s", node. string) != ROF} {

node-ptr = bsearch(&node,
table, sizeof(table}/sizeof(struct node},
sizeof(struct node}, node_campare};

if (node-ptr != NULL) {
(void) printf ("string = '7020s, length = '7od\n",

node-ptr->string, node-ptr->length);
else {

}

return(O};

(void}printf("not found: %20s\n", node.string);

/* routine to compare two nodes based on an */
/* alphabetical ordering of the string field */
static int
node_compare(const void *nodel, const void *node2}
{

return (strcmp (
«const struct node *}nodel}->string,
«const struct node *)node2}->string}};

SEE ALSO

NOTES

288

hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C)

The pointers to the key and the element at the base of the table should be of type
pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

If the number of elements in the table is less than the size reserved for the table, nel
should be the lower number.

(BSC System Compatibility) bstring (3)

NAME
bstring: bcopy, bemp, bzero - (BSD) bit and byte string operations

SYNOPSIS
/usr/ucb/cc [flag ...]file . ..

bcopy (char *bl, char *b2, int length);

int bemp(char *bl, char *b2, int length);

bzero(char *b, int length);

DESCRIPTION
The functions bcopy, bemp, and bzero operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3) and string(3C) do.

bcopy copies length bytes from string bl to the string b2. Overlapping strings are
handled correctly.

bemp compares byte string bl against byte string b2, returning zero if they are ident
ical, 1 otherwise. Both strings are assumed to be length bytes long. bemp of length
zero bytes always returns zero.

bzero places length a bytes in the string b.

SEE ALSO
string(3), string(3C)

NOTES
The bemp and bcopy routines take parameters backwards from strcmp and strcpy.

289

bufsplit (3G)

NAME
bufsplit - split buffer into fields

SYNOPSIS
cc fflag .. .]file .,. -lgen [library . ..]

#include <libgen.h>

size_t bufsplit (char *buf, size_t n, char **a);

DESCRIPTION
bufsplit examines the buffer, buf, and assigns values to the pointer array, a, so
that the pointers point to the first n fields in buf that are delimited by tabs or new
lines.

To change the characters used to separate fields, call bufsplit with bufpointing to
the string of characters, and n and a set to zero. For example, to use':', ' .', and','
as separators along with tab and new-line:

bufsplit (":.,\t\n", 0, (char**)O);

RETURN VALUES
The number of fields assigned in the array a. If bufis zero, the return value is zero
and the array is unchanged. Otherwise the value is at least one. The remainder of
the elements in the array are assigned the address of the null byte at the end of the
buffer.

EXAMPLES

NOTES

290

/*
* set a[O] = "This", a[l]
* a[3] = "test"
*/

"is", a[2]

bufsplit("This\tis\ta\ttest\n", 4, a);

bufsplit changes the delimiters to null bytes in buf.

"a" ,

NAME

byteorder (3N)

byteorder, htonl, htons, ntohl, ntohs - convert values between host and
network byte order

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

u_long htonl (u_long hostlong);

u_short htons (u_short hostshort);

u_long ntohl (u_long netlong);

u_short ntohs (u_short netshort);

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL macros
in the include file netinet/in.h. On other architectures, if their host byte order is
different from network byte order, these routines are functional.

These routines are most often used in conjunction with Internet addresses and ports
as returned by gethostent(3N) and getservent(3N).

SEE ALSO
gethostent(3N), getservent(3N)

291

catgets (3C)

NAME
catgets - read a program message

SYNOPSIS
#include <nl_types.h>

char *catgets <nl_catd catd, int set_num, int msg_num,
const char *s);

DESCRIPTION
catgets attempts to read message msg_ num, in set set _ num, from the message
catalogue identified by catd. catd is a catalogue descriptor returned from an earlier
call to catopen. s points to a default message string which will be returned by cat
gets if the identified message catalogue is not currently available.

SEE ALSO
catopen(3C)

DIAGNOSTICS

292

If the identified message is retrieved successfully, catgets returns a pointer to an
internal buffer area containing the null-terminated message string. If the call is
unsuccessful because the message catalogue identified by catd is not currently avail
able, a pointer to s is returned.

catopen (3C)

NAME
catopen, catc10se - open/ close a message catalog

SYNOPSIS
#inc1ude <n1_types.h>

n1_catd cat open (const char *name, int oflag) ;

int catc10se (n1_catd catd) ;

DESCRIPTION
catopen opens a message catalog and returns a catalog descriptor. name specifies
the name of the message catalog to be opened. If name contains a "/" then name
specifies a pathname for the message catalog. Otherwise, the environment variable
NLSPATH is used. If NLSPATH does not exist in the environment, or if a message
catalog cannot be opened in any of the paths specified by NLSPATH, then the default
path is used [see n1_types(5)].

The names of message catalogs, and their location in the filestore, can vary from one
system to another. Individual applications can choose to name or locate message
catalogs according to their own special needs. A mechanism is therefore required
to specify where the catalog resides.

The NLSPATH variable provides both the location of message catalogs, in the form of
a search path, and the naming conventions associated with message catalog files.
For example:

NLSPATH=/n1s1ib/~oL/~~.cat:/n1s1ib/~~/~oL

The metacharacter % introduces a substitution field, where ~oL substitutes the
current setting of the LANG environment variable (see following section), and ~~
substitutes the value of the name parameter passed to catopen. Thus, in the above
example, catopen will search in /n1s1ib/$LANG/name.cat, then in
/n1s1ib/name/$LANG, for the required message catalog.

NLSPATH will normally be set up on a system wide basis (for example, in
/etc/profi1e) and thus makes the location and naming conventions associated
with message catalogs transparent to both programs and users.

The full set of metacharacters is:

~~ The value of the name parameter passed to catopen.

~oL The value of LANG.

%1 The value of the language element of LANG.

%t The value of the territory element of LANG.

~oC The value of the codeset element of LANG.

%% A single %.

The LANG environment variable provides the ability to specify the user's require
ments for native languages, local customs, and character set, as an ASCII string in
the form

LANG=language[_territory[.codeset]]

293

catopen (3C)

A user who speaks German as it is spoken in Austria and has a terminal which
operates in ISO 8859/1 codeset, would want the setting of the LANG variable to be

LANG=De_A.88591

With this setting it should be possible for that user to find any relevant catalogs
should they exist.

Should the LANG variable not be set then the value of LC_MESSAGES as returned by
set locale is used. If this is NULL then the default path as defined in nl_types is
used.

oflag is reserved for future use and should be set to o. The results of setting this
field to any other value are undefined.

catclose closes the message catalog identified by catd.

SEE ALSO
catgets(3C), environ(5), nl_types(5), setlocale(3C)

DIAGNOSTICS

294

If successful, cat open returns a message catalog descriptor for use in subsequent
calls to catgets and catclose. Otherwise catopen returns (nl_catd) -l.

catclose returns 0 if successful, otherwise -1.

NAME
cd_defs - set or get default CD-ROM file permissions, user IDs, and group IDs

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdram.h>

int cd_defs (char *path, int cmd, struct cd_defs *defs);

DESCRIPTION
cd_defs sets or gets the default values of CD-ROM file permissions, directory per
missions, user IDs and group IDs. If files or directories do not have permissions,
user IDs, or group IDs specified, the system provides default values. cd_defs will
modify these values for a mounted file system. cd_defs also allows you to change
the definition of search permissions for directories.

cd_defs should be invoked after mounting the CD-ROM, but before opening any
files. Permissions that are changed while a file is open will not take effect until the
file is closed.

Mount point of the CD-ROM file system.

CD_GETDEFS to get values or CD_SETDEFS to set values.

path

cmd

defs Pointer to the cd_defs structure that contains values to be set
(CD_SETDEFS) or to be filled in with current values (CD_GETDEFS).

Return Values
On success, cd_defs returns a value of zero. On failure, cd_defs returns -1 and
sets ermo to identify the error.

Errors
EACCES Read permission is denied on the mount point, or search permis-

sion is denied on a component of path.

EFAULT Invalid address for the structure cd _ defs or path.

EINTR A signal was caught during the execution of cd_defs.

EINVAL The path argument does not point to a valid mount point, or the
value of cmd is invalid, or a member of the cd_defs structure
contains an invalid value.

EMFlLE The maximum number of file descriptors are open.

ENAMETOOLONG The size of path exceeds MAXPATHLEN, or the component of a path
name is longer than MAXNAMELEN while _POSIX_NO_TRUNC is in
effect.

ENFILE The system file table is full.

ENOENT path does not exist or the path argument points to an empty string.

ENOTDIR A component of path is not a directory.

EPERM User lacks write permission to set values.

295

REFERENCES
cdmntsuppl(lM), cdfs-specific page of fs(4), mount(lM)

296

NAME
cd_drec, cd_cdrec - read Directory Record from CD-ROM directory

SYNOPSIS
cc [flag . ..] file ... -lcdfs

#include <sys/cdram.h>

int cd_drec (char *path, intfsec, struct iso9660_drec *drec);

int cd_cdrec (char *path, intfsec, char *drec);

DESCRIPTION
cd_drec fills the drec structure with the contents of the Directory Record associated
with a file or directory referred to by path.

cd_cdrec copies the complete Directory Record on the CD-ROM to the address
drec.

CD_MAXDRECL defines the size of the Directory Record.

path File or directory in the CD-ROM file system.

fsec Specifies the File Section of the named file. The numbering starts
with one. The number -1 denotes the last File Section of the
named file, or the only File Section of the named directory.

drec Pointer to structure or character array where Directory Record is
to be copied. The character array must contain at least
CD_MAXDRECL bytes.

Return Values
On success, cd_drec returns a value of zero. On failure, cd_drec returns a value of
-1 and sets errno to identify the error.

Errors
EACCES Read permission is denied on the directory or file that path points

to, or search permission is denied for a component of path.

EFAULT Invalid address for drec or path.

EINTR Signal caught during the execution of one of the functions.

EINVAL The value of fsec is invalid, or path points to directory or file out
side of the CD-ROM file hierarchy.

EMFILE The maximum number of file descriptors are open.

ENAMETOOLONG The size of path exceeds MAXPATHLEN, or the component of a path
name is longer than MAXNAMELEN while _POSIX_NO_TRUNC is in
effect.

ENFILE The system file table is fulL

ENOENT path does not exist or the path argument points to an empty string.

ENOTDIR A component of path is not a directory.

ENXIO A read error or the CD-ROM is not in the drive.

297

REFERENCES
cddrec(lM)

298

cd getdevmap (3X)

NAME
cd_getdevmap - get the major and minor numbers assigned to a CD-ROM device

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdram.h>

int cd_getdevmap (char *path, int pathlen, int index,
int *new_major, int *new_minor);

DESCRIPTION
cd_getdevmap gets the major and minor numbers currently assigned to a device
file on the mounted CD-ROM. (See the cd_setdevmap(3X) command to see how to
change the major/minor number assignments.)

path Points to a device file within the CD-ROM file hierarchy.

pathlen

index

Specifies the maximum length of path.

When the major and minor number of a device file are set (reassigned)
using the cd_setdevmap function, the new major and minor number
values are recorded in a table. Each line in the table has a number
associated with it. The first entry in the table is referred to as index
number one, the second entry is index number two, and so on. index
specifies which entry to look up in the table. If a major/minor
number assignment of a device file is unset (using the cd_setdevmap
function), the entry for the specified device file is deleted from the
table.

index is specified as follows:

If index is zero, the major and minor number of the device file pointed
to by path is returned. The value of pathlen is not used.

If index is non-zero, index specifies which entry in the table to return.
The major and minor number, and the pathname of the device file are
returned.

new_major Identifies the memory location where the major number is stored.

new minor Identifies the memory location where the minor number is stored.

Return Values
If the major and minor number of the specified device file is successfully returned,
cd_getdevmap returns the length of path.

If the length of the pathname for the device file is longer than pathlen, the pathname
returned in path will be truncated to pathlen length and will not be NULL
terminated. Also, the return value will be larger than pathlen.

If no major and minor number assignment for the specified device file is found, zero
is returned.

In case of error, -1 is returned and ermo is set to indicate the error.

299

cd _getdevmap (3X)

Errors
EACCES Search permission is denied for a component of the path prefix.

EACCES Read permission on the device file pointed to by path is denied.

EFAULT The address of path, new_major, or new_minor is invalid.

EINTR A signal was caught during the cd_getdevmap function.

EINVAL The value of index or pathlen is invalid.

EINVAL The path argument points to a device file that is not within the
CD-ROM file hierarchy.

EINVAL The file pointed to by path is not a device file.

EMFILE Too many file descriptors are currently open in the calling
process.

ENAMETOOLONG The length of the path string exceeds MAXPATHLEN.

ENAMETOOLONG A pathname component is longer than MAXNAMELEN while
_POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full.

ENOENT A component of path does not exist.

The path argument points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The CD-ROM is not in the drive.

A read error occurred.

REFERENCES

NOTES

300

cddevsuppl(IM), cdsuf(IM), cd_setdevmap(3X), cd_suf(3X), Rock Ridge Inter
change Protocol from the Rock Ridge Technical Working Group

The index numbers from 1 to n (where n is the number of the last device file re
assignment) are always guaranteed to have an associated device file. So, to write an
application that successively deletes all device file major/minor number re
assignments one at a time, call cd_getdevmap with index equal to I, then call
cd_setdevmap with CD_UNSETDMAP, in a loop, until cd~etdevmap returns zero.

cdJdmap(3X)

NAME
cd_idmap - set or get mappings of CD-ROM user and group IDs

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdrom.h>

int cd_idmap (char *path, int cmd, struct cd_idmap *idmap, int
*nmaps) ;

DESCRIPTION
cd_imap sets or gets user and group ID mappings for files and directories on a
mounted CD-ROM. Only files and directories that have user and group IDs defined
may have them mapped.

If the user and group IDs set by the manufacturer are not appropriate for your sys
tem, change them after the CD-ROM has been mounted, but before opening any
files. Mappings that are changed when a file is open will not take effect until the
file is closed.

path

cmd

idmap

nmaps

Return Values

Mount point of the CD-ROM file system.

CD_SETUMAP or CD_SETGMAP to use the values in the idmap array
to map user and group IDs.

CD_GETUMAP or CD_GETGMAP to get the current values of user and
group IDs.

Pointer to the cd_idmap structure that contains values to be set
(CD_SETUMAP and CD_SETGMAP) or filled in (CD_GETUMAP and
CD_GETGMAP).

Number of mappings in the array. If nmaps is zero, none of previ
ously set mappings will stay in effect. Overrides any existing
mapping or values previously set by cd_idmap.

On call, nmaps contains the maximum number of mappings that
may be returned. On return, nmaps contains the number of map
pings that are returned.

On success, cd_idmap returns a value of zero. On failure, cd_idmap returns -1 and
sets ermo to identify the error.

Errors
EACCES

EFAULT

EINTR

EINVAL

Read permission is denied on the mount point, or search permis
sion is denied on a component of path.

Invalid address for idmap or path.

A signal was caught during the execution of the cd_idmap func
tion.

Invalid value for cmd or nmaps. cmd is negative or nmaps is larger
than CD_MAXUMAP or CD_MAXGMAP.

301

cd_idmap (3X)

EINVAL The cd_idmap structure has an invalid member: from_id con
tains an unsupported value, or to_uid contains an unsupported
value, or to_id contains an unsupported value.

EINVAL path points to an invalid mount point.

ENAMETOOLONG The size of path exceeds MAXPATHLEN, or the component of a path
name is longer than MAXNAMELEN while _POSIX_NO_TRUNC is in
effect.

ENOENT path does not exist or the path argument points to an empty string.

ENOTDIR A component of path is not a directory.

EPERM User lacks write permission to set values.

REFERENCES
cdmntsuppl(lM), cdfs-specific mount(lM)

302

cd _ nmconv (3X)

NAME
cd_nntConv - set or get CD-ROM name conversion flag

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdram.h>

int cd_nntConv (char *path, int cmd, int *fLag);

DESCRIPTION
cd_nntConv sets or gets the name conversion flag for file names on the mounted
CD-ROM. cd_nmconv provides a way to make the CD-ROM file names appear con
sistent with the names on the rest of the system.

CD-ROM file identifiers take the following format:

FILENAME.FILENAME _EXTENSION; VERSION

where FILENAME and FILENAME _EXTENSION are alphanumeric and VERSION
is a number.

If the name conversion flag needs to be set, set it after the CD-ROM has been
mounted, but before any CD-ROM access occurs. If the command is executed while
files are open, the changes will not take effect until the file is closed.

path Mount point of a CD-ROM file system.

cmd CD_SETNMCONV to set the conversion flag or CD_GETNMCONV to get the value
of the conversion flag.

flag flag is one of the following:

CD_NOCONV No conversion

CD_LOWER Convert characters in file identifiers to lower case. If a
file identifier doesn't contain a filename extension, don't
display the period (.). You may use CD_LOWER and
CD_NOVERSION separately or together.

CD_NOVERSION The version number and the semicolon (;) of a File
Identifier are not represented. You may use CD_LOWER
and CD_NOVERSION separately or together.

Return Values
On success, cd_nntConv returns a value of zero. On failure, cd_nntConv returns -1
and sets ermo to identify the error.

Errors
EACCES

EFAULT

EINTR

EINVAL

Read permission is denied on the mount point, or search permis
sion is denied on a component of path.

Invalid address for flag or path.

A signal was caught during the execution of the cd_nmconv func
tion.

The value of cmd or flag is. invalid, or path argument does not
point to a mount point of a CD-ROM file system.

303

cd _ nmconv (3X)

EMFILE The maximum number of file descriptors are open.

ENAMETOOLONG The size of path exceeds MAXPATHLEN, or the component of a path
name is longer than MAXNAMELEN while _POSIX_NO_TRUNC is in
effect.

ENFILE The system file table is full.

ENOEN'!' path does not exist or the path argument points to an empty string.

ENOTDIR A component of path is not a directory.

EPERM User lacks write permission to set values.

REFERENCES
cdmntsuppl(lM), cdfs-specific mount(lM)

304

cd _ptrec (3X)

NAME
cd-ptrec, cd_cptrec - read CD-ROM Path Table Record

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdram.h>

int cd-ptrec (char *path, struct isa9660-ptrec *ptrec);

int cd_cptrec (char *path, char *ptrec);

DESCRIPTION
cd-ptrec fills the ptrec structure with the contents of the Path Table Record associ
ated with a directory which is referred to by the path argument.

cd_cptrec copies the complete Path Table Record as recorded on the CD-ROM to
the address ptrec.

path Points to a directory within the CD-ROM file hierarchy.

ptrec

Return Values

Pointer to structure or character array where Path Table Record is
to be copied. The characters must contain at least CD_MAXPTRECL
bytes.

On success, the functions return a value of zero. On failure, the functions return -1
and set erma to identify the error.

Errors
EACCES

EFAULT

Read permission is denied on the mount point, or search permis
sion is denied on a component of path.

Invalid address of ptrec or path.

EINTR A signal was caught during the execution of one of the functions.

EINVAL path points to a directory that is outside the CD-ROM file system.

EMFILE The maximum number of file descriptors are open.

ENAMETOOLONG The size of path exceeds MAXPATHLEN, or the component of a path
name is longer than MAXNAMELEN while _POSIX_NO_TRUNC is in
effect.

ENFILE The system file table is full.

ENOENT path does not exist or the path argument points to an empty string.

ENOTDIR path is not a directory.

ENXIO Either a read error occurred, or the CD-ROM is not in the drive.

REFERENCES
cdptrec(lM)

305

cd_pvd(3X)

NAME
cd-pvd, cd_cpvd - read CD-ROM Primary Volume Descriptor (PVD)

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdram.h>

int cd-pvd (char *path, struct iso9660-pvd *pvd);

int cd_cpvd (char *path, char *pvd);

DESCRIPTION

306

cd_cpvd. fills the pvd structure with the contents of the Primary Volume Descriptor
associated with a file or directory referred to by path.

The PVD contains information that the manufacturer recorded on the CD-ROM
disk, such as the location of the root directory, the block size, volume name and
expiration date. Allocate CD_P'VDLEN bytes for the PVD. To read the PVD, you need
read or execute permission for path.

path File or directory within the CD-ROM file system, or block special
file containing the CD-ROM file system.

pvd

Return Values

Pointer to the structure or character array where the Primary
Volume Descriptor is to be copied. The character array must con
tain at least CD_PVDLEN bytes.

On success, cd-pvd returns a value of zero. On failure, cd-pvd returns a value of -
1 and sets errno is set to identify the error.

Errors
EACCES Search permission is denied on a component of path, or read per

mission is denied on the file, directory, or block special file that is
pointed to by path.

EFAULT Invalid address of pvd or path.

EINTR A signal was caught during the execution of the one of the func
tions.

EINVAL path is a block special file and the CD-ROM is not recorded
according to the 150-9660 standard.

EINVAL path points to a file or directory that is outside the CD-ROM file
system.

EMFILE The maximum number of file descriptors are open.

ENAMETOOLONG The size of path exceeds MAXPATHLEN, or the component of a path
name is longer than MAXNAMELEN while _POSIX_NO_TRUNC is in
effect.

ENFILE The system file table is full.

ENOENT path does not exist or the path argument points to an empty string.

ENOTDIR

ENXIO

ENXIO

REFERENCES
cdvd(lM)

cd_pvd{3X)

A component of path is not a directory.

path is a block special file and the device associated with the spe
cial file does not exist.

The CD-ROM is not in the drive, or a read error occurred.

307

cd setdevmap (3X)

NAME
cd_setdevmap - set or unset major and minor numbers assignments for a CD-ROM
device

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdram.h>

int cd_setdevmap (char *path, int cmd, int *new_major,
int *new _ minor) ;

DESCRIPTION

308

cd_setdevmap sets (reassign) or unsets (based on cmd) the major and minor
numbers of a device file to new values so the appropriate device on the host system
is accessed.

The major and minor number of any device files on a CD-ROM are assigned by the
CD-ROM publisher during manufacturing. These values may not match the major
and minor numbers assigned to the physical devices on the host system.

When a device file is referenced, the major and minor number assigned using the
cd_setdevmap function or the values recorded on the media are used. When the
CD-ROM is unmounted, any new major and minor number assignments are invali
dated.

The cd_setdevmap function should be used before the device file is used, otherwise
the change will not take effect until the device file is closed and reopened. Only a
privileged user can use the cd_setdevmap function.

The maximum number of device files per CD-ROM that can be reset is defined in
sys/cdrom.h.

The cd_setdevmap function must be specified as follows:

path Points to a device file within the CD-ROM file hierarchy.

cmd Specifies the command to execute (set or unset). cmd is one of the fol
lowing:

CD_SETDMAP Specifies that the original major and minor number
pair of a device file (specified by path) be replaced
with the value specified by new_major and
new_minor. Any previous reassignments are over
ridden.

CD_UNSETDMAP Specifies that the major and minor numbers of the
device file pointed to by path should be unset (the
values on the mounted CD-ROM will be used from
then on).

new _major Identifies the memory location where the major number is stored.

new minor Identifies the memory location where the minor number is stored.

Return Values
For CD_SETDMAP, exit status is 1 if the major and minor number of the device file is
successfully reassigned, and the exit status is a if no more assignments are allowed.
(See the NOTES section).

cd setdevmap (3X)

For CD_UNSETDMAP, the exit status is 1 if the major and minor number assignments
of the device file is successfully unset, and the exit status is a if the major and minor
number assignments of the device files are not found.

Exit status is -1 if an error occurs, and ermo is set to indicate the error.

Errors
EACCES Search permission is denied for a component of the path prefix.

EACCES Write permission on the device file pointed to by path is denied.

EFAULT The address of path, new _major, or new_minor is invalid.

EINTR A signal was caught during the cd_setdevmap function.

EINVAL The value of cmd is invalid.

EINVAL The path argument points to a device file that is not within the
CD-ROM file hierarchy.

EINVAL The file pointed to by path is not a device file.

EMFILE Too many file descriptors are currently open in the calling
process.

ENAMETOOLONG The length of the path string exceeds MAXPATHLEN.

ENAMETOOLONG A pathname component is longer than MAXNAMELEN while
_POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full.

ENOENT A component of path does not exist.

ENOENT The path argument points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The CD-ROM is not in the drive.

ENXIO A read error occurred.

EPERM User does not have read/write permission for the specified
device file.

REFERENCES
cd_getdevmap(3X), cddevsuppl(lM), cdsuf(lM), the Rock Ridge Interchange Proto
col from the Rock Ridge Technical Working Group

309

cd_suf(3X)

NAME
cd_suf - reads the cdfs System Use Field from the specified System Use Area

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdram.h>

int cd_suf (char *path, int fsec, char signature [2], int index, char
*buf, int bufLen> ;

DESCRIPTION

310

cd_suf reads a System Use Field of the System Use Area associated with a File Sec
tion of a file or directory, following any continuation fields that may be present. A
continuation field is a System Use Field that extends the System Use Area so more
System Use Fields can be stored. Continuation fields are defined in the System Use
Sharing Protocol specification. The System Use Area may be used by the manufac
turer to record additional information about files and directories, such as the POSIX
file system information.

path Points to a file or directory within the CD-ROM file hierarchy.

fsec

signature

index

buf

bufLen

Return Values

Identifies the File Section of that file to be used. The numbering
starts with 1. If fsec is set to -1, the System Use Area of the last
File Section of that file is assumed.

The 2-byte signature word of the requested System Use Field. See
cdfs-specific dir(4) for a list of the known valid System Use
Field values.

Specifies the occurrence number of signature to return. If signature
is NULL, the index'th occurrence of the System Use Field is
returned, starting from the beginning of the SUSP portion of Sys
tem Use Area. Otherwise, the index'th occurrence of signature is
returned. The index number of the first System Use Field of any
signature is 1.

Specifies the address of the buffer in which to place the System
Use Field.

Specifies the length of the buffer in which to place the System Use
Field.

On success, cd_suf returns the number of bytes placed in buf If the signature field
is not found, zero is returned. On failure, cd_suf returns -1 and sets errno to indi
cate the error.

Errors
EACCES

EACCES

EFAULT

Search permission for a component of the path prefix is denied.

Read permission on the file or directory pointed to by path is
denied.

The address of buj, signature or path is invalid.

cd_suf(3X)

EINTR A signal was caught during the cd _suf function.

EINVAL The value of fsec, index or bufLen is invalid.

EINVAL The path argument points to a file or directory that is not within
the CD-ROM file hierarchy.

EMFILE Too many file descriptors are currently open in the calling
process.

ENAMETOOLONG The length of the path string exceeds MAXPATHLEN.

ENAMETOOLONG A pathname component is longer than MAXNAMELEN while
_POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full.

ENODEV The Volume containing the File Section indicated by fsec is not
mounted.

ENOENT A component of path does not exist.

ENOENT The path argument points to an empty string.

ENOENT The File Section indicated by fsec has no System Use Area.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The CD-ROM is not in the drive.

ENXIO A read error occurred.

REFERENCES
cddevsuppl(lM), cdsuf(lM), Rock Ridge Interchange Protocol and the System Use
Sharing Protocol from the Rock Ridge Technical Working Group,

311

NAME
cd_type - get CD-ROM format identification

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdrom.h>

int cd_type (char *path);

DESCRIPTION

312

cd_type determines the type of a CD-ROM and indicates the CD-ROM type in the
return value.

path File or directory within the CD-ROM file system, or block special
file containing the CD-ROM file system.

Return Values
On success, cd_type returns one of the following values:

CD_IS09660
The CD-ROM is recorded according to 150-9660.

CDFS_HIGH_SIERRA
The CD-ROM is recorded according to High Sierra.

CDFS_UNDEF_FS_TYPE
The CD-ROM is recorded according to an unknown specification.

On failure, cd_type returns -1 and sets errno to indicate the error.

Errors
EACCES Search permission is denied on a component of path, or read per

mission is denied on the file, directory, or block special file that is
pointed to by path.

EFAULT Invalid address of path.

EINVAL path points to a file or directory that is outside the CD-ROM file
system.

EMFILE The maximum number of file descriptors are open.

ENAMETOOLONG The size of path exceeds MAXPATHLEN, or the component of a path
name is longer than MAXNAMELEN while _POSIX_NO_TRUNC is in
effect.

ENFILE The system file table is full.

ENOENT path does not exist or the path argument points to an empty string.

ENOTDIR A component of path is not a directory.

ENXIO path is a block special file and the device associated with it does
not exist.

ENXIO The CD-ROM is not in the drive or a read error occurred.

NAME
cd_xar, cd_cxar - read CD-ROM Extended Attribute Record (XAR)

SYNOPSIS
cc [flag . ..]file ... -lcdfs

#include <sys/cdram.h>

int cd_xar (char *path, int fsec, struct iso9660_xar *xar, int
applen, int esclen) ;

int cd_cxar (char *path, intfsec, char *xar, int xarlen);

DESCRIPTION
cd_xar fills xar with the contents of the XAR associated with the file or directory
referred to by the argument path. An XAR describes attributes of a file or directory
(such as the user ID, group ID, or permissions) on an extent, a portion of a file on a
CD-ROM. An XAR contains a fixed-length field and two variable length fields.
CD_XARFIXL defines the length of the fixed part of the XAR.

You can obtain the total number of an XAR's logical blocks with the cd_drec func
tion. You can obtain the Logical Block Size in bytes with the cd---pvd function.

path File or directory in the CD-ROM file system.

fsec

xar

applen

esclen

xarlen

Return Values

Specifies the File Section of that file. The numbering starts with
one. If fsec is set to -1, the function reads the XAR of the last File
Section of the file.

Pointer to structure or character array where XAR is to be copied.

Bytes to be copied to the address. specified in the xar structure by
app_use.

Bytes to be copied to the address specified in the xar structure by
esc_seq.

Bytes to be copied to xar.

On success, cd_xar returns the number of bytes copied for the variable part of the
XAR. On success, cd_cxar returns the number of bytes copied. On failure, the
functions return -1 and set ermo to identify the error.

Errors
EACCES

EFAULT

EINTR

EINVAL

EINVAL

EMFILE

Read permission is denied on the mount point, or search permis
sion is denied on a component of path.

Invalid address for the structure cd_defs or path.

A signal was caught during the execution of one of the functions.

Invalid value for fsec or xarlen.

path points to a file or directory that is outside the CD-ROM file
system.

The maximum number of file descriptors are open.

313

ENAMETOOLONG The size of path exceeds MAXPATHLEN, or the component of a path
name is longer than MAXNAMELEN while _POSIX_NO_TRUNC is in
effect.

ENFILE The system file table is full.

ENOENT path does not exist, the path argument points to an empty string,
or the file section indicated by fsec has no XAR.

ENOTDIR A component of path is not a directory.

ENXIO CD-ROM is not in the drive or a read error occurred.

REFERENCES
cdxar(lM), cd_drec(3X), cd-pvd(3X)

314

clock (3C)

NAME
clock - report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock (void);

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used since the first call to
clock in the calling process. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which it has exe
cuted the wait system call, the pclose function, or the system. function.

Dividing the value returned by clock by the constant CLOCKS_PER_SEC, defined in
the time. h header file, will give the time in seconds.

The resolution of the clock is defined by CLK_TCK in limits .h, and is typically
1/100 or 1/60 of a second.

SEE ALSO

NOTES

popen(3S), system.(3S) times(2), wait(2),

The value returned by clock is defined in microseconds for compatibility with sys
tems that have CPU clocks with much higher resolution. Because of this, the value
returned will wrap around after accumulating only 2147 seconds of CPU time
(about 36 minutes). If the process time used is not available or cannot be
represented, clock returns the value (clock_t)-1.

315

connect (3N)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>

int connect (int s, caddr_t name, int namelen);

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, connect specifies the peer
with which the socket is to be associated; this address is the address to which
datagrams are to be sent if a receiver is not explicitly designated; it is the only
address from which datagrams are to be received. If the socket s is of type
SOCK_STREAM, connect attempts to make a connection to another socket. The other
socket is specified by name. name is an address in the communications space of the
socket. Each communications space interprets the name parameter in its own way.
If s is not bound, then it will be bound to an address selected by the underlying
transport provider. Generally, stream sockets may successfully connect only once;
datagram sockets may use connect multiple times to change their association.
Datagram sockets may dissolve the association by connecting to a null address.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned
and a more specific error code is stored in errno.

ERRORS

316

The call fails if:

EBADF

ENOTSOCK

EINVAL

EADDRNOTAVAIL

EAFNOSUPPORT

EISCONN

ETlMEOOUT

ECONNREFUSED

ENETUNREACH

EADDRlNUSE

EINPROGRESS

s is not a valid descriptor.

s is a descriptor for a file, not a socket.

name len is not the size of a valid address for the specified
address family.

The specified address is not available on the remote machine.

Addresses in the specified address family cannot be used
with this socket.

The socket is already connected.

Connection establishment timed out without establishing a
connection.

The attempt to connect was forcefully rejected. The calling
program should close the socket descriptor, and issue
another socket call to obtain a new descriptor before
attempting another connect call.

The network is not reachable from this host.

The address is already in use.

The socket is non-blocking and the connection cannot be
completed immediately. It is possible to select for comple
tion by selecting the socket for writing. However, this is only
possible if the socket STREAMS module is the topmost
module on the protocol stack with a write service procedure.

EALREADY

EINTR

ENOTSOCK

EPROTOTYPE

ENOSR

connect (3N)

This will be the normal case.

The socket is non-blocking and a previous connection
attempt has not yet been completed.

The connection attempt was interrupted before any data
arrived by the delivery of a signal.

The file referred to by name is not a socket.

The file referred to by name is a socket of a type other than
type s (for example, s is a SOCK_DGRAM socket, while name
refers to a SOCK_STREAM socket).

There were insufficient STREAMS resources available to com
plete the operation.

The following errors are specific to connecting names in the UNIX domain. These
errors may not apply in future versions of the UNIX IPe domain.

ENOTDIR

ENOENT

ENOENT

EACCES

ELOOP

EIO

A component of the path prefix of the pathname in name is
not a directory.

A component of the path prefix of the pathname in name
does not exist.

The socket referred to by the pathname in name does not
exist.

Search permission is denied for a component of the path
prefix of the pathname in name.

Too many symbolic links were encountered in translating the
pathname in name.

An I/O error occurred while reading from or writing to the
file system.

SEE ALSO

NOTES

accept(3N), close(2), connect(3N), getsockname(3N), socket(3N)

The type of address structure passed to connect depends on the address family.
UNIX domain sockets (address family AF _UNIX) require a socketaddr_un struc
ture as defined in sys/un.h; Internet domain sockets (address family AF_INET)
require a sockaddr_in structure as defined in netinet/in.h. Other address fami
lies may require other structures. Use the structure appropriate to the address fam
ily; cast the structure address to a generic caddr_t in the call to connect and pass
the size of the structure in the length argument.

317

conv(3C)

NAME
conv: toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include <ctype.h>

int toupper (int c);

int tolower (int c) ;

int _toupper (int c) ;

int _tolower (int c) ;

int toascii (int c);

DESCRIPTION
toupper and tolower have as their domain the range of the function getc: all
values represented in an unsigned char and the value of the macro EOF as defined
in stdio.h. If the argument of toupper represents a lowercase letter, the result is
the corresponding uppercase letter. If the argument of tolower represents an
uppercase letter, the result is the corresponding lowercase letter. All other argu
ments in the domain are returned unchanged.

The macros _toupper and _tolower accomplish the same things as toupper and
tolower, respectively, but have restricted domains and are faster. _toupper
requires a lowercase letter as its argument; its result is the corresponding uppercase
letter. _tolower requires an uppercase letter as its argument; its result is the
corresponding lowercase letter. Arguments outside the domain cause undefined
results.

toascii yields its argument with all bits turned off that are not part of a standard
7-bit ASCII character; it is intended for compatibility with other systems.

toupper, tolower, _toupper, and_tolower are affected by LC_CTYPE. In the C
locale, or in a locale where shift information is not defined, these functions deter
mine the case of characters according to the rules of the ASCII-coded character set.
Characters outside the ASCII range of characters are returned unchanged.

All the conversion functions and macros use a table lookup.

SEE ALSO
ctype(3C), environ(5), getc(3S), setlocale(3C)

318

copylist (3G)

NAME
copylist - copy a file into memory

SYNOPSIS
cc [flag ...]file ... -lgen [library . ..]

#include <libgen.h>

char *copylist (const char *filenm, off_t *szptr);

DESCRIPTION
copylist copies a list of items from a file into freshly allocated memory, replacing
new-lines with null characters. It expects two arguments: a pointer filenm to the
name of the file to be copied, and a pointer szptr to a variable where the size of the
file will be stored.

Upon success, copylist returns a pointer to the memory allocated. Otherwise it
returns NULL if it has trouble finding the file, calling malloc, or opening the file.

EXAMPLES
/* read "file" into buf */
off_t size;
char *OOf;
buf = copylist("file", &size);
for (i = 0; i < size; i++)

if(buf[i])
putchar(buf[i]);

else
put char (, \n');

SEE ALSO
malloc(3C)

319

crypt (3C)

NAME
crypt, setkey, encrypt - generate encryption

SYNOPSIS
#include <crypt.h>

char *crypt (const char *key, const char *salt);

void setkey (const char *key);

void encrypt (char * block, int edflag);

DESCRIPTION
crypt is the password encryption function. It is based on a one-way encryption
algorithm with variations intended (among other things) to frustrate use of
hardware implementations of a key search.

key is the input string to encrypt, for instance, a user's typed password. Only the
first eight characters are used; the rest are ignored. salt is a two-character string
chosen from the set a-zA-ZO-9. /; this string is used to perturb the hashing algo
rithm in one of 4096 different ways, after which the input string is used as the key
to encrypt repeatedly a constant string. The returned value points to the encrypted
input string. The first two characters of the return value are the salt itself.

The setkey and encrypt functions provide access to the hashing algorithm. The
argument of setkey is a character array of length 64 containing only the characters
with numerical value 0 and 1. This string is divided into groups of 8, the low-order
bit in each group is ignored; this gives a 56-bit key that is set into the machine. This
is the key that will be used with the hashing algorithm to encrypt the string block
with the encrypt function.

The block argument of encrypt is a character array of length 64 containing only the
characters with numerical value 0 and 1. The argument array is modified in place
to a similar array representing the bits of the argument after having been subjected
to the hashing algorithm using the key set by setkey. The argument edflag, indicat
ing decryption rather than encryption, is ignored; use encrypt in libcrypt [see
crypt(3X)] for decryption.

SEE ALSO
crypt(3X), getpass(3C), login(l), passwd(l), passwd(4)

DIAGNOSTICS
If edflag is set to anything other than zero, errno will be set to ENOSYS.

NOTES
The return value for crypt points to static data that are overwritten by each call.

320

crypt (3X)

NAME
crypt - password and file encryption functions

SYNOPSIS
cc [flag . . .]file ... -lcrypt [library . ..]

#include <crypt.h>

char *crypt (const char * key , const char *salt) i

void setkey (const char *key);

void encrypt (char *block, int flag) ;

char *des_crypt (const char *key, const char *salt);

void des_setkey (const char *key);

void des_encrypt (char *block, int flag);

int run_setkey (int *connection, const char *key);

int run_crypt (long offset, char * buffer, unsigned int count,
int * connection) ;

int crypt_close (int * connection) ;

DESCRIPTION
des_crypt is the password encryption function. It is based on a one-way hashing
encryption algorithm with variations intended to frustrate use of hardware imple
mentations of a key search.

key is a user's typed password. salt is a two-character string chosen from the set
[a-zA-ZO-9. I]; this string is used to perturb the hashing algorithm in one of 4096
different ways, after which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted password. The first
two characters are the salt itself.

The des_setkey and des_encrypt entries provide access to the hashing algorithm.
The argument of des_setkey is a character array of length 64 containing only the
characters with numerical value 0 and 1. If this string is divided into groups of 8,
the low-order bit in each group is ignored, thereby creating a 56-bit key that is set
into the machine. This key is the key that will be used with the hashing algorithm
to encrypt the string block with the function des_encrypt.

The argument to the des_encrypt entry is a character array of length 64 containing
only the characters with numerical value 0 and 1. The argument array is modified
in place to a similar array representing the bits of the argument after having been
subjected to the hashing algorithm using the key set by des_setkey. If flag is zero,
the argument is encrypted; if non-zero, it is decrypted.

Note that decryption is not provided in the international version of crypt. The
international version is part of the C Development Set, and the domestic version is
part of the Encryption Utilities. If decryption is attempted with the international
version of des_encrypt, an error message is printed.

321

crypt (3X)

crypt, setkey, and encrypt are front-end routines that invoke des Jrypt,
des _setkey, and des _encrypt respectively.

The routines run_setkey and run_crypt are designed for use by applications that
need cryptographic capabilities [such as ed(l) and vi(l)] that must be compatible
with the crypt(l) user-level utility. run_setkey establishes a two-way pipe con
nection with the crypt utility, using key as the password argument. run_crypt
takes a block of characters and transforms the cleartext or ciphertext into their
ciphertext or cleartext using the crypt utility. offset is the relative byte position
from the beginning of the file that the block of text provided in buffer is coming
from. count is the number of characters in buffer, and connection is an array contain
ing indices to a table of input and output file streams. When encryption is finished,
crypt_close is used to terminate the connection with the crypt utility.
crypt_close returns -1 if it fails to terminate the connection with the crypt utility,
or a 0 if termination is successfuL

run_setkey returns -1 if a connection with the crypt utility cannot be established.
This result will occur in international versions of the UNIX system in which the
crypt utility is not available. If a null key is passed to run_setkey, 0 is returned.
Otherwise, 1 is returned. run_crypt returns -1 if it cannot write output or read
input from the pipe attached to crypt. Otherwise it returns o.
The program must be linked with the object file access routine library libcrypt . a.

SEE ALSO
crypt(l), getpass(3C), login(l), passwd(l), passwd(4)

DIAGNOSTICS

NOTES

322

In the international version of crypt(3X), a flag argument of 1 to encrypt or
des_encrypt is not accepted, and errno is set to ENOSYS to indicate that the func
tionality is not available.

The return value in crypt points to static data that are overwritten by each call.

cs _connect (3N)

NAME
cs_connect, cs-perror - application interface to the Connection Server

SYNOPSIS
#include <cs.h>

int cs_connect (char *host, char *service,
struct csopts *cs _opt, int *error);

void cs-perror (char *string, int error);

DESCRIPTION
The library routines cs_connect and cs-perror provide an interface that network
applications use to establish an authenticated TLI connection to a network service on
host. The Connection Server interface shields the client application from details of
connection establishment and authentication. Since cs_connect performs authen
tication on behalf of the client process, authentication is effectively automated. The
way in which cs_connect accesses authentication schemes also allows the system
administrator to use modular schemes that are interchangeable and can be admin
istered on a per-service basis.

cs_connect communicates with the Connection Server daemon, which establishes
a TLI connection on behalf of the client application and returns a file descriptor
associated with the connection. The Connection Server uses the Network Selection
mechanism to determine the transport provider needed to connect to the specified
service and uses the Name-to-Address Mapping facility to obtain the address of the
network service over that transport.

The arguments are defined as follows:

host The name of the server machine that is supplying the service. This name
can be any string acceptable to the Name-to-Address Mapping facility.

service The name of the service with which the application wishes to communi
cate. To connect to a service via the NLPS server use the following syntax:

listen: service tag
where service tag is the argument taken from the first field in J>IlI.tab on the
server machine.

cs_opt To bind to a reserve port, or to make a special type of network selection,
the structure csopts may be used. Since applications rarely need this func
tionality, this argument will typically be NULL. Network selection usually
means restricting the choice of transport providers by name (where a tran
sport provider name is specified in the first field of the /etc/netconfig
file). The preferred method of selection is setting the NETPATH environment
variable to a colon-separated list of transport provider names. To do such
special types of network selection as restricting by network semantics, use
the struct csopts.

The structure csopts is defined in the header file /usr/include/cs.h as:

struct csopts {

};

struct netconfig *nc-Pi
int nd_opt;
struct netbuf *nb-p i

323

cs _ connect (3N)

324

The elements of this structure are as follows:

struct netconfig *nc-p
To restrict the networks which may be used in making a connection,
the user may set the element nc-p to point to a netconfig struc
ture. A network will be selected which matches with all the ele
ments in the netconfig structure that have been filled in by the
user [see netcorifig(4)]. For example, if the user wants to use only
TCP protocol networks, then nc-P->nc----Proto should be set to tcp
and all other elements should be set to zero or NULL. If the user
does not want to restrict network selection but does want to bind to
a reserved port, nc-p should be set to

(struct netconfig *)NULL

and the other members should be set as described below.

int nd_opt
To bind to a reserved port, the user should set this element to
ND_SET_RESERVEDPORT. See netdir(3N).

struct netbuf *nb-p
To bind to a reserved port on a specific address, nd_opt should be
set as described above and nb----p should be set to point to a netbuf
structure. See netdir(3N). The buf field of the netbuf structure
should point to a sockaddr structure. See sys / socket. h.

error An int that is declared in the application that calls CS_COIUlect and
cs-perror. A pointer to error is passed to cs_connect and will be set to
an error value. Calling cs-perror with the value of error will print out
an appropriate error message.

string The string that is to precede error messages.

The Connection Server establishes a connection by trying each visible transport pro
vider in the order listed in /etc/netconfig. Each transport provider is tried until
a successful connection is made. Users can choose the transport providers to be
tried and the order in which they will be tried by setting the NETPATH environment
variable to a colon-separated list of transport provider names. (A transport pro
vider name is specified in the first field of the /etc/netconfig file.)

cs_connect establishes communication with the Connection Server daemon via a
named Stream and sends the host name and service name as parameters.
cs_connect also sends the value of the NETPATH environment variable, or a NULL
value if NETPATH is not set. If the pointer to the structure csopts is not NULL,
cs_connect will send the contents of the three member structures with the excep
tion of the last two elements of struct netconfig (that is, nc_lookups and
nc_nlookups).

The Connection Server daemon uses the Network Selection and Name-to-Address
Mapping facilities to attempt to establish an authenticated connection to host for ser
vice over each available transport until a connection is established or connection
establishment fails for every transport. Transport providers may be restricted by
setting the NETPATH environment variable to a colon-separated list of transport pro
vider names. See environ(4).

cs _ connect (3N)

The Connection Server consults the /etc/iaf/serve.allow file for the list of
authentication schemes acceptable to the client machine for service on host.

If an authenticated connection is established, the Connection Server returns a file
descriptor associated with the connection. The application can then perform all TLI
operations-t_snd(3N), t_rcv(3N), and so on-on the file descriptor.

cs-perror prints an error message on the standard error. The error message is
derived from indexing a value referenced by error, which was set by cs_connect.
The message is preceded by string and a colon.

EXAMPLE

FILES

A typical call to cs_connect is of the form:

#include <cs.h>

int error=O;

if «fd = cs_connect("host", "service", (struct csopts *)NULL,
&error» < 0) {
/* do error handling */
cs-perror("application specific string", error);
exit(l);

}

/* continue with normal execution */

/etc/cs/auth

/etc/iaf/serve.alias

/etc/iaf/serve.allow

/etc/inet/hosts

/etc/inet/services

Connection Server authentication scheme file

database of network services and their aliases

database of allowable authentication schemes and
network services

Name-to-Address Mapping hosts file for TCP. For
compatibility, / etc/ inet/hosts is linked to
/etc/hosts.

Name-to-Address Mapping services file for TCP.
For compatibility, /etc/inet/services is linked to
/ etc/ services.

/etc/net/transport_name/hosts
Name-to-Address Mapping hosts file for
transport _name

/ etc/net / transport_name / services
N ame-to-Address Mapping services file for
transport _name

/etc/netconfig Network Selection database file

325

cs connect(3N)

/var/adm/log/cs.debug Connection Server debug file

/var/adm/log/cs . log Connection Server log file

DIAGNOSTICS
On success, cs_connect returns a file descriptor containing a positive integer. On
failure, cs_connect returns -1.

On failure, cs-perror may report the following errors:

CS_NO_ERROR No Error

CS_SYS_ERROR

CS_DIAL_ERROR

CS_MALLOC

CS_AUTH

CS_CONNECT

CS_INVOKE

CS_SCHEME

CS_TRANSPORT

CS_PIPE

CS_FATTACH

CS_CONNLD

CS_FORK

CS_CHDIR

CS_SETNETPATH

CS_TOPEN

CS_TBIND

CS_TCONNECT

CS_TALLOC

CS_MAC

CS_DAC

CS_TlMEDOUT

CS_NETPRIV

CS_NETOPTION

CS_NOTFOUND

CS_LlDAUTH

System Error

Dial error

No Memory

Authentication scheme specified by server is not acceptable

Connection to service failed

Error in invoking authentication scheme

Authentication scheme unsuccessful

Could not obtain address of service over any transport

Could not create CS pipe

Could not mount remote stream to CS pipe

Could not push CONNLD

Could not fork CS child request

Could not chdir

Host! service not found over available transport

TLl failure: t_open failed

TLl failure: t_bind failed

TLl failure: t_connect failed

TLl failure: t_alloc failed

MAC check failure or Secure Device access denied

DAC check failure or Secure Device access denied

Connection attempt timed out

Privileges not correct for requested network options

Netdir option incorrectly set in csopts struct

Service not found in server's -PJD,tab

Connection not permitted by LlDAUTH • map

SEE ALSO
dial(3N), reportscheme(lM)

326

NOTES

cs _connect (3N)

Not all values stored in the csopts structure are sent to the Connection Server. In
particular, the last two elements of nc-p, that is, nc_lookups and nc_nlookups,
are not sent. See netconfig(4).

The Connection Server daemon logs a message to /var/adm/log/cs.log on
startup.

If it is invoked with the debug option, the Connection Server daemon prints debug
information to /var/adm/log/cs.debug.

/usr/sbin/cs -d

In order for network applications to use cs_connect, the following network com
ponents must be correctly administered:

The port monitor
The Identification and Authentication Facility (IAF)
IDMapping
Name-to-Address Mapping

327

ctermid (3S)

NAME
ctennid - generate file name for terminal

SYNOPSIS
#include <stdio.h>

char *ctennid (char *8);

DESCRIPTION
ctennid generates the path name of the controlling terminal for the current
process, and stores it in a string.

If 8 is a NULL pointer, the string is stored in an internal static area, the contents of
which are overwritten at the next call to ctennid, and the address of which is
returned. Otherwise, 8 is assumed to point to a character array of at least
L_ctermid elements; the path name is placed in this array and the value of 8 is
returned. The constant L_ctennid is defined in the stdio. h header file.

SEE ALSO
ttyname(3C)

NOTES

328

The difference between ctennid and ttyname(3C) is that ttyname must be handed
a file descriptor and returns the actual name of the terminal associated with that file
descriptor, while ctennid returns a string (ldev/tty) that will refer to the terminal
if used as a file name. Thus ttyname is useful only if the process already has at
least one file open to a terminal.

ctime(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS
#include <time.h>

char *ctime (const time_t *clock);

struct tIn *localtime (const time_t *clock);

struct tIn *gmtime (const time_t *clock);

char *asctime (const struct tIn *tm);

extern time_t timezone, altzone;

extern int daylight;

extern char *tzname [2] ;

void tzset (void);

DESCRIPTION
ctime, localtime, and gmtime accept arguments of type time_t, pointed to by
clock, representing the time in seconds since 00:00:00 UTe, January 1, 1970. ctime
returns a pointer to a 26-character string as shown below. Time zone and daylight
savings corrections are made before the string is generated. The fields are constant
in width:

Fri Sep 13 00:00:00 1986\n\0

localtime and gmtime return pointers to tIn structures, described below. local
time corrects for the main time zone and possible alternate ("daylight savings")
time zone; gmtime converts directly to Coordinated Universal Time (UTC), which is
the time the UNIX system uses internally.

asctime converts a tIn structure to a 26-character string, as shown in the above
example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tIn structure, are in the
time. h header file. The structure declaration is:

struct tIn {
int tIn_sec; /* seconds after the minute - [0, 61] */

/* for leap seconds */
int tIn_min; /* minutes after the hour - [0, 59] */
int tIn_hour; /* hour since midnight - [0, 23] */
int tIn_mday; /* day of the month - [1, 31] */
int tIn_mon; /* months since January - [0, 11] */
int tInJear; /* years since 1900 */
int tIn_wday; /* days since Sunday - [0, 6] */
int tInJday; /* days since January 1 - [0, 365] */
int tIn_isdst; /* flag for alternate daylight */

/* savings time */
};

329

ctime(3C)

330

The value of tIn_isdst is positive if daylight savings time is in effect, zero if day
light savings time is not in effect, and negative if the information is not available.
(Previously, the value of tIn_isdst was defined as non-zero if daylight savings time
was in effect.)

The external time_t variable altzone contains the difference, in seconds, between
Coordinated Universal Time and the alternate time zone. The external variable
timezone contains the difference, in seconds, between UTe and local standard time.
The external variable daylight indicates whether time should reflect daylight sav
ings time. Both timezone and altzone default to 0 (UTe). The external variable
daylight is non-zero if an alternate time zone exists. The time zone names are con
tained in the external variable tzname, which by default is set to:

ehar *tzname[2] = { "GMT"," "};

These functions know about the peculiarities of this conversion for various time
periods for the U.S.A. (specifically, the years 1974, 1975, and 1987). They will handle
the new daylight savings time starting with the first Sunday in April, 1987.

tzset uses the contents of the environment variable TZ to override the value of the
different external variables. It also sets the external variable daylight to zero if
Daylight Savings Time conversions should never be applied for the time zone in
use; otherwise, non-zero. tzset is called by asetime and may also be called by the
user. See environ(5) for a description of the TZ environment variable.

tzset scans the contents of the environment variable and assigns the different
fields to the respective variable. For example, the most complete setting for New
Jersey in 1986 could be

ESTSEDT4,116/2:00:00,298/2:00:00

or simply

ESTSEDT

An example of a southern hemisphere setting such as the Cook Islands could be

KDT9:30KST10:00,63/S:00,302/20:00

In the longer version of the New Jersey example of TZ, tzname[O] is EST, timezone
will be set to 5*60*60, tzname[l] is EDT, altzone will be set to 4*60*60, the starting
date of the alternate time zone is the 117th day at 2 AM, the ending date of the alter
nate time zone is the 299th day at 2 AM (using zero-based Julian days), and day
light will be set positive. Starting and ending times are relative to the alternate
time zone. If the alternate time zone start and end dates and the time are not pro
vided, the days for the United States that year will be used and the time will be 2
AM. If the start and end dates are provided but the time is not provided, the time
will be 2 AM. tzset changes the values of the external variables timezone,
altzone, daylight, and tzname. etime, loealtime, mktime, and strftime will
also update these external variables as if they had called tzset at the time specified
by the time_t or struet tIn value that they are converting.

Note that in most installations, TZ is set to the correct value by default when the
user logs on, via the local /ete/profile file [see profile(4) and timezone(4)].

FILES

ctime(3C)

/usr/lib/locale/language/LC_TIME - file containing locale specific date and time
information

SEE ALSO

NOTES

environ(5), getenv(3C), mktime(3C), printf(3S), profile(4), putenv(3C),
setlocale(3C), strftime(3C), strftime(4), time(2), timezone(4)

The return values for ctime, localtime, and gmtime point to static data whose
content is overwritten by each calL

Setting the time during the interval of change from timezone to altzone or vice
versa can produce unpredictable results. The system administrator must change
the Julian start and end days annually.

331

ctype(3C)

NAME
ctype: isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace,
iscntrl, ispunct, isprint, isgraph, isascii - character handling

SYNOPSIS
#include <ctype.h>

int isalpha{int c) ;

int isupper{int c) ;

int islower{int c) ;

int isdigit{int c) ;

int isxdigit{int c);
int isalnum{int c) ;

int isspace{int c) ;

int ispunct{int c) ;

int isprint{int c) ;

int isgraph{int c);

int iscntrl{int c);

int isascii{int c) ;

DESCRIPTION

332

These macros classify character-coded integer values. Each is a predicate returning
non-zero for true, zero for false. The behavior of these macros, except for isdigit,
isxdigit, and isascii, is affected by the current locale [see setlocale(3C)]. To
modify the behavior, change the LC_TYPE category in set locale, that is, setlo
cale (LC_CTYPE, newlocale). In the C locale, or in a locale where character type
information is not defined, characters are classified according to the rules of the US
ASCII 7-bit coded character set.

The macro isascii is defined on all integer values; the rest are defined only where
the argument is an int, the value of which is representable as an unsigned char,
or EOF, which is defined by the stdio.h header file and represents end-of-file.

isalpha

isupper

islower

tests for any character for which isupper or islower is true, or any
character that is one of an implementation-defined set of characters
for which none of iscntrl, isdigit, ispunct, or isspace is true. In
the C locale, isalpha returns true only for the characters for which
isupper or islower is true.

tests for any character that is an uppercase letter or is one of an
implementation-defined set of characters for which none of iscntrl,
isdigit, ispunct, isspace, or islower is true. In the C locale,
isupper returns true only for the characters defined as uppercase
ASCII characters.

tests for any character that is a lowercase letter or is one of an
implementation-defined set of characters for which none of iscntrl,
isdigit, ispunct, isspace, or isupper is true. In the C locale,
islower returns true only for the characters defined as lowercase
ASCII characters.

FILES

ctype(3C)

isdigit tests for any decimal-digit character.

isxdigi t tests for any hexadecimal-digit character ([0-9], [A-F] or [a-f]).

isalnum tests for any character for which isalpha or isdigit is true (letter or
digit).

isspace tests for any space, tab, carriage-return, newline, vertical-tab, or
form-feed (standard white-space characters) or for one of an
implementation-defined set of characters for which isalnum is false.
In the C locale, isspace returns true only for the standard white-space
characters.

ispunct tests for any printing character which is neither a space nor a character
for which isalnum is true.

isprint tests for any printing character, including space (I I , ,).

isgraph tests for any printing character, except space.

iscntrl tests for any "control character" as defined by the character set.

isascii tests for any ASCII character, code between 0 and 0177 inclusive.

All the character classification macros use a table lookup.

Functions exist for all the above defined macros. To get the function form, the
macro name must be bypassed (for example, #undef isdigit).

/usr/lib/locale/locale/LC_CTYPE

SEE ALSO
ascii(5), chrtbl(lM), environ(5), setlocale(3C), stdio(3S), wchrtbl(lM)

DIAGNOSTICS
If the argument to any of the character handling macros is not in the domain of the
function, the result is undefined.

333

curses (3curses)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>

DESCRIPTION

334

The curses library routines give the user a terminal-independent method of updat
ing character screens with reasonable optimization. A program using these
routines must be compiled with the -lcurses option of cc.

The curses package allows: overall screen, window and pad manipulation; output
to windows and pads; reading terminal input; control over terminal and curses
input and output options; environment query routines; color manipulation; use of
soft label keys; terminfo access; and access to low-level curses routines.

To initialize the routines, the routine initscr or newterm must be called before any
of the other routines that deal with windows and screens are used. The routine
endwin must be called before exiting. To get character-at-a-time input without
echoing (most interactive, screen-oriented programs want this), the following
sequence should be used:

initscr,cbreak,noecho;

Most programs would additionally use the sequence:

nonl,intrflush(stdscr,FALSE),keypad(stdscr,TRUE);

Before a curses program is run, the tab stops of the terminal should be set and its
initialization strings, if defined, must be output. This can be done by executing the
tput init command after the shell environment variable TERM has been exported.
[See terminfo(4) for further details.]

The curses library permits manipulation of data structures, called windows, which
can be thought of as two-dimensional arrays of characters. A default window
called stdscr, which is the size of the terminal screen, is supplied. Others may be
created with newwin().

Windows are referred to by variables declared as WINDOW *. These data structures
are manipulated with routines described on 3curses pages (whose names begin
"curs_"). Among the most basic routines are move and addch. More general ver
sions of these routines are included that allow the user to specify a window.

After using routines to manipulate a window, refresh is called, telling curses to
make the user's CRT screen look like stdscr. The characters in a window are actu
ally of type chtype (character and attribute data) so that other information about
the character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows that are
not necessarily associated with a viewable part of the screen. See
curs-pad(3curses) for more information.

In addition to drawing characters on the screen, video attributes and colors may be
included, causing the characters to show up in such modes as underlined, reverse
video or color on terminals that support such display enhancements. Line drawing
characters may be specified to be output. On input, curses is also able to translate
arrow and function keys that transmit escape sequences into single values. The

curses (3curses)

video attributes, line drawing characters and input values use names, defined in
curses. h, such as A_REVERSE, ACS_HLINE, and KEY_LEFT.

If the environment variables LINES and COLUMNS are set, or if the program is exe
cuting in a window environment, line and column information in the environment
will override information read by terminfo. This would affect a program running
in a window environment, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using curses checks
for a local terminal definition before checking in the standard place. For example, if
TERM is set to wyse15 0, then the compiled terminal definition is found in

/usr/share/lib/ter.minfo/w/wyse150.

(The w is copied from the first letter of wyse150 to avoid creation of huge direc
tories.) However, if TERMINFO is set to $HOME/myter.ms, curses first checks

$HOME/myter.ms/w/wyse150,

and if that fails, it then checks

/usr/share/lib/ter.minfo/w/wyse150.

This is useful for developing experimental definitions or when write permission in
/usr/share/lib/terminfo is not available.

The integer variables LINES and COLS are defined in curses. h and will be filled in
by ini tscr with the size of the screen. The constants TRUE and FALSE have the
values 1 and 0, respectively.

curses routines also define the WINDOW * variable curscr which is used for certain
low-level operations like clearing and redrawing a screen containing garbage.
curser can be used in only a few routines.

International Functions
The number of bytes and the number of columns to hold a character from the sup
plementary character set is locale-specific (locale category LC_CTYPE) and can be
specified in the character class table.

For editing, operating at the character level is entirely appropriate. For screen for
matting, arbitrary movement of characters on screen is not desirable.

Overwriting characters (addch, for example) operates on a screen level. Overwrit
ing a character by a character that requires a different number of columns may pro
duce orphaned columns. These orphaned columns are filled with background charac
ters.

Inserting characters (insch, for example) operates on a character level (that is, at
the character boundaries). The specified character is inserted right before the char
acter, regardless of which column of a character the cursor points to. Before inser
tion, the cursor position is adjusted to the first column of the character.

As with inserting characters, deleting characters (delch, for example) operates on a
character level (that is, at the character boundaries). The character at the cursor is
deleted whichever column of the character the cursor points to. Before deletion, the
cursor position is adjusted to the first column of the character.

335

curses (3curses)

336

A multi-column character cannot be put on the last column of a line. When such
attempts are made, the last column is set to the background character. In addition,
when such an operation creates orphaned columns, the orphaned columns are filled
with background characters.

Overlapping and overwriting a window follows the operation of overwriting char
acters around its edge. The orphaned columns, if any, are handled as in the charac
ter operations.

The cursor is allowed to be placed anywhere in a window. If the insertion or dele
tion is made when the cursor points to the second or later column position of a
character that holds multiple columns, the cursor is adjusted to the first column of
the character before the insertion or deletion.

Routine and Argument Names
Many curses routines have two or more versions. Routines prefixed with p
require a pad argument. Routines whose names contain a w generally require either
a window argument or a wide-character argument. If w appears twice in a routine
name, the routine usually requires both a window and a wide-character argument.
Routines that do not require a pad or window argument generally use stdscr.

The routines prefixed with mv require an x and y coordinate to move to before per
forming the appropriate action. The mv routines imply a call to move before the call
to the other routine. The coordinate y always refers to the row (of the window),
and x always refers to the column. The upper left-hand corner is always (0,0), not
(1,1).

The routines prefixed with mvw take both a window argument and x and y coordi
nates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad are
always pointers to type WINDOW.

Option setting routines require a Boolean flag bfwith the value TRUE or FALSE; bfis
always of type boo1. The variables ch and aUrs are always of type chtype. The
types WINDOW, SCREEN, boo1, and chtype are defined in curses .h. The type TER
MINAL is defined in term.h. All other arguments are integers.

Routine Name Index
The following table lists each curses routine and the name of the manual page on
which it is described.

curses Routine Name

addch
addchnstr
addchstr
addnstr
addnwstr
addstr
addwch
addwchnstr
addwchstr

Manual Page Name

curs_addch(3curses)
curs_addchstr(3curses)
curs_addchstr(3curses)
curs_addstr(3curses)
curs_addwstr(3curses)
curs_addstr(3curses)
curs_addwch{3curses)
curs_addwchstr{3curses)
cur s_addwchst r (3curses)

curses Routine Name

addwstr
attroff
attron
attrset
baudrate
beep
bkgd
bkgdset
border
box
can_change_color
cbreak
clear
clearok
clrtobot
clrtoeol
color_content
copywin
curs_set
def-prog_mode
de f_she I I_mode
del_curtenn
delay_output
delch
deleteln
del screen
delwin
derwin
doupdate
draino
dupwin
echo
echochar
echowchar
endwin
erase
erasechar
filter
flash
flushinp
getbegyx
getch
getmaxyx
getnwstr
getparyx
getstr

curses (3curses)

Manual Page Name

curs_addwstr(3curses}
curs_attr(3curses}
curs_attr(3curses}
curs_attr(3curses}
curs_tennattrs(3curses}
curs_beep (3curses)
curs_bkgd(3curses}
curs_bkgd(3curses}
curs_border (3curses)
curs_border (3curses)
curs_color (3curses)
curs_inopts(3curses}
curs_clear (3curses)
curs_outopts(3curses}
curs_clear (3curses)
curs_clear (3curses)
curs_color (3curses)
curs_overlay (3curses)
curs_kernel (3curses)
curs_kernel (3curses)
curs_kernel (3curses)
curs_tenninfo(3curses}
curs_uti I (3curses)
curs_delch(3curses)
curs_deleteln(3curses)
curs_initscr(3curses)
curs_window (3curses)
curs_window (3curses)
curs_refresh (3curses)
curs_util(3curses}
curs_window (3curses)
curs_inopts(3curses)
curs_addch(3curses)
curs_addwch(3curses)
curs_initscr(3curses)
curs_clear (3curses)
curs_tennattrs(3curses)
curs_uti I (3curses)
curs_beep (3curses)
curs_util(3curses)
curs_getyx(3curses)
curs_getch(3curses)
curs_getyx(3curses)
curs_getwstr(3curses)
curs_getyx(3curses)
curs_getstr(3curses)

337

curses (3curses)

338

curses Routine Name

getsyx
getwch
getwin
getwstr
getyx
halfdelay
has_colors
has_ic
has_il
hline
idcok
idlok
immedok
inch
inchnstr
inchstr
init_color
init-pair
initscr
innstr
innwstr
insch
insdelln
insertln
insnstr
insnwstr
insstr
instr
inswch
inswstr
intrflush
inwch
inwchnstr
inwchstr
inwstr
is_linetouched
is_wintouched
isendwin
keyname
keypad
killchar
leaveok
longname
meta
move
mvaddch

Manual Page Name

curs_kernel (3curses)
curs_getwch(3curses)
curs_util(3curses)
curs_getwstr(3curses)
curs~etyx(3curses)

curs_inopts(3curses)
curs_color (3curses)
curs_ter.mattrs(3curses)
curs_ter.mattrs(3curses)
curs_border (3curses)
curs_outopts(3curses)
curs_outopts(3curses)
curs_outopts(3curses)
curs_inch (3curses)
curs_inchstr(3curses)
curs_inchstr(3curses)
curs_color (3curses)
curs_color (3curses)
curs_initscr(3curses)
curs_instr(3curses)
curs_inwstr(3curses)
curs_insch(3curses)
curs_deleteln(3curses)
curs_deleteln(3curses)
curs_insstr(3curses)
curs_inswstr(3curses)
curs_insstr(3curses)
curs_instr(3curses)
curs_inswch(3curses)
curs_inswstr(3curses)
curs_inopts(3curses)
curs_inwch(3curses)
curs_inwchstr(3curses)
curs_inwchstr(3curses)
curs_inwstr(3curses)
curs_touch (3curses)
curs_touch (3curses)
curs_initscr(3curses)
curs_util(3curses)
curs_inopts(3curses)
curs_ter.mattrs(3curses)
curs_outopts(3curses)
curs_ter.mattrs(3curses)
curs_inopts(3curses)
curs_move (3curses)
curs_addch(3curses)

curses Routine Name

mvaddchnstr
mvaddchstr
mvaddnstr
mvaddnwstr
mvaddstr
mvaddwch
mvaddwchnstr
mvaddwchstr
mvaddwstr
mvcur
mvdelch
mvderwin
mvgetch
mvgetnwstr
mvgetstr
mvgetwch
mvgetwstr
mvinch
mvinchnstr
mvinchstr
mvinnstr
mvinnwstr
mvinsch
mvinsnstr
mvinsnwstr
mvinsstr
mvinstr
mvinswch
mvinswstr
mvinwch
mvinwchnstr
mvinwchstr
mvinwstr
mvprintw
mvscanw
mvwaddch
mvwaddchnstr
mvwaddchstr
mvwaddnstr
mvwaddnwstr
mvwaddstr
mvwaddwch
mvwaddwchnstr
mvwaddwchstr
mvwaddwstr
mvwdelch

curses (3curses)

Manual Page Name

curs_addchstr(3curses)
curs_addchstr(3curses)
curs_addstr(3curses)
curs_addwstr(3curses)
curs_addstr(3curses)
curs_addwch(3curses)
curs_addwchstr(3curses)
curs_addwchstr(3curses)
curs_addwstr(3curses)
curs_ter.minfo(3curses)
curs_delch(3curses)
curs_window(3curses)
curs~etch(3curses)

curs~etwstr(3curses)

curs~etstr(3curses)

curs~etwch(3curses)

curs~etwstr(3curses)

curs_inch (3curses)
curs_inchstr(3curses)
curs_inchstr(3curses)
curs_instr(3curses)
curs_inwstr(3curses)
cur s_ins ch (3curses)
curs_insstr(3curses)
curs_inswstr(3curses)
curs_insstr(3curses)
curs_instr(3curses)
curs_inswch(3curses)
curs_inswstr(3curses)
curs_inwch(3curses)
curs_inwchstr(3curses)
curs_inwchstr(3curses)
curs_inwstr(3curses)
curs-printw(3curses}
curs_scanw(3curses)
curs_addch(3curses)
curs_addchstr(3curses)
curs_addchstr(3curses)
curs_addstr(3curses)
curs_addwstr(3curses}
curs_addstr(3curses)
curs_addwch(3curses)
curs_addwchstr(3curses)
curs_addwchstr(3curses)
curs_addwstr(3curses)
curs_delch(3curses)

339

curses (3curses)

340

curses Routine Name

mvwgetch
mvwgetnwstr
mvwgetstr
mvwgetwch
mvwgetwstr
mvwin
mvwinch
mvwinchnstr
mvwinchstr
mvwinnstr
mvwinnwstr
mvwinsch
mvwinsnstr
mvwinsstr
mvwinstr
mvwinswch
mvwinswstr
mvwinwch
mvwinwchnstr
mvwinwchstr
mvwinwstr
mvwprintw
mvwscanw
napms
newpad
newtenn
newwin
nl
nocbreak
nodelay
noecho
nonl
noqiflush
noraw
notimeout
overlay
overwrite
pair_content
pechochar
pechowchar
pnoutrefresh
pre fresh
printw
putp
put win
qiflush

Manual Page Name

curs_getch(3curses)
curs-getwstr(3curses)
curs-getstr(3curses)
curs_getwch(3curses)
curs_getwstr(3curses)
curs_window(3curses)
curs_inch (3curses)
curs_inchstr(3curses)
curs_inchstr(3curses)
curs_instr(3curses)
curs_inwstr(3curses)
curs_insch(3curses)
curs_insstr(3curses)
curs_insstr(3curses)
curs_instr(3curses)
curs_inswch(3curses)
curs_inswstr(3curses)
curs_inwch(3curses)
curs_inwchstr(3curses)
curs_inwchstr(3curses)
curs_inwstr(3curses)
curs-pr intw(3curses)
curs_scanw(3curses)
curs_kernel (3curses)
curs-pad(3curses)
curs_initscr(3curses)
curs_window(3curses)
curs_outopts(3curses)
curs_inopts(3curses)
curs_inopts(3curses)
curs_inopts(3curses)
curs_outopts(3curses)
curs_inopts(3curses)
curs_inopts(3curses)
curs_inopts(3curses)
curs_overlay (3curses)
curs_overlay (3curses)
curs_color (3curses)
curs-pad(3curses)
curs-pad(3curses)
curs-pad(3curses)
curs-pad(3curses)
curs-pr intw(3curses)
curs_tenninfo(3curses)
curs_uti 1 (3curses)
curs_inopts(3curses)

curses Routine Name

raw
redrawwin
refresh
reset-prog_mode
reset_sheIl_mode
resetty
restarttenn
ripoffline
savetty
scanw
scr_dump
scr_init
scr_restore
scr_set
scrl
scroll
scrollok
set_curtenn
set_tenn
setscrreg
setsyx
settenn
setuptenn
slk_attroff
slk_attron
slk_attrset
s lk_c lear
slk_init
slk_Iabel
slk_noutrefresh
slk_refresh
slk_restore
slk_set
slk_touch
standend
standout
start_color
subpad
subwin
syncok
termattrs
termname
tgetent
tgetflag
tgetnum
tgetstr

curses (3curses)

Manual Page Name

curs_inopts(3curses)
curs_refresh (3curses)
curs_refresh (3curses)
curs_kernel (3curses)
curs_kernel (3curses)
curs_kernel (3curses)
curs_terminfo(3curses)
curs_kernel (3curses)
curs_kernel (3curses)
curs_scanw(3curses)
curs_scr_dump(3curses)
curs_scr_dump(3curses)
curs_scr_dump(3curses)
curs_scr_dump(3curses)
curs_scroll (3curses)
curs_scroll (3curses)
curs_outopts(3curses)
curs_tenninfo(3curses)
curs_initscr(3curses)
curs_outopts(3curses)
curs~ernel(3curses)

curs_terminfo(3curses)
curs_terminfo(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_slk(3curses)
curs_attr(3curses)
curs_attr(3curses)
curs_color (3curses)
curs-pad(3curses)
curs_window (3curses)
curs_window (3curses)
curs_termattrs(3curses)
curs_termattrs(3curses)
curs_termcap(3curses)
curs_ter.mcap(3curses)
curs_ter.mcap(3curses)
curs_ter.mcap(3curses)

341

curses (3curses)

342

curses Routine Name

tgoto
tigetflag
tigetnum
tigetstr
timeout
touchline
touchwin
tparm
tputs
tputs
typeahead
unctrl
ungetch
ungetwch
untouchwin
use_env
vidattr
vidputs
vline
vwprintw
vwscanw
waddch
waddchnstr
waddchstr
waddnstr
waddnwstr
waddstr
waddwch
waddwchnstr
waddwchstr
waddwstr
wattroff
wattron
wattrset
wbkgd
wbkgdset
wborder
wclear
wclrtobot
wclrtoeol
wcursyncup
wdelch
wdeleteln
wechochar
wechowchar
werase

Manual Page Name

curs_termcap(3curses)
curs_terminfo(3curses)
curs_terminfo(3curses)
curs_terminfo(3curses)
curs_inopts(3curses)
curs_touch (3curses)
curs_touch (3curses)
curs_terminfo(3curses)
curs_termcap(3curses)
curs_terminfo(3curses)
curs_inopts(3curses)
curs_uti I (3curses)
curs_getch(3curses)
curs_getwch(3curses)
curs_touch (3curses)
curs_util(3curses)
curs_terminfo(3curses)
curs_terminfo(3curses)
curs_border (3curses)
curs-printw(3curses)
curs_scanw(3curses)
curs_addch(3curses)
curs_addchstr(3curses)
curs_addchstr(3curses)
curs_addstr(3curses)
curs_addwstr(3curses)
curs_addstr(3curses)
curs_addwch(3curses)
curs_addwchstr(3curses)
curs_addwchstr(3curses)
curs_addwstr(3curses)
curs_attr(3curses)
curs_attr(3curses)
curs_attr(3curses)
curs_bkgd(3curses)
curs_bkgd(3curses)
curs_border (3curses)
curs_clear (3curses)
curs_clear (3curses)
curs_clear (3curses)
curs_window (3curses)
curs_delch(3curses)
curs_deleteln(3curses)
curs_addch(3curses)
curs_addwch(3curses)
curs_clear (3curses)

curses Routine Name

wgetch
wgetnstr
wgetnwstr
wgetstr
wgetwch
wgetwstr
whline
winch
winchnstr
winchstr
winnstr
winnwstr
winsch
winsdelln
winsertln
winsnstr
winsnwstr
winsstr
winstr
winswch
winswstr
winwch
winwchnstr
winwchstr
winwstr
wmove
wnoutrefresh
wprintw
wredrawln
wrefresh
wscanw
wscrl
wsetscrreg
wstandend
wstandout
wsyncdown
wsyncup
wtimeout
wtouchln
wvline

RETURN VALUE

curses (3curses)

Manual Page Name

curs-getch(3curses)
curs_getstr(3curses)
curs_getwstr(3curses)
curs_getstr(3curses)
curs_getwch(3curses)
curs_getwstr(3curses)
curs_border (3curses)
curs_inch (3curses)
curs_inchstr(3curses)
curs_inchstr(3curses)
curs_instr(3curses)
curs_inwstr(3curses)
curs_insch(3curses)
curs_deleteln(3curses)
curs_deleteln(3curses)
curs_insstr(3curses)
curs_inswstr(3curses)
curs_insstr(3curses)
curs_instr(3curses)
curs_inswch(3curses)
curs_inswstr(3curses)
curs_inwch(3curses)
curs_inwchstr(3curses)
curs_inwchstr(3curses)
curs_inwstr(3curses)
curs_move (3curses)
curs_refresh (3curses)
curs-printw(3curses)
curs_refresh (3curses)
curs_refresh (3curses)
curs_scanw(3curses)
curs_scroll (3curses)
curs_outopts(3curses)
curs_attr(3curses)
curs_attr(3curses)
curs_window(3curses)
curs_window(3curses)
curs_inopts(3curses)
curs_touch (3curses)
curs_border (3curses)

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion, unless otherwise noted in the routine descrip
tions.

343

curses (3curses)

NOTES

All macros return the value of the window version, except setscrreg,
wsetscrreg, getyx, getbegyx and getmaxyx. The return values of setscrreg,
wsetscrreg, getyx, getbegyx and getmaxyx are undefined (that is, these should
not be used as the right-hand side of assignment statements).

Routines that return pointers return NULL on error.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

SEE ALSO

344

tenninfo(4) and 3curses pages whose names begin "curs_" for detailed routine
descriptions

NAME

curs_addch(3curses)

curs_addch: addch, waddch, mvaddch, mvwaddch, echochar, wechochar - add a
character (with attributes) to a curses window and advance cursor

SYNOPSIS
#include <curses.h>

int addch(chtype ch);
int waddch(WINDOW *win , chtype ch);
int mvaddch(int y, int X, chtype ch);
int mvwaddch(WINOOW *win , int y I int X, chtype ch);
int echochar(chtype ch);
int wechochar (WINDOW *win I chtype ch);

DESCRIPTION
The addch, waddch, mvaddch, and mvwaddch routines put the character ch into the
window at the current cursor position of the window and advance the position of
the window cursor. Their function is similar to that of putchar. At the right mar
gin, an automatic newline is performed. At the bottom of the scrolling region, if
scrollok is enabled, the scrolling region is scrolled up one line.

If ch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol before moving. Tabs are considered to
be at every eighth column. If ch is another control character, it is drawn in the "X
notation. Calling winch after adding a control character does not return the control
character, but instead returns the representation of the control character.

Video attributes can be combined with a character by OR-ing them into the parame
ter. This results in these attributes also being set. (The intent here is that text,
including attributes, can be copied from one place to another using inch and
addch.) [see standout, predefined video attribute constants, on the
curs_attr(3curses) page].

The echochar and wechochar routines are functionally equivalent to a call to
addch followed by a call to refresh, or a call to waddch followed by a call to
wrefresh. The knowledge that only a single character is being output is taken into
consideration and, for non-control characters, a considerable performance gain
might be seen by using these routines instead of their equivalents.

Line Graphics
The following variables may be used to add line drawing characters to the screen
with routines of the addch family. When variables are defined for the terminal, the
A_ALTCHARSET bit is turned on [see curs_attr(3curses)]. Otherwise, the default
character listed below is stored in the variable. The names chosen are consistent
with the VT100 nomenclature.

345

curs_addch(3curses)

Name Default Glyph Description
ACS_ULCORNER + upper left-hand corner
ACS_LLCORNER + lower left-hand corner
ACS_URCORNER + upper right-hand corner
ACS_LRCORNER + lower right-hand corner
ACS_RTEE + right tee (-I)
ACS_LTEE + left tee (~)
ACS_BTEE + bottom tee (1)

ACS_TTEE + top tee (I) -
ACS_HLlNE horizontal line
ACS_VLlNE vertical line
ACS_PLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACS_PLMlNUS # plus/minus
ACS_BULLET ° bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that addch, mvaddch, mvwaddch, and echochar may be macros.

SEE ALSO

346

curses(3curses), curs_attr(3curses), curs_clear(3curses), curs_inch(3curses),
curs_outopts(3curses), curs_refresh(3curses) putc(3S)

NAME

curs _ addchstr (3curses)

curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,
mvaddchnstr, mvwaddchstr, mvwaddchnstr - add string of characters (and attri
butes) to a curses window

SYNOPSIS

#include <curses.h>

int addchstr(chtype *chstr);
int addchnstr (chtype *chstr lint n);
int waddchstr(WINDOW *win , chtype *chstr);
int waddchnstr(WINDOW *win , chtype *chstr , int n);
int mvaddchstr(int Y, int X, chtype *chstr);
int mvaddchnstr(int y, int X, chtype *chstr , int n);
int mvwaddchstr (WINDOW *win , int Y I int X, chtype *chstr);
int mvwaddchnstr (WINDOW *win , int Y I int x, chtype *chstr lint n);

DESCRIPTION
All of these routines copy chstr directly into the window image structure starting at
the current cursor position. The four routines with n as the last argument copy at
most n elements, but no more than will fit on the line. If n=-l then the whole string
is copied, to the maximum number that fit on the line.

The position of the window cursor is not advanced. These routines work faster
than waddnstr because they merely copy chstr into the window image structure.
On the other hand, care must be taken when using these functions because they
don't perform any kind of checking (such as for the newline character), they don't
advance the current cursor position, and they truncate the string, rather then wrap
ping it around to the new line.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all routines except waddchnstr may be macros.

SEE ALSO
curses (3curses)

347

curs _ addstr (3curses)

NAME
curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr,
mvwaddstr, mvwaddnstr - add a string of characters to a curses window and
advance cursor

SYNOPSIS
#include <curses.h>

int addstr(char *str);
int addnstr(char *str, int n);
int waddstr(WINDOW *win, char *str);
int waddnstr(WINDOW *win, char *str, int n);
int mvaddstr(int y, int x, char *str);
int mvaddnstr(int y, int x, char *str, int n);
int mvwaddstr(WINDOW *win, int y, int x, char *str);
int mvwaddnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
All of these routines write all the characters of the null-terminated character string
str on the given window. The effect is similar to calling waddch once for each char
acter in the string. The four routines with n as the last argument write at most n
characters. If n is negative, then the entire string will be added.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all of these routines except waddstr and waddnstr may be macros.

SEE ALSO
curses(3curses), curs_addch(3curses)

348

NAME

curs _ addwch (3curses)

curs_addwch:addwch,waddwch,mvaddwch,mvwaddwch,echowchar,wechowchar
add a wchar_t character (with attributes) to a curses window and advance cursor

SYNOPSIS
#include <curses.h>

int addwch(chtype wch);
int waddwch(WINDOW *win, chtype wch);
int mvaddwch(int y, int x, chtype wch);
int mvwaddwch(WINDOW *win, int y, int x, chtype wch);
int echowchar{chtype wch);
int wechowchar(WINDOW *win, chtype wch);

DESCRIPTION
The addwch, waddwch, mvaddwch, and mvwaddwch routines put the character wch,
holding a wchar_t character, into the window at the current cursor position of the
window and advance the position of the window cursor. Their function is similar
to that of putwchar in the C multibyte library. At the right margin, an automatic
newline is performed. At the bottom of the scrolling region, if scrollok is enabled,
the scrolling region is scrolled up one line.

If wch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol before moving. Tabs are considered to
be at every eighth column. If wch is another control character, it is drawn in the ~x
notation. Calling winwch after adding a control character does not return the con
trol character, but instead returns the representation of the control character.

Video attributes can be combined with a wchar_t character by OR-ing them into
the parameter. This results in these attributes also being set. (The intent here is that
text, including attributes, can be copied from one place to another using inwch and
addwch.) [see standout, predefined video attribute constants, on the
curs_attr(3curses) page].

The echowchar and wechowchar routines are functionally equivalent to a call to
addwch followed by a call to refresh, or a call to waddwch followed by a call to
wrefresh. The knowledge that only a single character is being output is taken into
consideration and, for non-control characters, a considerable performance gain
might be seen by using these routines instead of their equivalents.

Line Graphics
The following variables may be used to add line drawing characters to the screen
with routines of the addwch family. When variables are defined for the terminal,
the A_ALTCHARSET bit is turned on [see curs_attr(3curses)]. Otherwise, the
default character listed below is stored in the variable. The names chosen are con
sistent with the VT100 nomenclature.

349

curs _ addwch (3curses)

Name Default Glyph Description
ACS_ULCORNER + upper left-hand corner
ACS_LLCORNER + lower left-hand corner
ACS_URCORNER + upper right-hand corner
ACS_LRCORNER + lower right-hand corner
ACS_RTEE + right tee (-I)
ACS_LTEE + left tee (~)
ACS_BTEE + bottom tee (1)

ACS_TTEE + top tee (I) -
ACS_HLlNE horizontal line
ACS_VLlNE vertical line
ACS_PLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACS_PLMlNUS # plus/minus
ACS_BULLET ° bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid sguare block

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that addwch, mvaddwch, mvwaddwch, and echowchar may be macros.

SEE ALSO

350

curses(3curses), curs_attr(3curses), curs_clear(3curses), curs_inch(3curses),
curs_outopts(3curses), curs_refresh(3curses), putwc(3W)

NAME

curs _ addwchstr (3curses)

curs_addwchstr: addwchstr, addwchnstr, waddwchstr, waddwchnstr,
mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr - add string of
wchar_t characters (and attributes) to a curses window

SYNOPSIS

#include <curses.h>

int addwchstr(chtype *wchstr) ;
int addwchnstr (chtype *wchstr lint n) ;
int waddwchstr(WINDOW *win , chtype *wchstr);
int waddwchnstr(WINDOW *win , chtype * wchstr I int n) ;
int mvaddwchstr(int Y, int X, chtype *wchstr) ;
int mvaddwchnstr (int Y I int X I chtype *wchstr lint n) ;
int mvwaddwchstr (WINDOW *win lint Y I int X I chtype *wchstr);
int mvwaddwchnstr(WINDOW *win , int y, int x, chtype *wchstr , int n) ;

DESCRIPTION
All of these routines copy wchstr, which points to a string of wchar_t characters,
directly into the window image structure starting at the current cursor position.
The four routines with n as the last argument copy at most n elements, but no more
than will fit on the line. If n=-l then the whole string is copied, to the maximum
number that fit on the line.

The position of the window cursor is not advanced. These routines work faster
than waddnwstr because they merely copy wchstr into the window image structure.
On the other hand, care must be taken when using these functions because they
don't perform any kind of checking (such as for the newline character), they don't
advance the current cursor position, and they truncate the string, rather then wrap
ping it around to the new line.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all routines except waddwchnstr may be macros.

SEE ALSO
curses(3curses)

351

curs _ addwstr (3curses)

NAME
curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr,
mvaddnwstr, mvwaddwstr, mvwaddnwstr - add a string of wchar_t characters to a
curses window and advance cursor

SYNOPSIS
#include <curses.h>

int addwstr(wchar_t *wstr);
int addnwstr (wchar_t *wstr, int n);
int waddwstr(WINDOW *win, wchar_t *wstr);
int waddnwstr(WINDOW *win, wchar_t *wstr, int n);
int mvaddwstr(int y, int x, wchar_t *wstr);
int mvaddnwstr(int y, int x, wchar_t *wstr, int n);
int mvwaddwstr(WINDOW *win, int y, int x, wchar_t *wstr);
int mvwaddnwstr(WINDOW *win, int y, int x, wchar_t *wstr, int n);

DESCRIPTION
All of these routines write all the characters of the null-terminated wchar_t charac
ter string str on the given window. The effect is similar to calling waddwch once for
each wchar_t character in the string. The four routines with n as the last argument
write at most n wchar_t characters. If n is negative, then the entire string will be
added.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all of these routines except waddwstr and waddnwstr may be macros.

SEE ALSO
curses(3curses), curs_addwch(3curses).

352

NAME

curs _attr (3curses)

curs_attr:attroff,wattroff,attron,wattron,attrset,wattrset,standend,
wstandend, standout, wstandout - curses character and window attribute con
trol routines

SYNOPSIS
#include <curses.h>

int attroff (chtype attrs) i

int wattroff (WINDOW *win, chtype attrs) i

int attron(chtype attrs) i

int wattron(WINDOW *win, chtype attrs);
int attrset (chtype attrs);
int wattrset (WINDOW *win, chtype attrs) i

int standend(void);
int wstandend (WINDOW *win) i

int standout(void);
int wstandout (WINDOW *win) i

DESCRIPTION
All of these routines manipulate the current attributes of the named window. The
current attributes of a window are applied to all characters that are written into the
window with waddch, waddstr and wprintw. Attributes are a property of the char
acter, and move with the character through any scrolling and insert/delete
line/ character operations. To the extent possible on the particular terminal, they
are displayed as the graphic rendition of characters put on the screen.

The routine attrset sets the current attributes of the given window to attrs. The
routine attroff turns off the named attributes without turning any other attributes
on or off. The routine attron turns on the named attributes without affecting any
others. The routine standout is the same as attron (A_STANDOUT). The routine
standend is the same as attrset (0), that is, it turns off all attributes.

Attributes
The following video attributes, defined in curses. h, can be passed to the routines
attron, attroff, and attrset, or ORed with the characters passed to addch.

A_STANDOUT Best highlighting mode of the terminal.
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
AJ30LD Extra bright or bold
A_ALTCHARSET Alternate character set
A_CHARTEXT Bit-mask to extract a character
COLOR_PAIR (n) Color-pair number n

The following macro is the reverse of COLOR_PAIR (n) :

PAIR_NUMBER (attrs) Returns the pair number associated
with the COLOR_PAIR (n) attribute.

353

curs atlr (3curses)

RETURN VALUE

NOTES

These routines always return 1.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that attroff, wattroff, attron, wattron, attrset, wattrset, standend
and standout may be macros.

SEE ALSO

354

curses(3curses), curs_addch(3curses), curs_addstr(3curses),
curs-printw(3curses)

curs_beep (3curses)

NAME
curs_beep: beep, flash - curses bell and screen flash routines

SYNOPSIS
#include <curses.h>

int beep (void) ;
int flash(void);

DESCRIPTION
The beep and flash routines are used to signal the terminal user. The routine beep
sounds the audible alarm on the terminal, if possible; if that is not possible, it
flashes the screen (visible bell), if that is possible. The routine flash flashes the
screen, and if that is not possible, sounds the audible signal. If neither signal is pos
sible, nothing happens. Nearly all terminals have an audible signal (bell or beep),
but only some can flash the screen.

RETURN VALUE
These routines always return OK.

NOTES
The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

SEE ALSO
curses(3curses)

355

curs_bkgd(3curses)

NAME
curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd - curses window background mani
pulation routines

SYNOPSIS
#include <curses.h>

void bkgdset(chtype ch);
void wbkgdset (WINDOW *win, chtype ch);
int bkgd(chtype ch);
int wbkgd(WINDOW *win, chtype ch);

DESCRIPTION
The bkgdset and wbkgdset routines manipulate the background of the named win
dow. Background is a chtype consisting of any combination of attributes and a
character. The attribute part of the background is combined (ORe d) with all non
blank characters that are written into the window with waddch. Both the character
and attribute parts of the background are combined with the blank characters. The
background becomes a property of the character and moves with the character
through any scrolling and insert/delete line/character operations. To the extent
possible on a particular terminat the attribute part of the background is displayed
as the graphic rendition of the character put on the screen.

The bkgd and wbkgd routines combine the new background with every position in
the window. Background is any combination of attributes and a character. Only
the attribute part is used to set the background of non-blank characters, while both
character and attributes are used for blank positions. To the extent possible on a
particular terminat the attribute part of the background is displayed as the graphic
rendition of the character put on the screen.

RETURN VALUE

NOTES

bkgd and wbkgd return the integer OK, or a non-negative integer, if immedok is set.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that bkgdset and bkgd may be macros.

SEE ALSO
curses(3curses), curs_addch(3curses), curs_outopts(3curses)

356

NAME

curs_border (3curses)

curs_border: border, wborder, box, hline, whline, vline, wvline - create
curses borders, horizontal and vertical lines

SYNOPSIS
#include <curses.h>

int border (chtype Is, chtype rs, chtype ts, chtype bs, chtype tl,
chtype tr, chtype bI, chtype br);

int wborder(WINDOW *win, chtype Is, chtype rs, chtype ts, chtype bs,
chtype tI, chtype tr, chtype bI, chtype br);

int box(WINDOW *win, chtype verch, chtype horch);
int hline(chtype ch, int n);
int whline (WINDOW *win, chtype ch, int n);
int vline(chtype ch, int n);
int wvline(WINDOW *win, chtype ch, int n);

DESCRIPTION
With the border, wborder and box routines, a border is drawn around the edges of
the window. The argument Is is a character and attributes used for the left side of
the border, rs - right side, ts - top side, bs - bottom side, tl - top left-hand corner, tr
top right-hand corner, bi - bottom left-hand comer, and br - bottom right-hand
comer. If any of these arguments is zero, then the following default values (defined
in curses. h) are used instead: ACS_ VLINE, ACS_ VLINE, ACS_HLINE, ACS_HLINE,
ACS_ULCORNER,ACS_URCORNER,ACS_LLCORNER,ACS_LRCORNER.

box (win, verch, horch) is a shorthand for the following call:
wborder (win, verch, verch, horch, horch, 0 , 0, 0 , 0)

hline and whline draw a horizontal (left to right) line using ch starting at the
current cursor position in the window. The current cursor position is not changed.
The line is at most n characters long, or as many as fit into the window.

vline and wvline draw a vertical (top to bottom) line using ch starting at the
current cursor position in the window. The current cursor position is not changed.
The line is at most n characters long, or as many as fit into the window.

RETURN VALUE

NOTES

All routines return the integer OK, or a non-negative integer if immedok is set.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that border and box may be macros.

SEE ALSO
curses (3curses), curs_outopts(3curses)

357

curs_clear (3curses)

NAME
curs_clear: erase, werase, clear, wclear, clrtobot, wclrtobot, clrtoeol,
wclrtoeol - clear all or part of a curses window

SYNOPSIS
include <curses.h>

int erase(void);
int werase (WINDOW *win);
int clear(void);
int wclear (WINDOW *win);
int clrtobot(void);
int wclrtobot (WINDOW *win);
int clrtoeol(void);
int wclrtoeol (WINDOW *win);

DESCRIPTION
The erase and werase routines copy blanks to every position in the window.

The clear and wclear routines are like erase and werase, but they also call
clearok, so that the screen is cleared completely on the next call to wrefresh for
that window and repainted from scratch.

The clrtobot and wclrtobot routines erase all lines below the cursor in the
window. Also, the current line to the right of the cursor, inclusive, is erased.

The clrtoeol and wclrtoeol routines erase the current line to the right of the
cursor, inclusive.

RETURN VALUE

NOTES

All routines return the integer OK, or a non-negative integer if immedok is set.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that erase, werase, clear, wclear, clrtobot, and clrtoeol may be macros.

SEE ALSO
curses(3curses), curs_outopts(3curses), curs_refresh(3curses)

358

NAME

curs_color (3curses)

curs_color: start_color, init-pair, init_color, has_colors,
can_change_color, color_content, pair_content - curses color manipulation
routines

SYNOPSIS
include <curses.h>

int start_color(void);
int ini t-pair (short pair, short I, short b);
int ini t_color (short color, short r, short g, short b);
bool has_colors(void);
bool can_change_color(void);
int color_content (short color, short * r , short * g , short * b) ;
int pair_content(short pair, short *1, short *b);

DESCRIPTION
Overview

curses provides routines that manipulate color on color alphanumeric terminals.
To use these routines start_color must be called, usually right after initscr.
Colors are always used in pairs (referred to as color-pairs). A color-pair consists of
a foreground color (for characters) and a background color (for the field on which
the characters are displayed). A programmer initializes a color-pair with the rou
tine init-pair. After it has been initialized, COLOR_PAIR(n), a macro defined in
curses. h, can be used in the same ways other video attributes can be used. If a ter
minal is capable of redefining colors, the programmer can use the routine
init_color to change the definition of a color. The routines has_colors and
can_change_color return TRUE or FALSE, depending on whether the terminal has
color capabilities and whether the programmer can change the colors. The routine
color_content allows a programmer to identify the amounts of red, green, and
blue components in an initialized color. The routine pair_content allows a pro
grammer to find out how a given color-pair is currently defined.

Routine Descriptions
The start_color routine requires no arguments. It must be called if the program
mer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right after initscr. start_color initializes
eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables, COLORS and COLOR_PAIRS (respectively defining the max
imum number of colors and color-pairs the terminal can support). It also restores
the colors on the terminal to the values they had when the terminal was just turned
on.

The init-pair routine changes the definition of a color-pair. It takes three argu
ments: the number of the color-pair to be changed, the foreground color number,
and the background color number. The value of the first argument must be
between 1 and COLOR_PAIRS-l. The value of the second and third arguments must
be between a and COLORS. If the color-pair was previously initialized, the screen is
refreshed and all occurrences of that color-pair is changed to the new definition.

359

curs_color (3curses)

The init_color routine changes the definition of a color. It takes four arguments:
the number of the color to be changed followed by three RGB values (for the
amounts of red, green, and blue components). The value of the first argument must
be between 0 and COLORS. (See the subsection Colors for the default color index.)
Each of the last three arguments must be a value between a and 1000. When
init_color is used, all occurrences of that color on the screen immediately change
to the new definition.

The has_colors routine requires no arguments. It returns TRUE if the terminal can
manipulate colors; otherwise, it returns FALSE. This routine facilitates writing
terminal-independent programs. For example, a programmer can use it to decide
whether to use color or some other video attribute.

The can_change_color routine requires no arguments. It returns TRUE if the ter
minal supports colors and can change their definitions; other, it returns FALSE. This
routine facilitates writing terminal-independent programs.

The color_content routine gives users a way to find the intensity of the red,
green, and blue (RGB) components in a color. It requires four arguments: the color
number, and three addresses of shorts for storing the information about the
amounts of red, green, and blue components in the given color. The value of the
first argument must be between a and COLORS. The values that are stored at the
addresses pointed to by the last three arguments are between a (no component) and
1000 (maximum amount of component).

The pair_content routine allows users to find out what colors a given color-pair
consists of. It requires three arguments: the color-pair number, and two addresses
of shorts for storing the foreground and the background color numbers. The value
of the first argument must be between 1 and COLO~PAIRS-1. The values that are
stored at the addresses pointed to by the second and third arguments are between a
and COLORS.

Colors
In curses. h the following macros are defined. These are the default colors.
curses also assumes that COLO~BLACK is the default background color for all
terminals.

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

RETURN VALUE

360

All routines that return an integer return ERR upon failure and OK upon successful
completion.

NOTES

curs_color (3curses)

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

SEE ALSO
curses(3curses), curs_initscr(3curses), curs_attr(3curses)

361

curs _ delch (3curses)

NAME
curs_delch: delch, wdelch, mvdelch, mvwdelch - delete character under cursor in
a curses window

SYNOPSIS
#include <curses.h>

int delch(void);
int wdelch (WINDOW *win);
int mvdelch(int y, int x);
int mvwdelch(WINDOW *win, int y, int x);

DESCRIPTION
With these routines the character under the cursor in the window is deleted; all
characters to the right of the cursor on the same line are moved to the left one posi
tion and the last character on the line is filled with a blank. The cursor position
does not change (after moving to y, x, if specified). (This does not imply use of the
hardware delete character feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that delch, mvdelch, and mvwdelch may be macros.

SEE ALSO
curses(3curses)

362

NAME

curs deleteln (3curses)

curs_deIeteIn: deIeteIn, wdeIeteIn, insdeIIn, winsdeIIn, insert In,
winsertIn - delete and insert lines in a curses window

SYNOPSIS
#include <curses.h>

int deIeteIn(void);
int wdeIeteIn (WINDOW *win);
int insdeIIn(int n);
int winsdeIIn(WINDOW *win, int n);
int insertIn(void);
int winsertIn(WINDOW *win);

DESCRIPTION
With the deIeteIn and wdeIeteIn routines, the line under the cursor in the win
dow is deleted; all lines below the current line are moved up one line. The bottom
line of the window is cleared. The cursor position does not change. (This does not
imply use of a hardware delete line feature.)

With the insdeIIn and winsdeIIn routines, for positive n, insert n lines into the
specified window above the current line. The n bottom lines are lost. For negative
n, delete n lines (starting with the one under the cursor), and move the remaining
lines up. The bottom n lines are cleared. The current cursor position remains the
same.

With the insert In and insertIn routines, a blank line is inserted above the
current line and the bottom line is lost. (This does not imply use of a hardware
insert line feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrI.h.

Note that all butwinsdeIIn may be a macros.

SEE ALSO
curses(3curses)

363

curs _getch (3curses)

NAME
curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch - get (or push back)
characters from curses terminal keyboard

SYNOPSIS
#inc1ude <curses.h>

int getch (void) ;
int wgetch(WlNOOW *win);
int mvgetch(int y, int x);
int mvwgetch(WlNOOW *win, int y, int x);
int ungetch(int ch);

DESCRIPTION

364

The getch, wgetch, mvgetch, and mvwgetch routines read a character from the ter
minal associated with the window. In no-delay mode, if no input is waiting, the
value ERR is returned. In delay mode, the program waits until the system passes
text through to the program. Depending on the setting of cbreak, this is after one
character (cbreak mode), or after the first newline (nocbreak mode). In half-delay
mode, the program waits until a character is typed or the specified timeout has been
reached. Unless noecho has been set, the character will also be echoed into the
designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh, wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in
curses.h with integers beginning with 0401, whose names begin with KEY_. If a
character that could be the beginning of a function key (such as escape) is received,
curses sets a timer. If the remainder of the sequence does not come in within the
designated time, the character is passed through; otherwise, the function key value
is returned. For this reason, many terminals experience a delay between the time a
user presses the escape key and the escape is returned to the program. Since tokens
returned by these routines are outside the ASCII range, they are not printable.

The ungetch routine places ch back onto the input queue to be returned by the next
call to wgetch.

Function Keys
The following function keys, defined in curses. h, might be returned by getch if
keypad has been enabled. Note that not all of these may be supported on a particu
lar terminal if the terminal does not transmit a unique code when the key is pressed
or if the definition for the key is not present in the terminfo database.

Name

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY~IGHT

KEYJiOME
KEY_BACKSPACE
KEY_FO
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

KEY_Al
KEY_A3
KEY_B2
KEY_Cl
KEY_C3
KEY_BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY_COMMAND
KEY_COPY
KEY_CREATE

curs _getch (3curses)

Key name

Break key
The four arrow keys ...

Horne key (upward+left arrow)
Backspace
Function keys; space for 64 keys is reserved.
For 0::;; n::;; 63
Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backward (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
Soft (partial) reset
Reset or hard reset
Print or copy
Horne down or bottom (lower left).
Keypad is arranged like this:

Al up A3
left B2 right
Cl down C3

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab key
Beg(inning) key
Cancel key
Close key
Cmd (command) key
Copy key
Create key

365

curs getch (3curses)

366

Name

KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK

KEY_MOVE
KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY_PREVIOUS

KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME

KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREOO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME
KEY_SSAVE
KEY_SSUSPEND

Key name

End key
Exit key
Find key
Help key
Mark key
Message key
Move key
Next object key
Open key
Options key
Previous object key
Redo key
Ref(erence) key
Refresh key
Replace key
Restart key
Resume key
Save key
Shifted beginning key
Shifted cancel key
Shifted command key
Shifted copy key
Shifted create key
Shifted delete char key
Shifted delete line key
Select key
Shifted end key
Shifted clear line key
Shifted exit key
Shifted find key
Shifted help key
Shifted home key
Shifted input key
Shifted left arrow key
Shifted message key
Shifted move key
Shifted next key
Shifted options key
Shifted prev key
Shifted print key
Shifted redo key
Shifted replace key
Shifted right arrow
Shifted resume key
Shifted save key
Shifted suspend key

Name

KEY_SUNDO
KEY_SUSPEND
KEY_UNDO

Key name

Shifted undo key
Suspend key
Undo key

curs _getch (3curses)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Use of the escape key by a programmer for a single character function is
discouraged.

When using getch, wgetch, mvgetch, or mvwgetch, nocbreak mode and echo
mode should not be used at the same time. Depending on the state of the tty driver
when each character is typed, the program may produce undesirable results.

Note that getch, mvgetch, and mvwgetch may be macros.

SEE ALSO
curses(3curses), curs_inopts(3curses), curs_InOve(3curses),
curs_refresh(3curses)

367

curs _getstr (3curses)

NAME
curs_getstr: getstr, wgetstr, mvgetstr, mvwgetstr, wgetnstr - get character
strings from curses terminal keyboard

SYNOPSIS
#include <curses.h>

int getstr(char *sfr);
int wgetstr(WINDOW *win, char *sfr);
int mvgetstr(int y, int x, char *sfr);
int mvwgetstr(WINDOW *win, int y, int x, char *sfr);
int wgetnstr(WINDOW *win, char *sfr, int n);

DESCRIPTION
The effect of getstr is as though a series of calls to getch were made, until a new
line or carriage return is received. The resulting value is placed in the area pointed
to by the character pointer sfr. wgetnstr reads at most n characters, thus prevent
ing a possible overflow of the input buffer. The user's erase and kill characters are
interpreted, as well as any special keys (such as function keys, "home" key, "clear"
key, and so on).

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that getstr, mvgetstr, and mvwgetstr may be macros.

SEE ALSO
curses(3curses), curs-.getch(3curses)

368

NAME

curs getwch (3curses)

curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch - get (or push
back) wchar_t characters from curses terminal keyboard

SYNOPSIS
#include <curses.h>

int getwch(void);
int wgetwch(WINDOW *win);
int mvgetwch(int y, int x);
int mvwgetwch(WINDOW *win, int y, int x);
int ungetwch(int wch);

DESCRIPTION
The getwch, wgetwch, mvgetwch, and mvwgetwch routines read an EUC character
from the terminal associated with the window, transform it into a wchar_t charac
ter, and return a wchar_t character. In no-delay mode, if no input is waiting, the
value ERR is returned. In delay mode, the program waits until the system passes
text through to the program. Depending on the setting of cbreak, this is after one
character (cbreak mode), or after the first newline (nocbreak mode). In half-delay
mode, the program waits until a character is typed or the specified timeout has been
reached. Unless noecho has been set, the character will also be echoed into the
designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh, wrefresh will be called before another character is read.

If keypad is TRUE, and a function key is pressed, the token for that function key is
returned instead of the raw characters. Possible function keys are defined in
curses.h with integers beginning with 0401, whose names begin with KEY_. If a
character that could be the beginning of a function key (such as escape) is received,
curses sets a timer. If the remainder of the sequence does not come in within the
designated time, the character is passed throughi otherwise, the function key value
is returned. For this reason, many terminals experience a delay between the time a
user presses the escape key and the escape is returned to the program.

The ungetwch routine places wch back onto the input queue to be returned by the
next call to wgetwch.

Function Keys
The following function keys, defined in curses. h, might be returned by getwch if
keypad has been enabled. Note that not all of these may be supported on a particu
lar terminal if the terminal does not transmit a unique code when the key is pressed
or if the definition for the key is not present in the tenninfo database.

369

curS_getwch (3curses)

370

Name

KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_FO
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

KEY_Ai
KEY_A3
KEY_B2
KEY_Ci
KEY_C3
KEY_BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY_COMMAND
KEY_COPY
KEY_CREATE

Key name

Break key
The four arrow keys ...

Home key (upward+left arrow)
Backspace
Function keys; space for 64 keys is reserved.
For 0:::; n:::; 63
Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backward (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
Soft (partial) reset
Reset or hard reset
Print or copy
Home down or bottom (lower left).
Keypad is arranged like this:

Ai up A3
left B2 right
Ci down C3

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab key
Beg(inning) key
Cancel key
Close key
Cmd (command) key
Copy key
Create key

curs _getwch (3curses)

Name Key name

KEY_END End key
KEY_EXIT Exit key
KEY_FIND Find key
KEY_HELP Help key
KEY_MARK Mark key
KEY_MESSAGE Message key
KEY_MOVE Move key
KEY_NEXT Next object key
KEY_OPEN Open key
KEY_OPTIONS Options key
KEY_PREVIOUS Previous object key
KEY_REDO Redo key
KEY_REFERENCE Ref(erence) key
KEY_REFRESH Refresh key
KEY_REPLACE Replace key
KEY_RESTART Restart key
KEY_RESUME Resume key
KEY_SAVE Save key
KEY_SBEG Shifted beginning key
KEY_SCANCEL Shifted cancel key
KEY_SCOMMAND Shifted command key
KEY_SCOPY Shifted copy key
KEY_SCREATE Shifted create key
KEY_SOC Shifted delete char key
KEY_SDL Shifted delete line key
KEY_SELECT Select key
KEY_SEND Shifted end key
KEY_SEOL Shifted clear line key
KEY_SEXIT Shifted exit key
KEY_SFIND Shifted find key
KEY_SHELP Shifted help key
KEY_SHOME Shifted home key
KEY_SIC Shifted input key
KEY_SLEFT Shifted left arrow key
KEY_SMESSAGE Shifted message key
KEY_SMOVE Shifted move key
KEY_SNEXT Shifted next key
KEY_SOPTIONS Shifted options key
KEY_SPREVIOUS Shifted prev key
KEY_SPRINT Shifted print key
KEY_SREDO Shifted redo key
KEY_SREPLACE Shifted replace key
KEY_SRIGHT Shifted right arrow
KEY_SRSUME Shifted resume key
KEY_SSAVE Shifted save key
KEY_SSUSPEND Shifted suspend key

371

curs_getwch (3curses)

Name

KEY_SUNDa
KEY_SUSPEND
KEY_UNDO

Key name

Shifted undo key
Suspend key
Undo key

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Use of the escape key by a programmer for a single character function is
discouraged.

When using getwch, wgetwch, mvgetwch, or mvwgetwch, nocbreak mode and echo
mode should not be used at the same time. Depending on the state of the tty driver
when each character is typed, the program may produce undesirable results.

Note that getwch, mvgetwch, and mvwgetwch may be macros.

SEE ALSO

372

curses(3curses), curs_inopts(3curses), curs_move(3curses),
curs_refresh(3curses).

NAME

curs _getwstr (3curses)

curs_getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr,
mvgetnwstr, mvwgetwstr, mvwgetnwstr - get wchar_t character strings from
curses terminal keyboard

SYNOPSIS
#include <curses.h>

int getwstr (wchar_t *wstr);
int getnwstr (wchar_t *wstr, int n);
int wgetwstr (WINDOW *win, wchar_t *wstr);
int wgetnwstr(WINDOW *win, wchar_t *wstr, int n);
int mvgetwstr(int y, int x, wchar_t *wstr);
int mvgetnwstr(int y, int x, wchar_t *wstr, int n);
int mvwgetwstr(WINDOW *win, int y, int x, wchar_t *wstr);
int mvwgetnwstr{WINDOW *win, int y, int x, wchar_t *wstr, int n);

DESCRIPTION
The effect of getwstr is as though a series of calls to getwch were made, until a
newline and carriage return is received. The resulting value is placed in the area
pointed to by the wchar_t pointer str. getnwstr reads at most n wchar_t charac
ters, thus preventing a possible overflow of the input buffer. The user's erase and
kill characters are interpreted, as well as any special keys (such as function keys,
"home" key, "clear" key, and so on).

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that all routines except wgetnwstr may be macros.

SEE ALSO
curses(3curses), curs_getwch(3curses).

373

curs getyx (3curses)

NAME
curs_getyx: getyx, getparyx, getbegyx, getmaxyx - get curses cursor and win
dow coordinates

SYNOPSIS
#include <curses.h>

void getyx(WINDOW *win, int y, int x);
void getparyx(WINDOW *win, int y, int x);
void getbegyx(WINDOW *win, int y, int x);
void getmaxyx(WINDOW *win, int y, int x);

DESCRIPTION
With the getyx macro, the cursor position of the window is placed in the two
integer variables y and x.

With the getparyx macro, if win is a subwindow, the beginning coordinates of the
subwindow relative to the parent window are placed into two integer variables, y
and x. Otherwise, -1 is placed into y and x.

Like getyx, the getbegyx and getmaxyx macros store the current beginning co
ordinates and size of the specified window.

RETURN VALUE

NOTES

The return values of these macros are undefined (that is, they should not be used as
the right-hand side of assignment statements).

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that all of these interfaces are macros and that 1/&" is not necessary before the
variables y and x.

SEE ALSO
curses(3curses)

374

NAME

curs Jnch (3curses)

curs_inch: inch, winch, mvinch, mvwinch - get a character and its attributes from
a curses window

SYNOPSIS
#include <curses.h>

chtype inch(void);
chtype winch(WINDOW *win);
chtype mvinch(int y, int x);
chtype mvwinch(WINDOW *win, int y, int x);

DESCRIPTION
These routines return the character, of type chtype, at the current position in the
named window. If any attributes are set for that position, their values are OR-ed
into the value returned. Constants defined in curses. h can be used with the &

(logical AND) operator to extract the character or attributes alone.

Attributes
The following bit-masks may be AND-ed with characters returned by winch.

A_CHARTEXT Bit-mask to extract character
A_ATTRIBUTES Bit-mask to extract attributes
A_COLOR Bit-mask to extract color-pair field information

NOTES
The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all of these routines may be macros.

SEE ALSO
curses(3curses)

375

curs _inchstr (3curses)

NAME
curs_inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr,
mvinchnstr, mvwinchstr, mvwinchnstr - get a string of characters (and attributes)
from a curses window

SYNOPSIS
#include <curses.h>

int inchstr (chtype *chstr);
int inchnstr{chtype *chstr, int n);
int winchstr{WINDOW *win, chtype *chstr);
int winchnstr (WINDOW *win, chtype *chstr, int n);
int mvinchstr(int y, int x, chtype *chstr);
int mvinchnstr(int y, int x, chtype *chstr, int n);
int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);
int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

DESCRIPTION
These routines return a string of type chtype, starting at the current cursor position
in the named window and ending at the right margin of the window. The four
functions with n as the last argument, return the string at most n characters long.
Constants defined in curses. h can be used with the & (logical AND) operator to
extract the character or the attribute alone from any position in the chstr [see
curs_inch(3curses)] .

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all routines except winchnstr may be macros.

SEE ALSO
curses(3curses), curs_inch(3curses)

376

NAME

curs Jnitscr (3curses)

curs_initscr: initscr, newterm, end win, isendwin, set_term, delscreen -
curses screen initialization and manipulation routines

SYNOPSIS
#include <curses.h>

WINDOW *initscr(void);
int endwin(void);
int isendwin(void);
SCREEN *newterm(char * type, FILE *outfd, FILE *infd);
SCREEN * set_term (SCREEN *new);
void delscreen(SCREEN *sp);

DESCRIPTION
initscr is almost always the first routine that should be called (the exceptions are
slk_init, filter, ripoffline, use_env and, for multiple-terminal applications,
newte:rm.) This determines the terminal type and initializes all curses data struc
tures. initscr also causes the first call to refresh to clear the screen. If errors
occur, initscr writes an appropriate error message to standard error and exits;
otherwise, a pointer is returned to stdscr. If the program needs an indication of
error conditions, newterm should be used instead of initscr; initscr should only
be called once per application.

A program that outputs to more than one terminal should use the newterm routine
for each terminal instead of initscr. A program that needs an indication of error
conditions, so it can continue to run in a line-oriented mode if the terminal cannot
support a screen-oriented program, would also use this routine. The routine
newterm should be called once for each terminal. It returns a variable of type
SCREEN * which should be saved as a reference to that terminal. The arguments
are the type of the terminal to be used in place of $TERM, a file pointer for output to
the terminal, and another file pointer for input from the terminal (if type is NULL,
$TERM will be used). The program must also call endwin for each terminal being
used before exiting from curses. If newterm is called more than once for the same
terminal, the first terminal referred to must be the last one for which endwin is
called.

A program should always call end win before exiting or escaping from curses
mode temporarily. This routine restores tty modes, moves the cursor to the lower
left-hand corner of the screen and resets the terminal into the proper non-visual
mode. Calling refresh or doupdate after a temporary escape causes the program
to resume visual mode.

The isendwin routine returns TRUE if endwin has been called without any sub
sequent calls to wrefresh, and FALSE otherwise.

The set_term routine is used to switch between different terminals. The screen
reference new becomes the new current terminal. The previous terminal is returned
by the routine. This is the only routine which manipulates SCREEN pointers; all
other routines affect only the current terminal.

377

curs _initscr (3curses)

The delscreen routine frees storage associated with the SCREEN data structure.
The endwin routine does not do this, so del screen should be called after endwin if
a particular SCREEN is no longer needed. The file pointers passed to newterm must
also be closed.

RETURN VALUE

NOTES

endwin returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers always return NULL on error.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that initscr and newterm may be macros.

SEE ALSO

378

curses(3curses), curs_kernel(3curses), curs_refresh(3curses),
curs_slk(3curses), curs_util(3curses)

NAME

curs inopts (3curses)

curs_inopts: cbreak,nocbreak,echo,noecho,halfdelay,intrflush,keypad,
meta,nodelay,notimeout,raw,noraw,noqiflush,qiflush,timeout,wtimeout,
typeahead - curses terminal input option control routines

SYNOPSIS
#include <curses.h>

int cbreak(void};
int nocbreak(void};
int echo (void) ;
int noecho(void};
int halfdelay(int tenths};
int intrflush(WINDOW *win, bool bf};
int keypad(WINDOW *win, bool bf};
int meta (WINDOW *win, bool bf};
int nodelay (WINDOW *win, bool bf);
int notimeout (WINDOW *win, bool bf);
int raw(void};
int noraw(void};
void noqiflush(void};
void qiflush(void};
void timeout (int delay);
void wtimeout (WINDOW *win, int delay);
int typeahead(int fd};

DESCRIPTION
The cbreak and nocbreak routines put the terminal into and out of cbreak mode,
respectively. In this mode, characters typed by the user are immediately available
to the program, and erase/kill character-processing is not performed. When out of
this mode, the tty driver buffers the typed characters until a newline or carriage
return is typed. Interrupt and flow control characters are unaffected by this mode.
Initially the terminal mayor may not be in cbreak mode, as the mode is inherited;
therefore, a program should call cbreak or nocbreak explicitly. Most interactive
programs using curses set the cbreak mode.

Note that cbreak overrides raw. [See curs_getch(3curses) for a discussion of how
these routines interact with echo and noecho.]

The echo and noecho routines control whether characters typed by the user are
echoed by getch as they are typed. Echoing by the tty driver is always disabled,
but initially getch is in echo mode, so characters typed are echoed. Authors of
most interactive programs prefer to do their own echoing in a controlled area of the
screen, or not to echo at all, so they disable echoing by calling noecho. [See
curs.-getch(3curses) for a discussion of how these routines interact with cbreak
and nocbreak.]

The halfdelay routine is used for half-delay mode, which is similar to cbreak
mode in that characters typed by the user are immediately available to the program.
However, after blocking for tenths tenths of seconds, ERR is returned if nothing has
been typed. The value of tenths must be a number between 1 and 255. Use
nocbreak to leave half-delay mode.

379

curs inopts (3curses)

380

If the intrflush option is enabled, (bf is TRUE), when an interrupt key is pressed on
the keyboard (interrupt, break, quit) all output in the tty driver queue will be
flushed, giving the effect of faster response to the interrupt, but causing curses to
have the wrong idea of what is on the screen. Disabling (bf is FALSE), the option
prevents the flush. The default for the option is inherited from the tty driver set
tings. The window argument is ignored.

The keypad option enables the keypad of the user's terminaL If enabled (bf is
TRUE), the user can press a function key (such as an arrow key) and wgetch returns
a single value representing the function key, as in KEY_LEFT. If disabled (bf is
FALSE), curses does not treat function keys specially and the program has to inter
pret the escape sequences itself. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning on this option causes the
terminal keypad to be turned on when wgetch is called. The default value for
keypad is false.

Initially, whether the terminal returns 7 or 8 significant bits on input depends on
the control mode of the tty driver [see tennio(7)]. To force 8 bits to be returned,
invoke meta (win, TRUE). To force 7 bits to be returned, invoke meta(win,
FALSE). The window argument, win, is always ignored. If the terminfo capabilities
smm (meta on) and rmm (meta off) are defined for the terminal, smm is sent to the
terminal when meta (win, TRUE) is called and rmm is sent when meta (win,
FALSE) is called.

The nodelay option causes getch to be a non-blocking call. If no input is ready,
getch returns ERR. If disabled (bfis FALSE), getch waits until a key is pressed.

While interpreting an input escape sequence, wgetch sets a timer while waiting for
the next character. If notimeout (win, TRUE) is called, then wgetch does not set a
timer. The purpose of the timeout is to differentiate between sequences received
from a function key and those typed by a user.

With the raw and noraw routines, the terminal is placed into or out of raw mode.
Raw mode is similar to cbreak mode, in that characters typed are immediately
passed through to the user program. The differences are that in raw mode, the
interrupt, quit, suspend, and flow control characters are all passed through uninter
preted, instead of generating a signal. The behavior of the BREAK key depends on
other bits in the tty driver that are not set by curses.

When the noqiflush routine is used, normal flush of input and output queues
associated with the INTR, QUIT and SUSP characters will not be done [see
tennio(7)]. When qiflush is called, the queues will be flushed when these control
characters are read.

The timeout and wtimeout routines set blocking or non-blocking read for a given
window. If delay is negative, blocking read is used (that is, waits indefinitely for
input). If delay is zero, then non-blocking read is used (that is, read returns ERR if
no input is waiting). If delay is positive, then read blocks for delay milliseconds, and
returns ERR if there is still no input. Hence, these routines provide the same func
tionality as nodelay, plus the additional capability of being able to block for only
delay milliseconds (where delay is positive).

curs inopts (3curses)

curses does "line-breakout optimization" by looking for typeahead periodically
while updating the screen. If input is found, and it is coming from a tty, the current
update is postponed until refresh or doupdate is called again. This allows faster
response to commands typed in advance. Normally, the input FILE pointer passed
to newterm, or stdin in the case that initscr was used, will be used to do this
typeahead checking. The typeahead routine specifies that the file descriptor fd is to
be used to check for typeahead instead. If fd is -1, then no typeahead checking is
done.

RETURN VALUE

NOTES

All routines that return an integer return ERR upon failure and an integer value
other than ERR upon successful completion, unless otherwise noted in the preceding
routine descriptions.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that echo, noecho, halfdelay, intrflush, meta, node lay, notimeout,
noqiflush, qiflush, timeout, and wtimeout may be macros.

SEE ALSO
curses(3curses), curs_getch(3curses), curs_initscr(3curses), termio(7)

381

cursJnsch (3curses)

NAME
curs_insch: insch, winsch, mvinsch, mvwinsch - insert a character before the
character under the cursor in a curses window

SYNOPSIS
#include <curses.h>

int insch(chtype ch);
int winsch(WINDOW *win, chtype ch);
int mvinsch(int y, int x, chtype ch);
int mvwinsch(WINDOW *win, int y, int x, chtype ch);

DESCRIPTION
These routines insert the character ch before the character under the cursor. All
characters to the right of the cursor are moved one space to the right, with the
possibility of the rightmost character on the line being lost. The cursor position
does not change (after moving to y, x, if specified). (This does not imply use of the
hardware insert character feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that insch, mvinsch, and mvwinsch may be macros.

SEE ALSO
curses(3curses)

382

NAME

curs Jnsstr (3curses)

curs_insstr: insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr,
mvwinsstr, mvwinsnstr - insert string before character under the cursor in a
curses window

SYNOPSIS
#include <curses.h>

int insstr (char *str);
int insnstr (char *str, int n);
int winsstr (WINDOW *win, char *str);
int winsnstr (WINDOW *win, char *str, int n);
int mvinsstr(int y, int x, char *str};
int mvinsnstr(int y, int x, char *str, int n};
int mvwinsstr(WINDOW *win, int y, int x, char *str);
int mvwinsnstr(WINDOW *win, int y, int x, char *str, int n};

DESCRIPTION
These routines insert a character string (as many characters as will fit on the line)
before the character under the cursor. All characters to the right of the cursor are
moved to the right, with the possibility of the rightmost characters on the line being
lost. The cursor position does not change (after moving to y, x, if specified). (This
does not imply use of the hardware insert character feature.) The four routines
with n as the last argument insert at most n characters. If n<=O, then the entire
string is inserted.

If a character in str is a tab, newline, carriage return, or backspace, the cursor is
moved appropriately within the window. A newline also does a clrtoeol before
moving. Tabs are considered to be at every eighth column. If a character in str is
another control character, it is drawn in the ~X notation. Calling winch after
adding a control character (and moving to it, if necessary) does not return the con
trol character, but instead returns the representation of the control character.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

Note that all but winsnstr may be macros.

SEE ALSO
curses(3curses), curs_clear(3curses), curs_inch(3curses)

383

curs _instr (3curses)

NAME
curs_instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr,
mvwinnstr - get a string of characters from a curses window

SYNOPSIS
#include <curses.h>

int instr (char *str);
int innstr{char *str, int n);
int winstr{WINDOW *win, char *str);
int winnstr{WINDOW *win, char *str, int n);
int mvinstr{int y, int x, char *str);
int mvinnstr{int y, int x, char *str, int n);
int mvwinstr{WINDOW *win, int y, int x, char *str);
int mvwinnstr{WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
These routines return the string of characters in str starting at the current cursor
position in the named window and ending at the right margin of the window.
Attributes are stripped from the characters. The four functions with n as the last
argument return the string at most n characters long.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that all routines except winnstr may be macros.

SEE ALSO
curses(3curses)

384

NAME

curs inswch (3curses)

curs_inswch: inswch, winswch, mvinswch, mvwinswch - insert a wchar_t charac
ter before the character under the cursor in a curses window

SYNOPSIS
#include <curses.h>

int inswch(chtype wch);
int winswch(WINDOW *win, chtype wch);
int mvinswch(int y, int x, chtype wch);
int mvwinswch(WINDOW *win, int y, int x, chtype wch);

DESCRIPTION
These routines insert the character wch, holding a wchar_t character, before the
character under the cursor. All characters to the right of the cursor are moved one
space to the right, with the possibility of the rightmost character on the line being
lost. The cursor position does not change (after moving to y, x, if specified). (This
does not imply use of the hardware insert character feature.)

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that inswch, mvinswch, and mvwinswch may be macros.

SEE ALSO
curses (3curses).

385

curs _inswstr (3curses)

NAME
curs_inswstr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr,
mvinsnwstr, mvwinswstr, mvwinsnwstr - insert wchar_t string before character
under the cursor in a curses window

SYNOPSIS
#include <curses.h>

int inswstr(char *wsfr);
int insnwstr (char *wsfr, int n);
int winswstr (WINDOW *win, char *wsfr);
int winsnwstr(WINDOW *win, char *wsfr, int n);
int mvinswstr(int y, int x, char *wstr);
int mvinsnwstr(int y, int x, char *wstr, int n);
int mvwinswstr(WINDOW *win, int y, int x, char *wstr);
int mvwinsnwstr(WINDOW *win, int y, int x, char *wstr, int n);

DESCRIPTION
These routines insert a wchar_t character string (as many wchar_t characters as
will fit on the line) before the character under the cursor. All characters to the right
of the cursor are moved to the right, with the possibility of the rightmost characters
on the line being lost. The cursor position does not change (after moving to y, x, if
specified). (This does not imply use of the hardware insert character feature.) The
four routines with n as the last argument insert at most n wchar_t characters. If
n<=O, then the entire string is inserted.

If a character in wstr is a tab, newline, carriage return, or backspace, the cursor is
moved appropriately within the window. A newline also does a clrtoeol before
moving. Tabs are considered to be at every eighth column. If a character in wstr is
another control character, it is drawn in the ~x notation. Calling winch after
adding a control character (and moving to it, if necessary) does not return the con
trol character, but instead returns the representation of the control character.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all but winsnwstr may be macros.

SEE ALSO
curses(3curses), curs_clear(3curses), curs_inwch(3curses).

386

NAME

curs inwch (3curses)

curs_inwch: inwch, winwch, mvinwch, mvwinwch - get a wchar_t character and its
attributes from a curses window

SYNOPSIS
#include <curses.h>

chtype inwch(void)i
chtype winwch (WINDOW *win) i
chtype mvinwch(int y, int X)i
chtype mvwinwch(WINDOW *win, int y, int x) i

DESCRIPTION
These routines return the wchar_t character, of type chtype, at the current position
in the named window. If any attributes are set for that position, their values are
OR-ed into the value returned. Constants defined in curses. h can be used with
the & (logical AND) operator to extract the character or attributes alone.

Attributes

NOTES

The following bit-masks may be AND-ed with characters returned by winwch.

A_CHARTEXT
A_ATTRIBUTES
A_COLOR

Bit-mask to extract character
Bit-mask to extract attributes
Bit-mask to extract color-pair field information

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that all of these routines may be macros.

SEE ALSO
curses(3curses).

387

curs inwchstr (3curses)

NAME
curs_inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr - get a string of wchar_t characters
(and attributes) from a curses window

SYNOPSIS
#include <curses.h>

int inwchstr(chtype *wchstr);
int inwchnstr (chtype *wchstr, int n);
int winwchstr(WINDOW *win, chtype *wchstr);
int winwchnstr (WINDOW *win, chtype *wchstr, int n);
int mvinwchstr(int y, int x, chtype *wchstr);
int mvinwchnstr (int y, int x, chtype *wchstr, int n);
int mvwinwchstr(WINDOW *win, int y, int x, chtype *wchstr);
int mvwinwchnstr(WINDOW *win, int y, int x, chtype *wchstr, int n);

DESCRIPTION
These routines return a string of type chtype, holding wchar_t characters, starting
at the current cursor position in the named window and ending at the right margin
of the window. The four functions with n as the last argument, return the string at
most n wchar_t characters long. Constants defined in curses. h can be used with
the & (logical AND) operator to extract the wchar_t character or the attribute alone
from any position in the chstr [see curs_inwch(3curses)].

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that all routines except winwchnstr may be macros.

SEE ALSO
curses(3curses), curs_inwch(3curses).

388

NAME

curs _inwstr (3curses)

curs_inwstr: inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr,
mvwinwstr, mvwinnwstr - get a string of wchar_t characters from a curses win
dow

SYNOPSIS
#include <curses.h>

int inwstr(char *str);
int innwstr(char *str, int n);
int winwstr (WINDOW *win, char *str);
int winnwstr (WINDOW *win, char *str, int n);
int mvinwstr(int y, int x, char *str);
int mvinnwstr(int y, int x, char *str, int n);
int mvwinwstr(WINDOW *win, int y, int x, char *str);
int mvwinnwstr (WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
These routines return the string of wchar_t characters in str starting at the current
cursor position in the named window and ending at the right margin of the win
dow. Attributes are stripped from the characters. The four functions with n as the
last argument return the string at most n wchar_t characters long.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that all routines except winnwstr may be macros.

SEE ALSO
curses(3curses) .

389

curs kernel(3curses)

NAME
curs_kernel: def-prog_mode, de f_she I I_mode, reset-prog_mode,
reset_she11_mode,resetty, savettY,getsyx, setsyx,ripoff1ine, curs_set,
napms -low-level curses routines

SYNOPSIS
#include <curses.h>

int def-prog_mode(void);
int def_shell_mode(void);
int reset-prog_mode(void);
int reset_shell_mode(void);
int resetty(void);
int savetty(void);
int getsyx(int y, int x);
int setsyx(int y, int x);
int ripof f1 ine (int line, int (* ini t) (WINDOW *, int»;
int curs_set (int visibility);
int napms (int ms);

DESCRIPTION

390

The following routines give low-level access to various curses functionality.
Theses routines typically are used inside library routines.

The def-prog_mode and def_shell_mode routines save the current terminal
modes as the "program" (in curses) or "shell" (not in curses) state for use by the
reset-prog_mode and reset_sheIl_mode routines. This is done automatically by
initscr.

The reset-prog_mode and reset_sheIl_mode routines restore the terminal to
"program" (in curses) or "shell" (out of curses) state. These are done automati
cally by endwin and, after an endwin, by doupdate, so they normally are not called.

The resetty and savetty routines save and restore the state of the terminal
modes. savetty saves the current state in a buffer and resetty restores the state
to what it was at the last call to savetty.

With the getsyx routine, the current coordinates of the virtual screen cursor are
returned in y and x. If leaveok is currently TRUE, then -1,-1 is returned. If lines
have been removed from the top of the screen, using ripoffline, y and x include
these lines; therefore, y and x should be used only as arguments for setsyx.

With the setsyx routine, the virtual screen cursor is set to y, x. If y and x are both -1,
then leaveok is set. The two routines getsyx and setsyx are designed to be used by a
library routine, which manipulates curses windows but does not want to change the
current position of the program's cursor. The library routine would call getsyx at the
beginning, do its manipulation of its own windows, do a wnoutrefresh on its windows,
call setsyx, and then call doupdate.

The ripoffline routine provides access to the same facility that slk_init [see
curs_slk(3curses)] uses to reduce the size of the screen. ripoffline must be
called before ini tscr or newterm is called. If line is positive, a line is removed
from the top of stdscr; if line is negative, a line is removed from the bottom. When
this is done inside initscr, the routine init (supplied by the user) is called with
two arguments: a window pointer to the one-line window that has been allocated

curs_kernel (3curses)

and an integer with the number of columns in the window. Inside this initialization
routine, the integer variables LINES and COLS (defined in curses.h) are not
guaranteed to be accurate and wrefresh or doupdate must not be called. It is
allowable to call wnoutrefresh during the initialization routine.

ripoffline can be called up to five times before calling initscr or newtenn.

With the curs_set routine, the cursor state is set to invisible, normal, or very visi
ble for visibility equal to 0, 1, or 2 respectively. If the terminal supports the visi
bility requested, the previous cursor state is returned; otherwise, ERR is returned.

The napms routine is used to sleep for ms milliseconds.

RETURN VALUE

NOTES

Except for curs_set, these routines always return OK. curs_set returns the previ
ous cursor state, or ERR if the requested visibility is not supported.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that getsyx is a macro, so & is not necessary before the variables y and x.

SEE ALSO
curses(3curses), curs_initscr(3curses), curs_outopts(3curses),
curs_refresh(3curses), curs_scr_dump(3curses), curs_slk(3curses)

391

curs_move (3curses)

NAME
curs_move: move, wmove - move curses window cursor

SYNOPSIS
#include <curses.h>

int move(int y, int x);
int wmove (WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the cursor associated with the window is moved to line y and
column x. This routine does not move the physical cursor of the terminal until
refresh is called. The position specified is relative to the upper left-hand corner of
the window, which is (0,0).

RETURN VALUE

NOTES

These routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that move may be a macro.

SEE ALSO
curses(3curses), curs_refresh(3curses)

392

NAME

curs _ outopts (3curses)

curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg,
wsetscrreg, scrollok, nl, nonl - curses terminal output option control routines

SYNOPSIS
#include <curses.h>

int clearok (WINDOW *win, bool bf);
int idlok (WINDOW *win, bool bf);
void idcok(WINDOW *win, bool bf);
void immedok (WINDOW *win, bool bf);
int leaveok (WINDOW *win, bool bf);
int setscrreg (int top, int bot);
int wsetscrreg (WINDOW *win, int top, int bot);
int scrollok(WINDOW *win, bool bi>;
int nl (void) ;
int nonl (void) ;

DESCRIPTION
These routines set options that deal with output within curses. All options are ini
tially FALSE, unless otherwise stated. It is not necessary to tum these options off
before calling endwin.

With the clearok routine, if enabled (bf is TRUE), the next call to wrefresh with
this window will clear the screen completely and redraw the entire screen from
scratch. This is useful when the contents of the screen are uncertain, or in some
cases for a more pleasing visual effect. If the win argument to clearok is the global
variable curscr, the next call to wrefresh with any window causes the screen to be
cleared and repainted from scratch.

With the idlok routine, if enabled (bf is TRUE), curses considers using the
hardware insert/ delete line feature of terminals so equipped. If disabled (bf is
FALSE), curses very seldom uses this feature. (The insert/ delete character feature
is always considered.) This option should be enabled only if the application needs
insert/ delete line, for example, for a screen editor. It is disabled by default because
insert/ delete line tends to be visually annoying when used in applications where it
isn't really needed. If insert/delete line cannot be used, curses redraws the
changed portions of all lines.

With the idcok routine, if enabled (bf is TRUE), curses considers using the
hardware insert/ delete character feature of terminals so equipped. This is enabled
by default.

With the immedok routine, if enabled (bf is TRUE) , any change in the window image,
such as the ones caused by waddch, wclrtobot, wscrl, and so on, automatically
cause a call to wrefresh. However, it may degrade the performance considerably,
due to repeated calls to wrefresh. It is disabled by default.

Normally, the hardware cursor is left at the location of the window cursor being
refreshed. The leaveok option allows the cursor to be left wherever the update
happens to leave it. It is useful for applications where the cursor is not used, since
it reduces the need for cursor motions. If possible, the cursor is made invisible
when this option is enabled.

393

curs outopts (3curses)

The setscrreg and wsetscrreg routines allow the application programmer to set
a software scrolling region in a window. top and bot are the line numbers of the top
and bottom margin of the scrolling region. (Line 0 is the top line of the window.) If
this option and scrollok are enabled, an attempt to move off the bottom margin
line causes all lines in the scrolling region to scroll up one line. Only the text of the
window is scrolled. (Note that this has nothing to do with the use of a physical
scrolling region capability in the terminal, like that in the VT100. If idlok is
enabled and the terminal has either a scrolling region or insert/ delete line capabil
ity, they will probably be used by the output routines.)

The scrollok option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either as a result of a newline
action on the bottom line, or typing the last character of the last line. If disabled, (bf
is FALSE), the cursor is left on the bottom line. If enabled, (bf is TRUE), wrefresh is
called on the window, and the physical terminal and window are scrolled up one
line. [Note that in order to get the physical scrolling effect on the terminal, it is also
necessary to call idlok.]

The nl and nonl routines control whether newline is translated into carriage return
and linefeed on output, and whether return is translated into newline on input. Ini
tially, the translations do occur. By disabling these translations using nonl, curses
is able to make better use of the linefeed capability, resulting in faster cursor
motion.

RETURN VALUE

NOTES

setscrreg and wsetscrreg return OK upon success and ERR upon failure. All
other routines that return an integer always return OK.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that clearok, leaveok, scrollok, idcok, nl, nonl and setscrreg may be
macros.

The immedok routine is useful for windows that are used as terminal emulators.

SEE ALSO

394

curses(3curses), curs_addch(3curses), curs_clear(3curses),
curs_initscr(3curses), curs_scroll(3curses), curs_refresh(3curses)

NAME

curs_overlay (3curses)

curs_overlay: overlay, overwrite, copywin - overlap and manipulate over
lapped curses windows

SYNOPSIS
#include <curses.h>

int overlay(WINDOW *srcwin, WINDOW *dstwin);
int overwrite (WINDOW *srcwin, WINDOW *dstwin);
int copywin(WINDOW *srcwin, WINDOW *dstwin, int sminrow,

int smincol, int dminrow, int dmincol, int dmaxrow,
int dmaxcol, int overlay);

DESCRIPTION
The overlay and overwrite routines overlay srcwin on top of dstwin. scrwin and
dstwin are not required to be the same size; only text where the two windows over
lap is copied. The difference is that overlay is non-destructive (blanks are not
copied) whereas overwrite is destructive.

The copywin routine provides a finer granularity of control over the overlay and
overwri te routines. Like in the prefresh routine, a rectangle is specified in the
destination window, (dminrow, dmincol) and (dmaxrow, dmaxcol), and the upper-Ieft
corner coordinates of the source window, (sminrow, smincol). If the argument over
lay is true, then copying is non-destructive, as in overlay.

RETURN VALUE

NOTES

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that overlay and overwrite may be macros.

SEE ALSO
curses (3curses), curs -pad(3curses), curs_refresh(3curses)

395

curs pad(3curses)

NAME
curs-pad:newpad, stibpad,prefresh,pnoutrefresh,pechochar,pechowchar
create and display curses pads

SYNOPSIS
#include <curses.h>

WINDOW *newpad (int nlines, int ncols);
WINDOW *subpad(WINDOW *orig, int nlines, int ncols,

int begin...1f, int begin _x) ;
int prefresh (WINDOW *pad, int pminrow, int pmincol,

int sminrow, int smincol, int smaxrow, int smaxcol);
int pnoutrefresh (WINDOW *pad, int pminrow, int pmincol,

int sminrow, int smincol, int smaxrow, int smaxcol);
int pechochar(WINDOW *pad, chtype ch);
int pechowchar(WINDOW *pad, chtype wch);

DESCRIPTION

396

The newpad routine creates and returns a pointer to a new pad data structure with
the given number of lines, nlines, and columns, ncols. A pad is like a window,
except that it is not necessarily associated with a viewable part of the screen.
Automatic refreshes of pads (for example, from scrolling or echoing of input) do
not occur. It is not legal to call wrefresh with a pad as an argument; the routines
prefresh or pnoutrefresh should be called instead. Note that these routines
require additional parameters to specify the part of the pad to be displayed and the
location on the screen to be used for the display.

The subpad routine creates and returns a pointer to a subwindow within a pad
with the given number of lines, nlines, and columns, ncols. Unlike subwin, which
uses screen coordinates, the window is at position (begin _x, begin...1f) on the pad.
The window is made in the middle of the windoworig, so that changes
made to one window affect both windows. During the use of this
routine, it will often be necessary to call touchwin or touchline
on orig before calling prefresh.

The pre fresh and pnoutrefresh routines are analogous to wrefresh and
wnoutrefresh except that they relate to pads instead of windows. The additional
parameters are needed to indicate what part of the pad and screen are involved.
pminrow and pmincol specify the upper left-hand corner of the rectangle to be
displayed in the pad. sminrow, smincol, smaxrow, and smaxcol specify the edges of
the rectangle to be displayed on the screen. The lower right-hand comer of the rec
tangle to be displayed in the pad is calculated from the screen 'coordinates, since the
rectangles must be the same size. Both rectangles must be entirely contained within
their respective structures. Negative values of pminrow, pmincol, sminrow, or smincol
are treated as if they were zero.

The pechochar routine is functionally equivalent to a call to addch followed by a
call to refresh, a call to waddch followed by a call to wrefresh, or a call to waddch
followed by a call to prefresh. The knowledge that only a single character is
being output is taken into consideration and, for non-control characters, a consider
able performance gain might be seen by using these routines instead of their
equivalents. In the case of pechochar, the last location of the pad on the screen is
reused for the arguments to prefresh.

curs pad(3curses)

The pechowchar routine is functionally equivalent to a call to addwch followed by a
call to refresh, a call to waddwch followed by a call to wrefresh, or a call to
waddwch followed by a call to prefresh.

RETURN VALUE

NOTES

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that pechochar may be a macro.

SEE ALSO
curses (3curses), curs_refresh(3curses), curs_touch(3curses),
curs_addch(3curses), curs_addwch(3curses)

397

curs printw(3curses)

NAME
curs-printw: printw, wprintw, mvprintw, mvwprintw, vwprintw - print
formatted output in curses windows

SYNOPSIS
#include <curses.h>

int printw(char *ftnt [, argl •••);
int wprintw(WINOOW *win, char *ftnt [, argl • • .);
int mvprintw(int y, int x, char *ftnt [, argl •••);
int mvwprintw(WINOOW *win, int y, int x, char *ftnt [, argl ••.);

#include <varargs.h>

int vwprintw(WlNOOW *win, char *ftnt, va_list varglist);

DESCRIPTION
The printw, wprintw, mvprintw and mvwprintw routines are analogous to printf
[see printf(3S)]. In effect, the string that would be output by printf is output
instead as though waddstr was used on the given window.

The vwprintw routine is analogous to vprintf [see vprintf(3S)] and performs a
wprintw using a variable argument list. The third argument is a va_list, a pointer
to a list of arguments, as defined in varargs . h.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. h and
unctrl.h.

SEE ALSO
curses(3curses), printf(3S), vprintf(3S)

398

NAME

curs_refresh (3curses)

curs_refresh: refresh, wrefresh, wnoutrefresh, doupdate, redrawwin,
wredrawln - refresh curses windows and lines

SYNOPSIS
#include <curses.h>

int refresh(void);
int wrefresh(WINDOW *win);
int wnoutrefresh (WINDOW *win);
int doupdate(void);
int redrawwin (WINDOW *win);
int wredrawln (WINDOW *win lint begJine lint num Jines) ;

DESCRIPTION
The refresh and wrefresh routines (or wnoutrefresh and doupdate) must be
called to get any output on the terminal, as other routines merely manipulate data
structures. The routine wrefresh copies the named window to the physical termi
nal screen, taking into account what is already there in order to do optimizations.
The refresh routine is the same, using stdscr as the default window. Unless
leaveok has been enabled, the physical cursor of the terminal is left at the location
of the cursor for that window.

The wnoutrefresh and doupdate routines allow multiple updates with more
efficiency than wrefresh alone. In addition to all the window structures, curses
keeps two data structures representing the terminal screen: a physical screen,
describing what is actually on the screen, and a virtual screen, describing what the
programmer wants to have on the screen.

The routine wrefresh works by first calling wnoutrefresh, which copies the
named window to the virtual screen, and then calling doupdate, which compares
the virtual screen to the physical screen and does the actual update. If the program
mer wishes to output several windows at once, a series of calls to wrefresh results
in alternating calls to wnoutrefresh and doupdate, causing several bursts of out
put to the screen. By first calling wnoutrefresh for each window, it is then possi
ble to call doupdate once, resulting in only one burst of output, with fewer total
characters transmitted and less CPU time used. If the win argument to wrefresh is
the global variable curser, the screen is immediately cleared and repainted from
scratch.

The redrawwin routine indicates to curses that some screen lines are corrupted
and should be thrown away before anything is written over them. These routines
could be used for programs such as editors, which want a command to redraw
some part of the screen or the entire screen. The routine redrawln is preferred over
redrawwin where a noisy communication line exists and redrawing the entire win
dow could be subject to even more communication noise. Just redrawing several
lines offers the possibility that they would show up unblemished.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

399

curs_refresh (3curses)

NOTES
The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that refresh and redrawwin may be macros.

SEE ALSO
curses(3curses), curs_outopts(3curses)

400

NAME

curs _ scanw (3curses)

curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscanw - convert formatted
input from a curses widow

SYNOPSIS
#include <curses.h>

int scanw (char *fmt [, argl . • .);
int wscanw(WINDOW *win, char *fmt [, argl . • .);
int mvscanw(int y, int x, char *fmt [, argl •••);
int mvwscanw(WINDOW *win, int y, int x, char *fmt [, argl •••);
int vwscanw(WINDOW *win, char *fmt, va_list varglist);

DESCRIPTION
The scanw, wscanw and mvscanw routines correspond to scanf [see scanf(3S)].
The effect of these routines is as though wgetstr were called on the window, and
the resulting line used as input for the scan. Fields which do not map to a variable
in the fmt field are lost.

The vwscanw routine is similar to vwprintw in that it performs a wscanw using a
variable argument list. The third argument is a va _list, a pointer to a list of argu
ments, as defined in varargs .h.

RETURN VALUE

NOTES

vwscanw returns ERR on failure and an integer equal to the number of fields
scanned on success.

Applications may interrogate the return value from the scanw, wscanw, mvscanw
and mvwscanw routines to determine the number of fields which were mapped in
the call.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

SEE ALSO
curses(3curses), curs-9"etstr, curs-printw, scanf(3S)

401

curs_scroll (3curses)

NAME
curs_scroll: scroll, srcl, wscrl - scroll a curses window

SYNOPSIS
#include <curses.h>

int scroll(WINDOW *win);
int scrl(int n);
int wscrl (WINDOW *win, int n);

DESCRIPTION
With the scroll routine, the window is scrolled up one line. This involves moving
the lines in the window data structure. As an optimization, if the scrolling region of
the window is the entire screen, the physical screen is scrolled at the same time.

With the scrl and wscrl routines, for positive n scroll the window up n lines (line
i+n becomes i); otherwise scroll the window down n lines. This involves moving
the lines in the window character image structure. The current cursor position is
not changed.

For these functions to work, scrolling must be enabled via scrollok.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that scrl and scroll may be macros.

SEE ALSO
curses(3curses), curs_outopts(3curses)

402

NAME

curs scr dump (3curses)

curs_scr_dump: scr_dump, scr_restore, scr_init, scr_set - read (write) a
curses screen from (to) a file

SYNOPSIS
#include <curses.h>

int scr_dump(char *filename);
int scr_restore (char *filename);
int scr_init (char *filename);
int scr_set (char *filename);

DESCRIPTION
With the scr_dump routine, the current contents of the virtual screen are written to
the file filename.

With the scr_restore routine, the virtual screen is set to the contents of filename,
which must have been written using scr_dump. The next call to doupdate restores
the screen to the way it looked in the dump file.

With the scr_init routine, the contents of filename are read in and used to initialize
the curses data structures about what the terminal currently has on its screen. If
the data is determined to be valid, curses bases its next update of the screen on
this information rather than clearing the screen and starting from scratch.
scr_init is used after initscr or a system [see system(3S)] call to share the
screen with another process which has done a scr_dump after its endwin call. The
data is declared invalid if the time-stamp of the tty is old or the terminfo capabili
ties rmcup and nrrmc exist.

The scr_set routine is a combination of scr_restore and scr_init. It tells the
program that the information in filename is what is currently on the screen, and also
what the program wants on the screen. This can be thought of as a screen inheri
tance function.

To read (write) a window from (to) a file, use the getwin and putwin routines [see
curs_util(3curses)].

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and OK upon success.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Note that scr_init, scr_set, and scr_restore may be macros.

SEE ALSO
curses(3curses), curs_initscr(3curses), curs_refresh(3curses),
curs_util(3curses), system(3S)

403

curs _ slk (3curses)

NAME
curs_slk: slk_init, slk_set, slk_refresh, slk_noutrefresh, slk_label,
slk_clear,slk_restore,slk_touch,slk_attron,slk_attrset,slk_attroff
curses soft label routines

SYNOPSIS
#include <curses.h>

int slk_init(int fint);
int slk_set (int labnum, char *label, int fint) ;
int slk_refresh(void);
int slk_noutrefresh(void);
char * slk_label (int labnum);
int slk_clear(void);
int slk_restore(void);
int slk_touch(void);
int slk_attron(chtype attrs);
int slk_attrset (chtype attrs);
int slk_attroff (chtype attrs);

DESCRIPTION

404

curses manipulates the set of soft function-key labels that exist on many terminals.
For those terminals that do not have soft labels, curses takes over the bottom line
of stdscr, reducing the size of stdscr and the variable LINES. curses standard
izes on eight labels of up to eight characters each.

To use soft labels, the slk_init routine must be called before initscr or newtenn
is called. If initscr eventually uses a line from stdscr to emulate the soft labels,
thenfint determines how the labels are arranged on the screen. Settingfint to 0 indi
cates a 3-2-3 arrangement of the labels; 1 indicates a 4-4 arrangement.

With the slk_set routine, labnum is the label number, from 1 to 8. label is the string
to be put on the label, up to eight characters in length. A null string or a null
pointer sets up a blank label. fint is either 0, 1, or 2, indicating whether the label is
to be left-justified, centered, or right-justified, respectively, within the label.

The slk_refresh and slk_noutrefresh routines correspond to the wrefresh and
wnoutrefresh routines.

With the slk_label routine, the current label for label number labnum is returned
with leading and trailing blanks stripped.

With the slk_clear routine, the soft labels are cleared from the screen.

With the slk_restore routine, the soft labels are restored to the screen after a
slk_clear is performed.

With the slk_touch routine, all the soft labels are forced to be output the next time
a slk_noutrefresh is performed.

The slk_attron, slk_attrset and slk_attroff routines correspond to attron,
attrset, and attroff. They have an effect only if soft labels are simulated on the
bottom line of the screen.

curs slk (3curses)

RETURN VALUE

NOTES

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

slk_label returns NULL on error.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

Most applications would use slk_noutrefresh because a wrefresh is likely to
follow soon.

SEE ALSO
curses(3curses), curs_attr(3curses), curs_initscr(3curses),
curs_refresh(3curses)

405

curs _ termattrs (3curses)

NAME
curs_termattrs: baudrate, erasechar, has_ic, has_iI, killchar, longname,
termattrs, termname - curses environment query routines

SYNOPSIS
#include <curses.h>

int baudrate(void);
char erasechar(void);
int has_ic(void);
int has_il(void);
char killchar(void);
char *longname(void);
chtype termattrs(void);
char *ter.mname(void);

DESCRIPTION
The baudrate routine returns the output speed of the terminal. The number
returned is in bits per second, for example 9600, and is an integer.

With the erasechar routine, the user's current erase character is returned.

The has_ic routine is true if the terminal has insert- and delete-character capabili
ties.

The has_il routine is true if the terminal has insert- and delete-line capabilities, or
can simulate them using scrolling regions. This might be used to determine if it
would be appropriate to turn on physical scrolling using scrollok.

With the killchar routine, the user's current line kill character is returned.

The longname routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a verbose description
is 128 characters. It is defined only after the call to initscr or newterm. The area
is overwritten by each call to newterm and is not restored by set_term, so the
value should be saved between calls to newterm if longname is going to be used
with multiple terminals.

If a given terminal doesn't support a video attribute that an application program is
trying to use, curses may substitute a different video attribute for it. The
termattrs function returns a logical OR of all video attributes supported by the ter
minal. This information is useful when a curses program needs complete control
over the appearance of the screen.

The ter.mname routine returns the value of the environmental variable TERM (trun
cated to 14 characters).

RETURN VALUE

NOTES

406

longname and ter.mname return NULL on error.

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that termattrs may be a macro.

curs termattrs (3curses)

SEE ALSO
curses(3curses), curs_initscr(3curses), curs_outopts(3curses)

407

curs termcap (3curses)

NAME
curs_teDmcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs - curses
interfaces (emulated) to the termcap library

SYNOPSIS
#include <curses.h>
#include <teDm.h>

int tgetent(char *bp, char *name);
int tgetflag(char id[2]);
int tgetnum (char id [2]) ;
char *tgetstr(char id[2], char **area);
char *tgoto(char *cap, int col, int row);
int tputs(char *str, int affcnt, int (*putc) (void»;

DESCRIPTION
These routines are included as a conversion aid for programs that use the termcap
library. Their parameters are the same and the routines are emulated using the
teDminfo database. These routines are supported at Level 2 and should not be
used in new applications.

The tgetent routine looks up the termcap entry for name. The emulation ignores
the buffer pointer bp.

The tgetflag routine gets the boolean entry for id.

The tgetnum routine gets the numeric entry for id.

The tgetstr routine returns the string entry for id. Use tputs to output the
returned string.

The tgoto routine instantiates the parameters into the given capability. The output
from this routine is to be passed to tputs.

The tputs routine is described in the curs_teDminfo(3curses) manual page.

RETURN VALUE

NOTES

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

SEE ALSO
curses(3curses), curs_teDminfo(3curses), putc(3S)

408

NAME

curs _ terminfo (3curses)

curs_tenninfo: setupte:r:m, sette:r:m, set_curte:r:m, del_curte:r:m, restartte:r:m,
tparm, tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr -
curses interfaces to terminfo database

SYNOPSIS
#include <curses.h>
#include <te:r:m.h>

int setupterm(char *term, int fildes, int *errret};
int setterm(char *term);
TERMINAL *set_curterm(TERMINAL *nterm);
int del_curte:r:m(TERMINAL *oterm);
int restartterm(char * term, int fildes, int *errret);
char *tpa:r:m(char *str, long int pl, long int p2, long int p3,

long int p4, long int pS, long int p6, long int p7,
long int p8, long int p9);

int tputs(char *str, int affcnt, int (*putc) (int»;
int putp (char *str);
int vidputs (chtype attrs, int (*putc) (int)) ;
int vidattr(chtype attrs);
int mvcur (int oldrow, int oldcol, int newrow, int newcol);
int tigetflag(char *capname);
int tigetnum(char *capname);
int tigetstr(char *capname);

DESCRIPTION
These low-level routines must be called by programs that have to deal directly with
the tenninfo database to handle certain terminal capabilities, such as program
ming function keys. For all other functionality, curses routines are more suitable
and their use is recommended.

Initially, setupte:r:m should be called. Note that setupterm is automatically called
by initscr and newterm. This defines the set of terminal-dependent variables
[listed in tenninfo(4)]. The tenninfo variables lines and columns are initialized
by setupte:r:m as follows: If use_env(FALSE) has been called, values for lines and
colwnns specified in tenninfo are used. Otherwise, if the environment variables
LINES and COLUMNS exist, their values are used. If these environment variables do
not exist and the program is running in a window, the current window size is used.
Otherwise, if the environment variables do not exist, the values for lines and
colwnns specified in the tenninfo database are used.

The header files curses.h and te:r:m.h should be included (in this order) to get the
definitions for these strings, numbers, and flags. Parameterized strings should be
passed through tparm to instantiate them. All tenninfo strings [including the out
put of tparm] should be printed with tputs or putp. Call the reset_sheil_mode
to restore the tty modes before exiting [see curs_kernel(3curses)]. Programs
which use cursor addressing should output enter_ca_mode upon startup and
should output exi t_ca_mode before exiting. Programs desiring shell escapes
should call reset_sheil_mode and output exi t_ca_mode before the shell is called
and should output enter_ca_mode and call reset-prog_mode after returning from
the shell.

409

curs _ terminfo (3curses)

410

The setupterm routine reads in the terminfo database, initializing the terminfo
structures, but does not set up the output virtualization structures used by curses.
The terminal type is the character string term; if term is null, the environment vari
able TERM is used. All output is to file descriptor fildes which is initialized for
output. If errret is not null, then setupterm returns OK or ERR and stores a status
value in the integer pointed to by errret. A status of 1 in errret is normal, 0
means that the terminal could not be found, and -1 means that the terminfo data
base could not be found. If errret is null, setupterm prints an error message
upon finding an error and exits. Thus, the simplest call is:

setupterm«char *)0, 1, (int *)0);,

which uses all the defaults and sends the output to stdout.

The set term routine is being replaced by setupterm. The call:

setupterm (term, 1, (int *) 0)

provides the same functionality as setterm(term). The set term routine is
included here for compatibility and is supported at Level 2.

The set_curterm routine sets the variable cur_term to nterm, and makes all of the
terminfo boolean, numeric, and string variables use the values from nterm.

The del_curterm routine frees the space pointed to by oterm and makes it available
for further use. If oterm is the same as cur_term, references to any of the terminfo
boolean, numeric, and string variables thereafter may refer to invalid memory loca
tions until another setupterm has been called.

The restartterm routine is similar to setupterm and initscr, except that it is
called after restoring memory to a previous state. It assumes that the windows and
the input and output options are the same as when memory was saved, but the ter
minal type and baud rate may be different.

The tparm routine instantiates the string str with parameters pi. A pointer is
returned to the result of str with the parameters applied.

The tputs routine applies padding information to the string str and outputs it. The
str must be a terminfo string variable or the return value from tparm, tgetstr, or
tgoto. affent is the number of lines affected, or 1 if not applicable. pute is a
put char-like routine to which the characters are passed, one at a time.

The putp routine calls tputs (str, 1, putchar). Note that the output of putp
always goes to stdout, not to the fildes specified in setupterm.

The vidputs routine displays the string on the terminal in the video attribute mode
aftrs, which is any combination of the attributes listed in curses(3curses). The
characters are passed to the put char-like routine pute.

The vidattr routine is like the vidputs routine, except that it outputs through
put char.

The mvcur routine provides low-level cursor motion.

The tigetflag, tigetnum and tigetstr routines return the value of the capability
corresponding to the terminfo eapname passed to them, such as xenl.

curs terminfo (3curses)

With the tigetflag routine, the value -1 is returned if capname is not a boolean
capability.

With the tigetnum routine, the value -2 is returned if capname is not a numeric
capability.

With the tigetstr routine, the value (char *) -1 is returned if capname is not a
string capability.

The capname for each capability is given in the table column entitled capname code in
the capabilities section of terminfo(4).

char * boolname s, *boolcodes, *boolfnames

char *numnames,*numcodes,*numfnames

char *strnames,*strcodes,*strfnames

These null-terminated arrays contain the capnames, the tenncap codes, and the full
C names, for each of the terminfo variables.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

Routines that return pointers always return NULL on error.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

The setuptenn routine should be used in place of settenn.

Note that vidattr and vidputs may be macros.

SEE ALSO
curses(3curses), curs_initscr(3curses), curs_kernel(3curses),
curs_tenncap(3curses), putc(3S), terminfo(4)

411

curs_touch (3curses)

NAME
curs_touch: touchwin, touchline, untouchwin, wtouchln, is_linetouched,
is_wintouched - curses refresh control routines

SYNOPSIS
#include <curses.h>

int touchwin (WINDOW *win);
int touchline (WINDOW *win, int start, int count);
int untouchwin(WINDOW *win);
int wtouchln(WINDOW *win, int y, int n, int changed);
int is_linetouched(WINDOW *win, int line);
int is_wintouched(WINDOW *win);

DESCRIPTION
The touchwin and touchline routines throwaway all optimization information
about which parts of the window have been touched, by pretending that the entire
window has been drawn on. This is sometimes necessary when using overlapping
windows, since a change to one window affects the other window, but the records
of which lines have been changed in the other window do not reflect the change.
The routine touchline only pretends that count lines have been changed, begin
ning with line start.

The untouchwin routine marks all lines in the window as unchanged since the last
call to wrefresh.

The wtouchln routine makes n lines in the window, starting at line y, look as if they
have (changed=1) or have not (changed=O) been changed since the last call to
wrefresh.

The is_linetouched and is_wintouched routines return TRUE if the specified
line/window was modified since the last call to wrefresh; otherwise they return
FALSE. In addition, is_linetouched returns ERR if line is not valid for the given
window.

RETURN VALUE

NOTES

All routines return the integer ERR upon failure and an integer value other than ERR
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that all routines except wtouchln may be macros.

SEE ALSO
curses(3curses), curs_refresh(3curses)

412

NAME

curs_util (3curses)

curs_util:unctrl,keyname, filter,use_env,putwin,getwin,delay_output,
draino, flushinp - miscellaneous curses utility routines

SYNOPSIS
#include <curses.h>

char *unctrl(chtype C)i

char *keyname(int C)i
void filter(void)i
void use_env (char bool> i

int putwin (WINDOW *win, FILE *filep) i

WINDOW *getwin(FILE *filep) i

int delay_output(int mS)i

int draino (int ms) i

int flushinp(void)i

DESCRIPTION
The unctrl macro expands to a character string which is a printable representation
of the character c. Control characters are displayed in the ~ X notation. Printing
characters are displayed as is.

With the keyname routine, a character string corresponding to the key C is returned.

The filter routine, if used, is called before initscr or newtenn are called. It
makes curses think that there is a one-line screen. curses does not use any termi
nal capabilities that assume that they know on what line of the screen the cursor is
positioned.

The use_env routine, if used, is called before initscr or newtenn are called.
When called with FALSE as an argument, the values of lines and columns
specified in the tenninfo database will be used, even if environment variables
LINES and COLUMNS (used by default) are set, or if curses is running in a window
(in which case default behavior would be to use the window size if LINES and
COLUMNS are not set).

With the putwin routine, all data associated with window win is written into the
file to which filep points. This information can be later retrieved using the getwin
function.

The getwin routine reads window related data stored in the file by putwin. The
routine then creates and initializes a new window using that data. It returns a
pointer to the new window.

The delay_output routine inserts an ms millisecond pause in output. This routine
should not be used extensively because padding characters are used rather than a
CPU pause.

The draino routine returns when ms are needed to clear the output completely.
Current valid value for ms is O.

The flushinp routine throws away any typeahead that has been typed by the user
and has not yet been read by the program.

413

curs util (3curses)

RETURN VALUE

NOTES

Except for flushinp, routines that return an integer return ERR upon failure and an
integer value other than ERR upon successful completion.

flushinp always returns OK.

Routines that return pointers return NULL on error.

The header file curses.h automatically includes the header files stdio.h and
unctrl.h.

Note that unctrl is a macro, which is defined in unctrl.h.

SEE ALSO
curses (3curses), curs_ini tscr(3curses), curs_scr_dUIl\P(3curses)

414

NAME

curs_window (3curses)

curs_window: newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin,
wsyncup, sync ok, wcursyncup, wsyncdown - create curses windows

SYNOPSIS
#include <curses.h>

WINDOW *newwin (int nlines, int ncols, int begin""y, int begin _x) ;
int delwin(WINDOW *win);
int mvwin(WINDOW *win, int y, int x);
WINDOW * subwin (WINDOW *orig, int nlines, int nco Is, int begin""y,

int begin_x);
WINDOW *derwin (WINDOW *orig, int nlines, int ncols, int begin""y,

int begin_x);
int mvderwin (WINDOW *win, int par""y, int par _x) ;
WINDOW *dupwin(WINDOW *win);
void wsyncup (WINDOW *win);
int syncok(WINDOW *win, bool bf);
void wcursyncup (WINDOW *win);
void wsyncdown (WINDOW *win);

DESCRIPTION
The newwin routine creates and returns a pointer to a new window with the given
number of lines, nlines, and columns, ncols. The upper left-hand corner of the win
dow is at line begin""y, column begin_x. If either nlines or ncols is zero, they default
to LINES - begin""y and eOLS - begin_x. A new full-screen window is
created by calling newwin(O,O,O,O).

The delwin routine deletes the named window, freeing all memory associated with
it. Subwindows must be deleted before the main window can be deleted.

The mvwin routine moves the window so that the upper left-hand corner is at posi
tion (x, y). If the move would cause the window to be off the screen, it is an error
and the window is not moved. Moving subwindows is allowed, but should be
avoided.

The subwin routine creates and returns a pointer to a new window with the given
number of lines, nlines, and columns, ncols. The window is at position (begin""y,
begin _x) on the screen. (This position is relative to the screen, and not to the win
doworig.) The window is made in the middle of the window orig, so that changes
made to one window will affect both windows. The subwindow shares memory
with the window orig. When using this routine, it is necessary to call touchwin or
touchline on orig before calling wrefresh on the subwindow.

The derwin routine is the same as subwin, except that begin""y and begin _ x are rela
tive to the origin of the window orig rather than the screen. There is no difference
between the subwindows and the derived windows.

The mvderwin routine moves a derived window (or subwindow) inside its parent
window. The screen-relative parameters of the window are not changed. This rou
tine is used to display different parts of the parent window at the same physical
position on the screen.

415

curs_window (3curses)

The dupwin routine creates an exact duplicate of the window win.

Each curses window maintains two data structures: the character image structure
and the status structure. The character image structure is shared among all win
dows in the window hierarchy (that is, the window with all subwindows). The
status structure, which contains information about individual line changes in the
window, is private to each window. The routine wrefresh uses the status data
structure when performing screen updating. Since status structures are not shared,
changes made to one window in the hierarchy may not be properly reflected on the
screen.

The routine wsyncup causes the changes in the status structure of a window to be
reflected in the status structures of its ancestors. If sync ok is called with second
argument TRUE then wsyncup is called automatically whenever there is a change in
the window.

The routine wcursyncup updates the current cursor position of all the ancestors of
the window to reflect the current cursor position of the window.

The routine wSynCdOWIl updates the status structure of the window to reflect the
changes in the status structures of its ancestors. Applications seldom call this
routine because it is called automatically by wrefresh.

RETURN VALUE

NOTES

Routines that return an integer return the integer ERR upon failure and an integer
value other than ERR upon successful completion.

delwin returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers return NULL on error.

The header file curses. h automatically includes the header files stdio. hand
unctrl.h.

If many small changes are made to the window, the wsyncup option could degrade
performance.

Note that sync ok may be a macro.

SEE ALSO
curses(3curses), curs_refresh(3curses), curs_touch(3curses)

416

cuserid (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (char *8);

DESCRIPTION
cuserid generates a character-string representation of the login name that the
owner of the current process is logged in under. If 8 is a NULL pointer, this
representation is generated in an internal static area, the address of which is
returned. Otherwise, 8 is assumed to point to an array of at least L_cuserid char
acters; the representation is left in this array. The constant L_cuserid is defined in
the stdio. h header file.

SEE ALSO
getlogin(3C), getpwent(3C)

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if 8 is not a
NULL pointer, a null character' \0' will be placed at 8 [0].

417

dbm (3N)

NAME
dbm, dbminit, dbmclose, fetch, store, delete, firstkey, nextkey
database subroutines

SYNOPSIS
#include <dbm.h>

typedef struct {
char *dptr;
int dsize;

datum;

int dbminit (char *file);
int dbmclose(void);

datum fetch(datum key);
int store (datum key, datum content);

int delete(datum key);
datum firstkey(void);

datum nextkey(datum key);

DESCRIPTION
These functions maintain key/content pairs in a database. The functions will han
dle very large (a billion blocks) databases and will access a keyed item in one or two
file system accesses. The functions are obtained with the loader option -lnsl.

keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The database is stored in two files. One file is a directory con
taining a bit map and has . dir as its suffix. The second file contains all data and
has . pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file. dir and file. pag must exist. An empty database is created by
creating zero-length .dir and .pag files.

A database may be closed by calling dbmclose. You must close a database before
opening a new one.

Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete. A
linear pass through all keys in a database may be made, in an (apparently) random
order, by use of firstkey and nextkey. firstkey will return the first key in the
database. With any key next key will return the next key in the database. This
code will traverse the database:

for (key = firstkey(); key.dptr ! = NULL; key = nextkey(key»

RETURN VALUE

418

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datum indicate errors with a NULL (0) dptr.

NOTES

FILES

dbm(3N)

The .pag file will contain holes so that its apparent size is about four times its
actual content. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal means
[that is, cp(l), cat(l), tar(1), ar(l)] without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit
on a single block. store will return an error in the event that a disk block fills with
inseparable data.

delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys presented by firstkey and next key depends on a hashing func
tion, not on anything interestihg.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

/usr/lib/libnsl.a

419

dbm(3) (BSO System Compatibility)

NAME
dbm: dbminit, dbmclose, fetch, store, delete, firstkey, nextkey - (BSD) data
base subroutines

SYNOPSIS
/usr/ucb/cc [flag . ..]file ... -ldbm

#include <dbm.h>

typedef struct {
char *dptr;
int dsize;

datum;
dbmini t (char * file) ;
dbmclose (void) ;
datum fetch (datum key) ;

store (datum key, datum content) ;

delete (datum key) ;

datum firstkey(void)i
datum nextkey(datumkey);

DESCRIPTION

420

Note: the dbm library has been superceded by ndbm(3), and is now implemented
usingndbm.

These functions maintain key/content pairs in a data base. The functions will han
dle very large (a billion blocks) databases and will access a keyed item in one or two
file system accesses. The functions are obtained with the loader option -ldbm.

keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The data base is stored in two files. One file is a directory con
taining a bit map and has . dir as its suffix. The second file contains all data and
has . pag as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file. dir and file. pag must exist. An empty database is created by
creating zero-length .dir and .pag files.

A database may be closed by calling dbmclose. You must close a database before
opening a new one.

Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete. A
linear pass through all keys in a database may be made, in an (apparently) random
order, by use of firstkey and nextkey. firstkey will return the first key in the
database. With any key nextkey will return the next key in the database. This
code will traverse the data base:

for (key = firstkey; key.dptr != NULL; key = nextkey(key»

(BSD System Compatibility) dbm (3)

SEE ALSO
ndbm(3)

RETURN VALUE

NOTES

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datum indicate errors with a NULL (0)
dptr.

The . pag file will contain holes so that its apparent size is about four times its
actual content. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal means
[that is, cp(l), cat(l), tar(l), ar(l)] without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit
on a single block. store will return an error in the event that a disk block fills with
inseparable data.

delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys presented by firstkey and next key depends on a hashing func
tion, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

421

decimal to floating (3) (BSO System Compatibility)

NAME
decimal_to_floating:decimal_to_single,decimal_to_double,
decimal_to_extended - (BSD) convert decimal record to floating-point value

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

#include <fp.h>

void decimal_to_single(single *px,
decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps);

void decimal_to_double(double *px,
decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps);

void decimal_to_extended(extended *px,
decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps);

DESCRIPTION
The decimal_to_floating functions convert the decimal record at *pd into a
floating-point value at *px, observing the modes specified in *pm and setting excep
tions in *ps. If there are no IEEE exceptions, *ps will be zero.

pd->sign and pd->fpclass are always taken into account. pd->exponent and pd->ds are
used when pd->fpclass is fp _normal or fp _subnormal. In these cases pd->ds must con
tain one or more ASCII digits followed by a NULL. *px is set to a correctly rounded
approximation to

(pd->sign)* (pd->ds)*10** (pd->exponent)

Thus if pd->exponent == -2 and pd->ds == "1234", *px will get 12.34 rounded to
storage precision. pd->ds cannot have more than DECIMAL_STRING_LENGTH-l
significant digits because one character is used to terminate the string with a NULL.
If pd->more!=O on input then additional nonzero digits follow those in pd->ds;
fp _inexact is set accordingly on output in *ps.

*px is correctly rounded according to the IEEE rounding modes in pm->rd. *ps is set
to contain fp _inexact, fp _underflow, or fp _overflow if any of these arise.

pd->ndigits, pm->dj, and pm->ndigits are not used.

scanf, fscanf, and sscanf [see scanf(3S)], as well as strtod(3C), all use
dec imal_to_doubl e.

SEE ALSO
scanf(3S), strtod(3C)

422

dial (3N)

NAME
dial - establish an outgoing terminal line connection

SYNOPSIS
#include <dial.h>

int dial (CALL call) ;

void undial(intjd);

DESCRIPTION
dial returns a file-descriptor for a terminal line open for reading or writing. The
argument to dial is a CALL structure. The CALL structure is defined in the dial. h
header file.

When it is finished with a terminal line, the calling program must invoke undial to
release the semaphore that has been set during the allocation of the terminal device.

The definition of CALL in the dial. h header file is:

typedef struct {
struct termio *attr;
int baud;
int speed;
char *line;
char *telno;
int modem;
char *devicei
int dev_leni

/* pointer to termio attribute struct */
/* transmission data rate */
/* 212A modem: low=300, high=1200 */
/* device name for outgoing line */
/* pointer to telno digits string */
/* specify modem control for direct lines */
/* pointer to CALL_EXT structure */
/* unused */

CALL;

The elements of the CALL structure are defined below:

speed Intended only for use with an outgoing dialed call. Its value should be
either 300 or 1200 to identify the 113A modem, or the high- or low-speed
setting on the 212A modem. Note that the 113A modem or the low
speed setting of the 212A modem will transmit at any rate between 0
and 300 bits per second. However, the high-speed setting of the 212A
modem transmits and receives at 1200 bits per second only.

baud

line

telno

The requested transmission baud rate. For example, if baud is set to 110,
speed may be set to either 300 or 1200. However, if speed is set to 1200,
baud must be set to high (1200).

If the requested terminal line is a direct line, a string pointer to its device
name should be placed in the line element of the CALL structure. Legal
values for such terminal device names are kept in the Devices file. In
this case, the value of the baud element should be set to -1. This value
will cause dial to determine the correct value from the Devices file.

A pointer to a character string representing the telephone number of a
system name to be dialed. Such numbers may consist only of these char
acters:

0-9 dial 0-9
* dial *
dial #

423

dial (3N)

FILES

wait for secondary dial tone
delay for approximately 4 seconds

modem Used to specify modem control for direct lines. This element should be
non-zero if modem control is required.

attr A pointer to a termio structure, as defined in the termio.h header file.
A NULL value for this pointer element may be passed to the dial func
tion, but if such a structure is included, the elements specified in it will
be set for the outgoing terminal line before the connection is established.
This setting is often important for certain attributes such as parity and
baud rate.

dev _len This CALL element is no longer used. It is retained in the CALL structure
for compatibility.

device This CALL extension is defined as:

typedef struct {
char *service; /* name of service to use (default = cu) */
char *class; /* class of device to use */
char *protocol; /* returns the protocol string for the

connection made */
char * reserved; /* unused */

CALL_EXT;

If the device element of the CALL structure is NULL, that is, if it does
not point to a CALL_EXT structure, then service is assumed to be cu,
class is assumed to be NULL, and the protocol string is not returned
to the application. This preserves both binary and source compatibility
with existing applications.

The service element of the CALL_EXT structure is used by ct, cu, and
uucico. If service is not specified, it defaults to cu.

If the -c class option is provided, ct, cu, and uucico will also use the
class field. The class field supplies dial with the class parameter for
the dialup connection. The default class is NULL.

uucico also uses the protocol field. protocol points to an area of
static storage that contains the processed protocol field for the device
used for the connection. The protocol string is reported back to the
application via the Connection Server interface. The default protocol
string is NULL.

/etc/uucp/Devices
/etc/uucp/Systems
/var / spool/uucp/LCK .. tty-device

SEE ALSO
alarm(2), read(2), termio(7), uucp(lC), write(2)

424

dial (3N)

DIAGNOSTICS

NOTES

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indexes as listed here are defined in the dial. h
header file.

INTRPT
D_HUNG
NO_ANS
ILL_BD
A_PROB
L_PROB
NO_Ldv
DV_NT_A
DV_NT_K
NO_BD_A
NO_BD_K
DV_NT_E
BAD_SYS
CS_PROB

-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11
-12
-13
-14

/* interrupt occurred */
/* dialer failed */
/* no answer (login or invoke scheme failed) */
/* illegal baud rate */
/* acu problem (open() failure) */
/* line problem (open() failure) */
/* can't open Devices file */
/* requested device not available */
/* requested device not known */
/* no device available at requested baud */
/* no device known at requested baud */
/* requested speed does not match */
/* system not in Systems file */
/* could not connect to the connection

server */

Including the dial. h header file automatically includes the tennio. h header file.

An alarm(2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of "touching" the LCK •• file and constitutes the device allo
cation semaphore for the terminal device. Otherwise, uucp(lC) may simply delete
the LCK. • entry on its 90-minute clean-up rounds. The alarm may go off while the
user program is in a read(2) or write(2) system call, causing an apparent error
return. If the user program expects to be around for an hour or more, error returns
from reads should be checked for (errno==EINTR), and the read possibly reis
sued.

425

difftime (3C)

NAME
difftime - compute the difference between two calendar times

SYNOPSIS
#include <time.h>

double difftime <time_t timel, time_t timeD) ;

DESCRIPTION
difftime computes the difference between two calendar times. difftime returns
the difference (timel-timeD) expressed in seconds as a double. This function is pro
vided because there are no general arithmetic properties defined for type time_to

SEE ALSO
ctime(3C)

426

NAME

directory (3C)

directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - direc
tory operations

SYNOPSIS
#include <dirent.h>

OIR *opendir (const char *filename);

struct dirent *readdir (OIR *dirp);

long telldir (OIR *dirp);

void seekdir (OIR *dirp, long IDe);

void rewinddir (OIR *dirp);

int closedir (OIR *dirp);

DESCRIPTION
opendir opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. A null
pointer is returned if filename cannot be accessed or is not a directory, or if it cannot
malloc(3C) enough memory to hold a OIR structure or a buffer for the directory
entries.

readdir returns a pointer to the next active directory entry and positions the direc
tory stream at the next entry. No inactive entries are returned. It returns NULL
upon reaching the end of the directory or upon detecting an invalid location in the
directory. readdir buffers several directory entries per actual read operation;
readdir marks for update the st_atime field of the directory each time the direc
tory is actually read.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream.
The new position reverts to the position associated with the directory stream at the
time the telldir operation that provides IDe was performed. Values returned by
telldir are valid only if the directory has not changed because of compaction or
expansion. This situation is not a problem with System V, but it may be a problem
with some file system types.

rewinddir resets the position of the named directory stream to the beginning of the
directory. It also causes the directory stream to refer to the current state of the
corresponding directory, as a call to opendir would.

closedir closes the named directory stream and frees the OIR structure.

The following errors can occur as a result of these operations.

opendir returns NULL on failure and sets ermo to one of the following values:

ENOTOIR A component of filename is not a directory.

EACCES A component of filename denies search permission.

427

directory (3C)

EACCES Read permission is denied on the specified directory.

EMFILE The maximum number of file descriptors are currently open.

ENFILE The system file table is full.

EFAULT filename points outside the allocated address space.

ELOOP Too many symbolic links were encountered in translating
filename.

ENAMETOOLONG The length of the filename argument exceeds {PATH_MAX}, or the
length of a filename component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT A component of filename does not exist or is a null pathname.

readdir returns NULL on failure and sets errno to one of the following values:

ENOENT The current file pointer for the directory is not located at a valid
entry.

EBADF The file descriptor determined by the OIR stream is no longer
valid. This result occurs if the OIR stream has been closed.

telldir, seekdir, and closedir return -Ion failure and set errno to the follow
ingvalue:

EBADF The file descriptor determined by the OIR stream is no longer
valid. This results if the OIR stream has been closed.

EXAMPLE
Here is a sample program that prints the names of all the files in the current direc
tory:

#include <stdio.h>
#include <dirent.h>

main{)
{

OIR *dirp;
struct dirent *direntp;

dirp = opendir{ n.n);
while { (direntp = readdir{ dirp » != NULL)

{void)printf (n%s\nn, direntp->d_name);
closedir{ dirp);
return (O);

SEE ALSO

NOTES

428

dirent(4), getdents(2), mkdir(2), nndir(2)

rewinddir is implemented as a macro, so its function address cannot be taken.
These functions overwrite the buffer as needed, so applications should copy data to
preserve it.

NAME

(BSO System Compatibility) directory (3C)

directory: opendir, readdir, telldir, seekdir, rewinddir, closedir- (BSD)
directory operations

SYNOPSIS
/usr/ucb/cc [options]file ...

#include <dirent.h>

DIR *opendir (const char *filename);

struct dirent *readdir (DIR *dirp);

long telldir (DIR *dirp);

void seekdir (DIR *dirp, long lac);

void rewinddir (DIR *dirp);

int closedir (DIR *dirp);

DESCRIPTION
opendir opens the directory named by filename and associates a directory stream
with it. opendir returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. A null
pointer is returned if filename cannot be accessed or is not a directory, or if it cannot
malloc enough memory to hold a DIR structure or a buffer for the directory entries.

readdir returns a pointer to the next active directory entry and positions the direc
tory stream at the next entry. No inactive entries are returned. It returns NULL
upon reaching the end of the directory or upon detecting an invalid location in the
directory. readdir buffers several directory entries per actual read operation;
readdir marks for update the st_atime field of the directory each time the direc
tory is actually read.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream.
The new position reverts to the position associated with the directory stream at the
time the telldir operation that provides lac was performed. Values returned by
telldir are valid only if the directory has not changed because of compaction or
expansion. This situation is not a problem with System V, but it may be a problem
with some file system types.

rewinddir resets the position of the named directory stream to the beginning of the
directory. It also causes the directory stream to refer to the current state of the
corresponding directory, as a call to opendir would.

closedir closes the named directory stream and frees the DIR structure.

The following errors can occur as a result of these operations.

opendir returns NULL on failure and sets ermo to one of the following values:

ENOTDIR A component of filename is not a directory.

EACCES A component of filename denies search permission.

429

directory (3C) (BSD System Compatibility)

EACCES

EMFILE

ENFILE

EFAULT

ELOOP

ENAMETOOLONG

ENOENT

Read permission is denied on the specified directory.

The maximum number of file descriptors are currently open.

The system file table is full.

filename points outside the allocated address space.

Too many symbolic links were encountered in translating
filename.

The length of the filename argument exceeds {PATH_MAX}, or
the length of a filename component exceeds {NAME_MAX}
while {_POSIX_NO_TRUNC} is in effect.

A component of filename does not exist or is a null pathname.

readdir returns NULL on failure and sets ermo to one of the following values:

ENOENT The current file pointer for the directory is not located at a
valid entry.

EBADF The file descriptor determined by the OIR stream is no longer
valid. This result occurs if the OIR stream has been closed.

telldir, seekdir, and closedir return -ion failure and set ermo to the follow
ingvalue:

EBADF The file descriptor determined by the OIR stream is no longer
valid. This results if the OIR stream has been closed.

EXAMPLE
Here is a sample program that prints the names of all the files in the current direc
tory:

#include <stdio.h>
#include <dirent.h>

main ()
{

OIR *dirp;
struct dirent *direntp;

dirp = opendir(11.11);

while ((direntp = readdir(dirp » != NULL)
(void)printf (lI%s\nll, direntp->d_name);

closedir(dirp);
return (0);

SEE ALSO
getdents(2), dirent(4)

NOTES
rewinddir is implemented as a macro, so its function address cannot be taken.

430

dirname (3G)

NAME
dirname - report the parent directory name of a file path name

SYNOPSIS
cc [flag ...]file ... -lgen [library ...]

#include <libgen.h>

char *dirname (char *path) i

DESCRIPTION
Given a pointer to a null-terminated character string that contains a file system path
name, dirname returns a pointer to a static constant string that is the parent direc
tory of that file. In doing this, it sometimes places a null byte in the path name after
the next to last element, so the content of path must be disposable. Trailing" I"
characters in the path are not counted as part of the path.

If path or *path is zero, a pointer to a static constant" ." is returned.

dirname and basename together yield a complete path name. dirname (path) is
the directory where basename (path) is found.

EXAMPLES
A simple file name and the strings" ." and" .. " all have"." as their return value.

Input string
lusr/lib
lusrl
usr
I

Output pointer
lusr
I

I

The following code reads a path name, changes directory to the appropriate direc
tory [see chdir(2)], and opens the file.

SEE ALSO

char path[lOO], *pathcoPYi
int fd;
gets (path);
pathcopy = strdup (path);
chdir (dirname (pathcopy));
fd = open (basename (path), O_RDONLY);

basename(l), basename(3G), chdir(2)

431

div(3C)

NAME
di v, ldi v - compute the quotient and remainder

SYNOPSIS
#include <stdlib.h>

div_t div (int numer, int denom);

ldi v _t ldi v (long int numer, long int denom) ;

DESCRIPTION

432

di v computes the quotient and remainder of the division of the numerator numer
by the denominator denom. This function provides a well-defined semantics for the
signed integral division and remainder operations, unlike the implementation
defined semantics of the built-in operations. The sign of the resulting quotient is
that of the algebraic quotient, and, if the division is inexact, the magnitude of the
resulting quotient is the largest integer less than the magnitude of the algebraic
quotient. If the result cannot be represented, the behavior is undefined; otherwise,
quotient * denom + remainder will equal numer.

div returns a structure of type div_t, comprising both the quotient and remainder:

typedef struct div_t {
int quot; /*quotient* /
int rem; / *remainder* /

div_t;

ldi v is similar to di v, except that the arguments and the members of the returned
structure (which has type ldiv_t) all have type long into

dlclose (3X)

NAME
dlclose - close a shared object

SYNOPSIS
cc [flag ...]file ... -ldl [library . ..]

#include <dlfcn.h>

int dlclose (void *handle);

DESCRIPTION
dlclose disassociates a shared object previously opened by dlopen from the
current process. Once an object has been closed using dlclose, its symbols are no
longer available to dlsym. All objects loaded automatically as a result of invoking
dlopen on the referenced object [see dlopen(3X)] are also closed. handle is the
value returned by a previous invocation of dlopen.

SEE ALSO
dlerror(3X), dlopen(3X), dlsym(3X)

DIAGNOSTICS

NOTES

If the referenced object was successfully closed, dlclose returns O. If the object
could not be closed, or if handle does not refer to an open object, dlclose returns a
non-O value. More detailed diagnostic information is available through dlerror.

A successful invocation of dlclose does not guarantee that the objects associated
with handle have actually been removed from the address space of the process.
Objects loaded by one invocation of dlopen may also be loaded by another invoca
tion of dlopen. The same object may also be opened multiple times. An object is
not removed from the address space until all references to that object through an
explicit dlopen invocation have been closed and all other objects implicitly
referencing that object have also been closed.

Once an object has been closed by dlclose, referencing symbols contained in that
object can cause undefined behavior.

433

dlerror (3X)

NAME
dlerror - get diagnostic information

SYNOPSIS
cc fflag .. .]file ... -ldl [library .. .]

#include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
dlerror returns a null-terminated character string (with no trailing newline) that
describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of dlerror,
dlerror returns NULL. Thus, invoking dlerror a second time, immediately fol
lowing a prior invocation, results in NULL being returned.

SEE ALSO

NOTES

434

dlclose(3X), dlopen(3X), dlsym(3X)

The messages returned by dlerror may reside in a static buffer that is overwritten
on each call to dlerror. Application code should not write to this buffer. Pro
grams wishing to preserve an error message should make their own copies of that
message.

dlopen(3X)

NAME
dlopen - open a shared object

SYNOPSIS
cc [flag . . .]file ... -Idl [library . ..]

#include <dIfcn.h>

void *dIopen (const char *pathname, int mode) ;

DESCRIPTION
dlopen is one of a family of routines that give the user direct access to the dynamic
linking facilities. These routines are available in a library that is loaded if the option
-Idl is used with cc or Id.

dlopen makes a shared object available to a running process. dlopen returns to
the process a handle the process may use on subsequent calls to dlsym and dIcIose.
This value should not be interpreted in any way by the process. pathname is the
path name of the object to be opened; it may be an absolute path or relative to the
current directory. If the value of pathname is 0, dlopen makes the symbols con
tained in the original a. out, and all of the objects that were loaded at program
startup with the a. out, available through dlsym.

When a shared object is brought into the address space of a process, it may contain
references to symbols whose addresses are not known until the object is loaded.
These references must be relocated before the symbols can be accessed. The mode
parameter governs when these relocations take place and may have the following
values:

RTLD_LAZY
Under this mode, only references to data symbols are relocated when the
object is loaded. References to functions are not relocated until a given
function is invoked for the first time. This mode should result in better per
formance, since a process may not reference all of the functions in any given
shared object.

RTLD_NOW

SEE ALSO

Under this mode, all necessary relocations are performed when the object is
first loaded. This may result in some wasted effort, if relocations are per
formed for functions that are never referenced, but is useful for applications
that need to know as soon as an object is loaded that all symbols referenced
during execution will be available.

cc(l), dIcIose(3X), dIerror(3X), dIsym(3X), exec(2), Id(l), sh(l)

DIAGNOSTICS
If pathname cannot be found, cannot be opened for reading, is not a shared object, or
if an error occurs during the process of loading pathname or relocating its symbolic
references, dlopen returns NULL. More detailed diagnostic information is available
through dlerror.

435

dlopen (3X)

NOTES

436

If other shared objects were link edited with pathname when pathname was built,
those objects are automatically loaded by dlopen. The directory search path to be
used to find both pathname and the other needed objects may be specified by setting
the environment variable LD_LIBRARY_PATH. This environment variable should
contain a colon-separated list of directories, in the same format as the PATH variable
[see sh(l)]. LD_LIBRARY_PATH is ignored if the process is running setuid or set
gid [see exec(2)] or if the name specified is not a simple file name (that is, contains
a / character). Objects whose names resolve to the same absolute or relative path
name may be opened any number of times using dlopen, however, the object refer
enced is loaded only once into the address space of the current process. The same
object referenced by two different path names, however, may be loaded multiple
times. For example, given the object /usr /home/me/mylibs/mylib. so, and
assuming the current directory is /usr /home/me/workdir,

void *handlel;
void *handle2;

handlel dlopen (" •• /mylibs/mylib. so", RTLD_LAZY);
handle2 dlopen(" /usr/home/me/mylibs/mylib. so", RTLD_LAZY);

results in mylibs. so being loaded twice for the current process. On the other
hand, given the same object and current directory, if
LD_LIBRARY_PATH=/usr/home/me/mylibs, then

void *handlel;
void *handle2;

handlel dlopen ("mylib. so", RTLD_LAZY);
handle2 dlopen (" /usr /home/me/mylibs/mylib. so", RTLD_LAZY);

results in mylibs • so being loaded only once.

Objects loaded by a single invocation of dlopen may import symbols from one
another or from any object loaded automatically during program startup, but
objects loaded by one dlopen invocation may not directly reference symbols from
objects loaded by a different dlopen invocation. Those symbols may, however, be
referenced indirectly using dlsym.

Users who want to gain access to the symbol table of the a.out itself using
dlsym (0, mode) should be aware that some symbols defined in the a. out may not
be available to the dynamic linker. The symbol table created by Id for use by the
dynamic linker might contain only a subset of the symbols defined in the a. out:
specifically those referenced by the shared objects with which the a. out is linked.

dlsym (3X)

NAME
dlsym - get the address of a symbol in shared object

SYNOPSIS
cc [flag ...]file ... -ldl [library ...]

#include <dlfcn.h>

void *dlsym(void *handle, const char *name);

DESCRIPTION
dlsym allows a process to obtain the address of a symbol defined within a shared
object previously opened by dlopen. handle is a value returned by a call to dlopen;
the corresponding shared object must not have been closed using dlclose. name is
the symbol's name as a character string. dlsym searches for the named symbol in
all shared objects loaded automatically as a result of loading the object referenced
by handle [see dlopen(3X)].

EXAMPLES
The following example shows how one can use dlopen and dlsym to access either
function or data objects. For simplicity, error checking has been omitted.

void *handle;
int i, *iptr;
int (*fptr)(int);

/* open the needed object */
handle = dlopen("/usr/mydir/libx.so", RTLD_LAZY);

/* find address of function and data objects */
fptr (int (*) (int))dlsym(handle, "some_function");

iptr (int *)dlsym(handle, "int_object");

/* invoke function, passing value of integer as a parameter */

i = (*fptr)(*iptr);

SEE ALSO
dlclose(3X), dlerror(3X), dlopen(3X)

DIAGNOSTICS
If handle does not refer to a valid object opened by dlopen, or if the named symbol
cannot be found within any of the objects associated with handle, dlsym returns
NULL. More detailed diagnostic information is available through dlerror.

437

doconfig (3N)

NAME
doconfig - execute a configuration script

SYNOPSIS
include <sac.h>

int doconfig(intfd, char *script, longrflag);

DESCRIPTION

438

doconfig is a Service Access Facility library function that interprets the
configuration scripts contained in the files /etc/saf/pmtag/ _config,
/etc/saf/ _sysconfig, and /etc/saf/pmtag/svctag.

script is the name of the configuration script; fd is a file descriptor that designates
the stream to which stream manipulation operations are to be applied; rflag is a bit
mask that indicates the mode in which script is to be interpreted. rflag may take
two values, NORUN and NOASSIGN, which may be or'd. If rflag is zero, all commands
in the configuration script are eligible to be interpreted. If rflag has the NOASSIGN
bit set, the assign command is considered illegal and will generate an error return.
If rflag has the NORUN bit set, the run and runwait commands are considered illegal
and will generate error returns.

The configuration language in which script is written consists of a sequence of
commands, each of which is interpreted separately. The following reserved key
words are defined: assign, push, pop, runwait, and run. The comment character
is #; when a # occurs on a line, everything from that point to the end of the line is
ignored. Blank lines are not significant. No line in a command script may exceed
1024 characters.

assign variable=value
Used to define environment variables. variable is the name of the environ
ment variable and value is the value to be assigned to it. The value
assigned must be a string constant; no form of parameter substitution is
available. value may be quoted. The quoting rules are those used by the
shell for defining environment variables. assign will fail if space cannot
be allocated for the new variable or if any part of the specification is
invalid.

push modulel[, module2, module3, ...]
Used to push STREAMS modules onto the stream designated by fd. modulel
is the name of the first module to be pushed, module2 is the name of the
second module to be pushed, etc. The command will fail if any of the
named modules cannot be pushed. If a module cannot be pushed, the sub
sequent modules on the same command line will be ignored and modules
that have already been pushed will be popped.

pop [module]
Used to pop STREAMS modules off the designated stream. If pop is
invoked with no arguments, the top module on the stream is popped. If
an argument is given, modules will be popped one at a time until the
named module is at the top of the stream. If the named module is not on
the designated stream, the stream is left as it was and the command fails.
If module is the special keyword ALL, then all modules on the

doconfig (3N)

stream will be popped. Note that only modules above the topmost driver
are affected.

runwai t command
The runwait command runs a command and waits for it to complete.
command is the pathname of the command to be run. The command is run
with lusr Ibinl sh -c prepended to it; shell scripts may thus be executed
from configuration scripts. The runwait command will fail if command
cannot be found or cannot be executed, or if command exits with a non-zero
status.

run command
The run command is identical to runwait except that it does not wait for
command to complete. command is the pathname of the command to be
run. run will not fail unless it is unable to create a child process to execute
the command.

Although they are syntactically indistinguishable, some of the commands available
to run and runwait are interpreter built-in commands. Interpreter built-ins are
used when it is necessary to alter the state of a process within the context of that
process. The doconfig interpreter built-in commands are similar to the shell spe
cial commands and, like these, they do not spawn another process for execution.
See sh(l). The initial set of built-in commands is:

DIAGNOSTICS

cd
ulimit
umask

doconfig returns 0 if the script was interpreted successfully. If a command in the
script fails, the interpretation of the script ceases at that point and a positive
number is returned; this number indicates which line in the script failed. If a
system error occurs, a value of -1 is returned. When a script fails, the process
whose environment was being established should not be started.

SEE ALSO
pmadm(lM), sacadm(lM), sh(l)

439

drand48 (3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
#include <stdlib.h>

double drand48 (void);

double erand48 (unsigned short xsubi[3]);

long lrand48 (void) ;

long nrand48 (unsigned short xsubi [3]) ;

long mrand48 (void) ;

long jrand48 (unsigned short xsubi [3]) ;

void srand48 (long seedval>;

unsigned short *seed48 (unsigned short seed16v [3]);

void lcong48 (unsigned short param[7]);

DESCRIPTION

440

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating
point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uniformly dis
tributed over the interval [0, 231

).

Functions mrand48 and jrand48 return signed long integers uniformly distributed
over the interval [- 231

, 231
).

Functions srand48, seed48, and lcong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48, or mrand48 is called.
(Although it is not recommended practice, constant default initializer values will be
supplied automatically if drand48, lrand48, or mrand48 is called without a prior
call to an initialization entry point.) Functions erand48, nrand48, and jrand48 do
not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi' accord
ing to the linear congruential formula

Xn+1 = (aXn + c) mod m n ;:::0.

The parameter m = 248
; hence 48-bit integer arithmetic is performed. Unless

lcong48 has been invoked, the multiplier value a and the addend value c are given
by

a = 5DEECE66D 16 = 273673163155 8

c = B 16 = 13 8 •

The value returned by any of the functions drand48, erand48, lrand48, nrand48,
mrand48, or jrand48 is computed by first generating the next 48-bit Xi in the
sequence. Then the appropriate number of bits, according to the type of data item
to be returned, are copied from the high-order (leftmost) bits of Xi and transformed
into the returned value.

drand48 (3C)

The functions drand48, lrand48, and mrand48 store the last 48-bit Xi generated in
an internal buffer. Xi must be initialized prior to being invoked. The functions
erand48, nrand48, and jrand48 require the calling program to provide storage for
the successive Xi values in the array specified as an argument when the functions
are invoked. These routines do not have to be initialized; the calling program must
place the desired initial value of Xi into the array and pass it as an argument. By
using different arguments, functions erand48, nrand48, and jrand48 allow
separate modules of a large program to generate several independent streams of
pseudo-random numbers, that is, the sequence of numbers in each stream will not
depend upon how many times the routines have been called to generate numbers
for the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits con
tained in its argument. The low-order 16 bits of Xi are set to the arbitrary value
330E 16 •

The initializer function seed48 sets the value of Xi to the 48-bit value specified in
the argument array. In addition, the previous value of Xi is copied into a 48-bit
internal buffer, used only by seed48, and a pointer to this buffer is the value
returned by seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point at some future
time - use the pointer to get at and store the last Xi value, and then use this value
to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial Xi' the mul
tiplier value a, and the addend value c. Argument array elements param[O-2]
specify Xi' param[3-5] specify the multiplier a, and param[6] specifies the 16-bit
addend c. After lcong48 has been called, a subsequent call to either srand48 or
seed48 will restore the "standard" multiplier and addend values, a and c, specified
on the previous page.

SEE ALSO
rand(3C)

441

dup2(3C)

NAME
dup2 - duplicate an open file descriptor

SYNOPSIS
#include <unistd.h>

int dup2 (int fildes, int fildes2) ;

DESCRIPTION
fildes is a file descriptor referring to an open file, and fildes2 is a non-negative integer
less than the maximum number of open files available. dup2 causes fildes2 to refer
to the same file as fildes. If fildes2 already referred to an open file, not fildes, it is
closed first. If fildes2 refers to fildes, or if fildes is not a valid open file descriptor,
fildes2 will not be closed first.

dup2 will fail if one or more of the following are true:

EBADF fildes is not a valid open file descriptor.

EBADF

EINTR

EMFILE

fildes2 is negative or greater than or equal to the maximum number
of open files available.

a signal was caught during the dup2 call.

The maximum number of file descriptors are currently open.

SEE ALSO
close(2), creat(2), exec(2), fcntl(2), limits(4), lockf(3C), open(2), pipe(2)

DIAGNOSTICS

442

Upon successful completion a non-negative integer, namely, the file descriptor, is
returned. Otherwise, a value of -1 is returned and ermo is set to indicate the error.

NAME

(BSO System Compatibility) econvert (3)

econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert - (BSD) out
put conversion

SYNOPSIS
/usr/ucb/cc [flag . ..] file ...

#include <fp.h>

char *econvert (double value,
int ndigit, int *decpt, int *sign, char *buf);

char *fconvert (double value,
int ndigit, int *decpt, int *sign, char *bUf);

char *gconvert (double value,
int ndigit, int trailing, char * bUf) ;

char *seconvert (single *value,
int ndigit, int *decpt, int *sign, char *bUf) ;

char *sfconvert (single *value,
int ndigit, int *decpt, int *sign, char *buf);

char *sgconvert (single *value,
int ndigit, int trailing, char *bUf);

DESCRIPTION
econvert converts value to a NULL-terminated string of ndigit ASCII digits in buf and
returns a pointer to buf. buf should contain at least ndigit+ 1 characters. The posi
tion of the decimal point relative to the beginning of the string is stored indirectly
through decpt. Thus buf == "314" and *decpt == 1 corresponds to the numerical
value 3.14, while buf == "314" and *decpt == -1 corresponds to the numerical value
.0314. If the sign of the result is negative, the word pointed to by sign is nonzero;
otherwise it is zero. The least significant digit is rounded.

fconvert works much like econvert, except that the correct digit has been
rounded as if for sprintf(%w.nf) output with n=ndigit digits to the right of the
decimal point. ndigit can be negative to indicate rounding to the left of the decimal
point. The return value is a pointer to buf. buf should contain at least
310+max(O,ndigit) characters to accommodate any double-precision value.

gconvert converts the value to a NULL-terminated ASCII string in buf and returns a
pointer to buf. It produces ndigit significant digits in fixed-decimal format, like
sprintf (%w. nf), if possible, and otherwise in floating-decimal format, like
sprintf (%w.ne); in either case buf is ready for printing, with sign and exponent.
The result corresponds to that obtained by

(void) sprintf(buf,"%w.ng",value) ;

If trailing= 0, trailing zeros and a trailing point are suppressed, as in sprintf (%g).
If trailing!= 0, trailing zeros and a trailing point are retained, as in sprintf (%#g).

seconvert, sfconvert, and sgconvert are single-precision versions of these func
tions, and are more efficient than the corresponding double-precision versions. A
pointer rather than the value itself is passed to avoid C's usual conversion of
single-precision arguments to double.

443

econvert (3) (BSD System Compatibility)

IEEE Infinities and NaNs are treated similarly by these functions. NaN is returned
for NaNs, and Inf or Infinity for Infinities. The longer form is produced when
ndigit is at least 8.

SEE ALSO
printf(3S)

444

ecvt (3C)

NAME
ecvt, ecvtl, fcvt, fcvtl, gcvt, gcvtl - convert floating-point number to string

SYNOPSIS
#include <stdlib.h>

char *ecvt (double value, int ndigit, int *decpt, int *sign);

char *ecvtl (long double value, int ndigit, int *decpt, int *sign);

char *fcvt (double value, int ndigit, int *decpt, int *sign);

char *fcvtl (long double value, int ndigit, int *decpt, int *sign);

char *gcvt (double value, int ndigit, char *buf);

char *gcvtl (long double value, int ndigit, char *buf);

DESCRIPTION
ecvt and ecvtl convert value to a null-terminated string of ndigit digits and return
a pointer thereto. The high-order digit is non-zero, unless the value is zero. The
low-order digit is rounded. The position of the decimal point relative to the begin
ning of the string is stored indirectly through decpt (negative means to the left of the
returned digits). The decimal point is not included in the returned string. If the
sign of the result is negative, the word pointed to by sign is non-zero, otherwise it is
zero.

fcvt and fcvtl are identical to ecvt and ecvtl, except that the correct digit has
been rounded for printf %f output of the number of digits specified by ndigit [see
printf(3S)].

gcvt and gcvtl convert the value to a null-terminated string in the array pointed to
by buf and return buf They attempt to produce ndigit significant digits in %f format
if possible, otherwise 'Yoe format (scientific notation), ready for printing. A minus
sign, if there is one, or a decimal point will be included as part of the returned
string. Trailing zeros are suppressed.

SEE ALSO
printf(3S)

NOTES
The values returned by ecvt, ecvtl, fcvt, and fcvtl point to a single static data
array whose content is overwritten by each call.

445

elf(3E)

NAME
elf - object file access library

SYNOPSIS
cc [flag . . .]file ... -lelf [library . ..]
#include <libelf.h>

DESCRIPTION

446

Functions in the ELF access library let a program manipulate ELF (Executable and
Linking Format) object files, archive files, and archive members. The header file
provides type and function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF
descriptor. That is, when the program starts working with a file, elf_begin creates
an ELF descriptor through which the program manipulates the structures and infor
mation in the file. These ELF descriptors can be used both to read and to write files.
After the program establishes an ELF descriptor for a file, it may then obtain section
descriptors to manipulate the sections of the file [see elf_getscn(3E)]. Sections hold
the bulk of an object file's real information, such as text, data, the symbol table, and
so on. A section descriptor "belongs" to a particular ELF descriptor, just as a sec
tion belongs to a file. Finally, data descriptors are available through section descrip
tors, allowing the program to manipulate the information associated with a section.
A data descriptor "belongs" to a section descriptor.

Descriptors provide private handles to a file and its pieces. In other words, a data
descriptor is associated with one section descriptor, which is associated with one
ELF descriptor, which is associated with one file. Although descriptors are private,
they give access to data that may be shared. Consider programs that combine input
files, using incoming data to create or update another file. Such a program might
get data descriptors for an input and an output section. It then could update the
output descriptor to reuse the input descriptor's data. That is, the descriptors are
distinct, but they could share the associated data bytes. This sharing avoids the
space overhead for duplicate buffers and the performance overhead for copying
data unnecessarily.

File Classes
ELF provides a framework in which to define a family of object files, supporting
multiple processors and architectures. An important distinction among object files
is the class, or capacity, of the file. The 32-bit class supports architectures in which a
32-bit object can represent addresses, file sizes, and so forth, as in the following.

Name Purpose
Elf32_Addr Unsigned address
Elf32_Half Unsigned medium integer
Elf32_0ff Unsigned file offset
Elf32_Sword Signed large integer
Elf32_Word Unsigned large integer
unsigned char Unsigned small integer

elf (3E)

Other classes will be defined as necessary, to support larger (or smaller) machines.
Some library services deal only with data objects for a specific class, while others
are class-independent. To make this distinction clear, library function names reflect
their status, as described below.

Data Representations
Conceptually, two parallel sets of objects support cross compilation environments.
One set corresponds to file contents, while the other set corresponds to the native
memory image of the program manipulating the file. Type definitions supplied by
the header files work on the native machine, which may have different data encod
ings (size, byte order, and so forth) than the target machine. Although native
memory objects should be at least as big as the file objects (to avoid information
loss), they may be bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations.
Some library routines convert data automatically, while others leave conversion as
the program's responsibility. Either way, programs that create object files must
write file-typed objects to those files; programs that read object files must take a
similar view. See elf_xlate(3E) and elf_fsize(3E) for more information.

Programs may translate data explicitly, taking full control over the object file layout
and semantics. If the program prefers not to have and exercise complete control,
the library provides a higher-level interface that hides many object file details.
elf_begin and related functions let a program deal with the native memory types,
converting between memory objects and their file equivalents automatically when
reading or writing an object file.

ELF Versions
Object file versions allow ELF to adapt to new requirements. Three
independent-versions can be important to a program. First, an application pro
gram knows about a particular version by virtue of being compiled with certain
header files. Second, the access library similarly is compiled with header files that
control what versions it understands. Third, an ELF object file holds a value identi
fying its version, determined by the ELF version known by the file's creator. Ideally,
all three versions would be the same, but they may differ.

If a program's version is newer than the access library, the program might
use information unknown to the library. Translation routines might not
work properly, leading to undefined behavior. This condition merits ins
talling a new library.

The library's version might be newer than the program's and the file's.
The library understands old versions, thus avoiding compatibility prob
lems in this case.

Finally, a file's version might be newer than either the program or the
library understands. The program might or might not be able to process
the file properly, depending on whether the file has extra information and
whether that information can be safely ignored. Again, the safe alternative
is to install a new library that understands the file's version.

447

elf(3E)

448

To accommodate these differences, a program must use elf_version to pass its
version to the library, thus establishing the working version for the process. Using
this, the library accepts data from and presents data to the program in the proper
representations. When the library reads object files, it uses each file's version to
interpret the data. When writing files or converting memory types to the file
equivalents, the library uses the program's working version for the file data.

System Services
As mentioned above, elf_begin and related routines provide a higher-level inter
face to ELF files, performing input and output on behalf of the application program.
These routines assume a program can hold entire files in memory, without expli
citly using temporary files. When reading a file, the library routines bring the data
into memory and perform subsequent operations on the memory copy. Programs
that read or write large object files with this model must execute on a machine with
a large process virtual address space. If the underlying operating system limits the
number of open files, a program can use elf_cntl to retrieve all necessary data
from the file, allowing the program to close the file descriptor and reuse it.

Although the elf_begin interfaces are convenient and efficient for many pro
grams, they might be inappropriate for some. In those cases, an application may
invoke the elf_xlate data translation routines directly. These routines perform no
input or output, leaving that as the application's responsibility. By assuming a
larger share of the job, an application controls its input and output model.

Library Names
Names associated with the library take several forms.

These class-independent names perform some service, name, for
the program.

Service names with an embedded class, 32 here, indicate they
work only for the designated class of files.

Data types can be class-independent as well, distinguished by
Type.
Class-dependent data types have an embedded class name, 32
here.

ELF _c_CMD Several functions take commands that control their actions.
These values are members of the Elf_Cmd enumeration; they
range from zero through ELF _C_NUM-l.

ELF_F_FLAG Several functions take flags that control library status and/or
actions. Flags are bits that may be combined.

ELF32_FSZ_TYPE
These constants give the file sizes in bytes of the basic ELF types
for the 32-bit class of files. See elf_fsize for more information.

ELF _K_KlND The function elf_kind identifies the KIND of file associated with
an ELF descriptor. These values are members of the Elf_Kind
enumeration; they range from zero through ELF_K_NUM-l.

elf (3E)

When a service function, such as elf_xlate, deals with multiple
types, names of this form specify the desired TYPE. Thus, for
example, ELF _T_EHDR is directly related to Elf32_Ehdr. These
values are members of the Elf_Type enumeration; they range
from zero through ELF _T_NUM-l.

SEE ALSO

NOTES

a.out(4), ar(4), cof2elf(1), elf_begin(3E), elf_cntl(3E), elf_end(3E),
elf_error(3E), elf_fill(3E), elf_flag(3E), elf_fsize(3E), elf_getarhdr(3E),
elf-getarsym(3E), elf_getbase(3E), elf_getdata(3E), elf_getehdr(3E),
elf-getident(3E), elf_getphdr(3E), elf-getscn(3E), elf-getshdr(3E),
elf_hash(3E), elf_kind(3E), elf_next(3E), elf_rand(3E), elf_rawfile(3E),
elf_strptr(3E), elf_update(3E), elf_version(3E), elf_xlate(3E)

Information in the ELF header files is separated into common parts and processor
specific parts. A program can make a processor's information available by includ
ing the appropriate header file: sys/elf_NAME.h where NAME matches the pro
cessor name as used in the ELF file header.

Symbol
M32
SPARe
386
486
860
68K
88K

Processor
AT&T WE 32100
SPARe
Intel 80386
Intel 80486
Intel 80860
Motorola 68000
Motorola 88000

Other processors will be added to the table as necessary. To illustrate, a program
could use the following code to "see" the processor-specific information for the
WE 32100.

#include <libelf.h>
#include <sys/elf_M32.h>

Without the sys/ elf_M32 . h definition, only the common ELF information would
be visible.

449

e11_ begin (3E)

NAME
elf_begin - make a file descriptor

SYNOPSIS
cc [flag . . .]file ... -lelf [library . ..]

#include <libelf.h>

Elf *elf_begin{int fildes, Elf_Cmd cmd, Elf *ref);

DESCRIPTION

450

elf_begin, elf_next, elf_rand, and elf_end work together to process ELF object
files, either individually or as members of archives. After obtaining an ELF descrip
tor from elf_begin, the program may read an existing file, update an existing file,
or create a new file. fildes is an open file descriptor that elf_begin uses for reading
or writing. The initial file offset [see lseek(2)] is unconstrained, and the resulting
file offset is undefined.

cmd may have the following values.

When a program sets cmd to this value, elf_begin returns a null
pointer, without opening a new descriptor. ref is ignored for this
command. See elf_next(3E) and the examples below for more
information.

When a program wishes to examine the contents of an existing
file, it should set cmd to this value. Depending on the value of ref,
this command examines archive members or entire files. Three
cases can occur.

First, if ref is a null pointer, elf_begin allocates a new ELF
descriptor and prepares to process the entire file. If the file being
read is an archive, elf_begin also prepares the resulting descrip
tor to examine the initial archive member on the next call to
elf_begin, as if the program had used elf_next or elf_rand to
"move" to the initial member.

Second, if ref is a non-null descriptor associated with an archive
file, elf_begin lets a program obtain a separate ELF descriptor
associated with an individual member. The program should have
used elf_next or elf_rand to position ref appropriately (except
for the initial member, which elf_begin prepares; see the exam
ple below). In this case, fildes should be the same file descriptor
used for the parent archive.

Finally, if ref is a non-null ELF descriptor that is not an archive,
elf_begin increments the number of activations for the descrip
tor and returns ref, without allocating a new descriptor and
without changing the descriptor's read/write permissions. To
terminate the descriptor for ref, the program must call elf_end
once for each activation. See elf_next(3E) and the examples
below for more information.

elf_begin (3E)

This command duplicates the actions of ELF_C_READ and addi
tionally allows the program to update the file image [see
elf_update(3E)]. That is, using ELF_C_READ gives a read-only
view of the file, while ELF _C_RDWR lets the program read and
write the file. ELF _C_RDWR is not valid for archive members. If ref
is non-null, it must have been created with the ELF _C_RDWR com
mand.

ELF _C_WRITE If the program wishes to ignore previous file contents, presum
ably to create a new file, it should set cmd to this value. ref is
ignored for this command.

elf_begin "works" on all files (including files with zero bytes), providing it can
allocate memory for its internal structures and read any necessary information from
the file. Programs reading object files thus may call elf_kind or elf_getehdr to
determine the file type (only object files have an ELF header). If the file is an
archive with no more members to process, or an error occurs, elf_begin returns a
null pointer. Otherwise, the return value is a non-null ELF descriptor.

Before the first call to elf_begin, a program must call elf_version to coordinate
versions.

System Services
When processing a file, the library decides when to read or write the file, depending
on the program's requests. Normally, the library assumes the file descriptor
remains usable for the life of the ELF descriptor. If, however, a program must pro
cess many files simultaneously and the underlying operating system limits the
number of open files, the program can use elf_cntl to let it reuse file descriptors.
After calling elf_cntl with appropriate arguments, the program may close the file
descriptor without interfering with the library.

All data associated with an ELF descriptor remain allocated until elf_end ter
minates the descriptor's last activation. After the descriptors have been terminated,
the storage is released; attempting to reference such data gives undefined behavior.
Consequently, a program that deals with multiple input (or output) files must keep
the ELF descriptors active until it finishes with them.

EXAMPLES
A prototype for reading a file appears below. If the file is a simple object file, the
program executes the loop one time, receiving a null descriptor in the second itera
tion. In this case, both elf and arf will have the same value, the activation count
will be two, and the program calls elf_end twice to terminate the descriptor. If the
file is an archive, the loop processes each archive member in turn, ignoring those
that are not object files.

451

elf begin (3E)

452

if (elf_version (EV_CURRENT) == EV_NONE)
{

}

/* library out of date */
/* recover from error */

cmd ELF_C_READ;
arf elf_begin (fildes, cmd, (Elf *)0);
while «elf = elf_begin(fildes, cmd, arf» != 0)
{

if «ehdr = elf32_getehdr(elf» != 0)
{

/* process the file . . . */
}

cmd elf_next(elf);
elf_end(elf);

elf_end(arf);

Alternatively, the next example illustrates random archive processing. After identi
fying the file as an archive, the program repeatedly processes archive members of
interest. For clarity, this example omits error checking and ignores simple object
files. Additionally, this fragment preserves the ELF descriptors for all archive
members, because it does not call elf_end to terminate them.

elf_version(EV_CURRENT);
arf = elf_begin(fildes, ELF_C_READ, (Elf *)0);
if (elf_kind (arf) != ELF~_AR)
{

/* not an archive */

/* initial processing */
/* set offset = . . . for desired member header */
while (elf_rand (arf, offset) == offset)
{

if «elf = elf_begin (fildes, ELF_C_READ, arf» 0)
break;

if «ehdr = elf32_getehdr(elf» != 0)
{

/* process archive member . . . */

/* set offset = • • • for desired member header */

The following outline shows how one might create a new ELF file. This example is
simplified to show the overall flow.

elf begin (3E)

elf_version(EV_CURRENT);
fildes = open("path/name", O_RDWRIO_TRUNCIO_CREAT, 0666);
if «elf = elf_begin(fildes, ELF_C_WRITE, (Elf *)0» == 0)

return;
ehdr = elf32_newehdr(elf);
phdr = elf32_newphdr(elf, count);
scn = elf_newscn(elf);
shdr = elf32_getshdr(scn);
data = elf_newdata(scn);
elf_update (elf, ELF_C_WRITE);
elf_end(elf);

Finally, the following outline shows how one might update an existing ELF file.
Again, this example is simplified to show the overall flow.

elf_version(EV_CURRENT);
fildes = open("path/name", O_RDWR);
elf = elf_begin(fildes, ELF_C_RDWR, (Elf *)0);

/* add new or delete old infor.mation . */

close (creat ("path/name", 0666»;
elf_update (elf, ELF_C_WRITE);
elf_end(elf);

In the example above, the call to creat truncates the file, thus ensuring the result
ing file will have the "right" size. Without truncation, the updated file might be as
big as the original, even if information were deleted. The library truncates the file,
if it can, with ftruncate [see truncate(3C)]. Some systems, however, do not sup
port ftruncate, and the call to creat protects against this.

Notice that both file creation examples open the file with write and read permis
sions. On systems that support mmap, the library uses it to enhance performance,
and mmap requires a readable file descriptor. Although the library can use a write
only file descriptor, the application will not obtain the performance advantages of
mmap.

SEE ALSO

NOTES

ar(4), cof2elf(1), creat(2), elf(3E), elf_cntl(3E), elf_end(3E),
elf_getarhdr(3E), elf_getbase(3E), elf_getdata(3E), elf_getehdr(3E),
elf~etphdr(3E), elf_getscn(3E), elf_kind(3E), elf_next(3E), elf_rand(3E),
elf_rawfile(3E), elf_update(3E), elf_version(3E), Iseek(2), mmap(2), open(2)',
truncate(3C)

COFF is an object file format that preceded ELF on some computer architectures
(Intel, for example). For these architectures, when a program calls elf_begin on a
COFF file, the library translates COFF structures to their ELF equivalents, allowing
programs to read (but not to write) a COFF file as if it were ELF . This conversion
happens only to the memory image and not to the file itself. After the initial
elf_begin, file offsets and addresses in the ELF header, the program headers, and
the section headers retain the original COFF values [see elf_getehdr,
elf_getphdr, and elf_getshdr]. A program may call elf_update to adjust these

453

elf_begin (3E)

454

values (without writing the file), and the library will then present a consistent, ELF
view of the file. Data obtained through elf_getdata are translated (the COFF sym
bol table is presented as ELF I and so on). Data viewed through elf_rawdata
undergo no conversion, allowing the program to view the bytes from the file itself.

Some COFF debugging information is not translated, though this does not affect the
semantics of a running program.

Although the ELF library supports COFF I programmers are strongly encouraged to
recompile their programs, obtaining ELF object files.

NAME
elf_cntl - control a file descriptor

SYNOPSIS
cc [flag . . .]file ... -lelf [library . ..]

#include <libelf.h>

int elf_cntl (Elf * elf, Elf_CInd cmd);

DESCRIPTION
elf_cntl instructs the library to modify its behavior with respect to an ELF
descriptor, elf. As elf_begin(3E) describes, an ELF descriptor can have multiple
activations, and multiple ELF descriptors may share a single file descriptor. Gen
erally, elf_cntl commands apply to all activations of elf. Moreover, if the ELF
descriptor is associated with an archive file, descriptors for members within the
archive will also be affected as described below. Unless stated otherwise, opera
tions on archive members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values.

ELF_C_FDOONE
This value tells the library not to use the file descriptor associated with
elf. A program should use this command when it has requested all the
information it cares to use and wishes to avoid the overhead of reading
the rest of the file. The memory for all completed operations remains
valid, but later file operations, such as the initial elf_getdata for a sec
tion, will fail if the data is not in memory already.

ELF_C_FDREAD
This command is similar to ELF _C_FDOONE, except it forces the library to
read the rest of the file. A program should use this command when it
must close the file descriptor but has not yet read everything it needs
from the file. After elf_cntl completes the ELF _C_FDREAD command,
future operations, such as elf_getdata, will use the memory version of
the file without needing to use the file descriptor.

If elf_cntl succeeds, it returns zero. Otherwise elf was null or an error occurred,
and the function returns -1.

SEE ALSO

NOTES

elf(3E), elf_begin(3E), elf_getdata(3E), elf_rawfile(3E)

If the program wishes to use the "raw" operations [see elf_rawdata, which
elf_getdata(3E) describes, and elf_rawfile(3E)] after disabling the file descrip
tor with ELF _C_FDOONE or ELF _C_FDREAD, it must execute the raw operations expli
citly beforehand. Otherwise, the raw file operations will faiL Calling elf_rawfile
makes the entire image available, thus supporting subsequent elf_rawdata calls.

455

NAME
elf_end - finish using an object file

SYNOPSIS
cc [t1ag .. .]file ... -lelf [library . ..]

#include <libelf.h>

int elf_end(Elf *elf);

DESCRIPTION
A program uses elf_end to terminate an ELF descriptor, elf, and to deallocate data
associated with the descriptor. Until the program terminates a descriptor, the data
remain allocated. elf should be a value previously returned by elf_begin; a null
pointer is allowed as an argument, to simplify error handling. If the program
wishes to write data associated with the ELF descriptor to the file, it must use
elf_update before calling elf_end.

As elf_begin(3E) explains, a descriptor can have more than one activation.
Calling elf_end removes one activation and returns the remaining activation
count. The library does not terminate the descriptor until the activation count
reaches zero. Consequently, a zero return value indicates the ELF descriptor is no
longer valid.

SEE ALSO
elf(3E), elf_begin(3E), elf_update(3E)

456

elf_error (3E)

NAME
elf_error: elf_ernnsg, elf_ermo - error handling

SYNOPSIS
cc fflag .. .]file ... -lelf [library . ..]

#include <libelf.h>

const char *elf_ernnsg (int err);
int elf_ermo(void);

DESCRIPTION
If an ELF library function fails, a program may call elf_ermo to retrieve the
library's internal error number. As a side effect, this function resets the internal
error number to zero, which indicates no error.

elf_ernnsg takes an error number, err, and returns a null-terminated error mes
sage (with no trailing new-line) that describes the problem. A zero err retrieves a
message for the most recent error. If no error has occurred, the return value is a
null pointer (not a pointer to the null string). Using err of -1 also retrieves the most
recent error, except it guarantees a non-null return value, even when no error has
occurred. If no message is available for the given number, elf_ernnsg returns a
pointer to an appropriate message. This function does not have the side effect of
clearing the internal error number.

EXAMPLES
The following fragment clears the internal error number and checks it later for
errors. Unless an error occurs after the first call to elf_ermo, the next call will
return zero.

SEE ALSO

(void)elf_ermo();
while (more_to_do)
{

/* processing ... */
if «err = elf_ermo(» != 0)
{

msg = elf_ernnsg(err);
/* print msg */

elf(3E), elf_version(3E)

457

NAME
elf_fill - set fill byte

SYNOPSIS
cc [flag ...]file ... -lelf [library .. .]

#include <libelf.h>

void elf_fill (int fill>;

DESCRIPTION
Alignment constraints for ELF files sometimes require the presence of "holes." For
example, if the data for one section are required to begin on an eight-byte boun
dary, but the preceding section is too "short," the library must fill the intervening
bytes. These bytes are set to the fill character. The library uses zero bytes unless the
application supplies a value. See elf_getdata(3E) for more information about
these holes.

SEE ALSO

NOTES

458

elf(3E), elf_getdata(3E), elf_flag(3E), elf_update(3E)

An application can assume control of the object file organization by setting the
ELF_F_LAYOUT bit [see elf_flag(3E)]. When this is done, the library does not fill
holes.

NAME

elf_flag (3E)

elf_flag: elf_flagdata, elf_flagehdr, elf_flagelf, elf_flagphdr,
elf_flagscn, elf_flagshdr - manipulate flags

SYNOPSIS
cc fflag .. .]file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_flagdata{Elf_Data *data, Elf_Cmd emd, unsigned flags);

unsigned elf_flagehdr{Elf * elf, Elf_Cmd emd, unsigned flags);

unsigned elf_flagelf{Elf * elf, Elf_Cmd emd, unsigned flags);

unsigned elf_flagphdr{Elf * elf, Elf_Cmd emd, unsigned flags);

unsigned elf_flagscn{Elf_Scn *sen, Elf_Cmd emd, unsigned flags);

unsigned elf_flagshdr{Elf_Scn *sen, Elf_Cmd emd, unsigned flags);

DESCRIPTION
These functions manipulate the flags associated with various structures of an ELF
file. Given an ELF descriptor (elf), a data descriptor (data), or a section descriptor
(sen), the functions may set or clear the associated status bits, returning the updated
bits. A null descriptor is allowed, to simplify error handling; all functions return
zero for this degenerate case.

emd may have the following values.

The functions clear the bits that are asserted in flags. Only the
non-zero bits in flags are cleared; zero bits do not change the
status of the descriptor.

The functions set the bits that are asserted in flags. Only the
non-zero bits in flags are set; zero bits do not change the status
of the descriptor.

Descriptions of the defined flags bits appear below.

When the program intends to write an ELF file, this flag asserts
the associated information needs to be written to the file. Thus,
for example, a program that wished to update the ELF header
of an existing file would call elf_flagehdr with this bit set in
flags and emd equal to ELF _C_SET. A later call to elf_update
would write the marked header to the file.

Normally, the library decides how to arrange an output file.
That is, it automatically decides where to place sections, how to
align them in the file, etc. If this bit is set for an ELF descriptor,
the program assumes responsibility for determining all file
positions. This bit is meaningful only for elf_flagelf and
applies to the entire file associated with the descriptor.

When a flag bit is set for an item, it affects all the subitems as well. Thus, for exam
ple, if the program sets the ELF _F _DIRTY bit with elf_flagelf, the entire logical
file is "dirty."

459

EXAMPLES
The following fragment shows how one might mark the ELF header to be written to
the output file.

ehdr = elf32~etehdr(elf);
/* dirty ehdr • • • */
elf_flagehdr(elf, ELF_C_SET, ELF_F_DIRTY);

SEE ALSO
elf(3E), elf_end(3E), elf~etdata(3E), elf~etehdr(3E), elf_update(3E)

460

elf_fsize (3E)

NAME
elf_fsize: elf32_fsize - return the size of an object file type

SYNOPSIS
cc [flag ...]file ... -lelf [library .. .]

#include <libelf.h>

size_t elf32_fsize{Elf_TYPe type, size_t count, unsigned ver};

DESCRIPTION
elf32_fsize gives the size in bytes of the 32-bit file representation of count data
objects with the given type. The library uses version ver to calculate the size [see
elf(3E) and elf_version(3E)].

Constant values are available for the sizes of fundamental types.

Elf_TYPe File Size Memory Size

ELF_T_ADDR ELF32_FSZ_ADDR sizeof{Elf32_Addr}
ELF_T_BYTE 1 sizeof{unsigned char}
ELF_T_HALF ELF32_FSZ_HALF sizeof{Elf32_Half}
ELT_T_OFF ELF32_FSZ_OFF sizeof{Elf32_0ff}
ELF_T_SWORD ELF32_FSZ_SWORD sizeof{Elf32_Sword}
ELF_T_WORD ELF32_FSZ_WORD sizeof{Elf32_Word}

elf32 fsize returns zero if the value of type or ver is unknown. See
elf_xlate(3E) for a list of the type values.

SEE ALSO
elf(3E), elf_version(3E), elf_xlate(3E)

461

elf getarhdr(3E)

NAME
elf_getarhdr - retrieve archive member header

SYNOPSIS
cc [flag ...]file ... -lelf [library . ..]

#include <libelf.h>

Elf_Arhdr *elf_getarhdr(Elf *eif);

DESCRIPTION
elf_getarhdr returns a pointer to an archive member header, if one is available for
the ELF descriptor elf. Otherwise, no archive member header exists, an error
occurred, or elf was null; elf_getarhdr then returns a null value. The header
includes the following members.

char
tirne_t
long
long
unsigned long
off_t
char

*ar_name;
ar_date;
ar_uid;
ar_gid;
ar_mode;
ar_size;
*ar_rawname;

An archive member name, available through ar_name, is a null-terminated string,
with the ar format control characters removed. The ar_rawname member holds a
null-terminated string that represents the original name bytes in the file, including
the terminating slash and trailing blanks as specified in the archive format.

In addition to "regular" archive members, the archive format defines some special
members. All special member names begin with a slash (I), distinguishing them
from regular members (whose names may not contain a slash). These special
members have the names (ar_name) defined below.

1 This is the archive symbol table. If present, it will be the first archive
member. A program may access the archive symbol table through
elf_getarsym. The information in the symbol table is useful for random
archive processing [see elf_rand(3E)].

II This member, if present, holds a string table for long archive member
names. An archive member's header contains a 16-byte area for the name,
which may be exceeded in some file systems. The library automatically
retrieves long member names from the string table, setting ar_name to the
appropriate value.

Under some error conditions, a member's name might not be available. Although
this causes the library to set ar_name to a null pointer, the ar_rawname member
will be set as usual.

SEE ALSO
ar(4), elf(3E), elf_begin(3E), elf_getarsym(3E), elf_rand(3E)

462

elf_Qetarsym (3E)

NAME
elf--getarsym - retrieve archive symbol table

SYNOPSIS
cc [flag .. ·]file ... -lelf [library ...]

#include <libelf.h>

Elf_Arsym *elf_getarsym(Elf * elf, size_t *ptr);

DESCRIPTION
elf--getarsym returns a pointer to the archive symbol table, if one is available for
the ELF descriptor elf. Otherwise, the archive doesn't have a symbol table, an error
occurred, or elf was null; elf_getarsym then returns a null value. The symbol table
is an array of structures that include the following members.

char *as_name;
size_t as_off;
unsigned long as_hash;

These members have the following semantics.

as_name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the
member's header. The archive member residing at the given offset
defines the associated symbol. Values in as_off may be passed as argu
ments to elf_rand to access the desired archive member.

as_hash This is a hash value for the name, as computed by elf_hash.

If ptr is non-null, the library stores the number of table entries in the location to
which ptr points. This value is set to zero when the return value is null. The table's
last entry, which is included in the count, has a null as_name, a zero value for
as_off, and -OUL for as_hash.

SEE ALSO
ar(4), elf(3E), elf_getarhdr(3E), elf_hash(3E), elf_rand(3E)

463

elf get base (3E)

NAME
elf_getbase - get the base offset for an object file

SYNOPSIS
cc [flag ...]file ... -lelf [library . ..]

#include <libelf.h>

off_t elf_getbase{Elf *elf);

DESCRIPTION
elf_getbase returns the file offset of the first byte of the file or archive member
associated with elf, if it is known or obtainable, and -1 otherwise. A null elf is
allowed, to simplify error handling; the return value in this case is -1. The base
offset of an archive member is the beginning of the member's information, not the
beginning of the archive member header.

SEE ALSO
ar(4), elf(3E), elf_begin(3E)

464

elf getdata (3E)

NAME
elf_getdata, elf_newdata, elf_rawdata - get section data

SYNOPSIS
cc rJlag .. .]file ... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf-getdata{Elf_Scn *sen, Elf_Data *data) i

Elf_Data *elf_newdata{Elf_Scn *sen)i

Elf_Data *elf_rawdata (Elf_Scn *sen, Elf_Data *data);

DESCRIPTION
These functions access and manipulate the data associated with a section descriptor,
sen. When reading an existing file, a section will have a single data buffer associ
ated with it. A program may build a new section in pieces, however, composing
the new data from multiple data buffers. For this reason, "the" data for a section
should be viewed as a list of buffers, each of which is available through a data
descriptor.

elf_getdata lets a program step through a section's data list. If the incoming data
descriptor, data, is null, the function returns the first buffer associated with the sec
tion. Otherwise, data should be a data descriptor associated with sen, and the func
tion gives the program access to the next data element for the section. If sen is null
or an error occurs, elf-getdata returns a null pointer.

elf_getdata translates the data from file representations into memory representa
tions [see elf_xlate(3E)] and presents objects with memory data types to the pro
gram, based on the file's class [see elf(3E)]. The working library version [see
elf_version(3E)] specifies what version of the memory structures the program
wishes elf_getdata to present.

elf_newdata creates a new data descriptor for a section, appending it to any data
elements already associated with the section. As described below, the new data
descriptor appears empty, indicating the element holds no data. For convenience,
the descriptor's type (d_type below) is set to ELF_T_BYTE, and the version
(d_version below) is set to the working version. The program is responsible for
setting (or changing) the descriptor members as needed. This function implicitly
sets the ELF_F_DIRTY bit for the section's data [see elf_flag(3E)]. If sen is null or
an error occurs, elf_newdata returns a null pointer.

elf_rawdata differs from elf_getdata by returning only uninterpreted bytes,
regardless of the section type. This function typically should be used only to
retrieve a section image from a file being read, and then only when a program must
avoid the automatic data translation described below. Moreover, a program may
not close or disable [see elf_cntl(3E)] the file descriptor associated with elf before
the initial raw operation, because elf_rawdata might read the data from the file to
ensure it doesn't interfere with elf_getdata. See elf_rawfile(3E) for a related
facility that applies to the entire file. When elf_getdata provides the right transla
tion, its use is recommended over elf_rawdata. If sen is null or an error occurs,
elf_rawdata returns a null pointer.

465

elf getdata (3E)

466

The Elf_Data structure includes the following members.

void
Elf_Type
size_t
off_t
size_t
unsigned

*d_buf;
d_type;
d_size;
d_off;
d_align;
d_version;

These members are available for direct manipulation by the program. Descriptions
appear below.

A pointer to the data buffer resides here. A data element with no data
has a null pointer.
This member's value specifies the type of the data to which d_buf
points. A section's type determines how to interpret the section con
tents, as summarized below.
This member holds the total size, in bytes, of the memory occupied by
the data. This may differ from the size as represented in the file. The
size will be zero if no data exist. [See the discussion of SHT_NOBITS
below for more information.]
This member gives the offset, within the section, at which the buffer
resides. This offset is relative to the file's section, not the memory
object's.
This member holds the buffer's required alignment, from the begin
ning of the section. That is, d_off will be a multiple of this member's
value. For example, if this member's value is four, the beginning of
the buffer will be four-byte aligned within the section. Moreover, the
entire section will be aligned to the maximum of its constituents, thus
ensuring appropriate alignment for a buffer within the section and
within the file.

d_version This member holds the version number of the objects in the buffer.

Data Alignment

When the library originally read the data from the object file, it used
the working version to control the translation to memory objects.

As mentioned above, data buffers within a section have explicit alignment con
straints. Consequently, adjacent buffers sometimes will not abut, causing "holes"
within a section. Programs that create output files have two ways of dealing with
these holes.

First, the program can use elf_fill to tell the library how to set the intervening
bytes. When the library must generate gaps in the file, it uses the fill byte to initial
ize the data there. The library's initial fill value is zero, and elf_fill lets the appli
cation change that.

Second, the application can generate its own data buffers to occupy the gaps, filling
the gaps with values appropriate for the section being created. A program might
even use different fill values for different sections. For example, it could set text
sections' bytes to no-operation instructions, while filling data section holes with
zero. Using this technique, the library finds no holes to fill, because the application
eliminated them.

elf _getdata (3E)

Section and Memory Types
elf_getdata interprets sections' data according to the section type, as noted in the
section header available through elf_getshdr. The following table shows the sec
tion types and how the library represents them with memory data types for the 32-
bit file class. Other classes would have similar tables. By implication, the memory
data types control translation by elf_xlate.

Section Type Elf_Type 32-Bit Type

SHT_DYNAMIC ELF_T_DYN Elf32_Dyn
SHT_DYNSYM ELF_T_SYM Elf32_Sym
SHT_HASH ELF_T_WORD Elf32_Word
SHT_NOBITS ELF_T_BYTE unsigned char
SHT_NOTE ELF_T_BYTE unsigned char
SHT_NULL none none
SHT_PROGBITS ELF_T_BYTE unsigned char
SHT_REL ELF_T_REL Elf32_Rel
SHT_RELA ELF_T_RELA Elf32_Rela
SHT_STRTAB ELF_T-.BYTE unsigned char
SHT_SYMTAB ELF_T_SYM Elf32_Sym
other ELF_T_BYTE unsigned char

elf_rawdata creates a buffer with type ELF _T_BYTE.

As mentioned above, the program's working version controls what structures the
library creates for the application. The library similarly interprets section types
according to the versions. If a section type "belongs" to a version newer than the
application's working version, the library does not translate the section data.
Because the application cannot know the data format in this case, the library
presents an untranslated buffer of type ELF _T_BYTE, just as it would for an
unrecognized section type.

A section with a special type, SHT_NOBITS, occupies no space in an object file, even
when the section header indicates a non-zero size. elf_getdata and elf_rawdata
"work" on such a section, setting the data structure to have a null buffer pointer
and the type indicated above. Although no data is present, the d_size value is set
to the size from the section header. When a program is creating a new section of
type SHT_NOBITS, it should use elf_newdata to add data buffers to the section.
These "empty" data buffers should have the d_size members set to the desired
size and the d_buf members set to nulL

EXAMPLES
The following fragment obtains the string table that holds section names (ignoring
error checking). See elf_strptr(3E) for a variation of string table handling.

467

elf _getdata (3E)

ehdr = elf32~etehdr(elf);
scn = elf~etscn(elf, (size_t)ehdr->e_shstrndx);
shdr = elf32~etshdr(scn);
if (shdr->sh_type != SHT_STRTAB)
{

/* not a string table */
}

data = 0;
if «data = elf~etdata(scn, data»
{

/* error or no data */

o I I data->d_size 0)

The e_shstrndx member in an ELF header holds the section table index of the
string table. The program gets a section descriptor for that section, verifies it is a
string table, and then retrieves the data. When this fragment finishes, data->d_buf
points at the first byte of the string table, and data->d_size holds the string table's
size in bytes.

SEE ALSO

468

elf(3E), elf_cntl(3E), elf_fill(3E), elf_flag(3E), elf~etehdr(3E),
elf~etscn(3E), elf_getshdr(3E), elf_rawfile(3E), elf_strptr(3E),
elf_ version(3E), elf_xlate(3E)

NAME

elf _getehdr (3E)

elf-getehdr: elf32-getehdr, elf32_newehdr - retrieve class-dependent object
file header

SYNOPSIS
cc [flag . . .]file ... -lelf [library .. .]

#include <libelf.h>

Elf32_Ehdr *elf32-getehdr(Elf *elf};

Elf32_Ehdr *elf32_newehdr(Elf *elf};

DESCRIPTION
For a 32-bit class file, elf32-getehdr returns a pointer to an ELF header, if one is
available for the ELF descriptor elf. If no header exists for the descriptor,
elf32_newehdr allocates a "clean" one, but it otherwise behaves the same as
elf32-getehdr. It does not allocate a new header if one exists already. If no
header exists (for elf-getehdr), one cannot be created (for elf_newehdr), a sys
tem error occurs, the file is not a 32-bit class file, or elf is null, both functions return
a null pointer.

The header includes the following members.

unsigned char
Elf32_Half
Elf32_Half
Elf32_Word
Elf32_Addr
Elf32_0ff
Elf32_0ff
Elf32_Word
Elf32_Half
Elf32_Half
Elf32_Half
Elf32_Half
Elf32_Half
Elf32_Half

e_ident[EI_NIDENT]i
e_type;
e_machine;
e_version;
e_entryi
e-phoff;
e_shoff;
e_flags;
e_ehsize;
e-phentsize;
e-phnumi
e_shentsize;
e_shnumi
e_shstrndx;

elf32_newehdr automatically sets the ELF_F_DIRTY bit [see elf_flag(3E)]. A
program may use elf-getident to inspect the identification bytes from a file.

SEE ALSO
elf(3E), elf_begin(3E), elf_flag(3E), elf_getident(3E)

469

elf getident (3E)

NAME
elf-9'etident - retrieve file identification data

SYNOPSIS
cc [flag . . .]file ... -lelf [library . ..]

#include <libelf.h>

char *elf_getident(Elf * elf, size_t *pty);

DESCRIPTION
As elf(3E) explains, ELF provides a framework for various classes of files, where
basic objects may have 32 bits, 64 bits, and so forth. To accommodate these differ
ences, without forcing the larger sizes on smaller machines, the initial bytes in an
ELF file hold identification information common to all file classes. Every ELF
header's e_ident has EI_NIDENT bytes with the following interpretation.

e_ident Index Value Purpose

EI_MAGO ELFMAGO
EI_MAG1 ELFMAG1

File identification EI_MAG2 ELFMAG2
EI_MAG3 ELFMAG3

ELFCLASSNONE
EI_CLASS ELFCLASS32 File class

ELFCLASS64
ELFDATANONE

EI_DATA ELFDATA2LSB Data encoding
ELFDATA2MSB

EI_VERSION EV_CURRENT File version

7-15 0 Unused, set to zero

Other kinds of files [see elf_kind(3E)] also may have identification data, though
they would not conform to e_ident.

elf-9'etident returns a pointer to the file's "initial bytes." If the library recog
nizes the file, a conversion from the file image to the memory image may occur. In
any case, the identification bytes are guaranteed not to have been modified, though
the size of the unmodified area depends on the file type. If pty is non-null, the
library stores the number of identification bytes in the location to which pty points.
If no data is present, elf is null, or an error occurs, the return value is a null pointer,
with zero optionally stored through pty.

SEE ALSO
elf(3E), elf_begin(3E), elf-9'etehdr(3E), elf_kind(3E), elf_rawfile(3E)

470

NAME

elf_getphdr(3E)

elf-9'etphdr: elf32-9'etphdr, elf32_newphdr - retrieve class-dependent pro
gram header table

SYNOPSIS
cc [flag ...]file ... -lelf [library .. .]

#include <libelf.h>

Elf32_Phdr *elf32-9'etphdr(Elf *elf};

Elf32_Phdr *elf32_newphdr(Elf * elf, size_t count};

DESCRIPTION
For a 32-bit class file, elf32-9'etphdr returns a pointer to the program execution
header table, if one is available for the ELF descriptor elf.

elf32_newphdr allocates a new table with count entries, regardless of whether one
existed previously, and sets the ELF_F_DIRTY bit for the table [see elf_flag(3E)].
Specifying a zero count deletes an existing table. Note this behavior differs from
that of elf32_newehdr [see elf-9'etehdr(3E)], allowing a program to replace or
delete the program header table, changing its size if necessary.

If no program header table exists, the file is not a 32-bit class file, an error occurs, or
elf is null, both functions return a null pointer. Additionally, elf32_newphdr
returns a null pointer if count is zero.

The table is an array of Elf32_Phdr structures, each of which includes the follow
ing members.

Elf32_Word
Elf32_0ff
Elf32_Addr
Elf32_Addr
Elf32_word

p_type;
p_offset;
p_vaddr;
p-paddr;
p_filesz;

Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

The ELF header's e-phnum member tells how many entries the program header
table has [see elf-9'etehdr(3E)]. A program may inspect this value to determine
the size of an existing table; elf32_newphdr automatically sets the member's value
to count. If the program is building a new file, it is responsible for creating the file's
ELF header before creating the program header table.

SEE ALSO
elf(3E), elf_begin(3E), elf_flag(3E), elf_getehdr(3E)

471

elf getscn (3E)

NAME
elf-getsen, elf_ndxsen, elf_newsen, elf_nextsen - get section information

SYNOPSIS
ee [flag . . .]file ... -lelf [library . ..]

#inelude <libelf.h>

Elf_Sen *elf-getsen(Elf * elf, size_t index);

size_t elf_ndxsen(Elf_Sen *sen);

Elf_Sen *elf_newsen(Elf *elj>;

Elf_Sen *elf_nextsen(Elf * elf, Elf_Sen *sen);

DESCRIPTION
These functions provide indexed and sequential access to the sections associated
with the ELF descriptor elf. If the program is building a new file, it is responsible for
creating the file's ELF header before creating sections; see elf_getehdr(3E).

elf-getsen returns a section descriptor, given an index into the file's section
header table. Note the first "real" section has index 1. Although a program can get
a section descriptor for the section whose index is a (SHlCUNDEF, the undefined sec
tion), the section has no data and the section header is "empty" (though present). If
the specified section does not exist, an error occurs, or elf is null, elf_getsen
returns a null pointer.

elf_newsen creates a new section and appends it to the list for elf. Because the
SHlCUNDEF section is required and not "interesting" to applications, the library
creates it automatically. Thus the first call to elf_newsen for an ELF descriptor
with no existing sections returns a descriptor for section 1. If an error occurs or elf
is null, elf_newsen returns a null pointer.

After creating a new section descriptor, the program can use elf_getshdr to
retrieve the newly created, "clean" section header. The new section descriptor will
have no associated data [see elf-getdata(3E)]. When creating a new section in
this way, the library updates the e_shnum member of the ELF header and sets the
ELF_F_DIRTY bit for the section [see elf_flag(3E)]. If the program is building a
new file, it is responsible for creating the file's ELF header [see elf-getehdr(3E)]
before creating new sections.

elf_nextsen takes an existing section descriptor, sen, and returns a section
descriptor for the next higher section. One may use a null sen to obtain a section
descriptor for the section whose index is 1 (skipping the section whose index is
SHN_UNDEF). If no further sections are present or an error occurs, elf_nextsen
returns a null pointer.

elf_ndxsen takes an existing section descriptor, sen, and returns its section table
index. If sen is null or an error occurs, elf_ndxsen returns SHN_UNDEF.

EXAMPLES

472

An example of sequential access appears below. Each pass through the loop
processes the next section in the file; the loop terminates when all sections have
been processed.

elf_getscn (3E)

SEE ALSO

scn = 0;
while «scn = elf_nextscn(elf, scn» != 0)
{

/* process section */
}

elf(3E), elf_begin(3E), elf_flag(3E), elf-Sletdata(3E), elf-Sletehdr(3E),
elf-Sletshdr(3E)

473

elf _getshdr (3E)

NAME
elf_getshdr: elf32_getshdr - retrieve class-dependent section header

SYNOPSIS
cc [flag . . .]file ... -lelf [library . ..]

#include <libelf.h>

Elf32_Shdr *elf32_getshdr{Elf_Scn *sen};

DESCRIPTION
For a 32-bit class file, elf32_getshdr returns a pointer to a section header for the
section descriptor sen. Otherwise, the file is not a 32-bit class file, sen was null, or
an error occurred; elf32_getshdr then returns NULL.

The header includes the following members.

Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_0ff sh_offset;
Elf32_Word
Elf32_Word
Elf32_Word
Elf32_Word
Elf32_Word

sh_size;
sh_Iink;
sh_info;
sh_addralign;
sh_entsize;

If the program is building a new file, it is responsible for creating the file's ELF
header before creating sections.

SEE ALSO
elf(3E), elf_flag(3E), elf_getscn(3E), elf_strptr(3E)

474

elf_hash (3E)

NAME
elf_hash - compute hash value

SYNOPSIS
cc fflag .. .]file ... -lelf [library . ..]

#include <libelf.h>

unsigned long elf_hash(const char *name);

DESCRIPTION
elf_hash computes a hash value, given a null terminated string, name. The
returned hash value, h, can be used as a bucket index, typically after computing
h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf_hash
uses unsigned arithmetic to avoid possible differences in various machines' signed
arithmetic. Although name is shown as char* above, elf_hash treats it as
unsigned char* to avoid sign extension differences. Using char* eliminates type
conflicts with expressions such as elf_hash ("name").

ELF files' symbol hash tables are computed using this function [see
elf_getdata(3E) and elf_xlate(3E)]. The hash value returned is guaranteed not
to be the bit pattern of all ones (-OUL).

SEE ALSO
elf(3E), elf_getdata(3E), elf_xlate(3E)

475

NAME
elf_kind - determine file type

SYNOPSIS
cc [flag . . .]ftle ... -lelf [library . ..]

#include <libelf.h>

Elf_Kind elf_kind(Elf *elf);

DESCRIPTION
This function returns a value identifying the kind of file associated with an ELF
descriptor (elf). Currently defined values appear below.

The file is an archive [see ar(4)]. An ELF descriptor may also be
associated with an archive member, not the archive itself, and then
elf_kind identifies the member's type.

The file is a COFF object file. elf_begin(3E) describes the
library's handling for COFF files.

The file is an ELF file. The program may use elf-getident to
determine the class. Other functions, such as elf-getehdr, are
available to retrieve other file information.

This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf should
be a value previously returned by elf_begin. A null pointer is allowed, to sim
plify error handling, and causes elf_kind to return ELF J{_NONE.

SEE ALSO
ar(4), elf(3E), elf_begin(3E), elf-getehdr(3E), elf-getident(3E)

476

elf_next (3E)

NAME
elf_next - sequential archive member access

SYNOPSIS
cc fflag .. .]file ... -lelf [library . ..]

#include <libelf.h>

Elf_Cmd elf_next (Elf *elf);

DESCRIPTION
elf_next, elf_rand, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_next provides sequential access to the next archive member. That is, having
an ELF descriptor, elf, associated with an archive member, elf_next prepares the
containing archive to access the following member when the program calls
elf_begin. After successfully positioning an archive for the next member,
elf_next returns the value ELF _C_READ. Otherwise, the open file was not an
archive, elf was null, or an error occurred, and the return value is ELF _C_NULL. In
either case, the return value may be passed as an argument to elf_begin, specify
ing the appropriate action.

SEE ALSO
ar(4), elf(3E), elf_begin(3E), elf~etarsym(3E), elf_rand(3E)

477

NAME
elf_rand - random archive member access

SYNOPSIS
cc [flag . . .]file ... -lelf [library . ..]

#include <libelf.h>

size_t elf_rand (Elf * elf, size_t offset);

DESCRIPTION
elf_rand, elf_next, and elf_begin manipulate simple object files and archives.
elf is an ELF descriptor previously returned from elf_begin.

elf_rand provides random archive processing, preparing elf to access an arbitrary
archive member. elf must be a descriptor for the archive itself, not a member within
the archive. offset gives the byte offset from the beginning of the archive to the
archive header of the desired member. See elf--.getarsym(3E) for more informa
tion about archive member offsets. When elf_rand works, it returns offset. Other
wise it returns 0, because an error occurred, elf was null, or the file was not an
archive (no archive member can have a zero offset). A program may mix random
and sequential archive processing.

EXAMPLES
An archive starts with a "magic string" that has SARMAG bytes; the initial archive
member follows immediately. An application could thus provide the following
function to rewind an archive (the function returns -1 for errors and 0 otherwise).

#include <ar.h>
#include <libelf.h>

int
rewindelf(Elf *elf)
{

if (elf_rand (elf, (size_t)SARMAG)
return 0;

return -1;
}

SARMAG)

SEE ALSO
ar(4), elf(3E), elf_begin(3E), elf--.getarsym(3E), elf_next(3E)

478

elf_rawfile (3E)

NAME
e1f_rawfi1e - retrieve uninterpreted file contents

SYNOPSIS
cc rJLag .. .]file ... -le1f [library . ..]

#inc1ude <libe1f.h>

char *e1f_rawfi1e(E1f * elf, size_t *ptr);

DESCRIPTION
e1f_rawfi1e returns a pointer to an uninterpreted byte image of the file. This
function should be used only to retrieve a file being read. For example, a program
might use e1f_rawfi1e to retrieve the bytes for an archive member.

A program may not close or disable [see e1f_cnt1(3E)] the file descriptor associ
ated with elf before the initial call to e1f_rawfi1e, because e1f_rawfi1e might
have to read the data from the file if it does not already have the original bytes in
memory. Generally, this function is more efficient for unknown file types than for
object files. The library implicitly translates object files in memory, while it leaves
unknown files unmodified. Thus asking for the uninterpreted image of an object
file may create a duplicate copy in memory.

e1f_rawdata [see e1f-getdata(3E)] is a related function, providing access to sec
tions within a file.

If ptr is non-null, the library also stores the file's size, in bytes, in the location to
which ptr points. If no data is present, elf is null, or an error occurs, the return value
is a null pointer, with zero optionally stored through ptr.

SEE ALSO

NOTES

e1f(3E), e1f_begin(3E), e1f_cnt1(3E), e1f-getdata(3E), e1f-getehdr(3E),
e1f-getident(3E), e1f_kind(3E)

A program that uses e1f_rawfi1e and that also interprets the same file as an object
file potentially has two copies of the bytes in memory. If such a program requests
the raw image first, before it asks for translated information (through such func
tions as e1f_getehdr, e1f-getdata, and so on), the library "freezes" its original
memory copy for the raw image. It then uses this frozen copy as the source for
creating translated objects, without reading the file again. Consequently, the appli
cation should view the raw file image returned by e1f_rawfi1e as a read-only
buffer, unless it wants to alter its own view of data subsequently translated. In any
case, the application may alter the translated objects without changing bytes visible
in the raw image.

Multiple calls to e1f_rawfi1e with the same ELF descriptor return the same value;
the library does not create duplicate copies of the file.

479

elf_ strptr (3E)

NAME
elf_strptr - make a string pointer

SYNOPSIS
ee [flag . . .]file ... -lelf [library . ..]

#inelude <libelf.h>

ehar *elf_strptr(Elf * elf, size_t section, size_t offset);

DESCRIPTION
This function converts a string section offset to a string pointer. elf identifies the file
in which the string section resides, and section gives the section table index for the
strings. elf_strptr normally returns a pointer to a string, but it returns a null
pointer when elf is null, section is invalid or is not a section of type SHT_STRTAB, the
section data cannot be obtained, offset is invalid, or an error occurs.

EXAMPLES
A prototype for retrieving section names appears below. The file header specifies
the section name string table in the e_shstrndx member. The following code loops
through the sections, printing their names.

if «ehdr = elf32-getehdr(elf» == 0)
{

/* handle the error */
return;

ndx ehdr->e_shstrndx;
sen 0;
while «sen = elf_nextsen(elf, sen» != 0)
{

ehar *name = 0;
if «shdr = elf32_getshdr(sen» != 0)

name = elf_strptr(elf, ndx, (size_t)shdr->sh_name);
printf("'%s'\n", name? name: "(null)");

SEE ALSO

NOTES

480

elf(3E), elf-getdata(3E), elf_getshdr(3E), elf_xlate(3E)

A program may call elf_getdata to retrieve an entire string table section. For
some applications, that would be both more efficient and more convenient than
using elf_strptr.

elf_update (3E)

NAME
elf_update - update an ELF descriptor

SYNOPSIS
cc lflag .. .]file ... -lelf [library . ..]

#include <libelf.h>

off_t elf_update(Elf * elf, Elf_Cmd cmd);

DESCRIPTION
elf_update causes the library to examine the information associated with an ELF
descriptor, elf, and to recalculate the structural data needed to generate the file's
image.

cmd may have the following values.

This value tells elf_update to recalculate various values, updat
ing only the ELF descriptor's memory structures. Any modified
structures are flagged with the ELF _F _DIRTY bit. A program thus
can update the structural information and then reexamine them
without changing the file associated with the ELF descriptor.
Because this does not change the file, the ELF descriptor may
allow reading, writing, or both reading and writing [see
el f_begin(3E)].

If cmd has this value, elf_update duplicates its ELF _C_NULL
actions and also writes any /I dirty" information associated with
the ELF descriptor to the file. That is, when a program has used
elf--9'etdata or the elf_flag facilities to supply new (or update
existing) information for an ELF descriptor, those data will be
examined, coordinated, translated if necessary [see
elf_xlate(3E)], and written to the file. When portions of the file
are written, any ELF _F _DIRTY bits are reset, indicating those
items no longer need to be written to the file [see elf_flag(3E)].
The sections' data is written in the order of their section header
entries, and the section header table is written to the end of the
file.

When the ELF descriptor was created with elf_begin, it must
have allowed writing the file. That is, the elf_begin command
must have been either ELF _C_RDWR or ELF _C_WRITE.

If elf_update succeeds, it returns the total size of the file image (not the memory
image), in bytes. Otherwise an error occurred, and the function returns-1.

When updating the internal structures, elf_update sets some members itself.
Members listed below are the application's responsibility and retain the values
given by the program.

481

elf_update (3E)

ELF Header

Program Header

Section Header

Data Descriptor

482

Member
e_ident[EI_DATAl
e_type
e_machine
e_version
e_entry
e-phoff
e_shoff
e_flags
e_shstrndx

Member

Notes
Library controls other e_ident values

Only when ELF _F _LAYOUT asserted
Only when ELF _F _LAYOUT asserted

Notes
p_type
p_offset
p_vaddr
p-paddr
p_filesz
p_memsz
p_flags
p_align

The application controls all
program header entries

Member
sh_name
sh_type
sh_flags
sh_addr
sh_offset
sh_size
sh_link
sh_info

Notes

Only when ELF _F _LAYOUT asserted
Only when ELF _F _LAYOUT asserted

sh_addralign Only when ELF_F_LAYOUT asserted
sh_entsize

Member Notes
d_buf
d_type
d_size
d_off
d_align
d_version

Only when ELF _F _LAYOUT asserted

elf_update (3E)

Note the program is responsible for two particularly important members (among
others) in the ELF header. The e_version member controls the version of data
structures written to the file. If the version is EV_NONE, the library uses its own
internal version. The e_ident [EI_DATA] entry controls the data encoding used in
the file. As a special case, the value may be ELFDATANONE to request the native data
encoding for the host machine. An error occurs in this case if the native encoding
doesn't match a file encoding known by the library.

Further note that the program is responsible for the sh_entsize section header
member. Although the library sets it for sections with known types, it cannot reli
ably know the correct value for all sections. Consequently, the library relies on the
program to provide the values for unknown section type. If the entry size is
unknown or not applicable, the value should be set to zero.

When deciding how to build the output file, elf_update obeys the alignments of
individual data buffers to create output sections. A section's most strictly aligned
data buffer controls the section's alignment. The library also inserts padding
between buffers, as necessary, to ensure the proper alignment of each buffer.

SEE ALSO

NOTES

e1f(3E), e1f_begin(3E), e1f_f1ag(3E), e1f_fsize(3E), e1f_getdata(3E),
e1f_getehdr(3E), e1f_getshdr(3E), e1f_x1ate(3E)

As mentioned above, the ELF _C_WRITE command translates data as necessary,
before writing them to the file. This translation is not always transparent to the
application program. If a program has obtained pointers to data associated with a
file [for example, see e1f_getehdr(3E) and e1f_getdata(3E)], the program should
reestablish the pointers after calling elf_update.

As e1f_begin(3E) describes, a program may "update" a COFF file to make the
image consistent for ELF . (COFF is an object file format that preceded ELF on some
computer architectures [Intel, for example]. When a program calls elf_begin on a
COFF file, the library translates COFF structures to their ELF equivalents, allowing
programs to read (but not to write) a COFF file as if it were ELF. This conversion
happens only to the memory image and not to the file itself.) The ELF_C_NULL com
mand updates only the memory image; one can use the ELF _C_WRITE command to
modify the file as well. Absolute executable files (a.out files) require special align
ment, which cannot normally be preserved between COFF and ELF. Consequently,
one may not update an executable COFF file with the ELF _C_WRITE command
(though ELF _C_NULL is allowed).

483

elf_version (3E)

NAME
elf_version - coordinate ELF library and application versions

SYNOPSIS
cc [flag ...]file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_version(unsigned ver);

DESCRIPTION
As elf(3E) explains, the program, the library, and an object file have independent
notions of the "latest" ELF version. elf_version lets a program determine the ELF
library's internal version. It further lets the program specify what memory types it
uses by giving its own working version, ver, to the library. Every program that uses
the ELF library must coordinate versions as described below.

The header file libelf.h supplies the version to the program with the macro
EV_CURRENT. If the library'S internal version (the highest version known to the
library) is lower than that known by the program itself, the library may lack seman
tic knowledge assumed by the program. Accordingly, elf_version will not accept
a working version unknown to the library.

Passing ver equal to EV_NONE causes elf_version to return the library's internal
version, without altering the working version. If ver is a version known to the
library, elf_version returns the previous (or initial) working version number.
Otherwise, the working version remains unchanged and elf~version returns
EV_NONE.

EXAMPLES
The following excerpt from an application program protects itself from using an
older library.

if (elf_version (EV_CURRENT) == EV_NONE)
{

/* library out of date */
/* recover from error */

SEE ALSO

NOTES

484

elf(3E), elf_begin(3E), elf_xlate(3E)

The working version should be the same for all operations on a particular elf
descriptor. Changing the version between operations on a descriptor will probably
not give the expected results.

elf xlate (3E)

NAME
elf_xlate: elf32_xlatetof, elf32_xlatetom - class-dependent data translation

SYNOPSIS
cc fflag .. .]file ... -lelf [library . ..]

#include <libelf.h>

Elf_Data *elf32_xlatetof (Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf32_xlatetom{Elf_Data *dst, const Elf_Data *src,
unsigned encode);

DESCRIPTION
elf32_xlatetom translates various data structures from their 32-bit class file
representations to their memory representations; elf32_xlatetof provides the
inverse. This conversion is particularly important for cross development environ
ments. src is a pointer to the source buffer that holds the original data; dst is a
pointer to a destination buffer that will hold the translated copy. encode gives the
byte encoding in which the file objects are (to be) represented and must have one of
the encoding values defined for the ELF header's e_ident [EI_DATA] entry [see
elf_getident(3E)]. If the data can be translated, the functions return dst.
Otherwise, they return null because an error occurred, such as incompatible types,
destination buffer overflow, and so forth.

elf~etdata(3E) describes the Elf_Data descriptor, which the translation routines
use as follows.

Both the source and destination must have valid buffer pointers.

This member's value specifies the type of the data to which d_buf
points and the type of data to be created in the destination. The
program supplies a d_type value in the source; the library sets the
destination's d_type to the same value. These values are summar
ized below.

This member holds the total size, in bytes, of the memory occupied
by the source data and the size allocated for the destination data. If
the destination buffer is not large enough, the routines do not
change its original contents. The translation routines reset the
destination's d_size member to the actual size required, after the
translation occurs. The source and destination sizes may differ.

This member holds version number of the objects (desired) in the
buffer. The source and destination versions are independent.

Translation routines allow the source and destination buffers to coincide. That is,
dst->d_buf may equal src->d_buf. Other cases where the source and destina
tion buffers overlap give undefined behavior.

485

elf _ xlate (3E)

Elf_Type 32-Bit Memory Type

ELF_T_ADDR Elf32_Addr
ELF_T_BYTE unsigned char
ELF_T_DYN Elf32_Dyn
ELF_T_EHDR Elf32_Ehdr
ELF_T_HALF Elf32_Half
ELT_T_OFF Elf32_0ff
ELF_T_PHDR Elf32_Phdr
ELF_T_REL Elf32_Rel
ELF_T_RELA Elf32_Rela
ELF_T_SHDR Elf32_Shdr
ELF_T_SWORD Elf32_Sword
ELF_T_SYM Elf32_Sym
ELF_T_WORD Elf32_Word

"Translating" buffers of type ELF_T_BYTE does not change the byte order.

SEE ALSO
elf(3E), elf_fsize(3E), elf_getdata(3E), elf_getident(3E)

486

end (3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern etext;

extern edata;

extern end;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents;
only their addresses are meaningful.

etext The address of etext is the first address above the program text.

edata The address of edata is the first address above the initialized data region.

end The address of end is the first address above the uninitialized data region.

SEE ALSO

NOTE

brk(2), cc(l), malloc(3C), stdio(3S)

When execution begins, the program break (the first location beyond the data) coin
cides with end, but the program break may be reset by the routines brk, malloc,
the standard input/output library [see stdio(3S)], by the profile (-p) option of cc,
and so on. Thus, the current value of the program break should be determined by
sbrk (0) [see brk(2)].

487

erf(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
cc [flag . . .]file ... -1m [library . ..]

#include <math.h>

double erf (double x) ;

double erfc (double x);

DESCRIPTION
erf returns the error function of x, defined as

x

~J e- t2 dt
,j'It 0

erfc, which returns 1.0 - erf (x), is provided because of the extreme loss of rela
tive accuracy if erf (x) is called for large x and the result subtracted from 1.0 (for
example, for x = 5, 12 places are lost).

SEE ALSO
exp(3M)

488

ethers (3N)

NAME
ethers - Ethernet address mapping operations

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/socket.h>
#inc1ude <net/if.h>
#inc1ude <netinet/in.h>
#inc1ude <netinet/if_ether.h>

char *ether_ntoa(struct ether_addr *e);

struct ether_addr *ether_aton(char *s);

int ether_ntohost (char *hostname, struct ether_addr *e);

int ether_hostton(char *hostname, struct ether_addr *e);

int ether_1ine(char *1, struct ether_addr *e, char *hostname);

DESCRIPTION

FILES

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII
representations or their corresponding host names, and vice versa.

The function ether_ntoa converts a 48 bit Ethernet number pointed to by e to its
standard ASCII representation; it returns a pointer to the ASCII string. The
representation is of the form x:x:x:x:x:x where x is a hexadecimal number between a
and ff. The function ether_at on converts an ASCII string in the standard
representation back to a 48 bit Ethernet number; the function returns NULL if the
string cannot be scanned successfully.

The function ether_ntohost maps an Ethernet number (pointed to bye) to its
associated hostname. The string pointed to by hostname must be long enough to
hold the hostname and a NULL character. The function returns zero upon success
and non-zero upon failure. Inversely, the function ether_hostton maps a host
name string to its corresponding Ethernet number; the function modifies the Ether
net number pointed to bye. The function also returns zero upon success and non
zero upon failure. The function ether_line scans a line (pointed to by 1) and sets
the hostname and the Ethernet number (pointed to bye). The string pointed to by
hostname must be long enough to hold the hostname and a NULL character. The
function returns zero upon success and non-zero upon failure. The format of the
scanned line is described by ethers(4).

/etc/ethers

SEE ALSO
ethers(4)

489

exp(3M)

NAME
exp, expf, cbrt, log, logf, 10g10, 10g10f, pow, powf, sqrt, sqrtf - exponential,
logarithm, power, square root functions

SYNOPSIS
cc [flag . . .]file ... -1m [library . ..]
#include <math.h>

double exp (double x);

float expf (float x);

double cbrt (double x);

double log (double x);

float logf (float x);

double 10g10 (double x);

float 10g10f (float x);

double pow (double x, double y);

float powf (float x, float y);

double sqrt (double x);

float sqrtf (float x);

DESCRIPTION
exp and expf return eX.

cbrt returns the cube root of x.

log and 10gf return the natural logarithm of x. The value of x must be positive.

10g10 and 10g10f return the base ten logarithm of x. The value of x must be
positive.

pow and powf return xY. If x is 0, y must be positive. If x is negative, y must be an
integer.

sqrt and sqrtf return the non-negative square root of x. The value of x may not
be negative.

SEE ALSO
cc(l), hypot(3M), matherr(3M), sinh(3M)

DIAGNOSTICS

490

exp and expf return a value that will compare equal to HUGE when the correct value
would overflow, or 0 when the correct value would underflow, and set ermo to
ERANGE.

log, 10gf, 10g10, and 10g10f return a value that will compare equal to -HUGE and
set ermo to EDOM when x is non-positive. A message indicating DOMAIN error is
printed on standard error.

pow and powf return 0 and set ermo to EDOM when x is 0 and y is non-positive, or
when x is negative and y is not an integer. In these cases, a message indicating
DOMAIN error is printed on standard error. When the correct value for pow or powf
would overflow or underflow, these functions return a value that will compare
equal to ±HUGE or 0, respectively, and set ermo to ERANGE.

exp(3M)

sqrt and sqrtf return 0 and set ermo to EDOM when x is negative. A message
indicating DOMAIN error is printed on standard error.

Except when the -xc compilation option is used [see cc(l)], these error-handling
procedures may be changed with the function matherr. When the -Xa or -Xc com
pilation options are used [see cc(l)], the returned value will compare equal to
HUGE_VAL instead of HUGE and no error messages are printed. In these compilation
modes, pow and powf return 1, with no error, when both x and yare 0; when x is 0
and y is negative, they return a value that will compare equal to -HUGE_VAL and set
ermo to EDOM. Under -Xc, log and logf return a value that will compare equal to
-HUGE_VAL and set ermo to ERANGE when x is o. Under -Xc, sqrt and sqrtf
return NaN when x is negative.

491

fattach (3C)

NAME
fat tach - attach STREAMS-based file descriptor to file system object

SYNOPSIS
int fattach(int fildes, const char *path);

DESCRIPTION
The fattach routine attaches a STREAMS-based file descriptor to an object in the
file system name space, effectively associating a name with fildes. fildes must be a
valid open file descriptor representing a STREAMS file. path is a path name of an
existing object, and the effective user ID of the calling process must be be the owner
of the file and have write permissions, or the calling process must have appropriate
privilege (P_OWNER). All subsequent operations on path will operate on the
STREAMS file until the STREAMS file is detached from the node. fildes can be
attached to more than one path; that is, a stream can have several names associated
with it.

The attributes of the named stream [see stat(2)], are initialized as follows: the per
missions, user ID, group ID, and times are set to those of path, the number of links is
set to 1, and the size and device identifier are set to those of the streams device asso
ciated with fildes. If any attributes of the named stream are subsequently changed
[for example, chmod(2)], the attributes of the underlying object are not affected.

RETURN VALUE
If successful, fattach returns 0; otherwise it returns -1 and sets ermo to indicate
an error.

ERRORS
Under the following conditions, the function fat tach fails and sets ermo to:
EACCES Search permission is denied on a component of the path prefix.
EACCES The user is the owner of the file named by path but does not

EBADF

ENOENT

ENOTDIR

EINVAL

EPERM

EBUSY

ENAMETOOLONG

ELOOP

EREMOTE

have write permissions on path or fildes is locked.
fildes is not a valid open file descriptor.
path does not exist.
A component of a path prefix is not a directory.
fildes does not represent a STREAMS file.
The effective user ID of the calling process is not the owner of
the file named by path nor does the process have appropriate
privilege (P_OWNER).

path is currently a mount point or has a STREAMS file descriptor
attached it.
The size of path exceeds PATH_MAX, or the component of a path
name is longer than NAME_MAX while _POSIX_NO_TRUNC is in
effect.
Too many symbolic links were encountered in translating path.
path is a file in a remotely mounted directory.

SEE ALSO
fdetach(lM), fdetach(3C), isastream(3C), streamio(7)

492

fclose (3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (FILE *stream) i

int fflush (FILE *stream) i

DESCRIPTION
fclose causes any buffered data waiting to be written for the named stream [see
intro(3)] to be written out, and the stream to be closed. If the underlying file
pointer is not already at end of file, and the file is one capable of seeking, the file
pointer is adjusted so that the next operation on the open file pointer deals with the
byte after the last one read from or written to the file being closed.

fclose is performed automatically for all open files on calling exit.

If stream points to an output stream or an update stream on which the most recent
operation was not input, fflush causes any buffered data waiting to be written for
the named stream to be written to that file. Any unread data buffered in stream is
discarded. The stream remains open.

When calling fflush, if stream is a null pointer, all files open for writing are
flushed.

SEE ALSO
close(2), exit(2), intro(3), fopen(3S), setbuf(3S), stdio(3S)

DIAGNOSTICS
On successful completion these functions return a value of zero. Otherwise EOF is
returned.

493

fdetach (3C)

NAME
fdetach - detach a name from a STREAMS-based file descriptor

SYNOPSIS
int fdetach (const char *path);

DESCRIPTION
The fdetach routine detaches a STREAMS-based file descriptor from a name in the
file system. path is the path name of the object in the file system name space, which
was previously attached [see fattach(3C)]. The user must be the owner of the file
or a user with the appropriate privileges. All subsequent operations on path will
operate on the file system node and not on the STREAMS file. The permissions and
status of the node are restored to the state the node was in before the STREAMS file
was attached to it.

RETURN VALUE
If successful, fdetach returns 0; otherwise it returns -1 and sets ermo to indicate
an error.

ERRORS
Under the following conditions, the function fdetach fails and sets ermo to:

EPERM The effective user ID is not the owner of path or is not a user with
appropriate permissions.

ENOTDIR A component of the path prefix is not a directory.

ENOENT

EINVAL

path does not exist.

path is not attached to a STREAMS file.

ENAMETOOLONG

ELOOP

The size of path exceeds {PATH_MAX}, or a path name component is
longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

Too many symbolic links were encountered in translating path.

SEE ALSO
fattach(3C), fdetach(lM), streamio(7)

494

ferror(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror (FILE *stream);

int feof (FILE *stream);

void clearerr (FILE *stream);

int fileno (FILE *stream);

DESCRIPTION
ferror returns non-zero when an error has previously occurred reading from or
writing to the named stream [see intro(3)], otherwise zero.

feof returns non-zero when EOF has previously been detected reading the named
input stream, otherwise zero.

clearerr resets the error indicator and EOF indicator to zero on the named stream.

fileno returns the integer file descriptor associated with the named stream [see
open(2)].

SEE ALSO
fopen(3S), open(2), stdio(3S)

495

ffs(3C)

NAME
ffs - find first set bit

SYNOPSIS
#include <string.h>

int ffs(const inti);

DESCRIPTION

496

ffs finds the first bit set in the argument passed it and returns the index of that bit.
Bits are numbered starting at 1 from the low order bit. A return value of zero indi
cates that the value passed is zero.

(BSO System Compatibility) floatingpoint (3)

NAME
floatingpoint - (BSD) IEEE floating point definitions

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

#include <sys/ieeefp.h>
#include <fp.h>

DESCRIPTION
This file defines constants, types, variables, and functions used to implement stan
dard floating point according to ANSI/IEEE Std 754-1985. The variables and func
tions are implemented in libucb. a. The included file sys/ ieeefp. h defines cer
tain types of interest to the kernel.

IEEE Rounding Modes:
fp_direction_type The type of the IEEE rounding direction mode. Note: the

order of enumeration varies according to hardware.

fp_direction The IEEE rounding direction mode currently in force. This is
a global variable that is intended to reflect the hardware
state, so it should only be written indirectly through a func
tion that also sets the hardware state.

fp-precision_type The type of the IEEE rounding precision mode, which only
applies on systems that support extended precision.

fp-precision

SIGFPE Handling:

The IEEE rounding precision mode currently in force. This is
a global variable that is intended to reflect the hardware
state on systems with extended precision, so it should only
be written indirectly.

sigfpe_code_type The type of a SIGFPE code.

sigfpe_handler_type

SIGFPE_DEFAULT

The type of a user-definable SIGFPE exception handler
called to handle a particular SIGFPE code.

A macro indicating the default SIGFPE exception handling,
namely to perform the exception handling specified by calls
to ieee_handler(3), if any, and otherwise to dump core
using abort(3C).

A macro indicating an alternate SIGFPE exception handling,
namely to ignore and continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception handling,
namely to abort with a core dump.

IEEE Exception Handling:
N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each excep
tion is given a bit number.

497

floatingpoint (3) (BSO System Compatibility)

498

fp_exception_field_type
The type intended to hold at least N_IEEE_EXCEPTION bits
corresponding to the IEEE exceptions numbered by
fp_exception_type. Thus fp_inexact corresponds to the
least significant bit and fp_invalid to the fifth least
significant bit. Note: some operations may set more than
one exception.

fp_accrued_exceptions
The IEEE exceptions between the time this global variable
was last cleared, and the last time a function was called to
update the variable by obtaining the hardware state.

An array of user-specifiable signal handlers for use by the
standard SIGFPE handler for IEEE arithmetic-related SIGFPE
codes. Since IEEE trapping modes correspond to hardware
modes, elements of this array should only be modified with
a function like ieee_handler(3) that performs the
appropriate hardware mode update. If no sigfpe_handler
has been declared for a particular IEEE-related SIGFPE code,
then the related ieee_handlers will be invoked.

IEEE Formats and Classification:
single; extended Definitions of IEEE formats.

IEEE Base Conversion:

An enumeration of the various classes of IEEE values and
symbols.

The functions described under float ing_to_decimal (3) and
decimal_to_floating(3) not only satisfy the IEEE Standard, but also the stricter
requirements of correct rounding for all arguments.

DEClMAL_STRING_LENGTH

decimal_string

decimal_record

The length of a decimal_string.

The digit buffer in a decimal_record.

The canonical form for representing an unpacked decimal
floating-point number.

The type used to specify fixed or floating binary to decimal
conversion.

A struct that contains specifications for conversion between
binary and decimal.

decimal_string_for.m
An enumeration of possible valid character strings
representing floating-point numbers, infinities, or NaNs.

(BSO System Compatibility) floatingpoint (3)

FILES
/usr/include/sys/ieeefp.h
/usr/include/fp.h
/usr/ucblib/libucb.a

SEE ALSO
abort(3C), decimal_to_floating(3), econvert(3), floating_to_decimal(3),
ieee_handler(3), sigfpe(3), strtod(3C)

499

floor(3M)

NAME
floor, f1oorf, ceil, cei1f, copysign, fmod, fmodf, fabs, fabsf, rint,
remainder - floor, ceiling, remainder, absolute value functions

SYNOPSIS
cc lflag .. .]file ... -1m [library . ..]

#inc1ude <math.h>

double floor (double x);

float f100rf (float x);

double ceil (double x);

float cei1f (float x) ;

double copysign (double x, double y);

double fmod (double x, double y);

float fmodf (float x, float y);

double fabs (double x);

float fabsf (float x) ;

double rint (double x) ;

double remainder (double x, double y);

DESCRIPTION
floor and f100rf return the largest integer not greater than x. ceil and cei1f
return the smallest integer not less than x.

copysign returns x but with the sign of y.
fmod and fmodf return the floating point remainder of the division of x by y. More
precisely, they return the number I with the same sign as x, such that x = iy + I for
some integer i, and I II < I y I.
fabs and fabsf return the absolute value of x, I x I .
rint returns the nearest integer value to its floating point argument x as a double
precision floating point number. The returned value is rounded according to the
currently set machine rounding mode. If round-to-nearest (the default mode) is set
and the difference between the function argument and the rounded result is exactly
0.5, then the result will be rounded to the nearest even integer.

remainder returns the floating point remainder of the division of x by y. More pre
cisely, it returns the value r = x - yn, where n is the integer nearest the exact value
x/y. Whenever I n - x/y I = VI, then n is even.

SEE ALSO
abs(3C), cc(l), matherr(3M)

DIAGNOSTICS

500

fmod and fmodf return x when y is a and set ermo to EOOM. remainder returns
NaN when y is a and sets ermo to EOOM. In both cases, except in compilation modes
-Xa or -xc [see cc(l)], a message indicating OOMAIN error is printed on standard
error. Except under -Xc, these error-handling procedures may be changed with the
function matherr.

NAME

(BSD System Compatibility)floating_to_decimal (3)

floating_to_decimal:single_to_decimal,double_to_decimal,
extended_to_decimal - (BSD) convert floating-point value to decimal record

SYNOPSIS
/usr/ucb/cc [flag . ..] file ...

#include <fp.h>

void single_to_decimal(single *px,
decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps);

void double_to_decimal(double *px,
decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps);

void extended_to_decimal(extended *px,
decimal_mode *pm, decimal_record *pd,
fp_exception_field_type *ps);

DESCRIPTION
The floating_to_decimal functions convert the floating-point value at *px into a
decimal record at *pd, observing the modes specified in *pm and setting exceptions
in *ps. If there are no IEEE exceptions, *ps will be zero.

If *px is zero, infinity, or NaN, then only pd->sign and pd->fpclass are set. Otherwise
pd->exponent and pd->ds are also set so that

(pd->sign) * (pd->ds) *10** (pd->exponent)

is a correctly rounded approximation to *px. pd->ds has at least one and no more
than DEClMAL_STRING_LENGTH-1 significant digits because one character is used
to terminate the string with a NULL.

pd->ds is correctly rounded according to the IEEE rounding modes in pm->rd. *ps
has fp _inexact set if the result was inexact, and has fp _overflow set if the string result
does not fit in pd->ds because of the limitation DEClMAL_STRING_LENGTH.

If pm->df==floatingJorm, then pd->ds always contains pm->ndigits significant digits.
Thus if *px == 12.34 and pm->ndigits == 8, then pd->ds will contain 12340000 and pd
>exponent will contain-6.

If pm->df==fixed Jorm and pm->ndigits >= 0, then pd->ds always contains pm->ndigits
after the point and as many digits as necessary before the point. Since the latter is
not known in advance, the total number of digits required is returned in pd->ndigits;
if that number >= DEClMAL_STRING_LENGTH, then ds is undefined. pd->exponent
always gets -pm->ndigits. Thus if *px == 12.34 and pm->ndigits == 1, then pd->ds
gets 123, pd->exponent gets -I, and pd->ndigits gets 3.

If pm->df==fixed Jorm and pm->ndigits < 0, then pm->ds always contains -pm->ndigits
trailing zeros; in other words, rounding occurs -pm->ndigits to the left of the
decimal point, but the digits rounded away are retained as zeros. The total number
of digits required is in pd->ndigits. pd->exponent always gets o. Thus if *px == 12.34
and pm->ndigits == -I, then pd->ds gets 10, pd->exponent gets 0, and pd->ndigits gets
2. pd->more is not used.

501

floating_to _decimal (3) (aso System Compatibility)

econvert, fconvert, and gconvert [see econvert(3)], as well as printf and
sprintf [see printf(3S)], all use double_to_decimal.

SEE ALSO
econvert(3), printf(3S)

502

fmtmsg(3C)

NAME
fmtmsg - display a message on stderr or system console

SYNOPSIS
#include <fmtmsg.h>

int fmtmsg (long classification, const char * label, int severity,
const char *text, const char *action, const char * tag > ;

DESCRIPTION
Based on a message's classification component, fmtmsg writes a formatted message
to stderr, to the console, or to both.

fmtmsg can be used instead of the traditional printf interface to display messages
to stderr. fmtmsg, in conjunction with gettxt, provides a simple interface for
producing language-independent applications.

A formatted message consists of up to five standard components as defined below.
The component, classification, is not part of the standard message displayed to the
user, but rather defines the source of the message and directs the display of the for
matted message.

classification
Contains identifiers from the following groups of major classifications and
subclassifications. Anyone identifier from a subclass may be used in combi
nation by ~Ring the values together with a single identifier from a different
subclass. Two or more identifiers from the same subclass should not be used
together, with the exception of identifiers from the display subclass. (Both
display subclass identifiers may be used so that messages can be displayed to
both stderr and the system console).

"Major classifications" identify the source of the condition. Identifiers
are: MM_HARD (hardware), MM_SOFT (software), and MM_FIRM (firmware).

"Message source subclassifications" identify the type of software in
which the problem is spotted. Identifiers are: MMjU'PL (application),
MM_UTIL (utility), and MM_OPSYS (operating system).

"Display subclassifications" indicate where the message is to be
displayed. Identifiers are: MM_PRINT to display the message on the stan
dard error stream, MM_CONSOLE to display the message on the system con
sole. Neither, either, or both identifiers may be used.

"Status subclassifications" indicate whether the application will recover
from the condition. Identifiers are: MM_RECOVER (recoverable) and
MM_NRECOV (non-recoverable).

An additional identifier, MM_NULLMC, indicates that no classification com
ponent is supplied for the message.

label Identifies the source of the message. The format of this component is two
fields separated by a colon. The first field is up to 10 characters long; the
second is up to 14 characters. Suggested usage is that label identifies the
package in which the application resides as well as the program or applica
tion name. For example, the label UX:cat indicates the UNIX System V pack
age and the cat application.

503

fmtmsg(3C)

504

severity
Indicates the seriousness of the condition. Identifiers for the standard levels
of severity are:

MM_HALT indicates that the application has encountered a severe fault
and is halting. Produces the print string HALT.

MM_ERROR indicates that the application has detected a fault. Produces
the print string ERROR.

MM_WARNING indicates a condition out of the ordinary that might be a prob
lem and should be watched. Produces the print string WARN

ING.

MM_INFO provides information about a condition that is not in error.
Produces the print string INFO.

MM_NOSEV indicates that no severity level is supplied for the message.

Other severity levels may be added by using the addseverity routine.

text Describes the condition that produced the message. If the text string is null,
then a message stating that no text has been provided will be issued.

action Describes the first step to be taken in the error recovery process. fmtmsg pre
cedes each action string with the prefix: TO FIX:. The action string is not
limited to a specific size.

tag An identifier which references on-line documentation for the message. Sug
gested usage is that tag includes the label and a unique identifying number.
A sample tag is UX:cat: 146.

Environment Variables
There are two environment variables that control the behavior of fmtmsg: MSGVERB
and SEV _LEVEL.

MSGVERB tells fmtmsg which message components it is to select when writing mes
sages to stderr. The value of MSGVERB is a colon-separated list of optional key
words. MSGVERB can be set as follows:

MSGVERB=[keyword[: keyword [: ...]]]
export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB contains
a keyword for a component and the component's value is not the component's null
value, fmtmsg includes that component in the message when writing the message to
stderr. If MSGVERB does not include a keyword for a message component, that
component is not included in the display of the message. The keywords may
appear in any order. If MSGVERB is not defined, if its value is the null-string, if its
value is not of the correct format, or if it contains keywords other than the valid
ones listed above, fmtmsg selects all components.

The first time fmtmsg is called, it examines the MSGVERB environment variable to see
which message components it is to select when generating a message to write to the
standard error stream, stderr. The values accepted on the initial call are saved for
future calls.

fmtmsg(3C)

MSGVERB affects only which components are selected for display to the standard
error stream. All message components are included in console messages.

SEV _LEVEL defines severity levels and associates print strings with them for use by
fmtmsg. The standard severity levels shown below cannot be modified. Additional
severity levels can also be defined, redefined, and removed using addseverity [see
addseveri ty(3C)]. If the same severity level is defined by both SEV _LEVEL and
addseverity, the definition by addseverity is controlling.

o (no severity is used)
1 HALT
2 ERROR

3 WARNING
4 INFO

SEV _LEVEL can be set as follows:

SEV _LEVEL= [description [: description [: ...]]]
export SEV _LEVEL

description is a comma-separated list containing three fields:

description=severity jceyword, level, printstring

severity_keyword is a character string that is used as the keyword on the -s severity
option to the fmtmsg command. (This field is not used by the fmtmsg function.)

level is a character string that evaluates to a positive integer (other than 0, 1,2,3, or
4, which are reserved for the standard severity levels). If the keyword
severity_keyword is used, level is the severity value passed on to the fmtmsg function.

printstring is the character string used by fmtmsg in the standard message format
whenever the severity value level is used.

If a description in the colon list is not a three-field comma list, or, if the second field
of a comma list does not evaluate to a positive integer, that description in the colon
list is ignored.

The first time fmtmsg is called, it examines the SEV _LEVEL environment variable, if
defined, to see whether the environment expands the levels of severity beyond the
five standard levels and those defined using addseverity. The values accepted on
the initial call are saved for future calls.

Use in Applications
One or more message components may be systematically omitted from messages
generated by an application by using the null value of the argument for that com
ponent.

505

fmtmsg(3C)

The table below indicates the null values and identifiers for fmtmsg arguments.

Argument Type Null-Value Identifier
label char* (char*) NULL Ml'CNULLLBL
severity int 0 MM_NULLSEV
class long OL MM_NULLMC
text char* (char*) NULL MM_NULLTXT
action char* (char*) NULL MM_NULLACT
tag char* (char*) NULL MM_NULLTAG

Another means of systematically omitting a component is by omitting the com
ponent keyword(s) when defining the MSGVERB environment variable (see the
"Environment Variables" section).

EXAMPLES
Example 1:

NOTES

506

The following example of fmtmsg:

fmtmsg(MM_PRINT, "UX:cat", MM_ERROR, "invalid syntax", "refer
to manual", "UX:cat:001")

produces a complete message in the standard message format:

UX:cat: ERROR: invalid syntax
TO FIX: refer to manual

Example 2:

UX:cat:OOl

When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and the Example 1 is used, fmtmsg produces:

ERROR: invalid syntax
TO FIX: refer to manual

Example 3:

When the environment variable SEV _LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following call to fmtmsg:

fmtmsg(MM_UTIL I MM_PRINT, "UX:cat", 5, "invalid syntax",
"refer to manual", "UX:cat:001")

produces:

UX: cat: NOTE: invalid syntax
TO FIX: refer to manual UX:cat:OOl

A slightly different standard error message format and a new developer interface,
pfmt, is being introduced as the replacement for fmtmsg. A similar interface, lfmt,
is also being introduced for producing a standard format message and forwarding
messages to the console and/or to the system message logging and monitoring
facilities. fmtmsg will be removed and replaced by pfmt(3C) in a future release.

fmtmsg{3C)

SEE ALSO
addseverity(3C), fmtmsg(l), gettxt(3C), printf(3S)

DIAGNOSTICS
The exit codes for fmtmsg are the following:

M!COK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on the standard error
stream, but otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but otherwise
succeeded.

507

fopen{3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen (const char *filename, const char *type);

FILE *freopen (const char *filename, const char * type,
FILE * stream) ;

FILE *fdopen (intfildes, const char *type);

DESCRIPTION

508

fopen opens the file named by filename and associates a stream with it. fopen
returns a pointer to the FILE structure associated with the stream.

filename points to a character string that contains the name of the file to be opened.

type is a character string beginning with one of the following sequences:

"r" or "rb" open for reading

"w" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing

"r+", "r+b" or "rb+"
open for update (reading and writing)

"w+ ", "w+b" or "wb+"
truncate or create for update

"a+", "a+b" or "ab+"
append; open or create for update at end-of-file

The lib" is ignored in the above types. The lib" exists to distinguish binary files
from text files. However, there is no distinction between these types of files on a
UNIX system.

freopen substitutes the named file in place of the open stream. A flush is first
attempted, and then the original stream is closed, regardless of whether the open
ultimately succeeds. Failure to flush or close stream successfully is ignored.
freopen returns a pointer to the FILE structure associated with stream.

freopen is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files. stderr is by default unbuffered, but the use of
freopen will cause it to become buffered or line-buffered.

fdopen associates a stream with a file descriptor. File descriptors are obtained from
open, dup, creat, or pipe, which open files but do not return pointers to a FILE
structure stream. Streams are necessary input for almost all of the Section 3S library
routines. The type of stream must agree with the mode of the open file. The file
position indicator associated with stream is set to the position indicated by the file
offset associated with fildes.

fopen (3S)

When a file is opened for update, both input and output may be done on the result
ing stream. However, output may not be directly followed by input without an
intervening fflush, fseek, fsetpos, or rewind, and input may not be directly fol
lowed by output without an intervening fseek, fsetpos, or rewind, or an input
operation that encounters end-of-file.

When a file is opened for append (i.e., when type is "a", "ab", "a+", or "ab+"), it is
impossible to overwrite information already in the file. fseek may be used to repo
sition the file pointer to any position in the file, but when output is written to the
file, the current file pointer is disregarded. All output is written at the end of the
file and causes the file pointer to be repositioned at the end of the output. If two
separate processes open the same file for append, each process may write freely to
the file without fear of destroying output being written by the other. The output
from the two processes will be intermixed in the file in the order in which it is
written.

When opened, a stream is fully buffered if and only if it can be determined not to
refer to an interactive device. The error and end-of-file indicators are cleared for the
stream.

SEE ALSO
close(2), creat(2), dup(2), fclose(3S), fseek(3S), open(2), pipe(2), setbuf(3S),
stdio(3S), write(2)

DIAGNOSTICS
The functions fopen and freopen return a null pointer if path cannot be accessed,
or if type is invalid, or if the file cannot be opened.

The function fdopen returns a null pointer if fildes is not an open file descriptor, or
if type is invalid, or if the file cannot be opened.

The functions fopen or fdopen may fail and not set ermo if there are no free
stdio streams.

File descriptors used by fdopen must be less than 255.

509

fopen(3S) (BSD System Compatibility)

NAME
fopen, freopen, fdopen - (BSD) open a stream

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <stdio.h>

FILE *fopen(const char *filename, const char *type);

FILE *freopen(const char *filename, const char *type, FILE *stream);

FILE *fdopen(int fildes, const char *type);

DESCRIPTION
fopen opens the file named by filename and associates a stream with it. If the open
succeeds, fopen returns a pointer to be used to identify the stream in subsequent
operations.

filename points to a character string that contains the name of the file to be opened.

type is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append: open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at EOF

freopen opens the file named by filename and associates the stream pointed to by
stream with it. The type argument is used just as in fopen. The original stream is
closed, regardless of whether the open ultimately succeeds. If the open succeeds,
freopen returns the original value of stream.

freopen is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files.

fdopen associates a stream with the file descriptor fildes. File descriptors are
obtained from calls like open, dup, creat, or pipe(2), which open files but do not
return streams. Streams are necessary input for many of the Section 35 library rou
tines. The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the result
ing stream. However, output may not be directly followed by input without an
intervening fseek or rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an input operation which encounters
EOF.

SEE ALSO
fclose(3S), fopen(3S), fseek(3S), malloc(3C), open(2), pipe(2)

RETURN VALUE
fopen, freopen, and fdopen return a NULL pointer on failure.

510

NOTES

(BSO System Compatibility) fopen(3S)

The BSD System Compatibility Package fopen and freopen are identical to the
routines in libc with one exception. When type is a, fopen and freopen will set the
file position indicator on the stream to end of file.

511

forms (3curses)

NAME
forms - character based forms package

SYNOPSIS
#include <fo~.h>

DESCRIPTION

512

The fo~ library is built using the curses library, and any program using forms
routines must call one of the curses initialization routines such as initscr. A pro
gram using these routines must be compiled with -lfo~ and -lcurses on the cc
command line.

The forms package gives the applications programmer a terminal-independent
method of creating and customizing forms for user-interaction. The fo~s package
includes: field routines, which are used to create and customize fields, link fields
and assign field types; fieldtype routines, which are used to create new field types
for validating fields; and form routines, which are used to create and customize
forms, assign pre/post processing functions, and display and interact with forms.

Current Default Values for Field Attributes
The forms package establishes initial current default values for field attributes.
During field initialization, each field attribute is assigned the current default value
for that attribute. An application can change or retrieve a current default attribute
value by calling the appropriate set or retrieve routine with a NULL field pointer. If
an application changes a current default field attribute value, subsequent fields
created using new_field will have the new default attribute value. (The attributes
of previously created fields are not changed if a current default attribute value is
changed.)

Routine Name Index
The following table lists each forms routine and the name of the manual page on
which it is described.

forms Routine Name
current_field
data_ahead
data_behind
dup_field
dynamic_field_info
field_arg
field_back
field_buffer
field_count
field_fore
field_index
field_info
field_init
field_just
field_opts
field_opts_off

Manual Page Name

fo~-page(3curses)
fo~_data(3curses)
fo~_data(3curses)
fo~_f ield_new(3curses)
fo~_f ield_info(3curses)
fODn_field_validation(3curses)
fODn_f ield_at tributes (3curses)
fODn_f ield_buffer(3curses)
fODn_field(3curses)
fODn_f ield_at tributes(3curses)
fODn-page(3curses)
fODn_f ield_info(3curses)
fODn_hook(3curses)
fODn_f ield_just(3curses)
fODn_f ield_opts(3curses)
fODn_f ield_opts(3curses)

fo:ml.S Routine Name

field_opts_on
field..J)ad
field_status
field_tenn
field_type
field_userptr
fonn_driver
fonn_fields
fonn_init
fonn_opts
fonn_opts_off
fonn_opts_on
fonn..J)age
fonn_sub
fonn_tenn
fonn_userptr
fonn_win
free_field
free_fieldtype
free_fonn
link_field
link_fieldtype
move_field
new_field
new_fieldtype
new_fonn
new..J)age
pos_fonn_cursor
post_fonn
scale_fonn
set current_field
set_field_back
set_field_buffer
set_field_fore
set_field_init
set_field~ust

set_field_opts
set_field..J)ad
set_field_status
set_field_tenn
set_field_type
set_field_userptr
set_fieldtype_arg
set_fieldtype_choice
set_fonn_fields
set_forIILinit

forms (3curses)

Manual Page Name

fornLfield_opts(3curses)
fOrIYLf ield_at tributes (3curses)
fornLf ield_buf fer(3curses)
fOrIILhook(3curses)
fonn_f ie 1 d_va 1 idat ion(3curses)
fonn_f ield_userptr(3curses)
fonn_dri ver(3curses)
fonn_f ield(3curses)
fonn_hook(3curses)
fonn_opts(3curses)
fonn_opts(3curses)
fonn_opts(3curses)
fonn..J)age(3curses)
fonn_win(3curses)
fonn_hook(3curses)
fonn_userptr(3curses)
fonn_win(3curses)
fonn_f ield_new(3curses)
fonn_f ieldtype(3curses)
fonn_new(3curses)
fonn_f ield_new(3curses)
fonn_f ieldtype(3curses)
fonn_field(3curses)
fonn_field_new(3curses)
fonn_f ieldtype(3curses)
fonn_new(3curses)
fonn_new..J)age(3curses)
fonn_cursor(3curses)
fonn..J)ost(3curses)
fonn_win(3curses)
fonn..J)age(3curses)
fonn_field_at tributes(3curses)
fonn_f ield_buffer(3curses)
fonn_field_attributes(3curses)
fonn_hook(3curses)
fonn_f ield~ust(3curses)
fonn_f ield_opts(3curses)
fonn_f ield_attributes(3curses)
fonn_f ield_buffer(3curses)
fonn_hook(3curses)
fonn_f ield_ validation(3curses)
fonn_f ield_userptr(3curses)
fonn_f ieldtype(3curses)
fonn_fieldtype(3curses)
fonn_f ield(3curses)
fonn_hook(3curses)

513

forms (3curses)

forms Routine Name

set_folE_opts
set_folE-page
set_folE_sub
set_folE_telE
set_folE_userptr
set_folE_win
set_max_field
set_new-page
unpost_form

Manual Page Name
fOlE_opts(3curses)
fOlE-page(3curses)
fOlE_win(3curses)
fOlE_hook(3curses)
fOlE_userptr(3curses)
fOlE_win(3curses)
fOlE_f ield_buf fer(3curses)
fOlE_new-page(3curses)
fOlE-post(3curses)

RETURN VALUE

NOTES

Routines that return a pointer always return NULL on error. Routines that return an
integer return one of the following:

E_OK - The function returned successfully.
E_CONNECTED - The field is already connected to a form.
E_SYSTEl'CERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_CURRENT - The field is the current field.
E_POSTED - The form is posted.
E_NOT_POSTED - The form is not posted.
E_INVALID_FIELD - The field contents are invalid.
E_NOT_CONNECTED - The field is not connected to a form.
E_NO_ROOM - The form does not fit in the subwindow.
E_BAD_STATE - The routine was called from an initiali-

zation or termination function.
E_REQUEST_DENIED - The form driver request failed.
E_UNKNOWN_COMMAND - An unknown request was passed to the

the form driver.

The header file fOlE. h automatically includes the header files eti. hand
curses.h.

SEE ALSO

514

curses(3curses), and 3curses pages whose names begin "folE_" for detailed rou
tine descriptions

form_cursor (3curses)

NAME
fOrIlLcursor: pos_fonn_cursor - position fonne window cursor

SYNOPSIS
#include <fonn.h>

int pos_fonn_cursor(FORM *jorm);

DESCRIPTION
pos_fonn_cursor moves the form window cursor to the location required by the
form driver to resume form processing. This may be needed after the application
calls a curses library I/O routine.

RETURN VALUE

NOTES

pos_fonn_cursor returns one of the following:

E_OK - The function returned successfully.
E_SYSTEl'CERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_NOT_POSTED - The form is not posted.

The header file fonn.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3curses) I fonne(3curses)

515

form data (3curses)

NAME
fonn_data: data_ahead, data_behind - tell if fonns field has off-screen data
ahead or behind

SYNOPSIS
#include <fonn.h>

int data_ahead{FORM *jorm);
int data_behind{FORM *jorm);

DESCRIPTION

NOTES

data_ahead returns TRUE (1) if the current field has more off-screen data ahead;
otherwise it returns FALSE (0).

data_behind returns TRUE (1) if the current field has more off-screen data behind;
otherwise it returns FALSE (0) .

The header file fonn.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), fonns(3curses)

516

form_driver (3curses)

NAME
fonn_dri ver - command processor for the fonne subsystem

SYNOPSIS
#include <fonn.h>

int fonn_driver(FORM *form, int c);

DESCRIPTION
fonn_dri ver is the workhorse of the fonne subsystem; it checks to determine
whether the character c is a fonne request or data. If it is a request, the form driver
executes the request and reports the result. If it is data (a printable ASCII charac
ter), it enters the data into the current position in the current field. If it is not recog
nized, the form driver assumes it is an application-defined command and returns
E_UNKNOWN_COMMAND. Application defined commands should be defined relative to
MAX_COMMAND, the maximum value of a request listed below.

Form driver requests:

RE~NEXT_PAGE

RE~PREV_PAGE

RE~FIRST_PAGE

RE~LAST_PAGE

RE~NEXT_FIELD

RE~PREV_FIELD

RE~FIRST_FIELD

RE~LAST_FIELD

RE~SNEXT_FIELD

RE~SPREV_FIELD

RE~SFIRST_FIELD

RE~SLAST_FIELD

RE~LEFT_FIELD

RE~RIGHT_FIELD

RE~UP_FIELD

RE~DOWN_FIELD

RE~NEXT_CHAR

RE~PREV_CHAR

RE~NEXT_LlNE

RE~PREV_LlNE

RE~NEXT_WORD

RE~PREV_WORD

RE~BEG_FIELD

RE~END_FIELD

RE~BEG_LlNE

RE~END_LlNE

RE~LEFT_CHAR

RE~RIGHT_CHAR

RE~UP_CHAR

RE~DOWN_CHAR

RE~NEW_LlNE

Move to the next page.
Move to the previous page.
Move to the first page.
Move to the last page.
Move to the next field.
Move to the previous field.
Move to the first field.
Move to the last field.
Move to the sorted next field.
Move to the sorted prev field.
Move to the sorted first field.
Move to the sorted last field.
Move left to field.
Move right to field.
Move up to field.
Move down to field.
Move to the next character in the field.
Move to the previous character in the field.
Move to the next line in the field.
Move to the previous line in the field.
Move to the next word in the field.
Move to the previous word in the field.
Move to the first char in the field.
Move after the last char in the field.
Move to the beginning of the line.
Move after the last char in the line.
Move left in the field.
Move right in the field.
Move up in the field.
Move down in the field.
Insert/ overlay a new line.

517

form_driver (3curses)

RE~INS_CHAR

RE~INS_LlNE

RE~DEL_CHAR

~DEL_PREV

RE~DEL_LlNE

RE~DEL_WORD

RE~CLR_EOL

RE~CLR_EOF

RE~CLR_FIELD

RE~OVL_MODE

RE~INS_MODE

RE~SCR_FLlNE

RE~SCR_BLlNE

RE~SCR_FPAGE

RE~SCR_BPAGE

RE~SCR_FHPAGE

RE~SCR_BHPAGE

RE~SCR_FCHAR

RE~SCR_BCHAR

RE~SCR_HFLlNE

RE~SCR_HBLlNE

RE~SCR_HFHALF

RE~SCR_HBHALF

RE~VALIDATION

RE~PREV_CHOICE

RE~NEXT_CHOICE

Insert the blank character at the cursor.
Insert a blank line at the cursor.
Delete the character at the cursor.
Delete the character before the cursor.
Delete the line at the cursor.
Delete the word at the cursor.
Clear to the end of the line.
Clear to the end of the field.
Clear the entire field.
Enter overlay mode.
Enter insert mode.
Scroll the field forward a line.
Scroll the field backward a line.
Scroll the field forward a page.
Scroll the field backward a page.
Scroll the field forward half a page.
Scroll the field backward half a page.
Horizontal scroll forward a character.
Horizontal scroll backward a character.
Horizontal scroll forward a line.
Horizontal scroll backward a line.
Horizontal scroll forward half a line.
Horizontal scroll backward half a line.
Validate field.
Display the previous field choice.
Display the next field choice.

RETURN VALUE

NOTES

forIILdri ver returns one of the following:

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_NOT_POSTED - The form is not posted.
E_INVALID_FIELD - The field contents are invalid.
E_BAD_STATE - The routine was called from an initialization or termi-

nation function.
E_REQUEST_DENIED - The form driver request failed.
E_UNKNOWN_COMMAND - An unknown request was passed to the the form

driver.

The header file form.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), forms(3curses)

518

NAME

form_field (3curses)

form_field: set_form_fields, form_fields, field_count, move_fie ld-con
nect fields to for.ms

SYNOPSIS
#include <form.h>

int set_fo~fields (FORM *form, FIELD **field);
FIELD * * form_fields (FORM *form);
int field_count (FORM *form);
int move_field(FIELD *field, int frow, int feol>;

DESCRIPTION
set_form_fields changes the fields connected to form to fields. The original fields
are disconnected.

form_fields returns a pointer to the field pointer array connected to form.

field_count returns the number of fields connected to form.

move_field moves the disconnected field to the location frow, feol in the for.ms
subwindow.

RETURN VALUE

NOTES

form_fields returns NULL on error.

field_count returns -1 on error.

set_form_fields and move_field return one of the following:

E_OK - The function returned successfully.
E_CONNECTED - The field is already connected to a form.
E_SYSTEt'CERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_POSTED - The form is posted.

The header file form.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), for.ms(3curses)

519

form _ fieldtype (3curses)

NAME
for.m_fieldtype:new_fieldtype,free_fieldtype,set_fieldtype_arg,
set_fieldtype_choice, link_fieldtype - for.ms fieldtype routines

SYNOPSIS
#include <for.m.h>

FIELDTYPE *new_fieldtype(int (* field_check) (FIELD *, char *) I

int (* char check) (int, char *»;
int free_fieldtype (FIELDTYPE *fieldtype);
int set_fieldtype_arg(FIELDTYPE *fieldtype ,

char * (* mak _arg) (va_list *) I

char * (* copy_arg) (char *) I void (* free_arg) (char *»;
int set_fieldtype_choice (FIELDTYPE *fieldtype ,

int (* next choice) (FIELD * I char *) I

int (* prev =choice) (FIELD * I char *»;
FIELDTYPE * link_f ieldtype (FIELDTYPE * typel I FIELDTYPE * type2) ;

DESCRIPTION
new_fieldtype creates a new field type. The application programmer must write
the function field_check, which validates the field value, and the function char_check,
which validates each character. free_fieldtype frees the space allocated for the
field type.

By associating function pointers with a field type, set_fieldtype_arg connects to
the field type additional arguments necessary for a set_field_type calL Function
mak _arg allocates a structure for the field specific parameters to set_field_type
and returns a pointer to the saved data. Function copy_arg duplicates the structure
created by mak_arg. Function free_arg frees any storage allocated by mak_arg or
copy_argo

The for.m_dri ver requests RE~NEXT_CHOICE and RE~PREV _CHOICE let the user
request the next or previous value of a field type comprising an ordered set of
values. set_fieldtype_choice allows the application programmer to implement
these requests for the given field type. It associates with the given field type those
application-defined functions that return pointers to the next or previous choice for
the field.

link_fieldtype returns a pointer to the field type built from the two given types.
The constituent types may be any application-defined or pre-defined types.

RETURN VALUE

NOTES

520

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK - The function returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_CONNECTED - Type is connected to one or more fields.

The header file for.m.h automatically includes the header files eti.h and
curses.h.

form _ fieldtype (3curses)

SEE ALSO
curses(3curses), fonns(3curses)

521

form _field _attributes (3curses)

NAME
for.m_field_attributes: set_field_fore, field_fore, set_field_back,
field_back, set_field-pad, field-pad - format the general display attributes of
for.ms

SYNOPSIS
#include <for.m.h>

int set_field_fore (FIELD *field, chtype attr);
chtype field_fore (FIELD *field);
int set_field_back (FIELD *field, chtype attr);
chtype field_back (FIELD *field);
int set_field-pad(FIELD *field, int pad);
int field-pad(FIELD *field);

DESCRIPTION
set_field_fore sets the foreground attribute of field. The foreground attribute is
the low-level curses display attribute used to display the field contents.
field_fore returns the foreground attribute offield.

set_field_back sets the background attribute offield. The background attribute is
the low-level curses display attribute used to display the extent of the field.
field_back returns the background attribute of field.

set_field-pad sets the pad character of field to pad. The pad character is the char
acter used to fill within the field. field-pad returns the pad character offield.

RETURN VALUE

NOTES

field_fore, field_back and field-pad return default values if field is NULL. If
field is not NULL and is not a valid FIELD pointer, the return value from these rou
tines is undefined.

set_field_fore, set_field_back and set_field-pad return one of the follow
ing:

E_OK

E_SYSTEl-CERROR
E_BAD_ARGUMENT

- The function returned successfully.
- System error.
- An argument is incorrect.

The header file for.m.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), for.ms(3curses)

522

NAME

form _field_buffer (3curses)

form_field_buffer: set_field_buffer, field_buffer, set_field _status,
field_status, set_InaX_field - set and get for.ms field attributes

SYNOPSIS
#include <form.h>

int set_field_buffer(FIELD *field, int buf, char *value);
char *field_buffer(FIELD *field, int buf);
int set_field_status (FIELD *field, int status);
int field_status (FIELD *field);
int set_InaX_field(FIELD *field, int max);

DESCRIPTION
set_field_buffer sets buffer buf of field to value. Buffer a stores the displayed
contents of the field. Buffers other than a are application specific and not used by
the for.ms library routines. field_buffer returns the value of field buffer buf

Every field has an associated status flag that is set whenever the contents of field
buffer a changes. set_field_status sets the status flag of field to status.
field_status returns the status offield.

set_InaX_field sets a maximum growth on a dynamic field, or if max=O turns off
any maximum growth.

RETURN VALUE

NOTES

field_buffer returns NULL on error.

field_status returns TRUE or FALSE.

set_field_buffer, set_field_status and set_InaX_field return one of the fol
lowing:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT

- The function returned successfully.
- System error.
- An argument is incorrect.

The header file form. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), for.ms(3curses)

523

form _field _info (3curses)

NAME
fornLfield_info: field_info, dynamic_field_info - get forms field charac
teristics

SYNOPSIS
#include <for.m.h>

int field_info{FIELD field, int rows, int cols, int frow, int fcol,
int nrow, int nbuj);

int dynamic_field_info{FIELD field, int drows, int dcols, int max);

DESCRIPTION
field_info returns the size, position, and other named field characteristics, as
defined in the original call to new_field, to the locations pointed to by the argu
ments rows, cols, frow, fcol, nrow, and nbuf

dynamic_field_info returns the actual size of the field in the pointer arguments
drows, dcols and returns the maximum growth allowed for field in max. If no max
imum growth limit is specified for field, max will contain O. A field can be made
dynamic by turning off the field option O_STATIC.

RETURN VALUE

NOTES

These routines return one of the following:

E_OK
E_SYSTEt'LERROR
E_BAD_ARGUMENT

- The function returned successfully.
- System error.
- An argument is incorrect.

The header file for.m.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), forms(3curses)

524

NAME

form _field just (3curses)

fornLfield_just: set_field_just, field_just - format the general appearance
of forms

SYNOPSIS
#include <for.m.h>

int set_field_just (FIELD *field, int justification);
int field_just (FIELD *field);

DESCRIPTION
set_field_just sets the justification for field. Justification may be one of:

NO_JUSTIFICATION,JUSTIFY_RIGHT,JUSTIFY_LEFT,orJUSTIFY_CENTER.

The field justification will be ignored if field is a dynamic field.

Field justification will not be allowed for a non-editable field. However, if the field
was already justified before making it non-editable, it will remain justified.

field_just returns the type of justification assigned to field.

RETURN VALUE

NOTES

field-=iust returns the one of:
NO_JUSTIFICATION,JUSTIFY_RIGHT,JUSTIFY_LEFT,orJUSTIFY_CENTER.

set_field_just returns one of the following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_REQUEST_DENIED

- The function returned successfully.
- System error.
- An argument is incorrect.
- Justification request denied.

The header file for.m.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), forms(3curses)

525

form _field_new (3curses)

NAME
fornLfield_new: new_field, dup_field, link_field, free_field, - create and
destroy forms fields

SYNOPSIS
#include <for.m.h>

FIELD *new_field(int r, int e, int frow, int feol, int nrow, int neal>;
FIELD *dup_field(FIELD *field, int frow, int feol>;
FIELD *link_field(FIELD *field, int frow, int feol>;
int free_field(FIELD *field>;

DESCRIPTION
new_field creates a new field with r rows and e columns, starting at frow, feol, in
the subwindow of a form. nrow is the number of off-screen rows and nbuf is the
number of additional working buffers. This routine returns a pointer to the new
field.

dup_field duplicates field at the specified location. All field attributes are dupli
cated, including the current contents of the field buffers.

link_field also duplicates field at the specified location. However, unlike
dup_field, the new field shares the field buffers with the original field. After crea
tion, the attributes of the new field can be changed without affecting the original
field.

free_field frees the storage allocated for field.

RETURN VALUE

NOTES

Routines that return pointers return NULL on error. free_field returns one of the
following:

E_OK
E_CONNECTED
E_SYSTEl':LERROR
E~_ARGUMENT

- The function returned successfully.
- The field is already connected to a form.
- System error.
- An argument is incorrect.

The header file for.m. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
forms (3curses)

526

form field opts (3curses)
- -

NAME
form_field_opts: set_field_opts, field_opts_on,
field_opts - forms field option routines

SYNOPSIS
#include <form.h>

int set_field_opts (FIELD *field, OPTIONS opts);
int field_opts_on(FIELD *field, OPTIONS opts);
int field_opts_off (FIELD *field, OPTIONS opts);
OPTIONS field_opts (FIELD *field);

DESCRIPTION
set_field_opts turns on the named options of field and turns off all remaining
options. Options are boolean values that can be OR-ed together.

field_opts_on turns on the named options; no other options are changed.

field_opts_off turns off the named options; no other options are changed.

field_opts returns the options set for field.

Field Options:

O_VISIBLE
O_ACTIVE
O_PUBLIC
O_EDIT
O_WRAP
O_BLANK

O_AUTOSKIP
O_NULLOK
O_STATIC
O_PASSOK

The field is displayed.
The field is visited during processing.
The field contents are displayed as data is entered.
The field can be edited.
Words not fitting on a line are wrapped to the next line.
The whole field is cleared if a character is entered in the
first position.
Skip to the next field when the current field becomes full.
A blank field is considered valid.
The field buffers are fixed in size.
Validate field only if modified by user.

RETURN VALUE

NOTES

set_field_opts, field_opts_on and field_opts_off return one of the follow
ing:

E_OK
E_SYSTEt-CERROR
E_CURRENT

- The function returned successfully.
- System error.
- The field is the current field.

The header file form.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), forms(3curses)

527

form _field _ userptr (3curses)

NAME
forULfield_userptr: set_field_userptr, field_userptr - associate applica
tion data with forms

SYNOPSIS
#include <foDn.h>

int set_field_userptr(FIELD *field, char *ptr);
char *field_userptr(FIELD *field);

DESCRIPTION
Every field has an associated user pointer that can be used to store pertinent data.
set_field_userptr sets the user pointer offield. field_userptr returns the user
pointer of field.

RETURN VALUE

NOTES

field_userptr returns NULL on error. set_field_userptr returns one of the
following:

E_OK
E_SYSTEM_ERROR

- The function returned successfully.
- System error.

The header file fODn.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), forms (3curses)

528

NAME

form _field_validation (3curses)

for.m_field_validation:set_field_type,field_type,field_arg-forms
field data type validation

SYNOPSIS
#include <for.m.h>

int set_field_type (FIELD *field, FIELDTYPE * type, • • .);
FIELDTYPE * field_type (FIELD *field);
char *field_arg(FIELD *field);

DESCRIPTION
set_field_type associates the specified field type with field. Certain field types
take additional arguments. TYPE_ALNUM, for instance, requires one, the minimum
width specification for the field. The other predefined field types are: TYPE_ALPHA,
TYPE_ENUM,TYPE_INTEGER,TYPE_NUMERIC,TYPE_REGEXP.

field_type returns a pointer to the field type of field. NULL is returned if no field
type is assigned.

field_arg returns a pointer to the field arguments associated with the field type of
field. NULL is returned if no field type is assigned.

RETURN VALUE

NOTES

field_type and field_arg return NULL on error.

set_field_type returns one of the following:

E_OK - The function returned successfully.
E_SYSTEl'CERROR - System error.

The header file for.m.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses (3curses), forms (3curses)

529

form hook (3curses)

NAME
fODILhook: set_fornLinit, form_init, set_form_term,
set_field_init, field_init, set_field_term, field_term
application-specific routines for invocation by forms

fornLterm,
assign

SYNOPSIS
#include <form.h>

int set_form_init(FORM *form, void (*jUnc) (FORM *»;
void (*)(FORM *) form_init(FORM *form);
int set_form_term(FORM *form, void (*jUnc) (FORM *»;
void (*)(FORM *) form_term(FORM *form);
int set_field_init(FORM *form, void (*jUnc) (FORM *»;
void (*)(FORM *) field_init(FORM *form);
int set_field_term(FORM *form, void (*jUnc) (FORM *»;
void (*)(FORM *) field_term(FORM *form);

DESCRIPTION
These routines allow the programmer to assign application specific routines to be
executed automatically at initialization and termination points in the forms applica
tion. The user need not specify any application-defined initialization or termination
routines at all, but they may be helpful for displaying messages or page numbers
and other chores.

set_form_init assigns an application-defined initialization function to be called
when the form is posted and just after a page change. form_ini t returns a pointer
to the initialization function, if any.

set_form_term assigns an application-defined function to be called when the form
is unposted and just before a page change. form_term returns a pointer to the
function, if any.

set_field_init assigns an application-defined function to be called when the form
is posted and just after the current field changes. field_init returns a pointer to
the function, if any.

set_field_term assigns an application-defined function to be called when the form
is unposted and just before the current field changes. field_term returns a pointer
to the function, if any.

RETURN VALUE

NOTES

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK - The function returned successfully.
E_SYSTEl'CERROR - System error.

The header file form.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), forms (3curses)

530

form_new (3curses)

NAME
form_new: new_form, free_form - create and destroy forms

SYNOPSIS
#include <form.h>

FORM * new_form (FIELD * * fields) ;
int free_form(FORM *form);

DESCRIPTION
new_form creates a new form connected to the designated fields and returns a
pointer to the form.

free_form disconnects the form from its associated field pointer array and deallo
cates the space for the form.

RETURN VALUE

NOTES

new_form always returns NULL on error. free_form returns one of the following:

E_OK - The function returned successfully.
E_BAD_ARGUMENT - An argument is incorrect.
E_POSTED - The form is posted.

The header file form.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), forms(3curses)

531

form new page (3curses) - -

NAME
forIILnew-page: set_new-page, new-page - forms pagination

SYNOPSIS
#include <for.m.h>

int set_new-page (FIELD *field, int boo!);
int new-page (FIELD *field);

DESCRIPTION
setJlew-page marks field as the beginning of a new page on the form.

new-page returns a boolean value indicating whether or not field begins a new page
of the form.

RETURN VALUE

NOTES

new-page returns TRUE or FALSE.

set_new-page returns one of the following:

E_OK - The function returned successfully.
E_CONNECTED - The field is already connected to a form.
E_SYSTEl'CERROR - System error.

The header file for.m.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), forms(3curses)

532

NAME

form opts (3curses)

fOrIn_opts: set_forIn_opts, fOrIn_opts_on, fOrIn_opts_off, fOrIn_opts - forms
option routines

SYNOPSIS
#include <forIn.h>

int set_forIn_opts (FORM *form, OPTIONS opts);
int fOrIn_opts_on(FORM *form, OPTIONS opts);
int fOrIn_opts_off (FORM *form, OPTIONS opts);
OPTIONS fOrIn_opts(FORM *form);

DESCRIPTION
set_forIn_opts turns on the named options for form and turns off all remaining
options. Options are boolean values which can be OR-ed together.

fOrIn_opts_on turns on the named options; no other options are changed.

fOrIn_opts_off turns off the named options; no other options are changed.

fOrIn_opts returns the options set for form.

Form Options:

O_NL_OVERLOAD
O_BS_OVERLOAD

Overload the REQ..NEW_LINE form driver request.
Overload the REQ..DEL_PREV form driver request.

RETURN VALUE

NOTES

set_forIn_opts, fOrIn_opts_on and fOrIn_opts_off return one of the following:

E_OK - The function returned successfully.
E_SYSTEt'CERROR - System error.

The header file fOrIn.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3curses), forms (3curses)

533

form_page (3curses)

NAME
for.m-page:set_for.m-page,for.m-page,set_current_field,current_field,
field_index - set forms current page and field

SYNOPSIS
#include <for.m.h>

int set_for.m-page(FORM *form, int page);
int for.m-page (FORM *form);
int set_current_field(FORM *form, FIELD *field);
FIELD *current_field(FORM *form);
int field_index(FIELD *field);

DESCRIPTION
set_for.m-page sets the page number of form to page. for.m-page returns the
current page number of form.

set_current_field sets the current field of form to field. current_field returns
a pointer to the current field of form.

field_index returns the index in the field pointer array of field.

RETURN VALUE

NOTES

for.m-page returns -1 on error.

current_field returns NULL on error.

field_index returns -1 on error.

set_for.m-page and set_current_field return one of the following:

E_OK - The function returned successfully.
E_SYSTEloCERROR - System error.
E_BAD~GUMENT - An argument is incorrect.
E_BAD_STATE - The routine was called from an initialization

or termination function.
E_INVALID_FIELD - The field contents are invalid.
E_REQUEST_DENIED - The form driver request failed.

The header file for.m.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses (3curses), forms (3curses)

534

NAME

form post (3curses)

fonn-post: post_fonn, unpost_fonn - write or erase forms from associated
subwindows

SYNOPSIS
#include <fonn.h>

int post_fonn(FORM *form);
int unpost_fonn(FORM *form);

DESCRIPTION
post_fonn writes form into its associated subwindow. The application program
mer must use curses library routines to display the form on the physical screen or
call update-panels if the panels library is being used.

unpost_fonn erases form from its associated subwindow.

RETURN VALUE

NOTES

These routines return one of the following:

E_OK - The function returned successfully.
E_SYSTEl'CERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_POSTED - The form is posted.
E_NOT_POSTED - The form is not posted.
E_NO_ROOM - The form does not fit in the subwindow.
E_BAD_STATE - The routine was called from an initialization

or termination function.
E_NOT_CONNECTED - The field is not connected to a form.

The header file fonn.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses (3curses), forms(3curses), panels(3curses), panel_update(3curses)

535

form _ userptr (3curses)

NAME
forIlLuserptr: set_foDn_userptr, fODn_userptr - associate application data
with fonns

SYNOPSIS
#include <fODn.h>

int set_foDn_userptr(FORM *form, char *ptr);
char *foDn_userptr (FORM *form);

DESCRIPTION
Every form has an associated user pointer that can be used to store pertinent data.
set_foDn_userptr sets the user pointer of form. fODn_userptr returns the user
pointer of form.

RETURN VALUE

NOTES

fODn_userptr returns NULL on error. set_foDn_userptr returns one of the
following:

E_OK
E_SYSTEloCERROR

- The function returned successfully.
- System error.

The header file fonn.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3curses), fonns(3curses)

536

NAME

form_win (3curses)

fo:r:nLwin: set_fonn._win, fonn._win, set_fonn._sub, fonn._sub, scale_fonn. -
fonus window and subwindow association routines

SYNOPSIS
#include <fonn..h>

int set_fonn._win(FORM *form, WINDOW *win);
WINDOW *fonn._win(FORM *form);
int set_fonn._sub(FORM *form, WINDOW *sub);
WINDOW *fonn._sub(FORM *form);
int scale_fonn.(FORM *form, int *rows, int *cols);

DESCRIPTION
set_fonn._win sets the window of form to win. fonn._win returns a pointer to the
window associated with form.

set_fonn._sub sets the subwindow of form to sub. fonn._sub returns a pointer to
the subwindow associated with form.

scale_fonn. returns the smallest window size necessary for the subwindow of form.
rows and cols are pointers to the locations used to return the number of rows and
columns for the form.

RETURN VALUE

NOTES

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK - The function returned successfully.
E_SYSTEtoCERROR - System error.
E_BAD_ARGUMENT - An argument is incorrect.
E_NOT_CONNECTED - The field is not connected to a form.
E_POSTED - The form is posted.

The header file fonn..h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), fonus(3curses)

537

fpgetround (3C)

NAME
fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky
IEEE floating-point environment control

SYNOPSIS
#inc1ude <ieeefp.h>

fp_rnd fpgetround (void);

fp_rnd fpsetround (fp~d rnd_dir);

fp_except fpgetmask (void);

fp_except fpsetmask (fp_except mask);

fp_except fpgetsticky (void);

fp_except fpsetsticky (fp_except sticky);

DESCRIPTION
There are five floating-point exceptions: divide-by-zero, overflow, underflow,
imprecise (inexact) result, and invalid operation. When a floating-point exception
occurs, the corresponding sticky bit is set, and if the mask bit is enabled, the trap
takes place. These routines let the user change the behavior on occurrence of any of
these exceptions, as well as change the rounding mode for floating-point opera
tions.

FP_X_INV /* invalid operation exception */
FP_X_OFL /* overflow exception */
FP_X_UFL /* underflow exception */
FP_X_DZ /* divide-b¥-zero exception */
FP_X_IMP /* imprecise (loss of precision) */
FP_RN /* round to nearest representative number
FP_RP /* round to plus infinity */
FP_RM /* round to minus infinity */
FP_RZ /* round to zero (truncate) */

fpgetround returns the current rounding mode.

fpsetround sets the rounding mode and returns the previous rounding mode.

fpgetmask returns the current exception masks.

fpsetmask sets the exception masks and returns the previous setting.

fpgetsticky returns the current exception sticky flags.

*/

fpsetsticky sets (clears) the exception sticky flags and returns the previous set
ting.

The default environment is rounding mode set to nearest (FP _RN) and all traps dis
abled.

Individual bits may be examined using the constants defined in ieeefp. h.

SEE ALSO
isnan(3C)

538

NOTES

fpgetround (3e)

fpsetsticky modifies all sticky flags. fpsetmask changes all mask bits. fpset
mask clears the sticky bit corresponding to any exception being enabled.

C requires truncation (round to zero) for floating point to integral conversions. The
current rounding mode has no effect on these conversions.

One must clear the sticky bit to recover from the trap and to proceed. If the sticky
bit is not cleared before the next trap occurs, a wrong exception type may be
signaled.

539

fread (3S)

NAME
fread, fwrite - binary input/ output

SYNOPSIS
#include <stdio.h>

size_t fread (void *ptr, size_t size, size_t nitems, FILE *stream);

size_t fwrite (const void *ptr, size_t size, size_t nitems, FILE
*stream) ;

DESCRIPTION
fread reads into an array pointed to by ptr up to nitems items of data from stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null
byte) of length size. fread stops reading bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been read. fread incre
ments the data pointer in stream to point to the byte following the last byte read if
there is one. fread does not change the contents of stream. fread returns the
number of items read.

fwri te writes to the named output stream at most nitems items of data from the
array pointed to by ptr, where an item of data is a sequence of bytes (not necessarily
terminated by a null byte) of length size. fwrite stops writing when it has written
nitems items of data or if an error condition is encountered on stream. fwrite does
not change the contents of the array pointed to by ptr. fwrite increments the
data-pointer in stream by the number of bytes written. fwri te returns the number
of items written.

If size or nitems is zero, then fread and fwrite return a value of a and do not effect
the state of stream.

The ferror or feof routines must be used to distinguish between an error condi
tion and end-of-file condition.

SEE ALSO
abort (3C), exit(2), fclose(3S), fopen(3S), getc(3S), gets(3S), lseek(2),
printf(3S), putc(3S), puts(3S), read(2), scanf(3S), stdio(3S), write(2)

DIAGNOSTICS
If an error occurs, the error indicator for stream is set.

540

NAME

frexp (3C)

frexp, frexpl, Idexp, Idexpl, 10gb, modf, modff, modfl, nextafter, scalb,
scalbl - manipulate parts of floating-point numbers

SYNOPSIS
#include <math.h>

double frexp (double value, int *eptr);

long double frexpl (long double value, int *eptr);

double Idexp (double value, int exp) ;

long double Idexpl (long double value, int exp) ;

double 10gb (double value) ;

double nextafter (double valuel, double value2) ;

double scalb (double value, double exp) ;

long double scalbl (long double value, double exp) ;

double modf (double value, double *iptr);

float modff (float value, float *iptr);

long double modfl (long double value, long double *iptr);

DESCRIPTION
Every non-zero number can be written uniquely as x * 2 n, where the "mantissa"
(fraction) x is in the range 0.5 :::; I x I < 1.0, and the "exponent" n is an integer.
frexp returns the mantissa of a double value and stores the exponent indirectly in
the location pointed to by eptr. If value is zero, both results returned by frexp are
zero. frexpl returns the mantissa of a long double value.

Idexp, Idexpl, scalb, and scalbl return the quantity value * 2exp
. The only differ

ence is that scalb and scalbl of a signaling NaN will result in the invalid opera
tion exception being raised.

10gb returns the unbiased exponent of its floating-point argument as a double
precision floating-point value.

modf, modff, and modfl return the signed fractional part of value and store the
integral part indirectly in the location pointed to by iptr.

nextafter returns the next representable double-precision floating-point value fol
lowing valuel in the direction of value2. Thus, if value2 is less than valuel,
nextafter returns the largest representable floating-point number less than valuel.

RETURN VALUES
If Idexp or Idexpl would cause overflow, the returned value will compare equal to
±HUGE, defined in math.h (according to the sign of value), and errno is set to
ERANGE. If Idexp or Idexpl would cause underflow, zero is returned and errno is
set to ERANGE. If the input value to Idexp or Idexpl is NaN or infinity, that input is
returned and errno is set to EOOM. The same error conditions apply to scalb and
scalbl except that a signaling NaN as input will result in the raising of the invalid
operation exception.

541

frexp(3C)

10gb of NaN returns that NaN, 10gb of infinity returns positive infinity, and 10gb
of zero returns negative infinity and results in the raising of the divide by zero
exception. In each of these conditions ermo is set to EDOM.

If input valuel to nextafter is positive or negative infinity, that input is returned
and ermo is set to EDOM. The overflow and inexact exceptions are signaled when
input valuel is finite, but nextafter (valuel, value2) is not. The underflow and
inexact excerctions are signalled when nextafter (valuel , value2) lies strictly
between ± T 022. In both cases ermo is set to ERANGE.

When the program is compiled with the cc options -Xc or -Xa [see cc(l)], the
returned value will compare equal to HUGE_VAL instead of HUGE.

SEE ALSO
cc(l), intro(3)

542

fseek(3S)

NAME
fseek, rewind, ftell- reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (FILE *stream, long offset, int ptrname) ;

void rewind (FILE *stream);

long ftell (FILE *stream);

DESCRIPTION
fseek sets the position of the next input or output operation on the stream [see
intro(3)]. The new position is at the signed distance offset bytes from the begin
ning, from the current position, or from the end of the file, according to a ptrname
value of SEEK_SET, SEEK_CUR, or SEEK_END (defined in stdio.h) as follows:

SEEK_SET set position equal to offset bytes.

SEEK_CUR set position to current location plus offset.

SEEK_END set position to EOF plus offset.

fseek allows the file position indicator to be set beyond the end of the existing data
in the file. If data is later written at this point, subsequent reads of data in the gap
will return zero until data is actually written into the gap. fseek, by itself, does not
extend the size of the file.

rewind (stream) is equivalent to:

(void) fseek (stream, OL, SEEK_SET);

except that rewind also clears the error indicator on stream.

fseek and rewind clear the EOF indicator and undo any effects of ungetc on
stream. After fseek or rewind, the next operation on a file opened for update may
be either input or output.

If stream is writable and buffered data has not been written to the underlying file,
fseek and rewind cause the unwritten data to be written to the file.

ftell returns the offset of the current byte relative to the beginning of the file asso
ciated with the named stream.

SEE ALSO
fopen(3S), lseek(2), popen(3S), stdio(3S), ungetc(3S), write(2)

DIAGNOSTICS

NOTES

fseek returns -1 for improper seeks, otherwise zero. An improper seek can be, for
example, an fseek done on a file that has not been opened via fopen; in particular,
fseek may not be used on a terminal or on a file opened via popen. After a stream
is closed, no further operations are defined on that stream.

Although on the UNIX system an offset returned by ftell is measured in bytes, and
it is permissible to seek to positions relative to that offset, portability to non-UNIX
systems requires that an offset be used by fseek directly. Arithmetic may not
meaningfully be performed on such an offset, which is not necessarily measured in
bytes.

543

fsetpos (3C)

NAME
fsetpos, fgetpos - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fsetpos (FILE *stream, const fpos_t *pas);

int fgetpos (FILE *stream, fpos_t *pas);

DESCRIPTION
fsetpos sets the position of the next input or output operation on the stream
according to the value of the object pointed to by pas. The object pointed to by pas
must be a value returned by an earlier call to fgetpos on the same stream.

fsetpos clears the end-of-file indicator for the stream and undoes any effects of the
ungetc function on the same stream. After fsetpos, the next operation on a file
opened for update may be either input or output.

fgetpos stores the current value of the file position indicator for stream in the object
pointed to by pas. The value stored contains information usable by fsetpos for
repositioning the stream to its position at the time of the call to fgetpos.

If successful, both fsetpos and fgetpos return zero. Otherwise, they both return
nonzero.

SEE ALSO
fseek(3S), lseek(2), ungetc(3S)

544

(BSO System Compatibility) ftime(3)

NAME
ftime - (BSD) get date and time

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/types.h>
#include <sys/timeb.h>

ftime (struct timeb *tp);

DESCRIPTION
The ftime entry fills in a structure pointed to by its argument, as defined by
<sys/timeb. h>:

struct timeb
{

};

time_t time;
unsigned short millitm.;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds
of more-precise interval, the local time zone (measured in minutes of time west
ward from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving
time applies locally during the appropriate part of the year.

SEE ALSO
ctime(3C), date(l), gettimeofday(3)

545

ftw{3C)

NAME
ftw, nftw - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (const char *path, int (*jn) (const char *, const struct
stat *, int), int depth);

int nftw (const char *path, int (*jn) (const char *, const struct
stat *, int, struct FTW*), int depth, int flags) ;

DESCRIPTION

546

ftw recursively descends the directory hierarchy rooted in path. For each object in
the hierarchy, ftw calls the user-defined functionjn, passing it a pointer to a null
terminated character string containing the name of the object, a pointer to a stat
structure (see stat(2)) containing information about the object, and an integer.
Possible values of the integer, defined in the ftw. h header file, are:

FTW_F The object is a file.

The object is a directory.

The object is a directory that cannot be read. Descendants of the
directory will not be processed.

stat failed on the object because of lack of appropriate permission or
the object is a symbolic link that points to a non-existent file. The stat
buffer passed to jn is undefined.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of jn returns a
nonzero value, or some error is detected within ftw (such as an I/O error). If the
tree is exhausted, ftw returns zero. If jn returns a nonzero value, ftw stops its tree
traversal and returns whatever value was returned by jn. If ftw detects an error
other than EACCES, it returns -I, and sets the error type in errno.

The function nftw is similar to ftw except that it takes an additional argument,
flags. The flags field is used to specify:

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw will
follow links but will not walk down any path that crosses itself.

FTW_MOUNT The walk will not cross a mount point.

FTW_DEPTH All subdirectories will be visited before the directory itself.

FTW_CHDIR The walk will change to each directory before reading it.

The function nftw calls jn with four arguments at each file and directory. The first
argument is the pathname of the object, the second is a pointer to the stat buffer,
the third is an integer giving additional information, and the fourth is a struct
FTW that contains the following members:

int base;
int level;

ftw(3C)

base is the offset into the pathname of the base name of the object. level indicates
the depth relative to the rest of the walk, where the root level is zero.

The values of the third argument are as follows:

FTW_F The object is a file.

The object is a directory.

The object is a directory and subdirectories have been visited.

The object is a symbolic link that points to a non-existent file.

The object is a directory that cannot be read. fn will not be called for
any of its descendants.

stat failed on the object because of lack of appropriate permission.
The stat buffer passed to fn is undefined. stat failure other than lack
of appropriate permission (EACCES) is considered an error and nftw
will return -1.

Both ftwand nftw use one file descriptor for each level in the tree. The depth argu
ment limits the number of file descriptors so used. If depth is zero or negative, the
effect is the same as if it were 1. depth must not be greater than the number of file
descriptors currently available for use. ftw will run faster if depth is at least as large
as the number of levels in the tree. When ftw and nftw return, they close any file
descriptors they have opened; they do not close any file descriptors that may have
been opened by fn.

SEE ALSO

NOTES

malloc(3C), stat(2)

Because ftw is recursive, it is possible for it to terminate with a memory fault when
applied to very deep file structures.

ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is for
cibly terminated, such as by longjmp being executed by fn or an interrupt routine,
ftw will not have a chance to free that storage, so it will remain permanently allo
cated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have fn return a nonzero value at its next invocation.

547

gamma(3M)

NAME
gamma, 19amma - log gamma function

SYNOPSIS
cc [flag . . .]file ... -1m [library ...]

#include <math.h>

double gamma (double x);

double 19amma (double x) i

extern int signgam;

DESCRIPTION
gamma and 19amma return

In(lr(x)l)

where r(x) is defined as

f e-tt x - 1 dt
o

The sign of r(x) is returned in the external integer signgam. The argument x may
not be a non-positive integer.

The following C program fragment might be used to calculate r:
if «y = gamma (x» > LN_MAXDOUBLE)

errore);
y = signgam * exp(y)i

where LN_MAXDOUBLE is the least value that causes exp to return a range error, and
is defined in the values.h header file.

SEE ALSO
cc(l), exp(3M), matherr(3M), values(5)

DIAGNOSTICS

548

For non-positive integer arguments, a value that will compare equal to HUGE is
returned and ermo is set to EOOM. A message indicating SING error is printed on
the standard error output.

If the correct value would overflow, gamma and 19amma return a value that will
compare equal to HUGE and set ermo to ERANGE.

Except when the -Xc compilation option is used [see cc(l)], these error-handling
procedures may be changed with the function matherr. When the -xa or -Xc com
pilation options are used [see cc(l)], the returned value will compare equal to
HUGE_VAL instead of HUGE and no error messages are printed.

getava (31)

NAME
getava, putava, retava, setava - library functions used by IAF schemes

SYNOPSIS
#include <iaf.h>

char *getava (const char *attribute, char **avalist);

char **putava (char *ava, char **avalist);

char **retava (intfd);

int setava (int fd, char * *avalist) ;

DESCRIPTION
get ava, put ava, ret ava, and setava are library functions that provide com
ponents of the Identification and Authentication Facility (IAF) with a means of
communicating the values of Attribute Value Assertion (AVA) attributes.

getava retrieves a value for an AVA attribute. It searches the AVA list avalist for a
string of the form attribute [=value] and, if the string is present, returns a pointer to
the value portion of the string (which can be the empty string); otherwise, it returns
a NULL pointer.

putava changes a value or adds an attribute to the AVA list. ava points to a string of
the form attribute [=value]. putava makes the value of the attribute variable
attribute equal to value by replacing an existing AVA string or adding a new one. In
either case, the string pointed to by ava becomes part of the list, so altering the
string will change the list. Because of this limitation, the ava string should be
declared static if it is declared within a function. The space used by ava is no longer
used once a new string-defining attribute is passed to putava.

retava retrieves an AVA list previously associated with the file descriptor fd by
setava. Space for the list is allocated using malloc(3C). If no information is avail
able, or if sufficient space cannot be allocated, a NULL pointer is returned; otherwise,
a pointer to the list is returned.

setava makes information available to subsequent IAF schemes and/or applica
tions. fd indicates the file descriptor with which the information in avalist is associ
ated. setava uses malloc(3C) to obtain space for a copy of the strings in the list.
Once setava has been called, the space used by the A V As may be reused as the
application sees fit.

SEE ALSO
invoke(3I), malloc(3C)

DIAGNOSTICS
getava returns NULL if the attribute is not in the list.

putava returns NULL if it is unable to obtain enough space via realloc [see
malloc(3C)] for an expanded list; otherwise, it returns a pointer to the expanded
list.

retava returns NULL if there is no information associated with the file descriptor
indicated, or if sufficient storage cannot be allocated to hold the information.

549

getava (31)

NOTES

550

setava returns NULL if it is unable to obtain enough space via malloc(3C) for the
list or the strings in the list.

Calling putava with a list argument of NULL can be used to initialize a dynamically
allocated AVA list.

putava uses realloc [see malloc(3C)] to enlarge the list. Passing a statically allo
cated list will cause unpredictable results if the list need~ to be expanded.

After putava is called, attribute variables are not necessarily in alphabetical order.

A potential error is to call the function putava with a pointer to an automatic vari
able as the argument and then to exit the calling function while string is still part of
the list.

Calling setava with a list argument of NULL can be psed to disassociate all AVA
information from a given file descriptor.

getc (3S)

NAME
gete, get char, fgete, getw - get character or word from a stream

SYNOPSIS
#inelude <stdio.h>

int gete (FILE *stream);

int getehar (void);

int fgete (FILE *stream);

int getw (FILE *stream);

DESCRIPTION
gete returns the next character (that is, byte) from the named input stream [see
intro(3)] as an unsigned char converted to an into It also moves the file pointer,
if defined, ahead one character in stream. get char is defined as gete (stdin) .
gete and get char are macros.

fgete behaves like gete, but is a function rather than a macro. fgete runs more
slowly than gete, but it takes less space per invocation and its name can be passed
as an argument to a function.

getw returns the next word (that is, integer) from the named input stream. getw
increments the associated file pointer, if defined, to point to the next word. The size
of a word is the size of an integer and varies from machine to machine. getw
assumes no special alignment in the file.

SEE ALSO
felose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), pute(3S), seanf(3S),
stdio(3S), ungete(3S)

DIAGNOSTICS

NOTES

If the stream is at EOF, the EOF indicator for the stream is set and gete returns EOF. If
a read error occurs, the error indicator for the stream is set, gete returns EOF and
sets ermo to indicate the error.

If the integer value returned by gete, getehar, or fgete is stored into a character
variable and then compared against the integer constant EOF, the comparison may
never succeed, because sign-extension of a character on widening to integer is
implementation dependent.

The macro version of gete evaluates a stream argument more than once and may
treat side effects incorrectly. In particular, gete (*f++) does not work sensibly.
Use fgete instead.

Because of possible differences in word length and byte ordering, files written using
putw are implementation dependent, and may not be read using getw on a different
processor.

Functions exist for all the above-defined macros. To get the function form, the
macro name must be undefined (for example, #undef gete).

551

getcwd(3C)

NAME
getcwd - get pathname of current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char *buf, size_t) i

DESCRIPTION
getcwd returns a pointer to the current directory pathname. The value of size must
be at least one greater than the length of the pathname to be returned.

If buf is not NULL, the pathname will be stored in the space pointed to by buf.

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3C). In
this case, the pointer returned by getcwd may be used as the argument in a subse
quent call to free.

getcwd will fail if one or more of the following are true:

EACCES A parent directory cannot be read to get its name.

EINVAL

ERANGE

size is equal to O.

size is less than 0 or is greater than 0 and less than the length of the
pathname plus 1.

EXAMPLE
Here is a program that prints the current working directory.

#include <unistd.h>
#include <stdio.h>

maine)
{

char *CWdi
if «cwd = getcwd(NULL, 64»
{

perror ("pwd") i
exit(2);

(void)printf ("%s\n", cwd);
return(O);

NULL)

SEE ALSO
malloc(3C), types(5)

DIAGNOSTICS

552

Returns NULL with errno set if size is not large enough, or if an error occurs in a
lower-level function.

getdate (3C)

NAME
getdate - convert user format date and time

SYNOPSIS
#include <time.h>

struct tm *getdate (const char *string>;
extern int getdate_err;

DESCRIPTION
getdate converts user-definable date and/or time specifications pointed to by
string into a tm structure. The structure declaration is in the time. h header file [see
also ctime(3C)].

User-supplied templates are used to parse and interpret the input string. The tem
plates are text files created by the user and identified via the environment variable
DATEMSK. Each line in the template represents an acceptable date and/or time
specification using some of the same field descriptors as the ones used by the date
command. The first line in the template that matches the input specification is used
for interpretation and conversion into the internal time format. If successful, the
function getdate returns a pointer to a tm structure; otherwise, it returns NULL and
sets the global variable getdate_err to indicate the error.

The following field descriptors are supported:

%% sameas%
%a abbreviated weekday name
9-oA full weekday name
%b abbreviated month name
%B full month name
%c locale's appropriate date and time representation
%d day of month (01-31; the leading 0 is optional)
%e same as 9-od
%D date as 9&n/9-od/%y
%h abbreviated month name
%H hour (00-23)
%1 hour (01-12)
9&n month number (01-12)
%M minute (00-59)
%n same as \n
%p locale's equivalent of either AM or PM
%r time as %1 : 9-aM: 9-08 %p
%R time as 9-011: 9-aM
%S seconds (00-59)
%t same as tab
%T time as 9-011 : 9-aM: 9-08
%w weekday number (0-6; Sunday = 0)
%x locale's appropriate date representation
%X locale's appropriate time representation

553

getdate (3C)

554

%y year within century (for example, 92)
%Y year as ccyy (for example, 1986)
%z time zone name or no characters if no time zone exists

The month and weekday names can consist of any combination of upper- and
lowercase letters. Any strings the user puts in are case-insensitive. For example, a
string Uhr (as shown below) would be treated the same way as a string uhr. The
user can request that the input date or time specification be in a specific language
by setting the categories LC_TIME and LC_CTYPE of set locale.

The following example shows the possible contents of a template:
9Qn
9-oA, 9-05 9-od %Y, 9-oH : 9-oM: %S
9-oA,
9-05
9Qn/9-od/%y %I %p
9-od, 9Qn, %Y 9-oH:9-oM
at 9-oA, the 9-odst of 9-05 in %Y
run job at %I %p, 9-05 9-odnd
9-oA, den 9-od. 9-05 %Y 9-oH. 9-oM Uhr

The following are examples of valid input specifications for the above template:

getdate ("10/1/87 4 PM")
getdate (IIFridayll)
getdate("Friday September 19 1987, 10:30:30")
getdate(II24,9,1986 10:30")
getdate("at monday the 1st of december in 1986")
getdate ("run job at 3 PM, december 2nd")

If the LANG environment variable is set to gennan, the following is valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr")

Local time and date specification are also supported. The following examples show
how local date and time specification can be defined in the template.

Invocation Line in Template
getdate ("11/27/86") 9Qn/9-od/%y
getdate (1127.11. 86 11) 9-od. 'JQn. %y
getdate(1I86-11-27 11) %y-'JQn-9-od
getdate(IIFriday 12:00:00 11) 9-oA, 9-oH:9-oM:%S

The following rules are applied for converting the input specification into the inter
nal format:

If only the weekday is given, today is assumed if the given day is equal to
the current day and next week if it is less.

If only the month is given, the current month is assumed if the given month
is equal to the current month and next year if it is less and no year is given.
(The first day of month is assumed if no day is given.)

FILES

getdate (3C)

If no hour, minute, and second are given, the current hour, minute, and
second are assumed.

If no date is given, today is assumed if the given hour is greater than the
current hour and tomorrow is assumed if it is less.

The following examples illustrate the above rules. Assume that the current date is
Mon Sep 22 12:19:47 EDT 1986 and that the LC_TlME and LANG environment vari
ables are not set.

In ut Line in Template Date
Mon '7oa Mon Sep 22 12:19:47 EDT 1986
Sun '7oa Sun Sep 28 12:19:47 EDT 1986
Fri '7oa Fri Sep 26 12:19:47 EDT 1986
September '7oB Mon Sep 112:19:47 EDT 1986
January '7oB Thu Jan 1 12:19:47 EST 1987
December '7oB Mon Dec 1 12:19:47 EST 1986
Sep Mon '7ob '7oa Mon Sep 1 12:19:47 EDT 1986
Jan Fri '7ob '7oa Fri Jan 2 12:19:47 EST 1987
Dec Mon '7ob '7oa Mon Dec 1 12:19:47 EST 1986
Jan Wed 1989 '7ob '7oa %y Wed Jan 412:19:47 EST 1989
Fri 9 '7oa '7aH Fri Sep 26 09:00:00 EDT 1986
Feb 10:30 '7ob '7aH: %S Sun Feb 1 10:00:30 EST 1987
10:30 '7aH:'7oM Tue Sep 23 10:30:00 EDT 1986
13:30 '7aH:'7oM Mon Sep 22 13:30:00 EDT 1986

/usr/lib/locale/locale/Lf.:....TlME language-specific printable files

/usr/lib/locale/locale/LC_CTYPE codeset-specific printable files

SEE ALSO
ctype(3C), environ(5), setlocale(3C)

DIAGNOSTICS
On failure getdate returns NULL and sets the variable getdate_err to indicate the
error.

The following is a complete list of the getdate_err settings and their meanings.

1 The DATEMSK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

s An error is encountered while reading the template file.

6 malloc failed (not enough memory is available).

7 There is no line in the template that matches the input.

8 The input specification is invalid. For example, February 31 or a time is
specified that can not be represented in a time_t (representing the time in
seconds since 00:00:00 UTC, January 1, 1970).

555

getdate (3C)

NOTES

556

Subsequent calls to getdate alter the contents of getdate_err.

Dates before 1970 and after 2037 are illegal.

getdate makes explicit use of macros described in ctype(3C) and is thus affected
by the LC_CTYPE category of the current locale.

Previous implementations of getdate may return char* .

If the time zone supplied by %Z is not the same as the time zone getdate expects,
an invalid input specification error will result. getdate calculates an expected time
zone based on information supplied to the interface (such as hour, day, and month).

(BSC System Compatibility)

NAME
getdtablesize - (BSD) get descriptor table size

SYNOPSIS
/usr/ucb/cc [flag . ..] file ...

long getdtablesize();

DESCRIPTION

getdtablesize (3)

Each process has a descriptor table which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at O.
The call getdtablesize returns the current maximum size of this table by calling
the getrlimit system call.

SEE ALSO
close(2), dup(2), getrlimit(2), open(2)

557

getenv(3C)

NAME
getenv - return value for environment name

SYNOPSIS
#include <stdlib.h>

char *getenv (const char *name)i

DESCRIPTION
getenv searches the environment list [see environ(5)] for a string of the form
name=value and, if the string is present, returns a pointer to the value in the current
environment. Otherwise, it returns a null pointer.

SEE ALSO
environ(5), exec(2), putenv(3C)

558

NAME

getgrent (3C)

getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file
entry

SYNOPSIS
#include <grp.h>

struct group *getgrent (void) ;

struct group *getgrgid (gid_t gid);

struct group *getgrnam (const char *name) ;

void setgrent (void);

void endgrent (void) ;

struct group *fgetgrent (FILE */);

DESCRIPTION

FILES

getgrent, getgrgid, and getgrnam each returns a pointer to a structure contain
ing the broken-out fields of a line in the /etc/group file. Each line contains a
"group" structure, defined in the grp.h header file with the following members:

char *gr_name; /* the name of the group */
char * gr-passwd; /* the encrypted group password */
gid_t gr_gid; /* the numerical group ID */
char **gr_mem; /* vector of pointers to member names */

When first called, getgrent returns a pointer to the first group structure in the file;
thereafter, it returns a pointer to the next group structure in the file; so, successive
calls may be used to search the entire file. getgrgid searches from the beginning of
the file until a numerical group id matching gid is found and returns a pointer to
the particular structure in which it was found.

getgrnam searches from the beginning of the file until a group name matching name
is found and returns a pointer to the particular structure in which it was found. If
an end-of-file or an error is encountered on reading, these functions return a null
pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. endgrent may be called to close the group file when processing is com
plete.

fgetgrent returns a pointer to the next group structure in the stream /' which
matches the format of /etc/group.

/etc/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4)

DIAGNOSTICS
getgrent, getgrgid, getgrnam, and fgetgrent return a null pointer on EOF or
error. If a bad entry is encountered, errno is set to EINVAL. If the functions are
unable to allocate sufficient space for the entry, errno is set to ENOMEM.

559

getgrent (3C)

NOTES
All information is contained in a static area, so it must be copied if it is to be saved.

560

NAME

gethostent (3N)

gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent
get network host entry

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

struct hostent *gethostent(void);

struct hostent *gethostbyaddr(char *addr, int len, int type);

struct hostent *gethostbyname(char *name);

int sethostent (int stayopen);

int endhostent(void);

DESCRIPTION
gethostent, gethostbyaddr, and gethostbyname each return a pointer to an
object with the following structure containing the broken-out fields of a line in the
network host data base, letc/hosts. In the case of gethostbyaddr, addr is a
pointer to the binary format address of length len (not a character string).

The hostent structure has the following members:

char *h_name; 1* official name of host *1
char **h_aliases; 1* alias list *1
int h_addrtype; I * host address type * I
int h_length; 1* length of address *1
char **h_addr_list; 1* list of addresses fram name server *1

The members of this structure are:

h name Official name of the host.

h aliases

h_addrtype

hJength

h addr list

A zero terminated array of alternate names for the host.

The type of address being returned; currently always AF _INET.

The length, in bytes, of the address.

A pointer to a list of network addresses for the named host.
Host addresses are returned in network byte order.

gethostent reads the next line of the file, opening the file if necessary.

sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host
data base will not be closed after each call to gethostent (either directly, or
indirectly through one of the other gethost calls).

endhostent closes the file.

gethostbyname and gethostbyaddr sequentially search from the beginning of the
file until a matching host name or host address is found, or until an EOF is encoun
tered. Host addresses are supplied in network order.

561

gethostent (3N)

FILES

gethostbyaddr takes a pointer to an address structure. This structure is unique to
each type of address. For address of type AF _INET this is an in_addr structure.
See netinet/in.h for the in_addr structure definition.

/etc/hosts

SEE ALSO
hosts(4)

DIAGNOSTICS

NOTES

562

A NULL pointer is returned on an EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Only the Internet address format is currently understood.

(BSD System Compatibility)

NAME
gethostid - (BSD) get unique identifier of current host

SYNOPSIS
/usr/ucb/cc [flag ...]file . ..

gethostid(void);

DESCRIPTION

gethostid (3)

gethostid returns the 32-bit identifier for the current host, which should be unique
across all hosts. This number is usually taken from the CPU board's ID PROM.

SEE ALSO
hostid(l), sysinfo(2)

563

gethostname (3) (BSD System Compatibility)

NAME
gethostname, sethostname - (BSD) get/set name of current host

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

int gethostname{char *name, int namelen);

int sethostname (char *name, int namelen);

DESCRIPTION
gethostname returns the standard host name for the current processor, as previ
ously set by sethostname. The parameter namelen specifies the size of the array
pointed to by name. The returned name is null-terminated unless insufficient space
is provided.

sethostname sets the name of the host machine to be name, which has length
namelen. This call is restricted to the privileged user and is normally used only
when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is
returned and an error code is placed in the global location ermo.

ERRORS
The following error may be returned by these calls:

EFAULT The name or namelen parameter gave an invalid address.

EPERM The caller was not the privileged user. Note: this error only applies to
sethostname.

SEE ALSO

NOTES

564

gethostid(3), uname(2)

Host names are limited to MAXHOSTNAMELEN characters, currently 256. (See the
param.h header file.)

getitimer (3C)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <sys/time.h>

int getitimer(int which, struct itimerval *value};

int setitimer(int which, struct itimerval *value, struct itimerval
*ovalue} ;

DESCRIPTION
The system provides each process with three' interval timers, defined in
sys/time.h. The getitimer call stores the current value of the timer specified by
which into the structure pointed to by value. The seti timer call sets the value of
the timer specified by which to the value specified in the structure pointed to by
value, and if ovalue is not NULL, stores the previous value of the timer in the struc
ture pointed to by ovalue.

A timer value is defined by the itimerval structure [see gettimeofday(3C) for the
definition of timeval], which includes the following members:

struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

If it_value is non-zero, it indicates the time to the next timer expiration. If
it_interval is non-zero, it specifies a value to be used in reloading it_value
when the timer expires. Setting it_value to zero disables a timer, regardless of the
value of it_interval. Setting it_interval to zero disables a timer after its next
expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution.

The three timers are:

ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered when
this timer expires.

ITIMER_ VIRTUAL Decrements in process virtual time. It runs only when the pro
cess is executing. A SIGVTALRM signal is delivered when it
expires.

ITIMER_PROF Decrements both in process virtual time and when the system
is running on behalf of the process. It is designed to be used by
interpreters in statistically profiling the execution of interpreted
programs. Each time the ITIMER_PROF timer expires, the SIG
PROF signal is delivered. Because this signal may interrupt in
progress system calls, programs using this timer must be
prepared to restart interrupted system calls.

SEE ALSO
ala:nn(2), gettimeofday(3C)

DIAGNOSTICS
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is
returned, and an error code is placed in the global variable errno.

565

getitimer (3C)

NOTES

566

Under the following conditions, the functions getitimer and setitimer fail and
set errno to:

EINVAL The specified number of seconds is greater than 100,000,000, the number
of microseconds is greater than or equal to 1,000,000, or the which
parameter is unrecognized.

The microseconds field should not be equal to or greater than one second.

setitimer is independent of the alann system call.

Do not use setitimer with the sleep routine. A sleep following a setitimer
wipes out knowledge of the user signal handler.

getkey(3N)

NAME
getkey - retrieve an authentication key

SYNOPSIS
#include <cr1.h>

int getkey (char *scheme, char *localyrincipal,
char * remote yrincipal) ;

DESCRIPTION
get key is a library function that retrieves authentication keys from a key manage
ment daemon.

scheme is the name of the authentication scheme for which the keys should be
obtained (such as crl). local yrincipal indicates the name of the local entity for
which the corresponding key should be obtained. remote yrincipal indicates the
name of the remote entity for which the corresponding key should be obtained.

A principal name can have either of the following forms

name@system
system! name

where name is the logname of the principal for which the key should be obtained,
and system is the name of the system on which the logname resides.

Users may use get key to obtain their own keys for use in authentication. In addi
tion, a privileged user may obtain keys for any user. A privileged user is the owner
of the keys file.

If local-principal is a NULL pointer, the principal name corresponding to the effective
uid of the application is used. The @system or system! portion of the principal name
is optional for the local-principal, and the name@ or ! name portion is optional for the
remote-principal.

RETURN VALUES

FILES

get key returns NULL if the daemon cannot be contacted or if the daemon rejects the
request; otherwise, it returns a pointer to the key. The pointer references static
storage, which is overwritten on subsequent calls.

/etc/iaf/crl/keys

SEE ALSO

crl key database

crl(lM), cryptkey(1), keymaster(lM)

567

getlogin (3C)

NAME
get login - get login name

SYNOPSIS
#include <stdlib.h>

char *getlogin (void);

DESCRIPTION

FILES

get login returns a pointer to the login name as found in /var / adm/utmp. It may
be used in conjunction with getpwnam to locate the correct password file entry
when the same user id is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, it returns a
null pointer. The correct procedure for determining the login name is to call
cuserid, or to call get login and if it fails to call getpwuid.

/var/adm/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), ut.nQ;>(4)

DIAGNOSTICS
Returns a null pointer if the login name is not found.

NOTES
The return values point to static data whose content is overwritten by each call.

568

getmntent (3C)

NAME
getmntent, getmntany - get mnttab file entry

SYNOPSIS
#include <stdio.h>
#include <sys/mnttab.h>

int getmntent (FILE *fp, struct mnttab *mp> i

int getmntany (FILE *fp, struct mnttab *mp, struct mnttab *mpref>;

DESCRIPTION

FILES

getmntent and getmntany each fill in the structure pointed to by mp with the
broken-out fields of a line in the /etc/mnttab file. Each line in the file contains a
mnttab structure, declared in the sys/mnttab.h header file:

struct mnt tab {

}i

char *mnt_speciali
char *mnt_mountp i
char *mnt_fstypei
char *mnt_mntoptsi
char *mnt_timei

The fields have meanings described in mnttab(4).

getmntent returns a pointer to the next mnttab structure in the file; so successive
calls can be used to search the entire file. getmntany searches the file referenced by
fp until a match is found between a line in the file and mpref mpref matches the line
if all non-null entries in mpref match the corresponding fields in the file. Note that
these routines do not open, close, or rewind the file.

/etc/mnttab

DIAGNOSTICS

NOTES

If the next entry is successfully read by getmntent or a match is found with
getmntany, 0 is returned. If an end-of-file is encountered on reading, these func
tions return -1. If an error is encountered, a value greater than 0 is returned. The
possible error values are:

MNT_TOOLONG A line in the file exceeded the internal buffer size of
MNT_LINE_MAX.

MNT_TOOMANY A line in the file contains too many fields.

MNT_TOOFEW A line in the file contains too few fields.

The members of the mnttab structure point to information contained in a static
area, so it must be copied if it is to be saved.

SEE ALSO
mnttab(4)

569

getnetconfig (3N)

NAME
getnetconfig - get network configuration database entry

SYNOPSIS
#include <netconfig.h>

void *setnetconfig(void);

struct netconfig *getnetconfig (void *handlep);

int endnetconfig(void *handlep);

struct netconfig *getnetconfigent (char *netid);

void freenetconfigent (struct netconfig *netconjigp);

void nc-perror (char *msg);

char *nc_sperror (void);

DESCRIPTION

570

The seven library routines described on this page are part of the UNIX System V
Network Selection component. They provide application access to the system net
work configuration database, /etc/netconfig. In addition to the netconfig
database and the routines for accessing it, Network Selection includes the environ
ment variable NETPATH [see environ(5)] and the NETPATH access routines described
in getnetpath(3N).

A call to setnetconf ig has the effect of "binding" or "rewinding" the netconf ig
database. setnetconfig must be called before the first call to getnetconfig and
may be called at any other time. setnetconf ig need not be called before a call to
getnetconfigent. setnetconfig returns a unique handle to be used by
getnetconfig. In the case of an error, setnetconfig returns NULL.

When first called, getnetconfig returns a pointer to the current entry in the
netconfig database, formatted as a netconfig structure. getnetconfig can thus
be used to search the entire netconfig file. getnetconfig returns NULL at end of
file.

endnetconfig should be called when processing is complete to release resources
for reuse. Programmers should be aware, however, that the last call to
endnetconfig frees all memory allocated by getnetconfig for the struct
netconfig data structure. endnetconfig may not be called before setnetconfig.
endnetconfig returns 0 on success and -1 on failure (for example, if setnet
config was not called previously).

getnetconfigent returns a pointer to the netconfig structure corresponding to
netid. It returns NULL if netid is invalid (that is, does not name an entry in the
netconfig database). It returns NULL in case of failure (for example, if setnetcon
fig was not called previously).

freenetconfigent frees the netconfig structure pointed to by netconjigp,
previously returned by getnetconfigent.

nc-perror prints a message to the standard error indicating why any of the above
routines failed. The message is prepended with string msg and a colon. A NEW
LINE is appended at the end of the message.

getnetconfig (3N)

nc_sperror is similar to nc-perror but instead of sending the message to the stan
dard error indicating why the network selection routines failed, it returns a pointer
to the message.

SEE ALSO

Warning: nc_sperror returns a pointer to static data that is overwritten on
each call.

environ(5), getnetpath(3N), netconfig(4)

571

getnetent (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get net
work entry

SYNOPSIS
#include <netdb.h>

struct netent *getnetent(void);

struct netent *getnetbyname(char *name);

struct netent *getnetbyaddr(long net, int type);

int setnetent (int stayopen);

int endnetent(void);

DESCRIPTION

FILES

getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object
with the following structure containing the broken-out fields of a line in the net
work data base, /etc/networks.

The structure netent include the following members:

char *n_naIne; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net type */
unsigned long n_net; /* network number */

The members of this structure are:

n name The official name of the network.

n aliases A zero terminated list of alternate names for the network.

n _ addrtype The type of the network number returned; currently only
AF_lNET.

n net The network number. Network numbers are returned in
machine byte order.

getnetent reads the next line of the file, opening the file if necessary.

setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data
base will not be closed after each call to getnetent (either directly, or indirectly
through one of the other getnet calls).

endnetent closes the file.

getnetbyname and getnetbyaddr sequentially search from the beginning of the
file until a matching net name or net address and type is found, or until EOF is
encountered. Network numbers are supplied in host order.

/etc/networks

SEE ALSO
networks(4)

572

getnetent (3N)

DIAGNOSTICS

NOTES

A NULL pointer is returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Only Internet network numbers are currently understood.

573

getnetpath (3N)

NAME
getnetpath - get netconfig entry corresponding to NETPATH component

SYNOPSIS
#include <netconfig.h>

void *setnetpath(void);
struct netconfig *getnetpath(void *handlep);
int endnetpath(void *handlep);

void nc-perror (char *msg);

char *nc_sperror (void);

DESCRIPTION

574

The five routines described on this page are part of the UNIX System V Network
Selection component. They provide application access to the system network
configuration database, / etc/netconfig, as it is "filtered" by the NETPATH
environment variable [see environ(5)]. Network Selection also includes routines
that access the network configuration database directly [see getnetconfig(3N)].

A call to setnetpath "binds" or "rewinds" NETPATH. setnetpath must be called
before the first call to getnetpath and may be called at any other time. It returns a
handle that is used by getnetpath. setnetpath will fail if the netconfig data
base is not present. If NETPATH is unset, the set of visible networks constitutes a
default NETPATH for use by setnetpath.

When first called, getnetpath returns a pointer to the netconfig database entry
corresponding to the first valid NETPATH component. The netconfig entry is for
matted as a netconfig structure. On each subsequent call, getnetpath returns a
pointer to the netconfig entry that corresponds to the next valid NETPATH com
ponent. getnetpath can thus be used to search the netconfig database for all
networks included in the NETPATH variable. When NETPATH has been exhausted,
getnetpath returns NULL.

getnetpath silently ignores invalid NETPATH components. A NETPATH component
is invalid if there is no corresponding entry in the netconfig database.

If the NETPATH variable is unset, getnetpath behaves as if NETPATH were set to the
sequence of "default" or "visible" networks in the netconfig database, in the
order in which they are listed.

endnetpath may be called to "unbind" NETPATH when processing is complete,
releasing resources for reuse. Programmers should be aware, however, that end
netpath frees all memory allocated by setnetpath. endnetpath returns 0 on suc
cess and -ion failure (for example, if setnetpath was not called previously).

nc-perror prints a message to the standard error indicating why any of the above
routines failed. The message is prepended with string msg and a colon. A NEW
LINE is appended at the end of the message.

nc_sperror is similar to nc-perror but instead of sending the message to the stan
dard error indicating why the network selection routines failed, it returns a pointer
to the message.

getnetpath (3N)

SEE ALSO
environ(5), getnetconfig(3N), netconfig(4)

575

getopt(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
#include <stdlib.h>

int getopt (int argc, char *const *argv, const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

DESCRIPTION
get opt returns the next option letter in argv that matches a letter in optstring. It
supports all the rules of the command syntax standard [see intro(l)]. Since all new
commands are intended to adhere to the command syntax standard, they should
use getopts(l), getopt(3C), or getsubopt(3C) to parse positional parameters and
check for options that are legal for that command.

optstring must contain the option letters that the command using get opt will recog
nize. If a letter is followed by a colon, the option is expected to have an argument,
or group of arguments, which may be separated from it by white space. optarg is
set to point to the start of the option argument on return from getopt.

getopt places in optind the argv index of the next argument to be processed. optind
is external and is initialized to 1 before the first call to getopt. When all options
have been processed (that is, up to the first non-option argument), getopt returns
EOF. The special option " __ " (two hyphens) may be used to delimit the end of the
options; when it is encountered, EOF is returned and " __ " is skipped. This is useful
in delimiting non-option arguments that begin with "_" (hyphen).

EXAMPLE

576

The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the option 0,

which requires an argument:

#include <stdlib.h>
#include <stdio.h>

main (int argc, char **argv)
{

int c;
extern char *optarg;
extern int optind;
int aflg = 0;
int bflg = 0;
int errflg = 0;
char *ofile = NULL;

while «c = getopt(argc, argv, "abo:"» != EOF)
switch (c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

FILES

if (aflg)
errflg++;

else
bflg++;

break;
case '0':

ofile = optarg;
(void)printf("ofile = %s\n", ofile);
break;

case '?':
errflg++;

}
if (errflg) {

(void)fprintf(stderr,

getopt(3C)

"usage: cmd [-al-b] [-o<file>] files ... \n");
exit (2);

}

}
for (; optind < argc; optind++)

(void)printf ("%s\n", argv[optind]);
return 0;

/usr/lib/locale/locale/LC_MESSAGES/uxlibc
language-specific message file [See LANG on environ(5).]

SEE ALSO
getopts(l), getsubopt(3C), intro(l), pfmt(3C), setlabel(3C)

DIAGNOSTICS

NOTES

getopt prints an error message on the standard error and returns a "?" (question
mark) when it encounters an option letter not included in optstring or no argument
after an option that expects one. This error message may be disabled by setting
opt err to O. The message is printed in the standard error format. The value of the
character that caused the error is in optopt.

The label defined by a call to setlabel(3C) will be used if available; otherwise the
name of the utility (argv[O]) will be used.

The library routine getopt does not fully check for mandatory arguments. That is,
given an option string a: b and the input -a -b, getopt assumes that -b is the
mandatory argument to the option -a and not that -a is missing a mandatory argu
ment.

It is a violation of the command syntax standard [see intro(l)] for options with
arguments to be grouped with other options, as in cmd -aboxxx file, where a
and b are options, 0 is an option that requires an argument, and xxx is the argu
ment to o. Although this syntax is permitted in the current implementation, it
should not be used because it may not be supported in future releases. The correct
syntax is cmd -ab -0 xxx file.

577

getpagesize (3) (BSD System Compatibility)

NAME
getpagesize - (BSD) get system page size

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...
int getpagesize(VOID);

DESCRIPTION
getpagesize returns the number of bytes in a page. Page granularity is the granu
larity of many of the memory management calls.

The page size is a system page size and need not be the same as the underlying
hardware page size.

REFERENCES
pagesize(l), brk(2)

578

getpass (3C)

NAME
getpass - read a password

SYNOPSIS
#include <stdlib.h>

char *getpass (const char *prompt);
DESCRIPTION

FILES

NOTE

getpass reads up to a newline or EOF from the file /dev/tty, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 characters. If
/dev/tty cannot be opened, a null pointer is returned. An interrupt will terminate
input and send an interrupt signal to the calling program before returning.

/dev/tty

The return value points to static data whose content is overwritten by each call.

579

getpeername (3N)

NAME
getpeername - get name of connected peer

SYNOPSIS
int getpeername(int s, caddr_t name, int *namelen);

DESCRIPTION
getpeername returns the name of the peer connected to socket s. The int pointed
to by the namelen parameter should be initialized to indicate the amount of space
pointed to by name. On return it contains the actual size of the name returned (in
bytes). The name is truncated if the buffer provided is too small.

RETURN VALUE
o is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOTCONN

ENOMEM

ENOSR

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

The socket is not connected.

There was insufficient user memory for the operation to complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO

NOTES

580

accept(3N), bind(3N), getsockname(3N), socket(3N)

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF_UNIX) require a sockaddr_un structure
as defined in sys/un.h; Internet domain sockets (address family AF_lNET) require
a sockaddr_in structure as defined in netinet/in.h. Other address families may
require other structures. Use the structure appropriate to the address family; cast
the structure address to a generic caddr_t in the call to getpeername and pass the
size of the structure in the namelen argument.

(BSD System Compatibility) getpriority (3)

NAME
getpriority, setpriority - (BSD) get/set program scheduling priority

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

#include <sys/time.h>
#include <sys/resource.h>

int getpriori ty (int which, int who);

int setpriority(int which, int who, int prio);

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which
and who is obtained with getpriority and set with setpriority The default
priority is 0; lower priorities cause more favorable scheduling.

which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted
relative to which (a process identifier for PRIO_PROCESS, process group identifier for
PRIO_PGRP, and a user ID for PRIO_USER). A zero value of who denotes the current
process, process group, or user.

getpriority returns the highest priority (lowest numerical value) enjoyed by any
of the specified processes. setpriori ty sets the priorities of all of the specified
processes to the value specified by prio. If prio is less than -20, a value of -20 is
used; if it is greater than 20, a value of 20 is used. Only the privileged user may
lower priorities.

RETURN VALUE
Since getpriority can legitimately return the value -I, it is necessary to clear the
external variable errno prior to the call, then check it afterward to determine if a-I
is an error or a legitimate value. The setpriority call returns 0 if there is no error,
or -1 if there is.

ERRORS
getpriorityand setpriority may return one of the following errors:

ESRCH No process was located using the which and who values specified.

EINV AL which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of the fol
lowing errors returned:

EPERM A process was located, but one of the following is true:

SEE ALSO

Neither its effective nor real user ID matched the effective user ID of
the caller, and neither the effective nor the real user ID of the process
executing the setpriority was the privileged user.

The call to getpriori ty would have changed a process' priority to a
value lower than its current value, and the effective user ID of the pro
cess executing the call was not that of the privileged user.

fork(2), nice(I), renice(IM)

581

getpriority (3) (BSD System Compatibility)

NOTES

582

It is not possible for the process executing setpriority to lower any other process
down to its current priority, without requiring privileged user privileges.

NAME

getprotoent (3N)

getprotoent, getprotobynumber, getprotobyname, setprotoent, endpro
toent - get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoent(void);

struct protoent *getprotobyname(char *name);

struct protoent *getprotobynumber (int proto);

int setprotoent (int stayopen);

int endprotoent(void);

DESCRIPTION

FILES

getprotoent, getprotobyname, and getprotobynumber each return a pointer to
an object with the following structure containing the broken-out fields of a line in
the network protocol data base, /etc/protocols.

The protoent structure include the following members:

char *p_name;
char **p_aliases;
int p-proto;

The members of this structure are:

/* official name of protocol */
/* alias list */
/* protocol number */

p_name

p _aliases

pyroto

the official name of the protocol

a zero terminated list of alternate names for the protocol

the protocol number

getprotoent reads the next line of the file, opening the file if necessary.

setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net
data base will not be closed after each call to getprotoent (either directly, or
indirectly through one of the other getproto calls).

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially search from the beginning
of the file until a matching protocol name or protocol number is found, or until an
EOF is encountered.

/etc/protocols

SEE ALSO
protocols(4)

DIAGNOSTICS
A NULL pointer is returned on an EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Only the Internet protocols are currently understood.

583

getpw(3C)

NAME
getpw - get name from UID

SYNOPSIS
#include <stdlib.h>

int getpw (uid_t uid, char *buf>;

DESCRIPTION

FILES

getpw searches the password file for a user ID number .that equals UID I copies the
line of the password file in which UID was found into the array pointed to by buf,
and returns O. getpw returns non-zero if UID cannot be found.

This routine is included only for compatibility with prior systems; it should not be
used. See getpwent(3C) for routines to use instead.

/etc/passwd.

SEE ALSO
getpwent(3C), passwd.(4)

DIAGNOSTICS
getpw returns non-zero on error.

584

NAME

getpwent (3C)

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - manipulate
password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent (void);

struct passwd *getpwuid (uid_t uid) ;

struct passwd *getpwnam (const char *name);

void setpwent (void);

void endpwent (void);

struct passwd *fgetpwent (FILE *j);

DESCRIPTION

FILES

getpwent, getpwuid, and getpwnam each returns a pointer to an object with the fol
lowing structure containing the broken-out fields of a line in the /etc/passwd file.
Each line in the file contains a passwd structure, declared in the pwd. h header file:

struct passwd {

} ;

char *pw_name;
char *pw-passwd;
uid_t pw_uid;
gid_t pw_gid;
char *pw_age;
char *pw_camment;
char *PW-geCOS;
char *pw_dir;
char *pw_shell;

When first called, getpwent returns a pointer to the first passwd structure in the
file; thereafter, it returns a pointer to the next passwd structure in the file. Thus suc
cessive calls can be used to search the entire file. getpwuid searches from the
beginning of the file until a numerical user ID matching uid is found and returns a
pointer to the particular structure in which it was found. getpwnam searches from
the beginning of the file until a login name matching name is found, and returns a
pointer to the particular structure in which it was found. If. an end-of-file or an
error is encountered on reading, these functions return a null pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated
searches. endpwent may be called to close the password file when processing is
complete.

fgetpwent returns a pointer to the next passwd' structure in the stream j, which
matches the format of /etc/passwd.

/etc/passwd

585

getpwent (3C)

SEE ALSO
getgrent(3C), getlogin(3C), passwd(4)

DIAGNOSTICS

NOTES

586

getpwent, getpwuid, getpwnam, and fgetpwent return a null pointer on EOF or
error.

All information is contained in a static area, so it must be copied if it is to be saved.

(BSD System Compatibility) getrusage (3)

NAME
getrusage - (BSD) get information about resource utilization

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/time.h>
#include <sys/resource.h>

getrusage(int who, struct rusage *rusage);

DESCRIPTION
getrusage returns information about the resources utilized by the current process,
or all its terminated child processes. The interpretation for some values reported,
such as ru_idrss, are dependent on the clock tick interval. This interval is an
implementation dependent value.

The who parameter is one of RUSAGE_SELF or RUSAGE_CHILDREN. The buffer to
which rusage points will be filled in with the following structure:

struct rusage {

};

struct timeval ru_utime;
struct timeval ru_stime;
int ru_maxrss;
int ru_ixrss;
int ru_idrss;
int ru_isrss;
int ru_minflt;
int ru_majflt;
int ru_nswap;
int ru_inblock;
int ru_oublock;
int ru_msgsnd;
int ru_msgrcv;
int ru_nsignals;
int ru_nvcsw;
int ru_nivcsw;

1* user time used *1
1* system time used *1
1* maximum resident set size *1
1* currently 0 *1
1* integral resident set size *1
1* currently 0 *1
1* page faults not requiring physical I/O *1
1* page faults requiring physical I/O *1
1* swaps *1
1* block input operations *1
1* block output operations *1
1* messages sent *1
1* messages received *1
1* signals received *1
1* voluntary context switches *1
1* involuntary context switches *1

The fields are interpreted as follows:

The total amount of time spent executing in user mode. Time is
given in seconds and microseconds.

The total amount of time spent executing in system mode. Time is
given in seconds and microseconds.

The maximum resident set size. Size is given in pages (the size of a
page, in bytes, is given by the getpagesize(3) system call). Also,
see NOTES.

587

getrusage (3) (SSC System Compatibility)

ru_bcrss Currently returns O.

ru_idrss An integral value indicating the amount of memory in use by a
process while the process is running. This value is the sum of the
resident set sizes of the process running when a clock tick occurs.
The value is given in pages times clock ticks. Note: it does not take
sharing into account. Also, see NOTES.

ru_isrss Currently returns O.

ruJ[linfl t The number of page faults serviced which did not require any phy
sical I/O activity. Also, see NOTES.

ru_majflt The number of page faults serviced which required physical I/O
activity. This could include page ahead operations by the kernel.
Also, see NOTES.

ru_nswap The number of times a process was swapped out of main memory.

ru_inblock The number of times the file system had to perform input in servic
ing a read(2) request.

ru_oublock The number of times the file system had to perform output in ser-
vicing a write(2) request.

ru_msgsnd The number of messages sent over sockets.

ru_msgrcv The number of messages received from sockets.

ru_nsignals The number of signals delivered.

ru_nvcsw The number of times a context switch resulted due to a process
voluntarily giving up the processor before its time slice was com
pleted (usually to await availability of a resource).

ruJ}ivcsw The number of times a context switch resulted due to a higher
priority process becoming runnable or because the current process
exceeded its time slice.

RETURN VALUE
If successful, the value of the appropriate structure is filled in, and 0 is returned. If
the call fails, a -1 is returned.

ERRORS
getrusage will fail if:

EINVAL The who parameter is not a valid value.

EFAULT The address specified by the rusage argument is not in a valid portion
of the process's address space.

Since System V Release 4 does not implement this function directly as a system call,
an illegal address (rusage) argument may result in a core dump as opposed to
returning EFAULT.

SEE ALSO
gettimeofday(3), read(2), sar(lM), times(2), wait(3), write(2)

588

NOTES

(eso System Compatibility) getrusage (3)

Only the timeval fields of st:ruct :rusage are supported in this implementation.

The numbers :ru_inblock and :ru_oublock account only for real I/O, and are
approximate measures at best. Data supplied by the caching mechanism is charged
only to the first process to read and the last process to write the data.

The way resident set size is calculated is an approximation, and could misrepresent
the true resident set size.

Page faults can be generated from a variety of sources and for a variety of reasons.
The customary cause for a page fault is a direct reference by the program to a page
which is not in memory. Now, however, the kernel can generate page faults on
behalf of the user, for example, servicing read(2) and write(2) system calls. Also, a
page fault can be caused by an absent hardware translation to a page, even though
the page is in physical memory.

In addition to hardware detected page faults, the kernel may cause pseudo page
faults in order to perform some housekeeping. For example, the kernel may gen
erate page faults, even if the pages exist in physical memory, in order to lock down
pages involved in a raw I/ 0 request.

By definition, major page faults require physical I/O, while minor page faults do not
require physical I/O. For example, reclaiming the page from the free list would
avoid I/O and generate a minor page fault. More commonly, minor page faults
occur during process startup as references to pages which are already in memory.
For example, if an address space faults on some hot executable or shared library,
this results in a minor page fault for the address space. Also, anyone doing a
read(2) or write(2) to something that is in the page cache will get a minor page
fault(s) as well.

There is no way to obtain information about a child process which has not yet
terminated.

589

gets (3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets (char *5);

char *fgets (char *5, int n, FILE *5tream);

DESCRIPTION
gets reads characters from the standard input stream [see intro(3)], stdin, into
the array pointed to by 5, until a newline character is read or an end-of-file condi
tion is encountered. The newline character is discarded and the string is terminated
with a null character.

fgets reads characters from the 5tream into the array pointed to by 5, until n-l
characters are read, or a newline character is read and transferred to 5, or an end
of-file condition is encountered. The string is then terminated with a null character.

When using gets, if the length of an input line exceeds the size of 5, indeterminate
behavior may result. For this reason, it is strongly recommended that gets be
avoided in favor of fgets.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), lseek(2), read(2), scanf(3S),
stdio(3S), ungetc(3S)

DIAGNOSTICS

590

If end-of-file is encountered and no characters have been read, no characters are
transferred to 5 and a null pointer is returned. If a read error occurs, such as trying
to use these functions on a file that has not been opened for reading, a null pointer
is returned and the error indicator for the stream is set. If end-of-file is encoun
tered, the EOF indicator for the stream is set. Otherwise 5 is returned.

NAME

getservent (3N)

getservent, getservbyport, getservbyname, setservent, endservent
get service entry

SYNOPSIS
#include <netdb.h>

struct servent *getservent(void);

struct servent *getservbyname (char *name, char *proto);

struct servent *getservbyport (int port, char *proto);

int setservent (int stayopen);

int endservent(void);

DESCRIPTION

FILES

getservent, getservbyname, and getservbyport each return a pointer to an object with
the following structure containing the broken-out fields of a line in the network ser
vices data base, /etc/services.

The servent structure includes the following members:
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
int s-port; /* port service resides at */
char *s-proto; /* protocol to use */

The members of this structure are:

s name

s aliases

The official name of the service.

A zero terminated list of alternate names for the service.

s yort The port number at which the service resides. Port numbers
are returned in network short byte order.

s yroto The name of the protocol to use when contacting the service.

getservent reads the next line of the file, opening the file if necessary.

setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data
base will not be closed after each call to getservent (either directly, or indirectly
through one of the other getserv calls).

endservent closes the file.

getservbyname and getservbyport sequentially search from the beginning of the
file until a matching protocol name or port number is found, or until EOF is encoun
tered. If a protocol name is also supplied (non-NULL), searches must also match the
protocol.

/etc/services

SEE ALSO
getprotoent(3N), services(4)

591

getservent (3N)

DIAGNOSTICS

592

A NULL pointer is returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.
Expecting port numbers to fit in a 32 bit quantity is probably naive.

getsockname (3N)

NAME
getsockname - get socket name

SYNOPSIS
int getsockname (int s, caddr_t name, int *namelen);

DESCRIPTION
getsockname returns the current name for socket s. The namelen parameter should
be initialized to indicate the amount of space pointed to by name. On return it con
tains the actual size of the name returned (in bytes).

RETURN VALUE
o is returned if the call succeeds; -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOMEM

ENOSR

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

There was insufficient user memory for the operation to com
plete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO

NOTES

bind(3N), getpeername(3N), socket(3N)

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF_UNIX) require a struct sockaddr_un
structure as defined in sys/un.h; Internet domain sockets (address family
AF_lNET) require a struct sockaddr_in structure as defined in netinet/in.h.
Other address families may require other structures. Use the structure appropriate
to the address family; cast the structure address to a generic caddr_t in the call to
getsockname and pass the size of the structure in the namelen argument.

The functionality of getsockname is provided by t_getname in TLl. t_getname
will be replaced in the next release of System V.

The syntax for t_getname is as follows:

t_getname(int fd, struct netbuf *name, register int type);

If type is equal to LOCALNAME, then the address of the local side of the connection is
returned; otherwise, the address of the remote side is returned.

593

getsockopt (3N)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s, int
int *optlen);

int setsockopt(int s, int
int opt len) ;

level, int optname, char *optval,

level, int optname, char *optval,

DESCRIPTION

594

getsockopt and setsockopt manipulate options associated with a socket. Options
may exist at multiple protocol levels; they are always present at the uppermost
socket level.

When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the socket level,
level is specified as SOL_SOCKET. To manipulate options at any other level, level is
the protocol number of the protocol that controls the option. For example, to indi
cate that an option is to be interpreted by the TCP protocol, level is set to the TCP
protocol number [see getprotoent(3N)].

The parameters optval and optlen are used to access option values for setsockopt.
For getsockopt, they identify a buffer in which the value(s) for the requested
option(s) are to be returned. For getsockopt, opt len is a value-result parameter,
initially containing the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. If no option value is to be
supplied or returned, a a optval may be supplied.

optname and any specified options are passed uninterpreted to the appropriate pro
tocol module for interpretation. The include file sys/socket.h contains definitions
for the socket-level options described below. Options at other protocol levels vary
in format and name.

Most socket-level options take an int for optval. For setsockopt, the optval param
eter should be non-zero to enable a boolean option, or zero if the option is to be dis
abled. SO_LINGER uses a struct linger parameter that specifies the desired state
of the option and the linger interval (see below). struct linger is defined in
/usr/include/sys/socket.h.

The following options are recognized at the socket level. Except as noted, each may
be examined with getsockopt and set with setsockopt.

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse
SO_KEEPALIVE toggle keep connections alive
SO_OONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data is present
SO_BROADCAST toggle permission to transmit broadcast messages

SO_OOBINLINE
SO_SNDBUF
SO_RCVBUF
SO_TYPE
SO_ERROR

getsockopt (3N)

toggle reception of out-of-band data in band
set buffer size for output
set buffer size for input
get the type of the socket (get only)
get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a bind call should
allow reuse of local addresses. SO_KEEPALIVE enables the periodic transmission of
messages on a connected socket. If the connected party fails to respond to these
messages, the connection is considered broken and processes using the socket are
notified using a SIGPIPE signal. SO_DONTROUTE indicates that outgoing messages
should bypass the standard routing facilities. Instead, messages are directed to the
appropriate network interface according to the network portion of the destination
address.

SO_LINGER controls the action taken when unsent messages are queued on a socket
and a close is performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the close attempt until it is
able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt call when
SO_LINGER is requested). If SO_LINGER is disabled and a close is issued, the sys
tem will process the close in a manner that allows the process to continue as
quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. With protocols that support out-of-band data, the SO_OOBINLINE option
requests that out-of-band data be placed in the normal data input queue as
received; it will then be accessible with recv or read calls without the MSG_OOB
flag. SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be
increased for high-volume connections or may be decreased to limit the possible
backlog of incoming data. The system places an absolute limit on these values.
Finally, SO_TYPE and SO_ERROR are options used only with getsockopt. SO_TYPE
returns the type of the socket (for example, SOCK_STREAM). It is useful for servers
that inherit sockets on startup. SO_ERROR returns any pending error on the socket
and clears the error status. It may be used to check for asynchronous errors on con
nected datagram sockets or for other asynchronous errors.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF
ENOTSOCK
ENOPROTOOPT
ENOMEM

The argument s is not a valid descriptor.
The argument s is a file, not a socket.
The option is unknown at the level indicated.
There was insufficient user memory available for the operation
to complete.

595

getsockopt (3N)

ENOSR

SEE ALSO

There were insufficient STREAMS resources available for the
operation to complete.

close(2), getprotoent(3N), ioctl(2), read(2), socket(3N)

596

NAME

getspent (3C)

get spent, getspnam, set spent, endspent, fgetspent, lekpwdf, ulekpwdf -
manipulate shadow password file entry

SYNOPSIS
#inelude <shadow.h>

struet spwd *getspent (void);

struet spwd *getspnam (eonst ehar *name);

int lekpwdf (void);

int ulekpwdf (void);

void setspent (void);

void endspent (void);

struet spwd *fgetspent (FILE *jp);
DESCRIPTION

The getspent and getspnam routines each return a pointer to an object with the
following structure containing the broken-out fields of a line in the fete/shadow
file. Each line in the file contains a "shadow password" structure, declared in the
shadow. h header file:

struet spwd{

};

ehar *sp_namp;
ehar *sp-pwdp;
long sp_lstehg;
long sp_min;
long sp_max;
long sp_wam;
long sp_inaet;
long sp_expire;
unsigned long sp_flag;

The getspent routine when first called returns a pointer to the first spwd structure
in the file; thereafter, it returns a pointer to the next spwd structure in the file; so
successive calls can be used to search the entire file. The getspnam routine searches
from the beginning of the file until a login name matching name is found, and
returns a pointer to the particular structure in which it was found. The getspent
and getspnam routines populate the sp_min, sp_max, sp_lstehg, sp_wam,
sp_inaet, or sp_expire field with -lor the sp_flag field with 0 if the
corresponding field in fete/shadow is empty. If an end-of-file or an error is
encountered on reading, or there is a format error in the file, these functions return
a null pointer and set ermo to EINVAL.

/ete/seeurity/ia/ .pwd.loek is the lock file. It is used to coordinate
modification access to the password files /ete/passwd and fete/shadow.
lekpwdf and ulekpwdf are routines that are used to gain modification access to the
password files, through the lock file. A process first uses 1ekpwdf to lock the lock
file, thereby gaining exclusive rights to modify the /ete/passwd or fete/shadow
password file. Upon completing modifications, a process should release the lock on

597

getspent (3C)

FILES

the lock file via ulekpwdf. This mechanism prevents simultaneous modification of
the password files.

lekpwdf attempts to lock the file /ete/seeurity/ia/ .pwd.loek within 15
seconds. If unsuccessful, for example, /ete/seeurity/ia/ .pwd.loek is already
locked, it returns -1. If successful, a return code other than -1 is returned.

ulekpwdf attempts to unlock the file /ete/seeurity/ia/ .pwd.loek. If unsuc
cessful, for example, /ete/seeurity/ia/ .pwd.loek is already unlocked, it returns
-1. If successful, it returns O.

A call to the setspent routine has the effect of rewinding the shadow password file
to allow repeated searches. The endspent routine may be called to close the sha
dow password file when processing is complete.

The fgetspent routine returns a pointer to the next spwd structure in the stream fp,
which matches the format of fete/shadow.

fete/shadow
/ete/passwd
/ete/seeurity/ia/.pwd.loek

SEE ALSO
getpwent(3C), putpwent(3C), putspent(3C)

DIAGNOSTICS

NOTES

598

getspent, getspnam, lekpwdf, ulekpwdf, and fgetspent return a null pointer on
EOF or error.

This routine is for internal use only; compatibility is not guaranteed.

All information is contained in a static area, so it must be copied if it is to be saved.

getsubopt (3C)

NAME
getsubopt - parse suboptions from a string

SYNOPSIS
#include <stdlib.h>

int getsubopt (char **optionp, char *const *tokens, char **valuep);

DESCRIPTION
getsubopt parses sub options in a flag argument that was initially parsed by
getopt. These suboptions are separated by commas and may consist of either a
single token or a token-value pair separated by an equal sign. Since commas delimit
suboptions in the option string, they are not allowed to be part of the suboption or
the value of a suboption. A command that uses this syntax is mount (1M), which
allows the user to specify mount parameters with the -0 option as follows:

mount -0 rw,hard,bg,wsize=1024 speed:/usr /usr

In this example there are four suboptions: rw, hard, bg, and wsize, the last of which
has an associated value of 1024.

getsubopt takes the address of a pointer to the option string, a vector of possible
tokens, and the address of a value string pointer. It returns the index of the token
that matched the suboption in the input string or -1 if there was no match. If the
option string at optionp contains only one suboption, getsubopt updates optionp to
point to the null character at the end of the string; otherwise it isolates the subop
tion by replacing the comma separator with a null character, and updates optionp to
point to the start of the next suboption. If the suboption has an associated value,
getsubopt updates valuep to point to the value's first character. Otherwise it sets
valuep to NULL.

The token vector is organized as a series of pointers to null strings. The end of the
token vector is identified by a null pointer.

When getsubopt returns, if valuep is not NULL, then the sub option processed
included a value. The calling program may use this information to determine if the
presence or lack of a value for this subobtion is an error.

Additionally, when getsubopt fails to match the sub option with the tokens in the
tokens array, the calling program should decide if this is an error, or if the unrecog
nized option should be passed to another program.

EXAMPLE
The following code fragment shows how to process options to the mount command
using getsubopt.

#include <stdlib.h>

char *myopts[] = {
#define READONLY 0

"ro",
#define READWRITE 1

"rw" ,

599

getsubopt (3C)

600

#define WRITESIZE 2
"wsize" ,

#define READSIZE 3
"rsize" ,
NULL} ;

main (argc, argv)
int argc;
char **argv;

{

int sc, c, errflag;
char *options, *value;
extern char *optarg;
extern int optind;

while«c = getopt(argc, argv, "abf:o:"» != -1) {
switch (c) {
case I a' : /* process a option */

break;
case 'b' : /* process b option */

break;
case 'f':

ofile = optarg;
break;

case '?' :
errflag++;
break;

case '0':
options = optarg;
while (*options != '\0') {

switch (getsubopt (&options,myopts,&value)
case READONLY : /* process ro option */

break;
case READWRITE /* process rw option */

break;
case WRITESIZE /* process wsize option */

if (value == NULL) {
error_no_arg () ;
errflag++;

else
write_size = atoi(value);

break;
case READSIZE : /* process rsize option */

if (value == NULL) {
error_no_arg();
errflag++;

} else

}

read_size
break;

atoi(value);

getsubopt (3C)

default :

}

}

break;

/* process unknown token */
error_bad_token(value);
errflag++;
break;

if (errflag)
/* print usage instructions etc. */

}

for (; optind<argc; optind++) {
/* process remaining arguments */

SEE ALSO
getopt(3C)

DIAGNOSTICS

NOTES

getsubopt returns -1 when the token it is scanning is not in the token vector. The
variable addressed by valuep contains a pointer to the first character of the token
that was not recognized rather than a pointer to a value for that token.

The variable addressed by optionp points to the next option to be parsed, or a null
character if there are no more options.

During parsing, commas in the option input string are changed to null characters.
White space in tokens or token-value pairs must be protected from the shell by
quotes.

601

gettimeofday (3C)

NAME
gettimeofday, settimeofday - get or set the date and time

SYNOPSIS
#include <sys/time.h>

int gettimeofday (struct timeval *tp);

int settimeofday (struct timeval *tp);

DESCRIPTION
gettimeofday gets and settimeofday sets the system's notion of the current time.
The current time is expressed in elapsed seconds and microseconds since 00:00
Universal Coordinated Time, January 1, 1970. The resolution of the system clock is
hardware dependent; the time may be updated continuously or in clock ticks.

tp points to a timeval structure, which includes the following members:

long
long

tv_sec;
tv_usec;

/* seconds since Jan. 1, 1970 */
/* and microseconds */

If tp is a null pointer, the current time information is not returned or set.

The TZ environment variable holds time zone information. See timezone(4).

Only the privileged user may set the time of day.

SEE ALSO
adjtime(2), ctime(3C), timezone(4)

DIAGNOSTICS

NOTES

602

A -1 return value indicates that an error occurred and errno has been set. The fol
lowing error codes may be set in errno:

EINVAL tp specifies an invalid time.

EPERM A user other than the privileged user attempted to set the time or time
zone.

The implementation of settimeofday ignores the tv_usec field of tp. If the time
needs to be set with better than one second accuracy, call settimeofday for the
seconds and then adjtime for finer accuracy.

(BSD System Compatibility) gettimeofday (3)

NAME
gettimeofday, settimeofday - (BSD) get or set the date and time

SYNOPSIS
/usr/ucb/cc [flag ...]fiZe ...

#include <sys/time.h>

int gettimeofday(struct timeval *tp, struct timezone *~p);

int settimeofday(struct timeval *tp, struct timezone *tzp);

DESCRIPTION
The system's notion of the current Greenwich time is obtained with the
gettimeofday call, and set with the settimeofday call. The current time is
expressed in elapsed seconds and microseconds since 00:00 GMT, January 1, 1970
(zero hour). The resolution of the system clock is hardware dependent; the time
may be updated continuously, or in "ticks."

tp points to a timeval structure, which includes the following members:

long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usee; /* and microseconds */

If tp is a NULL pointer, the current time information is not returned or set.

tzp is an obsolete pointer formerly used to get and set time zone information. tzp is
now ignored. Time zone information is now handled using the TZ environment
variable; see timezone(4).

Only the privileged user may set the time of day.

RETURN VALUE
A -1 return value indicates an error occurred; in this case an error code is stored in
the global variable ermo.

ERRORS
The following error codes may be set in ermo:

EINVAL tp specifies an invalid time.

EPERM A user other than the privileged user attempted to set the time.

SEE ALSO
adjtime(2), ctime(3C), date(I), gettimeofday(3C), timezone(4)

NOTES
Time is never correct enough to believe the microsecond values.

tzp is ignored.

603

gettxt(3C)

NAME
gettxt - retrieve a text string

SYNOPSIS
#include <unistd.h>

char *gettxt (const char *msgid, const char *dflt_str>;
DESCRIPTION

604

gettxt retrieves a text string from a message file. The arguments to the function
are a message identification msgid and a default string dflt _str to be used if the
retrieval fails.

The text strings are in files created by the mkmsgs utility [see mkmsgs(l)] and
installed in directories in /usr/lib/locale/locale/LC_MESSAGES.

The directory locale can be viewed as the language in which the text strings are writ
ten. The user can request that messages be displayed in a specific language by set
ting environment variables. That is, the locale directory searched is specified by the
LC_MESSAGES environment variable if it is set to a non-empty value. Otherwise, it is
specified by the LANG environment variable if it is set to a non-empty value. Other
wise, the directory C is used.

The user can also change the language in which the messages are displayed by
invoking the set locale function with the appropriate arguments. If the locale is
explicitly changed (via set locale), the pointers returned by gettxt may no longer
be valid.

The following depicts the acceptable syntax of msgid for a call to gettxt.

[msgfilename] : msgnumber

msgfilename indicates the message database that contains the localized version of the
text string. msgfilename must be limited to 14 characters. These characters must be
selected from a set of all characters values, excluding \0 (null) and the ASCII codes
for / (slash) and: (colon).

msgnum must be a positive number that indicates the index of the string in the mes
sage database.

If msgfilename does not exist in the locale (specified by the last call to setlocale
using the LC_ALL or LC_MESSAGES categories), or if the message number is out of
bounds, gettxt attempts to retrieve the message from the C locale. If this second
retrieval fails, gettxt uses dflt _str.

If msgfilename is omitted, get txt attempts to retrieve the string from the default
catalog specified by the last call to setcat(3C).

gettxt outputs Message not found!! \n if:

msgfilename is not a valid catalog name as defined above
no catalog is specified (either explicitly or via setcat)
msgnumber is not a positive number
no message could be retrieved and dflt _str was omitted

gettxt(3C)

EXAMPLE

FILES

In the following code fragment, test is the name of the file that contains the mes
sages and 10 is the message number.

get txt ("test: 10", "hello world\n")
get txt (Itest:10", 1111)

setcat ("test") ;
gettxt(":10", "hello world\n")

The following files are created by mkmsgs:

/usr/lib/locale/C/LC_MESSAGES/* default message files
/usr/lib/locale/locale/LC_MESSAGES/* message files for language

specified by locale

SEE ALSO
environ(5), exstr(l), gettxt(l), mkmsgs(l), pfmt(3C),
setlocale(3C), srchtxt(l)

setcat(3C),

605

getusershell (3) (BSD System Compatibility)

NAME
getusershell, setusershell, endusershell- (BSD) get legal user shells

SYNOPSIS
/usr/ueb/ee [flag ...]file ...

ehar *getusershell();

setusershell();
endusershell();

DESCRIPTION

FILES

getusershell returns a pointer to a legal user shell as defined by the system
manager in the file fete/shells. If fete/shells does not exist, the locations of
the standard system shells, /usr/bin/esh, /usr/bin/sh, and /usr/bin/ksh are
returned.

getusershell reads the next line (opening the file if necessary); setusershell
rewinds the file; endusershell closes it.

fete/shells
/usr/bin/esh
/usr/bin/ksh
/usr/bin/sh

RETURN VALUE
The routine getusershell returns a NULL pointer (0) on EOF or error.

NOTES
All information is contained in a static area so it must be copied if it is to be saved.

606

NAME

getut(3C)

getut: getutent, getutid, getutline,pututline, setutent, endutent, utmp
name - access utmp file entry

SYNOPSIS
#include <utmp.h>

struct utmp *getutent (void);

struct utmp *getutid (const struct utmp *id);

struct utmp *getutline (const struct utmp *line);

struct utmp *pututline (const struct utmp *utmp);

void setutent (void);

void endutent (void);

int utmpname (const char *jile);

DESCRIPTION
getutent, getutid, getutline, and pututline each return a pointer to a utmp
structure. [See utmp(4)].

getutent reads in the next entry from a utmp-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

getutid searches forward from the current point in the utmp file until it finds an
entry with a ut _type matching id->ut_ type if the type specified is RUN_LVL,
BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then getutid will return a
pointer to the first entry whose type is one of these four and whose ut_id field
matches id->ut_id. If the end of file is reached without a match, it fails.

getutline searches forward from the current point in the utmp file until it finds an
entry of the type LOGIN_PROCESS or USER_PROCESS that also has a ut Jine string
matching the line->utJine string. If the end of file is reached without a match, it
fails.

pututline writes out the supplied utmp structure into the utmp file. It uses getu
tid to search forward for the proper place if it finds that it is not already at the
proper place. It is expected that normally the user of pututline will have searched
for the proper entry using one of the getut routines. If so, pututline will not
search. If pututline does not find a matching slot for the new entry, it will add a
new entry to the end of the file. It returns a pointer to the utmp structure.

setutent resets the input stream to the beginning of the file. This reset should be
done before each search for a new entry if it is desired that the entire file be exam
ined.

endutent closes the currently open file.

utmpname allows the user to change the name of the file examined, from
/var/adm./utmp to any other file. It is most often expected that this other file will
be /var/adm./wtmp. If the file does not exist, this will not be apparent until the first
attempt to reference the file is made. utmpname does not open the file. It just closes
the old file if it is currently open and saves the new file name. If the file name given
is longer than 79 characters, utmpname returns O. Otherwise, it will return 1.

607

getut(3C)

FILES
/var/adm/utmp
/var/adm/wtmp

SEE ALSO
getutx(3C), ttyslot(3C), utmp(4)

DIAGNOSTICS

NOTES

608

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

The most current entry is saved in a static structure. Multiple accesses require that
it be copied before further accesses are made. On each call to either getutid or
getutline, the routine examines the static structure before performing more I/O.
H the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutline to search for multiple occurrences, it
would be necessary to zero out the static area after each success, or getutline
would just return the same structure over and over again. There is one exception to
the rule about emptying the structure before further reads are done. The implicit
read done by pututline (if it finds that it is not already at the correct place in the
file) will not hurt the contents of the static structure returned by the getutent,
getutid or getutline routines, if the user has just modified those contents and
passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an unbuf
fered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

NAME
getutx: getutxent, getutxid,
endutxent, utmpxname, getutmp,
utnq;>x file entry

getutx(3C)

getutxline, pututxline, setutxent,
getutmpx, updwtmp, updwtnq;>x - access

SYNOPSIS
#include <utmpx.h>

struct utmpx *getutxent (void);

struct utmpx *getutxid (const struct utmpx *id);

struct utmpx *getutxline (const struct utmpx *line);

struct utmpx *pututxline (const struct utmpx *utmpx);

void setutxent (void);

void endutxent (void);

int utmpxname (const char *fi1e);

void getutmp (struct utmpx *utmpx, struct utmp *utmp);

void getutmpx (struct utmp *utmp, struct utmpx *utmpx);

void updwtmp (char *wfile, struct utmp *utmp);

void updwtmpx (char *wfilex, struct utmpx *utmpx);

DESCRIPTION
getutxent, getutxid, getutxline, and pututxline each return a pointer to a
utnq;>x structure. [See utmpx(4).]

getutxent reads in the next entry from a utmpx-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

getutxid searches forward from the current point in the utmpx file until it finds an
entry with a ut_type matching id->ut_type if the type specified is RUN_LVL,
BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then getutxid returns a
pointer to the first entry whose type is one of these four and whose ut _id field
matches id->ut_id. If the end of file is reached without a match, it fails.

getutxline searches forward from the current point in the utnq;>x file until it finds
an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut Jine
string matching the line->ut_line string. If the end of file is reached without a
match, it fails.

pututxline writes out the supplied utmpx structure into the utmpx file. It uses
getutxid to search forward for the proper place if it finds that it is not already at
the proper place. It is expected that normally the user of pututxline will have
searched for the proper entry using one of the getutx routines. If so, pututxline
will not search. If pututxline does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmpx struc
ture.

609

getutx{3C)

FILES

setutxent resets the input stream to the beginning of the file. This should be done
before each search for a new entry if it is desired that the entire file be examined.

endutxent closes the currently open file.

utmpxname allows the user to change the name of the file examined, from
/var/adm/utmpx to any other file. It is most often expected that this other file will
be /var / adm/wtmpx. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. utmpxname does not open the file. It just
closes the old file if it is currently open and saves the new file name. The new file
name must end with the "x" character to allow the name of the corresponding utmp
file to be easily obtainable (otherwise an error code of 0 is returned).

getutmp copies the information stored in the fields of the utmpx structure to the
corresponding fields of the utmp structure. If the information in any field of utmpx
does not fit in the corresponding utmp field, the data is truncated.

getutmpx copies the information stored in the fields of the utmp structure to the
corresponding fields of the utmpx structure.

updwtmp checks the existence of wfile and its parallel file, whose name is obtained
by appending an "x" to wfile. If only one of them exists, the second one is created
and initialized to reflect the state of the existing file. utmp is written to wfile and the
corresponding utmpx structure is written to the parallel file. If neither file exists
nothing will happen.

updwtmpx checks the existence of wfilex and its parallel file, whose name is obtained
by truncating the final "x" from wfilex. If only one of them exists, the second one is
created and initialized to reflect the state of the existing file. utmpx is written to
wfilex, and the corresponding utmp structure is written to the parallel file. If neither
file exists nothing will happen.

/var/adm/utmp,/var/adm/utmpx
/var/adm/wtmp,/var/adm/wtmpx

SEE ALSO
getut(3C), ttyslot(3C), utmp(4), utmpx(4)

DIAGNOSTICS

NOTES

610

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

The most current entry is saved in a static structure. Multiple accesses require that
it be copied before further accesses are made. On each call to either getutxid or
getutxline, the routine examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline would
just return the same structure over and over again. There is one exception to the
rule about emptying the structure before further reads are done. The implicit read
done by pututxline (if it finds that it is not already at the correct place in the file)
will not hurt the contents of the static structure returned by the getutxent,

getutx (3C)

getutxid, or getutxline routines, if the user has just modified those contents and
passed the pointer back to pututxline.

These routines use buffered standard I/O for input, but pututxline uses an un
buffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

611

getvfsent (3C)

NAME
getvfsent, getvfsfile, getvfsspec, getvfsany - get vfstab file entry

SYNOPSIS
#include <stdio.h>
#include <sys/vfstab.h>

int getvfsent (FILE *JP, struct vfstab *vp);
int getvfsfile (FILE *JP, struct vfstab *vp, const char *fi1e);
int getvfsspec (FILE *JP, struct vfstab *vp, const char *spec);
int getvfsany (FILE *JP, struct vfstab *vp, const struct vfstab *vref);

DESCRIPTION

FILES

getvfsent, getvfsfile, getvfsspec, and getvfsany each fill in the structure
pointed to by vp with the broken-out fields of a line in the /etc/vfstab file. Each
line in the file contains a vfstab structure, declared in the sys/vfstab.h header
file:

char *vfs_special;
char *vfs_fsckdev;
char *vfs_mountp;
char *vfs_fstype;
char *vfs_fsckpass;
char *vfs_automnt;
char *vfs_mntopts;
char *vfs_macceiling;

The fields have meanings described in vfstab(4).

getvfsent returns a pointer to the next vfstab structure in the file; so successive
calls can be used to search the entire file. getvfsfile searches the file referenced
by JP until a mount point matching file is found and fills vp with the fields from the
line in the file. getvfsspec searches the file referenced by JP until a special device
matching spec is found and fills vp with the fields from the line in the file. spec will
try to match on device type (block or character special) and major and minor device
numbers. If it cannot match in this manner, then it compares the strings.
getvfsany searches the file referenced by JP until a match is found between a line
in the file and vref. vref matches the line if all non-null entries in vref match the
corresponding fields in the file.

Note that these routines do not open, close, or rewind the file.

/etc/vfstab

DIAGNOSTICS

612

If the next entry is successfully read by getvfsent or a match is found with
getvfsfile, getvfsspec, or getvfsany, a is returned. If an end-of-file is encoun
tered on reading, these functions return -1. If an error is encountered, a value
greater than a is returned. The possible error values are:

NOTES

getvfsent (3C)

A line in the file exceeded the internal buffer size of
VFS_LlNE_MAX.

A line in the file contains too many fields.

A line in the file contains too few fields.

The members of the vfstab structure point to information contained in a static
area, so it must be copied if it is to be saved.

SEE ALSO
vfstab(4)

613

getwc(3W)

NAME
getwc, getwchar, fgetwc - get wchar_t character or word from a stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int getwc (FILE *stream);

int getwchar(void};

int fgetwc (FILE *stream);

DESCRIPTION (International Functions)
getwc transforms the next Eve character from the named input stream into a
wchar_t character, and returns it. It also increments the file pointer, if defined, by
one Eve character in the stream. getwchar is defined as getwc (stdin). getwc
and getwchar are macros.

fgetwc behaves like getwc, but is a function.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), getws(3W), putwc(3W), scanf(3S), stdio(3S),
widec(3W)

DIAGNOSTICS

NOTES

614

These functions return the constant EOF at the end-of-file, or upon an error and set
the EOF or error indicator of a stream, respectively. If the error is an illegal
sequence, errno is set to EILSEQ.

If the value returned by getwc, getwchar, or fgetwc is compared with the integer
constant EOF after being stored in a wchar_t variable, the comparison may not
succeed unless EOF is cast to type wchar_t.

(BSO System Compatibility)

NAME
getwd - (BSD) get current working directory pathname

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

#include <sys/param.h>

char *getwd (char pathname [MAXPATHLEN]) ;

DESCRIPTION

getwd (3)

getwd copies the absolute pathname of the current working directory to pathname
and returns a pointer to the result.

RETURN VALUE
getwd returns zero and places a message in pathname if an error occurs.

SEE ALSO
getcwd(3C)

615

getwidth (3W)

NAME
getwidth - get information on supplementary code sets

SYNOPSIS
#include <sys/euc.h>
#include <getwidth.h>

void getwidth(eucwidth_t *ptr);

DESCRIPTION
getwidth reads the character class table generated by chrtbl(lM) or wchrtbl(lM)
to get information on supplementary code sets, and puts it in the structure
eucwidth_t.

The structure eucwidth_t is defined in the header file euc.h as follows:

typedef struct {
short int _eucw1,_eucw2,_eucw3;
short int _scrw1,_scrw2,_scrw3;
short int -pcw;
char _multibyte;

eucwidth_t;

Code set width values for three supplementary code sets are set in _eucw1, _eucw2,
and _eucw3, respectively. Screen width values for the three supplementary code sets
are set in _scrw1, _scrw2, and _scrw3, respectively. The width of Eve process
code is set in -pcw. The maximum width in bytes of Eve is set in _mul tibyte.

If the cswidth parameter is not set, the system default is required. The system
default is cswidth 1: 1,0: 0,0: o.

SEE ALSO
chrtbl(lM), wchrtbl(lM).

616

getws(3W)

NAME
getws, fgetws - get a wchar_t string from a stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

wchar_t *getws(wchar_t *s);

wchar_t *fgetws (wchar_t *s, int n, FILE *stream);

DESCRIPTION (International Functions)
getws reads Eue characters from stdin, converts them to wchar_t characters, and
places them in the wchar_t array pointed to by s. getws reads until a newline char
acter is read or an end-of-file condition is encountered. The newline character is
discarded and the wchar_t string is terminated with a wchar_t null character.

fgetws reads Eue characters from the stream, converts them to wchar_t characters,
and places them in the wchar_t array pointed to by 5. fgetws reads until n-l
wchar_t characters are transferred to 5, or a newline character or an end-of-file con
dition is encountered. The wchar_t string is then terminated with a wchar_t null
character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getwc(3W), scanf(3S), stdio(3S), widec(3W)

DIAGNOSTICS
If end-of-file or a read error is encountered and no characters have been
transformed, no wchar_t characters are transferred to 5 and a null pointer is
returned and the error indicator for the stream is set. If the read error is an illegal
byte sequence, errno is set to EILSEQ. If end-of-file is encountered, the EOF indica
tor for the stream is set. Otherwise,s is returned.

617

gmatch(3G)

NAME
gmatch - shell global pattern matching

SYNOPSIS
cc [flag ...]file ... -lgen [library ...]

#include <libgen.h>

int gmatch (const char *str, const char *pattern);

DESCRIPTION
gmatch checks whether the null-terminated string str matches the null-terminated
pattern string pattern. See the sh(l) section "File Name Generation" for a discus
sion of pattern matching. gmatch returns non-zero if the pattern matches the string,
zero if the pattern doesn't. A backslash ('V) is used as an escape character in pat
tern strings.

EXAMPLES
char *5;

gmatch (5, "*[a\-]")

gmatch returns non-zero (true) for all strings with 'a' or '-' as their last character.

SEE ALSO
sh(l)

618

grantpt (3C)

NAME
grantpt - grant access to the slave pseudo-terminal device

SYNOPSIS
int grantpt (int fildes) ;

DESCRIPTION
The function grantpt changes the mode and ownership of the slave pseudo
terminal device associated with its master pseudo-terminal counter part. fildes is
the file descriptor returned from a successful open of the master pseudo-terminal
device. A setuid root program [see setuid(2)] is invoked to change the permis
sions. The user ID of the slave is set to the effective owner of the calling process and
the group ID is set to a reserved group. The permission mode of the slave pseudo
terminal is set to readable, writable by the owner and writable by the group.

RETURN VALUE
Upon successful completion, the function grantpt returns 0; otherwise it returns
-1. Failure could occur if fildes is not an open file descriptor, if fildes is not associ
ated with a master pseudo-terminal device, or if the corresponding slave device
could not be accessed.

SEE ALSO
open(2), ptsname(3C), pty(7), setuid(2), unlockpt(3C)

619

hsearch (3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (ENTRY item, ACTION action);

int hcreate (size_t nel);

void hdestroy (void);

DESCRIPTION
hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D.
It returns a pointer into a hash table indicating the location at which an entry can be
found. The comparison function used by hsearch is strCIll> [see string(3C)].
item is a structure of type ENTRY (defined in the search.h header file) containing
two pointers: item.key points to the comparison key, and item. data points to any
other data to be associated with that key. (Pointers to types other than void should
be cast to pointer-to-void.) action is a member of an enumeration type ACTION
(defined in search. h) indicating the disposition of the entry if it cannot be found in
the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. Given a duplicate of an existing item, the new item is not
entered and hsearch returns a pointer to the existing item. FIND indicates that no
entry should be made. Unsuccessful resolution is indicated by the return of a null
pointer.

hcreate allocates sufficient space for the table, and must be called before hsearch
is used. nel is an estimate of the maximum number of entries that the table will con
tain. This number may be adjusted upward by the algorithm in order to obtain cer
tain mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by another call to
hcreate.

RETURN VALUES
hsearch returns a null pointer if either the action is FIND and the item could not be
found or the action is ENTER and the table is full.

hcreate returns zero if it cannot allocate sufficient space for the table.

EXAMPLES

620

The following example will read in strings followed by two numbers and store
them in a hash table, discarding duplicates. It will then read in strings and find the
matching entry in the hash table and print it out.

#include <stdio.h>
#include <search.h>
#include <string.h>
#include <stdlib.h>

struct info { /* this is the info stored in table */
int age, room; /* other than the key */

};

5000 /* # of elements in search table */

SEE ALSO

main ()
{

/* space to store strings */
char string_space[NUM_EMPL*20];
/* space to store employee info */
struct info info_space[NUM~L];
/* next avail space in string_space */
char *str-ptr = string_space;
/* next avail space in info_space */
struct info *info-ptr = info_space;
ENTRY item, * found_i tem;
/* name to look for in table */
char name_to_find[30];
int i = 0;

/* create table */
(void) hcreate(NUM_EMPL);

hsearch (3C)

while (scanf ("'YoS'Yod,'Yod,", str-ptr, &info-ptr->age,
&info-ptr->room) != EOF && i++ < NUM_EMPL)

/* put info in structure, and structure in item */
item. key = str-ptr;
item.data = (void *)info-ptr;
str-ptr += strlen(str-ptr) + 1;
info-ptr++;
/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item. key = name_to_find;
while (scanf("%s", item. key) != EOF) {

if «found_item = hsearch(item, FIND» != NULL) {
/* if item is in the table */
(void)printf ("found %s, age = 'Yod" room = 'Yod,\n",

found_item->key,
«struct info *)found_item->data)->age,
«struct info *)found_item->data)->room);

} else {
(void)printf("no such employee %s\n",

name_to_find)

return 0;

bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C)

621

hsearch (3C)

NOTES
hsearch and hcreate use malloc(3C) to allocate space.

Only one hash search table may be active at any given time.

622

hypot(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
cc [flag . . .]file ... -1m [library . ..]

#include <math.h>

double hypot (double x, double y) i

DESCRIPTION
hypot returns

sqrt(x * x + y * y)

taking precautions against unwarranted overflows.

SEE ALSO
cc(l), matherr(3M)

DIAGNOSTICS
When the correct value would overflow, hypot returns a value that will compare
equal to HUGE and sets errno to ERANGE.

Except when the -Xc compilation option is used [see cc(l)], these error-handling
procedures may be changed with the function matherr. When the -Xa or -Xc com
pilation options are used [see cc(l)], the returned value will compare equal to
HUGE_VAL instead of HUGE.

623

NAME
ia_uinfo: ia_openinfo, ia_closeinfo, ia_get_uid, ia_get_9id,
ia_get_s9id, ia_get_lvl, ia_get_lvl, ia_get_mask, ia_get_dir,
ia_get_sh, ia_get_logpwd, ia_get_lo9chg, ia_get_logmin,
ia_get_logmax, ia_get_logwarn, ia_get_loginact,
ia_get_logexpire - get user identification and authentication information

SYNOPSIS
cc rJlag . ..]file ... -liaf [library . ..]

#include <iaf.h>
#include <sys/types.h>
#include <ia.h>

int ia_openinfo(const char *logname, uinfo_t *uinfo};

void ia_closeinfo(uinfo_t uinfo};

void ia_get_uid(uinfo_t uinfo, uid_t *uid);

void ia_get_gid(uinfo_t uinfo, gid_t *gid};

int ia_get_sgid(uinfo_t uinfo, gid_t **sgid, long *cnt);

int ia_get_lvl (uinfo_t uinfo, level_t **lvl, long *cnt);

void ia_get_mask(uinfo_t uinfo, adtemask_t *mask};

void ia_get_dir(uinfo_t uinfo, char **dir};

void ia_get_sh(uinfo_t uinfo, char **shell};

void ia_get_logpwd (uinfo_t uinfo, char **passwd) ;

void ia_get_logchg (uinfo_t uinfo, long *changed) ;

void ia_get_logmin(uinfo_t uinfo, lon9 *min} ;

void ia-9'et_logmax(uinfo_t uinfo, long *max) ;

void ia_get_logwarn(uinfo_t uinfo, long *warn};

void ia_get_loginact (uinfo_t uinfo, long *inact);

void ia_get_logexpire (uinfo_t uinfo, long *expire);

DESCRIPTION

624

These functions provide access to user identification and authentication informa
tion.

logname

uinfo

points to a user login name for which the identification and authenti
cation information is to be accessed.

is an identifier returned by ia_openinfo through which the informa
tion about the logname is accessed.

The access to the information (for the given logname) is provided after successfully
calling ia_openinfo and remains open until either the process calls ia_closeinfo
or the process exits. The results will be indeterminate if the functions are called
with the identifier uinfo that was not previously obtained from ia_openinfo or
with the identifier that already has been closed with ia_closeinfo. Therefore, an
application should determine when to call ia_closeinfo and if necessary copy the

ia _ uinto (31)

data represented by the identifier to its own address space before such call takes
place.

ia_openinfo opens the access to the identification and authentication information
for the Iogname and associates with it an identifier uinfo that is to be used with all
other identification and authentication access functions.

ia_cIoseinfo closes the access to the identification and authentication information
for the user identified by uinfo. ia_cIoseinfo is performed automatically for all
identifiers upon calling exit(2).

ia_get_uid returns a pointer to the user id uid.

ia_get.-9'id returns a pointer to the group id gid.

ia_get_sgid returns a pointer to an array of supplementary group ids sgid _array
and a pointer to a count cnt.

ia_get_1 vI returns a pointer to an array of levels IDs IvI and a pointer to the count
cnt.

ia_get_mask returns a pointer to the user audit mask mask.

ia_get_dir returns a pointer to the user home directory dir.

ia_get_sh returns a pointer to the name of the user's shell shell.

ia_get_Iogpwd. returns a pointer to the user login password passwd.

ia.-9'et_Iogchg returns a pointer to the date when the login password was last
changed changed.

ia_get_Iogmin returns a pointer to the minimum days before the login password
can change min.

ia_get_Iogmax returns a pointer to the number of days that the login password is
valid max.

ia_get_Iogwarn returns a pointer to the number of days before the login pass
word expires warn.

ia_get_Ioginact returns a pointer to the number of days the login may be inac
tive inact.

ia_get_Iogexpire returns a pointer to the date when the login expires expire.

DIAGNOSTICS
Upon successful completion, ia_openinfo returns a value of O. Otherwise, -1 is
returned and the value of uinfo is indeterminate.

All other functions, upon successful completion, will return as an argument either a
pointer to the appropriate identification and authentication information, or a NULL
pointer on a failure.

Additionally, functions ia_get_sgid, ia_get_1 vI and ia_get_mask return value
of 0 on success and non-zero on failure.

SEE ALSO
login(l), passwd.(l), passwd.(4), shadow(4)

625

ieee functions (3) (BSD System Compatibility)

NAME
ieee_functions, fp_class, isnan, copysign, scalbn - (BSD) miscellaneous func
tions for IEEE arithmetic

SYNOPSIS
/usr/ucb/cc [flag ...] file ...

#include <fp.h>
#include <math.h>
#include <stdio.h>

enum fp_class_type fp_class(double x);

int isnan(double x);

double copysign(double x, double y);

double scalbn(double x, int n);

DESCRIPTION

FILES

626

Most of these functions provide capabilities required by ANSI/IEEE Std 754-1985 or
suggested in its appendix.

fp_class (x) corresponds to the IEEE's classO and classifies x as zero, subnormal,
normal, 00, or quiet or signaling NaN; /usr/ucbinclude/sys/ieeefp.h defines
enum fp_c las s_type. The following function returns 0 if the indicated condition
is not satisfied:

isnan(x) returns 1 if x is NaN

copysign(x,y) returns x with y's sign bit.

scalbn(x,n) returns x* 2**n computed by exponent manipulation rather than by
actually performing an exponentiation or a multiplication. Thus

1 ~ scalbn(fabs(x),-ilogb(x» < 2

for every x except 0, 00, and NaN.

/usr/ucbinclude/sys/ieeefp.h
/usr/ucbinclude/math.h
/usr/include/values.h

(eso System Compatibility) ieee_handler (3)

NAME
ieee_handler - (BSD) IEEE exception trap handler function

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <fp.h>

int ieee_handler (char action [], char exception [] ,
sigfpe_handler_type hdl);

DESCRIPTION
This function provides easy exception handling to exploit ANSI/IEEE Std 754-1985
arithmetic in a C program. All arguments are pointers to strings. Results arising
from invalid arguments and invalid combinations are undefined for efficiency.

There are three types of action: get, set, and clear. There are five types of
exception:

inexact
division
underflow
overflow
invalid
all
connnon

division by zero exception

all five exceptions above
invalid, overflow, and division exceptions

Note: all and common only make sense with set or clear

hdl contains the address of a signal-handling routine. fp. h defines
sigfpe _ handler _type.

get will get the location of the current handler routine for exception in hdl . set
will set the routine pointed at by hdl to be the handler routine and at the same time
enable the trap on exception, except when hdl == SIGFPE_DEFAULT or
SIGFPE_IGNORE; then ieee_handler will disable the trap on exception. When hdl
== SIGFPE_ABORT, any trap on exception will dump core using abort(3C). clear
all disables trapping on all five exceptions.

Two steps are required to intercept an IEEE-related SIGFPE code with
ieee_handler:

1. Set up a handler with ieee_handler.

2. Perform a floating-point operation that generates the intended IEEE exception.

Unlike sigfpe(3), ieee_handler also adjusts floating-point hardware mode bits
affecting IEEE trapping. For clear, set SIGFPE_DEFAULT, or set SIGFPE_IGNORE,
the hardware trap is disabled. For any other set, the hardware trap is enabled.

SIGFPE signals can be handled using sigvec(3), signal(3), sigfpe(3), or
ieee_handler. In a particular program, to avoid confusion, use only one of these
interfaces to handle SIGFPE signals.

RETURN VALUES
ieee_handler normally returns o. In the case of set, 1 will be returned if the
action is not available (for instance, not supported in hardware).

627

ieee_handler (3) (BSC System Compatibility)

EXAMPLES

FILES

A user-specified signal handler might look like this:
void sample_handler(int sig, int code,

struct sigcontext *scp, char *addr);
/* sig == SIGFPE always */

/*
Sample user-written sigfpe code handler.
Prints a message and continues.
struct sigcontext is defined in <signal.h>.

*/
printf ("ieee exception code 9-oX occurred at pc 9-oX \n",
code,scp->sc-pc);

and it might be set up like this:
extern void sample_handler;
main

sigfpe~andler_type hdl, old_handlerl, old_handler2;
/*
* save current overflow and invalid handlers
*/

/*

ieee_handler("get","overflow",old_handlerl);
ieee_handler("get","invalid", old_handler2);

* set new overflow handler to sample_handler and set new
* invalid handler to SIGFPE_ABORT (abort on invalid)
*/

/*

hdl = (sigfpe_handler_type) sample_handler;
if (ieee_handler("set", "overflow",hdl) != 0)

printf("ieee~andier can't set overflow \n");
if (ieee_handler("set", "invalid",SIGFPE_ABORT) != 0)

printf("ieee_handier can't set invalid \n");

* restore old overflow and invalid handlers
*/

ieee_handler("set","overflow", old_handlerl);
ieee_handler("set","invalid", old_handler2);

/usr/include/fp.h
/usr/include/signal.h

SEE ALSO
abort(3C), floatingpoint(3), sigfpe(3), signal(3), sigvec(3)

628

(BSO System Compatibility) index (3)

NAME
index, rindex - (BSD) string operations

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <string.h>

char *index(char *8, char *C)i

char *rindex(char *8, char *C)i

DESCRIPTION
These functions operate on NULL-terminated strings. They do not check for
overflow of any receiving string.

index and rindex return a pointer to the first (last) occurrence of character C in
string 8, or a NULL pointer if C does not occur in the string. The NULL character ter
minating a string is considered to be part of the string.

SEE ALSO

NOTES

bstring(3), malloc(3C), string(3), string(3C)

For user convenience, these functions are declared in the optional <strings. h>
header file.

On many machines, you can not use a NULL pointer to indicate a NULL string. A
NULL pointer is an error and results in an abort of the program. If you wish to indi
cate a NULL string, you must have a pointer that points to an explicit NULL string.
On some implementations of the C language on some machines, a NULL pointer, if
dereferenced, would yield a NULL string; this highly non-portable trick was used in
some programs. Programmers using a NULL pointer to represent an empty string
should be aware of this portability issue; even on machines where dereferencing a
NULL pointer does not cause an abort of the program, it does not necessarily yield a
NULL string.

Character movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

629

inet(3N)

NAME
inet: inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof,
inet_ntoa - Internet address manipulation

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr(char *Cp)i

unsigned long inet_network(char *Cp)i

struct in_addr inet_makeaddr(int net, int Ina) i

int inet_lnaof (struct in_addr in) i

int inet-.n,etof (struct in_addr in) i

char * inet-.n,toa (struct in_addr in) i

DESCRIPTION
The routines inet_addr and inet_network each interpret character strings
representing numbers expressed in the Internet standard I.' (" dot") notation,
returning numbers suitable for use as Internet addresses and Internet network
numbers, respectively. The routine inet_makeaddr takes an Internet network
number and a local network address and constructs an Internet address from it.
The routines inet_netof and inet_lnaof break apart Internet host addresses,
returning the network number and local network address part, respectively.

The routine inet_ntoa returns a pointer to a string in the base 256 notation
d.d.d.d described below.

All Internet addresses are returned in network order (bytes ordered from left to
right). All network numbers and local address parts are returned as machine for
mat integer values.

INTERNET ADDRESSES

630

Values specified using the I .' notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit quan
tity and placed in the right most two bytes of the network address. This makes the
three part address format convenient for specifying Class B network addresses as
128.net.host.

inet(3N)

When a two part address is supplied, the last part is interpreted as a 24-bit quantity
and placed in the right most three bytes of the network address. This makes the
two part address format convenient for specifying Class A network addresses as
net.host.

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

All numbers supplied as parts in a ' .' notation may be decimal, octal, or hexade
cimal, as specified in the C language (that is, a leading Ox or OX implies hexadecimal;
otherwise, a leading 0 implies octal; otherwise, the number is interpreted as
decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(4), networks(4)

DIAGNOSTICS

NOTES

The value -1 is returned by inet_addr and inet_network for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A
simple way to specify Class C network addresses in a manner similar to that for
Class B and Class A is needed.

The return value from inet_ntoa points to static information which is overwritten
in each call.

631

initgroups (3C)

NAME
initgroups - initialize the supplementary group access list

SYNOPSIS
#include <grp.h>
#include <sys/types.h>

int initgroups (const char *name, gid_t basegid)

DESCRIPTION
ini tgroups reads the group file, using getgrent, to get the group membership for
the user specified by name and then initializes the supplementary group access list
of the calling process using setgroups. The basegid group ID is also included in the
supplementary group access list. This is typically the real group ID from the pass
word file.

While scanning the group file, if the number of groups, including the basegid entry,
exceeds {NGROUPS_MAX}, subsequent group entries are ignored.

SEE ALSO
getgrent(3C), getgroups(2)

DIAGNOSTICS

632

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

insque(3C)

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
include <search.h>

void ins que (struct qelem *elem, struct qelem *pred);

void remque (struct qelem *elem);

DESCRIPTION
insque and remque manipulate queues built from doubly linked lists. Each ele
ment in the queue must be in the following form:

struct qelem
struct qelem *~forw;
struct qelem *~back;
char ~data [] ;

};

insque inserts elem in a queue immediately after pred. remque removes an entry
elem from a queue.

633

invoke (31)

NAME
invoke - lAF function for invoking authentication schemes

SYNOPSIS
#include <iaf.h>

int invoke (int fd, char * command) ;

DESCRIPTION
invoke is a library function that invokes authentication schemes within the frame
work of the Identification and Authentication Facility (lAF).

fd indicates the file descriptor of the connection to be authenticated. command is the
command string used to invoke the scheme. command can contain either a scheme
tag or a full path name. If it is a tag, a full path name to the default lAF directory is
generated. In either case, command can contain optional scheme-specific arguments.

If the scheme succeeds, a value of 0 is returned.

SEE ALSO
getava(3I)

DIAGNOSTICS

634

invoke returns -1 if the scheme aborts or cannot be executed; otherwise, it returns
the exit value of the scheme, which is 0 for success and non-zero for failure.

NAME
isastream - test a file descriptor

SYNOPSIS
int isastream (int fildes) ;

DESCRIPTION

isastream (3C)

The function isastream determines if a file descriptor represents a STREAMS file.
fildes refers to an open file.

RETURN VALUE
If successful, isastream returns 1 if fildes represents a STREAMS file, and a if not.
On failure, isastream returns -1 with ermo set to indicate an error.

ERRORS
Under the following conditions, isastream fails and sets ermo to:

EBADF fildes is not a valid open file.

SEE ALSO
streamio(7)

635

isencrypt (3G)

NAME
isencrypt - determine whether a character buffer is encrypted

SYNOPSIS
cc [flag . . .]file ... -lgen [library .. .]

#include <libgen.h>

int isencrypt (const char *fbuf, size_t ninbuf);

DESCRIPTION
isencrypt uses heuristics to determine whether a buffer of characters is encrypted.
It requires two arguments: a pointer to an array of characters and the number of
characters in the buffer.

isencrypt assumes that the file is not encrypted if all the characters in the first
block are ASCII characters. If there are non-ASCII characters in the first ninbuf char
acters, isencrypt assumes that the buffer is encrypted if the setlocale LC_CTYPE
category is set to C or ascii.

If the LC_CTYPE category is set to a value other than C or ascii, then isencrypt
uses a combination of heuristics to determine if the buffer is encrypted. If ninbuf
has at least 64 characters, a chi-square test is used to determine if the bytes in the
buffer have a uniform distribution; and isencrypt assumes the buffer is encrypted
if it does. If the buffer has less than 64 characters, a check is made for null charac
ters and a terminating new-line to determine whether the buffer is encrypted.

DIAGNOSTICS
If the buffer is encrypted, 1 is returned; otherwise zero is returned.

SEE ALSO
setlocale(3C)

636

NAME

isnan (3e)

isnan, isnand, isnanf, finite, fpclass, unordered - determine type of
floating-point number

SYNOPSIS
#include <ieeefp.h>

int isnand (double dsrc);

int isnanf (floatjsrc);

int f ini te (double dsrc) ;

fpclass_t fpclass (double dsrc);

int unordered (double dsrcl, double dsrc2) ;

#include <math.h>

int isnan (double dsrc) ;

DESCRIPTION
isnan, isnand, and isnanf return true (1) if the argument dsrc or jsrc is NaN; oth
erwise they return false (0). The functionality of isnan is identical to that of
isnand.

isnanf is implemented as a macro included in the ieeefp. h header file.

fpclass returns the class that dsrc belongs to. The 10 possible classes are as fol
lows:

FP_SNAN
FP_QNAN
FP_NINF
FP_PINF
FP_NDENORM
FP_PDENORM
FP_NZERO
FP_PZERO
FP_NNORM
FP_PNORM

signaling NaN
quiet NaN
negative infinity
positive infinity
negative denormalized non-zero
positive denormalized non-zero
negative zero
positive zero
negative normalized non-zero
positive normalized non-zero

finite returns true (1) if the argument dsrc is neither infinity nor NaN; otherwise it
returns false (0).

unordered returns true (1) if one of its two arguments is unordered with respect to
the other argument. This is equivalent to reporting whether either argument is
NaN. If neither of the arguments is NaN, false (0) is returned.

None of these routines generates exceptions, even for signaling NaNs.

SEE ALSO
fpgetround(3C), intro(3)

637

killpg (3) (BSD System Compatibility)

NAME
killpg - (BSD) send signal to a process group

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

int killpg(int pgrp, int sig);

DESCRIPTION
killpg sends the signal sig to the process group pgrp. See sigvec(3) for a list of
signals.

The real or effective user ID of the sending process must match the real or saved
set-user ID of the receiving process, unless the effective user ID of the sending pro
cess is the privileged user. A single exception is the signal SIGCONT, which may
always be sent to any descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and the global variable ermo is set to indicate the error.

ERRORS
killpg will fail and no signal will be sent if any of the following occur:

EINVAL

ESRCH

EPERM

sig is not a valid signal number.

No processes were found in the specified process group.

The effective user ID of the sending process is not privileged user,
and neither its real nor effective user ID matches the real or saved
set-user ID of one or more of the target processes.

SEE ALSO
kill(2), setpgrp(2), sigaction(2), sigvec(3)

638

13tol (3e)

NAME
l3tol, lto13 - convert between 3-byte integers and long integers

SYNOPSIS
#include <stdlib.h>

void l3tol (long *lp, const char *cp, intn);

void lto13 (char *cp, const long *lp, int n);

DESCRIPTION
l3tol converts a list of n three-byte integers packed into a character string pointed
to by cp into a list of long integers pointed to by lp.

lto13 performs the reverse conversion from long integers (lp) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block numbers are
three bytes long.

SEE ALSO
fs(4)

NOTES
Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

639

listen (3N)

NAME
listen -listen for connections on a socket

SYNOPSIS
int listen(int 5, int backlog);

DESCRIPTION
To accept connections, a socket is first created with socket, a backlog for incoming
connections is specified with listen and then the connections are accepted with
accept. The listen call applies only to sockets of type SOCK_STREAM or
SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connec
tions may grow to. If a connection request arrives with the queue full, the client
will receive an error with an indication of ECONNREFUSED.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS

NOTES

640

The call fails if:

EBADF

ENOTSOCK

EOPNOTSUPP

The argument 5 is not a valid descriptor.

The argument 5 is not a socket.

The socket is not of a type that supports the operation
listen.

There is currently no backlog limit.

localeconv (3C)

NAME
localeconv - get numeric formatting information

SYNOPSIS
#include <locale.h>

struct lconv *localeconv (void);

DESCRIPTION
localeconv sets the components of an object with type struct lconv (defined in
locale. h) with the values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale [see
setlocale(3C)]. The definition of struct lconv is given below (the values for the
fields in the C locale are given in comments):

char *decimal-point; /* " */
char * thousands _sep; /* (zero length string) */
char * grouping; /* */
char *int_curr_symboli /* */
char *currency_symbol; /* */
char *mon_decimal-point; /* */
char *mon_thousands _sep; /* */
char *mon_grouping; /* */
char *positive_sign; /* */
char *negative_sign; /* */
char int_frac_digits; /* CHAR_MAX */
char frac_digitsi /* CHAR_MAX */
char p_cs-precedes; /* CHAR_MAX */
char p_sep_by_space; /* CHAR_MAX */
char n_cs-precedes; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign-posn ; /* C~MAX */
char n_sign-posn ; /* CHAR_MAX */

The members of the structure with type char * are strings, any of which (except
decimal-point) can point to "", to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative
numbers, any of which can be CHAR_MAX (defined in the limits.h header file) to
indicate that the value is not available in the current locale. The members are the
following:

char*decimal-point
The decimal-point character used to format non-monetary quantities.

char*thousands_sep
The character used to separate groups of digits to the left of the decimal
point character in formatted non-monetary quantities.

char *grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted non
monetary quantity. The elements of grouping are interpreted according to
the following:

641

localeconv (3C)

642

CHAR_MAX No further grouping is to be performed.

o The previous element is to be repeatedly used for the
remainder of the digits.

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size of
the next group of digits to the left of the current group.

char*int_curr_symbol
The international currency symbol applicable to the current locale, left
justified within a four-character space-padded field. The character
sequences should match with those specified in: ISO 4217:1987 Codes for the
Representation of Currency and Funds.

char * currency_symbol
The local currency symbol applicable to the current locale.

char*mon_decimal-point
The decimal point used to format monetary quantities.

char*mon_thousands_sep
The separator for groups of digits to the left of the decimal point in format
ted monetary quantities.

char*mon_grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted monetary
quantity. The elements of mon_grouping are interpreted according to the
rules described under grouping.

char*positive_sign
The string used to indicate a nonnegative-valued formatted monetary quan
tity.

char*negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

charint_frac_digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in an internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in a formatted monetary quantity.

char p_cs-precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the
value for a nonnegative formatted monetary quantity.

charp_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by a
space from the value for a nonnegative formatted monetary quantity.

char n_cs-precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the
value for a negative formatted monetary quantity.

localeconv (3C)

char n_sep_by _space
Set to lora if the currency_symbol respectively is or is not separated by a
space from the value for a negative formatted monetary quantity.

char p_sign-posn
Set to a value indicating the positioning of the posi ti ve_sign for a nonne
gative formatted monetary quantity. The value of p_sign-posn is inter
preted according to the following:

o Parentheses surround the quantity and currency_symbol.

1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

char n_sign-posn

RETURNS

Set to a value indicating the positioning of the negative_sign for a nega
tive formatted monetary quantity. The value of n_sign-posn is interpreted
according to the rules described under p_sign-posn.

localeconv returns a pointer to the filled-in object. The structure pointed to by the
return value may be overwritten by a subsequent call to localeconv.

EXAMPLES
The following table illustrates the rules used by four countries to format monetary
quantities.

Country Positive format Negative format International format

Italy
Netherlands
Norway
Switzerland

L.1.234
F 1.234,56
kr1.234,56
SFrs.1,234.56

-L.1.234
F -1.234,56
kr1.234,56-
SFrs.1,234.56C

ITL.1.234
NLG 1.234,56
NOK 1.234,56
CHF 1,234.56

For these four countries, the respective values for the monetary members of the
structure returned by localeconv are as follows:

Italy Netherlands Norway Switzerland

int_curr_symbol "ITL." "NLG " "NOK " "CHF "
currency_symbol "L." "F" "kr" "SFrs."
mon_decimal-point " , " " , " " "
m~n_thousands _sep " " " " " " " , "
mon_grouping "\3" "\3" "\3" "\3"
positive_sign
negative_sign II_II "_II "_II "C"
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs-precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs-precedes 1 1 1 1

643

localeconv (3C)

FILES

n_sep_by_space
p_sign-posn
n_sign-posn

o
1
1

/usr/lib/locale/locale/LC_MONETARY
/usr/lib/locale/locale/LC_NDMERIC

SEE ALSO
montbl(lM), setlocale(3C)

644

1
1
4

o
1
2

o
1
2

LC_MONETARY database for locale
LC_NDMERIC database for locale

lockf(3C)

NAME
lockf - record locking on files

SYNOPSIS
#include <unistd.h>

int lockf (int fildes, int function, long size) ;

DESCRIPTION
lockf locks sections of a file. Advisory or mandatory write locks depend on the
mode bits of the file; see chmod(2). Other processes that try to lock the locked file
section either get an error or go to sleep until the resource becomes unlocked. All
the locks for a process are removed when the process terminates. See fcntl(2) for
more information about record locking.

fildes is an open file descriptor. The file descriptor must have O_WRONLY or O_RDWR
permission to establish locks with this function call.

function is a control value that specifies the action to be taken. The permissible
values for function are defined in unistd. h as follows:

#define F_ULOCK 0 /* unlock previously locked section */
#define F_LOCK 1 /* lock section for exclusive use */
#define F_TLOCK 2 /* test & lock section for exclusive use */
#define F_TEST 3 /* test section for other locks */

All other values of function are reserved for future extensions and will result in an
error return if not implemented.

F _TEST is used to detect if a lock by another process is present on the specified sec
tion. F _LOCK and F _TLOCK both lock a section of a file if the section is available.
F _ULOCK removes locks from a section of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to be
locked or unlocked starts at the current offset in the file and extends forward for a
positive size and backward for a negative size (the preceding bytes up to but not
including the current offset). If size is zero, the section from the current offset
through the largest file offset is locked (that is, from the current offset through the
present or any future end-of-file). An area need not be allocated to the file to be
locked as such locks may exist past the end-of-file.

The sections locked with F _LOCK or F _TLOCK may, in whole or in part, contain or be
contained by a previously locked section for the same process. Locked sections will
be unlocked starting at the the point of the offset through size bytes or to the end of
file if size is (off_t) o. When this occurs, or if this occurs in adjacent sections, the
sections are combined into a single section. If the request requires that a new ele
ment be added to the table of active locks and this table is already full, an error is
returned, and the new section is not locked.

F _LOCK and F _TLOCK requests differ only by the action taken if the resource is not
available. F _LOCK will cause the calling process to sleep until the resource is avail
able. F _TLOCK will cause the function to return a -1 and set errno to EACCES if the
section is already locked by another process.

645

lockf(3C)

F _ULOCK requests may, in whole or in part, release one or more locked sections con
trolled by the process. When sections are not fully released, the remaining sections
are still locked by the process. Releasing the center section of a locked section
requires an additional element in the table of active locks. If this table is full, an
ermo is set to EDEADLK and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by requesting another process's locked resource. Thus calls to lockf or
fcntl scan for a deadlock before sleeping on a locked resource. An error return is
made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm system call may
be used to provide a timeout facility in applications that require this facility.

lockf will fail if one or more of the following are true:

EBADF fiZdes is not a valid open descriptor.

EAGAIN

EDEADLK

EDEADLK

ECOMM

cmd is F_TLOCK or F_TEST and the section is already locked by
another process.

cmd is F _LOCK and a deadlock would occur.

cmd is F_LOCK, F_TLOCK, or F_ULOCK and the number of entries in the
lock table would exceed the number allocated on the system.

fiZdes is on a remote machine and the link to that machine is no longer
active.

SEE ALSO
intro(2), alarm(2), chmod(2), close(2), creat(2), fcntl(2), open(2), read(2),
write(2)

DIAGNOSTICS

NOTES

646

On success, lockf returns O. On failure, lockf returns -1 and sets ermo to indi
cate the error.

Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data that is/was locked. The standard I/O
package is the most common source of unexpected buffering.

Because in the future the variable ermo will be set to EAGAIN rather than EACCES
when a section of a file is already locked by another process, portable application
programs should expect and test for either value.

Isearch (3C)

NAME
lsearch, Ifind -linear search and update

SYNOPSIS
#include <search.h>

void * lsearch (const void * key , void * base, size_t *nelp,
size_t width, int (*compar) (const void *, const void *»;

void *lfind (const void *key, const void *base, size_t *nelp,
size_t width, int (*compar) (const void *, const void *»;

DESCRIPTION
lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It
returns a pointer into a table indicating where data may be found. If the data does
not occur, it is added at the end of the table. key points to the data to be sought in
the table. base points to the first element in the table. nelp points to an integer con
taining the current number of elements in the table. The integer is incremented if
the data is added to the table. width is the size of an element in bytes. compar is a
pointer to the comparison function that the user must supply (strcmp, for exam
ple). It is called with two arguments that point to the elements being compared.
The function must return zero if the elements are equal and non-zero otherwise.

Ifind is the same as lsearch except that if the data is not found, it is not added to
the table. Instead, a null pointer is returned.

RETURN VALUES
If the searched-for data is found, both lsearch and Ifind return a pointer to it.
Otherwise, Ifind returns NULL and lsearch returns a pointer to the newly added
element.

EXAMPLES
This program will read in less than TABSIZE strings of length less than ELSIZE and
store them in a table, eliminating duplicates, and then will print each entry.

#include <search.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define TABSIZE 50
#define ELSIZE 120

main()
{

char line[ELSIZE]i /* buffer to hold input string */
char tab [TABSIZE] [ELSIZE]i /* table of strings */
size_t nel = Oi /* number of entries in tab */
int ii

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) 1 search (line, tab, &nel, ELSIZE, mycmp)i

for (i = Oi i < neli i++)
(void)fputs(tab[i], stdout)i

return Oi

647

Isearch (3C)

SEE ALSO

NOTES

648

bsearch(3C), hsearch(3C), string(3C), tsearch(3C)

The pointers to the key and the element at the base of the table may be pointers to
any type.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The value returned should be cast into type pointer-to-element.

Undefined results can occur if there is not enough room in the table to add a new
item.

maillock (3X)

NAME
maillock - manage lockfile for user's mailbox

SYNOPSIS
cc [flag ...]file ... -lmail [library ...]

#include <maillock.h>

int maillock (const char *user, int retrycnt) ;

int maildlock (const char *user, int retrycnt, const char *dir);

int mailunlock (void);

DESCRIPTION
The maillock and maildlock functions attempt to create a lockfile for the user's
mailfile. If a lockfile already exists, maillock and maildlock assume the contents
of the file is the process ID (as a null-terminated ASCII string) of the process that
created the lockfile (presumably with a call to mail lock or maildlock). If the pro
cess that created the lockfile is still alive, maillock and maildlock will sleep and
try again retrycnt times before returning with an error indication. The sleep algo
rithm is to sleep for 5 seconds times the attempt number. That is, the first sleep will
be for 5 seconds, the next sleep will be for 10 seconds, etc. until the number of
attempts reaches retrycnt. When the lockfile is no longer needed, it should be
removed by calling mailunlock.

user is the login name of the user for whose mailbox the lockfile will be created.
maillock assumes that users' mailfiles are in the "standard" place as defined in
maillock.h. maildlock uses the directory passed as its third argument.

RETURN VALUE

FILES

NOTES

The following return code definitions are contained in maillock.h. Only
L_SUCCESS is returned for mailunlock.

#define L_SUCCESS
#define L_NAMELEN
#define L_TMPLOCK
#define L_TMPWRITE
#define L_MAXTRYS
#define L_ERROR

/usr/lib/llib-lmail.ln
/usr/lib/libmail.a
/var/mail/*
/var/mail/*.lock

0
1
2
3
4
5

/*
/*
/*
/*
/*
/*

Lockfile created or removed */
Recipient name > 13 chars */
Can't create tmp file */
Can't write pid into lockfile */
Failed after retrycnt attempts */
Check ermo for reason */

mailunlock will only remove the lockfile created from the most previous call to
maillock. Calling maillock for different users without intervening calls to
mailunlock will cause the initially created lockfile(s) to remain, potentially block
ing subsequent message delivery until the current process finally terminates.

649

makecontext (3C)

NAME
makecontext, swapcontext - manipulate user contexts

SYNOPSIS
#include <ucontext.h>

void makecontext (ucontext_t *ucp, (void *junc) (), int argc, • . • };

int swapcontext (ucontext_t *oucp, ucontext_t *ucp);

DESCRIPTION
These functions are useful for implementing user-level context switching between
multiple threads of control within a process.

makecontext modifies the context specified by ucp, which has been initialized
using getcontext; when this context is resumed using swapcontext or setcon
text [see getcontext(2)], program execution continues by calling the function
junc, passing it the arguments that follow argc in the makecontext call. Before a
call is made to makecontext, the context being modified should have a stack allo
cated for it. The value of argc must match the number of integers passed to Junc,
otherwise the behavior is undefined.

The uc_link field is used to determine the context that will be resumed when the
context being modified by makecontext returns. The uc_link field should be ini
tialized prior to the call to makecontext.

swapcontext saves the current context in the context structure pointed to by oucp
and sets the context to the context structure pointed to by ucp.

These functions will fail if either of the following is true:

ENOMEM ucp does not have enough stack left to complete the operation.

EFAULT ucp or oucp points to an invalid address.

SEE ALSO
exit(2), getcontext(2), sigaction(2), sigprocmask(2), ucontext(5)

DIAGNOSTICS

NOTES

650

On successful completion, swapcontext return a value of zero. Otherwise, a value
of -1 is returned and ermo is set to indicate the error.

The size of the ucontext_t structure may change in future releases. To remain
binary compatible, users of these features must always use makecontext or
getcontext to create new instances of them.

makedev (3C)

NAME
makedev, maj or, minor - manage a device number

SYNOPSIS
#include <sys/types.h>
#include <sys/mkdev.h>

dev_t makedev(major_t maj, minor_t min);

major_t major (dev_t device);

minor_t minor (dev_t device) ;

DESCRIPTION
The makedev routine returns a formatted device number on success and NODEV on
failure. maj is the major number. min is the minor number. makedev can be used to
create a device number for input to mknod(2).

The major routine returns the major number component from device.

The minor routine returns the minor number component from device.

makedev will fail if one or more of the following are true:

EINVAL One or both of the arguments maj and min is too large.

EINVAL The device number created from maj and min is NODEV.

major will fail if one or more of the following are true:

EINVAL The device argument is NODEV.

EINVAL The major number component of device is too large.

minor will fail if the following is true:

EINVAL The device argument is NODEV.

SEE ALSO
mknod(2), stat(2)

DIAGNOSTICS
On failure, NODEV is returned and ermo is set to indicate the error.

651

malloc{3C)

NAME
malloc, free, realloc, calloc, memalign, valloc, - memory allocator

SYNOPSIS
#include <stdlib.h>

void *malloc (size_t size) ;

void free (void *ptr);

void *realloc (void *ptr I size_t size) ;

void *calloc (size_t nelem, size_t elsize) ;

void *memalign(size_t alignment, size_t size);

void *valloc (size_t size) ;

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation package.
malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by mal1oc,
calloc or realloc. After free is performed this space is made available for
further allocation. If ptr is a NULL pointer, no action occurs.

Undefined results will occur if the space assigned by malloc is overrun or if some
random number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If ptr is NULL, realloc behaves like malloc for the
specified size. If size is zero and ptr is not a null pointer, the object pointed to is
freed.

calloc allocates space for an array of nelem elements of size elsize. The space is ini
tialized to zeros.

memalign allocates size bytes on a specified alignment boundary, and returns a
pointer to the allocated block. The value of the returned address is guaranteed to
be an even multiple of alignment. Note: the value of alignment must be a power of
two, and must be greater than or equal to the size of a word.

valloc (size) is equivalent to memalign(sysconf (_SC_PAGESIZE) I size).

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

malloc, realloc, calloc, memalign, and valloc will fail if there is not enough
available memory.

SEE ALSO
malloc(3X)

DIAGNOSTICS

652

If there is no available memory, malloc, memalign, realloc, valloc, and calloc
return a null pointer. When realloc returns NULL, the block pointed to by ptr is
left intact. If size, nelem, or elsize is 0, a unique pointer to the arena is returned.

malloe (3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - memory allocator

SYNOPSIS
cc fflag .. ·]file .. , -lmalloc [library . .. J
#include <stdlib.h>

void *malloc (size_t size);

void free (void *ptr);

void *realloc (void *ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

#include <malloc.h>

int mallopt (int cmd, int value);

struct mallinfo mallinfo (void);

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation package.

malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc; after
free is performed this space is made available for further allocation, and its con
tents have been destroyed (but see mallopt below for a way to change this
behavior). If ptr is a null pointer, no action occurs.

Undefined results occur if the space assigned by malloc is overrun or if some ran
dom number is handed to free.

realloc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents are unchanged up to the lesser
of the new and old sizes. If ptr is a null pointer, realloc behaves like malloc for
the specified size. If size is zero and ptr is not a null pointer, the object it points to is
freed.

calloc allocates space for an array of nelem elements of size elsize. The space is ini
tialized to zeros.

mallopt provides for control over the allocation algorithm. The available values
for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocate6 dll blocks below the size
of maxfast in large groups and then doles them out very quickly. The
default value for maxfast is 24.

M_NLBLKS Set numlblks to value. The above mentioned "large groups" each con
tain numlblks blocks. numlblks must be greater than o. The default
value for numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than maxfast are con
sidered to be rounded up to the nearest multiple of grain. grain must
be greater than O. The default value of grain is the smallest number of
bytes that will allow alignment of any data type. Value will be
rounded up to a multiple of the default when grain is set.

653

malloe (3X)

M_KEEP Preserve data in a freed block until the next malloc, realloc, or cal
loco This option is provided only for compatibility with the old ver
sion of malloc and is not recommended.

These values are defined in the malloc • h header file.

mallopt may be called repeatedly, but may not be called after the first small block
is allocated.

mallinfo provides instrumentation describing space usage. It returns the struc
ture:

struct mallinfo
int arena; /* total space in arena */
int ordblks; /* number of ordinary blocks */
int smblks; /* number of small blocks */
int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */
int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */
int uordblks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */
int keepcost; /* space penalty if keep option */

/* is used */

This structure is defined in the malloc • h header file.

Each of the allocation routines returns a pointer to space suitably aligned (after pos
sible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C)

DIAGNOSTICS

NOTES

654

malloc, realloc, and calloc return a NULL pointer if there is not enough available
memory. When realloc returns NULL, the block pointed to by ptr is left intact. If
mallopt is called after any allocation or if cmd or value are invalid, non-zero is
returned. Otherwise, it returns zero.

Note that unlike malloc(3C), this package does not preserve the contents of a block
when it is freed, unless the M_KEEP option of mallopt is used.

Undocumented features of malloc(3C) have not been duplicated.

Function prototypes for malloc, realloc, calloc and free are also defined in the
<malloc.h> header file for compatibility with old applications. New applications
should include <stdlib.h> to access the prototypes for these functions.

matherr (3M)

NAME
matherr - error-handling function

SYNOPSIS
cc [flag . . . Jfile ... -1m [library .. . J
#include <math.h>

int matherr (struct exception *x);

DESCRIPTION
matherr is invoked by functions in the math libraries when errors are detected.
Note that matherr is not invoked when the -xc compilation option is used [see
cc(l)]. Users may define their own procedures for handling errors, by including a
function named matherr in their programs. matherr must be of the form
described above. When an error occurs, a pointer to the exception structure x will
be passed to the user-supplied matherr function. This structure, which is defined
in the math. h header file, is as follows:

struct exception
int type;
char *name;
double argl, arg2, retval;

} ;

The element type is an integer describing the type of error that has occurred, from
the following list of constants (defined in the header file):

DOMAIN
SING
OVERFLOW
UNDERFLOW
TLOSS
PLOSS

argument domain error
argument singularity
overflow range error
underflow range error
total loss of significance
partial loss of significance

The element name points to a string containing the name of the function that
incurred the error. The variables argl and arg2 are the arguments with which the
function was invoked. retval is set to the default value that will be returned by
the function unless the user's matherr sets it to a different value.

H the user's matherr function returns non-zero, no error message will be printed,
and ermo will not be set.

H matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These pro
cedures are also summarized in the table below. In every case, ermo is set to EDOM
or ERANGE and the program continues.

655

matherr (3M)

Default Error Handling Procedures
Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

ermo EDOM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - - - M,O -
yO, y1, yn (arg S 0) M,-H - - - - -

EXP, EXPF: - - H a - -

LOG, LOGIO:

LOGF, LOGIOF:

(arg < 0) M,-H - - - - -
(arg = 0) M,-H - - - - -

POW,POWF: - - ±H 0 - -
neg ** non-int M,O - - - - -

0** non-pos M,O - - - - -

SQRT, SQRTF: M,O - - - - -

FMOD, FMODF:

(arg2 = 0) M,X - - - - -
REMAINDER:

(arg2 = 0) M,N - - - - -

GAMMA, LGAMMA: - M,H H - - -

HYPOT: - - H - - -
SINH, SINHF: - - ±H - - -

COSH, COSHF: - - H - - -
ASIN, ACOS, ATAN2:

ASINF, ACOSF, ATAN2F: M,O - - - - -

ACOSH: M,N - - - - -

ATANH:

(I argl > 1) M,N - - - - -

(I argl = 1) - M,N - - - -

656

matherr (3M)

Abbreviations
M Message is printed (not with the -Xa or -xc options).
H Value that compares equal to HUGE is returned

(HUGE_VAL with the -Xa or -xc options).
-H Value that compares equal to -HUGE is returned

(-HUGE_VAL with the -Xa or -xc options).
±H Value that compares equal to HUGE or -HUGE is returned.

(HUGE_VAL or -HUGE_VAL with the -Xa or -Xc options).
o 0 is returned.
X argl is returned.
N NaN is returned.

EXAMPLES
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
matherr(register struct exception *x);
{

switch (x->type)
case DOMAIN:

/* change sqrt to return sqrt(-arg1), not 0 */
if (!str~(x->name, "sqrt"» {

x->retval = sqrt(-x->arg1);
return (0); /* print message and set errno */

case SING:
/* all other domain or sing errors, print message */
/* and abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort ();

case PLOSS:

}

/* print detailed error message */
fprintf(stderr, "loss of significance in %S(<709)=<709\n",

x->name, x->arg1, x->retval);
return (1); /* take no other action */

return (0); /* all other errors, execute default procedure */
}

SEE ALSO
cc(l)

NOTES
Error handling in -Xa, -Xc, and -Xt modes [see cc(l)] is described more completely
on individual math library pages.

657

mbchar(3C)

NAME
mbchar: mbtowc, mblen, wctomb - multibyte character handling

SYNOPSIS
#include <stdlib.h>

int mbtowc (wchar_t *pwc, const char *s, size_t n) ;

int mblen (const char *s, size_t n);

int wctomb (char *s, wchar_t wchar) ;

DESCRIPTION

658

Multibyte characters are used to represent characters in an extended character set.
This is needed for locales where 8 bits are not enough to represent all the characters
in the character set.

The multibyte character handling functions provide the means of translating multi
byte characters into wide characters and back again. Wide characters have type
wchar_t (defined in stdlib.h), which is an integral type whose range of values
can represent distinct codes for all members of the largest extended character set
specified among the supported locales.

A maximum of 3 extended character sets are supported for each locale. The
number of bytes in an extended character set is defined by the LC_CTYPE category
of the locale [see setlocale(3C)]. However, the maximum number of bytes in any
multibyte character will never be greater than MB_LENJiAX. which is defined in
limits.h. The maximum number of bytes in a character in an extended character
set in the current locale is given by the macro, MB_CUR_MAX, also defined in
stdlib.h.

mbtowc determines the number of bytes that comprise the multibyte character
pointed to by s. Also, if pwc is not a null pointer, mbtowc converts the multibyte
character to a wide character and places the result in the object pointed to by pwc.
(The value of the wide character corresponding to the null character is zero.) At
most n characters will be examined, starting at the character pointed to by s.

If s is a null pointer, mbtowc simply returns O. If s is not a null pointer, then, if s
points to the null character, mbtowc returns 0; if the next n or fewer bytes form a
valid multibyte character, mbtowc returns the number of bytes that comprise the
converted multibyte character; otherwise, s does not point to a valid multibyte char
acter and mbtowc returns -1.

mblen determines the number of bytes comprising the multibyte character pointed
to by s. It is equivalent to:

mbtowc {(wchar_t *)0, s, n);

wctomb determines the number of bytes needed to represent the multibyte character
corresponding to the code whose value is wchar, and, if s is not a null pointer, stores
the multibyte character representation in the array pointed to by s. At most
MB_CUR_MAX characters are stored.

If s is a null pointer, wctomb simply returns O. If s is not a null pointer, wctomb
returns -1 if the value of wchar does not correspond to a valid multibyte character;
otherwise it returns the number of bytes that comprise the multibyte character
corresponding to the value of wchar.

mbchar(3C)

SEE ALSO
environ(5), mbstring(3C), setlocale(3C), wchrtbl(lM)

659

mbstring (3C)

NAME
mbstring: mbstowcs, wcstombs - multibyte string functions

SYNOPSIS
#include <stdlib.h>

size_t mbstowcs (wchar_t *pwcs, const char *s, size_t n);

size_t wcstombs (char *S, const wchar_t *pwcs, size_t n);

DESCRIPTION
mbstowcs converts a sequence of multibyte characters from the array pointed to by
s into a sequence of corresponding wide character codes and stores these codes into
the array pointed to by pwcs, stopping after n codes are stored or a code with value
zero (a converted null character) is stored. If an invalid multibyte character is
encountered, mbstowcs returns (size_t) -1. Otherwise, mbstowcs returns the
number of array elements modified, not including the terminating zero code, if any.

wcstombs converts a sequence of wide character codes from the array pointed to by
pwcs into a sequence of multibyte characters and stores these multibyte characters
into the array pointed to by s, stopping if a multibyte character would exceed the
limit of n total bytes or if a null character is stored. If a wide character code is
encountered that does not correspond to a valid multibyte character, wcstombs
returns (size_t) -1. Otherwise, wcstombs returns the number of bytes modified,
not including a terminating null character, if any.

SEE ALSO
environ(5), mbchar(3C), setlocale(3C), wchrtbl(lM)

660

(BSD System Compatibility) metl (3)

NAME
metl- (BSD) memory management control

SYNOPSIS
/usr/ueb/ee [flag . ..]file ...

#inelude <sys/types.h>
#inelude <sys/mman.h>

metl (eaddr_t addr, size_t len, int function, void *arg>;

DESCRIPTION
metl applies a variety of control functions over pages identified by the mappings
established for the address range [addr, addr + len]. The function to be performed is
identified by the argument function. Valid functions are defined in mman. h as
follows.

MC_LOCK
Lock the pages in the range in memory. This function is used to support
mloek. See mloek(3C) for semantics and usage. arg is ignored.

MC_LOCKAS

Lock the pages in the address space in memory. This function is used to
support mloekall. See mloekall(3C) for semantics and usage. addr and len
are ignored. arg is an integer built from the flags:

MCL_CURRENT Lock current mappings
MCL_FUTURE Lock future mappings

MC_SYNC

Synchronize the pages in the range with their backing storage. Optionally
invalidate cache copies. This function is used to support msyne. See
msyne(3C) for semantics and usage. arg is used to represent the flags argu
ment to msyne. It is constructed from an OR of the following values:

MS_SYNC Synchronized write
MS_ASYNC Return immediately
MS_INVALlDATE Invalidate mappings

MS_ASYNC returns after all I/O operations are scheduled. MS_SYNC does not
return until all I/O operations are complete. Specify exactly one of
MS_ASYNC or MS_SYNC. MS_INVALIDATE invalidates all cached copies of data
from memory, requiring them to be re-obtained from the object's permanent
storage location upon the next reference.

MC_UNLOCK

Unlock the pages in the range. This function is used to support munloek.
See mloek(3C) for semantics and usage. arg is ignored.

MC_UNLOCKAS

Remove address space memory lock, and locks on all current mappings.
This function is used to support munloekall [see mloekall(3C)]. addr and
len must have the value O. arg is ignored.

661

mctl (3) (BSO System Compatibility)

RETURN VALUE
metl returns a on success, -Ion failure.

ERRORS
mctl fails if:

EAGAIN

EBUSY

EFAULT

EINVAL

EINVAL

EINVAL

EIO

ENOMEM

EPERM

SEE ALSO

Some or all of the memory identified by the operation could
not be locked due to insufficient system resources.

MS_INVALIDATE was specified and one or more of
the pages is locked in memory.

The page to be locked has been aborted (e.g. by a file truncate
operation), or pages following the end of an object are not
allocated.

addr is not a multiple of the page size as returned by
getpagesize.

addr and/ or len do not have the value a when MC_LOCKAS or
MC_UNLOCKAS are specified.

arg is not valid for the function specified.

An I/O error occurred while reading from or writing to the
file system.

Addresses in the range [addr, addr + len) are invalid for the
address space of a process, or specify one or more pages
which are not mapped.

The process's effective user ID is not super-user and one of
MC_LOCK, MC_LOCKAS, MC_UNLOCK, or MC_UNLOCKAS was
specified.

getpagesize(3), mlock(3C), mlockall(3C), nnnap(2), msync(3C)

662

memory (3C)

NAME
memory: memccpy, memchr, memcmp, memcpy, memmove, mem.set - memory operations

SYNOPSIS
#include <string.h>

void *memccpy (void *sl, const void *s2, int c, size_t n);

void *memchr (const void *s, int c, size_t n);

int memcmp (const void *sl, const void *s2, size_t n) ;

void *memcpy (void *sl, const void *s2, size_t n);

void *memmove (void *sl, const void *s2, size_t n);

void *memset (void *s, int c, size_t n);

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of bytes
bounded by a count, not terminated by a null character). They do not check for the
overflow of any receiving memory area.

memccpy copies bytes from memory area s2 into sl, stopping after the first
occurrence of c (converted to an unsigned char) has been copied, or after n bytes
have been copied, whichever comes first. It returns a pointer to the byte after the
copy of c in sl, or a null pointer if c was not found in the first n bytes of s2.

memchr returns a pointer to the first occurrence of c (converted to an unsigned
char) in the first n bytes (each interpreted as an unsigned char) of memory area s,
or a null pointer if c does not occur.

memcmp compares its arguments, looking at the first n bytes (each interpreted as an
unsigned char), and returns an integer less than, equal to, or greater than 0,
according as sl is lexicographically less than, equal to, or greater than s2 when
taken to be unsigned characters.

memcpy copies n bytes from memory area s2 to sl. It returns sl.

memmove copies n bytes from memory areas s2 to sl. Copying between objects that
overlap will take place correctly. It returns sl.

memset sets the first n bytes in memory area s to the value of c (converted to an
unsigned Char). It returns s.

SEE ALSO
string(3C)

663

menus (3curses)

NAME
menus - character based menus package

SYNOPSIS
#include <menu.h>

DESCRIPTION

664

The menu library is built using the curses library, and any program using menus
routines must call one of the curses initialization routines, such as initscr. A
program using these routines must be compiled with -lmenu and -lcurses on the
cc command line.

The menus package gives the applications programmer a terminal-independent
method of creating and customizing menus for user interaction. The menus pack
age includes: item routines, which are used to create and customize menu items;
and menu routines, which are used to create and customize menus, assign pre- and
post-processing routines, and display and interact with menus.

Current Default Values for Item Attributes
The menus package establishes initial current default values for item attributes.
During item initialization, each item attribute is assigned the current default value
for that attribute. An application can change or retrieve a current default attribute
value by calling the appropriate set or retrieve routine with a NULL item pointer. If
an application changes a current default item attribute value, subsequent items
created using new_item will have the new default attribute value. (The attributes
of previously created items are not changed if a current default attribute value is
changed.)

Routine Name Index
The following table lists each menus routine and the name of the manual page on
which it is described.

menus Routine Name

current_item
free_item
free_menu
item_count
item_description
item_index
item_init
item_name
item_opts
item_opt s_of f
item_opts_on
item_term
item_userptr
item_value
item_visible
menu_back
menu_driver

Manual Page Name

menu_i tem_current(3curses)
menu_i tem_new(3curses)
menu_new(3curses)
menu_i tems(3curses)
menu_i tem_name(3curses)
menu_i tem_current(3curses)
menu_hook(3curses)
menu_i tem_name(3curses)
menu_i tem_opts(3curses)
menu_i tem_opts(3curses)
menu_i tem_opts(3curses)
menu_hook(3curses)
menu_i tem_userptr(3curses)
menu_i tem_ value(3curses)
menu_i tem_ visible(3curses)
menu_at tributes(3curses)
menu_dri ver(3curses)

menus Routine Name

menu_fore
menu_format
menu--9'rey
menu_init
menu_items
menu_mark
menu_opts
menu_opts_off
menu_opts_on
menu-pad
menu-pattern
menu_sub
menu_term
menu_userptr
menu_win
new_item
new_menu
pos_menu_cursor
post_menu
scale_menu
set_current_item
set_item_init
set_item_opts
set_item_term
set_item_userptr
set_item_value
set_menu_back
set_menu_fore
set_menu_format
set_menu_grey
set_menu_init
set_menu_items
set_menu_mark
set_menu_opts
set_menu-pad
set_menu-pattern
set_menu_sub
set_menu_term
set_menu_userptr
set_menu_win
set_top_row
top_row
unpost_menu

RETURN VALUE

menus (3curses)

Manual Page Name

menu_at tributes (3curses)
menu_format (3curses)
menu_attributes(3curses)
menu_hook(3curses)
menu_i tems(3curses)
menu_mark(3curses)
menu_opts(3curses)
menu_opt s (3curses)
menu_opt s (3curses)
menu_attributes(3curses)
menu-pat tern(3curses)
menu_win(3curses)
menu_hook(3curses)
menu_userptr(3curses)
menu_win(3curses)
menu_i tem_new(3curses)
menu_new(3curses)
menu_cursor(3curses)
menu-post(3curses)
menu_win(3curses)
menu_i tem_current(3curses)
menu_hook(3curses)
menu_i tem_opts(3curses)
menu_hook(3curses)
menu_i tem_userptr(3curses)
menu_i tem_ val ue(3curses)
menu_at tributes(3curses)
menu_attributes (3curses)
menu_format (3curses)
menu_at tributes(3curses)
menu_hook(3curses)
menu_i tems(3curses)
menu_mark(3curses)
menu_opts(3curses)
menu_attributes (3curses)
menu-pat tern(3curses)
menu_win(3curses)
menu_hook(3curses)
menu_userptr(3curses)
menu_win(3curses)
menu_i tem_current(3curses)
menu_i tem_current(3curses)
menu-post (3curses)

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

665

menus (3curses)

NOTES

E_OK
E_SYSTEt'CERROR
E_BAD_ARGUMENT

E_POSTED
E_CONNECTED

E_NO_ROOM
E_NOT_POSTED
E_UNKNOWN_COMMAND

E_NO_MATCH
E_NOT_SELECTABLE
E_NOT_CONNECTED
E_REQUEST_DENIED

- The routine returned successfully.
- System error.
- An incorrect argument was passed to the

routine.
- The menu is already posted.
- One or more items are already connected

to another menu.
- The routine was called from an initialization

or termination function.
- The menu does not fit within its subwindow.
- The menu has not been posted.
- An unknown request was passed to the

menu driver.
- The character failed to match.
- The item cannot be selected.
- No items are connected to the menu.
- The menu driver could not process the

request.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO

666

curses(3curses), and 3curses pages whose names begin "menu_" for detailed rou
tine descriptions

NAME

menu_attributes (3curses)

menu_attributes: set_menu_fore, menu_fore, set_menu_back, menu_back,
set_menu--9'rey, menu_grey, set_menu-pad, menu-pad - control menus display
attributes

SYNOPSIS
#include <menu.h>

int set_menu_fore (MENU *menu, chtype attr);
chtype menu_fore (MENU *menu);
int set_menu_back(MENU *menu, chtype attr);
chtype menu_back(MENU *menu);
int set_menu_grey(MENU *menu, chtype attr);
chtype menu_grey(MENU *menu);
int set_menu-pad(MENU *menu, int pad);
int menu-pad (MENU *menu);

DESCRIPTION
set_menu_fore sets the foreground attribute of menu - the display attribute for
the current item (if selectable) on single-valued menus and for selected items on
multi-valued menus. This display attribute is a curses library visual attribute.
menu_fore returns the foreground attribute of menu.

set_menu_back sets the background attribute of menu - the display attribute for
unselected, yet selectable, items. This display attribute is a curses library visual
attribute.

set_menu_grey sets the grey attribute of menu - the display attribute for non
selectable items in multi-valued menus. This display attribute is a curses library
visual attribute. menu_grey returns the grey attribute of menu.

The pad character is the character that fills the space between the name and descrip
tion of an item. set_menu-pad sets the pad character for menu to pad. menu-pad
returns the pad character of menu.

RETURN VALUE

NOTES

These routines return one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

667

menu_cursor (3curses)

NAME
menu_cursor: pos_menu_cursor - correctly position a menus cursor

SYNOPSIS
#include <menu.h>

int pos_menu_cursor (MENU *menu);

DESCRIPTION
pos_menu_cursor moves the cursor in the window of menu to the correct position
to resume menu processing. This is needed after the application calls a curses
library I/O routine.

RETURN VALUE

NOTES

This routine returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEbCERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_NOT_POSTED - The menu has not been posted.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses), panels(3curses), panel_update(3curses)

668

menu_driver (3curses)

NAME
menu_driver - command processor for the menus subsystem

SYNOPSIS
#include <menu.h>

int menu_driver{MENU *menu, int C}i

DESCRIPTION
menu_driver is the workhorse of the menus subsystem. It checks to determine
whether the character c is a menu request or data. If C is a request, the menu driver
executes the request and reports the result. If C is data (a printable ASCII character),
it enters the data into the pattern buffer and tries to find a matching item. If no
match is found, the menu driver deletes the character from the pattern buffer and
returns E_NO_MATCH. If the character is not recognized, the menu driver assumes it
is an application-defined command and returns E_UNKNOWN_COMMAND.

Menu driver requests:

RE~LEFT_ITEM

RE~RIGHT_ITEM

RE~UP_ITEM

RE~OOWN_ITEM

RE~SCR_ULlNE

RE~SCR_DLlNE

RE~SCR_DPAGE

RE~SCR_UPAGE

RE~FIRST_ITEM

RE~LAST_ITEM

RE~NEXT_ITEM

RE~PREV_ITEM

RE~TOGGLE_ITEM

RE~CLEAR_PATTERN

RE~BACK_PATTERN

RE~NEXT_MATCH

RE~PREV_MATCH

RETURN VALUE

Move left to an item.
Move right to an item.
Move up to an item.
Move down to an item.

Scroll up a line.
Scroll down a line.
Scroll up a page.
Scroll down a page.

Move to the first item.
Move to the last item.
Move to the next item.
Move to the previous item.

Select/ de-select an item.
Clear the menu pattern buffer.
Delete the previous character from pattern buffer.
Move the next matching item.
Move to the previous matching item.

menu_driver returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_BAD_STATE - The routine was called from an initialization or

termination function.
E_NOT_POSTED - The menu has not been posted.

669

menu_driver (3curses)

NOTES

E_UNKNOWN_COMMAND - An unknown request was passed to the menu
driver.

E_NO_MATCH - The character failed to match.
E_NOT_SELECTABLE - The item cannot be selected.
E_REQUEST_DENIED - The menu driver could not process the request.

Application defined commands should be defined relative to (greater than)
MAX_COMMAND, the maximum value of a request listed above.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

670

NAME

menu_format (3curses)

menu_format: set_menu_format, menu_format - set and get maximum numbers
of rows and columns in menus

SYNOPSIS
#include <menu.h>

int set_menu_format (MENU *menu, int rows, int eols);
void menu_format (MENU *menu, int *rows, int *eols);

DESCRIPTION
set_menu_format sets the maximum number of rows and columns of items that
may be displayed at one time on a menu. If the menu contains more items than can
be displayed at once, the menu will be scrollable.

menu_format returns the maximum number of rows and columns that may be
displayed at one time on menu. rows and eols are pointers to the variables used to
return these values.

RETURN VALUE

NOTES

set_menu_format returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEI"CERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_POSTED - The menu is already posted.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

671

menu_hook (3curses)

NAME
menu_hook: set_item_init, item_init, set_item_term, item_term,
set_menu_init, menu_init, set_menu_term, menu term - assign application
specific routines for automatic invocation by menus

SYNOPSIS
#include <menu.h>

int set_item_init(MENU *menu, void (*func)(MENU *)};
void (*}(MENU *) item_init(MENU *menu};
int set_item_term(MENU *menu, void (*func) (MENU *)};
void (*) (MENU *) item_term(MENU *menu};
int set~enu_init(MENU *menu, void (*func) (MENU *)};
void (*) (MENU *) menu_ini t (MENU *menu);
int set_menu_term(MENU *menu, void (*func) (MENU *)};
void (*) (MENU *) menu_term(MENU *menu};

DESCRIPTION
set_item_init assigns the application-defined function to be called when the
menu is posted and just after the current item changes. i tem_ini t returns a pointer
to the item initialization routine, if any, called when the menu is posted and just
after the current item changes.

set_item_term assigns an application-defined function to be called when the menu
is unposted and just before the current item changes. item_term returns a pointer
to the termination function, if any, called when the menu is unposted and just before
the current item changes.

set_menu_ini t assigns an application-defined function to be called when the menu
is posted and just after the top row changes on a posted menu. menu_ini t returns
a pointer to the menu initialization routine, if any, called when the menu is posted
and just after the top row changes on a posted menu.

set_menu_term assigns an application-defined function to be called when the menu
is unposted and just before the top row changes on a posted menu. menu_term
returns a pointer to the menu termination routine, if any, called when the menu is
unposted and just before the top row changes on a posted menu.

RETURN VALUE

NOTES

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK - The routine returned successfully.
E_SYSTEt>CERROR - System error.

The header file menu.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

672

NAME

menu items (3curses)

menu_items: set_menu_items, menu_items, item_count - connect and dis
connect items to and from menus

SYNOPSIS
#include <menu.h>

int set_menu_items (MENU *menu, ITEM **items);
ITEM **menu_items (MENU *menu);
int item_count (MENU *menu);

DESCRIPTION
set_menu_items changes the item pointer array connected to menu to the item
pointer array items.

menu_i tems returns a pointer to the item pointer array connected to menu.

item_count returns the number of items in menu.

RETURN VALUE

NOTES

menu_items returns NULL on error.

item_count returns -1 on error.

set_menu_i tems returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_POSTED - The menu is already posted.
E_CONNECTED - One or more items are already connected to

another menu.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

673

menu item current (3curses) - -

NAME
menu_item_current:set_current_item,current_item,set_top_roW,top_row,
item_index - set and get current menus items

SYNOPSIS
#include <menu.h>

int set_current_item(MENU *menu, ITEM *item);
ITEM *current_item(MENU *menu);
int set_top_row(MENU*menu, int row);
int top_row(MENU *menu);
int item_index (ITEM * item) ;

DESCRIPTION
The current item of a menu is the item where the cursor is currently positioned.
set_current_item sets the current item of menu to item. current_item returns a
pointer to the the current item in menu.

set_top_row sets the top row of menu to row. The left-most item on the new top
row becomes the current item. top_row returns the number of the menu row
currently displayed at the top of menu.

item_index returns the index to the item in the item pointer array. The value of
this index ranges from 0 through N -1, where N is the total number of items con
nected to the menu.

RETURN VALUE

NOTES

current_item returns NULL on error.

top_row and index_item return -ion error.

set_current_item and set_top_row return one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD~GUMENT - An incorrect argument was passed to the routine.
E_BAD_STATE - The routine was called from an initialization or

termination function.
E_NOT_CONNECTED - No items are connected to the menu.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

674

NAME

menu _item_name (3curses)

menu_item_name: item_name, item_description ~ get menus item name and
description

SYNOPSIS
#include <menu.h>

char * item_name (ITEM * item) ;
char *item_description(ITEM *item);

DESCRIPTION
item_name returns a pointer to the name of item.

item_description returns a pointer to the description of item.

RETURN VALUE
These routines return NULL on error.

NOTES
The header file menu.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3curses), menus(3curses), menu_new(3curses)

675

menu Jtem _new (3curses)

NAME
menu_item_new: new_item, free_item- create and destroy menus items

SYNOPSIS
#include <menu.h>

'ITEM *new_item(char *name, char *desc);
int free_item(ITEM *item);

DESCRIPTION
new_item creates a new item from name and description, and returns a pointer to the
new item.

free_i tem frees the storage allocated for item. Once an item is freed, the user can
no longer connect it to a menu.

RETURN VALUE

NOTES

new_i tem returns NULL on error.

free_item returns one of the following:

E_OK
E_SYSTEM_ERROR
E~_ARGUMENT

E_CONNECTED

- The routine returned successfully.
- System error.
- An incorrect argument was passed to the routine.
- One or more items are already connected to

another menu.

The header file menu.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

676

NAME

menu item opts(3curses) - -

menu_item_opts:set_item_opts,item_opts_on,item_opts_off,item_opts
menus item option routines

SYNOPSIS
#include <menu.h>

int set_item_opts (ITEM *item, OPTIONS opts);
int item_opts_on(ITEM *item, OPTIONS opts);
int item_opts_off (ITEM *item, OPTIONS opts);
OPTIONS item_opts (ITEM *item);

DESCRIPTION
set_i tem_opts turns on the named options for item and turns off all other options.
Options are boolean values that can be OR-ed together.

item_opts_on turns on the named options for item; no other option is changed.

item_opts_off turns off the named options for item; no other option is changed.

item_opts returns the current options of item.

Item Options:

O_SELECTABLE The item can be selected during menu processing.

RETURN VALUE

NOTES

Except for item_opts, these routines return one of the following:

E_OK
E_SYSTEM_ERROR

- The routine returned successfully.
- System error.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

677

menu Jtem _ userptr (3curses)

NAME
menu_itenLuserptr: set_item_userptr, item_userptr - associate application
data with menus items

SYNOPSIS
#include <menu.h>

int set_item_userptr(ITEM *item, char *userptr);
char *item_userptr(ITEM *item);

DESCRIPTION
Every item has an associated user pointer that can be used to store relevant infor
mation. set_item_userptr sets the user pointer of item. item_userptr returns
the user pointer of item.

RETURN VALUE

NOTES

item_userptr returns NULL on error. set_item_userptr returns one of the fol
lowing:

E_OK
E_SYSTEM_ERROR

- The routine returned successfully.
- System error.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus (3curses)

678

menu Jtem _value (3curses)

NAME
menu_item_value: set_item_value, item_value - set and get menus item values

SYNOPSIS
#include <menu.h>

int set_item_value (ITEM *item, int bool>;
int item_value (ITEM *item);

DESCRIPTION
Unlike single-valued menus, multi-valued menus enable the end-user to select one
or more items from a menu. set_item_value sets the selected value of the item
TRUE (selected) or FALSE (not selected). set_i tem_ value may be used only with
multi-valued menus. To make a menu multi-valued, use set_menu_opts or
menu_opts_off to turn off the option O_ONEVALUE. [see menu_opts(3curses)].

item_value returns the select value of item, either TRUE (selected) or FALSE
(unselected) .

RETURN VALUE

NOTES

set_item_value returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_REQUEST_DENIED - The menu driver could not process the request.

The header file menu.h automatically includes the header files eti.h and
curses.h.

SEE ALSO
curses(3curses), menus(3curses), menu_opts(3curses)

679

menu Jtem _visible (3curses)

NAME
menu_item_visible: item_visible - tell if menus item is visible

SYNOPSIS
#include <menu.h>

int item_visible (ITEM *item);

DESCRIPTION

NOTES

A menu item is visible if it currently appears in the subwindow of a posted menu.
item_visible returns TRUE if item is visible, otherwise it returns FALSE.

The header file menu.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), menus (3curses), menu_new(3curses)

680

menu_mark (3curses)

NAME
menu_mark: set_menu_mark, menu_mark - menus mark string routines

SYNOPSIS
#include <menu.h>

int set_menu_mark(MENU *menu, char *mark)i
char *menu_mark(MENU *menu)i

DESCRIPTION
menus displays mark strings to distinguish selected items in a menu (or the current
item in a single-valued menu). set_menu_mark sets the mark string of menu to
mark. menu_mark returns a pointer to the mark string of menu.

RETURN VALUE

NOTES

menu_mark returns NULL on error. set_menu_mark returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEI~CERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.

The header file menu.h automatically includes the header files eti.h and
curses.h.

The mark string cannot be NULL.

SEE ALSO
curses(3curses), menus(3curses)

681

menu_new (3curses)

NAME
menu_new: new_menu, free_menu - create and destroy menus

SYNOPSIS
#include <menu.h>

MENU *new_menu (ITEM * * items) ;
int free_menu(MENU *menu};

DESCRIPTION
new_menu creates a new menu connected to the item pointer array items and returns
a pointer to the new menu.

free_menu disconnects menu from its associated item pointer array and frees the
storage allocated for the menu.

RETURN VALUE

NOTES

new_menu returns NULL on error.

free_menu returns one of the following:

E_OK
E_SYSTEM_ERROR
E_BAD_ARGUMENT
E_POSTED

- The routine returned successfully.
- System error.
- An incorrect argument was passed to the routine.
- The menu is already posted.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

682

NAME

menu opts(3curses)

menu_opts: set_menu_opts, menu_opts_on, menu_opts_off, menu_opts - menus
option routines

SYNOPSIS
#include <menu.h>

int set_menu_opts (MENU *menu, OPTIONS opts);
int menu_opts_on(MENU *menu, OPTIONS opts);
int menu_opts_off(MENU *menu, OPTIONS opts);
OPTIONS menu_opts (MENU *menu);

DESCRIPTION
set_menu_opts turns on the named options for menu and turns off all other
options. Options are boolean values that can be OR-ed together.

menu_opts_on turns on the named options for menu; no other option is changed.

menu_opts_off turns off the named options for menu; no other option is changed.

menu_opts returns the current options of menu.

Only one item can be selected from the menu.
Display the description of the items.
Display the menu in row major order.
Ignore the case when pattern matching.

Menu Options
O_ONEVALUE
O_SHOWDESC
O_ROWMAJOR
O_IGNORECASE
O_SHOWMATCH
O_NONCYCLIC

Place the cursor within the item name when pattern matching.
Make certain menu driver requests non-cyclic.

RETURN VALUE

NOTES

Except for menu_opts, these routines return one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_POSTED - The menu is already posted.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

683

menu pattern (3curses)

NAME
menu-pattern: set_menu-pattern, menu-pattern - set and get menus pattern
match buffer

SYNOPSIS
#include <menu.h>

int set_menu-pattern(MENU *menu, char *pat);
char *menu-pattern(MENU *menu);

DESCRIPTION
Every menu has a pattern buffer to match entered data with menu items.
set_menu-pattern sets the pattern buffer to pat and tries to find the first item that
matches the pattern. If it does, the matching item becomes the current item. If not,
the current item does not change. menu-pattern returns the string in the pattern
buffer of menu.

RETURN VALUE

NOTES

menu-pattern returns NULL on error. set_menu-pattern returns one of the
following:

E_OK

E_SYSTEl'CERROR
E_BAD_ARGUMENT
E_NO_MATCH

- The routine returned successfully.
- System error.
- An incorrect argument was passed to the routine.
- The character failed to match.

The header file menu.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

684

NAME

menu post (3curses)

menu-post: post_menu, unpost_menu - write or erase menus from associated
subwindows

SYNOPSIS
#include <menu.h>

int post_menu(MENU *menu);
int unpost_menu (MENU *menu);

DESCRIPTION
post_menu writes menu to the subwindow. The application programmer must use
curses library routines to display the menu on the physical screen or call
update-panels if the panels library is being used.

unpost_menu erases menu from its associated subwindow.

RETURN VALUE

NOTES

These routines return one of the following:

E_OK
E_SYSTIDoLERROR
E_BAD_ARGUMENT
E_POSTED
E_BAD_STATE

E_NO_ROOM
E_NOT_POSTED
E_NOT_CONNECTED

- The routine returned successfully.
- System error.
- An incorrect argument was passed to the routine.
- The menu is already posted.
- The routine was called from an initialization or

termination function.
- The menu does not fit within its subwindow.
- The menu has not been posted.
- No items are connected to the menu.

The header file menu.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), menus(3curses), panels(3curses)

685

menu _ userptr (3curses)

NAME
menu_userptr: set_menu_userptr, menu_userptr - associate application data
with menus

SYNOPSIS
#include <menu.h>

int set_menu_userptr(MENU *menu, char *userptr);
char *menu_userptr (MENU *menu);

DESCRIPTION
Every menu has an associated user pointer that can be used to store relevant infor
mation. set_menu_userptr sets the user pointer of menu. menu_userptr returns
the user pointer of menu.

RETURN VALUE

NOTES

menu_userptr returns NULL on error.

set_menu_userptr returns one of the following:

E_OK - The routine returned successfully.
E_SYSTEt>:'LERROR - System error.

The header file menu.h automatically includes the header files etLh and
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

686

NAME

menu_win (3curses)

menu_win: set_menu_win, menu_win, set_menu_sub, menu_sub, scale_menu
menus window and subwindow association routines

SYNOPSIS
#include <menu.h>

int set_menu_win(MENU *menu, WINDOW *win};
WINDOW *menu_win(MENU **menu};
int set_menu_sub (MENU *menu, WINDOW *sub);
WINDOW *menu_sub(MENU *menu};
int scale_window(MENU *menu, int *rows, int *eoIs};

DESCRIPTION
set_menu_win sets the window of menu to win. menu_win returns a pointer to the
window of menu.

set_menu_sub sets the subwindow of menu to sub. menu_sub returns a pointer to
the subwindow of menu.

scale_window returns the minimum window size necessary for the subwindow of
menu. rows and eoIs are pointers to the locations used to return the values.

RETURN VALUE

NOTES

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK - The routine returned successfully.
E_SYSTEM_ERROR - System error.
E_BAD_ARGUMENT - An incorrect argument was passed to the routine.
E_POSTED - The menu is already posted.
E_NOT_CONNECTED - No items are connected to the menu.

The header file menu. h automatically includes the header files eti. hand
curses.h.

SEE ALSO
curses(3curses), menus(3curses)

687

mkdirp(3G)

NAME
mkdirp, nndirp - create, remove directories in a path

SYNOPSIS
cc ffLag .. .]file ... -lgen [library ...]

#include <libgen.h>

int mkdirp (const char *path, mode_t mode) ;

int nndirp (char *d, char *dl);
DESCRIPTION

mkdirp creates all the missing directories in the given path with the given mode.
[See chmod(2) for the values of mode.] The protection part of the mode argument is
modified by the process's file creation mask [see umask(2)].

nndirp removes directories in path d. This removal starts at the end of the path
and moves back toward the root as far as possible. If an error occurs, the remaining
path is stored in dl. nndirp returns a 0 only if it is able to remove every directory
in the path.

EXAMPLES
/* create scratch directories */
if (mkdirp(l/tmp/sub1/sub2/sub3", 0755) == -1) {

fprintf(stderr, "cannot create directory");
exit(l);

chdir(l/tmp/sub1/sub2/sub3");

/ * cleanup * /
chdir(II /tmp") ;
nndirp(II sub1/sub2/sub3 II);

DIAGNOSTICS

NOTES

If a needed directory cannot be created, mkdirp returns -1 and sets errno to one of
the mkdir error numbers. If all the directories are created, or existed to begin with,
it returns zero.

mkdirp uses malloc to allocate temporary space for the string.

nndirp returns -2 if a " ." or " .• " is in the path and -3 if an attempt is made to
remove the current directory. If an error occurs other than one of the above, -1 is
returned.

SEE ALSO
mkdir(2), nndir(2), umask(2)

688

mkfifo(3C)

NAME
mkfifo - create a new FIFO

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkfifo (const char *path, mode_t mode);

DESCRIPTION
The mkfifo routine creates a new FIFO special file named by the pathname pointed
to by path. The mode of the new FIFO is initialized from mode. The file permission
bits of the mode argument are modified by the process's file creation mask [see
umask(2)].

The FIFO's owner ID is set to the process's effective user ID. The FIFO's group ID is
set to the process's effective group ID, or if the S_ISGID bit is set in the parent
directory then the group ID of the FIFO is inherited from the parent.

mkfifo calls the system call mknod to make the file.

SEE ALSO
chmod(2), exec(2), fs(4), mkdir(1), mknod(2), stat(5), umask(2)

DIAGNOSTICS

NOTES

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

Bits other than the file permission bits in mode are ignored.

689

mkstemp(3) (BSO System Compatibility)

NAME
mkstemp - (BSD) make a unique file name

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

mkstemp(char *template);

DESCRIPTION
mkstemp creates a unique file name, typically in a temporary filesystem, by replac
ing template with a unique file name, and returns a file descriptor for the template
file open for reading and writing. The string in template should contain a file name
with six trailing xs; mkstemp replaces the Xs with a letter and the current process rD.
The letter will be chosen so that the resulting name does not duplicate an existing
file. mkstemp avoids the race between testing whether the file exists and opening it
for use.

SEE ALSO
getpid(2), open(2), tmpfile(3S), tmpnam(3S)

RETURN VALUE

NOTES

690

mkstemp returns -1 if no suitable file could be created.

It is possible to run out of letters.

mkstemp actually changes the template string which you pass; this means that you
cannot use the same template string more than once - you need a fresh template
for every unique file you want to open.

When mkstemp is creating a new unique filename it checks for the prior existence of
a file with that name. This means that if you are creating more than one unique
filename, it is bad practice to use the same root template for multiple invocations of
mkstemp.

mktemp(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
#include <stdlih.h>

char *mktemp(char *template);

DESCRIPTION
mktemp replaces the contents of the string pointed to by template with a unique file
name, and returns template. The string in template should look like a file name with
six trailing xs; mktemp will replace the xs with a character string that can be used to
create a unique file name.

SEE ALSO
tmpfile(3S), tmpnam(3S)

DIAGNOSTIC
mktemp will assign to template the empty string if it cannot create a unique name.

NOTES
mktemp can create only 26 unique file names per process for each unique template.

691

mktime(3C)

NAME
mktime - converts a tIn structure to a calendar time

SYNOPSIS
#include <time.h>

time_t mktime (struct tIn *timeptr);
DESCRIPTION

692

mktime converts the time represented by the tm structure pointed to by timeptr into
a calendar time (the number of seconds since 00:00:00 UTe, January 1, 1970).

The tIn structure has the following format.

struct tIn {
int tIn_sec; /* seconds after the minute [0, 61] */
int tIn_min; /* minutes after the hour [0, 59] */
int tIn_hour; /* hour since midnight [0, 23] */
int tIn_mday; /* day of the month [1, 31] */
int tIn_mon; /* months since January [0, 11] */
int tInJear; /* years since 1900 */
int tIn_wday; /* days since Sunday [0, 6] */
int tInJday; /* days since January 1 [0, 365] */
int tIn_isdst; /* flag for daylight savings time */

};

In addition to computing the calendar time, mktime normalizes the supplied tIn
structure. The original values of the tm_wday and tInJday components of the
structure are ignored, and the original values of the other components are not res
tricted to the ranges indicated in the definition of the structure. On successful com
pletion, the values of the tIn_wday and tInJday components are set appropriately,
and the other components are set to represent the specified calendar time, but with
their values forced to be within the appropriate ranges. The final value of tIn_mday
is not set until tIn_mon and tmJear are determined.

The original values of the components may be either greater than or less than the
specified range. For example, a tm_hour of -1 means 1 hour before midnight,
tIn_mday of 0 means the day preceding the current month, and tIn_mon of -2 means
2 months before January of tInJear.

If tm_isdst is positive, the original values are assumed to be in the alternate
timezone. If it turns out that the alternate timezone is not valid for the computed
calendar time, then the components are adjusted to the main timezone. Likewise, if
tIn_isdst is zero, the original values are assumed to be in the main timezone and
are converted to the alternate time zone if the main timezone is not valid. If
tIn_isdst is negative, the correct timezone is determined and the components are
not adjusted.

Local timezone information is used as if mktime had called tzset.

mktime returns the specified calendar time. If the calendar time cannot be
represented, the function returns the value (time_t)-l.

mktime(3C)

EXAMPLE
What day of the week is July 4, 20m?

#include <stdio.h>
#include <time.h>

static char *const wday[] = {

} ;

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

struct tm time_str;
/* ..• */
time_str.tm-year= 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str. tm_mday= 4;
time_str.tm_hour= 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str. tm_isdst = -1;
if (mktime(&time_str)== -1)

time_str.tm_wday=7;
printf ("%s\n", wday [time_str. tm_wday]) ;

SEE ALSO

NOTES

ctime(3C), getenv(3C), timezone(4)

tm-year of the tm structure must be for year 1970 or later. Calendar times before
00:00:00 UTC, January I, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be
represented.

693

mlock{3C)

NAME
mlock, munlock -lock (or unlock) pages in memory

SYNOPSIS
#include <sys/types.h>

int mlock (caddr_t addr, size_t len);

int munlock(caddr_t addr, size_t len);

DESCRIPTION
The function mlock uses the mappings established for the address range (addr, addr
+ len) to identify pages to be locked in memory. The effect of mlock(addr, len) is
equivalenttomemcntl(addr, len, MC_LOCK, 0, 0, 0).

munlock removes locks established with mlock. The effect of munlock (addr, len) is
equivalent to memcntl (addr, len, MC_UNLOCK, 0, 0, 0).

Locks established with mlock are not inherited by a child process after a fork and
are not nested.

SEE ALSO
fork(2), memcntl(2), mlockall(3C), rrnnap(2), plock(2), sysconf(3C)

DIAGNOSTICS

NOTES

694

Upon successful completion, the functions mlock and munlock return 0; otherwise,
they return -1 and set errno to indicate the error.

Use of mlock and munlock requires that the user have appropriate privileges.

mlockall (3C)

NAME
mlockall, munlockall-Iock or unlock address space

SYNOPSIS
#include <sys/mman.h>

int mlockall(int flags);

int munlockall(void);

DESCRIPTION
The function mlockall causes all pages mapped by an address space to be locked
in memory. The effect of mlockall <flags) is equivalent to:

memcntl(O, 0, MC_LOCKAs,flags, 0, 0)

The value of flags determines whether the pages to be locked are those currently
mapped by the address space, those that will be mapped in the future, or both:

MCL_CURRENT Lock current mappings
MCL_FUTURE Lock future mappings

The function munlockall removes address space locks and locks on mappings in
the address space. The effect of munlockall is equivalent to:

memcntl(O, 0, MC_UNLOCKAS, 0, 0, 0)

Locks established with mlockall are not inherited by a child process after a fork
and are not nested.

SEE ALSO
fork(2), memcntl(2), mlock(3C), mmap(2), plock(2), sysconf(3C)

DIAGNOSTICS

NOTES

Upon successful completion, the functions mlockall and munlockall return 0;
otherwise, they return -1 and set ermo to indicate the error.

Use of mlockall and munlockall requires that the user have appropriate
privileges.

695

monitor (3C)

NAME
moni tor - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor (int (* lowpc) (), int (* highpc) (), WORD * buffer,
size_t bujsize, size_t nfunc);

DESCRIPTION

696

monitor is an interface to profil, and is called automatically with default parame
ters by any program created by cc -po Except to establish further control over
profiling activity, it is not necessary to explicitly call monitor.

When used, monitor is called at least at the beginning and the end of a program.
The first call to monitor initiates the recording of two different kinds of execution
profile information: execution-time distribution and function call count.
Execution-time distribution data is generated by profil and the function call
counts are generated by code supplied to the object file (or files) by cc -po Both
types of information are collected as a program executes. The last call to monitor
writes this collected data to the output filemon.out.

lowpc and highpc are the beginning and ending addresses of the region to be
profiled.

buffer is the address of a user-supplied array of WORD (WORD is defined in the header
file mon.h). buffer is used by monitor to store the histogram generated by profil
and the call counts.

bujsize identifies the number of array elements in buffer.

njunc is the number of call count cells that have been reserved in buffer. Additional
call count cells will be allocated automatically as they are needed.

bujsize should be computed using the following formula:

where:

size_of_buffer =
sizeof(struct hdr) +
nfunc * sizeof(struct cnt) +
«highpc-lowpc)/BARSIZE) * sizeof(WORD) +
sizeof(WORD) - 1 ;

bufsize = (size_of_buffer / sizeof(WORD» ;

lowpc, highpc, nfunc are the same as the arguments to monitor;

BARSIZE is the number of program bytes that correspond to each histogram
bar, or cell, of the profil buffer;

the hdr and cnt structures and the type WORD are defined in the header file
mon.h.

FILES

The default call to monitor is shown below:

monitor (&eprol, &etext, wbuf, wbufsz, 600);
where:

monitor (3C)

eprol is the beginning of the user's program when linked with cc -p [see
end(3C)];

etext is the end of the user's program [see end(3C)];

wbuJ is an array of WORD with wbuJsz elements;

wbuJsz is computed using the buJsize formula shown above with BARSIZE of
8;

600 is the number of call count cells that have been reserved in buffer.

These parameter settings establish the computation of an execution-time distribu
tion histogram that uses profil for the entire program, initially reserves room for
600 call count cells in buffer, and provides for enough histogram cells to generate
significant distribution-measurement results. [For more information on the effects
of buJsize on execution-distribution measurements, see profil(2).]

To stop execution monitoring and write the results to a file, use the following:

monitor((int (*) ()) 0, (int (*) ()) 0, (WORD *) 0, 0, 0);

Use prof to examine the results.

mon.out

SEE ALSO

NOTE

cc(l), end(3C), prof(1), profil(2)

Additional calls to monitor after main has been called and before exit has been
called will add to the function-call count capacity, but such calls will also replace
and restart the profil histogram computation.

The name of the file written by monitor is controlled by the environment variable
PROFDIR. If PROFDIR does not exist, the file mon.out is created in the current direc
tory. If PROFDIR exists but has no value, monitor does no profiling and creates no
output file. If PROFDIR is dirname, and monitor is called automatically by compila
tion with cc -p, the file created is dirnamelpid.progname where progname is the
name of the program.

697

mp(3) (BSD System Compatibility)

NAME
mp:madd,msub,muIt,mdiv,mcmp,min,mout,pow, gcd,rpow,msqrt, sdiv, itam,
xtom, mtox, mfree - (BSD) multiple precision integer arithmetic

SYNOPSIS
/usr/ucb/cc [flag . . .]file . .. -Imp

#include <mp.h>

madd{MINT *a, MINT *b, MINT *c);

msub{MINT *a, MINT

muIt{MINT *a, MINT

mdiv{MINT *a, MINT

mcmp{MINT *a,MINT

min (MINT *a);

mout (MINT *a);

*b, MINT *c);

*b, MINT *c);

*b, MINT *q, MINT

*b);

*r) ;

pow{MINT *a, MINT *b, MINT *c, MINT *d);

gcd{MINT *a, MINT *b, MINT *c);

rpow{MINT *a, short n, MINT *b);

msqrt{MINT *a, MINT *b, MINT *r);

sdiv{MINT *a, short n, MINT *q, short r);

MINT *itam{short n);

MINT *xtam{char *8);

char *mtox{MINT *a);

void mfree{MINT *a);

DESCRIPTION

698

These routines perform arithmetic on integers of arbitrary length. The integers are
stored using the defined type MINT. Pointers to a MINT should be initialized
using the function itom, which sets the initial value to n. Alternatively, xtam may
be used to initialize a MINT from a string of hexadecimal digits. mfree may be
used to release the storage allocated by the i tom and xtom routines.

madd, msub and mul t assign to their third arguments the sum, difference, and pro
duct, respectively, of their first two arguments. mdi v assigns the quotient and
remainder, respectively, to its third and fourth arguments. sdiv is like mdiv except
that the divisor is an ordinary integer. msqrt produces the square root and
remainder of its first argument. mcmp compares the values of its arguments and
returns 0 if the two values are equal, >0 if the first argument is greater than the
second, and <0 if the second argument is greater than the first. rpow calculates a
raised to the power b, while pow calculates this reduced modulo m. min and mout
do decimal input and output. gcd finds the greatest common divisor of the first
two arguments, returning it in the third argument. mtox provides the inverse of
xtam. To release the storage allocated by mtox, use free [see maIIoc(3C)].

(BSC System Compatibility) mp(3)

RETURN VALUES
Invalid operations and running out of memory produce messages and core images.

SEE ALSO
malloc(3C)

699

msync(3C)

NAME
msync - synchronize memory with physical storage

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int msync (caddr_t addr, size_t len, int flags) ;

DESCRIPTION
The function msync writes all modified copies of pages over the range [addr, addr +
len) to their backing storage locations. msync optionally invalidates any copies so
that further references to the pages will be obtained by the system from their back
ing storage locations. The backing storage for a modified MAP_SHARED mapping is
the file the page is mapped to; the backing storage for a modified MAP_PRIVATE
mapping is its swap area.

flags is a bit pattern built from the following values:

MS_ASYNC
MS_SYNC
MS_INVALIDATE

perform asynchronous writes
perform synchronous writes
invalidate mappings

If MS_ASYNC is set, msync returns immediately once all write operations are
scheduled; if MS_SYNC is set, msync does not return until all write operations are
completed.

MS_INVALIDATE invalidates all cached copies of data in memory, so that further
references to the pages will be obtained by the system from their backing storage
locations.

The effect of msync (addr, len, flags) is equivalent to:

memcntl(addr, len, MC_SYNC, flags, 0, O}

SEE ALSO
memcntl(2), mmap(2), sysconf(3C)

DIAGNOSTICS

NOTES

700

Upon successful completion, the function msync returns 0; otherwise, it returns -1
and sets errno to indicate the error.

msync should be used by programs that require a memory object to be in a known
state, for example, in building transaction facilities.

namemap (31)

NAME
namemap - map a name

SYNOPSIS
int namemap (char *scheme, char *g_name, char *logname);

DESCRIPTION

FILES

The namemap routine is used to map remote names into local identities. It takes a
remote user identification and the name of the ID mapping scheme as input and
returns a corresponding local user login name. scheme is the scheme name, g_ name
is the remote (global) name, and logname is the location where namemap places the
local login name.

To map the remote identity to a local one, namemap consults the uidata and idata
map files associated with the scheme. When user-controlled mapping for a scheme
is enabled by the system administrator, namemap consults uidata before idata,
which causes user-specified entries to take precedence over system administrator
mapping. If user-controlled mapping for the scheme is disabled, only the scheme's
idata file is consulted.

/etc/idmap/scheme name/idata
/etc/idmap/scheme=name/uidata
/etc/passwd

map file for scheme_name
user-controlled map file for scheme_name
password file

SEE ALSO
attradmin(lM), idadmin(lM), namemap(3I), uidadmin(l)

DIAGNOSTICS
Upon successful completion, namemap returns 0; otherwise, it returns -1.

701

ndbm (3) (BSC System Compatibility)

NAME
ndbm: dbm_clearerr, dbm_close, dbnLdelete, dbm_error, dbnLfetch,
dbm_firstkey, dbm_nextkey, dbm_open, dbm_store - (BSD) data base subroutines

SYNOPSIS
/usr/ucb/cc [flag . ..]file

#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;

datum;

int dbm_clearerr(DBM *db);
void dbm_close(DBM *db);
int dbm_delete(DBM *db, datum key);
int dbm_error(DBM *db);
datum dbm_fetch (DBM *db, datum key);
datum dbm_firstkeY(DHM *db);
datum dbm_nextkeY(DHM *db);
DBM *dbm_open(char *file, int flags, int mode);
int dbm_store(DHM *db, datum key, datum content, int flags);

DESCRIPTION

702

These functions maintain key / content pairs in a data base. The functions will han
dle very large (a billion blocks) data base and will access a keyed item in one or two
file system accesses. This package replaces the earlier dbm(3) library, which
managed only a single data base.

keys and contents are described by the datum typedef. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The data base is stored in two files. One file is a directory con
taining a bit map and has . dir as its suffix. The second file contains all data and
has .pag as its suffix.

Before a data base can be accessed, it must be opened by dbm_open. This will open
and / or create the files file. dir and file. pag depending on the flags parameter [see
open(2)].

A data base is closed by calling dbm_close.

Once open, the data stored under a key is accessed by dbm_fetch and data is
placed under a key by dbm_store. The flags field can be either DHM_INSERT or
DHM_REPLACE. DBM_INSERT will only insert new entries into the data base and will
not change an existing entry with the same key. DEM_REPLACE will replace an exist
ing entry if it has the same key. A key (and its associated contents) is deleted by
dbm_delete. A linear pass through all keys in a data base may be made, in an
(apparently) random order, by use of dbm_firstkey and dbm_nextkey.
dbm_firstkey will return the first key in the data base. dbm_nextkey will return
the next key in the data base. This code will traverse the data base:

(BSD System Compatibility) ndbm(3)

for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db»

dbm_error returns non-zero when an error has occurred reading or writing the
data base. dbm_clearerr resets the error condition on the named data base.

SEE ALSO
open(2), dbm(3)

RETURN VALUE

NOTES

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datwn indicate errors with a NULL (0) dptr.
If dbm_store is called with a flags value of DBM_INSERT and finds an existing entry
with the same key, it returns l.

The .pag file will contain holes so that its apparent size is about four times its
actual content. Older versions of the UNIX operating system may create real file
blocks for these holes when touched. These files cannot be copied by normal means
[that is, cp(l), cat(l), tar(l), ar(l)] without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed
by subsequent calls.

The sum of the sizes of a key / content pair must not exceed the internal block size
(currently 4096 bytes). Moreover all key / content pairs that hash together must fit on
a single block. dbm_store will return an error in the event that a disk block fills
with inseparable data.

dbm_delete does not physically reclaim file space, although it does make it avail
able for reuse.

The order of keys presented by dbm_firstkey and dbm_nextkey depends on a
hashing function.

There are no interlocks and no reliable cache flushing; thus concurrent updating
and reading is risky.

703

netdir(3N)

NAME
netdir_getbyname, netdir-getbyaddr, netdir_free, netdir_options,
taddr2uaddr, uaddr2taddr, netdir-perror, netdir_sperror generic
transport name-to-address translation

SYNOPSIS
#include <netdir.h>
#include <netconfig.h>

int netdir-getbyname(struct netconfig *config, struct nd_hostserv
*service, struct nd_addrlist **addrs);

int netdir-getb¥addr(struct netconfig *config, struct
nd_hostservlist **service, struct netbuf *netaddr);

void netdir_free(void *ptr, int ident);

char *taddr2uaddr(struct netconfig *config, struct netbuf *addr);

struct netbuf *uaddr2taddr(struct netconfig *config, char *uaddr);

int netdir_options (struct netconf ig * netconfig , int option, int fd,
char *pointer _to _ args) ;

void netdir-perror(char *s);

char *netdir_sperror(void);

DESCRIPTION

704

These routines provide a generic interface for name-to-address mapping that will
work with all transport protocols. This interface provides a generic way for pro
grams to convert transport-specific addresses into common structures and back
again.

The netdir_getbyname routine maps the machine name and service name in the
nd_hostserv structure to a collection of addresses of the type understood by the
transport identified in the netconfig structure. This routine returns all addresses
that are valid for that transport in the nd_addrlist structure. The netconfig
structure is described on the netconfig(4) manual page. The nd_hostserv and
nd_addrlist structures have the following elements.

nd_addrlist structure:
int
struct netbuf

nd_hostserv structure:
char *h_host;
char *h_serv;

n_cnt;
*n_addrs;

1* number of netbufs *1
1* the netbufs *1

1* the host name *1
1* the service name *1

netdir(3N)

netdir_getbyname accepts some special-case host names. These host names are
hints to the underlying mapping routines that define the intent of the request. This
information is required for some transport provider developers to provide the
correct information back to the caller. The host names are defined in netdir.h.
The currently defined host names are:

HOST_SELF Represents the address to which local programs will bind their end
points. HOST_SELF differs from the host name provided by gethost
name, which represents the address to which remote programs will
bind their endpoints.

HOST_ANY Represents any host accessible by this transport provider. HOST_ANY
allows applications to specify a required service without specifying a
particular host name.

HOST_BROADCAST
Represents the address for all hosts accessible by this transport pro
vider. Network requests to this address will be received by all
machines.

All fields of the nd_hostserv structure must be initialized.

To find all available transports, call the netdir~etbyname routine with each
netconfig structure returned by the getnetpath calL

The netdir~etbyaddr routine maps addresses to service names. This routine
returns a list of host and service pairs that would yield this address. If more than
one tuple of host and service name is returned then the first tuple contains the pre
ferred host and service names. The nd_hostservlist structure contains the fol
lowing members:

int h_cnt; 1* the number of nd_hostservs *1
struct hostserv *h_hostservs; 1* the entries *1

The netdir_free structure is used to free the structures allocated by the name to
address translation routines.

The following types of structures may be specified by the ident argument:

ND_ADDR Frees a netbuf structure.

ND_ADDRLIST Frees the nd_addrlist structure, such as that allocated by
netdir~etbyname.

ND_HOSTSERV Frees a nd_hostserv structure.

ND_HOSTSERVLIST
Frees the nd_hostservlist structure, such as that allocated by
netdir~etbyaddr.

The taddr2uaddr and uaddr2taddr routines support translation between univer
sal addresses and TLl type netbufs. They take and return character string pointers.
The taddr2uaddr routine returns a pointer to a string that contains the universal
address and returns NULL if the conversion is not possible. This is not a fatal condi
tion, as some transports may not support a universal address form.

705

netdir(3N)

706

The netdir_options routine is used to pass options in a transport-independent
manner to the transport provider specified by netconfig.

If a transport provider does not support an option, netdir_options returns -1
and sets _nderror to ND_FAILCTRL. If an option is specified that is not on the
above list, netdir_options returns -1 and sets _nderror to ND_NOCTRL.

The specific actions of each option follow.

ND_SET_BROADCAST Sets the transport provider up to allow broadcast, if the tran
sport supports broadcast. fd is a file descriptor into the tran
sport (for example, the result of a t_open of Idev/udp).
pointer_to _args is not used. If this completes, broadcast
operations may be performed on file descriptor fd.

Turns off permission to send broadcast messages for the
transport endpoint.

ND_SET_REUSEADDR Allows the transport provider to bind additional transport
endpoints to the same local address to which another end
point has already been bound.

ND_CLEAR_REUSEADDR
Does not allow the transport provider to bind a transport
endpoint to a local address to which another endpoint has
already been bound.

ND SET_RESERVEDPORT

Allows the application to bind to a reserved port, if that con
cept exists for the transport provider. fd is a file descriptor
into the transport (it must not be bound to an address). If
pointer_to _args is NULL, fd will be bound to a reserved port. If
pointer_to _args is a pointer to a netbuf structure, an attempt
will be made to bind to a reserved port on the specified
address.

ND_CHECK_RESERVEDPORT

Used to verify that an address corresponds to a reserved
port, if that concept exists for the transport provider. fd is
not used. pointer_to _args is a pointer to a netbuf structure
that contains an address. This option returns 0 only if the
address specified in pointer _to _args is reserved.

ND_MERGEADDR Used to take a "local address" (like the 0.0.0.0 address that
TCP uses) and return a "real address" that client machines
can connect to. fd is not used. pointer_to _args is a pointer to a
struct nd_mergearg, which has the following members:

char *s_uaddr; 1* server's universal address *1
char *c_uaddr; 1* client's universal address *1
char *m_uaddr; 1* merged universal address *1

NOTES

netdir(3N)

s_uaddr is something like 0.0.0.0.1.12, and, if the call is
successful, m_uaddr will be set to something like
192.11.109.89.1.12. For most transports, m_uaddr is
exactly what s_uaddr is.

The netdir-perror routine prints an error message on the standard output stating
why one of the name-to-address mapping routines failed. The error message is pre
ceded by the string given as an argument.

The netdir_sperror routine returns a string containing an error message stating
why one of the name-to-address mapping routines failed.

In case of an error while processing the ND _SET_BROADCAST option,
netdir_options returns a non-zero value, rather than assigning the value to
_nderror.

SEE ALSO
getnetpath(3N)

707

nice (3C) (BSD System Compatibility)

NAME
nice - (BSD) change priority of a process

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

int nice (int incr) ;

DESCRIPTION
The scheduling priority of the process is augmented by.incr. Positive priorities get
less service than normal. Priority 10 is recommended to users who wish to execute
long-running programs without undue impact on system performance.

Negative increments are illegal, except when specified by the privileged user. The
priority is limited to the range -20 (most urgent) to 20 (least). Requests for values
above or below these limits result in the scheduling priority being set to the
corresponding limit.

The priority of a process is passed to a child process by fork(2). For a privileged
process to return to normal priority from an unknown state, nice should be called
successively with arguments -40 (goes to priority -20 because of truncation), 20 (to
get to 0), then 0 (to maintain compatibility with previous versions of this call).

RETURN VALUE
Upon successful completion, nice returns O. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
The priority is not changed if:

EACCES The value of incr specified was negative, and the effective user ID is not
the privileged user.

SEE ALSO
fork(2), getpriority(3), nice(I), priocntl(2), renice(IM)

708

nlist (3E)

NAME
n1ist - get entries from name list

SYNOPSIS
cc fflag .. .]file ... -1e1f [library .. .]

#inc1ude <n1ist.h>

int n1ist (const char *file, struct n1ist *nl);

DESCRIPTION
n1ist examines the name list in the executable file whose name is pointed to by file,
and selectively extracts a list of values and puts them in the array of n1ist struc
tures pointed to by nl. The name list nl consists of an array of structures containing
names of variables, types, and values. The list is terminated with a null name, that
is, a null string is in the name position of the structure. Each variable name is
looked up in the name list of the file. If the name is found, the type, value, storage
class, and section number of the name are inserted in the other fields. The type field
may be set to 0 if the file was not compiled with the -g option to cc(l). n1ist will
always return the information for an external symbol of a given name if the name
exists in the file. If an external symbol does not exist, and there is more than one
symbol with the specified name in the file (such as static symbols defined in
separate files), the values returned will be for the last occurrence of that name in the
file. If the name is not found, all fields in the structure except n_name are set to O.

If you want to examine symbols in a running kernel (and these symbols are associ
ated with a dynamically loaded module), then you must use ioct1 [see kmem.(7)] or
getksym(2), instead of n1ist. To learn if a module is dynamically loaded, check to
see if it is present in /etc/conf/mod.d.

SEE ALSO
a . out (4), e1f(3E), getksym(2), kmem.(7)

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or if it does not contain a valid
name list.

n1ist returns 0 on success, -Ion error.

709

nlsgetcall (3N)

NAME
nlsgetcall- get client's data passed via the listener

SYNOPSIS
#include <sys/tiuser.h>

struct t_call *nlsgetcall(intjd};

DESCRIPTION

NOTES

nlsgetcall allows server processes started by the listener process to access the
client's t_call structure, that is, the sndcall argument of t_connect(3N).

The t_call structure returned by nlsgetcall can be released using t_free(3N).

nlsgetcall returns the address of an allocated t_call structure or NULL if a
t_call structure cannot be allocated. If the t_alloc succeeds, undefined environ
ment variables are indicated by a negative len field in the appropriate netbuf struc
ture. A len field of zero in the netbuf structure is valid and means that the original
buffer in the listener's t_call structure was NULL.

The len field in the netbuf structure is defined as being unsigned. In order to check
for error returns, it should first be cast to an int.

The listener process limits the amount of user data (udata) and options data (opt) to
128 bytes each. Address data addr is limited to 64 bytes. If the original data was
longer, no indication of overflow is given.

Server processes must call t_sync(3N) before calling this routine.

DIAGNOSTICS

FILES

A NULL pointer is returned if a t_call structure cannot be allocated by t_alloc.
t_errno can be inspected for further error information. Undefined environment
variables are indicated by a negative length field (len) in the appropriate netbuf
structure.

/usr/lib/libnsl.so
/usr/lib/libnls.a

SEE ALSO

710

getenv(3C), nlsadmin(lM), t_alloc(3N), t_connect(3N), t_error(3N),
t_free(3N)

NAME
nlsprovider - get name of transport provider

SYNOPSIS
char *nlsprovider(void);

DESCRIPTION

nlsprovider (3N)

nlsprovider returns a pointer to a null terminated character string which contains
the name of the transport provider as placed in the environment by the listener pro
cess. If the variable is not defined in the environment, a NULL pointer is returned.

The environment variable is only available to server processes started by the
listener process.

SEE ALSO
nlsadmin(lM)

DIAGNOSTICS

FILES

If the variable is not defined in the environment, a NULL pointer is returned.

lusr/lib/libnls.a
/usr/lib/libnsl.so

711

nlsrequest (3N)

NAME
nlsrequest - format and send listener service request message

SYNOPSIS
#include <listen.h>

int nlsrequest (intfd, char *service_code);

extern int _nlslog, t_errno;
extern char *_nlsr.msg;

DESCRIPTION

FILES

Given a virtual circuit to a listener process ifd) and a service code of a server pro
cess, nlsrequest formats and sends a service request message to the remote listener
process requesting that it start the given service. nlsrequest waits for the remote
listener process to return a service request response message, which is made available
to the caller in the static, null terminated data buffer pointed to by _nlsr.msg. The
service request response message includes a success or failure code and a text message.
The entire message is printable.

/usr/lib/libnls.a
/usr/lib/libnsl.so

DIAGNOSTICS

NOTES

The success or failure code is the integer return code from nlsrequest. Zero indi
cates success, other negative values indicate nlsrequest failures as follows:

-1: Error encountered by nlsrequest, see t_ errno.

Positive values are error return codes from the listener process. Mnemonics for
these codes are defined in <listen.h>.

2: Request message not interpretable.
3 : Request service code unknown.
4: Service code known, but currently disabled.

If non-null, _nlsr.msg contains a pointer to a static, null terminated character buffer
containing the service request response message. Note that both _nlsr.msg and the
data buffer are overwritten by each call to nlsrequest.

If _nlslog is non-zero, nlsrequest prints error messages on stderr. Initially,
_nlslog is zero.

nlsrequest cannot always be certain that the remote server process has been suc
cessfully started. In this case, nlsrequest returns with no indication of an error
and the caller will receive notification of a disconnect event via a T_LOOK error
before or during the first t_snd or t_rcv call.

SEE ALSO
nlsadmin(lM), t_error(3N)

712

nl langinfo (3C)

NAME
nl_langinfo - language information

SYNOPSIS
#include <nl_types.h>
#include <langinfo.h>

char *nl_langinfo (nl_item item) i

DESCRIPTION
nl_langinfo returns a pointer to a null-terminated string containing information
relevant to a particular language or cultural area defined in the program's locale.
The manifest constant names and values of item are defined by langinfo. h.

For example:

nl_langinfo (ABDAY_l)i

would return a pointer to the string "Dim" if the identified language was French
and a French locale was correctly installed; or "Sun" if the identified language was
English.

SEE ALSO
gettxt(3C), langinfo(5), localeconv(3C), nl_types(5), setlocale(3C),
strftime(3C)

DIAGNOSTICS

NOTES

If setlocale has not been called successfully, or if langinfo data for a supported
language is either not available or item is not defined therein, then nl_langinfo
returns a pointer to the corresponding string in the C locale. In all locales,
nl_langinfo returns a pointer to an empty string if item contains an invalid setting.

The array pointed to by the return value should not be modified by the program.
Subsequent calls to nl_langinfo may overwrite the array.

The nl_langinfo function is built on the functions localeconv, strftime, and
gettxt [see langinfo(5)]. Where possible users are advised to use these interfaces
to the required data instead of using calls to nl_langinfo.

713

offsetof (3C)

NAME
offsetof - offset of structure member

SYNOPSIS
#include <stddef.h>

size_t offsetof (type, member-designator>;

DESCRIPTION

714

offsetof is a macro defined in stddef.h which expands to an integral constant
expression that has type size_t, the value of which is the offset in bytes, to the
structure member (designated by member-designator), from the beginning of its
structure (designated by type).

p2open(3G)

NAME
p2open, p2close - open, close pipes to and from a command

SYNOPSIS
cc [flag . ..]file ... -lgen [library . ..]

#include <libgen.h>

int p20pen (const char *cmd, FILE *jp[2]}i

int p2close (FILE *jp[2]}i

DESCRIPTION
p20pen forks and execs a shell running the command line pointed to by cmd. On
return, jp [0] points to a FILE pointer to write the command's standard input and
jp [1] points to a FILE pointer to read from the command's standard output. In this
way the program has control over the input and output of the command.

The function returns a if successful; otherwise it returns -1.

p2close is used to close the file pointers that p20pen opened. It waits for the pro
cess to terminate and returns the process status. It returns a if successful; otherwise
it returns -1.

EXAMPLES
#include <stdio.h>
#include <libgen.h>

main(argc,argv)
int argci
char **argvi
{

SEE ALSO

FILE *fp[2]i
pid_t pid;
char buf[16]i

pid=p2open (" lusr Ibinl cat", fp) i
if (pid == 0) {

fprintf(stderr, "p2open failed\n"}i
exit(l}i

write(fileno(fp[O]},"This is a test\n", 16}i
if(read(fileno(fp[l]}, buf, 16} <=O}

fprintf(stderr, "p2open failed\n"}i
else

write (1, buf, 16};
(void}p2close(fp);

fclose(3S), popen(3S), setbuf(3S)

DIAGNOSTICS
A common problem is having too few file descriptors. p2close returns -1 if the
two file pointers are not from the same p2open.

715

p2open(3G)

NOTES

716

Buffered writes on fp [0] can make it appear that the command is not listening.
Judiciously placed fflush calls or unbuffering fp [0] can be a big help; see
fclose(3S).

Many commands use buffered output when connected to a pipe. That, too, can
make it appear as if things are not working.

Usage is not the same as for popen, although it is closely related.

panels (3curses)

NAME
panels - character based panels package

SYNOPSIS
#include <panel.h>

DESCRIPTION
The panel library is built using the curses library, and any program using panels
routines must call one of the curses initialization routines such as initscr. A pro
gram using these routines must be compiled with -lpanel and -lcurses on the cc
command line.

The panels package gives the applications programmer a way to have depth rela
tionships between curses windows; a curses window is associated with every
panel. The panels routines allow curses windows to overlap without making
visible the overlapped portions of underlying windows. The initial curses win
dow, stdscr, lies beneath all panels. The set of currently visible panels is the deck
of panels.

The panels package allows the applications programmer to create panels, fetch and
set their associated windows, shuffle panels in the deck, and manipulate panels in
other ways.

Routine Name Index
The following table lists each panels routine and the name of the manual page on
which it is described.

panels Routine Name

bot tom-panel
del-panel
hide-panel
InOve-panel
new-panel
panel_above
panel_below
panel_hidden
panel_userptr
panel_window
replace---PaD.el
set-panel_userptr
show-panel
top-panel
update-panels

RETURN VALUE

Manual Page Name

panel_top(3curses)
panel_new(3curses)
panel_show(3curses)
panel_InOve(3curses)
panel_new(3curses)
pane l_above (3curses)
panel_above(3curses)
panel_show(3curses)
panel_userptr(3curses)
panel_window(3curses)
panel_window(3curses)
panel_userptr(3curses)
panel_show(3curses)
panel_top(3curses)
panel_update(3curses)

Each panels routine that returns a pointer to an object returns NULL if an error
occurs. Each panel routine that returns an integer, returns OK if it executes success
fully and ERR if it does not.

717

panels (3curses)

NOTES
The header file panel.h automatically includes the header file curses .h.

SEE ALSO

718

curses(3curses), and 3curses pages whose names begin with panel_, for detailed
routine descriptions

panel above (3curses)

NAME
panel_above: panel_above, panel_below - panels deck traversal primitives

SYNOPSIS
#include <panel.h>

PANEL *panel_above (PANEL *panel);
PANEL * pane I_be low (PANEL *panel);

DESCRIPTION
panel_above returns a pointer to the panel just above panel, or NULL if panel is the
top panel. panel_below returns a pointer to the panel just below panel, or NULL if
panel is the bottom panel.

If NULL is passed for panel, panel_above returns a pointer to the bottom panel in
the deck, and panel_below returns a pointer to the top panel in the deck.

RETURN VALUE
NULL is returned if an error occurs.

NOTES
These routines allow traversal of the deck of currently visible panels.

The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3curses), panels(3curses)

719

panel_move (3curses)

NAME
panel_move: move-panel - move a panels window on the virtual screen

SYNOPSIS
#include <panel.h>

int move-panel (PANEL *panel, int starty, int startx);
DESCRIPTION

move-panel moves the curses window associated with panel so that its upper left
hand comer is at starty, startx. See NOTES, below.

RETURN VALUE

NOTES

OK is returned if the routine completes successfully, otherwise ERR is returned.

For panels windows, use move-panel instead of the mvwin curses routine.
Otherwise, update-panels will not properly update the virtual screen.

The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3curses), panels(3curses), panel_update(3curses)

720

panel new (3curses)

NAME
panel_new: new-panel, del-panel - create and destroy panels

SYNOPSIS
#include <panel.h>

PANEL *new-panel (WINDOW *win);
int del-panel (PANEL *panel);

DESCRIPTION
new-panel creates a new panel associated with win and returns the panel pointer.
The new panel is placed on top of the panel deck.

del-panel destroys panel, but not its associated window.

RETURN VALUE
new-panel returns NULL if an error occurs.

del_win returns OK if successful, ERR otherwise.

NOTES
The header file panel.h automatically includes the header file curses .h.

SEE ALSO
curses(3curses), panels(3curses), panel_update(3curses)

721

panel show (3curses)

NAME
panel_show: show-panel, hide-panel, panel_hidden - panels deck manipula
tion routines

SYNOPSIS
#include <panel.h>

int show-panel (PANEL *panel);
int hide-panel (PANEL *panel);
int panel_hidden (PANEL *panel);

DESCRIPTION
show-panel makes panel, previously hidden, visible and places it on top of the deck
of panels.

hide-panel removes panel from the panel deck and, thus, hides it from view. The
internal data structure of the panel is retained.

paneljlidden returns TRUE (1) or FALSE (0) indicating whether or not panel is in
the deck of panels.

RETURN VALUE

NOTES

show-panel and hide-panel return the integer OK upon successful completion or
ERR upon error.

The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3curses), panels(3curses), panel_update(3curses)

722

panel_top (3curses)

NAME
panel_top: top-panel, bottom-panel - panels deck manipulation routines

SYNOPSIS
#include <panel.h>

int top-panel (PANEL *panel);
int bottom-panel (PANEL *panel);

DESCRIPTION
top-panel pulls panel to the top of the desk of panels. It leaves the size, location,
and contents of its associated window unchanged.

bottom-panel puts panel at the bottom of the deck of panels. It leaves the size,
location, and contents of its associated window unchanged.

RETURN VALUE

NOTES

All of these routines return the integer OK upon successful completion or ERR upon
error.

The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3curses), panels(3curses), panel_update(3curses)

723

panel_update (3curses)

NAME
panel_update: update-panels - panels virtual screen refresh routine

SYNOPSIS
#include <panel.h>

void update-panels(void);

DESCRIPTION

NOTES

update-panels refreshes the virtual screen to reflect the depth relationships
between the panels in the deck. The user must use the curses library call doupdate
[see curs_refresh(3curses)] to refresh the physical screen.

The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3curses), curs_refresh(3curses), panel s (3curses)

724

panel userptr (3curses)

NAME
panel_userptr: set-panel_userptr, panel_userptr - associate application data
with a panels panel

SYNOPSIS
#include <panel.h>

int set-panel_userptr(PANEL *panel, char *ptr);
char *panel_userptr (PANEL *panel);

DESCRIPTION
Each panel has a user pointer available for maintaining relevant information.

set-panel_userptr sets the user pointer of panel to ptr.

panel_userptr returns the user pointer of panel.

RETURN VALUE
set-panel_userptr returns OK if successful, ERR otherwise.

panel_userptr returns NULL if there is no user pointer assigned to panel.

NOTES
The header file panel. h automatically includes the header file curses .h.

SEE ALSO
curses(3curses), panels(3curses)

725

panel window (3curses)

NAME
panel_window: panel_window, replace-panel- get or set the current window of
a panels panel

SYNOPSIS
#include <panel.h>

WINDOW *panel_window (PANEL *panel) i

int replace-panel (PANEL *panel, WINDOW *win);

DESCRIPTION
panel_window returns a pointer to the window of panel.

replace-panel replaces the current window of panel with win.

RETURN VALUE
panel_window returns NULL on failure.

replace-panel returns OK on successful completion, ERR otherwise.

NOTES
The header file panel. h automatically includes the header file curses. h.

SEE ALSO
curses(3curses), panels(3curses)

726

pathfind (3G)

NAME
pathfind - search for named file in named directories

SYNOPSIS
cc fflag .. .]file ... -lgen [library . ..]

#inc1ude <libgen.h>

char *pathfind (const char *path, const char *name, const char
*mode) ;

DESCRIPTION
pathfind searches the directories named in path for the file name. The directories
named in path are separated by semicolons. mode is a string of option letters chosen
from the set rwxfbcdpugks:

Letter Meaning
r readable
w writable
x executable
f normal file
b block special
c character special
d directory
p FIFO (pipe)
u set user ID bit
9 set group ID bit
k sticky bit
s size nonzero

Options read, write, and execute are checked relative to the real (not the effective)
user ID and group ID of the current process.

If the file name, with all the characteristics specified by mode, is found in any of the
directories specified by path, then pathfind returns a pointer to a string containing
the member of path, followed by a slash character (I), followed by name.

If name begins with a slash, it is treated as an absolute path name, and path is
ignored.

An empty path member is treated as the current directory. . / is not prepended at
the occurrence of the first match; rather, the unadorned name is returned.

EXAMPLES
To find the Is command using the PATH environment variable:

pathfind (getenv ("PATH"), "Is", "rx")

SEE ALSO
access(2), getenv(3C), mknod(2), sh(l), stat(2), test(l)

DIAGNOSTICS
If no match is found, pathname returns a null pointer, ((char *) O}.

727

pathfind (3G)

NOTES

728

The string pointed t,o by the returned pointer is stored in a static area that is reused
on subsequent calls to pathfind.

perror(3C)

NAME
perror - print system error messages

SYNOPSIS
#include <stdio.h>

void perror (const char *5);

DESCRIPTION
perror produces a message on the standard error output (file descriptor 2),
describing the last error encountered during a call to a system or library function.
The argument string 5 is printed first, then a colon and a blank, then the message
and a newline. (However, if 5 is a null pointer or points to a null string, the colon is
not printed.) To be of most use, the argument string should include the name of the
program that incurred the error. The error number is taken from the external vari
able ermo, which is set when errors occur but not cleared when non-erroneous
calls are made.

SEE ALSO
intro(2), fmtmsg(3C), strerror(3C)

729

pfmt(3C)

NAME
pfmt, vpfmt - display error message in standard format

SYNOPSIS
#include <pfmt.h>

int pfmt(FILE *stream, long flags, char *format, ... /* args */};

#include <stdarg.h>
#include <pfmt.h>

int vpfmt (FILE *stream, long flags, char *format, va_list ap);

DESCRIPTION

730

pfmt
pfmt uses a format string for printf style formatting of args. The output is
displayed on stream. pfmt encapsulates the output in the standard error message
format.

If the printf format string is to be retrieved from a message database, the format
argument must have the following structure:

[[catalog] : [msgnum]:] defmsg.

defmsg can only appear alone if flags include MM_NOGET.

catalog indicates the message database that contains the localized version of the for
mat string. catalog must be limited. to 14 characters. These characters must be
selected from a set of all characters values, excluding \ 0 (null) and the ASCII codes
for / (slash) and: (colon).

msgnum must be a positive number that indicates the index of the string into the
message database.

If catalog does not exist in the locale (specified by the last call to setlocale using
the LC_ALL or LC_MESSAGES categories), or if the message number is out of bounds,
pfmt attempts to retrieve the message from the c locale. If this second retrieval
fails, pfmt uses the defmsg part of the format argument.

If catalog is omitted, pfmt attempts to retrieve the string from the default catalog
specified by the last call to setcat. In this case, the format argument has the follow
ing structure:

msgnum: defmsg.

pfmt outputs Message not found!! \n as the format string if:

catalog is not a valid catalog name as defined above
no catalog is specified (either explicitly or via setcat)
msgnum is not a positive number,
no message could be retrieved and defmsg was omitted

The flags determine the type of output (that is, whether the format should be inter
preted as is or encapsulated in the standard message format), and the access to mes
sage catalogs to retrieve a localized version offormat.

pfmt(3C)

The flags are composed of several groups, and can take the following values (one
from each group):

Output format control

do not use the standard message format, interpret format as a
printf format. Only catalog access control flags should be specified
if Ml'CNOSTD is used; all other flags will be ignored.

r.nvCSTD output using the standard message format (default, value 0).

Catalog access control

Ml>CNOGET do not retrieve a localized version of format. In this case, only the
defmsg part of the format is specified.

retrieve a localized version of format, from the catalog, using
msgnum as the index and defmsg as the default message (default,
value 0).

Severity (standard message format only)

generates a localized version of HALT.

generates a localized version of ERROR (default, value 0).

MM_WARNING generates a localized version of WARNING.

MM_INFO generates a localized version of INFO.

Additional severities can be defined. Add-on severities can be defined with
number-string pairs with numeric values from the range [5-255], using
addsev(3C). The numeric value ORed with other flags will generate the
specified severity.

If the severity is not defined, pfmt uses the string SEV=N where N is replaced by
the integer severity value passed in flags.

Multiple severities passed in flags will not be detected as an error. Any combi
nation of severities will be summed and the numeric value will cause the display
of either a severity string (if defined) or the string SEv=N (if undefined).

Action

MM_ACTION specifies an action message. Any severity value is superseded
and replaced by a localized version of TO FIX.

Standard Error Message Format
pfmt displays error messages in the following format:

label: severity: text

If no label was defined by a call to set label, the message is displayed in the format:

severity: text

If pfmt is called twice to display an error message and a helpful action or recovery
message, the output can look like:

label: severity: text
label: TO FIX: text

731

pfmt(3C)

vpfmt
vpfmt is the same as pfmt except that instead of being called with a variable
number of arguments, it is called with an argument list as defined by the stdarg. h
header file.

The stdarg. h header file defines the type va_list and a set of macros for advanc
ing through a list of arguments whose number and types may vary. The argument
ap to vpfmt is of type va_list. This argument is used with the stdarg. h header
file macros va_start, va_arg and va_end [see va_start, va_arg, and va_end in
stdarg(5)]. The EXAMPLE sections below show their use.

The macro va_alist is used as the parameter list in a function definition as in the
function called error in the example below. The macro va_start (ap,) , where ap
is of type va_list, must be called before any attempt to traverse and access
unnamed arguments. Calls to va_arg(ap, atype) traverse the argument list. Each
execution of va_arg expands to an expression with the value and type of the next
argument in the list ap, which is the same object initialized by va_start. The argu
ment atype is the type that the returned argument is expected to be. The
va_end (ap) macro must be invoked when all desired arguments have been
accessed. [The argument list in ap can be traversed again if va_start is called
again after va_end.] In the example below, va_arg is executed first to retrieve the
format string passed to error. The remaining error arguments, argl, arg2, ... , are
given to vpfmt in the argument ap.

EXAMPLES

732

pfmt example 1
setlabel(IUX:test");
pfmt(stderr, MM_ERROR, "test:2:Cannot open file: %s\n",

strerror(errno»;

displays the message:

UX:test: ERROR: Cannot open file: No such file or directory

pfmt example 2
setlabel(IUX:test");
setcat("test");
pfmt(stderr, MM_ERROR, ":10:Syntax error\n");
pfmt (stderr, MM_ACTION, ": 55 : Usage ... \n");

displays the message

UX: test: ERROR: Syntax error
UX:test: TO FIX: Usage

vpfmt example
The following demonstrates how vpfmt could be used to write an error routine:

#include <pfmt.h>
#include <stdarg.h>

/*
* error should be called like
* error (format, argl, ••.);
*/

pfmt(3C)

SEE ALSO

void error(const char *format, ...)

va_list ap;

va_start (ap,);
(void) vpfmt(stderr, MM_ERROR, format, ap);
va_end (ap) ;
(void) abort();

addsev(3C), environ(5), gettxt(3C), pfmt(l), printf(3S), setcat(3C),
setlabel(3C), setlocale(3C), stdarg(5)

DIAGNOSTICS
On success, pfmt and vpfmt return the number of bytes transmitted. On failure,
they return a negative value:

-1 write error to stream

733

popen(3S)

NAME
popen, pc lose - initiate pipe to / from a process

SYNOPSIS
#include <stdio.h>

FILE *popen (const char *command, const char *type);

int pclose (FILE *stream);

DESCRIPTION
popen creates a pipe between the calling program and the command to be executed.
The arguments to popen are pointers to null-terminated strings. command consists
of a shell command line. type is an I/O mode, either r for reading or w for writing.
The value returned is a stream pointer such that one can write to the standard input
of the command, if the I/O mode is w, by writing to the file stream [see intro(3)];
and one can read from the standard output of the command, if the I/O mode is r,
by reading from the file stream.

A stream opened by popen should be closed by pc lose, which waits for the associ
ated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and
a type w as an output filter.

EXAMPLE
Here is an example of a typical call:

#include <stdio.h>
#include <stdlib.h>

main ()
{

char *cmd = "/usr/bin/ls *.c";
char buf[BUFSIZ];
FILE *ptr;

if «ptr = popen(cmd, "r"» ! = NULL)
while (fgets(buf, BUFSIZ, ptr) != NULL)

(void) printf("%s", buf);
return 0;

This program will print on the standard output [see stdio(3S)] all the file names in
the current directory that have a . c suffix.

SEE ALSO
fclose(3S), fopen(3S), pipe(2), stdio(3S), system(3S), wait(2)

DIAGNOSTICS
popen returns a null pointer if files or processes cannot be created.

pclose returns -1 if stream is not associated with a popened command.

734

NOTES

popen(3S)

If the original and popened processes concurrently read or write a common file,
neither should use buffered I/O. Problems with an output filter may be forestalled
by careful buffer flushing, for example, with fflush [see fclose(3S)].

A security hole exists through the IFS and PATH environment variables. Full
pathnames should be used (or PATH reset) and IFS should be set to space and tab
(" \t").

735

printf(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf(const char *format, ••• /* args */);

int fprintf (FILE *strm, const char *format, ... /* args */);

int sprintf(char *s, const char *format, •.• /* args */);

DESCRIPTION

736

printf places output on the standard output stream stdout.

fprintf places output on strm.

sprintf places output, followed by a null character (\0), in consecutive bytes start
ing at s. It is the user's responsibility to ensure that enough storage is available.

Each function returns the number of characters transmitted (not including the ter
minating null character in the case of sprintf) or a negative value if an output
error was encountered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains two types of objects defined
below:

1. plain characters that are simply copied to the output stream;

2. conversion specifications.

All forms of the printf functions allow for the insertion of a language-dependent
decimal-point character. The decimal-point character is defined by the program's
locale (category LC_NDMERIC). In the C locale, or in a locale where the decimal
point character is not defined, the decimal-point character defaults to a period (.).

Each conversion specification is introduced by the character %, and takes the follow
ing general form and sequence:

%[posp$] [flags] [width] [• precision] [size lfmt

posp$ An optional entry, consisting of one or more decimal digits followed by a $
character, specifying the number of the next arg to access. The first arg (just
after format) is numbered 1. If this field is not specified, the arg following the
most recently used arg will be used.

flags Zero or more characters that change the meaning of the conversion
specification. The flag characters and their meanings are:

The result of the conversion will be left-justified within the field. (It
will be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a sign (+ or
-). (It will begin with a sign only when a negative value is converted
if this flag is not specified.)

printf(3S)

space If the first character of a signed conversion is not a sign, or if a signed
conversion results in no characters, a space will be prefixed to the
result. If the space and + flags both appear, the space flag will be
ignored.

The value is to be converted to an alternate form. For an 0 conver
sion, it increases the precision (if necessary) to force the first digit of
the result to be a zero. For x (or x) conversion, a nonzero result will
have Ox (or Ox) prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal-point character, even if no digits
follow it. (Normally, a decimal point appears in the result of these
conversions only if a digit follows it.) For 9 and G conversions, trail
ing zeros will not be removed from the result (as they normally are).
For c, d, i, s, and u conversions, the flag has no effect.

o For d, i, 0, u, x, x, e, E, f, g, and G conversions, leading zeros (follow
ing any indication of sign or base) are used to pad to the field width;
no space padding is performed. If the 0 and - flags both appear, the
o flag will be ignored. For d, i, 0, u, x, and X conversions, if a preci
sion is specified, the 0 flag will be ignored. For other conversions, the
behavior is undefined.

width An optional entry that consists of either one or more decimal digits, or an
asterisk (*), or an asterisk followed by one or more decimal digits and a $. It
specifies the minimum field width: If the converted value has fewer charac
ters than the field width, it will be padded (with space by default) on the left
or right (see the above flags description) to the field width .

• prec An optional entry that consists of a period (.) followed by either zero or
more decimal digits, or an asterisk (*), or an asterisk followed by one or
more decimal digits and a $. It specifies the minimum number of digits to
appear for the d, i, 0, u, x, and x conversions, the number of digits to appear
after the decimal-point character for the e, E, and f conversions, the max
imum number of significant digits for the 9 and G conversions, or the max
imum number of characters to be written from a string for an s conversion.
For other conversions, the behavior is undefined. If only a period is
specified, the precision is taken as zero.

size An optional h, 1 (ell), or L that specifies other than the default argument type
of int for d and i; unsigned int for 0, u, x, and x; pointer to int for n; and
double for e, E, f, g, and G. If a size appears other than in the following com
binations, the behavior is undefined.

h For n, the argument has type pointer to short int; for d and i,
short int; and for 0, u, x, and x, unsigned short into (For d, i, 0,

u, x, and x, the argument will have been promoted according to the
integral promotions, and its value will be narrowed to short or
unsigned short before printing.)

1 For n, the argument has type pointer to long int; for d and i, long
int; and for 0, u, x, and x, unsigned long into

737

printf(3S)

738

L For e, E, f, g, and G, the argument has type long double.
4

fmt A conversion character (described below) that shows the type of conversion
to be applied.

When a width or .prec includes an asterisk (*), an int arg supplies the width or pre
cision. When they do not include a $, the arguments specifying a field width, or
precision, or both must appear (in that order) before the argument (if any) to be
converted. If the conversion specification includes posp$, the field width and preci
sion may include a $. The decimal digits that precede the $ similarly specify the
number of the arg that contains the field width or precision. (In this case, posp$
specifies the number of the arg to convert.) A negative field width argument is
taken as a - flag followed by a positive field width. If the precision argument is
negative, it will be taken as zero.

When numbered argument specifications are used, specifying the Nth argument
requires that all the leading arguments, from the first to the (N-l)th, be specified at
least once, in a consistent way, in the format string.

The conversion characters and their meanings are:

d, i The integer arg is converted to signed decimal. The precision specifies
the minimum number of digits to appear; if the value being converted
can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting a zero value
with a precision of zero is no characters.

0, u, x, X The unsigned integer arg is converted to unsigned octal (0), unsigned
decimal (u), or unsigned hexadecimal notation (x and x). The x conver
sion uses the letters abcdef and the X conversion uses the letters
ABCDEF. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The
result of converting a zero value with a precision of zero is no charac
ters.

f The floating arg is converted to decimal notation in the style [-] ddd • ddd,
where the number of digits after the decimal-point character [see
setlocale(3C)] is equal to the precision specification. If the precision is
missing, it is taken as 6; if the precision is zero and the # flag is not
specified, no decimal-point character appears. If a decimal-point charac
ter appears, at least one digit appears before it. The value is rounded to
the appropriate number of digits.

e, E The floating arg is converted to the style [-] d. ddde±dd, where there is
one digit before the decimal-point character (which is nonzero if the
argument is nonzero) and the number of digits after it is equal to the
precision. If the precision is missing, it is taken as 6; if the precision is
zero and the # flag is not specified, no decimal-point character appears.
The value is rounded to the appropriate number of digits. The E conver
sion character will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. If the value
is zero, the exponent is zero.

printf(3S)

g, G The floating arg is converted in style f or e (or in style E in the case of a G
conversion character), with the precision specifying the number of
significant digits. If the precision is zero, it is taken as one. The style
used depends on the value converted; style e (or E) will be used only if
the exponent resulting from the conversion is less than -4 or greater
than or equal to the precision. Trailing zeros are removed from the frac
tional part of the result; a decimal-point character appears only if it is
followed by a digit.

c The integer arg is converted to an unsigned char, and the resulting
character is written.

s The arg is taken to be a pointer to an array of characters. Characters
from the array are written up to (but not including) a terminating null
character; if a precision is specified, no more than that many characters
are written. If a precision is not specified or is greater than the size of
the array, the array must contain a terminating null character. (A null
pointer for arg will yield undefined results.)

p The arg is taken to be a pointer to void. The value of the pointer is con
verted to an implementation-defined sequence of printable characters,
which matches those read by the %p conversion of the scanf function.

n The arg is taken to be a pointer to an integer into which is written the
number of characters written so far by this call to printf, fprintf, or
sprintf. No argument is converted.

c The wchar_t character arg is transformed into EVC, and then printed.
EVC (Extended UNIX Code) is a facility for handling character codes
larger than a byte. EVC consists of up to 4 code sets, designed to support
internationalization features. If a field width is specified and the
transformed EVC has fewer bytes than the field width, it will by padded
to the given width. A precision specification is ignored, if specified.

S The arg is taken to be a wchar_t string and the wchar_t characters from
the string are transformed into EVC, and printed until a wchar_t null
character is encountered or the number of bytes shown by the precision
specification is printed. If the precision specification is missing, it is
taken to be infinite, and all wchar_t characters up to the first wchar_t
null character are transformed into EVC and printed. If a field width is
specified and the transformed EVC have fewer bytes than the field
width, they are padded to the given width.

The ASCII space character (Ox2 0) is used as a padding character.

% Print a %; no argument is converted. The complete specification must be
simply%%.

If the form of the conversion specification does not match any of the above, the
results of the conversion are undefined. Similarly, the results are undefined if there
are insufficient args for the format. If the format is exhausted while args remain, the
excess args are ignored.

739

printf(3S)

If a floating-point value is the internal representation for infinity, the output is
[±]inj, where in! is either inf or INF, depending on whether the conversion charac
ter is lowercase or uppercase. Printing of the sign follows the rules described
above.

If a floating-point value is the internal representation for "not-a-number," the out
put is [±]nanOxm. Depending on the conversion character, nan is either nan or NAN.
Additionally, Oxm represents the most significant part of the mantissa. Again
depending on the conversion character, x will be x or x, and m will use the letters
abcdef or ABCDEF. Printing of the sign follows the rules described above.

A nonexistent or small field width does not cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result. Characters generated by printf and fprintf are printed as if
the putc routine had been called repeatedly.

EXAMPLE
To print a date and time in the form "Sunday, July 3, 10:02," where weekday and
month are pointers to null-terminated strings:

printf ("%s, %s %i, 'Yod.:%. 2d",
weekday, month, day, hour, min);

To print 1t to 5 decimal places:

printf ("pi = %. Sf", 4 * atan(l. 0»;

The following two calls to printf both produce the same result of
10 10 00300 10:

printf("'Yod. %l$d %.*d %l$d", 10, 5, 300);
printf("'Yod. %l$d %3$.*2$d %l$d", 10, 5, 300);

SEE ALSO
abort(3C), ecvt(3C), exit(2), lseek(2), putc(3S), scanf(3S), setlocale(3C),
stdio(3S), write(2)

DIAGNOSTICS

740

printf, fprintf, and sprintf return the number of characters transmitted (not
counting the terminating null character for sprintf), or return a negative value if
an error was encountered.

(eso System Compatibility) printf(3S)

NAME
printf: sprintf, vsprintf - (BSD) formatted output conversion

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

#include <stdio.h>

char *sprintf (char *s, char *format [, arg] ••.);

char *vsprintf (char *s, char *format, va_list ap);

DESCRIPTION
sprintf places "output," followed by the NULL character (\0), in consecutive bytes
starting at *s; it is the user's responsibility to ensure that enough storage is avail
able.

vsprintf is the same as sprintf except that instead of being called with a variable
number of arguments, it is called with an argument list as defined by varargs(5).

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains two types of objects: plain char
acters, which are simply copied to the output stream, and conversion specifications,
each of which causes conversion and printing of zero or more args. The results are
undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will
be padded on the left (or right, if the left-adjustment flag '-', described
below, has been given) to the field width. The padding is with blanks
unless the field width digit string starts with a zero, in which case the
padding is with zeros.

A precision that gives the minimum number of digits to appear for the
d, i, 0, u, x, or X conversions, the number of digits to appear after the
decimal point for the e, E, and f conversions, the maximum number of
significant digits for the 9 and G conversion, or the maximum number
of characters to be printed from a string in s conversion. The preci
sion takes the form of a period (.) followed by a decimal digit string;
a NULL digit string is treated as zero. Padding specified by the preci
sion overrides the padding specified by the field width.

An optional 1 (ell) specifying that a following d, i, 0, u, x, or X conver
sion character applies to a long integer arg. An 1 before any other
conversion character is ignored.

A character that shows the type of conversion to be applied.

741

printf(3S) (BSC System Compatibility)

742

A field width or precision or both may be an asterisk (*) instead of a digit string. In
this case, an integer arg supplies the field width or precision. The arg that is actually
converted is not fetched until the conversion letter is seen, so the args specifying
field width or precision must appear before the arg (if any) to be converted. A nega
tive field width argument is taken as a '-' flag followed by a positive field width. If
the precision argument is negative, it will be changed to zero.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the field.

The result of a signed conversion will always begin with a sign (+ or
-).

If the first character of a signed conversion is not a sign, a blank will
be prefixed to the result. This implies that if the blank and + flags
both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alternate
form."For c, d, i, s, and u conversions, the flag has no effect. For °
conversion, it increases the precision to force the first digit of the
result to be a zero. For x or X conversion, a non-zero result will have
Ox or OX prefixed to it. For e, E, f, g, and G conversions, the result
will always contain a decimal point, even if no digits follow the point
(normally, a decimal point appears in the result of these conversions
only if a digit follows it). For 9 and G conversions, trailing zeroes will
not be removed from the result (which they normally are).

The conversion characters and their meanings are:

d,i,o,u,x,x The integer arg is converted to signed decimal (d or i), unsigned octal
(0), unsigned decimal (u), or unsigned hexadecimal notation (x and x),
respectively; the letters abcdef are used for x conversion and the
letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeroes.
(For compatibility with older versions, padding with leading zeroes
may alternatively be specified by prep ending a zero to the field width.
This does not imply an octal value for the field width.) The default
precision is 1. The result of converting a zero value with a precision of
zero is a NULL string.

f The float or double arg is converted to decimal notation in the style
[-]ddd. ddd where the number of digits after the decimal point is equal
to the precision specification. If the precision is missing, 6 digits are
given; if the precision is explicitly 0, no digits and no decimal point
are printed.

e,E The float or double arg is converted in the style [-]d. ddde±ddd, where
there is one digit before the decimal point and the number of digits
after it is equal to the precision; when the precision is missing, 6 digits
are produced; if the precision is zero, no decimal point appears. The E

format code will produce a number with E instead of e introducing
the exponent. The exponent always contains at least two digits.

g,G

(BSD System Compatibility) printf(3S)

The float or double arg is printed in style f or e (or in style E for a G
format code), with the precision specifying the number of significant
digits. The style used depends on the value converted: style e or E

will be used only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeroes are removed
from the result; a decimal point appears only if it is followed by a
digit.

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a
number) as "Infinity" or "NaN" respectively.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and characters from
the string are printed until a NULL character (\0) is encountered or
until the number of characters shown by the precision specification is
reached. If the precision is missing, it is taken to be infinite, so all
characters up to the first NULL character are printed. A NULL value for
arg will yield undefined results.

% Print a %; no argument is converted.

A non-existent or small field width does not cause truncation of a field; if the result
of a conversion is wider than the field width, the field is simply expanded to con
tain the conversion result. Padding takes place only if the specified field width
exceeds the field width. Characters generated by printf and fprintf are printed
as if putc(3S) had been called.

RETURN VALUE
sprintf and vsprintf always return s.

SEE ALSO
econvert(3), putc(3S), scanf(3S), varargs(5), vprintf(3S)

NOTES
Fields greater than 128 characters fail.

743

procprivl (3C)

NAME
procpri vI - add, remove, count, or put privileges associated with the calling pro
cess

SYNOPSIS
#include <priv.h>

int procprivl (int cmd, priv_t privl, . • .);

DESCRIPTION
The procpri vI function is used to add, remove, count, or put the privileges associ
ated with the calling process. privN is a list of privilege descriptors, each of which
contains the privilege set and identity of the requested privilege. The list is ter
minated with a (pri v _t) a value.

The recognized cmds and their functions are described below:

SETPRV the working privilege set for the current process is set based on the
privilege descriptor(s) contained in privN. All requested privileges not
contained in the current maximum privilege set are ignored. All
requested working privileges that are in the current maximum set are
added to the working set. If any argument is invalid, none of the pro
cess privileges is changed.

CLRPRV

PUTPRV

CNTPRV

the working and maximum privilege sets for the current process are
cleared based on the privilege descriptor(s) contained in privN. All
requested privileges are removed from their respective sets.· The work
ing set is adjusted to be a subset of the resulting maximum set. If any
argument is invalid, none of the process privileges is changed.

the working and maximum privilege sets for the current process are set
based on the privilege descriptor(s) contained in privN. The setting is
absolute. The working set is adjusted to be a subset of the resulting
maximum set. Privileges contained in either privilege set that are not
in the maximum set of the calling process are ignored. If any argument
is invalid, none of the process privileges is changed.

returns the number of privileges associated with the current process.
The privN arguments are ignored. None of the process privileges is
changed.

procpri vI fails if the following is true:

EINVAL cmd or privilege specified is invalid.

SEE ALSO
intro(2), filepriv(2), procpriv(2), priv(5), priviIege(5)

DIAGNOSTICS

744

A value of -1 is returned and ermo is set to indicate the error if procprivl is
unsuccessful. If successful, procprivl returns the number of privileges associated
with the current process (SETPRV, CLRPRV, and PUTPRVor CNTPRV).

psignal (3C)

NAME
psignal, psiginfo - system signal messages

SYNOPSIS
#include <siginfo.h>

void psignal (int sig, const char *s);

void psiginfo (siginfo_t *pinfo, const char *s);

DESCRIPTION
psignal and psiginfo produce messages on the standard error output describing
a signal. sig is a signal that may have been passed as the first argument to a signal
handler. pinfo is a pointer to a siginfo structure that may have been passed as the
second argument to an enhanced signal handler [see sigaction(2)]. The argument
string s is printed first, then a colon and a blank, then the message and a newline.

SEE ALSO
perror(3C), sigaction(2), siginfo(5), signal(5)

745

psignal (3) (BSD System Compatibility)

NAME
psignal, sys_siglist - (BSD) system signal messages

SYNOPSIS
/usr/ucb/cc [flag ...]file . ..

psignal(unsigned sig, char *s);

char *sys_siglist[];

DESCRIPTION
psignal produces a short message on the standard error file describing the indi
cated signal. First the argument string s is printed, then a colon, then the name of
the signal and a NEWLINE. Most usefully, the argument string is the name of the
program which incurred the signal. The signal number should be from among
those found in <signa1.h>.

To simplify variant formatting of signal names, the vector of message strings
sys_siglist is provided; the signal number can be used as an index in this table to
get the signal name without the newline. The define NSIG defined in signal. h is
the number of messages provided for in the table; it should be checked because new
signals may be added to the system before they are added to the table.

SEE ALSO
perror(3C), signal(3)

746

ptsname (3C)

NAME
ptsname - get name of the slave pseudo-terminal device

SYNOPSIS
#include <stdio.h>

char *ptsname (int jildes) ;

DESCRIPTION
The function ptsname returns the name of the slave pseudo-terminal device associ
ated with a master pseudo-terminal device. fildes is a file descriptor returned from a
successful open of the master device. ptsname returns a pointer to a string contain
ing the null-terminated path name of the slave device of the form /dev/pts/N,
where N is an integer between a and 255.

RETURN VALUE
Upon successful completion, the function ptsname returns a pointer to a string
which is the name of the pseudo-terminal slave device. This value points to a static
data area that is overwritten by each call to ptsname. Upon failure, ptsname
returns NULL. This could occur if fildes is an invalid file descriptor or if the slave
device name does not exist in the file system.

SEE ALSO
grantpt(3C), open(2), pty(7), ttyname(3C), unlockpt(3C)

747

publickey (3N)

NAME
publickey: getpublickey, getsecretkey - retrieve public or secret key

SYNOPSIS
#include <rpc/rpc.h>
#include <rpc/key-prot.h>

getpublickey (const char netname [MAXNETNAMELEN] ,
char publickey [HEXKEYBYTES]) ;

getsecretkey (const char net name [MAXNETNAMELEN] ,
char secretkey [HEXKEYBYTES], const char *passwd);

DESCRIPTION
getpublickey and getsecretkey get public and secret keys for net name from the
publickey(4) database.

getsecretkey has an extra argument, passwd, used to decrypt the encrypted secret
key stored in the database.

Both routines return 1 if they are successful in finding the key, 0 otherwise. The
keys are returned as NULL-terminated, hexadecimal strings. If the password sup
plied to getsecretkey fails to decrypt the secret key, the routine will return 1 but
the secretkey argument will be a NULL string.

SEE ALSO
publickey(4)

748

pute (3S)

NAME
putc, put char, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (int c, FILE *stream);

int putchar (intc);

int fputc (int c, FILE *stream);

int putw (int w, FILE *stream);

DESCRIPTION
putc writes c (converted to an unsigned char) onto the output stream [see
intro(3)] at the position where the file pointer (if defined) is pointing, and
advances the file pointer appropriately. If the file cannot support positioning
requests, or stream was opened with append mode, the character is appended to the
output stream. putchar(c) is defined as putc (c, stdout). putc and putchar
are macros.

fputc behaves like putc, but is a function rather than a macro. fputc runs more
slowly than putc, but it takes less space per invocation and its name can be passed
as an argument to a function.

putw writes the word (that is, integer) w to the output stream (where the file
pointer, if defined, is pointing). The size of a word is the size of an integer and
varies from machine to machine. putw neither assumes nor causes special align
ment in the file.

SEE ALSO
abort(3C), exit(2), fclose(3S), ferror(3S), fopen(3S), fread(3S), lseek(2),
printf(3S), puts(3S), setbuf(3S), stdio(3S), write(2)

DIAGNOSTICS

NOTES

On success, these functions (with the exception of putw) each return the value they
have written. putw returns ferror (stream). Otherwise, these functions return the
constant EOF and set ermo to indicate the error. This result will occur, for exam
ple, if the file stream is not open for writing or if the output file cannot grow.

Because it is implemented as a macro, putc evaluates a stream argument more than
once. In particular, putc (c, *f++); doesn't work sensibly. fputc should be used
instead.

Because of possible differences in word length and byte ordering, files written using
putw are machine-dependent, and may not be read using getw on a different
processor.

Functions exist for all the above defined macros. To get the function form, the
macro name must be undefined (for example, #undef putc).

749

putenv(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
#include <stdlib.h>

int putenv (char *string);

DESCRIPTION
string points to a string of the form "name=value." putenv makes the value of the
environment variable name equal to value by altering an existing variable or creat
ing a new one. In either case, the string pointed to by string becomes part of the
environment, so altering the string will change the environment. string should not
be a local (stack allocated) variable, since returning from the current function and
calling a new one will change the environment. If name is later redefined by
another putenv, string is no longer used. It may be altered or reused without
affecting the environment.

SEE ALSO
environ(5), exec(2), getenv(3C), malloc(3C)

DIAGNOSTICS

NOTES

750

putenv returns non-zero if it was unable to obtain enough space via malloc for an
expanded environment, otherwise zero.

putenv manipulates the environment pointed to by environ, and can be used in
conjunction with getenv. However, envp (the third argument to main) is not
changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order. A
potential error is to call the function putenv with a pointer to an automatic variable
as the argument and to then exit the calling function while string is still part of the
environment.

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (const struct passwd *P, FILE *j);
DESCRIPTION

putpwent (3C)

putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure
created by getpwent (or getpwuid or getpwnam), putpwent writes a line on the
stream j, which matches the format of / etc/passwd.

SEE ALSO
getpwent(3C)

DIAGNOSTICS
putpwent returns non-zero if an error was detected during its operation; otherwise,
it returns zero.

751

puts (3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (const char *s);

int fputs (const char *s, FILE *stream);

DESCRIPTION
puts writes the string pointed to by s, followed by a new-line character, to the
standard output stream stdout [see intro(3)].

fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character.

SEE ALSO
abort(3C), exit(2), fclose(3S), ferror(3S), fopen(3S), fread(3S), lseek(2),
printf(3S), putc(3S), stdio(3S), write(2)

DIAGNOSTICS

NOTES

752

On success both routines return the number of characters written; otherwise they
return EOF.

puts appends a new-line character while fputs does not.

putspent (3C)

NAME
putspent - write shadow password file entry

SYNOPSIS
#inelude <shadow.h>

int putspent (eonst struet spwd *p, FILE *jp);

DESCRIPTION
The putspent routine is the inverse of getspent. Given a pointer to a spwd struc
ture created by the getspent routine (or the getspnam routine), the putspent rou
tine writes a line on the streamjp, which matches the format of fete/shadow.

If the sp_min, Sp_nlaX, sp_lstehg, sp_warn, sp_inaet, or sp_expire field of the
spwd structure is -1, or if sp_flag is 0, the corresponding fete/shadow field is
cleared.

SEE ALSO
getpwent(3C), getspent(3C), putpwent(3C)

DIAGNOSTICS

NOTES

The putspent routine returns non-zero if an error was detected during its opera
tion; otherwise it returns zero.

This routine is for internal use only; compatibility is not guaranteed.

753

putwc(3W)

NAME
putwc, putwchar, fputwc - put wchar_t character on a stream

SYNOPSIS
#inc1ude <stdio.h>
#inc1ude <widec.h>

int putwc (wchar_t c, FILE *stream) i

int putwchar(wchar_tc)i

int fputwc (wchar_t c, FILE *stream) i

DESCRIPTION (International Functions)
putwc transforms the wchar_t character c into EVe, and writes it to the output
stream (at the position where the file pointer, if defined, is pointing). The
putwchar (c) is defined as putwc (c, stdout). putwc and putwchar are macros.

fputwc behaves like putwc, but is a function rather than a macro.

SEE ALSO
£c10se(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), putws(3W),
setbuf(3S), stdio(3S), widec(3W)

DIAGNOSTICS

754

On success, these functions return the value they have written. On failure, they
return the constant EOF.

putws(3W)

NAME
putws, fputws - put a wchar_t string on a stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int putws(const wchar_t *8);

int fputws (const wchar_t *8, FILE *8tream);

DESCRIPTION (International Functions)
putws transforms the wchar_t null-terminated wchar_t string pointed to by 8 into
a byte string in EVC, and writes the string followed by a newline character to
stdout.

fputws transforms the wchar_t null-terminated wchar_t string pointed to by 8 into
a byte string in EVC, and writes the string to the named output stream.

Neither function writes the terminating wchar_t null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putwc(3W), stdio(3S), widec(3W)

DIAGNOSTICS

NOTES

On success, both functions return the number of wchar_t characters transformed
and written (not including the newline character in the case of putws). Otherwise
they return EOF.

putws appends a newline character while fputws does not.

755

qsort(3C)

NAME
qsort - quicker sort

SYNOPSIS
#include <stdlib.h>

void qsort (void* base, size_t neZ, size_t width, int (*campar)
(const void *, const void *»;

DESCRIPTION
qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in
place. The contents of the table are sorted in ascending order according to the
user-supplied comparison function.

base points to the element at the base of the table. nel is the number of elements in
the table. width specifies the size of each element in bytes. campar is the name of the
comparison function, which is called with two arguments that point to the elements
being compared. The function must return an integer less than, equal to, or greater
than zero to indicate if the first argument is to be considered less than, equal to, or
greater than the second.

The contents of the table are sorted in ascending order according to the user sup
plied comparison function.

SEE ALSO

NOTES

756

bsearch(3C), lsearch(3C), sort(l), string(3C)

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The relative order in the output of two items that compare as equal is unpredict
able.

raise (3C)

NAME
raise - send signal to program

SYNOPSIS
#include <signal.h>

int raise (int sig) ;

DESCRIPTION
raise sends the signal sig to the executing program.

raise returns zero if the operation succeeds. Otherwise, raise returns -1 and
ermo is set to indicate the error. raise uses kill to send the signal to the execut
ing program:

kill(getpid(), sig);

See kill(2) for a detailed list of failure conditions. See signal(2) for a list of
signals.

SEE ALSO
getpid(2), kill(2), signal(2)

757

rand (3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
#include <stdlib.h>

int rand (void);

void srand (unsigned int seed);

DESCRIPTION
rand uses a multiplicative congruent random-number generator with period 232

that returns successive pseudo-random numbers in the range from 0 to RAND_MAX
(defined in stdlib.h).

The function srand uses the argument seed as a seed for a new sequence of pseudo
random numbers to be returned by subsequent calls to the function rand. If the
function srand is then called with the same seed value, the sequence of pseudo
random numbers will be repeated. If the function rand is called before any calls to
srand have been made, the same sequence will be generated as when srand is first
called with a seed value of 1.

SEE ALSO

NOTES

758

drand48 (3C)

The spectral properties of rand are limited. drand48(3C) provides a much better,
though more elaborate, random-number generator.

(BSD System Compatibility) rand (3)

NAME
rand, srand - (BSD) simple random number generator

SYNOPSIS
/usr/ucb/cc [flag ...] file ...

srand (int seed);

rand (void) ;

DESCRIPTION
rand uses a multiplicative congruential random number generator with period 232

to return successive pseudo-random numbers in the range from a to 231_1.

srand can be called at any time to reset the random-number generator to a random
starting point. The generator is initially seeded with a value of 1.

SEE ALSO

NOTES

drand48(3C), rand(3C), random(3)

The spectral properties of rand leave a great deal to be desired. drand48(3C)
rand(3C), and random(3) provide much better, though more elaborate, random
number generators.

The low bits of the numbers generated are not very random; use the middle bits. In
particular the lowest bit alternates between a and 1.

759

random (3) (BSO System Compatibility)

NAME
random, srandom, initstate, setstate - (BSD) better random number generator;
routines for changing generators

SYNOPSIS
/usr/ucb/cc [flag . ..] file ...

long random(void);

srandom(int seed);

char *initstate (unsigned seed, char *state, int n);

char *setstate (char *state);

DESCRIPTION

760

random uses a non-linear additive feedback random number generator employing a
default table of size 31 long integers to return successive pseudo-random numbers
in the range from a to 231

_ 1. The period of this random number generator is very
large, approximately 16x(231_1).

random/ srandom have (almost) the same calling sequence and initialization proper
ties as rand/ srand [see rand(3)]. The difference is that rand(3) produces a much
less random sequence-in fact, the low dozen bits generated by rand go through a
cyclic pattern. All the bits generated by random are usable. For example,

random () &01

will produce a random binary value.

Unlike srand, srandom does not return the old seed because the amount of state
information used is much more than a single word. Two other routines are pro
vided to deal with restarting/changing random number generators. Like rand(3),
however, random will, by default, produce a sequence of numbers that can be dupli
cated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be initial
ized for future use. n specifies the size of state in bytes. initstate uses n to decide
how sophisticated a random number generator it should use-the more state, the
better the random numbers will be. Current /I optimal" values for the amount of
state information are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded
down to the nearest known amount. Using less than 8 bytes will cause an error.
The seed for the initialization (which specifies a starting point for the random
number sequence, and provides for restarting at the same point) is also an argu
ment. initstate returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching
between states. setstate returns a pointer to the previous state array; its argu
ment state array is used for further random number generation until the next call to
ini tstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either
by calling initstate (with the desired seed, the state array, and its size) or by cal
ling both setstate (with the state array) and srandom (with the desired seed). The
advantage of calling both setstate and srandom is that the size of the state array
does not have to be remembered after it is initialized.

(BSD System Compatibility) random (3)

With 256 bytes of state information, the period of the random number generator is
greater than 269

, which should be sufficient for most purposes.

RETURN VALUES
If initstate is called with less than 8 bytes of state information, or if setstate
detects that the state information has been garbled, error messages are printed on
the standard error output.

EXAMPLES
1* Initialize an array and pass it in to initstate. *1
static long state1[32] = {

3,
Ox9a319039, Ox32d9c024, Ox9b663182, OxSda1f342,
Ox744geS6b, Oxbeb1dbbO, OxabScS918, Ox946SS4fd,
Ox8c2e680f, Oxeb3d799f, Oxb11eeOb7, Ox2d436b86,
Oxda672e2a, Ox1S88ca88, Oxe36973Sd, Ox904f3Sf7,
Oxd71S8fd6, Ox6fa6fOS1, Ox616e6b96, Oxac94efdc,
Oxde3b81eO, OxdfOa6fbS, Oxf103bc02, Ox48f340fb,
Ox36413f93, Oxc622c298, OxfSa42ab8, Ox8a88d77b,
OxfSad9dOe, Ox8999220b, Ox27fb47b9
};

main ()
{

unsigned seed;
int n;

seed = 1;
n = 128;
initstate(seed, state1, n);

setstate(state1);
printf ("'YodO, random ()) ;

SEE ALSO
drand48(3C), rand(3), rand(3C)

NOTES
About two-thirds the speed of rand(3).

761

rcmd (3N)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
int rcmd(char **ahost, unsigned short inport, char *locuser, char *remuser,

char *cmd, int *fd2p);

int rresvport (int * port);

ruserok(char *rhost, int super-user, char *ruser, char *luser);

DESCRIPTION

762

rcmd is a routine used by a privileged user to execute a command on a remote
machine using an authentication scheme based on reserved port numbers.
rresvport is a routine which returns a descriptor to a socket with an address in the
privileged port space. ruserok is a routine used by servers to authenticate clients
requesting service with rcmd. All three functions are present in the same file and
are used by the rshd server (among others).

rcmd looks up the host *ahost using gethostbyname (see gethostent[3N]), return
ing -1 if the host does not exist. Otherwise *ahost is set to the standard name of the
host and a connection is established to a server residing at the well-known Internet
port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as its standard input (file
descriptor 0) and standard output (file descriptor 1). If fd2p is non-zero, then an
auxiliary channel to a control process will be set up, and a descriptor for it will be
placed in *fd2p. The control process will return diagnostic output from the com
mand (file descriptor 2) on this channel, and will also accept bytes on this channel
as signal numbers, to be forwarded to the process group of the command. If fd2p is
0, then the standard error (file descriptor 2) of the remote command will be made
the same as its standard output and no provision is made for sending arbitrary sig
nals to the remote process, although you may be able to get its attention by using
out-of-band data.

The protocol is described in detail in rshd (see rshd[IM]).

The rresvport routine is used to obtain a socket with a privileged address bound
to it. This socket is suitable for use by rcmd and several other routines. Privileged
Internet ports are those in the range 0 to 1023. Only a user with appropriate
privileges is allowed to bind an address of this sort to a socket.

ruserok takes a remote host's name, as returned by a gethostbyaddr (see
gethostent[3N]) routine, two user names and a flag indicating whether the local
user's name is that of the privileged user. It then checks the files
/etc/hosts .equiv and, possibly, .rhosts in the local user's home directory to see
if the request for service is allowed. A 0 is returned if the machine name is listed in
the /etc/hosts .equiv file, or the host and remote user name are found in the
. rhosts file; otherwise ruserok returns -1. If the privileged user flag is I, the
checking of the / etc/hosts. equi v file is bypassed.

FILES
/etc/hosts.equiv
.rhosts

rcmd (3N)

SEE ALSO
gethostent(3N), intro(2), rexec(3N), rexecd(lM), rlogin(l), rlogind(lM),
rsh(l), rShd(lM)

DIAGNOSTICS
rcmd returns a valid socket descriptor on success. It returns -Ion error and prints a
diagnostic message on the standard error.

rresvport returns a valid, bound socket descriptor on success. It returns -Ion
error with the global value ermo set according to the reason for failure. The error
code EAGAIN is overloaded to mean: All network ports in use.

763

realpath (3C)

NAME
realpath - returns the real file name

SYNOPSIS
#include <stdlib.h>
#include <sys/param.h>

char *realpath (const char *file_name, char * resolved_name > ;

DESCRIPTION
realpath resolves all links, symbolic links, and references to "./1 and " .. /1 in
file_name and stores it in resolved_name.

It can handle both relative and absolute path names. For absolute path names and
the relative names whose resolved name cannot be expressed relatively (for exam
ple, .. / .. /reldir), it returns the resolved absolute name. For the other relative path
names, it returns the resolved relative name.

resolved_name must be big enough (MAXPATHLEN) to contain the fully resolved path
name.

SEE ALSO
getcwd(3C)

DIAGNOSTICS

NOTES

764

If there is no error, realpath returns a pointer to the resolved_name. Otherwise it
returns a null pointer and places the name of the offending file in resolved_name.
The global variable errno is set to indicate the error.

realpath operates on null-terminated strings.

One should have execute permission on all the directories in the given and the
resolved path.

realpath may fail to return to the current directory if an error occurs.

(BSD System Compatibility) reboot (3)

NAME
reboot - reboot system or halt processor

SYNOPSIS
/usr/ucb/cc [flag ...] file ...

#include <sys/reboot.h>

reboot (int howto, [char * bootargs]) ;

DESCRIPTION
reboot reboots the system, and is invoked automatically in the event of unrecover
able system failures. howto is a mask of options passed to the bootstrap program.
The system call interface permits only RB_HALT or RB_AUTOBOOT to be passed to the
reboot program; the other flags are used in scripts stored on the console storage
media, or used in manual bootstrap procedures. When none of these options (for
instance RB_AUTOBOOT) is given, the system is rebooted from file / stand/unix. An
automatic consistency check of the disks is then normally performed.

The bits of howto that are used are:

the processor is simply halted; no reboot takes place. RB_HALT
should be used with caution.

Interpreted by the bootstrap program itself, causing it to inquire as
to what file should be booted. Normally, the system is booted
from the file / stand/unix without asking.

RETURN VALUE
If successful, this call never returns. Otherwise, a -1 is returned and an error is
returned in the global variable ermo.

ERRORS
EPERM The caller is not the super-user.

FILES
/stand/unix

SEE ALSO

NOTES

crash(lM), halt(lM), init(lM), intro(l), reboot(lM)

Any other howto argument causes / stand/unix to boot.

Only the super-user may reboot a machine.

765

recv (3N)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>

int recv(int s, char *buf, int len, int flags};

int recvfrom.(int s, char *buf, int len, int flags, caddr_t from,
int *fromlen};

int recvmsg(int s, struct msghdr *msg, int flags};

DESCRIPTION

766

s is a socket created with socket. recv, recvfrom, and recvmsg are used to
receive messages from another socket. recv may be used only on a connected socket
[see connect(3N)], while recvfrom. and recvmsg may be used to receive data on a
socket whether it is in a connected state or not.

If from is not a NULL pointer, the source address of the message is filled in. fromlen is
a value-result parameter, initialized to the size of the buffer associated with from,
and modified on return to indicate the actual size of the address stored there. The
length of the message is returned. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of socket the message
is received from [see socket(3N)].

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is nonblocking [see fcntl(2)] in which case -1 is returned
with the external variable errno set to EWOULDBLOCK.

The select call may be used to determine when more data arrives.

The flags parameter is formed by ORing one or more of the following:

Read any out-of-band data present on the socket rather than the
regular in-band data.

Peek at the data present on the socket; the data is returned, but
not consumed, so that a subsequent receive operation will see the
same data.

The recvmsg call uses a msghdr structure to minimize the number of directly sup
plied parameters. This structure is defined in sys/socket.h and includes the fol
lowing members:

caddr_t
int
struct iovec
int
caddr_t
int

msg_name;
msg_namelen;
*msg_iov;
msg_iovlen;
msg_accrights;
msg_accrightslen;

I * optional address * I
I * size of address * I
I * scatter/gather array * I
1* # elements in msg_iov * I
I * access rights senti received * I

Here msg_name and msg_namelen specify the destination address if the socket is
unconnected; msg_name may be given as a NULL pointer if no names are desired or
required. The msg_iov and msg_iovlen describe the scatter-gather locations, as
described in read. A buffer to receive any access rights sent along with the mes
sage is specified in msg_accrights, which has length msg_accrightslen.

recv (3N)

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:

EBADF

ENOTSOCK

EINTR

EWOULDBLQCK

ENOMEM

ENOSR

s is an invalid descriptor.

s is a descriptor for a file, not a socket.

The operation was interrupted by delivery of a signal before
any data was available to be received.

The socket is marked non-blocking and the requested opera
tion would block.

There was insufficient user memory available for the opera
tion to complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO

NOTES

connect(3N), fcntl(2), getsockopt(3N), ioctl(2), read(2) send(3N), socket(3N)

The type of address structure passed to recv depends on the address family. UNIX
domain sockets (address family AF_UNIX) require a sockaddr_un structure as
defined in sys /un. h; Internet domain sockets (address family AF _INET) require a
struct sockaddr_in structure as defined in netinet/in.h. Other address fami
lies may require other structures. Use the structure appropriate to the address fam
ily; cast the structure address to a generic caddr_t in the call to recv and pass the
size of the structure in the fromlen argument.

767

regcmp{3G)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
#include <libgen.h>

cc [t1ag .. .]jile ... -lgen [library ...]

char *regcmp (const char *stringl [, char *string2, •••],
(char *)0);

char *regex (const char *re, const char *subject
[, char *retO, •••]);

extern char * __ locl;
\

DESCRIPTION

768

regcmp compiles a regular expression (consisting of the concatenated arguments)
and returns a pointer to the compiled form. malloc(3C) is used to create space for
the compiled form. It is the user's responsibility to free unneeded space so allo
cated. A NULL return from regcmp indicates an incorrect argument. regcmp(l) has
been written to generally preclude the need for this routine at execution time.
regcmp is located in library libform.

regex executes a compiled pattern against the subject string. Additional arguments
are passed to receive values back. regex returns NULL on failure or a pointer to the
next unmatched character on success. A global character pointer __ locl points to
where the match began. regcmp and regex were mostly borrowed from the editor,
ed(l); however, the syntax and semantics have been changed slightly. The follow
ing are the valid symbols and associated meanings.

[] * . ~ These symbols retain their meaning in ed(l).

$

+

Matches the end of the string; \n matches a newline.

Within brackets the minus means through. For example, [a-z] is
equivalent to [abcd ... xyz]. The - can appear as itself only if used as
the first or last character. For example, the character class expression
[] -] matches the characters] and -.

A regular expression followed by + means one or more times. For exam
ple, [0-9] + is equivalent to [0-9] [0-9] * .

{m} {m,} {m,u}
Integer values enclosed in { } indicate the number of times the preced
ing regular expression is to be applied. The value m is the minimum
number and u is a number, less than 256, which is the maximum. If only
m is present (that is, {m}), it indicates the exact number of times the reg
ular expression is to be applied. The value {m,} is analogous to
{m,injinity}. The plus (+) and star (*) operations are equivalent to {l,}
and {O, } respectively.

(•.•) $n
The value of the enclosed regular expression is to be returned. The
value will be stored in the (n+ l)th argument following the subject argu
ment. At most, ten enclosed regular expressions are allowed. regex
makes its assignments unconditionally.

regcmp(3G)

(...) Parentheses are used for grouping. An operator, for example, *, +, { },
can work on a single character or a regular expression enclosed in
parentheses. For example, (a* (cb+) *) $0.

By necessity, all the above defined symbols are special. They must, therefore, be
escaped with a \ (backslash) to be used as themselves.

EXAMPLES
The following example matches a leading newline in the subject string pointed at by
cursor.

char *cursor, *newcursor, *ptr;

newcursor = regex «ptr = regcmp (" ~ \n", (char *) 0)), cursor);
free(ptr);

The following example matches through the string Testing3 and returns the
address of the character after the last matched character (the" 4"). The string Test
ing3 is copied to the character array retO.

char retO[9];
char *newcursor, *name;

name = regcmp("([A-Za-z] [A-za-zO-9] {0,7})$0", (char *)0);
newcursor = regex(name, "012Testing345", retO);

The following example applies a precompiled regular expression in file. i [see
regcmp(l)] against string.

#include "file.i"
char *string, *newcursor;

newcursor = regex(name, string);

SEE ALSO

NOTES

ed(l), malloc(3C), regcmp(l)

The user program may run out of memory if regcmp is called iteratively without
freeing the vectors no longer required.

769

regex (3) (BSO System Compatibility)

NAME
regex: re_comp, re_exec - (BSD) regular expression handler

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

char *re_comp(char *5);

re_exec(char *5);

DESCRIPTION
re_comp compiles a string into an internal form suitable for pattern matching.
re_exec checks the argument string against the last string passed to re_comp.

re_comp returns a null pointer if the string 5 was compiled successfully; otherwise a
string containing an error message is returned. If re_comp is passed 0 or a null
string, it returns without changing the currently compiled regular expression.

re_exec returns 1 if the string 5 matches the last compiled regular expression, 0 if
the string 5 failed to match the last compiled regular expression, and -1 if the com
piled regular expression was invalid (indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded
NEWLINE characters; they are terminated by null characters. The regular expres
sions recognized are described in the manual page entry for ed(l), given the above
difference.

RETURN VALUES
re_exec returns -1 for an internal error.

re_comp returns one of the following strings if an error occurs:

No previous regular expression
Regular expression too long
unmatched \(
missing]
too many \(\) pairs
unmatched \)

SEE ALSO
ed(l), ex(l), grep(l), regcmp(l), regcmp(3G), regexp(5), regexpr(3G)

770

regexpr (3G)

NAME
regexpr: compile, step, advance - regular expression compile and match routines

SYNOPSIS
cc fflag .. .]file ... -lgen [library .. . J
#include <regexpr.h>

char *compile (const char *instring, char *expbuf, char *endbuf);

int step (const char * string , char *expbuf);

int advance (const char * string , char *expbuf);

extern char *locl, *loc2, *locs;

extern int nbra, regerrno, reglength;

extern char *braslist[], *braelist[];

DESCRIPTION
These routines are used to compile regular expressions and match the compiled
expressions against lines. The regular expressions compiled are in the form used by
ed.

The syntax of the compile routine is as follows:

compile (instring, expbuf, endbuf)

The parameter instring is a null-terminated string representing the regular expres
sion.

The parameter expbuf points to the place where the compiled regular expression is
to be placed. If expbuf is NULL, compile uses malloc to allocate the space for the
compiled regular expression. If an error occurs, this space is freed. It is the user's
responsibility to free unneeded space after the compiled regular expression is no
longer needed.

The parameter endbuf is one more than the highest address where the compiled reg
ular expression may be placed. This argument is ignored if expbuf is NULL. If the
compiled expression cannot fit in (endbuf-expbuj) bytes, compile returns NULL and
regerrno (see below) is set to 50.

If compile succeeds, it returns a non-NULL pointer whose value depends on expbuf
If expbuf is non-NULL, compile returns a pointer to the byte after the last byte in the
compiled regular expression. The length of the compiled regular expression is
stored in reglength. Otherwise, compile returns a pointer to the space allocated
bymalloc.

If an error is detected when compiling the regular expression, a NULL pointer is
returned from compile and regerrno is set to one of the non-zero error numbers
indicated below:

771

regexpr (3G)

772

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\ (\) imbalance.
Too many \(.
More than 2 numbers given in \ { \} .
} expected after \.
First number exceeds second in \ { \} .
[] imbalance.
Regular expression overflow.

The call to step is as follows:

step (string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a
match. This string should be null-terminated.

The parameter expbuf is the compiled regular expression obtained by a call of the
function conu>i1e.

The function step returns non-zero if the given string matches the regular expres
sion, and zero if the expressions do not match. If there is a match, two external
character pointers are set as a side effect to the call to step. The variable set in step
is 10c1. 10c1 is a pointer to the first character that matched the regular expression.
The variable 10c2 points to the character after the last character that matches the
regular expression. Thus if the regular expression matches the entire line, 10c1
points to the first character of string and 10c2 points to the null at the end of string.

The purpose of step is to step through the string argument until a match is found
or until the end of string is reached. If the regular expression begins with ", step
tries to match the regular expression at the beginning of the string only.

The function advance has the same arguments and side effects as step, but it
always restricts matches to the beginning of the string.

If one is looking for successive matches in the same string of characters, 10cs
should be set equal to 10c2, and step should be called with string equal to 10c2.
10cs is used by commands like ed and sed so that global substitutions like
s/y*/ /g do not loop forever, and is NULL by default.

The external variable nbra is used to determine the number of subexpressions in
the compiled regular expression. bras1ist and brae1ist are arrays of character
pointers that point to the start and end of the nbra subexpressions in the matched
string. For example, after calling step or advance with string sabcdefg and regu
lar expression \ (abcdef\), bras1ist [0] will point at a and brae1ist [0] will
point at g. These arrays are used by commands like ed and sed for substitute
replacement patterns that contain the \n notation for subexpressions.

regexpr (3G)

Note that it isn't necessary to use the external variables regerrno, nbra, locl, loc2
locs, braelist, and braslist if one is only checking whether or not a string
matches a regular expression.

EXAMPLES
The following is similar to the regular expression code from grep:

SEE ALSO

#include <regexpr.h>

if (compile (*argv, (char *)0, (char *)0)
regerr(regerrno)i

if (step (linebuf, expbuf»
succeed()i

ed(l), grep(l), regexp(5), sed(l)

(char *)0)

773

remove (3C)

NAME
remove - remove file

SYNOPSIS
#include <stdio.h>

int remove{const char *path);

DESCRIPTION
remove causes the file or empty directory whose name is the string pointed to by
path to be no longer accessible by that name. A subsequent attempt to open that file
using that name will fail, unless the file is created anew.

For files, remove is identical to unlink. For directories, remove is identical to
nndir.

See nndir(2) and unlink(2) for a detailed list of failure conditions.

SEE ALSO
nndir(2), unlink(2)

RETURN VALUE

774

Upon successful completion, remove returns a value of 0; otherwise, it returns a
value of -1 and sets ermo to indicate an error.

NAME

resolver (3N)

resolver, res_mkquery, res_send, res_init, dn_comp, dn_expand - resolver
routines

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

int res_mkquery(int op, char *dname, int class, int type,
char *data, int datalen, struct rrec *newrr, char *buj,
int buflen);

int res_send(char *buj, int buflen, char *answer, int anslen);

void res_init(void);

int dn_comp(u_char *exp _dn, u_char *comp _dn, int length, u_char **dnptrs,
u_char * *lastdnptr) ;

int dn_expand(u_char *msg, u_char *eomorig, u_char *comp_dn,
u_char *exp _dn, int length);

DESCRIPTION
These routines are used for making, sending and interpreting packets to Internet
domain name servers. Global information that is used by the resolver routines is
kept in the variable _res. Most of the values have reasonable defaults and can be
ignored. Options are a simple bit mask and are OR' ed in to enable. Options stored
in _res. options are defined in resol v. h and are as follows.

RES_INIT True if the initial name server address and default domain
name are initialized (that is, res_init has been called).

RES_USEVC

RES_STAYOPEN

Print debugging messages.

Accept authoritative answers only. res_send will continue
until it finds an authoritative answer or finds an error.
Currently this is not implemented.

Use TCP connections for queries instead of UDP.

Used with RES_USEVC to keep the TCP connection open
between queries. This is useful only in programs that regu
larly do many queries. UDP should be the normal mode
used.

Unused currently (ignore truncation errors, that is, do not
retry with TCP).

Set the recursion desired bit in queries. This is the default.
res_send does not do iterative queries and expects the name
server to handle recursion.

Append the default domain name to single label queries.
This is the default.

775

resolver (3N)

FILES

Allow search for a domain name up the local hierarchical
domain tree.

res_init reads the initialization file to get the default domain name and the Inter
net address of the initial hosts running the name server. If this line does not exist,
the host running the resolver is tried. res_mkquery makes a standard query mes
sage and places it in buf res_mkquery will return the size of the query or -1 if the
query is larger than bUflen. op is usually QUERY but can be any of the query types
defined in arpa/nameser. h. dname is the domain name. If dname consists of a sin
gle label and the RES_DEFNAMES flag is enabled (the default), dna me will be
appended with the current domain name. The current domain name is defined in a
system file and can be overridden by the environment variable LOCALOOMAIN.
newrr is currently unused but is intended for making update messages.

res_send sends a query to name servers and returns an answer. It will call
res_init if RES_INIT is not set, send the query to the local name server, and han
dle timeouts and retries. The length of the message is returned or -1 if there were
errors.

dn_expand expands the compressed domain name comp _ dn to a full domain name.
Expanded names are converted to upper case. msg is a pointer to the beginning of
the message, eomorig is a pointer to the first memory location after the message,
exp _ dn is a pointer to a buffer of size length for the result. The size of the
compressed name is returned or -1 if there was an error.

dn_comp compresses the domain name exp _dn and stores it in comp _dn. The size of
the compressed name is returned or -1 if there were errors. length is the size of the
array pointed to by comp _ dn. dnptrs is a list of pointers to previously compressed
names in the current message. The first pointer points to to the beginning of the
message and the list ends with NULL. lastdnptr is a pointer to the end of the array
pointed to dnptrs. A side effect is to update the list of pointers for labels inserted
into the message by dn_comp as the name is compressed. If dnptr is NULL, do not try
to compress names. If lastdnptr is NULL, do not update the list.

/etc/resolv.conf
/usr/include/arpa/nameserv.h
/usr/include/netinet/in.h
/usr/include/resolv.h
/usr/include/sys/types.h
/usr/lib/libresolv.a
/usr/lib/resolv.so

SEE ALSO

NOTES

776

named(lM), resolv.conf(4)

/usr/lib/libresolv.a is necessary for compiling programs.

Programs must be loaded with the option -lresolv.

rexec (3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
int rexec (char * *ahost , u_short inport, char * user, char *passwd,

char *cmd, int *fd2p);

DESCRIPTION
rexec looks up the host ahost using gethostbyname [see gethostent(3N)], return
ing -1 if the host does not exist. Otherwise ahost is set to the standard name of the
host. If a username and password are both specified, then these are used to authen
ticate to the foreign host; otherwise, the user's . netrc file in his or her home direc
tory is searched for appropriate information. If this fails, the user is prompted for
the information.

The port inport specifies which well-known DARPA Internet port to use for the
connection. The protocol for connection is described in detail in rexecd.

If the call succeeds, a socket of type SOCICSTREAM is returned to the caller, and
given to the remote command as its standard input and standard output. If fd2p is
non-zero, then a auxiliary channel to a control process will be setup, and a descrip
tor for it will be placed in fd2p. The control process will return diagnostic output
from the command (unit 2) on this channel, and will also accept bytes on this chan
nel as signal numbers, to be forwarded to the process group of the command. If
fd2p is 0, then the standard error (unit 2 of the remote command) will be made the
same as its standard output and no provision is made for sending arbitrary signals
to the remote process, although you may be able to get its attention by using out
of-band data.

SEE ALSO
rexecd(lM) gethostent(3N), getservent(3N), rcm.d(3N)

NOTES
There is no way to specify options to the socket call that rexec makes.

777

rexecve (3N)

NAME
rexecve, rx_set_ioctl_hand, rx_set_write_hand, rx_fd, rx-proc_msg,
rx_write, rx_signal, rx_ack_exit, rc_free_conn - REXEC support routines

SYNOPSIS
#include <sys/types.h>
#include <rx.h>

int rexecve (char * host I char * rx service I char * argv [] I
char *envp[]I long flags); -

int rx_set_ioctl_hand(int cnum , int <*ioctlyand) (int, int, ... »;

int rx_fd (int cnum);

int rx-proc_msg(int cnum , long *msg_type , long *ret_code);

int rx_write (int cnum , char *buf, long len);

int rx_signal (int cnum I int signum);

int rx_ack_exit(int cnum , char *ta_buf, long taJen);

DESCRIPTION

778

The REXEC support routines contain all the functions required by an REXEC client
program, such as the functions needed by rexec(l) to communicate with the
rxserver program.

The rexecve function is used to establish a connection to rxserver. rexecve con
tacts rxserver on the remote host host and attempts to start executing a service
rx_service with the arguments specified by argv and the environment specified by
envp. Options may be specified using the flags parameter:

Informs REXEC that only one end-of-file condition can
occur on stdin. If stdin is associated with a terminal,
additional data can be sent after an end-of-file, so this flag
would not be used.

Instructs rxserver to set up a separate standard output
and standard error channels for data written by the remote
service so that it may be treated separately by the client.

Once a connection has been successfully established, other library functions may be
used to communicate with the remote service. rexecve returns a connection
number token cnum which needs to be specified when using other rx_ functions to
refer to this particular connection.

rexecve (3N)

The ncset_ioctl_hand function is used to set a handler function for incoming
mOCIOCTL messages. By default, the handler function is ioctl. The handler may
be changed while an REXEC connection is in progress.

The rx_set_wri te_hand function is used to set a handler function for incoming
RXl'CDATA messages. By default, the handler function is write. The handler may
be changed while an REXEC connection is in progress.

The rx_fd function returns the file descriptor of an open REXEC connection.

The rx----Proc_msg function is called by the client program when it gets a new data
indication from poll for the file descriptor used by the REXEC connection.
rx----Proc_msg reads an REXEC message header and message, and performs the
appropriate actions depending on the type of message (such as RXl·CDATA or
RXM_IOCTL).

The rx_write function is used by the client program to send input data to the
remote service. Any data sent by rx_write will be passed to the remote service
process' file descriptor 0 (stdin).

The rx_signal function is used by the client program to send a signal to the
remote service. Only four signals are supported: SIGHUP, SIGINT, SIGQUIT, and
SIGPIPE.

The rx_ack_exit function is used by the client program to acknowledge the
service's termination and to request the return of any type-ahead input characters
sent to the service but not consumed.

The rc_free_conn function is used by the client program to close an REXEC con
nection and to free any resources (mainly the file descriptor) used by it.

SEE ALSO
rexec(l),rxlist(lM),rxservice(lM)

DIAGNOSTICS
Upon successful completion, the routines return 0, otherwise they return -1 and set
rx_ermo to one of the following:

RXE_OK

RXE_2MANYRX

RXE_BADFLAGS

RXE_BADARGS

RXE_BADENV

RXE_BADMACH

RXE_CONNPROB

RXE_NORXSERVER

RXE_BADVERSION

RXE_NOSVC

No error

Too many open rexec connections

Bad options / flags specified

Too many arguments

Bad environment specification

Unknown host

Connection problem

Host is not running rxserver

Unsupported version

No such service

779

rexecve (3N)

780

RXE_NOTAUTH

RXE_NOPTS

RXE_PIPE

RXE_BADSTART

RXE_NOSPACE

RXE_BADCNUM

RXE_AGAIN

RXE_BADSIG

RXE_BADSTATE

RXE_TIRDWR

RXE_WRITE

RXE_IOCTL

RXE_PROTOCOL

RXE_UNKNOWN

Not authorized to execute service

No pseudo terminals available

rxserver cannot make pipe for stderr

Error in starting server side

Server side memory allocation problems

Bad rexec connection number

wri te would cause process to block

Bad signal number

Connection in wrong state to perform operation

Could not push TIRDWR module at client

write handler failure at client

ioctl handler failure at client

Protocol failure-unexpected message

Unknown error code

rpc (3N)

NAME
rpc -library routines for remote procedure calls

DESCRIPTION
RPC routines allow C language programs to make procedure calls on other
machines across a network. First, the client calls a procedure to send a data packet
to the server. On receipt of the packet, the server calls a dispatch routine to perform
the requested service, and then sends back a reply.

The following sections describe data objects use by the RPC package.

Nettype
Some of the high-level RPC interface routines take a nettype string as one of the
parameters [for example, clnt_create, svc_create, rpc_reg, rpc_call]. This
string defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in the NETPATH variable or in top to
down order in the /etc/netconfig file.

nettype can be one of the following:

netpath

visible

udp

tcp

Choose from the transports which have been indicated by their
token names in the NETPATH variable. If NETPATH is unset or
NULL, it defaults to visible. netpath is the default nettype.

Choose the transports which have the visible flag (v) set in the
/etc/netconfig file.

This is same as visible except that it chooses only the connec
tion oriented transports from the entries in /etc/netconfig file.

This is same as visible except that it chooses only the connec
tionless datagram transports from the entries in /etc/netconfig
file.

This is same as netpath except that it chooses only the connec
tion oriented datagram transports

This is same as netpath except that it chooses only the connec
tionless datagram transports.

It refers to Internet UDP (for backwards compatibility).

It refers to Internet TCP (for backwards compatibility).

raw This is for memory based RPC, mainly for performance evalua
tion.

If nettype is NULL, it defaults to netpath.

781

rpc (3N)

782

Data Structures
Some of the data structures used by the RPC package are shown below.

The AUTH Structure
union des_block {

struct {

};

u_int32 high;
u_int32 low;

key;
char c[8];

typedef union des_block des_block;
extern bool_t xdr_des_block();

/*
* Authentication info. Opaque to client.
*/

struct opaque_auth {

};

/*

enum_t oa_flavor;
caddr_t oa_base;
u_int oa_length;

/* flavor of auth */
/* address of more auth stuff */
/* not to exceed MAX_AUTH_BYTES */

* Auth handle, interface to client side authenticators.
*/

typedef struct {
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
union des_block ah_key;
struct auth_ops {

void(*ah_nextverf)();
int (*ah_marshal)(); /* nextverf & serialize */
int (*ah_validate)(); /* validate varifier */
int (*ah_refresh)(); /* refresh credentials */
void(*ah_destroy)(); /* destroy this structure */

*ah_opSi
caddr_t ah-private;

} AUTH;

The CLIENT Structure
/*
* Client rpc handle.
* Created by individual implementations
* Client is responsible for initializing auth, see e.g. auth_none.c.
*/

typedef struct {
AUTH *cl_auth;
struct clnt_ops {

enum clnt_stat
void
void
bool_t
void
bool_t

(*cl_call)();
(*cl_abort) () ;
(*cl--9'eterr) () ;
(*cl_freeres)();
(*cl_destroy)();
(*cl_control) ();

/*

/*
/*
/*
/*
/*
/*

authenticator */

call remote procedure */
abort a call */
get specific error code */
frees results */
destroy this structure */
the ioctl() of rpc */

} *cl_ops;
caddr_t
char
char

cl.....private;
*cl_netid;
*cl_tp;

} CLIENT;

The SVCXPRT Structure
enum xprt_stat {

XPRT_DIED,
XPRT_MOREREQS,
XPRT_IDLE

} ;

1*
* Server side transport handle
*1

typedef struct
int

#define xp_sock
#endif

Xp""'port ;

struct xp_ops {

bool_t (*xp_recv) ();
enum xprt_stat (*xp_stat)();
bool_t (*xp-9'etargs)()i
bool_t (*xp_reply) ();
bool_t (*xp_freeargs) ();
void (*xp_destroy) ();

*xp_ops;
int xp_addrlen;
char *XP_tpi
char *xp_netid;
struct netbuf xp_Itaddr;
struct netbuf xp_rtaddr;
char xp_raddr[16];
struct opaque_auth xp_verfi
caddr_t xp.....p1;
caddr_t xp.....p2;
caddr_t XP""'p3i

SVCXPRT;

The XDR Structure
1*

rpc(3N)

1* private stuff *1
1* network token *1
1* device name *1

1* associated port number.
* Obsolete, but still used to
* specify whether rendezvouser
* or normal connection
*1

1* receive incoming requests *1
1* get transport status *1
1* get arguments *1
1* send reply *1
1* free mem allocated for args *1
1* destroy this struct *1

1* length of remote addr. Obsolete *1
1* transport provider device name *1
1* network token *1
1* local transport address *1
1* remote transport address *1
1* remote address. Obsolete *1
1*
1*
1*
1*

raw response
private: for
private: for
private: for

verifier *1
use by svc ops
use by svc ops
use by svc lib

*1
*1
*1

* Xdr operations. XDR_ENCODE causes the type to be encoded into the
* stream. XDRJ)ECODE causes the type to be extracted from the stream.
* XDR_FREE can be used to release the space allocated b¥ an XDR_DECODE
* request.
*1

enum xdr_op
XDR_ENCODE=O,
XDR_DECODE=l,

783

rpc(3N)

784

};

/*
* This is the number of bytes per unit of external data.
*/

#define BYTES_PER_XDR_UNIT (4)
#define RNDUP(x} « «x) + BYTES_PER XDR UNIT - 1) / BYTES_PER_XDR_UNIT} \

* BYTES_PER_XDR_UNIT}

/*
* A xdrproc_t exists for each data type which is to be encoded or decoded.

*
* The second argument to the xdrproc_t is a pointer to an opaque pointer.
* The opaque pointer generally points to a structure of the data type
* to be decoded. If this pointer is 0, then the type routines should
* allocate dynamic storage of the appropriate size and return it.
* bool_t (*xdrproc_t) (XDR *, caddr_t *);
*/

typedef

/*
* The XDR handle.
* Contains operation which is being applied to the stream,
* an operations vector for the particular implementation (for example,
* see xdr_mem.c), and two private fields for the use of the
* particular implementation.
*/

typedef struct {
enum xdr_op x_op;
struct xdr_ops {

bool_t (*x_getlong) ();
bool_t (*x-putlong}();
bool_t (*x-9"etbytes) () ;
bool_t (*x-putbytes) ();
u_int (*x-9"etpostn) () ;
bool_t (*x_setpostn) ();
long * (*x_inline}();
void (*x_destroy) ();

*x_ops;
caddr_t
caddr_t
caddr_t
int

x-public;
x-private;
x_base;
x_handy;

XDR;

Index to Routines

/* operation; fast additional param */

/* get a long from underlying stream */
/* put a long to " */
/* get same bytes from " * /
/* put same bytes to " */
/* returns bytes off from beginning */
/* lets you reposition the stream */
/* buf quick ptr to buffered data */
/* free privates of this xdr_stream */

/* users' data */
/* pointer to private data */
/* private used for position info */
/* extra private word */

The following table lists RPC routines and the manual reference pages on which
they are described:

RPC Routine
auth_destroy
authdes_getucred
authdes_seccreate
authnone_create
authsys_create
authsys_create_default
clnt_call
clnt_control
clnt_create
clnt_destroy
clnt_dg_create
clnt_freeres
clnt_geterr
clnt-pcreateerror
clnt-perrno
clnt-perror
clnt_raw_create
clnt_spcreateerror
clnt_sperrno
clnt_sperror
clnt_tli_create
clnt_tp_create
clnt_vc_create
getnetname
host2netname
key_decryptsession
key_encryptsession
key_gendes
key_setsecret
netname2host
netname2user
rpc_broadcast
rpc_call
rpc_reg
svc_create
svc_destroy
svc_dg_create
svc_fd_create
svc_freeargs
svc_getargs
svc_getreqset
svc_getrpccaller
svc_raw_create
svc_reg
svc_run
svc_sendreply

Manual Reference Page
rpc_clnt_auth(3N)
secure_rpc(3N)
secure_rpc(3N)
rpc_clnt_auth(3N)
rpc_clnt_auth(3N)
rpc_clnt_auth(3N)
rpc_clnt_calls(3N)
rpc_clnt_create(3N)
rpc_c Int_create (3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
rpc_clnt_calls(3N)
rpc_clnt_calls(3N)
rpc_c Int_create (3N)
rpc_clnt_calls(3N)
rpc_clnt_calls(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
rpc_clnt_calls(3N)
rpc_clnt_calls(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
rpc_clnt_create(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
secure_rpc(3N)
rpc_clnt_calls(3N)
rpc_clnt_calls(3N)
rpc_svc_calls(3N)
rpc_svc_create(3N)
rpc_svc_create(3N)
rpc_svc_create(3N)
rpc_svc_create(3N)
rpc_svc_reg(3N)
rpc_svc_reg(3N)
rpc_svc_reg(3N)
rpc_svc_reg(3N)
rpc_svc_create(3N)
rpc_svc_calls(3N)
rpc_svc_reg(3N)
rpc_svc_reg(3N)

rpc (3N)

785

rpc (3N)

FILES

RPC Routine
svc_t 1 i_create
svc_tp_create
svc_unreg
svc_vc_create
svcerr_auth
svcerr_decode
svcerr_noproc
svcerr_noprog
svcerr-progvers
svcerr_systemerr
svcerr_weakauth
user2netname
xdr_accepted_reply
xdr_authsys-parms
xdr_callhdr
xdr_callmsg
xdr_opaque_auth
xdr_rejected_reply
xdr_replymsg
xprt_register
xprt_unregister

/etc/netconfig

Manual Reference Page
rpc_svc_create(3N)
rpc_svc_create(3N)
rpc_svc_calls(3N)
rpc_svc_create(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
rpc_svc_err(3N)
secure_rpc(3N)
rpc~dr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_xdr(3N)
rpc_svc_calls(3N)
rpc_svc_calls(3N)

SEE ALSO

786

environ(5), getnetconfig(3N), getnetpath(3N), rpc_clnt_auth(3N),
rpc_clnt_calls(3N), rpc_clnt_create(3N), rpc_svc_calls(3N),
rpc_svc_create(3N), rpc_svc_err(3N), rpc_svc_reg(3N), rpc_xdr(3N),
rpcbind(3N), secure_rpc(3N), xdr(3N), netconfig(4)

NAME

rpcbind (3N)

rpcbind: rpcb_getmaps,rpcb_getaddr, rpcb_gettime, rpcb_r.mtcall,
rpcb_set, rpcb_unset -library routines for RPC bind service

DESCRIPTION
These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind [see rpcbind(lM)] maintains a list of mappings between pro
grams and their universal addresses.

Routines
#include <rpc/rpc.h>

struct rpcblist *
rpcb_getmaps (const struct netconfig *netconf, const char *host);

bool_t

A user interface to the rpcbind service, which returns a list of the current
RPC program-to-address mappings on the host named. It uses the transport
specified through netconf to contact the remote rpcbind service on host host.
This routine will return NULL, if the remote rpcbind could not be contacted.

rpcb_getaddr(const u_long prognum, const u_long versnum,
const struct netconfig *netconf, struct netbuf *svcaddr,
const char *host);

bool_t

A user interface to the rpcbind service, which finds the address of the ser
vice on host that is registered with program number prognum, version vers
num, and speaks the transport protocol associated with netconf. The address
found is returned in svcaddr. svcaddr should be preallocated. This routine
returns 1 if it succeeds. A return value of 0 means that the mapping does
not exist or that the RPC system failed to contact the remote rpcbind ser
vice. In the latter case, the global variable rpc_createerr contains the RPC
status.

rpcb~ettime (const char *host, time_t *timep);

This routine returns the time on host in timep. If host is NULL, rpcb_gettime
returns the time on its own machine. This routine returns 1 if it succeeds, 0
if it fails. rpcb_gettime can be used to synchronize the time between the
client and the remote server. This routine is particularly useful for secure
RPC.

787

rpcbind (3N)

enum clnt_stat
rpcb_nntcall (const struct netconfig *netconf, const char *host,

const u_long prognum, const u_long versnum, const u_long procnum,
const xdrproc_t inproc, const caddr_t in,
const xdrproc_t outproc, const caddr_t out,
const struct timeval tout, struct netbuf *svcaddr);

bool_t

A user interface to the rpcbind service, which instructs rpcbind on host to
make an RPC call on your behalf to a procedure on that host. The parame
ter *svcaddr will be modified to the server's address if the procedure
succeeds [see rpc_call and clnt_call in rpc_clnt_calls(3N) for the
definitions of other parameters]. This procedure should normally be used
for a ping and nothing else [see rpc_broadcast in rpc_clnt_calls(3N)].
This routine allows programs to do lookup and call, all in one step.

rpcb_set (const u_long prognum, const u_long versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t

A user interface to the rpcbind service, which establishes a mapping
between the triple [prognum, versnum, netconf->nc_netid] and svcaddr on
the machine's rpcbind service. The value of transport must correspond to a
network token that is defined by the netconfig database. This routine
returns 1 if it succeeds, 0 otherwise. [See also svc_reg in
rpc_svc_calls(3N)].

rpcb_unset (const u_long prognum, const u_long versnum,
const struct netconfig *netconf);

A user interface to the rpcbind service, which destroys all mapping
between the triple [prognum, versnum, netconf->nc_netid] and the address
on the machine's rpcbind service. If netconf is NULL, rpcb_unset destroys
all mapping between the triple [prognum, versnum, *] and the addresses on
the machine's rpcbind service. This routine returns 1 if it succeeds, 0 other
wise. [See also svc_unreg in rpc_svc_calls(3N)].

SEE ALSO
rpc_clnt_calls(3N), rpc_svc_calls(3N), rpcbind(lM), rpcinfo(lM)

788

NAME
rpc_clnt_auth: auth_de st roy, authnone_create, authsys_create,
authsys_create_default - library routines for client side remote procedure call
authentication

DESCRIPTION
These routines are part of the RPC library that allows C language programs to make
procedure calls on other machines across the network, with desired authentication.
First, the client calls a procedure to send a data packet to the server. Upon receipt
of the packet, the server calls a dispatch routine to perform the requested service,
and then sends back a reply.

These routines are normally called after creating the CLIENT handle. The client's
authentication information is passed to the server when the RPC call is made.

Routines
The following routines require that the header rpc.h be included [see rpc(3N) for
the definition of the AUTH data structure].

#include <rpc/rpc.h>

void
auth_destroY(AUTH *auth);

A function macro that destroys the authentication information associated
with auth. Destruction usually involves deallocation of private data struc
tures. The use of auth is undefined after calling auth_destroy.

AUTH *
authnone_create(void);

AUTH *

Create and return an RPC authentication handle that passes nonusable
authentication information with each remote procedure call. This is the
default authentication used by RPc.

authsys_create(const char *host, const uid_t uid, const gid_t gid,
const int len, const gid_t *aup ~ids) ;

Create and return an RPC authentication handle that contains AUTH_SYS
authentication information. The parameter host is the name of the machine
on which the information was created; uid is the user's user ID; gid is the
user's current group ID; len and aup ~ids refer to a counted array of groups
to which the user belongs.

AUTH *
authsys_create_default(void);

Call authsys_create with the appropriate parameters.

SEE ALSO
rpc(3N), rpc_clnt_create(3N), rpc_clnt_calls(3N)

789

rpc clnt calls (3N)
- -

NAME
rpc_clnt_calls: clnt_call, clnt_freeres, clnt_geterr, clnt-perrno,
clnt-perror, clnt_sperrno, cInt_sperror, rpc_broadcast, rpc_call -library
routines for client side calls

DESCRIPTION

790

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a data
packet to the server. Upon receipt of the packet, the server calls a dispatch routine
to perform the requested service, and then sends back a reply.

The clnt_call, rpc_call and rpc_broadcast routines handle the client side of
the procedure call. The remaining routines deal with error handling in the case of
errors.

Routines
See rpc(3N) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

enum clnt_stat
cInt_call (CLIENT *clnt, const u_Iong procnum, const xdrproc_t inproc,

caddr_t in, const xdrproc_t outproc, caddr_t out,
const struct timeval tout);

A function macro that calls the remote procedure procnum associated with
the client handle, clnt, which is obtained with an RPC client creation routine
such as clnt_create [see rpc_clnt_create(3N)]. The parameter in is the
address of the procedure's argument(s), and out is the address of where to
place the result(s); inproc is used to encode the procedure's parameters, and
outproc is used to decode the procedure's results; tout is the time allowed for
results to be returned.

If the remote call succeeds, the status is returned in RPC_SUCCESS, otherwise
an appropriate status is returned.

int cInt_freeres {CLIENT *clnt, const xdrproc_t outproc, caddr_t out};

A function macro that frees any data allocated by the RPC/XDR system
when it decoded the results of an RPC call. The parameter out is the address
of the results, and outproc is the XDR routine describing the results. This
routine returns 1 if the results were successfully freed, and 0 otherwise.

void
clnt_geterr{const CLIENT *clnt, struct rpc_err *errp);

A function macro that copies the error structure out of the client handle to
the structure at address errp.

void
clnt-perrno{const enum clnt_stat stat};

void

Print a message to standard error corresponding to the condition indicated
by stat. A newline is appended at the end of the message. Normally used
after a procedure call fails, for instance rpc_cal1.

clnt-perror{const CLIENT *clnt, const char *s};

Print a message to standard error indicating why an RPC call failed; clnt is
the handle used to do the call. The message is prepended with string sand
a colon. A newline is appended at the end of the message. Normally used
after a procedure call fails, for instance clnt_cal1.

const char *
clnt_sperrno {const enum clnt_stat stat};

char *

Take the same arguments as clnt-perrno, but instead of sending a mes
sage to the standard error indicating why an RPC call failed, return a
pointer to a read-only string which contains the message.

clnt_sperrno is normally used instead of clnt-perrno when the program
does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be out
put with printf [see printf(3S)], or if a message format different than that
supported by clnt-perrno is to be used. Note: unlike clnt_sperror and
clnt_spcreaterror [see rpc_clnt_create(3N)], clnt_sperrno does not
return pointer to static data so the result will not get overwritten on each
call, and the string is read-only.

clnt_sperror(const CLIENT *clnt, const char *s};

Like clnt-perror, except that (like clnt_sperrno) it returns a string
instead of printing to standard error. However, clnt_sperror does not
append a newline at the end of the message.

Note: returns pointer to static data that is overwritten on each call.

791

rpc _ clnt_ calls (3N)

enum clnt_stat
rpc_broadcast (const u_long prognum, const u_long versnum,

const u_long procnum, const xdrproc_t inproc, caddr_t in,
const xdrproc_t outproc, caddr_t out, const resultproc_t eachresult,
const char *nettype);

Like rpc_call, except the call message is broadcast to the connectionless
network specified by nettype. If nettype is NULL, it defaults to netpath. Each
time it receives a response, this routine calls eachresult, whose form is:

bool_t
eachresult(const caddr_t out, const struct netbuf *addr,

struct netconfig *netconf);

where out is the same as out passed to rpc_broadcast, except that the
remote procedure's output is decoded there; addr points to the address of
the machine that sent the results, and netconf is the netconfig structure of the
transport on which the remote server responded. If eachresult returns 0,
rpc_broadcast waits for more replies; otherwise it returns with appropri
ate status.

Note: broadcast file descriptors are limited in size to the maximum transfer
size of that transport. For Ethernet, this value is 1500 bytes.

enum clnt_stat
rpc_call (const char *host, const u_long prognum,

const u_long versnum, const u_long procnum,
const xdrproc_t inproc, const xdrproc_t outproc,
const char *in, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum
on the machine, host. The parameter in is the address of the procedure's
argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure's parameters, and outproc is used to decode
the procedure's results. nettype can be any of the values listed on rpc(3N).
If nettype is NULL, it defaults to netpath. This routine returns 0 if it
succeeds, or the value of enum clnt_stat cast to an integer if it fails. Use
the clnt-perrno routine to translate failure statuses into messages.

Note: rpc_call uses the first available transport belonging to the class net
type, on which it can create a connection. You do not have control of
time outs or authentication using this routine. There is also no way to des
troy the client handle.

SEE ALSO
printf(3S), rpc(3N), rpc_clnt_auth(3N), rpc_clnt_create(3N)

792

NAME
rpc_clnt_create: clnt_control,clnt_create,clnt_destroy,
clnt_dg_create,clnt-pcreateerror,clnt_raw_create,
clnt_spcreateerror,clnt_tli_create,clnt_tp_create,clnt_vc_create
library routines for dealing with creation and manipulation of CLIENT handles

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client
calls a procedure to send a data packet to the server. Upon receipt of the packet,
the server calls a dispatch routine to perform the requested service, and then sends
back a reply.

Routines
See rpc(3N) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t
clnt_control (CLIENT *clnt, const u_int req, char * info) ;

A function macro used to change or retrieve various information about a
client object. req indicates the type of operation, and info is a pointer to the
information. For both connectionless and connection-oriented transports,
the supported values of req and their argument types and what they do are:

CLSET_TIMEOUT
CLGET_TlMEOUT

struct timeval
struct timeval

set total timeout
get total timeout

Note: if you set the timeout using clnt_control, the timeout parameter
passed to clnt_call will be ignored in all future calls.

CLGET_FD
CLGET_SVC_ADDR
CLSET_FD_CLOSE

int
struct netbuf
int

int

get the associated file descriptor
get servers address
close the file descriptor when
destroying the client handle
[see clnt_destroy]
do not close the file
descriptor when destroying
the client handle

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control returns 1 on success and 0 on failure.

793

rpc clnt create (3N) - -

794

CLIENT *
clnt_create(const char *host, const u_long prognum,

void

const u_long versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum.
host identifies the name of the remote host where the server is located. net
type indicates the class of transport protocol to use. The transports are tried
in left to right order in NETPATH variable or in top to down order in the
netconfig database.

clnt_create tries all the transports of the nettype class available from the
NETPATH environment variable and the the netconfig database, and chooses
the first successful one. Default timeouts are set, but can be modified using
clnt_control.

clnt_destroy(CLIENT *clnt);

A function macro that destroys the client's RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of
clnt is undefined after calling clnt_destroy. If the RPC library opened the
associated file descriptor, or CLSET_FD_CLOSE was set using clnt_control,
it will be closed.

CLIENT *
clnt_dg_create (const int fd, const struct netbuf *svcaddr,

const u_long prognum, const u_long versnum,

void

const u_int sendsz, const u_int recvsz);

This routine creates an RPC client for the remote program prognum and ver
sion versnum; the client uses a connectionless transport. The remote pro
gram is located at address svcaddr. The parameter fd is an open and bound
file descriptor. This routine will res end the call message in intervals of 15
seconds until a response is received or until the call times out. The total
time for the call to time out is specified by clnt_call [see clnt_call in
rpc_clnt_calls(3N)]. This routine returns NULL if it fails. The retry time
out and the total time out periods can be changed using clnt_control.
The user may set the size of the send and receive buffers with the parame
ters sendsz and recvsz; values of 0 choose suitable defaults.

clnt-pcreateerror(const char *s);

Print a message to standard error indicating why a client RPC handle could
not be created. The message is prepended with the string s and a colon, and
appended with a newline.

rpc _ clnt_ create (3N)

CLIENT *
clnt_raw_create (const u_long prognum, const u_long versnum);

char *

This routine creates a toy RPC client for the remote program prognum and
version versnum. The transport used to pass messages to the service is a
buffer within the process's address space, so the corresponding RPC server
should live in the same address space; [see svc_raw_create in
rpc_clnt_calls(3N)]. This allows simulation of RPC and acquisition of
RPC overheads, such as round trip times, without any kernel interference.
This routine returns NULL if it fails. clnt_raw_create should be called
after svc_raw_create.

clnt_spcreateerror(const char *s);

Like clnt--'pcreateerror, except that it returns a string instead of printing
to the standard error. A newline is not appended to the message in this
case.

Note: returns a pointer to static data that is overwritten on each call.

CLIENT *
clnt_tli_create (const int fd, const struct netconfig *netconf,

const struct netbuf *svcaddr, const u_long prognum,
const u_long versnum, const u_int sendsz,
const u_int recvsz);

This routine creates an RPC client handle for the remote program prognum
and version versnum. The remote program is located at address svcaddr. If
svcaddr is NULL and it is connection-oriented, it is assumed that the file
descriptor is connected. For connectionless transports, if svcaddr is NULL,
RPC_UNKNOWNADDR error is set. fd is a file descriptor which may be open,
bound and connected. If it is RPC_ANYFD, it opens a file descriptor on the
transport specified by netconf. If netconf is NULL, a RPC_UNKNOWNPROTO error
is set. If fd is unbound, then it will attempt to bind the descriptor. The user
may specify the size of the buffers with the parameters sendsz and recvsz;
values of 0 choose suitable defaults. Depending upon the type of the tran
sport (connection-oriented or connectionless), clnt_tli_create calls
appropriate client creation routines. This routine returns NULL if it fails.
The clnt--'pcreaterror routine can be used to print the reason for failure.
The remote rpcbind service [see rpcbind(lM)] will not be consulted for the
address of the remote service.

CLIENT *
clnt_tp_create (const char *host, const u_long prognum,

const u_long versnum, const struct netconfig *netconf);

clnt_tp_create creates a client handle for the transport specified by
netconf. Default options are set, which can be changed using clnt_control
calls. The remote rpcbind service on the host host is consulted for the
address of the remote service. This routine returns NULL if it fails. The
clnt--'pcreaterror routine can be used to print the reason for failure.

795

rpc clnt create (3N) - -

CLIENT *
clnt_ vc_create (const int fd, const struct netbuf *svcaddr,

const u_long prognum, const u_long versnum,
const u_int sendsz, const u_int recvsz);

This routine creates an RPC client for the remote program prognum and ver
sion versnum; the client uses a connection-oriented transport. The remote
program is located at address svcaddr. The parameter fd is an open and
bound file descriptor. The user may specify the size of the send and receive
buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. This routine returns NULL if it fails.

The address svcaddr should not be NULL and should point to the actual
address of the remote program. clnt_ vc_create will not consult the
remote rpcbind service for this information.

SEE ALSO
rpcbind(lM), rpc(3N), rpc_clnt_auth(3N), rpc_clnt_calls(3N)

796

NAME
rpc_svc_calls: rpc_reg,svc_reg,svc_unreg,xprt_register,
xprt_unregister - library routines for registering servers

DESCRIPTION
These routines are a part of the RPC library which allows the RPC servers to regis
ter themselves with rpcbind [see rpcbind(lM)], and it associates the given pro
gram and version number with the dispatch function.

Routines
See rpc(3N) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int
rpc_reg{const u_long prognum, const u_long versnum,

const u_long procnum, const char * (*procname) ,
const xdrproc_t inproc, const xdrproc_t outproc,
const char *nettype);

int

Register program prognum, procedure procname, and version versnum with
the RPC service package. If a request arrives for program prognum, version
versnum, and procedure procnum, procname is called with a pointer to its
parameter(s); procname should return a pointer to its static result(s); inproc
is used to decode the parameters while outproc is used to encode the results.
Procedures are registered on all available transports of the class nettype. net
type defines a class of transports which can be used for a particular applica
tion. If nettype is NULL, it defaults to netpath. This routine returns 0 if the
registration succeeded, -1 otherwise.

svc_reg{const SVCXPRT *xprt, const u_long prognum, const u_long versnum,

void

const void (*dispatch), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure,
dispatch. If netconf is NULL, the service is not registered with the rpcbind
service. If netconf is non-zero, then a mapping of the triple [prognum, vers
num, netconf->nc_netid] to xprt->xp_ltaddr is established with the local
rpcbind service.

The svc_reg routine returns 1 if it succeeds, and 0 otherwise

svc_unreg (const u_long prognum, const u_long versnum);

Remove, from the rpcbind service, all mappings of the double [prognum,
versnum] to dispatch routines, and of the triple [prognum, versnum, *] to net
work address.

797

void
xprt_register(const SVCXPRT *xprt};

void

After RPC service transport handle xprt is created, it is registered with the
RPC service package. This routine modifies the global variable svc_fds.
Service implementors usually do not need this routine.

xprt_unregister(const SVCXPRT *xprt};

Before an RPC service transport handle xprt is destroyed, it unregisters itself
with the RPC service package. This routine modifies the global variable
svc_fds. Service implementors usually do not need this routine.

SEE ALSO

798

rpcbind(lM), rpcbind(3N), rpc(3N), rpc_svc_err(3N), rpc_svc_create(3N),
rpc_svc_reg(3N)

NAME

rpc _ svc _ create (3N)

rpc_svc_create: svc_create,svc_destroY,svc_dg_create,svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create -library
routines for dealing with the creation of server handles

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on servers across the network. These routines deal with the
creation of service handles. Once the handle is created, the server can be invoked
by calling svc_run.

Routines
See rpc(3N) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int
svc_create(

void

const void (*dispatch) (const struct svc_req *, const SVCXPRT *),
const u_long prognum, const u_long versnum,
const char *nettype);

svc_create creates server handles for all the transports belonging to the
class nettype.

nettype defines a class of transports which can be used for a particular appli
cation. The transports are tried in left to right order in NETPATH variable or
in top to down order in the netconfig database.

If nettype is NULL, it defaults to netpath. svc_create registers itself with
the rpcbind service [see rpcbind(lM)]. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires cal
ling svc_run [see svc_run in rpc_svc_reg(3N)]. If it succeeds,
svc_create returns the number of server handles it created, otherwise it
returns 0 and the error message is logged.

svc_destroy(SVCXPRT *xprt);

A function macro that destroys the RPC service transport handle xprt. Des
truction usually involves deallocation of private data structures, including
xprt itself. Use of xprt is undefined after calling this routine.

SVCXPRT *
svc_dg_create (const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a connectionless RPC service handle, and returns a
pointer to it. This routine returns NULL if it fails, and an error message is
logged. sendsz and recvsz are parameters used to specify the size of the
buffers. If they are 0, suitable defaults are chosen. The file descriptor fd
should be open and bound.

Note: since connectionless-based RPC messages can only hold limited
amount of encoded data, this transport cannot be used for procedures that
take large arguments or return huge results.

799

rpc _ svc _ create (3N)

800

SVCXPRT *
svc_fd_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a service on top of any open and bound descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descrip
tor for a connection-oriented transport. sendsz and recvsz indicate sizes for
the send and receive buffers. If they are 0, a reasonable default is chosen.
This routine returns NULL, if it fails, and an error message is logged.

SVCXPRT *
svc_raw_create(void);

This routine creates a toy RPC service transport, to which it returns a
pointer. The transport is really a buffer within the process's address space,
so the corresponding RPC client should live in the same address space; [see
clnt_raw_create in rpc_clnt_create]. This routine allows simulation of
RPC and acquisition of RPC overheads (such as round trip times), without
any kernel interference. This routine returns NULL if it fails, and an error
message is logged.

SVCXPRT *
svc_tli_create(const int fd, const struct netconfig *netconf,

const struct t_bind *bindaddr, const u_int sendsz,
const u_int recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fd is
the file descriptor on which the service is listening. If fd is RPC_ANYFD, it
opens a file descriptor on the transport specified by netconf If the file
descriptor is unbound, it is bound to the address specified by bindaddr, if
bindaddr is non-null, otherwise it is bound to a default address chosen by the
transport. In the case where the default address is chosen, the number of
outstanding connect requests is set to 8 for connection-oriented transports.
The user may specify the size of the send and receive buffers with the
parameters sendsz and recvsz; values of 0 choose suitable defaults. This rou
tine returns NULL if it fails, and an error message is logged.

SVCPRT *
svc_tp_create(const void (*dispatch) (const RQSTP *, const SVCXPRT *),

const u_long prognum, const u_long versnum,
const struct netconfig *netconf);

svc_tp_create creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is
a remote procedure call for the given prognum and versnum; this requires cal
ling svc_run. svc_tp_create returns the service handle if it succeeds, oth
erwise a NULL is returned, and an error message is logged.

rpc _ svc _ create (3N)

SVCXPRT *
svc_vc_create(const int fd, const u_int sendsz, const u_int recvsz);

SEE ALSO

This routine creates a connection-oriented RPC service and returns a pointer
to it. This routine returns NULL if it fails, and an error message is logged.
The users may specify the size of the send and receive buffers with the
parameters sendsz and recvsz; values of 0 choose suitable defaults. The file
descriptor fd should be open and bound.

rpcbind(lM), rpc(3N), rpc_svc_calls(3N), rpc_svc_err(3N), rpc_svc_reg(3N)

801

rpc _ svc _err (3N)

NAME
rpc_svc_err: svcerr_auth,svcerr_decode, svcerr_noproc, svcerr_noprog,
svcerr-progvers, svcerr_systemerr, svcerr_weakauth -library routines for
server side remote procedure call errors

DESCRIPTION

802

These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network.

These routines can be called by the server side dispatch function if there is any error
in the transaction with the client.

Routines
See rpc(3N) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

void
svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why);

void

Called by a service dispatch routine that refuses to perform a remote pro
cedure call due to an authentication error.

svcerr_decode(const SVCXPRT *xprt);

void

Called by a service dispatch routine that cannot successfully decode the
remote parameters [see svc_getargs in rpc_svc_reg(3N)].

svcerr_noproc(const SVCXPRT *xprt);

void

Called by a service dispatch routine that does not implement the procedure
number that the caller requests.

svcerr_noprog(const SVCXPRT *xprt);

void

Called when the desired program is not registered with the RPC package.
Service implementors usually do not need this routine.

svcerr-progvers(const SVCXPRT *xprt);

void

Called when the desired version of a program is not registered with the RPC
package. Service implementors usually do not need this routine.

svcerr_systemerr(const SVCXPRT *xprt);

Called by a service dispatch routine when it detects a system error not
covered by any particular protocol. For example, if a service can no longer
allocate storage, it may call this routine.

rpc _ svc _ err (3N)

void
svcerr_weakauth(const SVCXPRT *xprt);

SEE ALSO

Called by a service dispatch routine that refuses to perform a remote pro
cedure call due to insufficient (but correct) authentication parameters. The
routine calls svcerr_auth (xprt, AUTH_TOOWEAK).

rpc(3N), rpc_svc_calls(3N), rpc_svc_create(3N), rpc_svc_reg(3N)

803

rpc_svc_reg (3N)

NAME
rpc_svc_reg: svc_freeargs, svc_getargs, svc_getreqset,
svc_getrpccaller, svc_run, svc_sendreply -library routines for RPC servers

DESCRIPTION

804

These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others [such as svc_run]
are called when the server is initiated.

Routines
#include <rpc/rpc.h>

int
svc_freeargs (const SVCXPRT *xprt, const xdrproc_t inproc, char *in);

int

A function macro that frees any data allocated by the RPCjXDR system
when it decoded the arguments to a service procedure using svc_getargs.
This routine returns 1 if the results were successfully freed, and 0 otherwise.

svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t *in);

void

A function macro that decodes the arguments of an RPC request associated
with the RPC service transport handle xprt. The parameter in is the address
where the arguments will be placed; inproc is the XDR routine used to
decode the arguments. This routine returns 1 if decoding succeeds, and 0
otherwise.

svc_getreqset(fd_set *rdfds);

This routine is only of interest if a service implementor does not call
svc_run, but instead implements custom asynchronous event processing. It
is called when poll has determined that an RPC request has arrived on
some RPC file descriptors; rdfds is the resultant read file descriptor bit mask.
The routine returns when all file descriptors associated with the value of
rdfds have been serviced

struct netbuf *
svc_getrpccaller{const SVCXPRT *xprt);

The approved way of getting the network address of the caller of a pro
cedure associated with the RPC service transport handle xprt.

void
svc_run{void) ;

This routine never returns. It waits for RPC requests to arrive, and calls the
appropriate service procedure using svc_getreqset when one arrives.
This procedure is usually waiting for a poll library call to return.

int
svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc,

SEE ALSO

const caddr_t *out);

Called by an RPC service's dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request's associated transport han
dle; outproc is the XDR routine which is used to encode the results; and out is
the address of the results. This routine returns 1 if it succeeds, 0 otherwise.

poll(2), rpc(3N), rpc_svc_calls(3N), rpc_svc_create(3N), rpc_svc_err(3N)

805

rpc xdr(3N)

NAME
rpc_xdr: xdr_accepted_reply, xdr_authsys-parms, xdr_callhdr,
xdr_callmsg, xdr_opaque_auth, xdr_rejected_reply, xdr_replymsg - XDR
library routines for remote procedure calls

DESCRIPTION

806

These routines are used for describing the RPC messages in XDR language. They
should normally be used by those who do not want to use the RPC package.

Routines
See rpc(3N) for the definition of the XDR data structure.

#include <rpc/rpc.h>

bool_t
xdr_accepted_reply(XDR *xd~, const struct accepted_reply *ar)i

bool_t

Used for encoding RPC reply messages. It encodes the status of the RPC
call in the XDR language format, and in the case of success, it encodes the
call results also.

xdr_authsys-parms(XDR *xd~, const struct authsys-parms *aupp);

void

Used for describing operating system credentials. It includes machine
name, uid, gid list, etc.

xdr_callhdr(XDR *xdrs, const struct rpc_msg *chdr);

bool_t

Used for describing RPC call header messages. It encodes the static part of
the call message header in the XDR language format. It includes informa
tion such as transaction ID, RPC version number, program and version
number.

xdr_callmsg(XDR *xdrs, const struct rpc_msg *cmsg);

bool_t

Used for describing RPC call messages. This includes all the RPC call infor
mation such as transaction ID, RPC version number, program number, ver
sion number, authentication information, etc. This is normally used by
servers to determine information about the client RPC call.

xdr_opaque_auth(XDR *xdrs, const struct opaque_auth *ap);

Used for describing RPC opaque authentication information messages.

bool_t
xdr_rejected_reply(XDR *xd~, const struct rejected_reply *rr);

Used for describing RPC reply messages. It encodes the rejected RPC mes
sage in the XDR language format. The message could be rejected either
because of version number mis-match or because of authentication errors.

bool_t
xdr_replymsg(XDR *xd~, const struct rpc_msg *rmsg);

Used for describing RPC reply messages. It encodes all the RPC reply mes
sage in the XDR language format This reply could be either an acceptance,
rejection or NULL.

SEE ALSO
rpc(3N)

807

rusers (3N)

NAME
:tUsers - return information about users on remote machines

SYNOPSIS
#include <rpcsvc/:tUsers.h>

int :tUsers(char *host, st:tUct utmpidlearr *up);

:tUsers fills the utmpidlearr structure with data about host, and returns a if suc
cessful. The function will fail if the underlying transport does not support broad
cast mode.

SEE ALSO
:tUsers(l)

808

NAME
r:wall- write to specified remote machines

SYNOPSIS
#include <rpcsvc/r:wall.h>

r:wall (char *host, char *msg);

DESCRIPTION

rwall (3N)

r:wall executes wall(lM) on host. host prints the string msg to all its users. It
returns a if successful.

SEE ALSO
r:wall(lM), r:walld(lM)

809

scandir (3) (BSO System Compatibility)

NAME
scandir, alphasort - (BSD) scan a directory

SYNOPSIS
/usr/ucb/cc [flag ...] file ...

#include <sys/types.h>
#include <sys/dir.h>

scandir(char *dirname, struct direct **namelist, int (*select) (), int (*compa

alphasort(struct direct **dl, struct direct **d2)i

DESCRIPTION
scandir reads the directory dirname and builds an array of pointers to directory
entries using malloc(3C). The second parameter is a pointer to an array of struc
ture pointers. The third parameter is a pointer to a routine which is called with a
pointer to a directory entry and should return a non zero value if the directory
entry should be included in the array. If this pointer is NULL, then all the directory
entries will be included. The last argument is a pointer to a routine which is passed
to qsort(3C) to sort the completed array. If this pointer is NULL, the array is not
sorted. alpha sort is a routine which will sort the array alphabetically.

scandir returns the number of entries in the array and a pointer to the array
through the parameter namelist.

SEE ALSO
directory(3C), getdents(2), malloc(3C), qsort(3C)

RETURN VALUE

810

Returns -1 if the directory cannot be opened for reading or if malloc(3C) cannot
allocate enough memory to hold all the data structures.

scanf(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf(const char *format, ..•);

int fscanf (FILE *strm, const char *format, ..•);

int sscanf(const char *s, const char *format, •••);

DESCRIPTION
scanf reads from the standard input stream, stdin.

fscanf reads from the stream strm.

sscanf reads from the character string s.

Each function reads characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control string, format,
described below and a set of pointer arguments indicating where the converted
input should be stored. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are simply ignored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, newlines, or form-feeds) that, except
in two cases described below, cause input to be read up to the next non
white-space character.

2. An ordinary character (not %) that must match the next character of the
input stream.

3. Conversion specifications consisting of the character % or the character
sequence 9;oiiigits$, an optional assignment suppression character *, a
decimal digit string that specifies an optional numerical maximum field
width, an optional letter 1 (ell), L, or h indicating the size of the receiving
object, and a conversion code. The conversion specifiers d, i, and n
should be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by 1 if it is a pointer to long
into Similarly, the conversion specifiers 0, u, and x should be preceded
by h if the corresponding argument is a pointer to unsigned short int
rather than a pointer to unsigned int, or by 1 if it is a pointer to
unsigned long into Finally, the conversion specifiers e, f, and g
should be preceded by 1 if the corresponding argument is a pointer to
double rather than a pointer to float, or by L if it is a pointer to long
double. The h, 1, or L modifier is ignored with any other conversion
specifier.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument unless assignment
suppression was indicated by the character *. The suppression of assignment pro
vides a way of describing an input field that is to be skipped. An input field is
defined as a string of non-space characters; it extends to the next inappropriate

811

scanf(3S)

812

character or until the maximum field width, if one is specified, is exhausted. For all
descriptors except the character [and the character c, white space leading an input
field is ignored.

Conversions can be applied to the nth argument in the argument list, rather than to
the next unused argument. In this case, the conversion character % (see above) is
replaced by the sequence 9-odigits$ where digits is a decimal integer n, giving the
position of the argument in the argument list. The first such argument, %1$,
immediately follows format. The control string can contain either form of a conver
sion specification, i.e., % or 9-odigits$, although the two forms cannot be mixed within
a single control string.

The conversion code indicates the interpretation of the input field; the correspond
ing pointer argument must usually be of a restricted type. For a suppressed field,
no pointer argument is given. The following conversion codes are valid:

% A single % is expected in the input at this point; no assignment is done.

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 10
for the base argument. The corresponding argument should be a pointer to
integer.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value 10
for the base argument. The corresponding argument should be a pointer to
unsigned integer.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of the strtoul function with the value 8
for the base argument. The corresponding argument should be a pointer to
unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the
same as expected for the subject sequence of the strtoul function with the
value 16 for the base argument. The corresponding argument should be a
pointer to unsigned integer.

i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of the strtol function with the value a for the base
argument. The corresponding argument should be a pointer to integer.

n No input is consumed. The corresponding argument should be a pointer to
integer into which is to be written the number of characters read from the
input stream so far by the call to the function. Execution of a 9-011 directive
does not increment the assignment count returned at the completion of exe
cution of the function.

e,f,g Matches an optionally signed floating point number, whose format is the
same as expected for the subject string of the strtod function. The
corresponding argument should be a pointer to floating.

s A character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating \0, which will be added automatically. The
input field is terminated by a white-space character.

scanf(3S)

c Matches a sequence of characters of the number specified by the field width
(1 if no field width is present in the directive). The corresponding argument
should be a pointer to the initial character of an array large enough to accept
the sequence. No null character is added. The normal skip over white space
is suppressed.

Matches a nonempty sequence of characters from a set of expected charac
ters (the scanset). The corresponding argument should be a pointer to the
initial character of an array large enough to accept the sequence and a ter
minating null character, which will be added automatically. The conversion
specifier includes all subsequent characters in the format string, up to and
including the matching right bracket (l). The characters between the brack
ets (the scanlist) comprise the scanset, unless the character after the left
bracket is a circumflex (~), in which case the scanset contains all characters
that do not appear in the scanlist between the circumflex and the right
bracket. If the conversion specifier begins with [] or [~], the right bracket
character is in the scanlist and the next right bracket character is the match
ing right bracket that ends the specification; otherwise the first right bracket
character is the one that ends the specification.

A range of characters in the scanset may be represented by the construct first
- last; thus [0123456789] may be expressed [0-9]. Using this convention,
first must be lexically less than or equal to last, or else the dash will stand for
itself. The character - will also stand for itself whenever it is the first or the
last character in the scanlist. To include the right bracket as an element of
the scanset, it must appear as the first character (possibly preceded by a
circumflex) of the scanlist and in this case it will not be syntactically inter
preted as the closing bracket. At least one character must match for this
conversion to be considered successful.

p Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced by the %p conversion of
the printf function. The corresponding argument should be a pointer to
void. The interpretation of the input item is implementation-defined. If the
input item is a value converted earlier during the same program execution,
the pointer that results shall compare equal to that value; otherwise, the
behavior of the %p conversion is undefined.

C The wchar_t character arg is transformed into EVe, and then printed. Eve
(Extended UNIX Code) is a facility for handling character codes larger than
a byte. Eve consists of up to 4 code sets, designed to support internationali
zation features. If a field width is specified and the transformed Eve has
fewer bytes than the field width, it will by padded to the given width. A
precision specification is ignored, if specified.

S The arg is taken to be a wchar_t string and the wchar_t characters from the
string are transformed into EVe, and printed until a wchar_t null character
is encountered or the number of bytes shown by the precision specification
is printed. If the precision specification is missing, it is taken to be infinite,
and all wchar_t characters up to the first wchar_t null character are
transformed into Eve and printed. If a field width is specified and the

813

scanf(3S)

transformed EUC have fewer bytes than the field width, they are padded to
the given width.

The ASCII space character (Ox2 0) is used as a padding character.

If an invalid conversion character follows the %, the results of the operation may not
be predictable.

The conversion specifiers E, G, and x are also valid and, under the -xa and -xc com
pilation modes [see cc(l)], behave the same as e, g, and x, respectively. Under the
-Xt compilation mode, E, G, and X behave the same as Ie, 19, and lx, respectively.

Each function allows for detection of a language-dependent decimal-point character
in the input string. The decimal-point character is defined by the program's locale
(category LC_NtlMERIC). In the "c" locale, or in a locale where the decimal-point
character is not defined, the decimal-point character defaults to a period (.).

The scanf conversion terminates at end-of-file, at the end of the control string, or
when an input character conflicts with the control string.

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other
than leading white space, where permitted), execution of the current directive ter
minates with an input failure; otherwise, unless execution of the current directive is
terminated with a matching failure, execution of the following directive (if any) is
terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input char
acter is left unread in the input stream. Trailing white space (including newline
characters) is left unread unless matched by a directive. The success of literal
matches and suppressed assignments is not directly determinable other than via the
'Yon directive.

EXAMPLES

814

The call to the function scanf:

int i, n; float x; char name[50];
n = scanf ("'Yod.%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will
contain thompson\O.

The call to the function scanf:

int i; float x; char name[50];
(void) scanf ("%2d%f%*d %[0-9]", &i, &x, name);

with the input line:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the characters 56\0 in name.
The next character read from stdin will be a.

scanf(3S)

SEE ALSO
cc(l), strtod(3C), strtol(3C), printf(3S).

DIAGNOSTICS
These routines return the number of successfully matched and assigned input
items; this number can be zero in the event of an early matching failure between an
input character and the control string. If the input ends before the first matching
failure or conversion, EOF is returned.

815

secure rpc(3N)

NAME
secure_rpc: authdes_seccreate,authdes_getucred,getnetname,
host2netname,key_decryptsession,key_encryptsession,key_gendes,
key _setsecret, netname2host, netname2user, user2netname - library routines
for secure remote procedure calls

DESCRIPTION

816

RPC library routines allow C programs to make procedure calls on other machines
across the network. First, the client calls a procedure to send a data packet to the
server. Upon receipt of the packet, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

RPC supports various authentication flavors. Among them are:

AUTH_NONE (none) no authentication.
AUTH_SYS Traditional UNIX system-style authentication.
AUTH_DES DES encryption-based authentication.

The authdes_getucred and authdes_seccreate routines implement the
AUTH_DES authentication flavor. The keyserver daemon keyserv [see
keyserv(lM)] must be running for the AUTH_DES authentication system to work.

Routines
See rpc(3N) for the definition of the AUTH data structure.

#include <rpc/rpc.h>

int
authdes_getucred(const struct authdes_cred *adc, uid_t *uidp,

gid_t *gidp, short *gidlenp, gid_t *gidlist);

authdes_getucred is the first of the two routines which interface to the
RPC secure authentication system known as AUTH_DES. The second is
authdes_seccreate, below. authdes_getucred is used on the server side
for converting an AUTH_DES credential, which is operating system indepen
dent, into an AUTH_SYS credential. This routine returns 1 if it succeeds, 0 if
it fails.

*uidp is set to the user's numerical ID associated with adc. *gidp is set to the
numerical ID of the group to which the user belongs. *gidlist contains the
numerical IDs of the other groups to which the user belongs. *gidlenp is set
to the number of valid group ID entries in *gidlist [see netname2user,
below].

secure _rpc (3N)

AUTH *
authdes_seccreate(const char *name, const unsigned int window,

int

const char *timehost, const des_block *ckey);

authdes_seccreate, the second of two AUTH_DES authentication routines,
is used on the client side to return an authentication handle that will enable
the use of the secure authentication system. The first parameter name is the
network name, or netname, of the owner of the server process. This field usu
ally represents a hostname derived from the utility routine host2netname,
but could also represent a user name using user2netnam.e, described below.
The second field is window on the validity of the client credential, given in
seconds. A small window is more secure than a large one, but choosing too
small of a window will increase the frequency of resynchronizations because
of clock drift. The third parameter, timehost, the host's name, is optional. If it
is NULL, then the authentication system will assume that the local clock is
always in sync with the timehost clock, and will not attempt resynchroniza
tions. If a timehost is supplied, however, then the system will consult with
the remote time service whenever resynchronization is required. This
parameter is usually the name of the RPC server itself. The final parameter
ckey is also optional. If it is NULL, then the authentication system will gen
erate a random DES key to be used for the encryption of credentials. If ckey
is supplied, then it will be used instead.

getnetname (char name [MAXNETNAMELEN+ 1]) ;

int

getnetname installs the unique, operating-system independent netname of
the caller in the fixed-length array name. Returns 1 if it succeeds, and 0 if it
fails.

host2netname (char name [MAXNETNAMELEN+ 1], const char * host,

int

const char *domain);

Convert from a domain-specific hostname host to an operating-system
independent netname. Return 1 if it succeeds, and 0 if it fails. Inverse of
netname2host. If domain is NULL, host2netname uses the default domain
name of the machine. If host is NULL, it defaults to that machine itself.

key_decryptsession(const char *remotename, des_block *deskey);

key _decryptsession is an interface to the keyserver daemon, which is
associated with RPC's secure authentication system (AUTH_DES authentica
tion). User programs rarely need to call it, or its associated routines
key _encryptsession, key _gendes and key _setsecret.

key_decryptsession takes a server netname remotename and a DES key
deskey, and decrypts the key by using the the public key of the the server
and the secret key associated with the effective UID of the calling process. It
is the inverse of key _encryptsession.

817

secure _rpc (3N)

int
key_encryptsession(const char *remotename, des_block *deskey);

int

key _encryptsession is a keyserver interface routine. It takes a server net
name remotename and a DES key deskey, and encrypts it using the public key
of the the server and the secret key associated with the effective UID of the
calling process. It is the inverse of key_decryptsession. This routine
returns 0 if it succeeds, -1 if it fails.

key_gendes (des_block *deskey);

int

key _gendes is a keyserver interface routine. It is used to ask the keyserver
for a secure conversation key. Choosing one at random is usually not good
enough, because the common ways of choosing random numbers, such as
using the current time, are very easy to guess.

key_setsecret(const char *key);

int

key_set secret is a keyserver interface routine. It is used to set the key for
the effective UID of the calling process. this routine returns 0 if it succeeds,
-1 if it fails.

netname2host (const char *name, char *host, const int hostlen);

int

Convert from an operating-system independent netname name to a domain
specific hostname host. hostlen is the maximum size of host. Returns 1 if it
succeeds, and 0 if it fails. Inverse of host2netname.

netname2user (const char *name, uid_t *uidp, gid_t *gidp,

int

int *gidlenp, gid_t gidlist [NGROUPS]) ;

Convert from an operating-system independent netname to a domain
specific user ID. Returns 1 if it succeeds, and 0 if it fails. Inverse of
user2netname.

*uidp is set to the user's numerical ID associated with name. *gidp is set to
the numerical ID of the group to which the user belongs. gidlist contains the
numerical IDs of the other groups to which the user belongs. *gjdlenp is set
to the number of valid group ID entries in gidlist.

user2netname(char name[MAXNETNAMELEN+1], const uid_t uid,
const char *domain);

Convert from a domain-specific username to an operating-system indepen
dent netname. Returns 1 if it succeeds, and 0 if it fails. Inverse of
netname2user.

SEE ALSO
chkey(l), keyserv(lM), newkey(lM), rpc(3N), rpc_clnt_auth(3N)

818

select (3C)

NAME
select - synchronous IIO multiplexing

SYNOPSIS
#include <sys/time.h>
#include <sys/types.h>
#include <sys/select.h>

select (int nfds, fd_set *readfds, *writefds, *execptfds, struct
timeval *timeout);

FD_SET(int fd, fd_set fdset);
FD_CLR(int fd, fd_set fdset);
FD_ISSET(int fd, fd_set fdset);
FD_ZERO(fd_set fdset};

DESCRIPTION
select examines the I/O descriptor sets whose addresses are passed in readfds, wri
tefds, and execptfds to see if any of their descriptors are ready for reading, are ready
for writing, or have an exceptional condition pending, respectively. nfds is the
number of bits to be checked in each bit mask that represents a file descriptor; the
descriptors from 0 to nfds-1 in the descriptor sets are examined. On return,
select replaces the given descriptor sets with subsets consisting of those descrip
tors that are ready for the requested operation. The return value from the call to
select () is the number of ready descriptors.

The descriptor sets are stored as bit fields in arrays of integers. The following mac
ros are provided for manipulating such descriptor sets: FD_ZERO(&fdset} initializes
a descriptor set fdset to the null set. FD_SET <fd, &fdset} includes a particular
descriptor fd in fdset. FD_CLR<fd, &fdset} removes fd from fdset. FD_ISSET(fd,
&fdset} is nonzero if fd is a member of fdset, zero otherwise. The behavior of these
macros is undefined if a descriptor value is less than zero or greater than or equal to
FD_SETSIZE. FD_SETSIZE is a constant defined in sys/select.h and is normally
at least equal to the maximum number of descriptors supported by the system.

If timeout is not a NULL pointer, it specifies a maximum interval to wait for the selec
tion to complete. If timeout is a NULL pointer, the select blocks indefinitely. To
affect a poll, the timeout argument should be a non-NULL pointer, pointing to a
zero-valued timeval structure.

Any of readfds, writefds, and execptfds may be given as NULL pointers if no descrip
tors are of interest.

RETURN VALUE
select returns the number of ready descriptors contained in the descriptor sets or
-1 if an error occurred. If the time limit expires, then select returns O.

ERRORS
An error return from select indicates:

EBADF

EINTR

One of the II 0 descriptor sets specified an invalid II 0 descriptor.

A signal was delivered before any of the selected events occurred,
or the time limit expired.

819

select (3C)

EINVAL A component of the pointed-to time limit is outside the acceptable
range: t_sec must be between 0 and 108

, in~lusive. t_usec must
be greater-than or equal to 0, and less than 10 .

SEE ALSO

NOTES

820

poll(2), read(2), write(2)

The default value for FD_SETSIZE (currently 1024) is larger than the default limit on
the number of open files. In order to accommodate programs that may use a larger
number of open files with select, it is possible to increase this size within a pro
gram by providing a larger definition of FD_SETSIZE before the inclusion of
<sys/types .h>.

In future versions of the system, select may return the time remaining from the
original timeout, if any, by modifying the time value in place. It is thus unwise to
assume that the timeout value will be unmodified by the select call.

The descriptor sets are always modified on return, even if the call returns as the
result of a timeout.

send (3N)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>

int send (int s, char *msg, int len, int flags) ;

int sendto(int s, char *msg, int len, int flags, caddr_t to,
int tolen};

int sendmsg(int s, msghdr *msg, int flags} ;

DESCRIPTION
s is a socket created with socket. send, sendto, and sendmsg are used to transmit
a message to another socket. send may be used only when the socket is in a
connected state, while sendto and sendmsg may be used at any time.

The address of the target is given by to with tolen specifying its size. The length of
the message is given by len. If the message is too long to pass atomically through
the underlying protocol, then the error EMSGSIZE is returned, and the message is
not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate
some locally detected errors.

If no buffer space is available at the socket to hold the message to be transmitted,
then send normally blocks, unless the socket has been placed in non-blocking I/O
mode [see fcntl(2)]. The select call may be used to determine when it is possible
to send more data.

The flags parameter is formed by ORing one or more of the following:

MSG_OOB Send out-of-band data on sockets that support this notion.
The underlying protocol must also support out-of-band data.
Currently, only SOCK_STREAM sockets created in the AF _INET
address family support out-of-band data.

The SO_OONTROUTE option is turned on for the duration of the
operation. It is used only by diagnostic or routing programs.

See recv(3N) for a description of the msghdr structure.

RETURN VALUE
These calls return the number of bytes sent, or -1 if an error occurred.

ERRORS
The calls fail if:

EBADF

ENOTSOCK

EINVAL

EINTR

s is an invalid descriptor.

s is a descriptor for a file, not a socket.

to len is not the size of a valid address for the specified address
family.

The operation was interrupted by delivery of a signal before
any data could be buffered to be sent.

821

send (3N)

EMSGSIZE

EWOULDBLOCK

ENOMEM

ENOSR

The socket requires that message be sent atomically, and the
message was too long.

The socket is marked non-blocking and the requested opera
tion would block.

There was insufficient user memory available for the opera
tion to complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO

NOTES

822

connect(3N), fcntl(2), getsockopt(3N), recv(3N), socket(3N), write(2)

The type of address structure passed to accept depends on the address family.
UNIX domain sockets (address family AF _UNIX) require a sockaddr_un structure
as defined in sys/un.h; Internet domain sockets (address family AF_INET) require
a struct sockaddr_in structure as defined in netinet/in.h. Other address fam
ilies may require other structures. Use the structure appropriate to the address
family; cast the structure address to a generic caddr_t in the call to send and pass
the size of the structure in the to len argument.

setbuf(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (FILE *stream, char *buf);

int setvbuf (FILE *stream, char *buf, int type, size_t size) i

DESCRIPTION
setbuf may be used after a stream [see intro(3)] has been opened but before it is
read or written. It causes the array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is the NULL pointer input/output will be
completely unbuffered.

While there is no limitation on the size of the buffer, the constant BUFSIZ, defined
in the stdio. h header file, is typically a good buffer size:

char buf[BUFSIZ]i

setvbuf may be used after a stream has been opened but before it is read or writ
ten. type determines how stream will be buffered. Valid values for type (defined in
stdio. h) are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer is flushed when a newline
is written, the buffer is full, or input is requested.

causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to is used for buffering, instead of
an automatically allocated buffer. size specifies the size of the buffer to be used. If
input/ output is unbuffered, buf and size are ignored.

For a further discussion of buffering, see stdio(3S).

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S)

DIAGNOSTICS

NOTES

If an invalid value for type is provided, setvbuf returns a non-zero value. Other
wise, it returns zero.

A common source of error is allocating buffer space as an "automatic" variable in a
code block, and then failing to close the stream in the same block.

Parts of buf are used for internal bookkeeping of the stream and, therefore, buf
contains less than size bytes when full. It is recommended that the automatically
allocated buffer is used when using setvbuf.

823

setbuffer (3S) (BSO System Compatibility)

NAME
setbuffer, setlinebuf - (BSD) assign buffering to a stream

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <stdio.h>

setbuffer(FILE *stream, char *buf, int size);

setlinebuf (FILE *stream);

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buf
fered. When an output stream is unbuffered, information appears on the destina
tion file or terminal as soon as written; when it is block buffered many characters
are saved up and written as a block; when it is line buffered characters are saved up
until a NEWLINE is encountered or input is read from any line buffered input
stream. fflush (see fclose(3S)) may be used to force the block out early. Nor
mally all files are block buffered. A buffer is obtained from ma.lloc(3C) upon the
first getc or putc(3S) on the file.

By default, output to a terminal is line buffered, except for output to the standard
stream stderr which is unbuffered, and all other input/ output is fully buffered.

setbuffer can be used after a stream has been opened but before it is read or writ
ten. It uses the character array buf whose size is determined by the size argument
instead of an automatically allocated buffer. If buf is the NULL pointer,
input/ output will be completely unbuffered. A manifest constant BUFSIZ, defined
in the stdio. h header file, tells how big an array is needed:

char buf [BUFSIZ] ;

setlinebuf is used to change the buffering on a stream from block buffered or
unbuffered to line buffered. Unlike setbuffer, it can be used at any time that the
file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using
freopen (see fopen(3S)). A file can be changed from block buffered or line buf
fered to unbuffered by using freopen followed by setbuffer with a buffer argu
ment of NULL.

SEE ALSO

NOTE

824

fclose(3S), fopen(3S), fread(3S), getc(3S), ma.lloc(3C), printf(3S), putc(3S),
puts(3S), setbuf(3S)

A common source of error is allocating buffer space as an automatic variable in a
code block, and then failing to close the stream in the same block.

set cat (3C)

NAME
setcat - define default catalog

SYNOPSIS
#include <pfmt.h>

char * setcat (const char *catalog);

DESCRIPTION
The routine setcat defines the default message catalog to be used by subsequent
calls to get txt or pfmt that do not explicitly specify a message catalog.

catalog must be limited to 14 characters. These characters must be selected from a
set of all characters values, excluding \ 0 (null) and the ASCII codes for / (slash) and
: (colon).

setcat assumes that the catalog exists. No checking is done on the argument.

A null pointer passed as an argument will result in the return of a pointer to the
current default message catalog name. A pointer to an empty string passed as an
argument will cancel the default catalog.

If no default catalog is specified, or if catalog is an invalid catalog name, subsequent
calls to get txt or pfmt that do not explicitly specify a catalog name will use Mes
sage not found!! \n as the default string.

EXAMPLE
setcat("test");
gettxt(":10", "hello world\n")

SEE ALSO
environ(5), gettxt(3C), pfmt(3C), setlocale(3C)

DIAGNOSTICS
Upon success, setcat () returns a pointer to the catalog name. Upon failure,
set cat () returns a null pointer.

825

setjmp(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

setjmp saves its stack environment in env (whose type, jmp _buf, is defined in the
<setjmp.h> header file) for later use by longjmp. It returns the value o.
longjmp restores the environment saved by the last call of setjmp with the
corresponding envargument. After longjmp is completed, program execution con
tinues as if the corresponding call of setjmp had just returned the value val. (The
caller of setjmp must not have returned in the interim.) longjmp cannot cause
setjmp to return the value o. If longjmp is invoked with a second argument of 0,
setjmp will return 1. At the time of the second return from setjmp, all external
and static variables have values as of the time longjmp is called (see example). The
values of register and automatic variables are undefined.

Register or automatic variables whose value must be relied upon must be declared
as volatile.

EXAMPLE

826

#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>

jmp_buf env;
int i = 0;
main ()
{

}

gO
{

void exit();

if (setjmp(env) != 0) {
(void) printf ("value of i on 2nd return from setjmp: CYod\n", i);
exit(O);

(void) printf ("value of i on 1st return from setjmp: CYod\n", i);
i = 1;
gO;
/* NOTREACHED */

longjmp(env, 1);
/ * NOTREACHED * /

setjmp(3C)

If the a. out resulting from this C language code is run, the output will be:

value of i on 1st return from setjmp:O

value of i on 2nd return from setjmp:1

SEE ALSO

NOTES

signal(2), sigsetjmp(3C)

If longjmp is called even though env was never primed by a call to setjmp, or
when the last such call was in a function that has since returned, absolute chaos is
guaranteed.

827

setjmp (3) (BSD System Compatibility)

NAME
setjmp, longjmp, _setjmp, _longjmp, sigsetjmp, siglongjmp - (BSD) non-local
goto

SYNOPSIS
/usr/ucb/cc [flag ...] file ...

#include <setjmp.h>

int setjmp(jmp_buf env);

longjmp(jmp_buf env, int val);

int _setjmp(jmp_buf env);

_longjmp(jmp_buf env, int val);

int sigsetjmp(sigjmp_buf env, int savemask);

siglongjmp(sigjmp_buf env, int val);

DESCRIPTION

828

setjmp and longjmp are useful for dealing with errors and interrupts encountered
in a low-level subroutine of a program.

setjmp saves its stack environment in env for later use by longjmp. A normal call
to setjmp returns zero. setjmp also saves the register environment. If a longjmp
call will be made, the routine which called setjmp should not return until after the
longjmp has returned control (see below).

longjmp restores the environment saved by the last call of setjmp, and then returns
in such a way that execution continues as if the call of setjmp had just returned the
value val to the function that invoked setjmp; however, if val were zero, execution
would continue as if the call of setjmp had returned one. This ensures that a
"return" from setjmp caused by a call to longjmp can be distinguished from a reg
ular return from setjmp. The calling function must not itself have returned in the
interim, otherwise longjmp will be returning control to a possibly non-existent
environment. All memory-bound data have values as of the time longjmp was
called. The CPU and floating-point data registers are restored to the values they had
at the time that setjmp was called. But, because the register storage class is only
a hint to the C compiler, variables declared as register variables may not neces
sarily be assigned to machine registers, so their values are unpredictable after a
longjmp. This is especially a problem for programmers trying to write machine
independent C routines.

setjmp and longjmp save and restore the signal mask (see sigsetmask(3», while
_setjmp and _longjmp manipulate only the C stack and registers. If the savemask
flag to sigsetjmp is non-zero, the signal mask is saved, and a subsequent
siglongjmp using the same env will restore the signal mask. If the savemask flag is
zero, the signal mask is not saved, and a subsequent siglongjmp using the same
env will not restore the signal mask. In all other ways, _setjmp and sigsetjmp
function in the same way that setjmp does, and _longjmp and siglongjmp func
tion in the same way that longjmp does.

(BSD System Compatibility) setjmp (3)

None of these functions save or restore any floating-point status or control registers.

EXAMPLE
The following code fragment indicates the flow of control of the setjmp and
longjmp combination:

function declaration

my _envirorunent;

if (setjmp (my _envirorunent) }
/* register variables have unpredictable values */

code after the return from longjmp

else {
/* do not modify register vars in this leg of code */

this is the return from setjmp

SEE ALSO

NOTES

cc(l), setjmp(3C), signal(2), signal(3), sigsetmask(3), sigvec(3)

setjmp does not save the current notion of whether the process is executing on the
signal stack. The result is that a longjmp to some place on the signal stack leaves
the signal stack state incorrect.

On some systems setjmp also saves the register environment. Therefore, all data
that are bound to registers are restored to the values they had at the time that
setjmp was called. All memory-bound data have values as of the time longjmp
was called. However, because the register storage class is only a hint to the C
compiler, variables declared as register variables may not necessarily be assigned
to machine registers, so their values are unpredictable after a longjmp. When using
compiler options that specify automatic register allocation [see cc(l)], the compiler
will not attempt to assign variables to registers in routines that call setjmp.

longjmp never causes setjmp to return zero, so programmers should not depend
on longjmp being able to cause setjmp to return zero.

829

setlabel (3C)

NAME
set label - define the label for pfmt

SYNOPSIS
#include <pfmt.h>

int setlabel (const char *label);

DESCRIPTION
The routine setlabel defines the label for messages produced in standard format
by subsequent calls to pfmt and vpfmt.

label is a character string no more than 25 characters in length.

No label is defined before setlabel is called. A null pointer or an empty string
passed as argument will reset the definition of the label.

EXAMPLE
The following code (without previous call to setlabel):

pfmt(stderr, MM_ERROR, "test:2:Cannot open file\n");
set label ("UX: test ") ;
pfmt(stderr, MM_ERROR, "test:2:Cannot open file\n");

will produce the following output:
ERROR: Cannot open file
UX:test: ERROR: Cannot open file

SEE ALSO
getopt(3C), pfmt(3C)

DIAGNOSTICS

NOTES

830

setlabel returns 0 in case of success, non-zero otherwise.

The label should be set once at the beginning of a utility and remain constant.

getopt(3C) has been modified to report errors using the standard message format.
If setlabel is called before getopt, getopt will use that label. Otherwise, getopt
will use the name of the utility.

setlocale (3C)

NAME
setlocale - modify and query a program's locale

SYNOPSIS
#include <locale.h>

char *setlocale (int category, const char *locale);

DESCRIPTION
setlocale selects the appropriate piece of the program's locale as specified by the
category and locale arguments. The category argument may have the following
values: LC_CTYPE, LC_NUMERIC, LC_TlME, LC_COLLATE, LC_MONETARY,
LC_MESSAGES and LC_ALL. These names are defined in the locale. h header file.
LC_CTYPE affects the behavior of the character handling functions (isalpha,
tolower, and so on) and the multibyte character functions (such as mbtowc and
wctomb). LC_NUMERIC affects the decimal-point character for the formatted
input/ output functions and the string conversion functions as well as the non
monetary formatting information returned by localeconv [see localeconv(3C)].
LC_TlME affects the behavior of ascftime, cftime, getdate, and strftime.
LC_COLLATE affects the behavior of strcoll and strxfrm. LC_MONETARY affects
the monetary formatted information returned by localeconv. LC_MESSAGES
affects the behavior of get txt, catopen, catclose, and catgets [see catopen(3C)
and catgets(3C)]. LC_ALL names the program's entire locale.

Each category corresponds to a set of databases that contain the relevant informa
tion for each defined locale. The location of a database is given by the following
path, /usr/lib/locale/locale/category, where locale and category are the names of
locale and category, respectively. For example, the database for the LC_CTYPE
category for the "german" locale would be found in
/usr/lib/locale/german/LC_CTYPE.

A value of "c" for locale specifies the default environment.

A value of "" for locale specifies that the locale should be taken from environment
variables. The order in which the environment variables are checked for the vari
ous categories is given below:

Category 1st Env. Var.

LC_COLLATE: LC_COLLATE
LC_TlME: LC_TlME
LC_NUMERIC: LC_NUMERIC
LC_MONETARY: LC_MONETARY
LC_MESSAGES: LC_MESSAGES

At program startup, the equivalent of

set locale (LC_ALL, "C")

2nd Env. Var
LANG
LANG
LANG
LANG
LANG
LANG

is executed. This has the effect of initializing each category to the locale described
by the environment "C."

831

setlocale (3C)

FILES

If a pointer to a string is given for locale, setlocale attempts to set the locale for the
given category to locale. If setlocale succeeds, locale is returned. If set locale
fails, a null pointer is returned and the program's locale is not changed.

For category LC_ALL, the behavior is slightly different. If a pointer to a string is
given for locale and LC_ALL is given for category, setlocale attempts to set the
locale for all the categories to locale. The locale may be a simple locale, consisting of
a single locale, or a composite locale. A composite locale is a string beginning with
a slash (I) followed by the locale of each category separated by a slash. If
set locale fails to set the locale for any category, a null pointer is returned and the
program's locale for all categories is not changed. Otherwise, locale is returned.

A null pointer for locale causes setlocale to return the current locale associated
with the category. The program's locale is not changed.

/usr/lib/locale/C/LC_CTYPE
/usr/lib/locale/C/LC_NUMERIC
/usr/lib/locale/C/LC_TlME
/usr/lib/locale/C/LC_COLLATE
/usr/lib/locale/C/LC_MESSAGES
/usr /1 ib/ locale/ locale / category

LC_CTYPE database for the C locale
LC_NUMERIC database for the C locale
LC_TlME database for the C locale
LC_COLLATE database for the C locale
LC_MESSAGES database for the C locale
files containing the locale-specific informa
tion for each locale and category

SEE ALSO

832

ctime(3C), ctype(3C), environ(5), getdate(3C), gettxt(3C), localeconv(3C),
mbchar(3C), mbstring(3C), printf(3S), strcoll(3C), strftime(3C), strtod(3C),
strxfrm(3C)

(eso System Compatibility) setregid (3)

NAME
setregid - (BSD) set real and effective group IDs

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

int setregid {int rgid lint egid};

DESCRIPTION
setregid is used to set the real and effective group IDs of the calling process. If
rgid is -1, the real GID is not changed; if egid is -1, the effective GID is not changed.
The real and effective GIDs may be set to different values in the same calL

If the effective user ID of the calling process is super-user, the real GID and the effec
tive GID can be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real GID can
be set to the saved setGID from execv, or the effective GID can either be set to the
saved setGID or the real GID. Note: if a setGID process sets its effective GID to its real
GID, it can still set its effective GID back to the saved setGID.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

ERRORS
setregid will fail and neither of the group IDs will be changed if:

EPERM

SEE ALSO

The calling process's effective UID is not the super-user and a
change other than changing the real GID to the saved setGID, or
changing the effective GID to the real GID or the saved GID, was
specified.

exec(2), getuid(2), setreuid(3), setuid(2)

833

setreu id (3) (BSD System Compatibility)

NAME
setreuid - (BSD) set real and effective user IDs

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

int setreuid(int ruid, int euid);

DESCRIPTION
setreuid is used to set the real and effective user IDs of the calling process. If ruid
is -1, the real user ID is not changed; if euid is -1, the effective user ID is not
changed. The real and effective user IDs may be set to different values in the same
call.

If the effective user ID of the calling process is super-user, the real user ID and the
effective user ID can be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real user ID
can be set to the effective user ID, or the effective user ID can either be set to the
saved set-user ID from execv or the real user ID. Note: if a set-UID process sets its
effective user ID to its real user ID, it can still set its effective user ID back to the
saved set-user ID.

In either case, if the real user ID is being changed (that is, if ruid is not -1), or the
effective user ID is being changed to a value not equal to the real user ID, the saved
set-user ID is set equal to the new effective user ID.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

ERRORS
setreuid will fail and neither of the user IDs will be changed if:

EPERM The calling process's effective user ID is not the super-user and a
change other than changing the real user ID to the effective user ID,
or changing the effective user ID to the real user ID or the saved
set-user ID, was specified.

SEE ALSO
exec(2), getuid(2), setregid(3), setuid(2)

834

NAME
set_env - set the user's environment

SYNOPSIS
#include <ia.h>
#include <iaf.h>

int set_env(void};

DESCRIPTION

set_env (31)

The set_env routine sets the user's environment with information assumed to have
been passed via the Identification and Authentication Facility module and is
retrieved via the getava routine.

DIAGNOSTICS
The routine returns zero on success and non-zero if an error occurs.

SEE ALSO
getava(3I), login(l), shserv(lM)

835

NAME
set_id - set the user's identity

SYNOPSIS
#include <ia.h>
#include <iaf.h>

int set_id(char *namep);

DESCRIPTION
The set_id routine sets the user's identity which consists of user ID, group ID, sup
plemental group IDs, and audit mask (if the Auditing Utilities are installed).

The routine checks the value of namep to determine where to get the above informa
tion; if namep is non-NULL (that is, a login name), then it is used with the
ia_openinfo routine to access namep's information from the file
/etc/security/ia/master.

If namep is NULL then the information is assumed to have been passed via the
Identification and Authentication Facility module and is retrieved via the getava
routine.

DIAGNOSTICS
The routine returns zero on success and non-zero if an error occurs.

FILES
/etc/security/ia/master

SEE ALSO
getava(3I), ia_uinfo(3I)

836

shutdown (3N)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown{int s, int how);

DESCRIPTION
The shutdown call shuts down all or part of a full-duplex connection on the socket
associated with s. If how is 0, then further receives will be disallowed. If how is 1,
then further sends will be disallowed. If how is 2, then further sends and receives
will be disallowed.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOTCONN

ENOMEM

ENOSR

s is not a valid descriptor.

s is a file, not a socket.

The specified socket is not connected.

There was insufficient user memory available for the opera
tion to complete.

There were insufficient STREAMS resources available for the
operation to complete.

SEE ALSO
connect(3N), socket(3N)

NOTES
The how values should be defined constants.

837

sigblock (3) (BSD System Compatibility)

NAME
sigblock, sigmask - (BSD) block signals

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

#include <signal.h>

sigblock (int mask);

#define sigmask(signum)

DESCRIPTION
sigblock adds the signals specified in mask to the set of signals currently being
blocked from delivery. Signals are blocked if the appropriate bit in mask is a 1; the
macro sigmask is provided to construct the mask for a given signum. The previous
mask is returned, and may be restored using sigsetmask(3).

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently
imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigaction(2), signal(2), sigsetmask(3), sigvec(3)

838

(eso System Compatibility) sigfpe(3)

NAME
sigfpe - (BSD) signal handling for specific SIGFPE codes

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

#include <signal.h>

#include <fp.h>

sigfpe_handler_type sigfpe(sigfpe_code_type code, sigfpe_handler_type h~

DESCRIPTION
This function allows signal handling to be specified for particular SIGFPE codes. A
call to sigfpe defines a new handler hdl for a particular SIGFPE code and returns
the old handler as the value of the function sigfpe. Normally handlers are
specified as pointers to functions; the special cases SIGFPE_IGNORE, SIGFPE_ABORT,
and SIGFPE_DEFAULT allow ignoring, specifying core dump using abort(3C), or
default handling respectively.

For these IEEE-related codes:

FPE_FLTlNEX_TRAP
FPE_FLTDIV_TRAP
FPE_FLTUND_TRAP
FPE_FLTOVF_TRAP
FPE_FLTBSUN_TRAP
FPE_FLTOPERR_TRAP
FPE_FLTNAN_TRAP

fp_inexact
fp _division
fp _ underflow
fp _overflow
fp_invalid
fp_invalid
fp_invalid

floating inexact result
floating division by zero
floating underflow
floating overflow
branch or set on unordered
floating operand error
floating Not-A-Number

default handling is defined to be to call the handler specified to ieee_handler(3).

For all other SIGFPE codes, default handling is to core dump using abort(3C).

The compilation option -ffpa causes fpa recomputation to replace the default abort
action for code FPE_FPA_ERROR. Note: SIGFPE_DEFAULT will restore abort rather
than FPA recomputation for this code.

Three steps are required to intercept an IEEE-related SIGFPE code with sigfpe:

1. Set up a handler with sigfpe.

2. Enable the relevant IEEE trapping capability in the hardware, perhaps by
using assembly-language instructions.

3. Perform a floating-point operation that generates the intended IEEE
exception.

Unlike ieee_handler(3), sigfpe never changes floating-point hardware mode bits
affecting IEEE trapping. No IEEE-related SIGFPE signals will be generated unless
those hardware mode bits are enabled.

SIGFPE signals can be handled using sigvec(3), signal(3), sigfpe(3), or
ieee_handler(3). In a particular program, to avoid confusion, use only one of
these interfaces to handle SIGFPE signals.

839

sigfpe (3) (BSO System Compatibility)

EXAMPLE

FILES

A user-specified signal handler might look like this:

void sample_handler(sig, code, scp, addr
int sig ; /* sig == SIGFPE always */
int code ;
struct sigcontext *scp ;
char *addr

/*

*/

Sample user-written sigfpe code handler.
Prints a message and continues.
struct sigcontext is defined in <signal.h>.

printf (" ieee exception code 'YoX occurred at pc 'YoX \n II ,

code,scp->sc-pc);

and it might be set up like this:

extern void sample_handler;
main

/*
* save current overflow and invalid handlers; set the new
* overflow handler to sample_handler and set the new
* invalid handler to SIGFPE_ABORT (abort on invalid)
*/

/*

hdl = (sigfpe_handler_type) sample_handler;
old_handlerl sigfpe(FPE_FLTOVF_TRAP, hdl);
old_handler2 = sigfpe(FPE_FLTOPERR_TRAP, SIGFPE_ABORT);

* restore old overflow and invalid handlers
*/

sigfpe(FPE_FLTOVF_TRAP, old_handlerl};
sigfpe(FPE_FLTOPERR_TRAP, old_handler2};

/usr/ucbinclude/fp.h
/usr/ucbinclude/signal.h

SEE ALSO
abort(3C), floatingpoint(3), ieee_handler(3), signal(3), sigvec(3)

RETURN VALUE
sigfpe returns BADSIG if code is not zero or a defined SIGFPE code.

840

(BSD System Compatibility) siginterrupt (3)

NAME
siginterrupt - (BSD) allow signals to interrupt system calls

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

int siginterrupt (int sig I int flag) ;

DESCRIPTION

NOTES

siginterrupt is used to change the system call restart behavior when a system call
is interrupted by the specified signal. If the flag is false (0), then system calls will be
restarted if they are interrupted by the specified signal and no data has been
transferred yet. System call restart is the default behavior when the signal(3)
routine is used.

If the flag is true (1), then restarting of system calls is disabled. If a system call is
interrupted by the specified signal and no data has been transferred, the system call
will return -1 with ermo set to EINTR. Interrupted system calls that have started
transferring data will return the amount of data actually transferred.

Issuing a siginterrupt call during the execution of a signal handler will cause the
new action to take place on the next signal to be caught.

This library routine uses an extension of the sigvec(3) system call that is not avail
able in 4.2BSD, hence it should not be used if backward compatibility is needed.

RETURN VALUE
A 0 value indicates that the call succeeded. A -1 value indicates that an invalid sig
nal number has been supplied.

SEE ALSO
sigblock(3), signal(2), signal(3), sigpause(3), sigsetmask(3), sigvec(3)

841

signal (3) (BSD System Compatibility)

NAME
signal - (BSD) simplified software signal facilities

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <signal.h>

void (*signal(int S~, void *junc»();

DESCRIPTION

842

signal is a simplified interface to the more general sigvec(3) facility. Programs
that use signal in preference to sigvec are more likely to be portable to all
systems.

A signal is generated by some abnormal event, initiated by a user at a terminal
(quit, interrupt, stop), by a program error (bus error, and so on), by request of
another program (kill), or when a process is stopped because it wishes to access its
control terminal while in the background [see tennio(7)]. Signals are optionally
generated when a process resumes after being stopped, when the status of child
processes changes, or when input is ready at the control terminal. Most signals
cause termination of the receiving process if no action is taken; some signals instead
cause the process receiving them to be stopped, or are simply discarded if the pro
cess has not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the
signal call allows signals either to be ignored or to interrupt to a specified location.
The following is a list of all signals with names as in the include file signal. h:

SIGHUP hangup
SIGINT interrupt
SIGQUIT * quit
SIGILL * illegal instruction
SIGTRAP * trace trap
SIGABRT * abort (generated by abort(3C) routine)
SIGEMT * emulator trap
SIGFPE * arithmetic exception
SIGKILL kill (cannot be caught, blocked, or ignored)
SIGBUS * bus error
SIGSEGV * segmentation violation
SIGSYS * bad argument to system call
SIGPIPE write on a pipe or other socket with no one to read it
SIGALRM alarm clock
SIGTERM software termination signal
SIGURG • urgent condition present on socket
SIGSTOP t stop (cannot be caught, blocked, or ignored)
SIGTSTP t stop signal generated from keyboard
SIGCONT • continue after stop (cannot be blocked)
SIGCHLD • child status has changed
SIGTTIN t background read attempted from control terminal
SIGTTOU t background write attempted to control terminal
SIGIO • I/O is possible on a descriptor [see fcntl(2)]
SIGPWR • power fail/restart
SIGXCPU * cpu time limit exceeded [see getrlimit(2)
SIGXFSZ * file size limit exceeded [see getrlimit(2)

NOTES

SIGVTALRM
SIGPROF
SIGWINCH •
SIGUSRl
SIGUSR2

(BSD System Compatibility)

virtual time alarm [see getitimer(3C)
profiling timer alarm [see getitimer(3C)]
window changed [see termio(7)]
user-defined signal 1
user-defined signal 2

signal (3)

The starred signals in the list above cause a core image if not caught or ignored.

If June is SIG_DFL, the default action for signal sig is reinstated; this default is termi
nation (with a core image for starred signals) except for signals marked with. or t.
Signals marked with. are discarded if the action is SIG_DFL; signals marked with t
cause the process to stop. If June is SIG_IGN the signal is subsequently ignored and
pending instances of the signal are discarded. Otherwise, when the signal occurs
further occurrences of the signal are automatically blocked and June is called.

A return from the function unblocks the handled signal and continues the process
at the point it was interrupted.

If a caught signal occurs during certain system calls, terminating the call prema
turely, the call is automatically restarted. In particular this can occur during a
read(2) or write(2) on a slow device (such as a terminal; but not a file) and during
a wait(2).

The value of signal is the previous (or initial) value of June for the particular
signal.

After a fork(2) or vfork(2) the child inherits all signals. An execve [see exec(2)]
resets all caught signals to the default action; ignored signals remain ignored.

The handler routine can be declared:

void handler{sig, code, scp, addr)
int sig,' codei
struct sigcontext *SCPi

char *addri

Here sig is the signal number; code is a parameter of certain signals that provides
additional detail; scp is a pointer to the sigcontext structure (defined in
signal. h), used to restore the context from before the signal; and addr is additional
address information. See sigvec(3) for more details.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and
ermo is set to indicate the error.

ERRORS
signal will fail and no action will take place if one of the following occur:

EINVAL sig is not a valid signal number, or is SIGKILL or SIGSTOP.

SEE ALSO
exec(2), fork(2), getitimer(3C), getrlimit(2), kill(l), kill(2), ptrace(2),
read(2), setjmp(3), setjmp(3C), sigaction(2), sigblock(3), sigpause(3), sigset
mask(3), sigstack(3), sigvec(3), termio(7), wait(2), wait(3), write(2)

843

sigpause (3) (BSO System Compatibility)

NAME
sigpause - (BSD) automatically release blocked signals and wait for interrupt

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

sigpause (int sigmask> ;

DESCRIPTION
sigpause assigns sigmask to the set of masked signals and then waits for a signal to
arrive; on return the set of masked signals is restored. sigmask is usually a to indi
cate that no signals are now to be blocked. sigpause always terminates by being
interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(3), to begin a critical section,
variables modified on the occurrence of the signal are examined to determine that
there is no work to be done, and the process pauses awaiting work by using sig
pause with the mask returned by sigblock.

SEE ALSO
sigaction(2), sigblock(3), signal(2), signal(3), sigvec(3)

844

sigsetjrnp (3C)

NAME
sigsetjmp, siglongjmp - a non-local go to with signal state

SYNOPSIS
#include <setjmp.h>

int sigsetjmp (sigjmp_buf env lint savemask);

void siglongjmp (sigjmp_buf env I int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

sigsetjmp saves the calling process's registers and stack environment [see
sigaltstack(2)] in env (whose type, sigjmp_buf, is defined in the setjmp.h
header file) for later use by siglongjmp. If savemask is non-zero, the calling
process's signal mask [see sigprocmask(2)] and scheduling parameters [see
priocntl(2)] are also saved. sigsetjmp returns the value o.
siglongjmp restores the environment saved by the last call of sigsetjmp with the
corresponding env argument. After siglongjmp is completed, program execution
continues as if the corresponding call of sigsetjmp had just returned the value val.
siglongjmp cannot cause sigsetjmp to return the value zero. If siglongjmp is
invoked with a second argument of zero, sigsetjmp will return 1. At the time of
the second return from sigsetjmp, all external and static variables have values as
of the time siglongjmp is called. The values of register and automatic variables are
undefined. Register or automatic variables whose value must be relied upon must
be declared as volatile.

If a signal-catching function interrupts sleep and calls siglongjmp to restore an
environment saved prior to the sleep call, the action associated with SIGALRM and
time it is scheduled to be generated are unspecified. It is also unspecified whether
the SIGALRM signal is blocked, unless the process's signal mask is restored as part of
the environment.

The function siglongjmp restores the saved signal mask if and only if the env argu
ment was initialized by a call to the sigsetjmp function with a non-zero savemask
argument.

SEE ALSO

NOTES

getcontext(2), priocntl(2), setjmp(3C), sigaction(2), sigaltstack(2),
sigprocmask(2)

If siglongjmp is called even though env was never primed by a call to sigsetjmp,
or when the last such call was in a function that has since returned, the behavior is
undefined.

845

sigsetmask (3) (eSD System Compatibility)

NAME
sigsetmask - (BSD) set current signal mask

SYNOPSIS
/usr/ucb/cc [flag . ..] file ...

#include <signal.h>

sigsetmask (int mask);

#define sigmask(signum)

DESCRIPTION
sigsetmask sets the current signal mask (those signals that are blocked from
delivery). Signals are blocked if the corresponding bit in mask is a 1; the macro
sigmask is provided to construct the mask for a given signum.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT from being blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigblock(3), signal(2), signal(3), sigpause(3), sigvec(3)

846

NAME

sigsetops (3C)

sigsetops: sigemptyset, sigfillset, sigaddset, sigdelset, sigismember -
manipulate sets of signals

SYNOPSIS
#include <signal.h>

int sigemptyset (sigset_t *set);

int sigfillset (sigset_t *set);

int sigaddset (sigset_t *set, int signa) ;

int sigdelset (sigset_t *set, int signa);

int sigismember (const sigset_t *set, int signa) i

DESCRIPTION
These functions manipulate sigset _t data types, representing the set of signals sup
ported by the implementation.

sigemptyset initializes the set pointed to by set to exclude all signals defined by
the system.

sigfillset initializes the set pointed to by set to include all signals defined by the
system.

sigaddset adds the individual signal specified by the value of signa to the set
pointed to by set.

sigdelset deletes the individual signal specified by the value of signa from the set
pointed to by set.

sigismember checks whether the signal specified by the value of signa is a member
of the set pointed to by set.

Any object of type sigset _t must be initialized by applying either sigemptyset or
sigfillset before applying any other operation.

sigaddset, sigdelset and sigismember will fail if the following is true:

EINVAL The value of the signa argument is not a valid signal number.

sigfillset will dump a core file if the set argument specifies an invalid address.

SEE ALSO
sigaction(2), signal(5) sigpending(2), sigprocmask(2), sigsuspend(2)

DIAGNOSTICS
Upon successful completion, the sigismember function returns a value of one if the
specified signal is a member of the specified set, or a value of zero if it is not. Upon
successful completion, the other functions return a value of zero. Otherwise a value
of -1 is returned and ermo is set to indicate the error.

847

sigstack (3) (BSD System Compatibility)

NAME
sigstack - (BSD) set and/or get signal stack context

SYNOPSIS
/usr/ucb/cc [flag ...] file ...

#include <signal.h>

int sigstack (struct sigstack *88, struct sigstack *08S);

DESCRIPTION
sigstack allows users to define an alternate stack, called the "signal stack," on
which signals are to be processed. When a signal's action indicates its handler
should execute on the signal stack (specified with a sigvec(3) call), the system
checks to see if the process is currently executing on that stack. If the process is not
currently executing on the signal stack, the system arranges a switch to the signal
stack for the duration of the signal handler's execution.

A signal stack is specified by a sigstack structure, which includes the following
members:

char
int

*SS_SPi

ss_onstack;
/* signal stack pointer */
/* current status */

ss_sp is the initial value to be assigned to the stack pointer when the system
switches the process to the signal stack. Note that, on machines where the stack
grows downwards in memory, this is not the address of the beginning of the signal
stack area. ss_onstack field is zero or non-zero depending on whether the process
is currently executing on the signal stack or not.

If ss is not a NULL pointer, sigstack sets the signal stack state to the value in the
sigstack structure pointed to by ss. Note: if ss_onstack is non-zero, the system
will think that the process is executing on the signal stack. If ss is a NULL pointer,
the signal stack state will be unchanged. If 08S is not a NULL pointer, the current sig
nal stack state is stored in the sigstack structure pointed to by oss.

RETURN VALUE
Upon successful completion, a value of a is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
sigstack will fail and the signal stack context will remain unchanged if one of the
following occurs.

EFAULT Either S8 or oss points to memory that is not a valid part of the pro
cess address space.

SEE ALSO

NOTES

848

sigaltstack(2), signal(3), sigvec(3),

Signal stacks are not "grown" automatically, as is done for the normal stack. If the
stack overflows unpredictable results may occur.

(BSO System Compatibility) sigvec (3)

NAME
sigvec - (BSD) software signal facilities

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <signal.h>

int sigvec(int sig, struct sigvec *vec, struct sigvec *ovec)i

DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is blocked
from further occurrence, the current process context is saved, and a new one is
built. A process may specify a handler to which a signal is delivered, or specify that
a signal is to be blocked or ignored. A process may also specify that a default action
is to be taken by the system when a signal occurs. Normally, signal handlers exe
cute on the current stack of the process. This may be changed, on a per-handler
basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that
caused their invocation to be blocked, but other signals may yet occur. A global sig
nal mask defines the set of signals currently blocked from delivery to a process. The
signal mask for a process is initialized from that of its parent (normally 0). It may
be changed with a sigblock(3) or sigsetmask(3) call, or when a signal is delivered
to the process.

A process may also specify a set of flags for a signal that affect the delivery of that
signal.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process then it
is delivered to the process. When a signal is delivered, the current state of the pro
cess is saved, a new signal mask is calculated (as described below), and the signal
handler is invoked. The call to the handler is arranged so that if the signal handling
routine returns normally the process will resume execution in the context from
before the signal's delivery. If the process wishes to resume in a different context,
then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the dura
tion of the process' signal handler (or until a sigblock or sigsetmask call is
made). This mask is formed by taking the current signal mask, adding the signal to
be delivered, and ~Ring in the signal mask associated with the handler to be
invoked.

The action to be taken when the signal is delivered is specified by a sigvec struc
ture, which includes the following members:

void
int
int

(*sv_handler) ();
sv_mask;
sv_flags;

/* signal handler */
/* signal mask to apply */
/* see signal options */

#define SV_ONSTACK /* take signal on signal stack */
#define SV_INTERRUPT /* do not restart system on signal return */
#define SV_RESETHAND /* reset handler to SIG_DFL when signal taken */

849

sigvec (3) (BSD System Compatibility)

850

If the SV_ONSTACK bit is set in the flags for that signal, the system will deliver the
signal to the process on the signal stack specified with sigstack(3), rather than
delivering the signal on the current stack.

If vee is not a NULL pointer, sigvec assigns the handler specified by sv_handler,
the mask specified by sv_mask, and the flags specified by sv_flags to the specified
signal. If vee is a NULL pointer, sigvec does not change the handler, mask, or flags
for the specified signal.

The mask specified in vee is not allowed to block SIGKILL, SIGSTOP, or SIGCONT.
The system enforces this restriction silently.

If ovee is not a NULL pointer, the handler, mask, and flags in effect for the signal
before the call to sigvec are returned to the user. A call to sigvec with vee a NULL
pointer and ovee not a NULL pointer can be used to determine the handling informa
tion currently in effect for a signal without changing that information.

The following is a list of all signals with names as in the include file
/usr/include/signal.h:

SIGHUP hangup
SIGINT interrupt
SIGQUIT * quit
SIGILL * illegal instruction
SIGTRAP * trace trap
SIGABRT * abort (generated by abort(3C) routine)
SIGEMT * emulator trap
SIGFPE * arithmetic exception
SIGKILL kill (cannot be caught, blocked, or ignored)
SIGBUS * bus error
SIGSEGV * segmentation violation
SIGSYS * bad argument to system call
SIGPIPE write on a pipe or other socket with no one to read it
SIGALRM alarm clock
SIGTERM software termination signal
SIGURG • urgent condition present on socket
SIGSTOP t stop (cannot be caught, blocked, or ignored)
SIGTSTP t stop signal generated from keyboard
SIGCONT • continue after stop (cannot be blocked)
SIGCHLD • child status has changed
SIGTTIN t background read attempted from control terminal
SIGTTOU t background write attempted to control terminal
SIGIO • I/O is possible on a descriptor [see fcntl(2)]
SIGPWR • power fail/restart
SIGXCPU cpu time limit exceeded [see getrlimit(2)]
SIGXFSZ file size limit exceeded [see getrlimit(2)]
SIGVTALRM virtual time alarm [see getitimer(3C)]
SIGPROF profiling timer alarm [see getitimer(3C)]
SIGWINCH • window changed [see termio(7)]

SIGUSRl
SIGUSR2

(BSO System Compatibility)

user-defined signal 1
user-defined signal 2

sigvec (3)

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is
made, or an execve [see exec(2)] is performed, unless the SV_RESETHAND bit is set
in the flags for that signal. In that case, the value of the handler for the caught sig
nal will be set to SIG_DFL before entering the signal-catching function, unless the
signal is SIGILL, SIGPWR, or SIGTRAP. Also, if this bit is set, the bit for that signal in
the signal mask will not be set; unless the signal mask associated with that signal
blocks that signal, further occurrences of that signal will not be blocked. The
SV_RESETHAND flag is not available in 4.2BSD, hence it should not be used if back
ward compatibility is needed.

The default action for a signal may be reinstated by setting the signal's handler to
SIG_DFL; this default is termination except for signals marked with. or t. Signals
marked with. are discarded if the action is SIG_DFL; signals marked with t cause
the process to stop. If the process is terminated, a "core image" will be made in the
current working directory of the receiving process if the signal is one for which an
asterisk appears in the above list [see core(4)].

If the handler for that signal is SIG_IGN, the signal is subsequently ignored, and
pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, the call is normally restarted.
The call can be forced to terminate prematurely with an EINTR error return by set
ting the SV _INTERRUPT bit in the flags for that signal. The SV _INTERRUPT flag is not
available in 4.2BSD, hence it should not be used if backward compatibility is
needed. The affected system calls are read(2) or write(2) on a slow device (such as
a terminal or pipe or other socket, but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal
stack, and the restart/interrupt and reset-signal-handler flags.

The execve call [see exec(2)] resets all caught signals to default action and resets all
signals to be caught on the user stack. Ignored signals remain ignored; the signal
mask remains the same; signals that interrupt system calls continue to do so.

The accuracy of addr is machine dependent. For example, certain machines may
supply an address that is on the same page as the address that caused the fault. If
an appropriate addr cannot be computed it will be set to SIG_NOADDR.

RETURN VALUE
A a value indicates that the call succeeded. A -1 return value indicates that an error
occurred and ermo is set to indicate the reason.

ERRORS
sigvec will fail and no new signal handler will be installed if one of the following
occurs:

EFAULT Either vee or ovec is not a NULL pointer and points to memory that
is not a valid part of the process address space.

851

sigvec (3) (BSO System Compatibility)

EINVAL Sig is not a valid signal number, or, SIGKILL, or SIGSTOP.

SEE ALSO

NOTES

852

exec(2), fcntl(2), fork(2), getitimer(3C), getrlimit(2), ioctl(2), kill(2),
ptrace(2), read(2), setjmp(3), sigblock(3), signal(2), signal(3), sigpause(3),
sigsetmask(3), sigstack(3), streamio(7), termio(7), umask(2), wait(2), wait(3),
write(2)

SIGPOLL is a synonym for SIGIO. A SIGIO will be issued when a file descriptor
corresponding to a STREAMS [see intro(2)] file has a "selectable" event pending.
Unless that descriptor has been put into asynchronous mode [see fcntl(2)], a pro
cess must specifically request that this signal be sent using the I_SETSIG ioctl call
[see streamio(7)]. Otherwise, the process will never receive SIGPOLL.

The handler routine can be declared:

void handler{sig, code, scp, addr)
int sig, code;
struct sigcontext *scp;
char *addr;

Here sig is the signal number; code is a parameter of certain signals that provides
additional detail; scp is a pointer to the sigcontext structure (defined in
signal.h), used to restore the context from before the signal; and addr is additional
address information.

The signals SIGKILL and SIGSTOP cannot be ignored.

NAME

sinh (3M)

sinh, sinhf, cosh, coshf, tanh, tanhf, asinh, acosh, atanh - hyperbolic func
tions

SYNOPSIS
cc [!Zag . . .]file ... -1m [library . ..]

#inc1ude <math.h>

double sinh (double x) ;

float sinhf (float x) ;

double cosh (double x) ;

float coshf (float x) ;

double tanh (double x);

float tanhf (float x);

double asinh (double x);

double acosh (double x);

double atanh (double x);

DESCRIPTION
sinh, cosh, and tanh and the single-precision versions sinhf, coshf, and tanhf
return, respectively, the hyperbolic sine, cosine, and tangent of their argument.

asinh, acosh, and atanh return, respectively, the inverse hyperbolic sine, cosine,
and tangent of their argument.

SEE ALSO
cc(I), matherr(3M)

DIAGNOSTICS
sinh, sinhf, cosh, and coshf return a value that compares equal to HUGE (and
sinh and sinhf will return a value that compares equal to -HUGE for negative x)
when the correct value would overflow and set ermo to ERANGE.

acosh returns NaN and sets errno to EDOM when the argument x is less than 1. A
message indicating DOMAIN error is printed on the standard error output.

atanh returns NaN and sets ermo to EDOM if I x I ~ 1. If I x I = I, a message indicat
ing SING error is printed on the standard error output; if I x I > 1 the message will
indicate DOMAIN error.

Except when the -Xc compilation option is used [see cc(I)], these error-handling
procedures may be changed with the function matherr. When the -Xa or -Xc com
pilation options are used [see cc(I)], the returned value will compare equal to
HUGE_VAL instead of HUGE and no error messages are printed.

853

sleep (3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
#include <unistd.h>

unsigned sleep (unsigned seconds);

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested because any caught signal will terminate the sleep following execution
of that signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount because of the scheduling of other activity in the
system. The value returned by sleep will be the "unslept" amount (the requested
time minus the time actually slept) in case the caller had an alarm set to go off ear
lier than the end of the requested sleep time, or premature arousal because of
another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some
other signal) occurs. The previous state of the alarm signal is saved and restored.
The calling program may have set up an alarm signal before calling sleep. If the
sleep time exceeds the time until such alarm signal, the process sleeps only until
the alarm signal would have occurred. The caller's alarm catch routine is executed
just before the sleep routine returns. But if the sleep time is less than the time till
such alarm, the prior alarm time is reset to go off at the same time it would have
without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2), wait(2)

854

(eso System Compatibility) sleep (3)

NAME
sleep - (BSD) suspend execution for interval

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

sleep(unsigned seconds);

DESCRIPTION
sleep suspends the current process from execution for the number of seconds
specified by the argument. The actual suspension time may be up to 1 second less
than that requested, because scheduled wakeups occur at fixed 1-second intervals,
and may be an arbitrary amount longer because of other activity in the system.

sleep is implemented by setting an interval timer and pausing until it expires. The
previous state of this timer is saved and restored. If the sleep time exceeds the time
to the expiration of the previous value of the timer, the process sleeps only until the
timer would have expired, and the signal which occurs with the expiration of the
timer is sent one second later.

SEE ALSO
getitimer(3C), sigpause(3), usleep(3)

855

socket (3N)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socket (int domain, int type, int protocol);

DESCRIPTION

856

socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communi
cation will take place; this selects the protocol family which should be used. The
protocol family generally is the same as the address family for the addresses sup
plied in later operations on the socket. These families are defined in the include file
sys/socket.h. There must be an entry in the netconfig(4) file for at least each
protocol family and type required. If protocol has been specified, but no exact match
for the tuplet family, type, protocol is found, then the first entry containing the
specified family and type with zero for protocol will be used. The currently under
stood formats are:

UNIX system internal protocols

ARPA Internet protocols

The socket has the indicated type, which specifies the communication semantics.
Currently defined types are:

SOCK_STREAM

SOCK_DGRAM
SOCK_RAW

SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). A SOCK_SEQPACKET socket may provide a
sequenced, reliable, two-way connection-based data transmission path for
data grams of fixed maximum length; a consumer may be required to read an entire
packet with each read system call. This facility is protocol specific, and presently
not implemented for any protocol family. SOCK_RAW sockets provide access to
internal network interfaces. The types SOCK_RAW, which is available only to a
privileged user, and SOCK_RDM, for which no implementation currently exists, are
not described here.

protocol specifies a particular protocol to be used with the socket. Normally only a
single protocol exists to support a particular socket type within a given protocol
family. However, multiple protocols may exist, in which case a particular protocol
must be specified in this manner. The protocol number to use is particular to the
communication domain in which communication is to take place. If a protocol is
specified by the caller, then it will be packaged into a socket level option request
and sent to the underlying protocol layers.

socket (3N)

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A
stream socket must be in a connected state before any data may be sent or received
on it. A connection to another socket is created with a connect call. Once con
nected, data may be transferred using read and write calls or some variant of the
send and recv calls. When a session has been completed, a close may be per
formed. Out-of-band data may also be transmitted as described on the send(3N)
manual page and received as described on the recv(3N) manual page.

The communications protocols used to implement a SOCK_STREAM insure that data
is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, then
the connection is considered broken and calls will indicate an error with -1 returns
and with ETlMEOOUT as the specific code in the global variable errno. The proto
cols optionally keep sockets warm by forcing transmissions roughly every minute
in the absence of other activity. An error is then indicated if no response can be eli
cited on an otherwise idle connection for a extended period (for instance 5 minutes).
A SIGPIPE signal is raised if a process sends on a broken stream; this causes naive
processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets.
The only difference is that read calls will return only the amount of data requested,
and any remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents
named in sendto calls. Datagrams are generally received with recvfrom, which
returns the next datagram with its return address.

An fcntl call can be used to specify a process group to receive a SIGURG signal
when the out-of-band data arrives. It may also enable non-blocking I/O and asyn
chronous notification of I/O events with SIGIO signals.

The operation of sockets is controlled by socket level options. These options are
defined in the file sys/socket .h. setsockopt and getsockopt are used to set
and get options, respectively.

RETURN VALUE
A -1 is returned if an error occurs. Otherwise the return value is a descriptor
referencing the socket.

ERRORS
The socket call fails if:

EPROTONOSUPPORT The protocol type or the specified protocol is not supported
within this domain.

EMFILE The per-process descriptor table is full.

EACCESS Permission to create a socket of the specified type and/or
protocol is denied.

ENOMEM Insufficient user memory is available.

ENOSR There were insufficient STREAMS resources available to
complete the operation.

857

socket (3N)

SEE ALSO

858

accept (3N), bind(3N), c10se(2), connect(3N), fcnt1(2), getsockname(3N),
getsockopt(3N), ioct1(2), 1isten(3N), read(2), recv(3N), send(3N),
shutdown(3N), socketpair(3N), write(2)

socketpair (3N)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int socketpair(int d, int type, int protocol, int sv[2]);

DESCRIPTION
The socketpair library call creates an unnamed pair of connected sockets in the
specified address family d, of the specified type, and using the optionally specified
protocol. The descriptors used in referencing the new sockets are returned in sv[O]
and sv[l]. The two sockets are indistinguishable.

RETURN VALUE
socketpair returns a -Ion failure, otherwise it returns the number of the second
file descriptor it creates.

ERRORS
The call succeeds unless:

EMFILE Too many descriptors are in use by this process.

EAFNOSUPPORT The specified address family is not supported on this
machine.

EPROTONOSUPPORT The specified protocol is not supported on this machine.

EOPNOSUPPORT The specified protocol does not support creation of socket
pairs.

ENOMEM There was insufficient user memory for the operation to com
plete.

ENOSR There were insufficient STREAMS resources for the opera
tion to complete.

ENOBUF There was insufficient buffer space for the operation to com
plete.

SEE ALSO
pipe(2), read(2), write(2)

NOTES
This call is currently implemented only for the AF _UNIX address family.

859

spray (3N)

NAME
spray - scatter data in order to check the network

SYNOPSIS
#include <rpcsvc/spray.h>

DESCRIPTION
The spray protocol sends packets to a given machine to test the speed and reliability
of communications with that machine.

The spray protocol is not a C function interface, per se, but can be accessed using
the generic remote procedure calling interface clnt_call [see
rpc_clnt_calls(3N)]. The protocol sends a packet to the called host. The host
acknowledges receipt of the packet. The protocol counts the number of ack
nowledgments and can return that count.

The spray protocol currently supports the following procedures, which should be
called in the order given:

SPRAYPROC_CLEAR This procedure clears the counter.

SPRAYPROC_SPRAY This procedure sends the packet.

This procedure returns the count and the amount of time
since the last SPRAYPROC_CLEAR.

The following XDR routines are available in librpcsvc:

xdr_sprayarr
xdr_spraycumul

EXAMPLE

860

The following code fragment demonstrates how the spray protocol is used:

#include <rpc/rpc.h>
#include <rpcsvc/spray.h>

spraycumul spray_result;
sprayarr spray_data;
char buf[100]; /* arbitrary data */
int loop = 1000;
CLIENT *clnt;
struct timeval timeoutO = {O, OJ;
struct timeval timeout25 = {25, OJ;

spray_data.sprayarr_len (u_int) 100;
spray_data.sprayarr_val buf;

clnt = clnt_create("somehost", SPRAYPROG, SPRAYVERS, "netpath");
if (clnt == (CLIENT *)NULL) {

/* handle this error */

if (clnt_call(clnt, SPRAYPROC_CLEAR,
xdr_void, NULL, xdr_void, NULL, timeout25» {

/* handle this error */

SEE ALSO

spray (3N)

while (loop-- > 0) {
if (clnt_call(clnt, SPRAYPROC_SPRAY,

xdr_sprayarr, &spray_data, xdr_void, NULL, timeoutO» ~

1* handle this error *1

if (clnt_call(clnt, SPRAYPROC_GET,
xdr_void, NULL, xdr_spraycumul, &spray_result, timeout25» {

1* handle this error */

printf ("Acknowledged %ld of 1000 packets in eyed secs eyed usecs\n",
spray_result.counter,
spray_result.clock.sec,
spray_result.clock.usec);

rpc_clnt_calls(3N), spray(lM), sprayd(lM)

861

sputl (3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion

SYNOPSIS
cc [flag ...]file ... -lId [library ...]

#include <ldfcn.h>

void sputl (long value, char *buffer);

long sgetl (const char *bujfer);

DESCRIPTION

862

sputl takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by bujfer. The ordering of the bytes is the same
across all machines.

sgetl retrieves the four bytes in memory starting at the address pointed to by
bujfer and returns the long integer value in the byte ordering of the host machine.

The combination of sputl and sgetl provides a machine-independent way of stor
ing long numeric data in a file in binary form without conversion to characters.

ssignal (3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int {*ssignal (intsig, int (*action) (int») (int);

int gsignal (int sig) ;

DESCRIPTION
ssignal and gsignal implement a software facility similar to signal(2). This
facility is made available to users for their own purposes.

Software signals made available to users are associated with integers in the
inclusive range 1 through 17. A call to ssignal associates a procedure, action, with
the software signal sig; the software signal, sig, is raised by a call to gsignal. Rais
ing a software signal causes the action established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which
an action is to be established. The second argument defines the action; it is either
the name of a (user-defined) action function or one of the manifest constants
SIG_DFL (default) or SIG_IGN (ignore). ssignal returns the action previously esta
blished for that signal type; if no action has been established or the signal number is
illegal, ssignal returns SIG_DFL.

gsignal raises the signal identified by its argument, sig:

SEE ALSO

If an action function has been established for sig, then that action is reset to
SIG_DFL and the action function is entered with argument sig. gsignal
returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no
other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no
other action.

If sig has an illegal value or no action was ever specified for sig f gsignal
returns the value 0 and takes no other action.

raise(3C), signal(2)

863

stdio (3S)

NAME
stdio - standard buffered input/ output package

SYNOPSIS
#include <stdio.h>

FILE *stdin, *stdout, *stderr;

DESCRIPTION

864

The functions described in the entries of sub-class 3S of this manual constitute an
efficient, user-level I/O buffering scheme. The in-line macros getc and putc handle
characters quickly. The macros getchar and put char, and the higher-level
routines fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, gets,
getw, printf, puts, putw, and scanf all use or act as if they use getc and putc;
they can be freely intermixed.

A file with associated buffering is called a stream [see intro(3)] and is declared to
be a pointer to a defined type FILE. fopen creates certain descriptive data for a
stream and returns a pointer to designate the stream in all further transactions.
Normally, there are three open streams with constant pointers declared in the
stdio. h header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

The following symbolic values in unistd.h define the file descriptors that will be
associated with the C-Ianguage stdin, stdout and stderr when the application is
started:

STDIN_FILENO Standard input value, stdin. It has the value of O.
STDOUT_FI LENO Standard output value, stdout. It has the value of l.
STDERR_FILENO Standard error value, stderr. It has the value of 2.

A constant null designates a null pointer.

An integer-constant EOF (-1) is returned at end-of-file or error by most integer func
tions that deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

An integer constant FILENAME_MAX specifies the size needed for an array of char
large enough to hold the longest file name string that the implementation guaran
tees can be opened.

An integer constant FOPEN_MAX specifies the minimum number of files that the
implementation guarantees can be open simultaneously. Note that no more than
255 files may be opened via fopen, and only file descriptors 0 through 255 are valid.

Any program that uses this package must include the header file of pertinent macro
definitions, as follows:

#include <stdio.h>

stdio (3S)

The functions and constants mentioned in the entries of sub-class 35 of this manual
are declared in that header file and need no further declaration. The constants and
the following "functions" are implemented as macros (redeclaration of these names
is perilous): getc, get char, putc, put char, ferror, feof, clearerr, and fileno.
There are also function versions of getc, get char, putc, put char, ferror, feof,
clearerr, and fileno.

Output streams, except for the standard error stream stderr, are by default buf
fered if the output refers to a file and line-buffered if the output refers to a terminal.
The standard error output stream stderr is by default unbuffered, but use of
freopen [see fopen(35)] will cause it to become buffered or line-buffered. When an
output stream is unbuffered, information is queued for writing on the destination
file or terminal as soon as written; when it is buffered, many characters are saved
up and written as a block. When it is line-buffered, each line of output is queued
for writing on the destination terminal as soon as the line is completed (that is, as
soon as a new-line character is written or terminal input is requested). setbuf or
setvbuf [both described in setbuf(35)] may be used to change the stream's buffer
ing strategy.

SEE ALSO
close(2), ctermid(35), cuserid(35), fclose(35), ferror(35), fopen(35),
fread(35), fseek(35), getc(35), gets(3S), lseek(2), open(2), pipe(2), popen(35),
printf(3S), putc(3S), puts(3S), read(2), scanf(3S), setbuf(3S), system(35),
tmpfile(3S), tmpnam(35), ungetc(35), write(2)

DIAGNOSTICS

NOTES

Invalid stream pointers usually cause grave disorder, possibly including program
termination. Individual function descriptions describe the possible error
conditions.

Applications should restrict their use of the standard I/O package to the interfaces
documented on the Section 35 manual pages. They should not depend on
individual members of the internal structures found in stdio. h.

865

stdipc(3C)

NAME
stdipc: ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(const char *path, int id);

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be used
by the msgget(2), semget(2), and shmget(2) system calls to obtain interprocess
communication identifiers. One suggested method for forming a key is to use the
ftok subroutine described below. Another way to compose keys is to include the
project ID in the most significant byte and to use the remaining portion as a
sequence number. There are many other ways to form keys, but it is necessary for
each system to define standards for forming them. If some standard is not adhered
to, it will be possible for unrelated processes to unintentionally interfere with each
other's operation. It is still possible to interface intentionally. Therefore, it is
strongly suggested that the most significant byte of a key in some sense refer to a
project so that keys do not conflict across a given system.

ftok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. path must be the path name of an existing file
that is accessible to the process. id is a character that uniquely identifies a project.
Note that ftok will return the same key for linked files when called with the same
id and that it will return different keys when called with the same file name but dif
ferent ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2)

DIAGNOSTICS

NOTES

866

ftok returns (key_t) -1 if path does not exist or if it is not accessible to the pro
cess.

If the file whose path is passed to ftok is removed when keys still refer to the file,
future calls to ftok with the same path and id will return an error. If the same file is
recreated, then ftok is likely to return a different key than it did the original time it
was called.

str (3G)

NAME
str: strfind, strrspn, strtrns - string manipulations

SYNOPSIS
cc [flag . . .]file ... -lgen [library .. .]

#include <libgen.h>

int strfind (const char *asl, const char *as2);

char *strrspn (const char *string, const char *tc);

char *strtrns (const char *str, const char *old, const char *new,
char *result);

DESCRIPTION
strfind returns the offset of the second string, as2, if it is a substring of string asl.

strrspn returns a pointer to the first character in the string to be trimmed (all char
acters from the first character to the end of string are in tc).

strtrns transforms str and copies it into result. Any character that appears in old
is replaced with the character in the same position in new. The new result is
returned.

RETURN VALUES
If the second string is not a substring of the first string strfind returns -1.

EXAMPLES
/* find pointer to substring "hello" in asl */
i = strfind(asl, "hello"};

/* trim junk from end of string */
s2 = strrspn(sl, "*?#$%"};
*s2 = ' \0' ;

/* transform lower case to upper case */
al[] = "abcdefghijklmnopqrstuvwxyz";
a2 [] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
s2 = strtrns(sl, ai, a2, s2);

SEE ALSO
string(3C)

867

strccpy (3G)

NAME
strccpy, strcadd, strecpy, streadd - copy strings, compressing or expanding
escape codes

SYNOPSIS
cc [flag . . .]file '" -lgen [library . ..]

#include <libgen.h>

char *strccpy (char *output, const char *input) ;

char *strcadd (char *output, const char *input) i

char *strecpy (char *output, const char *input, const char
* exceptions) i

char *streadd (char *output, const char *input, const char
* exceptions) i

DESCRIPTION
strccpy copies the input string, up to a null byte, to the output string, compressing
the C-Ianguage escape sequences (for example, \n, \001) to the equivalent charac
ter. A null byte is appended to the output. The output argument must point to a
space big enough to accommodate the result. If it is as big as the space pointed to
by input it is guaranteed to be big enough. strccpy returns the output argument.

strcadd is identical to strccpy, except that it returns the pointer to the null byte
that terminates the output.

strecpy copies the input string, up to a null byte, to the output string, expanding
non-graphic characters to their equivalent C-Ianguage escape sequences (for exam
ple, \n, \001). The output argument must point to a space big enough to accommo
date the result; four times the space pointed to by input is guaranteed to be big
enough (each character could become \ and 3 digits). Characters in the exceptions
string are not expanded. The exceptions argument may be zero, meaning all non
graphic characters are expanded. strecpy returns the output argument

streadd is identical to strecpy, except that it returns the pointer to the null byte
that terminates the output.

EXAMPLES
/* expand all but newline and tab */
strecpy(output, input, "\n\t")i

/* concatenate and compress several strings */
cp strcadd(output, inputl);
cp strcadd(cp, input2)i
cp strcadd(cp, input3)i

SEE ALSO
str(3G), string(3C)

868

strcoll (3C)

NAME
strcoll - string collation

SYNOPSIS
#include <string.h>

int strcoll (const char *81, const char *82);

DESCRIPTION

FILES

strcoll returns an integer greater than, equal to, or less than zero in direct correla
tion to whether string 81 is greater than, equal to, or less than the string 82. The
comparison is based on strings interpreted as appropriate to the program's locale
for category LC_COLLATE [see setlocale(3C)].

Both strcoll and strxfnn provide for locale-specific string sorting. strcoll is
intended for applications in which the number of comparisons per string is small.
When strings are to be compared a number of times, strxfnn is a more appropriate
utility because the transformation process occurs only once.

/usr/lib/locale/locale/LC_COLLATE LC_COLLATE database for locale.

SEE ALSO
colltbl(lM), environ(5), setlocale(3C), string(3C), strxfnn(3C)

869

strerror (3C)

NAME
strerror - get error message string

SYNOPSIS
#include <string.h>

char *strerror (int errnum) ;

DESCRIPTION

FILES

strerror maps the error number in errnum to an error message string, and returns
a pointer to that string. strerror uses the same set of error messages as perror.
The returned string should not be overwritten.

Message catalog: uxsyserr

SEE ALSO
perror(3C)

870

strfti me (3C)

NAME
strftime, cftime, ascftime - convert date and time to string

SYNOPSIS
#include <time.h>

size_t *strftime (char *8, size_t max8ize, canst char *format,
canst struct tm *timeptr);

int cftime (char *8, char *format, canst time_t *clock);

int ascftime (char *8, canst char *format, canst struct tm
*timeptr) ;

DESCRIPTION
strftime, ascftime, and cftime place characters into the array pointed to by s as
controlled by the string pointed to by format. The format string consists of zero or
more directives and ordinary characters. All ordinary characters (including the ter
minating null character) are copied unchanged into the array. For strftime, no
more than max8ize characters are placed into the array.

If format is (char *)0, then the locale's default format is used. For strftime the
default format is the same as "%C ", for cftime and ascftime the default format is
the same as l'YoC". cftime and ascftime first try to use the value of the environ
ment variable CFT1ME, and if that is undefined or empty, the default format is used.

Each directive is replaced by appropriate characters as described in the following
list. The appropriate characters are determined by the LC_T1ME category of the
program's locale and by the values contained in the structure pointed to by timeptr
for strftime and ascftime, and by the time represented by clock for cftime.
%% same as %
'Yea locale's abbreviated weekday name
'YeA locale's full weekday name
'Yah locale's abbreviated month name
'YoB locale's full month name
%c locale's appropriate date and time representation
'YoC locale's date and time representation as produced by date(l)
'Yed day of month (01 - 31)
'Yon date as 'Yom/'Yed/%y
%e day of month (1-31; single digits are preceded by a blank)
'Yah locale's abbreviated month name.
'YaH hour (00 - 23)
%1 hour (01 - 12)
%j day number of year (001 - 366)
'Yom month number (01 - 12)
'YoM minute (00 - 59)
'YoIl same as new-line
%p locale's equivalent of either AM or PM
%r time as %1 : 'YoM: %S %p
'YeR time as 'YaH : 'YoM

871

strftime (3C)

%s seconds (00 - 61), allows for leap seconds
%t same as a tab
%T time as 'YaH: 'YoM: %s

%u week number of year (00 - 53), Sunday is the first day of week 1
%w weekday number (0 - 6), Sunday = a
%w week number of year (00 - 53), Monday is the first day of week 1
'YoX locale's appropriate date representation
'Y.,x locale's appropriate time representation
%y year within century (00 - 99)
%Y year as ccyy (for example, 1986)
%Z time zone name or no characters if no time zone exists

The difference between %u and %W lies in which day is counted as the first of the
week. Week number 01 is the first week in January starting with a Sunday for %U or
a Monday for %w. Week number 00 contains those days before the first Sunday or
Monday in January for %U and %w, respectively.

strftime, cftime, and ascftime return the number of characters placed into the
array pointed to by s not including the terminating null character. (If more than
maxsize characters would have been placed into the array, strftime returns zero
and the array content is indeterminate. If strftime, cftime, or ascftime overrun
the size of the array, the behavior is undefined.)

Selecting the Output's Language
By default, the output of strftime, cftime, and ascftime appear in U.s. English.
The user can request that the output of strftime, cftime, or ascftime be in a
specific language by setting the locale for category LC_TH:1E in setlocale.

Timezone
The timezone is taken from the environment variable TZ [see ctime(3C) for a
description of TZ].

EXAMPLES

FILES

The example illustrates the use of strftime. It shows what the string in str would
look like if the structure pointed to by tmptr contains the values corresponding to
Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "'YoA 'Yob 'Yed %j", tmptr)

This results in str containing "Thursday Aug 28 240".

/usr/lib/locale/locale/LC_TlME file containing locale-specific date and time
information

SEE ALSO
ctime(3C), environ(5), getenv(3C), setlocale(3C), strftime(4), timezone(4)

NOTE
cftime and ascftime are obsolete. strftime should be used instead.

872

NAME

string (3C)

string: strcat, strncat, strcmp, strncmp, strcpy, strncpy, strdup, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strtok, strstr - string operations

SYNOPSIS
#include <string.h>

char *strcat (char *sl, const char *s2);

char *strncat (char *sl, const char *s2, size_t n);

int strcmp (const char *sl, const char *s2);

int strncmp (const char *sl, const char *s2, size_t n);

char *strcpy (char *sl, const char *s2);

char *strncpy (char *sl, const char *s2, size_t n);

char *strdup (const char *sl);

size_t strlen (const char *s);

char *strchr (const char *s, int c);

char *strrchr (const char *s, int c);

char *strpbrk (const char *sl, const char *s2);

size_t strspn (const char *sl, const char *s2);

size_t strcspn (const char *sl, const char *s2);

char *strtok (char *sl, const char *s2);

char *strstr (const char *sl, const char *s2);

DESCRIPTION
The arguments s, sl, and s2 point to strings (arrays of characters terminated by a
null character). The functions strcat, strncat, strcpy, strncpy, and strtok. all
alter sl. These functions do not check for overflow of the array pointed to by sl.

strcat appends a copy of string s2, including the terminating null character, to the
end of string sl. strncat appends at most n characters. Each returns a pointer to
the null-terminated result. The initial character of s2 overrides the null character at
the end of 51.

strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, based upon whether 51 is lexicographically less than, equal to, or
greater than 52. strncmp makes the same comparison but looks at most n charac
ters. Characters following a null character are not compared.

strcpy copies string 52 to 51 including the terminating null character, stopping
after the null character has been copied. strncpy copies exactly n characters, trun
cating 52 or adding null characters to 51 if necessary. The result will not be null
terminated if the length of 52 is n or more. Each function returns 51.

strdup returns a pointer to a new string which is a duplicate of the string pointed
to by 51. The space for the new string is obtained using malloc(3C). If the new
string can not be created, a NULL pointer is returned.

873

string (3C)

strlen returns the number of characters in 8, not including the terminating null
character.

strchr (or strrchr) returns a pointer to the first (last) occurrence of c (converted
to a Char) in string 8, or a NULL pointer if c does not occur in the string. The null
character terminating a string is considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string 81 of any character from
string 82, or a NULL pointer if no character from 82 exists in 81.

strspn (or strcspn) returns the length of the initial segment of string 81 which
consists entirely of characters from (not from) string 82.

strtok considers the string 81 to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string 82. The first
call (with pointer 81 specified) returns a pointer to the first character of the first
token, and will have written a null character into 81 immediately following the
returned token. The function keeps track of its position in the string between
separate calls, so that subsequent calls (which must be made with the first argument
a NULL pointer) will work through the string 81 immediately following that token.
In this way subsequent calls will work through the string 81 until no tokens remain.
The separator string 82 may be different from call to call. When no token remains
in 81, a NULL pointer is returned.

strstr locates the first occurrence in string 81 of the sequence of characters (exclud
ing the terminating null character) in string 82. strstr returns a pointer to the
located string, or a null pointer if the string is not found. If 82 points to a string
with zero length (that is, the string 1111), the function returns 81.

SEE ALSO

NOTES

874

malloc(3C), setlocale(3C), strxfnn(3C)

All of these functions assume the default locale "C" For some locales, strxfnn
should be applied to the strings before they are passed to the functions.

(BSO System Compatibility) string (3)

NAME
string: strcasecmp, strncasecmp - (BSD) string operations

SYNOPSIS
/usr/ucb/cc [flag ...] file ...

int strcasecmp(char *81, char *82);

int strncasecmp(char *81, char *82, int n);

DESCRIPTION
The strcasecmp and strncasecmp routines compare the strings and ignore differ
ences in case. These routines assume the ASCII character set when equating lower
and upper case characters.

These functions operate on null-terminated strings. They do not check for overflow
of any receiving string.

SEE ALSO

NOTES

bstring(3), malloc(3C), string(3C)

strcasecmp and strncasecmp use native character comparison as above and
assume the ASCII character set.

875

strtod (3C)

NAME
strtod, strto1d, atof - convert string to double-precision number

SYNOPSIS
#inc1ude <std1ib.h>

double strtod (const char *nptr, char * *endptr) ;

long double strto1d (const char *nptr, char * *endptr) ;
double atof (const char *nptr);

DESCRIPTION
strtod returns as a double-precision floating-point number the value represented
by the character string pointed to by nptr. The string is scanned up to the first
unrecognized character.

strtod recognizes an optional string of "white-space" characters [as defined by
isspace in ctype(3C)], then an optional sign, then a string of digits optionally con
taining a decimal-point character [as specified by the current locale; see
set10ca1e(3C)], then an optional exponent part including an e or E followed by an
optional sign, followed by an integer.

If the value of endptr is not (char * *) NULL, a pointer to the character terminating
the scan is returned in the location pointed to by endptr. If no number can be
formed, *endptr is set to nptr, and zero is returned.

On the processors that support strto1d, this function is equivalent to strtod,
except that it returns a long double-precision floating-point number.

atof (nptr) is equivalent to:

strtod(nptr, (char **)NULL).

RETURN VALUES
If the correct value would cause overflow, a value that compares equal to ±HUGE is
returned (according to the sign of the value), and ermo is set to ERANGE.

If the correct value would cause underflow, zero is returned and ermo is set to
ERANGE.

When the -xc or -Xa compilation options are used [see cc(l)], a value that com
pares equal to ±HUGE_VAL is returned instead of ±HUGE.

SEE ALSO
cc(l), ctype(3C), scanf(3S), set10ca1e(3C), strto1(3C)

876

strtol (3C)

NAME
strtol, strtoul, atol, atoi - convert string to integer

SYNOPSIS
#include <stdlib.h>

long strtol (const char *str, char **ptr, int base);

unsigned long strtoul (const char *str, char **ptr, int base);

long atol (const char *str);

int atoi (const char *str);

DESCRIPTION
strtol returns as a long integer the value represented by the character string
pointed to by str. The string is scanned up to the first character inconsistent with
the base. Leading "white-space" characters [as defined by isspace in ctype(3C)]
are ignored.

If the value of ptr is not (char * *) NULL, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no integer can be formed, that
location is set to str, and zero is returned.

If base is between 2 and 36, inclusive, it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and "Ox" or "Ox" is ignored if base
is 16.

If base is zero, the string itself determines the base as follows: After an optional
leading sign a leading zero indicates octal conversion, and a leading "Ox" or "Ox"
hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

If the value represented by str would cause overflow, LONG_MAX or LONG_MIN is
returned (according to the sign of the value), and ermo is set to the value, ERANGE.

strtoul is similar to strtol except that strtoul returns as an unsigned long
integer the value represented by str. If the value represented by str would cause
overflow, ULONG_MAX is returned, and ermo is set to the value, ERANGE.

Except for behavior on error, atol (str) is equivalent to:

strtol(str, (char **)NULL, 10)

Except for behavior on error, atoi (str) is equivalent to:

(int) strtol(str, (char **)NULL, 10)

RETURN VALUES
If strtol is given a base greater than 36 or less than 2, it returns 0 and sets ermo to
EINVAL.

SEE ALSO

NOTES

ctype(3C), scanf(3S), strtod(3C)

strtol no longer accepts values greater than LONG_MAX as valid input. Use
strtoul instead.

877

strxfrm (3C)

NAME
strxfnn - string transformation

SYNOPSIS
#include <string.h>

size_t strxfnn (char *51, const char *52, size_t n) ;

DESCRIPTION
strxfnn transforms the string 52 and places the resulting string into the array 51.
The transformation is such that if strCIlq) is applied to two transformed strings, it
returns a value greater than, equal to, or less than zero, corresponding to the result
of the strcoll function applied to the same two original strings. The transforma
tion is based on the program's locale for category LC_COLLATE [see
setlocale(3C)] .

No more than n characters will be placed into the resulting array pointed to by 51,
including the terminating null character. If n is 0, then 51 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is
undefined.

strxfnn returns the length of the transformed string (not including the terminating
null character). If the value returned is n or more, the contents of the array 51 are
indeterminate.

RETURN VALUES
On failure, strxfnnreturns (size_t) -l.

EXAMPLES

FILES

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by 5.

1 + strxfnn(NULL, s, 0);

/usr/lib/locale/locale/LC_COLLATE LC_COLLATE database for locale.

SEE ALSO
colltbl(lM), environ(5), setlocale(3C), strcoll(3C), string(3C)

878

swab (3C)

NAME
swab - swap bytes

SYNOPSIS
#include <stdlib.h>

void swab {const char *from, char *to, int nbytes};

DESCRIPTION
swab copies nbytes bytes pointed to by from to the array pointed to by to, exchang
ing adjacent even and odd bytes. nbytes should be even and non-negative. If nbytes
is odd and positive, swab uses nbytes-l instead. If nbytes is negative, swab does
nothing.

879

syscall (3) (BSC System Compatibility)

NAME
syscall- (BSD) indirect system call

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/syscall.h>

int syscall (int number, int arg, . . .);

DESCRIPTION
syscall performs the system call whose assembly language interface has the
specified number, and arguments arg Symbolic constants for system calls can be
found in the header file /usr/include/sys/syscall.h.

RETURN VALUES
When the C-bit is set, syscall returns -1 and sets the external variable errno [see
intro(2)].

SEE ALSO
intro(2), pipe(2)

880

sysconf (3C)

NAME
sysconf - get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
The sysconf function provides a method for the application to determine the
current value of a configurable system limit or option (variable).

The name argument represents the system variable to be queried. The following
table lists the minimal set of system variables from limits.h and unistd.h that
can be returned by sysconf, and the symbolic constants, defined in unistd.h that
are the corresponding values used for name.

NAME

_SC_ARG_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_JOB_CONTROL
_SC_LOGNAME_MAX
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PAGESIZE
_SC_PASS_MAX
_SC_SAVED_IDS
_SC_VERSION
_SC_XOPEN_VERSION

RETURN VALUE

ARG_MAX
CHILD_MAX
CLK_TCK
_POSIX_JOB_CONTROL
LOGNAME_MAX
NGROUPS_MAX
OPEN_MAX
PAGESIZE
PASS_MAX
_POSIX_SAVED_IDS
_POSIX_VERSION
_XOPEN_VERSION

The value of CLK_TCK may be variable and it should not be assumed that CLK_TCK
is a compile-time constant. The value of CLK_TCK is the same as the value of
sysconf(_SC_CL~TCK).

RETURN VALUES
If name is an invalid value, sysconf will return -1 and set ermo to indicate the
error. If sysconf fails due to a value of name that is not defined on the system, the
function will return a value of -1 without changing the value of ermo.

SEE ALSO

NOTES

fpathconf(2), getrlimit(2)

A call to setrlimit [see getrlimit(2)] may cause the value of OPEN_MAX to
change.

881

syslog (3) (BSO System Compatibility)

NAME
syslog, openlog, closelog, setlogmask - (BSD) control system log

SYNOPSIS
#include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

void syslog (int priority, const char * message , . . . / * parameters * /) ;
void closelog () ;

int setlogmask (int maskpri);

DESCRIPTION

882

syslog passes message to syslogd(lM), which logs it in an appropriate system log,
writes it to the system console, forwards it to a list of users, or forwards it to the
syslogd on another host over the network. The message is tagged with a priority
of priority. The message looks like a printf(3S) string except that %m is replaced by
the current error message (collected from ermo). A trailing NEWLINE is added if
needed.

Priorities are encoded as a facility and a level. The facility describes the part of the
system generating the message. The level is selected from an ordered list:

LOG_EMERG A panic condition. This is normally broadcast to all
users.

LOGJ:RR

A condition that should be corrected immediately,
such as a corrupted system database.

Critical conditions, such as hard device errors.

Errors.

Warning messages.

Conditions that are not error conditions, but that may
require special handling.

Informational messages.

Messages that contain information normally of use
only when debugging a program.

If special processing is needed, openlog can be called to initialize the log file. The
parameter ident is a string that is prepended to every message. logopt is a bit field
indicating logging options. Current values for logopt are:

Log the process ID with each message. This is useful
for identifying specific daemon processes (for dae
mons that fork).

Write messages to the system console if they cannot
be sent to syslogd. This option is safe to use in dae
mon processes that have no controlling terminal,
since syslog forks before opening the console.

(850 System Compatibility) syslog (3)

Open the connection to syslogd immediately. Nor
mally the open is delayed until the first message is
logged. This is useful for programs that need to
manage the order in which file descriptors are allo
cated.

Delay open until syslog () is called.

LOG_NOWAIT Do not wait for child processes that have been forked
to log messages onto the console. This option should
be used by processes that enable notification of child
termination using SIGCHLD, since syslog may other
wise block waiting for a child whose exit status has
already been collected.

The facility parameter encodes a default facility to be assigned to all messages that
do not have an explicit facility already encoded:

LOG_MAIL

LOG_DAEMON

LOG_AUTH

Messages generated by the kernel. These cannot be
generated by any user processes.

Messages generated by random user processes. This
is the default facility identifier if none is specified.

The mail system.

System daemons, such as ftpd(lM), routed(lM), etc.

The authorization system: login(l), su(lM),
getty(lM), etc.

Messages generated internally by syslogd.

The line printer spooling system: lpr(l), lpc(lM),
etc.

Reserved for the USENET network news system.

Reserved for the UUCP system; it does not currently
use syslog.

The log alert facility.

The cron/ at facility; crontab(l), at(l), cron(lM),
etc.

Reserved for local use.

closelog can be used to close the log file.

setlogmask sets the log priority mask to maskpri and returns the previous mask.
Calls to syslog with a priority not set in maskpri are rejected. The mask for an indi
vidual priority pri is calculated by the macro LOG_MASK (pri) ; the mask for all prior
ities up to and including toppri is given by the macro LOG_UPTO(toppri). The
default allows all priorities to be logged.

EXAMPLE
This call logs a message at priority LOG_ALERT:

syslog(LOO_ALERT, "who: internal error 23");

883

syslog (3) (BSO System Compatibility)

The FTP daemon, ftpd, would make this call to openlog to indicate that all
messages it logs should have an identifying string of ftpd, should be treated by
syslogd as other messages from system daemons are, and should include the
process ID of the process logging the message:

openlog ("ftpd", LOG_PID, LOG_DAEMON);

Then it would make the following call to setlogmask to indicate that messages at
priorities from LOG_EMERG through LOG_ERR should be logged, but that no
messages at any other priority should be logged:

setlogmask (LOG_UPTO(LOG_ERR));

Then, to log a message at priority LOG_INFO, it would make the following call to
syslog:

syslog(LOG_INFO, "Connection from host 9--od,", CallingHost);

A locally-written utility could use the following call to syslog to log a message at
priority LOG_INFO, to be treated by syslogd as other messages to the facility
LOG_L0CAL2 are treated:

syslog(LOG_INFOILOG_LOCAL2, "error: %m");

SEE ALSO

884

at(l), cron(lM), crontab(l), ftpd(lM), getty(lM), logger(l), login(l), Ipc(lM),
Ipr(l), printf(3S), routed(lM), su(lM), syslogd(lM)

system (3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdlib.h>

int system (const char *string);

DESCRIPTION
system causes the string to be given to the shell [see sh(l)] as input, as if the string
had been typed as a command at a terminal. The current process waits until the
shell has completed, then returns the exit status of the shell. You can extract infor
mation from the return value of the exit status by using the wstat(5) command.

If string is a NULL pointer, system checks if / sbin/ sh exists and is executable. If
/ sbin/ sh is available, system returns non-zero; otherwise it returns zero.

system fails if one or more of the following are true:

EAGAIN The system-imposed limit on the total number of processes under exe
cution by a single user would be exceeded.

EINTR

ENOMEM

SEE ALSO

system was interrupted by a signal.

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

exec(2), sh(l), wstat(5)

DIAGNOSTICS
system forks to create a child process that in turn execs / sbin/ sh in order to exe
cute string. If the fork or exec fails, system returns -1 and sets ermo.

885

tam (3curses)

NAME
tam - TAM transition libraries

SYNOPSIS
#include <tam.h>

cc -I /usr/include/tam fflags] files -ltam -lcurses [libraries]

DESCRIPTION

886

These routines are used to port UNIX PC character-based TAM programs to any
machine so that they will run using any terminal supported by curses(3curses), the
low-level ETI library. Once a TAM program has been changed to remove machine
specific code, it can be recompiled with the standard TAM header file <tam.h> and
linked with the TAM transition and curses(3curses) libraries.

FUNCTIONS
The following is a list of TAM routines supplied in the transition library. Those rou
tines marked with a dagger (t) are macros and do not return a value. For a com
plete description of each routine, see the references below.

Routines Description

addcht, addstrt see curses(3curses)

adf_gttok converts word to token

adf_gtwrd Gets next word from string and copies it
to buffer

adf_gtxcd gets next text code from string and copies
it to buffer

attroff, attron, baudrate, see curses(3curses)
beep, cbreak, clear,
clearokt, clrtobot, clrtoeol,
delch, deleteln, echo,
endwin, eraset,

exhelp see message(lF)

fixterm, flasht, flushinp see curses(3curses)

form see forms (3curses)

getch, getyxt, initscr, see curses(3curses)
insch, insert In

iswind always returns a
kcodernap, keypad, leaveokt see curses(3curses)

menu see menus (3curses)

message, mtype see message(lF)

tam (3curses)

Routines Description

movet, mvaddcht, see curses(3curses)
mvaddstrt, mvinch

nIt, nocbreak, node lay, not supported
noecho

nonlt not supported

pb_check Checks whether paste buffer is empty or
not

pb_empty Clears out the paste buffer and closes it

pb_gOOf Reads pate buffer file into buffer

pb_gets Reads paste buffer file, converts it to text

pb_name Gets name of paste buffer file

pb_open Opens/ creates the paste buffer file

pb-puts Outputs the string to the paste buffer in
ADF format

pb_seek Seeks to end of paste buffer file and sets
for append

pb_weof Outputs "EOF" string to paste buffer and
closes the file

printw, refresht, resettenn, see curses(3curses)
resetty, savetty

track, track_t maps to wgetc in the current window

wcmd Outputs a null- terminated string to the
entry / echo line.

wcreate creates a window

wdelete deletes the specified window

wexit deletes all windows and exits

wgetc gets the keyboard input

wgetmouse no-op; returns a
wgetpos Gets the current position (row, column) of

the cursor in the specified window (wn).

wgetsel returns the currently selected window

887

tam (3curses)

Routines Description

wgetstat returns the information in WSTAT for a
window

wgoto moves the window's cursor to a specified
row, column

wicoff no-op; returns 0

wi con no-op; returns 0

wind creates a window of specific height and
width and loads it with the specified fonts

winit Sets up the process for window access

wlabel, wndelay, wnl outputs a null-terminated string to the
window label area

wpostwait Reverses the effects of wprexec.

wprexec Performs the appropriate actions for pass-
ing a window to a child process.

wprintf, wprompt Outputs a null-terminated string to the
prompt line.

wputc Outputs a character to a window.

wputs Outputs a character string to a window.

wrastop not supported

wreadmouse no-op; returns 0

wrefresh Flushes all output to the window.

wselect Selects the specified window as the
current or active one.

wsetmouse no-op; returns 0

wsetstat Sets the status for a window.

wslk Writes a null-terminated string to a set of
screen-labeled keys.

wslk Writes a null-terminated string to a
screen-labeled key. The alternate form
writes all the screen-labeled keys at once
more efficiently.

wuser notsu pp orted

888

tcsetpgrp (3C)

NAME
tcsetpgrp - set terminal foreground process group ID

SYNOPSIS
#include <unistd.h>

int tcsetpgrp (int fildes, pid_t pgid) ;

DESCRIPTION
tcsetpgrp sets the foreground process group ID of the terminal specified by fildes
to pgid. The file associated with fildes must be the controlling terminal of the calling
process and the controlling terminal must be currently associated with the session
of the calling process. The value of pgid must match a process group ID of a process
in the same session as the calling process.

tcsetpgrp fails if one or more of the following is true:

EBADF The fildes argument is not a valid file descriptor.

EINVAL

ENOTTY

EPERM

SEE ALSO
tennio(7)

DIAGNOSTICS

The fildes argument is a terminal that does not support tcsetpgrp,
or pgid is not a valid process group ID.

The calling process does not have a controlling terminal, or the file
is not the controlling terminal, or the controlling terminal is no
longer associated with the session of the calling process.

pgid does not match the process group ID of an existing process in
the same session as the calling process.

Upon successful completion, tcsetpgrp returns a value of O. Otherwise, a value of
-1 is returned and ermo is set to indicate the error.

889

times (3C) (eso System Compatibility)

NAME
times - (BSD) get process times

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

#include <sys/types.h>
#include <sys/times.h>

times (struct tms *buffer>;

DESCRIPTION
times returns time-accounting information for the current process and for the ter
minated child processes of the current process. All times are in 11HZ seconds,
where HZ is 60.

This is the structure returned by times:
struct tms {

};

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

/* user time */
/* system time */
/* user time, children */
/* system time, children */

The children's times are the sum of the children's process times and their children's
times.

SEE ALSO
getrusage(3), time(l), time(2), wait(2), wait(3)

NOTES
times has been superseded by getrusage.

890

(BSC System Compatibility) timezone (3)

NAME
timezone - (BSD) get time zone name given offset from GMT

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

char *timezone (int zone, int dst) ;

DESCRIPTION
timezone attempts to return the name of the time zone associated with its first
argument, which is measured in minutes westward from Greenwich. If the second
argument is 0, the standard name is used, otherwise the Daylight Savings Time ver
sion. If the required name does not appear in a table built into the routine, the
difference from GMT is produced; for instance, in Afghanistan
timezone (- (60*4+30), O) is appropriate because it is 4:30 ahead of GMT and the
string GMT+4: 30 is produced.

SEE ALSO
ctime(3C)

NOTES
The offset westward from Greenwich and an indication of whether Daylight Sav
ings Time is in effect may not be sufficient to determine the name of the time zone,
as the name may differ between different locations in the same time zone. Instead
of using timezone to determine the name of the time zone for a given time, that
time should be converted to a struct tm using localtime [see ctime(3C)] and the
tm_zone field of that structure should be used. timezone is retained for compati
bility with existing programs.

891

tmpfile (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile (void);

DESCRIPTION
tmpfile creates a temporary file using a name generated by the tmpnam routine
and returns a corresponding FILE pointer. If the file cannot be opened, a NULL
pointer is returned. The file is automatically deleted when the process using it
terminates or when the file is closed. The file is opened for update ("w+").

SEE ALSO

892

creat(2), fopen(3S), mktemp(3C), open(2), perror(3C), stdio(3S), tmpnam(3S),
unlink(2)

tmpnam(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (char *5);

char *tempnam (const char *dir, const char *pfx);

DESCRIPTION

FILES

These functions generate file names that can safely be used for a temporary file.

tmpnam always generates a file name using the path-prefix defined as p _tmpdir in
the stdio. h header file. If 5 is NULL, tmpnam leaves its result in an internal static
area and returns a pointer to that area. The next call to tmpnam will destroy the con
tents of the area. If 5 is not NULL, it is assumed to be the address of an array of at
least L_tmpnam bytes, where L_tmpnam is a constant defined in stdio.h; tmpnam
places its result in that array and returns 5.

tempnam allows the user to control the choice of a directory. The argument dir
points to the name of the directory in which the file is to be created. If dir is NULL or
points to a string that is not a name for an appropriate directory, the path-prefix
defined as P _tmpdir in the stdio. h header file is used. If that directory is not
accessible, /tmp will be used as a last resort. This entire sequence can be up-staged
by providing an environment variable TMPDIR in the user's environment, whose
value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter
sequences in their names. Use the pfx argument for this. This argument may be
NULL or point to a string of up to five characters to be used as the first few charac
ters of the temporary-file name.

tempnam uses malloc to get space for the constructed file name, and returns a
pointer to this area. Thus, any pointer value returned from tempnam may serve as
an argument to free [see malloc(3C)]. If tempnam cannot return the expected
result for any reason- for example, malloc failed-or none of the above men
tioned attempts to find an appropriate directory was successful, a NULL pointer will
be returned.

tempnam fails if there is not enough space.

p_tmpdir /var/tmp

SEE ALSO

NOTES

creat(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S), unlink(2)

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are temporary only in
the sense that they reside in a directory intended for temporary use, and their
names are unique. It is the user's responsibility to remove the file when its use is
ended.

893

tmpnam(3S)

894

If called more than TMP_MAX (defined in stdio.h) times in a single process, these
functions start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for some
other process to create a file with the same name. This can never happen if that
other process is using these functions or mktemp and the file names are chosen to
render duplication by other means unlikely.

NAME

trig (3M)

trig: sin, sinf, cos, cosf, tan, tanf, asin, asinf, acos, acosf, atan, atanf,
atan2, atan2f - trigonometric functions

SYNOPSIS
cc fflag .. .]file ... -1m [library . ..]

#inc1ude <math.h>

double sin (double x);

float sinf (float x);

double cos (double x);

float cosf (float x);

double tan (double x);

float tanf (float x);

double asin (double x);

float asinf (float x) ;

double acos (double x);

float acosf (float x);

double atan (double x);

float atanf (float x);

double atan2 (doub1ey, doub1ex);

float atan2f (float y, float x);

DESCRIPTION
sin, cos, and tan and the single-precision versions sinf, cosf, and tanf return,
respectively, the sine, cosine, and tangent of their argument, x, measured in radians.

asin and asinf return the arcsine of x, in the range [-n/2,+n/2].

acos and acosf return the arccosine of x, in the range [O,+n].

atan and atanf return the arctangent of x, in the range (-n/2,+n/2).

atan2 and atan2f return the arctangent of y / x, in the range (-n,+n], using the
signs of both arguments to determine the quadrant of the return value.

SEE ALSO
cc(I), matherr(3M)

DIAGNOSTICS
If the magnitude of the argument of asin, asinf, acos, or acosf is greater than 1,
or if both arguments of atan2 or atan2f are 0, ° is returned and ermo is set to
EDOM. In addition, a message indicating DOMAIN error is printed on the standard
error output.

Except when the -xc compilation option is used [see cc(I)], these error-handling
procedures may be changed with the function matherr. When the -Xa or -Xc
compilation options are used [see cc(I)], no error messages are printed.

895

truncate (3C)

NAME
truncate, ftruncate - set a file to a specified length

SYNOPSIS
#include <unistd.h>

int truncate (const char *path, off_t length);

int ftruncate (intfildes, off_t length);

DESCRIPTION

896

The file whose name is given by path or referenced by the descriptor fildes has its
size set to length bytes.

If the file was previously longer than length, bytes past length will no longer be
accessible. If it was shorter, bytes from the EOF before the call to the EOF after the
call will be read in as zeros. The effective user ID of the process must have write
permission for the file, and for ftruncate the file must be open for writing.

truncate fails if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix.

EACCES

EFAULT

EINTR

EINVAL

EIO

EISDIR

ELOOP

EMFILE

EMULTIHOP

ENAMETOOLONG

ENFILE

ENOENT

ENOLINK

ENOTDIR

EROFS

ETXTBSY

Write permission is denied for the file referred to by path.

path points outside the process's allocated address space.

A signal was caught during execution of the truncate routine.

path is not an ordinary file.

An I/O error occurred while reading from or writing to the file
system.

The file referred to by path is a directory.

Too many symbolic links were encountered in translating path.

The maximum number of file descriptors available to the pro
cess has been reached.

Components of path require hopping to multiple remote
machines and file system type does not allow it.

The length of a path component exceeds {NAME_MAX} charac
ters, or the length of path exceeds {PATH_MAX} characters.

Could not allocate any more space for the system file table.

Either a component of the path prefix or the file referred to by
path does not exist.

path points to a remote machine and the link to that machine is
no longer active.

A component of the path prefix of path is not a directory.

The file referred to by path resides on a read-only file system.

The file referred to by path is a pure procedure (shared text) file
that is being executed.

truncate (3e)

ftruncate fails if one or more of the following are true:

EAGAIN The file exists, mandatory file/record locking is set, and there
are outstanding record locks on the file [see chmod(2)].

EBADF

EINTR

EIO

ENOLINK

EINVAL

SEE ALSO
fcntl(2),open(2)

DIAGNOSTICS

fildes is not a file descriptor open for writing.

A signal was caught during execution of the ftruncate rou
tine.

An 1/ 0 error occurred while reading from or writing to the file
system.

fildes points to a remote machine and the link to that machine is
no longer active.

fildes does not correspond to an ordinary file.

Upon successful completion, a value of a is returned. Otherwise, a value of -1 is
returned and ermo is set to indicate the error.

897

tsearch (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

void *tsearch (const void *key, void **rootp, int (*compar)
(const void *, const void *»;

void *tfind (const void *key, void *const *rootp, int (*compar)
(const void *, const void *»;

void *tdelete (const void *key, void **rootp, int (*compar)
(const void *, const void *»;

void twalk (void *root, void (*action) (void *, VISIT, int»;

DESCRIPTION

898

tsearch, tfind, tdelete, and twalk are routines for manipulating binary search
trees. They are generalized from Knuth (6.2.2) Algorithms T and D. All comparis
ons are done with a user-supplied routine. This routine is called with two argu
ments, the pointers to the elements being compared. It returns an integer less than,
equal to, or greater than 0, according to whether the first argument is to be con
sidered less than, equal to or greater than the second argument. The comparison
function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.

tsearch is used to build and access the tree. key is a pointer to the data to be
accessed or stored. If there is data in the tree equal to * key (the value pointed to by
key), a pointer to this found data is returned. Otherwise, *key is inserted, and a
pointer to it returned. Only pointers are copied, so the calling routine must store
the data. rootp points to a variable that points to the root of the tree. A NULL

value for the variable pointed to by rootp denotes an empty tree; in this case, the
variable will be set to point to the data which will be at the root of the new tree.

Like tsearch, tfind will search for data in the tree, returning a pointer to it if
found. However, if it is not found, tfind will return a NULL pointer. The argu
ments for tfind are the same as for tsearch.

tdelete deletes a node from a binary search tree. The arguments are the same as
for tsearch. The variable pointed to by rootp will be changed if the deleted node
was the root of the tree. tdelete returns a pointer to the parent of the deleted
node, or a NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree to be traversed.
(Any node in a tree may be used as the root for a walk below that node.) action is
the name of a routine to be invoked at each node. This routine is, in turn, called
with three arguments. The first argument is the address of the node being visited.
The second argument is a value from an enumeration data type typedef enum {
preorder, postorder, endorder, leaf} VISIT; (defined in the search.h header file),
depending on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or whether the node
is a leaf. The third argument is the level of the node in the tree, with the root being
level zero.

tsearch (3C)

The pointers to the key and the root of the tree should be of type pointer-to
element, and cast to type pointer-to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast into type pointer-to-element.

RETURN VALUES
A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.

A NULL pointer is returned by tfind and tdelete if rootp is NULL on entry.

If data is found, both tsearch and tfind return a pointer to it. If not, tfind
returns NULL, and tsearch returns a pointer to the inserted item.

EXAMPLES
The following code reads in strings and stores structures containing a pointer to
each string and a count of its length. It then walks the tree, printing out the stored
strings and their lengths in alphabetical order.

#include <string.h>
#include <stdio.h>
#include <search.h>

struct node {

};

char *string;
int length;

char string_space[10000);
struct node nodes[500);
void *root = NULL;

int node_compare(const void *node1, const void *node2) {
return strcmp«(const struct node *) node1)->string,

«const struct node *) node2)->string);

void print_node(void **node, VISIT order, int level)
if (order == preorder I I order == leaf) {

printf ("length='Yod, string=%20s\n",
(*(struct node **)node)->length,
(*(struct node **)node)->string);

main() {
char *strptr = string_space;
struct node *nodeptr = nodes;
int i = 0;

while (gets (strptr) != NULL && i++ < 500)
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
(void) tsearch«void *)nodeptr,

&root, node_compare);
strptr += nodeptr->length + 1;
nodeptr++;

twalk(root, print_node);

899

tsearch (3C)

SEE ALSO

NOTES

900

bsearch(3C), hsearch(3C), lsearch(3C)

The root argument to twalk is one level of indirection less than the rootp argu
ments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are
visited. tsearch uses preorder, postorder and endorder to refer respectively to
visiting a node before any of its children, after its left child and before its right, and
after both its children. The alternate nomenclature uses pre order, inorder and pos
torder to refer to the same visits, which could result in some confusion over the
meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

ttyname (3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
#include <stdlib.h>

char *ttyname (int fildes) ;

int isatty (int fi1des) ;

DESCRIPTION

FILES

ttyname returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes.

isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

/dev/*

DIAGNOSTICS

NOTES

ttyname returns a NULL pointer if fildes does not describe a terminal device in direc
tory /dev.

The return value points to static data whose content is overwritten by each call.

901

ttyslot (3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
#include <stdlib.h>

int ttyslot {void};

DESCRIPTION

FILES

ttyslot returns the index of the current user's entry in the /var/adm/utrop file.
The returned index is accomplished by scanning files in /dev for the name of the
terminal associated with the standard input, the standard output, or the standard
error output (0, 1, or 2).

/var/adm/utrop

SEE ALSO
getut(3C), ttyname(3C)

DIAGNOSTICS

902

A value of -1 is returned if an error was encountered while searching for the termi
nal name or if none of the above file descriptors are associated with a terminal
device.

t_accept (3N)

NAME
t_accept - accept a connect request

SYNOPSIS
#include <tiuser.h>

int t_accept(intfd, int resfd, struct t_call *call);

DESCRIPTION
This function is issued by a transport user to accept a connect request. fd identifies
the local transport endpoint where the connect indication arrived, resfd specifies
the local transport endpoint where the connection is to be established, and call
contains information required by the transport provider to complete the connection.
call points to a t_call structure that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). In call, addr is the address of the caller, opt
indicates any protocol-specific parameters associated with the connection, udata
points to any user data to be returned to the caller, and sequence is the value
returned by t_Iisten that uniquely associates the response with a previously
received connect indication.

A transport user may accept a connection on either the same, or on a different, local
transport endpoint from the one on which the connect indication arrived. If the
same endpoint is specified (that is, res fd= fd), the connection can be accepted
unless the following condition is true: The user has received other indications on
that endpoint but has not responded to them (with t_accept or t_snddis). For
this condition, t_accept will fail and set t_errno to TBADF.

If a different transport endpoint is specified (resfd!=fd), the endpoint must be
bound to a protocol address and must be in the T_IDLE state [see t~etstate(3N)]
before the t_accept is issued.

For both types of endpoints, t_accept will fail and set t_errno to TLOOK if there
are indications (for example, a connect or disconnect) waiting to be received on that
endpoint.

The values of parameters specified by opt and the syntax of those values are proto
col specific. The udata argument enables the called transport user to send user
data to the caller and the amount of user data must not exceed the limits supported
by the transport provider as returned in the connect field of the info argument of
t_open or t_getinfo. If the len [see netbuf in intro(3)] field of udata is zero, no
data will be sent to the caller.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point, or the user is invalidly accepting a connection on the same
transport endpoint on which the connect indication arrived.

903

TOUTSTATE

TACCES

TBADOPT

TBADDATA

TBADSEQ

TLOOK

TNOTSUPPORT

TSYSERR

The function was issued in the wrong sequence on the transport
endpoint referenced by fd, or the transport endpoint referred to
by resfd is not in the T_IDLE state.

The user does not have permission to accept a connection on the
responding transport endpoint or use the specified options.

The specified options were in an incorrect format or contained
invalid information.

The amount of user data specified was not within the bounds
supported by the transport provider as returned in the connect
field of the info argument of t_open or t_getinfo.

An invalid sequence number was specified.

An asynchronous event has occurred on the transport endpoint
referenced by fd and requires immediate attention.

This function is not supported by the underlying transport pro
vider.

A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_connect(3N), t_getstate(3N), t_listen(3N), t_open(3N),
t_rcvconnect(3N)

DIAGNOSTICS

904

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and t_errno is set to indicate the error.

NAME
t_alloc - allocate a library structure

SYNOPSIS
#include <tiuser.h>

char *t_alloc (int fd, int struct _type, int fields) ;

DESCRIPTION
The t_alloc function dynamically allocates memory for the various transport func
tion argument structures as specified below. This function will allocate memory for
the specified structure, and will also allocate memory for buffers referenced by the
structure.

The structure to allocate is specified by struct_type, and can be one of the follow
ing:
T_BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one or
more transport functions.

Each of the above structures, except T_INFO, contains at least one field of type
struct netbuf. netbuf is described in intro(3). For each field of this type, the
user may specify that the buffer for that field should be allocated as well. The
fields argument specifies this option, where the argument is the bitwise-OR of any
of the following:

The addr field of the t_bind, t_call, t_unitdata, or t_uderr
structures.

The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr
structures.

T_UDATA The udata field of the t_call, t_discon, or t_unitdata structures.

T_ALL All relevant fields of the given structure.

For each field specified in fields, t_alloc will allocate memory for the buffer
associated with the field, and initialize the buf pointer and maxlen [see netbuf in
intro(3) for description of buf and maxI en] field accordingly. The length of the
buffer allocated will be based on the same size information that is returned to the
user on t_open and t_getinfo. Thus, fd must refer to the transport endpoint
through which the newly allocated structure will be passed, so that the appropriate
size information can be accessed. If the size value associated with any specified
field is -1, t_alloc will allocate the buffer with the size of 1024 bytes. If the size
value is -2, t_al1oc will set the buffer pointer to NULL, set the buffer maximum
size to 0 and will return with success. For any field not specified in fields, buf
will be set to NULL and maxlen will be set to zero.

905

Use of t_alloc to allocate structures will help ensure the compatibility of user pro
grams with future releases of the transport interface.

On failure, t_errno may be set to one of the following:

TBADF

TSYSERR

The specified file descriptor does not refer to a transport endpoint.

A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_free(3N), t_getinfo(3N), t_open(3N)

DIAGNOSTICS

906

On successful completion, t_alloc returns a pointer to the newly allocated struc
ture. On failure, NULL is returned.

t_bind(3N)

NAME
t_bind - bind an address to a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_bind <fd I req I ret)
int fd;
struct t_bind *req;
struct t_bind *ret;

DESCRIPTION
This function associates a protocol address with the transport endpoint specified by
fd and activates that transport endpoint. In connection mode, the transport pro
vider may begin accepting or requesting connections on the transport endpoint. In
connectionless mode, the transport user may send or receive data units through the
transport endpoint.

The req and ret arguments point to a t_bind structure containing the following
members:

struct netbuf addr;
unsigned qlen;

netbuf is described in intro(3). The addr field of the t_bind structure specifies a
protocol address and the qlen field is used to indicate the maximum number of
outstanding connect indications.

req is used to request that an address, represented by the netbuf structure, be
bound to the given transport endpoint. len [see netbuf in intro(3); also for buf
and maxlen] specifies the number of bytes in the address and buf points to the
address buffer. maxlen has no meaning for the req argument. On return, ret con
tains the address that the transport provider actually bound to the transport end
point; this may be different from the address specified by the user in req. In ret,
the user specifies maxlen, which is the maximum size of the address buffer, and
buff which points to the buffer where the address is to be placed. On return, len
specifies the number of bytes in the bound address and buf points to the bound
address. If maxlen is not large enough to hold the returned address, an error will
result.

If the requested address is not available, or if no address is specified in req (the len
field of addr in req is zero) the transport provider may assign an appropriate
address to be bound, and will return that address in the addr field of ret. The user
can compare the addresses in req and ret to determine whether the transport pro
vider bound the transport endpoint to a different address than that requested.

req may be NULL if the user does not want to specify an address to be bound. Here,
the value of qlen is assumed to be zero, and the transport provider must assign an
address to the transport endpoint. Similarly, ret may be NULL if the user does not
care what address was bound by the provider and is not interested in the nego
tiated value of qlen. It is valid to set req and ret to NULL for the same calt in
which case the provider chooses the address to bind to the transport endpoint and
does not return that information to the user.

907

t bind (3N)

The qlen field has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connect indications the transport provider
should support for the given transport endpoint. An outstanding connect indica
tion is one that has been passed to the transport user by the transport provider. A
value of qlen greater than zero is only meaningful when issued by a passive tran
sport user that expects other users to call it. The value of qlen will be negotiated by
the transport provider and may be changed if the transport provider cannot sup
port the specified number of outstanding connect indications. On return, the qlen
field in ret will contain the negotiated value.

This function allows more than one transport endpoint to be bound to the same
protocol address (however, the transport provider must support this capability
also), but it is not allowable to bind more than one protocol address to the same
transport endpoint. If a user binds more than one transport endpoint to the same
protocol address, only one endpoint can be used to listen for connect indications
associated with that protocol address. In other words, only one t_bind for a given
protocol address may specify a value of qlen greater than zero. In this way, the
transport provider can identify which transport endpoint should be notified of an
incoming connect indication. If a user attempts to bind a protocol address to a
second transport endpoint with a value of qlen greater than zero, the transport
provider will assign another address to be bound to that endpoint. If a user accepts
a connection on the transport endpoint that is being used as the listening endpoint,
the bound protocol address will be found to be busy for the duration of that con
nection. No other transport endpoints may be bound for listening while that initial
listening endpoint is in the data transfer phase. This will prevent more than one
transport endpoint bound to the same protocol address from accepting connect
indications.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TBADADDR] The specified protocol address was in an incorrect format or con-
tained illegal information.

[TNOADDR] The transport provider could not allocate an address.

[TACCES] The user does not have permission to use the specified address.

[TBUFOVFLW] The number of bytes allowed for an incoming argument is not
sufficient to store the value of that argument. The provider's state
will change to [T_IDLE] and the information to be returned in ret
will be discarded.

TSYSERR A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_open(3N), t_optmgmt(3N), t_unbind(3N)

DIAGNOSTICS

908

t_bind returns a on success and -Ion failure and t_errno is set to indicate the
error.

t close(3N)

NAME
t_close - close a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_close(intjd)i

DESCRIPTION
The t_close function informs the transport provider that the user is finished with
the transport endpoint specified by fd, and frees any local library resources associ
ated with the endpoint. In addition, t_close closes the file associated with the
transport endpoint.

t_close should be called from the T_UNBND state [see t_getstate(3N)]. However,
this function does not check state information, so it may be called from any state to
close a transport endpoint. If this occurs, the local library resources associated with
the endpoint will be freed automatically. In addition, close(2) will be issued for
that file descriptor; the close will be abortive if no other process has that file open,
and will break any transport connection that may be associated with that endpoint.

On failure, t_errno may be set to the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

SEE ALSO
t_getstate(3N), t_open(3N), t_unbind(3N)

DIAGNOSTICS
t close returns a on success and -Ion failure and t_errno is set to indicate the
error.

909

t connect (3N)

NAME
t_connect - establish a connection with another transport user

SYNOPSIS
#include <tiuser.h>

int t_connect (int fd, struct t_call *sndcall, struct t_call *rcvcall);

DESCRIPTION

910

This function enables a transport user to request a connection to the specified desti
nation transport user. fd identifies the local transport endpoint where communica
tion will be established, while sndcall and rcvcall point to a t_call structure
that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

sndcall specifies information needed by the transport provider to establish a con
nection and rcvcall specifies information that is associated with the newly esta
blished connection.

netbuf is described in intro(3). In sndcall, addr specifies the protocol address of
the destination transport user, opt presents any protocol-specific information that
might be needed by the transport provider, udata points to optional user data that
may be passed to the destination transport user during connection establishment,
and sequence has no meaning for this function.

On return in rcvcall, addr returns the protocol address associated with the
responding transport endpoint, opt presents any protocol-specific information
associated with the connection, udata points to optional user data that may be
returned by the destination transport user during connection establishment, and
sequence has no meaning for this function.

The opt argument implies no structure on the options that may be passed to the
transport provider. The transport provider is free to specify the structure of any
options passed to it. These options are specific to the underlying protocol of the
transport provider. The user may choose not to negotiate protocol options by set
ting the len field of opt to zero. In this case, the provider may use default options.

The udata argument enables the caller to pass user data to the destination transport
user and receive user data from the destination user during connection establish
ment. However, the amount of user data must not exceed the limits supported by
the transport provider as returned in the connect field of the info argument of
t_open or t_getinfo. If the len [see netbuf in intro(3)] field of udata is zero in
sndcall, no data will be sent to the destination transport user.

On return, the addr, opt, and udata fields of rcvcall will be updated to reflect
values associated with the connection. Thus, the maxlen [see netbuf in intro(3)]
field of each argument must be set before issuing this function to indicate the max
imum size of the buffer for each. However, rcvcall may be NULL, in which case
no information is given to the user on return from t_connect.

t_connect (3N)

By default, t_cormect executes in synchronous mode, and will wait for the destina
tion user's response before returning control to the local user. A successful return
(that is, return value of zero) indicates that the requested connection has been esta
blished. However, if O_NDELAY or O_NONBLOCK is set (via t_open or fcntl),
t_cormect executes in asynchronous mode. In this case, the call will not wait for
the remote user's response, but will return control immediately to the local user and
return -1 with t_errno set to TNODATA to indicate that the connection has not yet
been established. In this way, the function simply initiates the connection establish
ment procedure by sending a connect request to the destination transport user.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TOUTSTATE The function was issued in the wrong sequence.

TNODATA O_NDELAY or O_NONBLOCK was set, so the function successfully ini
tiated the connection establishment procedure, but did not wait for
a response from the remote user.

TBADADDR The specified protocol address was in an incorrect format or con
tained invalid information.

TBADQPT The specified protocol options were in an incorrect format or con
tained invalid information.

TBADDATA The amount of user data specified was not within the bounds sup
ported by the transport provider as returned in the cormect field
of the info argument of t_open or t_getinfo.

TACCES The user does not have permission to use the specified address or
options.

TBUFOVFLW The number of bytes allocated for an incoming argument is not
sufficient to store the value of that argument. If executed in syn
chronous mode, the provider'S state, as seen by the user, changes to
T_DATAXFER, and the connect indication information to be returned
in rcvcall is discarded.

TLOOK An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

TNOTSUPPORT This function is not supported by the underlying transport pro
vider.

TSYSERR A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_accept(3N), t_getinfo(3N), t_listen(3N), t_open(3N),
t_optmgmt(3N), t_rcvcormect(3N)

DIAGNOSTICS
t_cormect returns a on success and -Ion failure and t_errno is set to indicate the
error.

911

t error(3N)

NAME
t_error - produce error message

SYNOPSIS
#include <tiuser.h>

void t_error(char *errmsg);

extern int t_errno; extern char *t_errlist [] ; extern int t_nerr;

DESCRIPTION
t_error produces a message on the standard error output which describes the last
error encountered during a call to a transport function. The argument string
ernnsg is a user-supplied error message that gives context to the error.

t_error prints the user-supplied error message followed by a colon and the stan
dard transport function error message for the current value contained in t_errno.
If t_errno is TSYSERR, t_error will also print the standard error message for the
current value contained in errno [see intro(2)].

t_errlist is the array of message strings, to allow user message formatting.
t_errno can be used as an index into this array to retrieve the error message string
(without a terminating newline). t_nerr is the maximum index value for the
t_errlist array.

t_errno is set when an error occurs and is not cleared on subsequent successful
calls.

EXAMPLE

912

If a t_connect function fails on transport endpoint fd2 because a bad address was
given, the following call might follow the failure:

t_error(IIt_connect failed on fd2");

The diagnostic message would print as:

t_connect failed on fd2: Incorrect transport address fonnat

where "t_connect failed on fd2" tells the user which function failed on which
transport endpoint, and "Incorrect transport address format" identifies the specific
error that occurred.

NAME
t_free - free a library structure

SYNOPSIS
#include <tiuser.h>

int t_free (char *ptr, int struct _type) ;

DESCRIPTION
The t_free function frees memory previously allocated by t_alloc. This function
will free memory for the specified structure, and will also free memory for buffers
referenced by the structure.

ptr points to one of the six structure types described for t_alloc, and
struct_type identifies the type of that structure, which can be one of the follow
ing:

T_BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures is used as an argument to one or more transport
functions.

t_free will check the addr, opt, and udata fields of the given structure (as
appropriate), and free the buffers pointed to by the buf field of the netbuf [see
intro(3)] structure. If bUf is NULL, t_free will not attempt to free memory. After
all buffers are freed, t_free will free the memory associated with the structure
pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of
memory that was not previously allocated by t_alloc.

On failure, t_errno may be set to the following:

TSYSERR A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_alloc(3N)

DIAGNOSTICS
t free returns 0 on success and -Ion failure and t_errno is set to indicate the
error.

913

t_getinfo (3N)

NAME
t_getinfo - get protocol-specific service information

SYNOPSIS
#include <tiuser.h>

int t_getinfo(intjd, struct t_info *injo);

DESCRIPTION

914

This function returns the current characteristics of the underlying transport proto
col associated with file descriptor fd. The info structure is used to return the same
information returned by t_open. This function enables a transport user to access
this information during any phase of communication.

This argument points to a t_info structure, which contains the following members:

long addr; 1* max size of the transport protocol address * /
long options; / * max number of bytes of protocol-specific options * /
long tsdu; 1* max size of a transport service data unit (TSDU) * /
long etsdu; 1* max size of an expedited transport service data unit (ETSDU) * /
long connect; 1* max amount of data allowed on connection establishment functions * /
long discon; 1* max amount of data allowed on t_snddis and t_rcvdis functions * /
long servtype; /* service type supported by the transport provider * /

The values of the fields have the following meanings:

addr

options

tsdu

etsdu

A value greater than or equal to zero indicates the maximum size of a
transport protocol address; a value of -1 specifies that the address
size will be set to the default of 1024 by t_alloc (); and a value of-2
specifies that the transport provider does not provide user access to
transport protocol addresses.

A value greater than or equal to zero indicates the maximum number
of bytes of protocol-specific options supported by the provider; a
value of -1 specifies that the option size will be set to the default of
1024 by t_alloc () ; and a value of -2 specifies that the transport pro
vider does not support user-settable options.

A value greater than zero specifies the maximum size of a transport
service data unit (TSDU); a value of zero specifies that the transport
provider does not support the concept of TSDU, although it does sup
port the sending of a data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that the size of a
TSDU will be set to the default of 1024 by t_alloc (); and a value of
-2 specifies that the transfer of normal data is not supported by the
transport provider.

A value greater than zero specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of zero specifies that the
transport provider does not support the concept of ETSDU, although
it does support the sending of an expedited data stream with no logi
cal boundaries preserved across a connection; a value of -1 specifies
that the size of an ETSDU will be set to the default of 1024 by
t_alloc (); and a value of -2 specifies that the transfer of expedited
data is not supported by the transport provider.

connect

discon

servtype

t _geti nfo (3N)

A value greater than or equal to zero specifies the maximum amount
of data that may be associated with connection establishment func
tions; a value of -1 specifies that the amount of data sent during con
nection establishment will be set to the default of 1024 by t_alloc () ;
and a value of -2 specifies that the transport provider does not allow
data to be sent with connection establishment functions.

A value greater than or equal to zero specifies the maximum amount
of data that may be associated with the t_snddis and t_rcvdis
functions; a value of -1 specifies that the amount of data sent with
these abortive release functions will be set to the default of 1024 by
t_alloc (); and a value of -2 specifies that the transport provider
does not allow data to be sent with the abortive release functions.

This field specifies the service type supported by the transport pro
vider, as described below.

If a transport user is concerned with protocol independence, the above sizes may be
accessed to determine how large the buffers must be to hold each piece of informa
tion. Alternatively, the t_alloc function may be used to allocate these buffers. An
error will result if a transport user exceeds the allowed data size on any function.
The value of each field may change as a result of option negotiation, and
t-9"etinfo enables a user to retrieve the current characteristics.

The servtype field of info may specify one of the following values on return:

T_COTS The transport provider supports a connection-mode service but does
not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

The transport provider supports a connectionless-mode service. For
this service type, t_open will return -2 for etsdu, connect, and dis
con.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TSYSERR

SEE ALSO
t_open(3N)

DIAGNOSTICS

A system error has occurred during execution of this function.

t-9"etinfo returns 0 on success and -Ion failure and t_errno is set to indicate the
error.

915

t_getstate (3N)

NAME
t~etstate - get the current state

SYNOPSIS
#include <tiuser.h>

int t_getstate(intjd};

DESCRIPTION
The t~etstate function returns the current state of the provider associated with
the transport endpoint specified by fd.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TSTATECHNG

TSYSERR

SEE ALSO

The transport provider is undergoing a state change.

A system error has occurred during execution of this function.

t_open(3N)

DIAGNOSTICS

916

t_getstate returns the current state on successful completion and -Ion failure
and t_errno is set to indicate the error. The current state may be one of the follow
ing:

T_UNBND

T_IDLE

T_OUTCON

T_INCON

T_DATAXFER

T_OUTREL

unbound

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly release indica
tion)

incoming orderly release (waiting for an orderly release request)

If the provider is undergoing a state transition when t_getstate is called, the
function will fail.

NAME
t_Iisten -listen for a connect request

SYNOPSIS
#include <tiuser.h>

int t_Iisten<intfd, struct t_call *call);

DESCRIPTION
This function listens for a connect request from a calling transport user. fd
identifies the local transport endpoint where connect indications arrive, and on
return, call contains information describing the connect indication. call points to
a t_call structure, which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). In call, addr returns the protocol address of the
calling transport user, opt returns protocol-specific parameters associated with the
connect request, udata returns any user data sent by the caller on the connect
request, and sequence is a number that uniquely identifies the returned connect
indication. The value of sequence enables the user to listen for multiple connect
indications before responding to any of them.

Since this function returns values for the addr, opt, and udata fields of call, the
maxlen [see netbuf in intro(3)] field of each must be set before issuing t_Iisten
to indicate the maximum size of the buffer for each.

By default, t_Iisten executes in synchronous mode and waits for a connect indica
tion to arrive before returning to the user. However, if O_NDELAY or O_NONBLOCK is
set (via t_open or fcntl), t_Iisten executes asynchronously, reducing to a poll
for existing connect indications. If none are available, it returns -1 and sets
t_errno to TNODATA.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TBUFOVFLW

TNODATA

TLOOK

TNOTSUPPORT

The number of bytes allocated for an incoming argument is not
sufficient to store the value of that argument. The provider's
state, as seen by the user, changes to T_INCON, and the connect
indication information to be returned in call is discarded.

O_NDELAY or O_NONBLOCK was set, but no connect indications had
been queued.

An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

This function is not supported by the underlying transport pro
vider.

917

t_listen (3N)

NOTES

TSYSERR A system error has occurred during execution of this function.

If a user issues t_listen in synchronous mode on a transport endpoint that was
not bound for listening (that is, qlen was zero on t_bind), the call will wait forever
because no connect indications will arrive on that endpoint.

SEE ALSO
intro(3), t_accept(3N), t_bind(3N), t_connect(3N), t_open(3N),
t_rcvconnect(3N)

DIAGNOSTICS

918

t_listen returns 0 on success and -1 on failure and t_errno is set to indicate the
error.

NAME
t_look -look at the current event on a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_look(intfd};

DESCRIPTION
This function returns the current event on the transport endpoint specified by fd.
This function enables a transport provider to notify a transport user of an asynchro
nous event when the user is issuing functions in synchronous mode. Certain events
require immediate notification of the user and are indicated by a specific error,
TLOOK, on the current or next function to be executed.

This function also enables a transport user to poll a transport endpoint periodically
for asynchronous events.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TSYSERR

SEE ALSO
t_open(3N)

DIAGNOSTICS

A system error has occurred during execution of this function.

Upon success, t_look returns a value that indicates which of the allowable events
has occurred, or returns zero if no event exists. One of the following events is
returned:

T_LISTEN connection indication received

T_CONNECT connect confirmation received

T_DATA normal data received

T_EXDATA expedited data received

T_DISCONNECT disconnect received

T_UDERR datagram error indication

T_ORDREL orderly release indication

On failure, -1 is returned and t_errno is set to indicate the error.

919

t_open(3N)

NAME
t_open - establish a transport endpoint

SYNOPSIS
#include <tiuser.h>

#include <fcntl.h>

int t_open (char path, int ojtag, struct t_info *info);

DESCRIPTION

920

t_open must be called as the first step in the initialization of a transport endpoint.
This function establishes a transport endpoint by opening a UNIX file that identifies
a particular transport provider (that is, transport protocol) and returning a file
descriptor that identifies that endpoint. For example, opening the file
/dev/iso_cots identifies an OSI connection-oriented transport layer protocol as
the transport provider.

path points to the path name of the file to open, and of lag identifies any open
flags [as in open(2)]. of lag may be constructed from O_NDELAY or O_NONBLOCK
OR-ed with O_RDWR. These flags are defined in the header file <fcntl.h>. t_open
returns a file descriptor that will be used by all subsequent functions to identify the
particular local transport endpoint.

t_open also returns various default characteristics of the underlying transport pro
tocol by setting fields in the t_info structure. The t_info argument points to a
t_info structure that contains the following members:

long addr;
long options;
long tsdu;
long etsdu;
long connect;

long discon;

/* maximum size of the transport protocol address * /
/* maximum number of bytes of protocol-specific options * /
/* maximum size of a transport service data unit (TSDU) * /
/* maximum size of an expedited transport service data unit (ETSDU) * /
/* maximum amount of data allowed on connection establishment

functions * /
/* maximum amount of data allowed on t_snddis and t_rcvdis

functions * /
long servtype; 1* service type supported by the transport provider * /

The values of the fields have the following meanings:

addr

options

tsdu

A value greater than or equal to zero indicates the maximum size of
a transport protocol address; a value of -1 specifies that the address
size will be set to the default of 1024 by t_alloc (); and a value of
-2 specifies that the transport provider does not provide user access
to transport protocol addresses.

A value greater than or equal to zero indicates the maximum
number of bytes of protocol-specific options supported by the pro
vider; a value of -1 specifies that the option size will be set to the
default of 1024 by t_alloc (); and a value of -2 specifies that the
transport provider does not support user-settable options.

A value greater than zero specifies the maximum size of a transport
service data unit (TSDU); a value of zero specifies that the transport
provider does not support the concept of TSDU, although it does
support the sending of a data stream with no logical boundaries

etsdu

connect

discon

servtype

preserved across a connection; a value of -1 specifies that the size of
a TSDU will be set to the default of 1024 by t_alloc (); and a value
of -2 specifies that the transfer of normal data is not supported by
the transport provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of zero
specifies that the transport provider does not support the concept of
ETSDU, although it does support the sending of an expedited data
stream with no logical boundaries preserved across a connection; a
value of -1 specifies that the size of an ETSDU will be set to the
default of 1024 by t_alloc (); and a value of -2 specifies that the
transfer of expedited data is not supported by the transport pro
vider.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with connection establish
ment functions; a value of -1 specifies that the amount of data sent
during connection establishment will be set to the default of 1024 by
t_alloc (); and a value of -2 specifies that the transport provider
does not allow data to be sent with connection establishment func
tions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the t_snddis and
t_rcvdis functions; a value of -1 specifies that the amount of data
sent with these abortive release functions will be set to the default
of 1024 by t_alloc (); and a value of -2 specifies that the transport
provider does not allow data to be sent with the abortive release
functions.

This field specifies the service type supported by the transport pro
vider, as described below.

If a transport user is concerned with protocol independence, the above sizes may be
accessed to determine how large the buffers must be to hold each piece of informa
tion. Alternatively, the t_alloc function may be used to allocate these buffers. An
error will result if a transport user exceeds the allowed data size on any function.

The servtype field of info may specify one of the following values on return:

T_COTS The transport provider supports a connection-mode service but
does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with
the optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service. For
this service type, t_open will return -2 for etsdu, connect, and
discon.

A single transport endpoint may support only one of the above services at one time.

921

t open(3N)

If info is set to NULL by the transport user, no protocol information is returned by
t_open.

On failure, t_errno may be set to the following:

TSYSERR

TBADFLAG

A system error has occurred during execution of this function.

An invalid flag is specified.

DIAGNOSTICS

NOTES

t_open returns a valid file descriptor on success and -1 on failure and t_errno is
set to indicate the error.

If t_open is used on a non-TLI-conforming STREAMS device, unpredictable events
may occur.

The close(2) system call should not be used directly on the file descriptor returned
by t_open(3N). The t_ close(3N) routine should be used to close a file descriptor
opened by t_open(3N).

SEE ALSO
open(2), t_close(3N)

922

t optmgmt(3N)

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_optmgmt (int fd, struct t_optmgmt *req, struct t_optmgmt *ret);

DESCRIPTION
The t_optmgmt function enables a transport user to retrieve, verify, or negotiate
protocol options with the transport provider. fd identifies a bound transport end
point.

The req and ret arguments point to a t_optmgmt structure containing the
following members:

struct netbuf opt;
long flags;

The opt field identifies protocol options and the flags field is used to specify the
action to take with those options.

The options are represented by a netbuf [see intro(3); also for len, buf, and max
len] structure in a manner similar to the address in t_bind. req is used to request
a specific action of the provider and to send options to the provider. len specifies
the number of bytes in the options, buf points to the options buffer, and maxlen
has no meaning for the req argument. The transport provider may return options
and flag values to the user through ret. For ret, maxlen specifies the maximum
size of the options buffer and buf points to the buffer where the options are to be
placed. On return, len specifies the number of bytes of options returned. maxlen
has no meaning for the req argument, but must be set in the ret argument to
specify the maximum number of bytes the options buffer can hold. The actual
structure and content of the options is imposed by the transport provider.

The flags field of req can specify one of the following actions:

T_NEGOTIATE This action enables the user to negotiate the values of the options
specified in req with the transport provider. The provider will
evaluate the requested options and negotiate the values, returning
the negotiated values through ret.

T_CHECK This action enables the user to verify whether the options specified
in req are supported by the transport provider. On return, the
flags field of ret will have either T_SUCCESS or T_FAILURE set to
indicate to the user whether the options are supported. These flags
are only meaningful for the T_CHECK request.

T_DEFAULT This action enables a user to retrieve the default options supported
by the transport provider into the opt field of ret. In re~ the len
field of opt must be zero and the buf field may be NULL.

If issued as part of the connectionless-mode service, t_optmgmt may block due to
flow control constraints. The function will not complete until the transport pro
vider has processed all previously sent data units.

923

t_ optmg mt (3N)

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TOUTSTATE

TACCES

TBADOPT

TBADFLAG

TBUFOVFLW

TSYSERR

The function was issued in the wrong sequence.

The user does not have permission to negotiate the specified
options.

The specified protocol options were in an incorrect format or con
tained illegal information.

An invalid flag was specified.

The number of bytes allowed for an incoming argument is not
sufficient to store the value of that argument. The information to
be returned in ret will be discarded.

A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_getinfo(3N), t_open(3N)

DIAGNOSTICS

924

t_optmgmt returns 0 on success and -Ion failure and t_errno is set to indicate the
error.

NAME
t_rcv - receive data or expedited data sent over a connection

SYNOPSIS
int t_rcv (intfd, char *buf, unsigned nbytes, int *flags);

DESCRIPTION
This function receives either normal or expedited data. fd identifies the local tran
sport endpoint through which data will arrive, buf points to a receive buffer where
user data will be placed, and nbytes specifies the size of the receive buffer. flags
may be set on return from t_rcv and specifies optional flags as described below.

By default, t_rcv operates in synchronous mode and will wait for data to arrive if
none is currently available. However, if O_NDELAY or O_NONBLOCK is set (via
t_open or fcntl), t_rcv will execute in asynchronous mode and will fail if no data
is available. (See TNODATA below.)

On return from the call, if T_MORE is set in flags, this indicates that there is more
data and the current transport service data unit (TSDU) or expedited transport ser
vice data unit (ETSDU) must be received in multiple t_rcv calls. Each t_rcv with
the T_MORE flag set indicates that another t_rcv must follow to get more data for
the current TSDU. The end of the TSDU is identified by the return of a t_rcv call
with the T_MORE flag not set. If the transport provider does not support the concept
of a TSDU as indicated in the info argument on return from t_open or t_getinfo,
the T_MORE flag is not meaningful and should be ignored.

On return, the data returned is expedited data if T_EXPEDITED is set in flags. If
the number of bytes of expedited data exceeds nbytes, t_rcv will set T_EXPEDITED
and T_MORE on return from the initial call. Subsequent calls to retrieve the remain
ing ETSDU will have T_EXPEDITED set on return. The end of the ETSDU is identified
by the return of a t_rcv call with the T_MORE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of the
remainder of the TSDU will be suspended until the ETSDU has been processed. Only
after the full ETSDU has been retrieved (T_MORE not set) will the remainder of the
TSDU be available to the user.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TNODATA O_NDELAY or O_NONBLOCK was set, but no data is currently avail
able from the transport provider.

TLOOK An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

TNOTSUPPORT This function is not supported by the underlying transport pro
vider.

TSYSERR A system error has occurred during execution of this function.

SEE ALSO
t_open(3N), t_snd(3N)

925

DIAGNOSTICS

926

On successful completion, t_rcv returns the number of bytes received, and it
returns -Ion failure and t_errno is set to indicate the error.

t_rcvconnect (3N)

NAME
t_rcvconnect - receive the confirmation from a connect request

SYNOPSIS
#include <tiuser.h>

int t_rcvconnect (intfd, struct t_call *call);

DESCRIPTION
This function enables a calling transport user to determine the status of a previously
sent connect request and is used in conjunction with t_connect to establish a con
nection in asynchronous mode. The connection will be established on successful
completion of this function.

fd identifies the local transport endpoint where communication will be established,
and call contains information associated with the newly established connection.
call points to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). In call, addr returns the protocol address associ
ated with the responding transport endpoint, opt presents any protocol-specific
information associated with the connection, udata points to optional user data that
may be returned by the destination transport user during connection establishment,
and sequence has no meaning for this function.

The maxI en [see netbuf in intro(3)] field of each argument must be set before
issuing this function to indicate the maximum size of the buffer for each. However,
call may be NULL, in which case no information is given to the user on return from
t_rcvconnect. By default, t_rcvconnect executes in synchronous mode and
waits for the connection to be established before returning. On return, the addr,
opt, and udata fields reflect values associated with the connection.

If O_NDELAY or O_NONBLOCK is set (via t_open or fcntl), t_rcvconnect executes in
asynchronous mode, and reduces to a poll for existing connect confirmations. If
none are available, t_rcvconnect fails and returns immediately without waiting
for the connection to be established. (See TNODATA below.) t_rcvconnect must be
re-issued at a later time to complete the connection establishment phase and
retrieve the information returned in call.

On failure, t_errno may be set to one of the following:

TBADF

TBUFOVFLW

The specified file descriptor does not refer to a transport end
point.

The number of bytes allocated for an incoming argument is not
sufficient to store the value of that argument and the connect
information to be returned in call will be discarded. The
provider's state, as seen by the user, will be changed to
DATAXFER.

927

t_rcvconnect (3N)

TNODATA

TLOOK

TNOTSUPPORT

TSYSERR

SEE ALSO

O_NDELAY or O_NONBLOCK was set, but a connect confirmation has
not yet arrived.

An asynchronous event has occurred on this transport connection
and requires immediate attention.

This function is not supported by the underlying transport pro
vider.

A system error has occurred during execution of this function.

intro(3), t_accept(3N), t_bind(3N), t_connect(3N), t_listen(3N), t_open(3N)

DIAGNOSTICS

928

t_rcvconnect returns a on success and -Ion failure and t_errno is set to indicate
the error.

NAME
t_rcvdis - retrieve information from disconnect

SYNOPSIS
#include <tiuser.h>

t_rcvdis (intfd, struct t_discon *discon);

DESCRIPTION
This function is used to identify the cause of a disconnect, and to retrieve any user
data sent with the disconnect. fd identifies the local transport endpoint where the
connection existed, and discon points to a t_discon structure containing the fol
lowing members:

struct netbuf udata;
int reason;
int sequence;

netbuf is described in intro(3). reason specifies the reason for the disconnect
through a protocol-dependent reason code, udata identifies any user data that was
sent with the disconnect, and sequence may identify an outstanding connect indi
cation with which the disconnect is associated. sequence is only meaningful when
t_rcvdis is issued by a passive transport user who has executed one or more
t_listen functions and is processing the resulting connect indications. If a discon
nect indication occurs, sequence can be used to identify which of the outstanding
connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the
value of reason or sequence, discon may be NULL and any user data associated
with the disconnect will be discarded. However, if a user has retrieved more than
one outstanding connect indication (via t_listen) and discon is NULL, the user
will be unable to identify which connect indication the disconnect is associated
with.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TNODIS

TBUFOVFLW

TNOTSUPPORT

TSYSERR

SEE ALSO

No disconnect indication currently exists on the specified tran
sport endpoint.

The number of bytes allocated for incoming data is not sufficient
to store the data. The provider's state, as seen by the user, will
change to T_IDLE, and the disconnect indication information to
be returned in discon will be discarded.

This function is not supported by the underlying transport pro
vider.

A system error has occurred during execution of this function.

intro(3), t_connect(3N), t_listen(3N), t_open(3N), t_snddis(3N)

929

DIAGNOSTICS

930

t_rcvdis returns a on success and -1 on failure and t_errno is set to indicate the
error.

NAME
t_rcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS
#include <tiuser.h>

t_rcvrel (intfd>;

DESCRIPTION
This function is used to acknowledge receipt of an orderly release indication. fd
identifies the local transport endpoint where the connection exists. After receipt of
this indication, the user should not attempt to receive more data because such an
attempt will block forever. However, the user may continue to send data over the
connection if t_sndrel has not been issued by the user.

This function is an optional service of the transport provider, and is only supported
if the transport provider returned service type T_COTS_ORD on t_open or
t_getinfo.

On failure, t_errno may be set to one of the following:

TBADF

TNOREL

TLOOK

TNOTSUPPORT

TSYSERR

SEE ALSO

The specified file descriptor does not refer to a transport end
point.

No orderly release indication currently exists on the specified
transport endpoint.

An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

This function is not supported by the underlying transport pro
vider.

A system error has occurred during execution of this function.

t_open(3N), t_sndrel(3N)

DIAGNOSTICS
t_rcvrel returns a on success and -1 on failure t_errno is set to indicate the error.

931

t_rcvudata (3N)

NAME
t_rcvudata - receive a data unit

SYNOPSIS
#include <tiuser.h>

int t_rcvudata (int fd, struct t_unitdata *unitdata, int *fLags>;

DESCRIPTION

932

This function is used in connectionless mode to receive a data unit from another
transport user. fd identifies the local transport endpoint through which data will
be received, uni tdata holds information associated with the received data unit,
and flags is set on return to indicate that the complete data unit was not received.
uni tdata points to a t_uni tdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen [see netbuf in intro(3)] field of addr, opt, and udata must be set
before issuing this function to indicate the maximum size of the buffer for each.

On return from this call, addr specifies the protocol address of the sending user,
opt identifies protocol-specific options that were associated with this data unit, and
udata specifies the user data that was received.

By default, t_rcvudata operates in synchronous mode and will wait for a data unit
to arrive if none is currently available. However, if O_NDELAY or O_NONBLOCK is set
(via t_open or fcntl), t_rcvudata will execute in asynchronous mode and will
fail if no data units are available.

If the buffer defined in the udata field of uni tdata is not large enough to hold the
current data unit, the buffer will be filled and T_MORE will be set in flags on return
to indicate that another t_rcvudata should be issued to retrieve the rest of the data
unit. Subsequent t_rcvudata call(s) will return zero for the length of the address
and options until the full data unit has been received.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TNODATA

TBUFOVFLW

TLOOK

TNOTSUPPORT

O_NDELAY or O_NONBLOCK was set, but no data units are currently
available from the transport provider.

The number of bytes allocated for the incoming protocol address
or options is not sufficient to store the information. The unit data
information to be returned in uni tdata will be discarded.

An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

This function is not supported by the underlying transport pro
vider.

t_rcvudata (3N)

TSYSERR A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_rcvuderr(3N), t_sndudata(3N)

DIAGNOSTICS
t_rcvudata returns 0 on successful completion and -1 on failure and t_errno is
set to indicate the error.

933

t_rcvuderr (3N)

NAME
t_rcvuderr - receive a unit data error indication

SYNOPSIS
#include <tiuser.h>

int t_rcvuderr (intfd, struct t_uderr *uderr);

DESCRIPTION
This function is used in connectionless mode to receive information concerning an
error on a previously sent data unit, and should be issued only after a unit data
error indication. It informs the transport user that a data unit with a specific desti
nation address and protocol options produced an error. fd identifies the local tran
sport endpoint through which the error report will be received, and uderr points to
a t_uderr structure containing the following members:

struct netbuf addr;
struct netbuf opt;
long error;

netbuf is described in intro(3). The maxlen [see netbuf in intro(3)] field of addr
and opt must be set before issuing this function to indicate the maximum size of the
buffer for each.

On return from this call, the addr structure specifies the destination protocol
address of the erroneous data unit, the opt structure identifies protocol-specific
options that were associated with the data unit, and error specifies a protocol
dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may
be set to NULL and t_rcvuderr will simply clear the error indication without
reporting any information to the user.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TNOUDERR

TBUFOVFLW

TNOTSUPPORT

TSYSERR

No unit data error indication currently exists on the specified
transport endpoint.

The number of bytes allocated for the incoming protocol address
or options is not sufficient to store the information. The unit data
error information to be returned in uderr will be discarded.

This function is not supported by the underlying transport pro
vider.

A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_rcvudata(3N), t_sndudata(3N)

DIAGNOSTICS

934

t_rcvuderr returns 0 on successful completion and -Ion failure and t_errno is
set to indicate the error.

NAME
t_snd - send data or expedited data over a connection

SYNOPSIS
#include <tiuser.h>

int t_snd (intfd, char *buf, unsigned nbytes, intflags);

DESCRIPTION
This function is used to send either normal or expedited data. fd identifies the local
transport endpoint over which data should be sent, buf points to the user data,
nbytes specifies the number of bytes of user data to be sent, and flags specifies
any optional flags described below.

By default, t_snd operates in synchronous mode and may wait if flow control res
trictions prevent the data from being accepted by the local transport provider at the
time the call is made. However, if O_NDELAY or O_NONBLOCK is set (via t_open or
fcntl), t_snd will execute in asynchronous mode, and will fail immediately if
there are flow control restrictions.

Even when there are no flow control restrictions, t_snd will wait if STREAMS inter
nal resources are not available, regardless of the state of O_NDELAY or O_NONBLOCK.

On successful completion, t_snd returns the number of bytes accepted by the tran
sport provider. Normally this will equal the number of bytes specified in nbytes.
However, if O_NDELAY or O_NONBLOCK is set, it is possible that only part of the data
will be accepted by the transport provider. In this case, t_snd will set T_MORE for
the data that was sent (see below) and will return a value less than nbytes. If
nbytes is zero and sending of zero bytes is not supported by the underlying tran
sport provider, t_snd will return -1 with t_errno set to TBADDATA. A return value
of zero indicates that the request to send a zero-length data message was sent to the
provider.

If T_EXPEDITED is set in flags, the data will be sent as expedited data, and will be
subject to the interpretations of the transport provider.

If T_MORE is set in flags, or is set as described above, an indication is sent to the
transport provider that the transport service data unit (TSDU) or expedited transport
service data unit (ETSDU) is being sent through multiple t_snd calls. Each t_snd
with the T_MORE flag set indicates that another t_snd will follow with more data for
the current TSDU. The end of the TSDU (or ETSDU) is identified by a t_snd call with
the T_MORE flag not set. Use of T_MORE enables a user to break up large logical data
units without losing the boundaries of those units at the other end of the connec
tion. The flag implies nothing about how the data is packaged for transfer below
the transport interface. If the transport provider does not support the concept of a
TSDU as indicated in the info argument on return from t_open or t_getinfo, the
T_MORE flag is not meaningful and should be ignored.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider
as returned by t_open or t_getinfo. If the size is exceeded, a TSYSERR with sys
tem error EPROTO will occur. However, the t_snd may not fail because EPROTO
errors may not be reported immediately. In this case, a subsequent call that
accesses the transport endpoint will fail with the associated TSYSERR.

935

NOTES

If t_snd is issued from the T_IDLE state, the provider may silently discard the data.
If t_snd is issued from any state other than T_DATAXFER, T_INREL or T_IDLE, the
provider will generate a TSYSERR with system error EPROTO (which may be
reported in the manner described above).

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TFLOW

TNOTSUPPORT

TSYSERR

TBADDATA

O_NDELAY or O_NONBLOCK was set, but the flow control mechan
ism prevented the transport provider from accepting data at this
time.

This function is not supported by the underlying transport pro
vider.

A system error [see intro(2)] has been detected during execution
of this function.

nbytes is zero and sending zero bytes is not supported by the
transport provider.

The t_snd routine does not look for a disconnect indication (showing that the con
nection was broken) before passing data to the provider.

SEE ALSO
t_open(3N), t_rcv(3N)

DIAGNOSTICS

936

On successful completion, t_snd returns the number of bytes accepted by the tran
sport provider, and it returns -1 on failure and t_errno is set to indicate the error.

NAME
t_snddis - send user-initiated disconnect request

SYNOPSIS
#include <tiuser.h>

int t_snddis (intfd, struct t_call *call):

DESCRIPTION
This function is used to initiate an abortive release on an already established con
nection or to reject a connect request. fd identifies the local transport endpoint of
the connection, and call specifies information associated with the abortive release.
call points to a t_call structure that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

netbuf is described in intro(3). The values in call have different semantics,
depending on the context of the call to t_snddis. When rejecting a connect
request, call must be non-NULL and contain a valid value of sequence to identify
uniquely the rejected connect indication to the transport provider. The addr and
opt fields of call are ignored. In all other cases, call need only be used when
data is being sent with the disconnect request. The addr, opt, and sequence fields
of the t_call structure are ignored. If the user does not want to send data to the
remote user, the value of call may be NULL.

udata specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider as returned in the
discon field of the info argument of t_open or t_getinfo. If the len field of
udata is zero, no data will be sent to the remote user.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TOUTSTATE

TBADDATA

TBADSEQ

TLOOK

The function was issued in the wrong sequence. The transport
provider's outgoing queue may be flushed, so data may be lost.

The amount of user data specified was not within the bounds
supported by the transport provider as returned in the discon
field of the info argument of t_open or t_getinfo. The tran
sport provider's outgoing queue will be flushed, so data may be
lost.

An invalid sequence number was specified, or a NULL call struc
ture was specified when rejecting a connect request. The tran
sport provider's outgoing queue will be flushed, so data may be
lost.

An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

937

TNOTSUPPORT

TSYSERR

This function is not supported by the underlying transport pro
vider.

A system error has occurred during execution of this function.

SEE ALSO
intro(3), t_connect(3N), t_getinfo(3N), t_listen(3N), t_open(3N)

DIAGNOSTICS

938

t_snddis returns a on success and -Ion failure and t~errno is set to indicate the
error.

t_sndrel (3N)

NAME
t_sndrel - initiate an orderly release

SYNOPSIS
#include <tiuser.h>

int t_sndrel (intfd);

DESCRIPTION
This function is used to initiate an orderly release of a transport connection and
indicates to the transport provider that the transport user has no more data to send.
fd identifies the local transport endpoint where the connection exists. After issuing
t_sndrel, the user may not send any more data over the connection. However, a
user may continue to receive data if an orderly release indication has not been
received.

This function is an optional service of the transport provider, and is only supported
if the transport provider returned service type T_COTS_ORD on t_open or
t_getinfo.

If t_sndrel is issued from an invalid state, the provider will generate an EPROTO
protocol error; however, this error may not occur until a subsequent reference to
the transport endpoint.

On failure, t_errno may be set to one of the following:

TBADF

TFLOW

TNOTSUPPORT

TSYSERR

SEE ALSO

The specified file descriptor does not refer to a transport end
point.

O_NDELAY or O_NONBLOCK was set, but the flow control mechan
ism prevented the transport provider from accepting the function
at this time.

This function is not supported by the underlying transport pro
vider.

A system error has occurred during execution of this function.

t_open(3N), t_rcvrel(3N)

DIAGNOSTICS
t_sndrel returns a on success and -Ion failure and t_errno is set to indicate the
error.

939

t_ sndudata (3N)

NAME
t_sndudata - send a data unit

SYNOPSIS
#include <tiuser.h>

int t_sndudata (int fd, struct t_unitdata *unitdata);

DESCRIPTION

940

This function is used in connectionless mode to send a data unit to another tran
sport user. fd identifies the local transport endpoint through which data will be
sent, and unitdata points to a t_unitdata structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

netbuf is described in intro(3). In unitdata, addr specifies the protocol address
of the destination user, opt identifies protocol-specific options that the user wants
associated with this request, and udata specifies the user data to be sent. The user
may choose not to specify what protocol options are associated with the transfer by
setting the len field of opt to zero. In this case, the provider may use default
options.

If the len field of udata is zero, and the sending of zero bytes is not supported by
the underlying transport provider, t_sndudata will return -1 with t_errno set to
TBADDATA.

By default, t_sndudata operates in synchronous mode and may wait if flow con
trol restrictions prevent the data from being accepted by the local transport pro
vider at the time the call is made. However, if O_NDELAY or O_NONBLOCK is set (via
t_open or fcntl), t_sndudata will execute in asynchronous mode and will fail
under such conditions.

If t_sndudata is issued from an invalid state, or if the amount of data specified in
udata exceeds the TSDU size as returned in the tsdu field of the info argument of
t_open or t_getinfo, the provider will generate an EPROTO protocol error. (See
TSYSERR below.) If the state is invalid, this error may not occur until a subsequent
reference is made to the transport endpoint.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TFLOW

TNOTSUPPORT

TSYSERR

O_NDELAY or O_NONBLOCK was set, but the flow control mechan
ism prevented the transport provider from accepting data at this
time.

This function is not supported by the underlying transport pro
vider.

A system error has occurred during execution of this function.

TBADDATA

SEE ALSO

t_ sndudata (3N)

nbytes is zero and sending zero bytes is not supported by the
transport provider.

intro(3), t_rcvudata(3N), t_rcvuderr(3N)

DIAGNOSTICS
t_sndudata returns 0 on successful completion and -Ion failure t_errno is set to
indicate the error.

941

t sync(3N)

NAME
t_sync - synchronize transport library

SYNOPSIS
#include <tiuser.h>

int t_sync (intfd>;

DESCRIPTION
For the transport endpoint specified by fd, t_sync synchronizes the data structures
managed by the transport library with information from the underlying transport
provider. In doing so, it can convert a raw file descriptor [obtained via open(2),
dup(2), or as a result of a fork(2) and exec(2)] to an initialized transport endpoint,
assuming that file descriptor referenced a transport provider. This function also
allows two cooperating processes to synchronize their interaction with a transport
provider.

For example, if a process forks a new process and issues an exec, the new process
must issue a t_sync to build the private library data structure associated with a
transport endpoint and to synchronize the data structure with the relevant provider
information.

It is important to remember that the transport provider treats all users of a tran
sport endpoint as a single user. If multiple processes are using the same endpoint,
they should coordinate their activities so as not to violate the state of the provider.
t_sync returns the current state of the provider to the user, thereby enabling the
user to verify the state before taking further action. This coordination is only valid
among cooperating processes; it is possible that a process or an incoming event
could change the provider's state after a t_sync is issued.

If the provider is undergoing a state transition when t_sync is called, the function
will fail.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TSTATECHNG

TSYSERR

The transport provider is undergoing a state change.

A system error has occurred during execution of this function.

SEE ALSO
dup(2), exec(2), fork(2), open(2)

DIAGNOSTICS

942

t_sync returns the state of the transport provider on successful completion and -1
on failure and t_errno is set to indicate the error. The state returned may be one of
the following:

T_UNBND

T_IDLE

T_OUTCON

T_INCON

T_DATAXFER

T_OUTREL

unbound

idle

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly release indica
tion)

incoming orderly release (waiting for an orderly release request)

943

t_unbind (3N)

NAME
t_unbind - disable a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_unbind (intfd>;

DESCRIPTION
The t_unbind function disables the transport endpoint specified by fd which was
previously bound by t_bind(3N). On completion of this call, no further data or
events destined for this transport endpoint will be accepted by the transport pro
vider.

On failure, t_errno may be set to one of the following:

TBADF The specified file descriptor does not refer to a transport end
point.

TOUTSTATE

TLOOK

TSYSERR

The function was issued in the wrong sequence.

An asynchronous event has occurred on this transport endpoint.

A system error has occurred during execution of this function.

SEE ALSO
t_bind(3N)

DIAGNOSTICS
t unbind returns 0 on success and -Ion failure and t_errno is set to indicate the
error.

944

(BSD System Compatibility) ualarm (3)

NAME
ualann - (BSD) schedule signal after interval in microseconds

SYNOPSIS
/usr/ucb/cc [flag ...]file ...

unsigned ualann(unsigned value, unsigned interval>;

DESCRIPTION

NOTES

ualann sends signal SIGALRM [see signal(3)], to the invoking process in a number
of microseconds given by the value argument. Unless caught or ignored, the signal
terminates the process.

If the interval argument is non-zero, the SIGALRM signal will be sent to the process
every interval microseconds after the timer expires (for instance, after value
microseconds have passed).

Because of scheduling delays, resumption of execution of when the signal is caught
may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 microseconds.

The return value is the amount of time previously remaining in the alarm clock.

ualann is a simplified interface to setitimer; see getitimer(3C).

SEE ALSO
alann(2), getitimer(3C), signal(3), sigpause(3), sigvec(3), sleep(3), usleep(3)

945

ungetc{3S)

NAME
ungetc - push character back onto input stream

SYNOPSIS
#include <stdio.h>

int ungetc (int c, FILE *stream);

DESCRIPTION
ungetc inserts the character specified by c (converted to an unsigned char) into
the buffer associated with an input stream [see intro(3)]. That character, c, will be
returned by the next getc(3S) call on that stream. ungetc returns c, and leaves the
file corresponding to stream unchanged. A successful call to ungetc clears the EOF
indicator for stream.

Four bytes of pushback are guaranteed.

The value of the file position indicator for stream after reading or discarding all
pushed-back characters will be the same as it was before the characters were
pushed back.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

fseek, rewind [both described on fseek(3S)], and fsetpos erase the memory of
inserted characters for the stream on which they are applied.

SEE ALSO
fseek(3S), fsetpos(3C), getc(3S), setbuf(3S), stdio(3S)

DIAGNOSTICS
ungetc returns EOF if it cannot insert the character.

946

ungetwc (3W)

NAME
ungetwc - push wchar_t character back into input stream

SYNOPSIS
#include <stdio.h>
#include <widec.h>

int ungetwc (wchar_t c, FILE *stream);

DESCRIPTION (International Functions)
ungetwc inserts the wchar_t character c into the buffer associated with the input
stream. That character, c, will be returned by the next getwc call on that stream.
ungetwc returns c.

One character of pushback is guaranteed, provided something has already been
read from the stream and the stream is actually buffered.

If c equals (wchar_t) EOF, ungetwc does nothing to the buffer and returns EOF.

fseek erases all memory of inserted characters.

SEE ALSO
fseek(3S), setbuf(3S), stdio(3S), getwc(3W), widec(3W).

DIAGNOSTICS
ungetwc returns EOF if it cannot insert a wchar_t character.

947

unlockpt (3C)

NAME
unlockpt - unlock a pseudo-terminal master / slave pair

SYNOPSIS
int unlockpt (int fi1des) ;

'DESCRIPTION
The function unlockpt clears a lock flag associated with the slave pseudo-terminal
device associated with its master pseudo-terminal counterpart so that the slave
pseudo-terminal device can be opened. fildes is a file descriptor returned from a
successful open of a master pseudo-terminal device.

RETURN VALUE
Upon successful completion, the function unlockpt returns 0; otherwise it returns
-1. A failure may occur if fildes is not an open file descriptor or is not associated
with a master pseudo-terminal device.

SEE ALSO
grantpt(3C), open(2), ptsname(3C), pty(7)

948

(eso System Compatibility) usleep (3)

NAME
usleep - (BSD) suspend execution for interval in microseconds

SYNOPSIS
/usr/ucb/cc [flag . ..]file ...

usleep(unsigned useconds);

DESCRIPTION
Suspend the current process for the number of microseconds specified by the argu
ment. The actual suspension time may be an arbitrary amount longer because of
other activity in the system, or because of the time spent in processing the call.

The routine is implemented by setting an interval timer and pausing until it occurs.
The previous state of this timer is saved and restored. If the sleep time exceeds the
time to the expiration of the previous timer, the process sleeps only until the signal
would have occurred, and the signal is sent a short time later.

This routine is implemented using setitimer [see getitimer(3C)]; it requires
eight system calls each time it is invoked.

SEE ALSO
ala:rm(2), getitimer(3C), sigpause(3), sleep(3), uala:rm(3)

949

utimes(3) (eso System Compatibility)

NAME
utimes - (BSD) set file times

SYNOPSIS
/usr/ucb/cc [flag . ..]file . ..

#include <sys/types.h>

int utimes (char *file, struct timeval *tvp);

DESCRIPTION
utimes sets the access and modification times of the file named by file.

If tvp is NULL, the access and modification times are set to the current time. A pro
cess must be the owner of the file or have write permission for the file to use
utimes in this manner.

If tvp is not NULL, it is assumed to point to an array of two timeval structures. The
access time is set to the value of the first member, and the modification time is set to
the value of the second member. Only the owner of the file or the privileged user
may use utimes in this manner.

In either case, the inode-changed time of the file is set to the current time.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
utimes will fail if one or more of the following are true:

ENOTDIR A component of the path prefix of file is not a directory.

ENAMETOOLONG The length of a component of file exceeds 255 characters, or the
length of file exceeds 1023 characters.

ENOENT The file referred to by file does not exist.

EACCES Search permission is denied for a component of the path prefix of
file.

ELOOP Too many symbolic links were encountered in translating file .

EPERM The effective user ID of the process is not privileged user and not
the owner of the file, and tvp is not NULL.

EACCES The effective user ID of the process is not privileged user and not
the owner of the file, write permission is denied for the file, and
tvp is NULL.

EIO An I/O error occurred while reading from or writing to the file
system.

EROFS The file system containing the file is mounted read-only.

EFAULT file or tvp points outside the process's allocated address space.

SEE ALSO
stat(2), utime(2)

950

(aso System Compatibility) utimes(3)

NOTES
utimes is a library routine that calls the utime system call.

951

vprintf (3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a variable argument list

SYNOPSIS
#include <stdio.h>
#include <stdarg.h>

int vprintf(const char *format, va_list ap);

int vfprintf (FILE *5tream, const char *format, va_list ap);

int vsprintf(char *5, const char *format, va_list ap);

DESCRIPTION
vprintf, vfprintf and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number of argu
ments, they are called with an argument list as defined by the stdarg • h header file.

The stdarg. h header file defines the type va_list and a set of macros for advanc
ing through a list of arguments whose number and types may vary. The argument
ap to the vprint family of routines is of type va_list. This argument is used with
the stdarg.h header file macros va_start, va_arg and va_end [see va_start,
va_arg, and va_end in stdarg(5)]. The EXAMPLE section below shows their use
with vprintf.

EXAMPLE
The following demonstrates how vfprintf could be used to write an error rou
tine:

#include <stdio.h>
#include <stdarg.h>
1*

* error should be called like
* error (function_name, for.mat, argl,
*1

.) ;
void error(char *function_name, char *for.mat, .)

{

}

va_list ap;

va_start (ap, for.mat);
1* print out name of function causing error *1
(void) fprintf(stderr, "ERR in %s: ", function_name);
va_arg(ap, char*);
1* print out remainder of message *1
(void) vfprintf(stderr, for.mat, ap);
va_end (ap) ;
(void) abort;

SEE ALSO
printf(3S), stdarg(5)

952

vprintf (3S)

DIAGNOSTICS
vprintf and vfprintf return the number of characters transmitted, or return -1 if
an error was encountered.

953

wait(3) (BSO System Compatibility)

NAME
wait: wait3, WIFSTOPPED, WIFSIGNALED, WIFEXITED - (BSD) wait for process to
terminate or stop

SYNOPSIS
/usr/ueb/ee [flag . ..] file ...

#inelude <sys/wait.h>
#inelude <sys/time.h>
#inelude <sys/resouree.h>

int wait3 (union wait *statusp, int options, struet rusage *rusage);

WIFSTOPPED (union wait status);

WIFSIGNALED (union wait status);

WIFEXITED{union wait status);

DESCRIPTION

954

NOTE: wait [see wait(2)] is found in libe, not libueb. However, its description is
provided here to offer a comparison to the wait3 functionality.

wai t delays its caller until a signal is received or one of its child processes ter
minates or stops due to tracing. If any child has died or stopped due to tracing and
this has not been reported using wait, return is immediate, returning the process ID
and exit status of one of those children. If that child had died, it is discarded. If
there are no children, return is immediate with the value -1 returned. If there are
only running or stopped but reported children, the calling process is blocked.

If status is not a NULL pointer, then on return from a successful wait call the status
of the child process whose process ID is the return value of wait is stored in the
wait union pointed to by status. The w_status member of that union is an int; it
indicates the cause of termination and other information about the terminated
process in the following manner:

If the low-order 8 bits of w_status are equal to 0177, the child process has
stopped; the 8 bits higher up from the low-order 8 bits of w_status contain
the number of the signal that caused the process to stop. See ptraee(2) and
sigvee(3).

If the low-order 8 bits of w_status are non-zero and are not equal to 0177,
the child process terminated due to a signal; the low-order 7 bits of
w_status contain the number of the signal that terminated the process. In
addition, if the low-order seventh bit of w_status (that is, bit 0200) is set, a
"core image" of the process was produced; see sigvee(3).

Otherwise, the child process terminated due to an exit call; the 8 bits
higher up from the low-order 8 bits of w_status contain the low-order 8
bits of the argument that the child process passed to exit; see exit(2).

Other members of the wait union can be used to extract this information more con
veniently:

If the w_stopval member has the value WSTOPPED, the child process has
stopped; the value of the w_stopsig member is the signal that stopped the
process.

(BSC System Compatibility) wait (3)

If the w_tennsig member is non-zero, the child process terminated due to a
signal; the value of the w_tennsig member is the number of the signal that
terminated the process. If the w_coredump member is non-zero, a core
dump was produced.

Otherwise, the child process terminated due to an exit call; the value of the
w_retcode member is the low-order 8 bits of the argument that the child
process passed to exit.

The other members of the wait union merely provide an alternate way of analyzing
the status. The value stored in the w_status field is compatible with the values
stored by other versions of the UNIX system, and an argument of type int * may
be provided instead of an argument of type union wait * for compatibility with
those versions.

wait3 is an alternate interface to wait(2) that allows both non-blocking status col
lection and the collection of the status of children stopped by any means. The status
parameter is defined as above. The options parameter is used to indicate the call
should not block if there are no processes that have status to report (WNOHANG),
and/ or that children of the current process that are stopped due to a SIGTTIN,
SIGTTOU, SIGTSTP, or SIGSTOP signal are eligible to have their status reported as
well (WONTRACED). A terminated child is discarded after it reports status, and a
stopped process will not report its status more than once. If rusage is not a NULL

pointer, a summary of the resources used by the terminated process and all its chil
dren is returned. Only the user time used and the system time used are currently
available. They are returned in rusage. ru_utime and rusage. ru_stime, respec
tively.

When the WNOHANG option is specified and no processes have status to report, wait3
returns O. The WNOHANG and WONTRACED options may be combined by ~Ring the
two values.

WIFSTOPPED, WIFSIGNALED, WIFEXITED, are macros that take an argument status, of
type 'union wait', as returned by wai t3. WIFSTOPPED evaluates to true (1) when
the process for which the wait call was made is stopped, or to false (0) otherwise.
WIFSIGNALED evaluates to true when the process was terminated with a signal.
WIFEXITED evaluates to true when the process exited by using an exit(2) call.

RETURN VALUE
wait3 returns 0 if WNOHANG is specified and there are no stopped or exited children,
and returns the process ID of the child process if it returns due to a stopped or ter
minated child process. Otherwise, wait3 returns a value of -1 and sets ermo to
indicate the error.

ERRORS
wait3 will fail and return immediately if one or more of the following are true:

ECHILD The calling process has no existing unwaited-for child processes.

EFAULT The status or rusage arguments point to an illegal address.

wait3 will terminate prematurely, return -1, and set ermo to EINTR upon the
arrival of a signal whose SV_INTERRUPT bit in its flags field is set [see sigvec(3)
and siginterrupt(3)]. signal(3), in the System V compatibility library, sets this
bit for any signal it catches.

955

wait (3) (BSO System Compatibility)

Since System V Release 4 does not implement this function directly as a system call,
an illegal address (status or rusage) argument may result in a core dump as opposed
to returning EFAULT.

SEE ALSO

NOTES

956

exit(2), getrusage(3), ptrace(2), siginterrupt(3), signal(2), signal(3),
sigvec(3), wait(2), waitpid(2)

If a parent process terminates without waiting on its children, the initialization pro
cess (process ID = 1) inherits the children.

wait3 is automatically restarted when a process receives a signal while awaiting
termination of a child process, unless the SV_INTERRUPT bit is set in the flags for
that signal.

wconv(3W)

NAME
wconv: towupper I towlower - translate characters

SYNOPSIS
#include <ctype.h>
#include <widec.h>
#include <wctype.h>

wchar_t towupper(wchar_tc);

wchar_t towlower(wchar_tc);

DESCRIPTION
If the argument to towupper represents a lowercase letter of the ASCII or supple
mentary code sets, the result is the corresponding uppercase letter. If the argument
to towlower represents an uppercase letter of the ASCII or supplementary code sets,
the result is the corresponding lowercase letter.

In the case of all other arguments, the return value is unchanged. The table used for
translation is generated by wChrtbl(lM).

SEE ALSO
wchrtbl(lM), conv(3C), wctype(3W).

957

wctype(3W)

NAME
wctype: iswalpha, iswupper, iswlower, iswdigit, isw.xdigit, iswal
num, iswspace, iswpunct, iswprint, iswgraph, iswcntrl, iswascii,
isphonogram, isideogram, isenglish, isnwnber, isspecial - classify
ASCII and supplementary code set characters

SYNOPSIS
#include <ctype.h>
#include <widec.h>
#include <wctype.h>

int iswalpha(wchar_tc)i

DESCRIPTION
These functions classify character-coded wchar_t values by table lookup. Each is a
predicate returning nonzero for true, zero for false. The lookup table is generated
by wChrtbl(lM). Each of these functions operates on both ASCII and supplemen
tary code sets unless otherwise indicated.

iswalpha(c) c is an English letter.

iswupper(c)

iswlower(c)

iswdigit(c)

isw.xdigit(c)

iswalnum(c)

iswspace(c)

iswpunct(c)

iswprint(c)

iswgraph(c)

iswcntrl(c)

iswascii(c)

isphonogram(c)

isideogram(c)

isenglish(c)

isnwnber(c)

isspecial(c)

c is an English uppercase letter.

c is an English lowercase letter.

cisadigit [0-9].

c is a hexadecimal digit [0-9], [A-F], or [a-f].

c is an alphanumeric (letter or digit).

c is a space character or a tab, carriage return, newline, vertical
tab, or form-feed.

c is a punctuation character (neither control nor alphanumeric).

c is a printing character including space.

c is a printing character; like iswprint except false for space.

c is a delete character (0177), an ordinary control character
(less than 040), or other control character of a supplementary
code set.

c is an ASCII character code less than 0200.

c is a phonogram in a supplementary code set.

c is an ideogram in a supplementary code set.

c is an English letters in a supplementary code set.

c is a digit of a supplementary code set.

c is a special character in a supplementary code set.

SEE ALSO
wchrtbl(lM), ctype(3C), wconv(3W).

958

widec(3W)

NAME
widec - multibyte character I/O routines

SYNOPSIS
#include <stdio.h>
#include <widec.h>

DESCRIPTION (International Functions)
The functions that the multibyte character library provides for wchar_t string
operations correspond to those provided by stdio(3S) as shown in the table below:

character I/O

string I/O

formatted I/O

character-based
function

getwc
getwchar
fgetwc
ungetwc
putwc
putwchar
fputwc
getws
fgetws
putws
fputws

byte-based func
tion

getc
get char
fgetc
ungetc
putc
putchar
fputc
gets
fgets
puts
fputs

character- and
byte-based

printf
fprintf
sprintf
vprintf
vfprintf
vsprintf
scanf
fscanf
sscanf

The character-based input and output routines provide the ability to work in units
of characters instead of bytes. C programs using these routines can treat all charac
ters from any of the four Eve code sets as the same size by using the wchar_t
representation.

getwc returns a value of type wchar_t, which corresponds to the Eve representa
tion of a character read from the input stream. getwc uses the cswidth parameter
in the character class table to determine the width of the character in its Eve form.

putwc transforms a wchar_t character into EVe, and writes it to the named output
stream. putwc also uses the cswidth parameter to determine the widths of charac
ters in EVe.

959

wi dec (3W)

The macros getwchar and putwchar; the functions fgetwc, fputwc, getws,
fgetws, putws, and fputws; and the format specifications %wc and %ws of the func
tions printf, fprintf, sprintf [see printf(3S)], vprintf, vfprintf,
vsprintf [see vprintf(3S)], scanf, fscanf, and sscanf [see
scanf(3S)] act as if they had made successive calls to either getwc
or putwc.

The character-based routines use the existing byte-based routines internally, so the
buffering scheme is the same.

Any program that uses these routines must include the following header files:

#include <stdio.h>
#include <widec.h>

SEE ALSO

960

close(2), ctermid(3S), cuserid(3S), fclose(3S), ferror(3S), fopen(3S),
fread(3S), fseek(3S), getwc(3W), getws(3W), lseek(2), mbchar(3C),
mbstring(3C), open(2), pipe(2), popen(3S), printf(3S), putwc(3W), putws(3W),
read(2), scanf(3S), setbuf(3S), stdio(3S), system(3S), tmpfile(3S), tmpna.m(3S),
ungetwc(3W), vprintf(3S), wri te(2), wstring(3W)

NAME

wstring (3W)

wstring: wscat, wsncat, wscmp, wsncmp, wscpy, wsncpy, wslen, wschr,
wsrchr, wspbrk, wsspn, wscspn, wstok, wstostr, strtows - wchar_t
string operations and type transformation

SYNOPSIS
#include <widec.h>

wchar_t *wscat{wchar_t *sl, wchar_t *s2);

wchar_t *wsncat (wchar_t *sl, wchar_t *s2, int n) ;

int wscmp{wchar_t *sl, wchar_t *s2);

int wsncmp (wchar_t *sl, wchar_t *s2, int n) ;

wchar_t *wscpy{wchar_t *sl, wchar_t *s2);

wchar_t *wsncpy{wchar_t *sl, wchar_t *s2, int n) ;

int wslen{wchar_t *s);

wchar_t *wschr{wchar_t *S, intc);

wchar_t *wsrchr{wchar_t *s, intc);

wchar_t *wspbrk{wchar_t *sl, wchar_t *s2);

int wsspn{wchar_t *sl, wchar_t *s2);

int wscspn{wchar_t *sl, wchar_t *s2);

wchar_t *wstok{wchar_t *sl, wchar_t *s2);

char *wstostr{char *sl, wchar_t *s2);

wchar_t *strtows{wchar_t *sl, char *s2);

DESCRIPTION (International Functions)
The arguments sl, s2, and s point to wchar_t strings (that is, arrays of wchar_t
characters terminated by a wchar_t null character). The functions wscat, wsncat,
wscpy, and wsncpy all modify sl. These functions do not check for an overflow
condition of the array pointed to by sl.

wscat appends a copy of the wchar_t string s2 to the end of the wchar_t string s1.
wsncat appends at most n wchar_t characters. Each function returns sl.

wscmp compares its arguments and returns an integer less than, equal to, or greater
than 0, depending on whether sl is less than, equal to, or greater than s2. wsncmp
makes the same comparison but looks at most at n wchar_t characters.

wscpy copies wchar_t string s2 to sl, stopping after the wchar_t null character has
been copied. wsncpy copies exactly n wchar_t characters, truncating s2 or adding
wchar_t null characters to sl, if necessary. The result will not be wchar_t null
terminated if the length of s2 is n or more. Each function returns sl.

wslen returns the number of wchar_t characters in s, not including the terminating
wchar_t null character.

961

wstring (3W)

wschr and wsrchr return a pointer to the first and last occurrence, respectively, of
wchar_t character c in wchar_t string 5, or a null pointer, if c does not occur in the
string. The wchar_t null character terminating a string is considered to be part of
the string.

wspbrk returns a pointer to the first occurrence in wchar_t string 51 of any
wchar_t character from wchar_t string 52, or a null pointer if there is no wchar_t
character from 52 in 51.

wsspn returns the length of the initial segment of wchar_t string 51, which consists
entirely of wchar_t characters from wchar_t string 52. wscspn returns the length
of the initial segment of wchar_t string 51, which does not consist entirely of
wchar_t characters from wchar_t string 52.

wstok treats the wchar_t string 51 as a sequence of zero or more text tokens,
separated by spans of one or more wchar_t characters from the separator wchar_t
string 52. The first call (with the pointer 51 specified) returns a pointer to the first
wchar_t character of the first token, and writes a wchar_t null character into 51
immediately following the returned token. The function keeps track of its position
in the wchar_t string between separate calls, so that subsequent calls (which must
be made with the first argument a null pointer) will progress through the wchar_t
string 51 immediately following that token. Similarly, subsequent calls will pro
gress through the wchar_t string 51 until no tokens remain. The wchar_t separator
string 52 may be different from call to call. A null pointer is returned when no
token remains in 51.

wstostr transforms wchar_t characters in wchar_t string 52 into EVC, and
transfers them to character string 51, stopping after the wchar_t null character has
been processed.

strtows transforms EVC in character string 52 into wchar_t characters, and
transfers those to wchar_t string 51, stopping after the null character has been pro
cessed.

SEE ALSO
malloc(3C), widec(3W), malloc(3X).

DIAGNOSTICS

962

On success, wstostr and strtows return 51. If an illegal byte sequence is detected,
a null pointer is returned and errno is set to EILSEQ.

xdr(3N)

NAME
xdr - library routines for external data representation

DESCRIPTION
XDR routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Data for remote procedure calls (RPC) are transmit
ted using these routines.

Index to Routines
The following table lists XDR routines and the manual pages on which they are
described:

XDRRoutine Manual Page
xdr_array xdr_co~lex(3N)
xdr_bool xdr_simple(3N)
xdr_bytes xdr_complex(3N)
xdr_char xdr_s~le(3N)
xdr_destroy xdr_create(3N)
xdr_double xdr_s imple (3N)
xdr_enum xdr_simple(3N)
xdr_float xdr_si~le(3N)
xdr_free xdr_s~le(3N)
xdr~etpos xdr_admin(3N)
xdr_inline xdr_admin(3N)
xdr_int xdr_si~le(3N)
xdr_long xdr_si~le(3N)
xdr_opaque xdr_complex(3N)
xdr-pointer xdr_complex(3N)
xdr_reference xdr_complex(3N)
xdr_setpos xdr_admin(3N)
xdr_short xdr_simple(3N)
xdr_sizeof xdr_sizeof(3N)
xdr_string xdr_complex(3N)
xdr_u_char xdr_simple(3N)
xdr_u_long xdr_si~le(3N)
xdr_u_short xdr_simple(3N)
xdr_union xdr_complex(3N)
xdr_vector xdr_complex(3N)
xdr_void xdr_simple(3N)
xdr_wrapstring xdr_complex(3N)
xdrmeIILcreate xdr_create(3N)
xdrrec_create xdr_create(3N)
xdrrec_eof xdr_admin(3N)
xdrstdio_create xdr_create(3N)

SEE ALSO
xdr_admin(3N), xdr_complex(3N), xdr_create(3N), xdr_s~le(3N), rpc(3N)

963

xdr _ admin (3N)

NAME
xdr_admin: xdr_getpos, xdr_inline, xdrrec_eof, xdr_setpos - library rou
tines for external data representation

DESCRIPTION

964

XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

Routines
See rpc(3N) for the definition of the XDR data structure.

#include <rpc/xdr.h>

u_int
xdr_getpos(const XDR *xdrs);

long *

A macro that invokes the get-position routine associated with the XDR
stream, xdrs. The routine returns an unsigned integer, which indicates the
position of the XDR byte stream. A desirable feature of XDR streams is that
simple arithmetic works with this number, although the XDR stream
instances need not guarantee this. Therefore, applications written for porta
bility should not depend on this feature.

xdr_inline(XDR *xdrs; const int len);

bool_t

A macro that invokes the in-line routine associated with the XDR stream,
xdrs. The routine returns a pointer to a contiguous piece of the stream's
buffer; len is the byte length of the desired buffer. Note: pointer is cast to
long *.
Note: xdr_inline may return NULL (0) if it cannot allocate a contiguous
piece of a buffer. Therefore the behavior may vary among stream instances;
it exists for the sake of efficiency, and applications written for portability
should not depend on this feature.

xdrrec_eof (XDR *xdrs);

bool_t

This routine can be invoked only on streams created by xdrrec_create.
After consuming the rest of the current record in the stream, this routine
returns 1 if the stream has no more input, 0 otherwise.

xdr_setpos(XDR *xdrs, const u_int pos);

A macro that invokes the set position routine associated with the XDR
stream xdrs. The parameter pos is a position value obtained from
xdr_getpos. This routine returns 1 if the XDR stream was repositioned,
and 0 otherwise.

Note: it is difficult to reposition some types of XDR streams, so this routine
may fail with one type of stream and succeed with another. Therefore,
applications written for portability should not depend on this feature.

xdr_admin (3N)

SEE ALSO
rpc(3N), xdr_complex(3N), xdr_create(3N), xdr_simple(3N)

965

xdr complex (3N)

NAME
xdr_complex: xdr_arraY,xdr_bytes,xdr_opaque,xdr-pointer,
xdr_reference, xdr_string, xdr_union, xdr_ vector, xdr_wrapstring - library
routines for external data representation

DESCRIPTION

966

XDR library routines allow C programmers to describe complex data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data. These routines are the XDR library
routines for complex data structures. They require the creation of XDR stream [see
xdr_create(3N)].

Routines
See rpc(3N) for the definition of the XDR data structure.

#include <rpc/xdr.h>

bool_t
xdr_array(XDR *xdrs, caddr_t *arrp, u_int *sizep,

const u_int maxsize, const u_int elsize,
const xdrproc_t elproc};

bool_t

xdr_array translates between variable-length arrays and their correspond
ing external representations. The parameter arrp is the address of the
pointer to the array, while sizep is the address of the element count of the
array; this element count cannot exceed maxsize. The parameter elsize is the
sizeof each of the array's elements, and elproc is an XDR routine that
translates between the array elements' C form and their external representa
tion. This routine returns 1 if it succeeds, 0 otherwise.

xdr_bytes (XDR *xdrs, char **sp, u_int *sizep,
const u_int maxsize);

bool_t

xdr_bytes translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string is located at address sizep; strings cannot be longer than
maxsize. This routine returns 1 if it succeeds, 0 otherwise.

xdr_opaque(XDR *xdrs, caddr_t cp, const u_int cnt};

bool_t

xdr_opaque translates between fixed size opaque data and its external
representation. The parameter cp is the address of the opaque object, and
cnt is its size in bytes. This routine returns 1 if it succeeds, 0 otherwise.

xdr-pointer(XDR *xdrs, char **objpp, u_int objsize,
const xdrproc_t xdrobj};

Like xdr_reference except that it serializes NULL pointers, whereas
xdr_reference does not. Thus, xdr-pointer can represent recursive data
structures, such as binary trees or linked lists.

xdr_complex (3N)

bool_t
xdr_reference{XDR *xdrs, caddr_t *pp, u_int size,

canst xdrproc_t proc);

bool_t

xdr_reference provides pointer chasing within structures. The parameter
pp is the address of the pointer; size is the sizeof the structure that *pp
points to; and proc is an XDR procedure that translates the structure
between its C form and its external representation. This routine returns 1 if
it succeeds, 0 otherwise.

Note: this routine does not understand NULL pointers. Use xdr-'painter
instead.

xdr_string{XDR *xdrs, char **sp, const u_int maxsize);

bool_t

xdr_string translates between C strings and their corresponding external
representations. Strings cannot be longer than maxsize. Note: sp is the
address of the string's pointer. This routine returns 1 if it succeeds, 0
otherwise.

xdr_union {XDR *xdrs, enum_t *dscmp, char *unp,
canst struct xdr_discrim *choices,
canst bool_t (*defaultarm) (canst XDR *, const char *,

bool_t

const int»;

xdr_union translates between a discriminated C union and its correspond
ing external representation. It first translates the discriminant of the union
located at dscmp. This discriminant is always an enum_t. Next the union
located at unp is translated. The parameter choices is a pointer to an array of
xdr_discrim structures. Each structure contains an ordered pair of [value,
proc]. If the union's discriminant is equal to the associated value, then the
proc is called to translate the union. The end of the xdr_discrim structure
array is denoted by a routine of value NULL. If the discriminant is not found
in the choices array, then the defaultarm procedure is called (if it is not NULL).
Returns 1 if it succeeds, 0 otherwise.

xdr_vectar{XDR *xdrs, char *arrp, canst u_int size,
canst u_int elsize, canst xdrprac_t elproc);

xdr_vector translates between fixed-length arrays and their corresponding
external representations. The parameter arrp is the address of the pointer to
the array, while size is is the element count of the array. The parameter elsize
is the sizeof each of the array's elements, and elproc is an XDR routine that
translates between the array elements' C form and their external representa
tion. This routine returns 1 if it succeeds, 0 otherwise.

967

xdr _complex (3N)

bool_t
xdr_wrapstring(XDR *xd~, char **sp);

A routine that calls xdr_string(xdrs, sp, maxuint); where maxuint is the
maximum value of an unsigned integer.

Many routines, such as xdr_array, xdr-pointer and xdr_vector take a
function pointer of type xdrproc_t, which takes two arguments.
xdr_string, one of the most frequently used routines, requires three argu
ments, while xdr_wrapstring only requires' two. For these routines,
xdr_wrapstring is desirable. This routine returns 1 if it succeeds, 0 other
wise.

SEE ALSO
rpc(3N), xdr_admin(3N), xdr_create(3N), xdr_simple(3N)

968

NAME

xdr_create (3N)

xdr_create: xdr_destroY,xdrmem_create,xdrrec_create,xdrstdio_create
-library routines for external data representation stream creation

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines deal with the creation of XDR streams. XDR streams have to be
created before any data can be translated into XDR format.

Routines
See rpc(3N) for the definition of the XDR, CLIENT, and SVCXPRT data structures.

#include <rpc/xdr.h>

void
xdr_destroY{XDR *xdrs);

void

A macro that invokes the destroy routine associated with the XDR stream,
xdrs. Destruction usually involves freeing private data structures associated
with the stream. Using xdrs after invoking xdr_destroy is undefined.

xdrmem_create{XDR *xdrs, const caddr_t addr,

void

const u_int size, const enum xdr_op op);

This routine initializes the XDR stream object pOinted to by xdrs. The
stream's data is written to, or read from, a chunk of memory at location addr
whose length is no more than size bytes long. The op determines the direc
tion of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

xdrrec_create (XDR *xdrs, const u_int sendsz,
const u_int recvsz, const caddr_t handle,
const int (*readit) (const void *, char *, const int),
const int (*writeit) (const void *, const char *, const int»;

This routine initializes the XDR stream object pointed to by xdrs. The
stream's data is written to a buffer of size sendsz; a value of 0 indicates the
system should use a suitable default. The stream's data is read from a
buffer of size recvsz; it too can be set to a suitable default by passing a 0
value. When a stream's output buffer is full, writeit is called. Similarly,
when a stream's input buffer is empty, readit is called. The behavior of these
two routines is similar to the system calls read and write [see read(2) and
write(2), respectively], except that handle (CLIENT, or SVCXPRT) is passed to
the former routines as the first parameter instead of a file descriptor. Note:
the XDR stream's op field must be set by the caller.

Note: this XDR stream implements an intermediate record stream. There
fore there are additional bytes in the stream to provide record boundary
information.

969

xdr_create (3N)

void
xdrstdio_create{XDR *xdrs, FILE *file, const enwn xdr_op op) i

This routine initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the standard I/O stream file. The
parameter op determines the direction of the XDR stream (either
XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Note: the destroy routine associated with such XDR streams calls fflush on
the file stream, but never fclose [see fclose(3S)].

SEE ALSO

970

fclose(3S), read(2), rpc(3N), write(2), xdr_admin(3N), xdr_complex(3N),
xdr_simple(3N)

NAME

xdr _simple (3N)

xdr_simple: xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float,
xdr_free,xdr_int,xdr_long,xdr_short,xdr_u_char,xdr_u_long,
xdr_u_short, xdr_void -library routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines require the creation of XDR streams [see xdr_create(3N)].

Routines
See rpc(3N) for the definition of the XDR data structure.

#include <rpc/xdr.h>

bool_t
xdr_bool (XDR *xdrs, bool_t *bp);

xdr_bool translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either 1
or o. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_char (XDR *xdrs, char *cp);

bool_t

xdr_char translates between C characters and their external representa
tions. This routine returns 1 if it succeeds, 0 otherwise. Note: encoded char
acters are not packed, and occupy 4 bytes each. For arrays of characters, it is
worthwhile to consider xdr_bytes, xdr_opaque or xdr_string [see
xdr_bytes, xdr_opaque and xdr_string in xdr_complex(3N)].

xdr_double(XDR *xdrs, double *dp)i

bool_t

xdr_double translates between C double preCIsIon numbers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_enum(XDR *xdrs, enum_t *ep);

bool_t

xdr_enum translates between C enums (actually integers) and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_float (XDR *xdrs, float *jp);

void

xdr_float translates between C floats and their external representations.
This routine returns 1 if it succeeds, 0 otherwise.

xdr_free(xdrproc_t prac, char *a~p);

Generic freeing routine. The first argument is the XDR routine for the object
being freed. The second argument is a pointer to the object itself. Note: the
pointer passed to this routine is not freed, but what it points to is freed
(recursively).

971

xdr simple (3N)

bool_t
xdr_int (XDR *xdrs, int *ip);

bool_t

xdr_int translates between C integers and their external representations.
This routine returns 1 if it succeeds, 0 otherwise.

xdr_long(XDR *xdrs, long *lp);

bool_t

xdr_long translates between C long integers and their external representa
tions. This routine returns 1 if it succeeds, 0 otherwise.

xdr_short (XDR *xdrs, short *sp);

bool_t

xdr_short translates between C short integers and their external represen
tations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_u_char(XDR *xd~, char *ucp);

bool_t

xdr_u_char translates between unsigned C characters and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_u_long(XDR *xdrs, unsigned long *ulp);

bool_t

xdr_u_long translates between C unsigned long integers and their exter
nal representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_u_short(XDR *xdrs, unsigned short *usp);

bool_t

xdr_u_short translates between C unsigned short integers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

xdr_void(void) ;

This routine always returns 1. It may be passed to RPC routines that
require a function parameter, where nothing is to be done.

SEE ALSO
rpc(3N), xdr_admin(3N), xdr_complex(3N), xdr_create(3N)

972

xdr _ sizeof (3N)

NAME
xdr_sizeof -library routine for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent way. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

xdr_sizeof returns the number of bytes required to encode data.

Routine
unsigned long
xdr_sizeof (xdrproc_t June, void *data);

This routine returns the number of bytes required to encode data using the XDR
filter function func, excluding potential overhead such as RPC headers or record
markers. Zero is returned on error.

The information returned by xdr_sizeof might be used to select between transport
protocols, to determine the buffer size for various lower levels of RPC client and
server creation routines, or to allocate storage when XDR is used outside the RPC
subsystem.

SEE ALSO
rpc(3N), xdr_admin(3N), xdr_complex(3N), xdr_create(3N), xdr_simple(3N)

973

ypclnt(3N)

NAME
ypclnt, yp_get_default_domain, yp_bind, yp_unbind, yp_match, yp_first,
yp_next, yp_all, yp_order, yp_master, yperr_string, ypprot_err - NIS client
interface

SYNOPSIS
#include <rpcsvc/ypclnt.h>
#include <rpcsvc/yp-prot.h>

DESCRIPTION

974

This package of functions provides an interface to the NIS network lookup service.
The package can be loaded from the standard library, /usr/lib/libnsl. {so,a}.
Refer to ypfiles(4) and ypserv(lM) for an overview of the NIS name services,
including the definitions of map and domain, and a description of the various
servers, databases, and commands that comprise the NIS name service.

All input parameter names begin with in. Output parameters begin with out. Out
put parameters of type char ** should be addresses of uninitialized character
pointers. Memory is allocated by the NIS client package using malloc(3C), and
may be freed if the user code has no continuing need for it. For each outkey and out
val, two extra bytes of memory are allocated at the end that contain newline and
NOLL, respectively, but these two bytes are not reflected in outkeylen or outvallen.
indomain and inmap strings must be non-NOLL and NOLL-terminated. String parame
ters which are accompanied by a count parameter may not be NOLL, but may point
to NOLL strings, with the count parameter indicating this. Counted strings need not
be NOLL-terminated.

All functions in this package of type int return a if they succeed, and a failure code
(YPERR_XXXX) otherwise. Functions requiring a full YP map name cannot use nick
names. For example, hosts. byname must be used instead of the nickname hosts.
Failure codes are described under DIAGNOSTICS below.

Routines
int yp_bind (char *indomain);

To use the NIS name services, the client process must be bound to a NIS
server that serves the appropriate domain using yp_bind. Binding need not
be done explicitly by user code; this is done automatically whenever a NIS
lookup function is called. yp_bind can be called directly for processes that
make use of a backup strategy (for example, a local file) in cases when NIS
services are not available.

void yp_unbind (char *indomain);

Each binding allocates (uses up) one client process socket descriptor; each
bound domain costs one socket descriptor. However, multiple requests to
the same domain use that same descriptor. yp_unbind is available at the
client interface for processes that explicitly manage their socket descriptors
while accessing multiple domains. The call to yp_unbind make the domain
unbound, and free all per-process and per-node resources used to bind it.

If an RPC failure results upon use of a binding, that domain will be unbound
automatically. At that point, the ypclnt layer will retry forever or until the
operation succeeds, provided that ypbind is running, and either the client
process cannot bind a server for the proper domain or RPC requests to the

ypclnt(3N)

server fail.

If an error is not RPC-related, or if ypbind is not running, or if a bound
ypserv process returns any answer (success or failure), the ypclnt layer
will return control to the user code, either with an error code, or a success
code and any results.

int yp_get_default_domain (char **outdomain);

The NIS lookup calls require a map name and a domain name, at minimum.
It is assumed that the client process knows the name of the map of interest.
Client processes should fetch the node's default domain by calling
yp_get_default_domain, and use the returned outdomain as the indomain
parameter to successive NIS name service calls.

int yp_match (char *indomain, char *inmap, char *inkey,
int inkeylen, char **outval, int *outvallen);

yp_match returns the value associated with a passed key. This key must be
exact; no pattern matching is available.

int yp_first(char *indomain, char *inmap, char **outkey,
int *outkeylen, char **outval, int *outvallen);

yp_first returns the first key-value pair from the named map in the named
domain.

int yp_next(char *indomain, char *inmap, char *inkey,
int inkeylen, char **outkey, int *outkeylen,
char **outval, int *outvallen);

yp_next returns the next key-value pair in a named map. The inkey param
eter should be the outkey returned from an initial call to yp_first (to get the
second key-value pair) or the one returned from the nth call to yp_next (to
get the nth + second key-value pair).

The concept of first (and, for that matter, of next) is particular to the struc
ture of the NIS map being processing; there is no relation in retrieval order
to either the lexical order within any original (non-NIS name service) data
base, or to any obvious numerical sorting order on the keys, values, or key
value pairs. The only ordering guarantee made is that if the yp_first func
tion is called on a particular map, and then the yp_next function is repeat
edly called on the same map at the same server until the call fails with a rea
son of YPERR_NOMORE, every entry in the data base will be seen exactly once.
Further, if the same sequence of operations is performed on the same map at
the same server, the entries will be seen in the same order.

Under conditions of heavy server load or server failure, it is possible for the
domain to become unbound, then bound once again (perhaps to a different
server) while a client is running. This can cause a break in one of the
enumeration rules; specific entries may be seen twice by the client, or not at
all. This approach protects the client from error messages that would other
wise be returned in the midst of the enumeration. The next paragraph
describes a better solution to enumerating all entries in a map.

975

ypclnt(3N)

int yp_all (char *indomain, char *inmap,

976

struct ypall_callback *incallback);

yp_all provides a way to transfer an entire map from server to client in a
single request using TCP (rather than UDP as with other functions in this
package). The entire transaction take place as a single RPC request and
response. yp_all can be used just like any other NIS name service pro
cedure, identify the map in the normal manner, and supply the name of a
function which will be called to process each key-value pair within the map.
The call to yp_all returns only when the transaction is completed (success
fully or unsuccessfully), or the foreach function decides that it does not
want to see any more key-value pairs.

The third parameter to yp_all is
struct ypall_callback *incallback
int (*foreach)();
char *data;
} ;

The function foreach is called
int foreach (int instatus, char *inkey, int inkeylen,

char *inval, int invallen, char *indata);

The instatus parameter will hold one of the return status values defined in
rpcsvc/ypJ)rot . h-either YP _TRUE or an error code. (See ypprot_err,
below, for a function which converts a NIS name service protocol error code
to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined in the
SYNOPSIS section above. First, the memory pointed to by the inkey and inval
parameters is private to the yp_all function, and is overwritten with the
arrival of each new key-value pair. It is the responsibility of the foreach
function to do something useful with the contents of that memory, but it
does not own the memory itself. Key and value objects presented to the
foreach function look exactly as they do in the server's map-if they were
not newline-terminated or NULL-terminated in the map, they will not be here
either.

The indata parameter is the contents of the incallback- >data element
passed to yp_all. The data element of the callback structure may be used
to share state information between the foreach function and the mainline
code. Its use is optional, and no part of the NIS client package inspects its
contents-cast it to something useful, or ignore it.

The foreach function is a Boolean. It should return zero to indicate that it
wants to be called again for further received key-value pairs, or non-zero to
stop the flow of key-value pairs. If foreach returns a non-zero value, it is
not called again; the functional value of yp_all is then o.

FILES

int yp_order(char *indomain, char *inmap, int *outorder);

yp_order returns the order number for a map.

ypclnt(3N)

int yp_master(char *indomain, char *inmap, char **outname);

yp_master returns the machine name of the master NIS server for a map.

const char *yperr_string (int incode);

yperr_string returns a pointer to a read-only error message string that is
NULL-terminated but contains no period or newline.

int ypprot_err (unsigned int incode);

ypprot_err takes a NIS name service protocol error code as input, and
returns a ypclnt layer error code, which may be used in turn as an input to
yperr_string.

/usr/lib/libyp.a

SEE ALSO
malloc(3C), ypfiles(4), ypserv(IM), ypupdate(3N)

DIAGNOSTICS
All integer functions return 0 if the requested operation is successful, or one of the
following errors if the operation fails.

1 YPERR_BADARGS args to function are bad
2 YPERR_RPC RPC failure - domain has been unbound
3 YPERR_DOMAIN can't bind to server on this domain
4 YPERR_MAP no such map in server's domain
5 YPERR_KEY no such key in map
6 YPERR_YPERR internal NIS server or client error
7 YPERR_RESRC resource allocation failure
8 YPE~NOMORE no more records in map database
9 YPERR_PMAP can't communicate with RPC binder

10 YPERR_YPBIND can't communicate with ypbind
11 YPERR_YPSERV can't communicate with ypserv
12 YPERR_NODOM local domain name not set
13 YPERR_BADDB NIS database is bad
14 YPERR_VERS NIS version mismatch
15 YPERR_ACCESS access violation
16 YPE~BUSY database busy

977

ypupdate (3N)

NAME
yp_update - change NIS information

SYNOPSIS
#include <rpcsvc/ypclnt.h>

yp_update(char *domain, char *map, unsigned ypop, char *key,
int keylen, char *data, int datalen>;

DESCRIPTION
yp_update is used to make changes to the NIS database. The syntax is the same as
that of yp_match except for the extra parameter ypop, which may take on one of
four values. If it is YPOP _CHANGE then the data associated with the key will be
changed to the new value. If the key is not found in the database, then yp_update
will return YPERR_KEY. If ypop has the value YPOP_INSERT then the key-value pair
will be inserted into the database. The error YPERR_KEY is returned if the key
already exists in the database. To store an item into the database without concern
for whether it exists already or not, pass ypop as YPOP_STORE and no error will be
returned if the key already or does not exist. To delete an entry, the value of ypop
should be YPOP _DELETE.

This routine depends upon secure RPC, and will not work unless the network is
running secure RPc.

SEE ALSO
secure_rpc(3N)

978

Reference Manual Index

The Permuted Index that follows is a list of keywords, alphabetized in the second
of three columns, together with the context in which each keyword is found. The
manual page that produced an entry is listed in the right column.

Entries are identified with their section numbers shown in parentheses. This is
important because there is considerable duplication of names among the sections,
arising principally from commands and functions that exist only to exercise a par
ticular system call.

The index is produced by rotating the NAME section of each manual page to
alphabetize each keyword in it. Words that cannot fit in the middle column are
rotated into the left column. If the entry is still too long, some words are omitted,
and their omission is indicated with a slash (" I").

How the Permuted Index Is Created

Many users find that understanding a few things about how the permuted index
is created helps them to read it more effectively and clarifies what kind of infor
mation can and cannot be obtained from it.

The basic building block for the index is the one-line description given in the
NAME line on the top of each manual page. For example, this is what the top of
the mountall(lM) manual page looks like:

mountall(1 M) mountall(1 M)

NAME
mountall, umountall - mount, unmount multiple file systems

Each NAME line includes:

• the command, file format, system call or other utility for which the manual
page is named (this is the primary utility; mountall is the primary utility in
the example)

• secondary utilities, which are also described on that manual page and do
not have a separate manual page of their own (umountall is a secondary
utility in the example)

979

• a brief description of the utility function(s)

For each manual page NAME line, the indexing software generates several index
entries, generally one entry for each keyword in the phrase. The middle column
of the index is alphabetized on these keywords.

For:

NAME
mountall, umountall - mount, unmount multiple file systems

This is generated:

mount, unmount multiple
systems. mountall, umountall:
unmount multiple file systems.
I umountall: mount, unmount
mount, unmount multiple file

multiple filel mountall,
mountall, umountall: mount,

How to Use the Index

file systems. I umountall: mountall(lM)
mount, unmount multiple file mountall(lM)
mountall, umountall: mount, mountall(lM)
multiple file systems. . .. mountall(lM)
systems. mountall, umountall: mountall(lM)
umountall: mount, unmount mountall(lM)
unmount multiple file systems. mountall(lM)

Look in the middle column of the index for the word of interest. Then read the
complete phrase by starting with the utility name, which may appear in the left or
middle column. Utility names are followed by a colon.

The NAME line phrase is contained in the two columns, with long phrases wrap
ping around to the beginning of the left column. The right column of the index
provides the manual page name and section number.

A slash (I) sometimes appears in the index entry to indicate that space limitations
were exceeded and one or more words from the phrase were deleted.

980

Permuted Index

13tol, ltol3 convert between
integer and base-64 ASCII string

abort generate an
termination signal

value
abs, labs return integer

floor, ceiling, remainder,
t_ accept

accept
socket

u time set file
file

elf_next sequential archive member
elf rand random archive member

sec advise get kernel advisory
elf object file

get or set supplementary group
initialize the supplementary group

machine-independent/ sputl, sgetl
(XENIX) synchronize shared data

/nbwaitsem (XENIX) await and check
/ sdleave (XENIX) synchronize

device grantpt grant
setutent, endutent, utmpname

getutmpx, updwtmp, updwtmpx
access determine

acct enable or disable process
accounting

release indication t rcvrel
/ cos, cosf, tan, tanf, asin, asinf,

/ cosf, tan, tanf, asin, asinf, acos,
/ cosh, coshf, tanh, tanhf, asinh,

to a/ /mvwaddch, echochar, wechochar
/mvaddnstr, mvwaddstr, mvwaddnstr

nvaddnwstr, mvwaddwstr, mvwaddnwstr
/mvwaddwch, echowchar, wechowchar

atexit
privileges associated/ procprivl

put privileges/ procpriv, procprivc
/mvwaddchstr, mvwaddchnstr

(and/ /mvwaddwchstr, mvwaddwchnstr
putenv change or

echochar, wechochar / curs _ addch:

curs _ addchstr: addchstr,

waddchnstr,/ curs addchstr:

Permuted Index

3-byte integers and long integers 13tol(3C)
a64l, 164a convert between long a641(3C)
abnormal termination signal....................... abort(3C)
abort generate an abnormal........................ abort(3C)
abs, labs return integer absolute ... abs(3C)
absolute value abs(3C)
absolute value functions /remainder floor(3M)
accept a connect request t _ accept(3N)
accept a connection on a socket accept(3N)
accept accept a connection on a................. accept(3N)
access and modification times ... utime(2)
access determine accessibility of a...................................... access(2)
access elf _ next(3E)
access elf _rand(3E)
access information ... secadvise(2)
access library elf(3E)
access list IDs / setgroups ... getgroups(2)
access list initgroups initgroups(3C)
access long integer data in a ... sputl(3X)
access sdgetv sdgetv(2)
access to a resource governed by a/ waitsem(2)
access to a shared data segment sdenter(2)
access to the slave pseudo-terminal.............................. grantpt(3C)
access utmp file entry /pututline, getut(3C)
access utmpx file entry / getutmp, getutx(3C)
accessibility of a file access(2)
accounting acct(2)
acct enable or disable process acct(2)
acknowledge receipt of an orderly tJcvrel(3N)
acos, acosf, atan, atanf, atan2,/ .. trig(3M)
acosf, atan, atanf, atan2, atan2f/ .. trig(3M)
acosh, atanh hyperbolic functions sinh(3M)
add a character (with attributes) curs_addch(3curses)
add a string of characters to a/ curs_addstr(3curses)
add a string of wchar _ t characters / curs _ addwstr(3curses)
add a wchar _ t character (with/ curs _addwch(3curses)
add program termination routine atexit(3C)
add, remove, count, or put .. procprivl(3C)
add, retrieve, remove, count, or procpriv(2)
add string of characters (and / curs _ addchstr(3curses)
add string of wchar _ t characters curs _ addwchstr(3curses)
add value to environment ... putenv(3C)
addch, waddch, mvaddch, mvwaddch,
... curs_addch(3curses)
addchnstr, waddchstr, waddchnstr,/
....................... curs _ addchstr(3curses)
addchstr, addchnstr, waddchstr, curs_addchstr(3curses)

981

addsev define
mvaddstr,/ curs _addstr: addstr,

mvaddwstr,1 curs _addwstr: addwstr,
inet_ netof, inet_ ntoa Internet

ethers Ethernet
object dlsym get the

mlockall, munlockalliock or unlock
t bind bind an

severity levels for an application I
mvaddstr, mvaddnstr,/ curs _ addstr:

vwaddwch, echowchar,1 curs _ addwch:
curs _ addwchstr: addwchstr,

waddwchnstr,1 curs _ addwchstr:

waddnwstr,1 curs _ addwstr:
synchronization of the systeml

uadmin
attributes) to a curses window and
characters to a curses window and
attributes) to a curses window and
characters to a curses window and

and match I regexpr: compile, step,
secadvise get kernel

if forms field has off-screen data
alarm set a process

t alloc
brk, sbrk change data segment space

alloca (BSD) memory
calloc, memalign, valloc, memory
calloc, mallopt, mallinfo memory

calls siginterrupt (BSD)
clock adjtime correct the time to

scandir,
sigaltstack set or get signal

window I get a string of characters
I get a string of wchar _ t characters

I add string of characters

I add string of wchar _ t characters

982

sigstack (BSD) set
I field just format the general

panel Ipanet userptr associate
I field _ userptr associate
I form _ userptr associate
litem _ userptr associate

I menu _ userptr associate

additional severities ... addsev(3C)
addnstr, waddstr, waddnstr, curs_addstr(3curses)
addnwstr, waddwstr, waddnwstr, curs _ addwstr(3curses)
address manipulation linet_Inaof, inet(3N)
address mapping operations .. ethers(3N)
address of a symbol in shared dlsym(3X)
address space mlockall(3C)
address to a transport endpoint t_bind(3N)
addsev define additional severities addsev(3C)
addseverity build a list of addseverity(3C)
addstr, addnstr, waddstr, waddnstr, curs_addstr(3curses)
addwch, waddwch, mvaddwch, curs_addwch(3curses)
addwchnstr, waddwchstr,1 curs_addwchstr(3curses)
addwchstr, addwchnstr, waddwchstr,
... curs _ addwchstr(3curses)
addwstr, addnwstr, waddwstr, curs _addwstr(3curses)
adjtime correct the time to allow adjtime(2)
administrative control.. uadmin(2)
advance cursor I a character (with curs _ addch(3curses)
advance cursor ladd a string of curs_addstr(3curses)
advance cursor Icharacter (with curs_addwch(3curses)
advance cursor I a string of wchar _ t
... curs _addwstr(3curses)
advance regular expression compile regexpr(3G)
advisory access information .. secadvise(2)
ahead or behind I data_behind tell form _ data(3curses)
alarm clock .. alarm(2)
alarm set a process alarm clock ... alarm(2)
alloca (BSD) memory allocator .. alloca(3)
allocate a library structure ... t_alloc(3N)
allocation ... brk(2)
allocator ... alloca(3)
allocator maUoc, free, realloc, .. malloc(3C)
allocator malloc, free, realloc, ... malloc(3X)
allow signals to interrupt system siginterrupt(3)
allow synchronization of the system adjtime(2)
alphasort (BSD) scan a directory................................... ... scandir(3)
alternate stack context .. sigaltstack(2)
(and attributes) from a curses curs _ inchstr(3curses)
(and attributes) from a curses I curs _inwchstr(3curses)
(and attributes) to a curses window
.. curs _ addchstr(3curses)
(and attributes) to a curses window
... curs _ addwchstr(3curses)
and I or get signal stack context sigstack(3)
appearance of forms form _field just(3curses)
app lica tion data with a panels panet userptr(3curses)
application data with forms form_field _ userptr(3curses)
application data with forms form _ userptr(3curses)
application data with menus items
..... menu_item _ userptr(3curses)
application data with menus menu _ userptr(3curses)

Permuted Index

I a list of severity levels for an
Connection I cs _connect, cs yerror

coordinate ELF library and
I set_menu _ term, menu_term assign

I set_field _term, field_term assign
elf_next sequential

elf rand random
elf _getarhdr retrieve

elf _getarsym retrieve
Field from the specified System Use

formatted output of a variable
getopt get option letter from

miscellaneous functions for IEEE
(BSD) multiple precision integer

string strftime, cftime,
lisnumber, isspecial classify

between long integer and base-64
time tol ctime,localtime, gmtime,

I sin, sinf, cos, cosf, tan, tanf,
I sinf, cos, cosf, tan, tanf, asin,

I sinhf, cosh, coshf, tanh, tanhf,

assert verify program
I menu _ init, set_menu _term, menu_term

I set jield _term, field_term
setbuf, setvbuf

setbuffer, setlinebuf (BSD)
I get the major and minor numbers

lor unset major and minor numbers
I setyanet userptr, panet userptr

I setjield _ userptr, field _ userptr

I set_form _ userptr, form _ userptr
I set_item_ userptr, item _ userptr

I set_menu _ userptr, menu _ userptr
write or erase forms from

write or erase menus from

retrieve, or count the privileges
I remove, count, or put privileges
Iremove, count, or put privileges

forms window and subwindow
menus window and sub window

tanf, asin, asinf, acos, acosf,
asinf, acos, acosf, atan, atanf,

I acos, acosf, atan, atanf, atan2,
I asin, asinf, acos, acosf, atan,

coshf, tanh, tanhf, asinh, acosh,
routine

double-precision I strtod, strtold,
strtol, strtoul, atol,

Permuted Index

application for use with fmtmsg addseverity(3C)
application interface to the cs _ connect(3N)
application versions elf_version elC version(3E)
application-specific routines fori menu _ hook(3curses)
application-specific routines for I form _ hook(3curses)
archive member access elf _ next(3E)
archive member access ... elf Jand(3E)
archive member header eICgetarhdr(3E)
archive symbol table elf _getarsym(3E)
Area Ireads the cdfs System Use cd_suf(3X)
argument list Ivsprintf print ... vprintf(3S)
argument vector getopt(3C)
arithmetic I copysign, scalbn (BSD) ieee junctions(3)
arithmetic litom, xtom, mtox, mfree mp(3)
ascftime convert date and time to strftime(3C)
ASCII and supplementary code setl wctype(3W)
ASCII string a64I, 164a convert a641(3C)
asctime, tzset convert date and .. ctime(3C)
asin, asinf, acos, acosf, atan,! trig (3M)
asinf, acos, acosf, atan, atanf,l ... trig(3M)
asinh, acosh, atanh hyperbolic I ... sinh (3M)
assert verify program assertion assert(3X)
assertion assert(3X)
assign application-specific I menu _ hook(3curses)
assign application-specific I form _ hook(3curses)
assign buffering to a stream setbuf(3S)
assign buffering to a stream setbuffer(3S)
assigned to a CD-ROM device cd _getdevmap(3X)
assignments for a CD-ROM device cd _setdevmap(3X)
associate application data with al panet userptr(3curses)
associate application data withl
.. form_field _ userptr(3curses)
associate application data withl form_userptr(3curses)
associate application data withl
.. menu _item _ userptr(3curses)
associate application data withl menu _ userptr(3curses)
associated subwindows lunpost_form formyost(3curses)
associated subwindows I unpost_ menu
........ menu yost(3curses)

associated with a file I set, .. filepriv(2)
associated with the calling process procpriv(2)
associated with the calling process procprivl(3C)
association routines I scale_form form _ win(3curses)
association routines I scale_menu menu _ win(3curses)
atan, atanf, atan2, atan2f! I tan, ... trig(3M)
atan2, atan2f trigonometric I I asin, trig(3M)
atan2f trigonometric functions trig(3M)
atanf, atan2, atan2f trigonometric I trig(3M)
atanh hyperbolic functions I cosh, sinh (3M)
atexit add program termination .. atexit(3C)
atof convert string to strtod(3C)
atoi convert string to integer strtol(3C)

983

integer strtol, strtoul,
segment sdget, sdfree (XENlX)

descriptor to file system/ fattach
attrmap map an

I curses character and window
cd cxar read CD-ROM Extended

get or set the audit buffer
auditlog get or set audit log file

set and get forms field
/mvwinch get a character and its

/ get a string of characters (and
/ get a wchar _ t character and its

/ a string of wchar _ t characters (and
menu -pad control menus display

format the general display

/wechochar add a character (with
/add a wchar_t character (with

/ add string of characters (and
string of wchar _ t characters (and

attrset, wattrset,/ curs _attr:
curs _ attr: attroff, wattroff,

/ attroff, wattroff, attron, wattron,
auditbuf get or set the

auditdmp write audit record to
auditlog get or set

auditdmp write
auditevt get or set

buffer attributes
auditing

audit buffer
events

auditctl get or set the status of
attributes

secure JpC: authdes _seccreate,
authdes _getucred,/ secure JpC:
authsys_create,/ rpc_clnt_auth:

/ get user identification and
getkey retrieve an

client side remote procedure call
invoke lAF function for invoking

rpc_clnt_auth: auth _destroy,
auth _destroy, authnone _create,

/ authnone _create, authsys _create,
/ application-specific routines for

signals and wait/ sigpause (BSD)
waitsem, nbwaitsem (XENlX)

I mvwgetch, ungetch get (or push
/mvwgetwch, ungetwch get (or push

984

atol, atoi convert string to ... strtol(3C)
attach and detach a shared data ... sdget(2)
attach STREAMS-based file ... fattach(3C)
attribute attrmap(3l)
attribute control routines curs_attr(3curses)
Attribute Record (XAR) cd Jar, cd _ xar(3X)
attributes auditbuf .. auditbuf(2)
attributes .. auditlog(2)
attributes /set_max_field form_field_buffer(3curses)
attributes from a curses window curs_inch(3curses)
attributes) from a curses window curs_inchstr(3curses)
attributes from a curses window curs_inwch(3curses)
attributes) from a curses window curs _ inwchstr(3curses)
attributes / set_menu -pad, menu _attributes (3curses)
attributes of forms / field -pad
.. form_field _ attributes(3curses)
attributes) to a curses window and/ curs _ addch(3curses)
attributes) to a curses window and/
....... curs _ addwch(3curses)

attributes) to a curses window curs _ addchstr(3curses)
attributes) to a curses window /add
... curs_addwchstr(3curses)
attrmap map an attribute .. attrmap(3l)
attroff, wattroff, attron, wattron, curs_attr(3curses)
attron, wattron, attrset, wattrset,/ curs_attr(3curses)
attrset, wattrset, standend,/ curs_attr(3curses)
audit buffer attributes .. auditbuf(2)
audit buffer .. auditdmp(2)
audit log file attributes ... auditlog(2)
audit record to audit buffer .. auditdmp(2)
auditable events auditevt(2)
auditbuf get or set the audit .. auditbuf(2)
auditctl get or set the status of .. auditctl(2)
auditdmp write audit record to auditdmp(2)
auditevt get or set auditable .. auditevt(2)
auditing .. auditctl(2)
auditlog get or set audit log file auditlog(2)
authdes _getucred, getnetname,/ secure Jpc(3N)
authdes _seccreate, ... secure Jpc(3N)
auth _destroy, authnone _create, rpc _ clnt_ auth(3N)
authentication information ... ia _ uinfo(3l)
authentication key .. getkey(3N)
authentication /routines for rpc_clnt_auth(3N)
authentication schemes .. invoke(3l)
authnone _create, authsys _ create,/ rpc _ clnt_ auth(3N)
authsys _create,! rpc _ clnt_ auth: rpc _ clnt_ auth(3N)
authsys _create_default library / rpc _ clnt_auth(3N)
automatic invocation by menus menu _ hook(3curses)
automatically release blocked sigpause(3)
await and check access to a/ ... waitsem(2)
back) characters from curses/ curs_getch(3curses)
back) wchar _ t characters froml curs _getwch(3curses)

Permuted Index

/wbkgdset, bkgd, wbkgd curses window
elf _getbase get the

firstkey, nextkey (BSD) data
dbm _open, dbm _store (BSD) data
convert between long integer and

forms character
menus character
panels character

a path name
has_il, killchar,/ curs_termattrs:
string operations bstring: bcopy,

byte string operations bstring:
flash routines curs_beep:

field has off-screen data ahead or
curs_beep: beep, flash curses

bessel: jO, j1, jn, yO, y1, yn
Bessel functions

/ srandom, initstate, setstate (BSD)
delimiter

fread, £Write
bsearch

tfind, tdelete, twalk manage
(XENIX) create an instance of a

bind
endpoint t_ bind

rpcb _unset library routines for RPC
bstring: bcopy, bcmp, bzero (BSD)

ffs find first set
curs _ bkgd: bkgdset, wbkgdset,

curses window / curs _ bkgd:
sigblock, sigmask (BSD)

sync update super
sigpending examine signals that are

/ (BSD) automatically release
whIine, vline, wvline/ curs_border:
/whIine, vline, wvline create curses

manipulation/ panel_top: top -panel,
curs_border: border, wborder,

allocation
system calls siginterrupt

setbuffer, setlinebuf
signals and wait for / sigpause

srandom, initstate, setstate
bstring: bcopy, bcmp, bzero

sigblock, sigmask
nice

openlog, closelog, setlogmask
floating-point/ / decimat to_extended

to decimal! / extended_to _decimal
store, delete, firstkey, nextkey

/ dbm _ nextkey, dbm _open, dbm _store

Permuted Index

background manipulation routines curs _bkgd(3curses)
base offset for an object file eICgetbase(3E)
base subroutines / store, delete, ... dbm(3)
base subroutines / dbm _ nextkey, ndbm(3)
base-64 ASCII string a64l, 164a a641(3C)
based forms package forms(3curses)
based menus package menus (3curses)
based panels package panels(3curses)
basename return the last element of basename(3G)
baudrate, erasechar, has_ie, curs_termattrs(3curses)
bcmp, bzero (BSD) bit and byte ... bstring(3)
bcopy, bcmp, bzero (BSD) bit and bstring(3)
beep, flash curses bell and screen curs _ beep(3curses)
behind / data_behind tell if forms form _ data(3curses)
bell and screen flash routines curs _ beep (3curses)
Bessel functions bessel(3M)
bessel: jO, j1, jn, yO, y1, yn ... bessel(3M)
better random number generator;/ random(3)
bgets read stream up to next .. bgets(3G)
binary input/ output .. fread(3S)
binary search a sorted table ... bsearch(3C)
binary search trees tsearch, tsearch(3C)
binary semaphore creatsem .. creatsem(2)
bind a name to a socket bind(3N)
bind an address to a transport .. t_ bind (3N)
bind bind a name to a socket .. bind(3N)
bind serviee / rpcb _set, rpcbind(3N)
bit and byte string operations .. bstring(3)
bit ffs(3C)
bkgd, wbkgd curses window / curs_bkgd(3curses)
bkgdset, wbkgdset, bkgd, wbkgd curs_bkgd(3curses)
block signals ... sigblock(3)
block ... sync(2)
blocked and pending ... sigpending(2)
blocked signals and wait for / .. sigpause(3)
border, wborder, box, hIine, curs _ border(3curses)
borders, horizontal and vertical! curs _ border(3curses)
bottom ---panel panels deck panel_ top (3curses)
box, hline, whline, vline, wvline/ curs_border(3curses)
brk, sbrk change data segment space brk(2)
(BSD) allow signals to interrupt siginterrupt(3)
(BSD) assign buffering to a stream setbuffer(3S)
(BSD) automatically release blocked sigpause(3)
(BSD) better random number/ random, random(3)
(BSD) bit and byte string/ .. bstring(3)
(BSD) block signals ... sigblock(3)
(BSD) change priority of a process niee(3C)
(BSD) control system log syslog, syslog(3)
(BSD) convert decimal record to decimal_to _ floating(3)
(BSD) convert floating-point value floating_to _ decimal(3)
(BSD) data base subroutines / fetch, dbm(3)
(BSD) data base subroutines .. ndbm(3)

985

I seekdir, rewinddir, closedir
printf: sprintf, vsprintf

pathname getwd
ftime

getdtablesize
resource utilization getrusage

I setusershell, endusershell
gettimeofday, settimeofday

times
getpagesize

offset from GMT timezone
current host gethostid

gethostname, sethostname
priority getpriority, setpriority

function ieee handler
definitions floatingpoint

syscall
mkstemp

alloca
mct!

I fp _class, isnan, copysign, scalbn
Isdiv, itom, xtom, mtox, mfree

Jongjmp, sigsetjmp, siglongjmp
fop en, freopen, fdopen

seconvert, sfconvert, sgconvert
regex: re_comp,re_exec

scandir, alphasort
interval in microseconds ualarm

group killpg
context sigstack

sigsetmask
utimes

IDs setregid
IDs setreuid

SIGFPE codes sigfpe
generator rand, srand

facilities signal
sigvec

index, rindex
string: strcasecmp, strncasecmp

interval in microseconds usleep
interval sleep

psignal, sys _ siglist
;STOPPED, WIFSIGNALED, WIFEXITED

table
bit and byte string operations

auditbuf get or set the audit
write audit record to audit

bufsplit split
determine whether a character

set and get menus pattern match
stdio standard

986

(BSD) directory operations .. directory(3C)
(BSD) formatted output conversion printf(3S)
(BSD) get current working directory................................. getwd(3)
(BSD) get date and time ... ftime(3)
(BSD) get descriptor table size getdtablesize(3)
(BSD) get information about ... getrusage(3)
(BSD) get legal user shells ... getusershell(3)
(BSD) get or set the date and time gettimeofday(3)
(BSD) get process times .. times(3C)
(BSD) get system page size .. getpagesize(3)
(BSD) get time zone name given timezone(3)
(BSD) get unique identifier of .. gethostid(3)
(BSD) getl set name of current host gethostname(3)
(BSD) getl set program scheduling getpriority(3)
(BSD) IEEE exception trap handler ieee _ handler(3)
(BSD) IEEE floating point .. floatingpoint(3)
(BSD) indirect system call ... syscall(3)
(BSD) make a unique file name mkstemp(3)
(BSD) memory allocator ... alloca(3)
(BSD) memory management control mctl(3)
(BSD) miscellaneous functions fori ieee_functions(3)
(BSD) multiple precision integer I ... mp(3)
(BSD) non-local goto I _setjmp, .. setjmp(3)
(BSD) open a stream .. fopen(3S)
(BSD) output conversion I gconvert, econvert(3)
(BSD) regular expression handler .. regex(3)
(BSD) scan a directory .. scandir(3)
(BSD) schedule signal after .. ualarm(3)
(BSD) send signal to a process killpg(3)
(BSD) set and/or get signal stack sigstack(3)
(BSD) set current signal mask sigsetmask(3)
(BSD) set file times ... utimes(3)
(BSD) set real and effective group setregid(3)
(BSD) set real and effective user setreuid(3)
(BSD) signal handling for specific sigfpe(3)
(BSD) simple random number ... rand(3)
(BSD) simplified software signal ... signal(3)
(BSD) software signal facilities .. sigvec(3)
(BSD) string operations ... index(3)
(BSD) string operations ... string(3)
(BSD) suspend execution for ... usleep(3)
(BSD) suspend execution for ... sleep(3)
(BSD) system signal messages .. psignal(3)
(BSD) wait for process tol Iwait3, wait(3)
bsearch binary search a sorted bsearch(3C)
bstring: bcopy, bcmp, bzero (BSD) bstring(3)
buffer attributes .. auditbuf(2)
buffer auditdmp .. auditdmp(2)
buffer into fields .. bufsplit(3G)
buffer is encrypted is encrypt isencrypt(3G)
buffer I menu J'attern menu J'attern(3curses)
buffered input I output package .. stdio(3S)

Permuted Index

setbuf, setvbuf assign
setbuffer, setlinebuf (BSD) assign

an application for usel addseverity
elf fill set fill

values between host and network
bcopy, bcmp, bzero (BSD) bit and

ntohs convert values between hostl
swab swap

operations bstring: bcopy, bcmp,
mktime converts a tm structure to a

compute the difference between two
for client side remote procedure

for server side remote procedure
syscall (BSD) indirect system

put privileges associated with the
put privileges associated with the

allocator malloc, free, realloc,
allocator malloc, free, realloc,

intro introduction to system
routines for remote procedure
library routines for client side
routines for remote procedure

for secure remote procedure
allow signals to interrupt system
linityair, init_ color, has_colors,

catclose openl close a message
setcat define default

catalog catopen,

message catalog
halfdelay, intrflush,1 curs_inopts:
pow, powf, sqrt, sqrtf/ exp, expf,

CD-ROM directory cd _ drec,
Record cd ytrec,

Descriptor (PVD) cd yvd,
Attribute Record (XAR) cd _ xar,
file permissions, user IDs, andl

Record from CD-ROM directory
specified System I cd _suf reads the

minor numbers assigned to a CD-ROMI
CD-ROM user and group IDs

conversion flag
Path Table Record

Volume Descriptor (PVD)
and minor numbers assigned to a

and minor numbers assignments for a
cd _ cdrec read Directory Record from

(XAR) cd_xar,cd_cxarread
andl cd _ defs set or get default

cd_type get
cd _ nmconv set or get

Permuted Index

buffering to a stream setbuf(3S)
buffering to a stream setbuffer(3S)
bufsplit split buffer into fields bufsplit(3G)
build a list of severity levels for addseverity(3C)
byte elf_fill(3E)
byte order Intohl, ntohs convert byteorder(3N)
byte string operations bstring: ... bstring(3)
byteorder, htonl, htons, ntohl, byteorder(3N)
bytes swab(3C)
bzero (BSD) bit and byte string ... bstring(3)
calendar time mktime(3C)
calendar times difftime difftime(3C)
call authentication I routines rpc _ clnt_ auth(3N)
call errors llibrary routines rpc _ svc _ err(3N)
call syscall(3)
calling process !remove, count, or procpriv(2)
calling process Iremove, count, or procprivl(3C)
calloc, mall opt, mallinfo memory malloc(3X)
calloc, memalign, valloc, memory........................... malloc(3C)
calls, error numbers, andl intro(2)
calls rpc library rpc(3N)
calls I rpc _broadcast, rpc _call rpc _ clnt_ calls(3N)
calls I xdr Jeplymsg XDR library............................... rpc Jdr(3N)
calls llibrary routines secure Jpc(3N)
calls siginterrupt (BSD) .. siginterrupt(3)
can_change _ color, color_content, I curs _ color(3curses)
catalog catopen, catopen(3C)
catalog ... setcat(3C)
catclose openl close a message catopen(3C)
catgets read a program message catgets(3C)
catopen, catclose openl close a...................................... catopen(3C)
cbreak, nocbreak, echo, noecho, curs _ inopts(3curses)
cbrt, log, logf, 10glO, 10glOf, ... exp(3M)
cd _ cdrec read Directory Record from cd _ drec(3X)
cd _ cptrec read CD-ROM Path Table cd ytrec(3X)
cd _ cpvd read CD-ROM Primary Volume cd yvd(3X)
cd _ cxar read CD-ROM Extended cd Jar(3X)
cd _ defs set or get default CD-ROM cd _ defs(3X)
cd _ drec, cd _ cdrec read Directory cd _ drec(3X)
cdfs System Use Field from the cd _suf(3X)
cd _getdevmap get the major and cd _getdevmap(3X)
cd _idmap set or get mappings of cd _idmap(3X)
cd _ nmconv set or get CD-ROM name cd _ nmconv(3X)
cd ytrec, cd _ cptrec read CD-ROM cd ytrec(3X)
cd yvd, cd _ cpvd read CD-ROM Primary cd yvd(3X)
CD-ROM device I get the major cd _getdevmap(3X)
CD-ROM device I set or unset major cd _setdevmap(3X)
CD-ROM directory cd _ drec, .. cd _ drec(3X)
CD-ROM Extended Attribute Record cd Jar(3X)
CD-ROM file permissions, user IDs, cd _ defs(3X)
CD-ROM format identification cd _ type(3X)
CD-ROM name conversion flag cd _ nmconv(3X)

987

cd ytrec, cd _ cptrec read
(PVD) cd yvd, cd _ cpvd read

cd _idmap set or get mappings of
minor numbers assignments for a/

Field from the specified System/
identification

Extended Attribute Record (XAR)
fabs, fabsf, rint,/ floor, floorf,
fabsf, rint,! floor, floorf, ceil,

/fabs, fabsf, rint, remainder floor,
tcflush, tcflow, cfgetospeed,

/tcdrain, tcflush, tcflow,
tcflow, cfgetospeed, cfgetispeed,

tcgetsid/ / cfgetispeed, cfsetispeed,
time to string strftime,

allocation brk, sbrk
search path modpath

chmod, fchmod
yp_update

putenv
sigprocmask

chown, lchown, fchown
nice (BSD)

process nice
chroot

waitid wait for child process to
waitpid wait for child process to

rename
chsize (XENIX)

chdir, fchdir
number generator; routines for

pipe create an interprocess
/ inch, winch, mvinch, mvwinch get a
/ mvinwch, mvwinwch get a wchar _ t

control! / standout, wstandout curses
ungetwc push wchar _ t

ungetcpush
forms

menus
panels

/winsch, mvinsch, mvwinsch insert a
under / / mvwinswch insert a wchar _ t

isencrypt determine whether a
ispunct, isprint, isgraph, isascii

mbtowc, mblen, wctomb multibyte
widec multibyte

cuserid get
putwc, putwchar, fputwc put wchar _ t

getc, getchar, fgetc, getw get
getwc, getwchar, fgetwc get wchar _ t

putc, putchar, fputc, putw put
/mvgetstr, mvwgetstr, wgetnstr get

988

CD-ROM Path Table Record .. cd ytrec(3X)
CD-ROM Primary Volume Descriptor cd yvd(3X)
CD-ROM user and group IDs cd_idmap(3X)
cd _setdevmap set or unset major and cd _setdevmap(3X)
cd _suf reads the cdfs System Use cd _suf(3X)
cd_type get CD-ROM format .. cd _ type(3X)
cd _ xar, cd _ cxar read CD-ROM cd _ xar(3X)
ceil, ceilf, copysign, fmod, fmodf, floor(3M)
ceilf, copysign, fmod, fmodf, fabs, floor(3M)
ceiling, remainder, absolute value/ floor(3M)
cfgetispeed, cfsetispeed,! / tcdrain, termios(2)
cfgetospeed, cfgetispeed,/ .. termios(2)
cfsetispeed, cfsetospeed,! /tcflush, termios(2)
cfsetospeed, tcgetpgrp, tcsetpgrp, termios(2)
cftime, ascftime convert date and strftime(3C)
change data segment space .. brk(2)
change loadable kernel modules modpath(2)
change mode of file chmod(2)
change NIS information .. yp _ update(3N)
change or add value to environment putenv(3C)
change or examine signal mask sigprocmask(2)
change owner and group of a file chown(2)
change priority of a process nice(3C)
change priority of a time-sharing ... nice(2)
change root directory ... chroot(2)
change state ... waitid(2)
change state ... waitpid(2)
change the name of a file ... rename(2)
change the size of a file ... chsize(2)
change working directory ... chdir(2)
changing generators /better random random(3)
channel ... pipe(2)
character and its attributes from a/ curs_inch(3curses)
character and its attributes from a/ curs_inwch(3curses)
character and window attribute curs_attr(3curses)
character back into input stream ungetwc(3W)
character back onto input stream ungetc(3S)
character based forms package forms (3curses)
character based menus package menus(3curses)
character based panels package panels(3curses)
character before the character / curs _ insch(3curses)
character before the character curs _ inswch(3curses)
character buffer is encrypted isencrypt(3G)
character handling /iscntrl, ctype(3C)
character handling mbchar: mbchar(3C)
character II a routines widec(3W)
character login name of the user cuserid(3S)
character on a stream ... putwc(3W)
character or word from a stream getc(3S)
character or word from a stream getwc(3W)
character or word on a stream putc(3S)
character strings from curses / curs _getstr(3curses)

Permuted Index

I mvwgetwstr, mvwgetnwstr get wchar _ t
wdelch, mvdelch, mvwdelch delete

I insert a character before the
I mvwinsnstr insert string before
I a wchar _ t character before the

I insert wchar _ t string before
Imvwaddch, echochar, wechochar add a
I echowchar, wechowchar add a wchar _ t

dynamic_field_info get forms field
curses I Imvwinchnstr get a string of

curses I I get a string of wchar _ t
curses I Imvwaddchnstr add string of

I mvwaddwchnstr add string of wchar _ t
_ tolower, toascii translate

Imvwinstr, mvwinnstr get a string of
I mvwinnwstr get a string of wchar _ t

lungetch get (or push back)
I ungetwch get (or push back) wchar _ t

advance I Imvwaddnstr add a string of
I mvwaddnwstr add a string of wchar _ t

wconv: towupper, towlower translate
ASCII and supplementary code set

directory
byal Inbwaitsem (XENIX) await and

spray scatter data in order to
read rdchk (XENIX)
times get process and

waitid wait for
waitpid wait for

wait wait for

and group of a file

file
I elf32 Jlatetof, elf32 Jlatetom

I elf32 _ newehdr retrieve
table I elf32 _ newphdr retrieve

elf _getshdr: elf32 _getshdr retrieve
lis english, isnumber, is special
Iwclrtobot, clrtoeol, wclrtoeol

curs_clear: erase, werase,
inquiries ferror, feof,

leave ok, setscrreg,l curs _ outopts:
with creation and manipulation of

yperr _string, ypprot_ err NIS
rpc _ call library routines for

Ilibrary routines for
listener nlsgetcall get

clnt_geterr,1 rpc _ clnt_ calls:
clnt_ destroy,! rpc _ clnt_ create:

rpc _ clnt_ create: clnt_ control,

Permuted Index

character strings from curses I curs _getwstr(3curses)
character under cursor in al I delch, curs _ delch(3curses)
character under the cursor in al curs_insch(3curses)
character under the cursor in al curs Jnsstr(3curses)
character under the cursor in al curs _inswch(3curses)
character under the cursor in al curs_inswstr(3curses)
character (with attributes) to al curs_addch(3curses)
character (with attributes) to al curs_addwch(3curses)
characteristics I field_info, form jield _ info(3curses)
characters (and attributes) from a curs_inchstr(3curses)
characters (and attributes) from a curs_inwchstr(3curses)
characters (and attributes) to a curs_addchstr(3curses)
characters (and attributes) to al curs_addwchstr(3curses)
characters Itolower, _toupper, ... conv(3C)
characters from a curses window curs_instr(3curses)
characters from a curses window curs _inwstr(3curses)
characters from curses terminal! curs_getch(3curses)
characters from curses terminal! curs _getwch(3curses)
characters to a curses window and curs _ addstr(3curses)
characters to a curses window andl
... curs _ addwstr(3curses)
characters wconv(3W)
characters I is special classify... wctype(3W)
chdir, fchdir change working .. chdir(2)
check access to a resource governed waitsem(2)
check the network spray(3N)
check to see if there is data to be rdchk(2)
child process times times(2)
child process to change state ... waitid(2)
child process to change state .. waitpid(2)
child process to stop or terminate .. wait(2)
chmod, fchmod change mode of file chmod(2)
chown, lchown, fchown change owner chown(2)
chroot change root directory chroot(2)
chsize (XENIX) change the size of a................ chsize(2)
class-dependent data translation elC xlate(3E)
class-dependent object file header elf _getehdr(3E)
class-dependent program header eICgetphdr(3E)
class-dependent section header eICgetshdr(3E)
classify ASCII and supplementary I wctype(3W)
clear all or part of a curses I curs _ clear(3curses)
clear, wclear, clrtobot, wclrtobot,l curs_clear(3curses)
clearerr, fileno stream status .. ferror(3S)
clearok, idlok, idcok immedok, curs _ outopts(3curses)
CLIENT handles I for dealing rpc _ clnt_ create(3N)
client interface Iyp _master, ... ypclnt(3N)
client side calls I rpc _broadcast, rpc _ clnt_ calls(3N)
client side remote procedure calli rpc_clnt_auth(3N)
client's data passed via the ... nlsgetcall(3N)
clnt_ call, clnt_freeres, ... rpc _ clnt_ calls(3N)
clnt_ control, clnt_ create, rpc _ clnt_ create(3N)
clnt_create, clnt_destroy,1 rpc_clnt_create(3N)

989

I clnt_ control, clnt_ create,
I clnt_ create, clnt_ destroy,

rpc _ clnt_ calls: clnt_ call,
I clnt_ call, clnt_freeres,

I clnt_ destroy, clnt_ dg_ create,
I clntjreeres, clnt_geterr,
I clnt_geterr, clntyerrno,

clnt_ dg_ create, clntycreateerror,
I clntycreateerror, clntJaw _create,

I clntyerrno, clntyerror,
Iclntyerror, clnt_sperrno,

clnt_ vc_createl Iclnt_spcreateerror,
library routines I Iclnt_tli_create,

I clnt_ tlt create, clnt_ tp _create,
allow synchronization of the system

alarm set a process alarm

close
dlclose
t close

fclose, fflush
p2open, p2close open,

I telldir, seekdir, rewinddir,
Itelldir, seekdir, rewinddir,

system log syslog, openlog,
I erase, werase, clear, wclear,

I clear, wclear, clrtobot, wclrtobot,
signal handling for specific SIGFPE

compressing or expanding escape
strcoll string

I color_content, pair_content curses
Ihas _colors, can_change _color,

and get maximum numbers of rows and

open, close pipes to and from a
subsystem form_driver

subsystem menu_driver
for returning a stream to a remote

rexec return stream to a remote
system issue a shell

stdipc: ftok standard interprocess
socket create an endpoint for

expression regcmp, regex
Istep, advance regular expression

expression compile andl regexpr:
erf, erfc error function and

entry corresponding to NETP ATH
I strecpy, streadd copy strings,

elf hash
calendar times difftime

div,ldiv

990

clnt_ destroy, clnt_ dg_ create,1 rpc _ clnt_ create(3N)
clnt_ dg_ create, clntycreateerror,1 rpc_ clnt_ create(3N)
clnt_freeres, clnt_geterr,1 rpc _ clnt_ calls(3N)
clnt_geterr, clntyerrno,/ rpc _ clnt_ calls(3N)
clntycreateerror, clntJaw _ create,1 rpc _ clnt_ create(3N)
clntyerrno, clntyerror,1 rpc_clnt_calls(3N)
clntyerror, clnt_sperrno,/ rpc_clnt_calls(3N)
clntJaw _ create,1 I clnt_ destroy, rpc _ clnt_ create(3N)
clnt_spcreateerror,/ ... rpc _ clnt_ create(3N)
clnt_sperrno, clnt_sperror,1 rpc_clnt_calls(3N)
clnt_sperror, rpc_broadcast,1 rpc_clnt_calls(3N)
clnt_ tli_ create, clnt_ tp _create, rpc _ clnt_ create(3N)
clnt_ tp _create, clnt_ vc _create rpc _ clnt_ create(3N)
clnt_vc_create library routines fori rpc_clnt_create(3N)
clock adjtime correct the time to adjtime(2)
clock ... alarm(2)
clock report CPU time used clock(3C)
close a file descriptor .. close(2)
close a shared object dlclose(3X)
close a transport endpoint ... t_ close(3N)
close close a file descriptor close(2)
close or flush a stream fclose(3S)
close pipes to and from a command p2open(3G)
closedir (BSD) directory operations directory(3C)
closedir directory operations directory(3C)
closelog, setlogmask (BSD) control.................................... syslog(3)
clrtobot, wclrtobot, clrtoeol,1 curs_clear(3curses)
clrtoeol, wclrtoeol clear all or I curs _ clear(3curses)
codes sigfpe (BSD) ... sigfpe(3)
codes I streadd copy strings, .. strccpy(3G)
collation ... strcoll(3C)
color manipulation routines curs _ color(3curses)
color_content, pair_content curses I curs _ color(3curses)
columns in menus Imenu jormat set
... menu _format(3curses)
command p2open, p2close ... p2open(3G)
command processor for the forms form _ driver(3curses)
command processor for the menus menu _ driver(3curses)
command I ruserok routines .. rcmd(3N)
command .. rexec(3N)
command .. system(3S)
communication package .. stdipc(3C)
communication socket(3N)
compile and execute regular regcmp(3G)
compile and match routines .. regexpr(3G)
compile, step, advance regular regexpr(3G)
complementary error function .. erf(3M)
component getnetpath get netconfig getnetpath(3N)
compressing or expanding escapel strccpy(3G)
compute hash value .. elf_ hash(3E)
compute the difference between two difftime(3C)
compute the quotient and remainder div(3C)

Permuted Index

fpathconf, pathconf get
sysconf get

getnetconfig get network
doconfig execute a

t rcvconnect receive the
and froml Imenu _items, item_count

I field_count, move_field
socket

t_ accept accept a
tJisten listen for a

receive the confirmation from a
getpeername get name of
socketpair create a pair of

establish an outgoing terminal line
accept accept a

connect initiate a
application interface to the

shut down part of a full-duplex
data or expedited data sent over a

send data or expedited data over a
user t connect establish a

listen listen for
a message on stderr or system

control maximum system resource
retrieve uninterpreted file

setcontext get and set current user
set or get signal alternate stack

(BSD) set and/or get signal stack
swapcontext manipulate user

elf cntl
ioctl

fentl file
IEEE floating-point environment
consumption getrlimit, setrlimit
mctl (BSD) memory management

memcntl memory management
I menu_grey, set_menu -pad, menu -pad

msgctl message
semctl semaphore

shmctl shared memory
priocntl process scheduler

generalized process scheduler
character and window attribute

curses terminal input option
nonl curses terminal output option

is wintouched curses refresh
openlog, closelog, setlogmask (BSD)

uadmin administrative
_tolower, toascii translate I

sfconvert, sgconvert (BSD) output
cd _ nmconv set or get CD-ROM name

vsprintf (BSD) formatted output

Permuted Index

configurable pathname variables fpathconf(2)
configurable system variables sysconf(3C)
configuration database entry............. getnetconfig(3N)
configuration script doconfig(3N)
confirmation from a connect request tJcvconnect(3N)
connect and disconnect items to menu _items(3curses)
connect fields to forms form_field(3curses)
connect initiate a connection on a connect(3N)
connect request t_ accept(3N)
connect request ... t_listen(3N)
connect request tJcvconnect tJcvconnect(3N)
connected peer getpeername(3N)
connected sockets socketpair(3N)
connection dial.......... dial(3N)
connection on a socket accept(3N)
connection on a socket connect(3N)
Connection Server I cs -perror cs _ connect(3N)
connection shutdown ... shutdown(3N)
connection tJcv receive .. tJcv(3N)
connection t_snd .. t_snd(3N)
connection with another transport t_ connect(3N)
connections on a socket listen(3N)
console fmtmsg display fmtmsg(3C)
consumption getrlimit, setrlimit getrlimit(2)
contents elf Jawfile elf Jawfile(3E)
context getcontext, ... getcontext(2)
context sigaltstack .. sigaltstack(2)
context sigstack .. sigstack(3)
contexts makecontext, .. makecontext(3C)
control a file descriptor elC entl(3E)
control device .. ioctl(2)
control .. fcntl(2)
control I fpgetsticky, fpsetsticky fpgetround(3C)
control maximum system resource getrlimit(2)
control .. mctl(3)
control .. memcntl(2)
control menus display attributes menu _ attributes (3curses)
control operations .. msgctl(2)
control operations ... semctl(2)
control operations .. shmctl(2)
control .. priocntl(2)
control prioentlset .. prioentlset(2)
control routines Iwstandout curses curs_attr(3curses)
control routines Itypeahead curs_inopts(3curses)
control routines I scroll ok, nl, curs _ outopts(3curses)
control routines /is Jinetouched, curs _ touch(3curses)
control system log syslog, .. syslog(3)
control uadmin(2)
conv: toupper, tolower, _ toupper, conv(3C)
conversion I gconvert, seconvert, econvert(3)
conversion flag cd _ nmconv(3X)
conversion printf: sprintf, printf(3S)

991

long integers l3tol, lto13
base-64 ASCII string a64l, l64a

Ilocaltime, gmtime, asctime, tzset
strftime, cftime, ascftime

I decimat to_extended (BSD)
I ecvtl, fcvt, fcvtl, gcvt, gcvtl

decimal! I extended_to _decimal (BSD)
wscanw, mvscanw, mvwscanw, vwscanw

scan£, fscan£, sscanf
number strtod, strtold, atof

strtol, strtoul, atol, atoi
getdate

network I Ihtonl, htons, ntohl, ntohs
calendar time mktime

application versions elf_version
get curses cursor and window

copylist
strccpy, strcadd, strecpy, streadd

rint,1 floor, floorf, ceil, ceilf,
ieee_functions, fp _class, isnan,

curs_overlay: overlay, overwrite,
synchronization of thel adjtime
menu_cursor: pos _menu_cursor

getnetpath get netconfig entry
acos, acosf,1 trig: sin, sinf,

acosf, atan,1 trig: sin, sinf, cos,
acosh, atanhl sinh, sinhf,
atanhl sinh, sinhf, cosh,

I procprivc add, retrieve, remove,
with the I procprivl add, remove,

with al filepriv set, retrieve, or
clock report

an existing one
tmpnam, tempnam

mkfifo
existing one creat

fork
socketpair

tmpfile
communication socket

semaphore creatsem (XENIX)
pipe

I dup _field, link_field, free_field,
form_new: new jorm, free _form

menu_item _new: new _item, free_item
menu_new: new _menu, free_menu
panet new: new -panel, del-panel

Ipnoutrefresh, pechochar, pechowchar
Ibox, hline, whline, vline, wvline

sync ok, wcursyncup, wsyncdown
path mkdirp, rmdirp

992

convert between 3-byte integers and l3tol(3C)
convert between long integer and a64l(3C)
convert date and time to string ... ctime(3C)
convert date and time to string strftime(3C)
convert decimal record tol decimal_to_floating(3)
convert floating-point number to I ecvt(3C)
convert floating-point value to floating_to _ decimal(3)
convert formatted input from al curs_scanw(3curses)
convert formatted input scan£(3S)
convert string to double-precision strtod(3C)
convert string to integer strtol(3C)
convert user format date and time getdate(3C)
convert values between host and byteorder(3N)
converts a tm structure to a mktime(3C)
coordinate ELF library and elC version(3E)
coordinates I getbegyx, getmaxyx curs _getyx(3curses)
copy a file into memory.................................... copylist(3G)
copy strings, compressing or I strccpy(3G)
copylist copy a file into memory.................................. copylist(3G)
copysign, fmod, fmodf, fabs, fabsf, floor (3M)
copysign, scalbn (BSD) I .. ieee_functions(3)
copywin overlap and manipulate I curs_overlay(3curses)
correct the time to allow .. adjtime(2)
correctly position a menus cursor menu_cursor(3curses)
corresponding to NETP ATH component getnetpath(3N)
cos, cosf, tan, tanf, asin, asinf, .. trig (3M)
cosf, tan, tanf, asin, asinf, acos, .. trig(3M)
cosh, coshf, tanh, tanhf, asinh, .. sinh (3M)
coshf, tanh, tanhf, asinh, acosh, .. sinh(3M)
count, or put privileges associated I procpriv(2)
count, or put privileges associated procprivl(3C)
count the privileges associated ... filepriv(2)
CPU time used clock(3C)
creat create a new file or rewrite ... creat(2)
create a name for a temporary file tmpnam(3S)
create a new FIFO mkfifo(3C)
create a new file or rewrite an ... creat(2)
create a new process ... fork(2)
create a pair of connected sockets socketpair(3N)
create a temporary file tmpfile(3S)
create an endpoint for socket(3N)
create an instance of a binary.... creatsem(2)
create an interprocess channel ... pipe(2)
create and destroy forms fields form_field_new(3curses)
create and destroy forms form_new(3curses)
create and destroy menus items menu_item_new(3curses)
create and destroy menus menu _ new(3curses)
create and destroy panels panet new(3curses)
create and display curses pads curs-pad(3curses)
create curses borders, horizontal! curs_border(3curses)
create curses windows Iwsyncup, curs_window(3curses)
create, remove directories in a....................................... mkdirp(3G)

Permuted Index

/library routines for dealing with

umask set and get file
routines for dealing with the

external data representation stream
of a binary semaphore

optimization package curses
functions

encryption
interface to the Connection Server

the Connection Server cs _connect,
terminal

tzset convert date and time to /
isupper, is alpha, isalnum,/

endpoint tJook look at the
(BSD) get unique identifier of

sethostname (BSD) get/ set name of
top JOw , item_index set and get

/ field_index set forms
sigsetmask (BSD) set

t_getstate get the
uname get name of

getcontext, setcontext get and set
the slot in the utmp file of the
/ replace yanel get or set the

getcwd get pathname of
getwd (BSD) get

/formyage, set_current_field,
item_index set/ /set_current_item,

mvwaddch, echochar, wechochar add/

waddchstr, waddchnstr, mvaddchstr,!

waddstr, waddnstr, mvaddstr,/
mvaddwch, mvwaddwch, echowchar,/

addwchnstr, waddwchstr,/
waddwstr, waddnwstr, mvaddwstr,!

attron, wattron, attrset,!
and screen flash routines

wbkgd curses window background/
hline, whline, vline, wvline/
wclear, clrtobot, wclrtobot,/

init_ color, has_colors,!
mvwdelch delete character under /

insdelln, winsdelln, insertln,/
routines curs_beep: beep, flash

/hline, whline, vline, wvline create
/wstandend, standout, wstandout

/ color_content, pair_content
optimization package

Permuted Index

creation and manipulation of CLIENT /
............ .. rpc _ clnt_ create(3N)
creation mask .. umask(2)
creation of server handles /library rpc_svc_create(3N)
creation /library routines for xdr _ create(3N)
creatsem (XENIX) create an instance creatsem(2)
CRT screen handling and curses(3curses)
crypt password and file encryption crypt(3X)
crypt, setkey, encrypt generate .. crypt(3C)
cs _connect, cs yerror application cs _ connect(3N)
cs yerror application interface to cs _ connect(3N)
ctermid generate file name for ctermid(3S)
ctime, localtime, gmtime, asctime, ctime(3C)
ctype: is digit, isxdigit, islower, ctype(3C)
current event on a transport .. tJook(3N)
current host gethostid ... gethostid(3)
current host gethostname, gethostname(3)
current menus items / set_top JOw,
.. menu_item _ current(3curses)
current page and field form yage(3curses)
current signal mask sigsetmask(3)
current state .. t_getstate(3N)
current UNIX system .. uname(2)
current user context getcontext(2)
current user ttyslot find ttyslot(3C)
current window of a panels panel........... panet window(3curses)
current working directory .. getcwd(3C)
current working directory pathname getwd(3)
current_field, field_index set/ formyage(3curses)
current_item, set_top JOw, top JOw,
.. menu_item _ current(3curses)
curs _addch: addch, waddch, mvaddch,
.... curs _ addch(3curses)
curs _addchstr: addchstr, addchnstr,
.... curs _ addchstr(3curses)
curs _ addstr: addstr, addnstr, curs _ addstr(3curses)
curs_addwch: addwch, waddwch, curs_addwch(3curses)
curs _ addwchstr: addwchstr, curs _ addwchstr(3curses)
curs_addwstr: addwstr, addnwstr, curs_addwstr(3curses)
curs_attr: attrofi, wattrofi, curs_attr(3curses)
curs_beep: beep, flash curses bell curs _beep (3curses)
curs_bkgd: bkgdset, wbkgdset, bkgd, curs_bkgd(3curses)
curs_border: border, wborder, box, curs _ border(3curses)
curs_clear: erase, werase, clear, curs _ clear(3curses)
curs_color: start_color, inityair, curs_color(3curses)
curs_delch: delch, wdelch, mvdelch, curs_delch(3curses)
curs _ deleteln: deleteln, wdeleteln, curs _ deleteln(3curses)
curses bell and screen flash curs _ beep(3curses)
curses borders, horizontal and/ curs _ border(3curses)
curses character and window / curs _ attr(3curses)
curses color manipulation routines curs _ color(3curses)
curses CRT screen handling and curses(3curses)

993

getparyx, getbegyx, getmaxyx get
/longname, termattrs, termname

/tgetnum, tgetstr, tgoto, tputs
/ tigetflag, tigetnum, tigetstr

pechowchar create and display
/ is Jinetouched, is _ wintouched

curs_set, napms low-level
/scr _ init, scr _set read (write) a
/isendwin, set_term, del screen

/ slk _attrset, slk _ attroff
/ timeout, wtimeout, typeahead

get (or push back) characters from
/ wgetnstr get character strings from
push back) wchar _ t characters from
/ get wchar _ t character strings from

/ wsetscrreg, scrollok, nl, nonl
/ draino, flushinp miscellaneous
convert formatted input from a

/ a character (with attributes) to a
/ add a string of characters to a

/ character (with attributes) to a
/ a string of wchar _ t characters to a

/bkgdset, wbkgdset, bkgd, wbkgd
of characters (and attributes) to a

characters (and attributes) to a

wclrtoeol clear all or part of a
delete character under cursor in a

delete and insert lines in a
character and its attributes from a
characters (and attributes) from a

the character under the cursor in a
character under the cursor in a

get a string of characters from a
the character under the cursor in a

character under the cursor in a
character and its attributes from a
characters (and attributes) from a

string of wchar _ t characters from a
curs _move: move, wmove move

scroll, srcl, wscrl scroll a
redrawwin, wredrawln refresh

overlap and manipulate overlapped

print formatted output in

994

curses cursor and window / / getyx, curs _getyx(3curses)
curses environment query routines
... curs_termattrs(3curses)

curses interfaces (emulated) to the/ curs _ termcap(3curses)
curses interfaces to terminfo / curs _ terminfo(3curses)
curses pads /pechochar, cursyad(3curses)
curses refresh control routines curs _ touch(3curses)
curses routines /ripoffline, curs_kemel(3curses)
curses screen from (to) a file curs_scr _dump (3curses)
curses screen initialization and/ curs _ initscr(3curses)
curses soft label routines curs _ slk(3curses)
curses terminal input option/ curs _ inopts(3curses)
curses terminal keyboard / ungetch curs _getch(3curses)
curses terminal keyboard curs _getstr(3curses)
curses terminal keyboard / get (or curs _getwch(3curses)
curses terminal keyboard curs _getwstr(3curses)
curses terminal output option/ curs _ outopts(3curses)
curses utility routines ... curs _ util(3curses)
curses widow /mvwscanw, vwscanw curs_scanw(3curses)
curses window and advance cursor curs _ addch(3curses)
curses window and advance cursor curs _ addstr(3curses)
curses window and advance cursor curs_addwch(3curses)
curses window and advance cursor
... curs _addwstr(3curses)
curses window background/ curs _ bkgd(3curses)
curses window / add string curs _ addchstr(3curses)
curses window / string of wchar _ t
... curs _ addwchstr(3curses)
curses window / wclrtobot, clrtoeol, curs _ clear(3curses)
curses window / mvdelch, mvwdelch curs _ delch(3curses)
curses window / winsertln curs _ deleteln(3curses)
curses window / mvwinch get a curs _ inch(3curses)
curses window / get a string of curs _ inchstr(3curses)
curses window / a character before curs _insch(3curses)
curses window /insert string before curs _ insstr(3curses)
curses window /mvwinstr, mvwinnstr curs_instr(3curses)
curses window / character before curs _ inswch(3curses)
curses window / string before curs _ inswstr(3curses)
curses window / get a wchar _ t curs _ inwch(3curses)
curses window / a string of wchar _ t
... curs _ inwchstr(3curses)
curses window /mvwinnwstr get a curs_inwstr(3curses)
curses window cursor curs _ move(3curses)
curses window curs_scroll: curs _ scroll(3curses)
curses windows and lines / doupdate,
. curs _ refresh(3curses)
curses windows / overwrite, copywin
.. curs_overlay(3curses)
curses windows /mvwprintw, vwprintw
. curs yrintw(3curses)

Permuted Index

wcursyncup, wsyncdown create

mvwgetch, ungetch get (or pushl
mvgetstr, mvwgetstr, wgetnstr getl

mvgetwch, mvwgetwch, ungetwch getl
wgetwstr, wgetnwstr, mvgetwstr,/

getbegyx, getmaxyx get curses I
mvwinch get a character and its I
winchstr, winchnstr, mvinchstr,l

endwin, isendwin, set_term,1
echo, noecho, halfdelay,1

mvwinsch insert a character before I
winsstr, winsnstr, mvinsstr,l
winnstr, mvinstr, mvinnstr,1

mvinswch, mvwinswch insert al
winswstr, winsnwstr, mvinswstr,l

mvwinwch get a wchar _ t character I

winwchstr, winwchnstr, mvinwchstr,1

winwstr, winnwstr, mvinwstr,1
deC shell_mode, resetyrog_ mode,/

window cursor

I getbegyx, getmaxyx get curses
to a curses window and advance
to a curses window and advance
to a curses window and advance
to a curses window and advance

move, wmove move curses window
position forms window

I mvwdelch delete character under
Ibefore the character under the

string before character under the
Ibefore the character under the

string before character under the
correctly position a menus

immedok, leave ok, setscrreg'/
copywin overlap and manipulate I

pnoutrefresh, pechochar,/
mvprintw, mvwprintw, vwprintw I

wnoutrefresh, doupdate, redrawwin,l
mvwscanw, vwscanw convertl

scrJestore, scr_init, scr_setl
scroll a curses window

I getsyx, setsyx, rip offline,
slk Jefresh, slk _ noutrefresh'/

erasechar, has _ie, has _il,/
tgetnum, tgetstr, tgoto, tputsl

set_ curterm, det curterm,/
untouchwin, wtouchln,l

Permuted Index

curses windows Iwsyncup, syncok,
............ curs _ window(3curses)
curs_getch: getch, wgetch, mvgetch, curs_getch(3curses)
curs _getstr: getstr, wgetstr, curs _getstr(3curses)
curs _getwch: getwch, wgetwch, curs _getwch(3curses)
curs _getwstr: getwstr, getnwstr, curs _getwstr(3curses)
curs_getyx: getyx, getparyx, curs_getyx(3curses)
curs_inch: inch, winch, mvinch, curs_inch(3curses)
curs_inchstr: inchstr, inchnstr, curs_inchstr(3curses)
curs_initscr: initscr, newterm, curs_initscr(3curses)
curs _ inopts: cbreak, nocbreak, curs _ inopts(3curses)
curs _ insch: insch, winsch, mvinsch, curs _ insch(3curses)
curs _ insstr: insstr, insnstr, curs _ insstr(3curses)
curs_instr: instr, innstr, winstr, curs_instr(3curses)
curs_inswch: inswch, winswch, curs_inswch(3curses)
curs_inswstr: inswstr, insnwstr, curs_inswstr(3curses)
curs _inwch: inwch, winwch, mvinwch,
...... curs _inwch(3curses)
curs _ inwchstr: inwchstr, inwchnstr,
.. curs _ inwchstr(3curses)
curs _ inwstr: inwstr, innwstr, curs _inwstr(3curses)
curs_kernel: def yrog_ mode, curs _ kernel(3curses)
curs_move: move, wmove move curses
.... curs _ move (3curses)
cursor and window coordinates curs _getyx(3curses)
cursor I character (with attributes) curs _ addch(3curses)
cursor I add a string of characters curs _ addstr(3curses)
cursor I character (with attributes) curs _ addwch(3curses)
cursor lof wchar _ t characters curs _ addwstr(3curses)
cursor curs_move: curs _ move(3curses)
cursor I pos _form_cursor form_ cursor(3curses)
cursor in a curses window.................... curs _ delch(3curses)
cursor in a curses window curs _ insch(3curses)
cursor in a curses window /insert curs _ insstr(3curses)
cursor in a curses window... curs _ inswch(3curses)
cursor in a curses window I wchar _ t curs _ inswstr(3curses)
cursor I pos _menu_cursor menu _ cursor(3curses)
curs_outopts: elearok, idlok, idcok curs_outopts(3curses)
curs_overlay: overlay, overwrite, curs _ overlay(3curses)
curs yad: newpad, subpad, prefresh, ,. curs yad(3curses)
cursyrintw: printw, wprintw, cursyrintw(3curses)
curs Jefresh: refresh, wrefresh, curs Jefresh(3curses)
curs _ scanw: scanw, wscanw, mvscanw,
.. curs _ scanw(3curses)
curs_scr_dump: scr_dump, curs_scr_dump(3curses)
curs_scroll: scroll, srel, wscrl curs _ scroll(3curses)
curs_set, napms low-level curses I curs_kernel(3curses)
curs _ slk: slk _ init, slk_ set, curs _ slk(3curses)
curs _ termattrs: baudrate, curs _ termattrs(3curses)
curs _ termcap: tgetent, tgetflag, curs _ termcap(3curses)
curs _ terminfo: setupterm, setterm, curs _ terminfo(3curses)
curs_touch: touchwin, touchline, curs _ touch(3curses)

995

use_env, putwin, getwin,/
subwin, derwin, mvderwin, dupwin,/

the user
sdgetv (XENIX) synchronize shared

tell if forms field has off-screen
delete, firstkey, nextkey (BSD)

dbm_open, dbm_store (BSD)
elCrawdata get section

retrieve file identification
t rcvuderr receive a unit

sputl, sgetl access long integer
spray scatter

connection t snd send
connection t rcv receive

t_snd send data or expedited
nlsgetcall get client's

memory or unlock process, text, or
/library routines for external

xdr library routines for external
library routines for external
library routines for external
library routines for external
library routine for external

synchronize access to a shared
(XENIX) attach and detach a shared

brk, sbrk change
tJcv receive data or expedited
(XENIX) check to see if there is

elf32 _ xlatetom class-dependent
/ field_type, field _ arg forms field

t rcvudata receive a
t sndudata send a

/panetuserptr associate application
field _ userptr associate application

form _ userptr associate application
/item_userptr associate application
menu _ userptr associate application

forms field has / form_data:
curses interfaces to terminfo

get network configuration
store, delete, firstkey, nextkey

off-screen/ form_data: data_ahead,
ftime (BSD) get

getdate convert user format
settimeofday (BSD) get or set the

settimeofday get or set the
gmtime, asctime, tzset convert

strftime, cftime, ascftime convert
ftime (XENIX) get time and

996

curs_util: unctrl, keyname, filter, curs_util(3curses)
curs _window: newwin, delwin, mvwin,
... curs _ window(3curses)
cuserid get character login name of cuserid(3S)
data access ... sdgetv(2)
data ahead or behind /data_behind form_data(3curses)
data base subroutines / store, ... dbm(3)
data base subroutines / dbm _ nextkey, ndbm(3)
data elCgetdata, elCnewdata, elf_getdata(3E)
data elCgetident eICgetident(3E)
data error indication : tJcvuderr(3N)
data in a machine-independent/ sputl(3X)
data in order to check the network spray(3N)
data or expedited data over a... t_ snd(3N)
data or expedited data sent over a.................................... tJcv(3N)
data over a connection ... t_snd(3N)
data passed via the listener nlsgetcall(3N)
data plock lock into .. plock(2)
data representation stream creation xdr _ create(3N)
data representation xdr(3N)
data representation /xdr_setpos xdr_admin(3N)
data representation / xdr _ wrapstring xdr _ complex(3N)
data representation / xdr _void xdr _ simple(3N)
data representation xdr _sizeof xdr _sizeof(3N)
data segment / sdleave (XENIX) sdenter(2)
data segment sdget, sdfree .. sdget(2)
data segment space allocation .. brk(2)
data sent over a connection tJcv(3N)
data to be read rdchk ... rdchk(2)
data translation / elf32 _ xlatetof, elC xlate(3E)
data type validation form_field _ validation(3curses)
data unit .. t_rcvudata(3N)
data unit ... t_ sndudata(3N)
data with a panels panel panet userptr(3curses)
data with forms /set_field_userptr,
.... form_field _ userptr(3curses)
data with forms / setjorm _ userptr, form _ userptr(3curses)
data with menus items menu_item _ userptr(3curses)
data with menus /set_menu_userptr,
. menu _ userptr(3curses)
data_ahead, data_behind tell if form _ data(3curses)
database / tigetnum, tigetstr curs _ terminfo(3curses)
database entry getnetconfig getnetconfig(3N)
database subroutines /fetch, ... dbm(3N)
data_behind tell if forms field has form _ data(3curses)
date and time ... ftime(3)
date and time .. getdate(3C)
date and time gettimeofday, gettimeofday(3)
date and time gettimeofday, gettimeofday(3C)
date and time to string /localtime, ctime(3C)
date and time to string .. strftime(3C)
date ... ftime(2)

Permuted Index

store, delete, firstkey, nextkey I
store, delete, firstkey, nextkey I

dbm _delete, dbm _ error, I ndbm:
dbm_fetch,1 ndbm: dbm_clearerr,

firstkey, nextkey I dbm: dbminit,
firstkey, nextkey I dbm, dbminit,
ndbm: dbm _ clearerr, dbm_ close,

I dbm _close, dbm _delete,
I dbm _close, dbm _delete, dbm _error,
I dbm _delete, dbm _error, dbm _fetch,

delete, firstkey, nextkey I dbm:
delete, firstkey, nextkey I dbm,

I dbm _error, dbm _fetch, dbm _firstkey,
I dbm _ firstkey, dbm _ nextkey,

subroutines I dbm _ nextkey, dbm _open,
I clnt_ vc_ create library routines for
Isvc_ vc_create library routines for

convert floating-point value to
I decimal_to _extended (BSD) convert

I decimat to _single,
decimal record I I decimal_to _double,

decimat to _single, I
decimat to _ floa ting:

/hide J>anel, panel_hidden panels
I top J>anel, bottom J>anel panels

Ipanel_above, panel_below panels
setcat define

user IDs, andl cd _ defs set or get
addsev

setcat
setlabel

(BSD) IEEE floating point
resetJ>rog_ mode, I curs_kernel:

curs_kernel: def J>rog_ mode,
Ifilter, use_env, putwin, getwin,

delete character under I curs _ delch:
I setupterm, setterm, set _ curterm,

Iwinsdelln, insertln, winsertln
I delch, wdelch, mvdelch, mvwdelch

/ dbminit, dbmclose, fetch, store,
/ dbminit, dbmclose, fetch, store,

winsdelln, I curs _ deleteln:
bgets read stream up to next

panet new: new J>anel,
end win, isendwin, set_term,

mvderwin,1 curs_window: newwin,
load a loadable kernel module on

unload a loadable kernel module on
Inewwin, delwin, mvwin, subwin,

get menus item name and

Permuted Index

dbm: dbminit, dbmclose, fetch, dbm(3)
dbm, dbminit, dbmclose, fetch, dbm(3N)
dbm _ clearerr, dbm _ close, .. ndbm(3)
dbm _close, dbm _delete, dbm _error, ndbm(2)
dbmclose, fetch, store, delete, .. dbm(3)
dbmclose, fetch, store, delete, dbm(3N)
dbm_delete, dbm_error, dbm_fetch,1 ndbm(3)
dbm _error, dbm _fetch, dbm _ firstkey, I ndbm(3)
dbm _fetch, dbm _firstkey,/ .. ndbm(3)
dbm _firstkey, dbm _ nextkey,1 ... ndbm(3)
dbminit, dbmclose, fetch, store, ... dbm(3)
dbminit, dbmclose, fetch, store, dbm(3N)
dbm _ nextkey, dbm _open, dbm _store I ndbm(3)
dbm_open, dbm_store (BSD) data basel ndbm(3)
dbm_store (BSD) data base .. ndbm(3)
dealing with creation andl rpc _ clnt_ create(3N)
dealing with the creation of serverl rpc_svc_create(3N)
decimal record I (BSD) floating_to _ decimal(3)
decimal record to floating-point I decimat to _ floating(3)
decimat to_double,! decimat to _ floating(3)
decimal_to_extended (BSD) convert
... decimal_to _ floating(3)
decimat to_floating: decimat to _ floating(3)
decimat to _ single,/ decimat to _ floating(3)
deck manipulation routines panetshow(3curses)
deck manipulation routines panet top (3curses)
deck traversal primitives panel_above(3curses)
default catalog ... setcat(3C)
default CD-ROM file permissions, cd _ defs(3X)
define additional severities addsev(3C)
define default catalog ... setcat(3C)
define the label for pfmt setlabel(3C)
definitions floatingpoint ... floatingpoint(3)
deCprog_ mode, deC shell_mode, curs _ kernel(3curses)
deCshelt mode, resetJ>rog_ mode,1 CLlrs _ kernel(3curses)
delay_output, draino, flushinp I curs _ util(3curses)
delch, wdelch, mvdelch, mvwdelch curs_delch(3curses)
det curterm, restartterm, tparm, I curs _ terminfo(3curses)
delete and insert lines in a curses I curs_deleteln(3curses)
delete character under cursor in al curs _ delch(3curses)
delete, firstkey, nextkey (BSD)I .. dbm(3)
delete, firstkey, nextkey database I dbm(3N)
deleteln, wdeleteln, insdelln, curs _ deleteln(3curses)
delimiter .. bgets(3G)
delJ>anel create and destroy panels panetnew(3curses)
delscreen curses screen I / newterm, curs _initscr(3curses)
delwin, mvwin, subwin, derwin, curs _ window(3curses)
demand modload ... modload(2)
demand moduload .. moduload(2)
derwin, mvderwin, dupwin, wsyncup,/
....................... curs _ window(3curses)
description /item_description menu_item _ name(3curses)

997

close close a file
dup duplicate an open file

dup2 duplicate an open file
elf_begin make a file
elf cntl control a file

elf_update update an ELF
a name from a STREAMS-based file

isastream test a file
cd _ cpvd read CD-ROM Primary Volume

getdtablesize (BSD) get
fattach attach STREAMS-based file

link_field, free_field, create and
new_form, free_form create and
new_item, free_item create and

new_menu, free _menu create and
new yanel, delyanel create and

file descriptor fdetach
sdget, sdfree (XENIX) attach and

sigaction
access

elf kind
mincore

/isnanf, finite, fpclass, unordered
buffer is encrypted isencrypt

minor numbers assigned to a CD-ROM
numbers assignments for a CD-ROM

access to the slave pseudo-terminal
ioctl control

makedev, major, minor manage a
name of the slave pseudo-terminal

dlerror get
line connection

times difftime compute the
between two calendar times

mkdirp, rmdirp create, remove
search for named file in named

read Directory Record from CD-ROM
chdir, fchdir change working

chroot change root
system independent/ get dents read

unlink remove
get pathname of current working

mkdirmake a
dimame report the parent

telldir, seekdir, rewinddir,/
telldir, seekdir, rewinddir,/
seekdir, rewinddir, closedir

seekdir, rewinddir, closedir (BSD)
file mknod make a

file mknod (XENIX) make a
getwd (BSD) get current working

998

descriptor ... close(2)
descriptor ... dup(2)
descriptor ... dup2(3C)
descriptor elC begin(3E)
descriptor elf _ cntl(3E)
descriptor elC update(3E)
descriptor fdetach detach fdetach(3C)
descriptor isastream(3C)
Descriptor (PVD) cd yvd, cd yvd(3X)
descriptor table size .. getdtablesize(3)
descriptor to file system object .: fattach(3C)
destroy forms fields /dup_field, form_field_new(3curses)
destroy forms form_new: form _ new(3curses)
destroy menus items menu_item _new:
........ menu_item _ new(3curses)
destroy menus menu_new: menu _ new(3curses)
destroy panels panel_new: panet new(3curses)
detach a name from a STREAMS-based fdetach(3C)
detach a shared data segment sdget(2)
detailed signal management ... sigaction(2)
determine accessibility of a file ... access(2)
determine file type elC kind(3E)
determine residency of memory pages mincore(2)
determine type of floating-point/ isnan(3C)
determine whether a character isencrypt(3G)
device / get the major and cd _getdevmap(3X)
device / or unset major and minor cd _ setdevmap(3X)
device grantpt grant grantpt(3C)
device ioctl(2)
device number ... makedev(3C)
device ptsname get ptsname(3C)
diagnostic information dlerror(3X)
dial establish an outgoing terminal dial(3N)
difference between two calendar difftime(3C)
difftime compute the difference difftime(3C)
directories in a path ... mkdirp(3G)
directories pathfind ... pathfind(3G)
directory cd _ drec, cd _ cdrec cd _ drec(3X)
directory ... chdir(2)
directory chroot(2)
directory entries and put in a file getdents(2)
directory entry .. unlink(2)
directory getcwd getcwd(3C)
directory ... mkdir(2)
directory name of a file path name dimame(3G)
directory: opendir, readdir, ... directory(3C)
directory: opendir, readdir, ... directory(3C)
directory operations / telldir, directory(3C)
directory operations /telldir, directory(3C)
directory, or a special or ordinary mknod(2)
directory, or a special or ordinary mknod(2)
directory pathname getwd(3)

Permuted Index

directory cd _ drec, cd _ cdrec read
rmdir remove a

scandir, alphasort (BSD) scan a
name of a file path name

t unbind
acct enable or

Imenu _items, item_count connect and
t_ snddis send user-initiated

tJcvdis retrieve information from
system console fmtmsg

menu yad control menus

I field yad format the general
pechochar, pechowchar create and

format pfmt, vpfmt
hypot Euclidean

Iseed48, lcong48 generate uniformly
remainder

in shared object
Ires _ mkquery, res_send, res _ init,

Ires_send, res_init, dn_comp,
script

strtold, atof convert string to
I single_to _decimal,

I refresh, wrefresh, wnoutrefresh,
I putwin, getwin, delay_output,

mrand48, jrand48, srand48, seed48,1
descriptor
descriptor

create I form_field_new: new_field,
dup

dup2
mvwin, subwin, derwin, mvderwin,

curs _inopts: cbreak, nocbreak,
/ addch, waddch, mvaddch, mvwaddch,

Iwaddwch, mvaddwch, mvwaddwch,

seconvert, sfconvert, sgconvertl
gcvtl convert floating-pointl

convert floating-point/ ecvt,
end, etext,

effective user, real group, and
setregid (BSD) set real and
setreuid (BSD) set real and

I getgid, getegid get real user,

Permuted Index

Directory Record from CD-ROM cd _ drec(3X)
directory .. rmdir(2)
directory ... scandir(3)
dimame report the parent directory dimame(3G)
disable a transport endpoint t_ unbind(3N)
disable process accounting acct(2)
disconnect items to and froml menu_items(3curses)
disconnect request t_ snddis(3N)
disconnect tJcvdis(3N)
display a message on stderr or fmtmsg(3C)
display attributes I set_menu yad,
.. menu _ attributes(3curses)
display attributes of forms form jield _ attributes(3curses)
display curses pads Ipnoutrefresh, cursyad(3curses)
display error message in standard pfmt(3C)
distance function hypot(3M)
distributed pseudo-random numbers drand48(3C)
div, ldiv compute the quotient and div(3C)
dlclose close a shared object dlclose(3X)
dlerror get diagnostic information dlerror(3X)
dlopen open a shared object dlopen(3X)
dlsym get the address of a symbol................... dlsym(3X)
dn _ comp, dn _expand resolver I resolver(3N)
dn _expand resolver routines resolver(3N)
doconfig execute a configuration doconfig(3N)
double-precision number strtod, strtod(3C)
double_to_decimal,1 floating_to_decimal(3)
doupdate, redrawwin, wredrawlnl cursJefresh(3curses)
draino, flushinp miscellaneous I curs _ util(3curses)
drand48, erand48, lrand48, nrand48, drand48(3C)
dup duplicate an open file dup(2)
dup2 duplicate an open file .. dup2(3C)
dup jield, link jield, free_field, form_field _ new(3curses)
duplicate an open file descriptor .. dup(2)
duplicate an open file descriptor dup2(3C)
dupwin, wsyncup, syncok,/ I delwin,
.... curs _ window(3curses)
dynamic_field_info get forms fieldl
. form jield _ info (3curses)
echo, noecho, halfdelay, intrflush'/ curs_inopts(3curses)
echochar, wechochar add a character I

curs _ addch(3curses)
echowchar, wechowchar add a wchar _ tl
...................... ... curs _ addwch(3curses)

econvert, fconvert, gconvert, ... econvert(3)
ecvt, ecvtl, fcvt, fcvtl, gcvt, ecvt(3C)
ecvtl, fcvt, fcvtl, gcvt, gcvtl ecvt(3C)
edata last locations in program .. end(3C)
effective group IDs I get real user, getuid(2)
effective group IDs setregid(3)
effective user IDs ... setreuid(3)
effective user, real group, andl .. getuid(2)

999

new process in a virtual memory
insque, remque insert I remove

basename return the last
elC update update an

versions elf version coordinate

object file type elCfsize:
retrieve I elCgetehdr:
retrieve I elCgetphdr:

class-dependent I elCgetshdr:
elCgetehdr: elf32 _getehdr,
elCgetphdr: elf32 _getphdr,

class-dependent datal elCxlate:
elC xlate: elf32 _ xlatetof,

handling elC error:
elC error: elC errmsg,

error handling

elC flagehdr, elC flagelf'/
elC flagelf, I elC flag:
elf_flag: elC flagdata,

I elC flagdata, elC flagehdr,
I elC flagehdr, elC flagelf,
I elC flagelf, elC flagphdr,

I elC flagphdr, elC flagsen,
size of an object file type

member header
symbol table
an object file

elCrawdata get section data
elf32 _ newehdr retrieve I

identification data
elf32 _ newphdr retrieve I
elC nextscn get section I

class-dependent section header

get section I elCgetscn,
section data elf _getdata,

elCgetsen, elf _ndxsen,
access

elCgetscn, elC ndxscn, elC newscn,
access

elCgetdata, elC newdata,
file contents

and application versions
elf32 _ xlatetom class-dependent I

1000

efficient way vfork spawn ... vfork(2)
element from a queue insque(3C)
element of a path name .. basename(3G)
ELF descriptor elC update(3E)
ELF library and application elC version(3E)
elf object file access library elf(3E)
elf32 _ fsize return the size of an elC fsize(3E)
elf32 _getehdr, elf32 _ newehdr eICgetehdr(3E)
elf32 _getphdr, elf32 _newphdr eICgetphdr(3E)
elf32 _getshdr retrieve eICgetshdr(3E)
elf32 _ newehdr retrieve I ... eICgetehdr(3E)
elf32 _ newphdr retrieve I .. eICgetphdr(3E)
elf32 _ xlatetof, elf32 _ xlatetom .. elC xlate(3E)
elf32 _ xlatetom class-dependent datal elC xlate(3E)
elf_begin make a file descriptor elf _ begin(3E)
elf _ entl control a file descriptor elC entl(3E)
elf_end finish using an object file eICend(3E)
elC errmsg, elf _ errno error elC error(3E)
elC errno error handling elC error(3E)
elC error: elC errmsg, elC errno elC error(3E)
elf_fill set fill byte ... eICfill(3E)
elf_flag: elC flagdata, elC flag(3E)
elCflagdata, elCflagehdr, .. eICflag(3E)
elC flagehdr, elC flagelf, I ... elC flag(3E)
elC flagelf, elC flagphdr,l .. elC flag(3E)
elC flagphdr, elC flagsen, I elC flag(3E)
elC flagsen, elC flagshdr I elC flag(3E)
elC flagshdr manipulate flags elC flag(3E)
elCfsize: elf32 _fsize return the eICfsize(3E)
elCgetarhdr retrieve archive eICgetarhdr(3E)
elCgetarsym retrieve archive eICgetarsym(3E)
elf _getbase get the base offset for eICgetbase(3E)
elCgetdata, elC newdata, .. eICgetdata(3E)
elCgetehdr: elf32 _getehdr, eICgetehdr(3E)
elCgetident retrieve file ... eICgetident(3E)
elCgetphdr: elf32 _getphdr, eICgetphdr(3E)
elCgetsen, elC ndxsen, elC newsen, eICgetsen(3E)
elCgetshdr: elf32 _getshdr retrieve eICgetshdr(3E)
elf_hash compute hash value .. elC hash(3E)
elf_kind determine file type .. eICkind(3E)
elC ndxsen, elC newscn, elC nextscn eICgetsen(3E)
elC newdata, elCrawdata get eICgetdata(3E)
elC newsen, elC nextsen get section I elf _getsen(3E)
elf_next sequential archive member eICnext(3E)
elCnextsen get section information elf_getsen(3E)
elf_rand random archive member eICrand(3E)
elCrawdata get section data eICgetdata(3E)
elC rawfile retrieve uninterpreted elC rawfile(3E)
elC strptr make a string pointer elf _ strptr(3E)
elf_update update an ELF descriptor elC update(3E)
elf_version coordinate ELF library.......................... elC version(3E)
elC xlate: elf32 _ xlatetof, .. elC xlate(3E)

Permuted Index

Itgoto, tputs curses interfaces
accounting acct

crypt, setkey,
whether a character buffer is

crypt, setkey, encrypt generate
crypt password and file

program
I getgrgid, getgrnam, setgrent,

I gethostbyname, sethostent,
I getnetbyname, setnetent,

socket create an
bind an address to a transport

t_ close close a transport
at the current event on a transport

t_ open establish a transport
manage options for a transport

t_ unbind disable a transport
I getprotobyname, setprotoent,

I getpwuid, getpwnam, setpwent,
I getservbyname, setservent,

getspent, getspnam, setspent,
shells getusershell, setusershell,

I getutline, pututline, setutent,
I getutxline, pututxline, setutxent,

curs _initscr: initscr, newterm,
getdents read directory

nlist get
component getnetpath get netconfig

endgrent, fgetgrent get group file
endhostent get network host

getmntany get mnttab file
get network configuration database

setnetent, endnetent get network
endprotoent get protocol

fgetpwent manipulate password file
setservent, endservent get service
manipulate shadow password file

endutent, utmpname access utmp file
updwtmp, updwtmpx access utmpx file

getvfsany get vfstab file
putpwent write password file

putspent write shadow password file
unlink remove directory

fpsetsticky IEEE floating-point
getenv return value for

putenv change or add value to
Itermattrs, termname curses

set env set the user's
jrand48, srand48, seed48,1 drand48,

Ipost_form, unpost_form write or
Ipost_menu, unpost_menu write or

clrtobot, wclrtobot,1 curs_clear:

Permuted Index

(emulated) to the termcap library curs_termcap(3curses)
enable or disable process acct(2)
encrypt generate encryption .. crypt(3C)
encrypted isencrypt determine isencrypt(3G)
encryption crypt(3C)
encryption functions crypt(3X)
end, etext, edata last locations in end(3C)
endgrent, fgetgrent get group filel getgrent(3C)
endhostent get network host entry gethostent(3N)
endnetent get network entry getnetent(3N)
endpoint for communication ... socket(3N)
endpoint t_bind ... t_bind(3N)
endpoint ... t_ close(3N)
endpoint t_Iook look ... t_Iook(3N)
endpoint t_ open(3N)
endpoint t_ optmgmt ... t_ optmgmt(3N)
endpoint t_ unbind (3N)
endprotoent get protocol entry getprotoent(3N)
endpwent, fgetpwent manipulate I getpwent(3C)
endservent get service entry......... getservent(3N)
endspent, fgetspent, lckpwdf,1 getspent(3C)
endusershell (BSD) get legal user getusershell(3)
endutent, utmpname access utmp filel getut(3C)
endutxent, utmpxname, getutmp,1 getutx(3C)
endwin, isendwin, set_term,1 curs_initscr(3curses)
entries and put in a file system I getdents(2)
entries from name list nlist(3E)
entry corresponding to NETPATH getnetpath(3N)
entry I getgrnam, setgrent, ... getgrent(3C)
entry I gethostbyname, sethostent, gethostent(3N)
entry getmntent, getmntent(3C)
entry getnetconfig getnetconfig(3N)
entry I getnetbyaddr, getnetbyname, getnetent(3N)
entry I getprotobyname, setprotoent, getprotoent(3N)
entry I setpwent, endpwent, getpwent(3C)
entry I getservbyname, .. getservent(3N)
entry I fgetspent, lckpwdf, ulckpwdf getspent(3C)
entry Ipututline, setutent, .. getut(3C)
entry I getutmp, getutmpx, .. getutx(3C)
entry I getvfsfile, getvfsspec, getvfsent(3C)
entry ... putpwent(3C)
entry putspent(3C)
entry unlink(2)
environment control I fpgetsticky, fpgetround(3C)
environment name getenv(3C)
environment .. putenv(3C)
environment query routines curs_termattrs(3curses)
environment set_ env(3I)
erand48, lrand48, nrand48, mrand48, drand48(3C)
erase forms from associated I form -post(3curses)
erase menus from associated I menu -post(3curses)
erase, werase, clear, wclear, curs _ clear(3curses)

1001

curs _ termattrs: baudrate,
complementary error function

complementary error function erf,
error function erf, erfc

error function and complementary
elf_error: elC errmsg, elC errno
t rcvuderr receive a unit data

pfmt, vpfmt display
strerror get

t_ error produce
perror print system

intro introduction to system calls,
matherr

server side remote procedure call
strings, compressing or expanding

transport user t_ connect
t_open

connection dial
program end,

ethers
operations

hypot
t look look at the current

auditevt get or set auditable
sigprocmask change or

and pending sigpending
ieee_handler (BSD) IEEE

execlp, execvp execute a file
execlp, execvp execute al exec:
execute a file exec: execl, execv,

exec: execl, execv, execle, execve,
doconfig

execle, execve, execlp, execvp
regcmp, regex compile and

nap (XENIX) suspend
microseconds usleep (BSD) suspend

sleep (BSD) suspend
sleep suspend

monitor prepare
profil

execvp execute a file exec: execl,
file exec: execl, execv, exec1e,
execv, execle, execve, execlp,

create a new file or rewrite an

exit,
loglOf, pow, powf, sqrt, sqrtf!

copy strings, compressing or
t snd send data or

connection t rcv receive data or
loglOf, pow, powf, sqrt,! exp,
IloglOf, pow, powf, sqrt, sqrtf

1002

erasechar, has_ic, has_il,1 curs_termattrs(3curses)
erf, erfc error function and erf(3M)
erfc error function and erf(3M)
error function and complementary erf(3M)
error function erf, erfc erf(3M)
error handling elC error(3E)
error indication .. tJcvuderr(3N)
error message in standard format pfmt(3C)
error message string strerror(3C)
error message .. t_ error(3N)
error messages : perror(3C)
error numbers, and privileges ... intro(2)
error-handling function .. matherr(3M)
errors llibrary routines for rpc_svc_err(3N)
escape codes I strecpy, streadd copy........................... strccpy(3G)
establish a connection with another t_ connect(3N)
establish a transport endpoint t_ open(3N)
establish an outgoing terminal line dial(3N)
etext, edata last locations in .. end(3C)
Ethernet address mapping operations ethers(3N)
ethers Ethernet address mapping ethers(3N)
Euclidean distance function ... hypot(3M)
event on a transport endpoint ... tJook(3N)
events auditevt(2)
examine signal mask sigprocmask(2)
examine signals that are blocked sigpending(2)
exception trap handler function ieee _ handler(3)
exec: execl, execv, execle, execve, ... exec(2)
execl, execv, exec1e, execve, .. exec(2)
execle, execve, execlp, execvp ... exec(2)
execlp, execvp execute a file ... exec(2)
execute a configuration script doconfig(3N)
execute a file exec: execl, execv, .. exec(2)
execute regular expression ... regcmp(3G)
execution for a short interval ... nap(2)
execution for interval in ... usleep(3)
execution for interval ... sleep(3)
execution for interval ... sleep(3C)
execution profile ... monitor(3C)
execution time profile .. profil(2)
execv, execle, execve, execlp, .. exec(2)
execve, exec1p, execvp execute a .. exec(2)
execvp execute a file exec: execl, .. exec(2)
existing one creat ... creat(2)
exit, _exit terminate process ... exit(2)
_exit terminate process ... exit(2)
exp, expf, cbrt,log,logf, loglO, .. exp(3M)
expanding escape codes I streadd strccpy(3G)
expedited data over a connection t_snd(3N)
expedited data sent over a .. tJcv(3N)
expf, cbrt, log, logf, loglO, .. exp(3M)
exponential, logarithm, power,! ... exp(3M)

Permuted Index

/compile, step, advance regular
re_comp, re_exec (BSD) regular

regex compile and execute regular
cd_xar, cd_cxar read CD-ROM

floating-point/ / double_to _decimal,

creation /library routines for
xdr library routines for

/xdr _setpos library routines for
/ xdr _ wrap string library routines for

/xdr _void library routines for
xdr _sizeof library routine for

/ ceil, ceilf, copysign, fmod, fmodf,
/ ceil£, copysign, fmod, fmodf, fabs,

(BSD) simplified software signal
sigvec (BSD) software signal

data in a machine-independent
descriptor to file system object

chdir,
chmod,

file chown, lchown,
stream

sfconvert, sgconvert/ econvert,
floating-point number / ecvt, ecvtl,

floating-point/ ecvt, ecvtl, fcvt,
STREAMS-based file descriptor

fop en, freopen,
fop en, freopen,

status inquiries ferror,
stream status inquiries

nextkey / dbm: dbminit, dbmclose,
nextkey / dbm, dbminit, dbmclose,

fclose,

from a stream getc, getchar,
/ getgrnam, setgrent, endgrent,

in a stream fsetpos,
/ getpwnam, setpwent, endpwent,

gets,
/ getspnam, setspent, endspent,

word from a/ getwc, getwchar,
stream getws,

set_max _field set and get forms
dynamic_field_info get forms

/ field _type, field _ arg forms
set forms current page and

cd _suf reads the cdfs System Use
behind / data_behind tell if forms

/ field_opts _off, field_opts forms

Permuted Index

expression compile and match/ regexpr(3G)
expression handler regex: ... regex(3)
expression regcmp, .. regcmp(3G)
Extended Attribute Record (XAR) cd _ xar(3X)
extended_to _decimal (BSD) convert
............................. .. floating_to _ decimal(3)
external data representation stream xdr _ create(3N)
external data representation ... xdr(3N)
external data representation xdr _ admin(3N)
external data representation xdr _ complex(3N)
external data representation xdr _ simple(3N)
external data representation xdr_sizeof(3N)
fabs, fabsf, rint, remainder floor,/ floor (3M)
fabsf, rint, remainder floor,/ .. floor(3M)
facilities signal .. signal(3)
facilities sigvec(3)
fashion / sgetl access long integer sputl(3X)
fattach attach STREAMS-based file fattach(3C)
fchdir change working directory............................... chdir(2)
fchmod change mode of file ... chmod(2)
fchown change owner and group of a.............................. chown(2)
fclose, fflush close or flush a ... fclose(3S)
fcntl file control ... fcntl(2)
fconvert, gconvert, seconvert, ... econvert(3)
fcvt, fcvtl, gcvt, gcvtl convert ecvt(3C)
fcvtl, gcvt, gcvtl convert ecvt(3C)
fdetach detach a name from a........... fdetach(3C)
fdopen (BSD) open a stream .. fopen(3S)
fdopen open a stream fopen(3S)
feof, clearerr, fileno stream ... ferror(3S)
ferror, feof, clearerr, fileno ... ferror(3S)
fetch, store, delete, firstkey, .. dbm(3)
fetch, store, delete, firstkey, .. dbm(3N)
fflush close or flush a stream fclose(3S)
ffs find first set bit ffs(3C)
fgetc, getw get character or word getc(3S)
fgetgrent get group file entry getgrent(3C)
fgetpos reposition a file pointer fsetpos(3C)
fgetpwent manipulate password file/ getpwent(3C)
fgets get a string from a stream gets(3S)
fgetspent, lckpwdf, ulckpwdf / getspent(3C)
fgetwc get wchar_ t character or getwc(3W)
fgetws get a wchar _ t string from a getws(3W)
field attributes / field_status, form jield _ buffer(3curses)
field characteristics / field_info, form_field _ info(3curses)
field data type validation form _field_ validation(3curses)
field / current_field, field_index form yage(3curses)
Field from the specified System Use/ cd_suf(3X)
field has off-screen data ahead or form_data(3curses)
field option routines form_field _ opts(3curses)

1003

Ifield_fore, set_field_back,
field_status, I I setjield _buffer,

I set_form _fields, form_fields,
field_back,! I set_ field_fore,

Iset_current_field, current_field,
forms fieldl form _field_info:

I form_term, set_field _init,
form_field just: set_field just,
I field _opts_on, field_opts _off,
I set_field _opts, field_opts _on,

form_field _opts: set_field _opts,
display I I field_back, set_field yad,

bufsplit split buffer into
create and destroy forms

field _count, move _field connect
I field_buffer, set_field _status,

field Jnit, set_field _term,
data typel Isetjield_type,

I link _fieldtype forms
data with forms I set_field _ userptr,

mkfifo create a new
utime set
elf object

access determine accessibility of a
auditlog get or set audit log

chmod, fchmod change mode of
fchown change owner and group of a

chsize (XENIX) change the size of a
elt rawfile retrieve uninterpreted

fentl
umask set and get

(write) a curses screen from (to) a
close close a

dup duplicate an open
dup2 duplicate an open

elf_begin make a
elf cntl control a

detach a name from a STREAMS-based
isastream test a

fattach attach STREAMS-based
elt end finish using an object

get the base offset for an object
crypt password and

endgrent, fgetgrent get group
getmntent, getmntany get mnttab

1004

field_arg forms field data typel
... form_field _ validation(3curses)
field_back, set_field yad,! form_field _ attributes (3curses)
field_buffer, set_field _status, form_field _ buffer(3curses)
field_count, move_field connect I form _ field(3curses)
field jore, set_field _back, form_field _attributes(3curses)
field_index set forms current page I form yage(3curses)
field Jnfo, dynamic_field _info get
.. form_field _info (3curses)
field _ init, setjield _term,! form _ hook(3curses)
field just format the general! form jield just(3curses)
field_opts forms field option I form_field _ opts(3curses)
field_opts _off, field_opts forms I form_field _ opts (3curses)
field_opts _on, field_opts _off, I form_field _ opts(3curses)
field yad format the general
.. form_field _ attributes(3curses)
fields .. bufsplit(3G)
fields llink _field, free_field, form jield _ new(3curses)
fields to forms I form_fields, form_field(3curses)
field_status, set_max_field set andl
...................... form_field _ buffer(3curses)
field_term assign I Iset_field_init, form_hook(3curses)
field _type, field _arg forms field
... form_field _ validation(3curses)
fieldtype routines form _ fieldtype(3curses)
field _ userptr associate application
.................. form_field _ userptr(3curses)
FIFO ... mkfifo(3C)
file access and modification times utime(2)
file access library elf(3E)
file .. access(2)
file attributes .. auditlog(2)
file .. chmod(2)
file chown, lchown, .. chown(2)
file .. chsize(2)
file contents .. eICrawfile(3E)
file control ... fcntl(2)
file creation mask ... umask(2)
file I scr _init, scr _set read curs _ scr _ dump (3curses)
file descriptor ... close(2)
file descriptor .. dup(2)
file descriptor .. dup2(3C)
file descriptor elC begin(3E)
file descriptor elC cntl(3E)
file descriptor fdetach .. fdetach(3C)
file descriptor isastream(3C)
file descriptor to file system I .. fattach(3C)
file ... elf_end(3E)
file elCgetbase eICgetbase(3E)
file encryption functions ... crypt(3X)
file entry I getgrnam, setgrent, getgrent(3C)
file entry getmntent(3C)

Permuted Index

fgetpwent manipulate password
ulckpwdf manipulate shadow password

endutent, utmpname access utmp
updwtmp, updwtmpx access utmpx

getvfsspec, getvfsany get vfstab
putpwent write password

putspent write shadow password
execve, execlp, execvp execute a
the privileges associated with a
retrieve class-dependent object

elCgetident retrieve
pathfind search for named

copylist copy a
link link to a

directory, or a special or ordinary
directory, or a special or ordinary

ctermid generate
mkstemp (BSD) make a unique

mktemp make a unique
realpath returns the real

ttyslot find the slot in the utmp
creat create a new

the parent directory name of a
cd_defs set or get default CD-ROM

fseek, rewind, ftell reposition a
fsetpos, fgetpos reposition a

lseek move read/write
read read from

locking (XENIX) lock or unlock a
remove remove

rename change the name of a
stat, lstat, fstat get

stat, lstat, fstat (XENIX) get
symlink make a symbolic link to a

/read directory entries and put in a
statvfs, fstatvfs get

mount mount a
STREAMS-based file descriptor to

ustat get
sysfs get

umount unmount a
utimes (BSD) set

tmpfile create a temporary
create a name for a temporary

truncate, ftruncate set a
ftw, nftw walk a

return the size of an object
elf kind determine

write, writev write on a
ferror, feof, clearerr,

the privileges associated with a/
the physical! fsync synchronize a

Permuted Index

file entry / setpwent, endpwent, getpwent(3C)
file entry / fgetspent, lckpwdf, getspent(3C)
file entry /pututline, setutent, .. getut(3C)
file entry / getutmp, getutmpx, getutx(3C)
file entry getvfsent, getvfsfile, getvfsent(3C)
file entry .. putpwent(3C)
file entry .. putspent(3C)
file exec: execl, execv, execle, .. exec(2)
file / set, retrieve, or count filepriv(2)
file header / elf32 _ newehdr eICgetehdr(3E)
file identification data .. eICgetident(3E)
file in named directories ... pathfind(3G)
file into memory copylist(3G)
file .. link(2)
file mknod make a mknod(2)
file mknod (XENIX) make a... mknod(2)
file name for terminal ctermid(3S)
file name ... mkstemp(3)
file name mktemp(3C)
file name .. realpath(3C)
file of the current user ttyslot(3C)
file or rewrite an existing one .. creat(2)
file path name dirname report dirname(3G)
file permissions, user IDs, and/ cd _ defs(3X)
file pointer in a stream fseek(3S)
file pointer in a stream fsetpos(3C)
file pointer .. Iseek(2)
file ... ,. read(2)
file region for reading or writing locking(2)
file remove(3C)
file ... rename(2)
file status ... stat(2)
file status ... stat(2)
file .. symlink(2)
file system independent format getdents(2)
file system information statvfs(2)
file system .. mount(2)
file system object fattach attach fattach(3C)
file system statistics ... ustat(2)
file system type information sysfs(2)
file system umount(2)
file times .. utimes(3)
file tmpfile(3S)
file tmpnam, tempnam tmpnam(3S)
file to a specified length ... truncate(3C)
file tree ftw(3C)
file type elf jsize: elf32_ fsize elC fsize(3E)
file type elf _ kind(3E)
file ... write(2)
fileno stream status inquiries ... ferror(3S)
filepriv set, retrieve, or count .. filepriv(2)
file's in-memory state with that on fsync(2)

1005

lockf record locking on
elf fill set

curs _ util: unctrl, keyname,
ffs

ttyname, isatty
the current user ttyslot

elf end
determine I isnan, isnand, isnanf,

I dbmclose, fetch, store, delete,
I dbmclose, fetch, store, delete,

set or get CD-ROM name conversion
elf _ flagshdr manipulate

routines curs_beep: beep,
beep, flash curses bell and screen

floatingpoint (BSD) IEEE
point definitions

I fpgetsticky, fpsetsticky IEEE
unordered determine type of

I fevt, fcvtl, gcvt, gcvtl convert
scalb, scalbl manipulate parts of

I (BSD) convert decimal record to
lextended_to_decimal (BSD) convert

single_to _decimal, I
I fmodf, fabs, fabsf, rint, remainder

copysign, fmod, fmodf, fabs,1
fmod, fmodf, fabs, fabsf'/ floor,

fclose, fflush close or
I getwin, delay_output, draino,

I floorf, ceil, ceilf, copysign,
I ceil, ceilf, copysign, fmod,

for an application for use with
or system console

stream
stream

tcsetpgrp set terminal

request message nlsrequest
getdate convert user

put in a file system independent
cd_type get CD-ROM

display error message in standard
forms I set jield just, field just

I set_field J'ad, field J'ad
Imvscanw, mvwscanw, vwscanw convert

scanf, fscanf, sscanf convert
printf: sprintf, vsprintf (BSD)

I mvprintw, mvwprintw, vwprintw print
vprintf, vfprintf, vsprintf print

printf, fprintf, sprintf print
localeconv get numeric

position forms window cursor

1006

files lockf(3C)
fill byte ... elf _ fill(3E)
filter, use_env, putwin, getwin,1 curs_util(3curses)
find first set bit ffs(3C)
find name of a terminal ... ttyname(3C)
find the slot in the utmp file of ttyslot(3C)
finish using an object file ... elC end(3E)
finite, fpclass, unordered .. isnan(3C)
firstkey, nextkey (BSD) data basel dbm(3)
firstkey, nextkey database I .. dbm(3N)
flag cd _nmconv ... cd _ nmconv(3X)
flags I elC flagphdr, elC flagscn, elf _ flag(3E)
flash curses bell and screen flash curs _ beep(3curses)
flash routines curs_beep: curs_beep(3curses)
floating point definitions ... floatingpoint(3)
floatingpoint (BSD) IEEE floating floatingpoint(3)
floating-point environment control........................ fpgetround(3C)
floating-point number Ifpclass, isnan(3C)
floating-point number to string ... ecvt(3C)
floating-point numbers Inextafter, frexp(3C)
floating-point value decimat to _ floating(3)
floating-point value to decimal! floating_to _ decimal(3)
floating_to _decimal: floating_to _ decimal(3)
floor, ceiling, remainder, absolute I floor(3M)
floor, floorf, ceil, ceilf, .. floor (3M)
floorf, ceil, ceilf, copysign, floor (3M)
flush a stream ... fclose(3S)
flushinp miscellaneous curses I curs _ util(3curses)
fmod, fmodf, fabs, fabsf, rint,1 .. floor (3M)
fmodf, fabs, fabsf, rint, remainder I floor(3M)
fmtmsg I a list of severity levels addseverity(3C)
fmtmsg display a message on stderr fmtmsg(3C)
fopen, freopen, fdopen (BSD) open a fopen(3S)
fop en, freopen, fdopen open a ... fopen(3S)
foreground process group ID tcsetpgrp(3C)
fork create a new process fork(2)
format and send listener service nlsrequest(3N)
format date and time ... getdate(3C)
format Iread directory entries and getdents(2)
format identification ... cd _ type (3X)
format pfmt, vpfmt ... pfmt(3C)
format the general appearance of form_field just(3curses)
format the general display I form_field _ attributes(3curses)
formatted input from a curses widow
..... curs _ scanw(3curses)
formatted input ... scanf(3S)
formatted output conversion ... printf(3S)
formatted output in curses I curs J'rintw(3curses)
formatted output of a variable I vprintf(3S)
formatted output ... printf(3S)
formatting information .. localeconv(3C)
form_cursor: pos _form_cursor form _ cursor(3curses)

Permuted Index

tell if forms field has off-screen I
the forms subsystem

form_fields, field _ count, I
setjield _fore, field_fore,!

set_field_buffer, field _ buffer, I
dynamic_field_info get forms fieldl

field just format the general!
dup _field, linkjield, free _field,1

field _ opts_on, field_opts _off, I
form_field: set_form jields,

free _fieldtype, set_fieldtype _arg,1
set_field _ userptr, field _ userptr I

set_field_type, field _type,!
form _ init, set_form _term,!
form_hook: setjorm _init,

create and destroy forms
new yage forms pagination

I form_opts _on, form_opts _off,
form_opts _on, form_opts _off, I
I set_form _opts, form_opts _on,

form_opts: set_form_opts,
form yage: set_form yage,

form yage, set_ currentjield,!
write or erase forms froml

I current_field, field_index set
I set_max _field set and get

I field_info, dynamic_field_info get
I field_type, field _ arg

I data_ahead, data_behind tell if
I field_opts _off, field_opts

free jield, create and destroy
I link _ fieldtype

move field connect fields to
the general display attributes of

format the general appearance of
associate application data with

routines for invocation by
freejorm create and destroy

associate application data with
lunpost_form write or erase

I form_opts _off, form_opts
forms character based

set_new yage, new yage

command processor for the
I set_form _sub, form_sub, scale_form

pos _form_cursor position
andl Iform_win, setjorm_sub,

I form _ init, set_form _term,

Permuted Index

form_data: data_ahead, data_behind form_data(3curses)
form_driver command processor for form_driver(3curses)
form_field: set_form _fields, form_field(3curses)
form_field_attributes: form_field _ attributes(3curses)
form_field_buffer: form_field _ buffer(3curses)
form_field_info: field_info, form jield _ info (3curses)
form _field just: set_field just, form_field just(3curses)
form_field_new: new_field, form_field _ new(3curses)
form_field_opts: set_field_opts, form_field_opts(3curses)
form_fields, field _ count, I form _ field(3curses)
form _ fieldtype: new jieldtype, form _fieldtype(3curses)
form_field _ userptr: form_field _ userptr(3curses)
form_field_validation: form_field _ validation(3curses)
form_hook: set_form_init, form_hook(3curses)
form_init, set_form_term,! form_hook(3curses)
form_new: new _form, free jorm form _ new(3curses)
form_newyage: set_newyage, form_newyage(3curses)
form_opts forms option routines form _ opts(3curses)
form_opts: setjorm_opts, form_opts(3curses)
form_opts _off, form_opts forms I form _ opts(3curses)
form_opts _on, form_opts _off,! form _ opts(3curses)
formyage, set_current_field,! formyage(3curses)
form yage: set_form yage, form yage(3curses)
form yost: post_form, unpost_form form yost(3curses)
forms character based forms package forms(3curses)
forms current page and field form yage(3curses)
forms field attributes form_field_buffer(3curses)
forms field characteristics form jield _ info(3curses)
forms field data type validation
....................................... form_field _ validation(3curses)
forms field has off-screen datal form _ data(3curses)
forms field option routines form_field_opts(3curses)
forms fields llink _field, form_field _ new(3curses)
forms fieldtype routines formjieldtype(3curses)
forms I form jields, field_count, form _ field(3curses)
forms Ifieldyad format form_field_attributes(3curses)
forms I set_field just, field just form jield just(3curses)
forms I field _ userptr formjield _ userptr(3curses)
forms I application-specific form _ hook(3curses)
forms form_new: new_form, form_new(3curses)
forms I form_ userptr form _ userptr(3curses)
forms from associated subwindows form yost(3curses)
forms option routines ... form _ opts(3curses)
forms package ... forms(3curses)
forms pagination form_new yage:
... form_new yage(3curses)
forms subsystem form_driver form _ driver(3curses)
forms window and subwindow I form _ win(3curses)
forms window cursor form_cursor: form_cursor(3curses)
form_sub , scale_form forms window............... form _ win(3curses)
form_term, set_field _ init, I form _ hook(3curses)

1007

form _ userptr associate application/
scale _ form/ form_win: set_form _win,

set_ form_sub, form_sub, scale _form/
configurable pathname variables

(BSD) / ieee_functions,
of! isnan, isnand, isnanf, finite,

fpgetround, fpsetround,
fpsetmask, fpgetsticky, /

/ fpsetround, fpgetmask, fpsetmask,
output printf,

fpgetround, fpsetround, fpgetmask,
fpgetsticky,/ fpgetround,

/ fpgetmask, fpsetmask, fpgetsticky,
on a stream putc, putchar,

puts,
stream putwc, putwchar,

stream putws,

t free
mallinfo memory allocator malloc,

valloc, memory allocator malloc,
/new _field, dup _field, link_field,

form _ fieldtype: new _ fieldtype,

form_new: new_form,
items menu_item _ new: new_item,

menu_new: new _menu,
fop en,
fop en,

modf, modff, modfl, nextafter,/
modff, modfl, nextafter'/ frexp,

input scanf,
file pointer in a stream

pointer in a stream
stat, lstat,
stat, lstat,

information statvfs,
in-memory state with that on the/

a stream fseek, rewind,

communication package stdipc:
length truncate,

shutdown shut down part of a
function erf, erfc error

function and complementary error
authentication schemes invoke lAF

gamma, 19amma log gamma

1008

form _ userptr associate application/
.... form _ userptr(3curses)
form _ userptr: set_form _ userptr, form _ userptr(3curses)
form_win, set_form _sub, form_sub, form _ win(3curses)
form_win: set_form _ win, form_win, form _ win(3curses)
fpathconf, pathconf get .. fpathconf(2)
fp _class, isnan, copysign, scalbn ieee _ functions(3)
fpclass, unordered determine type isnan(3C)
fpgetmask, fpsetmask, fpgetsticky,/ fpgetround(3C)
fpgetround, fpsetround, fpgetmask, fpgetround(3C)
fpgetsticky, fpsetsticky IEEE/ fpgetround(3C)
fprintf, sprintf print formatted ... printf(3S)
fpsetmask, fpgetsticky, fpsetsticky / fpgetround(3C)
fpsetround, fpgetmask, fpsetmask, fpgetround(3C)
fpsetsticky IEEE floating-point/ fpgetround(3C)
fputc, putw put character or word putc(3S)
fputs put a string on a stream .. puts(3S)
fputwc put wchar _ t character on a putwc(3W)
fputws put a wchar _ t string on a putws(3W)
fread, fwrite binary input/ output fread(3S)
free a library structure ... t_free(3N)
free, realloc, calloc, mallopt, ... malloc(3X)
free, realloc, calloc, memalign, .. malloc(3C)
free_field, create and destroy/ form_field_new(3curses)
free _ field type, set_ fieldtype _ arg, /
... form _fieldtype(3curses)
free_form create and destroy forms form _ new(3curses)
free _item create and destroy menus
.. menu_item_new(3curses)
free_menu create and destroy menus menu _ new(3curses)
freopen, fdopen (BSD) open a stream fopen(3S)
freopen, fdopen open a stream .. fopen(3S)
frexp, frexpl,ldexp, ldexpl, 10gb, frexp(3C)
frexpl,ldexp, ldexpl, 10gb, modf, frexp(3C)
fscanf, sscanf convert formatted ... scanf(3S)
fseek, rewind, ftell reposition a fseek(3S)
fsetpos, fgetpos reposition a file fsetpos(3C)
fstat get file status .. stat(2)
fstat (XENlX) get file status .. stat(2)
fstatvfs get file system ... statvfs(2)
fsync synchronize a file's ... fsync(2)
ftell reposition a file pointer in fseek(3S)
ftime (BSD) get date and time ... ftime(3)
ftime (XENlX) get time and date .. ftime(2)
ftok standard interprocess stdipc(3C)
ftruncate set a file to a specified truncate(3C)
ftw, nftw walk a file tree .. ftw(3C)
full-duplex connection ... shutdown(3N)
function and complementary error erf(3M)
function erf, erfc error erf(3M)
function for invoking invoke(3l)
function .. gamma(3M)

Permuted Index

hypot Euclidean distance
(BSD) IEEE exception trap handler

matherr error-handling
intro introd uction to

jO, jl, jn, yO, yl, yn Bessel
crypt password and file encryption

logarithm, power, square root
ceiling, remainder, absolute value

/ scalbn (BSD) miscellaneous
mbstowcs, wcstombs multibyte string

asinh, acosh, atanh hyperbolic
sysi86 machine specific

atanf, atan2, atan2f trigonometric
/putava, retava, setava library

fread,
gamma,lgammalog

/mult, mdiv, mcmp, min, mout, pow,
sgconvert/ econvert, fconvert,
number / ecvt, ecvtl, fcvt, fcvtl,
to / ecvt, ecvtl, fcvt, fcvtl, gcvt,

/ field just format the
/ set_field -pad, field -pad format the

/tcgetpgrp, tcsetpgrp, tcgetsid
control priocntlset

signal abort
crypt, setkey, encrypt

ctermid
/jrand48, srand48, seed48, lcong48

srand (BSD) simple random number
rand, srand simple random-number

/ setstate (BSD) better random number
generator; routines for changing

/ netdir -perror, netdir _ sperror

library functions used by IAF /
curs _getyx: getyx, getparyx,

character or word from a stream
ungetch get (or push/ curs_getch:

or word from a stream getc,
current user context

working directory
and time

put in a file system independent/
table size

user,/ getuid, geteuid, getgid,
name

user, effective user, real! getuid,
effective user,/ getuid, geteuid,

setgrent, endgrent, fgetgrent get/
endgrent, fgetgrent get/ getgrent,

Permuted Index

function ... hypot(3M)
function ieee_handler .. ieee _ handler(3)
function matherr(3M)
functions and libraries .. intro(3)
functions bessel: bessel(3M)
functions crypt(3X)
functions / sqrt, sqrtf exponential, exp(3M)
functions /rint, remainder floor, floor (3M)
functions for IEEE arithmetic ieee junctions(3)
functions mbstring: mbstring(3C)
functions / coshf, tanh, tanhf, sinh (3M)
functions sysi86(2)
functions / acos, acosf, atan, ... trig(3M)
functions used by IAF schemes .. getava(3I)
£Write binary input/ output fread(3S)
gamma function gamma(3M)
gamma, 19amma log gamma function gamma(3M)
gcd, rpow, msqrt, sdiv, itom, xtom,/ mp(3)
gconvert, seconvert, sfconvert, econvert(3)
gcvt, gcvtl convert floating-point .. ecvt(3C)
gcvtl convert floating-point number ecvt(3C)
general appearance of forms form jield just(3curses)
general display attributes of forms
................................. form_field _ attributes(3curses)
general terminal interface termios(2)
generalized process scheduler priocntlset(2)
generate an abnormal termination abort(3C)
generate encryption crypt(3C)
generate file name for terminal ctermid(3S)
generate uniformly distributed/ drand48(3C)
generator rand, ... rand(3)
generator rand(3C)
generator; routines for changing/ random(3)
generators /better random number random(3)
generic transport name-to-address/
......... netdir _getbyname(3N)
getava, putava, retava, setava ... getava(3I)
getbegyx, getmaxyx get curses / curs _getyx(3curses)
getc, getchar, fgetc, getw get ... getc(3S)
getch, wgetch, mvgetch, mvwgetch, curs _getch(3curses)
getchar, fgetc, getw get character getc(3S)
getcontext, setcontext get and set getcontext(2)
getcwd get pathname of current getcwd(3C)
getdate convert user format date getdate(3C)
getdents read directory entries and getdents(2)
getdtablesize (BSD) get descriptor getdtablesize(3)
getegid get real user, effective getuid(2)
getenv return value for environment getenv(3C)
geteuid, getgid, getegid get real.................. getuid(2)
getgid, getegid get real user, ... getuid(2)
getgrent, getgrgid, getgrnam, getgrent(3C)
getgrgid, getgrnam, setgrent, getgrent(3C)

1009

fgetgrent get/ getgrent, getgrgid,
supplementary group access list/

sethostent, endhostent/ gethostent,
gethostent, gethostbyaddr,

gethostbyname, sethostent, /
identifier of current host

get / set name of current host
of interval timer

key
global kernel symbol

window / / getyx, getparyx, getbegyx,
getmntent,

file entry
stream

setnetent, endnetent/ getnetent,
get/ getnetent, getnetbyaddr,

configuration database entry
getnetbyname, setnetent, endnetent/

/ authdes _getucred,
corresponding to NETP ATH component

mvgetwstr,/ curs _getwstr: getwstr,
argument vector

size
curses cursor / curs _getyx: getyx,

peer
and/ getpid, getpgrp, getppid,

process, process group,/ getpid,
get proc~ss, process group, and/

process group,/ getpid, getpgrp,
get/set program scheduling/

getprotoent, getprotobynumber,
setprotoent,/ getprotoent,

getprotobyname, setprotoent, /
public or secret key publickey:

setpwent, endpwent, fgetpwent/
fgetpwent/ getpwent, getpwuid,
endpwent, fgetpwent/ getpwent,

maximum system resource /
about resource utilization

stream
secret/ publickey: getpublickey,

getservent, getservbyport,
setservent, endservent/· getservent,

getservbyname, setservent, /
gethostname, sethostname (BSD)

getpriority, setpriority (BSD)
getitimer, setitimer

1010

getgrnam, setgrent, endgrent, getgrent(3C)
getgroups, setgroups get or set getgroups(2)
gethostbyaddr, gethostbyname, gethostent(3N)
gethostbyname, sethostent,/ gethostent(3N)
gethostent, gethostbyaddr, gethostent(3N)
gethostid (BSD) get unique .. gethostid(3)
gethostname, sethostname (BSD) gethostname(3)
getitimer, setitimer get/set value getitimer(3C)
getkey retrieve an authentication getkey(3N)
getksym get information for a.. getksym(2)
getlogin get login name getlogin(3C)
getmaxyx get curses cursor and curs _getyx(3curses)
getmntany get mnttab file entry............................... getmntent(3C)
getmntent, getmntany get mnttab getmntent(3C)
getmsg get next message off a... getmsg(2)
getnetbyaddr, getnetbyname, getnetent(3N)
getnetbyname, setnetent, endnetent getnetent(3N)
getnetconfig get network getnetconfig(3N)
getnetent, getnetbyaddr, ... getnetent(3N)
getnetname, host2netname,/ secure Jpc(3N)
getnetpath get netconfig entry................................. getnetpath(3N)
getnwstr, wgetwstr, wgetnwstr, curs_getwstr(3curses)
getopt get option letter from getopt(3C)
getpagesize (BSD) get system page getpagesize(3)
getparyx, getbegyx, getmaxyx get curs _getyx(3curses)
getpass read a password getpass(3C)
getpeername get name of connected getpeername(3N)
getpgid get process, process group, getpid(2)
getpgrp, getppid, getpgid get ... getpid(2)
getpid, getpgrp, getppid, getpgid getpid(2)
getppid, getpgid get process, ... getpid(2)
getpriority, setpriority (BSD) getpriority(3)
getprotobyname, setprotoent,/ getprotoent(3N)
getprotobynumber, getprotobyname, getprotoent(3N)
getprotoent, getprotobynumber, getprotoent(3N)
getpublickey, getsecretkey retrieve publickey(3N)
getpw get name from UID .. getpw(3C)
getpwent, getpwuid, getpwnam, getpwent(3C)
getpwnam, setpwent, endpwent, getpwent(3C)
getpwuid, getpwnam, setpwent, getpwent(3C)
getrlimit, setrlimit control ... getrlimit(2)
getrusage (BSD) get information getrusage(3)
gets, fgets get a string from a .. gets(3S)
getsecretkey retrieve public or publickey(3N)
getservbyname, setservent,/ getservent(3N)
getservbyport, getservbyname, getservent(3N)
getservent, getservbyport, .. getservent(3N)
get/ set name of current host gethostname(3)
get/ set program scheduling priority......................... getpriority(3)
get/ set value of interval timer getitimer(3C)
getsid get session ID getsid(2)
getsockname get socket name getsockname(3N)

Permuted Index

options on sockets
endspent, fgetspent, kkpwdf,/
fgetspent, kkpwdf,/ getspent,

mvwgetstr, wgetnstr / curs _getstr:
string

/reset_shell_ mode, resetty, savetty,
get or set the date and time

set the date and time

get real user, effective user,!
endusershell (BSD) get legal user /

getutline, pututline, setutent,/
pututline, setutent,! getut:
setutent,/ getut: getutent,

getut: getutent, getutid,
/ setutxent, endutxent, utmpxname,
/ endutxent, utmpxname, getutmp,
getutxline, pututxline, setutxent,/

pututxline, setutxent,/ getutx:
setutxent,/ getutx: getutxent,

getutx: getutxent, getutxid,
getvfsent, getvfsfile, getvfsspec,

getvfsany get vfstab file entry
get vfstab file entry getvfsent,
file entry getvfsent, getvfsfile,

stream getc, getchar, fgetc,
character or word from a stream

mvwgetwch, ungetwch/ curs _getwch:
character or word from a/ getwc,

directory pathname
supplementary code sets

/keyname, filter, use _ env, putwin,
from a stream

wgetnwstr,/ curs _getwstr:
get curses cursor and/ curs _getyx:
timezone (BSD) get time zone name

getksym get information for a
gmatch shell

matching
time zone name given offset from

and time to / ctime, localtime,
siglongjmp (BSD) non-local

setjmp, longjmp non-local
sigsetjmp, siglongjmp a non-local

and check access to a resource
pseudo-terminal device grantpt

pseudo-terminal device
setgroups get or set supplementary

initialize the supplementary
/ get real user, effective user, real

/ getpgid get process, process
setgrent, endgrent, fgetgrent get

Permuted Index

getsockopt, setsockopt get and set getsockopt(3N)
getspent, getspnam, setspent, getspent(3C)
getspnam, setspent, endspent, getspent(3C)
getstr, wgetstr, mvgetstr, curs_getstr(3curses)
getsubopt parse sub options from a getsubopt(3C)
getsyx, setsyx, rip offline, / curs _ kernel(3curses)
gettimeofday, settimeofday (BSD) gettimeofday(3)
gettimeofday, settimeofday get or gettimeofday(3C)
gettxt retrieve a text string gettxt(3C)
getuid, geteuid, getgid, getegid ... getuid(2)
getusershell, setusershell, .. getusershell(3)
getut: getutent, getutid, ... getut(3C)
getutent, getutid, getutline, .. getut(3C)
getutid, getutline, pututline, getut(3C)
getutline, pututline, setutent,/ ... getut(3C)
getutmp, getutmpx, updwtmp,/ getutx(3C)
getutmpx, updwtmp, updwtmpx access/ getutx(3C)
getutx: getutxent, getutxid, .. getutx(3C)
getutxent, getutxid, getutxline, .. getutx(3C)
getutxid, getutxline, pututxline, getutx(3C)
getutxline, pututxline, setutxent,/ getutx(3C)
getvfsany get vfstab file entry , getvfsent(3C)
getvfsent, getvfsfile, getvfsspec, getvfsent(3C)
getvfsfile, getvfsspec, getvfsany getvfsent(3C)
getvfsspec, getvfsany get vfstab getvfsent(3C)
getw get character or word from a........................ getc(3S)
getwc, getwchar, fgetwc get wchar _ t getwc(3W)
getwch, wgetwch, mvgetwch, curs_getwch(3curses)
getwchar, fgetwc get wchar _ t .. getwc(3W)
getwd (BSD) get current working getwd(3)
getwidth get information on getwidth(3W)
getwin, delay_output, draino,! curs _ util(3curses)
getws, fgetws get a wchar _ t string getws(3W)
getwstr, getnwstr, wgetwstr, curs_getwstr(3curses)
getyx, getparyx, getbegyx, getmaxyx curs _getyx(3curses)
given offset from GMT ... timezone(3)
global kernel symbol... getksym(2)
global pattern matching gmatch(3G)
gmatch shell global pattern .. gmatch(3G)
GMT timezone (BSD) get .. timezone(3)
gmtime, asctime, tzset convert date ctime(3C)
goto / _setjmp, _longjmp, sigsetjmp, setjmp(3)
goto setjmp(3C)
goto with signal state ... sigsetjmp(3C)
governed by a semaphore / await waitsem(2)
grant access to the slave .. grantpt(3C)
grantpt grant access to the slave grantpt(3C)
group access list IDs getgroups, getgroups(2)
group access list initgroups initgroups(3C)
group, and effective group IDs .. getuid(2)
group, and parent process IDs ... getpid(2)
group file entry / getgrnam, getgrent(3C)

1011

setpgid set process
setpgrp set process

set terminal foreground process
file permissions, user IDs, and

or get mappings of CD-ROM user and
user, real group, and effective

(BSD) set real and effective
setuid, setgid set user and

(BSD) send signal to a process
lchown, fchown change owner and

send a signal to a process or a
send a signal to a process or a

ssignal,
Icbreak,nocbreak,echo,noecho,

reboot reboot system or
(BSD) IEEE exception trap

re _exec (BSD) regular expression
creation and manipulation of CLIENT

dealing with the creation of server
curses CRT screen

isprint, isgraph, is ascii character
elt errmsg, elt ermo error

sigfpe (BSD) signal
mblen, wctomb multibyte character

I start_color, init""pair, init_ color,
hsearch, hcreate, hdestroy manage

elt hash compute
termattrs,1 Ibaudrate, erasechar,

Ibaudrate, erasechar, has _ic,
search tables hsearch,

hsearch, hcreate,
retrieve archive member

class-dependent object file
retrieve class-dependent section

retrieve class-dependent program
deckl panet show: show""panel,

curs_border: border, wborder, box,
Iwvline create curses borders,

ntohl, ntohs convert values between
sethostent, endhostent get network

get unique identifier of current
(BSD) getl set name of current

I authdes _getucred, getnetname,
hash search tables

values between host andl byte order,
between host andl byteorder, htonl,

tanh, tanhf, asinh, acosh, atanh

ia _get_gid,1 ia _ uinfo: ia _ openinfo,
authentication schemes invoke
setava library functions used by

ia _get_lvi, ia _get_mask,

1012

group ID setpgid(2)
group ID .. setpgrp(2)
group ID tcsetpgrp tcsetpgrp(3C)
group IDs lor get default CD-ROM cd_defs(3X)
group IDs 'cd _idmap set .. cd }dmap(3X)
group IDs I get real user, effective getuid(2)
group IDs setregid setregid(3)
group IDs setuid(2)
group killpg .. killpg(3)
group of a file chown, .. chown(2)
group of processes kill kill(2)
group of processes I sigsendset sigsend(2)
gsignal software signals .. '" ssignal(3C)
halfdelay, intrflush, keypad, meta, I curs _inopts(3curses)
halt processor .. reboot(3)
handler function ieee_handler ieee _ handler(3)
handler regex: re_comp, .. regex(3)
handles I routines for dealing with rpc _ clnt_ create(3N)
handles llibrary routines for rpc_svc_create(3N)
handling and optimization package curses(3curses)
handling /iscntrl, ispunct, ctype(3C)
handling elf_error: .. elf _ error(3E)
handling for specific SIGFPE codes sigfpe(3)
handling mbchar: mbtowc, ... mbchar(3C)
has_colors, can_change _ color,1 curs _ color(3curses)
hash search tables .. hsearch(3C)
hash value elt hash(3E)
has _ic, has }l, killchar, longname, curs _ termattrs(3curses)
has _ il, killchar, longname, I '" curs _ termattrs(3curses)
hcreate, hdestroy manage hash hsearch(3C)
hdestroy manage hash search tables hsearch(3C)
header elf _getarhdr ... eltgetarhdr(3E)
header I elf32 _ newehdr retrieve elf _getehdr(3E)
header elf_getshdr: elf32 _getshdr eltgetshdr(3E)
header table I elf32 _ newphdr elf _getphdr(3E)
hide ""panel, panet hidden panels panet show(3curses)
hline, whline, vline, wvline create I curs_border(3curses)
horizontal and vertical lines curs _ border(3curses)
host and network byte order Ihtons, byteorder(3N)
host entry I gethostbyname, gethostent(3N)
host gethostid (BSD) .. gethostid(3)
host gethostname, sethostname gethostname(3)
host2netname, key _ decryptsession, I secure _ rpc(3N)
hsearch, hcreate, hdestroy manage hsearch(3C)
htonl, htons, ntohl, ntohs convert byteorder(3N)
htons, ntohl, ntohs convert values byteorder(3N)
hyperbolic functions I cosh, coshf, sinh(3M)
hypot Euclidean distance function hypot(3M)
ia _ closeinfo, ia _get_ uid, .. ia _ uinfo(3I)
IAF function for invoking '" invoke(3I)
IAF schemes Iputava, retava, ... getava(3I)
ia _get_dir, ia_get_sh,/ lia_get_lvl, ia_uinfo(3I)

Permuted Index

/ ia _ closeinfo, ia _get _ uid,
/ia_get_sh, ia_getJogpwd,

/ia _getJogwarn, ia _getJoginact,
get/ /ia _getJogmax, ia JSetJogwarn,

/ia _getJogchg, ia _getJogmin,
/ ia _getJogpwd, ia _getJogchg,

/ia _get_mask, ia _get_ dir, ia JSet_sh,
/ ia _get _logmin, ia _get_Iogmax,

/ia _get_gid, ia _get_sgid,
/ia_get_sgid, ia_getJvl,

/ia _getJvl, ia _getJvl,
/ia _get_ uid, ia _get_gid,

/ ia _get_mask, ia _get _ dir,
ia _ openinfo, ia _ closeinfo,

ia _get_ uid, ia _get_gid,/ ia _ uinfo:
ia _ closeinfo, ia _get_ uid,/

getsid get session
setpgid set process group
setpgrp set process group

setsid set session
terminal foreground process group

curs _ outopts: clearok, idlok,

/ia _getJogexpire get user
cd_type get CD-ROM format

elCgetident retrieve file
gethostid (BSD) get unique

shmget get shared memory segment
set id set the user's

setscrreg,/ curs _ outopts: clearok,
CD-ROM file permissions, user

permissions, user IDs, and group
mappings of CD-ROM user and group

set supplementary group access list
process group, and parent process

real group, and effective group
(BSD) set real and effective group

(BSO) set real and effective user
setuid, setgid set user and group

(BSD) miscellaneous functions for
function ieee_handler (BSD)

floatingpoint (BSD)
/fpsetmask, fpgetsticky, fpsetsticky

copysign, scalbn (BSD)/
trap handler function

curs _ outopts: clearok, idlok, idcok
character and its / curs _inch:

mvinchstr, / curs _ inchstr: inchstr,
winchnstr,/ curs _ inchstr:

entries and put in a file system
operations

receipt of an orderly release

Permuted Index

ia _get_gid, ia _get_sgid,/ .. ia _ uinfo(3I)
ia _getJogchg, ia _getJogmin,/ ia _ uinfo(3I)
ia _getJogexpire get user / .. ia _ uinfo(3I)
ia _get Joginact, ia _get Jogexpire ia _ uinfo(3I)
ia _getJogmax, ia _getJogwarn,/ ia _ uinfo(3I)
ia _getJogmin, ia _getJogmax,/ ia _ uinfo(3I)
ia _getJogpwd, ia _getJogchg,/ ia _ uinfo(3I)
ia _getJogwarn, ia _getJoginact,/ ia _ uinfo(3I)
ia_getJvl, ia_getJvl,/ ... ia_uinfo(3I)
ia _getJvl, ia _get_ mask,/ .. ia _ uinfo(3I)
ia _get_mask, ia _get_ dir, ia _get_sh,/ ia _ uinfo(3I)
ia _get_sgid, ia _getJvl,/ .. ia _ uinfo(3I)
ia _get _ sh, ia _get Jogpwd'/ ia _ uinfo(3I)
ia _get_ uid, ia _get_gid,/ ia _ uinfo: ia _ uinfo(3I)
ia _ openinfo, ia _ closeinfo, .. ia _ uinfo(3I)
ia _ uinfo: ia _ openinfo, .. ia _ uinfo(3I)
ID ... getsid(2)
10 ... setpgid(2)
ID setpgrp(2)
ID .. setsid(2)
10 tcsetpgrp set ... tcsetpgrp(3C)
idcok immedok, leaveok, setscrreg,/
... curs _ outopts(3curses)
identification and authentication/ ia _ uinfo(3I)
identification .. cd _ type (3X)
identification data ... elf_getident(3E)
identifier of current host ... gethostid(3)
identifier ... shmget(2)
identity ... set_id(3I)
idlok, idcok immedok, leaveok, curs _ outopts(3curses)
IDs, and group IDs / or get default cd _ defs(3X)
IDs / set or get default CD-ROM file cd _ defs(3X)
IDs cd _ idmap set or get cd _ idmap(3X)
IDs getgroups, setgroups get or getgroups(2)
IDs / getppid, getpgid get process, getpid(2)
IDs / get real user, effective user, getuid(2)
IDs setregid ... setregid(3)
IDs setreuid ... setreuid(3)
IDs ... setuid(2)
IEEE arithmetic / copysign, scalbn ieee _ functions(3)
IEEE exception trap handler ieee _ handler(3)
IEEE floating point definitions floatingpoint(3)
IEEE floating-point environment/ fpgetround(3C)
ieee junctions, fp _class, isnan, ieee _ functions (3)
ieee_handler (BSO) IEEE exception ieee _ handler(3)
immedok, leaveok, setscrreg,/ curs_outopts(3curses)
inch, winch, mvinch, mvwinch get a curs _inch(3curses)
inchnstr, winchstr, winchnstr, curs _ inchstr(3curses)
inchstr, inchnstr, winchstr, curs _ inchstr(3curses)
independent format /read directory getdents(2)
index, rind ex (BSD) string .. index(3)
indication tJcvrel acknowledge tJcvrel(3N)

1013

receive a unit data error
syscall (BSD)

inet_ makeaddr, inetJnaof,/
inet_ makeaddr, inet_Inaof, / inet:

/inet_ network, inet_makeaddr,
inet: inet_addr, inet_ network,

address / / inet_ makeaddr, inet_Inaof,
inetJnaof,/ inet: inet_ addr,

/inetJnaof, inet_ netof,
utilization getrusage (BSD) get

machines rusersreturn
dlerror get diagnostic

elC newscn, elC nextscn get section
symbol getksym get

modules modstat get
t rcvdis retrieve

identification and authentication
localeconv get numeric formatting

n1 Janginfo language
sets getwid th get

get kernel advisory access
statvfs, fstatvfs get file system

sysinfo get and set system
sysfs get file system type

get protocol-specific service
yp _update change NIS

curs_color: start_color, inityair,
supplementary group access list

/ set_term, delscreen curses screen
access list initgroups

connect
t sndrel

popen, pc10se
curs_color: start_color,

set_term, delscreen/ curs _ initscr:
random number / random, srandom,

fsync synchronize a file's
mvinnstr,/ curs _instr: instr,

mvinwstr,/ curs_inwstr: inwstr,
mvwscanw, vwscanw convert formatted

/wtimeout, typeahead curses terminal
fscanf, sscanf convert formatted
ungetc push character back onto

push wchar _ t character back into
fread, fwrite binary

poll
stdio standard buffered

dearerr, fileno stream status
insert a character / curs _ insch:

curs _ deleteln: deleteln, wdeleteln,
/insch, winsch, mvinsch, mvwinsch

1014

indication tJcvuderr ... tJcvuderr(3N)
indirect system call .. syscall(3)
inet: inet_ addr, inet_ network, .. inet(3N)
inet_addr, inet_network, ... inet(3N)
inetJnaof, inet_ netof, inet_ntoa/ .. inet(3N)
inet_ makeaddr, inet_Inaof,/ .. inet(3N)
inet_ netof, inet_ ntoa Internet ... inet(3N)
inet_network, inet_ makeaddr, ... inet(3N)
inet_ ntoa Internet address/ .. inet(3N)
information about resource ... getrusage(3)
information about users on remote rusers(3N)
information dlerror(3X)
information / elC ndxscn, eICgetscn(3E)
information for a global kernel............................... getksym(2)
information for loadable kernel modstat(2)
information from disconnect tJcvdis(3N)
information / get user '" ia _ uinfo(3I)
information localeconv(3C)
information .. nIJanginfo(3C)
information on supplementary code getwidth(3W)
information secadvise ... secadvise(2)
information .. statvfs(2)
information strings sysinfo(2)
information sysfs(2)
information t_getinfo .. t_getinfo(3N)
information ... yp _ update(3N)
init_color, has_colors,/ curs_color(3curses)
initgroups initialize the .. initgroups(3C)
initialization and manipulation/ curs _initscr(3curses)
initialize the supplementary group initgroups(3C)
initiate a connection on a socket '" connect(3N)
initiate an orderly release .. t_sndrel(3N)
initiate pipe to / from a process popen(3S)
inityair, init_ color, has _ colors,/ curs _ color(3curses)
initscr, newterm, endwin, isendwin, curs _initscr(3curses)
initstate, setstate (BSD) better .. random(3)
in-memory state with that on the/ fsync(2)
innstr, winstr, winnstr, mvinstr, curs_instr(3curses)
innwstr, winwstr, winnwstr, curs_inwstr(3curses)
input from a curses widow / mvscanw,
. curs _ scanw(3curses)
input option control routines curs_inopts(3curses)
input scanf, ... scanf(3S)
input stream .. ungetc(3S)
input stream ungetwc ... ungetwc(3W)
input/ output ... fread(3S)
input/ output multiplexing .. poll(2)
input/ output package stdio(3S)
inquiries ferror, feof, ferror(3S)
insch, winsch, mvinsch, mvwinsch curs _ insch(3curses)
insdelln, winsdelln, insertln,/ curs _ deleteln(3curses)
insert a character before the / curs _ insch(3curses)

Permuted Index

the/ /winswch, mvinswch, mvwinswch
/ insertln, winsertln delete and

/mvinsnstr, mvwinsstr, mvwinsnstr
/mvinsnwstr, mvwinswstr, mvwinsnwstr

/ wdeleteln, insdelln, winsdelln,
insque, remque

mvinsstr, / curs _ insstr: insstr,
mvinswstr,/ curs_inswstr: inswstr,

element from a queue
mvinsstr, mvinsnstr,/ curs _insstr:

process until signal sigsuspend
creatsem (XENlX) create an

mvinstr, mvinnstr,/ curs)nstr:
mvwinswch insert a/ curs _ inswch:

winsnwstr,/ curs _ inswstr:
abs, labs return

a641, 164a convert between long
mfree (BSD) multiple precision

sputl, sgetl access long
atol, atoi convert string to

13tol, ltol3 convert between 3-byte
between 3-byte integers and long

tcgetsid general terminal
cs _connect, cs J'error application

yperr_string, ypprot_err NlS client
/tgetstr, tgoto, tputs curses

/ tigetnum, tigetstr curses
/inetJnaof, inet_ netof, inet_ ntoa

pipe create an
stdipc: ftok standard

blocked signals and wait for
siginterrupt (BSD) allow signals to
ualarm (BSD) schedule signal after

usleep (BSD) suspend execution for
suspend execution for a short

sleep (BSD) suspend execution for
sleep suspend execution for

setitimer get/ set value of
/nocbreak, echo, noecho, halfdelay,

libraries
error numbers, and privileges

libraries intro
numbers, and privileges intro

application-specific routines for
/routines for automatic
authentication schemes
invoke lAF function for

get a wchar _ t/ curs _ inwch:

curs _inwchstr: inwchstr,

winwchnstr,/ curs inwchstr:

Permuted Index

insert a wchar _ t character before curs _inswch(3curses)
insert lines in a curses window curs _ deleteln(3curses)
insert string before character / curs)nsstr(3curses)
insert wchar _ t string before / curs _ inswstr(3curses)
insertln, winsertln delete and/ curs _ deleteln(3curses)
insert/remove element from a queue insque(3C)
insnstr, winsstr, winsnstr, curs_insstr(3curses)
insnwstr, winswstr, winsnwstr, curs_inswstr(3curses)
insque, remque insert/remove .. insque(3C)
insstr, insnstr, winsstr, winsnstr, curs_insstr(3curses)
install a signal mask and suspend sigsuspend(2)
instance of a binary semaphore creatsem(2)
instr, innstr, winstr, winnstr, curs_instr(3curses)
inswch, winswch, mvinswch, curs _inswch(3curses)
inswstr, insnwstr, winswstr, curs_inswstr(3curses)
integer absolute value .. abs(3C)
integer and base-64 ASCII string ... a64l(3C)
integer arithmetic /xtom, mtox, ... mp(3)
integer data in a/ ... sputl(3X)
integer strtol, strtoul, ... strtol(3C)
integers and long integers .. l3tol(3C)
integers l3tol, ltol3 convert l3tol(3C)
interface /tcgetpgrp, tcsetpgrp, termios(2)
interface to the Connection Server cs _ connect(3N)
interface /yp _order, yp _master, ypclnt(3N)
interfaces (emulated) to the/ curs_termcap(3curses)
interfaces to terminfo database curs_terminfo(3curses)
Internet address manipulation ... inet(3N)
interprocess channel .. pipe(2)
interprocess communication package stdipc(3C)
interrupt / automatically release sigpause(3)
interrupt system calls ... siginterrupt(3)
interval in microseconds .. ualarm(3)
interval in microseconds ... usleep(3)
interval nap (XENlX) .. nap(2)
interval ... sleep(3)
interval...... sleep(3C)
interval timer getitimer, ... getitimer(3C)
intrflush, keypad, meta, nodelay,/ curs_inopts(3curses)
intro introduction to functions and intro(3)
intro introduction to system calls, .. intro(2)
introduction to functions and .. intro(3)
introduction to system calls, error intro(2)
invocation by forms /assign form_hook(3curses)
invocation by menus menu _ hook(3curses)
invoke lAF function for invoking invoke(3l)
invoking authentication schemes invoke(3l)
inwch, winwch, mvinwch, mvwinwch
. curs _ inwch(3curses)
inwchnstr, winwchstr, winwchnstr,/
. curs _ inwchstr(3curses)

inwchstr, inwchnstr, winwchstr, curs _ inwchstr(3curses)

1015

mvinwstr, mvinnwstr,/ curs _inwstr:
select synchronous

widec multibyte character

/islower, isupper, isalpha,
/isxdigit, islower, isupper,

/iscntrl, ispunct, isprint, isgraph,

ttyname,
/isupper, is alpha, isalnum, isspace,
isupper, isalpha, isalnum,/ ctype:

character buffer is encrypted
curses/ /initscr, newterm, endwin,
/ iswascii, isphonogram, isideogram,

/isspace, iscntrl, ispunct, isprint,
/iswcntrl, iswascii, isphonogram,

/ touchline, untouchwin, wtouchln,
isspace,/ ctype: isdigit, isxdigit,

ieee_functions, fp _class,
fpclass, unordered determine type/

unordered determine type of / isnan,
determine type of! isnan, isnand,

/isphonogram, isideogram, isenglish,
/iswgraph, iswcntrl, iswascii,

/ isalnum, isspace, iscntrl, ispunct,
/ isalpha, isalnum, isspace, iscntrl,

/islower, isupper, isalpha, isalnum,
/isideogram, is english, isnumber,

system
ctype: isdigit, isxdigit, islower,
/iswlower, iswdigit, iswxdigit,
iswdigit, iswxdigit,/ wctype:
/iswprint, iswgraph, iswcntrl,

/iswpunct, iswprint, iswgraph,
/iswalpha, iswupper, iswlower,
/ iswspace, iswpunct, iswprint,

control! / wtouchln, is Jinetouched,
wctype: iswalpha, iswupper,

/ iswalnum, iswspace, iswpunct,
/iswxdigit, iswalnum, iswspace,
/iswdigit, iswxdigit, iswalnum,
iswxdigit,/ wctype: iswalpha,
/iswupper, iswlower, iswdigit,

isalpha, isalnum,/ ctype: isdigit,
item_visible tell if menus

/ item_description get menus
item_opts _off, item_opts menus

item_value set and get menus
items/ / set_menu _items, menu_items,

1016

inwstr, innwstr, winwstr, winnwstr, curs_inwstr(3curses)
I/O multiplexing ... select(3C)
I/O routines ... widec(3W)
ioctl control device ... ioctl(2)
isalnum, isspace, iscntrl, ispunct,/ ctype(3C)
isalpha, isalnum, isspace, iscntrl,/ ctype(3C)
isascii character handling ctype(3C)
isastream test a file descriptor isastream(3C)
isatty find name of a terminal....... ttyname(3C)
iscntrl, ispunct, isprint, isgraph,/ ctype(3C)
isdigit, isxdigit, islower, ... ctype(3C)
isencrypt determine whether a isencrypt(3G)
isendwin, set_term, delscreen curs_initscr(3curses)
isenglish, isnumber, isspecial! wctype(3W)
isgraph, is ascii character handling ctype(3C)
isideogram, isenglish, isnumber,/ wctype(3W)
is Jinetouched, is _ wintouched/ curs _ touch(3curses)
islower, isupper, isalpha, isalnum, ctype(3C)
isnan, copysign, scalbn (BSD)/ ieeejunctions(3)
isnan, isnand, isnanf, finite, .. isnan(3C)
isnand, isnanf, finite, fpclass, ... isnan(3C)
isnanf, finite, fpclass, unordered isnan(3C)
isnumber, isspecial classify ASCII/ wctype(3W)
isphonogram, isideogram, isenglish,/ wctype(3W)
isprint, isgraph, isascii character / ctype(3C)
ispunct, isprint, isgraph, isascii/ ctype(3C)
isspace, iscntrl, ispunct, isprint, / ctype(3C)
is special classify ASCII and/ .. wctype(3W)
issue a shell command system(3S)
isupper, is alpha, isalnum, isspace,/ ctype(3C)
iswalnum, iswspace, iswpunct,/ wctype(3W)
iswalpha, iswupper, iswlower, wctype(3W)
iswascii, isphonogram, isideogram,/ wctype(3W)
iswcntrl, iswascii, isphonogram, / wctype(3W)
iswdigit, iswxdigit, iswalnum,/ wctype(3W)
iswgraph, iswcntrl, iswascii,/ wctype(3W)
is _ wintouched curses refresh curs _ touch(3curses)
iswlower, iswdigit, iswxdigit,/ wctype(3W)
iswprint, iswgraph, iswcntrl,/ wctype(3W)
iswpunct, iswprint, iswgraph,/ wctype(3W)
iswspace, iswpunct, iswprint,/ wctype(3W)
iswupper, iswlower, iswdigit, wctype(3W)
iswxdigit, iswalnum, iswspace,/ wctype(3W)
isxdigit, islower, isupper, ... ctype(3C)
item is visible menu item visible:
.. menu_item _ visible(3curses)
item name and description menu_item _ name(3curses)
item option routines / item_opts _on,
.. menu_item _ opts(3curses)
item values /set_item_value, menu_item_value(3curses)
item_count connect and disconnect menu _items(3curses)

Permuted Index

namel menu_item _ name: item_name, item_description get menus item

I currentJtem, set_top JOw, top JOw,

menu_hook: set_itemJnit,
menus item namel menu _item_name:

litem_opts _on, item_opts _off,
I set_item _opts, item_opts _on,

menu_item _opts: set_item _opts,
set and get current menus

free_item create and destroy menus

application data with menus
I item_count connect and disconnect

litem_init, set_item_term,
data with menus I Iset_item_userptr,

visible menu item visible:

mout, pow, gcd, rpow, msqrt, sdiv,
functions bessel:

bessel: jO,
bessel: jO, jl,

I erand48, lrand48, mand48, mrand48,
secadvise get

modload load a loadable
moduload unload a loadable
get information for loadable

modpath change loadable
get information for a global

getkey retrieve an authentication
retrieve public or secret

characters from curses terminal
strings from curses terminal

characters from curses terminal
strings from curses terminal
I getnetname, host2netname,

Ihost2netname, key _ decryptsession,
netname2host,I Ikey _ encryptsession,

getwin,l curs _ util: unctrl,
I echo, noecho, halfdelay, intrflush,
Ikey _ encryptsession, key _gendes,

a group of processes
lerasechar, has_ie, has_iI,

process group
integers and long integers

and base-64 ASCII string a641,
setlabel define the

Permuted Index

menu_item _ name(3curses)
item_index set and get currentl
.. menu_item _ current(3curses)
item_init, set_item_term,1 menu_hook(3curses)
item_name, item_description get
... menu_item _ name(3curses)

item_opts menus item option I menu_item _ opts(3curses)
item_opts _off, item_opts menus iteml
.. menu_item _ opts(3curses)
item_opts _on, item_opts _ off,l menu_item _ opts(3curses)
items Itop JOw, item_index menu_item _ current(3curses)
items menu _item_new: new _item,
.. menu_item _ new(3curses)
items /item _ userptr associate menu_item _ userptr(3curses)
items to and from menus menu _items(3curses)
item_term, set_menu _ init,! menu _ hook(3curses)
item _ userptr associate application
.. menu_item _ userptr(3curses)
item_value set and get menus iteml
... menu_item_value(3curses)

item visible tell if menus item is
.. menu_item _ visible(3curses)
itom, xtom, mtox, mfree (BSD)I I min, mp(3)
jO, jl, jn, yO, yl, yn Bessel .. bessel(3M)
jl, jn, yO, yl, yn Bessel functions bessel(3M)
jn, yO, yl, yn Bessel functions .. bessel(3M)
jrand48, srand48, seed48, lcong481 drand48(3C)
kernel advisory access information secadvise(2)
kernel module on demand ... modload(2)
kernel module on demand moduload(2)
kernel modules modstat ... modstat(2)
kernel modules search path ... modpath(2)
kernel symbol getksym .. getksym(2)
key........ getkey(3N)
key I getpublickey, getsecretkey publickey(3N)
keyboard I get (or push back) curs _getch(3curses)
keyboard Iwgetnstr get character curs_getstr(3curses)
keyboard I (or push back) wchar _ t curs _getwch(3curses)
keyboard I get wchar _ t character curs _getwstr(3curses)
key _ decryptsession, I secure Jpc(3N)
key _ encryptsession, key _gendes,! secure Jpc(3N)
key _gendes, key _ setsecret, secure Jpc(3N)
keyname, filter, use_env, putwin, curs_util(3curses)
keypad, meta, nodelay, notimeout,! curs_inopts(3curses)
key _setsecret, netname2host,I secure Jpc(3N)
kill send a signal to a process or .. kill(2)
killchar,longname, termattrs,l curs_termattrs(3curses)
killpg (BSD) send signal to a.. killpg(3)
13tol, ltol3 convert between 3-byte 13tol(3C)
164a convert between long integer a641(3C)
label for pfmt setlabel(3C)

1017

slk attroff curses soft
abs,

nlJanginfo
group of a file chown,

I setspent, endspent, fgetspent,
Imrand48, jrand48, srand48, seed48,

modfl, nextafter'/ frexp, frexpl,
nextafter'/ frexp, frexpl,ldexp,

remainder diy,
I clearok, idlok, idcok immedok,

endusershell (BSD) get
ftruncate set a file to a specified

getopt get option
withl Ibuild a list of severity

lsearch,
gamma,

intro introduction to functions and
tam TAM transition

elf version coordinate ELF
(emulated) to the termcap

elf object file access
getava, putava, retava, setava

representation xdr _sizeof
calls I rpc _broadcast, rpc _call

remote I I authsys _create_default
I clnt_ tp _create, clnt_ vc_ create

thel Isvc_tp_create, svc_vc_create
I xdrrec _create, xdrstdio _create

representation xdr
Ixdr_inline, xdrrec_eof, xdr _setpos

Ixdr _vector, xdr _ wrapstring
I xdr _ u Jong, xdr _ u _short, xdr _ void

IxprtJegister, xprt_ unregister
procedure calls rpc

procedure calls Ixdr Jeplymsg XDR
I rpcb Jmtcall, rpcb _set, rpcb _unset

IsvcJun, svc_sendreply
I netname2user, user2netname

I svcerr _systemerr, svcerr _ weakauth
t alloc allocate a

t free free a
t _sync synchronize transport

ulimit get and set user
dial establish an outgoing terminal

lsearch, lfind
borders, horizontal and vertical

refresh curses windows and
winsertln delete and insert

1018

read the value of a symbolic
link

symlink make a symbolic

label routines I slk _ attrset, curs _ slk(3curses)
labs return integer absolute value .. abs(3C)
language information ... nl Janginfo(3C)
lchown, fchown change owner and chown(2)
lckpwdf, ulckpwdf manipulate shadow I getspent(3C)
lcong48 generate uniformly I drand48(3C)
ldexp,ldexpl,logb, modf, modff, frexp(3C)
ldexpl, 10gb, modf, modff, modfl, frexp(3C)
ldiv compute the quotient and div(3C)
leaveok, setscrreg, wsetscrreg'/ curs_outopts(3curses)
legal user shells I setusershell, getusershell(3)
length truncate, ... truncate(3C)
letter from argument vector ... getopt(3C)
levels for an application for use addseverity(3C)
lfind linear search and update .. lsearch(3C)
19amma log gamma function gamma(3M)
libraries ... intro(3)
libraries tam(3curses)
library and application versions elf _ version(3E)
library I tputs curses interfaces curs _ termcap(3curses)
library ... elf(3E)
library functions used by IAF I ... getava(3I)
library routine for external data xdr _ sizeof(3N)
library routines for client side rpc _ clnt_ calls(3N)
library routines for client side rpc _ clnt_auth(3N)
library routines for dealing withl rpc _ clnt_ create(3N)
library routines for dealing with rpc_svc_create(3N)
library routines for external datal.......................... xdr _ create(3N)
library routines for external data ... xdr(3N)
library routines for external datal......................... xdr _ admin(3N)
library routines for external datal...................... xdr _ complex(3N)
library routines for external datal xdr _simple(3N)
library routines for registering I rpc _ svc _ calls(3N)
library routines for remote .. rpc(3N)
library routines for remote .. rpc Jdr(3N)
library routines for RPC bindl rpcbind(3N)
library routines for RPC servers rpc_svcJeg(3N)
library routines for secure remote I secure _ rpc(3N)
library routines for server sidel rpc_svc_err(3N)
library structure .. t_alloc(3N)
library structure .. t_free(3N)
library .. t_sync(3N)
limits ulimit(2)
line connection ... dial(3N)
linear search and update ... lsearch(3C)
lines Ivline, wvline create curses curs _border(3curses)
lines Iredrawwin, wredrawln cursJefresh(3curses)
lines in a curses window I insertln, curs _ deleteln(3curses)
link link to a file link(2)
link readlink ... readlink(2)
link to a file .. link(2)
link to a file ... symlink(2)

Permuted Index

destroy / Inew _field, dup _field,
routines I set_fieldtype _choice,

or set supplementary group access
the supplementary group access

nlist get entries from name
application/ addseverity build a

output of a variable argument
t listen

listen
socket

get client's data passed via the
nlsrequest format and send

demand modload
modload load a

moduload unload a
modstat get information for

modpath change
modify and query a program's

information
convert date and time to I ctime,

end, etext, edata last
lock (XENIX)

text, or data plock
reading or writing locking (XENIX)

mlockall, munlockall
mlock, munlock

primary memory

maillock manage
lockf record

file region for reading or writing
auditlog get or set audit

gamma,lgamma
powf, sqrt, sqrtf/ exp, expf, cbrt,
setlogmask (BSD) control system

sqrtf I exp, expf, cbrt, log, logf,
exp, expf, cbrt, log, logf, log10,

/pow, powf, sqrt, sqrtf exponential,
frexp, frexpl, ldexp, ldexpl,

sqrt, sqrtf/ exp, expf, cbrt, log,
getlogin get

cuserid get character
seljmp,

sigseljmp, siglongjmp / seljmp,
(BSD)I seljmp, longjmp, _seljmp,

curses I /has _ic, has_iI, killchar,
transport endpoint tJook

setsyx, rip offline, curs _set, napms
srand48, seed48,/ drand48, erand48,

update

stat,

Permuted Index

link_field, free_field, create and form_field_new(3curses)
link_field type forms field type form_field type(3curses)
list IDs getgroups, setgroups get getgroups(2)
list initgroups initialize .. initgroups(3C)
list ... '" nlist(3E)
list of severity levels for an addseverity(3C)
list Ivsprintf print formatted ... vprintf(3S)
listen for a connect request ... tJisten(3N)
listen for connections on a socket listen(3N)
listen listen for connections on a listen(3N)
listener nlsgetcall nlsgetcal1(3N)
listener service request message nlsrequest(3N)
load a loadable kernel module on modload(2)
loadable kernel module on demand modload(2)
loadable kernel module on demand moduload(2)
loadable kernel modules .. modstat(2)
loadable kernel modules search path modpath(2)
locale setlocale setlocale(3C)
localeconv get numeric formatting localeconv(3C)
localtime, gmtime, asctime, tzset ctime(3C)
locations in program .. end(3C)
lock a process in primary memory.. lock(2)
lock into memory or unlock process, plock(2)
lock or unlock a file region for .. locking(2)
lock or unlock address space mlockal1(3C)
lock (or unlock) pages in memory mlock(3C)
lock (XENIX) lock a process in ... lock(2)
lockf record locking on files lockf(3C)
lockfile for user's mailbox ... maillock(3X)
locking on files '" lockf(3C)
locking (XENIX) lock or unlock a..................................... locking(2)
log file attributes ... auditlog(2)
log gamma function .. gamma(3M)
log, logf, log10, loglOf, pow, .. exp(3M)
log syslog, openlog, closelog, .. syslog(3)
loglO, loglOf, pow, powf, sqrt, ... exp(3M)
loglOf, pow, powf, sqrt, sqrtf/ ... exp(3M)
logarithm, power, square rootl ... exp(3M)
10gb, modf, modff, modfl,/ .. frexp(3C)
logf, loglO, loglOf, pow, powf, .. exp(3M)
login name ... getlogin(3C)
login name of the user cuserid(3S)
longjmp non-local goto ... seljmp(3C)
longjmp, _seljmp, _longjmp, .. seljmp(3)
Jongjmp, sigseljmp, siglongjmp seljmp(3)
longname, termattrs, termname curs_termattrs(3curses)
look at the current event on a .. t_look(3N)
low-level curses routines Igetsyx, curs_kernel(3curses)
lrand48, nrand48, mrand48, jrand48, drand48(3C)
lsearch, Hind linear search and lsearch(3C)
lseek move read/write file pointer lseek(2)
Istat, fstat get file status .. stat(2)

1019

status stat,
integers and long integers 13tol,

sysi86
sgetl access long integer data in a

information about users on remote
rwall write to specified remote

mout, pow, gcd, rpow, msqrt,/ mp:
maillock manage lockfile for user's

mailbox
a CD-ROMI cd _getdevmap get the

for al cd _ setdevmap set or unset
makedev,

user contexts
device number

free, realloc, calloc, mallopt,
mallopt, mallinfo memory allocator
memalign, valloc, memory allocator

malloc, free, realloc, calloc,
makedev, major, minor

tsearch, tfind, tdelete, twalk
hsearch, hcreate, hdestroy

maillock
endpoint t_ optmgmt

swapctl
mctl (BSD) memory

memcntlmemory
sigaction detailed signal

sigpause simplified signal
elf _ flagscn, elf _ flagshdr

loverwrite, copywin overlap and
Imodfl, nextafter, scalb, scalbl

I setpwent, endpwent, fgetpwent
I sigaddset, sigdelset, sigismember

entry I fgetspent, lckpwdf, ulckpwdf
makecontext, swapcontext
inet ntoa Internet address

I for dealing with creation and
wbkgd curses window background

I pair_content curses color
curses screen initialization and

panet hidden panels deck
top yanel, bottom yanel panels deck

strfind, strrspn, strtrns string
namemap

attrmap
mmap

mprotect set protection of memory
ethers Ethernet address

IDs cd _idmap set or get
set _menu_mark, menu _mark menus

signal sigsuspend install a signal
change or examine signal

1020

lstat, fstat (XENIX) get file .. stat(2)
ltol3 convert between 3-byte ,. 13tol(3C)
machine specific functions ... sysi86(2)
machine-independent fashion sputl, sputl(3X)
machines rusers return rusers(3N)
machines rwall(3N)
madd, msub, mult, mdiv, mcmp, min, mp(3)
mailbox .. ,. maillock(3X)
maillock manage lockfile for user's maillock(3X)
major and minor numbers assigned to cd _getdevmap(3X)
major and minor numbers assignments cd _setdevmap(3X)
major, minor manage a device number makedev(3C)
makecontext, swapcontext manipulate makecontext(3C)
makedev, major, minor manage a makedev(3C)
mallinfo memory allocator malloc, malloc(3X)
malloc, free, realloc, calloc, ... malloc(3X)
malloc, free, realloc, calloc, .. malloc(3C)
mallopt, mallinfo memory allocator malloc(3X)
manage a device number ... makedev(3C)
manage binary search trees ,. tsearch(3C)
manage hash search tables ... hsearch(3C)
manage lockfile for user's mailbox maillock(3X)
manage options for a transport t_ optmgmt(3N)
manage swap space ... swapctl(2)
management control .. mctl(3)
management control .. memcntl(2)
management ... sigaction(2)
management I sigrelse, sigignore, signal(2)
manipulate flags I elC flagphdr, elf _ flag(3E)
manipulate overlapped curses I curs _ overlay(3curses)
manipulate parts of floating-point I frexp(3C)
manipulate password file entry................................. getpwent(3C)
manipulate sets of signals .. sigsetops(3C)
manipulate shadow password file getspent(3C)
manipulate user contexts makecontext(3C)
manipulation I inet_ netof, ... inet(3N)
manipulation of CLIENT handles rpc _ c1nt_ create(3N)
manipulation routines Ibkgd, curs _ bkgd(3curses)
manipulation routines curs _ color(3curses)
manipulation routines I delscreen curs _ initscr(3curses)
manipulation routines Ihide yanel, panel_show(3curses)
manipulation routines panet top: panet top (3curses)
manipulations str: ... str(3G)
map a name .. namemap(3I)
map an attribute attrmap(3I)
map pages of memory ... mmap(2)
mapping mprotect(2)
mapping operations .. ethers(3N)
mappings of CD-ROM user and group cd)dmap(3X)
mark string routines menu _mark: menu _ mark(3curses)
mask and suspend process until sigsuspend(2)
mask sigprocmask ... sigprocmask(2)

Permuted Index

sigsetmask (BSD) set current signal
umask set and get file creation

unlockpt unlock a pseudo-terminal
set and get menus pattern

regular expression compile and
gmatch shell global pattern

in menus /menu _format set and get

getrlimit, setrlimit control
multibyte character handling

handling mbchar: mbtowc,
functions mbstring:

multibyte string functions
character handling mbchar:

msqrt,/ mp: madd, msub, mult, mdiv,
control

rpow, msqrt,/ mp: madd, msub, mult,
state with that on the physical

malloc, free, realloc, calloc,
elf_next sequential archive

elf rand random archive
elf_getarhdr retrieve archive

offsetof offset of structure
memmove, memset memory / memory:
memset memory / memory: memccpy,

memory / memory: memccpy, memchr,

memory: memccpy, memchr, memcmp,
/ memccpy, memchr, memcmp, memcpy,

alloca (BSD)
realloc, calloc, memalign, valloc,
realloc, calloc, mallopt, mallinfo

shmctl shared
copylist copy a file into

spawn new process in a virtual
(XENIX) lock a process in primary

mctl (BSD)
memcntl

mprotect set protection of
memcpy, memmove, memset memory /

munlock lock (or unlock) pages in
mmap map pages of

munmap unmap pages of
memcmp, memcpy, memmove, memset

shmop: shmat, shmdt shared
data plock lock into

mincore determine residency of
shmget get shared

msync synchronize
memchr, memcmp, memcpy, memmove,

Permuted Index

mask sigsetmask(3)
mask ... umask(2)
master / slave pair unlockpt(3C)
match buffer / menu J'attern menu J'attern(3curses)
match routines / step, advance regexpr(3G)
matching ... gmatch(3G)
matherr error-handling function matherr(3M)
maximum numbers of rows and columns
... menu _format(3curses)
maximum system resource consumption getrlimit(2)
mbchar: mbtowc, mblen, wctomb mbchar(3C)
mblen, wctomb multibyte character mbchar(3C)
mbstowcs, wcstombs multibyte string mbstring(3C)
mbstring: mbstowcs, wcstombs mbstring(3C)
mbtowc, mblen, wctomb multibyte mbchar(3C)
mcmp, min, mout, pow, gcd, rpow, .. mp(3)
mctl (BSD) memory management .. mctl(3)
mdiv, mcmp, min, mout, pow, gcd, .. mp(3)
medium /a file's in-memory ... fsync(2)
memalign, valloc, memory allocator malloc(3C)
member access elC next(3E)
member access elC rand(3E)
member header elf _getarhdr(3E)
member offsetof(3C)
memccpy, memchr, memcmp, memcpy, memory(3C)
memchr, memcmp, memcpy, memmove, memory(3C)
memcmp, memcpy, memmove, memset memory(3C)
memcntl memory management control memcntl(2)
memcpy, memmove, memset memory / memory(3C)
memmove, memset memory operations memory(3C)
memory allocator ... alloca(3)
memory allocator malloc, free, malloc(3C)
memory allocator malloc, free, malloc(3X)
memory control operations .. shmctl(2)
memory copylist(3G)
memory efficient way vfork .. vfork(2)
memory lock .. lock(2)
memory management control .. mctl(3)
memory management control .. memcntl(2)
memory mapping .. mprotect(2)
memory: memccpy, memchr, memcmp, memory(3C)
memory mlock, ... mlock(3C)
memory .. mmap(2)
memory ... munmap(2)
memory operations /memccpy, memchr, memory(3C)
memory operations ... shmop(2)
memory or unlock process, text, or plock(2)
memory pages .. mincore(2)
memory segment identifier ... shmget(2)
memory with physical storage msync(3C)
memset memory operations /memccpy, memory(3C)

1021

I menu_fore, set_menu _back,
correctly position a menus cursor

the menus subsystem

menu_attributes: set_menu_fore,
menu_format: set_menu _format,

menu_format set and get maximum I
control! I menu_back, set_menu _grey,

item _init, set_item _term, I
assignl litem_term, set_menu)nit,

set_ current_item, current_item, I
item_description get menus iteml

create and destroy menus items

item_opts _on, item_opts _off, I
menu_items: set_menu_items,

menu_items, item_count connect andl
set)tem _ userptr, item _ userptr I

item_value set and get menus iteml

tell if menus item is visible

routines menu_mark: set_menu_mark,
menus mark string routines

create and destroy menus
I menu _opts_on, menu_opts _off,
menu_opts _on, menu_opts _off,!
I set_menu _opts, menu_opts _on,

menu_opts: set_menu _opts,
Imenu_grey, set_menuJ'ad,

menu J'attern: set_menu J'attern,
menu J'attern set and get menus I

write or erase menus froml

correctly position a
I set_menu J'ad, menu J'ad control

lunpost_menu write or erase
litem_visible tell if

I item_name, item_description get

/item_opts _ off, item_opts

1022

menu_attributes: set_menu _fore,
.. menu _ attributes(3curses)
menu_back, set_menu_grey,! menu_attributes(3curses)
menu_cursor: pas_menu _cursor menu _ cursor(3curses)
menu_driver command processor for
........ menu _ driver(3curses)
menu_fore, set_menu _back,! menu _ attributes(3curses)
menu_format set and get maximum I
... menu _format(3curses)
menu_format: set_menu_format, menu_format(3curses)
menu_grey, set_menu J'ad, menu J'ad
.. menu_attributes(3curses)
menu_hook: set_item_init, menu_hook(3curses)
menu _init, set_menu _term, menu_term
.. menu _ hook(3curses)
menu_item _current: menu_item _ current(3curses)
menu_item_name: item_name, menu)tem_name(3curses)
menu_item _ new: new_item, free_item
.. menu_item _ new(3curses)
menu_item_opts: set_item_opts, menu)tem_opts(3curses)
menu_items, item_count connect andl
... menu_items(3curses)

menu)tems: set_menu_items, menu_items(3curses)
menu_item _ userptr: menu_item _ userptr(3curses)
menu)tem _value: set_item _value,
... menu)tem _ value(3curses)

menu_item _ visible: item_visible
.................................... menu)tem _ visible(3curses)
menu_mark menus mark string menu _mark(3curses)
menu_mark: set_menu _ mark, menu_mark
.. menu _ mark(3curses)
menu_new: new_menu, free_menu menu _ new(3curses)
menu_opts menus option routines menu _ opts(3curses)
menu_opts: set_menu _opts, menu _ opts(3curses)
menu_opts _ off, menu_opts menus I menu _ opts(3curses)
menu_opts _on, menu_opts _off, I menu _ opts(3curses)
menu J'ad control menus display I
.. menu _attributes(3curses)
menu J'attern set and get menus I menu J'attern(3curses)
menu J'attern: set_menu J'attern, menu J'attern(3curses)
menu J'ost: post_menu, unpost_ menu
.......... menu J'ost(3curses)

menus character based menus package menus (3curses)
menus cursor I pas_menu _cursor menu _ cursor(3curses)
menus display attributes menu _attributes(3curses)
menus from associated subwindows menu J'ost(3curses)
menus item is visible menu_item _ visible(3curses)
menus item name and description
... menu_item_name(3curses)

menus item option routines menu_item_opts(3curses)

Permuted Index

item_value set and get

item_index set and get current

free_item create and destroy
associate application data with

menu_mark: set_ menu_mark, menu_mark
numbers of rows and columns in

for automatic invocation by
and disconnect items to and from

free_menu create and destroy
associate application data with

I menu_opts _ off, menu_opts
menus character based

Imenu yattern set and get
command processor for the

I set_menu _sub, menu_sub, scale _menu
andl Imenu _win, set_menu _sub,

menu _init, set_menu _term,
menu _ userptr: set_menu _ userptr,

menu _ userptr associate application I
scale _ menu I menu_win: set_menu _win,

set_menu_sub, menu_sub, scale_menu I

catopen, catdose openl dose a
catgets read a program

msgctl
recv, recvfrom, recvmsg receive a

send, sendto, sendmsg send a
pfmt, vpfmt display error

and send listener service request
getmsg get next
putmsg send a

fmtmsg display a
msgop: msgsnd, msgrcv

msgget get
strerror get error

t_ error produce error
perror print system error

sys _ siglist (BSD) system signal
psignal, psiginfo system signal

Ihalfdelay, intrflush, keypad,
Imsqrt, sdiv, itom, xtom, mtox,
schedule signal after interval in

suspend execution for interval in
mp: madd, msub, mult, mdiv, mcmp,

memory pages
makedev, major,

Permuted Index

menus item values I set_item _value,
... menu_item _ value(3curses)

menus items Iset_topJow, tOPJow,
.. menu Jtem _ current(3curses)
menus items Inew _item, menu Jtem _ new(3curses)
menus items litem_userptr menu_item_userptr(3curses)
menus mark string routines menu_mark(3curses)
menus Iset and get maximum menu _format(3curses)
menus Iroutines ... menu _ hook(3curses)
menus litem_count connect menu_items(3curses)
menus menu_new: new_menu, menu _ new(3curses)
menus I menu _ userptr menu _ userptr(3curses)
menus option routines menu _ opts(3curses)
menus package .. menus(3curses)
menus pattern match buffer menu yattern(3curses)
menus subsystem menu_driver menu _ driver(3curses)
menus window and subwindow I menu _ win(3curses)
menu_sub, scale_menu menus window
.. menu _ win(3curses)

menu_term assign I Iset_menuJnit, menu_hook(3curses)
menu _ userptr associate application I
....... ... menu _ userptr(3curses)
menu _ userptr: set_menu _ userptr, menu _ userptr(3curses)
menu_win, set_menu _sub, menu_sub, menu _ win(3curses)
menu _win: set_menu _ win, menu_win,
.. menu _ win(3curses)
message catalog catopen(3C)
message catgets(3C)
message control operations .. msgctl(2)
message from a socket .. recv(3N)
message from a socket ... send(3N)
message in standard format .. pfmt(3C)
message nlsrequest format nlsrequest(3N)
message off a stream getmsg(2)
message on a stream .. putmsg(2)
message on stderr or system console fmtmsg(3C)
message operations ... msgop(2)
message queue msgget(2)
message string strerror(3C)
message t_ error(3N)
messages perror(3C)
messages psignal, .. psignal(3)
messages psignal(3C)
meta, nodelay, notimeout, raw,l curs_inopts(3curses)
mfree (BSD) multiple precision I ... mp(3)
microseconds ualarm (BSD) ... ualarm(3)
microseconds usleep (BSD) ... usleep(3)
min, mout, pow, gcd, rpow, msqrt,l mp(3)
mincore determine residency of mincore(2)
minor manage a device number makedev(3C)

1023

cd _getdevmap get the major and

cd _setdevmap set or unset major and
/ delay_output, draino, flushinp

/isnan, copysign, scalbn (BSD)

directories in a path

special or ordinary file
a special or ordinary file

name

calendar time
pages in memory

address space

getmntent, getmntany get
chmod, £Chmod change

frexp, frexpl, ldexp, ldexpl, 10gb,
/frexpl, ldexp, ldexpl, 10gb, modf,
/ldexp, ldexpl, 10gb, modf, modff,

utime set file access and
setlocale

module on demand
modules search path

loadable kernel modules
modload load a loadable kernel

moduload unload a loadable kernel
get information for loadable kernel

modpath change loadable kernel
module on demand

mount

/madd, msub, mult, mdiv, mcmp, min,
screen panet move: move J>anel

curs_move: move, wmove
lseek

cursor curs move:
/ form_fields, field_count,

the virtual screen panet move:

min, mout, pow, gcd, rpow, msqrt,!
mapping

drand48, erand48, lrand48, nrand48,

operations
msgop: msgsnd,

msgop:
/mcmp, min, mout, pow, gcd, rpow,

1024

minor numbers assigned to a CD-ROM/
... cd _getdevmap(3X)

minor numbers assignments for a/ cd_setdevmap(3X)
miscellaneous curses utility / curs _ util(3curses)
miscellaneous functions for IEEE/ ieee _ functions(3)
mkdir make a directory... mkdir(2)
mkdirp, rmdirp create, remove mkdirp(3G)
mkfifo create a new FIFO mkfifo(3C)
mknod make a directory, or a ... mknod(2)
mknod (XENIX) make a directory, or mknod(2)
mkstemp (BSD) make a unique file mkstemp(3)
mktemp make a unique file name mktemp(3C)
mktime converts a tm structure to a................ mktime(3C)
mlock, munlock lock (or unlock) mlock(3C)
mlockall, muniockalliock or unlock mlockall(3C)
mmap map pages of memory ... mmap(2)
mnttab file entry getmntent(3C)
mode of file ... chmod(2)
modf, modff, modfl, nextafter,! .. frexp(3C)
modff, modfl, nextafter, scalb,! ... frexp(3C)
modfl, nextafter, scalb, scalbl/ ... frexp(3C)
modification times ... utime(2)
modify and query a program's locale setlocale(3C)
modload load a loadable kernel modload(2)
modpath change loadable kernel modpath(2)
modstat get information for ... modstat(2)
module on demand .. modload(2)
module on demand moduload(2)
modules modstat ... modstat(2)
modules search path ... modpath(2)
moduload unload a loadable kernel moduload(2)
monitor prepare execution profile monitor(3C)
mount a file system .. mount(2)
mount mount a file system ... mount(2)
mout, pow, gcd, rpow, msqrt, sdiv,! mp(3)
move a panels window on the virtual
.. panel_ move(3curses)
move curses window cursor curs _ move(3curses)
move read/write file pointer .. lseek(2)
move, wmove move curses window.............. curs _ move(3curses)
move_field connect fields to forms form _ field (3curses)
move J>anel move a panels window on
.. panel_ move(3curses)
mp: madd, msub, mult, mdiv, mcmp, mp(3)
mprotect set protection of memory mprotect(2)
mrand48, jrand48, srand48, seed48,/ drand48(3C)
msgctl message control operations msgctl(2)
msgget get message queue .. msgget(2)
msgop: msgsnd, msgrcv message msgop(2)
msgrcv message operations ... msgop(2)
msgsnd, msgrcv message operations msgop(2)
msqrt, sdiv, itom, xtom, mtox,/ ... mp(3)

Permuted Index

pow, gcd, rpow, msqrt,/ mp: madd,
physical storage

gcd, rpow, msqrt, sdiv, itom, xtom,
gcd, rpow, msqrt,/ mp: madd, msub,

mbchar: mbtowc, mblen, wctomb
widec

mbstring: mbstowcs, wcstombs
sdiv, itom, xtom, mtox, mfree (BSD)

poll input/ output
select synchronous I/ 0

memory mlock,
space mlockall,

curs _ addch: addch, waddch,
/waddchstr, waddchnstr, mvaddchstr,

addchnstr, waddchstr, waddchnstr,

add a/ /waddstr, waddnstr, mvaddstr,

/waddwstr, waddnwstr, mvaddwstr,

/ addstr, addnstr, waddstr, waddnstr,
curs _ addwch: addwch, waddwch,

/waddwchnstr, mvaddwchstr,

/waddwchstr, waddwchnstr,
/ addnwstr, waddwstr, waddnwstr,

tputs, putp, vidputs, vidattr,

under / curs _ delch: delch, wdelch,
/ delwin, mvwin, subwin, derwin,

push/ curs _getch: getch, wgetch,
/wgetwstr, wgetnwstr, mvgetwstr,

curs _getstr: getstr, wgetstr,
(or / curs _getwch: getwch, wgetwch,

/ getnwstr, wgetwstr, wgetnwstr,

its / curs _inch: inch, winch,
/winchstr, winchnstr, mvinchstr,

/ inchnstr, winchstr, winchnstr,

/innstr, winstr, winnstr, mvinstr,
get a/ /winwstr, winnwstr, mvinwstr,

curs _insch: insch, winsch,
/winsstr, winsnstr, mvinsstr,

Permuted Index

msub, mult, mdiv, mcmp, min, mout, mp(3)
msync synchronize memory with msync(3C)
mtox, mfree (BSD) multiple/ /pow, mp(3)
mult, mdiv, mcmp, min, mout, pow, mp(3)
multibyte character handling ... mbchar(3C)
multibyte character I/O routines widec(3W)
multibyte string functions mbstring(3C)
multiple precision integer/ /msqrt, mp(3)
multiplexing ... poll(2)
multiplexing ... select(3C)
munlock lock (or unlock) pages in mlock(3C)
munlockalllock or unlock address mlockall(3C)
munmap unmap pages of memory munmap(2)
mvaddch, mvwaddch, echochar,/ curs_addch(3curses)
mvaddchnstr, mvwaddchstr,/ curs_addchstr(3curses)
mvaddchstr, mvaddchnstr, / / addchstr,

curs _ addchstr(3curses)
mvaddnstr, mvwaddstr, mvwaddnstr
.. curs _ addstr(3curses)
mvaddnwstr, mvwaddwstr, mvwaddnwstr/
... curs_addwstr(3curses)
mvaddstr, mvaddnstr, mvwaddstr,/ curs_addstr(3curses)
mvaddwch, mvwaddwch, echowchar,/
... curs_addwch(3curses)

mvaddwchnstr, mvwaddwchstr,/
... curs_addwchstr(3curses)
mvaddwchstr, mvaddwchnstr,/ curs _ addwchstr(3curses)
mvaddwstr, mvaddnwstr, mvwaddwstr,/
... curs_add wstr(3curses)
mvcur, tigetfiag, tigetnum,/ /tparm,
.. curs _ terminfo(3curses)

mvdelch, mvwdelch delete character curs _ delch(3curses)
mvderwin, dupwin, wsyncup, syncok,/
........ curs _ window(3curses)
mvgetch, mvwgetch, ungetch get (or curs _getch(3curses)
mvgetnwstr, mvwgetwstr, mvwgetnwstr /
.... curs _getwstr(3curses)
mvgetstr, mvwgetstr, wgetnstr get! curs _getstr(3curses)
mvgetwch, mvwgetwch, ungetwch get
... curs _getwch(3curses)
mvgetwstr, mvgetnwstr, mvwgetwstr,/
.. curs _getwstr(3curses)

mvinch, mvwinch get a character and curs_inch(3curses)
mvinchnstr, mvwinchstr, mvwinchnstr /

curs _ inchstr(3curses)
mvinchstr, mvinchnstr, mvwinchstr,/
.. curs _inchstr(3curses)
mvinnstr, mvwinstr, mvwinnstr get a/ curs _instr(3curses)
mvinnwstr, mvwinwstr, mvwinnwstr
.. curs _ inwstr(3curses)

mvinsch, mvwinsch insert a/ curs _ insch(3curses)
mvinsnstr, mvwinsstr, mvwinsnstr / curs _ insstr(3curses)

1025

/winswstr, winsnwstr, mvinswstr,

/insstr, insnstr, winsstr, winsnstr,
/instr, innstr, winstr, winnstr,

curs _ inswch: inswch, winswch,
/insnwstr, winswstr, winsnwstr,

curs jnwch: inwch, winwch,
/winwchstr, winwchnstr, mvinwchstr,

inwchnstr, winwchstr, winwchnstr,

/inwstr, innwstr, winwstr, winnwstr,
curs yrintw: printw, wprintw,

curs_scanw: scanw, wscanw,

curs _addch: addch, waddch, mvaddch,

/ mvaddchnstr, mvwaddchstr,
string of! /mvaddchstr, mvaddchnstr,

/mvaddstr, mvaddnstr, mvwaddstr,
'mvaddwstr, mvaddnwstr, mvwaddwstr,

of! /waddnstr, mvaddstr, mvaddnstr,

tdd a/ / addwch, waddwch, mvaddwch,

/ mvaddwchnstr, mvwaddwchstr,

mvinsnwstr, mvwinswstr, mvwinsnwstr /
............. '" curs _ inswstr(3curses)
mvinsstr, mvinsnstr, mvwinsstr,/ curs_insstr(3curses)
mvinstr, mvinnstr, mvwinstr,/ curs_instr(3curses)
mvinswch, mvwinswch insert a/ curs_inswch(3curses)
mvinswstr, mvinsnwstr, mvwinswstr,/
............. '" curs _ inswstr(3curses)
mvinwch, mvwinwch get a wchar _ t/ curs _ inwch(3curses)
mvinwchnstr, mvwinwchstr,/ curs _ inwchstr(3curses)
mvinwchstr, mvinwchnstr,/ /inwchstr,
. curs _ inwchstr(3curses)
mvinwstr, mvinnwstr, mvwinwstr,/ curs jnwstr(3curses)
mvprintw, mvwprintw, vwprintw print/
.... curs yrintw(3curses)
mvscanw, mvwscanw, vwscanw convert/

curs _ scanw(3curses)
mvwaddch, echochar, wechochar add a/
....... curs _ addch(3curses)
mvwaddchnstr add string of! curs _ addchstr(3curses)
mvwaddchstr, mvwaddchnstr add curs _ addchstr(3curses)
mvwaddnstr add a string of! curs _ addstr(3curses)
mvwaddnwstr add a string ofwchar_t/
... curs _addwstr(3curses)
mvwaddstr, mvwaddnstr add a string
... curs _ addstr(3curses)
mvwaddwch, echowchar, wechowchar
... curs _ addwch(3curses)

mvwaddwchnstr add string of wchar _ t/
curs _ addwchstr(3curses)

string/ /mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr add

/waddnwstr, mvaddwstr, mvaddnwstr,

curs _ delch: delch, wdelch, mvdelch,
curs _getch: getch, wgetch, mvgetch,

/ mvgetwstr, mvgetnwstr, mvwgetwstr,

strings/ /getstr, wgetstr, mvgetstr,
back) / / getwch, wgetwch, mvgetwch,

/wgetnwstr, mvgetwstr, mvgetnwstr,

curs_window: newwin, delwin,

curs _inch: inch, winch, mvinch,
/mvinchstr, mvinchnstr, mvwinchstr,

/winchnstr, mvinchstr, mvinchnstr,
mvinstr, mvinnstr, mvwinstr,

/mvinwstr, mvinnwstr, mvwinwstr,
curs _insch: insch, winsch, mvinsch,

/mvinsstr, mvinsnstr, mvwinsstr,

1026

curs _ addwchstr(3curses)
mvwaddwstr, mvwaddnwstr add a/
... curs_addwstr(3curses)
mvwdelch delete character under / curs _ delch(3curses)
mvwgetch, ungetch get (or push/ curs _getch(3curses)
mvwgetnwstr get wchar _ t character /
.................................... '" curs _getwstr(3curses)
mvwgetstr, wgetnstr get character curs_getstr(3curses)
mvwgetwch, ungetwch get (or push curs _getwch(3curses)
mvwgetwstr, mvwgetnwstr get wchar _ t/
..... curs _getwstr(3curses)

mvwin, subwin, derwin, mvderwin, /
........ curs _ window(3curses)
mvwinch get a character and its / curs _inch(3curses)
mvwinchnstr get a string of! curs_inchstr(3curses)
mvwinchstr, mvwinchnstr get a/ curs_inchstr(3curses)
mvwinnstr get a string of! / winnstr, curs jnstr(3curses)
mvwinnwstr get a string of wchar _t/ curs_inwstr(3curses)
mvwinsch insert a character before / curs _insch(3curses)
mvwinsnstr insert string before/ curs _ insstr(3curses)

Permuted Index

Imvinswstr, mvinsnwstr, mvwinswstr,

Iwinsnstr, mvinsstr, mvinsnstr,
Iwinstr, winnstr, mvinstr, mvinnstr,

linswch, winswch, mvinswch,
Iwinsnwstr, mvinswstr, mvinsnwstr,

curs _inwch: inwch, winwch, mvinwch,
wchar_tl Imvinwchnstr,mvwinwchstr,

string of! Imvinwchstr, mvinwchnstr,

of! Iwinnwstr, mvinwstr, mvinnwstr,

Iprintw, wprintw, mvprintw,
curs scanw: scanw, wscanw, mvscanw,

ite~ description get menus item

return the last element of a path
cd _ nmconv set or get CD-ROM

directory name of a file path
tmpnam, tempnam create a

ctermid generate file
descriptor fdetach detach a

getpw get
getenv return value for environment

getlogin get login
getsockname get socket

timezone (BSD) get time zone
nlist get entries from

mkstemp (BSD) make a unique file
mktemp make a unique file

namemap map a
dirname report the parent directory

rename change the
ttyname, isatty find

getpeername get
sethostname (BSD) getl set

uname get
device ptsname get

cuserid get character login
nlsprovider get

realpath returns the real file
bind bind a

pathfind search for named file in
pathfind search for

I netdir _ sperror generic transport
short interval

I setsyx, rip offline, curs_set,
access to a resource I waitsem,

dbm_delete, dbm_error, dbm_fetch,1
NETP ATH component getnetpath get

Permuted Index

mvwinsnwstr insert wchar _ t string I
... curs_inswstr(3curses)
mvwinsstr, mvwinsnstr insert string I curs_insstr(3curses)
mvwinstr, mvwinnstr get a string of! curs _instr(3curses)
mvwinswch insert a wchar_tl curs_inswch(3curses)
mvwinswstr, mvwinsnwstr insert I curs _ inswstr(3curses)
mvwinwch get a wchar _ t character I curs _ inwch(3curses)
mvwinwchnstr get a string of curs_inwchstr(3curses)
mvwinwchstr, mvwinwchnstr get a

curs _inwchstr(3curses)
mvwinwstr, mvwinnwstr get a string
..... curs _ inwstr(3curses)

mvwprintw, vwprintw printl cursyrintw(3curses)
mvwscanw, vwscanw convert formatted I
.. curs _ scanw(3curses)
name and description litem_name,
... menu_item _ name(3curses)

name basename .. basename(3G)
name conversion flag ... cd _ nmconv(3X)
name dirname report the parent dirname(3G)
name for a temporary file .. tmpnam(3S)
name for terminal........ ctermid(3S)
name from a STREAMS-based file fdetach(3C)
name from UID .. getpw(3C)
name .. getenv(3C)
name getlogin(3C)
name .. getsockname(3N)
name given offset from GMT ... timezone(3)
name list nlist(3E)
name mkstemp(3)
name ... mktemp(3C)
name .. namemap(3I)
name of a file path name ... dirname(3G)
name of a file ... rename(2)
name of a terminal..... ttyname(3C)
name of connected peer getpeername(3N)
name of current host gethostname, gethostname(3)
name of current UNIX system ... uname(2)
name of the slave pseudo-terminal ptsname(3C)
name of the user .. cuserid(3S)
name of transport provider nlsprovider(3N)
name realpath(3C)
name to a socket bind(3N)
named directories .. pathfind(3G)
named file in named directories pathfind(3G)
namemap map a name ... namemap(3I)
name-to-address translation netdir _getbyname(3N)
nap (XENIX) suspend execution for a nap(2)
napms low-level curses routines curs _ kernel(3curses)
nbwaitsem (XENIX) await and check waitsem(2)
ndbm: dbm _ clearerr, dbm _close, .. ndbm(3)
netconfig entry corresponding to getnetpath(3N)

1027

netdir _getbyname, netdir _getbyaddr,
netdir _options, I netdir _getbyname,

netdir _free, netdir _ options, I

Inetdir _getbyaddr, netdir _free,
generic I I taddr2uaddr, uaddr2taddr,

I uaddr2taddr, netdir yerror,
I key _gendes, key _setsecret,

Ikey _setsecret, netname2host,
netconfig entry corresponding to
convert values between host and

entry getnetconfig get
setnetent, endnetent get

sethostent, endhostent get
scatter data in order to check the

free_field, create I form_field_new:
set _ fieldtype _ arg, I form _ fieldtype:

destroy forms form_new:
destroy menus items menu _ item_new:

destroy menus menu_new:
pnoutrefresh, pechochar,1 cursyad:

form_new yage: set_new yage,
destroy panels panet new:

set_term,! curs _initscr: initscr,
derwin, mvderwin,1 curs_window:

bgets read stream up to
getmsg get

Ildexpl, 10gb, modf, modff, modfl,
Ifetch, store, delete, firstkey,
I fetch, store, delete, firstkey,

ftw,
process

time-sharing process
yp_master, yperr_string, ypprot_err

yp _update change
I setscrreg, wsetscrreg, scrollok,

via the listener
provider

service request message
intrflush,1 curs _inopts: cbreak,

Ihalfdelay, intrflush, keypad, meta,
keypad,! I cbreak, nocbreak, echo,
control I Iwsetscrreg, scrollok, nl,

sigse~mp, siglongjmp (BSD)
se~mp, longjmp

sigse~mp, siglongjmp a
nodelay, notimeout, raw, noraw,
Imeta, nodelay, notimeout, raw,

I intrflush, keypad, meta, nodelay,
seed48,1 drand48, erand48, lrand48,

1028

netdir _free, netdir _options, I netdir _getbyname(3N)
netdir _getbyaddr, netdir _free, netdir _getbyname(3N)
netdir _getbyname, netdir _getbyaddr,
................... netdir _getbyname(3N)
netdir _options, taddr2uaddr,! netdir _getbyname(3N)
netdir yerror, netdir _ sperror netdir _getbyname(3N)
netdir _ sperror generic transport I netdir _getbyname(3N)
netname2host, netname2user,1 secure _ rpc(3N)
netname2user, user2netname library I secure Jpc(3N)
NETP ATH component getnetpath get getnetpath(3N)
network byte order Intohl, ntol;ls byteorder(3N)
network configuration database getnetconfig(3N)
network entry I getnetbyname, getnetent(3N)
network host entry I gethostbyname, gethostent(3N)
network spray.................................. spray(3N)
new_field, dup _field, link_field, form_field _ new(3curses)
new _fieldtype, free_fieldtype, form _fieldtype(3curses)
new_form, free_form create and form _ new(3curses)
new_item, free_item create and menu_item_new(3curses)
new_menu, free_menu create and menu _ new(3curses)
newpad, subpad, prefresh, curs yad(3curses)
newyage forms pagination form_newyage(3curses)
new yanel, del yanel create and panet new (3curses)
newterm, endwin, isendwin, curs _ initscr(3curses)
newwin, delwin, mvwin, subwin, curs_window(3curses)
next delimiter ... bgets(3G)
next message off a stream .. getmsg(2)
nextafter, scalb, scalbl manipulate I frexp(3C)
nextkey (BSD) data base subroutines dbm(3)
nextkey database subroutines .. dbm(3N)
nftw walk a file tree ftw(3C)
nice (BSD) change priority of a .. nice(3C)
nice change priority of a .. nice(2)
NIS client interface I yp _order, ypclnt(3N)
NIS information ... yp _ update(3N)
nl, nonl curses terminal output I curs_outopts(3curses)
nlist get entries from name list nlist(3E)
ntlanginfo language information nlJanginfo(3C)
nlsgetcall get client's data passed nlsgetcall(3N)
nlsprovider get name of transport nlsprovider(3N)
nlsrequest format and send listener nlsrequest(3N)
nocbreak, echo, noecho, halfdelay, curs _inopts(3curses)
nodelay, notimeout, raw, noraw,1 curs_inopts(3curses)
noecho, halfdelay, intrflush, curs_inopts(3curses)
nonl curses terminal output option curs_outopts(3curses)
non-local goto I _se~mp, Jongjmp, se~mp(3)
non-local goto .. se~mp(3C)
non-local goto with signal state sigse~mp(3C)
noqiflush, qiflush, timeout,1 I meta, curs_inopts(3curses)
noraw, noqiflush, qiflush, timeout,! curs_inopts(3curses)
notimeout, raw, noraw, noqiflush,1 curs_inopts(3curses)
nrand48, mrand48, jrand48, srand48, drand48(3C)

Permuted Index

host andl byteorder, htonl, htons,
byteorder, htonl, htons, ntohl,

rand, srand (BSD) simple random
Isetstate (BSD) better random

determine type of floating-point
major, minor manage a device

convert string to double-precision
gcvt, gcvtl convert floating-point

introduction to system calls, error
I get the major and minor

I set or unset major and minor
uniformly distributed pseudo-random

manipulate parts of floating-point
Imenu_format set and get maximum

localeconv get
dlclose close a shared
dlopen open a shared

the address of a symbol in shared
file descriptor to file system

elf
elC end finish using an

get the base offset for an
retrieve class-dependent

elf32 fsize return the size of an
I data_behind tell if forms field has

elCgetbase get the base
(BSD) get time zone name given

offsetof

ungetc push character back
opensem (XENIX)

dlopen
fopen, freopen, fdopen

fopen, freopen, fdopen (BSD)
command p2open, p2close

dup duplicate an
dup2 duplicate an

open

catopen, catclose
rewinddir, closedir I directory:
rewinddir, closedir I directory:

control system log syslog,

I wstostr, strtows wchar _ t string
bzero (BSD) bit and byte string

rewinddir, closedir (BSD) directory
rewinddir, closedir directory

ethers Ethernet address mapping
index, rind ex (BSD) string

memcpy, memmove, memsetmemory

Permuted Index

ntohl, ntohs convert values between byteorder(3N)
ntohs convert values between hostl byteorder(3N)
number generator .. rand(3)
number generator; routines for I random(3)
number I finite, fpclass, unordered isnan(3C)
number makedev, ... makedev(3C)
number strtod, strtold, atof strtod(3C)
number to string I fcvt, fcvtl, ecvt(3C)
numbers, and privileges intro .. intro(2)
numbers assigned to a CD-ROM device
.......... cd _getdevmap(3X)

numbers assignments for a CD-ROMI cd_setdevmap(3X)
numbers Iseed48,1cong48 generate drand48(3C)
numbers Inextafter, scalb, scalbl frexp(3C)
numbers of rows and columns inl menu _format(3curses)
numeric formatting information localeconv(3C)
object dlclose(3X)
object dlopen(3X)
object dlsym get dlsym(3X)
object I attach STREAMS-based fattach(3C)
object file access library.. elf(3E)
object file elf _ end(3E)
object file elCgetbase eICgetbase(3E)
object file header I elf32 _ newehdr elf _getehdr(3E)
object file type elCfsize: .. eICfsize(3E)
off-screen data ahead or behind form _ data(3curses)
offset for an object file elCgetbase(3E)
offset from GMT timezone ... timezone(3)
offset of structure member offsetof(3C)
offsetof offset of structure member offsetof(3C)
onto input stream ungetc(3S)
open a semaphore .. opensem(2)
open a shared object dlopen(3X)
open a stream fopen(3S)
open a stream ... fopen(3S)
open, close pipes to and from a..................................... p2open(3G)
open file descriptor ... dup(2)
open file descriptor dup2(3C)
open for reading or writing ... open(2)
open open for reading or writing ... open(2)
openl close a message catalog catopen(3C)
opendir, readdir, telldir, seekdir, directory(3C)
opendir, readdir, telldir, seekdir, directory(3C)
openlog, closelog, setlogmask (BSD) syslog(3)
opensem (XENIX) open a semaphore opensem(2)
operations and type transformation wstring(3W)
operations bstring: bcopy, bcmp, bstring(3)
operations I telldir, seekdir, directory(3C)
operations Itelldir, seekdir, directory(3C)
operations ethers(3N)
operations index(3)
operations Imemchr, memcmp, memory(3C)

1029

msgctl message control
msgop: msgsnd, msgrcv message

semctl semaphore control
semop semaphore

shmctl shared memory control
shmop: shmat, shmdt shared memory

strncasecmp (BSD) string
strcspn, strtok, strstr string

curses CRT screen handling and
typeahead curses terminal input
Inl, non1 curses terminal output

getopt get
field_opts forms field

form_opts _ off, form_opts forms
item_opts_off, item_opts menus item

menu_opts _ off, menu_opts menus
t_ optmgmt manage

getsockopt, setsockopt get and set
Imvgetch, mvwgetch, ungetch get

I mvgetwch, mvwgetwch, ungetwch get
mlock, munlock lock

between host and network byte
spray scatter data in

tJcvrel acknowledge receipt of an
t sndrel initiate an

make a directory, or a special or
make a directory, or a special or

dial establish an
sfconvert, sgconvert (BSD)

sprintf, vsprintf (BSD) formatted
Ivwprintw print formatted

! vfprintf, vsprintf print formatted
I scrollok, nl, nonl curses terminal

fprintf, sprintf print formatted
curses I loverlay, overwrite, copywin

I copywin overlap and manipulate
and manipulate I curs_overlay:

manipulate I curs_overlay: overlay,
chown, lchown, fchown change

from a command p2open,
to and from a command

screen handling and optimization
forms character based forms

menus character based menus
panels character based panels

standard buffered input! output
standard interprocess communication

create and display curses
field index set forms current
getpagesize (BSD) get system

mlock, munlock lock (or unlock)

1030

operations .. msgctl(2)
operations ... msgop(2)
operations .. semctl(2)
operations semop(2)
operations .. shmctl(2)
operations ... shmop(2)
operations string: strcasecmp, .. string(3)
operations I strpbrk, strspn, string(3C)
optimization package .. curses(3curses)
option control routines Iwtimeout, curs_inopts(3curses)
option control routines ,. curs _ outopts(3curses)
option letter from argument vector getopt(3C)
option routines I field _ opts_off, form_field _ opts(3curses)
option routines I form_opts _on, form _ opts(3curses)
option routines litem_opts_on, menu_item_opts(3curses)
option routines I menu_opts _on, menu _ opts(3curses)
options for a transport endpoint t_ optmgmt(3N)
options on sockets getsockopt(3N)
(or push back) characters froml curs_getch(3curses)
(or push back) wchar_t characters I curs_getwch(3curses)
(or unlock) pages in memory ... mlock(3C)
order Intohl, ntohs convert values byteorder(3N)
order to check the network spray(3N)
orderly release indication .. tJcvrel(3N)
orderly release .. t_sndrel(3N)
ordinary file mknod .. mknod(2)
ordinary file mknod (XENIX) .. mknod(2)
outgoing terminal line connection dial(3N)
output conversion ! seconvert, econvert(3)
output conversion printf: .. printf(3S)
output in curses windows curs yrintw(3curses)
output of a variable argument list vprintf(3S)
output option control routines curs _ outopts(3curses)
output printf, .. printf(3S)
overlap and manipulate overlapped curs _ overlay(3curses)
overlapped curses windows curs_overlay(3curses)
overlay, overwrite, copywin overlap
................................... curs _ overlay(3curses)
overwrite, copywin overlap and curs_overlay(3curses)
owner and group of a file ... chown(2)
p2close open, close pipes to and p2open(3G)
p2open, p2close open, close pipes p2open(3G)
package curses CRT curses (3curses)
package forms(3curses)
package menus (3curses)
package ... panels(3curses)
package stdio stdio(3S)
package stdipc: ftok stdipc(3C)
pads Ipechochar, pechowchar cursyad(3curses)
page and field I current_field, formyage(3curses)
page size ... getpagesize(3)
pages in memory.. mlock(3C)

Permuted Index

determine residency of memory
mmapmap

munmap unmap
set_new yage, new yage forms

socketpair create a
a pseudo-terminal master / slave

/ can_change _ color, color_content,
application data with a panels

set the current window of a panels
panet below panels deck traversal!

deck traversal! panet above:
panetabove: panetabove,

panet show: show yanel, hide yanel,
panels window on the virtual!

create and destroy panels
package

/hide yanel, panel_hidden
panet top: top yanel, bottom yanel

/ panet above, panet below
panels character based

associate application data with a
get or set the current window of a

delyanel create and destroy
panet update: update yanels

panet move: move yanel move a
panet hidden panels deck/

panels deck manipulation routines
virtual screen refresh routine

panet userptr: setyanet userptr,

panet userptr associate /
replace yanel get or set the/

set the current/ panel_window:

path name dirname report the
get process, process group, and

getsubopt
clrtoeol, wclrtoeol clear all or

shutdown shut down
/nextafter, scalb, scalbl manipulate

nlsgetcall get client's data
functions crypt

endpwent, fgetpwent manipulate
lckpwdf, ulckpwdf manipulate shadow

putpwent write
putspent write shadow

getpass read a
create, remove directories in a

loadable kernel modules search
return the last element of a

Permuted Index

pages mincore .. mincore(2)
pages of memory .. mmap(2)
pages of memory ... munmap(2)
pagination form_new yage: form_new yage(3curses)
pair of connected sockets .. socketpair(3N)
pair unlockpt unlock unlockpt(3C)
pair_content curses color / curs _ color(3curses)
panel / panet userptr associate panet userptr(3curses)
panel /replaceyanel get or panel_window(3curses)
panel_above: panel_above, panel_above(3curses)
panet above, panet below panels panet above(3curses)
panetbelow panels deck traversal! panetabove(3curses)
panel_hidden panels deck/ panel_show(3curses)
panetmove: moveyanel move a panetmove(3curses)
panetnew: newyanel, delyanel panetnew(3curses)
panels character based panels panels(3curses)
panels deck manipulation routines panel_show(3curses)
panels deck manipulation routines panet top (3curses)
panels deck traversal primitives panetabove(3curses)
panels package ... panels(3curses)
panels panel / panet userptr panel_ userptr(3curses)
panels panel /replaceyanel panetwindow(3curses)
panels panet new: new yanel, panet new(3curses)
panels virtual screen refresh/ panel_ update(3curses)
panels window on the virtual screen panel_ move(3curses)
panetshow: show yanel, hide yanel,
.. panel_show(3curses)
panet top: top yanel, bottom yanel panet top (3curses)
panel_update: update yanels panels
... panel_update(3curses)
panet userptr associate application/
.. panet userptr(3curses)

panel_ userptr: setyanet userptr, panel_ userptr(3curses)
panet window: panel_window, panet window(3curses)
panet window, replace yanel get or
... panel_ window(3curses)
parent directory name of a file dirname(3G)
parent process IDs / getpgid ... getpid(2)
parse suboptions from a string getsubopt(3C)
part of a curses window /wclrtobot, curs _ clear(3curses)
part of a full-duplex connection shutdown(3N)
parts of floating-point numbers ... frexp(3C)
passed via the listener nlsgetcall(3N)
password and file encryption crypt(3X)
password file entry / setpwent, getpwent(3C)
password file entry / fgetspent, getspent(3C)
password file entry .. putpwent(3C)
password file entry ... putspent(3C)
password getpass(3C)
path mkdirp, rmdirp ... mkdirp(3G)
path modpath change .. modpath(2)
path name basename ... basename(3G)

1031

the parent directory name of a file
cd-ptrec, cd_cptrec read CD-ROM

variables fpathconf,
named directories

(BSD) get current working directory
directory getcwd get

pathconf get configurable
/ menu_pattern set and get menus

gmatch shell global

process popen,
/ subpad, prefresh, pnoutrefresh,

/prefresh, pnoutrefresh, pechochar,
getpeername get name of connected

signals that are blocked and
IDs /set or get default CD-ROM file

setlabel define the label for
in standard format

in-memory state with that on the
msync synchronize memory with

popen, pclose initiate
p2open, p2close open, close

process, text, or data
curs -pad: newpad, subpad, prefresh,

floatingpoint (BSD) IEEE floating
elC strptr make a string

rewind, ftell reposition a file
fsetpos, fgetpos reposition a file

lseek move read/write file

a process
window cursor form cursor:

/ pos _menu_cursor correctly
form_cursor: pos jorm _cursor
a menus cursor menu cursor:

erase forms from/ form -post:
erase menus from/ menu -post:

/msub, mult, mdiv, mcmp, min, mout,
/ cbrt, log, logf, loglO, loglOf,

sqrt, sqrtf exponential, logarithm,
flog, logf, loglO, log 10f, pow,

xtom, mtox, mfree (BSD) multiple
curs -pad: newpad, subpad,

monitor
lock (XENIX) lock a process in

cd -pvd, cd _ cpvd read CD-ROM
panel_below panels deck traversal

/ mvprintw, mvwprintw, vwprintw
vprintf, vfprintf, vsprintf

1032

path name dirname report .. dirname(3G)
Path Table Record .. cd -ptrec(3X)
pathconf get configurable pathname fpathconf(2)
pathfind search for named file in pathfind(3G)
pathname getwd ... getwd(3)
pathname of current working .. getcwd(3C)
pathname variables fpathconf, fpathconf(2)
pattern match buffer menu -pattern(3curses)
pattern matching .. gmatch(3G)
pause suspend process until signal.................................... pause(2)
pclose initiate pipe to / from a ... ,.......... popen(3S)
pechochar, pechowchar create and/ curs-pad(3curses)
pechowchar create and display / curs -pad(3curses)
peer getpeername(3N)
pending sigpending examine sigpending(2)
permissions, user IDs, and group cd _ defs(3X)
perror print system error messages perror(3C)
pfmt .. setlabel(3C)
pfmt, vpfmt display error message pfmt(3C)
physical medium /a file's .. fsync(2)
physical storage ... msync(3C)
pipe create an interprocess channel....................................... pipe(2)
pipe to / from a process popen(3S)
pipes to and from a command p2open(3G)
plock lock into memory or unlock plock(2)
pnoutrefresh, pechochar, pechowchar/ curs-pad(3curses)
point definitions .. floatingpoint(3)
pointer elC strptr(3E)
pointer in a stream fseek, fseek(3S)
pointer in a stream fsetpos(3C)
pointer .. Iseek(2)
poll input/ output multiplexing .. poll(2)
popen, pclose initiate pipe to / from popen(3S)
pos _form_cursor position forms form _ cursor(3curses)
position a menus cursor menu_cursor(3curses)
position forms window cursor form _ cursor(3curses)
pos _menu_cursor correctly position
..... menu _ cursor(3curses)
post_form, unpost_form write or form-post(3curses)
post_menu, unpost_menu write or menu-post(3curses)
pow, gcd, rpow, msqrt, sdiv, itom,/ mp(3)
pow, powf, sqrt, sqrtf exponential,/ exp(3M)
power, square root functions /powf, exp(3M)
powf, sqrt, sqrtf exponential,/ ... exp(3M)
precision integer arithmetic /itom, .. mp(3)
prefresh, pnoutrefresh, pechochar'/ curs-pad(3curses)
prepare execution profile monitor(3C)
primary memory .. lock(2)
Primary Volume Descriptor (PVD) cd -pvd(3X)
primitives / panet above, panet above(3curses)
print formatted output in curses / curs -printw(3curses)
print formatted output of a/ .. vprintf(3S)

Permuted Index

printf, fprintf, sprintf
perror

formatted output
formatted output conversion

mvwprintw, vwprintw I curs J'rintw:

scheduler control
(BSD) getl set program scheduling

nice (BSD) change
nice change

I set, retrieve, or count the
Iretrieve, remove, count, or put

calling I I add, remove, count, or put
to system calls, error numbers, and

lroutines for client side remote
routines for server side remote
rpc library routines for remote

XDR library routines for remote
library routines for secure remote

acct enable or disable
alarm set a

times get
exit, exit terminate

fork create a new
IDs I getppid, getpgid get process,

setpgid set
setpgrp set

tcsetpgrp set terminal foreground
killpg (BSD) send signal to a

process, process group, and parent
efficient way vfork spawn new

lock (XENIX) lock a
change priority of a time-sharing

nice (BSD) change priority of a
kill send a signal to a

I sigsendset send a signal to a
pclose initiate pipe to/from a

I getpgrp, getppid, getpgid get
associated with the calling
associated with the calling

priocntl
priocntlset generalized

plock lock into memory or unlock
times get process and child

times (BSD) get
waitid wait for child

waitpid wait for child
wait wait for child

IWIFEXITED (BSD) wait for
ptrace

pause suspend
install a signal mask and suspend

Permuted Index

print formatted output .. printf(3S)
print system error messages perror(3C)
printf, fprintf, sprintf print ... printf(3S)
printf: sprintf, vsprintf (BSD) ... printf(3S)
printw, wprintw, mvprintw, cursyrintw(3curses)
priocntl process scheduler control priocntl(2)
priocntlset generalized process priocntlset(2)
priority getpriority, setpriority getpriority(3)
priority of a process nice(3C)
priority of a time-sharing process .. nice(2)
privileges associated with a file .. filepriv(2)
privileges associated with thel procpriv(2)
privileges associated with the procprivl(3C)
privileges intro introduction .. intro(2)
procedure call authentication rpc _ clnt_ auth(3N)
procedure call errors llibrary rpc_svc_err(3N)
procedure calls rpc(3N)
procedure calls IxdrJeplymsg rpcJdr(3N)
procedure calls luser2netname secureJpc(3N)
process accounting .. acct(2)
process alarm clock ... alarm(2)
process and child process times ... times(2)
process .. exit(2)
process fork(2)
process group, and parent process getpid(2)
process group ID .. setpgid(2)
process group ID .. setpgrp(2)
process group ID tcsetpgrp(3C)
process group ... killpg(3)
process IDs I getppid, getpgid get getpid(2)
process in a virtual memory ... vfork(2)
process in primary memory.. lock(2)
process nice .. nice(2)
process nice(3C)
process or a group of processes ... kill(2)
process or a group of processes sigsend(2)
process popen, popen(3S)
process, process group, and parenti getpid(2)
process I count, or put privileges procpriv(2)
process I count, or put privileges procprivl(3C)
process scheduler control ... priocntl(2)
process scheduler control... priocntlset(2)
process, text, or data .. plock(2)
process times ... times(2)
process times times(3C)
process to change state .. waitid(2)
process to change state .. waitpid(2)
process to stop or terminate ... wait(2)
process to terminate or stop ... wait(3)
process trace .. ptrace(2)
process until signal.. pause(2)
process until signal sigsuspend sigsuspend(2)

1033

sigsem (XENIX) signal a
a signal to a process or a group of
a signal to a process or a group of

form driver command
menu driver command

reboot reboot system or halt
remove, count, or put privileges/

count, or put privileges/ procpriv,
put privileges associated with the/

terror

monitor prepare execution
profil execution time

assert verify
end, etext, edata last locations in

retrieve class-dependent
catgets read a

raise send signal to
/ setpriority (BSD) get/set

atexit add
setlocale modify and query a

mprotect set
setprotoent, endprotoent get

information t_getinfo get
nlsprovider get name of transport

generate uniformly distributed
grantpt grant access to the slave

ptsname get name of the slave
unlockpt unlock a

psignal,
messages

signal messages

pseudo-terminal device
getpublickey, getsecretkey retrieve

getsecretkey retrieve public or /
/ mvgetch, mvwgetch, ungetch get (or

curses/ /mvwgetwch, ungetwch get (or
stream ungetc

input stream ungetwc
puts, fputs

putws, fputws
putc, putchar, fputc, putw

getdents read directory entries and
/ add, retrieve, remove, count, or
procprivl add, remove, count, or

putwc, putwchar, fputwc
functions used by IAF / getava,

character or word on a stream
or word on a stream putc,

environment

1034

process waiting on a semaphore sigsem(2)
processes kill send .. kill(2)
processes sigsend, sigsendset send sigsend(2)
processor for the forms subsystem form _ driver(3curses)
processor for the menus subsystem menu _ driver (3curses)
processor .. reboot(3)
procpriv, procprivc add, retrieve, procpriv(2)
procprivc add, retrieve, remove, procpriv(2)
procprivl add, remove, count, or procprivl(3C)
produce error message .. t_ error(3N)
profil execution time profile : ... profil(2)
profile monitor(3C)
profile ... profil(2)
program assertion .. '" assert(3X)
program ... end(3C)
program header table / elf32 _ newphdr eICgetphdr(3E)
program message catgets(3C)
program raise(3C)
program scheduling priority getpriority(3)
program termination routine atexit(3C)
program's locale setlocale(3C)
protection of memory mapping mprotect(2)
protocol entry / getprotobyname, getprotoent(3N)
protocol-specific service t_getinfo(3N)
provider nlsprovider(3N)
pseudo-random numbers /kong48 drand48(3C)
pseudo-terminal device grantpt(3C)
pseudo-terminal device ptsname(3C)
pseudo-terminal master / slave pair unlockpt(3C)
psiginfo system signal messages psignal(3C)
psignal, psiginfo system signal....... psignal(3C)
psignal, sys_siglist (BSD) system psignal(3)
ptrace process trace ptrace(2)
ptsname get name of the slave ptsname(3C)
public or secret key publickey: publickey(3N)
publickey: getpublickey, .. publickey(3N)
push back) characters from curses / curs _getch(3curses)
push back) wchar_t characters from curs_getwch(3curses)
push character back onto input ungetc(3S)
push wchar _ t character back into ungetwc(3W)
put a string on a stream .. puts(3S)
put a wchar _ t string on a stream putws(3W)
put character or word on a stream putc(3S)
put in a file system independent/ getdents(2)
put privileges associated with the/ procpriv(2)
put privileges associated with the/ procprivl(3C)
put wchar _ t character on a stream putwc(3W)
putava, retava, setava library .. getava(3I)
putc, putchar, fputc, putw put ... putc(3S)
putchar, fputc, putw put character putc(3S)
putenv change or add value to putenv(3C)
putmsg send a message on a stream putmsg(2)

Permuted Index

/restartterm, tparm, tputs,

stream
entry

/ getutent, getutid, getutline,
/ getutxent, getutxid, getutxline,

stream putc, putchar, fputc,
character on a stream

character on a stream putwc,
/unctrl, keyname, filter, use_env,

on a stream
CD-ROM Primary Volume Descriptor

/notimeout, raw, noraw, noqiflush,

setlocale modify and
termname curses environment

remque insert/remove element from a
msgget get message

qsort
diy, ldiv compute the

number generator
generator

elf rand
rand, srand (BSD) simple

/initstate, setstate (BSD) better
setstate (BSD) better random/

rand, srand simple
/keypad, meta, nodelay, notimeout,

/rx_write, rx_signal, rx_ack_exit,
for returning a stream to a remote /

is data to be read
getpass
catgets

Record (XAR) cd _ xar, cd _ cxar
cd ytrec, cd _ cptrec

Descriptor (PVD) cd yvd, cd _ cpvd
file system independent/ getdents

directory cd _ drec, cd _ cdrec
read

check to see if there is data to be

bgets
readlink

/scr_restore, scr_init, scr_set

rewinddir,/ directory: opendir,
rewinddir,! directory: opendir,

lock or unlock a file region for
open open for
symbolic link

from the specified System/ cd _ suf

Permuted Index

putp, vidputs, vidattr, mvcur, / curs _ terminfo(3curses)
putpwent write password file entry putpwent(3C)
puts, fputs put a string on a...................................... puts(3S)
putspent write shadow password file putspent(3C)
pututline, setutent, endutent,/ .. getut(3C)
pututxline, setutxent, endutxent,/ getutx(3C)
putw put character or word on a ... putc(3S)
putwc, putwchar, fputwc put wchar _ t putwc(3W)
putwchar, fputwc put wchar _ t putwc(3W)
putwin, getwin, delay_output,! curs _ util(3curses)
putws, fputws put a wchar _ t string putws(3W)
(PVD) cd yvd, cd _ cpvd read cd yvd(3X)
qiflush, timeout, wtimeout,! curs _inopts(3curses)
qsort quicker sort qsort(3C)
query a program's locale .. setlocale(3C)
query routines /termattrs, curs_termattrs(3curses)
queue insque, insque(3C)
queue .. msgget(2)
quicker sort qsort(3C)
quotient and remainder div(3C)
raise send signal to program raise(3C)
rand, srand (BSD) simple random rand(3)
rand, srand simple random-number rand(3C)
random archive member access elCrand(3E)
random number generator ... rand(3)
random number generator; routines/ random(3)
random, srandom, initstate, ... random(3)
random-number generator rand(3C)
raw, noraw, noqiflush, qiflush,/ curs_inopts(3curses)
rc_free_conn REXEC support routines rexecve(3N)
rcmd, rresvport, ruserok routines rcmd(3N)
rdchk (XENIX) check to see if there rdchk(2)
read a password getpass(3C)
read a program message catgets(3C)
read CD-ROM Extended Attribute cd _ xar(3X)
read CD-ROM Path Table Record cd ytrec(3X)
read CD-ROM Primary Volume cd yvd(3X)
read directory entries and put in a................................. getdents(2)
read Directory Record from CD-ROM cd _ drec(3X)
read from file read(2)
read rdchk (XENIX) rdchk(2)
read read from file read(2)
read stream up to next delimiter bgets(3G)
read the value of a symbolic link readlink(2)
read (write) a curses screen from/
.. curs _ scr _ dump(3curses)
readdir, telldir, seekdir, ... directory(3C)
readdir, telldir, seekdir, ... directory(3C)
reading or writing locking (XENIX) locking(2)
reading or writing ... open(2)
readlink read the value of a ... readlink(2)
reads the cdfs System Use Field cd _suf(3X)

1035

lseekmove
setregid (BSD) set
setreuid (BSD) set

realpath returns the
/ get real user, effective user,
/ geteuid, getgid, getegid get

memory allocator malloc, free,
memory allocator malloc, free,

processor
reboot

indication tJcvrel acknowledge
t rcvudata

recv, recvfrom, recvmsg
indica tion t rcvuderr

over a connection t_rcv
connect request tJcvconnect

expression handler regex:
cd _ cptrec read CD-ROM Path Table

floating-point value to decimal
cd _ drec, cd _ cdrec read Directory

lockf
auditdmp write audit

/ (BSD) convert decimal
read CD-ROM Extended Attribute

message from a socket
from a socket recv,

socket recv, recvfrom,
/wrefresh, wnoutrefresh, doupdate,

handler regex: re _ comp,
/ is _ wintouched curses

/ doupdate, redrawwin, wredrawln
update -panels panels virtual screen

doupdate, redrawwin,/ curs Jefresh:
regular expression

expression regcmp,
regular expression handler

regular expression compile and/
/ (XENIX) lock or unlock a file

/library routines for
regexpr: compile, step, advance

regex: re _ comp, re _exec (BSD)
regcmp, regex compile and execute
for / sigpause (BSD) automatically
acknowledge receipt of an orderly

t_sndrel initiate an orderly
/ rint, remainder floor, ceiling,

diy, ldiv compute the quotient and
/ fmod, fmodf, fabs, fabsf, rint,

for returning a stream to a
rexec return stream to a

1036

read/write file pointer ... Iseek(2)
real and effective group IDs ... setregid(3)
real and effective user IDs .. setreuid(3)
real file name ... realpath(3C)
real group, and effective group IDs getuid(2)
real user, effective user, real! ... getuid(2)
realloc, calloc, mallopt, mallinfo malloc(3X)
realloc, calloc, memalign, valloc, malloc(3C)
realpath returns the real file name realpath(3C)
reboot reboot system or halt ... reboot(3)
reboot system or halt processor ... reboot(3)
receipt of an orderly release .. tJcvrel(3N)
receive a data unit ... tJcvudata(3N)
receive a message from a socket recv(3N)
receive a unit data error .. tJcvuderr(3N)
receive data or expedited data sent tJcv(3N)
receive the confirmation from a........................... tJcvconnect(3N)
re _ comp, re _exec (BSD) regular ... regex(3)
Record cd -ptrec, ... cd -ptrec(3X)
record / (BSD) convert floating_to _ decimal(3)
Record from CD-ROM directory cd_drec(3X)
record locking on files lockf(3C)
record to audit buffer ... auditdmp(2)
record to floating-point value decimat to _ floating(3)
Record (XAR) cd _ xar, cd _ cxar cd _xar(3X)
recv, recvfrom, recvmsg receive a recv(3N)
recvfrom, recvmsg receive a message recv(3N)
recvmsg receive a message from a... recv(3N)
redrawwin, wredrawln refresh curses/
. curs _ refresh(3curses)
re _exec (BSD) regular expression .. regex(3)
refresh control routines curs _ touch(3curses)
refresh curses windows and lines curs Jefresh(3curses)
refresh routine panet update: panel_ update(3curses)
refresh, wrefresh, wnoutrefresh, curs Jefresh(3curses)
regcmp, regex compile and execute regcmp(3G)
regex compile and execute regular regcmp(3G)
regex: re_comp, re_exec (BSD) ... regex(3)
regexpr: compile, step, advance regexpr(3G)
region for reading or writing .. locking(2)
registering servers ... rpc_svc_calls(3N)
regular expression compile and/ regexpr(3G)
regular expression handler ... regex(3)
regular expression regcmp(3G)
release blocked signals and wait sigpause(3)
release indication tJcvrel .. tJcvrel(3N)
release .. t_sndrel(3N)
remainder, absolute value functions floor (3M)
remainder div(3C)
remainder floor, ceiling,/ ... floor(3M)
remote command / ruserok routines rcmd(3N)
remote command ... rexec(3N)

Permuted Index

return information about users on
rwall write to specified

/library routines for client side
/library routines for server side

rpc library routines for
/XDR library routines for

/library routines for secure
rmdir

procpriv, procprivc add, retrieve,
associated with the/ procprivl add,

mkdirp, rmdirp create,
unlink

remove

queue ins que,

panet window: panet window,
clock

a file path name dirname
stream fseek, rewind, ftell

stream fsetpos, fgetpos
/library routines for external data

library routines for external data
library routines for external data
library routines for external data
library routines for external data
library routine for external data
format and send listener service

t_accept accept a connect
t listen listen for a connect

the confirmation from a connect
send user-initiated disconnect

/ def yrog_ mode, deC shelt mode,

/ deCshelt mode, resetyrog_ mode,
/ resetyrog_ mode, reset_ shelt mode,

mincore determine
resolver, res _ mkquery, res_send,
dn _ comp, dn _ expand/ resolver,

res _init, dn _ comp, dn _ expand/
res _init, dn _ comp, dn _expand

setrlimit control maximum system
/ (XENIX) await and check access to a

(BSD) get information about
dn _ expand/ resolver, res _ mkquery,

/ setterm, set_ curterm, del_ curterm,
used by IAF / getava, putava,

gettxt
getkey

elf _getarhdr
elCgetarsym

file/ / elf32 _getehdr, elf32 _ newehdr

Permuted Index

remote machines rusers rusers(3N)
remote machines rwall(3N)
remote procedure calli .. rpc_clnt_auth(3N)
remote procedure call errors rpc_svc_err(3N)
remote procedure calls ... rpc(3N)
remote procedure calls ... rpc _ xdr(3N)
remote procedure calls .. secure _ rpc(3N)
remove a directory rmdir(2)
remove, count, or put privileges/ procpriv(2)
remove, count, or put privileges procprivl(3C)
remove directories in a path .. mkdirp(3G)
remove directory entry .. unlink(2)
remove file remove(3C)
remove remove file remove(3C)
remque insert/remove element from a insque(3C)
rename change the name of a file rename(2)
replaceyanel get or set the/ panetwindow(3curses)
report CPU time used clock(3C)
report the parent directory name of dirname(3G)
reposition a file pointer in a .. fseek(3S)
reposition a file pointer in a .. fsetpos(3C)
representation stream creation xdr _ create(3N)
representation xdr .. xdr(3N)
representation /xdr_setpos xdr_admin(3N)
representation / xdr _ wrap string xdr _ complex(3N)
representation / xdr _void xdr_ simple (3N)
representation xdr _ size of .. xdr _ sizeof(3N)
request message nlsrequest nlsrequest(3N)
request ... t_accept(3N)
request ... t_listen(3N)
request tJcvconnect receive tJcvconnect(3N)
request t_snddis ... t_snddis(3N)
resetyrog_ mode, reset_shell_ mode,/
... curs _ kernel(3curses)
reset_shell_ mode, resetty, savetty,/ curs _ kernel(3curses)
resetty, savetty, getsyx, setsyx,/ curs_kernel(3curses)
residency of memory pages ... mincore(2)
res_init, dn_comp, dn_expand/ resolver(3N)
res _ mkquery, res_send, res _ init, resolver(3N)
resolver, res _ mkquery, res_send, resolver(3N)
resolver routines Ires_send, resolver(3N)
resource consumption getrlimit, getrlimit(2)
resource governed by a semaphore waitsem(2)
resource utilization getrusage getrusage(3)
res_send, res_init, dn_comp, .. resolver(3N)
restartterm, tparm, tputs, putp,/ curs_terminfo(3curses)
retava, setava library functions ... getava(31)
retrieve a text string gettxt(3C)
retrieve an authentication key.. getkey(3N)
retrieve archive member header eICgetarhdr(3E)
retrieve archive symbol table eICgetarsym(3E)
retrieve class-dependent object eICgetehdr(3E)

1037

I elf32 _getphdr, elf32 yewphdr
header elf _getshdr: elf32 _getshdr

elCgetident
disconnect t rcvdis

associated with al filepriv set,
I getpublickey, getsecretkey

procpriv, procprivc add,
contents elC rawfile

remote machines rusers
abs, labs

rexec
name basename

type elCfsize: elf32 _fsize
getenv

Irresvport, ruserok routines for
realpath

pointer in a stream fseek,
lopendir, readdir, telldir, seekdir,
lopendir, readdir, telldir, seekdir,

creat create a new file or
command

rx_ack_exit, rc_free_conn
rx_set_writeyand, rxjd,/

index,
I copysign, fmod, fmodf, fabs, fabsf,

Iresetty, save tty, getsyx, setsyx,

in a path mkdirp,
chroot change

logarithm, power, square
atexit add program termination

representation xdr _ sizeof library
panels virtual screen refresh

and window attribute control
flash curses bell and screen flash

window background manipulation
curses color manipulation

initialization and manipulation
terminal input option control

curs_set, napms low-level curses
terminal output option control

slk attroff curses soft label
termname curses environment query

curses refresh control
miscellaneous curses utility

by I I assign application-specific
Ibetter random number generator;

I rpc _broadcast, rpc _ call library
I authsys _create_default library

andl I clnt_ vc _create library
creation of I I svc _ vc _create library

I xdrstdio _create library

1038

retrieve class-dependent programl eICgetphdr(3E)
retrieve class-dependent section eICgetshdr(3E)
retrieve file identification data eICgetident(3E)
retrieve information from ... tJcvdis(3N)
retrieve, or count the privileges .. filepriv(2)
retrieve public or secret key publickey(3N)
retrieve, remove, count, or putl procpriv(2)
retrieve uninterpreted file elC rawfile(3E)
return information about users on rusers(3N)
return integer absolute value .. abs(3C)
return stream to a remote command rexec(3N)
return the last element of a path basename(3G)
return the size of an object file elC fsize(3E)
return value for environment name getenv(3C)
returning a stream to a remote I rcmd(3N)
returns the real file name ... realpath(3C)
rewind, ftell reposition a file fseek(3S)
rewinddir, closedir (BSD) directory I directory(3C)
rewinddir, closedir directory I directory(3C)
rewrite an existing one ... creat(2)
rexec return stream to a remote rexec(3N)
REXEC support routines I rx _signal, rexecve(3N)
rexecve, rx _ set_ioctt hand, .. rexecve(3N)
rindex (BSD) string operations .. index(3)
rint, remainder floor, ceiling,1 ... floor(3M)
rip offline, curs_set, napms I curs _ kernel(3curses)
rmdir remove a directory ... rmdir(2)
rmdirp create, remove directories mkdirp(3G)
root directory .. chroot(2)
root functions I sqrtf exponential, exp(3M)
routine ... atexit(3C)
routine for external data .. xdr_sizeof(3N)
routine I update -panels panel_ update(3curses)
routines Icurses character curs_attr(3curses)
routines curs_beep: beep, curs _ beep(3curses)
routines Ibkgd, wbkgd curses curs _ bkgd(3curses)
routines I pair_content curs _ color(3curses)
routines I delscreen curses screen curs _ initscr(3curses)
routines Itypeahead curses curs_inopts(3curses)
routines I setsyx, rip offline, curs _ kernel(3curses)
routines Inl, nonl curses curs_outopts(3curses)
routines I slk _ attron, slk _ attrset, curs _ slk(3curses)
routines Ilongname, termattrs, curs_termattrs(3curses)
routines I is _ wintouched curs _ touch(3curses)
routines I draino, flushinp curs _ util(3curses)
routines for automatic invocation menu _ hook(3curses)
routines for changing generators random(3)
routines for client side calls rpc _ clnt_ calls(3N)
routines for client side remote I rpc_c1nt_auth(3N)
routines for dealing with creation rpc_c1nt_create(3N)
routines for dealing with the rpc _ svc _ create(3N)
routines for external datal....................................... xdr _ create(3N)

Permuted Index

representation xdr library
I xdrrec _ eof, xdr _ setpos library

Ixdr _vector, xdr _ wrap string library
I xdr _ u _short, xdr _ void library

I assign application-specific
I xprt _ unregister library

rpc library
Ixdr Jeplymsg XDR library

a remote I rcmd, rresvport, ruserok
I rpcb _set, rpcb _unset library

IsvcJun, svc_sendreply library
I netname2user, user2netname library

procedure I I svcerr _ weakauth library
field_opts forms field option

link _field type forms fieldtype
form_opts forms option

window and subwindow association
item_opts menus item option

menu_mark menus mark string

menu_opts menus option
window and subwindow association

panels deck manipulation
panels deck manipulation

expression compile and match
dn _ comp, dn _expand resolver
rc_free_conn REXEC support

widec multibyte character I/O
I set and get maximum numbers of

rpcb _unset library routines for
procedure calls

svc_sendreply library routines for
rpcbind: rpcb _getmaps,

rpcb _gettime,1 rpcbind:
Irpcb _getmaps, rpcb _getaddr,
rpcb _getaddr, rpcb _gettime,1
I rpcb _getaddr, rpcb _gettime,

Idnt_sperrno, dnt_sperror,
/ rpcb _gettime, rpcb _ rmtcall,

bindl Irpcb Jmtcall, rpcb _set,
I dnt_sperror, rpc_broadcast,

authnone _create, authsys _ create, I
clnt_freeres, clnt_geterr,1

dnt_ create, clnt_ destroy,/
xprtJegister,/ rpc_svc_calls:

svc _ unreg, xprtJegister,/
svc_destroy, svc_dg_create,/

svcerr _decode, svcerr _ noproc,I
svc _getargs, svc _getreqset,/

xdr _ authsys yarms, xdr _ callhdr,1
Imdiv, mcmp, min, mout, pow, gcd,

returning a stream to al rcmd,

Permuted Index

routines for external data xdr(3N)
routines for external datal...................................... xdr_ admin(3N)
routines for external datal........................... xdr _ complex(3N)
routines for external datal............. xdr _ simple(3N)
routines for invocation by forms form_hook(3curses)
routines for registering servers rpc_svc_calls(3N)
routines for remote procedure calls rpc(3N)
routines for remote procedure calls rpc _ xdr(3N)
routines for returning a stream to rcmd(3N)
routines for RPC bind service rpcbind(3N)
routines for RPC servers .. rpc_svcJeg(3N)
routines for secure remote I secureJpc(3N)
routines for server side remote rpc_svc_err(3N)
routines I field_opts _off, form_field _ opts(3curses)
routines I set_ fieldtype _ choice, form jieldtype(3curses)
routines Iform_opts_off, form_opts(3curses)
routines Iscale_form forms form_win(3curses)
routines /item_opts _off, menu_item _ opts(3curses)
routines menu_mark: set_menu _mark,
.. menu_mark(3curses)
routines I menu_opts _off, menu _ opts(3curses)
routines I scale_menu menus menu _ win(3curses)
routines Ihideyanel, panethidden panel_show(3curses)
routines I top yanel, bottomyanel panet top (3curses)
routines Istep, advance regular regexpr(3G)
routines I res_send, res _ init, resolver(3N)
routines Irx_signal, rx_ack_exit, rexecve(3N)
routines widec(3W)
rows and columns in menus menu jormat(3curses)
RPC bind service I rpcb _set, rpcbind(3N)
rpc library routines for remote rpc(3N)
RPC servers I svc Jun, .. rpc _ svc Jeg(3N)
rpcb ~etaddr, rpcb _gettime'/ rpcbind(3N)
rpcb _getmaps, rpcb _getaddr, rpcbind(3N)
rpcb _gettime, rpcb Jmtcall,/ .. rpcbind(3N)
rpcbind: rpcb _getmaps, ... rpcbind(3N)
rpcb Jmtcall, rpcb _set, rpcb _ unsetl rpcbind(3N)
rpc _broadcast, rpc _ call library I rpc _ clnt_ calls (3N)
rpcb _set, rpcb _unset library I rpcbind(3N)
rpcb _unset library routines for RPC rpcbind(3N)
rpc_calllibrary routines fori rpc_clnt_calls(3N)
rpc _ clnt_ auth: auth _destroy, rpc _ clnt_ auth(3N)
rpc _ dnt_ calls: clnt_ call, rpc _ clnt_ calls(3N)
rpc _ clnt_ create: clnt_ control, rpc _ clnt_ create(3N)
rpc Jeg, svc Jeg, svc _ unreg, rpc _ svc _ calls(3N)
rpc _ svc _calls: rpc Jeg, svc Jeg, rpc _ svc _ calls(3N)
rpc_svc_create: svc_create, rpc_svc_create(3N)
rpc_svc_err: svcerr_auth, .. rpc_svc_err(3N)
rpc _ svc Jeg: sve _ freeargs, rpc _ sve Jeg(3N)
rpc _ xdr: xdr _accepted Jeply, rpc _ xdr(3N)
rpow, msqrt, sdiv, itom, xtom,/ .. mp(3)
rresvport, ruserok routines for .. rcmd(3N)

1039

stream to a/ rcmd, rresvport,
users on remote machines

machines
/ rx J>roc _ msg, rx _write, rx _signal,

rx _signal,/ /rx _set_write _hand,
/rx_set_write_hand, rx_fd,

rx_set_write_hand, rx_fd,/ rexecve,
rexecve, rx _set_ ioctt hand,

/rx_fd, rXJ>roc_msg, rx_write,
rc jree _ conn/ / rx _ fd, rx J>roc _ msg,

/reset_shell_ mode, resetty,
allocation brk,

/modf, modff, modfl, nextafter,
modff, modfl, nextafter, scalb,

/ fp _class, isnan, copysign,
/form_win, set_form_sub, form_sub,

/menu_win, set_menu_sub, menu_sub,
scandir, alphasort (BSD)

directory
formatted input

vwscanw convert/ curs _ scanw:

network spray
microseconds ualarm (BSD)

priocntl process
priocntlset generalized process

setpriority (BSD) get/ set program
library functions used by IAF

for invoking authentication
scr _set read/ curs_scr _dump:

beep, flash curses bell and
scr_set read (write) a curses

package curses CRT
/ set_term, delscreen curses

move a panels window on the virtual
/ update J>anels panels virtual

curses/ /scr_dump, scrJestore,
doconfig execute a configuration

curs_scroll: scroll, srel, wscrl
window curs scroll:

/leaveok, setscrreg, wsetscrreg,
(write) a/ curs_scr_dump: scr_dump,

/scr_dump, scrJestore, scr_init,
synchronize access to a shared/

shared data segment sdget,
detach a shared data segment

data access
/min, mout, pow, gcd, rpow, msqrt,

to a shared data segment sdenter,
bsearch binary

lsearch, Hind linear
directories pathfind

1040

ruserok routines for returning a.... rcmd(3N)
rusers return information about rusers(3N)
rwall write to specified remote .. rwall(3N)
rx_ack_exit, rc_free_conn REXEC/ rexecve(3N)
rx jd, rx J>roc _ msg, rx _write, rexecve(3N)
rXJ>roc_msg, rx_write, rx_signal,/ rexecve(3N)
rx _set_ioctthand, ... rexecve(3N)
rx_set_write_hand, rx_fd,/ .. rexecve(3N)
rx _signal, rx _ ack _exit, / rexecve(3N)
rx _write, rx _signal, rx _ ack _exit, rexecve(3N)
savetty, getsyx, setsyx,/ curs_kernel(3curses)
sbrk change data segment space .. brk(2)
scalb, scalbl manipulate parts of! frexp(3C)
scalbl manipulate parts off /modf, frexp(3C)
scalbn (BSD) miscellaneous/ ieee_functions(3)
scale_form forms window and/ form _ win(3curses)
scale_menu menus window and/ menu _ win(3curses)
scan a directory... scandir(3)
scandir, alphasort (BSD) scan a ... scandir(3)
scanf, fscan£, sscanf convert ... scanf(3S)
scanw, wscanw, mvscanw, mvwscanw,
............................. .. curs _ scanw(3curses)
scatter data in order to check the spray(3N)
schedule signal after interval in .. ualarm(3)
scheduler control .. priocntl(2)
scheduler control ... priocntlset(2)
scheduling priority getpriority, getpriority(3)
schemes /putava, retava, setava getava(3I)
schemes invoke IAF function invoke(3I)
scr_dump, scr_restore, scr_init, curs_scr_dump(3curses)
screen flash routines curs_beep: curs _beep(3curses)
screen from (to) a file /scr_init, curs _scr_dump(3curses)
screen handling and optimization curses(3curses)
screen initialization and/ curs _ initscr(3curses)
screen panet move: move J>anel panet move(3curses)
screen refresh routine panet update(3curses)
scr_init, scr_set read (write) a curs_scr_dump(3curses)
script doconfig(3N)
scroll a curses window curs _ scroll(3curses)
scroll, srcl, wscrl scroll a curses curs _ scroll(3curses)
scrollok, nl, nonl curses terminal! curs _ outopts(3curses)
scrJestore, scr_init, scr_set read curs_scr_dump(3curses)
scr_set read (write) a curses/ curs_scr_dump(3curses)
sdenter, sdleave (XENIX) .. sdenter(2)
sdfree (XENIX) attach and detach a sdget(2)
sdget, sdfree (XENIX) attach and ... sdget(2)
sdgetv (XENIX) synchronize shared sdgetv(2)
sdiv, itom, xtom, mtox, mfree (BSD)/ mp(3)
sdleave (XENIX) synchronize access sdenter(2)
search a sorted table .. bsearch(3C)
search and update Isearch(3C)
search for named file in named pathfind(3G)

Permuted Index

change loadable kernel modules
hcreate, hdestroy manage hash

tfind, tdelete, twalk manage binary
access information

econvert, £Convert, gconvert,
getsecretkey retrieve public or
elt newdata, eltrawdata get

retrieve class-dependent
elt newscn, elt nextscn get

luser2netname library routines for
authdes _getucred, getnetname,/

Inrand48, mrand48, jrand48, srand48,
lopendir, readdir, telldir,
lopendir, readdir, telldir,

shmget get shared memory
synchronize access to a shared data

attach and detach a shared data
brk, sbrk change data

semctl
create an instance of a binary

opensem (XENIX) open a
semop

signal a process waiting on a
access to a resource governed by a

semget get set of

t sndudata
send, sendto, sendmsg

putmsg
group of processes kill

group of! sigsend, sigsendset
connection t snd

message nlsrequest format and
message from a socket

killpg (BSD)
raise

request t_ snddis
socket send, sendto,

a socket send,
receive data or expedited data

elf next
interface to the Connection

for dealing with the creation of
errors llibrary routines for

library routines for registering
library routines for RPC

setservent, endservent get
t_getinfo get protocol-specific

nlsrequest format and send listener

Permuted Index

search path modpath ... modpath(2)
search tables hsearch, .. hsearch(3C)
search trees tsearch, tsearch(3C)
sec advise get kernel advisory secadvise(2)
seconvert, sfconvert, sgconvertl econvert(3)
secret key I getpublickey, ... publickey(3N)
section data eltgetdata, eltgetdata(3E)
section header I elf32 _getshdr eltgetshdr(3E)
section information I elt ndxscn, eltgetscn(3E)
secure remote procedure calls secure JPc(3N)
secureJpc: authdes_seccreate, secureJpc(3N)
seed48, lcong48 generate uniformly I drand48(3C)
seekdir, rewinddir, closedir (BSD)I directory(3C)
seekdir, rewinddir, closedir I directory(3C)
segment identifier shmget(2)
segment sdenter, sdleave (XENIX) sdenter(2)
segment sdget, sdfree (XENIX) ... sdget(2)
segment space allocation .. brk(2)
select synchronous 1/0 multiplexing select(3C)
semaphore control operations .. semctl(2)
semaphore creatsem (XENIX) creatsem(2)
semaphore opensem(2)
semaphore operations ... semop(2)
semaphore sigsem (XENIX) .. sigsem(2)
semaphore I (XENIX) await and check waitsem(2)
semaphores .. semget(2)
semctl semaphore control operations semctl(2)
semget get set of semaphores semget(2)
semop semaphore operations semop(2)
send a data unit ... t_sndudata(3N)
send a message from a socket send(3N)
send a message on a stream .. putmsg(2)
send a signal to a process or a .. kill(2)
send a signal to a process or a.. sigsend(2)
send data or expedited data over a t_snd(3N)
send listener service request nlsrequest(3N)
send, sendto, sendmsg send a .. send(3N)
send signal to a process group killpg(3)
send signal to program raise(3C)
send user-initiated disconnect t_snddis(3N)
sendmsg send a message from a............... send(3N)
sendto, sendmsg send a message from send (3N)
sent over a connection tJcv ... tJcv(3N)
sequential archive member access elt next(3E)
Server I cs yerror application cs _ connect(3N)
server handles Ilibrary routines rpc _svc _ create(3N)
server side remote procedure call rpc_svc_err(3N)
servers I xprt _ unregister rpc _ svc _ calls(3N)
servers IsvcJun, svc_sendreply rpc_svcJeg(3N)
service entry I getservbyname, getservent(3N)
service information t_getinfo(3N)
service request message nlsrequest(3N)

1041

library routines for RPC bind
getsid get
setsid set

truncate, firuncate
alarm

/ set_top _row, top JOw, item_index

umask
/field_status, set_max_field

/ set_item _ value, item_value
/ set_menu yattern, menu yattern

sigstack (BSD)
auditlog get or
auditevt get or

ffs find first
ASCII and supplementary code

sigsetmask (BSD)
getcontext, setcontext get and

times utime
utimes (BSD)

elf fill
/ current_field, field_index

semget get
getsockopt, setsockopt get and

flag cd _nmconv
permissions, user IDs, and/ cd _ defs

and group IDs cd _ idmap
context sigaltstack

numbers assignments / cd _ setdevmap
setpgid
setpgrp

mprotect
setregid (BSD)
setreuid (BSD)

privileges associated/ filepriv
setsid

IDs getgroups, setgroups get or
sysinfo get and

group ID tcsetpgrp
auditbuf get or

/panel_ window, replace yanel get or

/ settimeofday (BSD) get or
gettimeofday, settimeofday get or

auditctl get or
set env

set id
stime

setuid, setgid

1042

service /rpcb _set, rpcb _unset rpcbind(3N)
session ID ... getsid(2)
session ID setsid(2)
set a file to a specified length truncate(3C)
set a process alarm clock .. alarm(2)
set and get current menus items
· menu_item _ current(3curses)
set and get file creation mask ... umask(2)
set and get forms field attributes
· form_field _ buffer(3curses)
set and get maximum numbers of rows
.................................. '" menu _format(3curses)
set and get menus item values menu_item _ value(3curses)
set and get menus pattern match/ menu yattern(3curses)
set and/ or get signal stack context sigstack(3)
set audit log file attributes ... auditlog(2)
set auditable events ... auditevt(2)
set bit .. ffs(3C)
set characters /is special classify wctype(3W)
set current signal mask " sigsetmask(3)
set current user context ... getcontext(2)
set file access and modification .. utime(2)
set file times .. utimes(3)
set fill byte elC fill(3E)
set forms current page and field form yage(3curses)
set of semaphores .. semget(2)
set options on sockets getsockopt(3N)
set or get CD-ROM name conversion cd _ nmconv(3X)
set or get default CD-ROM file cd_defs(3X)
set or get mappings of CD-ROM user cd _idmap(3X)
set or get signal alternate stack sigaltstack(2)
set or unset major and minor cd _ setdevmap(3X)
set process group ID ... setpgid(2)
set process group ID .. setpgrp(2)
set protection of memory mapping mprotect(2)
set real and effective group IDs setregid(3)
set real and effective user IDs .. setreuid(3)
set, retrieve, or count the .. filepriv(2)
set session ID .. setsid(2)
set supplementary group access list getgroups(2)
set system information strings .. sysinfo(2)
set terminal foreground process tcsetpgrp(3C)
set the audit buffer attributes .. auditbuf(2)
set the current window of a panels /
· panel_ window(3curses)
set the date and time .. gettimeofday(3)
set the date and time ... gettimeofday(3C)
set the status of auditing ... auditctl(2)
set the user's environment ... set_env(3I)
set the user's identity ... set_id(3I)
set time ... stime(2)
set user and group IDs setuid(2)

Permuted Index

ulimit get and
IAF / getava, putava, retava,

a stream
buffering to a stream

context getcontext,
/set_formyage, formyage,

set_topJow,/ menu_item_current:

curs _ terminfo: setupterm, setterm,

/ set_field _fore, field_fore,
form field buffer:

form field attributes:
/ set jorm _ term, form_term,

the general! form_field just:
field _ opts_off,! form_field _opts:

/ set_field _ back, field_back,

/ set_field _buffer , field_buffer,
/ set_field _init, field _init,

field _ arg/ form jield _validation:
new _ field type, free jieldtype,

/ free _ fieldtype, set_ fieldtype _ arg,
associate/ form_field _ userptr:

field_count,! form_field:
set_form _ term,! form_hook:

form_opts _ off,! form_opts:
set_ current_field,! form yage:

form_win: set_ form_win, form_win,
/ setjorm)nit, form)nit,
associate/ form _ userptr:

setjorm_sub, form_sub,/ form_win:
setuid,

getgrent, getgrgid, getgmam,
group access list IDs getgroups,

host/ / gethostbyaddr, gethostbyname,
current host gethostname,

set_item _ term,/ menu_hook:
item_opts _ off,/ menu_item _opts:

/set_item_init, item)nit,
associate/ menu_item _ userptr:

get menus item/ menu item value:

timer getitimer,

sigseljmp, siglongjmp (BSD)/
siglongjmp (BSD)/ seljmp,longjmp,

Permuted Index

set user limits ... ulimit(2)
setava library functions used by....................................... getava(3I)
setbuf, setvbuf assign buffering to setbuf(3S)
setbuffer, setlinebuf (BSD) assign setbuffer(3S)
setcat define default catalog .. setcat(3C)
setcontext get and set current user getcontext(2)
set_ currentjield, current_field,/ form yage(3curses)
set_ current_item, current_item,
.. menu_item _ current(3curses)
set _ curterm, del_ curterm, / curs _ terminfo(3curses)
set_ env set the user's environment set_ env(3I)
set_field _ back, field_back, / form_field _ a ttributes(3curses)
setjield _buffer, field _buffer,/ form_field _buffer(3curses)
setjield _fore, field_fore,! form_field _ attributes(3curses)
set jield _ init, field _ init, / form _ hook(3curses)
set jield just, field just format...... form_field just(3curses)
setjield_opts, field_opts_on, formjield_opts(3curses)
setjield yad, field yad format the/
.. form_field _attributes(3curses)
setjield _status, field _status,/ formjield _buffer(3curses)
setjield_term, field_term assign/ form_hook(3curses)
set jield _ type, field_type, form jield _ validation(3curses)
setjieldtype _ arg,/ form_ fieldtype:
... form _fieldtype(3curses)
set_fieldtype _choice,! form _fieldtype(3curses)
setjield _ userptr, field _ userptr
.. form_field _ userptr(3curses)
set_form _fields, form_fields, form _ field(3curses)
setjorm_init,form_init, form_hook(3curses)
setjorm _opts, form_opts _on, form _ opts(3curses)
setjorm yage, form yage, form yage(3curses)
setjorm_sub, form_sub, scale_form/ form_win(3curses)
setjorm_term, form_term,/ form_hook(3curses)
set_form _ userptr, form _ userptr form _ userptr(3curses)
set jorm _ win, form_win, form _ win(3curses)
setgid set user and group IDs setuid(2)
setgrent, endgrent, fgetgrent get/ getgrent(3C)
setgroups get or set supplementary..................... getgroups(2)
sethostent, endhostent get network gethostent(3N)
sethostname (BSD) get/ set name of gethostname(3)
set_id set the user's identity ... set_id(3I)
set_item _ init, item _init, menu _ hook(3curses)
set_item _opts, item_opts _on, menu_item _ opts(3curses)
set_item_term, item_term,/ menu_hook(3curses)
set_item _ userptr, item _ userptr
.. menu_item _ userptr(3curses)
set_item _ value, item_value set and
... menu_item _ value(3curses)

setitimer get/ set value of interval getitimer(3C)
seljmp,longjmp non-local goto seljmp(3C)
seljmp,longjmp,_seljmp, Jongjmp, seljmp(3)
_seljmp,_longjmp, sigseljmp, .. seljmp(3)

1043

crypt,

to a stream setbuffer,
program's locale

syslog, openlog, closelog,
/ set_field _status, field_status,

/ set_menu _fore, menu_fore,
set_menu _back,/ menu_attributes:
and get maximum/ menu_format:

/ set_menu _back, menu _back,
/ set_item _term, item_term,

item_count connect and/ menu items:
string routines menu_mark:

menu_opts _ off,/ menu_opts:
menus/ /set_menu_grey, menu_grey,

and get menus/ menu yattern:

/set_menu_init, menu_init,
associate/ menu _ userptr:

set_menu_sub, menu_sub,/ menu_win:
entry / getnetbyaddr, getnetbyname,

pagination form_new yage:
associate / panet userptr:

scheduling priority getpriority,
/ getprotobynumber, getprotobyname,

getpwent, getpwuid, getpwnam,
effective group IDs

effective user IDs
resource consumption getrlimit,

information on supplementary code
sigdelset, sigismember manipulate

nl,/ /idlok, idcok immedok, leaveok,
/ getservbyport, getservbyname,

sockets getsockopt,
1ckpwdf,/ getspent, getspnam,

random, srandom, initstate,
/resetty, savetty, getsyx,

/ ini tscr, newterm, endwin, isendwin,
curs _ terminfo: setupterm,

1044

date and time gettimeofday,
and time gettimeofday,

setkey, encrypt generate encryption crypt(3C)
setlabel define the label for pfmt setlabel(3C)
setlinebuf (BSD) assign buffering setbuffer(3S)
setlocale modify and query a setlocale(3C)
setlogmask (BSD) control system log syslog(3)
set_max _field set and get forms /
.......... form_field _ buffer(3curses)
set_menu _back, menu _back,/ menu _ attributes(3curses)
set_menu jore, menu jore, menu _ attributes(3curses)
set_menu _format, menu_format set
... menu _format(3curses)
set_menu_grey, menu_grey,/ menu _attributes(3curses)
set_menu _init, menu _init,/ menu _ hook(3curses)
set_menu _items, menu)tems, menu _items(3curses)
set_menu _mark, menu _mark menus mark
................... menu _ mark(3curses)
set_menu _ opts, menu_opts _on, menu _ opts(3curses)
set_menu yad, menu yad control
.. menu _attributes(3curses)
set_menu yattern, menu yattern set
.. menu yattern(3curses)
set_menu_sub, menu_sub, scale_menu/
..... menu _ win(3curses)
set_menu _ term, menu_term assign/ menu _ hook(3curses)
set_menu _ userptr, menu _ userptr menu _ userptr(3curses)
set_menu_win,menu_win, menu_win(3curses)
setnetent, endnetent get network getnetent(3N)
set_new yage, new yage forms form_new yage(3curses)
setyanetuserptr, panel_userptr panel_userptr(3curses)
setpgid set process group ID .. setpgid(2)
setpgrp set process group ID .. setpgrp(2)
setpriority (BSD) get/set program getpriority(3)
setprotoent, endprotoent get/ getprotoent(3N)
setpwent, endpwent, fgetpwent/ getpwent(3C)
setregid (BSD) set real and ... setregid(3)
setreuid (BSD) set real and setreuid(3)
setrlimit control maximum system getrlimit(2)
sets getwidth get ... getwidth(3W)
sets of signals / sigaddset, sigsetops(3C)
setscrreg, wsetscrreg, scrollok, curs _ outopts(3curses)
setservent, endservent get service/ getservent(3N)
setsid set session ID ... setsid(2)
setsockopt get and set options on getsockopt(3N)
setspent, endspent, fgetspent, getspent(3C)
setstate (BSD) better random number / random(3)
setsyx, ripoffline, curs_set, napms / curs _ kernel(3curses)
set_term, delscreen curses screen/ curs_initscr(3curses)
setterm, set_ curterm, det curterm, /
...................... curs _ terminfo(3curses)

settimeofday (BSD) get or set the........................... gettimeofday(3)
settimeofday get or set the date gettimeofday(3C)

Permuted Index

I set_ current_item, current_item,

IDs
del_ curterm, I curs _ terminfo:

get legal user I getusershell,
I getutid, getutline, pututline,

I getutxid, getutxline, pututxline,
stream setbuf,

addsev define additional
for I addseverity build a list of
I fconvert, gconvert, seconvert,

I gconvert, seconvert, sfconvert,
machine-independent fashion sputl,

Ikkpwdf, ukkpwdf manipulate
putspent write

sdgetv (XENIX) synchronize
(XENIX) synchronize access to a

sdfree (XENIX) attach and detach a
shmctl

shmop: shmat, shmdt
shmgetget

dlclose close a
dlopen open a

get the address of a symbol in
system issue a

gmatch
endusershell (BSD) get legal user

operations shmop:
operations

shmop: shmat,
identifier

operations
nap (XENIX) suspend execution for a
panel_hidden panels I panel_show:

connection shutdown
full-duplex connection

library routines for client
llibrary routines for client

llibrary routines for server
management

sigsetops: sigemptyset, sigfillset,
alternate stack context

signals
I sigemptyset, sigfillset, sigaddset,

sigdelset, sigismember I sigsetops:
sigsetops: sigemptyset,
specific SIGFPE codes

(BSD) signal handling for specific
sigpausel signal, sigset,

signal, sigset, sighold, sigrelse,
interrupt system calls

I sigfillset, sigaddset, sigdelset,

Permuted Index

set_top JOw, top _row, item _ index I
...... menu_item _ current(3curses)
setuid, setgid set user and group .. setuid(2)
setup term, setterm, set _ curterm, curs _ terminfo(3curses)
setusershell, endusershell (BSD) getusershell(3)
setutent, endutent, utmpname access I getut(3C)
setutxent, endutxent, utmpxname,1 getutx(3C)
setvbuf assign buffering to a setbuf(3S)
severities .. addsev(3C)
severity levels for an application addseverity(3C)
sfconvert, sgconvert (BSD) output I econvert(3)
sgconvert (BSD) output conversion econvert(3)
sgetl access long integer data in a...................................... sputl(3X)
shadow password file entry getspent(3C)
shadow password file entry .. putspent(3C)
shared data access .. sdgetv(2)
shared data segment I sdleave .. sdenter(2)
shared data segment sdget, ... sdget(2)
shared memory control operations shmctl(2)
shared memory operations .. shmop(2)
shared memory segment identifier shmget(2)
shared object .. dlclose(3X)
shared object dlopen(3X)
shared object dlsym , dlsym(3X)
shell command system(3S)
shell global pattern matching ... gmatch(3G)
shells getusershell, setusershell, getusershell(3)
shmat, shmdt shared memory ... shmop(2)
shmctl shared memory control .. shmctl(2)
shmdt shared memory operations shmop(2)
shmget get shared memory segment shmget(2)
shmop: shmat, shmdt shared memory............................. shmop(2)
short interval .. nap(2)
show -panel, hide -panel, panel_ show(3curses)
shut down part of a full-duplex shutdown(3N)
shutdown shut down part of a shutdown(3N)
side calls I rpc _broadcast, rpc _call ,. rpc _ clnt_ calls(3N)
side remote procedure calli rpc_ clnt_ auth(3N)
side remote procedure call errors rpc _ svc _ err(3N)
sigaction detailed signal .. sigaction(2)
sigaddset, sigdelset, sigismember I sigsetops(3C)
sigaltstack set or get signal .. sigaltstack(2)
sigblock, sigmask (BSD) block ... sigblock(3)
sigdelset, sigismember manipulate I sigsetops(3C)
sigemptyset, sigfillset, sigaddset, sigsetops(3C)
sigfillset, sigaddset, sigdelset,1 sigsetops(3C)
sigfpe (BSD) signal handling for ... sigfpe(3)
SIGFPE codes sigfpe .. sigfpe(3)
sighold, sigrelse, sigignore, .. signal(2)
sigignore, sigpause simplified I .. signal(2)
siginterrupt (BSD) allow signals to siginterrupt(3)
sigismember manipulate sets of! sigsetops(3C)

1045

signal state sigsetjmp,
I _setjmp,)ongjmp, sigsetjmp,

sigblock,
semaphore sigsem (XENIX)

generate an abnormal termination
microseconds ualarm (BSD) schedule

sigaltstack set or get
signal facilities

signal (BSD) simplified software
sigvec (BSD) software

codes sigfpe (BSD)
sigaction detailed

sigignore, sigpause simplified
until signal sigsuspend install a
sigprocmask change or examine

sigsetmask (BSD) set current
psignal, sys_siglist (BSD) system

psignal, psiginfo system
pause suspend process until

sigignore, sigpause simplified I
mask and suspend process until

sigstack (BSD) set and/or get
siglongjmp a non-local goto with

killpg (BSD) send
processes kill send a

sigsend, sigsendset send a
raise send

I(BSD) automatically release blocked
sigblock, sigmask (BSD) block

sigismember manipulate sets of
ssignal, gsignal software

pending sigpending examine
siginterrupt (BSD) allow

release blocked signals and wait I
sighold, sigrelse, sigignore,

blocked and pending
signal mask

signal, sigset, sighold,
waiting on a semaphore

to a process or a group of!
process or a group of! sigsend,

sigignore, sigpausel signal,
goto with signal state

setjmp, longjmp, _setjmp,)ongjmp,
mask

sigaddset, sigdelset, sigismember I
signal stack context

and suspend process until signal
facilities

rand, srand (BSD)
rand, srand

I sigrelse, sigignore, sigpause

1046

siglongjmp a non-local goto with sigsetjmp(3C)
siglongjmp (BSD) non-local goto setjmp(3)
sigmask (BSD) block signals .. sigblock(3)
signal a process waiting on a ... sigsem(2)
signal abort abort(3C)
signal after interval in ... ualarm(3)
signal alternate stack context sigaltstack(2)
signal (BSD) simplified software ... signal(3)
signal facilities .. signal(3)
signal facilities ... sigvec(3)
signal handling for specific SIGFPE sigfpe(3)
signal management .. sigaction(2)
signal management I sigrelse, .. signal(2)
signal mask and suspend process sigsuspend(2)
signal mask sigprocmask(2)
signal mask sigsetmask(3)
signal messages ... psignal(3)
signal messages .. psignal(3C)
signal ... pause(2)
signal, sigset, sighold, sigrelse, .. signal(2)
signal sigsuspend install a signal............................. sigsuspend(2)
signal stack context .. sigstack(3)
signal state sigsetjmp, .. sigsetjmp(3C)
signal to a process group .. killpg(3)
signal to a process or a group of .. ki1l(2)
signal to a process or a group of! sigsend(2)
signal to program raise(3C)
signals and wait for interrupt ... sigpause(3)
signals ... sigblock(3)
signals I sigaddset, sigdelset, sigsetops(3C)
signals ... ssignal(3C)
signals that are blocked and sigpending(2)
signals to interrupt system calls siginterrupt(3)
sigpause (BSD) automatically........................ sigpause(3)
sigpause simplified signal! I sigset, signal(2)
sigpending examine signals that are sigpending(2)
sigprocmask change or examine sigprocmask(2)
sigrelse, sigignore, sigpausel .. signal(2)
sigsem (XENIX) signal a process sigsem(2)
sigsend, sigsendset send a signal.................. sigsend(2)
sigsendset send a signal to a ... sigsend(2)
sigset, sighold, sigrelse, signal(2)
sigsetjmp, siglongjmp a non-local sigsetjmp(3C)
sigsetjmp, siglongjmp (BSD)I .. setjmp(3)
sigsetmask (BSD) set current signal........................... sigsetmask(3)
sigsetops: sigemptyset, sigfillset, sigsetops(3C)
sigstack (BSD) set and/or get .. sigstack(3)
sigsuspend install a signal mask sigsuspend(2)
sigvec (BSD) software signal ... sigvec(3)
simple random number generator .. rand(3)
simple random-number generator rand(3C)
simplified signal management .. signal(2)

Permuted Index

facilities signal (BSD)
asin, asinf, acos, acosf,/ trig:
asinf, acos, acosf,/ trig: sin,

floating_to _decimal:
tanhf, asinh, acosh, atanh/
asinh, acosh, atanh/ sinh,
(BSD) get descriptor table

getpagesize (BSD) get system page
chsize (XENIX) change the

elCfsize: elf32 jsize return the
grantpt grant access to the

ptsname get name of the
interval
interval

/ slk _touch, slk_ attron, slk _attrset,
/ slk _clear, slk Jestore, slk _touch,

/ slk Jestore, slk _touch, slk _ attron,
/ slk _ noutrefresh, slk Jabel,

slk _ noutrefresh, / curs _ slk:
/ slk Jefresh, slk _ noutrefresh,
/ slk _ ini t, slk _set, slk Jefresh,

curs _slk: slk _init, slk _set,
slk _attrset,/ / slk_Iabel, slk _clear,

curs _ slk: slk _ init,
/ slk Jabel, slk _clear, slk Jestore,

current user ttyslot find the
accept accept a connection on a

bind bind a name to a
connect initiate a connection on a

communication
listen listen for connections on a

getsockname get
recvmsg receive a message from a

sendmsg send a message from a
connected sockets

setsockopt get and set options on
create a pair of connected

slk _ attrset, slk_ attroff curses
signal (BSD) simplified

sigvec (BSD)
ssignal, gsignal

qsort quicker
bsearch binary search a

brk, sbrk change data segment
muniockalliock or unlock address

swapctl manage swap
memory efficient way vfork

mknod make a directory, or a
(XENIX) make a directory, or a

sysi86 machine
sigfpe (BSD) signal handling for
truncate, ftruncate set a file to a

Permuted Index

simplified software signal .. signal(3)
sin, sinf, cos, cosf, tan, tanf, trig (3M)
sinf, cos, cosf, tan, tanf, asin, .. trig(3M)
single_to _ decimal,/ floating_to _ decimal (3)
sinh, sinhf, cosh, coshf, tanh, sinh(3M)
sinhf, cosh, coshf, tanh, tanhf, sinh (3M)
size getdtablesize .. getdtablesize(3)
size ... getpagesize(3)
size of a file chsize(2)
size of an object file type elf _ fsize(3E)
slave pseudo-terminal device grantpt(3C)
slave pseudo-terminal device ptsname(3C)
sleep (BSD) suspend execution for sleep(3)
sleep suspend execution for ... sleep(3C)
slk _attroff curses soft label! curs _slk(3curses)
slk_attron, slk_attrset,/ ... curs_slk(3curses)
slk_ attrset, slk _ attroff curses/ curs _slk(3curses)
slk_clear, slkJestore, slk_touch,/ curs_slk(3curses)
slk _ init, slk_ set, slkJefresh, curs _slk(3curses)
slk _label, slk _clear, slk Jestore, / curs _ slk(3curses)
slk_noutrefresh, slk_Iabel,/ curs_slk(3curses)
slkJefresh, slk _ noutrefresh,/ curs _slk(3curses)
slkJestore, slk _touch, slk _ attron, curs _ slk(3curses)
slk _set, slk Jefresh, / curs _ slk(3curses)
slk _touch, slk _ attron, slk _attrset,l curs _slk(3curses)
slot in the utmp file of the ttyslot(3C)
socket accept(3N)
socket .. bind(3N)
socket connect(3N)
socket create an endpoint for ... socket(3N)
socket listen(3N)
socket name getsockname(3N)
socket recv, recvfrom, ... recv(3N)
socket send, sendto, .. send(3N)
socketpair create a pair of ... socketpair(3N)
sockets getsockopt, getsockopt(3N)
sockets socketpair socketpair(3N)
soft label routines / slk _ attron, curs _slk(3curses)
software signal facilities ... signal(3)
software signal facilities ... sigvec(3)
software signals ssignal(3C)
sort qsort(3C)
sorted table ... bsearch(3C)
space allocation .. brk(2)
space mlockall, mlockall(3C)
space ... swapct1(2)
spawn new process in a virtual................. vfork(2)
special or ordinary file .. mknod(2)
special or ordinary file mknod .. mknod(2)
specific functions ... sysi86(2)
specific SIGFPE codes ... sigfpe(3)
specified length ... truncate(3C)

1047

rwall write to
the cdfs System Use Field from the

bufsplit
check the network

printf, fprintf,
output conversion printf:

data in a machine-independent/
/logf, loglO, loglOf, pow, powf,
/loglO, loglOf, pow, powf, sqrt,
exponential,logarithm, power,

generator rand,
generator rand,

/lrand48, nrand48, mrand48, jrand48,
better random number / random,

curs_scroll: scroll,
scanf, fscanf,

set or get signal alternate
(BSD) set and/ or get signal

package stdio
vpfmt display error message in

package stdipc: ftok
/ attron, wattron, attrset, wattrset,
/wattrset, standend, wstandend,

has_colors,! curs_color:

status
ustat get file system

feof, dearerr, fileno stream
auditctl get or set the

stat, lstat, fstat get file
stat, lstat, fstat (XENIX) get file

information
fmtmsg display a message on

input/ output package
communication package

compile and/ regexpr: compile,

wait wait for child process to
wait for process to terminate or

synchronize memory with physical
dbm: dbminit, dbmdose, fetch,
dbm, dbminit, dbmdose, fetch,

string manipulations
strings, compressing or / strccpy,

string operations string:
strcpy, strncpy, strdup,/ string:

copy strings, compressing or /
/strcpy, strncpy, strdup, strlen,
strdup,/ string: strcat, strncat,

/strcat, strncat, strcmp, strncmp,

1048

specified remote machines rwall(3N)
specified System Use Area /reads cd_suf(3X)
split buffer into fields .. bufsplit(3G)
spray scatter data in order to .. spray(3N)
sprintf print formatted output ... printf(3S)
sprintf, vsprintf (BSD) formatted printf(3S)
sputl, sgetl access long integer ... sputl(3X)
sqrt, sqrtf exponential,logarithm,/ exp(3M)
sqrtf exponential,logarithm,/ ... exp(3M)
square root functions / sqrt, sqrtf exp(3M)
srand (BSD) simple random number rand(3)
srand simple random-number rand(3C)
srand48, seed48, lcong48 generate/ drand48(3C)
srandom, initstate, setstate (BSD) random(3)
srel, wscrl scroll a curses window curs _ scroll(3curses)
sscanf convert formatted input ... scanf(3S)
ssignal, gsignal software signals ssignal(3C)
stack context sigaltstack .. sigaltstack(2)
stack context sigstack sigstack(3)
standard buffered input/ output .. stdio(3S)
standard format pfmt, pfmt(3C)
standard interprocess communication stdipc(3C)
standend, wstandend, standout, / curs _ attr(3curses)
standout, wstandout curses/ curs _attr(3curses)
start_color, init""pair, init_color, curs_color(3curses)
stat, lstat, fstat get file status .. stat(2)
stat, lstat, fstat (XENIX) get file ... stat(2)
statistics ustat(2)
status inquiries ferror, ... ferror(3S)
status of auditing .. auditctl(2)
status ... stat(2)
status ... stat(2)
statvfs, fstatvfs get file system .. statvfs(2)
stderr or system console fmtmsg(3C)
stdio standard buffered stdio(3S)
stdipc: ftok standard interprocess stdipc(3C)
step, advance regular expression regexpr(3G)
stime set time .. stime(2)
stop or terminate .. wait(2)
stop /WIFSIGNALED, WIFEXITED (BSD) wait(3)
storage msync msync(3C)
store, delete, firstkey, nextkey / ... dbm(3)
store, delete, firstkey, nextkey / .. dbm(3N)
str: strfind, strrspn, strtrns str(3G)
strcadd, strecpy, streadd copy....................................... strccpy(3G)
strcasecmp, strncasecmp (BSD) ... string(3)
strcat, strncat, strcmp, strncmp, .. string(3C)
strccpy, strcadd, strecpy, streadd strccpy(3G)
strchr, strrchr, strpbrk, strspn,! string(3C)
strcmp, strncmp, strcpy, strncpy, string(3C)
strcoll string collation .. strcoll(3C)
strcpy, strncpy, strdup, strlen,! string(3C)

Permuted Index

/strchr, strrchr, strpbrk, strspn,
/strcmp, strncmp, strcpy, strncpy,

or / strccpy, strcadd, strecpy,
for external data representation

fclose, fflush close or flush a
fop en, freopen, fdopen (BSD) open a

fop en, freopen, fdopen open a
reposition a file pointer in a
reposition a file pointer in a

getw get character or word from a
getmsg get next message off a
gets, fgets get a string from a

wchar _ t character or word from a
fgetws get a wchar _ t string from a

putw put character or word on a
putmsg send a message on a
puts, fputs put a string on a

fputwc put wchar _ t character on a
fputws put a wchar _ t string on a

setvbuf assign buffering to a
(BSD) assign buffering to a
ferror, feof, clearerr, fileno

/ ruserok routines for returning a
rexec return

push character back onto input
wchar _ t character back into input

bgets read
fdetach detach a name from a

file system object fattach attach
compressing or / strccpy, strcadd,

manipulations str:
date and time to string

long integer and base-64 ASCII
/ mvwinsstr, mvwinsnstr insert

cursor / / mvwinsnwstr insert wchar _ t
strcoll

tzset convert date and time to
convert floating-point number to

gets, fgets get a
getws, fgetws get a wchar _ t

mbstowcs, wcstombs multibyte
getsubopt parse sub options from a

gettxt retrieve a text
str: strfind, strrspn, strtrns

/mvwinchstr, mvwinchnstr get a
/mvwaddchstr, mvwaddchnstr add

/mvinnstr, mvwinstr, mvwinnstr get a
indow / /mvwaddstr, mvwaddnstr add a

/mvwinwchstr, mvwinwchnstr get a

Permuted Index

strcspn, strtok, strstr string/ ... string(3C)
strdup, strlen, strchr, strrchr,/ .. string(3C)
streadd copy strings, compressing strccpy(3G)
stream creation /library routines xdr _ create(3N)
stream .. fclose(3S)
stream fopen(3S)
stream .. fopen(3S)
stream fseek, rewind, ftell fseek(3S)
stream fsetpos, fgetpos fsetpos(3C)
stream getc, getchar, fgetc, .. getc(3S)
stream ... getmsg(2)
stream gets(3S)
stream getwc, getwchar, fgetwc get getwc(3W)
stream getws, .. getws(3W)
stream putc, putchar, fputc, .. putc(3S)
stream ... putmsg(2)
stream .. puts(3S)
stream putwc, putwchar, ... putwc(3W)
stream putws, .. putws(3W)
stream setbuf, setbuf(3S)
stream setbuffer, setlinebuf ... setbuffer(3S)
stream status inquiries .. ferror(3S)
stream to a remote command .. rcmd(3N)
stream to a remote command rexec(3N)
stream ungetc ungetc(3S)
stream ungetwc push ... ungetwc(3W)
stream up to next delimiter .. bgets(3G)
STREAMS-based file descriptor fdetach(3C)
STREAMS-based file descriptor to fattach(3C)
strecpy, streadd copy strings, .. strccpy(3G)
strerror get error message string strerror(3C)
strfind, strrspn, strtrns string str(3G)
strftime, cftime, ascftime convert strftime(3C)
string a64l, 164a convert between a641(3C)
string before character under the/ curs _insstr(3curses)
string before character under the curs _ inswstr(3curses)
string collation .. strcoll(3C)
string /localtime, gmtime, asctime, ctime(3C)
string / fcvt, fcvtl, gcvt, gcvtl ecvt(3C)
string from a stream ... gets(3S)
string from a stream getws(3W)
string functions mbstring: mbstring(3C)
string getsubopt(3C)
string gettxt(3C)
string manipulations .. str(3G)
string of characters (and/ curs _ inchstr(3curses)
string of characters (and/ curs_addchstr(3curses)
string of characters from a curses / curs _ instr(3curses)
string of characters to a curses curs_addstr(3curses)
string of wchar _t characters (and/ curs _ inwchstr(3curses)

1049

/mvwaddwchstr, mvwaddwchnstr add

curses/ /rrivwinwstr, mvwinnwstr get a
/mvwaddwstr, mvwaddnwstr add a

puts, fputs put a
putws, fputws put a wchar _ t

wstok, wstostr, strtows wchar _ t
bcmp, bzero (BSD) bit and byte

index, rindex (BSD)
strcasecmp, strncasecmp (BSD)

strspn, strcspn, strtok, strstr
elC strptr make a

et_ menu_mark, menu_mark menus mark
(BSD) string operations

strncmp, strcpy, strncpy, strdup,/
strerror get error message

ascftime convert date and time to
strtod, strtold, atof convert

strtol, strtoul, atol, atoi convert
strxfrm

/ strcadd, strecpy, streadd copy
/mvwgetstr, wgetnstr get character

/ mvwgetnwstr get wchar _ t character
get and set system information

/strncmp, strcpy, strncpy, strdup,
string: strcasecmp,

strncpy, strdup,/ string: strcat,
string: strcat, strncat, strcmp,

/strncat, strcmp, strncmp, strcpy,
/ strdup, strlen, strchr, strrchr,

/strncpy, strdup, strlen, strchr,
manipulations str: strfind,

/ strlen, strchr, strrchr, strpbrk,
strpbrk, strspn, strcspn, strtok,

string to double-precision number
/ strrchr, strpbrk, strspn, strcspn,

string to integer
double-precision number strtod,

to integer strtol,
and/ /wsspn, wscspn, wstok, wstostr,

str: strfind, strrspn,
offsetof offset of

t_ alloc allocate a library
t _free free a library

mktime converts a tm

getsubopt parse
pechochar,/ curs J'ad: newpad,
firstkey, nextkey (BSD) data base
delete, firstkey, nextkey database

dbm _open, dbm _store (BSD) data base
command processor for the forms

1050

string of wchar _t characters (and/
... curs _ addwchstr(3curses)
string of wchar _ t characters from a...... curs _ inwstr(3curses)
string of wchar _ t characters to a/ curs _ addwstr(3curses)
string on a stream puts(3S)
string on a stream putws(3W)
string operations and type/ /wscspn, wstring(3W)
string operations bstring: bcopy, bstring(3)
string operations .. index(3)
string operations string: .. string(3)
string operations / strpbrk, .. string(3C)
string pointer elC strptr(3E)
string routines menu_mark: menu _ mark(3curses)
string: strcasecmp, strncasecmp .. string(3)
string: strcat, strncat, strcmp, string(3C)
string " strerror(3C)
string strftime, cftime, ... strftime(3C)
string to double-precision number strtod(3C)
string to integer strtol(3C)
string transformation strxfrm(3C)
strings, compressing or expanding/ strccpy(3G)
strings from curses terminal! curs _getstr(3curses)
strings from curses terminal! curs _getwstr(3curses)
strings sysinfo sysinfo(2)
strlen, strchr, strrchr, strpbrk,/ .. string(3C)
strncasecmp (BSD) string operations string(3)
strncat, strcmp, strncmp, strcpy, string(3C)
strncmp, strcpy, strncpy, strdup,/ string(3C)
strncpy, strdup, strlen, strchr,/ .. string(3C)
strpbrk, strspn, strcspn, strtok,/ string(3C)
strrchr, strpbrk, strspn, strcspn,/ string(3C)
strrspn, strtrns string str(3G)
strspn, strcspn, strtok, strstr / string(3C)
strstr string operations / strrchr, string(3C)
strtod, strtold, atof convert strtod(3C)
strtok, strstr string operations .. string(3C)
strtol, strtoul, atol, atoi convert .. strtol(3C)
strtold, atof convert string to '" strtod(3C)
strtoul, atol, atoi convert string strtol(3C)
strtows wchar _ t string operations wstring(3W)
strtrns string manipulations ... str(3G)
structure member offsetof(3C)
structure ... t_ alloc(3N)
structure'... t_free(3N)
structure to a calendar time mktime(3C)
strxfrm string transformation strxfrm(3C)
sub options from a string getsubopt(3C)
subpad, prefresh, pnoutrefresh, curs J'ad(3curses)
subroutines / fetch, store, delete, ... ; dbm(3)
subroutines / fetch, store, dbm(3N)
subroutines / dbm _ nextkey, ... ndbm(3)
subsystem form_driver form _ driver(3curses)

Permuted Index

command processor for the menus
curs_window: newwin, delwin, mvwin,

/ scale_form forms window and
/ scale_menu menus window and

or erase forms from associated
or erase menus from associated

sync update
/ isspecial classify ASCII and
getwidth get information on

getgroups, setgroups get or set
initgroups initialize the

rx _ ack _exit, rc _free_conn REXEC
interval nap (XENIX)

microseconds usleep (BSD)
sleep (BSD)

sleep
pause

/ install a signal mask and
svc _ dg_ create, / rpc _ svc _create:

rpc _ svc _create: svc _create,
/ svc _create, svc _destroy,

svcerr _ noproc, / rpc _ svc _err:
rpc_svc_err:svcerr_auth,

/ svcerr _ auth, svcerr _decode,
/ svcerr _decode, svcerr _ noproc,
/ svcerr _ noproc, svcerr _ noprog,

/ svcerr _ noprog, svcerr yrogvers,
/ svcerr yrogvers, svcerr _ systemerr,

/ svc _destroy, svc _ dg_ create,
svc_getreqset,/ rpc_svcJeg:

rpc _ svc Jeg: svc _ freeargs,
/ svc _freeargs, svc _getargs,

/ svc _getargs, svc _getreqset,
/svc_ dg_ create, svc_fd _create,

rpc _ svc _calls: rpc Jeg,
/ svc _getreqset, svc_getrpccaller,

RPC/ /svc_getrpccaller, svcJun,
/ svc _fd _create, svc Jaw _create,
/ svc Jaw_create, svc _ tit create,
rpc_svc_calls: rpcJeg, svcJeg,

/svc_tli_create, svc_ tp _create,

swab
swapctl manage

contexts makecontext,

get information for a global kernel
dlsym get the address of a

elCgetarsym retrieve archive
readlink read the value of a

symlink make a

Permuted Index

subsystem menu_driver menu _ driver(3curses)
subwin, derwin, mvderwin, dupwin,/
............. curs _ window(3curses)
subwindow association routines form _ win(3curses)
subwindow association routines menu _ win(3curses)
subwindows /unpost_form write form yost(3curses)
subwindows /unpost_menu write menuyost(3curses)
super block sync(2)
supplementary code set characters wctype(3W)
supplementary code sets ... getwidth(3W)
supplementary group access list IDs getgroups(2)
supplementary group access list initgroups(3C)
support routines / rx _signal, rexecve(3N)
suspend execution for a short ... nap(2)
suspend execution for interval in usleep(3)
suspend execution for interval .. sleep(3)
suspend execution for interval................ sleep(3C)
suspend process until signal .. pause(2)
suspend process until signal.................. sigsuspend(2)
svc_create, svc_destroy, rpc_svc_create(3N)
svc_destroy, svc_dg_create,/ rpc_svc_create(3N)
svc _ dg_ create, svc jd _create, / rpc _ svc _ create(3N)
svcerr_auth, svcerr_decode, rpc_svc_err(3N)
svcerr _decode, svcerr _noproc, / rpc _ svc _ err(3N)
svcerr_noproc, svcerr_noprog,/ rpc_svc_err(3N)
svcerr_noprog, svcerryrogvers,/ rpc_svc_err(3N)
svcerryrogvers, svcerr_systemerr,/ rpc_svc_err(3N)
svcerr _ systemerr, svcerr _ weakauth/ rpc _ svc _ err(3N)
svcerr _ weakauth library routines/ rpc_svc_ err(3N)
svc _fd _create, svc Jaw _ create,/ rpc _svc _ create(3N)
svc_freeargs, svc_getargs, rpc_svcJeg(3N)
svc_getargs, svc_getreqset,/ rpc_svcJeg(3N)
svc_getreqset, svc_getrpccaller,/ rpc_svcJeg(3N)
svc_getrpccaller, svcJun,/ rpc_svcJeg(3N)
svcJaw _create, svc_tltcreate,/ rpc_svc_ create(3N)
svc Jeg, svc _ unreg, xprtJegister, / rpc _ svc _ calls(3N)
svcJun, svc_sendreply library/ rpc_svcJeg(3N)
svc _ sendreply library routines for rpc _ svc Jeg(3N)
svc_tli_create, svc_tp _create,/ rpc_svc_ create(3N)
svc _ tp _create, svc _ vc _create / rpc _ svc _ create(3N)
svc_unreg, xprtJegister,/ rpc_svc_calls(3N)
svc _ vc _create library routines for / rpc _ svc _ create(3N)
swab swap bytes swab(3C)
swap bytes swab(3C)
swap space swapctl(2)
swapcontext manipulate user makecontext(3C)
swapctI manage swap space ... swapctl(2)
symbol getksym getksym(2)
symbol in shared object dlsym(3X)
symbol table elCgetarsym(3E)
symbolic link .. readlink(2)
symbolic link to a file .. symlink(2)

1051

file

adjtime correct the time to allow
state with that on the/ fsync

segment sdenter, sdleave (XENIX)
storage msync
sdgetv (XENIX)

t_sync
select

/ derwin, mvderwin, dupwin, wsyncup,

variables
information

information strings
setlogmask (BSD) control system/

messages psignal,
syscall (BSD) indirect

privileges intro introduction to
(BSD) allow signals to interrupt
to allow synchronization of the
display a message on stderr or

perror print
directory entries and put in a file

statvfs, fstatvfs get file
sysinfo get and set

closelog, setlogmask (BSD) control
mount mount a file

file descriptor to file
reboot reboot

getpagesize (BSD) get
/ setrlimit control maximum

psignal, sys_siglist (BSD)
psignal, psiginfo

ustat get file
sysfs get file

umount unmount a file
uname get name of current UNIX

System Use Field from the specified
System Use/ cd _suf reads the cdfs

sysconf get configurable
bsearch binary search a sorted

retrieve archive symbol
class-dependent program header

cd _ cptrec read CD-ROM Path
getdtablesize (BSD) get descriptor

hdestroy manage hash search

1052

/netdir _free, netdir _options,
structure

symlink make a symbolic link to a symlink(2)
sync update super block ... sync(2)
synchronization of the system clock adjtime(2)
synchronize a file's in-memory .. fsync(2)
synchronize access to a shared data sdenter(2)
synchronize memory with physical....... msync(3C)
synchronize shared data access ... sdgetv(2)
synchronize transport library .. t_sync(3N)
synchronous I/O multiplexing ... select(3C)
syncok, wcursyncup, wsyncdown/ curs_window(3curses)
syscall (BSD) indirect system call syscall(3)
sysconf get configurable system sysconf(3C)
sysfs get file system type .. sysfs(2)
sysi86 machine specific functions sysi86(2)
sysinfo get and set system .. sysinfo(2)
syslog, openlog, closelog, .. syslog(3)
sys _ siglist (BSD) system signal ... psignal(3)
system call ... syscall(3)
system calls, error numbers, and .. intro(2)
system calls siginterrupt .. siginterrupt(3)
system clock / correct the time .. adjtime(2)
system console fmtmsg fmtmsg(3C)
system error messages perror(3C)
system independent format /read getdents(2)
system information .. statvfs(2)
system information strings .. sysinfo(2)
system issue a shell command system(3S)
system log syslog, openlog, ... syslog(3)
system .. mount(2)
system object / attach STREAMS-based fattach(3C)
system or halt processor reboot(3)
system page size .. getpagesize(3)
system resource consumption getrlimit(2)
system signal messages .. psignal(3)
system signal messages psignal(3C)
system statistics ... ustat(2)
system type information .. sysfs(2)
system .. umount(2)
system .. uname(2)
System Use Area /reads the cdfs cd_suf(3X)
System Use Field from the specified cd_suf(3X)
system variables sysconf(3C)
table .. bsearch(3C)
table elCgetarsym ... eICgetarsym(3E)
table / elf32 _ newphdr retrieve eICgetphdr(3E)
Table Record cd ytrec, .. cd ytrec(3X)
table size ... getdtablesize(3)
tables hsearch, hcreate, .. hsearch(3C)
t_ accept accept a connect request t_ accept(3N)
taddr2uaddr, uaddr2taddr,/ netdir _getbyname(3N)
t_ alloc allocate a library ... t_ alloc(3N)
tam TAM transition libraries tam(3curses)

Permuted Index

tam
acosf,/ trig: sin, sinf, cos, cosf,

trig: sin, sinf, cos, cosf, tan,
sinh, sinhf, cosh, coshf,

sinh, sinhf, cosh, coshf, tanh,
transport endpoint

tcgetattr, tcsetattr, tcsendbreak,
/ tcsendbreak, tcdrain, tcflush,

/tcsetattr, tcsendbreak, tcdrain,
tcdrain, tcflush, tcflow,/ termios:

general! / cfsetispeed, cfsetospeed,
/ cfsetospeed, tcgetpgrp, tcsetpgrp,

with another transport user
termios: tcgetattr, tcsetattr,

tCflush,/ termios: tcgetattr,
process group ID

terminal! / cfsetospeed, tcgetpgrp,
trees tsearch, tfind,

form_data: data_ahead, data_behind
menu item visible: item visible - - -

directory: opendir, readdir,
directory: opendir, readdir,

temporary file tmpnam,
tmpfile create a

tmpnam, tempnam create a name for a
/has _ic, has _il, killchar, longname,
curses interfaces (emulated) to the

ctermid generate file name for
ID tcsetpgrp set

/ timeout, wtimeout, typeahead curses
tcsetpgrp, tcgetsid general

push back) characters from curses
get character strings from curses

wchar t characters from curses
character strings from curses

dial establish an outgoing
/ scrollok, nl, nom curses

ttyname, isatty find name of a
WIFEXITED (BSD) wait for process to

exit, _exit
wait for child process to stop or

atexit add program
abort generate an abnormal
tigetstr curses interfaces to

tcsendbreak, tcdrain, tcflush'/
/killchar, longname, termattrs,

isastream
lock into memory or un10ck process,

gettxt retrieve a

Permuted Index

TAM transition libraries .. tam(3curses)
tan, tanf, asin, asinf, acos, trig(3M)
tanf, asin, asinf, acos, acosf,/ .. trig(3M)
tanh, tanhf, asinh, acosh, atanh/ .. sinh(3M)
tanhf, asinh, acosh, atanh/ .. sinh(3M)
t_ bind bind an address to a.. ... t_ bind(3N)
tcdrain, tcflush, tcflow,/ termios: termios(2)
tcflow, cfgetospeed, cfgetispeed,/ termios(2)
tCflush, tcflow, cfgetospeed,/ ... termios(2)
tcgetattr, tcsetattr, tcsendbreak, .. termios(2)
tcgetpgrp, tcsetpgrp, tcgetsid ... termios(2)
tcgetsid general terminal interface termios(2)
t_ close close a transport endpoint t_ close(3N)
t_ connect establish a connection t_ connect(3N)
tcsendbreak, tcdrain, tcflush,/ .. termios(2)
tcsetattr, tcsendbreak, tcdrain, .. termios(2)
tcsetpgrp set terminal foreground tcsetpgrp(3C)
tcsetpgrp, tcgetsid general .. termios(2)
tdelete, twalk manage binary search tsearch(3C)
tell if forms field has off-screen/ form _ data(3curses)
tell if menus item is visible menu_item _ visible(3curses)
telldir, seekdir, rewinddir,/ .. directory(3C)
telldir, seekdir, rewinddir,/ .. directory(3C)
tempnam create a name for a .. tmpnam(3S)
temporary file tmpfile(3S)
temporary file tmpnam(3S)
termattrs, termname curses/ curs_termattrs(3curses)
termcap library /tgoto, tputs curs_termcap(3curses)
terminal .. ctermid(3S)
terminal foreground process group tcsetpgrp(3C)
terminal input option control! curs_inopts(3curses)
terminal interface /tcgetpgrp, .. termios(2)
terminal keyboard / ungetch get (or curs _getch(3curses)
terminal keyboard / wgetnstr curs _getstr(3curses)
terminal keyboard / (or push back) curs _getwch(3curses)
terminal keyboard / get wchar _ t curs _getwstr(3curses)
terminal line connection dial(3N)
terminal output option control! curs _ outopts(3curses)
terminal .. ttyname(3C)
terminate or stop /WIFSIGNALED, wait(3)
terminate process ... exit(2)
terminate wait ... wait(2)
termination routine ... atexit(3C)
termination signal .. abort(3C)
terminfo database / tigetnum, curs _ terminfo(3curses)
termios: tcgetattr, tcsetattr, .. termios(2)
termname curses environment query /
.......... ... curs _ termattrs(3curses)

t_ error produce error message t_ error(3N)
test a file descriptor isastream(3C)
text, or data plock ... plock(2)
text string gettxt(3C)

1053

search trees tsearch,

tgetstr, tgoto,/ curs_termcap:
tputs / curs _ termcap: tgetent,

service information
curs _ termcap: tgetent, tgetflag,

/ tgetent, tgetflag, tgetnum,
/tgetflag, tgetnum, tgetstr,

/putp, vidputs, vidattr, mvcur,
vidputs, vidattr, mvcur, tigetflag,

/mvcur, tigetflag, tigetnum,
/raw, noraw, noqiflush, qiflush,

setitimer get/ set value of interval

the difference between two calendar
times

times get process and child process
times (BSD) get process

set file access and modification
utimes (BSD) set file

nice change priority of a
given offset from GMT

request
a transport endpoint

mktime converts a

temporary file
read (write) a curses screen from

/tolower, _toupper, _tolower,
popen, pelose initiate pipe

cony: toupper, tolower, _ toupper,
toascii translate/ cony: toupper,

endpoint
manipulation routines panet top:

current/ /current_item, set_topJow,

transport endpoint
curs_touch: touchwin,

wtouchln, / curs_touch:
translate/ cony: toupper, tolower,
_tolower, toascii translate/ cony:

wconv: towupper,
characters wconv:

vidattr, / / del_ curterm, restartterm,
/tgetflag, tgetnum, tgetstr, tgoto,
/ del_ curterm, restartterm, tparm,

ptrace process
strxfrm string

wchar _ t string operations and type
tam TAM

1054

tfind, tdelete, twalk manage binary............................... tsearch(3C)
t_free free a library structure .. t_free(3N)
tgetent, tgetflag, tgetnum, curs _ termcap(3curses)
tgetflag, tgetnum, tgetstr, tgoto, curs _ termcap(3curses)
t_getinfo get protocol-specific t_getinfo(3N)
tgetnum, tgetstr, tgoto, tputs/ curs_termcap(3curses)
t_getstate get the current state t_getstate(3N)
tgetstr, tgoto, tputs curses/ curs_termcap(3curses)
tgoto, tputs curses interfaces / curs _ termcap(3curses)
tigetflag, tigetnum, tigetstr / curs _ terminfo(3curses)
tigetnum, tigetstr curses/ /putp, curs _ terminfo(3curses)
tigetstr curses interfaces to / curs _ terminfo(3curses)
timeout, wtimeout, typeahead curses /
.. curs _ inopts(3curses)
timer getitimer, .. getitimer(3C)
times (BSD) get process times .. times(3C)
times difftime compute difftime(3C)
times get process and child process times(2)
times ... times(2)
times times(3C)
times utime ... utime(2)
times ... utimes(3)
time-sharing process .. nice(2)
timezone (BSD) get time zone name timezone(3)
tJisten listen for a connect ... tJisten(3N)
t_look look at the current event on tJook(3N)
tm structure to a calendar time mktime(3C)
tmpfile create a temporary file .. tmpfile(3S)
tmpnam, tempnam create a name for a tmpnam(3S)
(to) a file /scr _init, scr _set curs_scr _ dump (3curses)
toascii translate characters .. conv(3C)
to / from a process popen(3S)
_tolower, toascii translate/ ... conv(3C)
tolower, _toupper, _tolower, .. conv(3C)
t_ open establish a transport .. t_ open(3N)
top yanel, bottom yanel panels deck panet top(3curses)
top JOw, item_index set and get
.. menu_item _ current(3curses)
t_ optmgmt manage options for a........................... t_ optmgmt(3N)
touchline, untouchwin, wtouchln,/ curs_touch(3curses)
touchwin, touchline, untouchwin, curs _ touch(3curses)
_toupper, _tolower, toascii .. conv(3C)
toupper, tolower, _ toupper, .. conv(3C)
towlower translate characters .. wconv(3W)
towupper, towlower translate .. wconv(3W)
tparm, tputs, putp, vidputs, curs _ terminfo(3curses)
tputs curses interfaces (emulated) / curs _ termcap(3curses)
tputs, putp, vidputs, vidattr,/ curs _terminfo(3curses)
trace ... ptrace(2)
transformation strxfrm(3C)
transformation /wstostr, strtows wstring(3W)
transition libraries tam(3curses)

Permuted Index

_ toupper, _ tolower, to ascii
wconv: towupper, towlower

elf32 Jlatetom class-dependent data
generic transport name-to-address

t bind bind an address to a
t close close a

look at the current event on a
t_ open establish a

t_ optmgmt manage options for a
t unbind disable a

t_sync synchronize
translation I netdir _ sperror generic

nlsprovider get name of
establish a connection with another
ieee_handler (BSD) IEEE exception

panet below panels deck
data sent over a connection

confirmation from a connectl
disconnect

orderly release indication

error indication
ftw, nftw walk a file

tdelete, twalk manage binary search
tanf, asin, asinf, acos, acosf,/

acosf, atan, atanf, atan2, atan2f
specified length

manage binary search trees
over a connection

disconnect request
release

library
terminal

file of the current user
endpoint

tsearch, tfind, tdelete,
return the size of an object file

elf kind determine file
sysfs get file system

I fpclass, unordered determine
wchar _ t string operations and

field _ arg forms field data
option I I qiflush, timeout, wtimeout,

ctime, localtime, gmtime, asctime,
Inetdir _options, taddr2uaddr,

interval in microseconds
getpw get name from

filel I endspent, fgetspent, lckpwdf,

mask

Permuted Index

translate characters Itolower, ... conv(3C)
translate characters .. wconv(3W)
translation I elf32 Jlatetof, .. elC xlate(3E)
translation Inetdir _sperror netdir _getbyname(3N)
transport endpoint t_ bind(3N)
transport endpoint ... t_ close(3N)
transport endpoint tJook ... tJook(3N)
transport endpoint t_ open(3N)
transport endpoint .. t_ optmgmt(3N)
transport endpoint ... t_ unbind (3N)
transport library .. t_ sync (3N)
transport name-to-address netdir _getbyname(3N)
transport provider nlsprovider(3N)
transport user t_ connect .. t_ connect(3N)
trap handler function ieee _ handler(3)
traversal primitives Ipanel_above, panel_above(3curses)
tJcv receive data or expedited .. tJcv(3N)
tJcvconnect receive the .. tJcvconnect(3N)
tJcvdis retrieve information from tJcvdis(3N)
tJcvrel acknowledge receipt of an tJcvrel(3N)
tJcvudata receive a data unit tJcvudata(3N)
tJcvuderr receive a unit data tJcvuderr(3N)
tree ... ftw(3C)
trees tsearch, tfind, .. tsearch(3C)
trig: sin, sinf, cos, cosf, tan, ... trig (3M)
trigonometric functions I acos, ... trig(3M)
truncate, ftruncate set a file to a truncate(3C)
tsearch, tfind, tdelete, twalk tsearch(3C)
t_snd send data or expedited data t_snd(3N)
t_snddis send user-initiated ... t_snddis(3N)
t_sndrel initiate an orderly ... t_sndrel(3N)
t_sndudata send a data unit t_sndudata(3N)
t_sync synchronize transport .. t_sync(3N)
ttyname, isatty find name of a ttyname(3C)
ttyslot find the slot in the utmp ttyslot(3C)
t_ unbind disable a transport t_ unbind (3N)
twalk manage binary search trees tsearch(3C)
type elf _ fsize: elf32 _ fsize elC fsize(3E)
type elf _ kind(3E)
type information .. sysfs(2)
type of floating-point number ... isnan(3C)
type transformation I strtows wstring(3W)
type validation I field_type, form_field _ validation(3curses)
typeahead curses terminal input curs_inopts(3curses)
tzset convert date and time tol ... ctime(3C)
uaddr2taddr, netdir yerror, I netdir _getbyname(3N)
uadmin administrative control .. uadmin(2)
ualarm (BSD) schedule signal after ualarm(3)
UID getpw(3C)
ulckpwdf manipulate shadow password getspent(3C)
ulimit get and set user limits ... ulimit(2)
umask set and get file creation ... umask(2)

1055

system
putwin, getwin,/ curs util:

input stream
I getch, wgetch, mvgetch, mvwgetch,

into input stream
Iwgetwch, mvgetwch, mvwgetwch,

Isrand48, seed48, lcong48 generate
elf rawfile retrieve

mkstemp (BSD) make a
mktemp make a

gethostid (BSD) get
t rcvuderr receive a

t rcvudata receive a data
t sndudata send a data

uname get name of current

demand moduload
writing locking (XENIX) lock or

master I slave pair unlockpt
mlockall, muniockalliock or

mlock, munlock lock (or
plock lock into memory or

master I slave pair
munmap
umount

isnand, isnanf, finite, fpclass,
from/ form yost: post_form,

froml menu yost: post_menu,
assignments/ cd _setdevmap set or

pause suspend process
a signal mask and suspend process

curs_touch: touchwin, touchline,
elf_update

lsearch, lfind linear search and
sync

refresh routine panet update:

lutmpxname, getutmp, getutmpx,
I getutmp, getutmpx, updwtmp,

Use Field from the specified System
Usel cd _suf reads the cdfs System

levels for an application for
curs _ util: unctrl, keyname, filter,
set or get mappings of CD-ROM

setuid, setgid set
setcontext get and set current

makecontext, swapcontext manipulate
get character login name of the

I geteuid, getgid, getegid get real
getdate convert

1056

umount unmount a file system .. umount(2)
uname get name of current UNIX uname(2)
unctrl, keyname, filter, use_env, curs_util(3curses)
ungetc push character back onto ungetc(3S)
ungetch get (or push back)/ curs_getch(3curses)
ungetwc push wchar _ t character back ungetwc(3W)
ungetwch get (or push back) wchar_tl
... curs _getwch(3curses)
uniformly distributed pseudo-random/ drand48(3C)
uninterpreted file contents .. eICrawfile(3E)
unique file name .. mkstemp(3)
unique file name ... mktemp(3C)
unique identifier of current host gethostid(3)
unit data error indication ... tJcvuderr(3N)
unit ... t_rcvudata(3N)
unit .. t_sndudata(3N)
UNIX system .. uname(2)
unlink remove directory entry ... unlink(2)
unload a loadable kernel module on moduload(2)
unlock a file region for reading or locking(2)
unlock a pseudo-terminal unlockpt(3C)
unlock address space ... mlockall(3C)
unlock) pages in memory ... mlock(3C)
unlock process, text, or data ... plock(2)
unlockpt unlock a pseudo-terminal '" unlockpt(3C)
unmap pages of memory .. munmap(2)
unmount a file system ... umount(2)
unordered determine type of! isnan, isnan(3C)
unpost_form write or erase forms form yost(3curses)
unpost_ menu write or erase menus menu yost(3curses)
unset major and minor numbers cd _setdevmap(3X)
until signal .. pause(2)
until signal sigsuspend install sigsuspend(2)
untouchwin, wtouchln,/ curs _ touch(3curses)
update an ELF descriptor elC update(3E)
update .. Isearch(3C)
update super block sync(2)
update yanels panels virtual screen
... panel_ update(3curses)
updwtmp, updwtmpx access utmpx filel getutx(3C)
updwtmpx access utmpx file entry................................. getutx(3C)
Use Area / reads the cdfs System cd _ suf(3X)
Use Field from the specified System cd _suf(3X)
use with fmtmsg I a list of severity addseverity(3C)
use _ env, putwin, getwin,1 curs _ util(3curses)
user and group IDs cd _idmap cd _idmap(3X)
user and group IDs ... setuid(2)
user context getcontext, .. getcontext(2)
user contexts makecontext(3C)
user cuserid .. cuserid(3S)
user, effective user, real group'/ .. getuid(2)
user format date and time .. getdate(3C)

Permuted Index

/ia _getJogexpire get
default CD-ROM file permissions,

(BSD) set real and effective
ulimit get and set

/ getegid get real user, effective
endusershell (BSD) get legal

a connection with another transport
in the utmp file of the current

secure / / netname2host, netname2user,
t snddis send

set env set the
set id set the

maillock manage lockfile for
rusers return information about

elf end finish
interval in microseconds

flushinp miscellaneous curses
get information about resource

modification times

setutent, endutent, utmpname access
ttyslot find the slot in the

/pututline, setutent, endutent,
getutmpx, updwtmp, updwtmpx access

/pututxline, setutxent, endutxent,
field _ arg forms field data type
free, realloc, calloc, memalign,

abs, labs return integer absolute
decimal record to floating-point

elf_hash compute hash
getenv return

floor, ceiling, remainder, absolute
readlink read the

getitimer, setitimer get/ set
/ (BSD) convert floating-point

putenv change or add
/htonl, htons, ntohl, ntohs convert
item_value set and get menus item

print formatted output of a
pathconf get configurable pathname

sysconf get configurable system
get option letter from argument

assert
ELF library and application

curses borders, horizontal and
virtual memory efficient way

output of a variable/ vprintf,
getvfsspec, getvfsany get

nlsgetcall get client's data passed
/tparm, tputs, putp, vidputs,

/restartterm, tparm, tputs, putp,

Permuted Index

user identification and/ .. ia _ uinfo(3I)
user IDs, and group IDs / set or get cd _ defs(3X)
user IDs setreuid .. setreuid(3)
user limits ... ulimit(2)
user, real group, and effective/ .. getuid(2)
user shells / setusershell, .. getusershell(3)
user t_ connect establish ... t_ connect(3N)
user ttyslot find the slot ttyslot(3C)
user2netname library routines for secure JPc(3N)
user-initiated disconnect request t_ snddis(3N)
user's environment ... set_ env(3I)
user's identity ... set_id(3I)
user's mailbox maillock(3X)
users on remote machines .. rusers(3N)
using an object file elC end(3E)
usleep (BSD) suspend execution for usleep(3)
ustat get file system statistics .. ustat(2)
utility routines /draino, curs_util(3curses)
utilization getrusage (BSD) .. getrusage(3)
utime set file access and .. utime(2)
utimes (BSD) set file times .. utimes(3)
utmp file entry /pututline, ... getut(3C)
utmp file of the current user ttyslot(3C)
utmpname access utmp file entry getut(3C)
utmpx file entry / getutmp, .. getutx(3C)
utmpxname, getutmp, getutmpx,/ getutx(3C)
validation / field _type, form_field _ validation(3curses)
valloc, memory allocator malloc, malloc(3C)
value abs(3C)
value / (BSD) convert decimat to _ floating(3)
value elf _ hash(3E)
value for environment name ... getenv(3C)
value functions /rint, remainder floor (3M)
value of a symbolic link ... readlink(2)
value of interval timer .. getitimer(3C)
value to decimal record floating_to _ decimal(3)
value to environment putenv(3C)
values between host and network/ byteorder(3N)
values /set_item_value, menu_item_value(3curses)
variable argument list /vsprintf vprintf(3S)
variables fpathconf, ... fpathconf(2)
variables .. sysconf(3C)
vector getopt getopt(3C)
verify program assertion assert(3X)
versions elf_version coordinate elf _ version(3E)
vertical lines /wvline create curs_border(3curses)
vfork spawn new process in a............... vfork(2)
vfprintf, vsprintf print formatted vprintf(3S)
vfstab file entry / getvfsfile, getvfsent(3C)
via the listener .. nlsgetcall(3N)
vidattr, mvcur, tigetflag,/ curs_terminfo(3curses)
vidputs, vidattr, mvcur, tigetflag,/ curs_terminfo(3curses)

1057

vfork spawn new process in a
move a panels window on the

panet update: update J'anels panels
item visible tell if menus item is

Iwborder, box, hline, whline,
cd J'vd, cd _ cpvd read CD-ROM Primary

standard format pfmt,
formatted output of a variable I

conversion printf: sprintf,
a variable I vprintf, vfprintf,

inl Iwprintw, mvprintw, mvwprintw,
Iscanw, wscanw, mvscanw, mvwscanw,

echochar,1 curs_addch: addch,
I addchstr, addchnstr, waddchstr,

curs _ addchstr: addchstr, addchnstr,

I addstr, addnstr, waddstr,
I addwstr, addnwstr, waddwstr,

curs _addstr: addstr, addnstr,
echowchar,1 curs _addwch: addwch,

I addwchstr, addwchnstr, waddwchstr,
I addwchstr, addwchnstr,

curs_addwstr: addwstr, addnwstr,

state waitid
state waitpid

terminate wait
release blocked signals and

:op IWIFSIGNALED, WIFEXITED (BSD)
or terminate

NIFSIGNALED, WIFEXITED (BSD) wait I
WIFEXITED (BSD) wait for I wait:

change state
sigsem (XENIX) signal a process

change state
and check access to a resource I

ftw,nftw
wattrset,1 curs _attr: attroff,

I attroff, wattroff, attron,
Iwattroff, attron, wattron, attrset,

curs_bkgd: bkgdset, wbkgdset, bkgd,
background I curs _bkgd: bkgdset,

wvline createl curs_border: border,
winwch, mvinwch, mvwinwch get a

stream ungetwc push
I mvinswch, mvwinswch insert a

putwc, putwchar, fputwc put
stream getwc, getwchar, fgetwc get

curses I Imvwgetwstr, mvwgetnwstr get

1058

virtual memory efficient way ... vfork(2)
virtual screen I move J'anel panet move(3curses)
virtual screen refresh routine panet update(3curses)
visible menu_item _visible: menu_item _ visible(3curses)
vline, wvline create curses I curs_border(3curses)
Volume Descriptor (PVD) .. cd J'vd(3X)
vpfmt display error message in .. pfmt(3C)
vprintf, vfprintf, vsprintf print vprintf(3S)
vsprintf (BSD) formatted output printf(3S)
vsprintf print formatted output of vprintf(3S)
vwprintw print formatted output cursJ'rintw(3curses)
vwscanw convert formatted inputl curs_scanw(3curses)
waddch, mvaddch, mvwaddch, curs_addch(3curses)
waddchnstr, mvaddchstr,1 curs_addchstr(3curses)
waddchstr, waddchnstr, mvaddchstr,1
.. curs _ addchstr(3curses)
waddnstr, mvaddstr, mvaddnstr,/ curs_addstr(3curses)
waddnwstr, mvaddwstr, mvaddnwstr,1
... curs _ addwstr(3curses)
waddstr, waddnstr, mvaddstr,1 curs_addstr(3curses)
waddwch, mvaddwch, mvwaddwch,
... curs _ addwch(3curses)

waddwchnstr, mvaddwchstr,/ curs_addwchstr(3curses)
waddwchstr, waddwchnstr,1 curs_addwchstr(3curses)
waddwstr, waddnwstr, mvaddwstr,1
... curs_addwstr(3curses)
wait for child process to change ... waitid(2)
wait for child process to change waitpid(2)
wait for child process to stop or ... wait(2)
wait for interrupt I automatically sigpause(3)
wait for process to terminate or ... wait(3)
wait wait for child process to stop ... wait(2)
wait: wait3, WIFSTOPPED, .. wait(3)
wait3, WIFSTOPPED, WIFSIGNALED, wait(3)
waitid wait for child process to .. waitid(2)
waiting on a semaphore sigsem(2)
waitpid wait for child process to waitpid(2)
waitsem, nbwaitsem (XENIX) await waitsem(2)
walk a file tree ftw(3C)
wattroff, attron, wattron, attrset, curs _ attr(3curses)
wattron, attrset, wattrset,1 curs_attr(3curses)
wattrset, standend, wstandend,1 curs_attr(3curses)
wbkgd curses window background I curs_bkgd(3curses)
wbkgdset, bkgd, wbkgd curses window
... curs _ bkgd(3curses)
wborder, box, hline, whline, vline, curs _ border(3curses)
wchar _ t character and its I I inwch, curs _ inwch(3curses)
wchar _ t character back into input ungetwc(3W)
wchar _ t character before the I curs _ inswch(3curses)
wchar _ t character on a stream .. putwc(3W)
wchar _ t character or word from a getwc(3W)
wchar _ t character strings from curs _getwstr(3curses)

Permuted Index

to a/ /echowchar, wechowchar add a
from/ / mvwinwchnstr get a string of
to a/ /mvwaddwchnstr add string of

window /mvwinnwstr get a string of
/ungetwch get (or push back)

window / / mvwaddnwstr add a string of
/mvwinswstr, mvwinsnwstr insert

getws, fgetws get a
putws, fputws put a

/wscspn, wstok, wstostr, strtows
curs_clear: erase, werase, clear,
/werase, clear, wclear, clrtobot,

/ clrtobot, wclrtobot, clrtoeol,
characters

mbstring: mbstowcs,
mbchar: mbtowc, mblen,

iswlower, iswdigit, iswxdigit,/
/mvderwin, dupwin, wsyncup, syncok,

character under / curs _ delch: delch,
insertln,/ curs _ deleteln: deleteln,
/ mvaddch, mvwaddch, echochar,

/mvaddwch, mvwaddwch, echowchar,

wclrtobot,/ curs_clear: erase,
get (or push/ curs_getch: getch,

/wgetstr, mvgetstr, mvwgetstr,
/ getwstr, getnwstr, wgetwstr,

wgetnstr get/ curs _getstr: getstr,
ungetwch get/ curs _getwch: getwch,

curs_getwstr: getwstr, getnwstr,
encrypted isencrypt determine

/border, wborder, box, hline,
routines

formatted input from a curses

/wait3, WIFSTOPPED, WIFSIGNALED,
for/ wait: wait3, WIFSTOPPED,

(BSD) wait for/ wait: wait3,
character and its/ curs_inch: inch,

/inchstr, inchnstr, winchstr,
curs _inchstr: inchstr, inchnstr,

/(with attributes) to a curses
a string of characters to a curses

/(with attributes) to a curses
of wchar t characters to a curses

/form_sub, scale_form forms
/menu _sub, scale_menu menus

/wstandout curses character and

Permuted Index

wchar _ t character (with attributes) curs _addwch(3curses)
wchar_t characters (and attributes) curs_inwchstr(3curses)
wchar _ t characters (and attributes)
............................ ... curs _ addwchstr(3curses)
wchar _ t characters from a curses curs _inwstr(3curses)
wchar _ t characters from curses / curs _getwch(3curses)
wchar_t characters to a curses curs_addwstr(3curses)
wchar _ t string before character/ curs _ inswstr(3curses)
wchar _ t string from a stream getws(3W)
wchar _ t string on a stream .. putws(3W)
wchar _ t string operations and type/ wstring(3W)
wclear, clrtobot, wclrtobot,/ curs _ clear(3curses)
wclrtobot, clrtoeol, wclrtoeol/ curs _ clear(3curses)
wclrtoeol clear all or part of a/ curs _ clear(3curses)
wconv: towupper, towlower translate wconv(3W)
wcstombs multibyte string functions mbstring(3C)
wctomb multibyte character handling mbchar(3C)
wctype: iswalpha, iswupper, ... wctype(3W)
wcursyncup, wsyncdown create curses/
..... curs _ window(3curses)
wdelch, mvdelch, mvwdelch delete curs _ delch(3curses)
wdeleteln, insdelln, winsdelln, curs _ deleteln(3curses)
wechochar add a character (with/ curs_addch(3curses)
wechowchar add a wchar _ t character /
... curs_addwch(3curses)
werase, clear, wclear, clrtobot, curs _ clear(3curses)
wgetch, mvgetch, mvwgetch, ungetch curs _getch(3curses)
wgetnstr get character strings from/ curs_getstr(3curses)
wgetnwstr, mvgetwstr, mvgetnwstr,/
........ curs _getwstr(3curses)
wgetstr, mvgetstr, mvwgetstr, curs_getstr(3curses)
wgetwch, mvgetwch, mvwgetwch, curs_getwch(3curses)
wgetwstr, wgetnwstr, mvgetwstr,/ curs_getwstr(3curses)
whether a character buffer is isencrypt(3G)
whline, vline, wvline create curses/ curs_border(3curses)
widec multibyte character I/O .. widec(3W)
widow /mvwscanw, vwscanw convert
.. curs _ scanw(3curses)
WIFEXITED (BSD) wait for process to/ wait(3)
WIFSIGNALED, WIFEXITED (BSD) wait wait(3)
WIFSTOPPED, WIFSIGNALED, WIFEXITED wait(3)
winch, mvinch, mvwinch get a curs_inch(3curses)
winchnstr, mvinchstr, mvinchnstr,/ curs _inchstr(3curses)
winchstr, winchnstr, mvinchstr, / curs _ inchstr(3curses)
window and advance cursor curs_addch(3curses)
window and advance cursor /add curs_addstr(3curses)
window and advance cursor curs_addwch(3curses)
window and advance cursor / a string
.. ... curs _ addwstr(3curses)
window and subwindow association/ form_win(3curses)
window and subwindow association/ menu_win(3curses)
window attribute control routines curs _ attr(3curses)

1059

/wbkgdset, bkgd, wbkgd curses
getmaxyx get curses cursor and

(and attributes) to a curses
(and attributes) to a curses
clear all or part of a curses

under cursor in a curses
delete and insert lines in a curses

and its attributes from a curses
(and attributes) from a curses

under the cursor in a curses
under the cursor in a curses

string of characters from a curses
under the cursor in a curses
under the cursor in a curses

and its attributes from a curses
(and attributes) from a curses

of wchar t characters from a curses
curs_move: move, wmove move curses

pos _form_cursor position forms
scroll, srcl, wscrl scroll a curses

/ get or set the current
/ move J>anel move a panels

redrawwin, wredrawln refresh curses
and manipulate overlapped curses

print formatted output in curses
wcursyncup, wsyncdown create curses

curs _instr: instr, innstr, winstr,
/inwstr, innwstr, winwstr,

character / curs _insch: insch,
/ deleteln, wdeleteln, insdelln,
/ insdelln, winsdelln, insertln,

/insstr, insnstr, winsstr,
/inswstr, insnwstr, winswstr,

curs _insstr: insstr, insnstr,
curs _instr: instr, innstr,

a wchar _ t/ curs _ inswch: inswch,

curs _inswstr: inswstr, insnwstr,
wchar_t/ curs_inwch: inwch,

/inwchstr, inwchnstr, winwchstr,
curs _inwchstr: inwchstr, inwchnstr,

curs _inwstr: inwstr, innwstr,
/ echochar, wechochar add a character
/ wechowchar add a wchar _ t character

curs_move: move,
curs_refresh: refresh, wrefresh,

fgetc, getw get character or

1060

window background manipulation/ curs _ bkgd(3curses)
window coordinates / getbegyx, curs _getyx(3curses)
window / add string of characters curs _ addchstr(3curses)
window / of wchar _ t characters curs _ addwchstr(3curses)
window / clrtoeol, wclrtoeol curs _ clear(3curses)
window / mvwdelch delete character curs _ delch(3curses)
window /insertln, winsertln curs _ deleteln(3curses)
window /mvwinch get a character curs_inch(3curses)
window / get a string of characters curs _ inchstr(3curses)
window /before the character curs _ insch(3curses)
window / string before charact{!r curs _insstr(3curses)
window /mvwinstr, mvwinnstr get a cursJnstr(3curses)
window /before the character curs_inswch(3curses)
window / string before character curs _ inswstr(3curses)
window / get a wchar _ t character curs _ inwch(3curses)
window / of wchar _ t characters curs _ inwchstr(3curses)
window /mvwinnwstr get a string curs_inwstr(3curses)
window cursor curs _move(3curses)
window cursor form_cursor: form _ cursor(3curses)
window curs_scroll: ... curs _ scroll(3curses)
window of a panels panel panet window(3curses)
window on the virtual screen panel_ move(3curses)
windows and lines /doupdate, cursJefresh(3curses)
windows / overwrite, copywin overlap
.. curs_overlay(3curses)

windows /mvwprintw, vwprintw cursJ>rintw(3curses)
windows / dupwin, wsyncup, sync ok,
.... curs _ window(3curses)
winnstr, mvinstr, mvinnstr,/ curs_instr(3curses)
winnwstr, mvinwstr, mvinnwstr,/ curs_inwstr(3curses)
winsch, mvinsch, mvwinsch insert a curs _ insch(3curses)
winsdelln, insertln, winsertln/ curs_deleteln(3curses)
winsertln delete and insert lines / curs _ deleteln(3curses)
winsnstr, mvinsstr, mvinsnstr,/ curs_insstr(3curses)
winsnwstr, mvinswstr, mvinsnwstr,/
... curs _ inswstr(3curses)
winsstr, winsnstr, mvinsstr, / curs _ insstr(3curses)
winstr, winnstr, mvinstr, mvinnstr,/ curs_instr(3curses)
winswch, mvinswch, mvwinswch insert
... curs_inswch(3curses)
winswstr, winsnwstr, mvinswstr,/ curs _ inswstr(3curses)
winwch, mvinwch, mvwinwch get a curs_inwch(3curses)
winwchnstr, mvinwchstr, / curs Jnwchstr(3curses)
winwchstr, winwchnstr, mvinwchstr,/
...... curs _ inwchstr(3curses)
winwstr, winnwstr, mvinwstr,/ curs_inwstr(3curses)
(with attributes) to a curses/ curs_addch(3curses)
(with attributes) to a curses/ curs_addwch(3curses)
wmove move curses window cursor curs _ move(3curses)
wnoutrefresh, doupdate, redrawwin,/
... curs _ refresh(3curses)
word from a stream getc, getchar, getc(3S)

Permuted Index

fgetwc get wchar _ t character or
fputc, putw put character or

chdir, fchdir change
getcwd get pathname of current

getwd (BSD) get current
vwprintw / curs yrintw: printw,

/wnoutrefresh, doupdate, redrawwin,
redrawwin,/ curs Jefresh: refresh,

/scr Jestore, scr_init, scr_set read

auditdmp
write, writev

form yost: post_form, unpost_form
menu yost: post_menu, unpost_ menu

putpwent
putspent

rwall

write,
unlock a file region for reading or

open open for reading or
convert/ curs_scanw: scanw,

wscpy, wsncpy, wslen,/ wstring:
/wsncmp, wscpy, wsncpy, wslen,

wslen,/ wstring: wscat, wsncat,
/wscat, wsncat, wscmp, wsncmp,

curs_scroll: scroll, srel,
/wschr, wsrchr, wspbrk, wsspn,

/idcok immedok,leaveok, setscrreg,
/wscmp, wsncmp, wscpy, wsncpy,

wsncpy, wslen,/ wstring: wscat,
wstring: wscat, wsncat, wscmp,

/wsncat, wscmp, wsncmp, wscpy,
/wsncpy, wslen, wschr, wsrchr,
/wscpy, wsncpy, wslen, wschr,
/wslen, wschr, wsrchr, wspbrk,

/ attrset, wattrset, standend,
/ standend, wstandend, standout,
/wsrchr, wspbrk, wsspn, wscspn,
/wspbrk, wsspn, wscspn, wstok,

wsncmp, wscpy, wsncpy, wslen,/
/wsyncup, syncok, wcursyncup,

/ subwin, derwin, mvderwin, dupwin,
/noraw, noqiflush, qiflush, timeout,

/touchwin, touchline, untouchwin,
/wborder, box, hline, whline, vline,

CD-ROM Extended Attribute Record
data representation

/ xdr Jejected Jeply, xdr Jeplymsg

Permuted Index

word from a stream / getwchar, getwc(3W)
word on a stream putc, putchar, .. putc(3S)
working directory chdir(2)
working directory .. getcwd(3C)
working directory pathname .. getwd(3)
wprintw,mvprintw,mvwprintw, cursyrintw(3curses)
wredrawln refresh curses windows/ cursJefresh(3curses)
wrefresh, wnoutrefresh, doupdate, curs Jefresh(3curses)
(write) a curses screen from (to) a/
.. curs_scr_dump(3curses)
write audit record to audit buffer auditdmp(2)
write on a file ... write(2)
write or erase forms from/ formyost(3curses)
write or erase menus from/ menuyost(3curses)
write password file entry .. putpwent(3C)
write shadow password file entry putspent(3C)
write to specified remote machines rwall(3N)
write, writev write on a file ... write(2)
writev write on a file .. write(2)
writing locking (XENIX) lock or locking(2)
writing .. open(2)
wscanw, mvscanw, mvwscanw, vwscanw
... curs_scanw(3curses)
wscat, wsncat, wscmp, wsncmp, wstring(3W)
wschr, wsrchr, wspbrk, wsspn,/ wstring(3W)
wscmp, wsncmp, wscpy, wsncpy, wstring(3W)
wscpy, wsncpy, wslen, wschr,/ wstring(3W)
wscrl scroll a curses window.... curs _ scroll(3curses)
wscspn, wstok, wstostr, strtows/ wstring(3W)
wsetscrreg, scrollok, nl, nonl! curs _ outopts(3curses)
wslen, wschr, wsrchr, wspbrk,/ wstring(3W)
wsncat, wscmp, wsncmp, wscpy, wstring(3W)
wsncmp, wscpy, wsncpy, wslen,/ wstring(3W)
wsncpy, wslen, wschr, wsrchr,/ wstring(3W)
wspbrk, wsspn, wscspn, wstok,/ wstring(3W)
wsrchr, wspbrk, wsspn, wscspn,/ wstring(3W)
wsspn, wscspn, wstok, wstostr,/ wstring(3W)
wstandend, standout, wstandout/ curs _ attr(3curses)
wstandout curses character and/ curs_attr(3curses)
wstok, wstostr, strtows wchar _ t/ wstring(3W)
wstostr, strtows wchar _ t string/ wstring(3W)
wstring: wscat, wsncat, wscmp, wstring(3W)
wsyncdown create curses windows
... curs _ window(3curses)
wsyncup, syncok, wcursyncup,/ curs_window(3curses)
wtimeout, typeahead curses terminal!
... curs _ inopts(3curses)
wtouchln, is _linetouched, / curs _ touch(3curses)
wvline create curses borders,/ curs_border(3curses)
(XAR) cd _ xar, cd _ cxar read ... cd _ xar(3X)
xdr library routines for external ... xdr(3N)
XDR library routines for remote/ rpc _ xdr(3N)

1061

xdr _ authsys J>arms,! rpc _ xdr:
xdrrec _ eof, xdr _ setpos library I

xdr J>ointer,! xdr _complex:
rpc_xdr: xdr_acceptedJeply,

xdr _ enum, xdr _float,! xdr _simple:
xdr _complex: xdr _array,

Ixdr _authsys J>arms,
Ixdr_authsysJ>arms, xdr_callhdr,
xdr_float,1 xdr_simple: xdr_bool,

xdr_opaque, xdrJ>ointer,1
xdrmem _create, xdrrec _create,!

xdrrec_create,1 xdr_create:
xdr_simple: xdr_bool, xdr_char,

Ixdr _ bool, xdr _char, xdr _double,
Ixdr_char, xdr_double, xdr_enum,
Ixdr_double, xdr_enum, xdr_float,

xdr _ setpos library I xdr _ admin:
library I xdr _admin: xdr _getpos,

I xdr _ enum, xdr _float, xdr _free,
Ixdr_float, xdr_free, xdr_int,

xdr _create: xdr _destroy,
xdr_complex: xdr_array, xdr_bytes,

Ixdr _ callhdr, xdr _ callmsg,
I xdr _array, xdr _bytes, xdr _opaque,

I xdr _destroy, xdrmem _create,
xdr_admin: xdr_getpos, xdr_inline,

Ixdr _bytes, xdr _opaque, xdr J>ointer,
XDRI Ixdr_callmsg, xdr_opaque_auth,

for remote I IxdrJejectedJeply,
I xdr _getpos, xdr _ inline, xdrrec _ eof,

Ixdr_free, xdr_int, xdrJong,
xdr _double, xdr _ enum, xdr _float, I

external data representation
for I I xdrmem _create, xdrrec _create,

IxdrJ>ointer, xdrJeference,
xdr_int, xdr_long, xdr_short,

Ixdr_long, xdr_short, xdr_u_char,
I xdr _reference, xdr _string,

I xdr _short, xdr _ u _char, xdr _ u Jong,
routines I I xdr _string, xdr _ union,

external! I xdr _ u Jong, xdr _ u _short,
/ xdr _string, xdr _union, xdr _vector,

data segment sdget, sdfree
resource I waitsem, nbwaitsem

chsize
data to be read rdchk

binary semaphore creatsem
stat, lstat, fstat

£time
memory lock

region for reading or I locking
special or ordinary file mknod

1062

xdr_accepted_reply, ... rpc_xdr(3N)
xdr_admin: xdr_getpos, xdr_inline, xdr_admin(3N)
xdr _array, xdr _bytes, xdr _opaque, xdr _ complex(3N)
xdr_authsysJ>arms, xdr_callhdr,1 rpc_xdr(3N)
xdr_bool, xdr _char, xdr_double, xdr_simple(3N)
xdr _bytes, xdr _opaque, xdr J>ointer,! xdr _ complex(3N)
xdr _ callhdr, xdr _ callmsg,! rpc _ xdr(3N)
xdr_callmsg, xdr_opaque_auth,1 rpc_xdr(3N)
xdr_char, xdr_double, xdr_enum, xdr_simple(3N)
xdr_complex: xdr_array, xdr_bytes, xdr_complex(3N)
xdr _create: xdr _destroy, .. xdr _ create(3N)
xdr _destroy, xdrmem _create, xdr _ create (3N)
xdr _double, xdr _ enum, xdr _float, I xdr _ simple (3N)
xdr _ enum, xdr _float, xdr _free, I xdr _simple(3N)
xdr _float, xdr _free, xdr _int,1 xdr _simple(3N)
xdr_free, xdr_int, xdrJong,1 xdr_simple(3N)
xdr _getpos, xdr _ inline, xdrrec _ eof, xdr _ admin(3N)
xdr_inline, xdrrec_eof, xdr _setpos xdr_admin(3N)
xdrJnt, xdrJong, xdr_short,1 xdr_simple(3N)
xdr Jong, xdr _short, xdr _ u _char,! xdr _ simple(3N)
xdrmem_create, xdrrec_create,1 xdr_create(3N)
xdr _opaque, xdr J>ointer,1 xdr _ complex(3N)
xdr_opaque_auth,1 .. rpcJdr(3N)
xdrJ>ointer, xdrJeference,1 xdr_complex(3N)
xdrrec _create, xdrstdio _ createl xdr _ create (3N)
xdrrec _ eof, xdr _ setpos library I xdr _ admin(3N)
xdr Jeference, xdr _string, I xdr _ complex(3N)
xdrJejectedJeply, xdr_replymsg rpcJdr(3N)
xdr _ replymsg XDR library routines rpc _ xdr(3N)
xdr_setpos library routines fori xdr_admin(3N)
xdr_short, xdr_u_char, xdr_uJong,1 xdr_simple(3N)
xdr _simple: xdr _ bool, xdr _char, xdr _ simple(3N)
xdr _ sizeof library routine for xdr _ sizeof(3N)
xdrstdio _create library routines xdr _ create (3N)
xdr_string, xdr_union, xdr_vector,1 xdr_complex(3N)
xdr_u_char, xdr_u_long,1 Ixdr_free, xdr_simple(3N)
xdr_u_long, xdr_u_short, xdr_voidl xdr_simple(3N)
xdr _union, xdr _vector,! xdr _ complex(3N)
xdr _ u _short, xdr _void library I xdr _simple (3N)
xdr _vector, xdr _ wrapstring library xdr _ complex(3N)
xdr _void library routines for xdr _ simple(3N)
xdr _ wrap string library routines for I xdr _ complex(3N)
(XENIX) attach and detach a shared sdget(2)
(XENIX) await and check access to a waitsem(2)
(XENIX) change the size of a file chsize(2)
(XENIX) check to see if there is rdchk(2)
(XENIX) create an instance of a creatsem(2)
(XENIX) get file status stat(2)
(XENIX) get time and date .. ftime(2)
(XENIX) lock a process in primary...... lock(2)
(XENIX) lock or unlock a file locking(2)
(XENIX) make a directory, or a ... mknod(2)

Permuted Index

opensem
a semaphore sigsem

short interval nap
shared datal sdenter, sdleave

access sdgetv
Irpc_reg,svc_reg,svc_unreg,

I svc Jeg, svc _ unreg, xprtJegister,
Ipow, gcd, rpow, msqrt, sdiv, itom,

bessel: jO, jI, jn,
bessel: jO, jI, jn, yO,

bessel: jO, jI, jn, yO, yI,
Iyp_match, yp_first, yp_next,

ypclnt, yp _get_ default_domain,
yp_bind, yp_unbind, yp_match,/

/yp_all, yp_order, yp_master,
/ yp _bind, yp _unbind, yp _match,
yp _unbind, yp _ match,/ ypclnt,

NISI /yp_next, yp_all, yp_order,
yp_all,/ /yp_bind, yp_unbind,
Iyp _unbind, yp _match, yp jirst,

/yp _first, yp _next, yp _all,
/ yp _order, yp _master, yperr _string,

/ yp _get_ default_domain, yp _bind,

timezone (BSD) get time
OaI,2

Permuted Index

(XENIX) open a semaphore .. opensem(2)
(XENIX) signal a process waiting on sigsem(2)
(XENIX) suspend execution for a ... nap(2)
(XENIX) synchronize access to a sdenter(2)
(XENIX) synchronize shared data sdgetv(2)
xprtJegister, xprt_unregister/ rpc_svc_calls(3N)
xprt_unregister library routines/ rpc_svc_calls(3N)
xtom, mtox, mfree (BSD) multiple/ .. mp(3)
yO, yI, yn Bessel functions .. bessel(3M)
yI, yn Bessel functions .. bessel(3M)
yn Bessel functions bessel(3M)
yp_all, yp_order, yp_master,! .. ypclnt(3N)
yp _bind, yp _unbind, yp _match,! ypclnt(3N)
ypclnt, yp _get_ default_domain, ypclnt(3N)
yperr_string, ypprot_err NIS client/ ypclnt(3N)
yp _first, yp _next, yp _all, / ypclnt(3N)
yp _get_ default_domain, yp _bind, ypclnt(3N)
yp _master, yperr _string, ypprot_ err ypclnt(3N)
yp _match, yp _first, yp _next, ... ypclnt(3N)
yp _next, yp _all, yp _ order,/ ... ypclnt(3N)
yp_order, yp_master, yperr_string,/ ypclnt(3N)
ypprot_ err NIS client interface .. ypclnt(3N)
yp _unbind, yp _match, yp _first,/ ypclnt(3N)
yp _update change NIS information yp _ update(3N)
zone name given offset from GMT timezone(3)

1063

UNIX® SVR4.2 PUBLISHED BOOKS

----User's Series----

Guide to the UNIX® Desktop
User's Guide

--Administration Series--

Basic System Administration
Advanced System Administration
Network Administration

--Programming Series--

UNIX® Software Development Tools
Programming in Standard C
Programming with UNIX® System Calls
Character User Interface Programming
Graphical User Interface Programming
Network Programming Interface

---Reference Series --

Command Reference (a-I)
Command Reference (m-z)
Operating System API Reference
Windowing System API Reference
System Files and Devices Reference
Device Driver Reference

REFERENCE

This definitive reference set describes every UNIX® System V Release 4
command, system call, library function, and file format, including the
BSD and XEN1X® variants unified under Release 4. Written by UNIX
System Laboratories, source of the UNIX System V operating system,
this set includes the following manu.als:

'.

The two-volume Command Reference describes all user and
administrative commands in the UNIX system, including file handling,
basic networking, shell programming, and system management com
mands.

The Operating System API Reference describes UNIX system calls
and library functions, including C language, math, networking, and spe
cialized libraries.

The Windowing System API Reference describes graphical and
character-based libraries, critical elements for building powerful user
interfaces on workstations, X, and character terminals.

The System Files and Devices Reference describes the file formats
for important system files, such as password, hosts, system initialization,
and special (device) files.

The Device Driver Reference, consists of two parts. The first part
describes the Device Driver Interface/Driver-Kernel Interface (DDI/DKI).
The DDI/DKI is a mature interface between drivers and the rest of the
kernel. The second part describes routines of the Portable Device
Interface (PDI). The PDI is a newer interface for block-oriented devices
that emphasizes the separation of hardware-dependent and hardware
independent pieces of drivers.

I

ISBN 0-13-017658-3

UNIX
PRESS

A Prentice Hall Title CF <UNIX SVR4 .2)
l JNI X/ REL4 .2

PREN
. $48.00

UN~ .
Documentation

\ (.n
Ul .-t
~ i'~ to J
ro J
-.J co

q~

f

- ---

