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About This Document 

The AT&T Block and Character interface (BCI) Driver Development Guide (shortened hereafter to 
BCI Driver Development Guide) provides information needed to write, install, and debug drivers in 
the UNIX® System V environment. It supplements the AT&T Block and Character Interface (BCI) 
Driver Reference Manual (shortened hereafter to BCI Driver Reference Manual) with general 
information and guidelines on writing, installing, and debugging drivers. It also includes background 
information on such topics as how drivers are configured into the operating system at· boot time, how 
the operating system accesses driver entry point routines, and the different I/O transfer schemes (with 
or without kernel buffering). For more information about this document, see the 'How to Use This 
Document" section in this chapter. 

Driver Development Series 

The BCI Driver Development Guide is part of the AT&T Driver Development Series. The 
Block/Character Interface (BCI) Driver Reference Manual is a companion manual to this book. Other 
documents in this series include the AT&T Portable Driver Interface (PDI) Reference Manual and the 
AT&T SCSI Driver Interface (SDI) Reference Manual, which are listed in the ''Related Documents" 
section at the end of this chapter. 

System s Supported 

This document supports driver development among many different AT&T computers. Although 
most of the information presented in this book is applicable to any UNIX System V computer, the 
manual contains examples and information specifically for the following computers and releases: 

• WE® 321SB Single-Board-Computer (SBC), UNIX System VIVME Release 3.1 

• AT&T 3B2/300 Computer, UNIX System V Release 3.1 

• AT&T 3B2/400 Computer, UNIX System V Release 3.1 

• AT&T 3B2/500 Computer, UNIX System V Release 3.1 

• AT&T 3B2/600 Computer, UNIX System V Release 3.1 

• AT&T 3B15 Computer, UNIX System V Release 3.1.1 

• AT&T 3B4000 Computer, UNIX System V Release 3.1.1 
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About This Document 

Note the following about textual references to various systems: 

• The tenn 3B2 computer is used for infonnation that is the same for all models of the 
3B2 computer. The model number is specified only when information is not the same 
for all models. 

• The 3B15 computer and 3B4000 Master Processor (MP) share the same kernel, so most 
driver infonnation that pertains to one pertains to both. When the information is 
applicable to only one or the other system, it is so stated. 

• The tenn adjuncts applies to the Adjunct Communications Processor (ACP), Adjunct 
Data Processor (ADP), and 3B4000 Enhanced Adjunct Data Processor (EADP). 
Information that is applicable to only certain adjuncts is so marked. 

Purpose 

The Bel Driver Development Guide provides the information needed to write, install, and debug 
device drivers in the UNIX System V environment. 

Intended Audience 

Both this book and the Bel Driver Reference Manual are written for advanced C programmers who 
write and maintain UNIX system drivers. 

Prerequisite Skills and Knowledge 

It is assumed that you are proficient with the advanced capabilities of the C programming language 
(including bit manipulation, structures, and pointers) and familiar with UNIX system internals. A 
number of documents and courses on these topics are available from AT&T. They are listed later in 
this chapter. 
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How to Use This Docum ent 
Figure 1-1 is a high-level roadmap to the topics covered in this book. 
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How to Use This Document 

This rest of this chapter describes the conventions used in this document, related learning support 
materials and how to order them, and how to give us your comments about the BCI Driver 
Development Guide. 

After this introductory chapter, this manual is organized as follows: 

Chapter 2, Introduction to Writing UNIX System Drivers 
describes the process of writing a driver, including an outline of steps taken and general 
guidelines that driver writers should follow. 

Chapter 3, Drivers in the UNIX Operating System 
discusses how master files are created and how drivers interlace with the operating 
system. 

Chapter 4, Header Files and Data Structures 
describes the use of system and driver-specific header files, and the relationship between 
data structures and drivers. Chapter 4 introduces some standard system header files 
delivered with the UNIX operating system that define error code, parameter, and data 
structure information for all drivers, and describes the standard system data structure 
fields frequently accessed by driver routines. 

Chapter 5, System and Driver Initialization 
discusses the self-configuration and system initialization processes. System initialization 
initializes the kernel and drivers, creates process 0, executes the init(lM) process, and 
starts the system processes. 

Chapter 6, Input/Output Operations 
provides general information on data transfer methods between the kernel and devices, 
and between user space and the kernel; detailed information on block data transfer 
methods, including information on character or physical I/O for a block device; detailed 
information on character data transfer methods, including information on buffered and 
unbuffered character I/O, and on allocating local driver memory; detailed information on 
creating a private buffering scheme; information on processor-specific memory 
management facilities; and information on scatter/gather I/O implementations. 

Chapter 7, Drivers in the TrY Subsystem 
describes the components of the TIY subsystem. The 1TY subsystem is a collection of 
functions and the driver proc(D2X) routine that are used to transfer information 
character-by-character between a CPU and a peripheral, such as a terminal or printer. 

Chapter 8, Input/Output Control (ioetl) 
discusses the ioctl routine, which usually controls device hardware parameters and 
establishes the protocol used by the driver, and its relationship to the ioctl(2) system call. 

1-4 Bel Driver Development Guide 



How to Use This Document 

Chapter 9, Synchronizing Hardware and Software Events 
discusses how to use kernel functions, such as sleep and wakeup, that synchronize 
hardware and software events. 

Chapter 10, Interrupt Routines 
discusses servicing interrupts, preventing interrupts, interrupt vectors, and writing 
interrupt routines. 

Chapter 11, Error Reporting 
introduces interrupt handling and provides guidelines for writing interrupt handling 
routines. 

Chapter 12, Installation 
describes how to compile and install a driver and remove it from the system. 

Chapter 13, Testing and Debugging the Driver 
describes the general testing process and the debugging tools that are available for driver 
writers. It also discusses common driver bugs and gives suggestions for resolving them. 

Chapter 14, Performance Considerations 
discusses ways of checking and improving the performance of your driver as well as 
information on modifications that may be needed to maintain acceptable system 
performance when your driver is installed. 

Chapter 15, Porting Drivers 
summarizes the machine-specific features that must be considered when porting drivers 
among machines and provides instructions for writing a driver that ports easily between 
machines. 

Chapter 16, Packaging the Driver 
summarizes what to include in the software package that includes driver code. 

Appendix A, The Equipped Device Table (EDT) 
describes the Equipped Device Table (EDT). The EDT is a table in the private memory 
associated with the CPU that lists all hardware devices present on the system (except 
memory cardslboards). 

Appendix B, Writing 3B2 Computer Diagnostics Files 
explains how to write the files that test the integrity of a 3B2 computer feature card. 

Appendix C, System Header Files 
lists the system header files (from lusrlincludelsys directory and subdirectories) that can 
be used in driver code. It includes a number of header files for system data structures 
and structures associated with drivers that are bundled with the UNIX operating system. 

Appendix D, Sample Character Driver 
provides the code for a serial driver that interacts with a Dual Universal Asynchronous 
Receiver-Transmitter (DUART), such as that used by a terminal. 
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Appendix E, Sample Block Driver 
provides the code for a disk controller driver (doc_driver) that runs on the SBC 
computer. This is an example of a hardware driver for a block-access device that also 
supports character access. 

A Glossary and Index are also included at the end of this book. 
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Conventions Used in This Document 

Table 1-1 lists the textual conventions used in this book. These conventions are also used in the Bel 
Driver Reference Manual. 

Table 1-1 Textual Conventions Used In This Book 

Item Style Example 
C Bitwise Operators ( 1&) CAPITALIZED OR 

C Commands Bold typedef 
C typedef Declarations Bold caddr t 

Driver Routines Bold strategy routine 
Error Values CAPITALIZED EINTR 
File Names italics lusrlinclude/ sys/ conf.h 

Flag Names CAPITALIZED B_WRITE 

Kernel Macros Bold minor 
Kernel Functions Bold ttopen 

Kernel Function Arguments Italics bp 

Keyboard Keys (Key] (crRL-d ) 
Structure Members Bold u base 

Structure Names constant Width tty structure 

Sytnbolic Constants CAPITALIZED NULL 
UNIX System C Commands Bold (section reference) ioctl(2) 

UNIX System Shell Commands Bold layers(1) 
User-Defined Variable Italics prefzxclose 
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Con ve n tio n s Co r R e Ce r e n c in g Man u a I P age s 

The BCI Driver Reference Manual, the most closely related document to the BCI Driver Development 
Guide, is divided into four, alphabetically-arranged reference manual sections that provide specific 
information (routines, functions, and data structures) for driver writers: 

D2X describes the system entry point routines that comprise the driver code. 

D3X describes the kernel functions that are used in BCI driver code. Whereas user-level code 
uses system calls and library routines, driver code uses the kernel functions listed here. 

D4X describes the kernel data structures that BCI drivers interface. 

D8X describes the standard library functions used to write a diagnostics file for a 3B2 computer 
custom feature card. This section is also applicable to the 3B4000 ACP. 

Throughout the BCI Driver Development Guide are references to the BCI Driver Reference Manual. 
Routines, functions, structures, and commands covered in the BCI Driver Reference Manual are used 
in this text with a reference to the appropriate BCI Driver Reference Manual section number. For 
example, open(D2X) refers to the driver entry point routine open page. The D in the (D2X) 
reference indicates that the routine, function, structure, or command is covered in the BCI Driver 
Reference Manual. The number following the D indicates the section number. For example, 
open(D2X) refers to the driver entry point open page, which is in Section 2 of the BCI Driver 
Reference Manual. If a routine, function, structure, or comment is in a UNIX System V Reference 
Manual, the section number alone appears in parenthesis. For example, the open(2) system call 
reference page is in Section 2 of the UNIX System V Programmer's Reference Manual. 

See the introduction to any driver reference manual for a full explanation of the section numbers in 
the reference manuals for other driver interfaces. 

Path Name Conventions 

This document is designed to be applicable for 3B computers. Differences among machines are 
documented where appropriate. Because of the nature of the multiprocessing 3B4000 computer, it 
must be set up a little differently from the uniprocessing systems (such as the 3B2 or SBC computers). 
One of the most apparent places this shows up is in the paths to various files and directories 
mentioned in this document. Whenever you see a path name specified, it is the path name of a 
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uniprocessing UNIX system. For the multiprocessing 3B4000 computer, you can assume that the 
path name is the same for the multiprocessing host or that this path name is prefaced by adjlpe#1 
where # stands for the adjunt processor number. For example: 

letclmaster.d directory means: 
on a uniprocessing system: I etclmaster.d 
on the 3B4000 adjunts: ladjlpe#letclmaster.d 

u ts 

The UNIX system convention stores operating system and driver source code in subdirectories under 
the lusrlsrcluts directory. To support cross-environment development (developing software for one 
system on a different system), the uts directory has subdirectories that specify the system name, with 
each UNIX system kernel (3B2, 3B15, SBC, and so forth) having a unique name for this directory. 
In addition, each type of 3B4000 adjunct processing element has its own uts subdirectory where 
operating system and driver code for that type of adjunct processor is stored. 

Table 1-2 Location of uts Subdirectories 

Com)tuter Kernel Source Code 
SBC lusrlsrdutsl3b2100vrne 
3B2 lusrlsrdutsl3b2 

3B15 lusrlsrdutsl3b 15 
lusr/srdutslcom 

3B4000 MP lusrlsrdutsl3b 15 
lusrlsrdutslcom 

3B4000 ACP lusrlsrdutslacp 

3B4000 EADP lusrlsrdutsleadQ 

3B4000 ADP lusrlsrdutsladp 

A file's exact location in these directories may vary between releases so be sure to consult the 
documentation supplied with your computer. 

About This Document 1-9 



Related Learning Support Materials 

AT&T offers a number of documents and courses to support users of our systems. For a complete 
listing of available documents and courses, see: 

AT&T Computer Systems Documentation Catalog (300-000) 
AT&T Computer Systems Education Catalog (300-002) 

The following list highlights documents and courses that are of particular interest to device driver 
writers. Most documents listed here are available from the AT&T Customer Information Center 
(euIe). Documents available from euIe have an ordering code number, which is the six-digit 
number in parentheses following the document title. In addition to AT&T documents, the following 
list includes some commercially-available documents that are also relevant. 

This document is the AT&T UNIX System V Block/Character Interface (BCI) Driver Development 
Guide. Its ordering code number is 307-191. 

Related Documents 

Driver Development 

UNIX System V Block/Character Interface (BCI) Driver Reference Manual (307-192) 
includes reference material to be used in conjunction with this manual. Describes driver 
entry point routines (Section D2X), kernel-level functions used in BCI drivers (Section 
D3X), data structures accessed by BCI drivers (Section D4X), and standard library 
functions used to write a diagnostics file for a 3B2 computer custom feature card (D8X). 

UNIX System V Portable Driver Interface (PDI) Driver Design Reference Manual (305-014) 
defines the kernel functions, routines, and data structures used for developing block drivers 
that adhere to the UNIX System V, Release 3, Portable Driver Interface. 

/ 

UNIX System V SCSI Driver Interface (SDI) Driver Design Reference Manual (305-009) 
defines the input/output controls, kernel functions, and data structures used for developing 
target drivers to access a SCSI device. 

STREAMS 

UNIX System V STREAMS Primer (307-299) 
provides an introduction to using the STREAMS driver interface and accessing STREAMS 
devices from user-level code. 
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Related Learning Support Materials 

UNIX System V STREAMS Programmer's Guide (307-227) 
tells how to write drivers and access devices that use the STREAMS driver interface for 
character access. 

C Programming Language and General Programming 

Bentley, Jon Louis, Writing Efficient Programs (320-004), NJ, Prentice-Hall, 1982. 
gives suggestions for coding practices that improve program perfonnance. Many of these 
ideas can be applied to driver code. 

Kernighan, B. and D. Ritchie, C Programming Language, Edition 1 (307-136), NJ, Prentice-Hall, 
1978. defines the functions, structures, and interfaces that comprise the C programming 
language in different UNIX system environments. A short tutorial is included. 

Lapin, J. E., Portable C and UNIX System Programming, NJ, Prentice-Hall, 1987 
discusses how to maximize the portability of e language programs. 

UNIX System V Network Programmer's Guide (307-230) 
provides detailed information, with examples, on the Section 3N library that comprises the 
UNIX system Transport Level Interface (TLI). 

UNIX System V Programmer's Guide (307-225) 
includes instructions on using a number of UNIX system utilities, including make and the 
Source Code Control System (SeCS). 

Assembly Language 

AT&T 38213B513BI5 Computers Assembly Language Programming Manual (305-000) 
a description of the assembly language instructions used by most AT&T computers. 

WE 32100 Microprocessor Information Manual, Maxicomputing in Microspace (307-730) 
introduces the WE 32100 microprocessor and summarizes its available support products. 

Operating System 

Bach, Maurice J., Design of the UNIX Operating System (320-044), NJ, Prentice-Hall, 1986 
discusses the internals of the UNIX operating system, including an explanation of how 
drivers relate to the rest of the kernel. 

UNIX System V Reference Manuals (see the table below for ordering numbers 
the standard reference materials for various releases of the UNIX System V operating 
system. This infonnation is divided between three books, published separately for each 
system. 

System Administrator's Reference Manual 
administrative commands (Section 1M), special device files (Section 7), and 
system-specific maintenance commands (Section 8). 
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Related Learning Support Materials 

Programmer's Reference Manual 
programming commands (Section 1), system calls (Section 2), library routines 
(Section 3), file fonnats (Section 4), and miscellaneous information (Section 5) 

User's Reference Manual 
all UNIX system user-level commands (Section 1) 

Table 1-3 gives the select codes for the UNIX System V reference manuals that are published for 
each AT&T computer covered in this documentation.. . 

Table 1-3 Reference Manual Select Codes 

Computer UNIX System V Reference Manual 
System Release Administrator's Programmer's User's 
SBC 3.1 307-056 307-053 307-057 
3B2 3.1 305-570 307-013 307-012 
3B15 3.1.1 305-205 305-212 305-205 t 
3B4000 3.1.1 305-205 305-212 305-205 t 

t For the 3B15 and 3B4000 computers, UNIX System V Release 3.1.1, the User's and Administrator's Reference Manuals arc published as 

one volume. 

Single Board Computer (SBC) 

UNIX System VIVME System Builder's Reference Guide (307-068) 
gives important information needed to write drivers for the SBC computer, including the 
firmware interface, system operation, trouble shooting, and diagnostics. 

Software Packaging 

UNIX System V Application Software Packaging Guide (305-001) 
a cross product book describing how to write the INSTALL and DEINST ALL scripts 
necessary to install a driver (or other software) under the System Administration utility. 
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Related Learning Support Materials 

How to Order Documents 

To order the documents mentioned above 

• within the continental United States, callI (800) 432-6600 

• outside the continental United States, callI (317) 352-8556 

• in Canada, callI (800) 255-1242 

Related Training 

Driver Development 

UNIX System V Release 2 Device Drivers (UaCSI0I0) 
explores device driver mechanisms, operating system supplied functions, and example device 
driver source code. 

UNIX System V Release 3 Device Drivers (UaCS1D41) 
explores device driver mechanisms, operating system supplied functions, and example device 
driver source code. . 

C Programming 

C Language/or Experienced Programmers (UaCS1001) 
covers all constructs in C language. 

Internal UNIX System Calls and Libraries Using C Language (UaCS1011) 
Introduces the techniques used to write C language programs. Topics include the execution 
environment, memory management, input/output, record and file locking, process 
generation, and interprocess communication (IPC). 

Operating System 

Concepts of UNIX System Internals (CSI019) 
overviews the main structures and concepts used internally by the UNIX operating system. 

UNIX System V Release 2 Internals (UaCS1012) 
an in-depth look at the UNIX System V Release 2 internal structures, concepts, and source 
code. 

UNIX System V Release 3 Internals (UaCSID42) 
an in-depth look at the UNIX System V Release 3 internal structures, concepts, and source 
code. 
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How to Receive Training Information 

To receive infonnation (such as registration information, schedules and price lists, or ordering 
instructions) about UNIX system or AT&T computer training 

• within the continental United States, callI (800) 247-1212 

• outside the continental United States, call 1 (201) 953-7554 
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How to Make Comments About This Document 

Although AT&T has tried to make this document fit your needs, we are interested in your 
suggestions to improve this document. Comments cards have been provided in the front of the 
document for your use. If the comment cards have been removed from this document, or you have 
more detailed comments you would like to give us, please send the name of this document and your 
comments to: 

AT&T 
4513 Western Avenue 
Lisle, IL 60532 
Attn: District Manager--Documentation 
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Introduction 

This chapter introduces most of the basic concepts a programmer should understand before 
attempting to write a UNIX system device driver. Each major topic is covered more fully in later 
chapters; experienced driver writers may wish to tum directly to these detailed discussions. This 
chapter gives an experienced C programmer an overview of how to write a device driver, by showing 

• how device drivers resemble and differ from application programs 

• the different types of device drivers, and what they have in common with each other 

• what files must be created or modified so that a driver may be installed on a system 

• two example drivers that illustrate the main components of most drivers and what those 
components typically do 

• some guidelines for developing a driver 
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Introduction 

W hat is a Device Driver? 

To most programmers using the UNIX system, a device driver is part of the operating system. The 
applications programmer is usually concerned only with opening and closing files and reading and 
writing data. These functions are accomplished through standard system calls from a high-level 
language. The system call gives the application program access to the kernel, which identifies the 
device containing the file and the type of lIO request. The kernel then executes the device driver 
routine provided to perform that function. 

Device drivers isolate low-level, device-specific details from the system calls, which can remain 
general and uncomplicated. Because there are so many details for each device, it is impractical to 
design the kernel to handle all possible devices. Instead, a device driver is included for each 
configured device. When a new device or capability is added to the system, a new driver must be 
installed. 

USER LEVEL 

I 

I 
I SYSTEM CALL INTERFACE 
I 
~-------------T------- ______ a 

I 
FILE SUBSYSTEM 

I PROCESS CONTROL 
I I SUBSYSTEM 
I I 

KERNEL LEVEL ~-------------~-------------I 
I DEVICE DRIVERS 
I 

~---------------------------I 
I HARDWARE CONTROL 
I 
I 

HARDWARE LEVEL 

Figure 2-1 Driver Placement in the Kernel 

Figure 2-1 shows how a driver provides a link between the user level and the hardware level. By 
issuing system calls from the user level, a program accesses the file and process control subsystems, 
which, in turn, access the device driver. The driver provides and manages a path for the data to or 
from the hardware device, and services interrupts issued by the device's controller. 
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Application Programs vs. Drivers 

This book is intended for experienced C programmers. All code examples are in the C language, and 
it is quite possible to write your entire driver in C. However, there are some major differences 
between writing a device driver and writing a program designed to execute at the user level. This 
section reviews some of those differences and introduces some of the system facilities used in driver 
development. 

Structure 

The most striking difference between a driver and a user-level program is its structure. An 
application program is compiled into a single, executable image whose top-level structure is 
determined by a main routine. Subordinate routines are called in the sequence controlled by the 
main routine. 

A driver, on the other hand, has no main routine. Rather, it is a collection of routines installed as 
part of the kernel. But if there is no main routine to impose structure, how do the driver's routines 
get called and executed? 

Driver routines are called on an "as needed" basis in response to system calls or other requirements. 
System data structures, called switch tables, contain the starting addresses for the principal routines 
included in all drivers. In a·switch table, there is one row for each driver, and one column for each 
standard routine. The standard routines are called entry point routines, referring to the memory 
address where the routine is entered. The kernel translates the arguments of the system call into a 
value used as an index into the switch table. 

Switch Table 

User issues open close · .. 
system call to 

A 
Device A I 

open device open close · .. 
I open close · .. 

B 

I Device B 
C 

I 

~ DriverC H Device C I ~ open routine: : 
Figure 2-2 How Driver Routines Are Called 

For example, when a user process issues a system call to open a file on a device that has a driver, the 
request is directed to the switch table entry for an open of the device drive containing the file (see 
Figure 2-2.). This routine is then executed, giving the process access to the file. 
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Parallel Execution 

When an application program is running, the statements making up the program are executed one at 
a time, in sequential order. Program control structures (loops and branches) repeat statements and 
may branch to alternative sections of code, but the important point is that at any given instant only 
one statement and one routine is being executed. This is true even of different instances of a 
program being run by two users at the same time (for example, a text editor). As each process is 
assigned a scheduled slot of CPU time, the statements are executed in the order maintained for that 
invocation of the program. 

Drivers, however, are part of the kernel and must be ready to run as needed at the request of many 
processes. A driver may receive a request to write data to a disk while waiting for a previous request 
to complete. The driver code must be designed specifically to respond to numerous requests without 
being able to create a separate executable image for each request (as a text editor does). The driver 
does not create a new version of itself (and its data structures) for each process, so it must anticipate 
and handle contention problems resulting from overlapping I/O requests. 

Interrupts 

For the most part, the real work of a device driver is moving data between user address space and a 
hardware device, such as a disk drive or a tenninal. Because devices are typically very slow 
compared to the CPU, the data transfer may take a long time. To overcome this, the driver nonnalJy 
suspends execution of the process until the transfer is complete, freeing the CPU to attend to other 
processes. Then, when the data transfer is complete, the device sends an interrupt, which tells the 
original process that it may resume execution. 

The processing needed to handle hardware interrupts is another of the major differences between 
drivers and application programs. Later in this chapter, a simplified model of an interactive terminal 
driver is given that a describes how a driver synchronizes its data transfer functions with its response 
to hardware interrupts. Chapter 9, "Synchronizing Hardware and Software Events," discusses how 
data movement is synchronized, and Chapter 10, '1nterrupt Routines," covers interrupts in greater 
detail. 
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Driver as Part of the Kernel 

Application programs, executing at the user level, are limited in the ways they can adversely impact 
the system. Performance and efficiency considerations are mostly confined to the program itself. An 
application program can hog disk space, but it cannot raise its own priority level to hog excessive 
amounts of processing time, nor does it have access to sensitive areas of the kernel. 

But drivers can and do have much greater impact on the kernel. Inefficient driver code can severely 
degrade overall performance, and driver errors can corrupt or bring down the system. For this 
reason, testing and debugging driver code is particularly challenging, and must be done carefully. 
Chapter 13, "Testing and Debugging the Driver," discusses the facilities available for finding drivers 
errors, as well as some of the special problems.that are encountered when testing driver code. 

Also, while an application program is free (within reasonable limits) to declare and use data 
structures and to use system services, a driver writer is constrained in several ways. 

• A number of header files, used to declare data types, initialize constants, and define 
system structures, must be included in the driver source code. The exact list of header 
files varies from driver to driver. See Chapter 4, ''Header Files and Data Structures," for 
more details. 

• Various structure members and device registers must be read or written, and usually 
some system buffering structure must be used. Many of the functions included in the 
interface are designed to be used with these structures. These structures are explained in 
Section D4X of the BCI Driver Reference Manual. 

• Drivers have no access to standard C library routines. Yet, the routines included in the 
block and character interface represent a kind of library and provide some functions 
similar to those found in the standard C library. On the other hand, the interface also 
provides many functions that are unlike standard C library functions. See Section D3X 
of the BCI Driver Reference Manual for complete explanations of the interface routines. 

• Drivers cannot use floating point arithmetic. 
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Types of Devices 

So far, interactive terminals and disk drives have been mentioned as two kinds of devices that need 
drivers. These two kinds of devices use very different types of drivers. On any UNIX System. V 
processors, there are two kinds of devices: hardware devices and software, or pseudo, devices. 

Hardware Devices 

Hardware devices include familiar peripherals such as disk drives, tape drives, printers, AScn 
terminals, and graphics terminals. The list could also include optical scanners, analog-to-digital 
converters, robotic devices, and networks. But, in reality, a driver never talks to the actual piece of 
hardware, but to its controller board. From the point of view of the driver, the device is usually a 
controller. 

In some cases, a controller may have only one device connected to it. More often, several devices are 
connected to a single board (for example, eight terminals could be connected to a terminal 
controller). A single driver is used to control that board and all similar terminal controllers 
configured into the system. 

Soft war e D e vic e s 

The "device" driven by a software driver is usually a portion of memory and is sometimes called a 
"pseudo" device. The driver's function may be to provide access to system structures unavailable at 
the user level. 

For example, a software device might be a RAM disk, which provides very fast access to files by 
using a part of memory for mass storage. A RAM disk driver is, in many ways, similar to a driver 
for an actual disk drive, but does not have to handle the complications introduced by actual 
hardware. The first sample driver (shown later in this chapter) is a RAM disk driver . 
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The Block and Character Interface 

An interface is the set of structures, routines, and optional functions used to implement a device 
driver. 

Block and character are the two interlaces described in this book, and correspond to the two basic 
ways drivers move data. Block drivers, using the system buffer cache, are normally written for disk 
drives and any mass storage devices capable of handling data in blocks. Character drivers, the typical 
choice for interactive terminals, are normally written for devices that send and receive information 
one character at a time. 

It is the individual device, not ~e device type, that determines whether a driver should be the block 
or character type. For example, one printer, capable of data buffering, may be a candidate for a 
block driver, while another printer may need a character driver. 

Furthermore, one device may have more than one interface. A disk drive may have both a block and 
character interlace. This situation is explained in Chapter 6, ''Input/Output Operations." 

Alternative Interfaces 

The increasing number of network drivers has demonstrated one of the major weaknesses of the block 
and character interface: its inability to divide a network's protocols into layered modules. The 
solution, first introduced in UNIX System V Release 3, is called the STREAMS interface. 

A stream is a structure made up of linked modules, each of which processes the transmitted 
information and passes it the to the next module. One of these queues of modules connects the user 
process to the device, and the other provides a data path from the device to the process. 

The layered structure allows protocols to be stacked, and also increases the flexibility of the interface, 
making it more likely that modules can be used by more than one driver. 

See the UNIX System V STREAMS Primer and Chapters 9 and 10 of the UNIX System V STREAMS 
Programmer's Guide for STREAMS driver details. 

AT&T has defined an interface, called the Portable Driver Interface (PDI). The POI is a collection 
of driver routines, kernel functions, and data structures that provide a standard interface for writing 
UNIX System V block drivers. POI is usable on all3B2, 3BlS, and 3B4000 computers runing UNIX 
System V Releases 2.0.5,3.0, 3.1, or later. For more information about our POI documentation, 
see Chapter 1, "Related Documents." 

Small Computer System Interface (SCSI) devices use a collection of machine-independent 
input/output controls, functions, and data structures, that provide a standard interlace (called SCSI 
Driver Interface (SOl» for writing SCSI target drivers to access a SCSI device. For more information 
about our SOl documentation, see Chapter 1, ''Related Documents." 
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Driver Environment 

A device driver is added to a working UNIX system in three basic steps including 

1 Configuration Preparation -- Involves modifying or creating system files on an active 
system. During the preparation phase, a bootable object file is created with either the 
drvinstall(IM) or mkboot(IM). 

2 Configuration -- Invoked by shutting down and rebooting the system. The system uses 
information from the modified system files to include entries for the new driver in 
system structures. 

3 Initialization -- The driver itself is then initialized as part of overall system initialization. 

The major steps are reviewed here; Chapter 12, "Installation," gives more details about how drivers 
are configured and installed, and Chapter 5, "System and Driver Initialization," discusses system 
initialization. 

Con fi g u rat ion 

For a driver to be recognized as part. of the UNIX system, information about what type of driver it 
is, where its object code resides, what its interrupt priority level will be, and so on, must be stored in 
appropriate files. Chapter 5, "System and Driver Initialization," summarizes what information is 
required, and how it is used in configuration. 

The following are used when configuring a driver into the system: 

/ete/master.d 

/ etc! system 

/dev 

/hoot 

This directory contains the master files. A master file supplies information to 
the system initialization software to describe the attributes of a driver. There 
is one master file for each driver on the system. 

This file contains entries for each driver and indicates to the system 
initialization software whether a driver is to be included or excluded during 
configuration. 

This directory contains special device files. A device file establishes a link 
between a driver and a device. 

This directory contains bootable object files that are used to create a new 
version of the UNIX operating system when the processor is booted. 
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D river Structures 

The master file is the source of some of the more important information used by the configuration 
process. From information provided there, several system structures are built to make drivers part of 
a bootable system. Three of them are of particular interest 

• The MAJOR and MINOR tables contain numbers used by the kernel to identify drivers. 
The major number identifies the driver, and the minor number identifies the subdevice. 
A subdevice might be one of several disks controlled by a single driver or one of many 
terminals. Usually, the minor number is passed as an argument to the driver to identify 
the particular subdevice. 

• Two switch tables (bdevsw(D4X) for block and cdevsw(D4X) for character drivers) 
contain the starting addresses for the entry point routines for all installed drivers. 

• Two other tables (io_init and io_start) are built to hold the initialization routines. 

Driver Prefix 

Every driver's master file contains information, used during system configuration, about the specific 
attributes of drivers. One of the fields in the master file is the prefix (a string of up to four 
characters) added to generic routine names (such as "init," "open," and so on). For example, a RAM 
disk driver may have been given a prefix of "ram_" resulting in routines named "ram_open," 
"ram_init" and so on. 

During configuration, the system looks in the master file for the prefix, and then looks for the entry 
point routines with matching prefixes. The addresses of these routines are loaded into the switch 
tables (and, in the case of the init(D2X) routine, into the io _init table). 

In itia liz a tio n ./ 

Not ~ drivers have init(D2X) routines; some have nothing to initialize and others defer initialization 
to the open(D2X) routine. In most cases, it doesn't matter if variables are zeroed in an init or an 
open routine. On the other hand, the system should be infonned at the time of initialization if, for 
example, a disk drive is off-line. 

Software drivers typically have little to initialize because no hardware is involved. In fact, some 
software drivers have completely empty init routines. Memory may be allocated as a simple' 
two-dimensional array in the open routine. But even if no init routine is needed, the driver must have 
an entry point routine in the switch table. 
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In the following pseudo-code for a software driver, initialization processing required is minimal. 
Some memory must be allocated and initialized, and a warning must be issued if the allocation fails. 

The numbers in parentheses (before the lines of pseudo-code) are referenced by the section headers 
below, to indicate which line is being explained in that section. In most cases, an actual code 
fragment from a working driver is included to help illustrate the concept. 

(1) include header files 

(2 ) 

( 3) 

init(dev) 

if (memory can be allocated) 
allocate memory 
initialize memory 
print informational message 

else 
print warning message 

The standard library of C functions cannot be used in driver code. However, most of a driver's 
processing is performed by the functions described in Section D3X of the BCI Driver Reference 
Manual. To use the interface effectively, it is important that you become familiar with what these 
functions can do. Some of them are introduced in the discussion of the sample drivers, but many 
more are available and are illustrated both in this document and in the BCI Driver Reference Manual. 

Driver Header Files (1) 

The first file in the list of header files included in driver code should be sysltypes.h because many of 
the other header files use the type definitions it contains. In the init routine, the device number 
passed in as an argument is declared to have the type dev_t, which is an alias for a short integer. 
Simple data types are abstracted to these types to enhance driver portability. 

Other required header files are mentioned as needed, and a complete list of available header files 
appears in Appendix B, ''Writing 3B2 Computer Diagnostics Files." Most drivers will need to include 
a minimum of 5 to 10 header files and some may have more than 20. 
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M em 0 r y A 110 C a tio n (2) 

The function used to allocate memory is kseg(D3X), shown in the Bel Driver Reference Manual. 
The reference page shows that kseg accepts as an argument the number of pages to be allocated (up 
to 64), and that the pages are segment-aligned and cannot be swapped out. The kseg manual page 
also tells you what conditions must exist for the allocation to succeed, how different types of failures 
are handled, and which header files must be used. 

Messages (3) 

Another useful library function is cIDD_err(D3X). The printf(3S) library function cannot be used in 
driver code; instead, the function cIDD_err is used for all types of messages, from the merely 
informational to those reporting severe errors. The first argument to this function is a constant used 
to indicate the severity level, the second is the text of the message, and the third is an optional 
variable. For example, the following statement could be used to report why the initialization failed: 

cmn_err(CE_WARN,"init: kseq cannot allocate %d buffers", BUFS); 

The cIDD_err function can also be used to shutdown or panic the system when serious errors are 
detected. For example, if a hardware driver is unable to allocate private buffer space there is 
probably sufficient reason to halt system initialization. When this condition is detected, the next 
statement should be 

cmn_err(CE_PANIC,"init: Buffer space unavailable"); 

Other init Responsibilities 

A working driver for a hardware device (for example, a disk drive) does not have an init routine as 
simple as the one shown earlier. The additional processing required may include some of the 
following: 

• Check to see if the devices under the control of the driver are actually on-line. 

• Check for the correct number of subdevices. 

• Set each device's interrupt vector to correspond to the system's interrupt vector table. 

• Set the virtual-to-physical address translation. 
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• Set device-specific parameters to default values. These parameters include values for the 
number of tracks, cylinders and sectors. 

• Download executable code to the controller. Controllers for many devices have their 
own processors and memory and are referred to as intelligent devices. The executable 
code downloaded to the controller is called pumpcode. 

See Appendix E, "Sample Block Driver," for a detailed explanation of actual code for a disk driver. 
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Example Block Driver 

An example driver is described in this section and is similar, in most of its parts, to all block drivers. 
It is a RAM disk driver (a software driver), which uses an area of memory for mass storage, but has 
no hardware to control. Consequently, it doesn't have to recognize or respond to interrupts (a major 
complication). Interrupt handling will not be covered until the second example. 

The RAM driver example illustrates the general structure of real disk drivers at only one level, called 
the base level. The base level includes the routines responsible for servicing the I/O request from the 
user process. The other level, called the interrupt level, responds only to requests for servicing 
hardware (non-existent for a RAM disk). 

The work of the base level of a RAM disk driver is to open a file system, provide access to it, and 
close it when necessary. The entry point routines required for these activities are open(D2X), 
strategy(D2X) and c1ose(D2X). The only other part of the RAM disk driver is the initialization 
routine (init(D2X», illustrated in the previous section. 

Each routine is illustrated (with pseudo-code) in the pages that follow. After the pseudo-code is a 
brief discussion of every line of the pseudo program. Some of these is include actual code fragments 
from a working driver. 

B ase-L evel 0 peration 

The base-level entry point routines do most of the work of the driver. These are the routines that 
respond to user I/O requests, expressed as system calls. The kernel then interprets the system call, 
and, in turn, calls one of the driver's entry point routines. 

There is not a one-to-one correspondence between system calls and-driver routines. For example, on 
a multiuser system more than one user process may have opened a device. The kernel calls the driver 
close routine only when the last of these user processes issues the close system call. A user's read or 
write request results in a call to the block driver's strategy routine. 
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The open Routine 

When a user process issues an open(2) system call, the file to be opened is most often a regular file. 
The purpose is generally to read or write text or data. However, the driver open(D2X) routine is 
opening the device, which looks like a file on a UNIX system. Chapter 3, 'Drivers in the UNIX 
Operating System," explains these files in more detail, but two points are important here 

• the special device file identifies which switch table (block or character) to look in for the 
driver open routine 

• after the correct switch table is identified, the major number is used to find the 
corresponding open routine 

Finally, when the open routine is called, it is passed the device number and the flags indicating the 
type of open (read only, create new file, and so on). 

include header files 

open(device number, flags) 

if (minor device number is invalid) 
write error to user structure 
return 

else 
set up buffer to read the superblock 
call strategy 

Each of the following sections cover the issues involved in implementing the processing represented 
by a line of pseudo-code. Most sections will also give an actual code sample (in the C language) to 
illustrate typical driver coding style. 
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Validating the Minor Device Num ber 

The device number is a two-byte quantity containing both the major number (identifying the driver) 
and the minor number (identifying the subdevice). By the time the open(D2X) routine has been 
called, the major number has already been used as an index into the switch table to select the driver. 
The device number is passed to the open routine as an argument and the minor portion of it is 

. extracted with the minor(D3X) macro. 

, if (minor(dev) > MAXDEV) 

An error results if an invalid minor number, a number greater than the constant MAXDEV (declared 
in the driver code), is detected. 

Writing Errors to the user Structure 

When a driver needs to report an error to the user, the usual method is to set the uou_error member 
of the user structure, described in Section D4X of the Bel Driver Reference Manual. For example, 
if the minor number (extracted with the minor macro) is found to be out of range, the RAM driver 
uses the constant ENXIO to indicate a non-existent device. 

u.u_error = ENXIO; 

The available error constants are defined in errno.h and the user structure is defined in user.h. 

Setting Up a Buffer 

The kernel buffer cache is a linked list of buffers used to minimize the number of times a block-type 
device must be accessed. A driver does not read or write directly to the disk, but rather to the buffer 
cache. 

The section called 'The strategy Routine" explains how the driver reads and writes blocks. This 
section introduces the buffer header, the part of the buffer structure used to identify where the data 
came from. The structure is called buf(D4X), and is defined in the file buf.h. 

This RAM driver contains a file system and so must have access to file system information stored in 
the superblock. To make this possible, the open routine declares a pointer to a buf structure, loads 
some buffer header values, and then calls the driver strategy routine to read the superblock. (Notice 
that it is possible for one entry point routine to call another.) If the read fails, the error is reported 
by writing to the uou_error member of the user structure, as shown in the init routine. 
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The B u ffe r He a d e r 

The buffer cache contains buffers of data belonging to many devices. The buffer header contains 
infonnation used to keep them straight. The following header members must be set before reading 
the superblock. For a complete description of the buf structure, see the structures section 
(Section 4) of the Bel Driver Reference Manual. 

• b_dev. The device number. (A composite value, made up of both the major and minor 
number.) It is used to identify the RAM device. 

• b_bcount. The number of bytes to be transferred. When reading the superblock, a full 
block is to be read, so this member is set to 1024 for this system. 

• b_blkno. The device's block number, set to the superblock. 

• b_error. The open routine sets the error number to zero, before the first read. Later, 
the strategy routine sets this member on 110 failure. 

• b_ttags .. Values are ORed into this member (allowing more than one value to be on at a 
time). For example, two values are set before a read of the superblock 

B_BUSY indicates the buffer is in use; B_READ determines the direction of data tra.QSfer (from the 
device to memory). A write is indicated by B_READ not being set. 

After the buffer header values have been loaded, the driver's own strategy routine is called, with a 
pointer to the buffer header as an argument (bp). After the read is attempted, the b_ftags member is 
tested to see if an error has occurred. 

Other open Routine Responsibilities 

Like the init routine, the open routine for a RAM disk driver is simpler.than for a hardware device. 
Other functions a hardware open routine may include are 

• initialize error logging 

• initialize the disk defect table 

• read the volume table of contents (vtoc) and the bad block table 

• read the physical description sector 
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The Strategy Routine 

As shown in the previous section, the strategy(D2X) routine is called from the open routine to read 
the superblock. More often, strategy is called in response to a system 110 request. That is the main 
work of the driver, and strategy is the routine that does it. 

For now, it is not necessary to understand in detail how the kernel manages the buffer cache. (More 
information about that is provided in Chapter 6, ''Input/Output Operations. n) To transfer data, the 
strategy routine is passed a pointer to a buffer header in the system buffer cache. The buffer header 
contains all necessary information about the source and destination of the transfer and how many 
bytes will be moved. 

include header files 

strategy(bp) 

if (block number is out of range) 
write error to user structure 
return 

if (I/O request is for read) 
read block of data 

else 
write block of data 

call iodone 
return 

C heck for Valid Block 

As part of the kernel, the RAM disk driver has access to any part of memory, and so it is very 
important to make sure that reading and writing of data is confined to the area allocated for the 
RAM disk. The most basic checking uses the b_blkno member of the buffer structure to make sure 
the requested block is within range. (RAMBLKS is the number of blocks in the RAM disk. 
Because the first block number is 0, the block number equal to RAMBLKS is the first block beyond 
the end of the RAM disk.) 

if (bp->b_blkno < a I I bp->b_blkno >= RAMBLKS) 

If the I/O request is for a block beyond the end of the disk, the driver must further check to see if a 
read or a write is requested. For a read, the number of unread bytes is reported by assigning the 
value of b_bcount to b_resid, which is passed by the system as a return value to the read system call. 
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if Cbp->b_blkno == RAMBLKS && bp->b_flaqs &. B_READ) 
bp->b_resid = bp->b_count; 

The read status is tested by logically ANDing the b_flagsmember with the value B_READ. If the 
test fails, the 110 request is assumed to be a write. Any attempt to write beyond the end of the 
RAM disk must be denied, and an error reported. 

else 
bp->b_error = ENXIO; 
bp->b_flags 1= B_ERROR; 

Reading and Writing Data· 

Several different functions are available for moving data. Transfer can be between user space and the 
driver (with copyin and copyout). But the RAM disk and the driver are both in kernel space, so the 
bcopy function is used. The three arguments to the function are the source of the data, the 
destination, and the number of bytes transferred. 

if (bp->bflaqs &. B_READ) 
bcopyCdisk_addr, b_un.b_addr, bp->b_bcount); 

else 

The iodone Function 

When the data transfer is complete, the strategy routine calls the iodone(D3X) function. Hardware 
drivers use iodone to awaken sleeping processes, which is not required for pseudo-devices. The 
RAM driver uses this function to release the buffer block and to set the b_flags member to 
B_DONE. The iodone function is called with a single argument, the pointer to the buffer header. 

iodone C bp) ; 
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The close Routine 

Many drivers (even hardware drivers) will have empty close(D2X} routines. Even though it does 
nothing, the address of the empty routine is entered into the switch table. 

close( 
{ 

} 

If not empty, a close routine may be responsible for unlocking the device (if locked by the 
open(D2X) routine}, flushing buffers, making sure the device does not contain a mounted file 
system, and reinitializing its data structures. 

Because more than one process may have opened the device, the close routine is not called if any 
process still has the device open. The way in which a file was opened may affect how it should be 
closed, so one of the arguments to the close routine is taken from the f i 1 e structure (declared in 
file.h). 

For more information, see the reference page for for close in Section D2X on the Bel Driver 
Reference Manual. 
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Character drivers are used for data transfers where it is not possible to organized the data into blocks. 
Interactive tenninals and networks are the most common devices of this type. Like block drivers, 
character drivers use a switch table (cdevsw instead of bdevsw) to store base level routine entry 
points, and have lnit, open, and close routines. But unlike block drivers, character drivers have read 
and write routines instead of strategy, and can also include a general purpose 110 control (ioctl) 
routine for changing tenninal settings, for example. 

The tenninal driver described in this section demonstrates these and other features peculiar to 
character drivers, along with some of the features common to both block and character hardware 
drivers that are not part of the RAM disk driver. The most important of these is the code required 
to handle interrupts. 

Line Disciplines 

The processing necessary to drive an interactive tenninal is more complicated than for the RAM disk 
driver, but there are also more standard routines supplied as aids. Among these are a group of 
routines known collectively as a line discipline. 

While it is possible to write your own line discipline and configure it into the system, a standard line 
discipline (called line discipline zero) is suitable for most character drivers. 

The routines of the line discipline correspond to the routines of the driver, and like a driver, are 
accessed through a switch table (linesw). Typically, a tenninal driver routine performs some 
driver-specific processing and then calls the corresponding line discipline routine. 

Another group of standard routines are known as the TrY subsystem. These are part of the 
character interface, and each has a page in Section D3X of the Bel Driver Reference Manual. Their 
use is demonstrated in the example pseudo-code driver that follows, and more fully in Chapter 7, 
''Drivers in the TrY Subsystem." 
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The open Routine 

The most important component of the TrY subsystem is the tty structure. There is one instance of 
this structure for each configured port, providing a standard method for storing most of the 
information needed by the driver. Two members of the tty structure are used by the open(D2X) 
routine. 

• t_line, which identifies the line discipline used by this driver. 

• t_state, which is a set of 16 flags used to describe the currertt state of the device and the 
driver. 

(For a complete description of this structure, see section D4X of the Bel Driver Reference Manual.) 

The use of these and other members of the tty structure are described as they are used. 

include header files 
declare structure for device registers 

open( ) 

get device registers 
get port number 

if (device not open) 
initialize tty structure 

if (physical connection not made) 
wait for connection 

call line discipline open 

He a d e r F He s 

Except for buf.h, all of the header files mentioned in the block driver example must also be included 
in the tenninal driver. In addition, include the tty.h file, which declares the tty structure. The line 
discipline switch table (linesw) is defined in con/.h. 
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Declare Device Register Structure 

Device registers are special memory locations by which the driver communicates with the device. 
The structure includes four main members 

• control word used to pass the type of parity, number of stop bits and other information. 

• status word used to make the status of the device (sending, receiving, and so on) known 
to the driver. 

• receive character, to hold the last character received from the device. 

• transmit character, to hold the last character transmitted to the device. 

Get Device Reg isters 

The device registers are accessed by using the minor device number to index an externally declared 
array. 

*rp = &addr[minor(dev) » 3]; 

Get Port Num ber 

Like the device registers, the port number uses the minor device number (ANDed with the constant 
'7" for this controller) to find the correct value. 

port = minor(dev) & Ox07; 

Initialize tty Structure 

Because this driver uses line discipline zero, a standard TrY subsystem function can be used to 
initialize the port's tty structure. The function ttinit sets t_line and several other values to zero, 
and loads a default set of control characters into a character array, t_cc[]. The characters loaded are 
delete, quit, erase, kill, and end of file. 

The function is called with a pointer to the tty structure as an argument 

ttinit(tp) ; 
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Wait for Physical Connection 

The t_state member of the tty structure is used to test the carrier-present signal. If the device is 
not found to be on-line, the WOPEN bit in the same member is set. 

while(I(tp->state&CARR_ON)) 
tp->t_state 1= WOPEN; 

The sleep Function 

While waiting to detect a physical connection, the open(D2X) routine calls the sleep(D3X) function. 
This function is used to suspend execution of the driver when it is called and wait for some event to 
occur. Most often, the event is the completion of a data transfer, but here it is waiting for a line to 
be activated. In either case, the routine sleeps until it receives a wakeup(D3X) call from the 
interrupt routine. 

Many sections of driver code use the sleep function and a variety of hardware events are detected by 
the interrupt routine. The first argument to both the sleep and wakeup functions (sometimes called 
an event) is an address used to identify a hardware event and match a sleep and wakeup call. 

The address chosen in this case is one of the members of this port's tty structure. By choosing a 
memory address allocated to this port's invocation of the driver, conflict with other calls to sleep and 
wakeup can be avoided. 

The second argument to the sleep function is the priority level, which is discussed later. 

sleep«caddr_t)&tp->t_canq, TTIPRI); 

In at least one place in the interrupt routine (there may be more), the above sleep call has a 
corresponding wakeup call to resume execution. 

wakeup«caddr_t)&tp->t_canq); 
tp->t_state 1= CARR_ON; 
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Call Line Discipline 

After the driver-specific processing is complete, the line discipline open(D2X) routine is called to 
establish the logical data connection. 

Among other functions,the line discipline open routine allocates a buffer to receive characters (the 
t_rbuf member of the tty structure) and calls the drivers proc(D2X) routine. Both of these are 
discussed later in this section. 

The close Routine 

The driver's close(D2X) routine does nothing more than call the line discipline close routine. The 
line discipline takes care of both the logical and physical disconnection, and clearing and deallocating 
buffers. Other driver close routines might have to reset driver structure members and perform other 
clean-up. 

close ( ) 

call line discipline close 

The rea d R 0 u tin e 

The line discipline routine normally does everything the driver read(D2X) routine is required to do. 
The line discipline mainly takes the data from the raw input queue, and calls the canon(D3X) 
function to process ERASE and other non-data characters. 

read( 

call line discipline read 
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The proc Routine 

This routine is called both directly by driver routines and indirectly by some of the line discipline 
routines. To take "advantage of using line discipline calls, the device-specific processing must be 
isolated in a proc(D2X) routine and made accessible to the line discipline. 

The proc routine is passed a pointer to a tty structure and a command to be processed. The driver 
open routine, for example, calls proc with the command set to T _INPUT, to prepare the device to 
receive input. The driver write routine, on the other hand, calls proc indirectly through the line 
discipline write routine (with a command value of T_OUfPUT). (See Section D4X of the BCI 
Driver Reference Manual for more information about the commands a proc routine must be able to 
process.) 

The write R 0 u tin e 

The line discipline write routine is responsible for some processing similar to the canonical processing 
done by the read routine. Tab characters are expanded to the correct number of blanks and delay 
routines accommodate newline and backspace characters. 

write( ) 

call line discipline write 

1/0 Controls (The ioctl Routine) 

A terminal driver has an ioctl(D2X) entry point routine to respond to user requests to change 
terminal settings. (The request is expressed as an ioctl(2) system call, but may be indirectly called by 
the stty( 1) command.) 

ioctl(dev, cmd, arq, flags) 

get tty structure 

if (tty structure has no errors) 
get device registers 
change terminal settings 
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Get tty Structure 

The first argument to the routine is the device number, and it is used to set a pointer to the instance 
of the tty.structure for this port. 

device = minor(dev); 
tp = &tty[device]; 

Check tty Structure for Errors 

Next, the kernel function ttiocom(D3X) is called and its return value is tested. A non-zero return 
value indicates no errors have been detected. At the same time, the cmd argument is passed to the 
ttiocom function to set parameters in the tty structure. 

if(ttiocom(tp, cmd, arg, flags» 

Get Device Registers 

Changing the tty structure does not change the terminal settings. The device is accessed only 
through the device registers. 

rp = &addr[minor(dev) » 3]; 

For portability, the code for setting terminal parameters is isolated in a subordinate routine and is 
specific to the hardware involved. 

param(dev) ; 
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Interrupt Routines 

The terminal driver has to respond to interrupts caused by several different sources, including the 
following: 

• the terminal user has pressed a quit, delete, control-s or some other key 

• the terminal is ready for output 

• data transfer is complete 

• some kind of error has been detected . 

To ,service a variety of interrupts correctly, the interrupt routine selects from a list of cases by 
interrupt opcode, a value passed to the routine. . A typical section will perfonn one or more of these 
services 

• set flags in the t_state member of the tty structure 

• call a line discipline routine 

• call the proc routine 

• flush buffers 

• set flags to reflect the state of the board 

• call the wakeup function 

Setting Priority Levels 

Some data structures, such as tty, can be'modified by both base-level and interrupt-level routines. 
Because interrupts can occur at any time, precautions must be taken to postpone an interrupt at 
places in the code where common structures may be modified. These areas of driver code are called 
critical sections. 

A set of functions are used to temporarily raise a processor priority level and then return it to the 
previous level after the critical section has finished executing. The spl7 and splhi functions set the 
priority level to 15, preventing all interrupts. (See the spln(D3X) entry in the Bel Driver Reference 
Manual for the uses of each level. See Chapter 9, "Synchronizing Hardware and Software Events.") 

Normally, a critical section of code is protected by saving the old priority level and then restoring it 
with the spa function, as shown. 
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oldlevel = sp14(); 

critical section 

splx ( oldlevel ) ; 
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The rest of this chapter reviews a variety of steps and guidelines programmers should keep in mind 
when planning and developing device drivers. 

Basic Steps for Creating a Driver 

Device driver development requires more upfront planning than most application programming 
projects. At the very least, testing and debugging are more involved, and more knowledge about 
hardware is required. The following steps can be used as a general guide to driver development. 

Preparation 

• Learn about the hardware. Most of the information you need can be found in the 
documentation for the device, and should include 

o how the device sends interrupts 

o the range of addresses of the hardware board 

o return codes and software protocols recognized by the device 

o how the device reports hardware failures 

• Test the hardware to make sure it is functioning. This is especially important for a 
newly-developed device. 

• Design the software. Even though the overall structure of a driver is not the same as an 
application program, good· structured design remains important. Data flow diagrams, 
functional specifications, and structure charts are all useful tools in driver development. 
Design documents should cover not only the driver contents, but also the contents of any 
utility programs that will be used with the driver. 

• Select a software maintenance and tracking utility, such as the Source Code Control 
System (SeCS) described in the UNIX System V Programmer's Guide. 

Implementation 

• Write and install a minimal driver. It is very helpful to test driver code from the earliest 
stages, and to verify that it can be installed. A minimal driver might be one that simply 
uses the COlD_err function to send a ''hello, world" message to the system console. See 
Chapter 12, '1nstallation," for a detailed guide to driver installation. 

• Write base.,.level routines before interrupt-level routines. 
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• If applicable to the device, write·and test any associated firmware driver. 

• Develop utilities such as disk formatting, network administration, and diagnostic 
programs at the same time as the driver. 

Follow-up 

• As much as possible, use the testing phase to create error conditions that exercise the 
driver's ability to handle them. 

• Evaluate the driver's performance both in isolation and in a production environment 
where other drivers are installed. Regression testing should be performed to ensure that 
a new device driver does not affect other system functionality. 

• Make sure documents affected by the creation of the driver are updated. These may 
include operator and diagnostic manuals and sales or ordering information. 

• If the driver is to be installed by a customer, write and test installation and deinstallation 
packages, as described in Chapter 16, ''Packaging the Driver." 

Com m enting Driver Code 

Good practice in commenting driver code is the same as for any type of programming. Because 
driver code can be extremely difficult to maintain without adequate comments, these guidelines are 
included here. 

• Each file should have a comment block at the beginning, describing the type of file 
functions and the services they perform. List the functions that call them and the 
functions they call. For a hardware driver, describe the hardware, including version 
numbers and hardware strapping values. 

• Describe each global data structure or type declared, including its possible range of 
values. Describe the protocol, if any, used to access it (such as flag-setting). If it is 
useful, describe the functions that access structures, including those that are in other 
files. 

• Each routine should have a comment block at the beginning describing what it does, 
how it does it (what are the algorithms or strategy), assumptionS about the environment 
when it is called (processor interrupt priority level, outstanding I/O jobs, and so forth), 
and what global variables are used. 

• Each line that declares an argument to the routine should have a comment. 

• Every local variable should be explained. 
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• Each loop or "if" test should have a comment to explain the exit condition. 

Layered Structure 

Hardware drivers will be easier to port and maintain if structured in layers. Separate the higher-level 
protocol functionality from the low-level, machine-dependent routines. The high-level sections can 
be readily ported, leaving only the low-level sections to be rewritten. If machine-specific code is not 
isolated, all code may need to be rewritten to IU? on another processor. 

Also, when your driver accesses system structures such as the system buffer cache and the user and 
proc structures, use the standard functions included in the basic interface. Using non-standard 
functions with standard structures can degrade the performance of other drivers on the system and 
will impact portability. 

Driver Functions 

A device driver is made up of entry point routines that call standard interface functions and 
subordinate routines written for the driver. Here are some things to consider when using these 
functions and routines 

• Standard functions, especially for timing and data allocation, are less likely to degrade 
system stability and performance than similar routines coded in the driver. 

• When subordinate routines must be written, declare them static to prevent name 
conflicts with other drivers. In general, define as few global names (both functions and 
names) as possible. To make the driver easier to maintain, use the driver prefix when 
naming subordinate routines, even though the static declaration makes this step 
unnecessary . 

Utilize Board Intelligence 

Many new peripheral devices are intelligent, meaning that they contain their own microprocessor that 
can hold driver code. For optimal performance and portability, take full advantage of the board's 
intelligence by writing a firmware driver that provides the basic functionality of the board, then 
accesses the firmware driver from within the UNIX system driver. 

With modem intelligent devices, some of the control for a device or controller may be in code 
running on the controller board rather than in the driver running in kernel memory. The code for the 
controller board may be in firmware or may be downloaded to controller RAM, for example, at 
system boot time. If the device never needs to work in a non-UNIX system (firmware) mode, it is 
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not necessary to use firmware for anything more than diagnostics, interrupt structure, and the 
interface to the Equipped Device Table (EDT), discussed in Appendix A, 'The Equipped Device 
Table (EDT)." Otherwise, to copy data to and from your device in a non-UNIX system mode, the 
fundamental functionality for the board must be burned in firmware. You may also want to include 
in firmware a basic subset of the protocol necessary to talk to the host processor directly, such as the 
memory management protocol. Proper use of firmware can enhance the features, portability, and 
performance of your device. 

Pumpcode is firmware code that is stored in UNIX system files and downloaded (or "pumped") to the 
board during system startup. Code can be pumped by the initialization routines discussed in Chapter 
5, "System and Driver Initialization," (if it is required that early), or by I/O control commands that 
you define as discussed in Chapter 8, ''Input/Output Control (ioctl)." It is occasionally also pumped 
by programs called by the init(lM) process. For instance, on the 3BtS computer, pumpcode for the 
I/O Accelerator (lOA) is not sent to the board until the machine enters multiuser state. 

Firmware must be coded according to the microprocessor board specifications. The 
/usr/include/sys/firmware.h file defines the structures the memory board requires to communicate with 
the boards. In addition, the firmware board must adhere to the diagnostic interface, EDT interface, 
and interrupt structure for the system. Chapter 1, "About This Document," describes other 
documents where this information is available for the microprocessors used in the computers 
documented in this book. Appendixes A and B review the EDT interface and diagnostic interface, 
respectively.) 
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For more information on all of the driver routines mentioned in the two examples, refer to the 
chapters listed in Table 2-1. Reference manual pages are provided for each routine in the Bel Driver 
Reference Manual. 

Table 2-1 Driver Entry Point Routines 

Initialization init(D2X) Chapter 5 

Entry Points start(D2X) Chapter 5 
Switch Table open(D2X) Chapter 5 

Entry Points close(D2X) Chapter 5 

read(D2X) (character-access only) Chapter 6 

write(D2X) (character-access only) Chapter 6 

ioctl(D2X) (character-access only) Chapter 8 

strategy (block-access only) Chapter 6 

print (block-access only) Chap~er 11 
Interrupt int(D2X) Chapter 10 

Entry Points rint(D2X)/xint(D2X) Chapter 10 
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This section is an introduction to the basic files you need to become familiar with when configuring a 
driver into the UNIX operating system, such as the location of source files and the creation of a 
master file in the letclmaster.d directory. 

Figure 2·3 shows the files and directories used when creating or maintaining a driver. 

/ 

unix 

dgn 

edcdata 
( diagnostic 

files 

etc 
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t NOTE: 

Name For this type of computer 

32100vme Single Board Computer (SBC) 
3b15 3B15 Computer· 
3b2 3B2 300/4001500/600 Family 
acp 3B4000 Adjunct Communications Processor 
adj 3B4000 Adjunct Processors' Common Directory 
adp 3B4000 Adjunct Data Processor 
com 3B4000 Master Processor and 3B15 Common Directory 
eadp 3B4000 Enhanced Adjunct Data Processor 

Figure 2-3 Files and Directories Used by Drivers 

Of the files listed above, the following are important for system configuration: 

letclmaster.d 

letclsystem 

Idev 

Iboot 

this directory contains the master files. A master file supplies information to 
the system initialization software to describe the attributes of a driver. 

this file contains entries for each driver and indicates to the system 
initialization software whether a driver is to be included or excluded for 
configuration. 

this directory contains special device files. A device file establishes a link 
between a driver and a device. 

this directory contains bootable object files that are used to create a new 
version of the UNIX operating system when a computer is booted. 
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Certain system files and directories must be infonned of your driver; depending on the initialization 
that is required, you may need to add entries to others. 

Table 2-2 lists the files and directories you may need to modify for your driver. 

t 
t 

* 
* 

Table 2-2 System Files Used By Drivers 

System File Purpose 
lete/system Controls construction of the operating system 
Idgnlname Diagnostic code: 
/dgnlX.name 
letclscsi.dlname (3B4000 MP equipped with SCSI) 
letclscsi.d/X.name 
I adjlpeNNNldgnlname (3B4000 ACP, NNN is the processor element number) 
ladjlpeNNNldgnlX.name 

I ete/master .dI* Confi~ation information for the device or module 
Iboot/* Compiled driver, processed with mkboot(1M) 
llib/pumpl* SBc/3B2 computers (and 3B4000 ACP) pumpcode 
/lib/bootpump.d/* 3B15/3B4000 com~uterspumpcode 

I etc/ brc .dl* Scripts to be executed before those in letc/rc.d 

I etc/rc .d1* Scripts to be executed when system goes to multiuser state 
I etc/ bcheckrc (3B2 computers) 
lete/rcO Script to be executed at shutdown 

• indicates an element that must be updated for all drivers. 
Idgn files must be present for new hardware boards (cards) and for all SBC drivers. For SBC drivers, you should link a file with the 
same name as your driver in all upper case to the null diagnostics file and to the corresponding X. diagnostics files. These files are 
required before your system can be booted. Refer to Appendix B, "Writing 3B2 Computer Diagnostics Files," for more information 
on writing a Idgn file. 

Refer to the reference manual pages in the Programmer s Reference Manual under master( 4) and 
system( 4) for more detailed information on the I ete/ system and master files. 

These files are used for self-configuration and system initialization. Chapter 5, "System and Driver 
Initialization," discusses the self-configuration and system initialization processes. 
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Introduction 

This chapter describes the means by which drivers are accessed by the UNIX operating system. The 
following subjects are discussed: 

• driver initialization and driver initialization routines 

• switch table entry points 

• major and minor device numbers 

• external and Internal major/minor number translation 

• interrupt entry points 
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As discussed in Chapter 2, drivers are accessed in three ways 

• through system initialization 

• through system calls from user programs 

• through device interrupts 

When the system is initialized, several tables are created as a means for the system to enter drivers 
through their routines. Because the system uses these tables to determine the appropriate driver 
routines to activate, the routines themselves are sometimes referred to as driver entry points. 

Each table is associated with a specific set of entry point routines. Initialization tables are associated 
with either init(D2X) or start(D2X) routines. System calls use a pair of switch tables whose entry 
points are open(D2X), close(D2X), read(D2X), write(D2X), and ioctl(D2X) routines for character 
drivers, and open, close, and strategy(D2X) routines for block drivers. Device interrupts are 
associated with their appropriate interrupt handling routine through an interrupt vector table whose 
entry points are'either an int(D2X) routine, or a rint(D2X)/xint(D2X) routine pair. 

The following sections discuss these system tables and their associated entry points in greater detail. 

Initialization Entry Points 

All driver initialization routines, either init or start, are executed during system initialization and are 
executed in a different order each time the system is configured. The system uses only the routines 
themselves and information from the driver's master file to initialize the drivers. Information such as 

, the major/minor numbers, important when accessing driver switch table entry points, is not used to 
initialize a driver. The system does not differentiate between character- and block-access drivers 
when running the initialization routines. 

The system initialization program first creates two internal tables, io_init and io_start, which it uses 
to list the routines that must be executed. After the system is initialized, the io_init and io_start 
tables are never accessed again. Not all drivers need initialization routines. A driver that does not 
have an init or start routine has no entry in the io_init or io_start table. 

Chapter 5 describes the internals of system and driver initialization. Chapter 5 also gives guidelines 
for choosing and writing the type of initialization routine appropriate for your driver. 
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Switch Table Entry Points 

Two operating system switch tables, cdevsw(D4X) and bdevsw(D4X), hold the switch table entry 
point routines for character and block drivers, respectively. These routines are activated by I/O 
system calls, as illustrated in Figure 3-1. 

system'[ 
Calls 

File 
Subsystem 

Driver 

open close 

open close read write ioctl mount unmount read write 

I I 
I I 

buffer cache 

calls 

I 
Character Device Switch Table Block Device Switch Table 

Driver 
open close read write ioctl open close strategy 

Driver 
Entry 

Driver 

Points 

f f 
I interrupt handler I 

f , 

I Device I 
Figure 3-1 Switch Table Entry Points and System Calls 

The process of calling the appropriate driver routine can be summarized as follows: 

1 The I/O system call (open, close, read, write, etc.) is directed to a special device file. 

2 The special device file includes the external major number for the device. Using the 
MAJOR translation table, the operating system finds the corresponding internal major 
number. 
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3 If the special device file is for block-access, the operating system will use the internal 
major number as an index into the bdevsw table to find the appropriate routine. For 
character-access, the operating system will look in the cdevsw table, using the same 
method. 

4 The operating system then calls the appropriate routine. 

Whenever the character-access entry points are being used, the block-access entry points are 
inaccessible, and vice versa. As will be discussed in Chapter 6, when doing a character-access read 
or write operation on a device that supports both block- and character-access, the driver calls the 
strategy routine. It calls this routine, however, as a subordinate routine to read or write, not as the 
bdevsw entry point. 

Note that the cdevsw entry point routines for TrY drivers access subordinate routines through the 
linesw table. This is discussed in Chapter 7. 

The next several sections give more details on the files and processes involved in accessing the switch 
table entry point routines. 

En tr ie s in S w itc h Tab Ie s 

Figure 3-1 shows that bdevsw and cdevsw have a place for every switch table entry point that 
could be coded for a driver. However, not all routines are appropriate for all devices. For instance, 
a printer driver does not need a read routine. The operating system provides a place holder in the 
switch table for routines that are not included in the driver. Table 3-1 summarizes what the self
configuration process will enter in the switch tables for routines that are not included, and the result 
of attempting to call that routine. 

Table 3-1 Switch Table Entries for Non-Coded Routines 

Type of Driver If you omit: Self-config enters: If accessed: 

Any driver open nulldev(D3X) no operation and 
in bdevsw or cdevsw no error code 

Character access read nodev(D3X) in ENODEV 
("c"FLAG) write cdevsw in o.o_error 

ioctl 
Block access strategy nulldev(D3X) no operation and 
(''b'' FLAG) print in bdevsw no error code 

A ''b'' or "c" in the FLAGS column of the master file determines if entries are made in the bdevsw 
or cdevsw tables, regardless of what routines are coded in the driver. For instance, if you include a 
strategy routine but omit the ''b'' from the master file, bdevsw will have no entries for that device. 
If a block special file is then created and accessed, routines for the wrong device maybe used, or the 
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call may return the ENODEV (''No device") error. 

D eterm ining Major and Minor N um bers 

When a driver is installed and a special device file created, a device then appears to the operating 
system as a file. A device is accessed by opening, reading, writing, and closing a special device file. 
A special device file contains the major and minor device numbers. The major number identifies a 
driver for a controller, such as a printer, disk drive, or terminal. The minor number identifies a 
specific device. On AT&T computers, the major and minor numbers for a special device file are 
referred to together as a device number. 

Major numbers are assigned sequentially by either the system initialization software at boot time for 
hardware devices, by a program such as drvinstaII(lM), or by administrator discretion. Minor 
numbers are designed by the driver developer are identify characteristics of the subdevice. No 
standard exists for the form of the minor number. 

Major Numbers 

Major numbers for hardware devices are determined as follows: 

• 3B4000 and 3B15 computers - the hexadecimal board code of the device from the 
equipped device table (EDT). Determining a new hardware device major number on the 
3B4000 computer differs by the board's location on the system buses. 

• 3B2 computer and SBC - after installing the board in the computer, the getmajor(lM) 
command can be used to determine the major number. 

After adding a device to the EDT, you can display the external major number with the following 
commands: 

Table 3-2 Displaying External Major Numbers 

Processor 

3B2 
3B4000 Master Processor 
3B15 
SBe 

Command 

getmajor(lM) 
getedt(lM), iau(8) disp edt, or getmajor(lM) 
getedt(lM), iau(8) disp edt, or getmajor(lM) 
getmajor(lM) 

The major number for a software device is assigned automatically by the drvinstall command. 
Specify a dash in the SOFT column of the master file, and drvinstall selects the next available 
number and inserts it in the master file. 
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On the 3B and Single-Board Computers, major numbers range from 0 through 127. The following 
table gives the major number ranges. If you must install a driver without benefit of drvinstall, then 
search the master files for prior usage before selecting a free number. 

Table 3-3 Ranges Cor Major Numbers 

Computer Extended 
Type Hardware Software Bus Devices 

3B2 300/400, 1, 2, 4-15 16-19, 24-29, 71-127 
500/600, 44,45,58 

59, 63, 64, 66 
3B4000 ACP 0-29 30-62, 64-70 71-127 
3B15 4-15, 0-2, 74-127 
3B4000 MP . 33-47 16-32 

48-73 
3B4000 EADP 0, 3, 16, 19, 24~ 72-127 

28, 29, 58, 59, 
63,64,66 

SBC 0-15 48 - 127 

Usually, the term "major number" refers to external major numbers. These are the major numbers 
used for the special device files. External major numbers for Software devices are static and are 
assigned sequentially to the appropriate field in the master file by the drvinsta1l(IM) command; 
external major numbers for hardware drivers correspond to the board slot and are dynamically 
assigned by the (boot process as system boot time. The getmajor(lM) command returns the major 
number for the specified device. The mknod(IM) command is then used to create the files (or 
nodes) to be associated with the device. 

Internal major numbers serve as an index into the cdevsw and bdevsw switch tables. These are 
assigned by the self-configuration process when the drivers are loaded, and may change every time a 
full-configuration boot is done. The system uses the MAJOR table (see below) to translate external 
major numbers (from the special device file) to the internal major numbers needed to access the 
switch tables. 

One driver may control several devices; each device will have its own external major number, but all 
those external major numbers are mapped to one internal major number for the driver. Were this not 
the case, each driver would need a separate entry in the switch tables for each device under its 
control. 

Minor N um bers 

Minor numbers are determined differently for different types of devices. Typically, minor numbers 
are an encoding of information needed by the controller board, although the driver may also have 
information for it. For instance, for tape drives, the minor number indicates whether or not to 
rewind the device. Hardware device minor numbers must fall in the range 0 through 255; software 
device minor numbers must also fall in the range of 0 to 255. 
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The external minor number is entirely under control of the driver writer (although there are 
conventions enforced for some types of devices by some utilities), and usually refers to "subdevices" 
of the device. A tape driver, for example, may talk to a hardware controller (the device) to which 
several tape drives (subdevices) are attached. All the tape drives attached to one controller will have 
the same external major number, but each drive will have a different external minor number. For 
disk devices, the disk controller is assigned a major number, and individual disk partitions are the 
subdevices, with each disk partition having separate special device files and separate minor numbers. 

Internal minor numbers are used with hardware drivers to identify the logical controller that is being 
addressed. Since drivers that control multiple devices (controllers) usually require a data structure for 
each configured device, drivers address the per-controller data structure by a logical controller 
number rather than the external major number, thus compacting the data structures in the kernel. 

The logical controller numbers are assigned sequentially by the central controller firmware at self
configuration time. The controller with the lowest local bus address is assigned logical controller 
number zero, and so forth. The internal minor number is calculated by multiplying this number by 
the value of the #DEV field (number of devices per controller) in the master file. 

The internal minor number for all software drivers is O. 

The MAJOR and MINOR Tables 

The MAJOR and MINOR tables map internal major and minor numbers to the external major 
number. Each table is a character array of 128 entries. Figure 3-2 illustrates the MAJOR and 
MINOR tables and their relationship to cdevsw and bdevsw. 

The switch tables will have only as many entries as required to support the drivers installed on the 
system, up to 128 entries. 

Switch table entry points are activated by system calls that reference a special device file, which 
supplies the external major number and instructions on whether to use bdevsw or cdevsw. By 
mapping the external major number to the corresponding internal major number in the MAJOR 
table, the system knows which driver routine to activate. 
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External 
major 
number 5 

MAJOR table 
external internal 

major number major number 
0 2 
1 3 
2 3 
3 3 
4 0 

-.. 5 0 
6 1 

127 3 

MINOR table 
external internal 

maior number minor number 
0 0 
1 0 
2 0 
3 0 
4 0 -. 5 32 
6 0 

127 0 

index 

~ 0 
1 
2 
3 

~ 
127 

index 
~ 0 

1 
2 
3 

127 

cdevsw table 

open close read write 
QQ_open QQ_close QQ. read QQ. write 
aa open aa_close aa read aa write 
dd open dd close nodev dd write 
hh open hh close hh read hh write 

xx_open xx close xx read xx write 

bdevsw table 

open close strategy 

IQQ_open QQ. close I QQ. strategy 
aa open aa close aa strategy 
dd open dd close dd strategy 
hh_open hh close hh strategy 

xx open xx close xx strategy 

Figure 3-2 MAJOR and MINOR Tables 

ioctl 

QQ. ioctl 
aa ioctl 
nodev 

hh ioctl 

xx ioctl 

NOTE: In Figure 3-2, the entry "32" under the column entitled, "internal minor number" identifies 
that the number of total number of devices for the driver. This value is set in the master file 
under the #DEV column. This number is arbitrary in this circumstance. 
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External to Internal Translation 

Driver writers usually deal directly with external major and minor numbers, and the operating system 
translates these to internal major and minor numbers. A driver can access an internal major minor 
number as follows: 

• Internal major numbers can be extracted from the MAJOR[ ] translation table. To 
access the table, use the syntax: 

uns igned char MAJOR [ externaLmajor _number] 
internal_major = MAJOR[externaLmajor_number] 

• Internal major numbers can be determined with the built-in function #M in the master 
file, which is used to refer to the internal major number for the current driver (for 
example, imaj = #M). To refer to the internal major number of another driver in the 
master file, use #M with the name of that driver (as found in the Iboot directory) as an 
argument. For example #M(MEM). 

• Internal major and minor numbers can be accessed with themajor(D3X) and 
minor(D3X) macros (defined in lusrlincludelsyslsysmacros.h). 

Drivers should not perform external-to-internal device number translation under the following 
circumstances: 

• During unbuffered read or write operations to "raw" devices. This translation is done 
when the pbysio(D3X) function calls the strategy(D2X) routine, as discussed in 
Chapter 6. 

• In the print(D2X) routine used to handle errors arising during the execution of the 
strategy routine. 

Interrupt Entry Points 

The operating system handles all system interrupts, including clock and software interrupts, system 
exceptions such as page faults, and interrupts from peripheral devices controlled by drivers. 
Peripheral devices generate interrupts when an 110 transfer encounters an error or completes 
successfully. They also sometimes generate "stray" interrupts, which can cause general system havoc 
if not handled by the logstray(D3X) function. 

When an interrupt is received from a hardware device, the system determines the major number of 
the device and passes control to the appropriate driver's interrupt handling routine(s). It does this by 
accessing the interrupt vector table, populated during system initialization. 

Each device can have up to sixteen interrupt vectors assigned to it. The number of the first interrupt 
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vector for a device is (16 * external-maJor-number). The number of intemIpt vectors for a device is 
detennined by the value of the #VEC column in the driver's master file. So, if a driver has 
#VEC=4, and the external major number of the device is three, the device has intemIpt vectors 48, 
49, 50, and 51. See Chapter 10 for a more detailec1 discussion of how interrupt vectors are assigned 
to devices. 

Each interrupt vector for a hardware device has its own driver interrupt handler, assuming the driver 
code includes an interrupt handler. The name of a driver interrupt handler must be either int(D2X), 
or one of rint(D2X) or xint(D2X). As with all other driver entry point routines, the driver prefix 
must be added to the name. 
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Introduction 

This chapter describes the use of system and driver-specific header files, and the relationship between 
data structures and drivers. It introduces some standard system header files delivered with the UNIX 
operating system that define error code, parameter, and data structure information for all drivers, and 
describes the standard system data structure fields frequently accessed by driver routines. 

This chapter also provides procedures for declaring data structures in driver code, creating driver 
header files for driver-specific data structures, and for defining driver-specific data structures in a 
driver's master file. 

This chapter discusses the following: 

• Using system header files including detailed infonnation on the errno.h and types.h 
header files. 

• Using standard system data structures including detailed information on structures 
defined in user.h, proc.h, buf.h, and iobuf.h. If you are already familiar with standard 
UNIX data structures, skip this section and tum to ''Declaring Data Structures". 

• Creating driver header files for defining driver-specific data structures and variables 

• Defining system and driver-specific data structures in driver code 

• Using the master file to define driver-specific data structures 

All of the data structures introduced in this chapter are discussed elsewhere in this document. A 
complete listing and description of all standard system data structures currently supported for driver 
interface is provided in the Bel Driver Reference Manual in section D4X. Appendix C in this book 
provides a listing of common and processor-specific header files. 

Header Files and Data Structures 4-1 



Header Files 

A header file is a method of localizing common driver information in a file sharable by all drivers. 
Localizing common information reduces the overhead to the driver code itself and enhances the 
portability of each driver. There are two kinds of header files associated with drivers: system header 
files, and driver-specific header files. 

The system header files included in the lusrlincludelsys directory when the UNIX operating system is 
delivered define a variety of standard system variables, data types, and data structures used by many 

. or all drivers. Driver-specific header files define variables and data structures used only by the driver 
routines. 

Each driver that uses the information contained in a header file must include the header file name at 
the beginning of the driver code with an #include line. Header files containing variable and error 
code information must be included in almost all drivers. The following is a listing of header files 
typically used by all drivers: 

Table 4-1 

Header File 

types.h 

param.h 

errno.h 

Header Files Used by All Drivers 

Description 
Contains data type definitions that are required by 
standard system data structures; #include before 
any other header files. 
Contains parameter and macro definitions 
required by other header files; #include after 
types.h in all drivers. 

Contains standard error code definitions for all 
drivers. 
Contains the cDlD_err(D3X) print interlace 
definition. 

Header files are called in the order they are listed. Header files that are dependent upon information 
contained in other header files must be included after them. For instance, the dir.h header file must 
be included before user.h. The types.h andparam.h header files are always in~luded before any other 
header files. 

The following sections discuss the information contained in the ermo.h and types.h header files in 
more detail. 
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Error Codes in errno.h 

The errno.h header file defines the error codes that should be returned by a driver routine when an 
error is encountered. Table 4-2 lists the error values in alphabetic order. In a driver open(D2X), 
close(D2X), ioctl(D2X), read(D2X), and write(D2X) routines, errors are passed back to the user by 
setting the u.u_error field of the process user block to the appropriate error code. In the driver 
strategy(D2X) routine, errors are passed back to the user by setting the b_error member of the 
buf(D4X) structure to the error codes. 

Error 
Value 
EAGAIN 

EFAULT 

EINTR 

EINVAL 

EIO 

ENXIO 

Table 4-2 Driver Error Codes 

Error 
Description 
kernel resources, such as memory, 
are not available at this time; 
cannot open device (device may 
be busy, or the system resource is 
not available). 
an invalid address has been passed 
as an argument; bad memory 
addressing error 
when a process is sleeping above 
PZERO without peA TCH ORed 
to the sleep priority and a signal is 
received, longjmp(D3X) is called, 
control returns to user and 
EINTR is set in u.u_error. 
invalid argument passed to routine 

a device error occurred; a problem 
is detected in a device status 
register (the 110 request was 
valid, but an error occurred on 
the device) 
an attempt was made to access a 
device or subdevice that does not 
exist (one that is not configured); 
an attempt to perfonn an invalid 
110 operation; an incorrect'minor 
number was specified 

Use in these 
Driver Routines (D2X) 

open, ioetl, read, 
write, strategy 

open, close, ioeti, 
read, write, strategy 

open, close, ioeti, 
read, write, strategy 

open, iocti, read, 
write, strategy 
open, close, ioetl, 
read, write, strategy 

open, close, ioeti, 
read, write, strategy 
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Error 
Value 
EPERM 

EROFS 

Table 4-2 Driver Error Codes 

. Error 
Description 
a process attempting an 
operation did not have 
required super-user 
pennission. 
an attempt was made to 
write to, or to open a 
read-ortlydevice 

Use in these 
Driver Routines (D2X) 
open, ioctl 

open 
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Figure 4-1 cross references error values to the driver routines from which the error values can be 
returned. 

open EAGAIN close EFAULT ioctl EAGAIN read EAGAIN 

EFAULT EINTR EFAULT 
or 

write EFAULT 

EINTR EIO EINTR or EINTR 

EINVAL ENXIO EINVAL 
strategy 

EINVAL 

EIO EIO EIO 

ENXIO ENXIO ENXIO 

EPERM EPERM 

EROFS 

Figure 4-1 Error Codes by Driver Routine 

Data Types in types.h 

The header file types.h defines a number of special data types used widely within the kernel. Many 
fields in the system data structures use these types. The data type for each structure field is defined 
in the data structure's header file. Section D4X in the Bel Driver Reference Manual lists the fields in 
each data structure together with their defined data type. 

Maintaining a standard definition for data types enhances the portability of kernel and driver code. 
Drivers storing values in system data structure fields must either declare variables of these types or 
cast the value using the C cast construct. 

The following is a list of some of the more common data types defined in types.h frequently used by 
driver code: 

Table 4-3 Common Data Types 

Data Type 
caddr_t 
daddr_t· 
dev_t 
label_t 
otT_t 
paddr_t 

Description 
virtual memory address, byte aligned 
block device block number 
major/minor device number 
setjmp data block 
byte offset in file 
·physical memory address 

The types.h and param.h header files should always be the first header files included in the driver 
code. . 
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Data structures provide a means for passing information between the kernel and the driver routines. 
They are used to store process status information, to define. 110 transfer. methods, to define buffering 
schemes, and to store driver and device specific information. There are basically three types of data 
structures: system data structures declared globallyl for a driver, driver specific data structures 
declared globally for a driver, and internal data structures defined within a driver routine and used 
only by that routine. 

System data structures are structures that define common methods of passing information to and from 
the kernel and device drivers. Header files for these data structures are supplied with the delivered 
operating system in the /usr/include/sys directory. Driver specific data structures are structures that 
store information for use only by that driver and whose header files must be created by the driver 
writer. Internal data structures are defined within a particular driver routine and store information of 
use only to that routine, and often about a specific device. 

Drivers declare the use of system data structures by adding the header file names with #include lines 
to the beginning of the driver code. Driver-specific data structures are declared either by their own 
header file or by an extern declaration at the beginning of the driver code. Internal data structures 
are not declared, but are simply created within a particular routine for the use of that routine alone. 

The following sections discuss some standard data structures, provide procedures for declaring data 
structures, and provide procedures for creating header files for driver-specific data structures. 

1. The term "global" means that the data strUcture has been declared at the beginning of the driver code with a #IDdude line, or with an extern 
declaration. ' 
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Standard System Data Structures 

System data structures are standard structures the UNIX operating uses to pass infonnation to and 
from the kernel and driver routines. The header files defining these structures are delivered with the 
operating system in the /usr/include/sys directory. 

Many standard system data structures are used by all the computers discussed in this book (Appendix 
C in this book contains a more complete listing of common header files). The following header files 
define some of the data structures commonly used by device drivers: 

Header File 
buf·h 

dir.h 

elog.h 

file.h 

iobuf.h 

proc.h 

tty.h 

user.h 

Table 4-4 Common Driver Header Files 

Description 
Defines thebuf structure used for block I/O 
transfers. 
Defines the structure of a file system directory 
entry. 

Defines the iostat structure. 

Defines UNIX file structure including flags passed 
to open(D2X) and c1ose(D2X) routines. 

Defines the iobuf structure (block 110 requests) 
for use primarily with IDFC disk devices. 

Defines the proc structure used for every active 
process include in the process table. 

Defines the clist structure and commands and 
flags for the line discipline for TrY devices 

Defines the user structure for the current process 
and is referenced by the global variable u. 

The user(D4X), proc(D4X), buf(D4X), and iobuf(D4X), structures, always accessed when 
doing character or block 110, are discussed in more detail in the following sections. 
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The user Structure 

The user(D4X) structure2 declared in the user.h header file defines the fields included in the user 
block for each process. User blocks are created dynamically for each newly created process. The 
process user block contains information such as where the data is coming from, its size, and how 
much needs to be moved. Character driver read(D2X) or write(D2X) routines may use these fields 
to read information they need about the status of an I/O request, and to write the I/O request's final 
status. 

When a process begins to execute in the CPU, the process's user block is placed at a fixed address in 
the kernel. Only one user process can run in the CPU at one time. This means that the user block in 
the CPU is always the block for the current running process. A new process that has a higher priority 
than the process currently running may cause that process to be swapped out, in which case a new 
user block is swapped in for the higher priority process. For this reason, strategy(D2X) and interrupt 
routines must not access the us er structure. These routines operate independently of the currently 
running process, and may alter the fields of a user block for a process not associated with them. 

The majority of the fields defined in the user.h header file are pertinent only to character driver I/O 
read and write routines. init(D2X), open, close, and ioctJ(D2X) routines can also access the user 
structure, however, the u_base and u_count fields that define the size and location of the data 
transfer are not meaningful to these routines. Block I/O requests are handled through the system 
buffer cache defined by the buf structure. See 'The buf Structure" section in this chapter for 
information. 

2. The user structure is also commonly called the u structure or u block, and sometimes referred to as the user area. The term user area should 
not be confused with the term user space which refers to the part of a system in which user processes execute. 
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The following user structure fields are of particular interest to driver routines. A t sign preceding 
the field name indicates the field is read-only: 

Field 

Table 4-5 Fields in the user Structure 

Description 
Contains a pointer to the virtual address of the 
next user data byte. The driver should increment 
the pointer for each byte moved. The 
pbysio(D3X) function automatically increments 
this pointer. 
Contains the count of total bytes remaining in 
virtual address space. The driver should decrement 
this count each time a byte is moved. The 
pbysio(D3X) function automatically decrements 
this count. 
Contains the position in the file when the read or 
write was requested. 
Contains the error status code for an 110 operation 
as defined in the errno.h header file. This value 
will be copied to the global variable errno, and a 
failure will be indicated in the system call return 
value if the operation was unsuccessful. 
Contains a pointer to the proc(04X) structure 
entry in the process table. The proc structure 
defines information such as the process's priority 
(See 'The proc Structure" section in this chapter 
for information). 

Information in the process user block is cross-referenced with information in the proc structure for 
the process. The u_proc field in the user structure contains a pointer to the process's proc structure 
entry in the process table. The proc structure defines static information such as the the process's 
priority level (see 'The proc Structure" section in this chapter for more information). 

The user structure is referenced by the global variable u. Driver code accesses user structure 
fields through that name, for example: u.u_base. This name refers to the u_base field in the user 
structure. 
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The proc Structure 

The proc(04X) structure contains information used by memory management hardware and 
software to locate the code, data, and stack information of the process. It also contains information 
used by the scheduler in selecting processes to run. 

One proc structure is created for every process, regardless of whether it is. the currently active 
process. In most UNIX systems, each structure is an entry to an array called the process table which 
includes all active processes and determines the maximum number of processes on a system at any 
time. 

The process table can be accessed through the user structure. The u_proc field in the user 
structure contains a pointer to the process's process table entry. Fields in the proc structure can be 
accessed by driver routines, however, driver routines must never alter the proc structure fields. 

The following fields in the proc structure are of interest to device drivers. All fields in the proc 
structure are read-only: 

Field 

p-pgrp 

Table 4-6 Fields in the proc Structure 

Description 
Contains the status of the process and is used by 
the scheduler to determine the current state of the 
process. The process state is changed by driver 
calls to the sleep(D3X) or wakeup(D3X) kernel 
functions. 
Contains the priority of the process and is used by 
the scheduler to determine which process has 
priority for CPU use. Process priority can be 
changed by driver calls to the sleep) and wakeup 
kernel functions. 
Contains the process group ID of the process and 
is used by a driver to send signals to· a group of 
processes. 
Contains the process IDand is used by a driver to 
send a signal to a specific process. 
Size of the process swappable image in pages. 
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The buf Structure 

The buf(D4X) structure declared in the buf.h header file defines the fields contained in the header 
for each buffer in the system buffer cache. Fields in the buf structure define a requested block 110 
operation by specifying the device to be used by its device number, the direction of the data transfer, 
its size, the memory and device addresses, and other information. The kernel uses the information in 
the buffer header to organize and maintain the system buffer cache. A block driver strategy(D2X) 
routine uses the information in the buffer header to maintain an internal queue of 110 requests to be 
processed, and to store information such as the address of an 110 completion routine. Block driver 
strategy routines receive one argument, bp, that is a pointer to a buffer header. 

The following is a list of some of the fields in the buffer header used by driver strategy routines. A t 
sign preceding the field name indicates the field is read-only. 

Field 

t av_back 

Table 4-7 Fields in the buf Structure 

Description 

Contains the device number (major and minor 
numbers) for the block device storing the buffered 
data. 

Contains the virtual address of the data buffer. 

Contains the amount of data to be transferred in 
bytes. 

Contains the device number for the block device. 

Contains a forward pointer for an internal queue 
of requests to be processed by the strategy 
routine. 

Contains a backward pointer for an internal queue 
of requests to be processed by the strategy 
routine. 

Contains information on how the 110 request is to 
be handled and its current status. 

Driver code uses pointers to refer to fields within the buffer header. For example, the following line 
uses the name bp as a pointer to the av _forw field in the buffer header: 

bp->av_forw 

Chapter 6 in this book describes the system buffer cache and discusses a strategy routine's use of the 
fields define in the buf structure in detail. 
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The iobuf Structure 

Most block device driver strategyD2X) routines require an internal queue to manage the device's 
outstanding I/O requests, since the speed with which a typical block device can service requests is 
considerably slower than the speed with which requests can be made.3 strategy routines also need a 
structure to store specific device state information. The iobuf(D4X) data structure defined in 
iobuf.h provides fields to serve these functions. 

The iobuf structure stores such infonnation as the device number, an error count, the device's local 
bus address, and other device specific information, and provides pointers to the av _forw and av _back 
fields of the buf structure. These pointers can be used to create an internal request queue. 

The following list is an example of the kinds of fields included in the iobuf structure: 

Field 

Table 4-8 Fields in the iobuf Structure 

Description 
Contains a pointer to the av _forw field in the 
buf structure and can be used to indicate the 
beginning of an outstanding job request queue in 
the driver strategy routine. 
Contains a pointer to the av_back field in the 
buf structure and can be used to indicate the end 
of an outstanding job request queue in the driver 
strategy routine. 
Contains the device number (major and minor 
numbers) of the device. 

strategy routines that wish to use the i obuf structure must declare the structure using the extern 
declaration in the driver's header file. The structure is a standard name constructed from the driver 
prefix in the form: prefixtab. For example, the iobuf structure for the doc_ driver included in 
Appendix E is declared in line 175: 

extern struct iobuf doc_tab[]; 

3. An exception to this would be a strategy routine for a RAM driver. Because the data to be read or written is already in memory. requests 
can be serviced syncbronously. 
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Although some form of structure is needed to provide a private I/O queue, it is not necessary to use 
the structure defined in iobuf.h. In some cases, the fields provided may not be enough to hold all the 
device specific information needed for your device. However, most of the fields provided are 
required by any structure holding device specific information, and fields from the iobuf structure 
are used in some example strategy routine code included in this book. For this reason, it is helpful 
to know the above information. 
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Declaring Data Structures 

All system and driver-specific data structures used by a driver are declared at the beginning of the 
driver code. In most drivers, this is done in three steps: 

1 Use an #include statement to reference the appropriate system header files from the 
/usr/include/sys directory for system-wide data structures used in a driver. 

2 Use an #include statement to reference the header files created for this driver and 
modules for such items as buffering schemes that the driver uses. 

3 Declare any structures that are defined in the master file (initialized data structures). Be 
sure that the declaration matches the data element size used in the master file. See the 
'Using the Master File for Data Structures" section for information on defining structures 
in the master file. See the ''Mismatched Data Element Sizes" section in Chapter 13 for 
information on checking data element sizes. 

System header files should be included (using a #include statement) before driver-specific 
declarations and header files. Note, however, that it may be necessary to use a #define statement 
before some #include statements, for instance, 

#define INKERNEL 

This line should precede the following line unless the code will be compiled with the -DINKERNEL 
option. 

#include "sys/sysrnacros.h" 

A header file that is dependent on another header file should be included after that file. After 
including the system header file, include the data structures that are necessary for the new driver. 

Some hardware drivers may have more than one header file. One may have the driver define 
instructions themselves that are used for ioetl calls and the interface between the driver and the user
level programs, and another may have definitions for the interface between the driver and the 
firmware!hardware. This latter header defines how to do operations on the board and is used by a 
firmware developer. For instance, a tape driver on the 3B15 computer has two header files: 
tape_drY .h, which defines data structures used when the driver interacts with the operating system, 
and tapeJw.h, which defines the firmware data structures. 
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Creating A Driver Header File 

By creating a header file defining structures and variables specific to your driver, you make the driver 
easier to read and maintain. You should create your driver header file using the following 
conventions: 

• the name must end with the ".h" suffix 

• the name should relate to the driver, using either the name of the driver or the driver 
prefix 

• the he.ader file should be located in the sys directory that is associated with the the driver 
source code directory, either /usr/add-on/sys or /usr/srcluts/sys as well as the 
/usr/include/sys directory. Note that the /usr/include/sys directory on the 3B4000 
computer has subdirectories for the Adjunct Communications Processor (ACP); acp/sys, 
Adjunct Data Processor (ADP); adp/sys and the Enhanced Adjunct Data Processor 
(EADP) eadp/sys, as well as a subdirectory for header files that are common to all 
adjuncts; sys/adj. Header files for drivers that run on one of these adjunct processing 
elements should be placed under the appropriate subdirectory. 

• header files should be commented. When defining a structure, include comments that 
tell how each element is updated and when it is used. When defining 110 control 
commands in a header file (see Chapter 8), explain the use of each command 
thoroughly. 

Because drivers are a separate part of the system, driver programmers should not change or add to 
standard system header files. Changing system data structures could cause user-level programs to 
work incorrectly if they rely on the system data structure. For example, changes to the process table 
will cause the ps(l) command to fail. In addition, modifying standard system header files makes 
them incompatible with standard AT&T UNIX System V. 

D e fi n in g D r i v e r - S pee Hi c D a t a S t rue t u res 

When creating new header files and defining data structures in the driver code, adhere to the 
following rules: 

• One #include file may be nested inside another. If a header file has dependencies on 
another header file, nested include statements ensure that the dependencies are always 
honored. 

• The names of driver data structures and variables should use the driver name as a prefix 
to ease program readability and debugging, and to avoid conflict with other variables on 
the system with the same name. 
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• All declarations of structures that are allocated in the master file must be of the fonn 
extern. 

• Static data structures can be defined in the header file or the driver code itself, but will 
require special initialization code. For instance 

static int gzanyopen = 0 

is not valid, since the value of gzanyopen at boot time is detennined by the value it had 
when the mkunix(1M) was run. The proper initialization code would be 

static int gzanyopen; 

gzstart ( ) { 
gzanyopen 0; 
} 

• Most drivers should declare a data structure for each hardware unit (device or subdevice) 
that may be driven by the driver. This data structure should contain a flag field to 
record the device status, such as "open," "sleeping waiting for data to drain," and so forth 
(the iobuf structure is a template for this kind of data structure). The majority of the 
contents of this data structure are device dependent so no recommendation can be given 
here. However, there should be one flag entry per unit, defined in the driver file and 
declared in the header file. If it is not appropriate to hard-code this value, it can be 
defined in the driver's master file and the system will calculate it at boot time; this is 
discussed in the next section. 

• The definition of the data structures (the place in the source code where the compiler 
allocates memory storage) should be in the master file, especially if they are 
configuration-dependent. Alternatively, they can be defined in a .c file, usually the 
driver source file or its associated header file. 

• Provide meaningful comments for all declarations, especially when values are set or flags 
for ioctl(D2X) routines are defined. 
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Defining Driver-Specific Data Structures in the M aster File 

The value of global data variables can be defined in the DEPENDENCIESN ARIABLES column of 
the master file for your driver, and then declared as a data structure in your driver. The boot 
software will calculate the values of the variables, allocate, and initialize the data structures defined in 
the master file (see Chapter 5). This practice should be used for values that might vary among 
machines, configurations, or usage levels (such as the size of buffers). The master(4) reference page 
and Chapter 12 list the valid operands for expressions that can be used and give instructions for 
creating tunable parameters in the master file. 

Static variables, pointer declarations, and local structures cannot be defined in the master file but 
must be defined in the driver code itself. For example, the hypothetical "GZNORP" driver uses local 
driver data areas to buffer data begin transferred between user address space and the device (see 
Chapter 6 for a discussion of this VO scheme). It uses the master file to allocate system memory for 
driver data areas as a function of the hardware configuration. The three elements defined are 

slpbuf 

gznctlr 

gets the number of controllers (#c) that the bootstrap software finds configured in the 
system, expressed as an integer (%i). For hardware drivers, this is determined by the 
number of boards configured; for software drivers, it is determined by a number 
specified on the INCLUDE line in the system file. For- example 

INCLUDE: GZNORPL(5) 

will result in a #C= 5. 

calculates the maximum number of subdevices that could be configured for this driver 
on the system. This is done by multiplying the number of controllers present (#C) by 
the maximum number of subdevices each controller might have (#0) as defined in the 
#DEV field. A Ox30 byte entry is allocated for each subdevice. 

allocates Ox50 bytes for each controller 
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The master file that defines these elements is: 

* GZNORP 

* 
*FLAG 
bca 

#VEC 
1 

PREFIX 
gzn 

SOFT #DEV 
4 

IPL DEPENDENCIES/VARIABLES 
6 

gzn_cnt(%i) ={#C} 
slpbuf[#C*#D] (%Ox30) 
gznctlr[#C] (%OxSO) 

Figure 4-2 Sample master File 

The header file for this driver then references these variables as shown below: 

1* Number of gznorp controllers *1 
extern int gzn_cnt; 
1* 

* Bookkeeping for the devices *1 
extern struct gznent gznctlr[]; 
1* 

* Base address for each controller's memory *1 
extern paddr_t gzn_addr[]; 

In this case, the system calculates the amount of memory needed for the configuration found by the 
bootstrap software. If the values should be set by the administrator, you can create a tunable 
parameter table in the master file. Instructions for this are in Chapter 12. 

The paddr _ t gzn_addr [ ] array is the array created because of the "a" flag in the master file. 
For any driver with an "a" flag, Iboot creates and fills an array named prefix_addr. This variable 
must not be declared as a variable in the master file, but should be declared in the driver code. 
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Introduction 

Device drivers must be installed as part of the kernel, and so must conform to a number of 
predefined specifications and procedures. For example, the driver must be declared to be of a certain 
type (block or character), driver routines must follow naming convention, and files must be stored in 
particular directories. Although the details vary from system to system, the processing required to 
prepare a driver for use occurs in three basic steps 

• Installation. System files relating to the driver must be created or updated, and the 
compiled driver code must be installed. Instructions for completing this step are given in 
Chapter 12. 

• Configuration. A new version of the kernel must be created to include information 
about the driver. Information must be loaded into system tables, driver structures must 
be created, the driver code must be linked into the kernel, and other functions must be 
performed. The first part of this chapter described the main steps in this process. 

• Initialization. The newly configured kernel is then executed. System processes are 
begun, and the driver initialization routine (either init(D2X) or start(D2X)) is executed. 
At the end of this chapter, example driver initialization routines are presented along with 
guidelines for determining what initialization may be needed for different types of 
drivers. 

Many of the details of system configuration and initialization are independent of driver initialization. 
They are included in this chapter mainly to help debug the driver. Errors in the driver init or start 
routine may cause a system crash soon after booting. In that case, it is very helpful to have a clear 
idea of what happens when the system is booted. 
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S y s t em Con fi g u rat ion 

The next few sections cover some of what driver developers should know about system configuration. 

Driver Files Needed for Self-Configuration 

Before booting the system and invoking self-configuration, the following files must be created or 
updated. These are discussed more fully in Chapter 12 and Appendix A. 

• master file - provides driver-specific information, such as whether it uses the block or 
character interface, the interrupt priority level (IPL) for the device, and dependencies 
this driver has. Self-configuration does not itself access the master file; rather, the 
master file information is incorporated into the bootable executable file in the I boot 
directory. 

• bootable executable file - the driver object code, residing in the source code directory, 
with the information from the master file built into the optional header section (see 
lusrlinciudela.out.h). The mkboot(1M) command creates this file in the Iboot directory. 

• Equipped Device Table (EDT) - a table that lists all hardware devices present on the 
system, taken from the IdgnledCdata file. 

• system file - identifies software drivers that should be included and hardware drivers 
which, though present, should not be included in this kernel. 

The files in Iboot have upper case names; the corresponding files in letclmaster.d have lower case 
names. 

S tar tin g S elf - con fi g u rat ion 

Installed drivers are configured into the operating system kernel when the system is booted. The 
system firmware provides the pre-bootstrap processing, including running diagnostics, initializing 
mainstore, building the EDT, and starting UNIX kernel booting by calling mboot. mboot calls 
I boot , 1 which builds the kernel, including the drivers. 

The mboot-(olboot)-lboot sequence is called self-configuration. Once the driver is installed, self
configuration makes it a functioning part of the operating system kernel. 

1. On some systems, mboot calls olOOot, which in turn calls lOOot. 
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Self-configuration has two modes of operation. The mode in which self-configuration runs is 
detennined by the type of file self-configuration is told to load. On the 3B15 computer and the 
3B4000 master processor, the operator tells the self-configuration process which file to load by 
responding to the Enter path name: prompt that appears after the boot(8) command is issued. 
On the 3B2 computer, the computer's firmware automatically displays an Enter name of 
program to execute [ ]: prompt. 

The first mode, which runs when the name of a system file is provided, is referred to as the 
autoconfig or full configuration boot. In this mode, the hardware and the system configuration file 
are examined to determine what drivers are to be configured into the kernel. The second mode is 
referred to as the absolute boot mode, or more commonly, "boot of lunix". In this mode, a boot 
image is loaded. Most routine booting of the system is done in the absolute boot mode. 

When the self-configuration process is complete, system initialization begins. 

On the 3B4000 computer, the adjuncts are booted only after system initialization is completed for the 
Master Processor. The adjuncts go through a self-configuration and system initialization process 
similar to that of the Master Processor. On the ACP, self-configuration runs on the ACP with the 
ACP integral disk housing boot critical files. Self-configuration for the ADP and EADP is controlled 
by user-level processes that run on the Master Processor. 

Steps in Self-Configuration 

In effect, the self-configuration process acts as a dynamic link editor. It performs the following 
functions of interest to driver developers: 

• creates the driver structure list 

• downloads pumpcode to the pump able device (3B15 and 3B4000 MP only) 

• checks symbolic values 

• assigns internal major numbers 

• generates system tables 

• generates interrupt vectors 

• loads driver structures 
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• copies driver code and Ibootlkernel code into RAM and link-edits 

• begins the system initialization process by passing control to the kernel physical startup 
routines 

The most important of these steps are described below. 

Creating the Driver Structure List 

The driver structure list is an internal linked list created by the self-configuration process. It contains 
one structure for every driver that has an entry in the f boot directory. At the head of the list is the 
kernel data structure, which is similar to the driver structure except it has fewer fields. Each entry is 
marked either INCLUDE or EXCLUDE based on whether there are any corresponding devices in 
the EDT and entries in the f etc! system file. 

If an included driver is dependent on an excluded driver, (as indicated in the master file) neither 
driver will be configured into the operating system. Error messages will indicate that the driver was 
excluded. 

Figure 5-2 illustrates the structure of each driver in the list. The number of controllers is determined 
by: 

• the EDT (for hardware drivers) 

• the INCLUDE line in fetclsystem file (for software drivers) 

• for required drivers ("r" under FLAGS in master file), the value is always 1 

All drivers must have a .text section. If the driver object code does not include a .bss or .data 
section, Ihoot creates a dummy header for a zero-length section. 
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struct driver *next 
pointer to next driver in the list 

char *name 
driver name (corresponds to l{path}/boot name) 

struct master *opthdr 
optional header from driver object file (contains master file information) 

unsigned char flag 
flags (from l{path}etclmaster.d) 

unsigned char nctl 
number of controllers (expansion of #C variable in master file) 

ushort int_major 
internal major number 

unsigned char ntc_lu 
number of logical units across HA (used for SCSI devices only) 

(expansion of #S variable in master file) 

unsigned char maj[MAXCNTL] 
external major number of each controller 

unsigned char sys_bits[MAXCNTL] 
corresponding ELB sys-bits for devices on 3B15 LBE 

long timestamp 
(Ltimdat from file header) 

long nsyms 
number of symbols (from filehdr in object file) 

long symptr 
pointer to sy!!!bol table 

.text section header 
(from driver object file) 

.data section header 
(from driver object file) 

.bss section header 
(from driver object file) 

Figure 5 -1 Driver Structure 
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Dow n 10 a d in g P u m p co de (3 B 15 com p u te ran d 3 B4 000 M P 0 n Iy) 

Pumpcode can be downloaded to a device by the driver's start(D2X) routine, which executes after 
the self-configuration process is completed. It can also be downloaded by an ioctl(D2X) routine or 
by a script in the letclrc.d directory. However, the 3B15 and 3B4000 MP support downloading 
pumpcode to a device requesting it, so lboot must handle it. This is typically used for boot devices. 
The downloaded code is never used during self-configuration. 

When the boot process begins, it accesses the bootstrap programs from the unpumped boot device. 
This implies that the firmware of the boot device does not rely on pumpcode for all its software. 
After the driver list is populated, Iboot creates structures in kernel address space, then loads 
pumpcode from the I libl boot pump .d directorY into these structures. The pumpcode structures are 
then matched to the corresponding driver structures, and the pumpcode is downloaded to the 
appropriate device. 

After the configuration table is printed and the kernel and all drivers are loaded, Iboot instructs the 
controllers to start executing the downloaded code. This is the last thing done before calling the 
UNIX system to start initializing. 

Checking Sym bolic Values 

Before creating the symbol table, Iboot checks that no symbolic name has been defined more than 
once. All symbolic names declared in the master files as well as those declared as extern in the 
driver code are compared, including those for drivers that are excluded. If lboot finds a name with 
more than one value, it first attempts to resolve it by checking that none of the multiple values are 
defined for excluded drivers. If so, it prints a warning message and proceeds. If there are multiply
defined symbols for non-excluded drivers, lboot initializes them to zero. While this allows Iboot to 
continue, it may cause the system to panic or seriously malfunction before the boot process 
completes. 

lboot also looks for referenced but undefined symbols. If it finds an undefined symbol, an error 
message is printed and the symbol is initialized to O. This condition may also cause the system to 
panic or seriously malfunction. 
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Generating System Tables 

The MAJOR and MINOR tables are character arrays of 128 entries. For each external major 
number, Iboot inserts the corresponding internal major number it has calculated into the appropriate 
slot in the MAJOR table. Only one internal major number is assigned to each driver, whereas each 
device controlled by a driver has its own major number. Consequently, several internal major 
numbers (several devices) may map to the same internal major number (same driver). 

Iboot determines the external major numbers in one of the following ways: 

• External major numbers for software drivers are listed under the SOFT column of the 
master file; Iboot gets this information from the optional header member of the driver 
structure list. 

• External major numbers for most hardware devices correspond directly to the slot in 
which they are installed, and lboot uses these numbers. 

• The 3B15 computer supports an extended local bus unit (ELBU); major numbers for 
devices on the ELBU are 32 + board address. The lboot process calculates the major 
numbers for ELB devices, then writes these values to the MAJOR table. 

The type of access supported by a driver is determined by a "b" or "c" in the FLAGS column of the 
master file. Iboot gets this information from the flag member of the driver structure. 

This two-pass approach is taken to limit the size of the bdevsw(D4X) and cdevsw(D4X) tables. 

At this point, Iboot generates the bdevsw and cdevsw tables and the corresponding bdevcnt 
(number of block-access devices) and cdevcnt (number of character-access devices) values. 

Generating Interrupt Vectors 

lboot determines the number of required interrupt vectors by adding the numbers from the # VEe 
column of all master files. It then sets up a single interrupt vector table, which is used to access the 
drivers' interrupt routines. 

Regardless of what is coded in the driver, lboot determines whether to use int(D2X) or 
rint(D2X)/xint(D2X) pair for the interrupt routine(s) for each device according to the ratio of the 
number of vectors per device (#VEC) to the number of subdevices per controller (#D). If the 
number of vectors is double the number of devices, lboot will create two interrupt vectors per 
subdevice and expect the rintlxint pair of routines. Otherwise it will expect the int routine. 

2. Files in this directory must be named board-namepump. For instance, if the board name is ports, the pumpfile must be named portspump. 
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To populate the interrupt vector table, Iboot creates an assembly assist routine that pushes the device 
number onto the stack, then calls the driver interrupt handler routine. 3 It then puts the" address of the 
interrupt assist into the table and assigns the appropriate interrupt priority level (IPL) to each vector. 

Each device can have up to sixteen interrupt vectors assigned to it; see Chapter 10 for an explanation 
of how the interrupt vector numbers correspond to the external major number of the device. 

Loading Driver Structures 

Before loading the driver structures, Iboot calculates values for all driver variables and symbols and 
adds them to the symbol table. It first computes values for variables defined in the master files, then 
those defined as extern in the driver code, and finally static symbols defined in the driver code. 

For extern symbols that are defined in the driver, Iboot computes the final value and saves the 
original value. 

The system is loaded in several steps. 

1 First loaded are all sections of the kernel that run in physical addressing mode (those 
whose names do not begin with "."). Undefined symbols are relocated. These sections 
occupy the lower portion of mainstore. 

2 Next loaded are all sections of the kernel that run in virtual addressing mode (those 
whose names begin with ".") except for .text, .data, and .bss. Special symbols are 
defined (Sname, Ename, and nameSIZE, where name is the name of the section without 
the initial "."). The section corresponding to virtual address 0 must exist and be loaded; 
its real address is stored so that interrupt vectors can be inserted. Each section is loaded 
at the next highest word boundary. 

3 Location counter for the kernel .text and .data sections are assigned. 

4 The .text, . data , and .bss sections of the kernel object code are loaded, relocating 
undefined symbols. The special symbols (Ename, Sname, and name SIZE) are loaded for 
these sections. 

5 The driver structure list is loaded. 

6 Driver data structures are generated. They will be initialized by the drivers' init routines 
when the self-configuration process is complete. 

3. If the driver code includes an interrupt handling routine of any sort, lboot will create either an int or rintlxint assembly assist routine in the 
interrupt vector table, according to the ratio of #VEC to #DEV in the master file. lboot will call the routine(s) that it creates; as long as the 
driver was coded with the same routine, there are no problems. This is discussed more in Chapter to. -
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7 The io_init and io_start tables are created. These structures are used to access the init 
and start routines of the drivers, since these routines do not have entries in the device 
switch tables. 

8 The real addresses for the .bss sections are assigned. 

9 The sys3b symbol table is completed. 

10 The 3B4000 and 3B15 computers record the pathnames of any pumpfiles that were used 
in a special section of the operating system. 

At this point, control is passed to the physical entry point for the kernel, which begins system 
initialization. Effectively, lboot has resolved several .a-like files into a fully-resolved a.out-like file. 

D r i v erR u Ie sEn for c e d b Y Self - Con fi g u rat ion 

The self-configuration process imposes coding restrictions for device drivers and configurable 
modules. These restrictions arise as a result of the dynamic linking of the kernel and configuration 
modules at boot time. These restrictions and requirements are 

• Never assume that globally initialized, dynamic data is properly initialized; it must be 
explicitly initialized in the driver code. There can be no static variables whose initial 
contents are depended on by code fragments. Such items as "first-time" switches, lock 
words, and initial pointers for linked lists are not allowed. The only initial value that 
can be assumed is zero for variables allocated in the .bss section. (This restriction, 
however, does not apply to statically allocated and initialized identifiers used as 
constants.) Further, any initialized data may be different in the lunix file that is created 
later. 

• There can be no references to routines or identifiers defined within other modules unless 
there is a strict dependency chain established by the dependency list in the master file. 
The single exception is a reference to a routine in another module which is defined in the 
routine definition lines of that module's master file entry. 

• Any necessary data areas must be definable using the capabilities of the variable 
definition lines in the master file. Furthennore, the sizes of all such data structures must 
be adjusted based on the configuration that exists at configuration time, using the 
capabilities allowed by the master file. 
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• Drivers must be written to expect the entire device number (composed of the major and 
minor numbers) passed in their argument lists rather than just the minor number. This 
is not true for drivers written for non-self-configuration systems. A device number must, 
in general, be processed in the following three steps: 

1 The minor number must be inspected to determine that it refers only to 
devices on an individual controller. 

2 The minor(D3X) macro must be invoked to convert the device number into 
an internal minor number. 

3 This internal minor number must be verified to ensure that it only refers to 
an existing device. 

• Any peripheral device on the system must be under the direct control of only one driver 
on the system. Drivers that interface to hardware indirectly do not violate this 
requirement. 

• Any interrupt routines required for a peripheral must interface to one and only one 
driver. 
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When the self-configuration process is completed, it begins system initialization by calling the 
physical entry point of the kernel. System initialization initializes the kernel and drivers, creates 
process 0, executes the init(lM) process, and starts the system processes such as the swapper. 

Briefly, system initialization is executed in the following order: 

1 The physical memory manager and the mapping parameters array are initialized, and the 
virtual-to-physical mapping information is generated. The gate, interrupt, and exception 
tables are the first to be mapped, followed by the kernel .bss, .data, and .text segments. 
The following two sections outline the virtual to physical memory mapping. 

2 All driver init(D2X) routines are run. Driver init routines are in the init data array. 

3 The root file system is mounted internally in the kernel. Note that no entry is made in 
the mnttab file at this point. The bcheckrc process that is run by init will zero out the 
rnnttab file and then create an entry for root in the mount table. 

4 All driver start(D2X) routines are run. Driver start routines are in the io_start data 
array. 

5 After the driver start routines have been executed, the system processes are started, 
including sched and init(lM). init is a general process spawner, whose primary role is to 
create processes as specified in the letclinittab file. See the 'The letc/inittab File" section 
in this chapter for information on the structure of inittab and related files and 
directories. 

Gate and Interrupt Vector Tables 

System initialization begins in physical mode. It first initializes the physical memory manager and 
the mapping parameters array, then generates the virtual-to-physical mapping information in low 
memory for the items listed below and in the next section. After completing all the mapping, the 
system allocates table space, then retrieves these parameters and uses them to build the appropriate 
Segment Descriptor Tables (SDTs) and Page Descriptor Tables (PDTs). 
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The following tables and vectors are mapped at fixed locations by the gate.c file: 

First level gate table 

Process and stack exception 
vectors 

Interrupt vector table 

Second level gate table 

Normal exception gate table 

Dummy gate vector 

Location: virtual address O. Although the 
hardware defines 32 entries, the UNIX operating 
system only uses entries 0 and 1. 

Locations: process exception, physical address 
Ox84, stack exception, physical address Ox88. 

Location: physical address Ox140. The hardware 
defines 256 entries, each of which is defined as a 
kernel fixed process control block. The second 
entry in the interrupt vector table is the process 
switcher (PIR #1), and the third entry is for 
callout processing (PIR #2). Any entries that are 
not used are assigned a nuLl process control block 
and logged as stray interrupts. 

The system call cage table that prevents 
unauthorized entry to a system call throughout 
GATE O. Note that os/trap.c is responsible for 
checking that normal exceptions through GA TE 1 
are valid. On the SBC and 3B2 computers, this 
table has 64 entries; on the 3B4000 and 3B15 
computers, it has 152 entries. 

Contains normal exception entry points defined in 
ttrap.s. This is the gate table that faults the user 
process that attempts invalid gate access as well as 
page faults and other faults. It is indexed by the 
internal state code field in the program status word 
(PSW). 

Catches user code that does a GA TE with register 
zero set to anything other than a 0 or 1. On the 
SBC, 3B2, and 3B15 computers, this table has 29 
entries; on the 3B4000 it has 197 entries. 
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Other Virtual-to-Physical Mapping 

After the gate and interrupt vector tables are mapped, the remaining virtual-to-physical mapping is 
done in the following order: 

1 kernel. text segment 

2 kernel .data segment 

3 kernel. bss segment 

4 first segment of the central controller (CC) board (128K) 

5 second segment of the CC board (128K) 

6 scratch segments (each up to 1 page) 

7 primary local bus I/O space 

8 incore file system (3B4000 adjuncts only) 

9 additional I/O space for extended local bus, if any 

10 dynamic kernel segments 

11 page frame identity map (pfdat), which is an array of structures containing page frame 
information. This structure contains an entry for every unallocated page of memory left 
in the system. 

12 all remaining free memory 

At this point, the Memory Management Unit (MMU) tables (process table pointers, proc table, and 
region tables) are initialized. These tables are statically allocated in the kernel master file, beginning 
in the first page of the free memory area mapped in pfdat. 

The mainstore cache, console, and the second console port (contty) UART interrupt devices are also 
initialized. Then the kernel zeros its .bss space, including the drivers. 
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The letc/inittab File 

The letclinittab file controls the processes executed by the init(lM) program when the computer is 
initialized and any time the computer changes run level. When a new state is entered, the init 
program reads inittab, finds the "instructions" that apply to that run state, and executes those 
programs in the order in which they are listed in inittab. For most drivers, you will not modify 
inittab but rather create other files that will be called automatically. 
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Each line in inittab has four fields, separated by colons. A comment should be added at the end of 
the line; it is preceded with a "#" and can go to the end of the line. The four fields are: 

id One or two characters used to uniquely identify an entry. 

rstate The state or states in which this command can be executed. The valid values with their 
meanings are: 

value 

s,S,O,l 
2 
3 
4 
5 
6 

state 

Single-user state 
Multi-user state 
Multi-user state with RFS running 
Not currently used 
Go to firmware mode 
Automatic reboot 

NOTE: ° in rstate means power down on the 3B2 compute and single-user on the 3B15 
or 3B4000 computers. If no number is specified, the default is that the 
command can be executed in any run state. 

More than one number can be used in this field; for instance, "56" means to execute this 
process when the system state switches to either state 5 or 6. 

action The conditions under which init should execute the process in this line. For a full 
explanation of all actions, see inittab(4) in the UNIX System V Programmer's Reference 
Manual. The options of interest to driver writers are: 

wait start process and wait for it to terminate when system first enters that runstate 

bootwait execute only once after system is booted, the first time the system enters a 
state that matches rstate for this entry. 

off do not restart this process when state changes 

sysinit used for initializing devices, identifies entries to be executed before init 
spawns a shell on the console 

respawn restart this process if it dies or if it is not already running when system state 
changes 

process The full patbname of the process to be invoked and arguments to the process 
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Figure 5-2 is an example of a pristine letclinittab file. 

# letc/inittab file 
2 # 

3 fs::sysinit:/etc/bcheckrc </dev/console >/dev/console 2>&1 
4 xdc::sysinit:sh -c 'if [ -x letc/rc.d/Oxdc ] ; 

then letc/rc.d/Oxdc ; fi' >/dev/console 2>&1 
5 mt:23:bootwait:/etc/brc </dev/console >/dev/console 2>&1 
6 pt:23:bootwait:/etc/ports </dev/console >/dev/console 2>&1 
7 is:s:initdefault: 
8 p1:s1234:powerfail:/etc/led -f # start green LED flashing 
9 p3:s1234:powerfail:uadmin 2 0 

10 fl:056:wait:/etc/led -f # start green LED flashing 
11 sO:056:wait:/etc/rcO >/dev/console 2>&1 </dev/console 
12 s1:1:wait:/etc/shutdown -y -is 

-gO >/dev/console 2>&1 </dev/console 
13 s2:23:wait:letc/rc2 >/dev/console 2>&1 </dev/console 
14 s3:3:wait:/etc/rc3 >/dev/console 2>&1 </dev/console 
15 of:O:wait:/etc/uadmin 2 0 >/dev/console 2>&1 </dev/console 
16 fw:5:wait:/etc/uadmin 2 2 >/dev/console 2>&1 </dev/console 
17 RB:6:wait:echo "Ohe system is being 

restarted." >/dev/console 2>&1 
18 rb:6:wait:/etc/uadmin 2 1 >/dev/console 2>&1 </dev/console 
19 he:234:respawn:sh -c 'sleep 20 ; 

exec letc/hdelogger >/dev/console 2>&1' 
20 co:234:respawn:letc/getty console console 
21 ct:234:off:letc/getty contty contty # Network out 

Figure 5-2 Example letc/inittab File 
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Directories and Files Called by /etc/inittab 

The letc!inittab file calls a number of programs that either execute actions or execute the files in 
certain system-specific programs. Whenever possible, you should add to these files and directories 
rather than augment letc!inittab itself. Any mention of shell scripts in this section can mean an 
executable "e" program in addition to a shell script. Table 5-1 summarizes these files and directories; 
the following sections describe each in more detail. 

letclbrc .d 

Table 5-1 Directories and Files Called by /etc/inittab 

Program rstate action executes: 
/etc/brc 2 bootwait files in letc!brc.d directory 

/etc/rc2 2 wait files in the I etc! re2 .d 
directory and then the 
files in the letc!rc.d 
directory 

/etc/rc3 3 start Starts RFS 
rfstart Initializes variables 
stoE StoEs RFS 

/etc/rcO 56 wait self 

The /etc/brc program executes the shell scripts in the letclbre.d directory, in 
alphabetical order. This happens once upon the first transition to multi-user state 
after booting, after the file systems are checked but before they are mounted and 
the daemons started. These scripts set up protocols and clean up the system before 
the file systems are mounted and daemons started. This is a good place to start a 
driver that is needed only when the system is in multi-user state. For instance, on 
the 3B15 computer, the Input/Output Accelerator (lOA) is configured at this point. 

On the SBC and 3B2 computers, the /etc/ports command that creates special device 
files and entries in the letc!inittab file for the ports boards is run after brc. 
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letclrc.d 

letclrc3.d 

letclrcO 

The letc/rc2 program executes shell scripts that start with S or K in the letclrc2.d 
directory and then executes the scripts in the letclrc.d directory in alphabetical 
order. /etclrc.d is only searched for historic compatibility. New scripts should be 
placed in letclrc2.d. The first file to execute mounts the file systems that are listed 
in letcljstab. Most drivers should be initialized before this happens, but you may 
have related processes to start at this point. For instance, the errlog daemon 
associated with the err log driver on the 3B15 computer and 3B4000 master 
processor is started here. 

On the SBC and 3B2 computers only, rc2 runs the lete/disks program that recreates 
special device files for all "disk" subdevices in Idgnledcdata. You should put a file 
here to create the special device files for your device, unless it is an actual terminal 
port (not a network or printer that uses a TrY port) or a disk. Because the 
external major number of a device on these machines may be changed by the 
addition/removal of another device, special device files should be recreated every 
time the system is booted. On the 3B15 and 3B4000 computers, the major number 
of a device changes only if the board is physically moved, so this step is not 
necessary. 

These scripts are executed by the lete/re3 program when the system goes to state 3, 
which is multi-user state with Remote File Sharing (RFS) running. Driver
associated processes that should run only when RFS is running should be started 
here. 

The letcircO script controls the shutdown process. In general, processes that are 
started by either bre or re2 should be explicitly stopped in letclrcO. 
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On the 3B4000 computer, the ABUS bootstrap process boots the adjunct processing elements after 
system initialization is completed for the Master Processor. This is done automatically when the 
system goes to multi-user state (state 2 in the inittab file), or can be initiated manually from the 
console. 

The ABUS bootstrap provides functionality similar to the standard UNIX system bootstrap discussed 
above, but it consists of several user-level programs that execute on the master processor. The 
bootape(lM) command boots an adjunct; the bootabus(lM) command calls bootape to boot all 
configured adjunct processing elements. 

Driver Input to the ABUS Bootstrap 

The files and data required by the ABUS bootstrap process are similar to those used for the UNIX 
bootstrap. The lad} directory on the Master Processor contains a subdirectory for each configured 
adjunct processing element. These subdirectories are named ladjlpe# where "#" represents the 
processing element number (for example, "peB" and "pel06"). The ABUS bootstrap gets its 
information about drivers from 

• master file in the ladjlpe#letcimaster.d directory 

• bootable executable file in the ladjlpe#lroot directory 

• EDT data file, which is ladjlpe#ledt 

• system file, which is ladjlpe#letc/system 

• special device files for the MSBI and each adjunct are in the Idev directory; special 
device files for peripheral devices on the adjuncts are in the /adjlpe#/dev directory 

Pre-Bootstrap Processing 

ABUS booting begins by ensuring that the MSBI is in an operational state; if it is not, bootabus 
downloads the MSBI operational firmware4 which allows communication to the Master Processor 
over the Maintenance Access Path (MAP) port. Next, the MSBI diagnostics are downloaded over 
the MAP port and executed. 5 

4. The firmware is downloaded by the letclmsbidl command; the firmware download file is in /lib/msbi_image. 

5. The diagnostics are downloaded and executed by the /etcldgndl command; the firmware download file is Ilibldgnlmsbi/selftest. 
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. Once the MSBI is operational, bootabus spawns a bootape process for each configured adjunct 
processing element. All adjuncts are bootstrapped in parallel. 

Booting an adjunct consists of the following: 

1 verifying that all special device and configuration files For the adjunct exist and are of 
the correct type6 

2 checking if adjunct is in a bootable state (not running or being booted) 

3 running ROM-resident diagnostics and verifying the results 

4 executing the adjunct Self-Configuration process (letc/unixgen). 

5 downloading the IIib/adjboot stand-alone process to the adjunct over the MAP port. 
This provides the protocol that allows the adjunct to communicate over the ABUS. 

6 adding the adjunct's incore file system (ladj/pe#ldevlicjs) to the letclmnttab file on the 
Master Processor 

7 executing the /etc/adjrc command which executes the scripts in the ladjlpe#letcirc.d 
directory 

ABU SSe If - Con fi g u rat ion 

Full self-configuration for an adjunct is similar to full self-configuration for any UNIX system, with 
the following exceptions: 

1 It creates an incore file system for the adjunct using /etc/mkfs(lM). 

2 It does not download code to controllers. 

3 For file servers, it creates the adjunct edt file using the SCSI edtgen utility that 
downloads a process that generates a temporary EDT called "inquiry data," then uses this 
inquiry data information to create the adjunct edt data file. 

4 The EDT is a data file (named edt) rather than a table in ROM. 

5 It builds the I/O data structures for the adjunct kernel and fills in the switch table entries. 
The interrupt assist routines and pcbs are not generated for the file server and 
computational server; 

6. The folI.owing files are checked: /dev/pe# and /conjig/pe#/pe, where # represents the processing element number. 
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6 It creates the sys 3bboot structure that contains system configuration information. 
The bootpump and e_dumpdev structures are not created for an adjunct. 

7 bootape uses the cc(l) compiler and the Id(l) link editor to create the boot image (in 
the /adjlpe#/dev/unix file), then downloads this boot image to the adjunct and executes 
it. Regular UNIX system self-configuration creates this boot image after system 
initialization is completed, whereas adjuncts are always booted from this image. 

Adjunct Operating System Initialization 

The operating system initialization of an adjunct kernel is similar to regular UNIX system 
initialization. It creates the virtual-to-physical mapping, zeros its .bss space (including drivers), and 
creates the environment for process O. 

The driver initialization routines are called, the kernel's I/O system and file system initialization 
functions are called, and the incore file system is mounted. 

At this point, the system processes are started. The adjunct operating system does not have an init 
process, so the kernel idles while waiting for work. 
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The tasks involved in initializing drivers differ for hardware and software drivers. Hardware driver 
initialization can include the following: 

• clearing flags and counts previously set by the driver 

• setting interrupt vectors 

• allocating resources 

• initializing kernel structures and pointers required for device communication 

• initializing the hardware device or devices 

• determining whether the device or devices are online 

Software driver generally require a less complicated initialization since there is no actual device. 
Software driver initialization can include the following: 

• initializing kernel data structures used by the driver 

• allocating resources such as a memory map 

A driver can be initialized by one or a combination of the following driver routines: 

init(D2X) 
An init routine can be used for any driver that does not need access to the root file 
system in order to initialize, such as a driver that is downloading purnpcode from disk. 
An init routine must be used with drivers for devices that the kernel uses to initialize 
itself. A driver need by the kernel for kernel initialization is indicated by an "r" in the 
FLAG column of the driver's master file. 

start(D2X) 
A start routine can be used for any driver and must be used for drivers that need access 
to the root file system in order to initialize. 

ioctl(D2X) 
ioctl routines can be used for hardware device drivers if the device needs to be initialized 
in different ways for different configurations. For instance, the 3B15 computer's lOA 
driver is initialized with I/O control commands so that appropriate protocol-dependent 
scripts for the devices supported by a specific lOA can be downloaded. 

open(D2X) 
An open routine can include initialization functions that should be run each time the 
device is opened. 
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Drivers can be initialized through a combination of the above routines at different times. For 
example, the init or start routine for a hardware driver could initialize any kernel data structures 
required for the device, but not initialize the device itself. The device initialization (such as 
sysgening the board and setting the board's bit configuration) might be done with the ioctl and open 
routines activated by user-level programs after the operating system is running. 

Driver init and start Routines 

Most drivers have either an init(D2X) or a start(D2X) routine, although it is quite permissible to use 
both for one driver. A driver must have either an init or start routine if 

• the driver needs kernel structures other than the standard structures (such as 
clist(D4X» that are part of the operating system 

• the driver has static data (data that is private to that driver). Static data is put in the 
kernel's .data area. When an absolute boot is done, the initial contents of the .data 
section are the same as when the mkunix command was executed. If the driver modifies 
the static data, it must use an init or start routine to reinitialize it every time the system 
is booted. 

The init or start routine must initialize any arrays or data structures used in the driver code, and do 
any set up required by the specific device such as resetting or establishing default parameters. 

System and Driver Initialization 5 - 23 



Exam pie Initialization Routines 

The following sections show some different initialization routines that have been written. Each driver 
has its own particular initialization needs, but by studying these examples you can learn the sorts of 
checks and error handling that is done in initialization routines and how drivers initialize structures 
and set up pointers and registers that are needed to communicate with a device. Initialization of 
TTY drivers is discussed in Chapter 7. 

Initialization Routine for a Software Driver 

The simplest sort of initialization routine is that of a software driver, since all that is usually required 
is to initialize kernel data structures that are needed for the driver. As an example, Figure 5-3 shows 
the msginit routine from the msg driver, which initializes the rnsgrnap message allocation map. 
Technically, msg is a module not a software driver, but the principles are the same. 

This initialization could also have been done with a start(D2X) routine. It uses kseg(D3X) and 
btoc(D3X) to allocate the memory, based on values set through the master file. This makes it 
possible to change the amount of memory being allocated without recompiling the driver. It 
initializes a private space management map with the mapinit(D3X) function, and frees all the space 
in the map with the mfree(D3X) function. 

1 msgini t ( ) 
2 { 
3 register int i; /* loop control */ 
4 register struct rnsg *mp; /* ptr to msg begin linked */ 
5 extern char msgsegment[]; 

7 /* Allocate physical memory for message buffer. */ 

9 if «msg = (paddr_t)kseg(btoc(msginfo.msgseg * msginfo.rnsgssz») 
1 0 NULL) { 

11 cmn_err(CE_NOTE,"Can't allocate message buffer.\n"); 
12 msginfo.msgseg = 0; 
13 } 
14 mapinit(msgmap, msginfo.rnsgmap); 
15 mfree(msgmap, msginfo.msgseg, 1); 
16 for (i = 0, mp = msgfp = msgh;++i < msginfo.msgtql;mp++) 
17 rnp->rnsg_next = mp + 1; 
18 } 

Figure 5 - 3 Software Driver Initialization Routine 
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Initialization Routines for Hardware Drivers 

The doc_ driver code given in Appendix E provides a good example of how to initialize a hardware 
device. This is a disk device driver that runs on the SEC computer, but is illustrative of hardware 
device initialization in general. The doc_ driver is initialized through a combination of the following 
routines: 

• doc_init, the initialization entry point routine, that begins at line 283. 

• doc_initdr, a subordinate routine called by doc_init, that begins at line 540. It 
initializes drive parameters in the controller. 

• doc_open, the entry point routine, that begins at line 592. It sets the physical 
description for the device the first time it is opened. 

Descriptions of each routine are provided in Appendix E. 

Initializing Intelligent Devices on the 3B15/3B4000 Computers 

To initialize an intelligent device, you must download code and initialize the queues that associate 
interrupts with a particular subdevice, then sysgen the device. Sysgen is the procedure used to inform 
a controller of the location, number of entries, and size of queues that a driver will use to 
communicate with a controller. 

The 3B15 and 3B4000 computers include the drv _rtile(D3X) to read a file into a buffer that it 
creates. This function simplifies the coding required to pump files to an intelligent controller. Since 
this function is not available on other machines, code that uses it should be isolated into a 
subordinate driver routine which the initialization routine calls only for #if u3b 15. If the driver is 
ported to other machines, alternate subordinate routines can be provided that provide the 
functionality without using drv _dUe. 

The start routine from the hypothetical gzn driver (Figure 5-4) is a good example of how an 
intelligent device is initialized on the 3B15 and 3B4000 computers. 

Each controller's microprocessor is driven by code which is downloaded ("pumped") onto the 
controller during the boot process. This downloaded pump code is stored in a file in the form of a 
binary memory image which is simply copied into the RAM memory of the controller. While the 
download is being done, the controller executes from ROM code installed on the board. To effect 
the transfer of control from ROM to pump code, a forced-call command is sent to the controller. If 
the download attempt fails, the on-board ROM code may provide a "fall back" mode of operation 
'with some degree of functionality. 
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The gznstart routine does the following: 

• calls upon the kernel to read the gzn download code file 

• copies the file into the controller's RAM 

• when the download is complete, issues a forced call to start the downloaded code into 
execution 

• performs a SYSGEN operation on each controller after the download. 

In Lines 13 - 65, the controllers driven by this device are initialized. This includes computing 
addresses used to pass data between the kernel and the device (lines 20 - 23), sending a RESET 
request to each controller (line 32), and waiting for an acknowledgement that the reset has been 
completed (lines 39 - 56). The driver uses the delay(D3X) function when waiting for the RESET 
COMPLETE message; it is important that the driver wait for this message with some mechanism that 
will not hang the system if the device is not responding. 

In lines 66 - 102, the downloaded code is read into a buffer with the 3B4000/3B15 kernel function 
drv _rtile(D3X). The input is a pointer to an object file structure. This function will return a buffer 
address and a buffer size in the download file structure. The open_close element (line 98) indicates if 
the file should be opened and read (0) or closed (1). If a problem is encountered during the 
download process, an appropriate code is written to u.o_error; the "fall-back" mode (lines 69 - 87) is 
to continue on to the SYSGEN and let the controller come up with the resident firmware. 

In lines 92 - 97, the driver resets the base address that it cleared for the pumpfile disk operation. 
The driver then moves the pumpcode from the kernel-allocated buffer to Controller memory (lines 98 
- 99) and frees the buffer (lines 100 - 128). The device firmware may do this rather than the driver. 

Prior to the start of operation, the driver communicates with the controller through a temporary stand 
alone command block (SACB) which is at a previously agreed upon address on the controller. To 
start the downloaded code running, the SACB is constructed then copied over the Local Bus a word 
at a time into the controller's memory. The controller is signaled to examine the SACB when the 
driver sets a bit in the board's Control and Status Register (CSR) to raise a Program Interrupt 
Request (PIR 1). 

Now the driver waits for the SACBCMD flag to be reset by the interrupt handler (lines 132 - 150). 
If this does not happen within a "reasonable" period of time, an error message is written to the 
console and error log. This example ignores the failure and assumes that the device can be run from 
code resident on the board as a fall-back. 

To initialize the contents of controller's sysgen data block, the driver puts information into the SACB 
for the sysgen request. This information would include such things as the addresses of the job request 
and completion queues and their sizes, along with any other information needed to establish 
communications between the driver and the controller. To do this, construct a temporary SACB, 
then copy it into the controller's memory over the Local Bus a word at a time. The word size is 
determined by the device, not the ce. 
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1 gznstart ( ) 
2 { 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

~3 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

/ .... 

1* 

1* 
* 
*1 

24 1* 
25 * 
26 * 

27 * 
28 * 
29 * 
30 *1 

struct cic_wcsr 
struct cic_rcsr 
struct pir32 

*wcsrp; 
*rcsrp; 

*pirp; 

1* write pointer to CSR *1 
1* read pointer to CSR *1 
1* write pointer to PIR *1 

int 
int 

delcnt; 1* intermediate delay cntr *1 
ctlr; 1* controller counter *1 

int port; 1* port counter *1 
int cnt; 1* transfer counter *1 
register char *bufp; 1* Ptr to allocated buffer *1 
register char *gznp; 1* Ptr to download memory *1 

Initialize all controllers detected during boot *1 
for(ctlr=O; ctlr<gzn_cnt; ctlr++) 
{ 

compute addresses of importance 

wcsrp (struct cic_wcsr *) (BIOADDRlOCSR); 
rcsrp (struct cic_rcsr *) (BIOADORlOCSR); 
sacbp (unsigned short *) (BIOADDRlOSACB); 
pirp = (struct pir32 *) (BIOADDRlOPIR); 

At this point set up any pointers needed for the Stand 
Alone Control Block (SACB). 

At this point the driver should contain code to initialize 
data structures for the current controller and for each port 
on this controller. 

Send RESET request to controller *1 
wcsrp->req_reset SET; 

Allow CSR to be cleared by board from RESET request *1 
for(delay = 0; delay < OELAYMAX; delay++); 

Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device, part liS 
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35 1* 

36 * 
37 * 
38 *1 

wait for RESET COMPLETE to be set in controller's CSR 
Look occasionally so as to not put unneeded traffic on 
the bus 

39 delay = 0; 
40 TIMEDOUT = RESET; 
41 while ({rcsrp->rcsr3 & RESET_COMPL) != SET) 
42 {if (delay < DELAYMAX) 
43 { for (delcnt=-512; delcnt!=O; delcnt++) 
44 { if«rcsrp->rcsr3 & RESET_COMPL) == SET) 
45 break; 
46 } 
47 delay++; 
48 } 
49 else 
50 { 
51 cmn_err(CD_WARN, 

~GZNORPL %d: Reset timed out", ctlr ); 
52 TIMEDOUT = SET; 
53 break; 
54 } 
55 } 

56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1* 

* 
* 
* 
* 
*1 

if(TIMEDOUT -- SET) 1* check for reset timeout *1 
{ 

} 

At this point, take any action needed when a dead 
controller is encountered. Usually, all that can 
be done is to mark it out of ser'vice, and avoid 
using it during normal operations. 

continue; 1* Go on to next controller *1 

Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device, part 2/5 
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66 1* 
67 

68 
69 
70 
71 
72 
73 
74 1* 
75 
76 
77 1* 
78 
~'" IJ 

80 1* 
81 
82 
83 
84 1* 
85 
86 
87 

88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 1* 
101 *1 
102 

Example Initialization Routines 

Clear the base io address to do the disk read. *1 
clearbaseio; 

pmpfile.open_close = 0; 
if (drv_rfile(&pmpfile» 
{ 1* Kernel Failed to read pumpfile *1 

} 

else 

switch (u.u_error) 
{ 

} 

case ENOENT: 
Do processing needed for missing pumpfile *1 
break; 

case EIO: 
Do processing for read error on pumpfile *1 
break; 

Do processing for insufficient main memory to 
read pumpfile *1 

break; 
default: 

Do processing for non-of-the-above error *1 
break; 

u.u error = 0; 1* Reset error *1 

baseio(gzn_addr[i]); 

1* Successful Read of GZN Pumpfile *1 

baseio(gzn_addr[ctlr]); 

gznp = (char *)«long) BIOADDR : (long) GZNRAMADR); 
bufp = pmpfile.buffer_addr; 
for (cnt=O; cnt < pmpfile.buffer_size; cnt++) 

*etcp++ = *bufp++; 
pmpfile.open_close = 1; 
drv_rfile(&pmpfile); 

Set a flag that is cleared by gznint() to show completion *1 

SACBCMD = SET; 

Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device, part 3/5 
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103 1* 

104 * 
105 * 
106 *1 

Set the PIR 1 bit in the controller's CSR to signal the 
controller that a command is now available in the SACB 

107 pirp->pir01 = SET; 

108 delay=O; 
109 while (SACBCMD == SET) 
110 { 
111 if (delay < DELAYMAX) 
112 { 
113 for (delcnt = -512; delcnt 1= OJ delcnt++) 
114 { 
115 
116 
117 
118 
119 
120 
121 
122 

} 

else 
{ 

if (SACBCMD != SET) 
break; 

} 

delay++; 

SACBCMD = FAIL; 
123 cmn_err(CD_WARN, 

"GZNORPL %d: Forced Call time out", 
124 ctlr); 
125 break; 
126 } 
127 } 
128 } 

129 if (SACBCMD == FAIL) 
130 cmn_err(CD_NOTE, 

"GZNORPL %d: Controller in fall-back mode", 
131 ctlr); 

Figure 5-4 Initialization Routine 3Bt5/3B4000 Intelligent Device, part 4/5 
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132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
AA,-", 
I-':V 

147 
148 
149 
150 

151 1* 
152 
153 
154 
155 
156 
157 
158 1* 
159 
160 } 

Example Initialization Routines 

SACBCMD = SET; 
pirp->pir01 = SET; 
delay = 0; 
while(SACBCMD == SET) 
{ 

1* set completion wait flag *1 
1* set SACB command request pir *1 
1* reset delay counter *1 
1* wait for sysgen to complete *1 

} 

if(delay < DELAYMAX) 
{ 

else 

} 

for(delcnt = -512; delcnt != 0; delcnt++) 
{ 

if(SACBCMD != SET) 

delay++; 

SACBCMD 
break; 

FAIL; 

break; 

Check for valid SYSGEN *1 
if(SACBCMD == FAIL) 
{ 

cmn_err(CD_WARN, "GZNORPL %d: Failed SYSGEN", ctlr ); 
continue; 1* go on to next controller *1 

} 

} 

Clean up a bit before returning *1 
clearbaseio; 

Figure 5-4 Initialization Routine for 3B15/3B4000 Intelligent Device, part 5/5 
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Introduction 

The main work of most drivers is moving data between user space and a device, usually with an 
intermediate transfer into kernel memory. This chapter provides the following information: 

• General information on data transfer methods between the kernel and devices, and 
between user space and the kernel. 

• Detailed information on block data transfer methods including information on character 
or physical I/O for a block device. This section assumes some familiarity with the 
header files and data structures discussed in chapter 4. 

• Detailed information on character data transfer methods including information on 
buffered and unbuffered character I/O, and on allocating local driver memory. This 
section assumes some familiarity with the header files and data structures discusseci in 
chapter 4. 

• Detailed information on creating a private buffering scheme. 

• Additional information on processor-specific memory management facilities. 

• Additional information on scatter/gather I/O implementations. 
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Driver and Device Types 

The UNIX kernel requires that all devices be classified as being character-access or block-access 
devices and that all drivers be of either a block or a character type. The terms block and character 
technically refer to the method used for data transfer. A block-access device transfers data one block 
at a time, using a cache of buffers the system maintains for data transfers. Special device files for 
block-access devices have a "b" in the first position of the file's permissions field. 

Devices identified as character-access are basically devices that use any method other than the system 
buffer cache for transferring data. Some character-access devices transfer data one character at a 
time using clists(D4X), which are themselves a form of kernel buffering. The TrY line discipline 
(see Chapter 7) provides functions that do most of the clist manipulation for devices that require 
character processing such as terminals. STREAMS incorporates another character-access buffering 
scheme that should be used for most new communications drivers. 1 Other character-access device 
drivers may need to set up their own kernel buffering scheme, and transfer data in whatever unit that 
buffering scheme uses, or use local driver data space to buffer data being transferred between user 
address space and the device. Special device files for character-access devices have a "c" in the first 
position of the mode field. 

Both block and character access devices can also use "raw", or unbuffered, data transfer schemes, 
although their implementations are different. Raw I/O is the movement of data directly between user 
address space and the device and is used primarily for administrative functions where the speed of a 
specific operation is more important than overall system performance. Character devices implement 
raw I/O through the copyin(D3X) and copyout(D3X) functions. Raw I/O is appropriate only for 
character devices such as line printers and some networking devices where the administrative software 
provides the capability to restart after an error. 

Block access devices (such as a disk or tape) implement raw I/O using using the physio(D3X) 
function. The physio function locks the data in user address space (so it cannot be paged out) then 
transfers data directly between user address space and the device. Block-access devices supporting raw 
I/O must have both a block and a character special device file. 

1. See Chapter 1 for ordering information for STREA...\{S documentation. 
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Whenever a user program issues a read(2) or write(2) system call, the operation interacts with data 
storage areas in the user data space. The driver then moves data between user space and the device 
in one of three ways 

• directly between user space and the device 

• indirectly using local data space in the driver 

• indirectly using buffers in kernel memory 

The choice of which method to use depends on the type of the device, how much intelligence it 
supports, and the system utilities that will access it. Many transfers of data between user space and 
the device require an intermediate transfer of the data into the kernel memory. 

Driver code should always use the function calls listed in Section D3X of the reference pages 
(especially copyin and copyout) for the actual data movement. These functions handle most of the 
memory management tasks that are required. The driver code must also validate the device number, 
handle errors that may occur during the transfer, and synchronize the software with the hardware 
event. 

Whether a driver uses a private buffer or a system buffering scheme, every driver should be written 
with the finite nature of the machine in mind. Space used for buffering and local driver memory is 
taken away from memory that might otherwise be used for processes, so intense buffer use by a driver 
can reduce the performance of others drivers, or require that more memory be devoted to buffers. If 
more memory must be allocated to buffers, this decreases the memory available for user processes. 

The discussion of data transfer in drivers has two facets: the driver's interaction with the operating 
system and the driver's interaction with the device. 

Data M ovem ent Between the Kernel and the Device 

Data transfer methods between the kernel and the device are dependent upon the devices themselves. 
Some devices require the CPU to instigate all data transfer, while others can perform data transfers 
without the aid of the CPU. The details of a device's I/O scheme are always defined by the device, 
and so each device must be studied to determine precisely what kind of I/O scheme it supports. 

In general, I/O devices can be separated into two main classes according to the way in which they 
transfer data to and from kernel memory 

• programmed I/O devices that require the CPU to transfer data one byte or word at a 
time using a single input or output instruction to perform the data transfer 
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• direct memory access (DMA) devices that have the intelligence to perform the data 
transfer themselves and free the CPU to perform other tasks 

For devices of the first class, the CPU transfers one byte or word of data by means of a specific 
. instruction to or from a fixed register in memory to the device. Interrupts from the device control the 
timing of the data transfer. These types of devices are typically slow devices such as interactive 
terminals and older model line printers. 

Devices that support DMA can transfer large amounts of data while freeing the CPU to perform 
other tasks. To initiate a DMA transfer, the CPU typically writes a base address and byte or word 
count defining the size of the block to be transferred to a previously allocated set of memory 
addresses. These addresses are referred to as the device's Control and Status Registers (CSR). The 
CPU then sets a bit in the device's CSR indicating that the transfer can begin. The device then 
performs the actual block transfer. When the data transfer is complete, the device sets a bit in its 
CSR indicating the transfer is complete, then issues an interrupt. Devices that support DMA are 
typically newer model character devices, and high speed block devices such as disks and tapes. Most 
devices supported by the computers discussed in this book utilize DMA I/O transfer schemes. 

The characteristics of the DMA device itself determine how the driver is coded to do this transfer. 
The more complicated the device, the more memory addresses are allocated for the device's CSR. 
For example, a very simple device, such as a line printer, may have as few as two registers in 
memory: a status register and a buffer register. Characters are moved into the buffer register as long 
as a READY bit in the status register is on. When an interrupt is received from the device and the 
READY bit goes off, characters are held until the READY bit is turned on again. All the driver has 
to do is monitor and change the status register bits to effect the I/O transfer between memory and the 
device, and provide an interrupt routine. 

A more sophisticated device, such as a disk controller, may have many registers each storing status 
information about specific subdevices including error logging. One register may contain a code for 
the type of I/O operation to be performed, while additional registers may contain the address location 
in memory where the data is to be moved to or from, the disk address, and a byte or word count. 
The intelligence on the board handles the details of the I/O transfer. The driver manages an internal 
queue of buffers using a private or system buffer scheme through its read, write, and strategy 
routines, and provides an interrupt routine for handling device interrupts. 

These devices typically transfer large amounts of data, organized by page (2K bytes) or segment 
(128K bytes). If the device is equipped with DMA hardware, it may also provide a facility for 
handling I/O operations on a chained list of pages called a DMA list. Using this facility, the driver 
can transfer several pages of data at once rather than returning after each page transfer. The DMA 
list facility is discussed in the next section. 

D MAL ists 

Each write or read operation can transfer up to 2K bytes, or one page. So, to write 8K bytes of 
information, the driver actually executes 4 separate write requests. If the device has the requisite 
intelligence, you can do such a transfer more efficiently by setting up a DMA list, which allows the 
driver to transfer all 8K bytes to the device with one request. The DMA list organizes the 
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information into 4, 2K byte pieces, each of which has a pointer to where the data is in physical 
memory and a pointer to where the next piece is. After transferring one piece, it immediately begins 
the transfer of the next piece rather than return to the driver. Usually the board firmware is coded to 
handle this, in which case the actual registers, data, and control information all reside on the 
controller or device and the board firmware handles the virtual-to-physical translation. The kernel 
driver typically points the controller at the mapping structure and allows the controller to handle all 
translations required as well as the transfer itself. 

The DMA transfer can be done without a DMA list. In this case, the driver keeps the data and 
control information in its own local area of memory. Data can be transferred between the device and 
kernel memory one byte at a time or DMA circuitry on the device can be used to copy larger pieces 
of data. 

Data Movement Between the Kernel and User Space 

Drivers moving data between kernel and user space can use either an array of private data storage in 
the driver's local area, a buffering scheme provided by the UNIX system, or a private buffering 
scheme. Private data storage can be used for character drivers that need to store small amounts of 
data. Memory is allocated through kernel memory allocation functions. These functions are 
described in ther "Allocating Local Memory" section of this chapter. 

The following buffering schemes are provided by the UNIX system: 

• the system buffering scheme defined in buf.h for block access operations 

• the clist buffering scheme defined in tty.h for character access operations 

• the STREAMS2 buffering scheme for character access operations 

The system buffering scheme uses a cache of preallocated kernel buffers called the system buffer 
cache. The system buffer cache is defined in the buf.h file. This file also declares a structure called 
buf which defines the fields contained in the buffer header (see Chapter 4). Block driver strategy 
routines receive a pointer to a buffer header through the bp argument. The buffer header defines all 
the information needed to perfonn the data transfer including the address where the data is to be 
transferred to or from and the amount of data to be transferred. The "Block Device Data Transfer 
Methods" section of this chapter discusses the use of the system buffering scheme in detail. 

The clist(D4X) buffering scheme is provided by the TTY subsystem as a method of buffering 
character I/O. The clist buffering scheme is most frequently used with TTY line disciplines which 
provide functions for the management of clists. clists can also be used independently with a 
set of clist specific kernel functions. Chapter 7 of this book and the "Character Device Data 

2. See Chapter 1 for ordering information for STREAMS documentation. 
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Transfer Methods" section of this chapter discusses the use of clists and the TrY subsystem in 
more detail. 

.. Private buffering schemes can also be implemented, however they should only be created when 
. necessary as they increase the size of the driver substantially. See the "Private Buffering Schemes" 
section of this chapter for more information. 

Data Transfer Restrictions 

The memory management scheme of the UNIX operating system does impose certain restrictions on 
drivers that transfer data between devices. Although the virtual memory block of storage for the data 
that is being transferred is contiguous in virtual memory space, it will be disjointed in the actual 
physical memory spectrum. The largest amount of physically-contiguous memory is one page. So, if 
the driver is going to pass 5K bytes of data to the controller for output, the driver will have to control 
where the page boundaries fall. To do this, make transfer sizes a multiple of 2K, aligned on 2K 
boundaries. Buffered I/O does this automatically, since buffers are preallocated and do not get 
faulted. Direct user/device transfers (raw) for block devices are managed by the physio(D3X) 
function, which handles the user data space schematics. 
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Drivers for block-access devices use two data transfer methods: block VO and character or raw VO. 
Block I/O uses the system buffer cache as an intermediate data storage area between user memory 
and the device. Character or raw TJO bypasses the system buffer cache and transfers data directly 
between user memory and the device using the physio(D3X) kernel function. 3 

Both block and character-access operations use the buf structure declared in the buf.h header file, 
but do so in different ways. For block-access operations, the buffer header is directly associated with 
a specific address in the system buffer cache. For character-access operations, buffer headers are 
taken from a separate pool of buffer headers called the physical VO buffer header (PBUF) pool. 
These buffer headers are defined by the buf structure, but are associated with locked-in areas of 
user address space instead of addresses in the system buffer cache. The following diagram illustrates 
b!Gd~ I/O (l\1eth~d 1) :!.."!d ,:h~~ct~!' !lO (Mpthoci 2) on a block-access device: 
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Figure 6-1 Two Methods of I/O Transfer (Block) 

3. Character or raw I/O for block devices is also referred to as physicall/O. 
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Method 1 illustrates block-access to a block device. The system buffer cache is used to manage the 
actual read/write operations that move data between user address space and the kernel and between 
the kernel and the device. Your driver strategy(D2X) routine needs to define how to start and end 
the 110 operation, and frequently needs to maintain a private job request queue for each device. The 
kernel calls the strategy routine with the bp parameter which points to the buf.h buffer header 
containing all the information about the 110 operation. 

Method 2 illustrates raw-access to a block device. The user address space for the data is locked in 
core, then the data transfer is done directly between the device and user address space using a buffer 
header extracted from the PBUF pool to control the operation. Your driver must include read and 
write routines which call the physio(D3X) function, and a strategy routine. The physio function 
calls the strategy routine as a subordinate routine to the read or write routine and passes it the bp 
parameter. The bp parameter points to the buffer header allocated for the data transfer. 

The following sections discuss these two methods of block-access data transfer in greater detail. 

The System Buffering Scheme 

A block-access device uses block I/O, where data is read from or written to a device in units of a 
buffered block. On the 3B2 computer and SBC, a buffer is 1024 bytes; on the 3B15 and 3B4000 
computers a buffer is 2048 bytes. Block I/O uses the system buffer cache, which has a tunable 
number of buffers and buffer headers (NBUF) and a tunable number of hash slots for the buffer 
cache (NHBUF). Each buffer has a buffer header associated with it that holds the control 
information about the buffer such as what block and what file system this data came from. This 
buffering scheme is defined in the buf.h header file. 

When a block driver needs to move data between user space and the device, an appropriate number 
of buffers are made available to the device. 

The data in a particular buffer remains in main memory until some other process needs a free buffer 
for some other I/O or until the driver clears the buffer with the clrbuf(D3X) function. Block I/O 
buffering has a number of advantages: 

• Data Cacheing - The data remains in main memory as long as possible. This allows a 
user process to access the same data several times without perfonning physical I/O for 
each request. Since no physical 110 is done, the user process does not need to sleep 
while waiting for the I/O and thus runs more quickly. 

• Swapping Enabled - If no buffering of data were done, a user process undergoing I/O 
would have to be locked in main memory until the device transferred data into or out of 
the user data space. Since there is a system buffer between the user data space and the 
device, the process can be swapped out until the transfer between the device and the 
buffer is completed, then swapped back in to transfer data between the buffer and user 
data space. 
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• Consistency - The operating system uses the same buffer cache as user processes when 
doing I/O with a file system, so there is only one view of what a file contains. This 
allows any process to access a file without worrying about timing. 

Drivers that use the system buffering scheme must include the header file syslbuf.h and have a "b" 
under FLAG in the /etc/master.d file. The buf(D4X) reference page lists the structure members that 
can be used and set by the driver. 

The system buffering scheme allows drivers to transfer linked lists of data by using the av _forw and 
av _back members of the buffer header. Without this facility, an I/O operation would have to return 
after each buffer was transferred. For instance, when writing 6Kb of data, the driver would write 
2Kb, return, write 2Kb more, return, and so forth. By using a linked list, the driver looks for the 
next buffer when it finishes transferring 2Kb of data, and only returns when the entire 6Kb are 
transferred. Note that the driver still performs three distinct operations, but it avoids the overhead of 
!~!J..!.-T!li!!g ~it~r ~~ch operation. With buffered I/O, no individual device/kernel transfer can exceed 
the size of a system buffer. It is not possible to allocate "contiguous buffers." 

Utilizing this facility requires that the device itself have sufficient intelligence to handle its own linked 
list (defined in either pump code or operational code on the board). The firmware is coded to pick 
up the head of the linked list of buffers. The firmware driver translates the virtual address to a 
physical address goes to that physical location and writes the data, then goes to the physical location 
of the next buffer and so forth until the I/O transfer is complete. By moving this activity to the 
device itself, the kernel runs more efficiently. 

The kernel handles memory management responsibilities such as controlling how segments and pages 
are broken down. The kernel-level driver must be aware of the scheme and make adjustments needed 
to accommodate the underlying device (such as presenting a job that crosses a segment boundary). 
The kernel-level driver must pass the virtual address, segment table address, and page table address to 
the firmware driver. The virtual-to-physical translation must be thoroughly tested by running 
extensive write/read operations and ensuring that what is read matches what was written. If the 
translation is wrong on a write operation, the driver writes invalid data; if the translation is wrong on 
a read operation, the driver may overwrite critical data in the kernel. 
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Using the System Buffering Scheme 

For block drivers, kernel functions outside the driver itself control the actual data transfer operations. 
The driver itself utilizes five routines (See section D2X) 

• open to open the subdevice 

• close to close the subdevice 

• print to report errors that happen during the actual data transfer operation 

• strategy to validate job requests, manage the request queue, update controller and drive 
status, and generate work pending received interrupts 

• int to report error status and release the buffers after the job completion interrupt is 
received 

The open, close, and print routines are discussed elsewhere in this document. The following sections 
discuss the strategy and int routines. 

Block Driver strategy Routine 

The strategy routine is responsible for validating job requests, placing the request in the proper 
request queue (if the driver is using queues), updating the appropriate controller and drive status, and 
generating the work pending a programmed interrupt for the correct controller. All infonnation to 
generate the job request is contained in the appropriate buffer header; the address of this buffer 
header is passed to the routine as an input argument. 

The following validation checks are typically made: 

• check for section boundary error 

• check that subdevice is equipped (indicated in the b_dev member of the buffer header) 

• check that the size (b_blkno) of the job request is reasonable 

When validation tests in the strategy routine fail, the B_ERROR flag is set, an appropriate error 
code (usually ENXIO) is written to the b_error member, and iodone(D3X) is executed to terminate 
the operation. The kernel propagates b_error to u_error for the user-level process to see. 

After the request is validated, an entry is made in the job request queue. This section of code should 
be protected from device-specific interrupts with an appropriate spl*(D3X) function; the priority level 
is lowered after the request is sent to the controller for actual processing. 

Then the buffer header is linked into the device work list. This is done using the av _forw and 
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av _back members of the buffer header. 

If the driver is using job request queues, the job request, controller, and subdevice status data are 
updated next. When this is done, the job request is entered in the controller request queue. The 
buffer header address is used as the job id. The code checks whether b_flags is set to B_READ, and 
if so enters a read request; otherwise, a write request is issued. The b_blkno member of the header 
identifies the device-specific address to be read or written, and b_bcount specifies the number of 
bytes to be transferred, starting at the beginning of the buffer's b_addr. 

At this point, the job is sent to the controller, and the priority level is returned to normal. For an 
example of a strategy(D2X) routine, see the driver in Appendix E. 

Block Driver interrupt Kouiint! 

When an I/O request is completed, or an error is detected, the device requests an interrupt. The 
CPU associates the device's interrupt with a driver int(D2X) routine. The driver's int routine 
identifies the type of interrupt and is passed a pointer to the buffer header in the system buffer hash 
list for that device. 

If the interrupt is a normal job-completion interrupt, the driver's int routine relinks the av _forw and 
av _back members to set the next buffer transfer. Control of the data transfer is then given back to 
the device and the driver's strategy routine until the device requests another interrupt. When there 
are no more buffers to be transferred, the int routine issues a wakeup(D3X) for any processes that 
might be sleeping on the job request queue, then uses the iodone function to notify the user process 
that the I/O transfer is complete and to release the hash list of buffers. 

If the device sends a failed-job interrupt, the int routine must set the b_flags member of the buf 
structure to B_ERROR; note, however, that it does not assign a value to the b_error member. Since 
such an error condition usually indicates some sort of hardware corruption, the error should also be 
written to the error log; logberr(D3X) is used for block-device errors. 
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Physical 1/0 for a Block Device 

Most devices that use block-access also support raw or character I/O. Character 110 for a biock device 
is referred to as physical 110 since data bypasses the system buffer cache and is transferred directly 
from the device to in-core user memory space. The advantage to physical 110 is that data can be 
transferred more quickly and in larger quantities than with the system buffer cache, and kernel 
overhead is reduced by eliminating buffer handling. However, because physical liD actually locks 
down portions of user memory and prevents it from being paged, overall system performance is 
degraded. For this reason, physical 110 is used primarily for administrative functions where the speed 
of the specific operation is more important than overall system performance. 4 

A driver implements physical 110 for a block device through read(D2X) and write(D2X) routines. 
The character special device file for a block device indicates that the device supports physical I/O. 
The driver's read and write routines are then entered through the cdevsw(D4X) table. The read 
and write routines use the physio function to lock down the user memory and to call the driver's 
strategy routine. The strategy routine controls the actual 110 operation. Note that, in this case, the 
driver's strategy routine is called as a subordinate routine and not as a entry point routine. 

The physio function allocates a free buffer header from a pool of physical 110 buffer headers set by 
the tunable parameter NPBUF. These buffer headers are defined by the buf structure, but do not 
point to a specific address in the system buffer cache. Instead, the data pointer is assigned the 
location in user memory where the data transfer should come from or go to. This location is 
determined from the uou_base member of the user structure. The strategy routine then uses this 
buffer header to control the 110 operation. 

The following is typical job sequence for a physical 110 read operation. A write operation is usually 
identical with the exception b_t1ags member of the buf structure is set to B_ WRITE instead of 
B_READ. Figures 6-2 and 6-3 are example read and write routines for a disk driver using physical 
I/O. The line numbers included in the following job sequence refer to the Figure 6-2: 

1 The user program issues a read(2) system call to the kernel of the form "read 10,240 
bytes from character-special-Jile to virtual-address-N". The virtual address is a portion 
of user memory used to store user process data. 

2 The kernel read routine started by the read(2) system call accesses the cdevsw table to 
call the driver's read routine. The cdevsw table is indexed by the internal major 
number; Chapter 3 describes how the operating system uses the MAJOR table to 
determine the internal minor number that corresponds to this device. 

4. For example, when backing up a file system, one usually cares more about completing the backup quickly than maintaining optimal system 
performance during the time allotted for backup operations. 
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3 The driver's read(D2X) routine calls the pbysck(D3X) function to check that the range 
of blocks being read is legal, and returns a 1 if it is (lines 9-15). 

4 The driver's read routine then calls the pbysio function to setup the I/O transfer (line 
16). The pbysio function passes the address of the strategy routine, allocates a buffer 
header from the PBUF pool of buffer headers, and passes the buffer header the device 
number and the B_READ flag. 

S The pbysio function checks that all of the user pages in question are valid and have the 
appropriate read pennissions, then locks the pages in user memory so they will not be 
paged out. 

6 The pbysio function then calls the strategy routine and goes to sleep (using the 
sleep(D3X) or iowait(D3X) function) on the address of the buffer header until the I/O 
operation is completed. The functions used to synchronize hardware and software events 
are discussed in Cnapter Y. 

7 The strategy routine now controls the IJO. It checks the requests, queues it up, and 
does various conversions if necessary. 

8 The strategy routine then starts the actual IJO operation. For example, it might put the 
read request into the control registers for the disk controller. 

9 When the transfer is complete, the controller interrupts and the driver's int(D2X) routine 
is entered. The int routine uses the iodone(D3X) function to awaken the process that 
called the pbysio routine. The pbysio function then updates information on the user 
data structure, releases the buffer header, and eventually returns to the driver's read 
routine, which in tum returns to the kernel's read routine. 
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The following code examples are read and write routines from a sample disk driver: 

1 dskread(dev) 
2 register dev_t dev; 
3 { 
4 register unit; 1* disk controller ID *1 
5 register unsigned char drv; 1* disk drive ID */ 
6 register struct dskc *dskcp; 1* disk controller pointer *1 
7 register struct dskpart *partpt; 1* pointer to partition info *1 
8 register unsigned char part; 1* drive partition *1 
9 
10 unit = minor(dev); 
11 dskcp = &dsk_dskc[unit»5]; 
12 
13 
14 
15 
16 
17 
18 } 

part = unit&'07; 
drv = (dev &.030»>3; 
if «partpt=dskcp->dsk_part[drv]) == NULL) 

u.u_error = ENXIO; 
else if (physck(partpt[part].nblocks, B_READ» 

physio(dskstrategy, 0, dev, B_READ); 

Figure 6-2 Disk read(D2X) Routine using Physical 110 
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dskwrite(dev) 
register dev_t dev; 
{ 

} 

register unit; 1* disk controller ID *1 
register unsigned char drv; /* disk drive ID */ 
register struct dskc *dskcp; /* disk controller pointer */ 
register struct dskpart *partpt; /* pointer to partition info */ 
register unsigned char part; 1* drive partition */ 

unit = minor(dev); 
dskcp = &dsk_dskc[unit»5]; 
part = unit&07; 
...:1____ _ 1...;1 _.. t" n ') n , ......... ') • 
u,.L V - \ ~~ v ....... ..., ..." _ I .... - _ , 

if «partpt=dskcp->dsk_part[drv]) == NULL) 
u.u_error = ENXIO; 

else if (physck(partpt[part].nblocks, B_WRITE» 
physio(dskstrateqy, 0, dev, B_WRITE); 

Figure 6-3 Disk write(D2X) Routine using Pbysical I/O 

The pbysio function requires four arguments: strat, bp, dev, and rwflag. The pbysio function 
examples in the read and write routines provided above supply the standard values for those 
arguments: 

• The strat argument is typically the address of the driver's strategy routine. In some 
cases, however, the routine called is a subroutine that performs a subordinate activity, 
such as calling the dma_breakup(D3X) function. The subroutine then calls the driver's 
strategy routine. 

• The bp argument is the address of the buffer header. The safest way to invoke the bp 
parameter is with a null parameter; the pbysio function then assigns a buffer header 
internally. The pbysio function expects that any buffer header passed in corresponds to 
that defined in sys/buf.h. 

• The dev parameter is the device number. 

• The rwflag should be either B_READ or B_ WRITE according to the operation. 
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Any device that supports only character-access is considered a character-access device. Unlike block 
I/O transfers that rely exclusively on the system buffer cache, there are many possible methods of 
implementing character 110. It is important to know precisely what the device can and cannot do for 
you. The following factors must be considered: 

• How much intelligence the device controller supports. 

Many character devices support DMA and can control their own I/O requests. Others 
can only perform one I/O operation at a time and require the CPU to control their I/O. 
Some character devices can even supply their own protocol requirements. Others need 
protocol packages supplied by the UNIX operating system, such as tty line disciplines. 

• How much memory the device controller supports. 

Some character devices support DMA and are very intelligent, however, they may only 
support a small amount of local memory. Devices of this type may require additional 
kernel buffers. 

• How much data is to be passed in a single 110 request, and how frequently requests are 
going to be made. . 

Decisions as to the size of the buffers to be used depends upon the amount of data that 
is to be transferred. 

In general, there are three possible schemes for doing I/O transfers for character-access devices: direct 
data transfer between the device and user space data buffering in memory allocated by the driver, 
data buffering in the kernel using a private buffering scheme, STREAMS5 or the clist(D4X) 
buffering scheme. The following diagram illustrates these three character transfer schemes: 

5. See Chapter 1 for a list of suggested STREAMS documentation. 
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(2) 
write (2) write (2) write (2) 

User 
Space 

\ ,~ ~ 

Kernel \ 'f 

Space Local 
Driver Buffering 
Data Scheme 

Storage 

~ \ " Device 

Figure 6-4 Three Methods of I/O Transfer (Character) 

The operating system leaves most of the implementation decisions for character devices to the writer 
of the driver routines; you will need to select and implement the data transfer scheme that is most 
appropriate for your device. The following is a list of some general guidelines: 

• Direct data transfer between the device and user space is most appropriate for devices 
that allow a restart after an error, such as network and printer devices. 

• Use either STREAMS or clists for kernel buffering of asynchronous character 110 
operations that happen frequently. Using system supplied buffering schemes reduces the 
kernel overhead. 

• Private buffering schemes should be used only when absolutely necessary, since they use 
more memory and may be difficult to port to new machines and new UNIX System 
releases. 

The following sections discuss buffered and unbuffered I/O schemes in more detail. 
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Buffered Character 1/0 

Most character device I/O is asynchronous, and so most character device drivers buffer data when 
passing it to and from the device. When reading, the driver must receive the data from the device in 
a read buffer, then copy the data from the buffer to the user process's local buffer. When writing, 
the driver must copy the data from the user process's local buffer into a write buffer, then transmit 
the data from the buffer to the device. 

The TrY subsystem provides semantic processing of asynchronous character I/O, and a character 
buffering scheme called the clist(D4X) scheme. The clist buffering scheme is almost always 
used with 1TY line disciplines, although clists can be used alone with clist specific kernel 
functions. The benefit of using the clist buffering scheme is that the pool of buffers, called 
cblocks(D4X), is allocated automatically when the system is initialized. However, the size of a 
cblock is 64 characters and cannot vary. Therefore, when moving small amounts of data, it may be 
more efficient to use memory that is allocated locally by the driver using memory allocation routines 
provided by the kernel. The next section discusses the use of these functions. The TTY line 
disciplines, the clist buffering scheme, and clist routines are discussed in detail in chapter 7. 

Private buffering schemes that can range in complexity from a locally declared structure, to a module 
of separate memory initialization, allocation, and deallocation routines. The ''Locally Allocated 
Memory" section discusses the allocation and management of small amounts of memory by the driver. 
The "Private Buffering Schemes" section discusses the types of routines and functions used to create a 
private buffering scheme. 

U n b u ffe red C h a rae te r 1/0 

Unbuffered character I/O is the transfer of character data directly between user space and the device, 
or using a small buffering area declared locally by the driver. Unbuffered I/O may be appropriate for 
a simple programmed I/O device that does not have much memory on the controller, or for a very 
intelligent device that maintains its own buffering scheme. Drivers for networking and printer devices 
may use this method, since the administrative software enables a restart if an error occurs during data 
transmission. 

The kernel provides several routines to move unbuffered data. The most useful of these routines are 
copyin(D3X) and copyout(D3X). The copyout function copies data blocks from the buffers 
allocated by the driver to user space. It accepts as arguments the address of the driver buffer, the 
address of the user buffer, and the number of bytes to be copied. The copyin function copies data 
blocks from user space to the driver buffers and accepts the same arguments. 

Because copyin and copyout handle page-faulting, they should always be used for unbuffered 
character I/O between the kernel and user space. A page fault occurs when a process attempts to 
access data that has been paged out. User processes can weather page faults by going to sleep until 
the data is paged back in, but some kernel operations may not be able to sleep while waiting for 
memory management to fault in a page. If a function that cannot handle a page fault attempts to 
access the user buffer when the user buffer is paged out, the system will probably crash. 
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A Hocating Local M em ory 

Character devices frequently require a portion of memory to buffer small amounts of data, or to store 
an image of the data in memory to use to recover from an error condition. For instance, the msg 
module (see Figure 5-2) allocates memory to use when passing messages between processes. Some 
drivers, such as the 3B15/3B4000 system error log driver, use local driver memory to store records of 
device errors until the error daemon writes those records to a disk file. Other drivers need local 
memory only for a short time, such as when downloading data from a disk file to the device. 

The easiest and least demanding method of storing small amounts of data is to declare a private 
structure or an array within the driver for the driver's private use. If more memory is needed, 
driver's can allocate private buffer space from a space management map. A set of memory 
allocation, deallocation, and management kernel functions can be used to allocate memory pages or 
variable size blocks of contiguous memory for the private use of the driver. The map management 
functions are defined in the map.h header file. 

Tables 6-1 and 6-2 describe these kernel functions and the character driver routines in which they are 
used: 

Table 6-1 Memory Map Management Routines 

Task Method Routine{D2Xl 
Initialize a private mapinit(D3X) init or start 
memory map. 
Allocate space from a malloc(D3X) read/write 
memory map 
Release map entries mfree(D3X) init and read/write 
Wait for a free buffer mapwant(D3X) read/write 
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Table 6 - 2 Memory Page Allocation and Deallocation 

Task Method 

Allocate memory 
pages 

Release memory 

Use lines in master file if 
the amount of memory 
required is configuration 
dependent. Otherwise, 
use kseg(D3X) or 
sptalloc(D3X) in driver 
code. 

unkseg(D3X) or 
sptfree(D3X) 

init, start, or open 

read, write, or ioctl if 
memory usage is for a 
special case. 

The map itself is declared as a structure using the driver prefix in the form prefixmap. Memory is 
initially allocated for the map either by a data array defined in the driver's master file, or by the kseg 
or sptalloc functions in the driver's init or start routine. The space management map is used to 
administer the buffer in bytes. Therefore, if kseg or sptalloc are used to allocate the initial memory, 
the number of bytes per page must be computed using the ctob(D3X) (clicks to bytes) function. 

A driver initializes the map by calling mapinit, to establish the number of slots or entries to the map, 
and mfree to establish the decimal number of buffers free for use. Figure 6-5 illustrates the following 
procedures: 

• the map structure declaration (line 3) 

• the use of kseg to allocate memory for the map including a panic message if enough 
memory cannot be allocated (lines 10-14) 

• the use of ctob to compute the number of bytes in the pages allocated by kseg (lines 17-
18) 

• the use of mapinit to configure the total number of slots in the map, and mfree to 
configure the total buffer area in bytes calculated by ctob (lines 15-21) 
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1 
2 

#define XX_MAPSIZE 
#define XX_BUFSIZE 

12 
4 

1* In terms of slots *1 
1* In terms of pages *1 

3 struct map xx_map[XX_MAPSIZE]; 1* Space management map for *1 
4 1* a private buffer *1 
5 
6 xx_start() 
7 { 
8 register caddr_t bp; 
9 register int bytes; 
10 if «bp = kseg(XX_BUFSIZE) == 0) 1* Allocate private buffer; if *1 
11 {/* insufficient memory, display message & halt system *1 
12 cmn_err(CE_PANIC, " xx_start: kseg failed for %d page buffer allocation", 
i3 XX_BU~SIZF)~ 

14 } 1* endif *1 
15 mapinit(xx_map, XX_MAPSIZE); 
16 
17 bytes = ctob(XX_BUFSIZE); 
18 

1* 
1* 
1* 
1* 

Initialize space management 
with number of slots in the 
Compute the number of bytes 
the pages allocated by kseg 

map 
map 
in 

19 mfree(xx_map, bytes, bp); 
20 

1* Initialize space management map 
1* with total buffer area it is to 

21 1* manage 
22 

Figure 6-5 Initializing a Memory Map 

*1 
*1 
*1 
*1 
*1 
*1 
*1 

The malloc(D3X) function is then used by the driver's read or write routine to allocate buffers for 
specific data transfers. If the appropriate space cannot be allocated, the mapwant(D3X) macro is 
used to wait for a free buffer and the process is put to sleep until a buffer is available. When a buffer 
becomes available, the mfree(D3X) function is called to return the buffer to the map and to wake the 
sleeping process (no wakeup(D3X) call is required). The copyin(D3X) and copyout(D3X) functions 
are used to move the data between user space and local driver memory. The device then moves data 
between itself and local driver memory through DMA. 

Figure 6-6 illustrates the following procedures: 

• The size of the I/O request is calculated and stored in the size variable (lines 10-11). 

• While buffers are available, buffers are allocated through the maUoc function using the 
size value (line 13). 

• If there are not enough buffers free for use, the mapwant macro is called, and the 
process is put to sleep (lines 14-19). When a buffer becomes available, the mfree 
function returns the buffer to the map and wakes the process. 
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• The copyin function is used to move data to the allocated buffer (line 21). 

• If the address passed to the copyin function is invalid, the mfree function is called to 
release the previously allocated buffer, and the u. u_ error field is passed a return 
error code. 

#define XX_MAPPRIO (PZERO + 6) 
2 #define XX_MAPSIZE 12 
3 #define XX_BUFSIZE 2560 
4 #define XX_MAXSIZE (XX_BUFSIZE I 4) 

5 struct map xx_map[XX_MAPSIZE]; 1* Private buffer space map *1 
6 char xx_buffer[XX_BUFSIZE]; /* driver xx_ buffer area *1 
7 
8 register caddr_t addr; 
9 register int size; 
10 size = min(u.u_count, XX_MAXSIZE); 1* Break large I/O request */ 

11 /* into small ones 
12 oldlevel = spI4(); 
13 while«addr = (caddr_t)malloc(xx_map, size» == NULL) /* Get buffer */ 

14 { /* if space is not available, then */ 

15 mapwant(xx_map)++; /* request a wakeup when space is */ 

16 sleep(xx_map, XX_MAPPRIO); 1* returned. Wait for space; mfree *1 
17 /* will check mapwant and supply *1 
18 1* the wakeup call. *1 
19 } /* endwhile */ 
20 splx(oldlevel); 

21 if (copyin(u.u_base, addr, size) -- -1) /* Move data to buffer*/ 
22 { /* If invalid address is found, */ 
23 
24 
25 
26 
27 
28 

oldlevel = spI4(); 
mfree(xx_map, size, addr); /* return buffer to map *1 
splx(oldlevel); 
u.u_error = EFAULT; 
return; 

} /* endif */ 

1* and return error code *1 

Figure 6-6 Allocating Memory From a Memory Map 
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Character drivers may allocate independent buffer pools, although you should only do this when 
necessary since this increases the size of the driver, and thus the size of the kernel. 

There are three main considerations involved in creating a private buffering scheme: 

• What sort of memory management scheme should be used, such as memory mapping 

• What sort of buffer header should be used; coupled or uncoupled 

Buffers and buffer headers can be either coupled or uncoupled. Buffers that are coupled 
with their buffer headers must be of a fixed size and in a specified location. Buffers that 
are not coupled with their buffer headers can be anywhere in memory, as long as the 
buffer header is pointing to its location. 

• What sort of list management scheme should be used 

A buffering scheme can use any standard list management scheme. The most common 
schemes are various combinations of doubly-linked and singly-linked; circular versus 
noncircular; and with or without heads. 6 . 

The functionality required determines the specifics of a private buffering scheme. The following 
sections describe the requirements for any buffering scheme. 

Creating a Private Buffering Scheme 

The most practical way to implement a private buffering scheme is to write a separate module 
defining the buffering scheme. This simplifies maintenance tasks and enables you to use the 
buffering scheme for more than one device. This module should include subordinate routines for 
initializing, allocating and deallocating free buffers and in-use buffers, as well as tracking and error
handling routines. Any buffering scheme must include the following: 

• a header file 
The header file defines the buffer and its headers. The buffer header should include 
links as well as members that track the status of the buffer, including any error 
conditions that have occurred. It may be appropriate to use the buf structure defined 
in buf.h. 

6. For more information on list management schemes, consult a general computer text such as Knuth, D.E., The An a/Computer Programming, 
vol. 1. 
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• a pool of free buffers. 
These may be defined in the letclmaster.d file and allocated statically when the driver is 
initialized, or defined in the driver code and allocated dynamically, usually in the driver 
initialization routine. 

• a set of lists used to manage buffers in different states (free, active, queues, and so forth) 

• routines for moving buffers between lists (for instance, allocation of a free buffer, 
releasing a buffer, queueing a buffer for work, and so forth) -

It is possible to dynamically allocate buffers based upon need, but this is usually very expensive if it 
occurs frequently. The overhead is significant, but it does reduce the amount of allocated memory. 
When a buffer is required only for device initialization or some other infrequent event, dynamically
allocated buffers may be useful. For buffers used for frequent events, statically-allocated buffers are 
usually the preferred implementation. 

Header File 

The header file for the buffering scheme should define the structures being used. This usually 
includes a structure that holds free buffers, a structure that holds buffers that are in use, and a 
structure defining a header that holds status and flag information pertaining to a given buffer. If the 
buffering scheme is a doubly-linked circular list, you may want to use the buf(D4X) structure 
declared in the buf.h file. In any event, the buf structure provides a good example of the members 
that should be included in a buffer header. The header file should also include a definition of any 
flags, status indicators, or special error codes used by the buffering scheme. 

In addition to the data structures defined for this module, the map.h system header file must be 
included if the buffering scheme is managed by a memory map. 

Master File 

The master file for the module that defines the private buffering scheme should use the "0" and "x" in 
the FLAGS field and define the module's prefix in the PREFIX field; all other columns except the 
DEPENDENCIESN ARIABLES column are left blank. 

The DEPENDENCIESIV ARIABLES column should include tunable parameters that control the size 
of the buffer pool being allocated. For example, the sections that follow introduce a hypothetical 
buffering module named qq_ used by a driver named "DDD". NDDDPORT is a tunable in the DDD 
driver that defines the maximum number of ports that can be controlled by a single DDD device. 
The qq_ module uses this number to determine the number of buffers to allocate. 

The qq_ master file should include a comment that explains the algorithm used to determine the size 
of the buffer pool. 
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Private Buffering Schem e Routines 

The code for allocating and deallocating memory, assigning and freeing buffers, and transferring data 
between user space and the kernel should be defined in separate subroutines, each of which should 
use a common prefix. Figure 6-7 summarizes the subroutines that have been created for the QQ 
buffering module. The same types of subroutines should be creating for any private buffering 
scheme. 

., 11 .... 

I I"\. V Ci.ilCiUl\~ 1 nCiii.0i'j' 

I ~ 

allocation deallocation 
routine ( qq_alloc) routine ( qq_free) 

\ 

Buffer Pool 
~ 

assignment deassignment 
routine ( qq_bge~ routine ( qq_bdlnk) 

\~ 

Buffered Transaction Data 
~ ~ 

user-to-Kernel 
transfer routine 
( qq_copy) 

~ \ 

User Address Space Device Interface 

Figure 6 -7 Routines Used for a Private Buffering Scheme 
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M em ory Allocation Routine 

The memory allocation routine (qq_a1loc) creates a map for the pool of frree buffers that are 
available to drivers using the buffering scheme. The amount of memory allocated should be set as a 
variable that is indirectly modified by tunable parameters in the module's master file. 

As in the locally allocated memory examples previously outlined, the mapiDit(D3X) macro is used to 
initialize a memory management map in the format of sys/map.h, and mfree(D3X) to "free" the 
memory into the map (lines 19-20). The size of the buffer and the buffer's address are saved in cnt 
and segp (lines 21-22), and the free buffer descriptor pointer is initialized to NULL (line 23). 

Note that the second argument to the malloc(D3X) function, size, is expressed using ROV1'1>(x) 
operand that ensures that memory is allocated on a word boundary. In other words, if you ask to 
allocate three bytes, the system will actually allocate four bytes. 

1 #define ROUND ( X) 
2 
3 rnmini t ( ) 
4 { 

«X+3) & -3) 

5 mapinit(mmmap, nmmd); 
6 mfree(mmmap, rnmdsz, rnmd); 
7 } 
8 
9 int first_call; 

11 
12 
13 
14 
15 
16 

qq_alloc(qq_bufp, nbytes) 
register struct qq_buf 
int nbytes; 

*qq_bufp; 1* Ptr to qq_buf structure *1 
/* Size to be allocated *1 

register char 
register unsigned 

18 return(NULL); 

*segp; 
cnt; 

19 mapinit(qq_bufp->qq_map, QQMAP); 
20 mfree(qq_bufp->qq_map, cnt, segp); 
21 qq_bufp->qq_bsz = cnt; 
22 qq_bufp->segp = segp; 
23 qq_bufp->freebdp = NULL; 
24 return(nbytes); 
25 } 

Figure 6 - 8 Memory Allocation Routine 

6-26 Bel Driver Development Guide 



Private Buffering Schemes 

Allocating and freeing pages should be done very carefully; if it is done incorrectly, it can crash the 
system or corrupt user processes and the disk. Performance degradation may not show up until heavy 
loads are applied, and it may be intermittent. 

M em ory Deallocation Routine 

The memory deallocation routine (qq_free) releases the memory mapped by a buffer header by first 
allocating all the memory in the map with malloc(D3X) (line 6), then releasing the block with 
mfree(D3X? (line 12). A pointer is used with the mfree function to indicate which block of memory 
should be deallocated. The routine must first check whether the block is still owned (in other words, 
whether memory is still allocated out of the buffer memory map). If so, it should send a message to 
the console, then free the block in smaller pieces (lines 7-10). 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
} 

register struct qq_buf 
{ 

register int i 0; 

if(malloc(qq_bufp->qq_map, qq_bufp->qq_bsz) == 0) { 
cmn_err(CD_WARN,"qq_free: Can't free block\n"); 
for(i = QQBSZ; i; i »= 1) 

while (rnalloc (qq_bufp->qq_map, i»; 
i = -1; 

rnfree(ksegmap,qq_bufp->qq_bsz, qq_bufp->segp); 
qq_bufp->qq_bsz = 0; 
return(i); 

Figure 6-9 Freeing Private Memory Blocks 

7. unkseg(D3X) could be used rather than mfree. 
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Buffer Assignment Routine 

The assignment routine (qq_bget) assigns an appropriate number of memory pages from the buffer 
pool to support the particular va transaction. The routine first checks that buffers are available; if 
not, it can either wait on the buffer header until a buffer is available (as in the example, 'lines 11-14) 
or return a 0 (zero) to indicate that all map entries are allocated. When a puffer is attached, the 
freelist header must be updated to reflect that this buffer has been removed (line 20), then return to 
the calling process that the buffer has been allocated (line 26). 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

struct qq_bd * 
qq_bget(qq_bufp, nbytes, slpflg) 
register struct qq_buf *qq_bufp; 1* Ptr to qq_buf structure */ 

1* Size of buffer to get */ 
1* Sleep flag *1 

int 

{ 

nbytes, 
slpflg; 

register char 
register int 
register struct qq_bd 

*addr; 
sps; 
*bdp; 

sps = sp15(); 
while«bdp = qq_bufp->freebdp) == NULL:: 

(addr = (char *)malloc(qq_bufp->qq_map, ROUND(nbytes») -- 0) { 
if(slpflg) 

else { 

} 

sleep«caddr_t)&qq_bufp->freebdp, QQSLP); 

splx( sps) ; 
return(NULL); 

qq_bufp->freebdp = bdp->d_next; 
splx(sps); 
bdp->d_size = ROUND(nbytes); 
bdp->d_ct = nbytes; 
bdp->d_address = nbytes ? addr 0; 
bdp->d_next = NOLIST; 
return(bdp) ; 

27 } 

Figure 6-10 Moving a Buffer from the Pool 
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Buffer Deassignment Routine 

The deassignment routine (qq_brtn) returns a buffer to the freelist after the operation is completed. 
The routine first checks that the address is not zero (line 7), frees the buffer with mfree (line 8), then 
links the buffer to the freelist. A wakeup(D3X) call is issued in case any processes are sleeping on 
the resource (line 12). 

1 
2 
3 
4 
5 

6 
7 

8 
9 
10 
11 
12 

qq_brtn(qq_bufp, bdp) 
register struct qq_buf 
register struct qq_bd 
{ 

sps = sp15(); 

*qq_bufp; 
*bdp; 

if(bdp->d_address && bdp->d_size) 

1* Ptr to qq_buf structure *1 
1* Ptr to bd to return *1 

mfree(qq_bufp->qq_map, ROUND(bdp->d_size), bdp->d_address); 
bdp->d_next = qq_bufp->freebdp; 
qq_bufp->freebdp = bdp; 
splx( sps) ; 
wakeup«caddr_t)&qq_bufp->freebdp); 

13 } 

Figure 6-11 Returning a ButTer to the Pool 
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User-to-Kernel Transfer Routine 

The private buffering scheme should include its own routine to move data between itself and the user 
address space. This routine can call the iomove(D3X) or copyin(D3X)/copyout(D3X) functions 
which handle page faults and update the user structure. 

1 
2 
3 
4 
5 
6 

8 
9 
10 
11 
12 
13 
} 

qq_copy(bdp, offset, cnt, rdwr) 
struct 
int 

{ 

qq_bd *bdp; 
offset, 
cnt, 
rdwr; 

if(cnt == 0) 
return( 0) ; 

1* 
1* 
1* 
1* 

Buffer dese. pointer *1 
Offset into data buffer *1 
Number of bytes to transfer *1 
Read or write *1 

iomove«eaddr_t)(bdp->d_address + offset), ent, rdwr); 
if(u.u_error) 

return ( -1 ) ; 
return(O); 

Figure 6-12 Moving Data Between the Buffer and User Address Space 

Kernel-to-Device Transfer Routine 

The private buffering scheme may include its own routine to transfer data between the kernel buffers 
and the device. If the device supports DMA, it can be given the location (address) of the buffer 
along with some form of job request data structure. The device then handles the actual I/O 
operation. Less intelligent devices may require the CPU to perform the actual I/O transfer, in which 
case a specific routine must be written to facilitate the transfer. 
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Coding the Driver to use the Private Buffering Schem e 

To write a driver that utilizes the private buffering scheme, the system entry point routines use a 
combination of the functions in Section D3X and functions that are routines in the module that 
defines the buffering scheme. The following list outlines the types .of considerations: 

• Header Files 

The driver code that accesses the private buffering scheme must include the header file 
for the buffering scheme as well as the sys/map.h, sys/user.h and sys/errno.h header files. 
If the buffering scheme is using an existing header file (such as buf(D4X», include the 
appropriate header file (in this case, sys/buj.h). 

• Driver Initialization Routine 

The driver's initialization routine (init or start) allocates the buffers for the private 
buffering scheme. It does this by calling the allocation routine (qq_a1loc) then the 
deassignrnent routine (qq_bdlnk) to ensure that the buffers are actually free. The code 
should be written to handle the case where memory is exhausted by using 
cmn_err(D3X) to print a warning notice to the console and setting the u.u_error 
member of the user(D4X) structure to ENOMEM. 

Some drivers may choose to allocate a "starting pool" of buffers and use this until 
demand exceeds the size of the starting pool ("high-water mark"). It could then allocate 
more memory to enlarge the pool. After the pool is back to a certain free level (,low
water mark"), the extra memory would be released. 

• Driver read(D2X) Routine 

The driver's read routine uses the assignment routines (qq_bget and qq_emptq) to 
assign buffers to this operation, the device-interface routine (either from the module 
code or the firmware driver) to move data from the device to the kernel buffer, and the 
user-to-buffer transfer routine (qq_copy) to move the data to the user address space. It 
then calls the deassignment routine, qq_brtn, to return the buffers to the buffer pool. 

• Driver write(D2X) Routine 

The driver's write routine uses the assignment routine, qq_bget, to assign buffers to this 
operation, then calls the user-to-buffer transfer routine (qq_copy) to move the data from 
user address space to the reserved buffer. The write routine calls a subordinate routine 
to transfer the data from the buffer to the device. This subordinate routine should call 
the buffering scheme's kemel-to-device routine. When all the data has been transferred 
to the device, the driver's write routine calls the deassignment routine (qq_brtn) to 
return the buffer to the buffer pool. 
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While the memory management schemes for the computers supported by this document are similar to· 
each-other, some machine-specific memory management facilities have been introduced to fully 
utilize the architectures of the various machines. These are discussed below. 

The W E:3l 32101 M em ory M anagem ent Unit 

All computers supported by this book are based on the WE 32101 chip. Maxicomputing in 
Microspace8 gives a full description of the WE 32100 chip, including the Memory Management Unit 
(rvtMU). This section provides some of the basic facts that are of particular interest to driver writers. 

Each WE 32101 l\1MU has a cache for 32 segment descriptors and 64 page descriptors from previous 
translations. 9 Cached entries reduce translation time on subsequent references to the same segments 
and/or pages, since it is not necessary to access memory to read the translation table(s). Sections 
provide a convenient way to divide virtual address space into separately managed chunks. This is 
particularly valuable in maintaining a process's descriptor tables so as to lessen the chance that a table 
will grow so much that it must be moved. For example, since both user data and stack areas are 
expandable, if they were mapped within one section it might often be necessary to move all stack 
segment descriptors to make room for more data segment descriptors. Moving the user stack to a 
separate section minimizes this problem. 

3B15 Dual MMU 

The 3B15 computer and the 3B4000 Master Processor have dual M:MUs. In essence, virtual memory 
is divided into eight separate sections, with each MMU handling four sections. This doubles the 
MMU on-board descriptor cache and the available sections. 

The dual MMU hardware is implemented as follows: 

• The two WE 32101 MMUs are accessed in memory-mapped peripheral mode at two 
discrete addresses: MMUO is accessed at 22000 and MMUl is accessed at 23000. 

• Bit 29 of a virtual address is used by the hardware to select an MMU to perform the 
address translation. In this sense, bit 29 becomes the field used to select an 
SRAMAISRAMB register set or section. 

8. See Chapter 1 for ordering information. 

9. A page is 2K; a segment is 64 pages, or 128K. 
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• Bit 29 is also still used by an individual MMU as the high-order bit in the Segment 
Select. 

The use of bit 29 to select an MMU and the separate memory-mapped locations for the MMUs result 
in the following section/memory location mappings: 

VA bits 31 30 29 = Section ~ SRAMAIB address 
0 0 0 0 0 22600/22700 
0 0 1 = 1 1 23600/23700 
0 1 0 = 2 0 22604122704 
0 1 1 3 1 23604/23704 
1 0 0 = 4 0 22608/22708 
1 0 1 = 5 1 23608/23708 
1 1 0 = 6 0 2260c/2270c 
1 1 1 7 1 2360c/2370c 

Much of the work for utilizing the dual MMU is handled for drivers by the operating system. The 
syslimmu.h and vuifile recognize the dual MMU and the user structure has additional storage areas 
that hold SRAMNSRAMB values. In addition, memory fault handling utilities on the 3B15 
computer and 3B4000 MP handle faults generated by either MMU. 

Because of the dual MMU, drivers that are doing virtual-to-physical translation must specify which 
part of memory is involved. For this purpose, 3B15 has the getsrama(D3X) and getsramb(D3X) 
functions that return the contents of the SRAMA and SRAMB registers based on the section id and 
address given. These macros should be used when the contents of an SRAM are to be used to 
perform any type of address conversion, since the kernel and hardware view of the location of 
memory management tables are totally different. The physical address of an MMU1 descriptor table 
as lowered by Ox8000 to meet hardware needs does not represent the actual table location known by 
the kernel and may, in fact, be an address less than that of the first physical page mapped by a 
pfdat structure. 

The following example illustrates how driver code determines which ~ is being used. 

long sid; 1* Temp storage for section id from virt add *1 
paddr _ t psdtpt; /* Pointer to top of segment descriptor tbl *1 
long psdtln; /* length of sdt *1 

sid = (* (V AR *) &.maddr ) . v _ s id ; 1* get section id from virtual address * 1 
psdtpt getsrama (sid) ; 1* get phys top of sdt *1 
psdtln = getsramb (sid) ; 1* get length of sdt * 1 

Figure 6-13 Example of Accessing Dual MMU 

Input/Output Operations 6-33 



""lachine-Specific lvlemory Management Information 

A c c e s s in g Non - L 0 c a.1 M e m 0 r yon the S B C 

On the SBC, the local memory pages on the CPU board are supplemented with non-local (YME) 
memory. Local memory has a physical address below 0x200000; VME memory has a physical 
address above 0x200000. To allocate non-local memory, ask for memory with the sptalloc(D3X) 
function. Check to see if it is local or VME by translating its virtual address to a physical address 
(use the vtop(D3X) function) and checking to see if it is local or VME. Using kseg(D3X) and 
unkseg(D3X) may also work. 

The VME A24 address space on the SBC is limited to 16 MB. By using VME A32 space, you can 
get more memory if your device produces A32 address modifiers and you have a memory board that 
accepts A32. However, if your driver uses this, no other device in the system (except the CPU board) 
can produce an A32 address modifier and access that memory. This means that A32 memory cannot 
be used for normal activities such as process pages. In most cases, do not use the A32 memory for a 
driver. 

Accessing Local Processor M em ory on 3B4000 Adjuncts 

On the 3B4000 computer, user-level processes are usually assigned to whichever processor has the 
least number of processes,10 which maximizes the performance advantages of the multiprocessor 
architecture. Drivers, however, are located in the kernel of the processing element on which the 
hardware is located. Because the ABUS bootstrap process (see Chapter 4) configures each adjunct 
processing element individually, using a master file and an executable object file that are marked for 
the appropriate processing element, all that is necessary is to put these files under the appropriate 
ladjlpe# directory (Iadjlpe#letclmaster.d and ladjlpe#lboot), and, for software drivers, add an 
INCLUDE line to the ladjlpe#letclsystem file and the driver will be part of the adjunct kernel. 

10. This automatic assignment can be overridden with the pe(l) command or the sysmuItJ(2) system call. 
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Scatter/Gather 1/0 Implementations 

A number of modem 110 boards (primarily disk controllers) support 110 schemes other than the 
traditional "move this one piece of data to this one location." These schemes are referred to as 
scatter/gather I/O implementations. Note that the term "scatter/gather" is used differently by different 
vendors, so that a board that is advertised as supporting such I/O operations may support any or all 
of the implementations discussed below. The following pages describe how to write a driver that 
utilizes these board capabilities. 

Request Chaining 

Rt;yUcSL chaining is thc Capability 8£ :! devke (such 9.S ~ d!~k ~0ntr()l1er) to accept an array or linked 
list of individual I/O jobs from the CPU. The disk controller will execute all the jobs and give one 
completion interrupt at the end of the sequence. 

A job is an operation such as "read block N to physical address X" or "read 5 blocks, starting at block 
N, to memory starting at physical address X". 

Request chaining can only be implemented for boards that support such an operation. The driver 
code should then contain a private routine (based on dma_hreakup(D3X) but given a different 
name) that passes an entire chain of requests to the strategy(D2X) routine rather than passing one 
page at a time. The driver functions can then operate on the whole chain of requests simultaneously, 
do all the checking and address translations, and give the whole chain to the disk controller. 

Be sure that you have preserved the standard interface to the strategy routine. You may have to 
move the bulk of the strategy routine to a driver-specific routine and have both your version of 
dma_hreakup and what remains of the driver's strategy routine call this driver-specific routine. 

The controller may set a "done" bit in each request block as the request is completed, so that the CPU 
can peek at the list even before the job completion interrupt occurs. This is an optimization. 
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Multiple Copying 

Multiple copying refers to the capability of a device to accept an 110 job that requires a one-to-many 
copy. Several identical copies of the data are written to multiple places. For instance, "write 1 block. 
of data from address X to disk blocks M, N, and 0" or "read block N from disk and copy it to 
addresses X, Y, and Z". 

Note that multiple copying is different from multi-block transfer. Multi-block transfer is the ability 
to copy two blocks to one address X in one 110 request. Multiple copying is the ability to copy the 
same two blocks to different addresses, such as OxlOOOOO, Ox700000, and Ox123450. This could be 
used, for example, to set up mirroring capabilities where the actual write operation is done to a 
mirror pseudo-device which then writes the same information to two physical devices. 

Multiple copying can only be implemented for boards that have this capability. 

Virtu al D M A 

Virtual direct memory access (DMA) is the ability to accept 110 jobs that contain virtual addresses 
rather than physical addresses. Each "job" would be of the form "read block N to virtual address X" 
or "read 5 blocks, starting at block N, to memory starting a virtual address X". 

To support this implementation, the board must be able to translate virtual addresses into physical 
addresses, which means that the board's firmware must contain a basic subset of the memory 
management scheme, including the format of the memory management tables used by the ~. 

To utilize virtual DMA, create a private driver routine based on the dma_breakup(D3X) function. 
Since a virtual DMA board understands page boundaries and address translation, rather than 
breaking up the request the modified dma_breakup function can simply pass the entire request to the 
strategy(D2X) routine. Create another private routine that is based on the iostart(D3X) function 
but without the virtual-ta-physical translation. Give the entire request to the board. You should not 
have to split up the strategy routine for virtual DMA 110. 

Some boards (such as the MCf 6020 on the SBC) have to be given a special copy of the M:MU 
tables. You have two options for accomplishing this 

• Create these special tables from the real MMU tables every time an 110 request occurs. 
This may hurt the performance of your driver but localizes the changes to your driver 
and enhances its portability. 

• Create the tables once when the process is created and then keep them consistent with 
the MMU tables over the life of the process. This means that you must modify the 
kernel memory management functions for the device every time a page is paged out or 
created. 
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Introduction 

This chapter describes the components of the TrY subsystem. The TrY subsystem is a collection of 
functions and the driver proc(D2X) routine that are used to transfer information character-by
character between a CPU and a peripheral device such as a terminal or printer. These functions are 
found in the ttl.c, tty.c, and clist.c source code files. These functions are also known as Common 
110 (or CIO). Another frequently used term is line discipline. A line discipline is a set of functions 
that inte rets the data received from a terminal to extract special characters such as the (BREAK] and 
the DELETE keys and moves data between a terminal and a user program. The TTY subsystem 
involves access of the tty(D4X) structure defined in tty.h and is described in this chapter. 

A line discipline ensures a user program that 

!! Da!a !."ecei~.red frO!!! ~ ~~!'!'111n::ll is in the range of printable ASCII values, or if special 
processing is disabled, that the data is conveyed to the program exactly as entered 
(except for (BACKSPACE) , (BREAK) , (DELETE) , and "Quit"). 

• Characters sent from the user program are correctly displayed on the terminal screen. 

All of these concepts are explained in greater detail in the sections that follow in this chapter. 

A wide range of devices exist for moving data character-by-character between a device and the host 
computer. Examples of these devices are 

• terminals 

• printers 

• network handlers 

• robots 

• laboratory applications 

Occasionally, these devices require drivers that convey the data from the device to a user program. 
These drivers typically interpret the characters that are received from the device before they are 
delivered to the user program. This is especially true in devices using some sort of keyboard that 
allows data flow to be interrupted or terminated. For these applications, the driver must rely on 
routines to initiate special processing requirements when interrupt or flow control keys are pressed. 
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The UNIX operating system TrY routines provide character interpretation (called canonical 
pr~cessing). The characters which are processed include, the erase character, the kill character, the 
end-of-file character, characters preceded by a backslash, and upper/lower case presentation 
characters. 

Canonical processing means translating the actual characters typed to produce what the user intended. 
For instance, if the ERASE character is represented by # and the raw input is 

the canonical output is 

Hello 

Data is received from the terminal keyboard and placed in the t_rbuf receive buffer. ttin(D3X) does 
initial character processing and moves valid data to the Crawq raw character queue. canon processes 
more characters and moves the valid characters to the Ccanq canonical (processed character) queue. 
If characters are requested to be echoed to the screen, valid characters are placed in the Coutq output 
queue. Input characters, whether echoed or not, are then conveyed to the user program by ttread. 
ttwrite conveys characters from the user program to the t_outq output queue. ttout conveys 
characters from the Coutq output queue that are echoed or being sent from the user program to the 
Ctbuf transmit buffer. A terminal dependent output routine conveys the data from Ctbuf to the 
terminal's display. Figure 7-1 illustrates how characters are transferred between a terminal and a user 
program. 

ttwrite 

I 
t_outq 

~ 
u ser Process I 

I 

~ I 

If ECHO is on 
ttr ead * I 

I 
I 

Ccanq t_rawq 

Canonical 
Processing '~ __________________ -J/ 

canon 

Device dependent 
ttout output routine 

t_tbuf 

" 

L " I I 

Crbuf 
ttin Device dependent 

input routine 

Figure 7-1 TTY Functions 
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Introduction 

In addition to the functions specified in the line switch table for interpreting characters, other support 
functions are provided as well. Figure 7-2 lists the Common 110 functions. 

Function (D3X) 
canon(tp) 

getc(elp) 
getcb(elp) 
getcfO 
putc( c, elp) 
putcb(cbp, elp) 

putcf(cbp) 
ttrln4Olp( tn) 
... ""----- ,·r / 

ttin(tp, code) 

ttinit(tp) 

ttiocom(tp, ernd, arg, mode) 
ttioctl(tp, cmd, arg, mode) 
ttopen(tp) 
ttout(tp) 

ttread(tp) 
ttrstrt( tp) 
tttimeo( tp) 
ttwrite(tp ) 
ttxput(tp, ucp, ncode) 
ttyflush(tp, ernd) 
ttywait(tp) 

Description 
Evaluate characters and move data 
from Crawq to Ccanq 
Get a character 
Get first character block 
Get free character block 
Put data on a character list 
Link a character block to a character 
list 
Release a character block 
Oose a character device 
Get data from the device-dependent 
input routine 
Set a tty structure to default values 
Process internal requests 
Process internal requests 
Open a character device 
Transfer data to the device
dependent display routine 
Move input data to user process 
Restart data flow 
Time function for termio(7) 'TIME" 
Take data from user process 
Put data into output queue 
Release unneeded buffers 
Delay processing 

Figure 7-2 Common I/O (CIO) Functions 

Detailed information on the functions in Figure 7-2 is presented in Section D3X of the Bel Driver 
Reference Manual, referenced in Chapter 1. 
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Line Disciplines 

A line discipline contains functions for opening, closing, reading, writing, input/output control, data 
receive interrupts, data transmit interrupts, and modem interrupts. Each of these activities is defined 
by individual members of the linesw (line switch) structure found in conf.h. The primary 
functions involved in writing a line discipline are: canon(D3X), ttin(D3X), ttout(D3X) and 
ttxput(D3X) . 

Currently, three line disciplines are defined; however, up to 256 are permissible. The t_line member 
of the t ty(D4X) structure is the index into the line discipline switch table. A driver can access as 
many line disciplines as required. The line disciplines allocate memory for data buffering purposes 
for operations associated with the device (such as moving cblocks(D4X) from the free list to this 
tty structure) and implementing flow control. Flow control is the ability of the operating system to 
control the rate of data transfer between a device and the system. One example of flow control is 
~ ahd ( CTRL-s) for starting and stopping screen displays. 

Line disciplines are defined by placing information about a line discipline in the kernel master file. 
Figure 7-3 shows an example kernel master file. 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 

* Line DiSCipline Switch Table 
* order: open close read write ioctl rxint txint modemint 
linesw (%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1%1) 
={ 

* TTY ----------------
&ttopen, &ttclose, &ttread, &ttwrite, 
&ttioct1, &ttin, &ttout, &nulldev, 

* XT -----------------
&nulldev, &nulldev, &nulldev, &nulldev, 
&nulldev, &xtin, &xtout, &nulldev, 

* SXT ----------------
12 &nulldev, &nulldev, &nulldev, &nul1dev, 
13 &nulldev, &sxtin, &sxtout, &nulldev, 
14 } 

Figure 7-3 Example kernel Master File 

The XT and SXT line disciplines consist of only two functions each (xtin and xtout in line 10, and 
sxtin and sxtout in line 13). These functions are customized versions of the ttin and ttout functions. 
The nulldev function is a null function that does not return a value. nulldev is described in Section 
D3X of the Bel Driver Reference Manual. 
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When the system is booted, the operating system takes the information from the kernel master file 
and creates a matrix in main memory called the line discipline switch table!. An example of the line 
discipline switch table is shown in Figure 7-4. 

t line open close read write ioctl rxint txint modem int 

0 ttopen ttclose ttread ttwrite ttioctl ttin ttout nulldev 
1 nulldev nulldev nulldev nulldev nulldev xtin xtout nulldev 
2 nulldev nulldev nulldev nulldev nulldev· sxtin sxtout nulldev 

Figure 7-4 Example Line Discipline Switch Table 

NOTE: In the above table, rxint means receive interrupt, txint means transmit interrupt, and modem 
int means modem interrupt. nulldev(D3X) is an empty function. 

Line Discipline Zero 

Line discipline zero (0 in Figure 7-4 or Number 0 in Figure 7-6) is a set of functions that provide a 
terminal interface. Line discipline zero has the following characteristics: 

• I/O processing functions are taken from the ttl.c source code file. 

• support functions such as flushing input/output queues and canonical data processing are 
taken from the tty.c source code file. 

• provides for interrupts 

• the eli s t buffering scheme is used to convey characters 

In addition to terminals, drivers for network protocols and line printers can be written with the line 
discipline zero. It is not usually necessary to write a driver to connect a new terminal to the system; 
rather, you can write a new terminfo file as explained on the terminfo(4) manual page. However, 
writing a terminfo file can only provide help for user-level programs that use the terminfo database. 

Using the clist(D4X) and tty(D4X) data structures, the line discipline zero provides both 
buffering and processing of character data. All the information needed to perform I/O operations 
with a terminal is maintained in the tty structure. 

1. 'Line discipline" means communication line protocols for processing characters received from character devices. The line discipline switch 
table matches driver routines to base level and interrupt activities. This table is indexed by the CUne member of the tty structure. 

Drivers in the TTY Subsystem 7 - 5 



Line Disciplines 

The following lists the differences between 1TY drivers and other character drivers: 

• Drivers written in the TrY subsystem may have start(D2X) routines but not init(D2X) 
routines. 

• The tty structure is initialized when the TrY driver is opened. 

• In addition to the system entry-point routines, TrY drivers must have a proc(D2X) 
routine to process various device-dependent operations. The proc routine is not called 
by the cdevsw switch table. This routine can be called by assigning its address to the 
Cproe member of the tty structure. 

• Drivers written in the TrY subsystem use a special set of functions which are described 
in Section D3X of the BCl Driver Reference Manual. Figure 7-5 shows driver routines 
and corresponding TrY functions: 

Driver TTY 
Routine Function Notes 

open ttopen Connects device to process 
ttinit Establish default terminal settings 

close ttclose Called indirectly through linesw 
read ttread Called indirectly through linesw 
write ttwrite Called indirectly through linesw 
ioetl ttioctI Set device parameters 

ttiocom Change device parameters 
rint ttin Called indirectly through linesw 
xint ttout Called indirectly through linesw 

Figure 7 - 5 Line Discipline Functions in Driver Routines 

Refer to Line Discipline Functions Calling Sequences in this chapter for more information on how 
each function is called. 
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The three AT&T line disciplines are shown in Figure 7-6. 

Number Use 

o tty - Regular terminals (default) 
1 xt - AT&T bit-mapped graphics 

terminals such as the AT&T 630 

2 xt dxt - shl(l) command 

Defined in 

ttl.c, tty.c, and tty.h 
xt.C, jerq.h and xt.h 

sxt.c and sxt.h 

Figure 7 - 6 Standard Line Disciplines 

Line Disciplines 

The *. c files are located in the source io directory appropriate for the computer in use. The *.h files 
are in located in the /usr/include/sys directory. 

Writing Line Disciplines 

Writing a new line discipline involves writing kernel functions that correspond to the appropriate slots 
in the linesw table. When a list of these functions is added to the line discipline switch table in the 
kernel master file and the system is reconfigured, the new line discipline is installed in the system. 

The new line discipline should be given a short (but unique) name that is used as a header to the Line 
Discipline Switch Table and also as a prefix for the function names. Note that the t_line value 
assigned to your line discipline may vary by configuration. 

Should an intelligent terminal controller deliver a character directly from the terminal with special 
character processing built-in, then drivers for such devices could be written without a line discipline. 

Before writing a line discipline, consider the following alternatives: 

1 If you need to change how data is interpreted by the terminal, you should use the stty(l) 
user command, or the ioctl(2) system call to modify the termio structure described in 
termio(7). 

2 Most terminal definitions can be accomplished with a new terminfo file. 

3 If you need to write a driver for a terminal, you may be able to use the existing line 
discipline zero functions and supply new device-dependent input and output routines. 

4 If you need to establish a new set of character evaluation procedures, you can replace the 
ttin function. 

The following three steps are required to write a line discipline. 

1 Carefully planning your application to ensure that a line discipline really needs to be 
written. Writing a line discipline is a very complex task and most devices can be well
served by the default TrY line discipline functions (shown as Number 0 in Figure 7-6). 
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2 Refer to the TTY manual pages in Section D3X, to descriptions of the proc(D2X) 
routine, and to the tty(D4X) structure described in the Bel Driver Reference Manual. 

3 Writing the routines that you need for your application. 

4 Putting the names of the routines in the kernel master file. 

5 Ensuring that your driver open(D2X) routine sets Cline to the new value of your line 
ili~~oo. . 

For most driver applications, you must supply the following: 

• Device Dependent Input/Output - a driver must be written to accept data from a 
terminal and to send data to a terminal. This code is outside the scope of line 
ilisciplines. 

• A proe(D2X) routine to handle calls to the device dependent input-output routines. 

System calls such as read(2) or write(2) access the driver routines through the cdevsw(D4X) 
(character device switch table). Figure 7-7 illustrates how the cdevsw driver routines relate to the 
line iliscipline functions. For example, when the open(2) system call is executed on a TTY device, 
the open member of the cdevsw is accessed. This member in tum calls the driver open(D2X) 
routine which calls 1 inesw Lopen. The ttopen function is associated with I_open (by the kernel 
master file) and is then executed. 

cdevsw 

open 

close 

read 

write 

ioetI 

driver 
routines 

open 

close 

read 

write 

ioetl 

line switch 
table< linesw) 

I_open 

I_close 

I_read 

I_write 

l_ioetl 

~ Linput 

proc Loutput 

~ Lmdmint 

ttopen 

ttclose 

ttread 

ttwrite 

ttioetl 

ttin 

ttout 

nulldev 

Cline o 

line 
ilisciplines 

nulldev 

nulldev 

nulldev 

nulldev 

nulldev 

xtin 

xtout 

nulldev 

1 

Figure 7 -7 Calling Line Discipline Functions 
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Line Discipline Functions Calling Sequences 

The following diagrams illustrate the sequence in which line discipline functions call each other and 
the driver proc(D2X) routine. The outer most box in each figure depicts the first function called. 
Each inner box represents a subsequent function or proc routine call. For example, in the first figure 
for ttopen(D3X), this function calls the ttioctl(D3X) function with the LDOPEN flag. The ttioctl 
function then calls the proc routine with the T _INPUT flag. These figures, while representative of 
the actual calling sequence, should not be taken as depicting all of the activities that occur within the 
functions or a driver routine. They are only meant to be simplified illustrations to aid in your 
understanding of the way these functions work. 

ttopen 
~----------------~ 

ttioctl 
LDOPEN 

W proc routine 
IT_INPUT 

ttclose 

proc routine 
T_RESUME 
T_OUTPUT ....-------------, 

linesw 
Loutput --;. ttout 

Figure 7 - 8 ttopen and ttclose Calling Sequence 

The ttopen function is called from the driver open routine to initialize the tty structure. ttopen is 
called for the first terminal driver open. It calls ttioctl with the LDOPEN flag. ttioctl allocates the 
receive buffer and then calls the proc(D2X) routine with T _INPUT as the second argument. In the 
proc routine, the TIY device is prepared to receive input. This example of the proc routine makes 
no further calls to TIY functions or to itself. 

The ttclose function is called by the driver close routine to release allocated resources. ttclose is 
called after the last terminal close. ttopen calls ttioctl with the LDCLOSE argument. ttioctl calls the 
proc routine with the T_RESUME argument. ttioctl then waits for the serial port UART to drain 
(in the ttioctl function), and then releases any allocated buffers. The call to the proc routine 
(T_RESUrviE) causes a drop-through condition to the T_OUfPUT condition which calls ttout 
through the I_output member of the linesw structure. 
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Calling Sequences for ttread and ttwrite 

ttread 

canon .. Y tttimeo 

~ 
proc routine 
T_UNBLOCK 

ttwrite 

I 

linesw --- ttout 
Coutput 

Figure 7 - 9 ttread and ttwrite Calling Sequence 

The ttread function is called by the driver read(D3X) routine to convey input characters to the user 
program. ttread calls both the canon(D3X) function and the proc routine with the T_UNBLOCK 
argument. canon calls the tttimeo function (listed in this chapter). 

The ttwrite routine is called by the driver write routine to convey output characters from the user 
program. ttwrite calls ttxput to put the characters on the TrY output queue. Then the proc routine 
is called. proc calls ttout to build up a block of characters to send to the tenninal. 
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Calling Sequences for ttioctl and ttin 

ttioctl 

LDOPEN: 

proc routine 
T_INPUT 

LDCLOSE: 

~ proc routine 
T_RESUMb 
T_OUTPUT 

linesw 
I_output ~ ttout 

LDCHG: 

ttin 

Line Disciplines 

ttytlush 

proc routine 
T_BLOCK 

.. proc routine 

T_SWITCH 

. ttxput 

proc routine 
T_OUTPUT 

Iinesw I 
l_output~ ttout 

tttimeo 

Figure 7 -10 ttioctl and ttin Calling Sequence 

The ttioctl function is called by ttopen, ttciose, and by ttiocom to set or get terminal control 
infonnation. ttioctl has the conditions, LDOPEN, LDCLOSE, and LDCHG. In the LDOPEN 
condition, the proc routine is called. The LDCLOSE condition calls the proc routine. In the proc 
routine, there is typically not a break statement so control drops through to the T _OUTPUT section 
in the proc. A call is made to the I_output member of the linesw structure thus invoking ttout. 

The ttin function is called from the driver interrupt routine and from ttiocom to process characters 
received from the terminal. ttin, depending on the condition, calls ttytlush. The proc routine is 
called, with T _BLOCK set and with T _ OUTPUT set, which then calls ttout through the line switch 
table. The T _SWfCH condition is handled in the sxtproc routine (a part of the sxt driver for the 
shl( 1) shell layers user command) which is not described in the AT&T driver interface. The 
T _SWfCH condition is provided for switching between context layers. 

The ttxput command is then called. Finally, tttimeo is called to provide a means of timing input 
when VTIME (the TThffi variable in termio(7)) is set. 
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Calling Sequences for ttout, ttxput, and tttimeo 

ttout 
ttrstrt 

proc routine 
T_TIME 

ttxput tttimeo 

l.J Uxput l.J tttimeo 

Figure 7 - 11 ttout, ttxput, and tttimeo Calling Sequence 

The ttout function is called from the proc routine to move characters into the output queue. ttout 
calls ttrstrt which calls the proc routine for the xt.C driver (not covered in the AT&T driver 
interface). ttout builds a block of characters for transmission to the terminal. 

The ttxput function is called from ttwrite and ttin to output characters to a terminal. ttxput calls 
itself when only upper case letters are being displayed. 

The tttimeo function is called by canon and ttin to delay execution when special characters are 
entered to ensure that the string was entered by the user and was not entered as communications 
protocol. tttimeo calls itself after an interval determined by the value in the termio(7) TIME 
variable (in tenths of a second). tttimeo is listed in the Terminal Timing Routines section in this 
chapter. 
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Calling Sequence for ttiocom 

The ttiocom function is called from the driver ioctl routine. ttiocom is used to flush buffers, call the 
line switch table l_ioctl member (ttioctl), or call the driver proc routine. 

ttiocom 

TCSET AF~:~_---, 

~ ttyflush 

I TCSETA: 
~~-E~-.~-~-,----------------~ 

l_ioctl --. ttioctl 

LDCLOSE 

proc routine 
T_RESUME 
T_OUTPUT 

linesw --. ttioctl 
1 ioctl ~~-.----, 
LDOPEN proc routme 

. T_INPUT 

linesw 
l_ioctl --. ttioctl 
LDCHG 

Figure 7 -12 ttiocom Calling Sequence (part 1 of 2) 

Drivers in the TTY Subsystem 7 -13 



Line Disciplines 

ttiocom (continued) 

TCSBRK: 
'" ttywait -, 

r---
proc routine 
T_BREAK 

TCXONC: 
arg=O· 

f---a- 1: proc routine 
T_SUSPEND 

argt: 
proc routine 
T_RESUME 
T_OUfPUT 

f---+ t.. linesw --. ttout 
I output 

~ 

arg=2: 

I 
~ ~ proc routine 

T_BLOCK 

arg=3: 
L:.: proc routine 

T_UNBLOCK 

~ .. linesw --. ttin 
Cinput .. proc routine 
T_INPUT 

TCFLSH: 

----- ~ ttyflush I 
Figure 7 -12 ttiocom Calling Sequence (part 2 of 2) 
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Calling Sequence for ttyflush, ttinit, ttywait, canon, and ttrstrt 

ttytlush 

f-w-

WRITE: 

I proc routine 
T WFLUSH 

~ READ: 

II"""~-r-~-c "O"""T-r~-~-~~·Tn-Te--" 

~ __ I_l_~ __ L_u_~_n ___________________ ~1 I 

ttinit 

ttywait 

I 
canon 

I I tttimeo 
L..;.f'----_ 

I ttrstrt 
I 1"""1 -n-ro-r--r-n-ll-:"ti-n-'pj I , f-TIME--' 

Figure 7 -13 ttytlush, ttinit, ttywait, canon, and ttrstrt Calling Sequence 

The ttyflush function is called from ttioctl when ttclose has been called, from ttiocom, from the 
driver interrupt routine, and other support routines. tty flush calls the driver proc routine. 

The ttinit function is called from the driver open routine to initialize the tty structure. 

The ttywait function is called from ttioctl, ttiocom and from the driver write routine to delay process 
execution for 13 clock ticks to let the universal asynchronous transmitter-receiver (UART) drain. 
ttywait serves as a way of balancing timing problems that may occur between the speed of the CPU 
and that of the terminal. 

The canon function is called from ttread to perform special processing of characters transmitted from 
the terminal that are outside the range of printable characters. canon calls tttimeo when handling the 
termio(7) TIl\ffi variable. 

The ttrstrt function calls the proc routine with T_ TIME set. T_ TIME is only implemented in the xt 
driver for AT&T bit-mapped graphics terminals such as the AT&T 630. 
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Each TrY terminal device has a tty(D4X) structure associated with it. The tty structure defines 
the character queues and buffers associated with the device as well as the operational modes for the 
device. The members of the tty structure can be divided into the following three groups: 

1 control and status fields (Cline, t_proc, t_pgrp,t_state, CdeJct) 

2 data buffer pointers (Crawq, t_canq, t_outq, t_tbuf, Lrbuf) 

3 operational modes (t_oflag, Clflag, t_iflag, Ccflag, and Ccc) 

The tty structure manages data buffering, terminal settings, and tracks the activity of the terminal. 
The termio structure is used to retain terminal settings and functionality. 

Each of the TrY functions and the canon function require a pointer to the current instance of the 
tty structure for the terminal you are referencing. The tty structure and the termio structure, 
described in termio(7), comprise the most important elements of the line discipline and line discipline 
support functions. elements of the get* and put* functions. 

The line discipline functions are used to manage a series of buffers that are members of the tty 
structure. These members are 

Lrawq contains the data from which the (BREAK) and ( DELETE) keys have been stripped 

Lcanq contains the data from which the backspace and other special characters have been 
resolved 

L outq contains the data from the user process or echoed characters 

Ltbuf contains the data ready to be transmitted 

Lrbuf contains the data received from the terminal 

The TTY subsystem consists of a series of buffers in which data is inserted, processed, and then 
extracted. The subsystem converts raw data received from a terminal into data usable by a user 
program. When a key is pressed on a keyboard, an interrupt is generated and ttin(D3X) is called 
from a device-dependent driver routine. ttin performs the following: 

• conveys data from the t_rbuf receive buffer to the Crawq raw data buffer 

• echoes characters to the t_outq output buffer 

• resolves (BREAK) and (DELETE) key entries, signaling processes if necessary 
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After ttin is called, the following functions are called to convey data between the terminal and the 
user program: 

1 The ttwrite routine conveys the data from the user program to the Coutq output buffer. 

2 The ttout function is called to convey the data from the t_outq output buffer to the 
t_tbuf transmit buffer. 

3 A driver device dependent output routine sends the data to the terminal screen. 

The tty and term io Structures 

The tty structure and the terrnio structure share many similarly named members. These two 
structures govern the way tenninais behave III the (IN"IX operating sys-rem. Twu t;Xi:11'-lIii~ of ~hi5 we 
how a terminal is accessed when a user logs on and how the software controls are set for a terminal. 
The stty(l) and getty(lM) commands are used at user level to write to the termio structure. These 
commands also call the ttiocom function through an ioctl(2) call. ttiocom copies the information in 
the termio structure into the tty structure. 

This section describes the process by which the terrnio structure is populated when users Jog on. 

The termio structure has a group of members that have direct counterparts in the tty structure. 
These members specify the operational modes for the device. Figure 7-14 shows how these two 
structures relate. 

termio tty Use 

c_iflag t_iflag input control, such as parity checking, start/stop 
output control, and mapping of newline to return 

c_oflag t_oflag output control, such as delays on output and 
mapping of newline to return 

c_lflag t_lflag local terminal control, such as echoing and 
enabling signals 

c_cflag t_ct1ag hardware control of terminal, such as baud 
settings, character size, and hang up on last close 

c_cc t_cc control character definitions, such as the erase and 
kill characters and the character to send SI G INT 

Figure 7 -14 Operational Modes for Terminal Devices 

The fields in the termio structure are set by the getty(1M) command. getty is executed by the 
init(lM) command. init accepts as input the letclinittab file which contains a line for each terminal 
device configured on the system. Each inittab terminal definition line contains a call to the getty 
command. The getty command sets the terminal type, its baud rate, and its associated line discipline. 
The driver open routine is called by the user level getty process the first time a device is opened. The 
open routine is called each time a process is spawned for a terminal subdevice. 
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The /etc/inittab File 

The letclinittab file controls processes that execute when the computer changes run level. When a 
new state is entered, the init(lM) program reads inittab, finds the "instructions" that apply to that run 
state, and executes those programs in the order in which they are listed in inittab. For most drivers, 
you will not modify inittab but rather create other files that will be called automatically. 

Each line in inittab has four fields, separated by colons. A comment should be added at the end of 
the line; it is preceded with a "#" and can go to the end of the line. 

Figure 7-15 shows the getty(lM) lines from a sample letclinittab file. The fields are explained on the 
inittab(4) manual page. 

1 co:234:respawn:/etc/getty console console 
2 ct:234:off:/etc/getty contty contty # Network out 
3 31:234:respawn:/etc/getty tty31 9600 # Network in line #1 
4 32:234:respawn:/etc/getty tty32 9600 # Network in line #2 
5 33:234:respawn:/etc/getty tty33 9600 # Network in line #3 
6 34:234:respawn:/etc/getty tty34 9600 # Network in line #4 
7 41:234:off:/etc/getty tty41 9600 # Network out line #1 
8 42:234:off:/etc/getty tty42 9600 # Network out line #2 
9 43:234:off:/etc/getty tty43 9600 # Network out line #3 

Figure 7 -15 Example /etc/inittab File 

The fields in the inittab file are: 

1 id: One or two characters used to uniquely identify an entry. 

2 rstate: The state or states in which this command can be executed. The valid values 
with their meanings are: 

s,S,O,l 
2 
3 
4 
5 
6 

7 -18 BCI Driver Development Guide 

Single-user state 
Multi-user state 
Multi-user state with RFS running 
Not currently used 
Go to firmware mode 
Automatic reboot 



The tty Structure 

NOTE: 0 in rstate means power down on the 3B2 computer, but single-user on the 
3B15 or 3B4000 computers. If no number is specified, the default is that the 
command can be executed in any run state. 

More than one number can be used in this field; for instance, "56" means to execute this 
process when the system state switches to either state 5 or 6. 

3 action: The conditions under which iiut should execute the process in this line. For a 
full explanation of all actions, see inittab( 4) in the UNIX System V Programmer's 
Reference Manual. The options of interest to driver writers are: 

wait - start process and wait for it to terminate when system first enters that 
runstate 

bootwait - execute only once after system is booted, the first time the system enters 
a state that matches rstate for this entry. 

otT - do not restart this process when state changes 

sysinit - used for initializing devices, identifies entries to be executed before init 
spawns a shell on the console 

respawn - restart this process if it dies or if it is not already running when system 
state changes 

4 process: The full pathname of the process to be invoked and arguments to the process 

The /etc/gettydefs File 

letclgettydefs defines the speed and terminal settings (IOCTL values) to be moved into the tty 
structure when the device is opened for the first time.' The format of a gettydefs line is shown in 
Figure 7-16. 

label#initial-flags#final-flags#login-prompt#next-label 

For example: 

9600#B9600#B9600 SANE IXANY TAB3 HUPCL#login:#4800 

Figure 7 -16 Format of a /etc/gettydefs Entry 

The # serves as a field delimiter. The second and third fields set default I/O control command values 
for this device: initial-flags are the values assigned to this structure when it is inactive (typically only 
the baud rate), andfinal-flags are the values assigned when a user accesses the device, just before the 
login program executes. 
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If the default baud rate for the TrY port does not match the speed given in the / etc/getty line for that 
device, the user can press the (BREAK) key, and getty will try a different speed, meaning a different 
line in gettydefs. The next-label field specifies the speed to try next. 

The getty command can be executed without specifying the speed. In this case, the first line in 
gettydefs is the default. 

The values in the third field are typically used for terminals (although the b~ud rate may vary). 
IXANY, T AB3, and HUPCL are documented on the termio(7) manual page. SANE is a composite 
flag defined in getty.c that sets flags to coordinate processor and terminal communication. 

The I/O control commands for the tty structure can also be set with the stty(l) command in the 
fete/profile file, the user's .profile file, or as a user shell command. stty first calls the ioctl(2) system 
call. The ioctl system call then calls the drivers ioctl(D2X) routine, which in tum calls the 
appropriate functions from the line discipline through the linesw table to record the new rio 
control command value in the appropriate flag or array of the tty structure for that terminal device. 

Figure 7-19 summarizes how the operational modes in the tty structure are populated from 
termio values, the getty values associated with each termio member, and from stty commands. 

termio (7) 
fields 

getty (1M) SANE: 

Settings IGNBRK 

tty 
structure 

stty (1) 
Commands 

BRKINT 
ISTRIP 
ICRNL 
IXON 

Input 
Modes 

SANE: 
OPOST 
ONLCR 

Output 
Modes 

SANE: 
ISIG 
ICANON 
ECHO 
EOiOK 

Local 
Modes 

SANE: ERASE = # 
CS7 Kll.L=@ 

CREAD 
PARENB 

Control Control 
Modes Assignments 

Figure 7 -17 Populating the tty Operational Modes 
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This section describes how driver routines are constructed to take advantage of the capabilities 
provided in the TrY interlace. 

Terminal op~n Routines 

The TrY subsystem provides two functions, ttinit(D3X) and ttopen(D3X), for the driver open(D2X) 
routine. The ttinit function is used only for drivers that use line discipline 0; if your driver uses its 
own line discipline, you must write a similar routine for that line discipline. ttinit performs the 
following: 

• t_Iine is set to zero (line discipline zero) 

• t_itlag is set to zero 

• t_oftag is set to zero 

• t_cftag is ORed with SSPEED (300 baud), CS8 (8-bit character size), CREAD (enable 
receiver), and HUPCL (hang up on last close). 

• t_ltlag is set to zero 

• bcopy(D3X) is called to move ttechar to t_ce. ttechar is an eight-character array 
containing: 

1 CINTR - Delete character (octal 0177) 

2 caurr - Quit character (octal 034) 

3 CERASE - Erase character (#) 

4 CKILL - Kill character (@) 

5 EOF - End Of File character (CfRL-d) 

6 NULL-O' 

7 NULL-O 

8 NULL-O 

The ttinit function cannot be called through the line discipline switch table, since it establishes the 
line discipline to be line discipline zero. If a different line discipline is used, the appropriate 
initialization routine should be called in place of the ttinit function. 
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The driver open routine (line 3 in Figure 7-18) calls the ttinit function (line 13) and ttopen via the 
line switch table. 

When the TIY subsystem is initialized, one instance of the tty structure is established for each 
TIY port that can be configured on the system. 

When a driver open routine is called for a tenninal device, the logical state of the device is checked 
(line 11). If the device has not previously been opened (ISOPEN) and is not currently being opened, 
the tty structure is initialized to its default values (ttinit in line 13). The address to the device 
command processing routine is provided for the line discipline routines, and the hardware is 
initialized to the present baud rate and error checking settings specified in the tty structure. 

1 extern struet tty xx_tty[]; 1* Location of logical device structures */ 
2 
3 xx_open(dev, flag) 
4 dev_t dev; 
5 { 
6 register struet tty *tp; 
7 register struct device *rp = &ocaddr[minor(dev) » 3]; /* Get device regs */ 
8 register int port = minor( dev) & 0x07; 1* Get port number *1 
9 
10 tp = &xx_tty[minor(dev)]; 
11 if «tp->t_state & (ISOPEN I WOPEN» == 0) 1* If device is not open and *1 
12 { /* waiting to be opened, ... I 
13 ttinit(tp); 1* initialize tty structure with default values *1 
14 tp-> Lproc = xx_proc; 1* Provide line discipline routines access to *1 
15 1* the driver command processing· routine * I 
16 /* The appropriate device registers would be set to match the *1 
17 /* values stored in the tty structure - hardware dependent. * I 
18 } 1* endif *1 
19 

Figure 7-18 Initializing tty Structure Default Values 

The ttopen function establishes the connection between the process group (t_pgrp) and the device. It 
also allocates and initializes a cblock(D4X) for the receive buffer ,(t_rbuf) of the tty structure. 
To take care of 'any initialization peculiar to the device hardware, ttopen calls the driver proc(D2X) 
routine with the T _INPUT argument. 
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In Figure 7-19, when a tenninal device is being opened, the driver open routine is responsible for 
establishing a physical and logical data connection. After the default settings are made in the tty 
structure, and the device registers have been set by the ttinit function, the driver determines if a 
physical connection has been made by testing carrier from the modem (line 2). If a carrier is present, 
the tty structure indicates a physical connection has been made (line 4). Otherwise, the tty 
structure indicates a physical connection has not been made (line 6). 

If the process wishes to wait for carrier (line 8), and carrier is not present, the driver waits for carrier 
(sleep(D3X) in line 12). The last driver operation open routine is used to establish a logical data 
connection and associate the device to a process by making the appropriate settings in the tty 
structure (ttopen). In order to allow other protocols, a driver must access the ttopen routine through 
the line discipline switch table (line 15) (I_open is defined in conf.h). The t_line member of the 
tty structure contains the line discipline (in this case zero) and serves as the index to the line 
discipline switch table. 

Interrupts are disabled during the ttopen call to ensure all parameter settings in the tty strucrure are 
made before any testing and resetting of the parameters is done by a driver interrupt and/or polling 
routines. 

Refer to the ttopen(D3X) manual page for more information on this figure. 

1 oldlevel = sp16(); 
2 if «rp->modem_status & (0x0100 « port» != 0) /* If there is carrier */ 
3 { /* to the modem, */ 
4 tp->t_state 1= CARR_ON; /* indicate carrier is established */ 
5 } else { 
6 tp->t_state &= -CARR_ON; /* else indicate carrier is dropped */ 
7 } /* endif */ 

8 if «flag & FNDELA Y) = = 0) { /* If process wants to wait for carrier * / 
9 while«tp->Lstate & CARR_ON) = = 0) /* while carrier is not present, */ 

10 { /* indicate process is waiting * / 
11 tp->t_state 1= WOPEN; /* for carrier */ 
12 sleep«caddr_t)&tp->t_canq, TI1PRI); /* Wait for carrier */ 
13 } /* end while * / 
14 } /* endif */ 
15 (*linesw[tp->t_line].Copen)(tp); /* Establish logical data connection */ 
16 splx( oldlevel); 

Figure 7 -19 Opening a tty Device 
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Term inal close Routines 

The line discipline close function, ttclose, is called by the device driver close(D2X) routine. The 
ttclose function disassociates the device from the process that opened it and resets the ISOPEN flag in 
the device internal state register (t_state). ttclose calls the driver proc routine (with the T_RESUME 
argument) to transmit any characters in the device transmit buffer (t_tbuf) out to the tenninal, clears 
out all the TrY buffers and queues, and returns all cblock(s) allocated to the device. 

On the last close of a terminal device, the driver close(D2X) routine (line 6 in Figure 7-20) 
terminates the logical data connection and disassociates the device from a process that is specified in 
the tty structure (ttclose). In order to allow other protocols, a driver must access the ttclose 
function through the line discipline switch table (I_close is defined in cOn/.h). 

After the logical data connection is terminated, the driver would break the physical connection (such 
as instructing the modem to drop carrier) (line 6). 

1 extern struct tty xx_tty[]; /* Location of logical device structure * / 

2 xx_close(dev) 
3 dev_t dey; 
4 { 
5 register struct tty *~ = x'ctty[minor(dev)]; /* Get device tty structure */ 

6 (*linesw[tp->Cline].Lclose)(tp); /* Break logical data connection */ 
7 

Figure 7-20 Data Connection is Terminated 
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Terminal read Routines 

When a process requests data from a terminal device, the driver read(D2X) routine locates the tty 
structure associated with the device. The character data is copied from the input queues to the user 
data area using ttread. 

ttread calls canon to perfonn canonical processing of data (erase, kill, and escape) as it transfers 
characters from the raw queue to the canonical queue. If no characters are available, it calls sleep to 
wait on the address of the raw queue Wltil characters become available. After canonical processing, 
ttread transfers data from the canonical queue to user data space. If transmission from the tenninal 
is blocked because the number of characters in the raw input queue is above the high water mark, 
:..~d if the !"e2!! C~1..!Se5 th~t nnmher to go below a safe level, ttread calls the driver proc routine (with 
the T_UNBLOCK argument) to resume transmission from the tenninal. To allow for alternative line 
protocols, a driver must access the ttread function through the line discipline switch table (line 7 in 
Figure 7-21). ttread is accessed through the Cread member of the linesw table .which is defined in 
conf·h. 

1 extern struct tty DCtty[]; /* Location of logical device structures */ 
2 
3 xx_read( dev) 
4 dev_t dev; 
5 { 
6 register struct tty *tp = &xx_tty[minor(dev)]; 

7 (*linesw[tp->Cline].Cread)(tp); /* Copy character data from input */ 
8 . /* queues to user data area * / 
9 } /* end xx_read * / 

Figure 7-21 Processing an Input TTY Character 

Drivers in the TTY-Subsystem 7 - 25 



Terminal Routines 

Term inal write Routines 

Displaying a character on the screen of a terminal is simpler than reading information from the 
keyboard since only one queue, the output queue (t_outq), is involved. Still, activities at both base 
and interrupt levels are involved. A transmit buffer provides the buffering of characters between the 
base and interrupt portions. 

The terminal driver write(D2X) routine calls ttwrite to move the characters output from the user 
data space to the output queue. ttwrite calls the driver proc routine with T_OUTPUT set to get 
ttoutto transmit the data to the terminal. 

Once initiated, output is sustained by interrupts from the device. A transmit-complete interrupt 
causes control to be passed to the driver transmit interrupt handler. The driver outputs the next 
character in the transmit buffer to the device. If the output buffer is empty, ttout(D3X) is called to 
move characters from the output queue to the buffer. 

The driver write routine receives the device number as an argument. It uses this argument to 
determine the tty structure for the device being written. This is then passed to ttwrite. 

The ttwrite function transfers characters from user data space to the output queue as long as the 
output queue high water mark has not been exceeded. The characters are processed as they are put 
on the output queue to expand tabs and to add appropriate delays for newline, carriage return, and 
backspace characters. When the high water mark is reached, ttwrite calls sleep to wait on the output 
queue. 

When a process requests data be transferred to a terminal device, the driver write routine locates the 
tty structure associated with the device (line 3 in Figure 7-22). The data is copied from the user 
data area to the output queues with ttwrite (line 7). ttwrite is accessed through the L write member 
of the linesw table which is defined in con/.h. 
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1 extern struct tty xx_tty[]; /* Location of logical device structures * / 
2 
3 '0,-write( dey) 
4 dev_t dey; 
5 { 
6 register struct tty *tp = &xx_tty[minor(dev)]; 

7 
8 

(*linesw[tp->Cline].Lwrite)(tp); /* Copy character data from user */ 
/* data area to output queues * / 

9 } /* end xx_write * / 

Figure 7-22 The ttwrite Function. 

Terminal Routines 
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Term inal ioctl Routines 

Changing the many parameters associated with terminal devices requires close cooperation between 
the driver and the TrY subsystem. The ttiocom function provides access to reading and changing the 
various 1TY parameters contained in the tty structtire. Changing such parameters usually requires 
that device registers also be altered. The driver is responsible for changing these registers. 

A request to read or change terminal parameters is initiated by an ioctl(2) system call from a user 
process. This causes the driver ioctl(D2X) routine to be dilled. The driver locates the tty structure 
associated with the device and calls the common ioctl routine, ttiocom. 

Internally, ttiocom calls ttioctl(D3X). These two functions tog~ther affect the appropriate parameter 
settings and return to the driver. Although ttiocom and ttioctl are together involved in parameter 
access, each has a different purpose. ttiocom is a general-purpose function providing common 
parameter handling. ttioctl is specialized in that it deals with parameters related to buffering and 
character processing and is associated with the terminal protocol or line discipline. 

A user process can get or set terminal parameters with the ioctl(2) system call. All standard 
termio(7) commands access parameters in one or more of the members in the tty structure, and 
possible changes to these parameters are made first (ttiocom). If changes are made in the parameters 
of the tty structure, then the device registers may also need to be altered; the driver would make 
the necessary changes upon return from the ttiocom function. 

NOTE: Do not call the ttioctl function directly. This function should always be called through the 
line discipline. 
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11 

12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

extern struct device ,ocaddr(]; /* Location of physical device registers * / 
extern struct tty xx_tty[]; /* Location of logical device structures */ 

xx_ioctl( dev, cmd, arg, flag) 
dev_t dev; 
caddr_t arg; 
{ 

switch( cmd) 
{ 

/* Driver specific commands would be handled by the case */ 
/* statements, such as getting the device registers. */ 

default: /* Handle termio(7) commands; if invalid command is * / 
/* present ttiocom will update u. u_error with EINV AL * / 

{ 
register struct tty *tp = &xx_tty[minor(dev)]; /* Get tty structure */ 

if (ttiocom(tp, cmd, arg, flag) = = 1) /* Get or set tty parameters; */ 
{ /* If tty parameters are changed, then * / 

/* change the necessary device registers. * / 
register struct device *rp; 
rp = &xx_addr(minor(dev) » 3]; /* Get device regs */ 

/* The 'changes are usually determined by examining the parameter * / 
/* settings in the t_iflag, t_oflag, t_cflag, and t_lflag members * / 
/* of the tty structure for changes like baud rate, type of parity * / 
/* testing, etc. -- hardware dependent. * / 

} /* endif */ 

26 } /* endswitch * / 
27 } /* end xx_ioctl * / 

Figure 7 - 23 Changing Device Parameters 

Terminal Routines 
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Term inal Interrupt Routines 

Interrupts can be handled by a single int(D2X) routine or with the rint(D2X)/xint(D2X) routine 
pair. 

After a driver rint (receive interrupt) routine validates an input character, it stores the character in 
the receive buffer (t_rbuf). When the receive buffer is filled, the receive buffer is added to the raw 
queue and a new receive buffer is allocated (ttin). In order to allow other protocols, a driver must 
access the ttin routine through the line discipline switch table, linesw. The t_line member of the 
tty structure contains the line discipline number and serves as the index to the line discipline switch 
table. 

If the number of characters in the raw queue exceeds a level called the high water mark, ttin calls the 
driver proc(D2X) routine to send a stop character to the device. When the raw queue character 
count exc~ the TIYHOG level of 256 characters, ttin flushes the tty structure input queues. 
TIYHOG is ~efined in the tty.h header file. If the interrupt character (SIGINT), typically (DEL) or 
the quit character (SIGQUIT), is found, ttin sends the appropriate signal to the process group 
associated with the device. If processes associated with the device are executing sleep(D3X) and ttin 
finds a line delimiter character, ttin awakens the process that called sleep. 

The ttin fupction can also transmit characters to the terminal for display by calling taput. 

When the terminal operates in raw mode, the fifth and sixth elements of the tty structure control 
character array indicate the number of characters needed (VMIN), and the amount of time waited 
before processes associated with the device should be awakened (VIlME). If the minimum character 
count has been met (Cdeict), ttin awakens processes associated with the terminal. 
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struct device /'" Layout of physical device registers * / 
{ 

int control; /* Physical device control word */ 
int status; /* Physical device status word * / 
short recv _char; /'" Receive character from device * / 
short xmicchar; /* Transmit character to device */ 

}; /'" End device * / 

8 extern struct tty xx_tty[]; /'" Location of logical device structure '" / 
9 . extern struct device ,ocadcir[]; /'" Location of physical device registers "'/ 
10 extern int xx_cot; /'" Number of physical devices "'/ 
11 
12 xx_rint(board) 
13 int board; /'" The hardware board that caused the interrupt '" / 
14 { 
15 register struct device *rp = xx_addr(board]; /* Get device registers "'/ 
16 register struct tty *tp; 
17 register int c, port; 

Terminal Routines 

18 while«c = rp->recv_char) & DATAVALID) != 0) /'" While there is valid data */ 
19 { /'" in the input register, retrieve it "'/ 
20 port = (c » 8) & Ox7; /'" Get tenninal's port number */ 
21 tp = &x)ctty[(board « 3) & port]; /'" Get corresponding tty structure */ 

22 /'" After the character has been checked for errors and is stripped to "'/ 
23 /'" proper bit size, the character is stored in the receive buffer. '" / 

24 "'tp->t:.-rbuf.c_ptr+ + = c; /* Store input character in receive buffer */ 
25 if (--tp->t_rbuf.c_count = = 0) /* If the receive buffer is full, "'/ 
26 { /'" reset the c_ptr to first character in the receive buffer. The */ 
27 /* driver must do this operation to insure the buffer is added "'/ 
28 tp->Crbuf.c_ptr -= tp->t_rbuf.c_size; /* to the raw queue correctly */ 

29 ("'linesw[tp->t_line].Linput)(tp); /* Add receive buffer to raw; */ 
30 /'" queue; get empty receive buffer"'/ 
31 } /'" endif "'/ 
32 } /'" end while "'/ 
33 

Figure 7 - 24 ttin - Move Character to Raw Queue 

The ttout function is called by the driver transmit interrupt (xint(D2X)) routine. ttout is passed the 
address of the tty structure associated with the device. 
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The ttout function moves characters from the output queue to the transmit buffer in preparation for 
output by the driver. The ttout function implements the actual timing delays needed during output. 
When it detects a delay in the output queue, it uses the timeout(D3X) function to arrange for an 
entry after the appropriate time has elapsed. This delayed entry invokes the driver proc(D2X) 
routine to resume output (from ttrstrt). The ttout function also awakens the sleeping processes when 
a sufficient number of characters have been transmitted; that is, when the number of characters in the 
output queue is less than the low water mark. 

A driver transmit routine is entered when a device is ready to receive data. While the device is ready 
to receive data and the transmit register is free, a character is taken from the transmit buffer (Ctbuf) 
and placed in the transmit register. The state of the tty structure is changed to show a character is 
present in the transmit register and the driver command process routine is called to complete the 
output . 

. The command processing routine determines the output port. If output is blocked or there is no 
output for that port, then return to the caller. When the transmit buffer (t_tbuf) is empty, the buffer 
is returned to the free list and a new transmit buffer is allocated from the output queue (ttout). The 
output character is transmitted to the device and the state of the tty structure is changed to show 
the transmit register is empty. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

struct device /* Layout of physical device registers * / 
{ 

int control; /* Physical device control word */ 
int status; /* Physical device status word ... / 
short modem_status;!* Modem carrier (upper 8 bits) & ring */ 

j* (lower 8 bits) status word ... / 
short recv_char; /* Receive character from device */ 
short xmit_char; /* Transmit character to device */ 

}; /* End device */ 

10 extern struct device Dcaddr[]; /* Location of physical device registers */ 
11 extern struct tty xx_tty[]; /* Location of logical device structures */ 
12 
13 xx_xint(board) 
14 int board; /* Board that caused the interrupt * / 
15 { 
16 register struct tty *tp; 
17 register struct device *rp = &xx_addr(board); /* Get device regs */ 
18 register struct ccblock *cp; 
19 register int port; 

Figure 7-2S A Driver Accesses ttout Function (part 1 of 3) 
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20 port = rp->status & Ox7; /* Get tenninal's port number */ 
21 tp = &xx_tty(board « 3) & port]; /* Get corresponding tty structure */ 
22 cp = &tp->Ctbuf; /* Get transmit buffer */ 

23 while«rp->status & XX_TXRDY) != 0) /* While the device is ready for */ 
24 { /* a character to be transmitted * / 
25 if (tp->t_state & BUSY) /* If xmit_char register is clear */ 
26 { /* and there is more data to send, * / 
27 if (cp->c_count > 0) /* If there is data in the tbuf of the */ 
28 { /* tty structure, then give device the * / 
29 rp->xmicchar = * cp-> c_ptr+ +; /* next character for transmission */ 
30 cp->c_count--; /* update counter of the number of */ 
31 /* characters remaining for output * / 

} /* endif */ 32 
33 
34 
35 
36 
37 
38 
39 
40 

tp->t_state &= -BUSY; /* Indicate xmit_char register is primed */ 
,ocproc(tp, T_OUfPUT); /* test to see if output is blocked and if */ 

/* not enable controller for transmission * / 
} else { 

rp->controll= XX_TXDONE; /* Indicate all data for port has been */ 
break; /* transmitted; terminate loop * / 

} /* endif */ 
} /* endwhile * / 

41 } /* end xx_xint * / 

42 xx_proc(tp, cmd) /* Driver command processing routine */ 
43 register struct tty *tp; 
44 int cmd; 
45 { 
46 register int dev = tp - xx_tty; /* Compute minor device number * / 
47 register struct device *rp = &xx_addr[dev» 3]; /* Get device regs */ 
48 register int portmask = 0x0100 « (dev & Ox7); /* Setup output port mask */ 

49 switch( cmd) 
50 { 
51 
52 case T_OUTPUT: 
53 resume_output: 

/* Perform output processing of data to the device */ 

Figure 7 - 2S A Driver Accesses ttout Function (part 2 of 3) 
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54 { 
55 register struct ccblock *cp = &tp->t_tbuf; 

56 if «tp->Cstate & (BUSY / TISTOP» != 0) 1* If there is no data to *1 
57 break; 1* transmit or output is blocked by a CfRL-s, do nothing *1 

58 rp->xmit_char /= portmask; 1* Enable controller to transmit character *1 

59 if (cp->c_ptr == NULL" cp->c_count == 0) 1* If there is no tbuf or *1 
60 { 1* the tbuf is empty, then get a new one * I 
61 if «*Iinesw[tp->Cline].Coutput)(tp) & CPRES) = = 0) 1* If there *1 
62 break; 1* is no more output data, then terminate output *1 
63 } 1* endif *1 

64 tp->t_state 1= BUSY; 1* Indicate there is more output data in the tbuf *1 
65 1* and that the xmit_char register is clear *1 
66 break; 
67 } 1* end T _ OUTPUT case *1 
68 

Figure 7-25 A Driver Accesses ttout Function (part 3 of 3) 
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Terminal proc Routines 

The proc(D2X) routine processes information received from and sent to a TTY device. The proc 
routine is unique in that it is called from both kernel TrY functions and other driver routines 
(including itself). If you are using the ttiocom, ttioctl, ttin, ttread, ttrstrt, ttwrite, or ttytlush 
functions in your driver, you must have a proc routine. The format for a proc routine is similar to 
that of an ioctl routine in that the contents of the proc routine are little more than a series of 
conditions that evaluate the cmd argument passed into the proc routine. 

Figure 7-26 lists the case conditions that must be included in a proc routine (if the 1TY function is 
used). See the BCI Driver Reference Manual, section D2X, for explanations of the case conditions 
provided in this table. 

Case 

T_OUTPUT 
T_OUTPUf 
T _RESillvIE 
T _RESillvIE 
T_RFLUSH 
T_SUSPEND 
T_SWTCH 

Required By 

ttin 

ttiocom 
ttiocom 
ttioctl 

ttin 
ttwrite 
ttiocom 
ttioctl 
ttytlusb 
ttiocom 
ttin 

ttrstrt 
ttiocom 
ttread 

ttytlusb 

Conditzon 

if (tp->t_rawq. c_cc>TTXOHI) and 
(tp->t_iflaq&IXOFF) && !(tp
>t_state&.TBLOCK) 

When ttiocom cmd = TCXONC and arg = 2 
When ttiocom cmd = TCSBRK and arg = 0 
When ttioctl cmd = LDOPEN and if t p
>t_rbuf • c._ptr == NULL 

if tp->t_iflaq&ECHO 
When ready to send character to tenninal 
When ttiocom cmd = TCXONC and arg = 1 
When ttioctl cmd = LDCLOSE 
When flushing read buffers 
When ttiocom cmd = TCXONC and arg = 0 
if (tp->Ciflag&ISIG), the next character in 
tp->t_cc is VSWfCH, and if not tp
>t_iflaq&'NOFLSH (sxt driver only) 
Whenever function is called (xt driver only) 
When ttiocom cmd = TCXONC and arg = 3 
If tp->t_state&TBLOCK and tp
>t_rawq.c_cc<TTXOLO 

When flushing write buffers 

Figure 7-26 proc Routine case Statements 
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Terminal Timing Routines 

Occasionally, a tenninal driver must provide a timing routine to wait for buffers, for a character to 
be entered, or to cushion differences in baud rates between the terminal and the CPU. The ttrstrt 
and tttimeo functiens are used for theses purposes. In addition, the delay, sleep, timeout, and 
untimeout functions described in Chapter 9 provide additional timing capability. 

The ttrstrt function restarts TIY output following a delay timeout. The name of the function to be 
executed is assigned to tp~>Lproc before calling ttrstrt. 

When a TCSBRK command is issued in a ioctl(2) system call, the line discipline routine ttiocom calls 
the driver proc routine with the T _BREAK argument. The purpose of the driver proc routine is to 
send a break to the device. After the break is sent, output must be suspended for 250 milliseconds. 
The timeout(D3X) function is used to call ttrstrt after the 250. milliseconds have elapsed. The ttrstrt 
function will call the driver command processing routine with the T _TIME command so that output 
can be resumed. 

1 case T _BREAK: /* Send a BREAK to a device' * / 
2 rp->controll= XX_BRK; /* Enable a break to be sent */ 
3 rp->xmit_char 1= portmask; /* Enable controller/specify port * / 
4 tp->t_state 1= TIMEOUT; /* Timeout condition in progress */ 
5 timeout(ttrstrt, tp, HZl4); /* Disable timeout in 114 of a */ 
6 /* second (HZ)-250 milliseconds */ 
7 break; 
8 

Figure 7 - 27 Restart TTY Output After a Delay 
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The tttimeo function is normally used in conjunction with the canon function's VTIME option, 
which is the same as the termio(7) TIME variable. However, ttimeo can be used independently to 
time events. Figure 7-28 gives the code for tttimeo: 

1 tttimeo(tp) 
2 register struct tty *tp; 
3 { 
4 tp->t_state &= -r ACf; 
5 if (tp->Clflag&ICANON II tp->ccc[VTIME] = = 0) 
6 return; 
7 if (tp->t_rawq.c_cc = = 0 && tp->ccc[VMIN]) 
8 return; 
9 if (tp->Cstate&RTO) { 

10 tp->Cdelct = 1; 
11 if (tp->Cstate&IASLP) { 
12 tp->t_state &= -IASLP; 
13 wakeup«caddr_t)&tp->t_rawq); 
14 } 
15 } else { 
16 tp->Cstate 1= RTOtrACf; 
17 timeout(tttimeo, tp, tp->ccc[VTIME]*(HZl10»; 
18 } 
19 } 

Figure 7 - 28 tttimeo Function 

Using the clist Buffering Scheme 

A clist structure is the head of a linked list queue of cblocks that have been assigned to the 
driver. It contains a total count of the characters in the queue with pointers to the first and last 
cblocks in the queue. 

The clist buffering scheme buffers small amounts of data using a clist or cblock (character 
list or character block). Interactive devices, such as tenninais, use the clist buffering scheme 
through the 1TY line discipline routines which manage the structures and I/O transfers. Terminal 
drivers do not need to use the clist buffering scheme; the driver writer is free to implement any 
type of' data buffering scheme needed (including none) in a terminal driver. 

Each cblock contains arrays in which the actual characters are stored, as well as indices for the first 
(c_first) and last (c_last) valid characters in the array. Each c_block contains 64 characters. 
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l1te cfreelist structure is the system pool of available cblocks, and is shared by all TrY 
devices on the system. The chead data structure heads it, and contains a pointer to the next 
available cblock, the size of the cblock structure, and a flag that indicates when a process is 
waiting for a cblock. 

The chead and cfreelist structures should never be accessed directly, but only through the 
clist routines. 

Figure 7-29 illustrates the clist buffering scheme. 

User Address Space 

eopyout(D3X) eopyin(D3X) 

clist getcb(D3X) putcb(D3X) 
::0 I cblock II cblock II cblock I - -

! putcf(D3X) 

cfreelist getef(D3X) 

I cblock II cblock II cblock I 
Figure 7 - 29 elist ButTering Scheme 
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To use the clist buffering scheme, the driver code must include the header file tty.h. The 
following table describes the functions used to read and write character lists. Each of these has a 
corresponding reference page in Section D3X of the Bel Driver Reference Manual. Note that the 
copyin(D3X) and copyout(D3X) functions are only described here as functions that are useful when 
writing character handling routines. Refer to Chapter 6 for more information on these two functions. 

Function 

copyin 
copyout 
getc 
getcb 
getcf 
putc 
putcb 
putcf 

Activity 

copy data from user address space to driver buffer 
copy data from driver buffer to user address space 
get a character from the c 1 is t 
get first cblock on a clist 
get a free cblock from system cfreelist 
put character at end of c 1 i s t 
link a cblock to the end of clist 
return cblock to cfreelist 

Figure 7 - 30 Functions for Manipulating clist ButTers 
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Introduction 

The ioctl(D2X) routine provides character-access drivers with an alternate entry point that can be 
used for almost any operation other than a simple transfer of characters in and out of buffers. Most 
often, an 110 control command is used to control device hardware parameters and establish the 
protocol used by the driver for processing data. 

After the user-level program opens a special device file, it can pass 110 control command arguments. 
The kernel looks up the device's file table entry, determines that this is a character device, and looks 
up the entry point routines in cdevsw. The kernel then packages the user request and m-guments as 
integers and passes them to the driver's ioctl routine with the copyin(D3X) or copyout(D3X) 
function. The kernel itself does no processing of a 110 control command, so it is up to a user 
program and a driver to agree on what the arguments mean. 

110 control commands can be used to do many things including 

• implement terminal settings passed from getty(lM) and stty(l) 

• format disk devices 

• implement a trace driver for debugging 

• clean up character queues 

Because the kernel does not interpret a command that defines an operation, a driver is free to define 
its own commands. 

Drivers that use an ioctl routine typically have a command to read the current I/O control command 
settings, and at least one other command that sets new settings. You can use the mode argument to 
determine if the device unit was opened for reading or writing, if necessary, by checking the FREAD 
or FWRITE setting. 

The ioctl routine can be used for transferring large chunks of data, such as when you need to pump 
(download) data into the driver itself (not through the driver to the hardware). In this case, the 
operation argument is a pointer to a buffer of an appropriate size that contains the data. The buffer 
itself should be set up by a user-level process or daemon. 

To implement I/O control commands for a driver, two steps are required 

1 define the I/O control commands and the associated value in the driver's header file 

2 code the driver ioctl routine to define the functionality for each I/O control command in 
the header file 

It is critical that 110 control command definitions and routines be conimented thoroughly. Because 
there is so much flexibility in how I/O control commands are used, uncommented I/O control 
commands are very difficult to interpret at a later time. 
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D e fi n in g I 10 Con t r 0 I Com man dNa m e san d Val u e s 

The liD control command name is passed as the second argument (emd) to the driver ioetl routine. 
It should be defined, along with an integer value that is actually passed, in the header file. 

The 110 control command name and value can be defined in the driver code itself, but this is not 
recommended. If 110 control commands are defined in a header file, the user program and the driver 
can both access the same definitions to ensure that they agree about what each liD control command 
value represents. 

The 110 control comm3:lld name is traditionally an all uppercase alphabetic string. This alphabetic 
name can be a mnemonic. You should try to keep the values for your 110 control commands distinct 
from others on the system. Each driver's 1I0.control commands are discrete, but it is possible for 
user-level code to access a driver with an 110 control command that is intended for another driver, 
which can lead to serious consequences, such as if it meant to pass "drop carrier on a communication 
line," but instead sends the argument to a disk where it is interpreted as "refonnat drive." 
Pennissions can be set to prevent most such events, but the more unique your 110 control command 
values are, the safer you are. Each driver has up to 232 values that can be passed as an integer, so it 
is quite possible to avoid using numbers that are already in use. 

A number of different schemes are legal for assigning values to 110 control command names. The 
most straightforward is to use decimals; for example 

#define COMMAND1 01 
#define COMMAND2 02 

Similarly, one can assign hexadecimal numbers as values 

#define COMMANDA OxOa 
#define COMMANDFF Oxff 

The drawback to these methods is that one quickly gets an operating system that contains several 
instances of each I/O control command value, with the inherent risks discussed above. 

A common method to assign 110 control command values that are less apt to be duplicated is to use a 
left-shifted 8 scheme. For instance 

#define COMMAND10 
#define COMMAND11 
#define COMMAND12 
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Defining 110 Control Command Names and Values 

Alternately, the shift-Ieft-8 scheme can be defined as a constant then used for the 110 control 
command definitions. For example 

#define ROTA 
#define COMMAND23 
#define COMMAND25 

('q'«8) 
(ROTAI234) 
(ROTAI254) 

An alternative coding style is to use enumerations for the command argument, to allow the compiler 
to do additional type checking 

typedef enum 
XX_COMMAND 1 0 = 'Q'«8 10, 
XX_COMMAND11 = 'Q'«8 11, 
XX_COMMAND12 = 'Q'«8 12, 

} xx_cmds_t; 
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The format for an ioctl(D2X) is 

prejixioctl(dev, cmd, arg, mode) 
dev_t dev; 
int cmd, arg, mode; 

The arguments are 

dev a device number (both the major and minor number) 

cmd the type of operation ("command") 

-
arg an optional argument to the operation (often specifying the address of the structure in the 

user program that contains settings for the hardware) 

mode an optional argument containing values set when the device was open 

The ioctl routine is coded with instructions on the proper action to take for each 110 control 
command. Generally, a driver ioetl routine consists of a case statement for each I/O control 
command that identifies the required action. The command passed to a driver by a user process is an 
integer value that is associated with an I/O control command name in the header file. 

The case statement should have a "default" case to send an error value if the driver is called with an 
unknown I/O control command. 

The general shape of an ioetl routine is illustrated in Figure 8-1. Note that the JlO control command 
definitions are shown as part of the driver code in this example, although in practice these should be 
defined in the header file. 

For a full example of an ioetl routine, see the driver in Appendix E, "Sample Block Driver." 
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1 #define COMMAND1 01 
2 #define COMMAND2 02 
3 #define COMMAND3 04 
4 extern int SUBDEVICES; 

5 struct send_to_device 
6 { 
7 int flags; 
8 char setup[64]; 
9 }; 

Figure 8-1 Sample ioctl Routine, part I of 2 
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10 struct receive_from_device 
11 { 
12 int flags; 
13 char current_status[64]; 
14 }; 

15 xxioctl( dev, cmd, val,flag) 
16 int dev; 
17 int cmd; 
18 caddr_t val; 
19 int flag; 
20 { 

21 switch(cmd) 
22 { 
23 case COMMAND 1 : 
24 /* send new status setup to device */ 
25 senddev«struct send_to_device *) val»; 
26 return; 

27 case COMMAND2: 
28 /* get current status from device *1 
29 recdev«struct receive_from_device *) val»; 
30 return; 

31 case COMMAND3: 
32 /* return number of devices */ 
33 *val = SUBDEVICES; 

34 
35 
36 

default: 
u.uerror = EIO; 
break; 

37 } 
38 } 

Figure 8-1 Sample 110 Control Command Routine, part 2 0/2' 
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AT&T-Defined 1/0 Control Commands 

The following tables show the 110 control commands that are included in any of the UNIX System V 
releases for the supported machines, along with the integer value of the 110 control command and the 
header file where it is defined. 

Table 8-1 AT&T Defined 110 Control Commands 

Commaud Value Header F1Ie Description 
AlC_IOC aic.h 
BlOC extbw.h For BUS ioctlO commands 
B_ADLDL 0 btdl.h download to specified adjunct 
B_ADJ_DUMP 2 btdl.h dump specified area of adjunct physical memory 
B_ADJ_EXEC 1 btdl.h transfer control to specified address in adjunct boot image 
B_EDSD 'B' «813 extbw.h Regenerate and return Extended DSD structure 
B_GETDEV 'B'«812 extbw.h Get device for pass through 
B_GETPlPE 'B' «811 extbw.h Get bus and driver name 
B_REDT 'B'«814 extbw.h Read extended equipped device table (EDT) 
B_WEDT 'B'«8IS extbw.h Write extended EDT 
CM_BLK_ALARM 0x2 cman.h ABUS bulk power alarm 
CM_FAN_ALARM Oxl cman.h ABUS minor fan alarm 
CM_IC_FCST ATE Oxb cman.h force configuration state of an APE 
CM_IC_GACf 0x5 C11JIJ1J.h get a copy of the ACf 
CM_IC_GDEV Oxa cman.h get the generic dev _t for the sdf 
CM_IC_GSTOP Ox8 cman.h gracefully stop an APE 
CM_IC_HTEST Ox7 cman.h host error handling test 
CM_IC_MINOR 0x3 cman.h determine if a minor alarm exists 
CM_IC_PRlVPUB 0x9 cman.h make an APE private or public 
CM_IC_SCONF Ox6 cman.h SCSI configuration change 
CM_IC_ST ART Oxl cman.h start an APE 
CM_IC_STOP 0x2 cman.h stop an APE 
CM_SCSI_ST ART Oxl C11JIJ1J.h start a SCSI device 
CM_SCSI_STOP 0x2 cman.h stop a SCSI device 
C_ABORT 14 msbih.h remove all packets for specified BIC 
C_DIAG_STATIlS 0 msbih.h get diagnostic status 
C_DL_SCN 11 msbih.h downlOad a section 
C_EPOCH 17 msbih.h toggle the time epoch flag 
C_FGETST A TUS 1 msbih.h force read of BICs status register 
C_GETMODE 2 msbih.h get operational mode 
C_GETOPTIONAL 3 msbih.h get optional MSBI internal statistics 
C_GETSTATS 4 msbih.h get MSBI internal statistics 
C_GETSTATUS 5 msbih.h return last normal read of BICs status register 
C_INIT 6 msbih.h initial internal MSBI storage 
C_RBICVERS 16 msbih.h RBIC version number 
C_RESET 7 msbih.h physically reset MSBI 
C_RSI'DST 15 msbih.h reset destination BIC id 
C_RUNDIAG 8 msbih.h start specified diagnostics running 
C_SELECT _ACf 13 msbih.h select which MSBI is the current active unit 
C_SETCONTROL 9 msbih.h write BICs control register 
C_SETMODE 10 msbih.h change current operational mode 
C_START_EXEC 12 msbih.h transfer control to specified address 

(continued) 
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AT&T-Defined liD Control Commands 

Table 8-1 AT &T Defined I/O Control Commands continued 

Command Value Header F1Ie Descri!tioo 
DEV_SUBD Ox 193 vdUoctl.h return all subdevic:es for a cootroUer 
DEV_TC Ox192 vdUoctl.h return all the target cootroUers for a driver 
DIAGOFF ('0'« 8 I 2) dsmd.h Tum all diagnostic reporting off ., 
DIAGON ('D'« 8 11) dsmd.h Tum diagnostic reporting 00 ., 

DIOC ioctl.h 
DIOCGETB 'd' «8 12 ioctl.h 
DIOCGETC 'd' «811 ioctl.h 
DIOCSETE 'd' «8 13 ioctl.h 
DMIOC dfdrv.h 
D_BLANK «'M' « 8) I 234) mlJ50.h blank display 
D_UNBLANK «'M' < < 8) I 235) mlJ50.h unblank display 
EDT_HEAD Ox191 vdUoctl.h return the header of the EDT 
EMPCHAN empath.h building block for empath constants 

FlOC temrfc·h 
FORMAT 'r diskette .h ,. ioctl flag for format ., 
GETADDR 1 ioadrv.h 
GETEDr 7 ioadrv.h 
GE:TSrAT 8 ioadrv.h 
GE1TYPE 6 ioadrv.h 
HA_VER OXOO83 sdi.h get the host adapter version 
HDECEREP 15 hdeioctl.h clear error reports from the queue 
HDEa..OSE 9 hdeioctl.h close hard disk 
HDEERSLP 16 hdeioctl.h wait (sleep) for an error report 
HDEFIXLK 11 hdeioctl.h "hdefix" locks hde log access 
HDEFIXUL 12 hdeioctl.h ''hdefix'' unlocks hde log access 
HDEGEOCT 1 hdeioctl.h get equipped disk count 
HDEGEQDT 2 hdeioctl.h get equipped disk table 
HDEGERcr 13 hdeioctl.h get . count of outstanding error reports 
HDEGEREP 14 hdeioctl.h get outstanding error reports 
HDEGETSS 4 hdeioctl.h get sector size of disk 
HDEMLOOR 10 hdeioctl.h issue manual hdelog( ) requests 
HDEOPEN 3 hdeioctl.h open hard disk 
HDERDISK 7 hdeioctl.h read disk 
HDERDPD 5 hdeioctl.h read physical description of disk 
HDEWDISK 8 hdeioctl.h write disk 
HDEWRTPD 6 hdeioctl.h write physical descriptioo of disk 
HXI10CLINK vpmxt.h link channel 0 
IBBNA 'r «8117 ib.h 
IBCAC 'r «8122 ib.h 
IBCLR T «8127 ib.h 
IBCMD T «8112 ib.h 
IBDINFO 'r «814 ib.h 
IBDMA 'r «8130 ib.h 
IBE~ 'r «8130 ib.h 
IBEOr 'r «8130 ib.h 
IBGET 'r «810 ib.h 
IBGTS 'r «8 121 ib.h 
IBIND 'I' «8 12 ib.h 
IBIOAB 'r «8130 ib.h 
IBISI' 'r «8130 ib.h 
IBLLO T «8140 ib.h 
IBLOC 'I' «8 128 ib.h 
IBONL T «8119 ib.h 

(continued) 
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AT&T-Defined liD Control Commands 

Table 8-1 AT &T Defined 110 Control Commands continued 

Command Value Header FIle Description 

IBOUTB '1' «8 I 3 ib.h 
IBPAD '1' «8 I 30 ib.h 
IBPCr '1' «8 I 29 ib.h 
IBPPC '1' «8 I 30 ib.h 
IBRD '1' «8 I 10 ib.h 
IBRDF '1' «8 I 40 ib.h 
IBRPP '1' «8 I 16 ib.h 
IBRSC '1' «8 I 30 ib.h 
IBRSP '1' «8 115 ib.h 
IBRSV '1' «8 I 20 ib.h 
IBSAD '1' «8130 ib.h 
IBSET '1' «8 I 1 ib.h 
IBSGNL '1' «8 I 24 ib.h 
IBSIC '1' «81 30 ib.h 
IBSPOKE '1' «8 I 23 ib.h 
IBSRE '1' «8 I 2S ib.h 
IBTMO '1' «8 I 40 ib.h 
IBTRG '1' «8 I 26 ib.h 
IBWAIT '1' «8 I 18 ib.h 
IBWRT 'I' «8 I 11 ib.h 
IBWRTF '1' «8 I 40 ib.h -
IBXTRC '1' «8 I 14 ib.h 
IBxnx '1' «8 I 13 ib.h 
IFBCHECK 'F «812 if·h Check memory address (64K boundary) 
IFBCHECK ('F« 812) if·h 
IFCONFIRM 'F «813 if·h Verify part of the format 
IFCONFIRM ('F« 8 I 3) if·h 
IFFORMAT 'F «811 if·h Format floppy disk 
IFFORMAT ('F« 8 11) if.h 
noc ib.h 
IOAINFO 2 ioadrv.h 
IOClL_CNTRL{x) (x »3)&Ox7 had_ioctl.h Controller from PI minor number 
IOClL_DPRlNTOFF 0x0110 mz74.h tum on selected information prints 
IOClL_DPRlNTON OxOlll mz74.h tum off selected information prints 
10000_DTRACEOFF 0x01O mz74.h turn off function entry, exit, and progress points 
10000_DTRACEON 0x010 mz74.h turn on function entry,. exit, and progress points 
IOClL_GMINOR Oxff had_ioctl.h General use minor number for PT 
10000_HA(x) (x »6)&Oxl had_ioctl.h HA from pass through minor number 
IOClL_HC(x) (x »3)&Oxf had_ioctl.h HAlconttoller from PT minor number 
IOClL_LU(x) x&Ox7 had_ioctl.h LUfrom PT minor number 
Ca..RBIGB 41 lo.h 

(continued) 
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AT&T-Defined liD Control Commands 

Table 8-1 AT &T Defined 110 Control Commands continued 

Comm8Dd Value Header FIle Desc:ription 

CCLRWOFF 53 lo.h 
CDDARG 22 lo.h 
CERRNAK 23 lo.h 
CERROR 2S lo.h 
CFDINSERT 'S' «81 020 stropts.h 
CFIND 'S' «8 I 013 stropts.h 
CFLUSH 'S' «8105 stropts.h 
CFREE 51 lo.h 
I_GETSIG 'S' «81 012 stropts.h 
CGRAB 50 .lo.h 
CGRDOPT 'S' «81 07 stropts.h 
CINTART 21 lo.h 
CLINK 'S' «8 I 014 stropts.h 
CLOOK 's· «8104 stropts.h 
i_MODCMD 30 lo.h 
CNOARG 20 lo.h 
U~READ 'S' «81 01 stropts.h 
CPEEK 's· «8 I 017 stropts.h 
CPOP ·s' «81 03 stropts.h 
CPUSH 'S' «81 02 stropts.h 
CRBVFD '5' «8 1"022 stropts.h 
CSENDFD 's' «8 I 021 ·stropts.h 
CSETBIGB 40 lo.h 
CSETERR 43 lo.h 
CSETHANG 42 lo.h 
CSETOFAIL 44 lo.h 
CSETSIG 's' «81 011 stropts.h 
CSE'IWOFF 52 lo.h 
CSLOW 28 lo.h 
CSRDOPT 's' «81 06 stropts.h 
CSTR 's' «8 I 010 stropts.h 
CTIMOUT 24 lo.h 
CTRCLOO 1 strlog.h process is tracer 
CUDARG 26 lo.h 
CUDARGB 27 lo.h 
CUNLINK 's' «8 I 015 stropts.h 
JAGENT 'f «819 jioctl.h Control for both directions 
JBOOT 'f «811 jioctl.h 
JMPX 'f «813 jioctl.k 
ITERM 'f «812 jioctl.h 
JTIMO 'f «814 jioetl.h Timeouts in seconds 
JTIMOM 'f «81 6 jioctl.h TlDleouts in milliseconds 
ITRUN 'f «8110 jioctl.h Send runlayer command to layers 

continued 
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AT&T-Defined 110 Control Commands 

Table 8-1 AT &T Defined 110 Control Commands continued 

Command Value Header FOe Description 

LIOCSETS 1'«SI6 ioctl.h 
JTYPE jioctl.h 
JWlNSIZE 'j' «SIS jioctl.h 
JZOMBOOr 'j' «SI7 ftoctl.h 
LDCHG '0' «SI 2 termio.h 
LDCLOSE 'D' «SI1 termio.h 
LDGETI 'D' «SIS termio.h 
LDIOC termio.h 
LDOPEN 'D' «81 0 termio.h 
LDSE1T '0' «819 termio.h 
LIOC ioctl.h 
LIOCGEfP '1' «SI1 ioctl.h 
LIOCGETS '1' «S I 5 ioctl.h 
LIOCSEfP '1' «SI2 ioctl.h 
LOAD 1 sadldrv.h 
LOADOSR1N 9 ioadrv.h 
LOCKED OOOOOOOO2 vpmtty.h lock for multiprocess running on a port 
L_XRAM Ox142 vdUoctl.h load XASRAM with the pattern 
MlRR mirror.h 
NIERRNO '3' «SIS ni.h Error number 
NIGETA '3' «SI2 ni.h Get value from Ethern~ header 
NISETA '3' «S 11 ni.h Set value from Ethernet header 
PPC_VERS 'v' «SI1 ppc.h request version number of a ppc board (ioctl) *' 
PlJMP 'p' «SI S pump.h 
PU_DLD 1 pump.h 
PU_EQUIP 6 pump.h (not used) 
PU_FCF 3 pump.h 
PU_GAD 4 pump.h (not used) 
PU_RST 2 pump.h 
PU_SYSGEN 5 pump.h 
RDBUF '3' «SI4 ni.h Shared memory supply buffer 
R1NADDR 5 ioadrv.h 
R_VME Ox111 vdUoctl.h subcommand to read a target device on VMEbus 
SDCBRESET OXOO84 sdi.h reset the SCSI bus 
SDCRELEASE OXOOS6 sdi.h release the device 
SDI_RESERVE OXOO85 sdi.h reserve the device 
SDI_RESTAT OXOO87 sdi.h device reservation status 
SDCSEND OXOO81 sdi.h send a SCSI command 
SDCTRESET OXOO82 sdi.h reset a target controUer 
SD_CHAR sdOl_ioctl.h 
SHA_RElNIT Oxff had_ioctl.h Reinitialize the drive 
SHA_RSrATE Oxfd had_ioctl.h Read a device state (3B4000 only) 
SHA_WSTATE Oxfe had_ioctl.h Write a device state (3B4000 only) 
SM_DISMM Ox161 vdCioctl.h take vdi driver out of diagnostic mode 
SM_ENAMM Ox162 vdCioctl.h put vdi driver in diagnostic mode 
SM_SRTSYS Ox165 vdCioctl.h indicate that all VME subsystems should be started 
SM_SRTVBUS . Ox163 vdCioctl.h indicate that this VME subsystem should be restored 
SM_STPVBUS Ox164 vdCioctl.h subcommand to stop the VME bus subsystem 
STGET "X" «SI 0 stermio.h get line options 
STR stropts.h 
SI'SET "X"«SI1 stermio.h set line options 
S'ITHROW "X" «812 stermio.h throw away queued input 
STISV "X" «8 I 4 stermio.h get all line information 
STWLINE 'X" «8 I 3 stermio.h get synchronous line number 
SUPBUF '3' «SI3 ni.h Shared memory supply buffer 

(continued) 
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AT&T-Defined /10 Control Commands 

Table 8-1 AT &T Defined I/O Control Commands continued 

CommaDd Value Header File DescriptioD 

SXTIOCBLK 'b' «815 SXf.h 

SXTIOCLINK m.h 
SXTIOCLINK vpmsxt.h c type 
SXTIOCNOfRACE 'b' «812 sxt.h 
SXTIOCSTAT 'b' «81·7 sXf.h 

SXTIOCSWfCH 'b' «813 m.h 
SXTIOCTRACE 'b' «811 sXf.h 

SXTIOCUBLK 'b' «816 SXf.h 
SXTIOCWF 'b' «8 14 SXf.h 
TCDSET 'T' «8 I 32 termio.h 
TCFLSH 'T' «8 I 7 termio.h 
TCGETA 'T' «8 I 1 termio.h 
TCSBRK 'T' «815 termio.h 
TCSETA 'T' «812 termio.h 
TCSETAF 'T' «8 I 4 termio.h 
TCSETAW 'T' «8 I 3 termio.h 
TCSONC 'T' «8 I 6 termio.h 
TCSSICI1.. 'T «8 I 64 vpmtty.h pass 1 if set ctI, 0 is oorm 
TCI"mMP 'T' «8 165 vpmtty.h pump BCr500; also pass pump 
TIMOD tinwd.h 
TIOC termio.h 
tIOC ttold.h 
TIOCEXa. vpmsxt.h exclusive cmd 
TIOCEXa. vpmxt.h exclusive cmd 
TIOCGETP 't' «8 I 8 nold.h 
TIOCNXa. vpmsxt.h noo-exclusive cmd 
TIOCNXa. vpmxt.h noo-exclusive cmd . 
TIc:x::sETP 't' «8 I 8 nold.h 
TI_BIND 'T «81102 tinwd.h 
TI_GETlNFO 'T' «8 I 100 tinwd.h 
TI_OPTMGMT 'T' «8 I 101 tinwd.h 
TI_UNBIND 'T' «8 I 103 tinwd.h 
TRCIOC trace.h 
TI'YTYPE 'T' «8 18 termio.h (3b15 only) 
T_EOD 17 stOl_ioctl.h space to end-of-data 
T_ERASE 15 .rtOO _ioctl.h erase medium 
T_ERASE 15 stOl_ioctl.h erase medium 
T_ERRLOO 2 strlog.h process is error logger 
T_LOAD 10 stOO_ioctl.h load medium 
T_LOAD 10 stOl_ioctl.h load medium 
T_LOCK 12 stOO _ioctl.h physically lock medium in driver 
T_LOCK 12 stOl_ioctl.h pbysically lock medium in driver 
T _RETBNSION 16 stOl_ioctl.h tape reteosioo 
T_REVDIR 6 .rtOO _ioctl.h read reverse (oot supported) 
T_REVDIR 6 stOl_ioctl.h read reverse (not supported) 
T_REVDIR 6 tape_ioctl.h read reverse (oot supported) 
T_RWD 5 .rtOO _ioetl.h rewind to beginning of tape 
T_RWD 5 stOl_ioctl.h rewind to beginning of tape 
T_RWD 5 tape_ioctl.h rewind to beginning of tape 
T_SBB 4 .rtOO~tl.h space blocks backwards 
T_SBB 4 stOCioctl.h space blocks backwards 
T_SBB 4 tape_ioctl.h space blocks backwards 
T_SBF 3 stOO~l.h space blocks forward 
T_SBF 3 stOl_ioctl.h space blocks forward 

(continued) 
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AT&T-Defined 110 Control Commands 

Table 8-1 AT &T Defmed I/O Control Commands continued 

Command Value Header File Description 

T_SBF 3 tape_ioctl.h space blocks forward 
T_SFB 2 stOO_ioctl.h space filemarks backwards 
T_SFB 2 stOCioctl.h space filemarks backwards 
T_SFB 2 tape_ioctl.h space filemarks backwards 
T_SFF stOO_ioctl.h space filemarks forward 
T_SFF stOl_ioctl.h space filemarks forward 
T_SFF 1 tape_ioctl.h space filemarks forward 
T_SFMB 8 stOO_ioctl.h space sequential filemarks backwards 
T_SFMB 8 stOl_ioctl.h space sequential filemarks backwards 
T_SFMF 7 stOO_ioctl.h space sequential filemarks forward 
T_SFMF 7 stOl_ioctl.h space sequential filemarks forward 
T_TRKSEL 14 stOO_ioctl.h move head to selected cartridge tape 
T_TRKSEL 14 stOl_ioctl.h move head to selected cartridge tape 
T_UNLOAD 11 stOO_ioctl.h unload medium 
T_UNLOAD 11 stOl_ioctl.h unload medium 
T_UNLOCK 13 stOO_ioctl.h physically unlock medium in driver 
T_UNLOCK 13 stOl_ioctl.h physically unlock medium in driver 
T_WFM 9 stOO _ioctl.h write filemarks 
T_WFM 9 stO I _ioctl.h write filemarks 
VERIFY 'v' diskettl.h ,. mode is 'v' to verify, 0 otherwise ., 

VIOC vtoc.h 
VPMT vpmt.h 
V _AL_ TXLREG Ox170 vdUoctl.h allocated dma segment translation registers 
V_BREDT B_REDT vdCioctl.h return edt for getedt command 
V_CLRINT Ox200 vdCioctl.h clear the interrupts 
V_FORMAT 'V'«816 vtoc.h Get formatting parameters 
V_GETFORMAT 'V'«817 vtoc.h Get PO values 
V_GETINT Ox210 ydCioctl.h return interrupt registers 
V_GETMODE OxleO vdCioctl.h get vdi driver mode 
V_GETSSZ 'V'«8IS vtoc.h Get sector size for current disk. 
V_HA Ox101 vdCioctl.h subcommand to read/write the IOE 
V_INIT_SC OxlfO vdCioctl.h initialize the SC 
V _INIT_XRAM Oxl40 vdCioctl.h initialize the SC XASRAM 
V_PDRBAD 'V'«813 vtoc.h Read Physical Description area 
V_PDSETUP 'V'«818 vwc.h Set PO values without writing to disk 
V_PDWRITE 'V'«814 vtoc.h Write Physical Description area 
V_POSTINTR Ox180 vdCioctl.h post an interrupt to a VME device 
V_PREAD 'V'«811 vtoc.h Physical read. 
V_PWRITE 'V'«812 vtoc.h Physical write 
V_RD_WRT OxlSO vdCioctl.h issue read and write to host adaptor 
V_READ_ADP Ox 100 vdCioctl.h read host adapter 
V_RETEDT Oxl90 vdCioctl.h return EDT table information 
V_SC Oxl02 vdCioctl.h subcommand to read/write the System Controller 
V_SETMODE Oxl60 vdCioctl.h set VMEbus stae 
V_TRAN_VME Ox110 vdCioctl.h read from the VMEbus 
V_VI'OP Ox220 vdCioctl.h return physical address for a supplied virtual address 
V_WRT_ADP Ox120 vdCioctl.h write to host adapter 
W_VME Ox131 vdUoctl.h - subcommand to write to a target device on VMEbus 
XERO_RAM Ox141 vdCioctl.h zero the XASRAM 
XGETADDR 3 ioadrv.h 

(continued) 
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AT&T-Defined 110 Control Commands 

Table 8-1 AT&T Defined I/O Control Commands continued 

Command Value Header F1Ie Desc:ripUon 

XLOADSC 4 ioadrv.h 
XTIOCDATA 'b' «815 xt.h 
XTIOCLINK 'b' «811 xt.h 
XTIOCLINK 'b' «816 xt.h 
XTIOCLINK vpmJCt.h link channel 0 
XTIOCNOfRACE 'b' «814 xt.h 
XTIoc:sTA 1'5 'b' «812 xt.h 
XTIOCfRACE 'b' «813 xt.h 
XTIOCTYPE vpmJCt'h c type 
XTIOCTYPE xt.h 
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Using 1/0 Control Com m ands With Rem ote File Sharing 

UNIX System V Release 3 includes the Remote File Sharing (RFS) utility that allows a process on 
one machine to access a file on another machine as if it were local. A heterogeneous environment is 
one in which RFS or a similar facility links machines with different architecture. I/O control 
commands that are accessed by a machine that uses different byte ordering and word size will not 
work and may corrupt the system. Note that the architectures of the SBC, 3B2, 3B1S, and 3B4000 
computers are similar, so accessing devices that use 110 control commands over an RFS network of 
these devices should not cause problems. However, if you are using RFS network to connect 
machines running different releases of UNIX System V, you may need to link the software against 
the system headers on the server machine to get the expected results. 

When working with non-System V implementations of the UNIX system, advertising devices that use 
110 control commands in an RFS network may not be advisable. 
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Introduction 

This chapter describes the use of functions provided by the UNIX operating system to synchronize 
hardware and software events. It provides infonnation on the following: 

• using the sleep(D3X) and wakeup(D3X) function pair 

• using the iowait(D3X) and iodone(D3X) functions in block drivers 

• using the timeout(D3X) and untimeout(D3X) functions 

• using the delay(D3X) function 

• using system time constants 
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Event Synchronization and Driver Developm ent 

Synchronizing hardware and software events concerns five areas of driver development. 

• using sleep(D3X)/wakeup(D3X) to wait for an event 

• using iowait(D3X)/iodone(D3X) to wait for an event 

• using timeout(D3X)/untimeout(D3X) to delay the execution of a function 

• using delay(D3X) to put a user process to sleep for a specified time 

• using the built-in time constants 

Table 9-1 summarizes how these functions are used: 

Function(D3X) 
delay(ticks) 
iodone(bp) 
iowait(bp) 
sleep(event, priority) 
~eoutQUnction, arg, ticks) 
untimeout(id) 
wakeup(event) 

Description 

Delay execution for ticks clock ticks 
Signal I/O completion 
Suspend execution during block I/O 
Suspend execution until event 
Call function in ticks clock ticks 
Cancel timeout With matching id 
Resume suspended execution 

Table 9-1 Synchronization Function Summary 

Level 
Base Only 
Base or Interrupt 
Base Only 
Base Only 
Base or Interrupt 
Base or Interrupt 
Base or Interrupt 

The Level column indicates from which execution level the function can be called. 

CAUTION: The sleep, iowait, and delay functions must never be called from an mit or interrupt 
routine. Called from an init routine, the computer hangs when booted. Called from 
an interrupt routine, an unknown process is put to sleep with no mechanism for 
wakeup. 
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Event Synchronization and Driver Development 

Waiting for an Event 

An important component of the driver data movement concerns how drivers wait for and respond to 
certain hardware or software events. Usually, waiting for an event is a result of different hardware 
and software execution speeds. The waiting functions are called under three circumstances. 

• waiting for a hardware action to be accomplished such as transferring data between a 
computer and a disk drive, or between a computer and a terminal 

• waiting for a software action to occur such as a buffer to be freed for use 

• waiting in a stopwatch mode until a specified number of time units have elapsed 

Waiting For Hardware 

By human terms, the time required for a device such as a disk drive or terminal to perform some 
action seeins instantaneous. Actually the CPU is operating much faster than the device and the time 
required by the device seems interminable. A waiting function is required to release the CPU from 
wasting precious fractions of seconds waiting for a device to complete an action. The functions used 
to wait for a hardware action are the iowait and sleep. iowait is only used to suspend processing in a 
block driver when waiting for buffered 110 to complete. sleep is used for any type of driver. 

The computer is designed so that when a device has a block of data ready to be transferred, the 
device sends a cue (called an interrupt) to the operating system to tell it to call a driver interrupt 
routine to fetch the data. The operating system keeps track of which driver is associated with the 
device generating the interrupt and calls the proper driver interrupt routine. While the interrupt 
routine call is automatic, a command required to resume execution of a suspended process must be 
handled by the driver. When execution is suspended with iowait, iodone must be called to restart 
process execution; when sleep is called to suspend execution, wakeup is called to resume execution. 

Technically, sleep could be called instead of iowait, but iowait is a convenience for working with the 
system buffer cache for these reasons 

• iowait executes a while-loop to check bp->b_flaqs&B_DONE 

• iowait decrements syswait.iowait 

• If bp->b_flaqs&B_ERROR is true, then u.u_error is set to bp->b_error, if a 
value is there, or set to EIO if not. 

A negative with using iowait is that it executes splO thereby enabling all interrupts. 
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Event Synchronization and Driver Development 

iowait and iodone have as an argument a pointer to the buf structure (bp). sleep and wakeup use 
as their argument, an arbitrary address to guarantee that the wakeup call restarts the proper 
suspended process. (sleep has an additional argument which is explained later in this chapter.) Each 
oithe event synchronization functions are described in separate sections in this chapter. 

Waiting For Software 

Use geteblk when requesting a buffer for a block driver or getcb for a character driver. Should a 
buffer not be readily available both functions sleep until one is available. When using a private 
buffering scheme and a buffer is not available, sleep on the last element of that structure. 

Some functions provide an automatic wakeup function call. For example, getc and putcf both wake 
up processes that have called sleep to wait for a buffer on the character block free list, cfreelist. 
As a rule, though, unless so indicated in the function you are calling in the Bel Driver Design 
Reference Manual, a wakeup must be provided for every sleep call. 

Waiting By Timing an Event 

The "stopwatch" mode for timing an event requires specifying the number of time units that a 
process is to be suspended. This is useful for transferring data character-by-character such as when 
the hardware imposes a baud rate on your driver, or for retrying some event at a later time when a 
sleep on a device may not succeed. The delay and timeout functions are used to suspend a process 
for a specified length of time. delay suspends execution of the immediate process.· timeout is used 
to execute a function after the time elapses. The difference between the two is that timeout returns 
immediately after scheduling the future event, and delay stops execution until the time elapses. The 
untimeout function is provided to stop a previously set timeout. (timeout returns an int 
identification number that is passed as the argument to untimeout to stop the previous call~) The 
time arguments for delay and timeout are generally expressed using the HZ constant which is equal 
to one second. For example, HZJI00 is one one-hWldredth of a second, or HZ*2 is two seconds. 
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Using the Sleep and Wakeup Functions 

The most common mechanism for waiting for an event to occur is the sleep/wakeup function pair. 
The driver issues an 110 request and then waits for it by calling the sleep function. While the driver 
is waiting, the system perfonns a context switch and starts another process executing. When the 
event (a system state In hardware or software) happens, an interrupt is generated that calls the 
interrupt routine in the driver. The wakeup function is called from the driver interrupt routine to 
resume the execution of the suspended process. 

For example, when a read(2) request is made to obtain data from a disk drive, the disk drive does 
not have the capacity to deliver data as quickly as the request is made. Therefore, sleep must be 
called to suspend execution of the process while the data is fetched from the disk drive. 

A sleeping process is still considered to be an active process, but is kept on a queue of jobs whose 
execution is suspended while they wait for a particular event. When the process goes to sleep it 
specifies the event that must occur before it may continue its task. The sleep call records the process 
number and the event, then places it on the list of sleeping processes. Control of the machine is then 
transferred to the highest-priority runnable process. 

The sleep function requires two arguments: the address upon which the process will sleep, and a 
priority value that is assigned to the process when it is awakened: 

sleep(addr, pri) 

Interrupt handler routines should never call sleep since sleep affects the currently executing process, 
and a process independent of the device could be executing when the device interrupted. If the 
interrupt routine were to call sleep, the process that was interrupted would be put to sleep for reasons 
beyond its control. More importantly, in some UNIX system implementations, sleeping in an 
interrupt routine could cause the system to crash because of the interdependency of the process 
context switch mechanism and interrupt levels. The interrupt routine must therefore not invoke other 
functions that could lead to a call to sleep, such as iowait or copyin/copyout. See the reference pages 
for the interrupt routines in section D2X for a complete list of functions that cannot be called from 
an interrupt routine. 

NOTE: Any sleep call with a corresponding wakeup in the interrupt routine, should be protected 
from interrupts with the splbi function to ensure that no interrupts occur when that section 
of code is being executed. Otherwise, the wakeup call could come before the process goes 
to sleep, in which case the process will never awaken. This is discussed later in this chapter. 
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Using the Sleep and Wakeup Functions 

S,I e epA d d res s e s 

The first argument to the sleep function is an address that has no meaning except to the 
corresponding 'wakeup function call; addresses are used because their uniqueness is easy to control. 
The event should be an external (rather than a local) variable. If a process sleeps on a local variable, 
a chance is taken that the wrong process will awake or that the process associated with your driver 
will be awaken for the wrong reason. 

The sleep addresses are usually taken from the entry in the device data structure of the device the 
process is accessing to guarantee uniqueness across the system. When a process sleeps on the device 
data structure, the driver should set a flag in that structure indicating the reason to sleep. 

sp16( ) 
driver. state 1= condition; 
sleep(&driver.state, PRIORITY); 

splx( ) 

A driver can sleep on other structures, such as bfreelist or cfreelist. When sleeping on 
bfreelist, set B_ WANTED in the b_t1ags member of the buffer header. When sleeping on 
cfreelist, set cfreelist.c_t1ag to a positive value. When sleeping on a private buffering pool, you 
should sleep on the last element of that structure. 

Waking Up a Sleeping Process 

Either an interrupt handler or another process later calls the wakeup function to awaken the sleeping 
process. The wakeup function takes one argument: the address upon which the process was sleeping 
as set by the corresponding sleep function: 

wakeup(addr) 

The code invoking the wakeup function should check for a particular flag bit, indicating the reason 
that the process is sleeping. The driver then calls wakeup with one argument, namely the address 
where a process could be sleeping. 

if (driver.state&condition) 
wakeup(&driver.state); 

else 
ERROR; 
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Using the Sleep and Wakeup Functions 

There should be a one-to-one correspondence between events and sleep addresses; one address should 
not be used for sleeping for two events. This helps ensure kernel sanity, enhances driver efficiency 
and code readability. If several processes are sleeping for the same resource and do not have one-to
one correspondence, they may all be awakened at the same time, and the firSt to run will grab the 
resource. NOTE: This is desirable in some circumstances such as when two processes are reading 
the same disk block. 

The wakeup function awakens all processes sleeping on the address, enabling them to execute when 
the scheduler chooses them. If no process is sleeping on the address when wakeup is called, wakeup 
returns without an error. 

When a process receives a wakeup call, the driver may need to check that certain conditions are true 
before actually resuming execution. Checking conditions is important when more than one process is 
sleeping on the same address. You can use whlle or another programming loop to check for a certain 
condition, as shown in Figure 9-1. 

1 1* 
2 An example of a while loop for getting a resource. 
3 If the resource is not available, sleep is called. 
4 *1 

5 struct cblock * 
6 alloccblock() 
7 { 
8 register struct cblock *bp; 
9 register int s; 

10 s = splhi(); 
11 while «bp = cfreelist.c_next) == NULL) { 
12 cfreelist.c_flag = 1; 
13 sleep(&cfreelist); 
14 } 
15 cfreelist.c_next = bp->c_next; 
16 bp->c_next = NULL; 
17 bp->c_first = 0; 
18 bp->c_last = c~reelist.c_size; 
19 splx(s); 
20 return(bp); 
21 } 

Figure 9-1 sleep - while Loop for Condition Testing 
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Using the Sleep and Wakeup Functions 

Table 9-2 lists functions that wake up processes sleeping on buffer list addresses. This infonnation is 
useful for knowing which functions will wake up a process without need for your driver to call 
wakeup. 

Table 9-2 wakeup Calls in Functions 

Function(D3X) Code 
brebe if (bp->b_flags&B_WANTED) 

getc, putcf 

mfree 

physio 

Preventing Signals 

wakeup«caddr_t)bp); 

if (bfreelist.b_flags&B_WANTED) { 
bfreelist.b_flags &= B_WANTED; 
wakeup«caddr_t)&bfreelist); 
} 

if (cfreelist.c_flag) { 
cfreelist.c_flag = 0; 
wakeup(&cfreelist); 
} 

if (mapwant(mp» { 
mapwant(mp) = 0; 
wakeup«caddr_t)mp); 
} 

/* if a buffer was allocated, then wakeup 
* processes sleeping on pfreelist */ 

<If a buffer was allocated, then:> 
sp16 ( ) ; 
bp->av_forw = pfreelist.av_forw; 
pfreelist.av_forw = bp; 
pfreecnt++; 
wakeup(&pfreelist); 
splO(); 
} 

The second argument to the sleep function is a scheduling parameter that controls when the process 
will be awakened from its sleep; this argument is usually a constant rather than a variable. The 
argument, called the sleep priority, has critical effects on the sleeping process's reaction to signals. 
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Using the Sleep and Wakeup Functions 

Priority values range between 0 (highest priority) and 39 (lowest system priority). You should use a 
defined constant for sleep priorities, either one of the standard ones or one you define yourself. 
Some priority constants are included in UNIX System V. Table 9-3 lists these. 

Constant 
PRIBIO 
PZERO 

TIIPRI 
TIOPRI 

Value 

20 
25 

28 
29 

Table 9-3 sleep Priority Levels 

Defined In 
param.h 
param.h 

tty.h 
tty.h 

Used For 
Sleep priority for block devices 
Priority for deciding whether signals 
can awaken the process 
Sleep priority for TrY device's input 
Sleep priority for TrY device's output 

Constants for your own driver should be defined either in the header file for your driver or in the 
global data structure section of the driver code itself. The declaration can assign either an absolute 
value or a value relative to PZERO. For instance, 

#define DRVPRI 29 
#define DRVPRI (PZERO + 4) 

result in the same priority for the DRVPRI priority. 
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Block Driver iowait/iodone Event Synchronization 

Block-access drivers using the buffer header buffer scheme that are waiting for an 110 event use the 
iowaitliodone pair instead of sleep and wakeup. 

The iowait function can be used to put a block driver to sleep until the 110 operation is complete. 
iowait sleeps at a priority of 20 (PRIBIO). Since it operates on an 110 buffer header, it is not used 
by a character device (although it is used by "a block devices doing raw 110 through physio). 

iowait sets b_flags to B_READ, B_ WRITE, or B_PHYS to indicate the type of operation and 
calls the sleep function. The interrupt routine should call the iodone function when the 110 is 
complete; iodone sets the b _ flag member to B_DONE. If the b_asynch bit is set, the interrupt 
routine must call brelse to release the buffer. 
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tim eout/untim eout Event Synchronization 

In some cases' a driver must be sure that it is awakened after a maximum period. For those situations 
where a limit must be placed on how long a process will sleep, the timeout facility is available. 

The timeout function can be used in conjunction with sleep to ensure that the driver is awakened 
after a certain period of time. timeout can also be used alone to indicate that a driver function is to 
be called after a specified period of time. The timeout function can be canceled with the untimeout 
function. 

NOTE: The function called by timeout is called from an interrupt mode. Therefore, functions that 
can't be executed from an interrupt routine cannot be called from timeout. 

timeout is invoked as: 

timeout(function, function-argument, clock-ticks) 

The function argument can be any kernel function that can operate from an interrupt routine 
including timeout itself. function-argument is an argument to the function. If you do not need an 
argument for the function you are specifying, include any value, such as zero. Each argument must 
be specified. clock-ticks is the number of time units that the function will be delayed before 
executing. clock-ticks are usually specified as a multiple of HZ. HZ (defined in param.h) gives the 
clock frequency used by a given kernel. 

A sample timeout call is 

timeout(repeat, n, HZ); 

where n is the argument to the function repeat, to be called after one second's worth of clock cycles. 
The exact time until the timeout takes effect may not be precise because of the interaction of other 
parts of the system. The compiler requires prior declaration of the function name argument to 
timeout, as in 

extern char *repeat(); 
timeout(repeat, n, HZ); 

depending where the function repeat is defined. 

Using Timeout with Sleep 

A driver can ensure that it will be able to resume its execution even if no call to wakeup is made by 
first calling timeout and then sleep This should be done, however, only if truly necessary, as it 
carries some heavy processing requirements. When the call to timeout is made, it inserts the 
specified event into the callout table. This data structure is a list of events in a simple array. Insertion 
of the event requires copying all elements of the list following the inserted event. 
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timeoutluntimeout Event Synchronization 

I{the sleeping process is not awakened before the "timeout" event, the specified function is be called 
unless you have called untimeout. The second argument to the timeout routine could be the event 
the driver was about to sleep on. When the function is called, it can use this infonnation to call 
wakeup to wake the driver. The function called from the callout table should also set some internal 
flag to permit the driver to distinguish between the two ways it can be awakened. 

Using tim eout For An Operator Request 

Another use for the timeout function is in a driver that sends a message to the system console 
requesting that the operator take a certain action. For instance, the write(D2X) routine for a tape 
drive may have a section that tells the operator to mount a tape. Use the sleep function to suspend 
processing until the new tape is mounted. If a number of other console messages are generated, the 
message telling the operator to mount the tape could disappear from the screen before it is seen. By 
using a while statement in conjunction with sleep, the driver will continue to display the mount 
request on the console. Rather than have this message displayed continuously, the timeout function 
can specify how often to redisplay the message. Once the request is honored, the driver's interrupt 
routine cancels the timeout operation with the untimeout function. 

The following routine called by an open(D2X) routine (starting in line 20 in Figure 9-2) illustrates 
this. After the input arguments have been verified, the status of the device is tested. If the device is 
not on-line, a message is displayed on the system console (line 39). The driver schedules a wakeup 

. calI with the timeout (lirie 41) and waits for 5 minutes (sleep). If the device is" still not ready, the 
procedure is repeated. 

When the device is made ready, an interrupt is generated (this assumes that the device was designed 
to generate an interrupt when a tape is mounted). The driver interrupt handling routine (line 53) 
notes there is a suspended process. It cancels the timeout request with untlmeout (line 61) and 
wakens the suspended process (line 63). 
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stroot nt:u 
{ 

timeoutluntimeout Event Synchronization 

1* la}alt of ~ dev:ioe n:qi.sters *1 

1* 9lys:i.oal. dev:ioe cxnt:rol WJtd *1 
1* 9lys:i.oal. dev:ioe status lad *1 
1* N:Irb!r of l?It:es to l:e tr::ansfer:a:d *1 
1* rM\ start.i:rq Ji1ysicsl acXfress *1 

8 
9 

10 
11 
12 
13 
14 
15 

sb:\x:t mE -IIll'tIJ....head; 1* R:xint:er to head of I/O cp:ue *1 
sb:\x:t mE -IIll'tIJ....tail; 1* R:xint:er to tail of blffer I/O q\Sle *1 
:int ntu..:flaq; 1* r."..pca1 st:at:us :flaq *1 
:int ntu..to_:id; 1* T.lne aJt :id IUti:er *1 

}; 1* E!Xl nt:u *1 

16 extern sb:\x:t nt:u..devioe ~act:fr[] ;1* I.ocat.icn of ~ device n:qi.sters *1 
17 extern st::rxd: ntl1 ntu..tbl.[]; 1* I.ocat.icn of 1cgica1 device st:rtx:tures *1 
18 extern :int nt:u..aIt; 
19 
2D 
21 
22 
Z3 
24 

25 j£ ({m:iror{dev»> 3) > ntu..aIt) { 1* If device Cbes oot exist, *1 
26 u.u.ea.or: = ENXIO; 1* then %etm:n ec:or o:::rxti.tial *1 
Zl retm:n; 
2S } 1* eXH£ *1 
29 dp = &ntu...tbl.[m:iror(dev)]; 1* Get lcgica1 devioe st:::t1x:t *1 
30 j£ (dp->ttt:u....f1aq & MIU~) 1= 0) { 1* If dev.i.oe :is :in use, *1 
31 u.u.ea.or: = Eam'; 1* then retm:n h1sy st::atus *1 
32 retm:n; 
33 } 1* E!'Xti.f *1 

Figure 9-2 The timeout Function 
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timeoutluntimeout Event Synchronization 

Figure 9-3 The untimeout Function 
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Using the delay Function 

This function is used to stop execution of the current process for a given period of time. Drivers can 
use the delay function instead of the timeout function, to instruct the driver to sleep for a specified 
amount of time and then wakeup. 

To use delay, specify the amount of time to wait. delay automatically calls wakeup to resume 
execution. 

Figure 9-4 illustrates the use of delay. This code is from a driver for a line printer. Before allocating 
buffers and storing data in them, the driver checks the status of the device (line 10). If the printer 
needs to have paper loaded, it displays a message on the system console (line 12). If the driver called 
sleep directly, the operator would have to signal when the paper was loaded. By using delay, the 
driver waits one minute (line 13) and tries again. If paper is loaded, processing will resume 
automatically. 

1 stmct deuioe 
2 { 
3 :int a:nt:ml; 
4 :int st:at1ls; 
5 shxt xn:it_dlar; 
6 }; 1* E!'Xl device *1 

1* Ia,ycut of ~ device req:ist:er:s *1 

1* ~ device a::zlf:rol. ~ *1 
1* ~ deuioe st:atllS lad *1 
1* Ttarsnit daracter to device *1 

7 ex:t:eJ:n st:z\x:t device xx..,.aciir[]; 1* Icx:at:ial of ~ der.r.il:e req:ist:er:s *1 
8 
9 l:Egist:er st::t\x:t device *zp = &xx....aciir[m:i:ra:(dev') » 4)]; 1* Get device regs *1 

Figure 9-4 delay - Allows Manual Intervention 
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Time Constants 

The UNIX operating system provides a set of constants that are updated by the system clock 
interrupt. The clock ticks every 10 milliseconds on all computers referenced in this book except the 
3B4000 ADP. The clock on the 3B4000 ADP ticks every 50 milliseconds. lbolt cQntains the number 
of seconds since the last system boot. time contains the number of seconds since 00:00:00 GMT 
(Greenwich Mean Time) January 1, 1970. HZ is provided to indicate the value of one second. The 
UNIX operating system clock is accurate to within plus or minus five clock ticks. Therefore, the 
time can never be determined exactly. 

• HZ - (hertz)t is one second. HZ is defined inparam.h. 

• lbolt - (lightning bolt) is updated by the kernel each tick and represents the time in 
ticks since the last boot. lbolt is a dme_t (long) data type. Note that as previously 
mentioned, lbolt is updated five times slower on the 3B4000 ADP than on any other 
AT&T computer referenced in this book. 

• time - the time in seconds since 00:00:00 (GMT) January 1~ 1970. time is a time_t 
(long) data type- and is updated once every second. 

t HZ is an abbreviation for hertz. However, HZ bas no association with the e1cdrical notation "hertz ... 
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Time Constants 

HZ 

HZ is a defined constant found in param.h which specifies the number of clock ticks per seconds on a 
given machine. HZ is normally used in calling the timeout function for some amount of time, since 
the time passed to timeout is given in ticks and HZ is set to the number of ticks in a second. 

For example, the tttimeo function uses HZ to determine how many ticks to delay when a driver has 
requested non-canonical processing with t_cc[VI'Th1E] tenths of seconds waiting period. Hz/10 is 
the number of ticks in a tenth of a second. 

Refer to Figure 9-5 for another usage example. 

1 1* sc:sn xx device fer ~ ellerY seo:ni *1 

2 xxscan() 

3 { 

4 1* sc:sn fer jr.pE *1 

5 1* c:all xxsam after 1 sean! *1 

6 t:ina:1lt(xxsam,O,Hl); 

7 } 

Figure 9-5 HZ - Usage Example 
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Time Constants 

Ib 0 It 

lbolt is a system external integer of the number of ticks since the last system boot. This value may be 
used as a counter for driver response time. lbolt is used to save a starting time for some driver 
operation, and then compared with the lbolt value once the operation is over to get a response time 
for the operation. 

Figure 9-6 shows how lbolt is used to time an 110 operation. 

2 extern t::iIre_ t llxllt; 
3 sb:\x:t .xxst::at xxst:at; 1* stats al:x:ut :xx device I/O *1 

4 
5 
6 

7 1* scb:d.il.e I/O far :xx device *1 

8 xxstat.bi!g:int:iIte = ll:olt; 
9 } 

11 xx:int( der) 
12 { 

13 1* det:e!:mine Vtidi :int::ern1pt cate. tl1roJ3h am ltiIidl qa;ati01S 
14 -were a::npl.et:e::l *1 

15 xxstat.en::tt:::me = ll:olt; 
16 xxstat.cp:!rat:ia1t::: = xxst:at.emt::iIre - :xxst:at.l:leg:intine; 
17 xxstat. tct:alt.::iIte += xxstat.qma:t::ialt:irr; 
18 xxstat .. cpmlt:ials++; 

19 :i£ (xxstat.q:s:atims > 0) 
2) .xxst::at.avgt:ine = xxstat. tctalt::iIre I xxstat.q:s:atims; 
21 } 

Figure 9-6 lbolt - Timing an I/O Operation 
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Time Constants 

time 

time is an external integer set to the number of seconds since 111170 00:00:00 GMT. It is updated 
once each second by the system clock. time may be used when any timing in seconds needs to be 
done, or when the time of the last update on a structure needs to be stored. 

The following example shows the use of time for timing an 110 operation in a driver write routine. 

1 ext:eEn t:irce_t t:irce; 

2 stz1x:t dat:alcq dat:alcq; 

3 xxwdte(dev) 
4 { 
5 /* up:fat:e data to dev.ioe or: st::r:u::ture */ 
6 dat:alcq.st:art_t:iIre_:in...secs = tine; 
7 /* ci) I/O */ 
8 dat:alcq. tine_of'_last..1D = tine - dat:alcq .st"art_t:Ute_:in...sec:s; 
9 dat:alcq.J.asbJp:8t:et:i = t:irce; 
10 } 

Figure 9-7 time - Timing an IiO Operation 
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Introduction 
This chapter introduces interrupt handling in the UNIX operating system, and provides guidelines on 
writing interrupt handling routines for both character and block devices. The following general topics 
are discussed: 

• interrupt vectors, how the interrupt vector table is accessed, and how interrupt vector 
numbers are assigned to' specific interrupt vectors 

• how the operating system services interrupts 

• writing int, rint, and xint interrupt routines for intelligent and non-intelligent character 
and block devices 

• using the spl* set of functions to set processor priority levels and protect critical sections 
of driver code 
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Interrupts and the UNIX Operating System 

An interrupt is any service request that causes the CPU to stop its current execution stream and to 
execute an instruction stream that services the interrupt. When the CPU finishes servicing the 
interrupt, it returns to the original stream and resumes execution at the point it left off. Interrupts 
ar~ requested from one of the three following sources: 

• hardware devices 

• software interrupts (Programmed Interrupt Requests or PIRs) 

• exceptions such as page faults 

Hardware devices use interrupt requests to signal a range of conditions including: successful device 
connections, write acknowledgements, data availability, and read/write completions. The CPU is 
responsible for associating the interrupt request with a specific driver interrupt routine using entries in 
an internal table called the interrupt vector table1• The driver's interrupt routine determines the 
reason for the interrupt, services the interrupt, and wakes up any base level processes waiting on the 
interrupt completion. For example, when a disk drive is ready to transfer information to the host to 
satisfy a read request, the disk drive generates an interrupt. The CPU acknowledges the interrupt and 
calls the disk driver's interrupt routine. The driver interrupt routine then wakes up the process 
waiting for data which conveys the data to the user.2 

AT&T computers that use a WE 32000 series microprocessor accept fifteen levels of interrupts. The 
level indicates the degree of priority given the interrupt by the CPU. The higher the priority, the 
quicker the system will service the interrupt when multiple interrupts are pending. Level zero is the 
highest priority, level 14 is the lowest. Level 15 indicates that no interrupts are pending. The 
Interrupt Priority Level (IPL) for the requesting device is determined by the device itself and is 
entered in the device driver's master file under the IPL column. 3 

The following sections discuss the types of interrupt requests the CPU processes. 

H a r d war e In te r r u p ts 

For hardware devices, interrupts are the primary method of communication with the CPU. 
Hardware interrupts tell the CPU that a read or write have been completed, or .that a character has 
been received or transmitted. 

2. Sec "Interrupt Vectors" in this chapter for information on the interrupt vector table. 
2. Refer to Maxicomputing in Microspace, (referenced in Chapter 1) for a detailed explanation of how interrupts are initiated and acknowledged. 
3. Sec Chapter 3 in this book for a desc:riptiOD of the master file. 
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Interrupts and the UNIX Operating System 

The driver writer is responsible for writing the interrupt portion of the device's driver. UNIX 
provides a few generic interrupt handling routines for hardware interrupts, but the driver writer has to 
supply the specifics about the particular device. Some devices send only one type of interrupt and the 
interrupt routine must be responsible for determining the kind of interrupt sent. Other devices, 
primarily TrY devices, send two types of interrupts: one receive and one transmit. 

. 
In general, an int(D2) routine should be written for any device that does not send separate transmit 
and receive interrupts. TIY devices that do request separate transmit and receive interrupts have two 
separate routines associated with them: xint(D2), for a transmit interrupt, and rint(D2), for a 
receive interrupt. 4 

Not all hardware devices send interrupt requests directly to the CPU. Some device interrupts are first 
handled by an intermediary interrupt routine that is part of an intermediary driver. Devices that 
must first send their interrupts through an intermediary interrupt handler are called external devices. 
For example, on the 3B4000 computer, interrupts sent by SCSI devices supported by an extended 
SCSI bus are first captured by firmware on the SCSI bus host adapter called a SLIC. The host adapter 
then issues an interrupt request to the CPU. The CPU then associates the interrupt with one 
interrupt routine for the host adapter. The identity of the specific device that originally issued the 
interrupt request is passed through the ivec argument to the interrupt routine. 5 

Software Interrupts 

In addition to the hardware interrupts discussed in this chapter, the AT&T computers support 
software interrupts called Programmed Interrupt Requests (PIRs). A PIR is generated by writing an 
integer into a logical register address assigned to the interrupt vector table. 

PIRs are seldom used for drivers other than those developed as part of the operating system itself, 
and so are not discussed here. To establish a PIR, you must modify the system initialization software 
and run extensive tests on the bootstrap software to ensure that the PIR is not corrupting the system 
timing mechanism and interrupt vectors. 

Exceptions 

Exceptions are error conditions that interrupt the current processing of the CPU and require special 
fault handler processing for recovery. Fault handlers are responsible for executing instructions to 
handle the specific' fault, and for restarting the interrupted instruction sequence once the fault is 
handled. Like device interrupts, exceptions are associated with their fault handlers through a separate 
exception vector table. 

4. Sec "Writing Interrupt Routines" in this chapter for more information. 

S. Sec 'The Interrupt Routine Argument" in this chapter for information on the ivee argument. 
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Interrupts and the UNIX Operating System 

The following three types of events cause exceptions: 

• Internal faults - error conditions detected by the processor during an instruction 
sequence. 

• External faults - error conditions detected outside the processor and conveyed to it over 
its fault input. 

• Traps - internal error conditions detected by the processor at the end of an instruction. 

It is not the responsibility of the driver writer to account for exceptions that may occur in the system. 
However, it is important to note that exceptions contend with device interrupt requests for the use of 
the CPU. 
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Interrupt Vectors 

An interrupt vector is an entry to a table, called the interrupt vector table, that is assigned to an 
interrupt when the system is booted. The interrupt vector table resides in kernel space in main 
memory and associates interrupts with their appropriate interrupt routines. Every device that is not 
external has at least one interrupt vector table entry. Each entry is assigned an interrupt vector 
number that associates the interrupt with the text address identifying the starting address of the 
interrupt handler for that interrupt. When an interrupt occurs, the CPU associates the interrupt with 
its interrupt vector number, fetches the starting address of the interrupt handler, and executes the 
address to service the interrupt. 

The #VEC column of a driver's master file determines the number of interrupt vectors required for 
the device the driver supports. When the system boots, the #VEC column is accessed, and the 
appropriate number of interrupt vector table entries are created for that device. The AT&T 
computers referenced in this book can support up to 256 interrupt vector table entries. 

Not all devices need interrupt vectors for every interrupt they request. Most disk controllers for 3B 
computers that support multiple devices .have the capability of interpreting the interrupts issued by 
each subdevice. Therefore, the controller for these devices only then sends one interrupt to the CPU. 
Other devices, such as serial ports that each generate transmit and receive interrupts, have separate 
interrupt vectors for transmit and receive. 

Interrupt Vectors and System Initialization 

The system initialization program, lboot, runs when the system is booted and reads the #VEC field 
in the driver's master file to determine the number of interrupt vectors per controller and assigns 
numbers accordingly. The CPU uses these vector number assignments to associate the interrupt with 
the appropriate interrupt handler routine. lboot compares the value in the #DEV (number of 
subdevices) column to the value in the #VEC (number of vectors) column to determine whether the 
driver requires an int(D2) routine or the rint(D2X)/xint(D2X) pair of routines. If the value of 
#VEC is double the value of #DEV (indicating that each subdevice has two interrupt vectors), lboot 
assumes riot and xint routines are being used; otherwise, lboot assumes an int routine is being used. 
lboot assigns what it deems to be the appropriate interrupt handler for the #VEC-to-#DEV ratio 
regardless of what is coded for the driver. If the proper routines (riotlxint or int) have not been 
coded, interrupts received for the device will be spurious and may corrupt another driver or crash the 
system. 
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Interrupt Vectors 

Interrupt Vector Num ber Assignm ent 

Entries for most devices in the interrupt vector table are assigned transparently by the system. Driver 
writers do not need to know how numbers are assigned by the system. However, some devices 
require their vector numbers hardcoded in the driver master file. The following section discusses 
these devices. This section is provided primarily for your interest. 

For 3B2, 3B15, and 3B4000 systems, the system automatically generates vector numbers in groups of 
16 for each device that is listed in the Equipped Device Table (EDT). The first vector assigned to a 
device (controller) is detennined by multiplying the external major number (board code) by 16. 
Subsequent vectors count up from there. Note that this imposes a limit of 16 subdevices per 
controller unless the device has the intelligence necessary to associate interrupts with a subdevice in 
some way other than the interrupt vectors. 6 

If each controller has only one interrupt vector, its number is: 

ext-maJor-number * 16 

If each subdevice has one interrupt vector, each number is detennined by the formula: 

(ext-maJor-number * 16) + s"-bdevice-number. 

Consider the configuration in Figure 10-1 of one driver controlling two devices (controllers), each of 
which has four subdevices. 

cntrl 0 
major=3 

... 
......... "'1-----. 

cntrl1 
major=5 

Figure 10-1 Sample Configuration 

S. See "Interrupt Vector Number Assignment" for more information. 
6. All devices discussed in tbis book require interrupt vectors. 
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Interrupt Vectors 

Table 10-1 gives the interrupt vectors assigned for the sample configuration if each subdevice has one 
interrupt vector. 7 

Table 10-1 SUbdevices With One Interrupt Vector 

Master File Values: #VEC=4 #DEV=4 
vector 

controller subdev ivec number equation 

0 0 0, 48 (3 * 16) + 0 
'(major=3) 1 1 49 (3 * 16) + 1 

2 2 50 (3 * 16) + 2 
3 3 51 (3 * 16) + 3 

1 0 4 80 (5 * 16) + 0 
(major=5) 1 5 81 (5 * 16) + 1 

2 6 82 (5 * 16) + 2 
3 7 83 (5 * 16) + 3 

If each subdevice supports two interrupt vectors (meaning the driver must use the rintlxint routines), 
the vectors are divided into transmit and receive portions. Table 10-2 gives the interrupt vectors 
assigned for the configuration if each subdevice has eight interrupt vectors. 

7. The figures listed in this section include entries for the ivec argument. The ivee argument is passed to the interrupt routine as a means of 
identifying the specific device or subdevice requesting the interrupt. See the "The Interrupt Routine Argument" section in this chapter for 
more information. 
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Interrupt Vectors 

Master File Values: #VEC=8 #DEV=4 
vector 

controller subdev ivec vector portion 
0 0 0 48 o (transmit) 
(major=3) 1 49 1 (receive) 

. 1 2 50 o (transmit) 
3 51 1 (receive) 

2 4 52 o (transmit) 
5 53 1 (receive) 

3 6 54 o (transmit) 
7 55 1 (receive) 

1 0 8 80 o (transmit) 
(major=5) 9 81 1 (receive) 

1 10 82 o (transmit) 
11 83 1 (receive) 

2 12 84 o (transmit) 
13 85 1 (receive) 

3 14 86 o (transmit) 
15 87 1 (receive) 
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On the SBC, the init routine is responsible for programming the interrupt vector number. Each 
successive controller is assigned interrupt vectors starting with the next multiple of 16. The next 
controller interrupt vector numbers start at 16, the interrupt vector numbers of the next controller 
start at 32 (regardless of the number of interrupt vectors assigned to the first controller), and so on. 
Refer to the init routine for a disk driver in Appendix E, lines 383 to 415 for an example of how the 
driver determines the proper interrupt vector to program into the board. 

Absolute Assignment of Interrupt Vectors 

Integral devices and devices whose interrupts are first processed by an intennediary interrupt handler 
(for example, SCSI devices) do not have direct entries in the EDT, and so cannot be assigned 
interrupt vector numbers in the same fashion as devices that do. These devices, such as the system 
console, must have their starting interrupt vector number hardcoded in the FLAG column of their 
driver's master file. 

The following drivers support devices whose starting interrupt vector number can be entered in the 
FLAG column: 

• drivers for integral devices 

• software drivers 

• drivers for SBC-VME devices with non-progrCl:lMlable interrupt vectors 

• drivers that access extended bus devices such as SCSI 

The starting vector number is then assigned to the interrupt vector table when the system boots. 
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Servicing Interrupts 

When a user process issues an I/O request, such as a read or write, it must wait for the transfer to be 
completed, and so it uses the sleep function as discussed in Chapter 9. Similarly, an open routine 
may sleep until the device interrupts and announces its connection. When the device interrupts the 
CPU, the CPU calls the driver's interrupt routine. The driver interrupt routine then calls wakeup to 
inform the process that the transfer is complete. 

The interrupt handler is responsible for identifying the reason for the interrupt (device connect, write 
acknowledge, data available) and set or clear device state bits as appropriate. 

The following illustrates how the system handles operational interrupts: 

1 A process accessing the base level of a driver issues an I/O request and goes to sleep 
awaiting its completion. The code that calls the sleep(D3X) function should be 
protected with splhi as discussed in Chapter 9. Going through the appropriate switch 
tableS, the I/O transfer is requested. 

2 When the I/O transfer is complete, the I/O board requests an interrupt by sending a 
signal on the bus. 

3 The CPU board receives the interrupt signal and passes it on to the microprocessor. 

4 The interrupt acknowledge hardware determines which device is signaling the interrupt 
and accesses a table of interrupt vectors to transfer control to the appropriate driver's 
interrupt routine. 

5 The driver's interrupt routine generates a wakeup call. 'The process that was suspended 
in the base level of the driver then sends the data to the user. 

8. Switch tables are discussed in Chapter 2. 
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Writing Interrupt Routines 

Interrupt routines are written for all hardware drivers that have interrupt capability. The device's 
controller must be physically attached to the bus of a computer to have an interrupt routine initiated 
by the CPU. Devices that reside external to the computer such as the SCSI bus which is attached to 
an external bus, do not generate interrupts in the same manner as internal devices. (The ABUS for 
the 3B4000 computer is considered an internal ?us.) 

The UNIX operating system defines three general names for the types of interrupt handling routines 
that must be written for UNIX devices: int(D2X), rint(D2X), and xint(D2X). If the device sends 
one interrupt, then the driver must include an int routine that uses case statements to determine the 
kind of interrupt that was sent. If the device sends two separate receive and transmit interrupts, then 
the CPU can determine the kind of interrupt being sent and the driver includes separate rint and xint 
routines for each type of interrupt. Descriptions of these routines found in the D2X section of the 
Reference guide. 

In general, every interrupt routine must be responsible for the following tasks: 

• keeping a record of interrupt occurrences 

• interpreting the interrupt routine argument into a meaningful device or subdevice 
number 

• rejecting requests for devices that are not served by the device's controller 

• processing interrupts that happen without cause (called spurious interrupts) 

• handling all possible device errors 

• waking processes that are sleeping on the resolution of an interrupt request 

Depending on how the master file information is stated when an interrupt occurs, either the int 
routine, or the rintlxint set is called. Interrupt routines for external devices can be named in any 
manner since they must be called by an intermediary driver (for example the host adapter driver for 
SCSI drivers). The names for these routines are conveyed to the system by special device structures. 
SCSI drivers, for example, inform the host adapter of the interrupt routine name via the sc_int 
member of the SCSI control block structure. 

Writing an interrupt routine requires a merging of disciplines. As a driver developer, you must 
visualize the workings of the hardware and firmware to be able to write an effective interrupt routine. 
As already explained, an interrupt is generated by the hardware. For the purposes of writing your 
driver, you should know the exact chip set that produces the interrupt. You need to know the exact 
bit patterns of the device's control/status register and how data is transmitted into and out of your 
computer. This information differs for every device you access. 
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Writing Interrupt Routines 

The Interrupt Routine Argument 

To avoid having to create an interrupt routine for every possible interrupt vector, 3B computers 
developed a method of passing an argument to the interrupt routines. By passing an argument, one 
interrupt routine can handle many different interrupt vectors. However, not all interrupts receive or 
need paICUnleters.9 

The name of this argument to the Int(D2X) and rint(D2X)/xint(D2X) routines, ivec, is slightly 
misleading, as its value is not the intemipt vector number associated with the interrupt. Rather, the 
ivec argument represents a '10gical" interrupt number and its value is determined by the driver. Each 
driver may use ivec differently, depending on whether the board generates one interrupt vector per 
subdevice, one per controller, or some other arrangement. 

The ivec argument can provide two important pieces of information to the driver. The first is the 
logical controller number. The logical controller number is the logical number of the controller 
supporting the device. This number is assigned by the system when the EDT is built. The second is 
the logical device number for the device causing the interrupt for that controller. A maximum of 16 
logical interrupt numbers can be assigned per controller, one for each subdevice. 

For example, if a controller supports one device, the logical interrupt value for the ivec argument 
represents the logical controller number. If a controller supports four subdevices and must send an 
interrupt for each~ then the logical interrupt value for the ivec argument represents both the logical 
controller number and the logical device number of the device sending the interrupt. 

ivec values begin at 0 and are incremented upwardS. For example, for two controllers issuing four 
interrupts each, values 0 through 3 would represent controller 0 and its four subdevices. Values 4 
through 7 would represent controller 1 and its four subdevices. The two tables presented in the 
'1nterrupt Vector Number Assignment" section include ivec assignments for two sample 
configurations. See these tables for more examples of ivec assignments. 

Interrupt Routine Restrictions 

You must keep the following restrictions in mind when developing an interrupt routine: 

• Interrupt routines must not set any fields in the user or proc structures, because the 
interrupted process is independent from the interrupt. For the same reason, interrupt 
routines must not call the sleep function directly or indirectly. The following- functions 
either call sleep directly, or access the user or proc structures: -

9. For the 3B213B15 passing of parameters to interruPt routines is done through the usc of "assembly assist" routines. These assist routines are 
entered first from the interrupt Process Control Block (PCB) and then call the "real" interrupt routines. Some of these interrupt assist routines 
arc ''bard'' coded in the operating system. The usc of these assist routines also allows a common "return from interrupt" routine. This is very 
important for the UNIX operating system since at the end of every interrupt some system processing must be done. For the 3B systems which 
usc "scIf-coofiguration" the driver assembly assist routines are built by self configuration. 
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canon getvec sptfree ttread 
copyin iomove subyte ttwrite 
copyout iowait suser ttywait 
delay kseg suword unkseg 
drv_rtile longjmp ttclose useracc 
fubyte physck ttiocom 
fuword sleep ttioctl 
geteblk sptalloc ttopen 

Table 10-2 Unavailable Interrupt Routine Functions (D3X) 

• spl* functions must not drop the processor execution level below the level set for the 
interrupt routine. Doing so can corrupt the stack. 

For example, an integral disk drive (IDFC) on a 3B15 computer has an IPL value of 5' 
and the IPL bit in the Program Status Word (PSW) is set to a processor execution level 
of 10 (on the 3B15 computer, spl6 is equivalent to a PSW IPL value of 10). If you set 
the processor execution level below sp16, then an interrupt from another device can take 
precedence over the IDFC interrupt and may corrupt the stack.10 

10. Refer to the spa. manual page in Chapter 3 of the Bel Reference Manual for a table that relates the spa. function to the IPL values (sp16 is 
for IPL 10 on the 3B1S Computer). See also "Preventing Interrupt Contention" in this chapter for more information on protecting critical 
sections of interrupt routines. 
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Writing Data Receive and Transm it Interrupt Routines 

Transmit and receive interrupt routines must be written for character devices that send specific 
transmit and receive interrupts to the CPU. Because the two interrupts are unique, the CPU can 
detennine which type of interrupt was sent, and so can associate the interrupt with a specific routine. 
Character drivers for these device require special interrupt routines to send data to a terminal and to 
receive data from it. The rintlxint routines are provided for this purpose. . 

Generally, a device that sends separate transmit and receive interrupts is not an intelligent device. 
An interrupt must be sent each time a character is transmitted or received. The followi.ng procedures 
outline rint and xint routines for unintelligent terminal devices that transmit and receive one 
character at a time. 

Writing a Receive Interrupt Routine (rint) 

When a character is received from a tenninal device, a receive interrupt is sent to the CPU which 
associates the interrupt with the device's rint(D2X) routine. The riot input argument is used as an 
index to the device that generated the interrupt. This is not a device number as described by dev _t, 
but an integer value. When interfacing with a terminal, follow these steps: 

1 Detennine the subdevice number from the ivec argument to the riot routine. 

2 Increment the interrupt-received flag. Commonly, the sysinfo(D4X) rcviDt flag is 
~. (This long integer variable is defined in sysinfo.h.) 

3 Check the control and status register (CSR). On tenninal devices supported by AT&T 
3B systems, the CSR is usually a structure associated with the Universal Asynchronous 
Receiver-Transmitter (UART). If the DART has a receive-ready status, continue with 
the next steps. Otherwise, exit the routine. (The proper UART is selected with the rint 
routine's input argument. All subsequent descriptions of UART access assume the 
appropriate UART has been selected.) 

4 Reset the error status information register on the UART. 

S Read in a character from the UART. This is typically accomplished through a while 
loop that receives one character at a time as long as there are characters to receive. 

6 If the tenninal has start/stop control enabled, test the character to determine if it is a 
stop character (such as CfRL-s) or a start character (such as CfRL-q). To start the 
display, call the proc(D2X) routine with the T _RESUME flag set. To stop the display, 
call the proc routine with the T_SUSPEND flag set. After processing the character, exit 
the routine. If the character is not a start or stop character, continue. 
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7 Check the character for an error in framing or parity, for display overrun, and for being 
a BREAK character. Process according to the state of the termio structure's c_iflag 
member as explained in termio(7). 

8 Read the character into your line buffer. 

9 Echo the character back to the screen. 

Writing a Transm it Interrupt Routine (xint) 

When a character is ready to be transmitted to a device, the device driver's xint routine is called. 
Generally, the device is a terminal and access to the terminal is provided via a Universal 
AsYnchronous Receiver-Transmitter (UART). Follow these steps for a transmit interrupt routine: 

1 Determine the subdevice number using the ivec argument to the xint routine. 

2 Increment the transmit-interrupt flag. Commonly, the sysinfo. xmtint flag is used. 
(This long integer variable is defined in·sysinfo.h.) 

3 Check the control/status register (CSR). On terminal devices, the CSR is usually a 
structure associated with the Universal Asynchronous Receiver Transmitter (UART). 
As long as the UART is showing a transmit-ready status, continue with the steps listed 
here. Otherwise, exit the routine .. (The proper UART is selected with the xint routine's 
input argument. All subsequent descriptions of UART access assume the appropriate 
UART has been selected.) 

4 While the CSR indicates a transmit-ready state, continue processing the interrupt. If this 
state is not evident, exit the routine. 

5 Check the t_state member of the tty(D4X) structure. If the TIXON or TIXOFF 
flags are set (indicating that a start or stop character must be transmitted) 

o transmit the proper characters to the terminal (via the UART) 

o disable the respective flag in t_state 

o exit the routine 

6 Set t_state to BUSY and send the next character to the terminal. 
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Writing Interrupt Routines for Intelligent Boards 

Intelligent boards provide the facility to share a queue with the interrupt handling routine and can 
take on some responsibility for moving data to and from the device. By using queues in memory, the 
number of interrupts that need to be requested by the device can be reduced. Devices controlled by 
unintelligent boards, frequently TrY devices, must interrupt the CPU each time a character is sent or 
received. 

The driver's init or start routine formats an area of memory as a circular queue with pointers to the 
beginning and end of the queue. When this queue is set up, init notifies the board by writing a 
start-up message directly into the hardware. Typically, until the board has been successfully 
sysgened, the board waits for "stand-alone" commands sent by the driver that poll an area on its 
internal memory. The driver first formats a command buffer, then writes one word into the board 
memory to indicate that a command has been issued. That command contains pointers to the places 
in memory where the board should look for jobs that are associated with this device, such as the job 
request queue and the job completion queue. Typically, the driver writes a job in this buffer, updates 
the load pointer to indicate that there is a -job waiting, and signals the hardware by either a control 
status request (CSR) bit or through some mechanism on the board that causes it to look at the job 
queue. 

The advantage of this protocol is that it avoids memory contention between the hardware and the 
software because the driver updates the load pointer and the hardware updates the unload pointer 
when it gets the job. When the job is completed, the hardware puts a job in the queue (assuming 
there is room), updates the load pointer, and sends an interrupt to indicate that the job is completed. 
The driver interrupt routine checks the data structures to determine which of the devices interrupted 
and how many jobs are in the queue. 

The following section discusses some specific concerns when sharing structures between a driver and a 
device. 

Shared Driver/Device Structures 

Structures shared between a driver a device present some specific difficulties that must be addressed 
by the interrupt routines. 

• Information in the shared structure may be updated at any time by the device. The 
structure "must be monitored frequently by the interrupt routine so that the structure is 
not abruptly changed. spl* functions cannot be used to prevent the device from 
changing a structure shared between a driver and hardware; only previously agreed on 
protocol can accomplish this task (where the hardware is smart enough to examine a flag 
in the controVstatus register to determine if it is safe to update the structure). 

• Additional interrupts may occur signaling the placement of jobs on the request queue 
while the interrupt routine is processing a previous interrupt. One means of handling this 
problem is to have a loop that compares the load and the unload pointers on the 
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completion queue. 

A job placed on the queue cannot be seen or acknowledged by the driver code when the 
driver is in the interrupt routine. What the driver can see is that the load pointer has 
moved. Using this indicator, the driver can handle the new job. This presents an 
additional problem: the driver interrupt routine must be prepared to unload more than 
one job from the queue. 

• An interrupt is normally requested after the last request is processed. Since this interrupt 
is issued by the last request, the last job will have already been unloaded. This interrupt 
has no job associated with it and the interrupt routine must recognize that this interrupt 
is not an error conCiition. 

One way to ensure that the last interrupt is a holdover with no work attached to it is to 
keep a count of the n~ber of jobs outstanding. The counter is incremented when the 
job is put on the request queue and decremented in the interrupt routine when the job is 
removed from the queue. Generally, this information may be kept in a separate data 
structure used for job status for each device or controller. 

Figure 10-2 illustrates how a driver interrupt routine tests load and unload pointers. The interrupt 
routine shown in the example makes the following assumptions about the queue and the queue's load 
and unload pointers: 

1 The completion queue contains two or more elements and is circular. 

2 The queue is full when the load pointer plus one equals the unload pointer, and empty 
when the load pointer and unload pointers are equal. 

, 
3 The unload pointer always follows the load pointer. 

4 Queue elements are loaded and unloaded consecutively. 

5 The load pointer indicates where the next job will be placed; that is, the load pointer 
points to an empty element. 

6 The load pointer is only updated by whatever fills in the elements. 

7 The unload pointer indicates where the next completed element to remove resides. 

8 The unload pointer is only updated by the interrupt routine. 

9 The completion queue element( s) are filled in and the load pointer is updated before the 
interrupt· is issued. 
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1 drv_int(logical_dev) 
2 int logical_dev; /* This is the logical device number */ 

3 { 
4 struct drv *drvpt; /* Pointer to the device 
5 * structure. Get the 
6 
7 
8 

* device structure for 
* the logical device 
.* requesting service. */ 

9 drvpt = &drvstruct[loqical_dev]; 

10 /* Check if work is pending 
11 * by testing the load and 
12 * unload pointers. If they 
13 * are equal, then there is 
14 * no work to do. 
15 */ 

16 if (drvpt->compq.loadptr == drvpt-,>compq.unloadptr) 
17 
18 
19 

return; /* For some applications 
* this may be an error condition 
* that requires some action. */ 

20 /* Work pending, so 
21 * unload queue until 
22 * the pointers are equal 
23 * More than one job 
24 * can be unloaded. */ 

Figure 10-1 Testing Interrupt Routine Load and Unload Pointers (part 1 0/2) 

10-18 BCI Driver Development Guide 



Writing Interrupt Routines for Intelligent Boards 

25 while (drvpt->compq.unloadptr 1= devpt->compq.loadptr) 
26 { 
27 unload job from completion queue; 
28 perform necessary steps to 
29 signal this job completed; 
30 check for unload pointer going 
31 past end of queue; 
32 upd~te unload pointer as required; 
33 } 

34 
35 

36 return; 
37 } 

1* All jobs have been 
removed, so exit *1 

Figure 10-1 Testing Interrupt Routine Load and Unload Pointers (part 2 of 2) 
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An int routine is written for a device that sends one type of interrupt. The interrupt routine itself is 
responsible for determining the type of interrupt requested. Both character and block devices utilize 
intelligent controllers. The following sections provide examples of interrupt routines for both an 
intelligent character device and an intelligent block device. 

Interrupt Routines for Character Devices 

Some character devices send only one type of interrupt and are intelligent enough to share request 
and completion queues with the device driver. Interrupts are requested when a job is transmitted or 
received. Typically, a flag is set in the CSR by the device that determines what type of interrupt has 
been requested. The interrupt routine must use a case condition statement to provide separate 
sections of code to handle either case. 

The interrupt routine for the driver illustrated in Appendix D (line 179) is an example of an int 
routine for an intelligent character device. 

Interrupt Routines for Block Devices 

Block devices are typically controlled by an intelligent controller that sends one type of interrupt. 
Block device interrupt routines must determine ,the reason the interrupt was requested .. 

The interrupt routine provided in Appendix E is an example of an int routine for an intelligent disk 
controller. 
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Preventing Interrupt Contention 

Interrupts do not occur in isolation and in an orderly and coherent fashion. Interrupts from all the 
devices on the system can occur at any time and can impact both the base and interrupt portions of 
one driver, as well as two drivers sharing common data. If an interrupt switches control of the system 
from the base portion of a driver to the interrupt driven portion of a driver, the common data they 
are sharing may be corrupted by contending instructions. 

When two sections of kernel code have a common interest in the same data, the driver must be able 
to coordinate access. Driver code that accesses common data is identified as a critical section. The 
word section refers to a portion of code that affects the common data, rather than the data itself. A 
critical section of code is one that manipulates data that is of concern to another piece of code 
capable of interrupting the first. 

To get a clearer understanding of how interrupt contention can cause damage to common data, 
consider the following example: 

A section of code in the base or synchronous portion of a hypothetical driver sets status flags as a way 
of communicating to the interrupt portion of the driver. Another section of code in the interrupt 
portion of the driver also sets those flags. Both sections of code do not set the flags in a single 
machine operation. 

The synchronous portion of the driver receives a request that requires it to set the values of several 
flags. In the midst of setting the flags-, the device requests an interrupt, transferring control to the 
interrupt portion of the driver. The condition of the interrupt forces the interrupt routine to first 
consult the current flag values set by the base portion of the driver, and then set them to new values. 

Because the interrupt occurred before the base level portion of the driver could set the flags properly, 
the interrupt routine did not find the flags set to their proper values. Corruption like this could cause 
the interrupt routine to lose sanity, or it may simply continue the corruption. When the interrupt 
returns, the synchronous portion of the code, unaware that it was interrupted, finishes the changes it 
had started. 

The section of code in the synchronous routine that shares data with the interrupt routine is the 
critical section. Whether the data identified in a critical section is changed by the interrupting 
routine is unimportant. The section is considered critical if a portion of code that manipulates data 
can be interrupted. 

Critical sections of code must be protected from being interrupted when accessing critical data. The 
spl*(D3X) functions pemrit code to set the processor's execution level so that interrupts are serviced 
in order of priority. When a critical section is identified, it can be protected from interruption by a 
call to an spl* function of the proper level. The following section discusses the use of these spl* 
functions. 
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Preventing Interrupt Contention 

Setting Processor Priority Levels 

The system allows devices to interrupt the CPU and request immediate handling of interrupts. The 
integrity of system data structures could be destroyed if an interrupt routine were to affect the same 
data structures as a process already executing in the driver. 

To prevent such problems, the system has special functions that set the processor execution level so 
that the CPU prohibits interrupts below certain levels. The functions are spl*(D3X) where * ranges 
between 0 and 7, corresponding to the priority level that it has in the kernel. These priority levels are 
defined on the spl*(D3X) reference page. 

In most cases, the spl* function is given a variable to which it can pass the old priority level. 
Another function, spJx, takes the value of that variable as an argument and resets the processor 
priority level to that value. The splx function is useful in cases where the processor priority level may 
have been raised already, but the driver does not know that it has been raised sufficiently to block out 
the proper level of interrupts. When the driver is ready to lower the priority level, it should_return 
the priority level to its previous value .. 

The following code illustrates the use of the spl* and splx functions. The spl* functions first sets the 
processor priority level to 5, then saves the previous priority level in s (line 2). In line 6, the splx then 
resets the processor priority to the value saved by the spl* function in s. 

register int.s; 
s = splS ( ) ; 
while «cp = getcb(&tp->t_rawq» 1= NULL) 

putcf(cp) ; 
tp->t_delct = 0; 
splx(s); 

Figure 10-2 Sample spl* and splx Function Calls 
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Preventing Interrupt Contention 

Contention conditions can occur if the code containing sleep functions is not protected by spl* 
functions. For example, the following code segment in the base level of a driver causes a process to 
sleep until the condition bit is cleared (by some other code) in the driver. state field: 

driver.state := condition; 
while (driver. state & condition) 

sleep(&driver.state, PRIORITY); 

The following code segment in the interrupt routine for that driver checks the condition bit to 
detennine if a process should be awakened: 

if (driver.state & condition) 
{ 

} 

driver.state &= -condition; 
wakeup(&driver.state); 

Given the above examples, a process accessing the base level of the driver could check the condition 
bit, find it true, and call sl~p. However, should an interrupt from another device occur after the 
condition has been cleared but before the base level portion of the driver called sleep, the interrupt 
routine would assume the process was asleep and call wakeup. By the time the interrupted process 
does c~ sleep, the wakeup call will have already been issued and another one may never come. By 
bracketing the calls to sleep with spl* function calls, the driver prevents the contention condition. 

x=sp15(); 
driver.state := condition; 
while (driver. state & condition) 

sleep(&driver.state, PRIORITY); 
splx(x) ; 

The above example protects the code from all interrupts occurring at a priority level less than or equal 
to 5. 

NOTE: sleep contains a call to splO (spll on the 3B15 and 3B4000 computers) that re-enables all 
interrupts while this process is sleeping. 

10. Since processes could sleep on the address for several events, the sleep call is enclOllCd in the while loop, so that when awakened, the code will 
again check that the condition is indeed no longer true. This is one reason that it is recommended that processes sleep on different address 
values for different sleep reasons. 
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Preventing Interrupt Contention 

Do not set spl* functions that mask clock interrupts for long sections of code as this will make your 
system clock sluggish. Refer to the spl* manual page in Chapter 3 of the Bel Driver Reference 
Manual for more information on which spl* command to use to block interrupts for the different 
devices. 
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In tr 0 doc tio n 

One of the most important aspects of writing a device driver is the correct handling of errors. This 
chapter presents general guidelines and discusses how to implement the various error-handling 
facilities and signals. Driver code must handle any error condition, or the consequences may be 
severe. For instance, a stray interrupt should be a trivial event, but could panic the system if the 
driver is not prepared to handle it. The panic could cause data corruption and physically damage the 
system. 

This chapter presents general guidelines and discusses how to implement the various error-handling 
facilities and signals. Chapter 13, ''Testing and Debugging the Driver," discusses how to test for 
proper error handling. 

When an error occurs, the driver can do one or more of the following: 

• Write the error condition to a structure so the driver knows about it. Usually, at base 
level, the error is recorded in the o.o_error member of the user(D4X) structure. At the interrupt 
or base level, errors on block devices can be recorded in the b_error member of the buf(D4X) 
structure. 

• Retry the process. The error may be" a transient problem. Some hardware device boards 
have retry capabilities; let these boards do the retry. But if the error is software related, the driver 
must decide how many times to retry. 

• Report the error to a system error log. If the error is severe, take the faulty hardware out 
of service to minimize the damage and keep the system running nonnally. 

• Report the error to the system administrator, either by printing it on the system console, or 
by writing it to potbuf (to be reviewed with the crash(1M) utility). 

• Send a signal to a user process. 

• Panic the operating system. 
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Recording Error Messages in System Structures 

Base-level driver errors should always be recorded to the u.u_error member in the user structure. 
This is where a driver function checks to see if an error has already been logged. 

Block-access devices should record errors in two members of the buf structure. The b_tlags 
member is set to B_ERROR,indicating an error has occurred, and the b_error member is set with 
the actual error code. The error code is written to the u.u_error member of the us er structure 
when the iowait(D3X) function returns from sleep. When writing error codes, make sure the code 
describes the error and is meaningful. All other devices can mark base-level routine errors by writing 
the error code directly to the u.u_error member of the user structure. If your driver uses a private 
buffering scheme, set up error-handling members in the buffer header, as discussed in Chapter 6, 
''Input/Output Operations." 

If the strategy routine finds an error in setting up the I/O, or if the device reports an error with an 
interrupt, the driver should set the following members of the but structure. 

should have the B_ERROR bit ORed in. The driver should not assign a value to 
b_tlags because that may erase other bit patterns that the kernel relies on. The driver 
must never clear the b_tlags member. 

should be set to an appropriate error value. Typical values are: EIO, for some 
physical I/O error, ENXIO, for attempting I/O on non-existent device, and EACCES, 
for attempting to access a device illegally. The kemellater sets u.u_error with the 
value of b_error, so any appropriate value for u.u_error could be set. Refer to 
Chapter 4, ''Header Files and Data Structures," for more information on error codes 
used in drivers. 

should be set to the number of bytes that have not been transmitted. 

The b_error and O.D_error members accept any error code defined in Table 11-1. 

Because error codes change from release to release, refer to the Programmer's Reference Manual for 
system-defined driver error codes. 
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Recording Error Messages in System Structures 

Table 11-1 lists error codes used by drivers. 

Error 
Value 

EAGAIN 

EFAULT 

EINTR 

EINVAL 

EIO 

ENXIO 

EPERM 

EROFS 

Table 11-1 Driver Error Codes 

Error 
Description 

kernel resources, such as memory, 
are not available at this time; 
cannot open device (device may 
be busy, or the system resource is 
not available). 

an invalid address has been passed 
as an argument; bad memory 
addressing error 

when a process is sleeping above 
PZERO without PCATCH ORed 
to the sleep priority and a signal is 
received, longjmp(D3X) is called, 
control returns to user and 
EINTR is set in D.D_error. 
invalid argument passed to routine 

a device error occurred; a problem 
is detected in a device status 
register (the 110 request was 
valid, but an error occurred on 
the device) 
an attempt was made to access a 
device or subdevice that does not 
exist (one that is not configured); 
an attempt to perfonn an invalid 
110 operation; an incorrect minor 
number was specified 
a process attempting an operation 
did not have required super-user 
permission. _ 
an attempt was made to write to, 
or to open a read-only device 

Use in these 
Driver Routines (D2X) 

open, iocd, read, 
write, strategy 

open, close, iocd, 
read, write, strategy 

open, close, ioctl, 
read, write, strategy 

open, ioctl, read, 
write, strategy 
open, close, iocti, 
read, write, strategy 

open, close, ioctl, 
read, write, strategy 

open, iocd 

open 

IMPORT ANT: Before officially installing the driver, be sure to remove any debugging code not 
enclosed in conditional compiler statements, as described in Chapter 13, "Testing and Debugging the 
Driver." 
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Recording Error Messages in System Structures 

Table 11 ~2 lists error values that should be set in your code when functions return failure values. 

Table 11-2 Error Codes Mapped to Function Return Values 

Return 
Function Value Condition Error Code 
copyin -1 Paging Fault EFAULT 

Invalid user/stack area 
Invalid address 

copyout -1 Memory management fault EFAULT 
Invalid user/stack area 
Invalid address ' 

pbysck 0 Block does not exist ENXID 
pbysio EID 

DMA error EFAULT 
suser 0 Current user not superuser EPERM 
useracc 0 User does not have access pennission EFAULT 

The b_error and u.u_error members each hold only one error code at a time; if no error has been 
logged, the value is "0". Because a second error code will overwrite any previous value, the driver 
should test that the error member is blank before writing a new code. For a permanent record of 
errors encountered, write the error to the system error log. 

Figure 11-1 illustrates how errors are written to the user structure. 

if (useracc(uou_base, uou_count, B_WRITE) == 0) 
{ 

} 

if (uou_error = = 0) 
uou_error = EFAULT; 

return; 

Figure 11-1 Writing Error Code to user Structure 
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Recording Error Messages in System Structures 

Figure 11-2 illustrates how errors are written to the buf structure. 

bp->b_flaqs :=B_ERROR 
bp->b_error = EIO; 

Figure 11-2 Writing Error Code to but Structure 

Note that the B_ERROR is ORed into the b_ftags member. The driver should not directly assign a 
value to b_ftags because that may overwrite other bit patterns required by the kernel. 
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Sending Messages to the Console 

Some driver errors should be sent to the system console, so that the system administrator can be 
alerted to the problem, and a hard-copy record can be made of error messages received. Sometimes, 
however, an important message will be lost because the printer was off-line or jammed when the 
message was sent. Furthermore, messages sent to the console, if numerous, can significantly slow 
system performance. 

An alternative way to record errors is by using the od command of the crash(lM) utility, which can 
be used to access a message buffer called putbole This section explains how a driver writer can direct 
error messages to one or both of these destinations! . 

U sin g the C m n _e r r Fun c ti 0 n 

The cDlD_err(D3X) function can be used to write error messages to the system console, putbol, or 
both.2 Except for some block device error conditions (which use print(D2X) routines, explained 
below), the CDlD_err is the main channel for reporting driver errors. 

The CDlD_err function takes three arguments. The first, level, specifies the severity of the error. The 
second,jormat, is the message itself, and the third, args, contains any variable data that must be sent 
along with the message. 

cmn_err(level, "format", args); 

The level maybe anyone of four pre-defined constants, listed below in order of severity. 

CE_CONT is used to display infonnation not associated with an error condition, or to continue 
another error message. 

CE_NOTE errors do not require immediate attention but should be noted by system 
administrator. 

CE_ W ARN errors are caused by resource exhaustion not detrimental to the operating system. For 
example, running out of file table entries. 

CE_P ANIC causes a system panic. The results of using this value are discussed more fully below, 
under the heading ''Panicking the Syster,n." 

1. On the lB1S and 3B4000 computers, most driver error messages may also be sent to the system error log, providing another alternative to the 
system console. 

2. Note that the priIItf kernel fuoction should not be used on UNIX System. V Release 3 and later systems. 
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Sending Messages to the Console 

The second argument to CDlD_err is the actual string to be printed, enclosed in double quotes ( " ). 
To send a message to putbuf only, use an exclamation point (!) as the first character in the string. 
This is especially useful for debugging messages, since they can be viewed using·crash(1M) and yet 
will no~ slow the system as much as messages to the console do. Send messages to the console and 
not putbol by using a carat ( A ) as the first character in the string. Omit both of these characters to 
direct the message to both the console and putbol. 

The remainder of the second argument is the text to be printed, in the format of a printf(3S) style 
string. The d, D, 0, s, and x conversion characters used by printf are available. Always include 
device information in the string printed to identify the driver involved. Also include the driver 
routine name issuing the CDlD_err and the major and minor device numbers. 

The CDlD_err function ignores a length specification used with the conversion character. For 
instance, the code segment in Figure 11-3 sends a message that the open function has been called. 
The minor/major number of the device will be printed in hexadecimal because the "%x" conversion 
character is used. Because the function call is enclosed inside the #if TEST - #endif construct, 
this message will not be part of the final driver code. 

register struct device *rp; 
rp = xx_addr[(minor(dev) » 4)& Oxf)]; 

#if TEST 
cmn_err(CE_NOTE, "xx_-open functioI?- called - dev = Ox"x", dev); 

#endif 

Figure 11-3 Using CDlD_err for Information 

The CDlD_err function automatically adds "\.n" to all strings. If used, the "\.n will print a blank line 
below the message. 

The third argument (args) is reserved for the variable value or values to be printed with the string. In 
the example above, the device number (dev) is the third argument. 

Recording Errors with logmsg 

The logmsg(D3X) function is frequently used in with CDm_err to ensure that an error meSsage is 
displayed and retained for further analysis. logmsg(D3X) is used to place an error message in the 
/usr/adm/errjile error file, which is accessible by the errpt(1M) error report command. The message 
can be up to 256 characters long and must be enclosed in double quotes ("). logmsg provides a way 
to log errors outside the range of existing error types or when a console is not be available. (The 
number of characters in the string is determined by the EMSGSZ constant defined in erec .h.) 
Messages longer than 256 characters are truncated. 
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Sending Messages to the Console 

Writing a print Routine 

Any driver that has a strategy(D2X) routine must also have a print(D2X) routine. This routine 
"reports errors to the console that occur during I/O operations normally handled by the system 
buffering scheme. One such abnonnal condition would occur when the device is out of space. 

This routine prints literals from the kernel routine that describe the error. The routine you code 
should identify the device and subdevice. For example, Figure 11-4 lists the print routine from the 
IDFC disk controller driver on the 3B15 computer. 

dfprint(dev, str) 
reqister"dev_t dev; 
char *str; 
{ 

cmn_err(CD_WARN,""s on IDFC("d) drive 0"0'" str, (dev»8) & Ox7f, dev&Oxff); 
} 

Figure 11-4 dfprint Routine from 3Bl! IDFC Driver 
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Panicking the System 

The cmD_err(D3X} function called with the level set to CE_P ANIC is used to send an error message 
to the console and panic the system. A driver should panic the system only when the error condition 
stops the system from functioning, such as when the root device loses sanity. The code segment 
shown in Figure 11-5 halts the system when a bad disk volume table of contents (VfOC) is found on 
the root device. All messages using CE_P ANIC should be written to both the console and the putbuf 
(by omitting the leading "!" or" A "from the message string). Any condition that could cause a 
system panic must also be recorded in the system error log. 

register struct device *rp; 
rp = xx_addr[(minor(dev) »,4) & Oxf)]; 
if (rp->error == BADVTOC && dev == rootdev) 

cmn_err(CE_PANIC,- "xx_open: Bad VTOC on root device"); 

Figure 11-5 Using CDlD_err to Panic the System 
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W r~ting to the Error Log (3D15 and 3D4000 Computers) 

Logged errors, error reports, and error messages are a critical part of analyzing system problems. 
Error reports can help you look back over a period of time to pinpoint hardware problems. Error 
messages provide up-to-the-minute notification of both hardware and software troubles. The UNIX 
system also records general errors and places them in a central system error"log file, lusrladmlerrflle. 
The contents of the file are collected in the following manner. 

When the system enters multiuser state, the errdemon(lM) (a system error-logging daemon) is 
started. errdemon collects error records from the operating system by reading a special file and 
places the errors in a designated file. If a file is not specified when the daemon is activated, error 
records are written to lusrladmlerrflle. 

logstray(D3X) is a function used to record spurious system interrupts, also known as stray interrupts. 
This function helps the driver developer define an unusual error type. An error record header is 
built. After an error has been logged with logstray, the system administrator can produce a summary 
report or an overview of errors for a specific device. No analysis of the error records is done by 
errdemon; that responsibility is left to errpt(lM). 

errpt(lM) processes data collected by errdemon and generates a report of the data. If no particular 
files are specified as errpt options, errpt useS lusrladm/errjiZe as the file to report on. (See the 
System V Administrator s Reference Manual for the complete list of errpt options.) 

Another utility used to display errors is errdump(lM). Use the errdump(lM) command to display 
the error history file, which includes the contents of various system registers and the last five error 
messages receiVed. The output of errdump may be sent to a line printer. The output can help to 
trace the cause of a system crash. " 
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Logging Disk Errors 

Disk defects are logged separately from the general error logging information. These errors can range 
from marginal to severe. If an disk error is severe, it will be logged in the disk error queue and the 
system error log. 

When a disk defect message is logged, it usually means that the data stored in the bad block is 
damaged or lost, or that the disk may be unusable in its current state. The system administrator 
should take immediate steps to use the disk error information to map out these bad blocks and restore 
the data in full to the disk. 

The disk defect management feature allows the system administrator to rewrite internal defect tables 
of a disk. If a disk supports this feature, any physical error that occurs on it is logged, enabling the 
administrator to identify areas of the disk that are becoming corrupt. In order for a disk device to 
use this feature, the driver writer must 

• Ensure that the current operating system includes the hde.o object module. 

• #include the sys/hdelog.h and sys/hdeioctl.h header files in the driver code. 

• In the driver's open(D2X) or init(D2X) routine, initialize disk defect management tables 
either on a controlling sector of the disk or as a static table in the driver code using the 
bdeeqd(D3X) routine. bdeeqd also initializes the hdedata(D4X) structure which 
contains members that must be defined. 

• Use the bdelog(D3X) routine to log errors in the driver's interrupt handler routine. 

Initializing Hard Disk Error Logging 

When a disk device is being opened for the first time (usually with a mount(2) system call), the 
driver open(D2X) or init(D2X) routine run during initialization must identify the device and set up 
controlling information (hdedata structure) about the device using the bdeeqd(D3X) function. 
This function is called once per device. 

The bdeeqd function takes three arguments 

hdeeqd(dev, pdsno, edtyp) 

The first argument is the device number (composed of the external major and minor numbers). The 
second argument is a pointer to the table in the physical description (PD) sector. The third argument 
identifies the type of the device. (See the Bel Driver Reference Manual page for this function for 
valid device types.) , 
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Logging Disk E"ors 

HDE Functions and Structures 

The bdeJog(D3X) and bdeeqd(D3X) functions, the hdeda ta structure and the HDE demon all play 
an important role in logging disk errors. Their interaction is summarized below. 

• At boot time, hdeeqd initializes a hdedata structure for every disk in the system. A 
demon for the HDE driver should also be started at boot time. See the next section, 
''HOE Demon" for further information. 

• At the same time, hdeeqd also initializes an error queue in kernel memory. The 
structure of the error file is defined in hdelog .h. 

• When an error occurs, a retry is made. If the retry is unsuccessful, the driver provides 
hdeJog with error information, and puts a new hdedata structure in the error queue. 
This error queue is a list of bad blocks that have not been remapped. It resides in the 
kernel and not on the disk. If a disk error is severe enough, it may also be sent to the 
system error log. 

• While hdeJog logs the error on the error queue, the HDE demon displays the error 
message on the console alerting the operator to the problem. 

• After an error has been logged, the system administrator can use bdeJogger(lM) (for 
IDFC and Lark™ II disks) or sbdeJogger(lM) (for SCSI disks) to format the log and 
print out reports on all known bad blocks. The infonnation is printed to the terminal 
that executes the utility, not to the console. 

After a number of errors have accumulated, the administrator may examine the error queue and 
determine if any of the entries should be fixed. To fix the disk, the administrator will use the 
bdetb(lM) (for IDFC and Lark II disks) or sbdeflx(lM) (for SCSI disks) utility to remap bad 
blocks. Remapping a bad block causes that block address to be written to a Manufacturer's Defect 
Table (MDT) on the disk. The disk physical description (PD) sector points to the l\IDT. 

This mapping allows the administrator to make the defective physical disk tracks inaccessible to the 
system and maintain system integrity. (For more infonnation on the bdeflx and sbdefix, see the 
System Administrator s Reference Manual.) 
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Logging Disk Errors 

HDE Demon 

At system boot time, the HDE driver usually initializes a demon (background program). This 
demon prints logged errors on the console. The demon is necessary for the following reasons. 

It may happen that a disk is going bad and starts generating hundreds of bad block reports. If the 
HDE driver or another disk driver printed these error messages, the entire system would be dedicated 
to printing HDE error messages since drivers have a higher priority than other processes. 

An administrator would have a difficult time fixing the bad blocks while the HDE driver 
monopolized the system, printing these messages. To prevent this from happening, the demon (a 
user process) is started when the system is booted. The demon sleeps until a bad block report is 
received by the HDE driver. The HDE driver wakes up the demon, which then prints the pertinent 
error information on the system console. 

When the demon prints the error, the process runs at a user-level priority. The administrator's 
processes now get at least equal time with the demon (because they both are user processes) and may 
take corrective action. 

EXAMPLE 1 

In the following example, the information is kept on a controlling sector of the disk. To initialize 
disk defect management, the following steps are taken: 

• Allocate a system buffer with geteblk(D3X) (line 48). The disk defect table is created 
in this buffer, then written to the appropriate area of the disk. 

• Read the controlling sector from the xx_strategy routine using the iowait(D3X) function 
(lines 53-54). 

o If an error occurred on the read attempt, it displays an error message using 
the driver's print(D2X) routine and returns an error condition 
(lines 55-58). 

o Otherwise, move information from the buffer to the controlling sector with 
the bcopy(D3X) function (line 60), initiate error logging for the device with 
bdeeqd (line 61), and indicate that the device has been opened (line 62). 

• Release the system buffer with the brelse(D3X) function (line 64) 
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Logging Disk Errors 

1 #define XX_CNTLBLKNO 0 /* Block number of controlling sector */ 

2 
3 

struct device 
{ 

/* Layout of physical device registers */ 

4 . char reserve[ 4]; /* Reserve space on card * / 
5 ushort control; /* Physical device control word * / 
6 char status; /* Physical device status word */ 
7 char ivec_num; /* Device interrupt vector number */ 
8 /* in 0xf0; subdevice reporting in 0x0f */ 
9 paddr_t addr; /* Address of data to be read/written * / 
10 int count; /* Amount of data to be read/written * / 
11 }; /* end device * / 

12 struct DC 
13 { 

/* Logical device structure * / 

14 
15 
16 
17 
18 

struct but * xx_head; /* I/O buffer queue pointer head * / 
struct but *xx_tail; /* I/O buffer queue pointer tail */ 
short xx_flag; /* Logical status flag * / 
struct hdedata xx_edata; /* Hard disk error record log * / 
struct iostat xx_stat; /* Unit I/O statistics for * / 

/* establishing an error rate during error logging * / 19 
20 }; /* end xx_ */ 

21 struct xx_info 
22 { 
23 
24 
25 
26 

long xx_id; 
long xx_cyl; 
long xx_trk; 
long xx_sec; 

27 
28 

char xx_serial [12] ; 
}; /* end xx_info * / 

/* Infonnation on control sector * / 

/* of disk device id code * / 
/* Total number of cylinders */ 

/* Number of tracks per cylinder */ 
/* Number of sectors per track * / 
/* Device serial number * / 

29 extern struct xx_ xx_devtab[]; /* Logical device structure table */ 
30 extern struct device *xx_addr[]; /* Physical device registers location */ 
31 extern struct xx_info xx_info[]; /* Device control infonnation * / 
32 extern int xx_cnt; /* Number of devices * / 
33 

Figure 11-6 Hard Disk Error Logging Is Initialized (part 1 of 2) 
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34 xx_open(dev, flag) 
35 dev_t dev; 
36 int flag; 
37 { 
38 register struct xx_ *dp; 
39 register struct device *rp; 
40 register int unit; 
41 

Logging Disk Errors 

42 unit = minor(dev) » 4; 1* Get drive unit number *1 
43 dp = &xx_devtab[unit]; 1* Get logical device information *1 
44 if «dp->xx_flag & XX_OPEN) == 0) 1* First time opening the device,*1 
45 { 
46 register struct buf *bp; 
47 hdeeqd(dev, XX_CNTLBLKNO, EQD_ID); 1* Initialize error logging *1 
48 bp = geteblk(); 1* Get a buffer for control sector *1 
49 bp->b_flags = B_READ; 1* Set up buffer to read *1 
50 bp->b_blkno = XX_CNTLBLKNO; 1* Control sector from disk *1 
51 bp->b_count = 512; 
52 bp->b_dev = dev & ( Oxf); 1* Use partition 0 on disk *1 
53 xx_strateqy(bp); 1* Read control sector *1 
54 iowait(bp); 1* Wait for read to complete *1 
55 if «bp->b_flags & B_ERROR) 1= 0 ) 1* If data error occurred, *1 
56 { 1* display message on console *1 
57 xx_print(dev, "xx_open: cannot read control sector"); 
58 u.u_error = bp->b_error; 1* Get error code *1 
59 } else { 1* Copy control sector data to info table *1 
60 bcopy(bp->b_un.b_addr, &xx_info[unit], sizeof(struct xx_info»; 
61 hdeeqd(dev, XX_CNTLBLKNO, EQD_ID); 1* Initiate error logging *1 
62 dp->flag := XX_OPEN; 1* Indicate device open *1 
63 } 1* endif *1 
64 brelse(bp); 1* Release system buffer *1 
65 } 1* endif *1 

66 if (u.u_error 1= 0) 1* If error found at this point, return *1 
67 return; 
68 1* endif *1 

Figure 11-6 Hard Disk Error Logging Is Initialized (part 2 of 2) 
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EXAMPLE 2 

A driver interrupt routine is responsible for checking for data transfer errors (these errors are called 
data checks). When a data check occurs (reported by the device in the status or error register), the 
driver detennines if there have been sufficient attempts at resolving the error. If so, the driver 
abandons the liD request by marking the buffer as being in error, logging an unresolved error with 
hdelog, and marking the liD operation complete with iodone(D3X). When an error persists in spite 
of multiple attempts to resolve it, the driver logs marginal errors with bdelog and attempts the 110 
operation again. NarE: the driver may try to resolve the error with software by using the error 
correction bits in the error correction code (ECC) register. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

struct device /* Layout of physical device registers * / 
{ 

char reserve [ 4]; /* Reserve space on card * / 
ushort control; /* Physical device control word */ 
char status; /* Physical device status word */ 
char ivec_num; /* Device interrupt vector number * / 

/* in 0xf0; subdevice reporting in 0x0f */ 
paddr_t addr; /* Address of data read/written */ 
int count; /* Amount of data read/written * / 

}; /* end device */ 

11 struct xx_ /* Logical device structure */ 
12 { 
13 
14 
15 
16 
17 
18 

struct buf * xx_head; /* liD buffer queue head pointer * / 
struct buf * xx_tail ; /* liD buffer queue tail pointer * / 
short xx_flag; /* Logical status flag * / 
struct hdedata xx_edata; /* Hard disk error record log * / 
struct iostat xx_stat; /* Unit 110 statistics for * / 
/* establishing an error rate during error logging * / 

19 }; /* end DC */ 

Figure 11-7 bdelog - Logs Media Errors (part 1 of 3) 
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20 struct xx_info 
21 { 

1* Information on control sector of disk 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

} ; 1* 

long 
long 
long 
long 
char 

end xx_info 

xX_id; 
xx_cyl; 
xx_trk; 
xx_sec; 
xx_serial[12]; 

*1 

1* Device id code *1 
1* Total number of cylinders *1 

1* Number of tracks per cylinder *1 
1* Number of sectors per track *1 
1* Device serial number *1 

extern struct xx_ xx_devtab[ ] ; 1* Logical device structure table *1 
extern struct device *xx_addr [ ] ; 1* Physical device register location 
extern struct xx_info xx_info[] ; 1* Device control information *1 
extern int xx_cnt; 1* Number of devices *1 

xx_int(board) 
int board; 
{ 

register struct device *rp = xx_addr[board]; 1* Get device registers *1 
register struct xx_ *dp; 
register struct buf *bp; 
register int unit; 

40 unit = (board « 4) 1 (rp->ivec_num & Oxf); 1* Construct unit number *1 
41 dp = &xx_devtab[unit]; 

42 if 
43 { 

44 
45 
46 
47 
48 
49 
50 
51 
52 

«rp->status & DATACHK) 1= 0) 1* If data check error occurred, *1 

if (++dp->xx_edata.badrtcnt > XX_MAXTRY) 1* If sufficient *1 
{ 1* attempts have been made, then abandon the I/O request *1 

bp = dp->xx_head; 1* Get buffer from I/O queue *1 
dp->xx_head = bp->av_forw; 1* Remove buffer from I/O queue *1 
bp->b_flags 1= B_ERROR; 1* Mark buffer in error *1 
bp->b_error = EIO; 1* Supply error condition *1 

1* Supply information needed for error logging *1 
dp->xx_edata.diskdev = bp->b_dev; 1* The device number *1 
dp->xx_edata.blkaddr = bp->b_blkno; 1* The error block number *1 

Figure 11-7 bdelog - Logs Media Errors (part 2 of 3) 
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53 dp->xx_edata.readtype = HDEECC; 1* Error type: error check *1 
54 dp->xx_edata.severity = HDEUNRD; 1* Data unreadable *1 
55 dp->xx_edata.bitwidth = 0; 
56 dp->xx_edata.timestmp = time; 1* Time recording occurred *1 
57 bcopy(dp->xx_edata.dskserno, xx_info[unit].serial, 12); 
58 hdelog(&dp->xx_edata); 1* Log abandoned I/O operations *1 
59 iodone(bp); 1* Mark I/O operation complete *1 

60 } else if(dp->xx_edata.badrtcnt > 1) { 1* If more then one retry, *1 
61 1* log error as marginal *1 
62 bp = dp->xx_head; 1* Get buffer from I/O queue but leave on I/O *1 
63 1* queue so I/O operation is repeated *1 
64 1* Supply information needed for error logging *1 
65 dp->xx_edata.diskdev = bp->b_dev; /* The device number *1 
66 dp->xx_edata.blkaddr = bp->b_blkno; 1* The block number in error*1 
67 dp->xx_edata.readtype = HDEECC; 1* Error type: error check *1 
68 dp->xx_edata.severity = HDEMARG; 1* Marginal error *1 
69 dp->xx_edata.bitwidth = 0; 
70 dp->xx_edata.timestmp = time; /* Time recording occurred *1 
71 bcopy(dp->xx_edata.dskserno, xx_info[unit].serial, 12); 
72 hdelog(&dp->xx_edata); 1* Log data check error *1 
73 } 1* endif *1 
74 } 1* endif *1 
75 

Figure 11-7 bdelog - Logs Media Errors (part 3 of 3) 
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A signal is a type of message sent to user processes alerting them to an important event. Drivers send 
signals to user processes to alert them of conditions on the device. For example, when a user on a 
terminal presses the ~ key, it generates an interrupt. When the terminal driver handles that 
interrupt, it sends a signal to any user processes in the process group for that terminal. 

Signals are used principally by character-access drivers. 

Sending a Signal 

Signals are sent from a driver's interrupt handler or base routines to a user process with the 
psignal(D3X) and signal(D3X) functions. The psignal function sends a signal to a single process, 
whereas the signal function alerts a process group. The needs of the individual device determine the 
sorts of signals that are used. psignal usually sends a signal to the u.u_procp member of the user 
structure, but not from the interrupt level. signal usually sends a signal to the t_pgrp member of the 
tty structure. The user process can intercept the signal with the signal(2) system call. 

Figure 11-8 contains example signal code. 

62 if (code == L_BREAK) { 
63 signal (tp->t_pgrp, SIGINT); 
64 ttyflush(tp, (FREADIFWRITE)); 
65 return; 

Figure 11-8 Signal Code 
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A driver that sends signals must #include the sys/ signal.h header file, which defines all available 
signals. Signals frequently used in drivers include SIGINT, SIGQUIT, and SIGHUP. Figure 11-9 
illustrates signal handling. 

User 
Process 

ITemUnrul Leader 
Process 

user structure 

psignal (D3X) 

Process 

tty structure 

signal (D3X) 

Driver's Interrupt Handler 

Figure 11-9 Processing Signals 

Controlling Signal Priorities 

The sleep function causes the current running process to sleep. The priority argument to the 
sleep(D3X) function determines if the user process will be awakened by signals or not. This is done 
in relation to the system-defined constant, PZERO (see Figure 11-10). Processes sleeping with 
priority values lower than or equal to PZERO will not be awakened by a signal; processes sleeping 
with priority values greater than PZERO will interrupt the current sleep and return to user level. 
(For more information on sleep, see Chapter 9, "Synchronizing Hardware and Software Events. ") 

Sleep Priorities 1-25 
not awakened by signals 

PZERO 
25 

Sleep Priorities 26-39 
awakened by signals 

Figure 11-10 sleep Priorities 

You can use an absolute value (for instance, 27) as the sleep priority, but the preferred method is to 
use a value relative to PZERO (for instance, PZERO+2). 
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If the operating system handles the error processing, it simply returns the EINTR error code to the 
user program· that. called the driver. While EINTR is not very precise, the user program can use it as 
an indicator of a signal arrival. Generally, when EINTR is received at user level, the user program 
should retry the original command. 

To process the signal in your driver, use the C programming language OR (D instruction to add the 
value PCATCH to the priority argument that you assign for sleep, for example: 

} 

if (sleep( &Sleepaddr ,(PZERO+ 1 )IPCA TCH» { 
u. u_error = EINTR; 
cmn_err(CE_CONT,''Disk drive #103 is getting flaky"); 
return; 

Figure 11-11 sleep and PCATCH 

Should a signal be received by a call to sleep with the priority OR-ed with PCA TCH, sleep returns a 
value of 1 (true). 

NOTE: Being awakened from a sleep call does not end the life of a signal. The user-level program 
should have invoked a mechanism for trapping signals that can provide further insight into what may 
have caused the error. 
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Introduction 

Installing a driver, also called configuration, consists of creating or modifying a series of files to 
ultimately produce a bootable object file. Then when the computer on which you are working is 
shutdown and brought up again, a new version of the operating system is created that includes your 
driver as part of the kernel. 

This chapter provides the following information: 

• installing a driver for the first time 

• installing an existing driver 

• suggestions for installing the driver during the testing/debugging phase of development 

• installation of a driver when you are using a different type of computer for development 
than the computer for which the driver is being written (cross-environment) 

• how to remove an installed driver from the computer 

If you are installing your driver on several computers or selling it to other customers, create 
INSTALL and UNINSTALL scripts that run through the sysad.m(IM) administrator command. This 
and other concerns when packaging a driver are discussed in Chapter 15. 

This chapter tells you how and when to create or modify the files used for self-configuration and 
system initialization. 
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Ins t a I Ii n gaD r i v e r. For the Fir s t Tim e 

When installing your driver for the first time: 

• Create a master file 

• Create special device files 

• For a software driver, insert a line in the letclsystem file 

• For a hardware driver on the 3B2 computer or SBC, create the diagnostics files 

• For a hardware driver on the 3B2 computer or SBC, add the device to the EDT 

• For a hardware driver on the 3B2 computer or SBC, move pump files to a special 
directory 

This section contains information that precedes subsequent sections in this chapter. If you have 
already installed a driver using the material described in this chapter, precede to the next section, 
"Installing an Existing Driver" for information on how to install your driver on a specific computer. 

NOTE: You can install your driver software from any directory except Iboot. Iboot is not usable 
because an object file created by the cc command stored in I boot may prevent a new 
operating system from being generated. After you have completed installing a driver and 
have tested it, you may wish to move the source and object code to the 
lusrlsrclutsl<computer-type>lio directory, making new directories as required. This 
directory typically contains driver source code. «computer-type> choices are explained 
later.) 3B4000 computer adjunct processor code should be stored in the lusrladd
on/package-namelio directory, once again, you should create directories as needed. 
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Creating a M aster File 

The easiest way to create a master file is to copy an existing master file; this saves time because you 
do not have input column headers. Master files reside in the /etclmaster.d directory or in the 
/adjlpe#/etc/master.d directory for a 3B4000 adjunct processor. Each file is named for the driver it 
defines, in lower case letters, and corresponds to a file in the /boot-directory (/adj/pe#/boot for an 
adjunct processor) that has the same name in upper case letters. 

The master file fields are separated by either a tab or a blank; no field can contain a blank. Any line 
with an asterisk (*) in column 1 is treated as a comment. By convention, each master file begins 
with a comment line that has the name of the driver, followed by another comment line that gives 
column headers for the fields used in the file. The fields in the second comment line define the 
configuration information for the driver. 

The following is an example of the console master file. The following master file is used as an 
example throughout this section: 

* console 

* 
* FLAG #VEC 
orcst24 1 

PREFIX 
con 

SOFT 
o 

#DEV 
1 

IPL DEPENDENCIES/VARIABLES 
7 

con_tty[2] (%Ox58) 
con_cnt(%i) = {2} 

Figure 12 -1 Console Driver Master File 

M aster File Fields 

Each field in the master file contains configuration information specific to your driver. Some fields 
can be filled before you begin development, such as the FLAG, PREFIX, and SOFT columns. 
Others may only be filled once the restrictions placed on your driver by the device hardware have 
been determined, such as the #VEC, #DEV, and IPL columns. The 
DEPENDENClESN ARIABLES information cannot be included until the dependencies of your 
driver on other drivers and/or defined structures, and the number and types of variables needed for 
your driver have been detennined. 

The following sections discuss the contents of each field. 
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FLAG 

The FLAG field of the master file contains a combination of letters and/or numbers defirung a 
number of characteristics specific to your driver for the system's boot programs. Each letter and 
number indicates a specific characteristic of the driver. The following list describes each symbol: 

Access and Interface Definers 

b Indicates that the driver's device supports block-access~ This letter must be 
included if the driver includes a strategy(D2X) routine. 

c Indicates that the driver's device supports character-access. This letter must be 
included if the driver includes a read(D2X), write(D2X), or ioctl(D2X) 
routine. 

f Indicates that the driver is a STREAMS driver (both hardware and software). 

m Indicates that the master file is for a STREAMS module. 

s Indicates that the driver is a software driver. If the s flag is used, the 
drvinstall(lM) command will put the major number in the SOFf column. 

t Indicates that the device uses the tty structure. This flag causes the 
cdevsw[].d_ttys field to be initialized for the device. 

x Indicates that the master file is for a loadable module that is not a driver. 

Other Configuration Instructions 

o Indicates that only one device can be configured for this driver. 

r Indicates that this device must be present or the system should not be 
configured. For instance, the console and mem (memory) master files use this 
flag. 

a Indicates that (boot should generate and fill a segment descriptor array. The 
name of this array is: 

extern paddr _t prefzx_addr 

number The first interrupt vector for an integral device. For an SBC with a non
programmable interrupt vector, the interrupt vector physically set on the board 
(either with DIP switches or with connectors) must be specified in this field in 
decimal. 
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In the console master file example, the following characters and numbers are used: 

orcst24 

This indicates the following about the driver: 

o Only one device can be configured for the driver. 

r The device supported by this driver must be 'present in order to configure the system. 

c The device supported by the driver is a character device. See Chapter 6 for more 
information on block and character access. 

s The driver is a software driver. 

t The device is a TrY device and the driver uses the tty structure. 

24 The first interrupt vector for the device is assigned to be 24. Software drivers can have their 
interrupt vector permanently assigned. See the #VEC section and Chapter 10 for more 
information on interrupt vectors and absolute address assignment. 

#VEC 

The # VEC column defines the number of interrupt vectors to be generated for each device or device 
controller. An interrupt vector is an offset to an interrupt vector table the system uses to associate 
interrupts with their appropriate interrupt routines, and with their appropriate devices. 

The number of interrupt vectors a device needs is dependent upon how the device initially sends its 
interrupts. For instance, a controller that supports four subdevices may interpret those interrupts 
itself, or it may not. If it does interpret them, only 1 interrupt vector must be assigned to that 
device, and the controller determines the type of interrupt being sent. If it does not, 4 interrupt 
vectors must be assigned to the device, one for each subdevice. 

In the console driver example above, 7 interrupt vectors are supplied. 

The #VEC field in the master file defines the number of interrupt vectors per device, in this case per 
controller: 

One interrupt vector per device (controller) 
If the value of #VEC is 1, the controller itself has only one interrupt vector. Either the 
device supported by the driver does not support subdevices or the driver must determine 
which subdevice is associated with a given interrupt in some other way, such as by 
reading a controller register. Most intelligent controllers on the 3B15 and 3B4000 
computers use completion queues rather than vectors, so use #VEC= 1. 

One interrupt vector per subdevice 
If each subdevice has one interrupt vector and the controller can support up to four 
subdevices, #VEC is assigned a value of 4. 
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Multiple interrupt vectors per subdevice 
Some character-access subdevices require more than one interrupt vector. For example, a 
serial port that has separate receive and transmit interrupts (coded using the rint/xint 
combination) must have two interrupt vectors per subdevice. If the sample configuration 
is for such devices, the value of #VEC is 8. 

Refer to Chapter 10 for infonnation on the handling and the assignment of interrupt vectors. 

PREFIX 

The 2-, 3-, or 4-digit prefix assigned to your driver and used as a prefix to the system routines. The 
kernel uses the driver's prefix to identify the appropriate kernel routine to use for this driver. The 
most important thing to remember about driver prefixes is that they must be unique. Different 
drivers cannot use the same prefix or their routines would be mismatched. Ensure that the ,prefix you 
select is unique by examining all other master files. 

SOFT 

The SOFf column is used to identify the major number for a software devicel . Software device 
major numbers can either be automatically assigned by the drvinstaIl(IM) command, or hardcoded 
by the driver writer. If you wish to have the drvinstall command assign the major number, enter a 
dash (-) in this column. Master files for drivers supporting hardware devices should contain only a 
dash. See "determining Major and Minor Numbers" for more information on major number 
assignment. 

#DEV 

The #DEV column defines the maximum number of subdevices the device controlled by this driver 
can support. 

IPL 

The IPL column defines the interrupt priority level (1 to 15) at which the processor's CPU will 
service the interrupt request. Level 0 is the highest priority and level 14 is the lowest. Level 15 
indicates that no interrupts are waiting to be serviced. 

The CPU services interrupts based on its current processor execution level and in order of interrupt 
priority. The interrupt's IPL is the priority level at which the interrupt is requesting service. The 
CPU's processor execution level is the level at which the processor is executing. If the IPL is a higher 
priority than the current execution level, the CPU stops it's current execution, sets its execution level 
to the level of the IPL, and services the interrupt. If the IPL is a lower priority than the current 
execution level, it is queued until the CPU services those interrupts with higher priority. 

1. The master file for a software device contains an "s" in the FLAG column. 
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A device's interrupt priority level is usually strapped in hardware and is totally independent of slots or 
interrupt vectors .. The interrupt request level for a device is marked by one of the bergs (physical 
connectors) on the backplane. The IPL value to use in the IPL column of the master file is usually 
included in the installation documentation for the device. 

However; a device's IPL value can be overridden for critical sections of code with the spl*(D3X) 
function. See Chapter 10 and the spl* manual page for more information on spl* function and 
setting interrupt priority levels. 

DEPENDENCIESN ARIABLES 

The DEPENDENCIESN ARIABLES field can have several lines. This field is used to 

• Define other driver(s) on which this driver is dependent. (A driver is considered 
dependent on another if by the lack of the other driver, the former will not work.) For 
example, for two drivers X and Y, if letc!system has INCLUDE X and the 
letc!master.dlA has "B" in the Dependencies field, Iboot will bring in X (based on 
letc!system) and Y (based on the dependency). 

• Generate dummy functions if driver is not loaded when the system is booted. 

• Assign values to variables according to the capacity of the driver rather than the actual 
hardware configuration. 

• Assign values to variables according to administrator-supplied information about the 
specific configuration. 

Generating Dummy Routines 

A dummy, or stub routine is simply a function call with no arguments and no instructions. An 
example is: 

myroutine(){} 

A stub routine allows the system boot program to resolve symbols when a driver is not included in the 
system. Other means for generating stub routines are shown in Figure 12-2. 

Value 
{nosys} 
{nodev} 
{false} 
{true} 

{} 

Description 

Send SIGSYS to current process when accessed 
Return ENODEV error code when accessed 
Return 0 
Return 1 
No return value 

Figure 12-2 Dummy (Stub) Routine Names 
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Variables Set for A Driver 

Variable definition lines define certain variables to be calculated by the system at boot time. The line 
has four fields, two of which are optional, separated by specific field delimiters; the line can contain 
spaces as long as they are not between elements of the length specifiers. The fonnat of a variable 
definition line is: 

variable-name[array-size](length) = {elements} 

The variable-name and length fields are required. The variable-name corresponds to the name used 
in the header file (or global data structure declaration section) for the driver. The length specifies the 
length of the variable value with any combination of the following length specifiers: 

%i integer 
% I long integer 
%s short integer 
% nc character string n bytes long (default = 1) 
$n field n bytes long 

Each specification is properly aligned and the variable length is rounded up to the next word 
boundary during processing. 

The array-size field specifies the size of the segment descriptor array to be generated. If you use the 
a flag under the FLAG column, you must use this field; otherwise you must not use this field. 

The elements field is an optional field used to initialize individual elements of a variable. If the 
calculations are based on numbers which the administrator can tune according to the configuration, 
this field should be filled as described in the next section. 

The array-size and elements fields are infix expressions. An infix expression is in the form of a 
standard equation such as 1 + 2 = 3. 
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Tunable Variables 

Variables that will be modified by the system administrator should be defined using a tunable 
variable table at the end of the master file. To set this up: 

1 Use a three to six character upper case string for the elements field in the variable 
definition line. For example: 

err_neslot (%i) ={NESLOT} 

2 After all DEPENDENCIESIV ARIABLE, start the tunable table with the string "$$$" 
beginning in the first column of the row. 

3 List each tunable on a separate line followed by a space, an equal sign, and the default 
value. For example: 

NESLOT = 50 

4 To change the value of the variable, the administrator will modify the value in the 
tunable table. Comment lines in the tunable table should give guidelines on setting the 
value. 

Note that other variable definition line can use this tunable as they could use any other elements. 

NOTE: If you are installing a software driver and have created an alternate master file directory, a 
risk exists that a duplicated major number may be assigned for a driver. Before installing a 
driver in the kernel that may have been previously assigned a major number, ensure that the 
number is unique before continuing (use the grep(l) command). If a number is duplicated, 
either use grep to find a new, unused major number, or edit the master file of one of the 
drivers to put a dash under the SOFT' column and reinstall the driver using drvinstall(lM). 
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Creating Special Device Files 

The special device files provide user level access to a driver. After a driver is installed, a user 
program accesses the driver by opening the special device file. 

On the SBC and the 3B2 computer, special device files are created with the mknod(lM) command. 

On the3B4000 adjunct processors, special device files are created on the master processor with 
mknod only for testing purposes. When the device files are created as part of the system, the 
information is added to a special file called a prototype file2• This file contains a list of all the devices 
in use by an adjunct processor. The prototype file ensures that the device files are created thereafter 
each time the adjunct processor is put into service (booted). 

The format for mknod is: 

For character devices: 

mknod name c major-number minor-number 

For block devices: 

mknod name b major-number minor-number 

The first argument to the mknod command is the name of the special device file. The names of 
special device files have no meaning to the operating system itself, but some programs expect a 
particular name to reference a particular device. 

The second argument is b for a block device or c for a character device. The third argument is the 
major number; the fourth argument is the minor number. (Refer to Chapter 3 for information on 
determining major and minor numbers). 

As an example, use this command to create a character special file named /dev/grzOl with major 
number 32 and minor number 1: 

mknod /dev/grzOl 
filename 

c 
character 

device 

32 
major 

number 

1 
minor 

number 

A special device file can be removed with the rm(l) command; to modify a special device file, delete 
it with rm then recreate it. 

2. Refer to "Adding to a Prototype File" at the .end of this section for more information. 
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NOTE: On the 3B2 computer, the 3B4000 ACP, and the SBC, many devices have subdevices for 
which device files must also be created. If this is the case, use the instructions that follow. 
If not, move to the next subsection. 

Use edittbl(lM) to check the subdevices for your device in the Idgnletc_data file. If the 
subdev _name field contains Hard or Serial, skip this step (the letc/disk(lM) or letdports(8) 
commands that are already set to run will create the appropriate special device files). Otherwise, 
create a shell script in the appropriate directory (Ietclbrc.d or letclrc.d) to generate special device files 
for the subdevices associated with your driver. Do this so that the Idev files can be dynamically 
created at boot time to accommodate configuration changes. You may also want to add to the 
I etc! bcheckrc shell script if your driver application will need to check file systems, date, or perform 
other activities before a file system is mounted. 

Types of Special Device Files and Device File N am es 

The types of device files you create for the device depends on the kind of access your device supports. 
For instance, all tenninals are character devices, and so require only character special device files. 
Disk devices, on the other hand, support both character and block access, and so require both 
character and block special device files. The following sections discuss the types of device files 
required for some commonly supported devices. 

Tape Subsystem 

A tape drive can be accessed as either a character (raw) device or a block device. The special files 
for tape are in the Idevlmt directory (for block tape devices) and in the /dev/rmt directory (for raw 
tape devices). Every tape drive has two entries in both directories, so any tape can be accessed as 
either a block or a raw device, with or without rewind. A tape drive with rewind automatically 
rewinds after the operation. You must make four new Idev entries for each tape drive, using either 
the sysadm(l) mkdevmt or the mknod(lM) command. Each tape drive also has a file in IdevlSA 
and IdevlrSA; these are used by System Administration to access tapes, and are created with the 

, sysadm mkdevdsk command. 

NOTE: sysadm only recognizes existing devices. Use mknod to create Idev files for new devices. 

One convention is that the name of a tape special file with rewind is the tape drive number followed 
by an '1" (low density) for an 800 bpi (bits per inch) drive, "m" (medium density) for a 1600 bpi 
drive, and ''b'' (high density) for a 6250 bpi drive. For example, the special file for tape drive 0 is Om 
if it is 1600 bpi and Oh if it is 6250 bpi. The name for using a tape special file without rewind is the 
tape drive number followed by mn for a 1600 bpi drive, and hn for a 6250 bpi (high density) drive. 
For example, the special file for tape drive 0 with no rewind is Omn or Ohn. Tape drives without 
rewind enable you to write more than one file to one tape. 

The minor number for a tape special file is calculated to indicate the type of access. 
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The traditional naming conventions and formulae for calculating minor numbers for tape devices are 
summarized in Figure 12-3. This is only valid for the AT&T tape driver. Another method that is in 
wider acceptance, particularly in SCSI products is described after the table. The question mark (?) 
represents the tape drive number. 

Type Special File Minor Number = 
Block, rewind; 1600 bpi Idevlmtl?m (4 * ?) 
Block, no rewind; 1600 bpi Idevlmtl?mn . (4 * ?) + 1 
Raw, rewind; 1600 bpi Idevlrmtl?m (4 * ?) + 2 
Raw, no rewind; 1600 bEi Idevlrmtl?mn {4 * ?l + 3 
Block, rewind; 6250 bpi Idevlmtl?h [(4 * ?)] + 128 
Block, no rewind; 6250 bpi Idevlmtl?hn [( 4 * ?) + 1] + 128 
Raw, rewind; 6250 bpi Idevlrmtl?h [( 4 * ?) + 2] + 128 
Raw, no rewind; 6250 bpi Idevlrmtl?hn [(4 * ?) + 3] + 128 

Figure 12-3 3B1S or 3B4000:MP Minor Numbers and Names for Tape Devices 

For example, the special file Omn in the rmt . directory has the minor number 3, calculated from: 

(4 * 0) + 3 

The special file for the same device in the mt directory has the minor number 1, calculated from: 

(4 * 0) + 1 

Simple Administration accesses tape devices through special files in the IdevlSA and IdevlrSA 
directories. These files are linked to the appropriate files in the Idevlmt and Idevlrmt directories, and 
named IdevlSAl9track# or IdevlrSAI9track#, where # corresponds to the tape drive number. System 
Administration allows you to work with tape drives with rewind; no rewind is not supported. 

SCSI-based tapes support the convention for naming and minor numbers in the format: 
IdevlcO[tx}dOm{n} or IdevlcO{tx}dOh{n}. The fields are described in Figure 12-4: 

cO 
{tx} 
dO 
m orh 
{n} 

Figure 12-4 
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Disk Subsystem 

Each disk has two listings in Idev: one as a block device and one as a character (raw) device. The 
special files for block disk devices are in the /devldsk directory; the special files for raw disk devices 
are in the /devlrdsk directory. Each disk partition has a separate special file. Each disk drive also 
has entries in Idev/SA and /devlrSA for block and character devices, respectively. These are used by 
System Administration to access disks, and are created with the sysadm(l) mkdevdsk command. The 
SA rSA device nodes are different for SCSI disks. . 

The common method for identifying disk device files has been interpreted for SCSI disks is similar to 
that of the SCSI tape drive. The format is Idev/cO{txjdOsO and is described in Figure 12-5. 

cO controller number 
{txj target controller 
dO disk drive number 
sO section number 

FigUre 12-5 Disk Drive Device Name 

The traditional name of a disk special file is the disk number and the partition number separated by 
an "s". For example, the special file for disk 1, partition 0 is IsO. If a disk drive has 8 physical 
partitions, they are numbered (named) 0 through 7 on each drive. The first disk drive in the system 
is number O. 

The minor number of a disk special file also identifies the disk and partition number with which the 
file is associated. Frequently, however, the minor numbers are assigned for the disk controller (which 
may control several disks) rather than the individual disks. For each controller, minor numbers start 
at 0 and increment by 1 to correspond to the partitions on the disks. The first disk on the controller 
has minor numbers 0 through 7, the second disk on the controller has minor numbers 8 through 15. 
So, partitions 0 through 7 on Disk 0 on CONTROLLER 0 have minor numbers 0 through 7, and 
partitions 0 through 7 on Disk 1 have minor numbers 8 through 15. If you had a second controller, 
the first disk on that controller would have minor numbers 0 through 7, but the major number would 
be different than for disks under controller O. 

The corresponding files for the raw disks have the same names and major and minor numbers but are 
located in the /devlrdsk directory. 

The Idev/SA and /dev/rSA directories also have regular ASCII files for fixed disk devices, named 
hddisk#, where # corresponds to the disk drive number. These contain an ASCII character string 
which defines the type of disk this is. Because these are regular files, not special files, they do not 
have major and minor numbers. 

After the Idev/dsk and /dev/rdsk files are created, use the sysadm(l) mkdevdsk or the mknod(IM) 
command to create the rmdisk# and hddisk# files in the /deviSA and /dev/rSA directories. Figure 
12-6 describes how minor numbers are formed on the 3B15 and 3B4000 computers. 

Installation 12 -13 



Installing a Driver For the First Time 

Type 
Block access 
Character/raw access 
Block access (sysadm) 
Character/raw access (sysadm) 

Special File 
Idevldskl ?x? 
Idevlrdskl?x? 
I devl SAl hddisk? 
I devlrSAI hddisk? 

Minor Number = 
Partition per controller 
Partition per controller 
none 
none 

Figure 12-6 3B15 or 3B4000:MP Minor Numbers and Names for Disk Devices 

Other Devices 

Minor numbers for other devices are assigned in a number of different ways. Several of the drivers 
that are released with UNIX System V (such as errlog, swap, and dump) have major and minor 
numbers that correspond to the disk partition they use; for instance, the major and minor numbers of 
Idevlswap are the same as the major and minor numbers of the disk partition used as the swap device. 

In some cases, the minor number of a software driver has little meaning and can be assigned any 
value. 

Access Permissions for Special Device Files 

The special device files used for drivers have access permissions, owners, and groups like any other 
file. Assigning appropriate values to these fields is critical for maintaining system security. 

You must have super-user permissions to create special files with the mknod command. You can 
change the group with the chgrp(lM) command, and change the owner of a file with the chown(lM) 
command. The format for these two commands is: 

chgrp new-group special-file-name 
chown new-owner special-file-name 

The default permissions are those specified by umask (in the letclsystem file or in the root .profile 
file), usually 644. Permission modes can be modified with the chmod(l) command. Default 
permission modes can be modified with the umask(l) command. 

chmod new-mode special-file-name 
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Figure 12-7 summarizes the recommended permissions, owner, and group for standard types of 
devices. The following sections discuss this in more detail. 

Sub~stem Device Mode Owner Grou~ 

Terminal terminal (idle) 622 or 600 root sys 

printer 200 lp sys 

networks 644 UUcp4 any 

Disk /devlrdsk directory 755 root sys 
/ devl dsk directory 755 root sys 

disk files 400 root sys 

Tape /devlrmt directory 755 root sys 
/devlmt directory 755 root sys 

tape files 666 or 600 root sys 

Figure 12 -7 Typical Access Permissions for Special Device Files 

Terminal Subsystem - Terminals 
When a user logs on to the terminal port, that user becomes the owner and group for the 
port. The mode is 600 if the terminal is not open for writing from other users (mesg n) 
or 622 if it is. An active terminal should not normally be open for reading by other 
users, since this would enable other users to capture everything typed at or printed on the 
terminal. If wider permissions are necessary, any user can modify the mode of the 
terminal port to which slhe is logged in. 

Some terminal special files retain the last user as the group when the user logs off, others 
will revert to the sys group. In any event, the idle terminal always reverts to an owner of 
root and mode 666. 

Terminal Subsystem - Networks 
Access permissions for networks should be considered very carefully, since system security 
is most easily compromised through network connections. The network itself is the 
owner. For instance, ACU nodes are usually owned by uucp. If another networking 
application needs to use the ACU, the software could execute a setuid(uucp). The group 
can be left as the default sys or changed to match the owner. 

The mode of networking devices must be determined according to how applications will 
access the network. If the networking connection is only for administrative programs, 
you can assign the secure mode of 600. If, however, application programs that 

4. an example network name. This also could be the name for other networks. 
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understand the protocol will be accessing the network, you may require a 666 mode. If 
only a few users need to access the network, you can use the group modes. Most 
networks have a background program that writes to and reads from the special device file. 
Users rarely access it directly. 

Terminal Subsystem - Printers 
Special device files for printers are owned by Ip; the group can be changed to Ip or left as 
the default sys. Normally print jobs will run only through the Ipspooler, so the 600 mode 
is adequate. If you have applications that will bypass Ipspooler to go to the printer, you 
may need to set the mode to 644. However, read permissions are not necessary on a 
printer so you can set it to 200. 

Disk Subsystem 
The mode of a special device file for a disk only controls access permission to the physical 
disk. Once the disk is mounted, access to that disk is controlled by the file subsystem and 
the access permissions of each individual file. Special device files for disks have 400 
permission, allowing reading and writing of the raw disk only by the owner (root). If 
read/write privileges were granted to others, the UNIX system security of all files on that 
disk would be subverted, since any user could read and write the contents of the disk 
without going through the file system. Application program may require different 
permission modes and ownership. 

Tape Subsystem 
Access permissions for tapes can vary from site to site. The most secure option is to use 
600 permission, which will enable the superuser to use the tape but no one else to access 
it. The least secure option is to use 666 permission, which allows all users to read and 
write directly to/from that drive. Realize, however, that 666 permission will enable any 
user to read the information on that drive directly; for instance, when a tape is mounted 
for backup, a user could read all the information off that tape, thus accessing files that 
might contain sensitive information. 

If several users need to access a tape drive, you could make those users part of the sys 
group or set up a group of users who need to access the tape and make that the group for 
the drive. By giving that drive 660 permission, these users would be able to access the 
tape without opening up access to the world. 

The sysadm mkdevdsk or mknod command creates entries in the /dev/SA and /dev/rSA 
directories for removable disks and tape. The corresponding /dev entries must be created 
first, either through sysadm mkdevdsk and sysadm mkdevrnt or with the mknod 
command; the idevlSA IdevlrSA entries are then linked to the appropriate Idev special 
files. In order to use the System Administration commands for disks and tapes, you must 
have this directory. 
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Adding to a Prototype File 

On a 3B4000 adjunct processor a device file is created in three ways: 

• With mknod(lM) in the adjlpe#ldev directory on the adjunct processor 

• With mknod in the Idev directory on the 3B4000 Master Processor 

• By adding an entry to the ladjlpe#lprototype file. 

Use the directions for mknod discussed earlier in the "Creating a Device File" section to create special 
device files for the first two items. The third item is discussed in this section. 

Each adjunct processor has a prototype file (ladjlpe#lprototype) used to configure the incore file 
system at boot time. This file specifies the size and contents of the incore file system. The prototype 
file is only activated after the adjunct processor is rebooted. 

The prototype file contains a single line for each device for the adjunct processor. A prototype file 
line is in this format: 

device-name type bits modes owner-ID group-owner-ID major-num minor-num 

For example 

device-nam£ type bits modes owner-ID group-owner-ID major-num minor-num 

icfs b 640 0 0 66 0 
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Figure 12-8 lists an excerpt from a sample prototype file. 

icfs b--640 0 0 66 0 
mem c--440 0 0 19 0 
kmem c--440 0 0 19 1 
null c--666 0 0 19 2 
error c--660 0 0 16 0 
dsk d--7S5 0 0 

cOt1dOsO b--400 0 0 113 0 
cOt1dOs1 b--400 0 0 113 1 
cOt1dOs6 b--400 0 0 113 6 
cOt1dOs7 b--400 0 0 113 7 
cOt1dOs8 b--400 0 0 113 8 
cOt2dOsO b--400 0 0 114 0 
cOt2dOs1 b--400 0 0 114 1 
(Additional Entries) 
$ 

Figure 12 - 8 Excerpt from Sample Prototype File 
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Adding Inform ation to the lete/system File 

When you are installing a software driver for the first time, you must insert a line in the I etcl system 
file so that the driver is included when the new version of UNIX is created system. This step is not 
required for a hardware, driver. 

The fetclsystem file is used to initially configure or to reconfigure the UNIX operating system. After 
the system configures, an operating system image is made in memory and booted. Then, by invoking 
the letc/mkunix program (done automatically on the SBC and 3B2 computers), a bootable image of 
the operating system is created which, by convention, is named lunix. The lunix file can then be used 
to boot the system quickly. 

Among other kinds of information, the letefsystem file lists the drivers that are to be included when 
the system is configured. In order to configure your driver into the system, you must include the 
name of your driver in the fetclsystem file and then reboot the system from this file. 

Edit the system file (fete/system) and add an INCLUDE line for your driver to the end of the file. 
Comments can be added by placing an asterisk (*) in the first column. The new lines in an example 
system file are 

* * Include line for mydriver. Added 1/25/88 by Jane Doe. 

* 
INCLUDE:MYDRIVER 

The sections of letclsystem are referred to as lines, even though many of them have several lines. The 
system(4) manual page explains all the lines that are in fete/system. Discussed here are only those 
lines used for drivers. They are 

EXCLUDE Specifies hardware listed in the EDT that should not be configured. This line can 
list hardware for which the software driver is not working or a board that needs 
repair and is affecting system stability. 

INCLUDE Lists drivers with files in the Iboot directory but no corresponding device in the 
EDT, typically software drivers. 
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Creating Diagnostics Files 

on the 3B2 computer, the SBC, or the 3B4000 ACP, if you are installing a new circuit board (feature 
card), obtain the diagnostics files from your diagnostics developer or create the files yourself. Refer 
to Appendix B for information on how to write or modify diagnostics files and to Section D8X of the 
Bel Driver Reference Manual. If the diagnostics files are not available or if you would prefer to 
install your driver before the files are available, execute the following commands: 

cd/dgn 
In SBD name 
In X.SBD X.name 

Linking to the system board (SBD) diagnostics files has no effect on the system; when your circuit 
board is tested, the system board is tested instead. This solution should only be regarded as 
temporary; no product is well-served by deluding the operating system. 

If you are installing an existing circuit board, ensure that there are two files in the Idgn directory for 
your driver. The first diagnostic file (required in the Idgn directory) has the same name as the master 
file for your driver, except that the diagnostics file name is in all upper case. The second required 
diagnostics file has the same name as the first, except that the second file is preceded with nx. n. 

Adding a Device to the EDT 

On the 3B2 computer, the SBC, or the 3B4000 MP equipped with SCSI, use the edittbl(lM) 
command to update the I dgn/ edCdata table to reflect the new device. 

NOTE: Two edittbl(lM) exist, one for non-SCSI and the other for editing the SCSI Equipped 
Device Table (EDT). Use the command appropriate for your system. edittbl is in the /dgn 
directory (for non-SCSI editing) and in the letclscsi.d directory for SCSI. Refer to 
Appendix A for information about using edittbl. 
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Preparing Pump Files 

On the 3B2 computer or the SBC, if intelligent boards need to be pumped with operational code, 
copy the pump code file to Iliblpumpl<board-name> and write a shell script to execute the pump 
code file. Place the shell script in the letclrc2.d directory. (Exami:t:le the shell scripts in the letclrc2.d 
directory for information on creating a shell script for your pump code.) The shell script is executed 
at boot time. The permission modes should be 500 with both owner and group being root. 

On the 3B4000 MP, copy the pump code file to the lliblbootpump.d directory. 
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This section describes how to install both hardware and software drivers on these computers 

• Single Board Computer (SBC) and the 3B2 computers 

• 3Bl5 computer or the 3B4000 Master Processor 

• 3B4000 adjunct processor 

• 3Bl5 computer 

Separate installation instructions are provided for each computer by the type of driver being installed. 
Preceding these sections is information about how to compile a driver program for installation. This 
step is common to all computer types and is repeated many times in the process of installing a driver. 

Before starting the driver installation, you should be familiar with the material in the last section. 
This section assumes that you have moved the driver code to a source directory, created a master file, 
and created any device files that are needed. If you are installing a driver for the first time and have 
not completed these activities, return to the last section, "Installing a Driver for the First Time", and 
ensure that all pre-installation files are in place. 

CAUTION: Before installing a driver, you must back up /unix. Failure to do so can mean 
performing a complete install of your original pristine software and rerunning all 
add-on installations. This process could require many hours of system down-time to 
complete. Select any name for the copy and write the name down. Should the need 
arise that you need to boot from the alternative file name, you will not have access 
to the disk to determine the file's name. Use the mV(l) command to move lunix to 
another name and then use cp(l) to copy the file back to lunix. This ensures that 
when the system is booted, a new version of the operating system is generated. An 
example set of commands for this procedure are 

# cd f 
# mv funix fold.unix 
# cp fold.unix funix 
# 
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In addition, the following files should be copied before starting a driver installation: 

File or Directory 
/ boot directory 

/etc!master.d directory 
/ etc! system file 

Description 

bootable object files used for 
building a new version of the 
operating system 
system configuration information 
indicates which files to include in 
a new version of the operating 
system 

Figure 12-9 Files to Copy Before Installing a Driver 

The files in the /boQt directory, those in the /ete/master.d directory, and the fete/system file are 
backed up for safe keeping and are seldom ever in jeopardy. However, if these files were erased, 
restoring them could take many hours of loading the original system software and then rerunning all 
add-on installations. The minutes of copying these files now can save you hours or days of time later 
on. 
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C om piling a D river for Installation 

You can use the normal ee(1) command to ensure that your driver is free of syntax errors. However, 
for driver installation, more ec options are used to ensure that the driver produces the correct output 
and that the output files are in a format compatible with debugging tools. 1)le compile line is 

ec -c -DINKERNEL -Dcomputer -0 file.c 

The options are 

-c suppress the link editing phase of the compilation and do not remove any produced 
object files 

-DINKERNEL enable access to macros and parts of source code enclosed as follows 

-Dcomputer 

#ifdef INKERNEL 

#endif 

substitute your computer type for computer. Figure 12-10 lists the available 
choices. 

Name 
ADJUNCf 
u3b15 
u3b2 
u3bacp 
u3badp 
u3beadp 

Figure 12-10 

Computer 
Any type of adjunct processor 
3B15 or 3B4000 MP 
3B2 300, 400, 500, 600, and SBC 
3B4000 ACP adjunct 
3B4000 ADP adjunct 
3B4000 EADP adjunct 

Computer Types 

Use ADJUNCf for all types of adjunct processors; use u3bacp, u3badp, or 
u3beadp for the specific adjunct processor type. 
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This option enables access to macros and source code enclosed, for example, for a 
3B2 computer as follows 

#if u3b2 

endif 

optimize the code. (Do not use on SBC drivers.) 

Other options that you may need are 

-r 

-I 

-Dm32b 

when compiling more than one .c file together to create a single driver object file. 

when you need to specify the location of the header files when the location differs 
from lusrlincludel sys. 

if the driver may have code ported from a 16-bit computer to a 3B15 computer or 
3B4000 computer and the code is enclosed in this unit 

#ifdef m32b 

endif 

NOTE: When debugging is complete, use strip(l) to strip symbol and line number information 
from the resulting .0 file. This saves space in the resulting bootable image. 
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Installing an SBCor 3B2 Computer Hardware Driver 

Figure 12-11 provides a checklist for installing a hardware driver. Included in the checklist are steps 
from the previous section on installing a driver for the first time. Photocopy this page and include it 
with the documentation packet for your driver. 

Step# Description Perform Completed? 

1 create a master file once 

2 create necessary device files once 

3 create diagnostics files once 

4 update the /dgnfedt data file once 

5 put pump code files in special directory once 

6 back up funix before each installation as needed 

7 compile driver source code as needed 

8 create a bootable object file as needed 

9 run touchJ11 on fete/system as needed 

10 run shutdown(1M) as needed 

Figure 12-11 SBC or 3B2 Computer Hardware Driver Installation Checklist 

The Perform column indicates how many times you should perlorm a step in preparation for 
installing the driver. Steps perlormed once are found in the previous section, "Installing a Driver for 
the First Time"; steps that are performed as needed are explained in this section. (Compiling a driver 
is explained in the previous section.) 

Install an SBC or a 3B2 computer hardware driver as follows: 

Step 8 Create a bootable object file for your driver with the mkboot command. 

The command syntax for mkboot(1M) is 

I etc/mkboot file-name.o 

This command creates the /boot/file-name file. Refer to the mkboot(1M) manual page 
for more information on command options. 

Step 9 Run the touch(1) command on fetclsystem. This command sets the date of last 
modification to the current date. 
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Bring the system down with the shutdown(lM) command (from the root directory) 

shutdown -gO -y -i6 

If the installation is successful, no error messages are displayed and the "Console Login:" 
prompt is displayed. If the installation fails, turn to Chapter 13 to debug your driver. To 
recover your system for debugging, shutdown your computer as follows: 

shutdown -gO -y ~iS 

At the FIRMW ARE MODE prompt, enter the Maintenance and Control Program 
(MCP) password, usually mcp and press the (RETURN J key. At the following prompt, 
enter lold.unix (assuming that you backed up the previous version of lunix as explained at 
the start of this section). 

Enter name of program to execute [ ]: 
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Installing an SBC or 3B2 Computer Software Driver 

Figure 12-12 provides a checklist for installing a software driver. Included in the checklist are steps 
from the previous section on installing a driver for the first time. Photocopy this page and include 
with the documentation packet for your driver. 

Step# Description Perform Completed? 

1 create a master file once 

2 create necessary device files once 

3 insert an INCLUDE line in fetclsystem once 

4 backup funix before each installation as needed 

5 compile driver source code as needed 

6 create a bootable object file as needed 

7 run touch(l) on fetclsystem as needed 

8 run shutdown( 1 M) as needed 

Figure 12 - 12 SBC or 3B2 Computer Software Driver Installation Checklist 

The Perform column indicates how many times the step should be performed. Steps performed once 
are found in the previous section, "Installing a Driver for the First Time"; steps that are performed as 
needed are explained in this section. (Compiling a driver is explained at the start of this section.) 

Install an SBC or a 3B2 computer software driver as follows: 

Step 6 Create a boatable object file with the drvinstall(lM) command. (Once a major device 
number is assigned, you can use either drvinstaU or mkboot as shown in the sections on 
installing a hardware driver.) The drvinstall command has the following format: 

letc/drvinstall -d pathname-of-objectJile -vt.O 

Use the -d option to identify the pathname of the input object file. Use the -vl.0 
argument (required) to specify the version number of drvinstall. When run, drvinstall 
returns the major number. drvinstall creates a new major number if a dash (-) is 
encoded in the SOFf column of the master file. If a number is already in the SOFT 
field, drvinstall echoes that number as the return value. If a major number is created, 
drvinstall replaces the dash under SOFf in the master file with the new major number. 
drvinstall creates a boatable driver file in the /boot directory in the form of the driver 
name in upper case. 
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Step 7 

Step 8 

Installing an Existing Driver 

NOTE: drvinstall can be run from any directory. However, drvinstall does not accept 
a dot (.) as the directory name. It only accepts the full pathname of the input 
object file created with the appropriate cc(l) command. An input object file 
compiled by cc must never be placed in the boot directory. Therefore, put the 
input object file elsewhere and always use drvinstall with the -d option. 

If key files that drvinstall accesses are located in non-standard locations or are for 
adjunct processors, identify the files to drvinstall with ~he following options: 

file default option 
master file fetclmaster.d -m 
system file fetclsystem -s 
output directory fboot -0 

If you are installing a previously installed driver, run the touch(l) command on 
fetclsystem. If this is the first installation of a driver, skip this step. When you added the 
INCLUDE line to fetefsystem, you achieved the same purpose as this step. This 
command sets the date of last modification to the current date. 

Bring the system down with the shutdown(lM) command (from the root directory) 

shutdown -gO -y -i6 

If the installation is successful, no error messages are displayed and the "Console Login:" 
prompt is displayed. If the installation fails, tum to Chapter 13 to debug your driver. To 
recover your system for debugging, shut down your computer as follows: 

shutdown -gO -y -is 

At the FIRMW ARE MODE prompt, enter the Maintenance and Control Program 
(MCP) password, usually mcp and press the ( RETURN) key. At the following prompt, 
enter fold. unix (assuming that you backed up the previous version of funix as explained at 
the start of this section). 

Enter name of program to execute [ ]: 
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Installing a 3B15 Computer or 3B4000 M P Hardware Driver 

Figure 12-13 provides a checklist for installing a hardware driver. Included in the checklist are steps 
from the previous section on installing a driver for the first time. Photocopy this page and include it 
with the documentation packet for your driver. 

Step# Description Perform Completed? 

1 create a master file once 
2 create necessary device files once 
4 SCSI only: update the Idgnledt data file once 
5 3B4000 MP only: put pump code files in lliblbootpump.d once 
6 back up lunix before each installation as needed 
7 compile driver source code as needed 
8 create a boatable object file as needed 
9 run touch(1) on fetclsystem as needed 

10 run shutdown(1 M) as needed 
11 run mkunix(1M) as needed 

Figure 12 -13 3B 15 Computer or 3B4000 MP Hardware Driver Installation Checklist 

The Perform column indicates how many times you should perform a step in preparation for 
installing the driver. Steps performed once are found in the previous section, "Installing a Driver for 
the First Time"; steps that are performed as needed are explained in this section. (Compiling a driver 
is explained in the previous section.) 

Install a 3B15 computer or 3B4000 MP hardware driver as follows: 

Step 8 Create a bootable object file for your driver with the mkboot command. 

The command syntax for mkboot(1M) is 

letc/mkboot file-name.o 

This command creates the Ibootlfile-name file. Refer to the mkboot(1M) manual page 
for more information on command options. 

Step 9 Run the touch(1) command on letclsystem. This command sets the date of last 
modification to the current date. 
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Step 10 

Step 11 

Installing an Existing Driver 

Bring the system down with the shutdown(lM) command (from the root directory) 

shutdown -gO -y -i6 

If the installation is successful, no error messages are displayed and the system boots 
normally. If the installation fails, turn to Chapter 13 to debug your driver. To recover 
your system for debugging, shut down your computer as follows: 

shutdown -gO -y -is 

At the following prompt, enter fold.unix (assuming that you backed up the previous 
version of /unix as explained at the start of this section). 

Enter path name: 

After your driver is working and you want to preserve your driver in the lunix file, run 
mkunix to create a new version of the operating system. This step must be performed 
each time the driver is installed if you are going to bring the computer down to test 
firmware. 
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Ins t a II i n g a 3 B 1 5 Com put e r 0 r 3 B 4 0 0 0 M P Soft war e D r i v e r 

Figure 12-14 provides a checklist for installing a software driver. Included in the checklist are steps 
from the previous section on installing a driver for the first time. Photocopy this page and include 
with the documentation packet for your driver. 

Step# Description Perform Completed? 

1 create a master file once 

2 create necessary device files once 

3 insert an INCLUDE line in letclsystem once 

4 backup lunix before each installation as needed 

5 compile driver source code as needed 

6 create a boatable object file as needed 

7 run touch(l) on letelsystem as needed 

8 run shutdown(lM) as needed 

9 run mkunix( 1 M) as needed 

Figure 12-14 3DlS Computer or 3D4000 :MP Software Driver Installation Checklist 

The Perform column indicates how many times the step should be performed. Steps performed once 
are found in the previous section, "Installing a Driver for the First Time"; steps that are performed as 
needed are explained in this section. (Compiling a driver is explained at the start of this section.) 

Install a 3B15 computer or 3B4000 MP software driver as follows: 

Step 6 Create a boatable object file with the drvinstall(lM) command. (Once a major device 
number is assigned, you can use either drvinstall or mkboot as shown in the sections on 
installing a hardware driver.) The drvinstall command has the following format: 

letcldrvinstaII -d pathname-of-objeet-file -vl.O 

Use the -d option to identify the pathname of the input object file. Use the -vl.0 
argument (required) to specify the version number of drvinstall. When run, drvinstall 
returns the major number. drvinstall creates a new major number if a dash (-) is 
encoded in the SOFf column of the master file. If a number is already in the SOFf 
field, drvinstall echoes that number as the return value. If a major number is created, 
drvinstall replaces the dash under SOFT in the master file with the new major number. 
drvinstall creates a boatable driver file in the I boot directory in the form of the driver 
name in upper case. 
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Step 8 

Step 9 
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NOTE: drvinstall can be run from any directory. However, drvinstall does not accept 
a dot (.) as the directory name. It only accepts the full pathname of the input 
object file created with the appropriate cc(l) command. An input object file 
compiled by cc must never be placed in the boot directory. Therefore, put the 
input object file elsewhere and always use drvinstall with the -d option. 

If key files that drvinstall accesses are located in non-standard locations or are for 
adjunct processors, identify the files to drvinstall with ~he following options: 

file default option 
master file f etcl master. d -m 
system file fetclsystem -s 
output directory fboot -0 

If you are installing a previously installed driver, run the touch(l) command on 
fetclsystem. If this is the first installation of a driver, skip this step. When you added the 
INCLUDE line to fetclsystem, you achieved the same purpose as this step. This 
command sets the date of last modification to the current date. 

Bring the system down with the shutdown(lM) command (from the root directory) 

shutdown -gO -y -i6 

If the installation is successful, no error messages are displayed and the system boots 
normally. If the installation fails, turn to Chapter 13 to debug your driver. To recover 
your system for debugging, shut down your computer as follows: 

shutdown -gO -y -is 

At the following prompt, enter fold.unix (assuming that you backed up the previous 
version of funix as explained at the start of this section). 

Enter path name: 

After your driver is working and you want to preserve your driver in the funix file, run 
mkunix to create a new version of the operating system. 
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Installing an Existing Driver 

Installing a 3B4000 Adjunct Processor Hardware Driver 

Figure 12-15 provides a checklist for installing a hardware driver. Included in the checklist are steps 
from the previous section on installing a driver for the first time. Photocopy this page and include it 
with the documentation packet for your driver. 

Step# Description Perform Completed? 

1 create adjunct master file once 

2 create device files on the Master Processor once 

3 update adjunct prototype file once 

4 create adjunct dia~ostics files once 

5 update adjunct edCdata file once 

6 _putp_ump code files in special directory once 

7 compile driver source code as needed 

8 create adjunct bootable object file as needed 
9 run touch(l) on ladjlpe#letclsystem as needed 

10 stop adjunct processor as needed 

11 restart adjunct processor as needed 

Figure 12 -15 3B4000 Adjunct Processor Hardware Driver Installation Checklist 

The Perform column indicates how many times you should perlorm a step in preparation for 
installing the driver. Steps performed once are found in the previous section, "Installing a Driver for 
the First Time"; steps that are performed as needed are explained in this section. (Compiling a driver 
is explained in the previous section.) 

Install an adjunct processor hardware driver as follows: 

Step 8 Create a bootable object file for your driver with the mkboot command. 

The command syntax for mkboot(lM) is 

letc/mkboot .p pe# file-name.o 

This command creates the ladjlpe#lbootIJiZe-name file. Refer to the mkboot(lM) manual 
page for more information on command options. 
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Run the touch(1) command on /adjlpe#/etc/system. This command sets the date of last 
modification to the current date. 

Take the adjunct processor out-of-service with the stopape(1M) command. For example, 
to stop adjunct processing element # 120, enter . 

# /etc/stopape -P 120 

If a file system on the adjooct has active processes, the adjooct is not stopped unless you 
add the -K option to the command. 

Restore an out-of-service adjooct processor with the bootape(1M) command. bootape 
creates a new version of the operating system if the date on the /adjlpe#/etc/system file 
has been updated with touch or /adjlpe#/unix file has been moved and copied back. For 
example, to boot adjooct processing element 120, enter 

# bootape -P 120 
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Installing an Existing Driver 

Installing a 3B4000 Adjunct Processor Software Driver 

Figure 12-16 provides a checklist for installing a software driver. Included in the checklist are steps 
from the previous section on installing a driver for the first time. Photocopy this page and include 
with the documentation packet for your driver. 

Step# Description Perform Completed? 

1 create adjunct master file once 

2 create device files on the Master Processor once 

3 insert INCLUDE line in adjunct ~ystem file once 

4 update adjunct prototype file once 

5 compile driver source code as needed 

6 create bootable object file as needed 

7 run touch(l) on system file as needed 

8 stor> adjunct processor as needed 

9 restart adjunct processor as needed 

Figure 12-16 3B4000 Adjunct Processor Software Driver Installation Checklist 

The Perform column indicates how many times the step should be performed. Steps performed once 
are found in the previous section, "Installing a Driver for the First Time"; steps that are performed as 
needed are explained in this section. (Compiling a driver is explained at the start of this section.) 

Install adjunct processor software driver as follows: 

Step 6 Create a bootable object file with the drvinstall(IM) command. (Once a major device 
number is assigned, you can use either drvinstall or mkboot as shown in the sections on 
installing a hardware driver.) The drvinstall command has the following format: 

letc/drvinstall -P pe# -d pathname-of-object-file -vl.O 

Use the -d option to identify the pathname of the input object file. Use the -vl.O 
argument (required) to specify the version number of drvinstall. When run, drvinstall 
returns the major number. drvinstall creates a new major number if a dash (-) is 
encoded in the SOFT' column of the master file. If a number is already in the SOFf 
field, drvinstall echoes that number as the return value. If a major number is created, 
drvinstall replaces the dash under SOFT' in the master file with the new major number. 
drvinstall creates a bootable driver file in the !boot directory in the fonn of the driver 
name in upper case. 
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Step 8 
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NOTE: drvinstall can be run from any directory. However, drvinstall does not accept 
a dot (.) as the directory name. It only accepts the full pathname of the input 
object file created with the appropriate cc(l) command. An input object file 
compiled by cc must never be placed in the boot directory. Therefore, put the 
input object file elsewhere and always use drvinstall with the -d option. 

If key files that drvinstall accesses are located in non-standard locations or are for 
adjunct processors, identify the files to drvinstaIl with ~he following options: 

file default option 
master file fetclmaster.d -m 
system file fetclsystem -s 
output directory fboot -0 

If you are installing a previously installed driver, run the touch(l) command on 
fetclsystem. If this is the first installation of a driver, skip this step. When you added the 
INCLUDE line to fetefsystem, you achieved the same purpose as this step. This 
command sets the date of last modification to the current date. 

Take the adjunct processor out-of-seIVice with the stopape(lM) command. For example, 
to stop adjunct processing element #120, enter 

# /etc/stopape -P 120 

If a file system on the adjunct has active processes, the adjunct is not stopped unless you 
add the -K option to the command. 

Restore an out-of-seIVice adjunct processor with the bootape(lM) command. bootape 
creates a new version of the operating system if the date on the fadjfpe#letclsystem file 
has been updated with touch or fadjlpe#funix file has been moved and copied back. For 
example, to boot adjunct processing element 120, enter 

# bootape -P 120 
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During the testing and debugging phase, you may want to install your driver in an "unofficial" 
manner so you can easily restore the system to a normal operating state, without the driver. How 
you install your driver during this phase will be determined by considerations such as whether the 
system is dedicated to development or also a production machine and whether other people are 
developing other drivers on this same machine. 

On the 3B15 or 3B4000 computers, you can bring your computer up in "magic mode". At the "Enter 
pathname" prompt, enter 

magic mode boot -dir 

Where boot-dir is an alternative Iboot directory. You are then prompted for the system file name. 
The configuration is generated and then a load map is listed. Control returns at firmware mode. 
This is useful when using specialized debugging tools that permit break point setting and memory 
examination. If your site supports such a tool or if you wish to configure a system with an alternative 
Iboot directory, you may wish to substitute this procedure in the following installation steps when 
booting the computer is necessary. 

This section recommends installation steps to take if you are developing your driver on a computer 
that is used for other purposes, that will need to be restored to normal operation in between your 
testing times 

1 If it is necessary to modify the letclsystem file for your driver, make a copy of it (such as 
letcljanesystem). The installation will be performed on the letclsystem file. Should 
something go wrong, copy letcljanesystem back to letclsystem to restore the system file to 
its previous state. 

2 For hardware drivers, add an EXCLUDE line to the letclsystem file. This will prevent 
your driver from being configured when you boot from letclsystem. 

3 Copy the lunix file to another name that is not currently in use (such as Iholdunix) or 
back it up to tape or floppy disk. Be sure you do not overwrite a copy of lunix that 
someone else is holding. 

4 If necessary, modify the letclinittab or letclrcO files or add scripts to the letclbrc.d or 
letclrc.d directories. If you have to restore the system to normal operating status after 
your testing, you will need to remove these entries and files. 

5 For software drivers, run the letc/drvinstall(lM) command. 

6 Create the special device files with the mknod(lM) command. 

12-38 BCI Driver Development Guide 



Installing a Driver for Testing 

7 Create the master file in the letclmaster.d directory, under a name such as newmaster. 
As an alternative, you can create a separate master directory and indicate it with the 
mkboot -m option. When installing one or a few drivers, using /etclmaster.d should not 
cause any problems. However, if you create an alternative master file directory, when 
you use drvinstall, specify the -m option so that the new master file directory is 
checked. In addition, if you are installing a software driver, you should be aware that 
since drvinstall selects the major number, you may have a duplicated major number. 
This may necessitate re-installation of your driver when you want to place your master 
file in letclmaster.d. 

Several installation tasks can be done once and used throughout the testing/debugging phase, while 
other tasks must be redone every time you modify the driver code. 

1 Create the driver object code by compiling the driver source code. This should not be 
done in the Iboot directory, but in the development directory. 

2 Run mkboot to create a bootable object file in /boot. Run this from the development 
directory where you have created the master.d and driver object file. A sample 
command line is 

letc/mkboot driver.o 
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Installing a Driver in a Cross Environment 

You can develop a driver for a different type of computer or UNIX System Release than the one on 
which you are developing; this is referred to as working in a cross environment or native environment. 
This discussion is restricted to UNIX System V Release 3.0 and later on the 3B2, 3B15, 3B4000, and 
SBC computers, although many of the principles can be applied to other situations. 

For this discussion, development machine refers to the machine on which you are working; target 
machine refers to the other computer or operating system on which you want the driver to run. 

To compile in a cross environment, you must have the following installed on your development 
machine: 

• The C compiler and assembler for the target computer (cross Software Generation 
System - SGS) 

• Set of system headers for the target computer 
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Installation of A Com pleted Driver 

This section discusses the steps to take to officially install a driver on your own machine. If you 
intend to install this driver on a number of machines, you may want to follow the procedures in the 
section on Packaging Installation and Removal Procedures in Chapter 16. 

CodeCleanU'p 

Before officially installing the driver, you should clean up the code. You can remove statements used 
for debugging or surround the code in the conditional compile #if .•. #endif statements. For 
example 

#if DEBUG 
cmn_err(CE_CONT,"Starting Shutdown.O); 

#endif 

Specific items to look for in driver code include 

• Remove or surround in #if ..• #endif all cmn_err statements put in for tracing and 
debugging. 

• Check that the text of cmn_err statements are clear and contain no spelling or 
grammatical errors. 

• Remove or surround in #if ... #endif all calls to the TRACE driver. 

• Check that the sleep priorities have been reset to an appropriate level for a production 
driver. 

• Disable private logging and debugging utilities built into the driver. 
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In addition, you should check for the following items before releasing any software for production 
work 

• Be sure that code is thoroughly commented. 

• If appropriate, be sure that all unnecessary references to proprietary information and 
development names are removed from the comments. 

• Check that the #ident statement is present and contains the appropriate version 
information. The information enclosed in the #ident statement is placed into the 
.comment section of an a.out file. This capability, known as an S-list, is useful for 
keeping software version information. Refer to the documentation that accompanied 
your "e" programming language utilities for more information. 

• If you are copyrighting the software, this may be the time to change all copyright notices 
to reflect a final product rather than work in progress. Check with your own legal 
counsel about when to take this step. 
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Rem oving a Driver 

To remove a driver from the system, you must remove (or restore to their former state) all files that 
you modified to add the driver to the system. The procedure is 

1 For hardware drivers, physically remove the hardware device and associated subdevices 
from the system. 

2 For hardware devices on the SBC, 3B2 computers, and the 3B4000 ACP, edit the 
edCdata file to remove the device and its associated subdevices. If necessary, remove 
any associated diagnostics files from the /dgn directory. 

3 For hardware devices, delete the files in the /etclmaster.d and the /boot directories for 
your driver. 

4 For software drivers, run one of the following commands: 

letc/drvinstall -u -dobject 
letc/drvinstall -u -mmaster 

This removes the boatable object file from the /boot directory, replaces the major 
number in the appropriate fetclmaster.d file with a dash, thus unassigning the major 
number, and removes the INCLUDE line from the fetclsystem file. 

5 Remove special device files and any fetc/rc* or /etc/brc.d scripts you created. This will 
vary with the functionality. For instance, if the script will actually be looking for the 
kernel routines from the driver, it must be removed. Other drivers, such as those that 
remake special device files, may be harmless if not removed. All such files should be 
removed (or restored) when you permanently remove the driver from the system. 

You can temporarily remove a driver from the system (such as during testing and debugging) by 

Hardware Driver: Add an EXCLUDE line to the fetclsystem file for the hardware device. 

Software Driver: Remove the INCLUDE line for the software device from the fetclsystem 
file. 

After altering the system file, reboot your system and make a new funix file. The new funix should 
be identical to the /unix you saved before adding the new drivers. 
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Introduction 

Debugging a driver is largely a process of analyzing the code and thinking about what could have 
caused the problem. The UNIX operating system includes some tools that may help, but because the 
driver operates at the kernel level, the tools can only provide limited information. For this reason, it 
is useful to do simulation testing of the driver as a user-level process before installing it and beginning 
formal testing. 

This chapter describes the tools that are available for testing the installed driver and how to use them. 
It then discusses some of the common errors in drivers and some of the symptoms that might identify 
each. 

The six aspects of debugging a driver are 

1 Test the basic functionality of the hardware (hardware drivers only). 

2 Debug the C code with the standard C programming language debugging tools. (This is 
not discussed here.) 

3 Simulation test the driver at the user level. 

4 Install the driver and ensure that the system can be booted with the driver in place. 

5 Test the functionality of the driver in single-user mode. 

6 Test the driver on a fully-loaded system (integration testing). 

During the first phases of testing, remember that your driver code is probably not perfect and that 
bugs in the driver code may well panic or damage the system, even parts of the system that may seem 
unrelated to your driver. Testing should be done when no other users are on the system and all 
production data files are backed up. 

You should test the functionality of the driver as you write it. If you are actually changing code from 
another driver, it is useful to install and test the driver after you have modified the initialization 
routines and the read/write or strategy routines. This testing involves writing a little program that 
just reads and writes to the device to ensure that you can get into the device. When all the routines 
for the driver are written, install the hardware and do full functionality testing. 
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Testing the Hardware 

In addition to testing and debugging the driver, you must also test the hardware device itself. While. 
the area of developing, testing, and debugging the hardware is beyond the scope of this book, the 
following guidelines are suggested: 

• Very early in the development process, you should get the equipment and do some basic 
tests on its integrity, such as ensuring that it can be powered up without problems and 
access registers on the peripherals. If the device does not pass these tests, it can be 
returned to the vendor for further development while you write the driver. 

• Write a stand-alone board exerciser that runs at the firmware level (not under the UNIX 
operating system) to detect hardware bugs. This is an interactive program that is used to 
exercise a board under controlled conditions. The device should pass these tests before 
you attempt to test it with your driver. 

• Test the diagnostics that are hard coded on the board by corrupting the hardware and 
booting the system. Check that the diagnostics detect the corruption and that the 
messages are sufficient to indicate the maintenance that is required. Power-up 
diagnostics should verify sanity at a gross level. Demand-phase diagnostics should be 
used for more extensive checks on the board, such as identifying marginal or intermittent 
errors. 

To ensure that the kernel-device interface is functioning properly, write a simplified driver that 
contains dummy routine calls for the init(D2X), start(D2X), open(D2X), c1ose(D2X), read(D2X), 
and write(D2X) routines. For instance 

qq_open( ) 
{ 

cInn_err(CE_CONT,"Open routine entered\n"); 
} 

This simplified driver should contain an ioctI(D2X) routine that gives user program control to each 
control bit in the control status register (CSR). This lets you test each hardware function and ensure 
that the hardware is perfonning in the proper operational sequence. The exact layout of the CSR is 
specified in the /usr/include/sys/cc.h file. 
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Testing Driver Functionality 

The process of testing driver functionality is piecemeal: you have to take small pieces of your driver 
and test them individually, building up to the implementation of your complete driver. The UNIX 
operating system provides tools, such as crash(1M) (which can be used either for a post mortem 
analysis or for interactive monitoring of the driver) and the trace driver (for the 3B4000 computer), 
to help you. 

Driver routines should be written and debugged in the following order: 

1 init(D2X), start(D2X) 

2 open(D2X), close(D2X) 

3 interrupt routines 

4 ioctl(D2X), read(D2X), write(D2X) and/or strategy(D2X) and print(D2X) 

When the driver seems to be functioning properly under nonnal conditions, begin testing the error 
legs by provoking failures. For instance, take a tape or disk off-line while a readiwriteoperation is 
going. 

After you are comfortable that both the hardware and software behaves as it should during error 
situations, it is time to concentrate on fonnal perfonnance testing. This is discussed in Chapter 14, 
"Performance Considerations." 

Getting Started 

CAUTION: Before trying to install or debug the driver, back up all information in your file 
system(s). Drivers can cause serious problems with disk sanity should an 
unanticipated problem occur. 

Compile your driver and produce an up-to-date listing and an object file. The following conventions 
must be observed: 

• Ensure that all your cDlD_err(D3X) calls direct output to at least the putbuf memory 
array. (putbuf defaults to a maximum size of 10,000 bytes.) 

• Compile your driver without the optimizer, with the -g option enabled. 

• Use the pr -n(1) command to produce a listing of the source code with line numbers. 
Alternatively, list( 1) can be used to pull line number information out of the driver object 
file. 
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• Use dis(l) to produce a disassembly listing. This is useful to have on hand, even though 
you get the same .information using the crash dis function. 

• Use Iist( 1) to produce a listing that correlates the line numbers in the disassembly listing 
back to original source file. 

Using the instructions in Chapter 12, "Installation," install your driver. If the UNIX system does not 
come up, divide your driver into separate sections and install these separately until you find the 
problem. Fix the problem and install the driver. 

After the driver is installed, run mkunix(IM) to create a new lunix file. 

In single-user mode, run nm(l) on lunix (with the -neC options) to create a name list for the entire 
kernel. All addressing is virtual. The name list gives the starting locations (routine names and 
starting addresses) of the instructions and variables. 

U sin g c m n _e r r 

Use the cmn_err(D3X) function to put debugging comments in the driver code; when the driver 
executes, you can use these to tell what part of the driver is executing. The CDlD_err function is 
similar to the printf(2) system call but it executes from inside the kernel. For instructions on using 
the cmn_err statement, see Chapter 11, "Error Reporting. " 

cmn_err statements for debugging should be written to the putbuf where they can be viewed using 
crash. Because they are written by the kernel, they cannot be redirected to a file or to a remote 
terminal. You can also write CDlD_err statements to the console, but massive amounts of statements 
to the console will severely slow system speed. 

Calculations and CDlD_err statements that are for debugging and other testing should be coded within 
conditional compiler statements in the driver. This saves you the task of removing extraneous code 
when you release the driver for production, and makes that debugging code readily available should 
you need to troubleshoot the driver after it is in the field. 
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You can provide separate code for different types of testing to which the driver will be sUbjected. 
For instance, you might use TEST for functionality testing, PERFON for minimal performance 
testing, and FULLPERF for full performance monitoring. Each of the testing options is then defined 
in the code as either 0 (turned off) or 1 (turned on), as illustrated in Figure 13-1. 

1* 
* TEST = 1 for functionality testing 
*1 

#define TEST 1 
1* 
* PERFON = 1 for minimal performance monitoring 
*1 

#define PERFON o 
1* 
* FULLPERF = 1 for full performance monitoring 
*1 

#define FULLPERF 1 

Figure 13-1 Defining Test Options 

Note that minimal performance monitoring is turned off, which is appropriate because full 
performance monitoring is turned on. 

Debug code is then enclosed within #if TEST and #endif. When the code is compiled with the 
-DTEST option, the test code will execute. 

The testing procedure can be refined further by using flags within the conditionally-compiled code. 
Then, when TEST is turned on, you can specify the exact sort of testing without recompiling and 
reinstalling the driver. The flags should use the driver prefix. For instance, the following code sets 
three flags for testing the int routine, the strategy routine, and driver performance: 

#if TEST 
int xX_intpr, xx_stratpr, xx_perfpr; 
#endif 

The flags reside as the first words in the .bss section of the driver code. To turn on one or more flags 

• get the start address of . bss from the namelist with a command similar to 

nm -x lunix I egrep 'xx_intprlxx_stratprlxx_perfpr' 

• write a little program that prompts you for the address of the flag(s) you want turned on, 
then specifies location in memory 
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The crash(lM) utility allows you to analyze the core image of the operating system. It is most 
frequently used in postmortem analysis of a system panic, but can also be run on an active system. 
The output from crash can help you identify such driver errors as corrupted data structures and 
pointers to the wrong address. Its shortcoming as a debugging tool is that it is difficult to freeze the 
core image at exactly the point where the error occurred; even if the error causes a system panic, the 
core image may be from beyond the point of actual error. This is especially true when debugging an 
intelligent board, because an autonomous intelligent controller continues processing even though you 
have halted kernel-level processing on the main memory. Moreover, for intelligent boards, the crash 
dump cannot get at the onboard data structures. 

On the 3B4000 computer, the crash command is used with the -P PE-number option to specify an 
adjunct processing element. The crash command run without a -P option or with -P 121 analyzes the 
Master Processor (MP) kernel. When running crash on an adjunct, the system uses the following 
files: 

/adjlpe#/unix 
/adjlpe#/dev/mem 

for symbol table (located on MP) 
for memory access (located on the adjunct) 

Each invocation of crash can only look at one kernel. Should you need to view more than one 
kernel simultaneously, use a separate terminal or window to invoke crash on each kernel. 
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Saving the C ore 1m age of M em ory 

To run crash as a postmortem analysis on a panicked system, you must save the core image of 
memory before rebooting the system and have a copy of the bootable kernel image (I unix file) that 
was running. 

The following table summarizes how to save the core image of memory on the various computers 
covered in this book: 

Table 13-1 Saving Core Image of Memory 

30mputer Command Destination of Dump 

SBe sysdump(8) Floppy on 1st disk controller 

3B2 sysdump(8) Floppy disk(s) mounted on /dev/cOdOs6 

3B15 and 3B4000 MP dump(8) Partition specified in Idev/dump, as 
specified by DUMPDEV in 
I etc! system, unless otherwise specified 

3B4000 Adjunct adjdump(8) adjdump.out in current directory unless 
otherwise specified 

On the SBC and 3B2 computer, you use a series of floppies to hold the memory dump. The system 
prompts you to load the next diskette. Be sure that these diskettes are labeled clearly so you can load 
them in the proper sequence when running crash. The label information should include the date and 
time of the dump. 

On the 3B1S computer and 3B4000 Master Processor, the system automatically takes the dump 
when the automatic reboot feature is enabled. You should copy the contents of the Idevldump 
partition to a regular file after the system is rebooted to avoid overwriting the information. A 
common procedure is to create a directory, such as lusrldumps, to hold memory dumps. The regular 
files in this directory should have names that include date and time information and, for the 3B4000 
computer, PE number. 

On the 3B4000 Adjuncts, the MP must be running in either single- or multiuser state and the MAP 
must be running before you run adjdump. If necessary, start it with the sysadm startmap command. 

For full instructions on running these commands, consult the administrative documentation for the 
appropriate system. 
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Before running crash, check that the memory dump is sane. Verify the following: 

• The size of the dump file should match processor memory size. 

• The stat function should give the correct system name, node, and release of the running 
operating system. Be sure that the UNIX system version agrees with the namelist file 
being used. 

• The date and time of the crash reported from the dump file should be reasonable given 
the actual date and time of the system panic. Note that the dump may be usable even if 
this information is wrong. 

• The PID, PPID, PGRP, UID, PRJ, and CPU fields should have reasonable numbers 
when reported by the proc function. Note that the values will be decimal. 

• The user function should not respond with a read error. 

If these checks indicate that the memory dump is not sane, try to reproduce the error and take a new 
dump. 

Initializing crash on the M em ory Dum p 

To run crash on the core image of memory at the time the system panicked, you must have saved the 
core image before rebooting and the file containing the kernel bootable image (/unix file by default) 
that was running at the time of the crash. The crash command can be run by any user with read 
permission on the Idumpfile. 

The command to initialize crash is 

fete/crash -d dumpfile [-n namelist] [-w outputfile] 

For a 3B4000 adjunct, use the -P PE-number option to specify an adjunct kernel. For example, to 
initialize crash on PE 8, the command is 

fete/crash -P 8 -d dumpfile [-n namelist] [-w outputfile] 

When running a postmortem crash analysis, you must specify the file that contains the memory 
dump. On the SBC and 3B2 computer, you can run crash directly from the floppy disks by 
specifying -d fdevfifdsk06, or you can first run Jdsysdump(lM) to write the contents of the floppies 
to a file on hard disk and specify the name of that file. 

If the bootable kernel image is named something other than lunix (either because it was named 
something else at the time of the panic or because you copied it to another name after the panic), use 
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the -n option or the second positional parameter to specify that file name. If you want the output of 
crash to be written to· a file rather than your tenninal (standard output), use the -w option with the 
name of the file. Note that the output of a specific crash function can be redirected to a file even if 
you do not use the -w in the crash command line. 

The first step in using crash to analyze a post mortem dump is to detennine your program's offset. 
The technique for doing this is 

1 Find the registers for your program, specifically the stack pointer. 

2 Locate the stack and trace back through the stack to find the last routine called by your 
driver. The very last routine on the stack pointer should be the panic message that 
invoked the crash. Data in the stack previous to the crash can contain pointers to 
various parts of the kernel. You have to sift through the data in the stack to find the last 
routine called by your driver. This involves cross referencing between driver listings and 
the core dump using the crash om function to examine the stack addresses until the 
information is found. 

3 The offset is the difference between the program counter and where the last routine 
started. 

From the program counter, you can determine from the name list the exact routine that was 
executing at the time of the failure. Going back to the disassembled listing of your driver, you can 
then detennine the exact instruction that was running. You should then use the output of the list 
command to determine the exact line in your source file where the failure occurred. 

In the postmortem dump, you will need the offset described previously. crash displays in absolute 
code segments without access to your program's symbolic constants. You must use your program's 
offset to determine where your program is in the kernel and to trace its flow. 

Initializing crash on an Active System 

Running crash on an active system is useful for checking the buffer pools, determining that the 
members of driver structures have correct values, and ensuring that all operations are synchronized. 
Interactive crash also enables you to examine the contents of the putbuf at any time, which is useful 
if your driver code is written to utilize this feature. You may want to use two terminals for 
debugging: one to monitor the driver with interactive crash and the other to issue commands that 
exercise the driver. 

When you run crash on an active system, you access the /dev/mem node, which is the default for the 
-d option. The command is 

fetclcrash [-n /unix] [-woutputfile] 
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You must use the kernel image that is running; if this is not named /unix, specify the name of the file 
with the -d option. If you want the crash output to go to a file rather than to your terminal 
(standard output), use the -w option to specify the file. Note that the output of a specific crash 
function can be redirected to a file even if you do not use the -w in the crash command line. 

Note that crash does not allow you to view active memory as it-runs. Rather, you take an image of 
memory every time you issue a command and this is what you look at. 

Using crash Functions 

The crash session begins by reporting the dumpfile, name list , and outfile being used, followed by the 
crash prompt (». Requests in the crash session have the following standard format 

function [argument . .. ] 

where function is one of the supported functions of crash and argument includes any qualifying data 
relevant to the requested function. Use the q function to end the crash session. 

Consult the crash(lM) page in the System Administrator's Reference Manual for a list of functions 
supported on your computer. Note that a number of crash functions from UNIX System V Release 
2 were replaced with other functions on UNIX System V Release 3. Note also that, while most 
crash functions are common to all computers, each system also has unique functions that relate to 
specific devices supported on that machine. The crash(lM) manual page lists the valid crash 
commands. 
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A TRACE driver allows you to look at a buffer in the crash dump to find out what the last few 
kernel events were. It is useful when debugging an internally complex driver. For instance, TRACE 
can help identify the cause of a deadlock condition for a driver that is handling communication 
protocols. 

The UNIX operating system on the 3B15 and 3B4000 computers includes a TRACE driver as part of 
the basic system. Although this is part of the Virtual Protocol Machine (VPM) subsystem, you can 
use it for drivers that are not part of VPM as long as you obey the interface requirements. You will 
need to write a user program to interpret the output. 

Using TRACE 

The 1RACE driver is described in trace(7) in the 3B4000 System Administrator's Manual. The 
procedure for using this tool is 

1 Put many trsave function calls in your code. The calls are in the form 

where: 

trsave(dev, chno, buf, cnt) 
char dev, chno, buj, cnt; 

dev a minor device number for the trace driver 

chno data stream channel number in the range of 0 to 15. 

buf buffer containing the data for an event 

cnt the number of characters in the buffer 

An example of a trsave call is 

trsave(O, 7, &entry, sizeof(entry)); 

Where "0" is the device number, "7" is the channel number, and "&entry" is the 
address of the buffer to be listed. In general, you can define this structure any way that 
is appropriate for your driver. 
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2 From user space, use open(2) to open the minor device number. 

3 Then use ioctl(2) with the VPMSETC command to enable the selected channel. 

Using the putbuf to Select Specific Channels 

As an alternative to using the previously described trace driver, you can use the putbuf to select 
certain channels. To do this, use cmn_err(D3X) statements like the following in the driver code: 

CInn_err(CE_NOTE, "tDEBUG: CH%, message, more message",channo); 

The following crash command enables you to select only those messages for channel 4: 

crash «: I grep 'CH4' 
putbuf d a 
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When you are satisfied with the performance of the driver in a fairly isolated environment, you 
should test the driver's functionality, error handling, and performance in an integrated environment. 
Activate as many other drivers on the system as possible, and do error-provoking tests as well as tests 
to ensure that the performance level remains adequate on an active system. As you will see later in 
this chapter, the interaction between drivers in a system may uncover errors that would never surface 
in tests run on an isolated driver. As a general rule of thumb, never ignore unexpected behavior on 
the system when you are testing the driver, particularly system level activity. For instance, watch for 
an increase in errors logged by other devices - your driver may be the cause. 

Some examples of configurations on which the driver and the device should be tested are 

• multiple copies of the new peripheral board in the system 

• multiple subdevices on the new peripheral board 

• various mixes of other peripherals, including those at the same or different bus request 
and interrupt pnority levels 

• (SBC-only) with and without VME memory boards present, using both block 110 and 
character 110 

• system heavily loaded with user processes (to ensure that pages are being allocated 
properly) 

When testing a driver for an intelligent board, you may find it useful to use an emulator tool that 
enables you to start and stop the microprocessor used in that board. 

ASSERT 

ASSERT puts debugging code in the driver that checks for some condition that must be true. It 
panics the system if that condition is not true. This enables you to confirm that the kernel remains 
sane when your driver is installed. 

To use ASSERT, include debug.h and compile the driver code with the "-DDEBUG" option to the 
cc(l) command. 

Testing and Debugging the Driver 13-13 



Integration Testing 

The format for ASSERT is 

#include <sys/debuq.h> 

AS S ER T ( expression); 

ASSERT displays a message in the following format 

PANIC: assertion failed: expression, file: file, line: line# 

The message is also written to putbuf. ASSERT is defined in the /usrlinclude/debug.h file. 

An example is 

35 ASSERT(mp 1= NULL); 

If mp is equal to NULL, the system panics and displays 

PANIC: assertion failed: mp != NULL, file: file, line: 35 

13-14 BCI Driver Development Guide 



Com m on D river Problem s 

The next several pages discuss some of the common bugs in drivers with possible symptoms. These 
should be used only as suggestions. Each driver is unique and will have unique bugs. 

Coding Problem s 

Simple coding problems will usually show up when you try to compile the driver. In general, these 
will be similar to coding problems for any C program, such as failure to #include necessary header 
files, define all data structures, or properly delineate comment lines. Specific coding errors unique to 
driver code include 

• ifdef-related problems, such as not providing for certain combinations 

• inadequate handling of error legs 

C 0 ptim izer Bugs 

The optimizer (-0 option to cc(l» on all CPLU 4 releases can be used on drivers without causing 
problems. However, some old versions of the C optimizer cause problems when used on driver code. 
For instance, assume a device register is being set to 0 inside a loop, the register is not accessed 
anywhere else in the loop, and that the register must be set to 0 for every iteration of the loop. The 
optimizer pulls the statement that initializes the variable to just before the loop, which results in a 
bug in the driver. Disassembly, using either the dis(l) command or the crash dis function, can 
identify such problems. 
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Installation Problem s 

Installation problems refer to problems that prevent a system boot with your device configured. If 
the system won't boot, first try to boot it without the driver to verify that the driver is the problem. 
Chapter 5, "System and Driver Initialization," includes a list of .driver rules· that are enforced by the 
self-configuration process. Other driver problems that prevent a system boot are 

• Missing information in the letclmaster.d file. Specifically, external variables that are not 
defined in the master file will not be detected when the driver is compiled but will cause 
the following lboot error message: 

symbol undefined set to zero 

and will probably cause a kernel MMU panic when the variable is referenced. 

• Errors in the init or start routine. You can check that the initialization routine is being 
entered by inserting an unconditional cmn_err statement at the beginning of the routine. 

• Allocating an array in the letclmaster.d file then not declaring it as a global data 
structure for the driver or initializing it in an init or start routine. This will not prevent 
you from booting the system the first time, but may preclude a reboot from a lunix file. 

Data Structure Problem s 

A driver can corrupt the kernel data structures. If the driver is setting or clearing the wrong bits in a 
device register, a write operation may put bad data on the device and a read operation may put bad 
data anywhere in the kernel. Such errors may affect other drivers on the system. Finding this bug 
involves painstaking walk-throughs of the code. Look for a place where perhaps a pointer is freed 
(or never set) before the driver tries to access it, or places where the code forgets to check a flag 
before accessing a certain structure. 
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M ism a tc h e d Data E Ie men t S iz e s 

Data element sizes in the master file should match those defined in the driver code. If the master file 
size is larger than the C-Ievel definition, kernel memory is wasted but otherwise no harm is done. 
However, if the master file size is smaller than the C-Ievel definition, the driver may overwrite some 
other driver's data when storing into what appears to be its own variable. This could cause the other 
driver to behave strangely, or might cause a kernel panic if it attempts to write beyond the mapped 
kernel memory. 

To check this, use the nm(l) command to display the symbol table of the driver object file. For 
instance, if the header file includes 

struct drv_struct { 
int x; 
short y; 
} 

and the driver source code includes 

struct drv_struct drv_xx 
struct drv_struct drv_yy[10]; 
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compile the code and examine the name list as follows: 

$ cc -c -0 drv.o drv.c 

$ nm -x drv.o 

Symbols from drv.o: 

$ 

Value 

L0000008 
~0000050 

Gass Type 

~
file 
xtern 
xtern 

Size Line Section 

Because the value of an external variable in an object file is the number of bytes of storage it 
requires, the corresponding master file should define these elements as shown below. Note that the 
values of the columns other than DEPENDENCIESIV ARIABLES are irrelevant for this discussion. 

* DRV driver 

* 
* FLAG 

cs 
#VEC 
1 

PREFIX 
drv 

SOFT #DEV IPL DEPENDENCIES/VARIABLES 
1 4 drv_xx(Ox8) 

drv_yy[10] (Ox8) 
or, as an alternative 

drv_yy(Ox50) 

The above sequence works if the data items are defined and declared in the C code. The process is 
more complex if (boot is doing dynamic data definitions. For instance, if the driver code has 

extern struct drv_struct drv_xx; 
extern struct drv_struct drv_yy[]; 

drv _sub( ) { 
drv_xx.x++; 
drv+yy[O].y++ 
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the compilation/name list session would yield the following: 

$ cc -C -0 drv.o drv.c 

$ om -x drv.o 

Symbols from drv.o: 

Name Value 
drv.c 
drv_sub 50000000 
drv_xx 0000000 
drv_yy 0000000 

$ 

Gass 

~file xtem 
xtern 
xtern 

Type 

int( ) 

Size Line 

r1e 

and the external variables are not flagged with any size. 

Common Driver Problems 

Section 

. text 
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To figure out what is needed in the master file, compile the driver with debugging information. 
Actually, during driver development, most compilations will include debugging information anyhow. 
Thus, 

$ cc -g -c -0 drv.o drv.c 

$ om -x m.o 

Symbols from drv.o: 

Name Value Qass Type Size Line Section 
drv.c file 
drv_struct 
x 0000000 (ABS) 
y 0000004 (ABS) 
.eos 008 (ABS) 
drv_sub 0000000 Ole . text 
.bf 0000009 Ole . text 
.ef 0000017 Ole . text 
drv_xx 0000000 
drv_yy 0000000 

$ 

This gives some excess information, and doesn't directly specify the size of drY_xx and drv..ss, but 
the size field of the de~struct structure indicates the size of the element. To accurately 
communicate the size of the dynamic array, one more variable is required. So, the code becomes 

extern struet drv_struet drv_xx; 
extern struct drv_struet drv_yy[]; 
extern int 

drv_sub() { 
drv_xx.x++; 
drv+yy[ 0] .y++ 
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The master file contains the following information: 

* DRV driver 

* 
* FLAG 

cs 
#VEC 
1 

PREFIX 
drv 

SOFT #DEV 
1 

Common Driver Problems 

IPL DEPENDENCIES/VARIABLES 
4 drv_xx(Ox8) 

drv_yy[10] (Ox8) 
drv_cnt(%i) = { #C } 

This dynamically allocates space for drv sy according to the number of controllers present, and 
initializes de~cnt to that number, so the C code can determine the size of the drvsy array. 

Value of Initialized Global Variables 

The driver should not depend on initialized global variables having the value assigned them in the 
driver source file. When the system is booted in absolute mode (from a lunix file), driver global 
variables that are not explicitly initialized will be in .bss and will be zero. Global variables with 
initializers will be in .data and will have whatever value they had at the time the lunix file was 
created. 

Timing Errors 

Timing errors occur when the driver code executes too quickly or too slowly for the device being 
driven. For instance, the driver might read a status register on a device too soon after sending the 
device a command. The device may not have had time to update the status register, so the status 
register is perceived by the driver to be all 0 bits when, in fact, the device may just be slow in posting 
the correct status register setting. 

When testing the driver, it is useful to verify that a simple, single interrupt is being handled properly. 
After this is confirmed, you should check that the interrupt handler can handle a number of 
interrupts that happen at almost the same time. 

-1m proper IPL in M aster File 

If the IPL in the master file is not appropriate for this device on this system, the driver may cause 
system-wide data corruption or system sanity failure on a heavily-loaded system. 
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Corrupted Interrupt Stack 

If a driver's interrupt handler runs at an execution level lower than the corresponding IPL for the 
device, the processing of one interrupt may be interrupted by a second interrupt from the same 
device. This will seriously corrupt the interrupt stack, which may cause the system to panic with a 
stack fault or kernel MMU fault. Sometimes, however, it will only cause random operational 
irregularities, which can make this a difficult problem to detect. You can identify this problem by 
looking at the interrupt stack in the system dump. If it is corrupted, check the execution level of the 
driver's interrupt handling routine. 

Referencing u_block Data Elements from Interrupt Level 

The data elements of the u_block (see user(D4X)) should never be referenced from interrupt 
handling routines or subordinate routines that are called by these routines. This will cause random 
failure of processes on the system, frequently even processes that are not accessing this driver. 

Accessing Critical Data 

Check the driver code for data structures that are accessible to both the base and interrupt levels of 
the driver. Ensure that any section of the base-level code that accesses such structures cannot be 
interrupted during that access by using the spln(D3X) function. 

Overuse of Local Driver Storage 

If the driver routines use large amounts of local storage, they may exceed the bounds of the kernel 
stack or the interrupt stack, which in tum will panic the system. 

Incorrect DM A Address Mapping 

Failure to set up address mapping for DMA transfers correctly is another common mistake. On a 
read operation, a bad address map may cause data to be placed in the wrong location in the main 
store, overwriting whatever is there including, for example, a portion of the operating system text. 

To check for this, write a simple user program that writes data to all possible memory locations 
(including shared memory, stack, and text), then reads it back and compares the input and output. 
As soon as anyone of these operations fails, you should reboot the system immediately to ensure that 
kernel memory is sane. 
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Introduction 

One of the most important phases of driver development is evaluating the performance of the driver, 
which must include the overall impact a driver has on system performance. After a driver is written, 
tested, and debugged, adjustments may still be necessary to optimize performance and reliability. 
You may also want to create tools (or augment existing system tools) to monitor a driver's impact on 
system performance. 

The first step in optimizing the performance of the driver is to run the kernel profiling tools 
(protiler(IM) to identify where the driver spends the most time. Optimizing those areas will give 
the greatest gains in performance for the least effort. In most cases, these improvements can be 
accomplished by rewriting portions of C code. 

If further performance enhancements are needed, some critical functions can be rewritten as asm 
pseudo-functions. The lusrlincludelsyslinline.h file defines a number of system functions (including 
spl*) as asm macros. Including this header file in driver code may improve execution speed, but may 
also impact the portability of the driver to other UNIX System V processors or releases. 

Using assembly language code in a driver will also make the driver more difficult to port and 
maintain. When converting C code to assembler to improve performance, be sure to comment out 
(rather than delete) the C code that provided the same functionality. 

A driver with satisfactory performance may still degrade general system performance, either because 
it is monopolizes system resources or because the driver's tunable parameters are not set correctly. 
Integration testing of a driver, should include checking both resource usage and tunable parameters. 
Tools may be created to monitor the activity a driver, but be careful. Experienced programmers 
know that complex tools often create more system performance problems than they solve. 
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General Perform ance Guidelines 

A number of general performance guidelines are summarized below. 

1 Do not include extraneous code in the interrupt routines, but get in and out of these as 
quickly as possible. 

2 Keep critical code sections (those that are protected by spl*) as small as possible. 

3 Choose sleep priorities that do not cause your driver to hog system resources. 

o ptim izing for Speed and Size 

Optimizing code can mean either increasing execution speed, reducing the size of the code, or both. 
For driver code, "size" can refer to either the executable codesize or data size. Here the general term 
"driver object size" refers to the sum of code and the data size. Some optimization techniques will 
reduce both driver code and data size, while other techniques will trade off between them. Still other 
techniques will optimize for speed and the cost of driver object size. 

The size(l) command can help to evaluate the driver object size, but it does not include any storage 
defined in the master file and allocated by self-configuration. For instance 

size /boot/xdrv 
5176 + 364 = 0 = 5540 

does not include the variables defined in the master file: 

xdrv_xdc[#C] (%Ox29fc) 
xdrv_cnt(%i) = {#C} 
xdrv_spint[#C] (%Ox08) 

so the XDRV driver will need 0x3044 bytes of .bss and 4 bytes of .data per controller, in addition to 
the 5540 bytes that size lists. 
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Tools for Checking Driver Perform ance 

Most driver perfonnance improvements will come from analyzing how the driver works and l<;>oking 
for sections where it could be more efficient. The tools discussed in this section can be used to 
support this kind of analysis. 

Testing 1/0 Operations for Block Devices 

The system buffer cache header includes the b_start member, which can be used to monitor the 
amount of time required for an I/O operation. To use this, update the b_start member when 
updating other status information in the driver's strategy(D2X) routine, then write this value to the 
putbuf where it can be examined with the crash(lM) utility, as shown in Figure 14-1. Whenever 
measuring performance, write messages to putbuf to avoid the overhead of writing to the console. 

The driver's interrupt handling routine will be called when the I/O transfer is completed. The int 
routine subtracts the value of b_start from the current time to determine the time required for the 
I/O transfer. The following code, from a disk driver, illustrates how this value is written to a queue 
that holds performance data, where it can be accessed for sar(lM) reports. Other options are to 
write it to a private queue that records performance data or to the putbuf. 

dfstrategy(bp) 

bp->b_start = Ibolt; 

#if TEST 
crnn_err(CE_NOTE, n!start time = %x'\nn,bp->b_start); 

#endif 

dfint(unit) 

dfcp->df_stat[drv].io_resp += (lbolt - bp->b_start); 

Figure 14-1 Using b_start to Measure Block 110 Performance 
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Tools for Checking Driver Performance 

Using the Disassem bier to Analyze C Code 

Disassembly involves "un-compiling" the object code to see what the compiler actually did with it. 
Driver code can be disassembled with either the dis(l) command or the crash(IM) dis function. In 
most cases, the crash dis function provides more useful information for analyzing driver code. 
Chapter 13 discusses how to use these tools. 
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Tuning the C Code for Performance 

Significant performance improvements can often be realized by fine-tuning C code. Most application 
programming practices that enhance performance are also effective on driver code. These are well 
documented in the general industry literature, such as Jon Louis Bentley's Writing Efficient Programs. 

In addition to algorithm analysis and code profiling, disassembling the C code and seeing what the 
compiler actually did with it may indicate areas that could be improved. 

To use the code optimizer, the cc command line should include the -0 option with the -K sd option 
(for speed optimization) or the -K sz option (for size optimization). The optimizer called by the -0 
option does not optimize assembler code or references to global variables. 

The following sections discuss programming practices that may enhance the performance of C code. 

Improving Both Speed and Code Size 

In general, a shorter piece of code tends to run faster than a longer piece of code, although there are 
exceptions where a shorter piece of code might be slower, due to interactions with the instruction 
cache. Here are some suggestions that can be used to produce both smaller and faster code. 

• Use local variables where possible (that is, when a variable is used only in one function 
and does not need to be global). Local variables can be addressed with shorter 
addressing modes and can be selected by the optimizer's register allocation algorithm to 
be placed into registers. 

• In for loops that count from 0 to n, recode if possible so that counting is from n to 0 (so 
that the loop termination condition is a test against zero). 

• Use integers in place of char and short variables unless the variables are in an array or 
an array of structures. 

• Use integers or characters in place of bit fields unless the bit fields are in an array or an 
array of structures. 
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Tuning the C Code for Performance 

• Put frequently used, inner block local variables and procedure arguments into registers. 
If you know which variables are used frequently at run-time, you can complement the 
optimizer's register allocation algorithm by declaring frequently used variables as 
registers. The following example shows how this technique can be used: 

msg_process(type,msg_ptr) 
int type; 
char *msg_ptr; 
{ 

} 

if(type == MSG) 
{ 

register char *cp; 
for(cp msg_ptr;*cp;cp++) 

} 

else 

In this example, the variable cp is explicitly defined as a register variable. 

• Replace array indexing operations with pointer operations. As an example, the array 
indexing operations 

int matrix[50]; 
int i; 
for(i=O; i < 50; i++) 

matrix[i]=O; 

can be transformed into the pointer operations 

int matrix[50]; 
int *ip; 
for (ip=matrix; ip <= &matrix[49];ip++) 

*ip=O; 

to increase execution speed and reduce code size. This array will be in the kernel's .bss, 
if it is external to the function. Since for a driver this runs only once during system 
initialization, the performance impact is minimal. 

14-6 BCI Driver Development Guide 



Tuning the C Code for Performance 

• Replace frequent references to global data structures by a local pointer which can be 
optimized into a register. For instance, consider code that frequently writes to the 
u_block: 

routine( ... ) 

u.arg = 
u.otherarg 

Performance may be improved when the above example is rewritten to include a local 
pointer to the u_block: 

routine( ... ) 

Increasing Speed 

{ 

register struct user * uptr = &u; 

uptr->arg = ... 
uptr->otherarg = 

} 

The following recommendations may help to increase code execution speed, although driver object 
size may be increased. 

• Use the -0 -K sd options on the cc command line. 

• Put small routines in the same file as the routines calling them. The small routines can 
then be expanded in-line by the optimizer. 

• Use short integers or characters in place of bit fields, even in arrays or arrays of 
structures. 

• Use signed in place of unsigned integers, unless the higher numeric range of unsigned 
values is required. 
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Tuning the C Code for Performance 

• Some low repetition loops (less than three iterations) can be unrolled into straight-line 
code to decrease the loop indexing overhead. For example 

for(sum=O,i=O;i<=2;i++) 
sum += X[i]; 

can be replaced with 

sum = X [ 0] + X [ 1]] + X [ 2] ; . 

Unroll the loop only if the unrolled loop is smaller than 256 bytes or if the original loop 
is already larger than 256 bytes, (size of the instruction cache). While this will improve 
performance, it may make the driver code harder to read and maintain. Be sure to 
provide adequate comments. 

Reducing Driver Object Size 

The following techniques can be used to reduce the size of object code, possibly at the expense of 
execution speed. 

• Use the -0 -K sz options on the cc command line. 

• Use characters or short integers in place of integers within arrays and structures. In the 
case of structures, care must be taken in the ordering of structure members so that 
alignment requirements (for example, shorts on halfword boundary) do not negate 
potential savings from the smaller data size by creating holes. 
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Exam pie of 1m proved C Code 

This example shows how some careful reworking of the C code can significantly improve 
performance. Figure 14-2 is a simplified version of the read(D2X) routine for a network driver 
before it was reworked. A perfonnance analysis tool measured the receive throughput for the driver 
at 5966 characters per second (cps). The read routine contains statements that are executed once
per-64 characters, once-per-16 characters, and once-per-character.Because they are executed most 
often, the once-per-character statement should be examined most closely. 

Note the definition of the first two variables (Lines 3 and 4). The compiler being used allows only 
one pointer register variable and one register variable for a short integer or character. These register 
variables are taken as the first two variables defined in a function. Placing the most frequently used 
variables in registers improves the perfonnance of the driver. 
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Example of Improved C Code 

1 pre_readO 
2 { 
3 
4 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

register unsigned char *ptr;l* MUST BE FIRST * / 
register short _fib;!* MUST BE FIRST * / 
unsi gned short c; 
struct pre_pkbufr * pkb; 
unsigned short bitIoc = 0100000; 

WHILE not empty 
*/ 

while ( !(inw(ST A TUS) & RCVR_EMPTY) ) { 
MOV_I(c); 

j* 

* * WHILE not empty AND no frame or parity error 
* * AND char is channel number 
*/ 

while ( !(inw(ST A TUS) & RCVR_EMPTY) ) { 
if «c & (PARITY _ERR I FRAME_ERR») { 
if (c & PARITY_ERR) { 
stats.parity_err-t- +; 
} 
if (c & FRAME_ERR) { 
stats.frame_err+ +; 
} 
break; 
} 
if ( !(c & CHAN_NUM) ) {/* keep looking for chan */ 
break; 
} 
ptr = &pkb->Pdata[O]; 

WHILE not empty AND not a channel number 
*/ 

while ( !(inw(STATUS) & RCVR_EMPTY) { 
MOV_I(c); 
if (c & (PARITY_ERR I FRAME_ERR» {j* parity/frame error */ 
continue; 
} 
if (c & a-IAN_NLTM) {I· it's a channel number */ 
break; 
} 

switch (c = c & MASKl) { 
!* Protocol control characters * / 
case P _C_O: 
case P_C_l: 
case P_C_2: 

case P _C_n: 
default: 
if (c & DATA_CHAR) {/* we got data */ 
if (pre_p->tail) { } j* trailer started? */ 
else {j* just data * / 
*ptr+ + = c & CHAR_MASK; 
pkb-> Plen+ +; 
bitIoc »= 1; 
} 
break; 
} 
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Example of Improved C Code 

63 
64 f- more frequent protocol control characters -/ 
65 if «(c & MASK2) = = P _C_xO) II «c & MASK2) = = P _C_xl» {} 
66 if «c & MASK2) = = P _Cx2) { } 
67 if «c & MASlG) = = P _Cx3) {} 
68 if «c & MASK2) == P_C_x4) {} 
69 if (c & SUPERVlS) {} /- supervisory control -/ 
70 else {/- in-line control character -/ 
71 -ptr+ + = c & CHAR_MASK; 
72 pkb-> Plen+ +; 
73 pkb-> Phibits 1= bitloc; 
74 bitloc »= 1; 
~ } 
76 }!* end of switch on 'c' -/ 
77 } /- not empty A.1I.lD not channel number -/ 
78 }!* not empty AND channel number -/ 
79 }/. not empty • / 
80 } 

Figure 14-2 read Routine Before Being Improved 

The body of the pre_read routine contains three nested loops. The outermost loop reads characters 
from the receive FIFO into the variable c. The middle loop searches for a channel number (signified 
by the CHAN_NUM bit being set). This loop does not read characters. It is always entered at the 
top with a character in c. This character comes either from the outermost loop or from breaking out 
of tjle innermost loop when a channel number is found. The innermost loop processes the packet 
contents. For each character, the character type is determined and appropriate actions taken. 

In lines 38 - 49 the code first checks that the character received is data, then checks for a number of 
other conditions. Less frequently encountered protocol control characters are checked for before the 
more frequent control characters. Unlike many compilers, the one being used implements the switch 
as a series of test-and-jumps. Figure 14-3 shows how this innermost loop was rewritten, increasing 
receive throughput to 7071 cps. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

/* 
* * WHILE not empty AND not a channel number 
*/ 

while ( !(inw(STATUS) & RCVR_EMPTY» { 
MOV_I(c); 
if (c & (PARITY_ERR 1 FRAME_ERR» {/* parity/frame error */ 
continue; 
} 
if (c & CHAN_NUM) {/* it's a channel number */ 
break; 
} 
c &= MASK1; 
if (c & DATA_CHAR) {/* data rather than control */ 
if (pre_p->tail) { } /* trailer started? */ 
else {/* just data * / 
*ptr+ + = c & 0377; 
pkb-> Plen+ +; 
bitloc »= 1; 
} 
break; 
} 

/* more frequent protocol control characters * / 
switch (c & MASK2) { 
case P _C_xO: 
case P _ C_xl : 
case P _ C_x2: 
case P_C_x4: 
default: 
} 

if «c & MASIG) == P_C_x3) {} 
if (c & SUPER VIS) { } /* handle supervisory control * / 
else if (c & INLINE) { /* in-line control character * / 
*ptr+ + = c & 0377; 
pkb-> PI en + + ; 
pkb-> Phibits 1= bitloc; 
bitloc »= 1; 
} 

/* less frequent protocol control characters * / 
switch (c) { 
case P_C_O: 
case P_C_l: 
case P_C_2: 

14-12 Bel Driver Development Guide 



Example of Improved C Code 

47 case P_C_n: 
48 default: 
49 } 

Figure 14-3 Rewritten Innermost Loop for pre_read 

Rather than using interrupts, this driver has statements in the two inner loops that check for frame or 
parity errors. By removing these, (lines 6-11) throughput increased to 7282 cps. 

Next the developers looked at the "character is data" case within the innermost loop. The sole short 
register variable was being wasted by the implementation of MOV _I(A). The macro was changed to 
leave the 16-bit word in _val (which resides in the ex register of the 80186 microprocessor) rather 
than moving it to a passed argument. The macro, now called MOV _1_ V AL( ) had two advantages 
over its predecessor. 

1 The new macro could be implemented with fewer instructions, since a final "move" to 
the passed argument was no longer required. 

2 The 16-bit word in _val could now be used in computations. Previously, the stack 
variable c had been used for computation. 

All references to c were changed to _val, making the most critical variable in the routine a register 
variable. The throughput increased to 7816 cps. 

The innermost loop of the routine is now reading the next character, checking for a channel number, 
masking, then checking the "character is data" case. 

When processing a data character, only the lower 8 bits of the character were used. This made the 
masking done before the "character is data" check redundant if the character was indeed data. By 
moving the "masking" statement from before the "character is data" check to after the check, 
throughput increased to 8309 cps. 

Next, the variable bitloc (line 18) was removed from the routine. Since in-line control characters 
were rare events, driver performance was improved by having the driver calculate bitloc when it was 
needed, thus eliminating another statement from the frequently-used "just data" case. 

Another change to the "just data" case was to remove the masking off of the upper byte of _val 
before the character was put into the packet buffer. This modification was also made when handling 
in-line control characters. Disassembling the code showed that the statement 

*ptr+ + = _val & 0377 

was turned into assembly instructions which performed the logical AND operation on _val, then put 
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the lower half of the ex register (_val) into the buffer. Casting _val to an unsigned character had the 
same effect, eliminating the logical AND instruction. So, the statement was changed to 

*ptr+ + = (unsigned char) _val; 

With these two modifications improved, throughput increased to 8503 cps. Figure 14-4 shows the 
improved read routine. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

pre_readO 
{ 
register unsigned char *ptr;l* MUST BE FIRST */ 
register short val;/* MUST BE FIRST * / 
struct pre_pkbufr *pkb; 

/* 
* * WHILE not empty 
*/ 

while ( !(inw(STATUS) & RCVR_EMPTY) ) { 
MOV_I_VALO; 

/* 
* * WHILE· not empty AND char is channel number 
*/ 

while ( !(inw(STATUS) & RCVR_EMPTY) ) { 

ptr = &pkb-> Pdata[O]; 

/* 
* * WHILE not empty AND not a channel number 
*/ 
while ( ! (inw(ST A TUS) & RCVR_EMPTY) ) { 
MOV_I_VALO; 
if (val & CHAN_NUM) {/* it's a channel number */ 
break; 
} 

if (val & DATA_CHAR) { /* data rather than control * / 
if (pre_p->tail) { } /* trailer started? */ 
else {/* just data * / 
*ptr+ + = (unsigned char) val; 
pkb-> Plen+ +; 
} 
break; 
} 

/* more frequent protocol control characters * / 

else if (val & INLINE) { /* in-line control character */ 
*ptr+ + = (unsigned char) val; 
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Example of Improved C Code 

pkb-> Phibits 1= (0100000 > > pkb-> Plen); 
pkb-> Plen+ +; 
} 

} /* not empty AND not channel number * / 
}/* not empty AND channel number */ 
}/* not empty * / 

Figure 14-4 Improved pre_read Routine 
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Using Assem bly Language in Driver Code 

Ifrewriting the C code does not give you acceptable periormance for the driver, you may want to 
rewrite the critical sections in assembler. If you only need to write a small piece of a routine in 
assembler, you can use an asm escape from C. In general, however, the asrn escapes are hard to 
maintain and you should write asm pseudo-functions for the appropriate sections. 

Writing asm Pseudo-functions 

The asm facility lets you define constructs that look like static C functions and can access C symbols. 
Each asrn macro has one definition and zero or more uses per source file. The definition must 
appear in the same file as its use or be included in that file; the same asm macro can be defined 
differently in different files for one driver. 

The body of an asrn pseudo-function contains lines specifying possible storage classes of the 
arguments. Each storage specification line is followed by lines of text into which the pseudo-function 
call will be expanded if the storage class specification line matches the actual arguments. 

The asm macro definition declares a return type for the macro code, specifies patterns for the formal 
patterns, and provides bodies of code to expand when the patterns match. 

As the cc compiler expands the code body, it replaces each formal parameter in an asrn macro with 
its idea of the assembly language locations of the actual arguments. 

When used, asm macros look like normal C function calls. The can be used in expressions and can 
return values. The arguments to an asm macro can be arbitrary expressions, as long as they do not 
contain uses of the same or other asm macros. 

When the argument to an asrn macro is a function name or structure, the compiler generates code to 
compute a pointer to the structure or function; the resulting pointer is used as the actual argument of 
the macro. 

If the asm definition and the asrn use differ in number of parameters, the compiler silently generates 
a normal subroutine call. This may lead to an unresolved external reference. 

The asrn body is processed by the C preprocessor. C-style comments (prefaced by 1*) are removed at 
that time. The C preprocessor recognizes conditional blocks (#if, #ifdef, and #ifndef constructs) 
that are contained within an asrn macro. 

A #ident statement in an asm macro will be ignored by both as and cc. As expected, a .ident 
pseudo-op used within an asrn macro produces a .comment section in the .0 file. 
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D e fin itio n 0 f as m 

The syntactic descriptions that follow are presented in the style of The C Programming Language by 
Brian Kernighan and Dennis Ritchie. The syntactic classes type-specifier, identifier, and parameter
list have the same form as in that document. Elements enclosed in square brackets "[ ]" are 
optional, unless the right bracket is followed by "+", which means 
"one or more repetitions" of a description. Similarly, "*,, means "zero or more repetitions." 

asm macro: 
asm [ type-specifier] identifier ( [ parameter-list] ) 
{ 
[ storage-mode-speciJication-line 

asm-body] + 
} 

That is, an asm macro consists of the keyword asm, followed by what looks like a C function 
declaration. Inside the macro body there are one or more pairs of storage-mode-speciJication-line 
(pattern) and corresponding asm-body. If the type-specifier is other than void, the asm macro should 
return a value of the declared type. 

storage-mode-specification-line: 
% [ storage-mode [ identifier [ , identifier] * ] ; ] + 

That is, a storage-mode-speciJication-line consists of a single line (no continuation with \) that begins 
with % and contains the names ( identifiers) and storage modes of the formal parameters. Modes 
for all formal parameters must be given in each storage-mode-speciJication-line (except for error). 
Both the % and the terminating "}" must be the first character on that line. If an asm macro has no 
parameter-list, the storage-mode-speciJication-line can be omitted. 
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The compiler recognizes the following storage modes in asm macros: 

treg A compiler-selected temporary register. 

ureg A C register variable that the compiler has allocated in a machine register. 

reg A treg or ureg. 

con A compile-time constant. 

mem An operand that matches any allowed machine addressing mode, including reg and COD. 

lab A new label. The identifier(s) that are specified as being of mode lab do not appear as 
formal parameters in the asm macro definition, unlike the preceding modes. Such 
identifiers must be unique. 

error Generate a compiler error. This mode exists to allow the programmer to flag errors at 
compile time if no appropriate pattern exists for a set of actual arguments. 

The asm body represents assembly code that the compiler generates when the modes for all of the 
formal parameters match the associated pattern. Syntactically, the asm body consists of the text 
between two pattern lines (that begin with "%") or between the last pattern line and the } that ends 
the asm macro. C language comment lines are not recognized as such in the asm body. Instead they 
are simply considered part of the text to be expanded. 

Formal parameter names can appear in any context in the asm body, delimited by non-alphanumeric 
characters. For each instance of a fonnal parameter in the asm body the compiler substitutes the 
appropriate assembly language operand syntax that will· access the actual argument at run-time. As 
an example, if one of the actual arguments to an asm macro is x, an automatic variable, a string like 
4(%fp) would be substituted for occurrences of the corresponding formal parameter. An important 
consequence of this macro substitution behavior is that asm macros can change the value of their 
arguments. Note that this is different from standard C semantics. 

For lab identifiers, a unique label is chosen for each new expansion. 

If an asm macro is declared to return a value, it must be coded to return a value of the proper type in 
the machine register that is appropriate for the implementation. 

No line within the asm body can start with "%" or "$". 
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Optimizing Code Containing asm 

The -0 option to the cc command optimizes all code in a function except the asm code. 

An asm must confonn to the following restrictions if the surrounding code is to be optimized: 

• The asm cannot contain a branch to or from another asm or any other point in the 
program outside the body of the asm itself. Function calls are permitted within the asm, 
and it is not required that the called function return. Except for functions that do not 
return, control following execution must fall through to the next executable statement. 

• The asm should not modify code generated by the compiler or affect the contents of 
registers on which the generated code depends. It might change the contents of scratch 
registers (%rO through %r2) but should not modify user registers (%r3 through %r8). 

It is the programmer's responsibility to ensure that code containing asm works correctly when 
optimized. 
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How to Use asm 

This example shows how to define and use asm macros. Two macros are defined: spl7 and splx. 
The spl7 macro changes the priority to the highest possible level; the splx macro restores the priority 0 

to its previous . level. 

The definition of spl7 is: 

asm int 
sp17( 
{ 

} 

The definition of splx is: 

MOVW 
MOVW 

asm int 
sp1x(opsw) 
{ 

%. mem 
MOVW 
MOVW 

" reg 
MOVW 
MOVW 

%psw,%rO 
&.Ox1e100,%psw 

opsw; 
%psw,%rO 
opsw,%psw 
opsw; 
%psw,%rO 
opsw,%psw 

An example of the use of these macros is: 
untimeout(untid) 
register untid; 
{ 

#mask all interrupts 

register struct callo *pl, *p2; 
register s; 

} 

·s = spl7( ) 
/ * protected code * I 
splx(s); 
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Drivers and System Perform ance 

In addition to optimizing the performance of your driver, you need to ensure that your driver is not 
degrading system performance. To do this, you will need to monitor system performance with your 
driver active on a live system. Factors in your driver to check include.the following: 

• Intense buffer use in your driver may reduce performance of other drivers or user 
processes because of the reduced memory available on the system. 

• Sleep priorities that are set too Jrigh may be causing your driver to unnecessarily "hog" 
system resources. 

• Some system tunable parameters may need to be modified because of the presence of the 
new driver. 

Using System Buffers 

Whether the driver is using a standard or private buffering scheme, avoid consuming a 
disproportionate amount of system resources. The following practices are suggested: 

• Be sure to release buffers when they are no longer needed (brelse(D3X) and putcf(D3X) 
functions). . -

• The kernel tunable parameters NBUF (for system buffers) or NCLISTS (for cblocks) 
may need to be modified because of your driver. 

C be c kin g Sle e p P r io r itie s 

Chapter 9 discussed how to determine sleep priorities levels -and whether or not the process should 
ignore the receipt of signals. 
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Drivers and System Performance 

D r i v e"r Imp act 0 n S y s t e m Tun a b Ie Par a met e r s 

The fetclmaster.d/kernel file contains several system tunable parameters that may need to be modified 
to accommodate a new driver. The administrative documentation describes these in more detail. 
This section only discusses the impact a new device may have on tunable parameters. 

NCLIST 

NBUF 

NHBUF 

NINODE 

NFILE 

Specifies the num~r of cblocks to allocate to the cfreelist structure. If the 
new character device(s) use clists for buffering, this parameter should be 
increased. The general rule is to allocate eight buffers for each device that is using 
clists. 

Specifies the number of system buffers to be allocated to the system buffer cache. 
This number may need to be increased for a new block-access device. 

Specifies the number of ''hash buckets" to allocate in the system buffer cache. This 
value must be a power of 2 and should be equal to NBUF. 

Specifies the number of inode table entries to allocate. If the driver being installed 
significantly increases the number of files that will be opened at a given time, this 
number may need to be increased. 

Specifies the number of open file table entries to allocate. This number should be 
slightly less than NINODE; if NINODE is increased, NFILE should also be 
increased. ." 
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Introduction 

Porting a device driver to another machine can be difficult, because drivers are more sensitive to 
machine-specific details than other software. This chapter discusses problems likely to be 
encountered when porting between systems supported by this manual. It shows how to isolate 
machine-dependent sections of code, and gives guidelines for porting drivers from other UNIX 
System releases and machines. 

Although object-code portability for drivers is not feasible at this time, many drivers can be ported by 
merely recompiling their source code on the new system. When the driver is recompiled, it picks up 
much system-specific information from the header files. For instance, while there are some 
differences in the user structure between machines, the sys/user.h header file always defines the 
structure as it is implemented on that machine. 

For more infonnation about porting drivers, see J. E. Lapin's Portable C and UNIX System 
Programming. It explains the relationships between the various UNIX dialects, points out common 
pitfalls when porting code, and provides some helpful insight into writing portable C code. Of 
particular interest is the section describing a portable interface to the version-dependent features of 
TrY drivers. 
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Making Driver C ode Portable 

For a number of reasons, some sections of most driver code is not totally portable. The following 
sections discuss methods for writing driver code that isolates non-portable code sections. 

Using Conditional Com pilation Statem ents 

Conditionally compiled statements are useful when only a few sections of the driver code, master 
files, and header files are non-portable. However, if used excessively, they can make the code 
difficult to read and maintain. 

Driver code and header files use the standard C compiler conditional statements, primarily #if. The 
-D directive to the C preprocessor (called by cc(I» lets you specify the version- or machine-specific 
code that should be included or excluded. The two left columns in Table 15-1 give the system 
definitions that are recognized by the preprocessor; the two right columns give the conventional 
system definitions for 3B4000 adjuncts, which must be defined to the C compiler. 

Table 15-1 C Preprocessor System Definitions 

Definition Svstem Definition Svstem. 

u3b2 Any 3B2 computer or SBC u3badp . 3B4000 ADP kernel 

u32100vrne SBC computer u3badp 3B4000 EADP kernel 

u3b15 3B15 u3bacp 3B4000 ACP kernel 
or HOST or 3B4000 Master Processor 

ADJUNCf any 3B4000 adjunct 
u3b 3B20 computer (ACP, ADP, or EADP) 

vax DEC® V AX system 

pdpll DEC PDP-l1 system 
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Making Driver Code Portable 

Double OR bars are used to indicate an alternative system. For instance, if you have code that 
should run for the 3B2, the 3B15, or the 3B4000 ACP kernels, the syntax is: 

#if u3b2 I I u3b15 I I u3bacp 
code 

#endif l*u3b2 :: u3b15 :: u3bacp *1 

The conditional statements can also be used to specify a section of code that should not be included 
for a specific system. For example: 

#if !(u3badp I u3beadp) 

is interpreted to mean "if neither u3badp or u3beadp." The #ifndef statement has a similar meaning, 
so: 

#ifndef u3b2 

means "if u3b2 is not defined", or "do this on any kernel other than u3b2." 

The following syntax is also legal: 

#if Idefined{u3b15) && Idefined{u3b2) 

meaning "if neither u3b15 nor u3b2 is defined, do this." 

All conditionally compiled sections of code must be terminated with a #endif statement; this line 
should be commented to indicate the condition being closed, as in the example above. 

Writing Machine-Dependent Subrou"tines 

When a driver must have large portions of machine-dependent code it should be isolated in separate 
routines. The conditional statements can then be used to call the appropriate subroutine for the 
system. This is the recommended approach, for example, for isolating code that must interact 
directly with the 3B4000/3B15 dual-MMU. 
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Porting Q rivers from 0 ther System s 

This section lists some of the modifications that may be necessary when porting drivers from other 
hardware, other versions of the UNIX operating system, or UNIX System V Release 2. This list is 
not exhaustive, but provides infonnation on some known porting problems. 

printf Driver Function 

Earlier UNIX releases used the printf kernel function to send driver messages to the console. The 
kernel's printf(3S) should be replaced (in UNIX System V, Release 3) with the cmn_err(D3X) 
function. 

panic Driver Function 

In other UNIX system releases, BCI drivers used the panic kernel function to send a message to the 
console and panic the system. The proper convention in UNIX System V Release 3 is to use 
cDlD_err(D3X) with the "CE_PANIC" argument. For example 

panic("shminit: tunable parameter PREGPP too small for shared memory\n"); 

should be replaced with: 

cmn_err(CD_PANIC,"shminit: tunable parameter PREGPP too small for shared memory"); 

Conditional Preprocessor Statements 

In UNIX System V C Programming Language Utilities (CPLU) Release 3.1 and forward, the 
preprocessor requires a matching #endif statement for all #if, #ifdef, and #ifndef statements. If a 
#endif is omitted, the compiler gives the following error message: 

Unexpected EOF within #if, #ifdef, or #ifndef 

With the use of #include statements, the #endif statement can be in a file other than the initial 
conditional statements, although driver code is easier to maintain when the conditional statements 
and tenninators are in the same file. 

Labels on #endif statements may produce warnings during compilation, which may be ignored. 
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Machine-Specific Function and Structure Inform ation 

This section discusses function and structure differences that may impact driver portability among the 
machines supported by this book. 

Machine-Specific Functions 

Table 15-2 lists the Section D3X functions that are supported on some but not all computers covered 
in this document. 

Table 15 - 2 Machine-Specific Functions 

Computer -Function SBC 382 38151384000 

getvec X 
dma_breakup X 
d.rv rfile X 
getsrama X 
getsramb X 

IPL-to-spl Correspondence 

As the table on the spln(D3X) reference page shows, the IPL-to-spl correspondence varies between 
machines. When porting hardware and the associated drivers, it may be necessary to modify the spl 
numbers or the IPL of the device to ensure that critical code sections run at the proper execution 
level. 
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M M U 1m plications for Porting 

Chapter 6 discusses the dual-rvfMUs used on the 3B15 computer and 3B4000 Master Processor. 
Many drivers will not require special coding for the dual MMUs, as long as the driver is compiled 
using the 3B15 header files. Drivers that extract a section id from a virtual address or reference 
SRAMs as simple arrays will have to be recoded to utilize the dual MMUs, as.will drivers that do 
virtual-to-physical translation, although the impact on drivers that use the vtop(D3X) function will be 
less than on those that have their own software translation routines. 

In conjunction with driver changes, any corresponding intelligent device firmware must be analyzed 
for possible dual rvtMU impacts. When firmware accesses memory management tables or relies upon 
a breakdown of a virtual address to translate addresses, the rules and assumptions made must be 
carefully examined. Data passed from software to firmware for use in address translation must be 
coordinated. In some cases, a choice can be made as to whether firmware will be changed or whether 
the corresponding software driver will acconunodate the dual MMU changes. For example, the 
driver for the IDFC disk controller on the 3B15 computer is passed SRAMA and SRAMB values and 
performs its own virtual-to-physical translations. The firmware, which was originally designed to run 
on a single MMU computer, uses bit 29 as part of the SSL (Segment Select field). Rather than 
change the firmware to ignore bit 29, the IDFC driver departs from the standard use of the 
getsrama(D3X) function and passes unadjusted SRAMAISRAMB values so that using bit 29 will still 
result in the correct address translation. 
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Chapter 16: Packaging the Driver 
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Introduction 

This chapter gives instructions for packaging the driver software for resale and installation on other 
systems. 

All software packaged -for any of the systems covered in this book must include INSTALL and 
DEINSTALL scripts that run under the system administration utility (sysadm(lM)). Detailed 
instructions on writing these scripts are in the Application Software Packaging Guide. See Chapter 1 
for infonnation on how to order this document. 
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Items to Check Before Running INSTALL 

INSTALL scripts for drivers should check for the following conditions before proceeding to install the 
driver on the system: 

1 this driver has not already been installed 

2 no file in the letclmaster.d directory uses the same prefix as this driver 

3 all dependencies of this driver are honored 

4 files associated with this driver do not have the same mune as any existing files on the 
system. Check the lusrlincludelsys, letclmaster.d, Iboot, and appropriate lusr/~rclutslio 
subdirectories. 

Such checks are more necessary for drivers than for most other software, since driver software and 
associated files must go into certain specified directories. 
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Installation Steps 

Chapter 12 discusses the general steps for installing a driver. 
The following list describes how and when these should be performed in relationship to the system 
administration INSf ALL script: 

I The following should be complete before running INSTALL: 

o Inst~ the hardware on the system. 

II The following functions should be performed by the INSTALL script: 

o Confirm that this driver is not already installed. 

o Check that all dependencies of this driver are met. 

o Check that the space requirements for this driver are met. 

o Create any letcfpasswd or fetclgroup entries that may be required for 
software related to this driver. 

o Create the header file(s) in lusrlincludelsys or appropriate subdirectories. 

o If you are releasing driver source code, create the source code files in the io, 
master.d, and sys subdirectories of the lusrladd-onIDRIVER-NAME directory. 

o Compile the object file in the same directory as the source code. 

o Create the master file in the fetclmaster.d directory 

o For software drivers, generate a major number in the master file and create 
the bootable object file in the boot directory using the drvinstall(lM) 
command. 

o For hardware drivers, generate the bootable object file in the boot directory 
using the mkboot(lM) command. 

o On systems other than the 3B15 and 3B4000 MP, create the diagnostics 
package in I dgn and add the driver to the· edcdata table with the 
edittbl(lM) command. 

o On the SBC and 3B2 computers, set up scripts that create special device 
files in either the letclbrc.d or letclrc.d directory (for devices other than 
Disk or Serial). Use the getmajor(lM) command to get the external major 
number for these scripts. On the 3B15 and 3B4000 computers, create the 
special device files under the f dev directory. 
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Installation Steps 

o If required, install pumpcode for this device. 

o Install the edtgen utility. 

o Create the package tracking file(s) in the /usr/options/xxx directory. 

m The following activities should be done manually after running INSTALL: 

o Make a backup copy of the /unix file. 

o. Shutdown and reboot the system. 

o If necessary, adjust the values of kernel tum~ble parameters that may be 
affected by the presence of the driver. 

The UNINSf ALL S¢pt can do all deinstallation steps listed in Chapter 12, except for physically 
removing installed hardware. 
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The Driver Update Package 

A driver update package is installed on top of an existing driver package to correct errors or enhance 
capabilities of the driver. 

The INSTALL script for an updated software driver or loadable module must 

• use the major number already assigned to the /etclmaster.d file 

• accept the object, master, and system files and creates a driver image for use with "driver 
add at boot" (using the mkboot command) 

• edit the /etc/system file, removing the old INCLUDE line and replacing it with the new 
INCLUDE linel 

The INSf ALL script for an updated hardware driver accepts the object, master, and system files and 
creates a driver image for use with "driver add at boot" (using the mkboot command). The major 
numbers for hardware drivers are assigned by the getmajor utility. The board address is used as the 
major nwnber in the /etc/master.d file. Hardware drivers are automatically self-configured if a board 
is plugged into the system at boot time. Customers should be told to add an EXCLUDE line 
manually to the / etc/ system file if they want to boot the system with the hardware board and not 
include the driver image in the configuration. 

1. The drvtnstaD(lM) command does this for software drivers. 
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Appendix A: Equippe4 Device Table (EDT) 

This appendix describes the equipped device table (EDT) for the Single Board Computer (SBC), the 
3B2 computers, and the 3B15 and 3B4000 computers. 

The EDT is a table in the private memory associated with the CPU that lists all hardware devices 
present on the system (except memory cardslboards) . Self-configuration configures all devices listed 
here, unless they are specifically listed in an EXCLUDE line in the /etc/system file or if there is no 
driver in the / boot directory. 

When a SBC, 3B2 computer, or 3B4000 ACP is brought up, the computer firmware builds a skeleton. 
EDT. The firmware then calls tilledt(8), which accesses the edcdata file and populates the EDT in 
memory. The edCdata file is in the /dgn directory on the SBC and 3B2 computers, and in the 
/adjlpe#/dgn directory on an ACP. (# is the Processing Element (PE) number.) 

When a 3B15 computer or a 3B4000 Master Processor (MP) is brought up, the EDT·is built by the 
initialization software from edt_data files that are kept for the MP, the 3B4000 ACP, ·and the Small 
Computer System Interface (SCSI) bus. Extended EDTs are built on intelligent controllers by the 
controller firmware, such as the SCSI Local Bus Interface Circuit (SLIC). The extended EDTs exist 
in the memory of the controller. 

SBC EDT Architecture 

The UNIX system firmware on the SBC was developed from that on the 3B2/400 computer and was 
kept as similar to it as possible. The SBC has no slots and devices can be placed at any physical 
address as long as no two are at the same address. To continue using the same mechanisI)1 as the 

. 3B2/400 for system configuration, the concept of slots was replaced by an index into the EDT table. ' 
Consequently, device drivers get their addresses from tables. Interrupt vectors and external major 
device numbers are still derived from slots and lboot still uses the presence of a device in the EDT to 
decide whether to include the corresponding device driver when linking a UNIX system kernel. 

Because SBC peripherals do not contain ROMs with WE 32100 microprocessor code for firmware 
execution and the system boot, this code must be compiled into the firmware for boot devices. A 
mechanism was added to the firmware so that the boot device can be discovered before booting. 
Other devices can be added by tilledt(8) later. 
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3B2 Computer or 3B4000 ACP EDT Architecture 

The 3B2 computer (or 3B4000 ACP) has YO slots with predetermined addresses into which 
peripheral boards may be plugged for YO devices. The boards appear in the CPU's physical address 
space at known addresses (determined by the slot in which they are located). Each board has a 
read-only register that defines what kind of board it is. 

When the firmware is initialized, the computer probes all the slots and puts information from the 
ROM on each board in the EDT in main memory. EDT information includes such things as whether 
the.device can be a boot device, whether it can be a system console, or if it requires that firmware be 
loaded before operation. The system console and integral floppy and hard disks are treated as 
controllers for device #0. The slot number is used for such things as determining the device's 
external major number and calculating the device's physical address and interrupt vector(s). 

When the system is powered up, it runs mledt(8). The tiUedt process uses information in the 
IdgnledCdata file (/adjlpe#ldgn on the ACP) to add further information to the EDT tables in 
memory, including the subdevices attached to each controller. The diagnostic program, dgmon(8), 
uses this information to load and run diagnostic packages from the system disk. The system 
booterllinker (Iboot) uses the EDT tables to decide which device drivers should be linked into the 
kernel and which external major device numbers should be used for them. 

The 3B2 500/600 computers differ from the 3B2 300/400 computers in these ways 

• BUBUS - or BUffered micro BUS, a bus designed for handling devices external to the 
main bus. The inclusion of this bus does not affect driver development and is mentioned 
here only as a reference. When the EDT is displayed from firmware, the BUBUS is 
displayed as either the "buffered microbus" or the "microbus." 

• coos_cap and.coDS_f"de fields - not used. These fields. in the EDT indicate the device's 
use of the console. However, when inserting an entry into the edcdata file, you are still 
prompted to enter information for these fields. These prompts are maintained for 
downward compatibility among members of the'3B2 computer family. 

• word_size - has a different meaning. In the past, this one-bit wide field designated 
that the word size would be either 8 bits (0) or 16 bits (1). With the advent of the 32-bit 
word sizes required by some of the interlaces built-in to the 3B2 500/600 computers, this 
field came to have a different meaning. The 0 value still means an 8-bit word size, but 
the 1 now indicates th8:t the word size is at least 16 bits. The exact word size can only 
be found by using the edt command in firmware mode, or the show command with the 
diagnostics monitor, DOMaN. In these EDT listings, the word size is found under the 
"word width" notation expressed in bytes. 

Finally, the 3B4000 ACP differs from all other 3B2 computers in that it does not have its own 
console. Therefore, commands that interact with finnware cannot be invoked on the ACP. Instead, 
the ACP uses a command shared with the 3B4000 MP and 3B15 computers to display the contents of 
the EDT. . 
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Displaying the EDT 

The EDT can be displayed in a variety of ways depending on the type of computer and the processing 
mode. Table A-I summarizes these commands. 

Table A-I EDT Display Commands 

MODE: SBC.3B2 3B4000 ACP 3B15. 3B4000 MP 3B4000 EADP 
Firmware edt -- disp edt disp edt 
DGMON show -- -- --
From the letclprtconf -- letclprtconf --
UNIX command edittbl edittbl -- e_ 

line -- getedt getedt getedt 

The getedt and disp edt commands are combined. into the same subsection, as are the edt and show 
commands. The following subsections list the other display commands alphabetically. 

edt and show Com m ands 

The 3B2 computer edt and the DGMON show comrn~d are accessed from firmware mode. show 
has exactly the same output as edt. NOTE: The 3B4000 ACP dOes not have a console,.so all 
firmware mode prompts are not usable. 
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Displaying the EDT 

On the 3B2 computers, execute the following commands shown in bold in Figure A-I after booting: 

# shutdown -is -gO -y 
FIRMWARE MODE 

password 
Enter name of proqram to execute 

CUrrent System Configuration 

]: edt 

System Board memory size: 12 megabyte (s) 
#0 - 4 megabyte ( s), #1 - 4 megabyte ( s), #2 - 2 megabyte ( s), #3 - 2 megabyte ( s ) 

00 - device name = SBD , occurrence = 0, slot = 00, m code = OxO 1 
type = inteqral i/o bus 
boot device = y, board width = double, word width = 2 byte (s) 
req Q size = OxOO, camp Q size = OxOO 
subdevice ( s ) 
#00 = FDS , m code = Ox01 

Press any key to continue 

01 - device .name = SCSI , occurrence = 0, slot = 01, m code = Ox100 
type = inteqral i/o bus 
boot device = y, board width = single, word width = 2 byte (s) 
req Q size = Ox38, camp Q size = Ox38, indirect edt 
subdevice ( s ) 
#00 = disk , m code = Ox100, #01 = tape ., ID code =. Ox101 

Press any key to continue 

Enter name of program to execute [ ]: lunix 

Figure A-I Testing the EDT on a 3B2 Computer 

In Figure A-I., the first command line (shutdown) brings the system down to single user mode and 
then to firmware mode. password is the firmware password, usually mcp. At the "Enter name ... " 
prompt, edt displays the EDT, and lunix takes you back to multiuser mode. Refer to the System 
Administration Guide supplied with your system for more information on bringing a computer to 
firmware or to the diagnostic monitor modes. 

This display is for a 3B2 600 computer, but each 3B2 computer will have a similar display. 
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Displaying the EDT 

getedt and disp edt Com m ands 

On the 3B4000 MP, adjunct processors, or the 3B15 computer, to display the EDT, use the disp edt 
command from firmware mode or the getedt (see Table A-2) command when the UNIX system is 
running. 

Table A-2 3B4000/3BtS getedt Listing 

System EQUIPPED DEVICE TABLE 

BD DEY DEY DEVICE AUTO INT UNIT 
CODE SIZE TYPE NAME + NUMBER ADDRESS CN11. LEV EQUIPAGE PHNUM ROMSZ RELS. 

1 4 1 CCS 0 0 4bd01ad 19 20000 102 1087 
2 2 MASC 0 100000 0 ffffff 37 4000 101 
1 4 1 CCC 0 0 4 18 20000 102 1087 
3 4 21 TAPE 0 180000 3 0 22 8000 103 
4 4 89 SUC 0 200000 5 0 311 20000 22 
5 2 11 IDFC 0 280000 5 10073 32 10000 102 
6 4 1 ABI 0 300000 5 16 200000 1 486 
7 1 2 ADU 0 380000 3 0 11 4000 101 
8 2 1 MAU 0 400000 4 1 21 8000 0 
9 4 1 lOA 0 480000 3 0 16 10000 103 
a 2 SOU 0 500000 - 9 3 0 18 4000 101 
b 2 ADU' 1 580000. 9 3 0 11 4000 101 
c 4 1 lOA 1 600000 3 0 16 10000 103 
d 2 11 IDFC 1 680000 5 3e373 32 10000 102 
e 2 1 SADL 0 700000 9 3 0 15 8000 102 
f 2 1 NTS 0 780000 4 24 8000 201 

EXTENDED EQUIPPED DEVICE TABLE FOR SUC AT ADDRESS 200000 

MAl DEVICE DEVICE EQUIPPED 
NUMBER NAME + NUMBER TYPE LOOlCAL UNITS 

4 HA 0 3 NONE 
114 DISKID 1 1 0 
120 DISK1D 7 1 0 

4 HA 8 3 NONE 

This display is from the getedt command; the firmware disp edt command gives a listing with an 8 to 
the left of the first column to identify bootable devices. The definitions of these columns are 

• BD CODE - the board code. For hardware devices (except those on the extended bus), 
this is the major number. In this configuration, devices from the first ADLI have the 
major number 3; devices from the second have the major number 10 (indicated by the 
a). This number corresponds to the board code on the bus. The number is the major 
number for boards on the primary and growth units. Refer to the Operations and 
Administration Guide supplied with your system for information on major numbers on 
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Displaying the EDT 

extended buses. 

• DEV SIZE - the device size; the number of bits used to address a board. "I" indicates 
I-byte or 8 bits (every byte is addressable), ''2'' indicates 2 bytes or 16 bits (that every 
half word is addressable), "3" indicates 2 bytes or 16 bits (that every other half word is 
addressable), a.I!d "4" indicates 4 bytes or 32 bits (every word is addressable). Number 
''2'' or "3" means that boards can be addressed with 8 or 16 bits; number "4" means that 
8, 16, or 32 bits can be used. NOTE: ·"3" is not implemented at this time. 

• DEV TYPE - the device type; the type of circuit board. The right digit is 1 for an I/O 
controller board, 2 for an I/O interface board. The left digit indicates a copy device, 
where 1 represents a disk copy device and 2 indicates a tape copy device. 

• DEVICE NAME - the device name designation for this type of circuit board. 

• DEVICE NUMBER - all circuit boards of the same type are numbered, beginning with 
0, in this column to differentiate them. Disk drive 0 must be connected to IDFC 0 for 
booting purposes. 

• ADDRESS - device address code reference from the local bus address of the demand 
paging central controller (DPCC) boards. 

• AUTO CNTL - automatic controller; the board code of the controlling circuit board. 
For example, for ADLIs, SDLIs, and SADLs, this is the board code of the lOA by 
which they are controlled. 

• INT LEV - the interrupt level at which a circuit board is served by the Central Control 
and Cache (CCC). The higher the number, the greater the interrupt priority. 

• UNIT EQUIP AGE - device dependent equipment data base. 

• PHNUM - phase number; the total number of diagnostic phases for this device. Refer 
to Appendix B for more information on diagnostic phases. 

• ROMSZ - the amoWlt of on-board read-only memory (ROM), expressed in bytes. 

• RELS and DATE - the release version of the board and the date (month and year) the. 
firmware was released. 

The definitions of the columns in the extended EDT for SCSI are 

• MAJ NUMBER - The major external device number for the SCSI device. 

• DEVICE NAME - The name of the device. These names are· administered by and 
registered with AT&T. 

• DEVICE NUMBER - All circuit boards of the same type are numbered, beginning 
with 0, in this column to differentiate them. 
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• DEVICE TYPE - The SCSI subdevice supported by the specified device. In the getedt 
listing, DISKTD is the SCSI disk drive, HA is the SCSI Host Adapter that allows the 
device-independent SCSI bus to communicate with the device-dependent host computer. 

• EQUIPPED LOGICAL UNITS - The logical disk or tape (logical uni,t) number. This 
number is either 0 or NONE. SCSI target controllers on the 3B4000 computer support 
one device, labeled O. NONE indicates that no devices are supported. 
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Displaying the EDT 

The getedt EDT listing for the SCSI devices on the 3B4000 ACP is shown in Table A-3. 

Table A - 3 3B4000 ACP getedt Listing 

System EQUIPPED DEVICE TABLE FOR PE=# TYPE=ACP MEMORY=NNNNNNNN 

OPT WORD OPT DEVICE DEV SMRT DIAG 
CODE SIZE TYPE NAME + NUMBER SLOT BRD FILE 

1 1 0 SBD 0 0 1 SBD 
100 1 0 SCSI 0 1 1 SCSI 

EXTENDED EQUIPPED DEVICE TABLE FOR SCSI AT slot 1 

MAJ 
NUMBER 

DEVICE 
NAME + NUMBER 

DEVICE EQUIPPED 
TYPE LOGICAL UNITS 

121 SD01 1 1 0 1 

The definitions of these columns are 

• OPr CODE - Same as the ID_code1 in the finnware EDT display, a number between 
OXO and Oxffff that a device uses to identify itself. ID codes must be registered with and 
are administered by AT&T. Some devices are assigned special opt codes. Coprocessors 
are assigned numbers starting at OxfdOO; unbuffered· microbus devices are assigned 
numbers starting at OxfeOO; and buffered microbus devices are assigned numbers starting 
at 0xff00. 

• WORD SIZE - The word size of a device I/O bus. A "1" indicates devices with a bus 
word greater than 8-bits; a "0" indicates devices with an 8-bit bus word. 

1. ID_code appears in a listing created with the edlUbI(lM) command. This command is described later in this chapter. 
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• OPT TYPE - The type of I/O bus (seen Table A-4) associated with the device. 

Table A -4 I/O Bus Types 

Value Bus Type 
0 Integral I/O Bus Slot 

1 Coprocessor Slot 

2 Unbuffered Microbus Slot 

3 BUffered Microbus BUS (BUBUS) Slot 

7 Miscellaneous Slot 

• DEVICE NAME - Field name for a device. Device names are administered by 
AT&T. This string is also the field name that DGMON loads·to diagnose a device. 

• DEVICE NUMBER - All circuit boards of the same type are numbered, beginning 
with 0, in this column to differentiate them. Disk drive ° must be connected to IDFC 0 
for booting purposes. 

• DEV SLOT - The device slot is the physical slot number in which the board resides. 

• SMRT BRD - The smart board designation indicates whether the device is intelligent, 
meaning either that it requires downloaded code for normal operation or supports 
subdevices. A "1" indicates an intelligent device; a "0" specifies a "dumb" device .. 

• DIAG FILE - The name of the diagnostics file in the /adjlpe#/dgn directory. 

The definitions of the columns in the extended EDT for SCSI are 

• MAJ NUMBER - The major external device number for the SCSI device. 

• DEVICE NAME - The name of the device. These names are administered by and 
registered with AT&T. 

• DEVICE NUMBER - All circuit boards of the same type are numbered, beginning 
with 0, in this column to differentiate them. 

• DEVICE TYPE - The SCSI subdevice supported by the specified device. In the getedt 
listing, SDOI is the SCSI disk drive. 

• EQUIPPED LOGICAL UNITS - The logical disk or tape (logical unit) number. This
number is either 0, 1, or NONE. SCSI target controllers on the 3B4000 ACP supports 
up to two devices with 0 indicating the floppy disk driver, and the one indicating a hard 
disk driver. NONE indicates that no devices are supported. 
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/etc/prtconf Com m and 

To display the EDT, use the following UNIX system command 

/etc/prtconf 

A sample display from /etclprtconf is shown in Figure A-2. 

AT&T 3B2 SYSTEM CONFI~ION: 

Memory size: 2 Megabytes 
System Peripherals: 

Device Name Subdevices 

SBD 

SCSI 

PORTS 
MAO 

Floppy Disk 
72 Megabyte Disk 

SD01 ID1 

ST01 ID2 

Extended Subdevices 

147 Megabyte Disk IDO 

TAPE IDO 

Figure A - 2 Sample /etclprtconf Display 

The definitions for the columns are 

• Device Name - a name taken from the edCdata file when the computer is booted. 

• Subdevices - the names of subdevices associated with the device. These names are built 
into the /etclprtconf program. When additional devices are added to the edcdata, and 
prtconf cannot obtain all of the information for the device, a new prtconf program must 
be created and placed in the letclprtconf.d directory. 
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Field Com parisons of EDTs for Different System s 

The following table (Table A-5) shows which fields correspond for the EDTs on the different 
systems. This information is useful when you are examining multiple EDTs. 

Table A - 5 EDT Fields By System 

3B2 3BIS/3B4000 MP 3B4000 ACP 
ID_code -- OPT Code 

(hexadecimal) -- (hexadecimal) 

-- Board Code Major Number (Extended EDT Table) 
-- (hexadecimal) (decimal) 

dev name Device Name dev name 

rq_size -- rq. size 

cq_size -- cq_size 

boot dev {embedded in Board Code] boot dev 

word_size Device Size word_size 
1= 16-bit 1=8-bit 1= 16-bit 
O=8-bit 2,3= 16-bit O=8-bit 

4=32-bit 

brd size -- brd size 

smrCbrd -- smrcbrd 

cons_cap -- --
consJile -- --
indir_dev -- indir_dev 

-- Device Type Device Type (Extended EDT Table) 

-- Device Number Device Number 

-- Device Address --
-- Auto Control --
-. Interrupt Level --
-- Unit Equipage --
-- Phase Number --
-- ROM Size --
-. Release and Date --
-- -- OPT Type 

-- -- Device Slot 

-- -- Diagnostics File 
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/dgn/edt_data, The EDT Initialization File 

On the SBC, 3B2 computer, and 3B4000 ACP, the /dgn/edcdata file lists all hardware devices that 
may be configured on the system. The ftIIedt(8) process uses this file to search for hardware devices, 
and adds any that are found to the EDT (only when the· system is booted). The edcdata file is 
supplied with a computer when purchased and is upgraded automatically when AT&T add-on 
products are installed. Your installation package should do this task as well. When installing a 
driver for the first time with a new piece of hardware, use edittbl with the -i option to add the 
appropriate information to edCdata. The command syntax is 

/etc/edittb1 /dgn/edt_data -d -i 

To display the edCdata table, use the following command: 

/etc/edittb1 /dgn/edt_dat~ -1 -d 

S Bee d t _d a t a F it e 

The /etc/edittbl display for the SBC is shown in Figure A-3. 

In_code: OxOOO 1 dev _name: SBD dev _addr: £8000000 

ID_code: Ox0003 dev_name: PORTS 

Figure A - 3 SHe /etc/edittbl Display 
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/dgn/edcdata, The EDT Initialization File 

The definitions of these fields are 

• Dum_dev: The number of devices described in the listing. 

• ID_code: A number between 0x0 and Oxffff that a device uses to identify itself. 

• dey _name: Field name for a device. This string is also the field name that DGMON 
loads to diagnose a device. 

• dey _addr: Physical address that can be read (single· byte read) to detect the device. 

3B2 edt...;,data File 

The letcledittbl display for the PORTS and EPORTS boards on the 3B2 computer is shown in Figure 
A-4 (from a 3B2 500 computer). 

ID_code: OxOOO3 dev_name: PORTS rq_size: Ox03 cq_size: 
OOot_dev: 0 word_size: 1 brd_size: 0 smrt_brd: 
in4ir_dev: 0 cons_file: 1 

ID_code: Ox0102 dev_name: EPORTS rq_size: Ox21 cq_size: 
OOot_dev: 0 word_size: 1 brd_size: 0 smrt_brd: 
indir_dev: 0 cons_file: 1 

Figure A-4 3B2 Computer letcledittbl Display 

The definitions of these fields are 

Ox23 
1 

Ox46 
1 

• ID_code: A number between 0x0 and Oxffff that a device uses to identify itself. ID 
codes must be registered with and are administered by AT&T. 

• dey _name: Device name; a field name for a device. Device names are administered by 
AT&T. This string is also the field name that DGMON loads to diagnose a device. 

• rq_size: Request queue size; a number between 0x0 and Oxff that represents the count 
of entries in a device's job request queue. 
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Idgnledcdata, The EDT Initialization File 

• cq_size: Completion queue size; a number between OxO and Oxff that represents the 
count of entries in a device's job completion queue. 

• boot_deY: Boot device; indicates whether this device can be used to boot the system. A 
"1" means that it is bootable; a "0" means that it is not. 

• word_size: The word size of a device I/O bus. A "1" indicates devices with a 16-bit bus 
word; a "0" indicates devices with an 8-bit bus word. 

• brd_size: Board size; specifies the I/O connector slots that a device requires. A "I" 
indicates that two slots are needed; a "0" indicates that one slot is required. 

• smrt_brd: Smart board; indicates whether the device is intelligent, meaning either that 
it requires downloaded code for normal operation or supports subdevices. A "1" 
indicates an intelligent device; a "0" specifies a "dumb" device. 

• coos_cap: Console capability; shows whether this device can support the system console 
terminal. A "1" is used for devices that can; a "0" for those that cannot. 

• indir _deY: Indirect device; indicates whether all the information on the subdevices 
associated with a device can be directly accessed by /etclprt~onf. Indicate "0" if all the 
information for a device is directly accessible. Indicate "1" if subdevice information 
must be determined by another program. If "1" is indicated, a special file for getting 
information about the subdevices must reside in the letclprtconf.d directory. Refer to 
the end of this appendix for an exampie of theprtcon/.c file. 

• coos_tile: Console file; indicates whether a device that can support the system console 
terminal requires extra code to do so. This feature is not supported and the value in this 
field is not evaluated. 

To display the EDT for a subdevice, use the'command 

/etc/edittbl /dgnledt_data -I -s 
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,ldgn1edcdata, The EDT Initialization File 

SBC Subdevice Display 

The subdevice display generated for the SBC is shown in Figure A-5. 

Device: xxxx (OxOOOa) Unit: 0 subdev_name: Hard 

Figure A - 5 SBC SUbdevice Display 

The definitions of these fields are 

• Device: Field name for a device. This string is also the field name that DGMON loads 
to diagnose a device. 

• (Oxnumber): The identification code (ID_code). A number between OXO and Oxffff that 
a device uses to identify itself. 

• Unit: The subdevice number. This infonnation confonns to the maximum number of 
subdevices per device defined in the #DEV column of the /etc/master.d file for the 
driver. 

• subdev_oame: The name assigned to the subdevice (a designation for a type of device). 
Subdevice names are all uppercase and one to nine characters long. Can be either the 
device type (Hard, Floppy, cartridge, Serial, Bootable) or the actual board name 
(HD20, FD5, and so on). 
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Idgnledcdata. The EDT Initialization File 

3B2 Computer Subdevice Display 

The 3B2 computer subdevice display is shown in Figure A-6. 

num_sbdev: Oxe 
ID_code: OxOOOO subdev_name: NULL 
ID_code: Ox0001 subdev_name: FD5 
ID_code: Ox0002 subdev _name: HD20 
ID_code: Ox0003 subdev_name: HD30 
ID_code: Ox0005 subdev_name: HD72 
ID_code: Ox0006 sulxiev_name: HD72A 
ID_code: Ox0007 subdev_name: HD72B 
ID_code: Ox0008 subdev_name: HD72C 
ID_code: OxOOO9" subdev _name: HD43 
ID_code: OxOOOa subdev _name: HD72D 
ID_code: Ox0100 subdev_name: disk 
ID_code: OxO 101 subdev _name: tape 
ID_code: OxO 104 sulxlev _name: worm 
ID_code: OxQ004 subdev_name: FT25 

Figure A - 6 3B2 Computer Subdevice Display 

The definitions of these fields are 

• nUDl_sbdev: Indicates how many subdevices are associated with the device. 

• ID_code: Number that identifies a subdevice, in the range 0x0 to Dxfff. Subdevice ID 
codes are administered by and must be registered with AT&T. 

• subdev _name: Designation for this type of device. Subdevice names are all uppercase, 
one to nine characters, and are administered by and must be registered with AT&T. 
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Adding Entries to a 3B15/3B4000 M aster Processor EDT 

On the 3B15 and 3B4000 computers, any properly-installed board will be added to the EDT at boot 
time. This requires the following: 

• The ID register must be hard-assigned in the firmware of the board. 

• The On-board Device Information Table (ODIT) structure must be hard-assigned in the 
firmware at Ox48F. The ODIT contains the board's generic name, release and point 
issue, and the date stamp from inside the PROMs. The structure of the ODIT is defined 
in the firmware.h file. 

• Three bergs (connectors) must be installed on the pins of the backplane. These assign 
the local bus address, the interrupt level, and the bus arbitration level for the board 
(already preserit and must be adjusted). 

• The board must be properly installed in the slot . 

. To check the hardware installation, check disp edt in firmware mode to validate the fields, and then 
boot the system with the hardware in place but without a master or /boot file for the device. If the 
hardware is correctly installed, you will get a message that the driver was not found. 
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ACP EDT 

If you are installing a new piece of hardware not supplied as an AT&T add-on, you must manually 
add entries for new the device to the Idgnledcdata table that is used to create the EDT. Note that 
none of the changes. you make in the edcdata file actually affect the configuration of the computer 
until it is rebooted. If you make a mistake, remove the entry (refer to that section for more details), 
and insert it again until correct. When you are using edittbl on a 3B4000 ACP, include the -P option 
to specify the proper processing element. The steps for inserting an entry in the EDT are 

. 1 In the Idgn directory (or ladjlpe#ldgn on an adjunct), make a copy of the edCdata file 
that you can use to recover from a mistake 

2 View the existing contents of the EDT 

edittbl -1 -d -s 

3· Ensure that the edCdata has write permission enabled. 

4 Add infonnation about the new device 

edittbl -d -i 

5 Add infonnation about subdevices for the new device. Note that every device must have 
at least one subdevice or it will be ignored. If necessary, you can use the subdevice . 
name "Other" to create a phantom subdevice. 

Exit by typing q or ( CTRL-d) to the device ID prompt. 

6 Verify your entry in edcdata 

edittbl -I -d -s 

7 When you are finished, reboot your system so that the new EDT is recognized. 

8 Verify that the device was included in the EDT by running the /etc/prtconf command. 

EDT Com m and Exam pies 

In the following examples, the computer prompts are in constant width type, the programmer 
responses are in bold type. The computer does not update the file until after all the infonnation is 
entered; if you quit i(OS ) entering q or by pressing ( BREAK) or ( DELETE) , the file is not 
changed. Enter"." or CI'RL-d to complete entering data. No validity checking is done on the 
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information you enter, if a value does not correspond to the device, the boot software will not be able 
to load the device and will fail. If you enter a value that is out of range, for example, specifying a 
completion queue size of Oxffff, edittbl wi.ll truncate the value down to the maximum value, Oxff. 

If you enter data that you later discover is incorrect, you can remove the entry by using edittbl with 
the -r option. The prompts for this option are the same as for the -i option. All of the information 
for the entry being removed must match that entered originally for the entry. 

Adding an Entry to the EDT on an SBC 

Figure A-7 is a session to add the fictional XXXX device to the EDT. 

# edittbl -d -I 
utility program for edt_data 

ID_code: OxOOOO dev_name: 
# edittbl -d -i 
utility program for edt_data 

Enter device data 

Enter device ID code: Oxl 
Enter device name: ~ 
Device address? : oxfftT8000 

Enter device ID code: Ox. 

saD dev_addr:O 

Figure A -7 Adding an Entry to the SBC EDT Example 

You should enter the following information for each prompt: 

1 Device ID code: Use the next available number. This number is used only to associate 
a subdevice with a device and does not correspond to other numbers 

2 Device name: Use the same name as the file in Iboot in all uppercase letters. 

3 Device address: Physical address that can be read to detect the device. At system boot 
time, filledt( 1M) reads a byte at the device address. If something responds to the read, 
the device is considered present and is logged into the EDT. 
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Figure A-8 shows how a subdevice is added to the EDT for the SBC. 

# edittbl -s -i 
utility program for edt_data 

Enter device data 

Enter device ID code: Oxt 
Enter subdevice unit: 0 
Enter subdevice name: Hard 

Enter device ID code: ox. 
# 

Figure A - 8 Adding an SBC Subdevice Example 

You should enter the following information for each prompt: 

t Device ID code: Use the same number Jhat w~ specified when the device was added to 
the EDT. 

2 SUbdevice unit: Start at 0 and increase sequentially. Ensure that this information 
conforms to the maximum number of subdevices per device defined in the #DEV 
column of the /etclmaster.d file for the driver. 

3 SUbdevice name: Designation for this type of device. Subdevice names can be upper or 
lowercase and are one to nine characters long. Can be either the device type (Hard, 
Fl()ppy, cartridge, Serial, Bootable) or the actual board name (HD20, FD5, and so on). 

Adding an Entry to the EDT on a 3B2 Computer 

The following is a session to add the fictional THUD device to the EDT. Information in {italics] 
provides a reference to the names displayed when edittbl is used to list the edCdata file. . Refer to 
the previous section on displaying the EDT on a 3B2 computer for more information about individual 
prompts. 
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# edittbl -d -I 
utility program for edt_data 

ID_code: Ox0001 dev_name: SBD rq_size: OxOO cq_size: OxOO 
boot_dev: 1 word_size: 1 brd_size: 1 smrt_brd: 1 cons_cap: 1 
indir_dev: 0 cons_file: a 

ID_code: Ox0003 dev_name: PORTS rq_size: Ox03 cq_size: 0x23 
boot_dev: a word_size: 1 brd_size: a smrt_brd: 1 cons_cap: 1 
indir_dev: a cons_file: 1 

# edittbl -d -i 
utility program for edt_data 

Enter device data 

Enter device ID code (> Ox10000 if indirect): oxS 
Enter device name: THUD 
Enter request queue size: OxO 
Enter completion queue size: 0x0 
Boot device? (1 - yes / 0 - no): 0 
16 bit I/O bus? (1 - yes / a - no): 0 
Double width :board? (1 - yes / a - no): 0 
Intelligent board? (1 - yes i a - no): 1 
Console capability? (1 - yes / a - no): 1 
Console pump file? (1 - yes / a - no): O· 

Enter device m code (> Ox10000 if indirect): Ox. 

{ID_code] 
{dev_name] 
{rq_size] 
{cq_size] 
{booCdev] 
{word_size] 
{brd_size] 
. {smrcbrdl 
{cons_cap] 
{consJile] 

Figure A-9 Adding a 3B2 Device Example (part 1 0/2) 
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# edittbl -I -d 
utility program for edt_data 

ID_code: Ox0001 dev_name: 
boot_dev: 1 word_size: 1 
indir_dev: a cons_file: a 

ID_code: Ox0003 dev_name: 
boot_dev: 0 word_size: 1 
indir ... dev: 0 conS_file: 1 

ID_code: OxOOOS dev_name: 
boot_dev: a word_size: 0 
indir_dev: a cons_file: a 

# edittbl -s .j 
utility program for edt_data 

Enter subdevice data 

Enter subdevice ID code: Ox34 
Enter subdevice unit: 0 
Enter subdevice name: Hard 

Enter subdevice ID code: Ox. 

SBD rq_size: OxOO cq_size: OxOO 
brd_size: 1 smrt_brd: 1 cons_cap: 1 

PORTS rq_size: Ox03 cq_size: 0x23 
brd_size: a smrt_brd: 1 cons_cap: 

THUD. rq_size: OxOO cq_size: OxOO 
brd_size: a smrt_brd: 1 cons_cap: 1 

Figure A - 9 Adding a 3B2 Device Example (part 2 of 2) 
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Removing an Entry From the EDT 

The edittbl command contains the -r option for removing an entry from the EDT. 'This option 
prompts you for information and then uses that information to remove the appropriate device from 
the edCdata file. NOTE: Removing an entry has no effect until the system is rebooted. When you 
execute edittbl -r, the command prompts you for the same information you specified for inserting an 
entry. However, only the ID_code is used to detect the entry to be removed from edcdata. 

When a device is removed from the EDT, all associated subdevices are also removed. As with 
inserting an entry, use "." or ~ to end the data input. 
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Appendix B: Writing 3B2 Computer Diagnostics Files 

This appendix explains how to write diagnostics files. The two diagnostic files are referred in this 
appendix as a diagnostics design. The Appendix B shows a complete diagnostics design for a custom 
feature card (non-common 110 based card) including examples for all required files. The code 

. examples listed in this appendix can be used as a template for writing diagnostics. 

Common I/O is a specification for circuit board design that ensures that bus-to-processor 
communication is standardized. The design specified in this appendix does not utilize common 110. 

The first part of this appendix serves as background information for the organization of diagnostic 
files for the 3B2 computer family. The second part describes the diagnostic programs or modules that 
are necessary for proper operation. 

A diagnostic file passes information to an intelligent controller so that the system initialization 
softWare can ensure the integrity of a 3B2 computer feature card (circuit bOard). Each hardware 
device requires two diagnostics files and these files are stored in the / dgn directory. BOth file names 
are in uppercase and both have the same name as the driver's master file name, except that one file is 
prefaced with X. The X.file contains object code to be downloaded to the feature card. The other 
file is an object file, which is to be loaded into main memory and executed by the CPU. Figure B-1 
illustrates these two files for the mydev device. 

at boot 

feign directory CPU 

MYDEV------------------~ memory 

X.MYDEV 
diagnostics 

Board 
(Feature Card) 

Figure B-1 Diagnostics Files Overview 
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If downloading is unnecessary, a NULL object file must be supplied such as SBD and X.SBD. Link 
the name of your product to /dgn/SBD and X.product-name to X.SBD. For example, for the nodev 
device 

cd /dgn 
In SBO NODEV 
In X.SBO X.NODEV 

B-2 BCI Driver Development Guide 



Introduction to Diagnostics Programs 

The diagnostic programs on a 3B2 computer are part of the Maintenance and Control Program 
(MCP). The MCP has two operation modes 

• Noninteractive mode - a mode in which the integrity of a 3B2 computer hardware is 
checked automatically when the computer is powered up, or at any time that the 
computer is brought down to firmware mode an~ back to a multiuser mode. Because a 
3B2 computer can bring itself up into full multiuser mode without user intervention, the 
noninteractive mode of the MCP is also referred to as autoboot mode. 

• Interactive mode - a mode of the MCP in which the integrity of a 3B2 computer 
hardware is checked when specifically requested. This mode is entered from either 
multiuser mode or automatically when hardware or system software failures occurs. In 
interactive mode, more extensive diagnostics can be run. . . 

M C P Non in te r a c tiv e Mod e 

Noninteractive (autoboot) mode is entered when the computer is powered on. A total system reset 
occurs at this time and basic sanity checks are performed on the computer hardware. The sanity 
checks include testing the processor (CPU), the Memory Management Unit (MMu), the erasable 
programmable read-only memory (EPROM), the non-volatile random-access memory (NVRAM), 
the Integral Dual Universal Asynchronous Receiver-Transmitter (IDUART), and the first 16 
kilobytes of dual-ported dynamic RAM. 

If a problem occurs during the sanity checks, the front panel diagnostic indicator light emitting diode 
(LED) pulses on and off in a defined pattern to identify the type of sanity failure. 
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Introduction to Diagnostics Programs 

Table B-1 defines the LED patterns. 

Table B-1 

Pulse Count 
1 

2 
3 
4 
5 

Diagnostic Indicator LED Patterns 

Failure Type 
System is in a finnware null state 
with no console device; connect a 
tenninal to the default console 
port 
Processor sanity test failed 
(EP)ROM sanity test failed 
RAM (first 16k) sanity test failed 
IDUART sanity test failed 

After the sanity checks are done, a self-configuration process takes place by the MCP calling 
tilledt(8) to identify and locate all of cards on the bus. (Moot resides in the root directory.) 

As self-configuration terminates, a more extensive diagnostic run begins. All diagnostics for the 3B2~ 
computer are under the control of dgmon(8), the diagnostic monitor. The dgmon program resides in 
the root directory and is invoked by noninteractive MCP. dgmon loads the diagnostic files from the 
/dgn directory of the integral hard disk into main memory and executes them. 
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Introduction to Diagnostics Programs 

M CP Interactive Mode 

The MCP interactive mode is entered only when a failure condition occurs for disk diagnostics, self
configuration, boot or by means of a specific request of the UNIX operating system. Entry to ~e 
MCP interactive mode is also possible by activating the reset button during a diagnostic sequence, 
which simulates a failure condition. 

The procedure to enter the MCP interactive mode is 

1 Bring the computer to in it 5 state with the shutdown(lM) command 

shutdown -is -gO -y<CR> 

2 Upon entering the MCP interactive mode, the cOQ§Ole displays 

FIRMWARE MODE 

If entry to interactive MCP is made from any of the failing conditions previously ~escribed, the 
console displays 

SYSTEM FAILURE: CALL YOUR SERVICE REPRESENTATIVE 
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Accessing the Me P 

All 3B2 computers are factory equipped with the Maintenance and Control Program (MCP) password 
mcp. (This default password can be changed using the interactive MCP passwd(8) command.) The 
MCP is accessed as follows 

1 At the prompt, enter the password. The entry is not displayed on the console. 

2 After the password is entered, the console displays one of the following messages 

Enter Name of Program To Execute [ ]: 

or 

3B2 Monitor/Control Proqram- era~e 'H', kill '@' 

Physical Mode 
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Accessing the i\tfCP 

To enter the MCP interactive mode on machines equipped with DEbug MONitor (DEMON) 
EPROMS, enter 

> boot 

The system responds 

Enter Name of Program To Execute [ ]: 

When the compu~er is in the interactive mode of MCP, the following firmware-resident programs (see 
Table B-2) can ~e executed 

Table B-2 Interactive MCP Commands 

Program 
baud 
boot 
edt 
errinfo 
express 
newkey 
passwd 
q or quit 
sysdump 
version 
? 

Description 
change console baud rate 
execute a system or user supplied program 
display the Equipped Device Table (EDT) 
display contents of internal registers 
change automatic diagnostics toggle 
write disk key for NVRAM 
change the firmware password 
escape to FIRMW ARE MODE prompt 
call crash( 1M) 
display firmware version and load data 
list help information 

Each program is described in Section 8 of the System Administrator's Reference Manual. Refer to the 
1/87 update of the manual for information on errorinfo and express. 
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Accessing the MCP 

In addition to the firmware resident programs listed, it is possible to execute any user-supplied or 
system-supplied program resident on one of the available disk storage devices. Two restrictions apply 

• The storage device must be present in EDT. A storage device cannot be mounted from 
firmware mode and, consequently, programs can be retrieved only from the devices that 
are in the EDT. 

• The user program must be loaded above the highest memory location used by the 
system; location Ox200400 is recommended. When the boot command is entered, the 
MCP asks for the name of the program to execute. The user program does not have to 
reside in a root directory of the particular storage device. The MCP accepts a fully . 
qualified path name of the file as well. 

The boot firmware is also used by the MCP to bring up the diagnostic monitor when a computer is 
powered on and by the operating system after diagnostics. The difference between the two programs 
and the user programs is that the fully qualified path is automatically provided by MCP. . 
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Accessing the MCP 

Figure B-2 shows the power-up diagnostic sequence for the 3B2 computer. 

Non Interactive 
MCP 

Entered 

Reset Entry 
(PojerUp) 

~-----t, 

Firmware 
Sanity Checks 

~ Pass 

Fail 

Self Configure Fail 
(first part) 

~ Pass 

Disk Sanity 

! Pass 

Call FILLEDT 
(Self Configure-second part) 

~ Pass 

Call DGMON 

~ Pass 

Run Normal Phases 
On the Installed 

Hardware 

~ Pass 

Fail 

Fail ... 

Fail 

Fail 

Boot UNIX OS . Fail·_ 
(Self Configure-third part) 

Figure B-2 3B2 Diagnostic Sequence 

Flash LED 
(multipulse) 

Flash LED 
Single Pause 

l no 

Console 
Found 

~ yes 

Enter Interactive 
MCP 

(Null Mode) 
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The Diagnostic Monitor (dgmon) 

All diagnostics for the 3B2 computer are under the control of the diagnostic monitor dgmon(8). 
Diagnostics are run during system initialization and are loaded from the integral hard disk. The 
program dgmon also resides in the root (/) directory and is invoked by the noninteractive mode of 
the MCP. The dgmon program loads diagnostics from the integral hard disk's /dgn directory into 
main memory and executes the diagnostics. 

Diagnostics invoked from interactive MCP mode can be called explicitly and loaded from the integral 
hard disk, external hard disk (such as a Small Computer System Interlace (SCSI», integral floppy, or 
other device. 

The MCP autoboot mode is used during power up to run nonnal diagnostics on each peripheral 
device, including System Board Diagnostics (SBD). Secondly, the demand mode is initiated from the 
console while in finnware mode. 

Typically, you should write several diagnostic programs to test the integrity of custom hardware. 
These diagnostic programs are called diagnostic phases. Any diagnostic program or phase on any 
peripheral can be run in demand mode. Also, demand mode is .the only mode in which interactive 
phases can execute. 

The diagnostic monitor (dgmon) can execute a diagnostic program or phase written to test a custom
designed feature card automatically. Because the diagnostic phases are being executed by dgmon, the 
phases must adhere to several rules imposed by dgmon. This is necessary to ensure that the results of 
the test can be interpreted properly and that the syntax for invoking the diagnostic tests through the 
dgn comman~ is unifonn for all 3B2 computer peripherals. 

The 3B2 computer diagnostics reside in two separate files and are downloaded into main memory 
from either the hard disk or the floppy disk. One of the diagnostics files contains system board code 
(m32 executable) and the other file contains the object code of the processor. A 3B computer 
peripheral receives (is pumped) the object code that is then executed. 

The diagnostic phases shown in this appendix are actual working diagnostics written for the general
purpose 3B2 computer interlace card model HRl. 
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The Diagnostic Monitor (dgmon) 

Diagnostic Monitor C om.m ands 

The diagnostic monitor is entered from the interactive MCP at the following prompt 

Enter Name of Program to Execute [ ]: 

Enter Idgmon and press the (RETURN) key. dgmon then displays the following prompt 

Load Device Option Number default loader ]: 
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The Diagnostic Monitor (dgmon) 

If Yfur systej is equipped with a SCSI bus, the default loader message reads 1 (SCSI). Press 
the RETIJRN key and the following additional prompt is displayed for selecting a SCSI subdevice 

Enter Sulxievice Option Number [0 (disk)]: 

Again, press the ( RETURN) key. The following diagnostic monitor prompt is displayed 

DIAGNOSTIC MONITOR 
DGMON > 

Table B-3 lists the available dgmon(8) commands 

Command 
dgn* 
errorinfo 
help 
list 
quit 
run 
show 

Table B-3 dgmon Commands 

Abbreviation Description 
diagnose one or more devices 
enable/disable error info 

h list commands and arguments 
I list phases for the specified device 
q return to the MCP interactive prompt 
r run diagnostic phases 
s show equipped device table 

$Refer to the System AdmirWtrator' s Refrrenc~ Manual on the dgmoo(8) manual page for more information on the dgn command and all its 

options. 
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The Diagnostic Monitor (dgmon) 

Figure B-3 illustrates the diagnostic utility directories in the root file system 

!filledt /dgn /dgmon /unix 

SBD 
X.SBD 

EPORTS 
X.EPORTS 

HRI 
X.HRI 

YOURBD 
X.YOURBD 

Figure B-3 Diagnostic Utility Directories 
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Standard Library Functions 

A set of common functions, 'called the standard library functions, are available to the diagnostics 
developer. The standard library functions are a set of macros defined infirmware.h that contain calIs 
to the system board code. The functions give diagnostics programs access to custom hardware. 

The following is a partial list of the standard library functions. (The HRl feature card diagnostic 
phase functions that are used do not appear in the list.) Use both the functions listed here and the 
HRl functions when creating the HRl diagnostic phases. 

NOTE: The functions summarized in this appendix (and presented in detail in Section D8X of the 
Bel Driver Reference Manual) should not be confused with similarly named functions in 
either Section 2 of the Programmer's Reference Manual or in Section D3X of the Bel Driver 
Reference Manual. All function names in Section D8X are in uppercase. 

Table B-4 summarizes a subset of the standard library functions. 

Table B-4 Standard Library Function Subset Summary 

Function 

EXCRETO 
Errn'O 
GETS(ptr) 
GETSTATO 
PRINTF("string %options",argl,arg2) 
SSCANF(string. "%options",argl.arg2) 
STRCMP(string 1 ,string2) 
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Description 

set up .return point for exception 

get ·string from standard input 
return value of current console character 
display message 
read from string 
compare strings 



Writing Diagnostic Phases 

Maintenance is an important part of the AT&T 3B2 computer. The maintenance for a 3B2 computer 
is comprised of diagnostic programs as well as hardware replacement or repair .. In addition to the 
hardware diagnostics (for example, the system board, memory, disk drives, and so on), diagnostics 
are also run on option feature cards installed in a 3B2 expansion bus. All of the above is done to 
ensure hardware integrity. If for any reason there is a problem in the system, the console operator 
should be alerted. 

The same is true for a custom feature card development computer. The 3B2 computer with the 
appropriate diagnostic files is used as a sophisticated test setup to ensure proper operation of the 
feature cards before the cards are sent to a customer. 

Typically, the diagnostics run are more extensively than diagnostics used when the machine is first 
autobooted. Normal diagnostics, called noninteractive phases, are run automatically when the system 
is powered up and more extensive diagnostics are run upon demand (called interactive or demand 
phases). 

Diagnostic Files 

Every option feature card has to have two files on the 3B2 computer hard disk in the / dgn directory 
for diagnostics to be activated. The two files contain insiru.ctions that direct the diagnostic monitor 
dgmon to test a specified hardware unit. 

dgmon provides information to each phase to indicate the position of a hardware device in the EDT. 
The diagnostic phase interface consists of a structure containing all necessary information pertaining 
to the phase target. When the address of a feature card (slot number) or a type of feature card. 
changes, the phase should not be affected becaUse its only interface to the feature cards and the 
computer resident hardware is not direct but through the dgmon. 

If the two diagnostic files do not exist in the /dgn directory, then the diagnostics fail. The computer 
must pass the diagnostic tests so it may progress to multiuser mode. 

System Board Resident Diagnostic Files 

The first diagnostic file has the same name as the name of the feature card it serves. It is declared in 
the EDT. Refer to edittbl(lM) in System Administration Reference Manual for more information. 

For example, if the name of the feature card in the EDT is HRl, then the name of the system board 
based diagnostic file in the /dgn directory is HRl. This file contains the system board resident code 
for diagnostic phases with accompanying phase table. 
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Writing Diagnostic Phases 

The system board resident diagnostic file is the only file required to exercise a feature card that 
cannot download programs. Typically, such a feature card has an onboard microprocessor that 
executes its program from ROM memory rather then from the downloadable RAM. The system 
board resident diagnostic program interacts with the microprocessor on the feature card to assign jobs 
to be perfonned and to collect data from the feature card. 

NOTE: The system board resident diagnostic file must be loaded into main memory at address 
OO00COOO (hexadecimal). This address is stored in the DOWNADDR constant defined in 
diagnostics.h. After the system board diagnostic file is loaded by dgmon, dgmon begins 
execution of every diagnostic phase at this address. Other diagnostic files can be loaded 
anywhere after this address. 

The system board diagnostic file dOwluoads the executable file into feature card memory and executes 
it there. The next section describes the feature card object code. This file type is in the m32.out file 
fonnat. 

Figure B-4 shows the utilization of system board diagnostic RAM for ROM-based feature card 
diagnostics. 

00000000 

DOMaN 

Ox200cOOO 
Diagnostic 

Phase Table 
Ox200c??? 

SBD 

Ox200f000 
Diagnostic Phase 

Diagnostic 
Return Structure 

Ox200dOOO \ I f ------------------
Figure B-4 Utilization of System Board Diagnostic RAM Cor the HR.l Card 

Feature Card Resident Diagnostic File 

The second diagnostic file (in the dgn directory) for the hardware device is the file containing the 
feature card object code for the diagnostic tests. Its name is fonned by prefacing the file name with 
X. to the system board resident code file. For example, HRl converts to X.HRI. This file is 
optional, and cannot be zero bytes in length. 
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Writing Diagnostic Phases 

Feature cards that can download programs into local card memory, use the X. file. The X. file can be 
either in common object format or contain data that is used to create the device object code in 
memory of the feature card. In either case, the X. file is object code that is usable by a processor on 
the feature card. 

For a common I/O feature card, this file is x86 executable fonnat common object code. This type of 
object code is compiled and loaded in accordance with ifile specifications. File section headers are 
created to specify the location for the disk to download to the system board memory. 

When the X. file is not in common object code format (such as when the feature card is not a 
common 110 feature card or when a 3B2 computer compiler does not exist for a given processor), 
dgmon attempts to read the file into memory as raw data, starting at the END phase address. If the 
feature card can download programs, you can download from a 3B2 computer hard disk. 

Refer to Figure B-5 for a description of system board memory on feature cards that can download 
programs. 

Diagnostic Return Structure 

A section of main memory starting at the location Ox200fOOO has been allocated as the 
communication ch~el between phases. The structure defined for this purpose consists of four 
unsigned integers starting at location Ox200f000. If this address and structure is not satisfactory for 
your needs, you may create your own structure or define your own memory address. However, this 
address and structure are recommended and should be used whenever possible to avoid contention 
problems at other addresses. 
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Writing Diagnostic Phases 

Figure B-5 illustrates how system board diagnostic RAM is used for feature card diagnostics when 
feature cards are downloaded (pumped). 

Ox2000000 

DGMON 
Ox200cOOO 

Diagnostic 
Phase Table 

0x200c??? 
SBD 

Diagnostic Phase 
0x200f000 

Diagnostic 
Return Structure 

0x2010100 

Feature Card 
Phase #1 (Pumped) 

00011100 
Feature Card 

Ox2012100 
Phase #2 (Pumped) 

Feature Card 

Ox2013100 
Phase #3 (Pumped) 

Feature Card 

Ox2014100 
Phase #4 (Pumped) 

Feature Card 
Phase #5 (Pumped) 

Ox200dOOO _ " 
~ -----------------

Figure B-5 System Board Diagn~stic RAM Utilization for Pumped Cards 

Refer to later sections of this appendix for more infonnation on writing and compiling a C language 
source file to create diagnostic files. Before starting with code development, create a separate 
diagnostic floppy diskette for storing your work. 
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Putting Diagnostic Files on a Floppy Diskette 

Diagnostic files should be created on a separate floppy diskette to minimize the possibility of deleting 
or corrupting valuable system files. Figure B-6 describes the commands required to make such a 
diskette that is boatable from finnware mode and mountable in multiuser mode. 

# fmtflop -v Idev/rdsklcOdOs6 
# newboot lIib/olboot lIib/mboot 
~ewboot: confirm request to write boot programs to /dev/rdsk/cOdOs7:y 
# mlds /dev/dsklcOdOsS 1303 118 . 
MItts: /dev/dsk/cOdOsS? 
(DEL if wrong) 
b¥tes per logical blocks = 1024 
total logical blocks = 702 
total inodes = 160 
gap (physical blocks) = 1 
cylinder size (physical blocks) = 18 
mkfs: Available blocks = 689 
# labelit Idev IrdskicOdOsS dgn 060487 
CUrrent fsname: , CUrrent volname: , Blocks: 1404,' Inodes: 160 
FS Units: 1KB, Date last mounted: date' 

. NBW fsname = dgn, NEW volname = 060487 -- DEL if wrong!! 
# mount /dev/dsk/cOdOsS install 
# find Idemon /dgn /tilledt -print I cpio -puvdm /install 
/install/dgmon 
/install/dgn/edt_data 
/install/dgn/SBD 
/install/dgn/X.SBD 
/install/dgn/PORTS 
/install/dgn/X.PORTS 
/install/dgn/HR1 
/install/dgn/X.HR1 
442 blocks 
# umount Idev/dskicOdOsS 

. Figure B-6 Making a Diagnostic Floppy Diskette 

Writing 3B2 Computer Diagnostics Files B-19 



Putting Diagnostic Files on a Floppy Diskette 

Organization of the Diagnostic Development Floppy 

Figure B-7 shows the directories and files that should be included on the diagnostics development 
floppy. The floppy includes diagnostic files and the source for the diagnostics. The floppy can be 
mounted in the multiuser system and the programs (diagnostic phases) can be written, edited, and 
compiled using the standard UNIX system tools. Subsequently, the same floppy can be used as a 
source of diagnostic programs when a 3B2 computer is querying from the firmware mode. The 
"Compiling Diagnostic Phases" section in this appendix descJibes this in detail. 

!filledt /dgmon 

HRI 
hrl~hztab.c 

sbd_ifile 
makefile 
make.lo 
scpu_l.c 
scpu_2.c 

/dgn 

X.HRI 
makefile 
make.lo 
dummy.c 

phaseload.h 
iodep.h. 

Figure B -7 Organization of the Diagnostics Development Floppy Disk 
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Diagnostics Source File 0 rganization 

Figure B-8 shows the organization of diagnostic files for HRl feature card. The top directory, mdgn, 
contains three subdirectories 

• m32 - systems board diagnostics directory 

• x51 - feature card object code directory 

• com - common header files directory 

The mdgn directory also contains two makefiles, makefile and make.hi. From the mdgn directory, 
enter make to compile all of the subordinate diagnostic files. 

HRI 
hrl..J1hztab.c 

sbd_ifile 
makefile 
make.lo 
scpu_l.c 
scpu_2.c 

X.HRl 
makefile 
make.Lo 
dummy.c 

Figure B-8 mdgn Directory 

phaseLoad.h 
iodep.h 

A full listing of the HRl diagnostic source is presented in the source code sections at the end of this 
appendix. . 
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Diagnostics Source File Organization 

System Board Diagnostics Directory (m32) 

The m32 directory contains all the necessary files to generate the system board based diagnostics. 
The purpose and the functions of the individual programs in this directory can be surnmerized as 
follows 

• The diagnostic monitor runs the diagnostic phases according to the phase table 
hr I-phztab.c. 

• Individual diagnostic programs (phases) are in files scpu_l.c, scpu_2.c, scpu_3.c, and so 
on. These diagnostic programs interact with HRI feature card, causing it to go through 
specified test phases. 

• The individual diagnostic phases and the phase table is compiled according to rules 
stated in makefile and make.lo . 

• The individual phases and-the phase table is loaded into a 3B2 computer's main memory 
in accordance with sbd_ifile. 

• Objects of the individual phases are combined into one HRI file. 

F eat u r e Car d 0 b j e'c t Cod e D ire c tor y (x 5 1 ) 

The x51 directory contains all the files necessary to generate feature card object code if this feature is 
selected. Because the diagnostic files for the HRI feature card are stored in ROM, this directory 
contains only the files needed to compile the dummy file to satisfy dgmon requirements. This 
dummy file is assigned the name X.HRI. If the feature card can download programs into its memory 
(see Table B-3), objects of the individual phases are combined into a one file: X.BRi. In this case, 
the directory contains all the diagnostic phases to be downloaded into the feature card memory. 
These diagnostic phases are downloaded by the system board diagnostic phases. For example, 
systems board diagnostic phase scpu_l. downloads scpu_l.c, scpu_2.c downloads scpu_2.c, and 
scpu_3.c downloads scpu_3.c, and so on. 

Common Header File"Directory (com) 

The com directory contains all the common header files. These header files contain definitions for 
generic feature cards as well as specific common 110 feature cards. Figure B-8 describes the files that 
should be in the com directory. 
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Diagnostic Phase Table 

The diagnostic phase table is the first program loaded into main memory. All other diagnostic phases 
are loaded after the diagnostic phase table (a map that includes the load point for the diagnostic 
phase table is shown in Figure B-4). Figure B-9 lists a sample diagnostic phase table. 

1 /** 
2 . * Copyright (c) 1986 AT&T 
3 * - pb_phztab.c -
4 * 
5 * Diagnostic phase table for -HR- Board 
6 **"/ 

7 #include <sys/firmware.h> 
8 #include <sys/diagnostic.h> 

9 extern unsigned char scpu_1(), scpu_2(), scpu_3(), scpu_4(), scpu_5(); 
10 extern unsigned char scpu_6(), scpu_7(); 
11 
12 struct phtab phptr[] = { 
13 {scpu_1, NORML, "Phase 1 - Init IDInt.Register Check~'}, 
14 {scpu_2, NORML, "Phase 2 - Parallel Port Out Test"}, 
15 {scpu_3, NORML, "Phase 3 - Serial Port Out Check"}, 
16 {scpu_4, INTERACT, "Phase 4 - Serial Port In Check"}, 
17 {scpu_5, DEMAND, "Phase 5 - Memory Read / Write Test"}, 
18 {scpu_6, INTERACT, "Phase 6 - Parallel Port In Check"}, 
19 {scpu_7, DEMAND, "Phase 7 - dummy"}, 
20 {scpu_7, END, ""} 
21 }; 

Figure B-9 Diagnostic Phase Table Example 

As shown in Figure B-9 in lines 12 through 21, the diagnostic phase table structure contains three 
fields: the phase name, the phase type, and a description. For example, in line 13 the phase name is 
scpu_l, the phase type is NORML, and the description is "Phase 1 - lnit ID Int Register Check." 

If the phase type field is NORML (normal), the phase is executed by dgmon in noninteractive mode 
during autoboot. If the phase type field "is DEMAND or INTERACf, the phase can only be run in 
the interactive mode of MCP. DEMAND indicates that the phase performs comprehensive 
diagnostics. 
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Diagnostic Phase Table 

The interactive phase type (noted by the INTERACf phase type) requires operator interaction. 

NOTE: The END phase type must be the last phase type specified. In addition, the END phase 
type should repeat the previously specified phase name and the description field must end 
with a period (". If). 

B-24 BCI Driver Development Guide 



Diagnostic Phase Table 

A Loader Option File 

The loader option file is created to ensure that the diagnostic phase table is loaded into memory first, 
at address-Qx200cOO. In the example in Figure B-10, the loader option file is named sbd_ifile (this 
file is invoked by makefile in the m32 directory). 

1 1* 
2 * Copyright (c) 1986 AT&T 

3 * 
4 * This file loads SBD diagnostic code. The phase table must 
5 * be loaded first and must start at address Ox200cOOO. 
6 
7 
8 
9 

10 

*1 
MEMORY 
{ 

PHZTBL: 
} 

11 SECTIONS 
12 { 
13 .phztab: 
14 { 

origin = Ox200cOOO, length = Ox70000 

15 _start = ., 
16 hr1~phztab.o(.data) 

17 } > PHZTBL 
18 .text: 
19 { 
20 } > PHZTBL 
21 .data: 
22 { 
23 } > PHZTBL 
24 .bss: 
25 { 
26 } > PHZTBL 
27 } 

Figure B-I0 Loader Option File Example 
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Diagnostic Phases 

Figure B-ll is an example of a diagnostic phase for the HRI feature card. This program tests to see 
if the HRl feature card is able to read the identification code from the ID hardware register located 
on the feature card and tests the interrupt vector register. 

1 #inelude<sys/diagnostic.h> 
2 #include<sys/firmware.h> 
3 #inelude<sys/~bd.h> 
4 #inelude<sys/edt.h> 
5 #inelude<sys/cio_defs.h> 
6 #include<ciofw.h> 
7 #include<iodep.h> 
8 #include<sys/queue.h> 
9 #inelude<phaseload.h> 

10 #include<per_dgn.h> 
11 #include<ppc_dgn.h> 

12 #define DEBUG ,. 

13 /** 
14 * - scpu_1() 
15 * 
16 * Copyright (e) 1986 
17 * 

AT&T 

18 * This routine starts the 
19 **/ 

HR1 tests. 

Figure B -11 HR.l Diagnostic Phase (part 1 of 4) 
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20 struct dgnret dgnret; 
21 char ph_no; 
22 unsigned short etime; 
23 int (*efunc)(); 
24 scpu_1() 
25 { 
26 register int i, j; 
27 register int delay1 = 1000; 
29 long dly1, save_int; 
30 int pb_slot; /* slot # of this board */ 
31 int vec_num; /* interrupt vector number */ 
32 int ass_ID = Ox72; /* assigned board's id */ 
33 int ID, VEC; /* board's id */ 
34 char *pb_id; /* id address */ 

char *pb_vec; /* interrupt address */ 
char *pb_par; /* parallel port address */ 

35 
36 
37 
38 

char *pb_sero; /* serial out port address */ 
char *pb_seri; /* serial in port address */ 

39 /* phase execution time */ 
40 unsigned short etime = 2; 

41 /* global phase number */ 
42 ph_no = 1; 

Diagnostic Phase Table 

43 
44 
45 

/* print test header */ 
PRINTF("HR1 Phase: %d 
PRINTF("Test Count: 1 

Name: SCPU_ 1 Type: NORMAL\.n", ph_no); 
Time: %d sec.\.n", etime); 

46 pb_slot = EDTP(OPTION)->opt_slot; /* get board slot # from EDT */ 

Figure B-ll HR.l Diagnostic Phase (part 2 of 4) 

Writing 3Bl Computer Diagnostics Files B-27 



Diagnostic Phase Table 

47 /* calculate board access vectors */ 
48 pO_id = (char *)«pb_slot * Ox200000) + Ox1); /* ID code req*/ 
49 po_seri = (char *)«po_slot * Ox20000~) + Ox5); /* serial in */ 
50 po_vec = (char *)«pb_slot * Ox200000) + Ox7); /* int vec loc */ 
51 pD_sero = (char *)«pb_slot * Ox200000) + Oxfe); /* serial out *( 
52 po_par = (char *)«pb_slot * Ox200000) + Oxff); * parallel port */ 

53 #ifdef DEBUG 
54 PRINTF( "BOARD LOCATED IN SLOT %d\n", po_slot); 
55 #endif 

56 /* calculate vector number */ 
57 vec_num = po_slot * Ox10; 

58 /* Read the board's ID number back from the ID register */ 
59 ID = *po_id; 
60 PRINTF ( n ID CODE = %x\n", ID); 

61 /* Write vector number into vector register */. 
62 for (j = 0; j < delay1; j++); 
63 . *pb_vec = (char)vec_num; 

64 /* Read the vec~or number back from the vector register */ 
65 for (j = 0; j < delay1; j++); 
66 VEC = *pb_vec; 
67 PRINTF( "INTERRUPT VECTOR = %x\n", VEC); 

Figure B-ll HR.l Diagnostic Phase (part 3 of 4) 
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Diagnostic Phase Table 

68 if (IO 1= ass_ID) 
69 { 
70 PRINTF ( II \n \nIO CODE = %x IT SHOU.LO BE %x \n n, IO, as s _ ID) ; 
71 return(FAIL); 
72 } 
73 else if (VEC 1= vec_num) 
74 { 
75 PRINTF("\n\nVECTOR IO = %x IT SHOULD BE %x \nn, VEC,vec_num); 
76 return(FAIL); 
77 } 
78 else 
79 return(PASS); 

Figure B-l1 HRI Diagnostic Phase (part 4 of 4) 
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Diagnostic Template 

A template should be used to maintain standardization between messages for normal and demand 
diagnostic phases. This template allows one 72-column line for each of the following 

• phase title and type 

• output of the warning'messages and input directions 

• time it should take for the phase to execute 

• total number of times the phase executes 

To comply with the above requirements, a test header should be printed using PRINTF(D8X) 
statements. The first PRINTF statement should identify the phase and its type. The second PRINTF 
statement should list the number of times and the time (in seconds) for the phase to execute. 

Note that these messages are only displayed during interactive MCP mode when the phase number is 
specified. For example, if the following commands are entered in firmware mode 

dgn hrl 
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Diagnostic Template 

Because 110 is turned off by the dgmon, no used messages are displayed. However, when the phase 
number is specified, PRINTF messages are displayed. 

dgn hr1 ph=1 

A call to the standard library functions (located in lusrlinclude/firmware.h) is in the body of the 
source program for scpu_l.c. The code for this call is contained in line 44 of the program is 
provided at the end of this appendix. 

44 pb_slot = EDTP(OPTIbN) ->opt_siot; 

This sta~ement generates a slot number for a 3B2 expansion bus in which the feature card to be 
diagnosed is located. The slot number permits calculation of the base address for the feature card. 
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Diagnostic Template 

This is possible because the feature card slots in a 3B2 expansion bus are assigned unique addresses as 
shown in Table B-5. 

Table B-5 Physical Address Assignment on Expansion Slots 

slot number 3B2 physical address 

1 Ox200000 

2 Ox400000 

3 Ox600000 

4 Ox800000 

5 OxaOOOOO 

6 OxcOOOOO 

7 OxeOoooo 

8 Oxl000000 

9 Ox1200000 

10 Ox 1 400000 

11 Ox 1 600000 

t2 Ox1800000 

13 OxlAOOOOO 

14 OxlCOOOOO 

15 Ox 1 EOOOOO 

From the base address of the feature card, all useful feature card addresses can be calculated. For the 
HRl feature card, the following addresses are significant 

Table B-6 HR.l Feature Card Usable Addresses 

Address 
pb_id 
pb_vee 
pb_par 
pb_sero 
pb_seri 

Description 
HRl feature card identification register 
interrupt vector register . . 
parallel port (input and output) 
serial port output 
serial port input 

In addition, there is also an address defined in the phase scpu_5 for the beginning of the RAM on the 
HRl feature card. 
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Diagnostic Template 

The phase SCPl'CI tests to see if the HRI feature card can identify itself properly. The HRI feature 
card phase provides an identification code when tested by the 3B2 computer. Also, the card has the 
ability to accept and present its interrupt vector. 
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Diagnostic Template 

PASS - FAIL 

Control of pass-fail actions occurs by return statements sent back to dgmon. In the case of the HRI 
feature card scpu_l phase, pass-fail is controlled by the statements in Figure B-12. Complete code 
for this phase is provided at the end of this appendix. 

66 if (ID 1= ass_ID) 
67 { 
68 PRINTF("\n\nID CODE = %x IT SHOULD BE %x \n", ID,ass_ID); 
69 return(FAIL); 
70 } 
71 else if (VEC 1= vec_num) 
72 { 
73 PRINTF("\n\nVECTOR ID = %x IT SHOULD BE %x \n", VEC 9 vec_num); 
74 return(FAIL); 
75 } 
76 else 
77 return(PASS); 

Figure B -12 Pass-Fail Control Statements 

In line 77, the return(PASS) statement causes dgmon to pass the phase. In lines 69 and 74, the 
return(F AIL) statements signals dgmon to fail the phase. 
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C om piling Diagnostic Phases 

This section describes how to compile diagnostic phases on the 3B2 computer for feature cards. 
Included is the compile process for the HR 1 feature card. 

In the previous section on making a diagnostic floppy, a set of existing / dgn diagnostic files were 
transferred onto a specially initialized floppy diskette. In addition to these copied files, you should 
create and populate the mdgn directory as shown in the Figure B-7 and Figure B-8. Finally, you need 
to populate the subdirectories with source code. 

IMPORTANT: The compilation procedure that follows assumes that you have two 3B2 computers, 
one in firmware mode for the execution and testing of diagnostic code 
(computer #1), and one in multiuser mode to be used for compilation of diagnostics 
(computer #2). 

Any new feature cards should be previously installed on the computer that is in 
firmware mode before starting the activities in this section. 

The following proc~ure describes how to compile a diagnostic phase. 

1 Put computer #1 into firmware mode by entering 

shutdown -is -y -gO 

2 At the FIRMWARE MODE message, enter the firmware password. If your computer 
displays a ">" prompt, enter 

boot 

3 Install the mdgn floppy in the floppy disk drive. 

4 Atthe Enter name of program to execute ] prompt, enter 

dgmon 

S Next, the system asks for the disk option, either hard disk (which is the default) or 
floppy disk (FD5), enter 

FDS 

6 The green light on the floppy disk drive illuminates- and and about 45 seconds later the 
dgmon prompt appears. 

7 Display the HRl feature card diagnostic phases by entering 

I hrl 
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Compiling Diagnostic Phases 

8 Execute all the HRI phases observing the HRI feature card performance. 

9 To do this step and the next step, change the phase source programs and recompile 
them. 

Change the diagnostic phase #5 (memory read/write test for the HRl feature card) to be 
a NORML phase. The phase should identify itself as such. 

10 Write phase #7 for the HRl feature card to be a demand type. This phase should write 
ten patterns of 0x0f and OxfO to the parallel output port. Each time a pattern is 
executed, a sequence number is displayed on the terminal (serial out) such as: 1, 2, 3, ... 
10. 

11 After computer #1 finishes executing dgmon, wait until the green light on the floppy 
disk drive illuminates and remove the floppy disk. 

12 In computer #2, install the mdgn floppy and enter 

mount /dev/dskicOdOsS 

The green light on the floppy disk drive then illuminates. 

CAUTION: Do not remove the. floppy diskette from the drive until after executing 
step 16. 

13 Change directory tolinstalllmdgn. 

14 Edit or create the appropriate code as needed. 

15 Change directory to linstalllmdgn and enter make. The command recompiles all the 
affected files and remakes the diagnostic object file located in linstallldgnlHRl. 

In case of an error, edit the affected source files and repeat this step. 

16 Change directory to root (I) and enter 

umount /dev/dskicOdOsS 

This unmounts the diskette. When the green light on the floppy disk drive goes out, 
r~move the "mdgn floppy from comput~r #2. 

17 Insert the mdgn floppy in the computer #1 and execute the newly created phase. 

Repeat steps 12 through 17 as needed. 

The following sections list the source code for the programs previously explained in this appendix. 
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2 * 
3 * 
4 * Diagnostic information for the 3B2 ports board. 
5 **1 

6 1* 
7 * memory boundaries 
8 
9 

10 
11 
12 
13 

*1 
#define 
#define 
#define 
#define 
1* 

T (unsigned int *)OxOOOO 1* Low RAM test range (16k) *1 
LRAMEND (unsigned int *)Ox3fff 
HI{AMSTRT (unsigned int *)Ox4000 1* High RAM te$t range (16k) *1 
HRAMEND (unsigned int *}Ox7fff 

14 * peripheral rom test values 
15 
16 
17 

*1 
#define 
#define 

18 1* 

ROMS TART (unsigned char *)OxfcOOO 1* 16k ROM *1 
ROMCHKSM(unsigned char *)Oxfffee 1* checksum addr *1· 

19 * SBD memory info 
20 
21 
22 
23 

*1 
#define 
#define 
#define 

24 1* 

PIOPAGE 2 1* page register value for PIa tests *1 
SRMCSTRT (u.nsigned char *) Ox80000 1* PIa byte start location *! 
SRMISTRT (unsigned int *)Ox80000 1* PIa int start location *1 

25 * DMA page register value 
26 
27 
28 

*1 
#define DMAPAGE Ox03 1* use fifth page so we don't 

overwrite the diagnostic code *1 
29 1* 
30 * Last SBD RAM address to use in PIa diagnostics 
31 * (pio_1.c, pio_2.c) 
32 *1 
33 #define SRMCEND (unsigned char *)Ox9ffff 1* PIa byte end address *1 
34 #define SRMIEND (unsigned int *)Ox9fffe 1* PIa int end address *1 
35 1* 
36 * interrupt vector returned to SBD 
37 *1 
38 #define INTVECT Ox3 
39 1* 
40 * address offset to peripheral devices 
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41 */ 
42 #define IO_BASE Ox600 
43 /* 
44 * duart 0 addresses 
45 */ 
46 #define DO_MR1_2ACIO_BASE + OxOO) 
47 #define DO_A_SR_CSR (IO_BASE + Ox02) 
48 #define DO_A_CMND(IO_BASE + Ox04) 
49 #define DO_A_DATA(IO_BASE + Ox06) 
50 #define DO_IPC_ACR (IO_BASE + Ox08) 
51 #define DO_IS_IMR(IO_BASE + OxOa) 
52 #define DO_CTUR (IO_BASE + OxOc) 
53 #define DO_CTLR (IO_BASE + OxOe) 
54 #define DO_MR1_2B{IO_BASE + Ox10) 
55 #define DO_B_SR_CSR (IO_BASE + Ox12) 
56 #define DO_B_CMND(IO_BASE + Ox14) 
57 #define DO_B_DATA(IO_BASE + Ox16) 
58 #define DO_IP_OPCR ("IO_BASE + Ox1a) 
59 #define DO_SCC_SOPBC (IO_BASE + Ox1c) 
60 #define DO_SCC_ROPBC (IO_BASE + Ox1e) 
61 /* 
62 * duart 1 addresses 
63 */ 
64 #define D1_MR1_2ACIO_BASE + Ox80) 
65 #define D1_A_SR_CSR (IO_BASE + Ox82) 
66 #define D1_A_CMND(IO_BASE + Ox84) 
67 #define D1_A_DATA(IO_BASE + Ox86) 
68 #define D1_IPC_ACR (IO_BASE + Ox88) 
69 #define D1_IS_I~(IO_BASE + Ox8a) 
70 #define D1_CTUR C IO_BASE + Ox'8c) 
71 #define D1_CTLR (IO_BASE + Ox8e) 
72 #define D1_MR1_2BCIO_BASE + Ox90) 
73 #define D1_B_SR_CSR (IO_BASE + Ox92) 
74 #define D1_B_CMND(IO_BASE + Ox94) 
75 #define D1_B_DATA(IO_BASE + Ox96) 
76 #define D1_IP_OPCR (IO_BASE + Ox9a) 
77 #define D1_SCC_SOPBC (IO_BASE -+ Ox9c) 
78 #define D1_SCC_ROPBC (IO_BASE + Oxge) 
79 /* 
80 * duart control variables 
81 
82 
83 
84 
85 
86 

*/ 
#define RSTMRPT 
#define INT7BT 
#define INT8BT 
#define EXT7BT 
#define EXT8BT 

Ox10 
Ox12 
Ox13 
Ox12 
Ox13 

87 #define INTLP Ox8f 
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88 #define EXTLP OxOf 
89 #define BAUDA Ox44 1* 300 baud *1 
90 #define BAUDB Ox66 1* 1200 baud *1 
91 #define BAUDC Ox99 1* 4800 baud *1 
92 #define BAUDO Oxbb 1* 9600 baud *1 
93 #define BAUDE Oxcc 1* 19.2K baud *1 
94 1* 
95 * duart status variables 
96 *1 
97 #define TXRDYO !*STATRGO &. Ox04) 
98 #define RXRDYO (*STATRGO &. OxO 1) 
99 #define TXRDY1 (*STATRG1 &. Ox04) 

100 #define RXRDY1 (*STATRG1 &. Ox01) 
101 #define TXRDY2 (*STATRG2 &. Ox04) 
102 #define RXRDY2 (*STATRG2 &. Ox01) 
103 #define TXRDY3 (*STATRG3 &. Ox04) 
104 #define RXRDY3 (*STATRG3 &. Ox01) 
105 #define FFULLO (*STATRGO &. Ox02) 
106 #define FFULL1 (*STATRQ1 &. Ox02) 
107 #define FFULL2 (*STATRG2 &. Ox02) 
108 #define FFULL3 (*STATRG3 &. Ox02) 
109 #define OVRRUNO (*STATRGO &. Ox10) 
110 #define OVRRUN1 (*STATRG1 &. Ox10) 

- 111 #define OVRRUN2 (*STATRG2 &. Ox10) 
112 #define OVRRUN3 (*STATRG3 &. Ox10) 
113 1* 
114 * printer addresses 
115 *1 
116 #define PORTA (IO_BASE + Ox100) 
117 #define PORTC (IO_BASE + Ox101) 
118 1* 
119 * printer status variables 
120 *1 
121 #define PRBUSY (*PORTC &. Ox10) 
122 #define PRPE (*PORTC &. Ox20) 
123 #define PRSEL (*PORTC &. Ox40) 
124 #define PRFALT (*PORTC &. Ox80) 
125 #define PRREST (*PORTC &. Ox01 ) 
126 #define PRSTRB (*PORTC &. Ox02) 
127 #define PRAUTF (*PORTC &. Ox04) 
128 1* 
129 * test variables 
130 *1 
131 #define SHORTZERO OxOOOO 
132 #define BYTEZERO OxOO 
133 #define SHORTONES Oxffff 
134 #define BYTEONES Oxff 
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135 
136 
137 
138 

#define 
#define 
#define 
#define 

SHORTAOAZ Oxaaaa 

BYTEAOAZOxaa 

SHORTAZAO Ox5555 
BYTEAZAO Ox55 
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c io fw • h 

2 
3 
4 

* 
* 
* 

5 *1 
6 
7 
8 
9 

#define 
#define 
#define 
#define 
#define 
#define 

Copyright 1984 AT&T 
This header file contains declarations and defines 
those which are used by the common I/O routines only. 

MAX_XFER Ox400 1* max bytes XFERd by movoffb&movoffbw 
CLR_BRQ Ox2000004 1* addr to write BDID - clear bus reqs 
DPD_OFFS Ox80000 1* DPD RAM offset 
UMCS Oxfc38 1* value for upper memory chip select 
LMCS Ox3ff8 1* value for lower memory chip select 
MMCS Ox8000 1* value for middle memory chip select 

#ifdef MEMSPACE 
# define PACS Oxc03a 1* value for PACS register 
# define MPCS OxaOfS 1* value for memory block size 
#else 
# def:Lne PACS Ox7a 1* value for PACS register 
# define MPCS· OxaObS 1* value for memory block size 
#endif 

*1 
*1 
*1 
*1 
*1 
*1 

*1 
*1 

*1 
*1 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

#define FULL OxO 1* value for queue full in putcomp *1 
#define DMA_CWB Oxb6ae 1* DMA cntrl word val to xfer bytes*1 
#define DMA_CWW Oxb6af 1* DMA cntrl word val to xfer words*1 
#define INTOMSK Ox10 1* mask value for INT 0 *1 
#define INT1MSK Ox20 1* mask value for INT 1 *1 
#define RQ 1 1* request queue *1 
#define CQ 0 1* completion queue *1 

27 1* 
28 This file is included by both 'c' language source and assembly 
29 language source. The assembly code does not wish to see the 
30 'c' specific stuff, and so it defines a macro named "ASSY". 
31 *1 
32 
33 #ifndef ASSY 
34 typedef struct cmds{ 
35 char opcode; 
36 short (*func)(); 
37 }CMDS; 
38 #endif 
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1 
2 Copyright 1984 AT&T 

3 This file contains macros for accessing the various IAPX186 
4 devices, located in I/O space or memory space, depending upon 
5 how one compiles the common I/O. 

6 The following are the base locations of the various locations 
7 within the I/O (or memory) spectrum. 
8 */ 
9 #ifdef MEMSPACE 

10 #define CHAR(x) 
11 #define SHORT(x) 
12 #define USHORT(x) 
13 #define LONG(x) 
14 #define ULONG(x) 

15 
16 
17 
18 
19 

#define. 
#define 
#else 
#define 
#define 

#endif 
/* 

I 
X 

I 
X 

Oxc040·0 
OxcOOOO 

OxffOO 
Ox0400 

*«char *)x) 
*«short *)x) 
*«unsigned short *)x) 
*«long *)x) 
*«unsigned long *)x) 

/* internal registe~ space */ 
/* external reqis·ter space */ 

/* internal register space *1 
/* external register space *1 

20 
21 
22 
23 
24 
25 
26 
27 
28 

The following section comes in two versions: one for C 
programs and one for assembiy language programs. The only 
difference is the convention for expression inclusion: C 
uses parentheses and the assembler uses square brackets. 
If you change data in one area, BE SURE TO CHANGE THE 
CORRESPONDING DATA IN THE OTHER. 

29 

30 
31 
32 
33 
34 
35 

*/ 

#ifdef 

#define 
#define 
#define 
#define 
#define 
#define 

ASSY 

IC [I+Ox20] 
TO [I+Ox50] 
T1 [I+Ox58] 
T2 [I+Ox60] 
CS [I+OxaO] 
DO [I+OxcO] 
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/* Timer 0 control registers */ 
/* Timer 1 control registers */ 
/* Timer 2 control registers */ 
/* Chip Select control registers *1 
/* DMA 0 control registers *1 



36 #define 01 [I+OxdO] 1* OMA 1 control registers *1 

37 /* 
38 Interrupt Controller control registers 
39 *1 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

#define IC_EOI 
#define IC_POLL 
#define IC_PSTAT 
#define IC_MASK 
#define IC_PMASK 
#define IC_INSVC 
#define IC_IREQ 
#define IC_ISTAT 
#define IC_TCTRL 
#define IC_OMAO 
#define .IC_OMA1 
#define IC~INTO 
#define IC_INT1 
#define IC_INT2 
#define IC_INT3 

55 /* 

[IC+Ox2] 
[IC+Ox4] 
[IC+Ox6] 
[IC+Ox8] 
[IC+Oxa] 
[IC+Oxc] 
[IC+Oxe] 
[IC+Ox10] 
[IC+Ox12] 
[IC+Ox14] 
[IC+Ox16] 
[IC+Ox18] 
[IC+Ox1a] 
[IC+Ox1c] 
[IC+Ox1e] 

1* end of interrupt */ 

/* poll */ 
/* poll status */ 

/* mask */ 
/* priority mask */ 

/* in-service *1 
/* interrupt request */ 
/* interrupt status */ 
/* timer control */ 

/* DMA 0 */ 
/* DMA 1 */ 
/* interrupt 0 */ 
1* interrupt 1 */ 
/* interrupt 2 */ 
/* interrupt 3 */ 

56 The following are areas of-I/O space used to 
57 control t~e timer~. 
58 */ 

59 
60 
61 
62 

63 
64 
65 
66 

67 
68 
69 

#define TO_COUNT 
#define TO_MCA 
#define TO_MCB 
#define TO_MODE 

#define T1_COUNT 
#define T1_MCA 
#define T1_MCB 
#define T1_MODE 

#define T2_COUNT 
#define T2_MCA 
#define T2_MODE 

[TO+OxO] 
[TO+Ox2] 
[TO+Ox4] 

_ [TO+Ox6] 

[T1+0xO] 
[T1+0x2] 
[T1+0x4] 
[T1+0x6] 

[T2+0xO] . 
[T2+0x2] 
[T2+0x6] 

/* count */ 
/* max count a */ 
/* mas count b */ 
/* count register */ 

/* count */ 
/* max count a */ 
/* mas count b */ 
/* count register */ 

/* count */ 
/* max count a */ 
/* count register */ 

70 /* 
71 
72 

The following define the control area for the 
chip select registers. 

73 

74 [CS+OxO] /* upper memory 
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75 
76 
77 
78 

#define CS_LM 
#define CS_PA 
#define CS_MM 
#define CS_MP 

[CS+Ox2] 
[CS+Ox4] 
[CS+Ox6] 
[CS+Ox8] 

/* lower memory 
1* PACS register 
1* middle memory 
1* memory block size 

79 
80 The following the control space of the DMA units 
81 *.1 

82 
83 
84 
85 
86 
87 

88 
89 
90 
91 
92 
93 

#define DO_SRCL 
#define DO_SRCH 
#define DO_DESTL 
#define DO_DESTH 
#define DO_TCOUNT 
#define DO_CTRL 

#define D1_SRCL 
#defi:oe D1_SRCH 
#define D1_DESTL 
#define D1_DESTH 
#define D1_TCOUNT 
#define D1_CTRL 

94 1* 

[DO+OxO] 
[DO+Ox2] 
[DO+Ox4] 
[DO+Ox6] 
[DO+Ox8] 
[DO+Oxa] 

[D1+0xO] 
[D1+0x2] 
[D1+0x4.] 
[D1+0x6] 
[D1+0x8] 
[D1+0xa] 

1* source lower 16 bits *1 
1* source upper 4 bits *1 
1* destination lower 16 bits *1 
1* destination upper 4 bits */ 
1* transfer count*/ 
1* DMA unit zero control word */ 

1* source lower 16 bits *1 
1* source upper 4 bits *1 
1* destination lower 16 bits *1 

.1* destination upper 4 bits *1 
1* transfer count*1 
1* DMA unit one control word *1 

95 The following 'define the space of the off-chip 
96 registers located on the peripheral board. 
97 *1 

98 
99 

100 
101 
102 
103 
104 
105 
106 
107 

#define CLRINTO 
#define CLRINT1 
#defi,ne CLRINT2 
#define CLRINT3 
#define ID_16 
#define INTV_ID 
#define PAGE_REG 
#define PCSR_REG 
#define BAF_BIT 
#define SYS_INT 

108 #else 

109 
110 
111 
112 
113 
114 

#define IC 
#define TO 
#define T1 
#define T2 
#define CS 
#define DO 

(I+Ox20) 
(I+Ox50) 
(I+Ox58) 
(I+Ox60) 
(I+OxaO) 
(I+OxcO) 

[X+Ox88] 
[X+Ox89] 
[X+Ox8a] 
[X+Ox8b] 
[X+Ox80] 
[X+Ox81] 
[X+Ox82] 
[X+Ox84] 
[X+Ox8e] 
[X+"Ox8f] 

1* reset intO latch */ 
1* reset int1 latch */ 
/* reset int2 latch */ 
1* reset int3 latch */ 
/* 16-bit ID register */ 
/* interrupt vector ID reg */ 
/* page register */ 
/* PCSR register */ 
/* bus abort feature *1 
/* system interrupt */ 

/* Interrupt Controller control regs */ 
/* Timer 0 ~ontrol registers */ 
/* Timer 1 control registers */ 
/* Timer 2 control registers */ 
/* Chip Select control registers */ 
/* DMA 0 control registers */ 

B-44 BCI Driver Development Guide 



115 #define 01 (I+OxdO) 1* DMA 1 control registers *1 
116 1* 
117 Interrupt Controller control registers 
118 *1 

119 #define IC_EOI (IC+Ox2) 1* end of interrupt *1 
120 #define IC_POLL (IC+Ox4) 1* poll *1 
121 .#define IC_PSTAT (IC+Ox6) 1* poll status *1 
122 #define IC_MASK (IC+Ox8) 1* mask *1 
123 #define IC_PMASK (IC+Oxa) 1* priority mask *1 
124 #define IC_INSVC (IC+Oxc) 1* in-service *1 
125 #define IC_IREQ (IC+Oxe) 1* interrupt request *1 
126 #define IC_ISTAT (IC+Ox10) 1* interrupt status *1 
127 #define IC_TCTRL (IC+Ox12) 1* timer control *1 
128 #define IC_DMAO (IC+Ox14) 1* DMA 0 *1 
129 #define IC~DMA1 (IC+Ox16) 1* DMA 1 *1 
130 #define IC_INTO (IC+Ox18) 1* interrupt 0 *1 
131 #define IC_INT1 (IC+Ox1a) 1* interrupt 1 *1 
132 #define 'IC_INT2 (IC+Ox1c) 1* interrupt 2 *1 
133 #define IC_INT3 (IC+Ox1e) 1* interrupt 3 *1 

134 1* 
135 The following are areas of IIO space used to 
136 . control the timers. 
137 *1 

138 #define TO_COUNT (TO+OxO) 1* count *1 
139 #define TO_MCA (TO+Ox2) 1* max count a *1 
140 #define TO_MCB (TO+Ox4) 1* mas count b *1 
141 #define TO_MODE (TO+Ox6) 1* count register *1 

142 #define T1_COUNT (T1+0xO) 1* count *1 
143 #define T1_MCA (T1+0x2) 1* max count a *1 
144 #define T1_MCB (T1+0x4) 1* mas count b *1 
145 #define T1_MODE (T1+0x6) 1* count register *1 

146 #define T2_COUNT (T2+0xO) 1* count *1 
147 #define T2_MCA (T2+0x2) 1* max count a *1 
148 #define T2_MODE (T2+0x6) 1* count register *1 

149 1* 
150 The following define the control area for the 
151 chip select registers. 
152 *1 

153 #define CS_UM (CS+OxO) 1* upper memory *1 
154 #define CS_LM (CS+Ox2) 1* lower memory *1 
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155 
156 
157 

#define CS_PA 
#define CS_MM 
#define CS_MP 

(CS+Ox4) 
(CS+Ox6) 
(CS+Ox8) 

1* PACS register 
1* middle memory 
1* memory block size 

158 /* 
159 The following the control space of the DMA units 
160 

161 
162 
163 
164 
165 
166 

167 
168 
169 
170 
171 
172 

#define DO_SRCL 
#define DO_SRCH 
#define DO _DESTL' 
#define DO_DESTH 
#define DO_TCOUNT 
#define DO_CTRL 

#define D1_SRCL 
#define D1_SRCH 
#define D1_DESTL 
#de'fine D1_DESTH 
#define D1_TCOUNT 
#define D1_CTRL 

(DO+OxO) 
(DO+Ox2) 
(DO+Ox4) 
(DO+Ox6) 
(DO+Ox8) 
(DO+Oxa) 

(D1+0xO) 
(D1+0x2) 
(D1+0x4) 
(D1+0x6) 
(D1+0x8) 
(D1+0xa) 

1* source lower 16 bits *1 
1* source upper 4 bits */ 
1* destination lower 16 bits *1 
1* destination upper 4 bits */ 
1* transfer count*1 
1* DMA unit zero control word */ 

1* source lower 16 bits *1 
/* source upper 4 bits */ 
1* destination lower 16 bits *1 
1* destination upper 4 bits */ 
1* transfer count*1 
1* DMA unit one control 'word *1 

173 
174 
175 
176 

~be following define the space of the off:-chip.· 
registers located on the peripheral board. 

177 
178 
179 
180 
181 
182 
183 
184 
185 
186 

#define CLRINTO 
#define CLRINT1 
#define CLRINT2 
#define CLRINT3 
#define ID_16 
#define INTV_ID 
#define PAGE_REG 
#define PCSR_REG 
#define BAF_BIT 
#define SYS_INT 

187 #endif 

(X+Ox88) 
(X+Ox89) 
(X+Ox8a) 
(X+Ox8b) 

· (X+Ox80) 
(X+Ox81) 
(X+Ox82) 
(X+Ox84) 
(X+Ox8e) 
(X+Ox8f) 
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1* reset intO latch *1 
1* resetint1 latch *1 
1* reset int2 latch *1 
1* reset int3 latch *1 
1* 16-bit ID register *1 
1* interrupt vector id reg *1 
1* page register *1 
1* PCSR register *1 
1* bus abort feature */ 
1* system interrupt *1 



m ake.to 

1 ######## 
2 # 

3 # Copyright (c) 1986 AT&T 
4 # 
5 # make.lo for x51 side of HR1 diagnostics 
6 # 
7 ######## 
8 TITLE = makefile (x51 make.lo) for x51 side of hR1 Diagnostics 
9 MACHINE = m32 

10 DEFS = -Dm32 
11 CFLAGS = 
12 
13 all: 
14 
.15 d= 'pwd '; echo II '\n Now in $ $d directory '\n II ; 

16 
17 SRC = dummy. c 
18 
19 OBJ =dummy.o 
20 
21 PRODUCTS = X.HR1 
22 
23 $(PRODUCTS): $(OBJ) 
24 $(LD) -0 $ (PRODUCTS) $(OBJ) 
25 cp $ (PRODUCTS) $(ROOT)/instal+/dgn/$(PRODUCTS) 
26 $(STRIP) $(PRODUCTS) 
27 
28 .PRECIOUS: $ (PRODUCTS) 
29 
30 #install: all 
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m a k e file 

1 all: X.HR1 
2 co dummy.c X.HR1 
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1 1* 
2 * - sbd_ifile -

3 * 
4 * This file is used to .load the SBD diagnostic initialization. 
5 * code. The order is critical in that the phase table must 
6 * be the first thing loaded and must start at Ox200cOOO. 
7 *1 
8 MEMORY 
9 { 

10 
11 

PHZTBL: 
} 

origin = Ox200cOOO, length = Ox70000 

12 SECTIONS 
13 { 
14 .phztab: 
15 { 
16 _start = ., 
17 hr1_phztab.o(.data) 
18 } > PHZTBL 

19 .text: 
20 { 
21 } > PHZTBL 

22 .data: 
23 { 
24 } > PHZTBL 

25 .bss: 
26 { 
27 } > PHZTBL 
28 } 
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hrl--phztab.c 

1 /** 
2 * 
3 * Copyright (c) 1986 AT&T 

4 * 
5 '* Diagnostic phase table for -HR- Board 
6 **/ 

7 #include <sys/firmware.h> 
8 #include <sys/diagnostic.h> 

9 extern unsigned char scpu_1(), scpu_2(), scpu_3(), scpu_4(); 
10 extern unsigned char scpu_5(), scpu_6(), scpu_7(); 

11 struct phtab phptr[] = { 
12 {scpu_1, NORML, "Phase 1 - Init ID Int Register Check "}, 
13 {scpu_2, NORML, "Phase 2 - Parallel Port Out Test"}, 
14 {scpu_3, NORML, "Phase 3 - Serial Port Out Check"}, 
15 {scpu_4, INTERACT, "Phase 4 - Serial Port In Check"}, 
16 '{scpu_5,:OEMAND, "Phase 5 Memory Rea,d / Write Test"}, 
17 {scpu_6, INTERACT, "Phase 6 - Parallel Port In Check"}, 
18 {scpu_7, DEMAND, "Phase 7 - dummy"}, 
19 { scpu_ 7, END, II It } 

20 }; 
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sc p u _1 . c 

2 
3 
4 
5 

6 
7 

8 
9 

10 
11 

12 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define 

* 

<sys/diagnostic.h> 
<sys/firmware.h> 
<sys/sbd.h> 
<sys/edt.h> 
<sys/cio_defs.h> 
<ciofw.h> 
<iodep.h> 
<sys/queue.h> 
<phaseload.h> 
<per_dgn.h> 
<ppc_dgn.h> 

DEBUG 

14 
15 * Copyright (c) 1986 AT&T 
16 * 
17 * This routine starts the HR1 tests. 
18 **1 

19 struct dgnret dgnret; 
20 char ph_no; 
21 unsigned short etime; 
22 scpu_ 1() 
23 { 
24 register int i, j; 
25 register int delay1 = 1000; 
26 long dly1, save_int; 
27 int pb_slot; 1* slot # of this board *1 
28 int vec_num; 1* interrupt vector number *1 
29 int ass_ID = Ox72; 1* assigned board's id *1 
30 
31 
32 
33 
34 
35 

int ID, VEC; 
char *pb_id; 
char *pb_vec; 
char *pb_par; 
char *pb_sero; 
char *pb_seri; 

1* board's id *1 
1* id address *1 
1* interrupt address *1 
1* parallel port address *1 

1* serial out port address *1 
1* serial in port address *1 

36 1* phase execution time *1 

37 unsigned short etime = 2; 
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scpu_l.c 

38 /* global phase·number */ 

39 ph_no = 1; 
40 
41 /* print test header */ 

42 
43 

PRINTF("HR1 Phase: %d 
PRINTF("Test Count: 1 

Name: SCPU_ 1 Type: NORMAL \n", ph_no); 
Time: %d sec.\n", etime); 

44 pb_slot = EDTP(OPTION)->opt_slot; /* get board slot # from edt */ 

45 /* calculate board access vectors */ 

46 
47 
48 
49 
50 

pb_id = (char *)«pb_slot * Ox200000) + Ox1); 
pb_seri = (char *)«pb_slot * Ox200000) + Ox5); 
pb_vec = (char *)«pb_slot * Ox200000) + Ox7); 
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe); 
pb_par = (char *)«pb_slot * Ox200000) + Oxff); 

51 #ifdef DEBUG 
52 PRINTF( "BOARD LOCATED IN SLOT %d\n", pb_slot); 
53 #endif 

54 /* calculate vector number */ 
55 vec_num = pb_slot * Ox10; 

/* id code regist.*/ 
/* serial in */ 
/* int vec loc */ 
/* serial out */ 

/* parallel port */ 

56 /* Read the board's ID number back from the ID register */ 
57 ID = *pb_id; 
58 PRINTF("ID CODE = %x\n", ID); 

59 /* Write vector number into vector register */ 

60 for (j = 0; j < delay1; j++); 
61 *pb_vec = (char)vec_num; 

62 /* Read the vector number back from the vector register */ 
63 for (j = 0; j < delay1; j++); 
64 VEC = *pb_vec; 
65 PRINTF ( "INTERRUPT VECTOR = %x\n", VEC); 

66 if (ID 1= ass_ID) 
67 { 
68 PRINTF("\n\nID CODE = %x IT SHOULD BE %x \n", ID,ass_ID); 
69 return(FAIL); 
70 } 
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71 
72 
73 

else if (VEC != vec_num) 
{ 

PRINTF(~\n\nVECTOR ID 
74 return(FAIL); 
75 } 

76 else 
77 return(PASS); 

scpu_l.c 

%x IT SHOULD BE %x \n~, VEC,vec_num); 
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sc p u _2. c 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define 

<sys/diagnostic.h> 
<sys/firrnware.h> 
<sys/sbd.h> 
<sys/edt.h> 
<sys/cio_defs.h> 
<ciofw.h> 
<iodep.h> 
<sys/queue.h> 
<phaseload.h> 
<per_dgn.h> 
<ppc_dgn.h> 

DEBUG 

13 1* Byte pattern to be used to test parallel out port *1 

14 static char a[]={Ox01,Ox02,Ox04,Ox08,Ox10,Ox20,Ox40,Ox80, 
15 Ox80,Ox40,Ox20,Ox10,Ox08,Ox04,Ox02,Ox01, 
16 Oxff,Ox11,Oxff,Ox22,Oxff,Ox44,Oxff,Ox88,0}; 

18 
19 
20 

* Copyright (c) 1986 AT&T 

* 
* This routine tests the "parallel out" port of the HR1 tests. 

22 struct dgnret dgnret; 
23 extern char ph_no; 
24 unsigned short etime; 
25 scpu_2() 
26 { 
27 register int i, j; 
28 register int delay1 = 20000; 
29 long dly1, save_int; 
30 int pb_slot; 1* slot # of this board *1 
31 int vec_num; /* interrupt vector number */ 
32 char *pb_id; 1* ID address *1 
33 
.34 
35 
36 
37 

char 
char 
char 
char 
char 

*pb_vec; 
*pb_par; 
*pb_sero; 
*pb_seri; 
*p; 

1* interrupt address *1 
1* parallel port address *1 

1* serial out port address *1 
1* serial in port address *1 
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38 unsigned short etime = 2; 1* phase execution time *1 
39 ph_no = 2; 1* global phase number *1 

40 1* print test header *1 

41 
42 

PRINTF("HR1 Phase: %d 
PRINTF("Test Count: 3 

Type: NORMAL\n" , ph_no); 
Time: %d sec.\n", etime); 

43 1* execute onboard diagnostic *1 

44 pb_slot = EDTP(OPTION)->opt_slot; 1* get board slot # from edt *1 

45 1* calculate board access vectors *1 

46 
47 
48 
49 
50 

pb_id = (char *)«pb_slot * Ox200000) + Ox1); 
pb_seri = (char *)«pb_s1ot * Ox200000) + Ox5); 
pb_vec = (char *)«pb_s10t * Ox200000) + Ox7); 
pb_sero = (char *)«pb_s1ot * Ox200000) + Oxfe); 
pb_par = (char *)«pb_slot * Ox200000) + Oxff); 

51 PRINTF( II PARALLEL PORT TEST\n"); 

52 1* Parallel out test *1 

53 for(i=O; i < 5; i++) 
54 { 
55 p = a; 
56 while (*p != 0) 
57 { 
58 for(j=O; j < de1ay1; j++); 
59 *pb_par = *p++; 

60 } 1* end while *1 
61 } /* end for *1 

62 return(PASS); 

1* ID code regist.*1 
1* serial in *1 
1* int vec 10c *1 
/* serial out *1 

1* parallel port *1 
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sc p u _3 .C 

1 #include <sys/diagnostic.h> 
2 #include <sys/firmware.h> 
3 #include <sys/sbd.h> 
4 #include <sys/edt.h> 
5 #include <sys/cio_defs.h> 
6 #include <ciofw.h> 
7 #include <iodep.h> 
8 #include <sys/queue.h> 
9 #include <phaseload.h> 

10 #include <per_dgn.h> 
11 #include <ppc_dgn.h> 

12 #define DEBUG 

13 1** 
14 * 

* 
* 

Copyright (c) 1986 AT&T 15 
16 
17 * This routine tests "serial out" port of HR1 

19 struct dgnret dgnret; 
20 extern char ph_no; 
21 unsigned short etime; 
22 scpu_3() 
23 { 
24 register char *p; 
25 register int j; 
26 register int delay1 = 10000; 
27 long dly1, save_int; 
28 int pb_slot; 1* slot # of this board */ 

int vec_num; 1* interrupt vector number 
char *pb_id; 1* ID address *1 
char *pb_vec; /* interrupt address *1 
char *pb_par; /* parallel port address *1 

*1 29 
30 
31 
32 
33 
34 

char *pb_sero; 1* serial out port address 
char *pb_seri; 1* serial in port address 

35 1* phase execution time *1 

B - 56 Bel Driver Development Guide 

*1 
*1 



36 unsigned short etime = 2; 

37 1* global phase number *1 

39 1* print test header *1 

40 
41 

PRINTF("HR1 Phase: %d 
PRINTF("Test Count: 3 

Type: NORMAL\n" , ph_no); 
Time: %d sec.\n", etime); 

42 1* execute onboard diagnostic *1 

43 pb_slot = EDTP(OPTION)->opt_slot; 1* get board slot # from edt *1 

44 1* calculate board access vectors *1 

45 
46 
47 
48 
49 

pb_id = (char *)«pb_slot * Ox200000) + Ox1); 
pb_seri = (char *)«pb_slot * Ox200000) + Ox5); 
pb_vec = (char *)«pb_slot * Ox200000) + Ox7); 
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe); 
pb_par = (char *)«pb_slot * Ox200000) + Oxff); 

50 PRINTF("\nSERIAL OUT PORT TEST\n"); 

51 1* Serial out test *1 

1* ID code regist.*1 
1* serial in *1 
1* int vec loc *1 

1* serial out *1 
1* parallel port *1 

52 p="\n\r******* Serial Port Output Test ********\n\r"; 
53 while (*p 1= '\0') 
54 
55 for(j=O; j < delay1; j++); 
56 *pb_sero *p++; 
57 } 

58 return(PASS); 
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1 #include <sys/diagnostic.h> 
2 #include <sys/firmware.h> 
3 #include <sys/sbd.h> 
4 #include <sys/edt.h> 
5 #include <sys/cio_defs.h> 
6 #include <ciofw.h> 
7 #include <iodep.h> 
8 #include <sys/queue.h> 
9 #include <phaseload.h> 

10 #include <per_dgn.h> 
11 #include <ppc_dgn.h> 

12 #define DEBUG 

13 /** 
14 * 
15 
16 
17 

* Copyright (c) 1986 AT&T 

* 
* This routine tests serial in port of HR1 

19 struct dgnret dgnret; 
20 extern char ph_no; 
21 unsigned short etime; 
22 scpu_4() 
23 { 
24 register int i, j; 

25 register int delay1 = 30000; 
26 long dly1, save_int; 
27 int pb_slot; /* slot # of this board */ 
28 
29 
30 
31 
32 
33 
34 
35 

int 
char 
char 
char 
char 
char 
char 
char 

vec_num; 
*pb_id; 
*pb_vec; 
*pb_par; 
*pb_sero; 
*pb_seri; 
byte 1 ; 
byte2; 

/* 
1* 
1* 
1* 

interrupt vector number *1 
ID address *1 
interrupt address */ 
parallel port address *1 
1* serial out port address */ 
1* serial in port address *1 

36 /* phase execution time *1 
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37 unsigned short etime = 2; 

38 1* global phase number *1 

39 ph_no = 4; 
40 
41 1* print test header *1 

42 
43 

PRINTF( tl HR1 Phase: %d 
PRINTF(tlTest Count: 3 

Type: NORMAL'n tl , ph_no); 
Time: %d sec.'n tl , etime); 

44 1* execute onboard diagnostic *1 

45 pb_slot = EDTP(OPTION)->opt_slot; 1* get board slot # from edt *1 

46 1* calculate board access vectors *1 

47 
48 
49 
50 
51 

pb_id = (char *)«pb_slot * Ox200000) + Ox1); 
pb_seri = (char *)«pb_slot * Ox200000) + Ox5); 
pb_vec = (char *)«pb_slot * Ox200000) + Ox?); 
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe); 
pb_par = (char *)«pb_slot * Ox200000) + Oxff); 

52 PRINTF(tlSERIAL IN PORT TEST'r'n"); 

1* ID code regist.*1 
1* serial in *1 
1* int vec loc *1 

1* serial out *1 
1* parallel port *1 

53 PRINTF( tlBEGIN TYPING WHEN YOU HEAR BELLS AND 'GO' IS DISPLAYED'n'n tl ); 
54 for(j=O; i < delay1; j++); 
55 for(j=O; i < delay1; j++); 
56 PRINTF("GGGGGGO!!!! !'n'n"); 

57 1* Serial in test *1 

58 for(i=O; i < 100; i++) 
59 { 
60 PRINTF(tI%c",*pb_seri); 
61 for(j=O; j < delay1; j++); 
62 } 

63 return(PASS); 
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sc p u _5.c 

1 #include <sys/diagnostic.h> 
2 #include <sys/firmware.h> 
3 #include <sys/sbd.h> 
4 #include <sys/edt.h> 
5 #include <sys/cio_defs.h> 
6 #include <ciofw.h> 
7 #include <iodep.h> 
8 #include <sys/queue.h> 
9 #include <phaseload.h> 

10 #include <per_dgn.h> 
11 #include <ppc_dgn.h> 

12 #define DEBUG 

14 
15 
16 
17 

* Copyright (c) 1986 AT&T 

* 
* 
* 

This routine tests READ/WRITE capabilities 
of onboard RAM of HR1 

19 struct dgnret dgnret; 
20 extern char ph_no; 
21 unsigned short etime; 
22 scpu_5() 
23 { 
24 register int i, j; 
25 register int delay1 = 1000; 
26 int pb_slot; /* slot # of this board */ 
27 int vec_num; /* interrupt vector number */ 
28 int ram_size Ox61; / * 8751. ram size -9 */ 
29 char *pb_id; /* ID address */ 
30 char *pb_vec; /* interrupt address */ 
31 char *pb_sram; /* start of ram */ 
32 char *pb_par; /* parallel port address */ 
33 char *pb_sero; /* serial out port address */ 
34 char *pb_seri; /* serial in port address */ 
35 char wbyte1 Ox55, wbyte2 = Oxaa; /* bytes with */ 
36 
37 char rbyte; 

/* which RAM is tested */ 
/* byte with which RAM is tested */ 
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38 1* phase execution time *1 

39 unsigned short etime = 10; 

40 1* global phase number *1 

42 1* print test header *1 

43 
44 

PRINTF("\n\r\nHR1 Phase: %d Type: DEMAND\n" , ph_no); 
PRINTF("Test Count: 6 Time: %d sec.\n", etime); 

45 1* execute onboard diagnostics *1 

46 pb_slot = EDTP(OPTION)->opt_slot; 1* get board slot # from edt *1 

47 1* calculate board access vectors *1 

48 
49 
50 
51 
52 
53 

pb_id = (char *)«pb_slot * Ox200000) + Ox1); 
pb_seri = (char *)«pb_slot * Ox200000) + Ox5); 
pb_vec = (char *)«pb_slot * Ox200000) + Ox7); 
pb_sram = (char *)«pb_slot * Ox200000) + Ox9); 
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe); 
pb_par = (char *)«pb_slot * Ox200000) + Oxff); 

54 PRINTF("\n\rON BOARD READ/WRITE RAM TEST \r\nn); 

1* ID code regist.*1 
1* serial in *1 
1* int vec loc *1 

1* start ram loc *1 
1* serial out *1 

1* parallel port *1 

55 for(i = 0; i < ram_size; i++) 1* ram_size -9 *1 
56 { 
57 *(pb_sram + i) = wbyte1; 1* write first pattern *1 
58 for(j=O; j < delay1; j++); 
59 rbyte = *(pb_sram + i); 1* read first time *1 
60 for(j=O; j < delay1; j++); 
61 rbyte = *(pb_sram + i); 1* read second time *1 

62 PRINTF (n%x", rbyte); 1* display the read back byte *1 
63 if (rbyte 1= wbyte1) 
64 
65 
66 
67 
68 

PRINTF("\n\r LOCATION %xh FAILED! READ %xh SHOULD READ %xh\n\r n , 

69 

(pb_sram + i), 
return( FAIL) ; 

} 1* end if *1 

wbyte2; 

rbyte, wbyte1) ; 

1* write second pattern *1 
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70 
71 
72 

for(j=O; j < delay1j j++); 
rbyte = *(pb_srarn + i); 
for(j=O; j < delay1; j++); 
rbyte = *(pb_srarn + i); 
PRINTF("%x", rbyte); 
if (rbyte != wbyte2) 
{ 

/* read first time */ 

/* read second time */ 
/* display the read back byte */ 

73 
74 
75 
76 
77 PRINTF("'\n'\rLOCATION %xh FAILED! 

READ %xh SHOULD READ %xh'\n'\r" , 
78 (pb_srarn + i), rbyte, wbyte2); 
79 return(FAIL); 
80 } /* end if */ 

81 } 1* end for */ 

82 return(PASS); 
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sc p u _6.c 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

12 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define 

13 1** 
14 * 

<sys/diagnostic.h> 
<sys/firmware.h> 
<sys/sbd.h> 
<sys/edt.h> 
<sys/cio_defs.h> 
<ciofw.h> 
<iodep.h> 
<sys/queue.h> 
<phaseload.h> 
<per_dgn.h> 
<ppc_dgn.h> 

DEBUG 

15 * Copyright (c) 1986 AT&T 
16 * 
17 * This routine tests parallel in port of HR1 
18 **1 

19 struct dgnret dgnret; 
20 extern char ph_no; 
21 unsigned short etime; 
22 scpu_6() 
23 { 
24 register int i, j; 
25 register int delay1 = 50000; 
26 long dly1, save_int; 
27 int pb_slot; 1* slot # of this board *1 
28 
29 
30 
31 
32 
33 
34 
35 

int 
char 
char 
char 
char 
char 
char 
char 

vec_num; 
*pb_id; 
*pb_vec; 
*pb_par; 
*pb_sero; 
*pb_seri; 
byte 1 ; 
byte2; 

1* 
1* 
1* 
1* 

interrupt vector number *1 
ID address *1 
interrupt address *1 
parallel port address *1 
1* serial out port address *1 
1* serial in port address *1 

36 1* phase execution time *1 

37 unsigned short etime = 10; 
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38 /* global phase number *1 

39 ph_no = 6; 
40 
41 /* print test header *1 

PRINTF(II\n\r\nHR1 Phase: %d Type: NORMAL\nll, ph_no); 42 
43 PRINTF(IITest Count: 3 Time: %d sec.\n ll , etime); 

44 /* execute onboard diagnostic *1 

45 pb_slot = EDTP(OPTION)->opt_slot; /* get board slot # from edt *1 

46 /* calculate board access vectors */ 

47 pb_id = (char *)«pb_slot * Ox200000) + Ox1); 1* IO code reg*/ 
48 pb_seri = (char *)«pb_slot * Ox200000) + Ox5); /* serial in */ 
49 pb_vec = (char *)«pb_slot * Ox200000) + Ox7); /* intvec loc*/ 
50 pb_sero = (char *)«pb_slot * Ox200000) + Oxfe);/* serial out*/ 
51 pb_par = (char *)«pb_slot * Ox200000) + Oxff);I*parallel prt*/ 

52 PRINTF ( II PARALLEL IN PORT TEST\r\n II ) ; 
53 PRINTF ( II PLEASE , START START CHANGING DIP 

SWITCHES ON MY COMMANO\n\n"); 
54 for(j=O; i < delay1; j++); 
55 for(j=O; i < delay1; j++); 
56 for(j=O; i < delay1; j++); 
57 for(j=O; i < delay1; j++); 
58 PRINTF ( IIGGGGGGO! 1 ! ! 1 \n \n" ) ; 

59 1* Serial in test */ 

60 for(i=O; i < 300; i++) 
61 { 
62 PRINTF ( II%XIl ,*pb_par) ; 
63 for(j=O; j < delay1; j++); 
64 } 

65 return(PASS); 
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scpu_7.c 

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 
11 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

<sys/diagnostic.h> 
<sys/firmware.h> 
<sys/sbd.h> 
<sys/edt.h> 
<sys/cio_defs.h> 
<ciofw.h> 
<iodep.h> 
<sys/queue.h> 
<phaseload.h> 
<per_dgn.h> 
<ppc_dgn.h> 

12 #define DEBUG 

13 1** 
14 * 
15 
16 
17 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

34 

* Copyright (c) 1986 AT&T 

* 

struct dgnret dgnret; 
extern char ph_no; 
unsigned short etime; 
scpu_7 ( ) 
{ 

register int i, j; 
register int delay1 = 30000; 
long dly1, save_int; 
int pb_slot; /* slot # of this board */ 
int vec_num; 
char *pb_id; 
char *pb_vec; 
char *pb_par; 
char *pb_sero; 
char *pb_seri; 
char byte 1 ; 
char byte2; 

/* interrupt vector number *1 
1* ID address *1 
1* interrupt address *1 
/* parallel port address *1 

1* serial out port address *1 
1* serial in port address *1 

35 1* phase execution time *1 

36 unsigned short etime = 2; 
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37 

38 
39 
40 

1* global phase number *1 

1* print test header *1 

41 
42 

PRINTF("\n\r\nHR1 Phase: %d, Name: SCPU_7, Type: OEMANO\n", ph_no); 
PRINTF("Test count: 3 Time: %d sec.\n", etime); 

43 1* execute onboard diagnostic *1 

44 pb_slot = EOTP(OPTION)->opt_slot; 1* get board slot # from edt *1 

45 

46 
47 
48 
49 
50 

1* calculate board access vectors *1 

pb_id = (char *)«pb_slot * Ox200000) + Ox1); 
pb_seri = (char *)«pb_slot * Ox200000) + Ox5); 
pb_vec = (char *)«pb_slot * Ox200000) + Ox7); 
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe); 
pb_par = (char *)«pb_slot * Ox200000) + Oxff); 

51 1* start your coding here *1 

52 return(PASS); 
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1* IO code regist.*1 
1* serial in *1 
1* int vec loc *1 

1* serial out *1 
1* parallel port *1 



dum m y.c 

1 main ( ) 
2 { 
3 1* this is an empty file to satisfy DGMON requirement *1 
4 } 
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m ake.hi 

1 TITLE = High Level makefile for 3B2 -HR1- Diagnostics 
2 PRODUCTS = m32 x56 
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iodep .h 

1 typedef long RAPP; 
2 typedef long CAPP; 

3 #define CQSIZE 10 
4 
5 

6 

#define RQSIZE 5 
#define NUM_QUEUES1 

#define REQUEST 

7 1* 

o 1* request queue *1 

8 Number of sub-devices. The Ports board actually has no 
9 sub devices; however we must make NUM_OEVS at least 1 

10 for C declaration purposes. The initialization value within 
11 the subdevice table informs the SBO that there are actually 
12 zero devices. 
13 *1 

14 #define NUM_DEVS 

15 1* Board IO *1 
16 #define BOID 2 
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per _d g n.h 

2 
3 
4 

* 
* 
* 

Common header file for peripheral diagnostics 
using "phzrun()". 

6 1* PB RAM page size ( K bytes ) *1 

7 #define SEGSIZE Ox100 

8 1* DMA control word ( transfer bytes) used in phasend() *1 

9 Oxb7ae 

10 1* page register value for returning dgn structure *1 

11 #define DGN_PAGEOxOI* Ox2000000 - Ox201ffff *1 

12 1* diagnostic return address - this value is used 
13 as the destination address for DMA of the diagnostic 
14 results to the SBD *1 

15 #define DMARETADOx8fOOO 

16 1* pointer to diagnostic return structure. this is the 
17 only place where the address is actually defined. *1 

18 #define DGNRETST«struct dgnret *)Ox200fOOO) 

19 1* character on which to abort diagnostics *1 

20 #define ABORTKEYOx04 

21 1* additional time to allow for phase execution *1 

22 #define ETIMEPAD4 1* seconds (decimal) *1 

23 1* mode flags for phzrun() - a variable is set to 
24 indicate the current process. If for some reason 
25 diagnostics fail, this value can be looked at with 
26 a debug monitor to determine what happened and why. *1 
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#define QUEINIT Oxa 11a 1* initialization *1 
#define BSYSGEN Oxa22a 1* board sysgen *1 
#define DOS EXEC Oxa33a 1* executing DOS *1 
#define DWNLOAD Oxa44a 1* diagnostic download *1 
#define DGNEXEC Oxa55a 1* executing FCF *1 

27 
28 
29 
30 
31 
32 #define DGNRETN Oxa66a 1* waiting for dgn results 

33 1* failing return codes for phzrun(), PASS is 
34 returned if all is well *1 

35 #define RSPERR Oxb11b 1* incorrect response *1 

per_dgn.h 

*1 

36 #define RSPTMOUTOxb22b 1* timeout waiting for response *1 
37 #define DGNTMOUTOxb33b 1* timeout during dgn execution *1 
38 #define NORESULTOxb44b 1* no diagnostic results returned *1 
39 #define UNEXPINTOxb55b 1* unexpected interrupt *1 
40 #define UNEXPEXCOxb66b 1* unexpected exception *1 
41 #define WRITFAILOxb77b 1* write of dgn return struct failed *1 
42 #define CONABORTOxbffb 1* console interruption *1 

43 1* diagnostic return structure - if the variable 
44 names or types are changed, be sure to update the 
45 macros used to reference them *1 

46 
47 
48 
49 
50 
51 
52 

struct dgnret 
{ 

unsigned short 
unsigned short 
unsigned short 
unsigned short 

} ; 

d_flag; 
d_ftst; 
d_rawd; 
d_supd; 

1* pass/fail flag 
1* first failing 
1* raw data *1 
1* supplementary 

*1 
test # *1 

data *1 

53 1* size of diagnostic return structure ( bytes ) *1 

54 #define DGRTSIZEOx8 

55 1* Macros used to access dgnret variables. The 
56 first definition is used by phasend(), the second 
57 by presult() *1 

58 1* pass/fail flag *1 

59 
60 

#define RESLT 
#define PRESLT 

(dgnret.d_flag) 
(DGNRETST->d_flag) 

61 1* failing test # *1 

62 #define FFTEST (dgnret.d_ftst) 
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per_dgn.h 

63 #define PFFTEST (DGNRETST->d_ftst) 

64 1* raw data *1 

65 #define RAWD (dgnret.d_rawd) 
66 #define PRAWD (DGNRETST->d_rawd) 

67 1* supplementary data *1 

68 #define SUPD (dgnret.d_supd) 
69 #define PSUPD (DGNRETST->d_supd) 

70 1* macro used to access completion queue opcode *1 

71 #define C_opcode(R) 
72 ((CQUEUE *)C_ADDR)->queue.entry[R].common.codes.bytes.opcode 

73 1* macros abed to access express request queue *1 

74 #define R_Xbytcnt 
75 ((RQUEUE *)R_ADDR)->express.common.codes.bytes.bytcnt 

76 #define R_Xcmdstat 
77 ((RQUEUE *)R_ADDR)->express.common.codes.bits.cmd_stat 

78 #define R_Xseqbit 
79 ((RQUEUE *)R_ADDR)->express.common.codes.bits.seqbit 

80 #define R_Xsubdev 
81 ((RQUEUE *)R_ADDR)->express.common.codes.bits.subdev 

82 #define R_Xopcode 
83 ((RQUEUE *)R_ADDR)->express.common.codes.bytes.opcode 

84 #define R_Xaddr 
85 ((RQUEUE *)R_ADDR)->express.common.addr 

86 #define R_Xappl 
87 ((RQUEUE *)R_ADDR)->express.appl.addr 

88 1* macro used to access express completion queue opcode *1 

89 #define C_Xopcode 
90 ((CQUEUE *)C_ADDR)->express.common.codes.bytes.opcode 
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P h a,s e loa d . h 

1 1** 
2 * 
3 * 
4 * 
5 * 
6 * 
7 * 
8 * 
9 * 

10 * 
11 * 
12 * 
13 * 
14 * 
15 * 
16 * 
17 * 
18 * 
19 * 
20 * 
21 * 
22 * 
23 * 
24 * 
25 * 
26 * 
27 * 
28 * 
29 * 
30 * 
31 * 
32 * 
33 * 
34 * 
35 * 
36 * 
37 * 
38 * 
39 * 
40 * 
41 * 
42 * 

- phaseload.h -

This header file defines the load addresses for each 
x86 diagnostic phase when loaded into SBD RAM. They 
are referenced primarily in the ifile "phz_ifile.c". 

These values are also used by the phase startup 
routine as the source and destination addresses for 
download to the peripheral board and also determine 
the number of bytes to be downloaded. 

Unfortunately there is no easy way to calculate these 
values. Each phase was compiled and then it's size 
used to determine starting address and space needed. 

Utilization of SBD RAM is 

Ox2000000 ----------------
: Diagnostic 
: Monitor : 

Ox200cOOO ----------------
l Diagnostic 
I Phase Table I 

Ox200c??? ----------------
SBD 

: Diagnostic 
I Startup Code 

Ox200???? ----------------
SBD Common 

I Diagnostic 
: Routines 

Ox200fOOO ----------------
I Diagnostic 
I Return Struct 

Ox2010100 ----------------
I Diagnostic 
I Phase 

Ox2011100 ----------------
Diagnostic 

I Phase 
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phaseload.h 

43 * Ox2012100 -----------------
44 * 

I Diagnostic I 

45 * 
I Phase I 

46 * -----------------
47 * 
48 * V V 

49 * Ox20dOOOO -----------------
50 **1 

51 1* define low and high peripheral load addresses *1 

52 #define LCSTEST Ox0500 1* used to load low chip select test *1 
53 #define LDLORAM Ox1000 
54 #define LDHIRAM Ox5000 

55 1* define the starting address for each phase *1 

56 #define PHASE01 Ox2010100 1* cio *1 
57 #define PHASE02 Ox2011100 1* pcsr *1 
58 #define PHASE03 Ox2012100 1* ram_h *1 
59 #define PHASE04 Ox2013100 1* ram_l *1 
60 #define PHASE05 Ox2014100 1* rom *1 
61 #define PHASE06 Ox2015100 1* cpu_1 *1 
62 #define PHASE07 Ox2016100 1* cpu_2 *1 
63 #define PHASE08 Ox2017100 1* cpu_3 *1 
64 #define PHASE09 Ox2018100 1* cpu_4 *1 
65 #define PHASE10 Ox2019100 1* cpu_5 *1 
66 #define PHASE11 Ox201a100 1* pio_1 *1 
67 #define PHASE12 Ox201b100 1* pio_2 *1 
68 #define PHASE13 Ox201c100 1* DMA byte *1 
69 #define PHASE14 Ox201d100 1* DMA word *1 
70 #define PHASE15 Ox201e100 1* print_1 *1 
71 #define PHASE16 Ox201f100 1* print_2 *1 
72 #define PHASE17 Ox2020100 1* duartO_1 *1 
73 #define PHASE18 Ox2022100 1* duart1_1 *1 
74 #define PHASE19 Ox2024100 1* duartO_2 *1 
75 #define PHASE20 Ox2025100 1* duart1_2 *1 
76 #define PHASE21 Ox2026100 1* duartO_3 *1 
77 #define PHASE22 Ox2027100 1* duart1_3 *1 
78 #define PHASEND Ox2028100 1* END OF DIAGNOSTIC PHASES *1 
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Appendix C: System Header Files 

The lusrlincludel sys directory and subdirectories includes a number of header files for system data 
structures and other structures associated with drivers that are bundled with the UNIX operating 
system. The following sections list the system header files that can be used in driver code. 
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Hardware-Independent Header Files Used in Drivers 

The following header files contain predominantly hardware-independent and implementation
independent information; their contents do not vary substantially between machines or releases. They 
contain definitions of data structures used to maintain kernel state information, definitions of data 
objects used throughout the kernel, and the internal flags used as state indicators in the data 
structures defined here. 

buf.h defines the members of the buffer header used with the system buffer cache, including 
the valid flags for the b_flags member. #include this header file in all block-access 
drivers and in character-access drivers that use a buffering scheme that relies on this 
same header. 

cmn_err.h defines the cDlD_err(D3X) print interface. #include in all driver code. 

conf.h defines the switch table structures, bdevsw(D4X), cdevsw(D4X), and 
linesw(D4X). 

debug.h defines all facilities available with cc -DDEBUG. Drivers that include ASSERT code 
for debugging should #include this file. 

elog.h defines external major numbers for use by error logging, statistics used for estimating 
error rates during error logging, and the structure that tracks I/O activity for system 
accounting. Drivers for disk, tape, printer, network, and other hardware drivers 
should #include this file. 

errno.h defines standard error codes; used in all drivers. 

file.h defines the UNIX System V file structure, including valid values for the f_flag 
member; used by drivers that use control flags on open(D2X) routine. 

immu.h contains the source for the getsrama(D3X) and getsramba(D3X) macros. immu.h is 
used in memory management. 

inline.h redefines the spl* functions and contains memory management functions outside the 
AT&T driver interface. 

iobuf.h defines IDFC controller status information and a private buffer header structure for 
this disk device. 

map.h defines the memory mapping scheme discussed in Chapter 6; required for all drivers 
that use a map to manage dynamically-allocated memory. 

open.h defines types of open(2) and c1ose(2) system calls. These types can be used to 
determine when these system calls will activate the corresponding driver routines and 
when they will not. If the device for your driver requires this facility, #include this 
header file and use the defined types as the third argument to the open(D2X) and 
c1ose(D2X) routines. 
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Hardware-Independent Header Files Used in Drivers 

param.h gives parameter definitions that are required by other header files; #include after 
types.h in all drivers. 

proc.h defines the proc(D4X) structure that contains reference to the current process. 

signal.h defines signal mechanism; required in any driver that uses signal(D3X) or 
psignal(D3X) . 

stream.h defines data structures used for the STREAMS interface; required in any 
STREAMS-interface driver. 

stropts.h defines options and IOCTLs for STREAMS drivers; required in any STREAMS
interface driver. 

strstat.h defines the counters used for gathering statistics for the STREAMS interface; required 
in any STREAMS-interface driver. 

sysinfo.h contains several counters and flags used by drivers to record event status, such as 
when an interrupt routine is serviced. 

systm.h defines system entry table, system devices (such as rootdev and swapdev) and system 
scheduling variables; required for any driver that uses dma_breakup(D3X), 
drv_rtile(D3X), geteblk(D3X), logstray, or bdelog(D3X). 

termio.h defines the I/O control commands that are supported for tenninal drivers; required for 
all tenninal drivers. 

trace .h used by the trace driver. 

tty.h defines structures used for TTY devices, including clist(D4X), ccblock(D4XX), 
cblock(D4X), cfreelist(d4), tty(D4X). Also defines commands and flags 
used with the tty line discipline. #include in any driver that uses a cblock 
buffering scheme or a TTY structure. 

types.h gives type definitions that are required by other header files; #include in all drivers, 
usually before any other header files. 

user.h defines the user(D4X) structure 

vtoc.h defines I/O control commands, error codes, and structures used for VTOC' ed disks. 
should #include in all drivers for VTOC'ed disk devices. 
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Hardware-Independent Header Files Used in Drivers 

H e a d e r File s fr 0 mOt her D r i v e r s 

In general, header files defined for one driver should not be used in another driver. The following 
header files are exceptions 

log.h defines the STREAMS log driver, should be included in all STREAMS driver code. 

hdelog.h defines drivers structures, tables, and queues used for the Disk Defect Management 
feature. All drivers for disk devices that run under Disk Defect Management should 
include this file. See Chapter 11, "Error Reporting," for more information. 

strlog.h defines STREAMS log driver interface, should be included in all STREAMS driver 
code. 

System Definition Header Files for 1/0 

The following UNIX System V header files define the I/O bus of the AT&T 3B2 computer, the 
common software/firmware, and pumpcode conventions used in all peripherals attached to the 
system's I/O bus. Also included here are files that describe hardware (such as the DMA controller) 
used explicitly by more than one device driver. These files may be included by appropriate device 
drivers. 

cio_defs.h defines common status from all I/O applications and drivers and gives macros for 
common 110 firmware functions. 

diskette.h defines diskette formatting structures; required in all drivers for controllers that 
support diskette devices. 

dma.h defines Direct Memory Access (DMA) conventions 

io.h defines disk partition tables. 

l/a.h defines common I/O queue entry opcodes. 

pump.h defines purnpcode I/O control commands and other information used when 
downloading information to an intelligent controller 

queue .h defines queue pointer macros. 
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Appendix D: Sam pie Character Driver 

Driver Routines 

This appendix lists a serial driver that interacts with a Dual Universal Asynchronous Receiver
Transmitter (DUART) such as that used by a tenninal. 

Table D-l Driver Routines 

Routine Line Number Purpose 
init 60 initialize variables when system is booted 

open 72 start access to device 
close 102 complete access to device 
read 116 read tenninal data 
write 124 send character to tenninal 
ioctl 132 110 control command routine 

int 179 interrupt routine 
rint 209 character-received interrupt routine 
xint 296 character-transmitted interrupt routine 

modem 395 enable! disable modem 
param 139 request modem to hang up phone line 
proc 318 process input characters 
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Character Driver Code 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

"sys/param.h" 
"sys/types.h" 
"sys/signal.h" 
"sys/dir.h" 
"sys/immu.h" 
"sys/psw.h" 
"sys/pcb.h" 
"sys/user.h" 
"sys/errno.h" 
"sys/file.h" 
"sys/tty.h" 
"sys/termio.h" 
"sys/conf.h" 
"sys/sysinfo.h" 
"sys/sysmacros.h" 
"sys/inline.h" 

17 struct duart { 
18 char uart_cmnd; /* command register */ 
19 char uart_csr; /* control/status register */ 

20 char dtr; /* data terminal ready status reg */ 
21 char dcd; /* data carrier detect reg*/ 
22 char uart_data; /* receive-transmit data holding reg */ 
23 char vector; /* interrupt vector register */ 
24 intspeed; /* baud rate register*/ 
25 intmr1; /* mode register - channel 1 */ 
26 intmr2; /* mode register - channel 2 */ 
27 }; 

28 extern struct duart duarte]; /* the uart device */ 
29 extern struct tty DRVR_tty[]; /* tty data structures */ 
30 extern int nduart; 

31 /* 
32 * Device commands 
33 */ 

34 #define DISABLE 0 
35 #define ENABLE 1 
36 #define RESET 2 
37 #define STRT_BRK 3 
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38 #define STOP_BRK4 
39 #define CLEAR_INT 5 
40 #define RESET_ERR 6 

41 1* 
42 * Register bits 
43 *1 

44 #define BITS5 0 
-45 #define BITS6 1 
46 #define BITS7 2 
47 #define BITS8 3 
48 #define OPAR Ox10 
49 #define NO_PAR Ox20 

50 #define ONESB 1 
51 #define TWOSB 2 

52 #define RCVRDY Ox01 
53 #define XMTRDY Ox02 
54 #define FE Ox04 
55 #define OVRRUN Ox08 
56 #define PARERR Ox10 
57 #define RCVD_BRK Ox20 

58 1* internal major number 
59 extern int DRVR_maj; 

60 DRVRini t ( ) 
61 { 
62 int i, j; 

from master.d file *1 

63 for(i = 0; i < nduart;i++) { 
64 duart[i].uart_cmnd = DISABLE; 
65 for (j=O; j< 128; j++) 
66 if (MAJOR[j] == DRVR_maj && MINOR[j] == i) { 
67 duart[i].vector = j « 4; 
68 break; 
69 } 
70 } 
71 } 

72 DRVRopen(dev, flag) 
73 register dev, flag; 
74 { 

Character Driver Code 
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Character Driver Code 

75 register struct tty *tp; 
76 int oldpri; 
77 extern DRVRproc(); 

78 dev = minor (dev) ; 

79 if (dev >= nduart) { 
80 u.u_error = ENXIO; 
81 return; 
82 } 

83 
84 
85 

tp = &DRVR_tty[dev]; 
if «tp->t_state & (ISOPEN 

ttini t ( tp) ; 
86 tp->t_proc = DRVRproc; 
87 DRVRparam(dev); 
88 } 

89 oldpri = spltty(); 

WOPEN» -- 0) { 

90 if (tp->t_cflag & CLOCAL I I DRVRmodem(dev, ON» 
91 tp->t_state 1= CARR_ON; 
92 else 
93 tp->t_state &= -CARR_ON; 

94 if ( !(flag & FNDELAY) ) 
95 while «tp->t_state & CARR_ON == 0) { 
96 tp->t_state 1= WOPEN; 
97 sleep«caddr_t) & tp->t_canq, TTIPRI); 
98 } 

99 (*linesw[tp->t_line].l_open) (tp); 
100 splx(oldpri); 
101 } 

102 DRVRclose(dev) 
103 register dev; 
104 { 
105 register struct tty *tp; 
106 register int oldpri; 

107 dev = minor(dev); 

108 tp = &DRVR_tty[dev]; 
109 (*linesw[tp->t_line].l_close)(tp); 

110 if (tp->t_cflag & HUPCL) { 
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111 oldpri = spltty(); 
112 DRVRmOdem(dev, OFF); 
113 splx(oldpri); 
114 } 
115 } 

116 DRVRread(dev) 
117 register dev; 
118 { 
119 register struct tty *tp; 

120 dev = minor (dev) ; 

121 tp = &DRVR_tty[dev]; 
122 (*linesw[tp->t_line].l_read)(tp); 
123 } 

124 DRVRwrite(dev) 
125 register dev; 
126 { 
127 register struct tty *tp; 

128 dev = minor (dev) ; 

129 tp = &DRVR_tty[dev]; 
130 (*linesw[tp->t_line].l_write)(tp); 
131 } 

132 DRVRioctl(dev, cmd, arg, mode) 
133 register dev, cmd, arg, mode; 
134 { 
135 dev = minor (dev) ; 

Character Driver Code 

136 if (ttiocom(&DRVR_tty[dev], cmd, arg, mode» 
137 DRVRparam(dev); 
138 } 

139 DRVRparam(dev) 
140 register dev; 
141 { 

142 register struct tty *tp; 
143 register flag, mr1, mr2; 
144 int s; 
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Character Driver Code 

145 
146 
147 

148 
149 
150 
151 
152 
153 

154 
155 
156 
157 
158 
159 
160 
161 
162 
163 

s = spltty(); 
tp = &DRVR_tty[dev]; 
flags = tp->t_cflag; 

if «flags & eBAUD) --
/* hang up modem */ 

DRVRmodem(dev, OFF) ; 
splx( s) ; 
return; 

} 

mr1 = 0; 
if ( (flags & eSIZE) == 

mr1 1 BITS8; 1= 
if ( (flags & eSIZE) --

mr1 1= BITS7; 
if ( (flags & eSIZE) --

mr1 1= BITS6; 
if ( (flags & PARENB) --

mr1 1= NO_PAR; 
if «flags & PARODD) 1= 

0) { 

eS8) 

eS7) 

eS6) 

0) 

0) 
164 mr1 1= OPAR; /* if not odd, then even assumed */ 

165 
166 
167 
168 
169 

mr2 = 0; 
if (flags 

mr2 1= 
else 

mr2 I ,= 

& CSTOPB) 
TWOSB; 

ONESB; 

171 duart[dev] .uart_cmnd = RESET; 

172 duart[dev].mr1 = mr1; 
173 duart[dev].mr2 = mr2; 
174 duart[dev].speed = flags & CBAUD; 
175 duart[dev].uart_cmnd = ENABLE; 
176 (*tp->t_proc) (tp,T_RESUME); 

177 splx(s); 
178 } 

179 DRVRint(dev) 
180 register dev; 
181 { 
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182 register struct tty *tp; 
183 register char sr; 

184 dev = 0; 
185 tp = &DRVR_tty[dev]; 

186 duart[dev].uart_cmnd = CLEAR_INT; 
187 if (tp->t_cflag & CLOCAL :: duart[dev].dcd) { 
188 if «tp->t_state & CARR_ON) == 0) { 
189 wakeup{&tp->t_canq); 
190 tp->t_state := CARR_ON; 
191 } 
192 } else { 
193 if (tp->t_state & CARR_ON) { 
194 if (tp->t_state & ISOPEN) 
195 signal(tp->t_pgrp, SIGHUP); 
196 duart[dev].dtr = OFF; 
197 ttyflush(tp, (FREAD: FWRITE»; 
198 } 
199 tp->t_state &= -CARR_ON; 
200 } 
201 } 

202 1* check status register *1 
203 sr = duart[dev].uart_csr; 

204 if (sr & RCVRDY) 
205 DRVRrint(dev); 
206 if (sr & XMTRDY) 
207 DRVRxint(dev); 
208 } 

209 DRVRrint(dev) 
210 register dev; 
211 { 
212 register struct tty *tp; 
213 register char c, stat; 
214 register char *sr; 
215 register struct ccblock *rbuf; 

216 sysinfo.rcvint++; 
217 if (dev >= nduart) 
218 return; 
219 tp = &DRVR_ tty[ dev] ; 

220 sr = &duart[dev].uart_csr; 
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221 while ({stat = *sr) & RCVRDY) { 
222 c = duart[dev].uart_data; 

223. /* check for CSTART/CSTOP */ 

224 if (tp->t_iflag & IXON) { 
225 register char ctmp; 
226 ctmp = c & 0177; 
227 if (tp->t_state & TTSTOP) { 
228 if (ctmp == CSTART I I tp->t_iflag & IXANY) 
229 (*tp->t_proc) (tp, T_RESUME); 
230 } else { 
231 if (ctmp == CSTOP) 
232 
233 } 

234 if (ctmp == CSTART I I ctmp == CSTOP) 
235 continue; 
236 } 

237 /* Check for errors */ 
238 { 
239 register int fIg; 
240 char Ibuf[3]; /* local character buffer */ 
241 short lcnt; /* count of chars in lbuf */ 

242 
243 
244 
245 

246 
247 

248 
249 
250 
251 

252 
253 
254 
255 
256 

lcnt = 1; 
fIg = tp->t_iflag; 
if (stat & (FE I PARERR I OVRRUN» 

duart[dev].uart_cmnd = RESET_ERR; 

if (stat & PARERR && f(flg & INPCK» 
stat &= -PARERR; 

if (stat & (RCVD_BRK I FE 
if «c & 0377) == 0) { 

if (fIg & IGNBRK) 
continue; 

PARERR OVRRUN» { 

if (fIg & BRKINT) { 
(*linesw[tp->t_Iine].I_input){tp, 

L_BREAK) ; 
continue; 

} 
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257 
258 
259 
260 

261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 

279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 } 

294 } 

295 } 

} else { 

} 

if (fIg & IGNPAR) 
continue; 

if (fIg & PARMRK) { 
Ibuf[2] = 0377; 
Ibuf[1] = 0; 
lcnt = 3; 
sysinfo.rawch += 2; 

} else 
c = 0; 

} else { 

} 

if (fIg & ISTRIP) 
c &= 0177; 

else { 

} 

c &= 0377; 
if (c == 0377 && fIg & PARMRK) { 

Ibuf[1] = 0377; 
lcnt = 2; 

} 

Ibuf[O] = c; 
rbuf = &tp->t_rbuf; 
while (lcnt) { 

} 

*rbuf->c_ptr++ = Ibuf[--lcnt]; 
if (--rbuf->c_count == 0) { 

rbuf->c_ptr -= rbuf->c_size; 
(*linesw[tp->t_line].l_input)(tp, 

L_BUF) ; 
} 

Character Driver Code 

if (rbuf->c_size {= rbuf->c_count) { 
rbuf->c_ptr -= rbuf->c_size - rbuf->c_count; 
(*linesw[tp->t_line].l_input)(tp, L_BUF); 

} 

296 DRVRxint(dev) 
297 register dev; 
298 { 
299 register struct tty *tp; 
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300 register char *sr; 

301 sysinfo.xrntint++; 
302 tp = &DRVR_tty[dev); 
303 if (tp->t_state & TTXON) 
304 tp->t_state 1= BUSY; 
305 duart[dev].uart_data = eSTART; 
306 tp->t_state &= -TTXON; 
307 } else 
308 if (tp->t_state & TTXOFF) { 
309 tp->t_state 1= BUSY 
310 duart[devl.uart_data = eSTOP; 
311 tp->t_state &= -TTXOFF; 
312 } else 
313 if (tp->t_state & BUSY && !(tp->t_state&(TIMEOUTITTSTOP») { 
314 tp->t_state &= -BUSY; 
315 DRVRproc(tp, T_OUTPUT); 
316 } 
317 } 

318 DRVRproc(tp, cmd) 
319 register struct tty *tp; 
320 register cmd; 
321 { 
322 register dev; 
323 int s; 
324 extern ttrstrt(); 

325 s = spltty(); 
326 dev = tp - DRVR_tty; 
327 switch(cmd) { 
328 case T_TIME: 
329 if (tp->t_state&TIMEOUT) { 
330 tp->t_state &= -TIMEOUT; 
331 duart[dev].uart_cmnd = STOP_BRK; 
332 } 
333 goto start; 

334 case T_WFLUSH: 
335 tp->t_tbuf.c_size -= tp->t_tbuf.c_count; 
336 tp->t_tbuf.c_count = 0; 

337 case T_RESUME: 
338 tp->t_state &= -TTSTOP; 
339 goto start; 
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340 case T_OUTPUT: 
341 start: 
342 { 
343 register struct ccblock *tbuf; 

344 
345 
346 

if (tp->t_state & (BUSY 1 TTSTOP 
break; 

tbuf = &tp->t_tbuf; 

1* check if tbuf is empty *1 

Character Driver Code 

TIMEOUT) ) 

347 
348 
349 
350 
351 
352 
353 
354 
355 

if (tbuf->c_ptr == NULL II tbuf->c_count -- 0) { 
if (tbuf->c_ptr) 

tbuf->c_ptr -= tbuf->c_size; 
if (l(CPRES&(*linesw(tp->t_line].l_output)(tp») 

break; 
} 

tp->t_state 1= BUSY; 
duart[dev].uart_data 

356 tbuf->c_count--; 
357 break; 
358 } 

359 case T_SUSPEND: 
360 tp->t_state 1= TTSTOP; 
361 break; 

362 case T_BLOCK: 
363 tp->t_state &= -TTXON; 
364 tp->t_state 1= TBLOCK; 

365 if (tp->t_state & BUSY) 
366 tp->t_state 1= TTXOFF; 
367 else { 
368 
369 

tp->t_state 1= BUSY; 
duart[dev].uart_data = CSTOP; 

370 } 
371 break; 

372 case T_RFLUSH: 
373 if (1 (tp->t_state & TBLOCK» 
374 break; 

375 
376 

case T;...UNBLOCK: 
tp->t_state &= -(TTXOFF 

377 if (tp->t_state & BUSY) 

TBLOCK) ; 
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378 tp->t_state 1= TTXON; 
3.79 else { 
380 
381 
382 } 

tp->t_state 1= BUSY; 
duart[dev].uart_data = CSTART; 

383 break; 

384 case T_BREAK: 
385 duart[dev].uart_cmnd = STRT_BRK; 
386 tp->t_state 1= TIMEOUT; 
387 timeout(ttrstrt, tp, HZ/4); 
388 break; 

389 case T_PARM: 
390 DRVRparam(dev); 
391 break; 
392 } 1* end of switch cmd */ 
393 splx( s) ; 
394 } 

395 DRVRmodem(dev, flag) 
396 register dev, flag; 
397 { 
398 register bit; 

399 if (flag == OFF) 
400 duart[dev].dtr = OFF; 
401 else 
402 duart[dev].dtr = ON; 

403 return( duart[dev].dcd ); 
404 } 
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Appendix E: S"ample Block Driver 

The doc_ driver is a block driver for a disk controller that runs on the Single Board Computer (SBC). 
This driver is an example of a working hardware driver for a block-access device that also supports 
character access. 

Table E-1 summarizes the driver entry point routines (Bel Driver Reference Manual, Section D3X), 
kernel functions used in each, and the subordinate routines each calls. The initial line number of 
each routine is giyen in parentheses following the routine name. 

Table E -1 doc_ Driver Routine Summary 

Entry Table Entry Point Routine Name Subordinate Routines 
io_init doc_init doc_initdr 

doc gocbeck 
bdevsw doc_open doc_copy, doc_setblk, doc_strategy 
or 
cdevsw doc_close 
bdevsw doc strategy doc iostart 
cdevsw doc_read doc_breakup, doc_strategy 

doc_write doc_breakup, doc_strategy 

doc_ioctl 

Interrupt 
Vector doc_int doc_intr, doc_iostart 
Table 

This appendix includes the full master file and header file for the driver in addition to the full driver 
code. The lines in the driver code are numbered sequentially, with section headers inserted for ease 
of reference. Note that some lines had to be split to fit on the physical page. The continuation 
portions of such lines are not given numbers. 
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doc Driver M aster File 

The values assigned to the first six columns of the master file indicate the following: 

FLAG This driver supports both block and character access. 

VEC Each device controlled by this driver has one interrupt vector. This indicates that the 
device itself must have some way of indicating which subdevicegenerated an interrupt, 
which is typical of intelligent disk controllers. Because the value of #VEC is not double 
the number in #DEV, Iboot will create an entry for the doc_int routine in the Interrupt 
Vector Table rather than doc_rint and doc_xint entries. 

PREFIX The prefix for this driver is "doc_", so the entry point routines will be named 
"doc_open," "doc_close," and so forth. 

SOFT This field has no number in it, so this is not a software driver; the external major number 
for devices controlled by this driver is determined by the board slot of the device, not the 
master file. 

#DEV Each doc_ device (controller) can support a maximum of four subdevices. 

rPL Devices controlled by this driver will interrupt at priority level 10, which is the 
appropriate IPL for a disk device. Checking the table on the spln(D3X) reference page, 
you see that, on the SBC, this means that critical code protected by splS or higher will 
not be interrupted by devices controlled by this driver. 
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doc_ Driver A1aster File 

*--------------------------------------------------------------------
2 * Master file for doc disk controller. 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

* 
* DOC 

* 
* NOTE: doc_cpaddr is array, maximum [#C] size 
* (set by initializer below) 

* 
*--------------------------------------------------------------------
*FLAG 
bc 

#VEC 
1 

PREFIX 
doc_ 

SOFT #DEV 
4 

IPL DEPENDENCIES/VARIABLES 
10 

*--------------------------------------------------------------------
* Controller physical addresses. 
* These are VME A24 physical addresses. 

doc_cpaddr (%i%i) = { 
OxfdOOOO, 
OxfeOOOO 

} 

*--------------------------------------------------------------------
* Drive types. 
* Floppy disk drive is drive select O. 
* 1st hard disk drive is usually drive select 2, because that is 
* what installation scripts (on installation floppies) mandate. 
* 2nd hard disk drive should be set at drive select 1, because 
* there is some hardware funniness about drive select 3. The 
* funniness is that whenever no drive is being accessed, drive 3 
* gets selected. Upon power-up or power-down, drive 3 is selected 
* but the control lines may glitch as power ramps up or down. So 
* there may be a risk of corruption of the drive set to drive 
* select 3. 

doc_itype (%i%i%i%i) = { 
FLOPPY, 
HARD, 
HARD, 
HARD 

37 *--------------------------------------------------------------------
38 * Driver internal major number. 
39 doc_intmaj (%i) = {#M} 

40 *--------------------------------------------------------------------

Figure E-l doc_ Master File (part I of 2) 
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41 * Controller virtual addresses. 
42 doc_caddr[#C] (%i) 

43 *--------------------------------------------------------------------
44 * VTOCs. 
45 doc_vtoc[#C*#D] (%Ox108) 

46 *--------------~--------------------------------~--------------------
47 
48 

* Drive types. 

49 *--------------------------------------------------------------------
50 doc_tab[#C] (%Ox44) 
51 doc_iostat[#C*#D] (%Ox10) 
52 doc_count[#C*#D] (%i) 
53 doc_tcount[#C*#D] (%i) 
54 doc_time[#C*#D] (%Ox20) 
55 doc_info[#C*#D] (%i) 
56 doc_fmtflag[#C] (%i) 
57 doc_retrys[#C*#D] (%c) 
58 doc_defect[#C*#D] (%Ox800) 
59 doc_elog[#C*#D] (%Ox20) 
60 doc_pdsect[#C*#D] (%Ox200) 
61 doc_tbufon[#C*#D] (%i) 

62 *--------------------------------------------------------------------
63 
64 

* Number of equipped controllers. 
doc_numcontr (%i) = {#C} 

65 *--------------------------------------------------------------------
66 $$$ 

67 
68 
69 
70 
71 

* Drive Types 
HARD = 
FLOPPY 
STREAM 
NODRIVE 

o 
= 
= 

1 
2 
3 

72 *--------------------------------------------------------------------

Figure E -1 doc_ Master File (part 2 of 2) 
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doc_ Driver }faster File 

The DE f}ENDENCIESIV ARIABLES column defines a number of variables that cite declared and 
used in the driver. Note how this master file includes comments that explain what these variables 
are. The Table E-2 shows the line numbers from the driver code where each of these variables are 
declared and used. 

Table E - 2 DEPENDENCIESIV ARlABLES Declarations 

Variable Same Declared on Line ~umber ' L'sed on Line ~umber(s) 

217 

159 

317 

33 

146 

160 

: doc_tab 175 

· doc_iostat 176 

i doc_count 180 

doc_tcount 184 

doc_time 188 

· doc_info 192 

: doc_fmtftag 202 

doc_retrys 222 

· doc_defect 226 

doc_eIoll 230 

doc_pdsed 236 

, doc_tbufoD 140 

303 

331 

317,409 

35 - 54. 218. 302. 306 

i 496,640.703.704.790.796.802,803.955. 1153. 
I 1197. 1263, 1348. 1357. 1621 

: 22.333.336.341.346.351.356.361.366.370. 
; 489.534.562.575.638.998.1037.1142.1144. 

1162. 1230. 1234.1502.1510. 1603, 1604. 1610. 
1620. 1638. 1642. 1697. 1757, 1761 

· 329.330,809,919. 1100, 1475 

; 330 

975,993. 1042. 1297 

· 983, 1296. 1297 

840.841,865, 1315, 1316 

: 327,497,524.554.610,618,619,624.625.639, 
! 641, 642, 711, 724. 728, 729, 774 

414.930,1106. 1109, 1110.1117. 1140. 1188.1220. 
! 1222. 1223. 1487, 1490. 1513, 1515. 1520 

328.1141. 1143. 1145. 1161. 1189, 1190. 1205. 1122 

· 631.632.689.948.1613 

1243. 1253, 1255, 1262. 1266. 1274. 1275. 1277 

369.494.571-574.626. 781. 949. 1 :5 .... 1198, 1264. 
1281.1301, 1435.1708-1733 

326. 1038, 1041, 1157, 1201 
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doc Driver Header File 

The header file for the doc_ driver defines a number of structures and variables that are used in the 
driver and board registers with which the driver must interact. By defining structures and variables in 
the header file rather than the driver code itself, you make the driver easier to read and maintain 
because all related information is listed together. When modifying the driver to run on a different 
machine or for an updated version of the hardware, you can modify the header file rather than recode 
the driver. 

1*-----------------------------------------------------------------
2 * DOC_ disk controller include file 

3 *-----------------------------------------------------------------
4 
5 
6 
7 

*1 
#define 
#define 
#define 

8 1* 

u_short unsigned short 
u_char unsigned char 
u_long unsigned long 

9 * custom ioctl calls: set these so they don't conflict with vtoc.h 
10 * ioctl defs DTRACE is func entry, exit and progress pOints DPRINT 
11 * is selected info prints 
12 
13 
14 
15 
16 

*1 
#define 
#define 
#define 
#define 

IOCTL_DTRACEOFF Ox0100 
IOCTL_DTRACEON Ox0101 
IOCTL_DPRINTOFF Ox0110 
IOCTL_DPRINTON Ox0111 

18 * per disk type control structure (used by firmware only) 
19 *1 

doc_types { 20 struct 
21 int mt_maxbn; 1* largest block number (calculated) 
22 int mt_ncyl; 1* number of cylinders *1 
23 int mt_nhead; 1* number of tracks per cylinder *1 
24 int mt_nsectrk; 1* number of sectors per track *1 
25 int mt_seclen; 1* sector length (bytes) *1 
26 }; 

Figure E-2 doc_.h Header File (part I of 4) 
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doc_ Driver Header File 

27 1*--------------------------------------------------------*1 
28 
29 * variables for accessing DPDRAM 

31 extern unsigned int doc_caddr[]; 1* base addrs of cntrllers *1 

32 
33 
34 
35 
36 
37 

/* same 
#define 
#define 
#define 
#define 
#define 

for all commands *1 
DOC_GOFLAG(C) (*«unsigned 
DOC_COMMAND(C) (*«unsigned 
DOC_ERRCODE(C) (*«unsigned 
DOC_DRIVENO(C) (*«unsigned 
DOC_IVECTOR(C) (*«unsigned 

38 /* for "init drive" command *1 

char *)(doc_caddr[C]+Ox1») 
short *)(doc_caddr[C]+Ox2») 
char *)(doc_caddr[C]+Ox5») 
char *)(doc_caddr[C]+Ox7») 
char *)(doc_caddr[C]+Ox11») 

39 #define DOC_NHEADS(C) (*«unsigned char *)(doc_caddr[C]+Ox9») 
40 #define DOC_MAXCYL(C) (*«unsigned short *)(doc_caddr[C]+OxA») 
41 #define DOC_NSECTRK(C) (*«unsigned char *)(doc_caddr[C]+OxD») 
42 #define DOC_NBYTSEC(C) (*«unsigned short *)(doc_caddr[C]+OxE») 
43 #define DOC_HDGAP(C) (*«unsigned char *)(doc_caddr[C]+Ox13») 

44 /* for "initialize track buffer" command *1 
45 #define DOC_TBADDR_H(C) (*«unsigned short *)(doc_caddr[C]+OxC») 
46 #define DOC_TBADDR_L(C) (*«unsigned short *)(doc_caddr[C]+OxE») 

47 /* for "force read/write", "read/write with buffering" and "write 
48 with track buffer and verify" commands *1 
49 #define DOC_LBN_H(C) (*«unsigned short *)(doc_caddr[C]+Ox8») 
50 #define DOC_LBN_L(C) (*«unsigned short *)(doc_caddr[C]+OxA») 
51 #define DOC_SBADDR_H(C) (*«unsigned short *)(doc_caddr[C]+OxC») 
52 #define DOC_SBADDR_L(C) (*«unsigned short *)(doc_caddr[C]+OxE») 

53 /*---------------------------------------------------- -----------*1 
54 /* command and status value definitions *1 

55 
56 
57 

/* "go flag" definitions *1 
#define GO_DONE 
#define GO_START Ox01 

OxOO 

Figure E- 2 doc_.h Header File (part 2 of 4) 
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58 1* command word bit definitions */ 
59 #define CMD_READ Ox0001 
60 
61 
62 
63 
64 
65 
66 
67 
68 

·69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

#define CMD_WRITE 
#define CMD_VERIFY 
#define CMD_FORCE 
#define CMD_INTWD 
#define CMD_INITTB 
#define CMD_INITDR 
#define CMD_FORMAT 
#define CMD_DMAIO 
#define CMD_FLIO 
#define CMD_HDIO 
#define CMD_STATUS 
#define CMD_FLCMD 
#define CMD_DDENC 
#define CMD_SDENC 
#define CMD_ENBAUTOFL 
#define CMD_DISAUTOFL 
#define CMD_STARTSO 
#define CMD_RESERVED 

OxOOOO 
Ox0002 
Ox0004 
Ox0008 
Ox0010 
Ox0020 
Ox0040 
Ox0080 
Ox0100 
Ox0200 
Ox0400 
Ox0800 
OxOOOO 
Ox1000 
Ox2000 
Ox2001 
Ox4000 
Ox8000 

1* command word complete commands */ 
#define CMD_RESET Ox4242 
1* "error register" definitions *1 
#define ERR_NOERROR OxOO 
#define ERR_DNOTREADY 
#define ERR_RESERVED 
#define ERR_ACCESSERR 
#define ERR_VERIFYERR 
#define ERR_DMAERR 
#define ERR_DRVNOTINIT 
#define ERR_NUMTBS 
#define ERR_ILLEGALCMD 
#define ERR_ILLEGALLBN 
#define ERR_CRCERR 
#define ERR_SEEKERR 
#define ERR_WRITEPROT 
#define ERR_BADMEDIA 

Ox81 
Ox82 
Ox83 
Ox84 
Ox85 
Ox86 
Ox87 
Ox88 
Ox89 
Ox8A 
Ox8B 
Ox8C 
Ox8D 

Figure E - 2 doc_.h Header File (part 3 of 4) 
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doc_ Driver Header Ftle 

-----_.----------------------------------------------------------------------
95 1*-----------------------------------------------------------------*1 
96 * addresses of on-board track buffers *1 hard disk ~rack == 9K 
97 * bytes, floppy disk track -- 4.5K bytes. total internal 7400 
98 * memory for track buffers == 24K bytes (at present). 
99 

100 
101 
102 
103 

104 
105 
106 
107 
108 

109 
110 
111 
112 
113 
114 
115 

116 
117 
118 
119 

120 

*1 
#define BUFRAMBASE OxOO022000 
#define TBADDR_HO BUFRAMBASE 
#define TBADDR_H1 TBADDR_HO+Ox2400 
#define TBADDR_FO TBADDR_H1+0x2400 

1* track buffer addresses (code assumes 
* that these go hard, hard, floppy) 
*1 

static unsigned int tbaddr[3] = { TBADDR_HO, TBADDR_H1, TBADDR_FO }; 
#define NTB 3 

1*-----------------------------------------------------------------*1 
1* hard disk gap parameters *1 
1* these are the numbers given to the controller; 

* the actual gap is this number plus 3. 

*1 
#define HDG_256 19 
#define HDG_512 16 

1*-----------------------------------------------------------------*1 
1* defines for splitting int into shorts *1 
#define hihalf(X) «short)«X»>16)) 
#define lohalf(X) «short)«X)&OxOOOOFFFF)) 

1*-----------------------------------------------------------------*1 

Figure E-2 doc_.h Header Flle (part 4 of 4) 
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Initial Com m ent Block 

The initial comment block for the doc_ driver includes a log of all modifications made to the driver 
and other miscellaneous information that will ease maintenance of the driver. Note that each change 
that is logged is accompanied with a date. 

Line 102 is the control information used by the S-list capability of the C programming language 
utilities. 

1 * revision history: 

2 * 
3 * 051587 DOC_ 

4 * 
5 * - changed to have hard disks be drives 1,2,3 instead of 2,3. 
6 * - changed doc_diskmaj to doc_intmaj. 
7 * - changed majnum to extmaj. 

8 * 
9 * 022787 DOC_ 1.4 

10 * 
11 * moved "majnum" calculation in doc_init earlier and replaced 
12 * "DOC_O" with "majnum". Calculation of "majnum" will not 
13 * work correctly for multiple controllers. 
14 * - removed u+111 in doc_iostart calculation of firstbn, and "_111 
15 * in doc_int error message printing. Defect table always assumes 
16 * sectors start at 0 now. 
17 * - changed doc_int hard-disk error logging so correct block number 
18 * is used and message is printed before hdeloq is called. Case 
19 * where a bad sector is mapped to a IIgood ll one and the "good" one 
20 * causes an error will still not work. The original bad sector 
21 * will be logged instead of the "good" one. Corrected messages 
22 * so proper distinction is made between logical and physical 
23 * accesses. 
24 * - removed "not full disk ll message from doc_open. 
25 * - removed hard-coded "hard_pdsect"; replaced with just enough to 
26 * read real pdsect. This required that the "init drive" code be 
27 * moved out to a new function, doc_initdr, and called 
28 * in a coupl~ of places. 

Figure E - 3 Revision History (part 1 of 3) 
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-----~ 

29 * 
30 * 
31 * 
32 * 
33 * 
34 * 
35 * 
36 * 
37 * 
38 * 
39 * 
40 * 
41 * 
42 * 
43 * 
44 * 
45 * 
46 * 
47 * 
48 * 
49 * 
50 * 
51 * 
52 * 
53 * 
54 * 
55 * 
56 * 
57 * 
58 * 
59 * 
60 * 
61 * 
62 * 
63 * 
64 * 
65 * 

InitiaL Comment Block 

- these changes should make everything but multiple controllers 
work in SVR3.1. 

- comments need improving; note "majnum" is external major 
number, "doc_diskmaj" is internal major number, and so on. 

111386 DOC_ 1.3 

- added goflag check before initial reset in case it was 
busy from firmware driver hand-off during boot. 

092986 DOC_ 1.2 

- improve error detection for cases where DOC_ board does not 
respond within 1 second after starting a command. After 
unusually long failures to perform some operation on a drive, 
action should be to stop the requested operation rather than 
continue as did the original driver. 

- add timeout test BEFORE ALL controller commands if go-flag 
wasn't clear; original driver just reported the unclear 
go-flag and continued, now it will wait about 1 sec then 
exit with a message. 

- do the same thing AFTER ALL NON-INTERRUPT-SETTING commands; 
original driver did a wait forever, now it will wait for 1 
second and exit with a message. 

082986 DOC_ 1.1 

fix 9 head problem, misc. cleanups: 
- open: set OPEN flag if fulldisk on badopen to avoid the 

sanity reload chicken/egg problem. 
- ioctl PDSETUP: removed "generic values" test. 
- struct hard_pdsect: changed dflt to 9 head disk defaults 

(prob not nee, but just as well changed). 
- cpaddr: moved values to master.d file instead of being 

hard coded (users need reconfig flexibility). 

Figure E - 3 Revision History (part 2 of 3) 
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Initial Comment Block 

66 * - ioctl: added cmds to turn onloff the debug prints so 
67 * recompile isn't necessary to change it; added TRACE. 
68 * - while in the code, cleaned up a few minor things in 
69 * printing messages, shortened messages so the console 
70 * terminal doesn't lose so much output, removed some unused 
71 * variables, added a few messages for end-cases, and so on. 
72 * - errors: changed logic to force single-sector reads or writes 
73 * after disk errs (code 83 on hards, codes 8A and 8B on 
74 * floppies); for hard disks, this allows flaw mappi~g to be at 
75 * the sector level instead of the track level, so hde error 
76 * logging, and so on, works; before, it overflowed reloc-sector 
77 * tables, hdelog, and so on. When there were many 
78 * manufacturer's defects (the normal case). NOTE: the 
79 * formatdisk flaw entry "T" option is no longer necessary for 
80 * the DOC_; includes extern doc_tbufon in master.d. 
81 * - extern variable ndoc_ violated kernel rules for naming 
82 * globals, changed to doc_numcontr. 
83 * - a block number calc in doc_intr was using a short which 
84 * gave a bad block number--changed to an into 
85 * - biased blk number by + 1 before sending to hde so hdefix -a 
86 * works correctly; it still reports wrong but does map the 
87 * c-t-s in the same way as formatdisk preentry does it (s+=1) 
88 * so they are consistent; 
89 * 
90 * Original notes on DOC_: 

91 * 
92 * Note: DOC_ only seems to work for disks with 8 heads or less, 
93 * may not work with "their" disks, and the "get status" 
94 * command may not work correctly. 
95 * 
96 * Note: This driver does not support cartridge tape. 
97 * 
98 * Note: Since the DOC_ does track buffering, defects must 
99 * be entered with the "T" option (bad track) under 

100 * formatdisk. 

101 *----------------------------------------------------------------*1 
102 #ident _."@( #) kern: doc. c 1.4" 

Figure E - 3 Revision History (part 3 of 3) 
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Global Data Structure Declarations 

The driver code itself begins by declaring and defining a number of global data structures that will be 
used throughout the code. First system and driver-specific header files are #inc1uded, then the 
structures defined in the master file and other structures are declared. A number of structures are 
defined here that could have been defined in the header file. Note how virtually every structure 
declared or defined is given at least a brief comment that explains its purpose. 

103 #include "sys/types.h ll 

104 #include "sys/param.h ll 

105 #include "sys/sbd.h" 
106 #include "sys/vtoc.h" 
107 #include "sys/doc_.h" 
108 #include "sys/dma.h" 
109 #include "sys/immu.h" 
110 #include "sys/dir.h" 
111 #include "sys/sysmacros.h" 
112 #include "sys/signal.h" 
113 #include "sys/psw.h" 
114 #include "sys/pcb.h" 
115 #include "sys/user.h" 
116 #include "sys/errno.h" 
117 #include sys/buf.h" 
118 #include sys/elog.h" 
119 #include sys/iobuf.h" 
120 #include sys/systm.h" 
121 #include sys/firmware.h" 
122 #include sys/cmn_err.h" 
123 #include sys/hdelog.h" 
124 #include sys/open.h" 
125 #include sys/inline.h" 
126 #include sys/if.h" 

Figure E-4 doc_ Global Data Structure Declarations (page I of 6) 
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Global Data Structure Declarations 

127 #define GOWAITSECS 1 /* max time to wait for cntrlr to clr go flag */ 
128 #define GOCHECKLPS 300000 /* loops, make it corne out to seconds */ 

129 int doc_dtrace = 0; /* debug prints at start, rtrn & go thru funcs *1 
130 int doc_dprint = 0; 1* specific debug prints *1 

131 
132 
133 
134 
135 
136 
137 
138 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

DTRACE if(doc_dtrace)printf 
DPRINT if(doc_dprint)printf 
DEBUGinit if(doc_dprint)printf 
DEBUGform if(doc_dprint)printf 
DEBUGnurns if(doc_dprint)printf 
DEBUGdefect if(doc_dprint)printf 
DEBUGretry if(doc_dprint)printf 
DEBUGhde if(doc_dprint)printf 

139 #define TBUFFER 1 /* 1 for track buffering, 0 otherwise *1 
140 extern int doc_tbufon[] 

141 extern int doc_nurncontr; /* num of doc_OO cntrlrs in master file*1 

142 #define HRETRYS 5 1* num of positioning retrys for hard disks *1 
143 #define FRETRYS 1* num of positioning retrys for floppy disks*/ 

144 #define DOC_FRSTBLK 0 
145 #define DOC_NULL 0 

146 extern struct vtoc doc_vtoc[]; 1* in core copy of vtoc *1 

147 /* doc_type is set in the master file (i.e. master.d/doc_) 
148 * to reflect the type of disks connected to the controller. 
149 * Each element in doc_type corresponds to the unit number 
150 * of the controller 
151 */ 

152 
153 
154 
155 
156 
157 

struct 
int 
int 
int 
int 

} ; 

doc_t { 

unitO; 
unit 1; 
unit2; 
unit3; 

Figure E - 4 doc_ Global Data Structure Declarations (page 2 of 6) 
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158 extern struct doc_t doc_itype; 

160 extern short doc_type[1; 

162 
163 

* Possible types of disk 

164 #define DT_HARD 
165 #define DT_FLOPPY 
166 
167 

#define DT_STREAMING 
#define DT_NODRIVE 

o 

2 
3 

Glohal Data Structure Declarations 

168 1* given a unit num (0-(4*C-1», return controller num (0-(C-1»*1 
169 #define contr(x) «x»>2) 
170 1* given a unit num (O-(4*C-1», return subdevice number (0-3) *1 
171 #define subdev(x) (x)&Ox3) 

173 * the io queue headers 

175 extern struct iobuf doc_tab[]; 
176 extern struct iostat doc_iostat[]; 1* errlog *1 

178 * total count of amount of data transferred so far 

180 extern int doc_count[]; 

182 * the size of the current io being done on this unit 

Figure E"':" 4 doc_ Global Data Structure Declarations (page 3 of 6) 
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Global Data Structure Dec!ararzons 

184 extern int doc_tcount[]; 

186 
187 

188 

* IO performance stats area 

extern struct iotime 

189 1* These are used to give us current 
190 * information about the drive 
191 *1 

192 extern int doc_info[]; 

193 
194 
195 
196 

197 

#define 
#define 
#define 
#define 

INFO_NULL OxOO 
INFO_EQUIPPED Ox01 
INFO_OPEN Ox02 
INFO_OPENING Ox04 

1* uninitialized *1 
1* drive equipped *1 
1* open complete *1 
1* open not yet complete *1 

flags used during formatting : 
198 * 
199 
200 
201 
202 
203 

* 
* 
* 
* 
* 

204 *1 

FMT_IDLE == no format in progress on that controller 
FMT_INPROGRESS == format in progress 
FMT_SUCCEED == format finished and succeeded but 

IOCTL not awake 
FMT_FAIL == format finished & failed but IOCTL not awake 

205 extern int doc_fmtflag[]; 
206 #define FMT_IDLE 0 
207 #define FMT_INPROGRESS 
208 #define FMT_SUCCEED 2 
209 

211 
212 
213 
214 
215 

#define FMT_FAIL 3 

* 
* 
* 
* 
* 

physical VME addresses of controller boards; 
the order decides the unit numbers. 
this will be determined from the EDT. 

The VIRTUAL addresses will be calculated by sptalloc 
and stored in doc_caddr[]. 

Figure E - 4 doc_ Global Data Structure Declarations (page 4 of 6) 
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GlobaL Data Structure Declaranons 

-------------------------------------------------------------
217 extern unsigned int doc_cpaddr[ ] ; 1* physical *1 
218 extern unsigned int doc_caddr[]; 1* virtual *1 

219 1* 
220 * retry count for positioning errors 
221 *1 

222 extern char doc_retrys[]; 

223 1* 
224 * disk defect maps 
225 *1 

226 extern struct defstruct doc_defect[]; 
227 1* 
228 * Error logging structures 
229 *1 

230' extern struct hdedata doc_elog[]; 
231 extern hdelog(); 
232 static int doc_initdr(); 

233 
234 
235 

* 
Physical information from Physical Descriptor 

sector (block 0) 

236 extern struct pdsector doc_pdsect[]; 

238 
239 
240 
241 
242 
243 

* 
* 

Physical Descriptor information fo~ initializing 
pdsect on floppy drives 

*1 
#define IFNUMSECT 
#define IFBYTESCT 
#define IFPDBLKNO 

9 
512 
1422 

Figure E~4 doc_ Global Data Structure Declarations (page 5 of 6) 
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Global Data Structure Declarations 

static struct pdinfo floppy_pdsect = { 

1 , /* driveid */ 

VALID_PO, /* sanity */ 

1 , /* version */ 

"" /* serial */ 

IFTRKSIDE, /* cyls */ 

IFNTRAC, /* tracks */ 

IFNUMSECT, /* sectors */ 

IFBYTESCT, /* bytes */ 

0, /* logicalst */ 

IFTRACKS * IFNUMSECT - 1 , /* errlogst */ 

IFBYTESCT, /* errlogsz */ 

Oxffffffff, /* mfgst */ 
Oxffffffff, /* mfgsz */ 

IFPDBLKNO + 1 , /* defectst */ 

IFBYTESCT, /* defectsz */ 

1 , /* relno */ 
IFPDBLKNO + 2, /* relst */ 

IFNUMSECT * 2 - 3, /* relsz */ 

IFPDBLKNO +2 /* relnext */ 

} ; 
/* 

* partition information for floppy disks 
*/ 

static struct partition floppy_sizes[IF_NUMPAR] 

} ; 
/* 

0, 0, 432, 990, 
0, 0, 612, 810, 
0, 0, 810, 612, 
0, 0, 1008, 414, 
0, 0, 1206, 216, 
V_ROOT, 0, 18, 1404, 
V_BACKUP, 0, 0, 1422, 
V_BOOT, 0, 0, 18 

/* partition a -
/* partition 1 -
/* partition 2 -
/* partition 3 -
/* partition 4 -
/* partition 5 -
/* partition 6 -
/* partition 7 -

* Misc stuff for decoding device numbers 
*/ 

cyl 
cyl 
cyl 
cyl 
~yl 

cyl 
cyl 
cyl 

= { 

24-78 */ 

34-78 */ 

45-78 */ 

56-78 */ 

67-78 */ 

1-78 */ 

0-78 */ 

a */ 

244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 

#d~fine doc_hard(~) (subdev(p) != 0) /* units 1,2,3=hard disks */ 

extern int doc_intmaj; /* internal maj devnum from master file*/ 

Figure E - 4 doc_ Global Data Structure Declarations (page 6 of 6) 
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doc _J nit D r i v erE n try Poi n t R 0 uti n e 

The initialization entry point routine performs the following tasks 

• Sets up virtual-to-physical address translation for each configured controller (lines 301 -
312). 

• Finds the external major number for each controller (lines 316 - 318) and determines the 
default parameters for each subdevice (lines 324 - 378). These parameters are initialized 
for each subdevice in lines 422 - 427 with a call to the subordinate driver routine, 
doc_initdr. Note the use of case statements (defined in the table in the master file) to 
handle differentsubdevice types (HARD, FLOPPY, STREAM, or NODRIVE) on the 
controller. 

• Resets each controller and sets its interrupt vector to match that in the system's interrupt 
vector table generated by lboot (lines 383 - 415). 

• Sets track buffer addresses (lines 429 - 457) and enable auto-flushing of those buffers 
(lines 460 - 481). 

• Verifies status of controllers. Check for correct number of subdevices (lines 488 - 499) 
and if initialization of each is complete (lines 502 - 539). The polling for completion is 
necessary because an initialization routine cannot use the sleep/wakeup pair to 
synchronize hardware and software events. An alternate method for doing this check is 
to use the delay function. 

Note that the header file defines the variables used for accessing the device, such as DOC_GOFLAG 
and DOC_COMMAND. 
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doc_init Driver Entry Point Routine 

-----------------------------------------
283 1*---------------------------------------------------------*1 
284 1* initialization routine called once 
285 * during system startup, 
286 *1 
287 doc_init() 
288 { 
289 register struct doc_OO *addr; 
290 register int con, unit, subd, pi, j; 
291 int vector, extmaj; 
292 extern int hdeeduc, hdeedct; 
293 dev_t ddev; 
294 struct pdsector *pd; 
295 DTRACE(" doc_init: start; tk buf %s\n" , 

296 1* 
297 
298 
299 

* 
* 
* 

300 *1 

(TBUFFER? "ON" : "OFF"»; 

set up each controller's address translation from kernel 
virtual to VME physical, using sptalloc. Virtual 
addresses are in doc_caddr; physical in doc_cpaddr. 

301 for (con=O; con < doc_numcontr; con++) { 
302 doc_caddr[con] = sptalloc(btoc(2048),(PG_P!PG_LOCK), 
303 btoc(doc_cpaddr[con]) ,0); 
304 DEBUGinit (" doc_init: controller %d doc_caddr[]==Ox%x\n", 
305 con, doc_caddr[con]); 
306 if (doc_caddr[con] == NULL) { 
307 cmn_err(CE_WARN, 
308 "doc_: sptalloc on controller %d failed. 

309 
310 
311 } 

return; 

Do not use device.\n", 
con) ; 

312 } 1* for all controllers *1 

314 * find the controller's external major number 
315 *1 
316 for (j=O; j<128; j++) 
317 if (MAJOR[j] == doc_intmaj) break; 
318 extmaj = j; 

Figure E - 5 doc_init Entry Point Routine (part I of 8) 
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------

319 1* 
320 * 
321 * 
322 * 
323 *1 

324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 

340 
341 
342 
343 
344 
345 
346 
347 
348 
349 

350 
351 
352 

doc_init Dri"'.'er Entry Point Routine 

set up each unit's pointer block and initialize the device 
with default parameters; these parameters will be changed 
when the physical descriptor is read in on first open 

for (unit=O; unit < doc_numcontr*4j unit++) { 
con = contr(unit); 
doc_tbufon[unit] = TBUFFER; 1* tbuf is on for this unit *1 
doc_info[unit] = INFO_NULL; 
doc_retrys[unit] = 0; 
doc_tab[con].b_dev = makedev(extmaj,(unit«4»j 
doc_tab[con].io_stp = &doc_iostat[unit]j 
switch (doc_itype[unit%4]) { 
case DT_NODRIVE: 

doc_type[unit] = DT_NODRIVE; 
continue; 

case DT_HARD: 
doc_type[unit] = DT_HARDj 
if (!doc_hard(unit»{ 

cmn_err(CE_WARN, 
"doc_: controller %d drive %d cannot be 

initialized as hard disk--ignored.\n", 
con,subdev(unit»; 

doc_type[unit] = DT_NODRIVE; 
continue; 

} 

break; 
case DT_FLOPPY: 

doc_type [unit] = DT_FLOPPY; 
if (doc_hard(unit» { 

cmn_err(CE_WARN, 
"doc_: controller %d drive %d cannot 

be initialized as floppy disk--ignored.\n", 
con,subdev(unit»; 

doc_type[unit] = DT_NODRIVEj 
continue; 

Figure E - S doc_init Entry Point Routine (part 2 of 8) 
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doc_init Driver Entry Point Routine 

353 
354 
355 
356 
357 
358 
359 

360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 

} 

break; 
case DT_STREAMING: 

doc_type[unit] = DT_STREAMING; 
if (unit%4 != 1) { 

cmn_err(CE_WARN, 
"doc_: controller %d drive %d 

cannot be initialized as stream tape--ignored.\n", 
con,subdev(unit»; 

doc_type[unit] = DT_NODRIVE; 
continue; 

} 

break; 
default: 

} 

doc_type[unit] = DT_NODRIVE; 
continue; 

pd = &doc_pdsect[unit]; 
if (doc_type[unit] == DT_HARO) { 

} else 

1* just enough to be able to read the real PDsect */ 

pd->pdinfo.cyls = 1; 
pd->pdinfo.tracks = 1; 
pd->pdinfo.sectors = 18; 
pd->pdinfo.bytes = 512; 

pd->pdinfo = floppy_pdsect; 

378 } 1* end for all units (all controllers) *1 
379 1* for each controller, reset it and then set its 
380 * interrupt vector. lboot initializes interrupt 
381 * vectors to be 16 * the external major number 
382 *1 

383 for (con=Q ; con<doc_numcontr; con++) { 
384 1* reset controller *1 
385 DEBUGinit(" doc_init: resetting %d'n",con); 

Figure E-S- doc_init Entry Point Routine (part 3 of 8) 
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386 
387 
388 

389 
390 

391 
392 
393 
394 
395 
396 
397 

398 
399 
400 
401 
402 

403 
404 

405 
406 

doc_init Driver Entry Point Routine 

if (doc_gocheck(con» { 
cmn_err(CE_WARN, 

"doc_init: controller 
error: go-flag not clear\n"); 

cmn_err(CE_WARN, 
"doc_init: before initial 

reset--don't use doc_\ntl); 
return; 

DOC_COMMAND(con) = CMD_RESET; 
DOC_GOFLAG(con) = GO_START; 
if(doc_gocheck(con» { 

cmn_err(CE_WARN, 
"doc_init: go not clear 

after reset don't use doc_\n"); 
return; 

if(DOC_ERRCODE(con) != ERR_NOERROR) 
cmn_err(CE_WARN, 

"doc_init: 'reset 
controller' failed errcode==Ox%x\n" , 

DOC_ERRCODE(con»; 
cmn_err(CE_WARN,"doc_init: don't 

use doc._ \n" ) ; 
return; 

} 

407 1* set controller interrupt vector *1 
408 for (j=O; j<128; j++) 
409 if (MAJOR[j] == doc_intmaj && MINOR[j] -- 4*con) { 
410 
411 
412 
413 
414 

415 

vector = j « 4; 
break; 

DOC_IVECTOR(con) = vector; 
doc_fmtflag[con] = FMT_IDLE; 

} 1* for all controllers *1 

Figure E-5 doc_init Entry Point Routine (part 4 of 8) 
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doc_init Driver Entry Point Routine 

416 1* 
417 * for each controller, initialize 
418 * drive parameters to those set above, set track 
419 * buffer addresses (4 per controller) and enable 
420 * auto-flushing of track buffers (once per controller). 
421 *1 
422 for (con=O ; con<doc_numcontr; con++) { 
423 for (subd=O; subd<4; subd++) { 

424 1* do "initialize drivell command, polling for completion *1 
425 unit = (con*4) + subd; 
426 if (doc_initdr(unit») 
427 return; 
428 } 1* end for all subdv *1 
429 for (subd=O; subd<NTB; subd++) 

430 1* do "initialize track buffer ll cmd, polling for completion *1 
431 1* error if go-flag says controller is busy *1 
432 if (doc_gocheck(con» { 
433 cmn_err(CE_WARN, 
434 IIdoc_init: controller error: go-flag not clear\nll); 
435 cmn_err(CE_WARN, 
436 "doc_init: before init trk buf--don't use doc_\n"); 
437 return; 
438 
439 
440 
441 

442 
443 
444 
445 
446 
447 
448 

449 
450 

} 

1* set command *1 
1* first two track buffer addresses are for hard disks*1 

DOC_COMMAND(con) = «subd<2) ? 
CMD_HDIO : CMD_FLIO) l CMD_INITTB; 

DOC_TBADDR_H(con) = hihalf(tbaddr[subd)); 
DOC_TBADDR_L(con) = lohalf(tbaddr[subd); 
DEBUGini t (It doc _ ini t : ' ini t track buffer' \n" ) ; 
DOC_GOFLAG(con) = GO_START; 

if(doc_gocheck(con» { 
cInn_err(CE_WARN, 

} 

Itdoc_init: go not clear after 
init trkbuf don't use doc_\n"); 

return; 

Figure E - S doc_init Entry Point Routine (part 5 of 8) 
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doc_inzt Dri1/er Entry Point Routine 

451 if(DOC_ERRCODE(con) != ERR_NOERROR) 
452 cmn_err(CE_WARN, 
453 "doc_init: init trkbuf failed 

errcode==Ox%x don't use doc_\n", 
454 DOC_ERRCODE (con) ) ; 
455 return; 
456 } 
457 } 1* end for all subdv *1 

458 1* enable auto-flushing for hard disks on this *1 
459 1* controller. Error if go-flag says controller is busy *1 

460 if (doc_gocheck(con» { 
461 cmn_err (CE_WARN, 
462 IIdoc_init: controller error: 

go-flag not clear\nll); 
463 cmn_err (CE_WARN, 
464 IIdoc_init: before enable 

autoflush--don't use doc_\nll); 
465 return; 
466 } 
467 
468 
469 
470 
471 
472 

473 
474 
475 
476 
477 

478 
479 
480 
481 

DOC_COMMAND(con) = CMD_ENBAUTOFL; 
DEBUGinit(" doc_init: 'enable auto-flush'\n ll ): 
DOC_GOFLAG(con) = GO_START; 

if(doc_gocheck(con» 
cmn_err(CE_WARN, 

} 

"doc_init: go not clear after 
enab autoflush don't use doc_\nll); 

return; 

if (DOC_ERRCODE(con) != ERR_NOERROR) { 
cmn_err(CE_WARN, 

} 

doc_init: enab autoflush failed 
errcode==Ox%x don't use doc_\nll, 

DOC_ERRCODE(con»; 
return; 

} 1* end for all controllers *1 

Figure E-S doc_init Entry Point Routine (part 6 of 8) 
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doc_tnit Dnver Entry Point Routine 

482 1* To verify that the controller is equipped with 
483 * the correct number of drives, do a "get status" 
484 * and check the results. Use the true number of 
485 * sectors per track to determine block offsets 
486 * of partitions for floppies 
487 *1 

488 
489 

for (unit=O ; unit<doc_numcontr*4 
switch (doc_type[unit]) { 

490 case DT_NODRIVE: 
491 break; 
492 case DT_STREAMING: 
493 case DT_FLOPPY: 
494 pd = &doc_pdsect[unit]; 
495 for (j=O; j<IF_NUMPAR; j++) 

unit++) { 

496 doc_vtoc[unit] ,v_part[j] = floppy_sizes[j]; 
497 doc_info[unit] = INFO_EQUIPPED; 
498 break; 

500 1* do "get status" command, polling for completion */ 

501 1* error if go-flag says controller is busy *1 

502 if (doc_gocheck(contr(unit») { 
503 cmn_err(CE_WARN, 
504 "doc_init: controller error: 

go-flag not clear\n"); 
505 cmn_err(CE_WARN, 
506 "doc_init: before get status 

507 
508 } 

--don't use doc_\n"); 
return; 

Figure E - 5 doc_init Entry Point Routine (part 7 of 8) 
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doc_mit Driver Entry Point Routlne 

509 DOC_COMMAND(contr(unit» = CMD_HDIO : CMD_STATUS; 
510 #ifdef DRIVETMP 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 

521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 

#else 

#endif 

* 

if (subdev(unit)==3) DOC_DRIVENO(contr(unit) = 1 
else DOC_DRIVENO(contr(unit» = subdev(unit); 

DOC_DRIVENO(contr(unit» = subdev(unit); 

DEBUGinit(" doc_init: 'get status' on %d\n",unit); 
DOC_GOFLAG(contr(unit» = GO_START; 

if(doc_gocheck(contr(unit») { 
cmn_err(CE_WARN, 

"doc_init: go not clear after 
get status don't use doc_\n"); 

return; 

if (DOC_ERRCODE(contr(unit» == ERR_NOERROR) { 
doc_info[unit] = INFO_EQUIPPED; 
DPRINT(" doc_init: unit %d equipped\n" , unit); 

} 

else DPRINT(" doc_init: unit %d not equipped\n", unit); 
} 1* end switch *1 

1* end for all units (all controllers) *1 

Initialize bad block driver for each equipped drive 

533 for (unit=O; unit<4*doc_numcontr; unit++) 
534 if (doc_type[unit]==DT_HARD && doc_info[unit]&INFO_EQUIPPED) 
535 ddev = makedev(extmaj, idmkmin(unit»; 
536 hdeeqd(ddev, IDPDBLKNO, EQD_ID); 
537 } 
538 DTRACE(" doc_init: return\n"); 

539 1* end init *1 

Figure E - 5 doc_init Entry Point Routine (part 8 of 8) 
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'This subordinate driver routine is called by the doc_init entry point routine to actually initialize the 
subdevices of the controllers. You may have noticed the comment (lines 26 - 29) that explains why 
this is now in a subordinate routine. Because this is a part of the driver that interacts directly with 
the device itself, it makes good sense to isolate it in a subroutine; should this code be rewritten at a 
later date to support another device (or an enhanced version of this device), this subordinate routine 
may need to be rewritten but other parts of the initialization routine will not. 

Note how this routine utilizes the variables that are defined in the header file (lines 571 - 576; see the 
header file, lines 40 - 45) for accessing the subdevices. 

540 1*---------------------------------------------------------*1 
541 1* 
542 * doc_initdr - Initialize drive parameters in controller. 
543 * Used whenever pdsect is changed. 
544 * Return 1 if failure, 0 if success. 
545 *1 
546 static int 
547 doc_initdr(unit) 
548 int unit; 
549 
550 int con, subd; 

551 con = contr(unit); 
552 subd = subdev(unit); 

553 1* error if go-flag says controller is busy *1 
554 if (doc_gocheck(con» { 
555 cmn_err(CE_WARN, 
556 "doc_initdr: controller error: 

go-flag not clear\n"); 
557 cmn_err(CE_WARN, 
558 "doc_initdr: before init 

drive--don't use doc_\n"); 
559 return(1); 
560 } 

561 
562 

DOC_COMMAND(con) = CMD_INITDR 
I «doc_type[subd] == DT_HARD) ? CMD_HDIO 

Figure E - 6 doc_initdr Subordinate Driver Routine (part 1 of 2) 
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563 #ifdef DRIVETMP 
564 if (subd==3) 
565 

566 
567 
568 #else 

else 
DOC_DRIVENO(con) = 1 ; 

DOC_DRIVENO(con) = subdj 

569 DOC_DRIVENO(con) = subdj 
570 #endif 

571 DOC_NHEADS(con) = (u_char)(doc_pdsect[(4*con)+subd].pdinfo.tracks) j 
572 DOC_MAXCYL(con) = (u_short) (doc_pdsect[(4*con)+subd] .pdinfo.cyls-1)j 
573 DOC_NSECTRK(con) = (u_char)(doc_pdsect[(4*con)+subd].pdinfo.sectors)j 
574 DOC_NBYTSEC(con) = (u_short) (doc_pdsect[(4*con)+subd] .pdinfo.bytes)j 
575 if (doc_type[subd] == DT_HARD) 
576 DOC_HDGAP(con) = HDG_512; 

577 DEBUGinit(" doc_initdr: 'init drive' on %d\n", con)j 
578 DOC_GOFLAG(con) = GO_STARTj 

579 if(doc_gocheck(con» { 
580 cmn_err(CE_WARN, 
581 "doc_initdr: go not clear after 

init drive don't use doc_\n")j 
582 return(1)j 
583 } 

584 if(DOC_ERRCODE(con) != ERR_NOERROR) { 
585 cmn_err(CE_WARN, 
586 "doc_initdr: init drive failed 

errcode==Ox%x don't use doc_\n", 
587 DOC_ERRCODE(con»j 
588 return(1)j 
589 } 
590 return(O); 
591 } 

Figure E.-6 doc_initdr Subordinate Driver Routine (part 2 of 2) 
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The doc_ driver does some further initialization of the device the first time it is opened. This enables 
it to use the file system to download physical description, vtoc, and defect information to the disk. 

Before doing any initialization, the open routine checks that the device is there (lines 610 - 614), that 
no other opens are executing against the device (lines 618 - 620), that this is the first open of the 
device since boot (lines 624 - 626), and that the unit is equipped with a hard disk (lines 638 - 644). 

Note how the physical descriptor sector is read into a buffer (lines 648 - 657) using the doc_strategy 
routine (line 651), iowait (line 652) to acquire the information, and the subordinate static routine 
doc_copy (line 657) to move it into a local variable on the stack. A similar approach is used to read 
in the defect map (lines 676 - 691) and the VTOC (lines 695 - 707). 

592 1*-------------------------------------------------------*1 
593 1* 
594 * doc_open - on first open read in physical 
595 * description, vtoc, and defect info 
596 *1 
597 I*ARGSUSED*I 
598 doc_open(dev,flag,otyp) 
599 { 
600 struct buf *geteblk(); 
601 struct buf *bufhead; 
602 register int unit, defcnt; 
603 int defaddr; 
604 struct pdsector *pd; 

605 DTRACE(tI doc_open: dev %d flag %d otyp %d\n", dev,flag,otYP)j 
606 unit = iddn(minor(dev»; 
607 1* 
608 * Make sure there is a device there 
609 *1 
610 if (l(doc_info[unit]&INFO_EQUIPPED» { 
611 1* no disk out there *1 
612 u.u_error = ENXIO; 
613 return; 
614 } 

Figure E -7 doc_open Routine (part J of 6) 
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------.---------------------------------------------------

616 * wait for any other open to complete 

618 while (doc_info[unit]&INFO_OPENING) { 
619 sleep(&doc_info[unit],PZERO); 
620 

622 * For the first open do all the hard work 

624 if (1 (doc_info[unit]&INFO_OPEN)) { 
625 doc_info[unit] 1= INFO_OPENING; 

626 pd = &doc_pdsect[unit]; 
627 
628 
629 

* initialize defect tables 

630 
631 
632 
633 

for(defcnt=O; defcnt«DEFCNT); defcnt++) { 
doc_defect[unit].map[defcnt].bad.full = Oxffffffffj 
doc_defect[unit].map[defcnt].good.full = Oxffffffffj 

} 

634 
635 
636 

* 
* 

if the unit is not equipped with a hard disk, sk~p reading the 
pdsect, vtoc and bad block info 

638 if (doc_type[unit] 1= DT_HARD) { 
639 doc_info[unit] 1= INFO_OPEN; 
640 doc_vtoc[unit].v_sanity 1= VTOC_SANE; 
641 doc_info[unit] &= INFO_OPENING; 
642 wakeup(&doc_info[unit]); 
643 return; 
644 } 

Figure E-7 doc_open Routine (part 2 of6) 
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645 1* 
646 * 
647 *1 

648 
649 
650 
651 
652 
653 
654 

655 
656 
657 

658 1* 
659 * 
660 *1 

661 
662 

663 
664 
665 
666 
667 
668 
669 
670 

671 
672 

read physical description sector 

bufhead = geteblk(); 
doc_setblk (bufhead, B_READ, IDPDBLKNO, dev); 
bufhead->b_bcount = pd->pdinfo.bytes; 
doc_strategy(bufhead); 
iowait(bufhead); 
if (bufhead->b_flags&B_ERROR) { 

cmn_err(CE_WARN, 
"doc_: Cannot read physical descriptor 
sector on controller %d, 
drive %d.'n",contr(unit),subdev(unit»); 

goto badopen; 

doc_copy (bufhead->b_un.b_addr, pd, sizeof(struct pdsector)); 

If it wasn't valid undo the damage 

if (pd->pdinfo.sanity 1= VALID_PO) { 
cmn_err(CE_WARN, "doc_: Bad physical 

descriptor sanity word on controller %d, 
drive %d.\n",contr(unit),subdev(unit)); 

1* just enough to be able to read the real PDsect *1 
pd->pdinfo.cyls = 1; 
pd->pdinfo.tracks = 1; 
pd->pdinfo.sectors = 18; 
pd->pdinfo.bytes = 512; 

doc_initdr(unit); 1* re-initialize controller *1 
goto badopen; 

if (doc_initdr(unit)} 
goto badopen; 

1* re-initialize controller *1 

Figure E-7 doc_open Routine (part 30/6) 
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674 
675 
676 
677 

678 
679 
680 

681 

682 
683 
684 
685 
686 

687 
688 
689 

690 

691 

* 

doc_open Driver Entry Point Routine 

read the defect map 

if (pd->pdinfo.defectsz > DEFSIZ) 

} 

cmn_err (CE_WARN, 
"doc_: Too liOttle space allocated 
in driver for defect table on controller %d, 
drive %d\n", contr(unit) ,subdev(unit)); 

goto badopen; 

for (defcnt=O; defcnt < 

(pd->pdinfo.defectsz/pd->pdinfo.bytes); defcnt++) { 
doc_setblk (bufhead, B_READ, 

pd->pdinfo.defectst+defcnt, dev); 
bufhead->b_bcount = pd->pdinfo.bytes; 
doc_strategy(bufhead); 
iowait(bufhead) ; 
if (bufhead->b_flags & B_ERROR) 

cmn_err(CE_WARN, "doc_: Cannot read defect 
map on controller %d, drive %d\n" , 
contr(unit),subdev(unit»; 

goto badopen; 
} 

defaddr = «int)&doc_defect[unit]) + 

(defcnt*pd->pdinfo.bytes); 
doc_copy (bufhead->b_un.b_addr, defaddr, 

pd->pdinfo.bytes); 

Figure E-7 doc_open Routine (part 4 of6) 
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692 /* 
693 * 
694 */ 
695 

696 
697 
698 
699 
700 

701 
702 
703 

704 

705 

706 
707 

read in the vtoc 

doc_setblk (bufhead,B_READ, 
pd->pdinfo.logicalst+IDVTOCBLK,dev); 

bufhead->b_bcount = pd->pdinfo.bytes; 
doc_strategy(bufhead); 
iowait(bufhead); 
if (bufhead->b_flags & B_ERROR) 

cmn_err(CE_WARN, "doc_: Cannot read VTOC 
on controller %d, drive %d\n",contr(unit), 
subdev(unit) ); 

goto opendone; 

doc_copy (bufhead->b_un.b_addr, 
&doc_vtoc[unit],sizeof(struct vtoc»; 

if (doc_vtoc[unit].v_sanity != VTOC_SANE) { 

} 

cmn_err(CE_WARN, "doc_: Bad sanity word in 
VTOC on controller %d, drive %d.\n", 
contr(unit),subdev(unit»; 

goto opendone; 

Figure E-7 doc_open Routine (part 50/6) 
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709 * open is complete - wakeup sleeping processes and return buffer 

711 
712 

doc_info[unit] l= INFO_OPEN; 
goto opendone; 

713 1* If the open was for a physical device (whole drive) but 
714 * the open was bad, mark the drive as open anyway. This 
715 * is so the drive can be opened even though no 
716 * information has been written to the disk; thus an 
717 * ioctl call can be used to format the disk. 
718 *1 

719 badopen: 
720 if (!idnodev(minor(dev»){ 
721 u.u_error = ENXIO; 
722 
723 else { 
724 
725 
726 } 

doc_info[unit] := INFO_OPEN; 
u.u_error = 0; 

727 opendone: 
728 doc_info[unit] &= INFO_OPENING; 
729 
730 
731 
732 } 

wakeup(&doc_info[unit]); 
bufhead->b_flags l= B_ERROR; 
brelse(bufhead); 

733 OTRACEC" doc_open: return\.nn); 
734 } 1* end doc_open *1 

1* mark the buffer bad *1 

Figure E-7 doc_open Routine (part 6 of 6) 
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The doc_close entry point routine is an empty routine. An installed driver must have an entry in the 
switch table for the close routine, but this device requires no special action. 

Lines 746 - 748 restore the names of three buffer-header members to ensure that they are accessible 
by another process. Table E-3 summarizes these members and where they are used in the driver 
code. 

Table E - 3 Butter Header lVlembers Restored by doc_close Routine 

Member Header File Where used in doc (line numbers) 

b resid syslbuj.h as cylin, 832, 835, 868, 870 
io_sl sysliobuf.h as acts, 855, 867, 1310, 1311 
jrqsleep sysl iobuf.h a counter that is modified indirectly 

735 1*-------------------------------------------------------*/ 
736 
737 * doc_close - provided as standard interface 

739 doc_close() 
740 { 
741 } 

743 
744 
745 

746 
747 
748 

* 
* 

Change the names of things in buffers 
and buffer headers for different uses 

#define cylin 
#define acts 
#define ccyl 

b_resid 
io_s1 
jrqsleep 

Figure E-8 doc_close Entry Point Routine 
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The doc_strategy entry point routine is responsible for the actual Lla transfer when doing bloek
access for the device. Note that this same routine is accessed as a subordinate routine when doing 
character-access of the device (see line 1340) and when reading the physical description sector, defect 
map, and device vtoe in the doc_open routine (lines 651, 683, and 697). 

The doc_strategy routine does a series of checks (lines 765 - 824), collects some information needed 
to do and track the transfer (lines 826 - 843), puts the buffer header in the queue (lines 847 - 879), 
and calls the subordinate routine, doc_iostart (line 856) to do the actual va operation. The diskerr 
subroutine (lines 888 - 892) is called if any of the checks in the doc_strategy routine fail. 

749 1*-------------------------------------------------------*1 
750 
751 * 
752 *1 

Device strategy routine: do partition 
checks, sort I/O queue, and so on 

753 doc_strategy (bufhead) 
754 register struct buf *bufhead; 
755 { 
756 register struct iobuf *drvtab; 1* drive status pOinter *1 
757 register struct pdsector *pd; 1* pOinter to phys desc *1 
758 register int unit; 1* drive unit ID *1 
759 daddr_t lastblk; 1* last block in partition *1 
760 
761 
762 
763 
764 1* 

int 
int 
int 
int 

partition; 1* 
iplsave; 1* 
sectoff; 1* 
mdev; 1* 

765 * Decode the device number 
766 *1 

drive 
saved 
start 
minor 

767 mdev = minor(bufhead->b_dev); 
768 partition = idslice(mdev); 
769 unit = iddn(mdev); 

partition number *1 
interrupt level */ 
sector of partition 
dev nwn of device *1 

770 DTRACE(" doc_strategy: mdev %d partition %d 
unit %d\n",mdev,partition,unit); 

Figure E-9 doc_strategy Driver Entry Point Routine (part 1 of 5) 

*1 
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771 
772 * 
773 */ 

Check to see if there is really a device there 

774 if (l(doc_info[unit]&INFO_EQUIPPED)) { 
775 goto diskerr; 
776 } 

777 
778 
779 
780 

* 
* 

Get the device physical information and pick 
up the partition beginning and end. 
The whole disk (idnodev) is a special case. 

781 pd = &doc_pdsect[unit]; 
782 if (idnodev(mdev» { /* writing on whole disk */ 

783 lastblk = (pd->pdinfo.sectors * pd->pdinfo.tracks * 
784 pd->pdinfo.cyls); 
785 sectoff = OxOO; 
786 else { 
787 /* 

788 
789 
790 
791 
792 

* 

793 /* 

794 * 
795 */ 

check for invalid VTOC 

if (doc_vtoc[unit].v_sanity != VTOC_SANE) { 
goto diskerrj 

} 

check for read only partition 

796 if « 
(doc_vtoc[unit] .v_part(partition].p_flag&V_RONLY) 

== V_RONLY) 
797 && «bufhead->b_flags&B_READ) 1= B_READ» { 
798 u.u_error = ENXIO; 
799 cmn_err (CE_WARN, "doc_: partition %d on 

controller %d, drive %d is marked read only\n", 
partition, contr(unit),subdev(unit»; 

800 goto diskerr; 
801 } 
802 lastblk = doc_vtoc[unit].v_part[partition].p_sizej 
803 sectoff = (doc_vtoc[unit].v_part[partition].p_start 
804 + pd->pdinfo.logicalst)j 
805 } 

Figure E - 9 doc_strategy Driver Entry Point Routine (part 2 of 5) 
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806 1* 
807 * Get the queue header 
808 *1 
809 drvtab = &doc_tab[contr(unit)]; 
810 1* Check to see if the requested block exists 
811 * within requested partition 
812 *1 
813 if «bufhead->b_blkno + 

«bufhead->b_bcount-1)/pd->pdinfo.bytes»=lastblk) 
814 :: (bufhead->b_blkno < DOC_FRSTBLK)) { 
815 if «bufhead->b_blkno==lastblk) && 

(bufhead->b_flags&B_READ)) { 

817 * Make eof on read work correctly 
818 *1 
819 bufhead->b_resid = bufhead->b_bcount; 
820 
821 
822 
823 
824 
825 
826 * 
827 *1 

} 

} 

iodone ( bufhead) ; 
return; 

goto diskerr; 

ENTER CRITICAL REGION - sp15 = 10 on 
the processor = sp15 on the VMEbus 

828 iplsave = sp15(); 

Figure E-9 doc_strategy Driver Entry Point Routine (part 3 of 5) 
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829 1* 
830 * store the cylinder number for disk sort 
831 *1 
832 bufhead->cylin = «bufhead->b_blkno+sectoff) I 

833 (pd->pdinfo.sectors*pd->pdinfo.tracks»; 
834 DEBUGnums(tI doc_strategy: bufhead->b_blkno, 

bufhead->cylin==%d,%d\ntl, 
835 bufhead->b_blkno,bufhead->cylin); 
836 1* 
837 * Collect some statistics 
838 *1 
839 bufhead->b_start = lbolt; 1* time stamp request *1 
840 doc_time[unit].io_cnt++; 1* inc operations count *1 
841 doc_time[unit].io_bcnt += 

(bufhead->b_bcount+pd->pdinfo.bytes-1) 
842 pd->pdinfo.bytes; 
843 drvtab->qcnt++; 1* inc drive current request count *1 

844 1* 
845 * Put the buffer header in the queue 
846 *1 
847 bufhead->av_forw DOC_NULL; 
848 if (drvtab->b_actf == DOC_NULL) { 
849 1* 
850 
851 
852 
853 
854 
855 
856 
857 

* If the queue is empty, just put it at the 
head and then call the start IO routine 

drvtab->b_actf = bufhead; 
drvtab->b_actl = bufhead; 
drvtab->acts = (int)bufhead; 
doc_iostart(unit); 

} else 

Figure E - 9 doc_strategy Driver Entry Point Routine (part 4 of 5) 
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* Otherwise we do a disk sort to figure 859 
860 * out where to put the buffer on the queue 
861 *1 
862 
863 register struct buf *ap, *cp; 
864 int s1, s2; 

865 if «(int)doc_time[unit] .io_cnt&OxOf) == ~) 

866 drvtab->acts = (int)drvtab->b_actl; 
867 for (ap=(struct buf *)drvtab->acts; cp=ap->av_forw; ap=cp) { 
868 if «s1 = ap->cylin - bufhead->cylin)<O) 
869 s 1 = -s 1 ; 
870 if «s2 = ap->cylin - cp->cylin)<O) 
871 s2 = -s2; 
872 if (s1 < s2) 
873 break; 
874 } 
875 ap->av_forw = bufhead; 
876 if «bufhead->av_forw = cp) == DOC_NULL) 
877 drvtab->b_actl = bufhead; 
878 bufhead->av_back = ap; 
879 } 
880 1* 
881 * .FGIT CRITICAL REGION 
882 *1 
883 splx (iplsave); 
884 return; 
885 1* If an error occurs wake up who ever is 
886 * waiting so they can get an error 
887 *1 
888 diskerr: 
889 bufhead->b_flags 1= B_ERROR; 
890 bufhead->b_error = ENXIO; 
891 iodone (bufhead); 
892 return; 
893 } 1* end strategy *1 

Figure E-9 doc_strategy Driver Entry Point Routine (part 5 of 5) 
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The doc_iostart routine provides the device-specific interaction necessary for the I/O transfer. It is 
called by the doc_strategy routine to start the I/O transfer and by the doc_int routine to handle the 
job completion interrupt generated when the I/O transfer is completed. The controller associated 
with this driver has the intelligence to handle much of the I/O transfer itself; isolating the code that 
intimately interacts with the intelligent firmware is a good programming practice that enhances both 
the portability and maintainability of the driver. 

Note the use of variables for interfacing with the hardware that are defined in the driver's header file. 
Should a new version of the hardware require modification of these values, they can be redefined in 
the header file without recoding the driver. 

894 1*-------------------------------------------------------*1 
895 1* start a disk I/O, this must called with disk 
896 * interrupts disabled. Set up parameters for 
897 * controller and start command. It is called 
898 * from two places, the strategy routine when a 
899 * buffer is put onto an empty queue, and after 
900 * an I/O completes in the interrupt routine. 
901 *1 

902 static 
903 doc_iostart(unit) 
904 register int unit; 
905 { 
906 register struct buf *bp; 1* pOinter to buffer header *1 
907 register struct iobuf *dp; 1* pOinter to queue header *1 
908 register int i; 1* temporary *1 
909 register struct defect *deftab; 1* pOinter of defect table */ 
910 register struct pdsector *pd; 1* pointer to physical info *1 
911 int firstbn; 1* block number of job start *1 
912 int cylsize; 1* temp, num of blks in acyl *1 
913 long paddress; 1* buffer address *1 
914 long addr; 1* buffer address *1 
915 union diskaddr firstsect; 1* the first sector in the IO *1 

Figure E-IO doc_iostart Subordinate Routine (part I of 5) 
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917 * Get the queue header 
918 *1 
919 dp = &doc_tab[contr(unit)]; 
920 1* 
921 * Pull the buffer from the start of the list. 
922 * If there is no work to do, or if a format 
923 * is in progress, just return. 
924 * 
925 
926 
927 
928 
929 
930 
931 
932 
933 
934 
935 
936 
937 

* 
* 
* 

938 1* 

Note: a format on anyone unit of a controller 
occupies that controller totally. Jobs 
for any other unit on that controller just 
pile up in the queue until the format finishes. 

if (doc_fmtflag[contr(unit)] != FMT_IDLE) { 
return; 

} 

bp=dp->b_actf; 
if (bp == DOC_NULL) 

} 

wakeup (dp) ; 
return; 

1* wake up any formatting request *1 

939 * all the requests for any unit on the same controller 
940 * are in the same queue. When we get new entries from the 
941 * queue we have to recompute the unit number ... 
942 *1 
943 unit = iddn(minor(bp->b_dev»; 
944 1* 
945 * set up pointers to relevant data structures. 
946 * Now we have a context for the IO 
947 *1 
948 deftab = doc_defect[unit].map; 
949 pd = &doc_pdsect[unit]; 
950 1* 
951 * calculate the true block number from the partition offset 
952 *1 
953 firstbn = bp->b_blkno; 
954 if (lid~odev(minor(bp->b_dev») { 
955 firstbn += 

doc_vtoc[unit].v_part[idslice(minor(bp->b_dev»].p_start 
956 + pd->pdinfo.logicalst; 
957 } 

Figure E-IO doc_iostart Subordinate Routine (part 2 of 5) 
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958 DE..aUGnums(" doc_iostart: bp->b_blkno==%d; real firstbn==%d\n ll
, 

959 bp->b_blkno,firstbn) ; 
960 1* 
961 
962 

* get physical address from buffer header 

963 paddress = vtop«int)bp->b_un.b_addr, bp->b_proc); 
964 if (paddress == DOC_NULL) { 
965 cmn_err(CE_PANIC,lIdoc_: Bad address returned by VTOP\n"); 
966 return; 
967 
968 cylsize = pd->pdinfo.tracks * pd->pdinfo.sectors; 
969 1* 
970 
971 

* 
* 

972 *1 

on the first time around set the residual correct 
and time stamp it 

973 if (dp->b_active == 0) { 
974 bp->b_resid = bp->b_bcount; 
975 doc_count[unit] = 0; 
976 dp->b_active++; 
977 dp->io_start = lbolt; 
978 
979 1* 
980 
981 

* 
* 

982 *1 

don't transfer more than (pd->pdinfo.bytes) bytes at 
once because this is a one-block-at-a-time controller. 

983 doc_tcount[unit] = (bp->b_resid > pd->pdinfo.bytes 
984 ? pd->pdinfo.bytes : bp->b_resid); 
985 1* compute disk address 
986 * 1) get the first block of this IO 
987 * 2) convert it to the units of the device (128/256/512) 
988 * 3) figure out block after the last one in the job 
989 * 4) calculate the values for the sector/head/tracks 
990 * 
991 * first block number in terms of this 
992 
993 

* device's physical sectors 
firstbn += (doc_count[unit] » 9); 

Figure E..;..10 . doc_iostart Subordinate Routine (pan 3 of 5) 
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-------------------------------------------------------------
994 
995 
996 
997 
998 
999 

1000 
1001 

1002 
1003 
1004 
1005 

1006 
1007 
1008 
1009 
1010 
1011 
1012 
1013 
1014 
1015 
1016 
1017 
1018 

1019 
1020 
1021 
1022 

1023 

* 
* 

look for bad blocks for this job 
(but only for hard disks ) 

if (doc_type[unit] != DT_HARD) 
goto startcmd; 1* no bad blocking for floppies! *1 

} 

1* convert block number into disk-address format *1 

firstsect.part.pcn = firstbn I cylsize; 1* cyl *1 
i = firstbn %'cylsize; 
firstsect.part.phn = i I pd->pdinfo.sectors; 1* head *1 
firstsect.part.psn = i % pd->pdinfo.sectors; 1* sector *1 

1* search defect map *1 
for (i=O; 

* 
* 
* 
* 

«i<DEFCNT) && (firstsect.full > deftab->bad.full» 
; i++) 

deftab++; 
if there are any, then all that has to be done 
is to substitute the good block number for the 
bad one. Since we only transfer one sector at 
a time, we don't have to worry about crossing 
over track boundaries and such. 

if «i<DEFCNT) && (firstsect.full == deftab->bad.full» { 
DPRINT(" doc_iostart: defect hit; block %d 

remapped'n",firstbn); 

} 

firstbn = (deftab->good.part.pcn * cylsize) 
+ (deftab->good.part.phn * pd->pdinfo.sectors) 
+ (deftab->good.part.psn); 

DPRINT(" doc_iostart: defect remapped to 
block %d'n",firstbn); 

Figure E-IO doc_iostart Subordinate Routine (part 4 of 5) 
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1025 
1026 
1027 
1028 
1029 
1030 
1031 

1032 
1033 
1034 
1035 
1036 
1037 
1038 

1039 
1040 
1041 

* set up the io packet and do it 
*/ 

startcmd: 
/* error if go-flag says controller is busy */ 
if (doc_gocheck(contr(unit») { 

cmn_err(CE_WARN, 

} 

"doc_iostart: error: go-flag not clear 
before iostart\n"); 

cmn_err(CE_WARN, 
"doc_iostart: aborting i/o request\n"); 

return; 

DOC_COMMAND(contr(unit» = 
«doc_type[unit]==DT_HARD) ? CMD_HDIO : CMD_FLIO) 

(doc_tbufon[unitJ ? 0 : CMD_FORCE) 
/* force sing sec io after errs */ 

«bp->b_flags&B_READ) ? CMD_REAO : CMD_WRITE) 
CMD_INTWO; /* interrupt when done */ 

doc_tbufon[unit] = TBUFFER j 

/* always reset init tbuf condition */ 

1042 addr = VMEMEM(paddress+doc_count[unit])j 
1043 DOC_SBAODR_H(contr(unit» = hihalf(addr)j 
1044 DOC_SBAODR_L(contr(unit» = lohalf(addr); 

1045 startio: 
1046 #ifdef DRIVETMP 
1047 if (subdev(unit)==3) DOC_ORIVENO(contr(unit» = 1 ; 
1048 else DOC_ORIVENO(contr(unit» = subdev(unit); 
1049 #else 
1050 DOC_DRIVENO(contr(unit» = subdev(unit); 
1051 #endif 
1052 DOC_LBN_H(contr(unit» = hihalf(firstbn); 
1053 OOC_LBN_L(contr(unit» = lohalf(firstbn); 
1054 
1055 
1056 
1057 

* 
* 

poke the device to start the i/o; return immediately, 
so an inter~upt coming soon after the go isn't lost 

1058 DOC_GOFLAG(contr(unit» = GO_START; 
1059 } 

Figure E- to doc_iostart Subordinate Routine (part 5 of 5) 
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doc _i n t D r i v e r In t err u p t Han dIe r 

The doc_int routine is the driver's interrupt handler. [n this driver, it identifies which subdevice 
generated the interrupt (which is an operating system interface) then calls the doc_intr subordinate 
routine to service the actual interrupt. By separating the code that interracts with the device itself 
into a separate subroutine, the portability and maintainability of the driver code is enhanced. 

1060 1*---------------------------------------------------------*1 
1061 1* 
1062 * the device interrupt service routine, figure out which 
1063 * disks have interrupted and call their service routines 
1064 *1 
1065 doc_int(ivec) 
1066 int ivec; 
1067 
1068 
1069 
1070 
1071 
1072 
1073 

#ifdef DRIVETMP 
register int unit,drv; 

#else 
register int unit; 

#endif 

1074 
1075 
1076 

* ivec is the number of the controller that had the interrupt 

*1 
#ifdef DRIVETMP 

1077 if ( (drv=DOC_DRIVENO(ivec» -- 1 ) drv=3; 
1078 unit = (4 * ivec) + dry; 
1079 #else 
1080 unit = (4 * ivec) + DOC_DRIVENO(ivec); 
1081 #endif 
1082 
1083 
1084 

DPRINT(" doc_int: ivec Ox%x unit %d'n",ivec, unit); 
doc_intr(unit); 

} 

Figure E-ll doc_int Driver Interrupt Handler 
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The doc_intr routine handles any possible interrupt that could come from a subdevice. 

1085 1*-------------------------------------------------------*1 
1086 1* 
1087 * this routine is called from the one above when the 
1088 * unites) that caused the interrupt has been discovered 
1089 *1 
1090 static 
1091 doc_intr(unit) 
1092 register int unit; 
1093 { 
1094 register struct buf *bp; 
1095 register struct iobuf *dp; 
1096 register int i; 
1097 short prterr; 
1098 u_char errcode; 

1099 DTRACE( II doc_intr: start\n") j 

1100 dp = &doc_tab[contr(unit)]; 
1101 errcode = DOC_ERRCODE(contr(unit»; 
1102 
1103 
1104 

* 
* 

1105 *1 

handle formatting interrupt if format is in progress 
and was successful. 

1106 if «doc_fmtflag[contr(unit)]== 
FMT_INPROGRESS) && (errcode==ERR_NOERROR» 

1107 { 
1108 DEBUGform(" doc_intr: format succeeded\n"); 
1109 doc_fmtflag[contr(unit)] = 

FMT_SUCCEED; 1* finished successfully *1 
1110 wakeup(&doc_fmtflag[contr(unit)l); 

1* wake sleeping IOCTL*I 
1111 return; 
1112 } 
1113 bp = dp->b_actf; 

Figure E - 12 doc_intr Subordinate Driver Routine (part I of 9) 
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1115 
1116 
1117 
1118 
1119 
1120 
1121 
1122 
1123 

1124 
1125 
1126 
1127 
1128 
1129 
1130 
1131 
1132 
1133 
1134 

1135 
1136 
1137 

1138 

doc_intr Subordinate Driver Routine 

* if not formatting, look for spurious interrupts 
*/ 

if (doc_fmtflag[contr(unit)] 1= FMT_INPROGRESS) { 
if (dp->b_active == 0) 

goto spurious; 
if (bp == 0) { 

dp->b_active = 0; 
spurious: 

* 

} 

cmn_err(CE_WARN, "doc_: Spurious interrupt 
for controller %d, drive %d\n",contr(unit),subdev(unit»; 

return; 
} 

now see if the previous io completed ok 

if (errcode != ERR_NOERROR) { 
prterr = 0; 
switch (errcode) { 

case ERR_DNOTREADY: 
cmn_err(CE_WARN,"doc_: controller %d, 

drive %d Drive not ready\n",contr('.lnit), 
subdev(unit»; 

break; 
case ERR_RESERVED: 

cmn_err(CE_WARN, "doc_: controller %d, 
drive %d Reserved error code returned\n", 
contr(unit),subdev(unit»; 

break; 

Figure E-12 doc_intr Subordinate Driver Routine (part 2 of 9) 

Sample Block Driver E-49 



doc_intr Subordinate Driver Routine 

1139 
1140 
1141 
1142 
1143 
1144 
1145 
1146 
1147 
1148 
1149 

1150 
1151 
1152 
1153 
1154 
1155 

1156 
1157 

1158 
1159 
1160 
1161 
1162 
1163 
1164 

1165 
1166 
1167 

1168 

case ERR_ACCESSERR: 
if (doc_fmtflag[contr(unit)] != FMT_INPROGRESS) { 

doc_retrys[unit]++; 
if «(doc_type[unit] == DT_HARD) 

&& (doc_retrys[unit] < HRETRYS» 
I I «doc_type[unit] == DT_FLOPPY) 

&& (doc_retrys[unit] < FRETRYS») 
{ 

if (idnodev(bp->b_dev» { 
1* access was "physical" *1 

DEBUGretry(" doc_: controller %d, 
drive %d, phys block %d: 

retry - access error\n" , 
contr(unit) ,subdev(unit) ,bp->b_blkno); 

} else { 
1* access was "logical" *1 

i = bp->b_blkno 
+ doc_vtoc[unit].v_part[idslice(minor(bp->b_dev»].p_start 
+ doc_pdsect[unit].pdinfo.logicalst; 

DEBUGretry(" doc_: controller %d, 
drive %d, partition %d, log block %d, 

phys block %d: retry - access error\n" , 
contr(unit),subdev(unit), 
idslice(minor(bp->b_dev»,bp->b_blkno,i); 

} 

} 

doc_tbufon[unit] = 0; 1* turn off 
tbuf for retry *1 

doc_iostart(unit); 
return; 

doc_retrys[unit] = 0; 
if (doc_type[unit]==DT_HARD) prterr++; 

} 

cmn_err(CE_WARN, "doc_: controller %d, 
drive %d Disk access error\n", 
contr(unit),subdev(unit»; 

break; 
case ERR_VERIFYERR: 

cInn_err(CE_WARN, "doc_: controller %d, 
drive %d Verify error\n",contr(unit), 
subdev(unit»; 

break; 

Figure E -12 doc_intr Subordinate Driver Routine (part 3 of 9) 
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--... --.-.--------------~-------------

1169 
1170 

1171 
1172 
1173 

1174 
1175 
1176 

1177 
1178 
1179 

1180 
1181 
1182 

1183 
1184 
1185 

1186 

case ERR_DMAERR: 
cmn_err(CE_WARN, "doc_: controller %d, 

drive %d DMA error\n",contr(unit), 
subdev( unit) ) ; 

break; 
case ERR_DRVNOTINIT: 

cmn_err(CE_WARN, "doc_: controller %d, 
drive %d Drive or track buffer not 
initialized\n",contr(unit),subdev(unit) ); 

break; 
case ERR_NUMTBS: 

cmn_err(CE_WARN, "doc_: controller %d, 
drive %d Too many track buffers'\n", 
contr(unit),subdev(unit»; 

break; 
case ERR_ILLEGALCMD: 

cmn_err(CE_WARN, "doc_: controller %d, 
drive %d Illegal command\n",contr(unit), 
subdev(unit»; 

break; 
case ERR_ILLEGALLBN: 

cmn_err(CE_WARN, "doc_: controller %d, 
drive %d Illegal block number',:1." ~ C'o~tr (uni t) , 
subdev(unit»; 

break; 
case ERR_SEEKERR: 1* floppy only *1 

cmn_err(CE_WARN,"doc_: controller %d, 
drive %d floppy seek error\n",contr(unit), 
subdev(unit»; 

1* fall thru t *1 

Figure E-12 doc_intr Subordinate Driver Routine (part 4 of 9) 
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1187 
1188 
1189 
1190 
1191 
1192 
1193 

1194 
1195 
1196 
1197 
1198 
1199 

1200 
1201 
1202 
1203 
1204 
1205 
1206 
1207 

1208 

1209 
1210 

1211 

case ERR_CRCERR: 1* floppy only *1 
if (doc_fmtflag[contr(unit)] 1= FMT_INPROGRESS) 

doc_retrys[unit]++; 
if (doc_retrys[unit] < FRETRYS) { 

if (idnodev(bp->b_dev» { 
1* access was "physical" *1 

DEBUGretry(" doc_: controller %d, 
drive %d, phys block %d: 

retry - CRC error\n",contr(unit), 
subdev(unit),bp->b_blkno); 

} else { 
1* access was tllogical" *1 

i = bp->b_blkno 
+ doc_vtoc[unit] .v_part[idslice(minor(bp->b_dev»].p_start 
+ doc_pdsect[unit].pdinfo.logicalst; 

DEBUGretry(tl doc_: controller %d, 
drive %d, partition %d, log block %d, phys block %d: 
retry - CRC error\ntl,contr(unit),subdev(unit), 

idslice(minor(bp->b_dev»,bp->b_blkno,i); 
} 1* turn off tbuf for retry *1 

doc_tbufon[unit] = 0; 
doc_iostart(unit); 
return; 

} 

doc_retrys[unit] = 0; 
} 

cmn_err(CE_WARN,"doc_: controller %d, 
drive %d floppy CRC error\n",contr(unit), 
subdev(unit»; 

break; 

case ERR_WRITEPROT: 1* floppy only *1 
cmn_err(CE_WARN,"doc_: controller %d, 

drive %d Attempt to write on 
write-protected media\n",contr(unit), 
subdev(unit»; 

break; 

Figure E -12 doc_intr Subordinate Driver Routine (part 5 of 9) 
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12'12 
1213 

1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 

1223 

1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 

1232 

1233 
1234 
1235 

1236 

1237 
1238 
1239 
1240 
1241 
1242 
1243 

doc_intr Subordinate Drn,'er ROlltlne 

case ERR_BADMEDIA: 
cmn_err(CE_WARN,"doc_: controller %d, 

drive %d Uninitialized or un-readable 
media\n",contr(unit),subdev(unit»; 

break; 

1* If error occurred during formatting, just 
* return error code to IOCTL and don't worry 
* about error logging or specifics 
*1 

* 
* 

if (doc_fmtflag[contr(unit)] == FMT_INPROGRESS) { 
DEBUGform(" doc_intr: format failed\n"); 
doc_fmtflag[contr(unit)] = 

FMT_FAIL; 1* finished and failed *1 
wakeup(&doc_fmtflag[contr(unit)]); 

1* wake sleeping IOCTL *1 
return; 

If accessing removable media, just print a generic error 
message and don't worry about error logging or specifics 

if (doc_type[unit] == DT_FLOPPY) { 
cmn_err(CE_NOTE,"doc_: Floppy Access 

Error: See Error Message"); 
cmn_err(CE_CONT,"Section of the System 

Administrator's Guide\nn); 
goto berr; 

} else if (doc_type[unit] == DT_STREAMING) { 
cmn_err(CE_NOTE,"doc_: CTC Access Error: 

} 

See Error Message"); 
cmn_err(CE_CONT,nSection of the System 

Administrator's Guide\n"); 
goto berr; 

otherwise log the error and print a nasty message ... 

if .~ prterr) { 
doc_elog[unit].diskdev = bp->b_dev 

& (IDNODEVlidslice«-1»); 

Figure E -12 doc_intr Subordinate Driver Routine (pan 6 of 9) 
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1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 

1255 
1256 

1257 
1258 
1259 
1260 
1261 
1262 
1263 
1264 
1265 

1266 
1267 
1268 
1269 

1270 
1271 
1272 
1273 
1274 

1* The correct way to calculate the physical block 
* number is to simply read it back from the 
* controller so that defect mapping is accounted for. 
* Unfortunately, the controller apparently destroys 
* this field, so we just recalculate the number 
* assuming no defects. 
*1 

if (idnodev(minor(bp->b_dev»){ 

} else 

1* access was ~physical~ *1 

doc_elog[unit].blkaddr = bp->b_blkno; 
cmn_err(CE_WARN,~doc_: cannot 

access physical block %d~, 
doc_elog[unit].blkaddr); 

cmn_err(CE_CONT,~on controller %d, 
drive %d: errcode Ox%x~, 

contr(unit), 
subdev(unit), 
errcode) ; 

1* access was ~logical~ *1 

doc_elog[unit].blkaddr = bp->b_blkno 
+ doc_vtoc[unit].v_part[idslice(minor(bp->b_dev»].p_start 

+ doc_pdsect[unit].pdinfo.logicalst; 
cmn_err(CE_WARN,~doc_: cannot access physical 

block %d (Ibn %d in partition %d)", 
doc_elog[unit].blkaddr, 
bp->b_blkno, 
idslice(minor(bp->b_dev»); 

cmn_err(CE_CONT,~on controller %d, 
drive %d: errcode Ox%x~, 

contr(unit), 
subdev(unit), 
errcode); 

DEBUGhde(~doc_int: bp->b_dev==Ox%x, 
bp->b_blkno==%d, doc_elog[%d].blkaddr== 

%d'n~,bp->b_dev,bp->b_blkno,unit, 

doc_elog[unit].blkaddr); 

Figure E -12 doc_intr Subordinate Driver Routine (part 7 of 9) 
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1275 doc_elog[unit].readtype HDECRC; 
1276 doc_elog[unit].severity = HDEUNRD; 
1277 doc_elog[unit].bitwidth = 0; 
1278 doc_elog[unitl.timestmp time; 
1279 for (i=O; i<12; i++) 
1280 doc_elog[unit].dskserno[i] = 
1281 doc_pdsect[unit].pdinfo.serial[i]; 

1282 1* do this last, because it may do more I/O 
and cause more errors *1 

1283 hdelog(&doc_elog[unit]); 
1284 } 
1285 berr: 
1286 1* 
1287· 
1288 
1289 
1290 
1291 
1292 

/*. 

* 
*/ 

/* 

* 

} 

mark the buffer in error 

bp->b_flags 1= B_ERROR; 
.bp->b_error = EIO; 
goto err; 

now update the residual, this makes EOF work 

bp->b_resid -= doc_tcount[unit]; 
doc_count[unit] + = doc_tcount[unit]; 

1293 
1294 
1295 
1296 
1297 
1298 
1299 
1300 
1301 

* then if there is no more to transfer then go to the next buffer 
*/ 

if (bp->b_resid < doc_pdsect[unit].pdinfo.bytes) { 

Figure E-12 doc_intr Subordinate Driver Routine (part 8 of 9) 
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1302 /* 
1303 * now unlink the buffer from the queue and set us up for the 
1304 * next io 
1305 */ ' 

1306 err: 
1307 dp->b_active = 0; 
1308 dp->b_actf = bp->av_forw; 
1309 
1310 
1311 
1312 
1313 
1314 
1315 

.1316 
1317 
1318 
1319 
1320 
1321 } 

dp->qcnt--; 
if (bp == (struct buf *)dp->acts) 

dp->acts = (int)dp->b_actf; 

update status information 

doc_time[unit].io_resp += Ibolt - bp->b_start; 
doc_time[unitJ.io_act += lbolt - dp->io_start; 

wake up any processes waiting for- this buffer 

iodone ( bp) ; 

1322 doc_xetrys[unit] = 0; 
.1323 - /* 

1324 * start the next ib 
1325 */ 
1326 doc_iostart(unit); 
1327 DTRACE(" doc_intr: return\n lt

); 

1328 } /* end intr */ 

Figure E-12 doc_intr Subordinate Driver Routine (part 9 of 9) 
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1329 1*-------------------------------------------------------*1 
1330 1* Break up the request that came from physio into 
1331 * chunks of contiguous memory so we can get around 
1332 * the DMA controller limitations. We must be sure 
1333 * to pass at least 512 bytes (one sector) at a 
1334 * time (except for the last request). 
13.35 *1 
1336 static 
1337 doc_breakup(bp) 
1338 register struct buf *bp; 
1339 { 
1340 
1341 } 

dma_breakup(doc_strategy, bp); 

Figure E -1~ doc_breakup Subordinate Routine 
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The read and write entry point routines are very short and fairly simple. The physck(D3X) function 
checks that the requested block exists, then physio locks the block in memory (without moving it 
from user address space) and transfers the data. See Olapter 6, "Input/Output Operations," for a 
further discussion of physical 110 for a block-access device. 

1342 /*---------------------------------------------------- ---*1 
1343 /* 
1344 * physical read 
1345 */ 
1346 doc_read(dev) 
1347 { 
1348 

1349 
1350 } 

if (idnodev(minor(dev» tl 
physck(doc_vtoc[iddn(minor(dev})]. 

v_part[idslice(minor(dev»].p_size, B_READ» 
physio(doc_b~eakup, 0, dev, B_READ); 

Fig~e E-14 .doc_read-Entry Point Routine 

1351 /*-----------------------------~---------------------- ---*1 
1352 
1353 * physical write 

1355 doc_write (dev) 
1356 { 
1357 

1358 
1359 } 

if (idnodev(minor(dev» I I 
physck ( doc _ vto'c [ iddn (minor ( dev) ) ] . 
v_part[idslice(minor(dev»].p_size, B~WRITE» 

physio{doc_breakup, 0, dev, B_WRITE); 

Figure E -15 doc_write Entry Point Routine 
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Routines 

The doc_gocheck subordinate routine is called by the driver's initialization entry point routine. It 
uses four variables that are defined elsewhere 

DOC_GOFLAG defined line 35, header file 

GO_DONE defined line 58, header file 

GOW AITSECS defined line 127, driver code 

GOCHECKLPS defined line 128, driver code 

1360 I*-------------~-----------------------------------------*1 
1361 I~ qocheck -- if go flag is clear, return 0; if not 
1362 * wait about GOWAITSECS secs, checking each loop; 
1363 * if it never clears return 1. 

1364 1*-------------------------------------------------------*1 
1,365 static 
1366 doc_gocheck(ctlr) 
1367 
1368 
1369 

int ctlr; 
{ 

int i; 

/* the doc_ board, O-n *1 

1370 if (DOC_GOFLAG(ctlr) == GO_DONE) return 0; 
1* quick exit on normal case *1 

1371 else { 
1372 for(i=(GOWAITSECS*GOCHECKLPS); i>O ; i--) 
1373 if (DOC_GOFLAG(ctlr) == GO_DONE) return 0; 
1374 return 1; 
1375 } 
1376 } 1* end doc_gocheck *1 

Figure E-16 doc~ocbeck Subordinate Driver Routine 
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doc~ocheck, doc_copy, and doc_setblk Subordinate Driver Routines 

The doc_copy subordinate routine is called by the doc_open entry point routine to read physical 
description sector data, defect map, and the VTOC into a buffer when the device is first opened. 

1378 
1379 * copy count bytes by words 

1381 /*VARARGS*/ 
1382 static 
1383 doc_copy(faddr, taddr, count) 
1384 
1385 
1386 
1387 
1388 
1389 
1390 

1391 
1392 
1393 
1394 
1395 
1396 

unsigned int *faddr; 
unsigned int *taddr; 
unsigned int count; 
{ 

register unsigned int *fptr; 
register unsigned int *tptr; 
register int i,cnt; 

cnt = count/4; 
tptr = taddr; 

/* # of words to transfer */ 

} 

fptr= faddr; 
for- (i=O; i<cnt;. i+~) 

*tptr++ = *fptr++; 

Figure E-17 doc_copy Subordinate Driver Routine 
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The doc_sethlk subordinate routine is used to setup the buffer for the doc_copy routine. 

1397 1*-------------------------------------------------------*1 
1398 1* 
1399 
1400 

1401 
1402 
1403 
1404 
1405 
1406 
1407 
1408 
1409 
1410 
1411 
1412 
1413 
1414 

- 1415 

initialize buffer for command 

I*VARARGS1*1. 
static 
doc_setblk (bufhead, cmd, blkno, dev) 
struct buf *bufhead; 
u_char cmd; 
daddr_t blkno; 
dev_t dev; 
{ 

} 

clrbuf (bufhead); 
bufhead->b_flaqs 1= cmd; 
bufhead->b_hlkno = blkno; 
bufhead->h_dev = (dev : IDNODEV); 
bufhead->b_proc = OxOO; 
bufhead->b_flaqs &= B_DONE; 

Figure E -18 doc_setblk Subordinate Driver Routine 
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doc _i 0 c tiD r i v erE n try Poi n t R 0 uti n e 

The doc_ driver uses the ioctl(D2X) routine to fonnat a disk subdevice. The ioctl routine is only 
available when the subdevice is accessed as a character device, not when it is mounted and accessed 
as a block device. Because it makes no sense to fonnat a mounted disk device, this works perfectly 
well. 

The I/O control commands in lines 1438 - 1441 are defined in lines 15 - 18 of the driver's header 
file. Other I/O control commands are defined in the syslvtoc.h header file, to which all VTOC disk 
devices on the system must adhere. The relevant lines from vtoc.h are 

1* driver ioctl() 
#define VIoe 
#define V_PREAD 
#define V_PWRITE 
#define V_PDREAD 
#define V_POWRITE 
#define V_GETSSZ 

commands *1 
('V'«ij) 

(VIOC\1) 
(vloeI2) 
(vIoeI3) 
(VIOCI4) 
(vIcels) 

#define V_FORMAT 
#define V_GETFORMAT 

(vloeI6) 
(vIoel7) 
(vIcels) #define V_PDSETUP 

1* ioctl() error return codes *1 

#define V_BADREAD Ox01 
#define V_BADWRITE Ox02 
#define V_BADFORMAT Ox04 

1* Physical Read *1 
1* Physical Write *1 
1* Read o~ Physical Description Area *1 
1* Write of Physical Description Area *1 
1* Get the sector size of media */ 
1* Format disk */ 
1* Get formatting parameters *1 
1* Set physical descri'ptors values. *1 
1* without writing them to disk *1 

1* Sanity word for the physical description area *1 
#define VALID_PO OxCASE6000 

Figure E -19 Excerpt of sys/vtoc.h Header File 
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1416 1*-------------------------------------------------------*1 
1417 1* 
1418 
1419 

1420 
1421 
1422 
1423 
1424 
1425 
1426 
1427 
1428 
1429 
1430 
1431 

1432 
1433 
1434 
1435 

1436 " 

1437 

1438 
1439 
1440 
1441 

Do device specific ioctls 

I*ARGSUSED*I 
doc_ioctl(dev,cmd,argsptr,flag) 
char *argsptr; 
{ 

struct buf *geteblk(); 
struct buf *bufhead; 
int errno, xfersz; 
register int unit; 
unsigned int sector, mem, count, numbytes, defblock; 
struct pdsector *pd; 
struct io_arg arg, *args; 
int iplsave; 1* saved interrupt level *1 

errno = DOC_NULL; 
args = &.arg;" 
unit = iddn(minor(dev»; 
pd = &.doc_pdsect[unit]; 

DTRACE(n doc_ioctl: dev,cmd,f %d,%d,%d\.n",dev,cmd,flag); 

switch(cmd) { 

case IOCTL_DTRACEON: doc_dtrace = 1; break; 
case IOCTL_DTRACEOFF: doc_dtrace = 0; break; 
case IOCTL_DPRINTON: doc_dprint = 1; break; 
case IOCTL_DPRINTOFF: doc_dprint = 0; break; 

Figure E-20 doc_ioctl Entry Point Routine (part I of 13) 

Sample Block Driver E- 63 



doc_ioctl Driver Entr,,;.' Point Routine 

1443 
1444 
1445 
1446 
1447 
1448 
1449 
1450 
1451 
1452 
1453 
1454 
1455 
1456 
1457 
1458 
1459 
1460 
1461 
1462 
1463 
-1464 
1465 
1466 
1467 
1468 
1469 
1470 
1471 
1472 
1473 
1474 
1475 
1476 
1477 
1478 
1479 

* 
* 
* 

-* 

* 

Format the media: V_FORMAT is used to format 
a disk. The data structure vfmt_arg (defined 
in "sys/vtoc.h") is used to pass parameters. 

_ N.B. 
The entire drive must be formatted in one shot. 

case V_FORMAT: { 
register struct buf *bp; 
struct vfmt_arg vfmtarg, *format; 
register caddr_t cp; 
register u_short cyl; 
register u_char head; 
register int nsct; 
register char hard; 
register struct iobuf *dp; 1* pOinter to queue header *1 
DTRACE(" doc_ioctl: format option entered\nn); 
format = &'vfmtarg; 
if (copyin(argsptr, format, sizeof(struct vfmt_arg» f= 0) { 

u.u_error = EFAULT; 
return; 

} 

DPRINT(" doc_ioctl: format: r %d i %d t %d s %d\n", 
format->retval,format->interleave, 
format->trackcount,format->startsector); 

1* -return fail unless asked to format-entire disk */ 
if (format->trackcount l=(pd->pdinfo.tracks*pd->pdinfo.cyls» { 

errno = V_BADFORMAT; 

} 

suword(&'«struct io_arg *)argsptr)->retval,errno); 
DPRINT(n doc_ioctl: trackcount 1= pdinfo t * c\n"); 
return; 

dp = &.doc_tab[contr(unit)]; 1* Get the queue header */ 
/* ENTER CRITICAL REGION - splS = 10 on the 

* processor = splS on the VMEbus 
*/ 

iplsave = splS(); 

Figure E - 20 doc_ioetl Entry Point Routine (part 2 of 13) 
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1480 1* If there are no jobs on the controllers queue, and no 
1481 * other format in progress, grab the controller for a 
1482 * a format job. Else sleep until iostart exhausts the 
1483 * queue and issues wakeup. 
1484 
1485 
1486 
1487 
1488 
1489 
1490 

1491 
1492 
1493 
1494 
1495 
1496 
1497 
1498 
1499 
1500 
1501 
1502 

1503 
1504 
1505 
1506 
1507 
1508 

1509 
1510 
1511 

while «dp->b_actf != DOC_NULL) 

} 

I I (doc_fmtflag[contr(unit)] 1= FMT_IDLE» { 
sleep(dp,PZERO); 

doc_fmtflag[contr(unit)] = FMT_INPROGRESS; 

1* do "format drive" command *1 
1* error if go-flag says controller is busy *1 

if (doc_gocheck(contr(unit») { 
cmn_err(CE_WARN, 

"doc_ioctl: error: go-flag not clear before format\.n"); 
cmn_err(CE_WARN, 

"doc_ioctl: aborting request\'n"); 
return; 

} 

1* set command *1 
DOC_COMMAND(contr(unit» = CMD.:.,FORMAT I CMD_INTWD 

I «doc_type[unit] == DT_HARD) ? CMD_HDIO : CMD_FLIO); 

#ifdef DRIVETMP 

#else 

#endif 

if (subdev(unit)==3) DOC_DRIVENO(contr(unit» = 1 
else DOC_DRIVENO(contr(unit» = subdev(unit); 

DOC_DRIVENO(contr(unit» = subdev(unit); 

DPRINT(n doc_ioctl: 'format drive' unit %d type %d\.nn, 
unit,doc_type[unit]); 

DOC_GOFLAG(contr(unit» = GO_START; 

Figure E-20 doc_ioctl Entry Point Routine (part 3 of 13) 

Sample Block Driver E-65 



doc_ioctl Driver Entry Point Routine 

1512 
1513 
1514 
1515 
1516 
1517 
1518 
1519 
1520 
1521 
1522 
1523 * 
1524 *1 

1* sleep until interrupt routine wakes us *1 
sleep(&doc_fmtflag[contr(unit)],PZERO); 
DPRINT (It doc_ioctl: back from sleep\n"); -
if (doc_fmtflag[contr(unit)] == FMT_FAIL) 

{ 

DPRINT(" doc_ioctl: format failed\n"); 
u.u_error = EIO; 
} 

doc_fmtflag[contr(unit)] = FMT_IDLE; 
doc_iostart(unit); 1* let any pending io start *1 

.FGIT CRITICAL REGION 

1525 splx (iplsave); 
1526 break; 
1527 } 

Physical Read 
1528 
1529 
1530 
1531 
1532 
1533 
153-4 
1535 
1536 
1537 
1538 
1539 
1540 

case V_PREAD: 

1541 
1542 
1543 
1544 
1545 
1546 
1547 
1548 
1549 
1550 
1551 

if (copyin(argsptr, args, sizeof(struct io_arg» 1= 0) { 
u.u_error = EFAULT; 
return; 

} 

bufhead = geteblk(); 
sector = args->sects~; 
mem = args->memaddr; 
count = args->datasz; 
DTRACE(" doc_ioctl: pread: %d bytes from 

sector %d\n",count,sector); 
while (count) { 

doc_setblk (bufhead, B_READ, sector, dev); 
bufhead->b_bcount = pd->pdinfo.bytes; 
doc_strategy(bufhead); 
iowait(bufhead); 
if (bufhead->b_flags & B_ERROR) { 

} 

errno = V_BADREAD; 
suword(&«struet io_arg *)argsptr)->retval,errno); 
brelse(bufhead) ; 
return; 

Figure E-20 doc_ioctl Entry Point Routine (part 4 of 13) 
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1552 
1553 
1554 
1555 
1556 
1557 
1558 
1559 
1560 
1561 
1562 
1563 
1564 
1565 
1566 
1567 
1568 
1569 
1570 
1571 
1572 
1573 
1574 
1575 
1576 
1577 
1578 
1579 
1580 
1581 
1582 
1583 
1584 
1585 
1586 
1587 
1588 
1589 
1590 
1591 
1592 

* 

doc_ioctl Driver Entry Point Routine 

xfersz = min(count, bufhead->b_bcount-bufhead->b_resid); 
if (copyout(bufhead->b_un.b_addr, mem, xfersz) != 0) { 

u.u_error = EFAULT; 

} 

errno = V_BADREAD; 
suword (&. ( (struct io_arg *) argsptr) - >retvaL, errno) ;0 
brelse(bufhead); 
return; 

if (lxfersz) break; 
sector += 1; 
count -= xfersz; 
mem += xfersz; 

} 

brelse(bufhead); 
break; 

Physical Write 

case V_PWRITE: 
if (copyin(argsptr, args, sizeof(struct'io_arg» 1= 0) { 

u.u_error = EFAULT; 
return; 

} 

bufhead = geteblk(); 
sector = args->sectst; 
mem = args->memaddr; 
count = args->datasz; 
DTRACE(" doc_ioctl: PWRITE sec %d count %d\.n" ,sector,cQunt); 
defblock = pd->pdinfo.defectst; 
numbytes = 0; 
while (count) { 

doc_setblk(bufhead, B_WRITE, sector, dev); 
bufhead->b_bcount = pd->pdinfo.bytes; 
xfersz = mine count, pd->pdinfo. bytes).; 
if (copyin(mem, bufhead->b_un.b_addr, xfersz) 1= 0) { 

u.u_error = EFAULT; 

} 

errno = V_BADWRITE; 
suword{&.«struct io_arg *)argsptr)->retval, errno); 
brelse(bufhead); 
return; 

Figure E-20 doc_ioctl Entry Point Routine (part 5 of 13) 
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1593 
1594 
1595 
1596 
1597 
1598 
1599 
1600 
1601 
1602 
1603 

1604 

1605 
1606 
1607 
1608 
1609 
1610 

1611 
1612 
1613 
1614 
1615 
1616 
1617 
1618 
1619 
1620 
1621 
1622 
1623 
1624 
1625 
1626 
1627 
1628 

doc_strateqy(bufhead); 
iowait(bufhead); 
if (bufhead->b_flaqs & B_ERROR) 

errno = V_BADWRITE; 
{ 

suword(&«struct io_arq *)argsptr)->retval, errno); 
bufhead->b_bcount = pd->pdinfo.bytes; 
brelse(bufhead); 
return; 

} 

1* update memory image if special data *1 
if «(bufhead->b_blkno == IDPDBLKNO) && 

(doc_type[unit] == DT_HARD» I: 
«bufhead->b_blkno -- IFPDBLKNO) && 

(doc_type[unit] -- DT_FLOPPY») 
{ 

} 

doc_copy (bufhead->b_un.b_addr, pd, 512); 
defblock = pd->pdinfo.defectst; 

1* update defect map *1. 
if «bufhead~>b_blkno == defblock) 

} 

&& (doc_type [unit] == DT_~D» { 
defblock++,; 
doc_copy (bufhead->b_un.b_addr~ 

«(unsigned int) &doc_defect[unit]) + 

numbytes) , 
512); 

numbytes += 512; 

1* update VTOC *1 
if « bufhead->b_'blkno == (pd->pdinfo .1ogicalst+IDVTOCBLK) ) 

&& (doc_type[unit]==DT_HARD» 
doc_copy(bufhead->b_un.b_addr, &doc_vtoc[unit] , 

sizeof(struct vtoc»; 
sector += 1; 
count -= xfersz; 
mem += xfersz; 

} 

brelse(bufhead) ; 
break; 

Figure E - 20 doc_ioctl Entry Point Routine (part 6 of 13) 
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1629 1* 
1630 * 
1631 *1 

1632 
1633 
1634 
1635 
1636 
1637 
1638 
1639 
1640 
1641 
1642 
1643 
1644 
1645 
1646 
1647 
1648. 
1649 
1650 
1651 
1652 
1653 
1654 
1655 
1656 

1657 
1658 
1659 
1660 
1661 
1662 
1663 
1664 

doc_ioctl Driver Entry Point Routine 

Read the Physical Descriptor Sector off the disk 

case V_PDREAD: 
DTRACE(n doc_ioctl: PDREAD\nn); 
if (copyin(argsptr, args, sizeof(struct io_arg» l= 0) { 

u.u_error = EFAULT; 
return; 

} 

if (doc_type[unit] == DT_HARD) { 
bufhead = g~teblk(); 
doc_setblk (bufhead, B_READ, IDPDBLKNO, dev); 

} 

else if (doc_type[unit] == DT_FLOPPY) { 
bufhead = geteblk(); 
doc_setblk (bufhead, B_READ, IFPDBLKNO, dev); 

} 

else break; 
bufhead->b_bcount = 512; 
doc_strategy(bufhead); 
iowai t (bufhead) ; 
if (bufhead->b_flags&. B_ERROR) { 

} 

errno = V_BADREAD; 
suword (&'«struct io_arg *)argsptr)->retval,errno); 
brelse(bufhead); 
return; 

if (copyout (bufhead->b_un. b_addr, args->memaddr, 
sizeof(struct pdsector» l= 0) { 

u.u_error = EFAULT; 
errno = V_BADREAD; 
suword (&'«struct io_arg *)argsptr)->retval,errno); 
brelse(bufhead); 
return; 

} 

brelse(bufhead) ; 
break; 

Figure E-20 doc_ioctl Entry Point Routine (part 7 of 13) 
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1665 
1666 
1667 
1668 
1669 
1670 

* 
* 
* 
* 
* 

Set up the controller with supplied pdsect values. 
° Used to set up the parameters for a disk that has yet 
to be formatted and has no physical descriptor sector. 
Note that if the supplied pdsector is not valid, the 
current pdsector is copied in it's place and returned; 
nothing is initialized. 

1672 case V_PDSETUP: { 
1673 struct pdsector pdtest; 

1674 DTRACE{IJ dqc_ioctl: PDSETUP\n tl
); 

1675 if (copyin(argsptr, args, sizeof(struct io_arg» 1= 0) { 
1676 u.u_error = EFAULT; 
1677 
1678 
1679 
1680 
1681 
1682 
1683 
1684 
1685 
1686 
1687 
1688 
1689 
1690 
1691 
1692 

1693 
1694 
1695 

1697 
1698 

* 
* 

return; 
} 

if (copyin(args->memaddr, &pdtest, sizeof(struct pdsector»!=O){ 
uou_error = EFAULT; 

} 

errno = V_BADWRITE; 
suword (&«struct io_arg *)argsptr)->retval,errno); 
return; 

if (pdtestopdinfo.sanity != VALID_PO) { 

} 

if (copyout(pd, args->memaddr, sizeof(struct pdsector»!=O) { 
u.u_error = EFAULT; 
errno = V_BADREAD; 
suword {&«struct

O 

io_arg *)argsptr)->retval,errno); 
} 

return; 

The pdsect for floppy disks is hard-wired into the driver 
It's not necessary to be able to change it 

if (doc_type[unit] -- OT_FLOPPY) 
return; 

Figure E - 20 doc_iocd Entry Point Routine (part 8 of 13) 
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1700 
1701 

* 
* 

1702 * 
1703 
1704 
1705 
1706 
1707 

* 
* 
* 
* 

doc_ioctl Driver Entr'j' Point Routine 

Modify the drivers copy of the pdsect and then tell the 
controller about the new parameters. 

The values coming in for tracks/cyl and sectors/track 
will be wrong if this is an attempt to set up "generic" 
values. If so, adjust the. values and recalculate the rest 
of the pdsect fields. 

1708 doc_pdsect[unit] = pdtest; 
1709 DPRINT(" doc_ioctl PDSETUP: logicalst==%d 

errlogst==%d defectst==%d\n", 
1710 doc_pdsect[unit].pdinfo.logicalst, 
1711 doc_pdsect[unit].pdinfo.errlogst, 
1712 doc_pdsect[unit].pdinfo.defectst); 

1713 /* do "initialize drive"conunand, polling for completion */ 
1714 DPRINT(" doc_ioctl PDSETUP: 'init drive' on %d\n",unit); 
1715 /* error if go-flag says controller is busy *1 
1716 if (doc_gocheck(contr(unit») { 
1717 cmn_err(CE_WARN, 
1718 "doc_ioctl: error: go-flag not clear in PDSETUP\n"); 
1719 cmn_err(CE_WARN, 
1720 "doc_ioctl: aborting request\n"); 
1721 return; 

} 1722 
1723 DOC_COMMAND(contr(unit» = CMD HDIO 

1724 #ifdef DRIVETMP 

CMD_INITDR; 

1725 if (subdev(unit)==3) DOC_DRIVENO(contr(unit» = 1 
1726 else DOC_DRIVENO(contr(unit» = subdev(unit); 
1727 #else 
1728 DOC_DRIVENO(contr(unit» = subdev(unit); 
1729 #endif 

Figure E-20 doc_ioctl Entry Point Routine (part 9 of /3) 
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1730 DOC_NHEADS(contr(unit»=(u_char)(doc_pdsect[unit].pdinfo.tracks); 
1731 DOC_MAXCYL(contr(unit»=(u_short)(doc_pdsect[unit].pdinfo.cyls-1); 
1732 DOC_NSECTRK(contr(unit»=(u_char)(doc_pdsect[unit].pdinfo.sectors); 
1733 DOC_NBYTSEC(contr.(unit»=(u_short) (doc_pdsect[unitJ .pdinfo.bytes); 
1734 DOC_GOFLAG(contr(unit» = GO_START; 
1735 if(doc_gocheck(contr(unit») { 
1736 cmn_err(CE_WARN, 
1737 "doc_ioctl: goflag not clear after 

init drive in PDSETUP\n"); 
1738 return; 
1739 } 
1740 if(DOC_ERRCODE(contr(unit» 1= ERR_NOERROR) { 
1741 cmn_err(CE_WARN, 
1742 "doc_ioctl: PDSETUP reinit drive 

failed errcode==Ox%x\n", 
1743 DOC_ERRCODE(contr(unit»); 
1744 return; 
1745 } 
1746 break; 
1747 } 
1748 1* 
1"749 * write the 'supplied Physical Descriptor ,sector on to disk. 

1751 case V_PDWRITE: 
1752 DTRACE(" doc_ ioctl PDWRITE\n"); 
1753 if (copyin(argsptr, arqs, sizeof(struct io_arq» (= 0) { 
1754 u.u_error = EFAULT; 
1755 return; 
1756 } 
1757 if (doc_type[unit] == DT_HARD) { 
1758 bufhead = qeteblk(); 
1759 doc_setblk (bufhead, B_WRITE, IDPDBLKNO, dev); 
1760 } 
1761 else if (doc_type[unit] == DT_FLOPPY) { 
1762 bufhead = qeteblk(); 
1763 doc_setblk (bufhe'ad, B_WRITE, IFPDBLKNO, dev); 
1764 } 

Figure E - 20 doc_ioctl Entry Point Routine (part 10 of 13) 
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1765 
1766 
1767 
1768 
1769 
1770 
1771 
1772 
1773 
1774 
1775 
1776 
1777 
1778 
1779 
1780 
1781 
1782 
1783 
1784 

1785 
1786 * 

else break;' 
bufhead->b_bcount = 512; 

doc_ioctl Driver Entry Point Routine 

if (copyin (args->memaddr, bufhead->b_un.b_addr, 
sizeof(struct pdsector» != 0) { 

u.u_error = EFAULT; 
errno = V_BADWRITE; 
suword(&'«struct io_arg *)argsptr)->retval, errno); 
brelse(bufhead); 
return; 

} 

doc_strategy(bufhead); 
iowait(bufhead); 
if (bufhead->b_flags &. B_ERROR) { 

errno = V_BADWRITE; 
suword(&'«struct io_arg *)argsptr)->retval, errno)j 
brelse(bufhead); 
return; 

} 

brelse(bufhead); 
break; 

Return sector size for current disk 

1788 case V_GETSSZ: 
1789 DTRACE(n doc_ ioctl GETSZ\nn); 
17-90 if (copyin(argsptr, args, sizeof(struct io~arg» 1= 0) { 
1791 u.u_error = EFAULT; 
1792 return; 
1793 } 
1794 suword(args->memaddr, pd->pdinfo.bytes); 
1795 break; 

Figure E-20 doc_ioctl Entry Point Routine (part 11 of 13) 
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1796 /* 
1797 * 
1798 * 
1799 * 
1800 * 
1801 * 
1802 */ 

1803 
1804 

1805 

1806 
1807 

1808 
1809 
1810 

Return sizes of interblock gaps and unformatted tracks 
and sectors. 

Used to determine what sectors to mark bad while 
setting up bad block tables. 
Uses formatarg data structure' (defined 
in "sys/vtoc.h") to pass parameters. 

case V_GETFORMAT: { 
struct trck_fmt formatarg, *formatargs; 

DTRACE( II doc_ ioctl GETFORMAT'n"); 

formatargs = &formatarg; 
if (copyin(argsptr, formatargs, 

sizeof(struct trckjfmt» 1= 0) { 
u.u_error = EFAULT; 
return; 

} 

Figure E-20 doc_ioctl Entry Point Routine (part 12 q/13) 
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1812 
1813 
1814 
1815 
1816 
1817 

* 
* 
* 
* 
* 
* 

1818 *1 

doc_ioctl Driver Entry Point Routine 

These parameters should be made less generic and determined 
according to device used 

These settings attempt to guarantee that any defect on the 
track will be caught, causing the entire track to be remapped. 
This is done because the ~ctual format used by the controller 
is unknown. Besides, .it is most straightforward. 

1819 1* number of bytes in an unformatted ST506 track (I think) *1 

1820 

1821 
1822 
1823 
1824 

1825 

1826 
1827 
1828 
1829 
1830 

1831 
1832 
1833 
1834 

1835 
1836 

#define RAWBPT 10416 

} 

} 

formatargs->bot_gap = 0; 
formatargs->eot_gap = 0; 
formatargs->sector_sz = RAWBPT/(pd->pdinfo,sectors); 
formatargs->track_sz = RAWBPT; 

if (copyout(formatargs, argsptr, 
sizeof(struct trck_fmt»!=O) { 

u.u_error = EFAULT; 
return; 

} 

break; 

default: 

} 

u.u_error 
break; 

EIO; 

DTRACE(" doc_ioctl: return\.n"); 

Figure E-20 doc_ioctl Entry Point Routine (part 13 of 13) 
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Glossary 

Introduction 

This glOSSaIy is an alphabetical listing of tenns and their definitions. The purpose of the glossary is 
to define specific system names, programming tenns, and driver concepts for device driver writers. 

In this glossary, notations are used for some entries to descri.b~ the location of the entry. 

For structures, the definition gives the structure name followed by the header file in which the 
structure is defined. For example, ccblock(D4X) structure location is denoted in the glossary 
definition as: ''Location: tty.h". 

For flags, the definition gives the flag name followed by the associated structure and header file -in 
which it is defined. For example, CARR_ON is a flag or value that is assigned to the structure 
member tty and its-location is denoted in the glossary definition as: 
''Location: t_static-tty-tty.h". 

Any references to header files are found in the /usr/include/sys directory. All references to source 
code are found in the /usr/srcluts/ computer (source code requires a special licensing agreement from 
AT&T). Consult the directory appropriate to the type of processor you are using. 

NOTE: Source files have special reserve suffixes to denote the programming language in which the 
driver code is written. The.c denotes a file written in the C programming language. The.s 
denotes a file written in assembler language. 
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Term s and Definitions 

ACP See Adjunct Communications Processor 

ACU See automatic calling unit 

Adjunct Data Processor 
An a.djunct data processing element that is housed in the ABUS cabinet and is plugged directly into 
the ABUS physical interface. The ADP containing a BIe, a WE@ 32100 chip set running at 14 
MHz, one SCSI port, and four megabytes of random access memory. The ADP provides 
computational and file service. See also Enhanced 1\djunct Data Processor (EADP), Adjunct 
Communications Processor (ACP), and MP. 

Adjunct Communications Processor (ACP) 
- An adjunct processing element that provides tenninal support, networking connectivity, 
computational power, and printer interfaces for 3134000 computer configurations. Unlike other 
adjuncts, the ACP is housed in a separate cabinet and connected to the appropriate ABUS slot by an 
XBI circuit. board and XBUS cable. 

ADP See Adjunct Communications Processor 

AlC See alarm interface unit 

alarm interface unit (AlC) 
A UN-type circuit board that provides a series of alarm indications and the ability to access the 
computer from either the system console or a remote terminal. The AIC provides the following: 
external signaling of five alarm types, a sanity timer, non-volatile random access memory, a control 
and status register, and two R~232C ports for the remote control feature. 

alignment 
The position in memory of a unit of data such as a word or half-word on an integral boundary. A 
data unit is properly aligned if its address is completely divisible by the data unit's size in characters. 
For example, a word is correctly aligned if its address is divisible by four. A half-word is aligned if 
its address is divisible by two. 
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allocated resource 
A private map structure after memory has been allocated using the malloc command. 

asm macro 
The macro that defines a number of system functions used to improve driver execution speed. They 
aie assembler language code sections (instead of C code). Location: inline. h. 

asynchronous 
An event occurring in an unpredictable fashion. A signal is an example of an asynchronous event. 
A signal can occur when something in the system fails, but it is not known when the failure will 
occur. This term is sometimes defined to be the interrupt level of driver. 

automatic calling unit (ACU) 
A device that permits processors to dial calls automatically over the communications network. 

av_back 
The buf(D4X) structure member that links the buffer to a free list. When no 110 transfer is 
currently scheduled, buf structures are linked together on an available list through the av _forw and 
av _back pointers. When a buf structure is needed for an 110 transfer, the first buf structure is 
taken from the available tist. If no buf structures are available, the process needing a b,,"~ 
structure calls sleep, using the address of the head of the available list (bfreelist) as the event 
argument to sleep. Location: buf-buJ.h 

av_forw 
The buf(D4X) structure member that links the buffer to a free list. When no 110 transfer is 
currently scheduled, a buf structure on the active 110 queue uses the av _forw pointer to maintain its 
place in the queue. The buf structures where no 110 transfer is currently scheduled are linked 
together on an available list via the av _forw and av _back pointers. When a buf structure is needed 
for an 110 transfer, the first buf structure is taken from the available list. If no buf structures are 
available, the process needing a buf structure calls sleep, using the address of the head of the list of 
available buffers (bfreelist). Location: buf-buf.h 

awaken 
The command that restarts a suspended process. Related commands are untimeout(D3X) and 
wakeup(D3X) . 

b_addr 
The buf(D4X) structure member that contains the buffer's virtual address. Location: buf-buJ.h 
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b_bcount 
The buf(D4X) structure member that specifies the number of characters (bytes) to be transferred. 
Location: buf-buJ.h 

b_blkno 
The buf(D4X) structure member that identifies which logical block on the device (defined by the 
'minor device number) is to be accessed. Location: buf-buJ.h 

B_BUSY 
The flag that indicates a buffer is in use. Location: b_flags--buf-buJ.h 

b_dev 
The buf(D4X) structure member contains the major and minor device numbers of the device being 
accessed. Location: buf-buj.h 

B_DONE 
The flag that indicates the transfer has completed. Location: b_flags--buf-buf.h . 

b __ error 
The buf(D4X) structure member that holds the error code aSsigned by the kernel to the u_error 
member of the user data structure. This member is set with the B_ERROR flag. Location: buf-
buf·h . 

B_ERROR 
The flag that indicates an error occurred during an I/O transfer. Location: b_flagS--buf-buj.h 

b_flags 
The buf(D4X) structure member that stores the status of the buffer and tells the driver whether the 
device is to be read from or written to. Location: buf-buf.h 

B_PHYS 
The flag that indicates the buffer is being used for physical (direct) I/O to a user data area. The 
b_UD field contains the starting address for the user data. Location: b_flagS--buf-buf.h 

b_proc 
The buf(D4X) structure member that contains the process table entry address for the process that is 
requesting a data transfer (when the transfer is unbuffered). This member is set to 0 (zero) when the 
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transfer is buffered. The process table entry performs proper virtual to physical address translation of 
the b_UD member. Location: buf-buj.h 

B_READ 
The flag that indicates data is to be read from a peripheral device into main memory. Location: 
b_flags-buf-buJ.h 

b_resid 
The buf(D4X) structure member that indicates the number of characters (bytes) not transferred 
because of an error. Location: buf-buJ.h 

b_start 
Thebuf(D4X) structure member that holds the start time of the I/O operation. This member 
measures d~vice response time. The system constant lbolt initiates this member. Location: buf-

. buJ.h 

b_un~b_addr 

The buf(D4X) structure member that contains the virtual address of the buffer controlled by the 
buffer header. Data is written from this address to the device, or read to the address from the device. 
Location: buf-buj.h . 

B_WANTED 
The flag that indicates the buffer is sought for allocation. Location: b_flags-buf-buJ.h 

B_WRITE 
The flag that indicates the data is to be transferred from main memory to the peripheral device (the 
pseudo flag that occupies the same bit location as B_READ). This value does not exist, it can only 
be tested as the "not" state of B_READ. Location: b_flags-buf-buJ.h 

badrtcnt 
The hdedata(D4X) structure member that indicates the number of unreadable tries made to a hard 
disk. Location: hdelog.h 

base address 
The address where a buffer is declared in memory. 'This can be a private map structure, or system 
buffers such as the user structure. In the latter case, the u.u_base member points to the base 
address of the user buffer. 
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base level 
The code that synchronously interacts with a user program. The driver's initialization and switch 
table entry point routines constitute the base level. It is one of two logical parts of a driver. See also 
interrupt level. 

Bel See block and character interface 

bcopy(D3X) 
The function that copies data between kernel addresses. This routine should never be used to copy 
data to or from an address in user space. Location: mllmisc.s 

bdevsw(D4X) 
The block driver switch table that is constructed during automatic configuration and exists only in 
mem9ry or in the /unix file (the structure is defined in con/.h) .. 

bfreelist . 
The structure that points to a list of available (free) buf structures. The bfreelist address is 
used by processes accessing block devices as the event argument to sleep(D3X) when no free buf 
structures are available. 

BIC See bus interface circuit 

blkaddr 
The hdeda ta(D4X) structure member that is a physical block adcttess of a hard disk error in 
machine-dependent form. Location: hdelog.h 

block 
The basic unit of data for I/O access. A block is measured in bytes. The size of a block differs 
between computers, file system sizes, or devices. 

block and character interface 
A collection of driver routines, kernel functions, and data structures that provide a standard interface 
for writing UNIX System V, Release 3 block and character drivers. 

block data transfer 
The method of transferring data in units (blocks) between a block device such as a magnetic tape 
drive or disk drive and a user program. 

GL-6 Bel Driver Development Guide 



block device 
A device, such as a magnetic tape drive or disk drive that conveys data in blocks through the buffer 
management code (for example, the buf structure). See also character device. 

block device switch table 
The table constructed during automatic configuration that contains the address of each block driver 
base-level routine (open(D2X), c1ose(D2X), strategy(D2X), and print(D2X». This table is called 
bdevsw and its structure is defined in con/.h. 

block driver 
A driver for a device, such as a magnetic tape device or disk drive, that conveys data in blocks 
through the buffer management code (for example, the buf structure). One driver is written for 
each major number employed by block devices. On most systems, there are generally few block 
drivers. 

block 110 
A data transfer method used by drivers for block access devices. Block I/O uses the system buffer 
cache as an intennediate data storage area between user memory and the device . 

boot 
The process of starting the operating system. The boot process consists of self-configuration and 
system initialization. 

boot device 
The bOot device stores the boot code and necessary file systems to start the operating system. 

bootable object tile 
A file that is created and used to build a new version of the operating system. 

bootstrap 
The process of bringing up the operating system by its own action. The first few instructions load the 
rest of the operating system into the computer. 

brelse(D3X) 
The function that releases unneeded buffers for block driver use. Location: oslbio.c 

btoc(D3X) 
The macro that converts bytes to clicks (pages). Location: sysmacros.h 
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buf(D4X) 
The structure that provides buffering for block driver data transfers. Location: buf.h 

buf.h 
The header file that defines the buf structure. Location: buf.h 

butTer 
A staging area for input-output (I/O) processes where arbitrary-length transactions are collected into 
convenient units for system operations. A buffer consists of two parts: a memory array that contains 
data from the disk and a buffer header that identifies the buffer. 

butTer_address 
The D_FILE(D4X) structure member that contains the buffer address, which is set to (zero) before 
an open is called. Location: system.h 

butTer_size 
The D_FILE(D4X) structure member that sets the buffer size to NULL. Location: system.h 

bus. interface circuit (BIC) 
A hardware interface between a bus and a processor. The BIC handles the sending·and receiving of 
packets and distributed bus arbitration on the ABUS. A parallel interface connects each BIC to its 
processor. 

BUSY 
The flag that indicates output is in progress. Location: t_state--t ty-tty.h 

bzero(D3X) 
The function that fills a buffer with zeros (clearing it) so that the buffer can be used for another 
purpose. Location: mllmisc.s 

c_cc 
The clist structure member that contains the number of characters in a clist. Location: 
clist-tty.h. Also, the termio structure member that contains the control characters contained 
in the termio structure. Location: termio-termio.h 

c_cf 
The clist(D4X) structure member that points to the first cblock. Location: clist-tty.h 
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c_cflag 
The termio structure member that describes the terminal hardware control modes. c_cflag is 
represented in the tty structure by the t_cflag member. See also termio(7). Location: termio
termio.h 

c_cl 
The clist(D4X) structure member that points to the last cblock. Location: clist-tty.h 

c_count 
The ccblock(D4X) structure member that is initialized to the size of the cblock character array. 
This member is decreased by the number of characters in the cblock character buffer. The 
difference between c_count and c_size is used to indicate the number of characters in the buffer. 
Location: ccblock-tty.h 

c_data 
The cblock structure member that contains the data in the cblock. The maximum number of 
data characters in a cblock is defined l?y the CLSIZE constant. Location: cblock-tty.h 

c_tirst 
The clist(D4f() structure member that indexes the first character in the c_data array of a 
cblock. Location: clist-tty.h . 

c~flag 
The chead(D4X) structure member that indicates a process is waiting for a cblock. Location: 
chead-tty .h 

c_iflag 
The termio structure member that describes the basic terminal input control modes. c_iflag is 
represented in the tty structure by the t_iflag member. See also termio(7). Location: termio
termio.h 

c_Iast 
The cblock(D4X) structure member that indexes to the last character in a c_data array of a 
cblock. Location: cblock-tty.h 
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c_Iflag 
The termio structure member used by the line discipline to control terminal functions. c_lflag is 
represented in the tty structure by the Clflag member. See also termio(7). Location: termio
termio.h 

c_line 
The termio structure member that contains the line discipline value. The t line member of the 
tty structure has the same purpose and value. Valid line discipline values are: 0, 1, and 2. The 
default standard value is O. 1 is for a special protocol for AT&T 630 terminals and 2 is for use with 
shl(l), the sheUlayers(l) command. Location: termio-termio.h 

c_next 
The cblock(D4X) structure member that points to the next cblock. Location: cblock-tty.h 

c_oflag 
The termio structure member that specifies the system treatment of output. c_oflag is represented 
in the tty structure by the t_oflag member. See also termio(7). Location: termio-termio.h 

c_ptr 
The ccb;tock(D4X) structure member that points to the c_data character buffer. Location: 
ccblock-tty.h . 

c_size 
The chead(D4X) structure member that indicates the size of the cblock character buffer. The 
c_count and c_size members are initialized to the size of the cblock character array 
(64 characters - CLSlZE). The c_count member is then decreased by the number of characters in 
the cblock character buffer. The difference between the two values indicates the number of 
characters in the buffer. Location: chead-tty.h 

cache 
A section of computer memory where the most recently used buffers, inodes, pages, and so on are 
stored for quick access. A separate controller is normally assigned to handle the cache 110 requests 
to leave the main processor free for other activity. 

caddr_t 
The character pointer data type used for memory addresses. Location: types.h 

canon(D3X) 
The function that transfers characters from t_rawq to t_canq. Location: tty.e 
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canonical processing 
Tenninal character processing in which the erase character, delete, and other commands are applied 
to the data received from a tenninal before the data is sent to a receiving program. This type of 
processing can be thought of as "what the user really meant" when the data was keyed in at the 
terminal. Other tenns used in this context are canonical queue, which is a buffer used to retain 
information while it is being canonically processed, and canonical mode, which is the state where 
canonical processing takes place. See also raw mode. 

carrier 
The continuous signal intennixed with another signal. The first (carrier) signal acts as a standard so 
that the second signal can be detennined. The second signal is used for carrying data. A carrier is 
used by modems to convey data across phone lines. The modem indicates to the computer that the 
carrier is present by asserting the RS-232C received line signal detected signal lead to the computer. 
The 3B computers recognize the carrier signal when the carrier detect lead of the RS-232C interface 
is high. 

CARR_ON 
The flag that contains the signal software image indicating that a carrier is present for a terminaL 
Location: t_state-t ty-tty.h 

cblock(D4X) 
The character block structure that contains a blOCk of data used when a driver is accessing data from 
or to a tenninal. Location: tty.h 

ccblock(D4X) 
The character control block structure that is used as a temporary buffer for characters not iIi a queue. 
Location: tty.h 

cdevsw(D4X) 
The character driver switch table is constructed during automatic configuration and exists in memory 
and in the lunix file. Location: conf.h. 

CE_CONT 
The flag indicates that the message being passed to the cmn_err function should be displayed without 
a label such as. NanCE, PANIC, or WARNING. This display form appends the last message sent 
or displays an informative message not associated with an error. Location: cmn_err.h 
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CE_NOTE 
The flag indicates that the message being passed to the emn_err function should be displayed 
prefaced with "NanCE:". Location: cmn_err.h 

CE_PANIC 
The flag indicates that the message being passed to the emn_err function should be displayed 
prefaced with "PANIC:". Specifying CE_PANIC with CDlD_err causes the computer to begin a 
panic. If a secondary panic state occurs while a panic message is being processed, the message is 
prefaced with "DOUBLE PANIC:". "Location: cmn_err.h 

CE_WARN 
The flag indicates that the message being passed to the COlD_err function should be displayed 
prefa~ed with "WARNING:". Location: cmn_err.h " 

cf re e1 i s t(D4X) 
The structure that contains a list of the free cb1ocks. cfreelist is declared to be a structure 
the same as chead. Location: tty.h 

character device 
The device, such as a terminal or printer ~at conveys data character by character." Si!e also block 
device. 

character driver 
The driver that conveys data character by character between the device and the user program. 
Character drivers usually written for with terminals, printers, and network devices, although block 
devices such as tapes and disks also support character-access. 

character I/O 
The process of reading and writing to/from a temrinal. 

chead(D4X) 
The structure indicates the start of the cfreelist. Location: tty.h 

child process 
When a process executes a fork(2) system call to create a new process, the new process is called a 
child process. 
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CLESC 
The flag that indicates the last character processed was an escape character. Location: Lstate
tty-tty.h 

clist(D4X) 
The structure that contains pointers to the first and last cblocks. A clist is used as a way of 
storing small quantities of data when a driver is moving data between a device controller and a 
terminal. Location: tty.h 

c1ose(D2X) 
The base level routine that is used to end access to an open device. This routine is called only at the 
end of a device cycle and only if no other processes have the device open. The close routine 
examines the file table to ensure that the device is not being accessed, and then reinitializes the driver 
data structures and the device itself. 

c1ose(2) 
The system call that releases a file descriptor when its use is no longer required. 

c1rbuf(D3X) 
The function that is used by a-block driver for zeroing a buffer in the buf structure. Location: 
-os/bio.c -

CLSIZE 
The constant that specifies the number of data characters in a cblock is set by the CLSlZE 
constant. The current value for CLSlZE is 64. A single cblock can contain up to 64 characters. 
Location: tty.h 

cIDD_err(D3X) 
The function that displays a message on the system console and stores the message in putbuf, or for 
causing the computer to panic. Location: os/prj.c 

cmn_err.h 
The header file that contains the four cmn_err severity-level definitions. These definitions define 
whether a message to be displayed on the system console does or does not cause a panic on the 
system. Location: cmn_err.h 

common synchronous interface (CSI) 
A set of functions designed to be used in drivers for virtual protocol machine (VPM) devices. 
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conf·h 
The header file that contains the structure of the block device switch table (bdevsw), the character 
device switch table (cdevsw), and the line discipline switch table (linesw). Location: conf.h 

control and status register (CSR) 
Memory locations providing communication between the device and the driver. The driver sends 
control infonnation to the to the CSR, and the device reports its current status to it. 

controller 
The circuit board that connects a device such as a terminal or disk drive to a computer. A controller 
converts software commands from a driver into hardware commands that the device understands. 
For example, on a disk drive, the controller accepts a request to read a file and converts the request 
into hardware commands to have the reading apparatus move to the precise location and send the 
information until a delimiter is reached. 

copyin(D3X) 
'The function that copies data from a user program to a driver buffer. Location: mllmisc.s 

copyout(D3X) 
The function that copies data from a driver to user"program space. Location: mllmisc.s 

crasb(lM) 
A command that is used to analyze the core image. 

CRe See cyclic redundancy check 

critical code 
A section of code is critical if execution of arbitrary interrupt handlers could result in consistency 
problems. The kernel raises the processor execution level to prevent interrupts during a critical code 
section. 

CSI See common synchronous interface 

CSR See control status register 

ctob(D3X) 
The macro that converts the clicks (pages) to bytes. Location: sysmacros.h 
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cyclic redundancy check (CRC) 
A way to check the transfer of information over a channel. Binary code is sent over a channel in 
lengths. Each piece of code is divided by a fixed divisor. The result is added to the end of the 
message. When the message is received, the computer calculates the remainder and checks it against 
the transmitted remainder. 

data structure 
The memory storage area that holds dissimilar data types such as integers and strings. The data 
structures associated with drivers are used as buffers for holding data being moved between user data 
space and the device, as flags for indicating error device status, as pointers to link buffers together, 
and so on. 

data terminal ready (DTR) 
The signal that a tenninal device sends to a host computer to indicate that a terminal is ready to 
recei ve data. 

debug monitor (DEMON) 
A low-level utility for verifying hardware and debugging software or firmware . 

. delay (D3 X)" 
A function that is used by a block or character driver to delay the execution of a process for a 
specified time interval. Location: os/clock.c 

demand paging 
The implementation of demand paging allows processes to execute even though their entire virtual 
address space is not loaded in memory; so the virtual size of a process can exceed the amount of 

. physical memory available in a system. . 

DEMON See debug monitor 

device number 
The value used by the operating system to designate a device. The device number contains the major 
number and the minor number. If it is denoted as internal, than the dev:ice number is logical and is 
known only to the kernel. External device numbers are half system-derived (the major number) and 
half created by the driver developer (the minor number). 

dev_t 
The C programming language data type declaration that is used to store the driver major and the 
minor device numbers. The data declaration is of the integer type short. Location: types.h 
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diagnostic 
A software routine for testing, identifying, and isolating a hardware error. A message is generated to 
notify the tester of the results. 

direct memory access controller (DMAC) 
The WE321041WE32204 chips that handle the access of data to and from memory, bypassing the 
CPU. 

diskdev 
The hdeda ta(D4X) structure member that contains the major/minor disk device number for the 
hard disk error. Location: hdelog.h 

diskette.h 
The header file for the 3B2 computer that contains structures and symbolic constants for floppy 
diskette acc'ess on the 3B2 computer. Location: diskette.h 

dma_breakup(D3X) 
The function that breaks up physio requests into manageable data blocks .. Location: physdsk.c 

DMAC See direct memory access controller 

driver 
The set of routines and data structures installed in the kernel that provide an interface between the 
kernel and a device. A driver provides all of the necessary programming so an interfaced device 
appears as a file to the rest of the UNIX operating system. 

driver entry points 
Driver routines that are activated during system initialization. 

driver initialization 
System initialization uses only the appropriate routines from the driver code and the infonnation 
from the master file to initialize the drivers. Information such as the major/minor numbers that is so 
important when accessing driver switch table entry points is irrelevant when initializing a driver. 

driver prefix 
The unique two, three, or four digit prefix that is assigned in the driver master file and used as a 
prefix for driver routines. 
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driver routines 
System structures and kernel functions used by the driver. 

drv _rtile(D3 X) 
The 3B15 and 3B4000 computer function that reads a driver file. Location: os/ sys3. c 

drvinstall( 1M) 
The command that assigns the sequential major numbers file to the appropriate field in the master 
file. 

dskserno 
The hdeda ta(D4X) structure member that contains the disk pack serial number of the disk where 
the error is logged. Location: hdelog.h 

DTR See data terminal ready 

DUART dual universal asynchronous receiver transmitter. See universal asynchronous receiver 
transmitter 

EADP See Enhanced Adjunct Data Processor 

ECC See error correction code 

EDT See equipped device table 

EFAULT 
The error message value that indicates a bad address. See also intro(2). Location: errno.h 

EINTR 
The error message value that indicates an interrupted system call. See also intro(2) in the Bel Driver 
Reference Manual. Location: errno.h 

ElNVAL 
The error message value that indicates an invalid argument. See also intro(2). Location: errno.h 
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EIO See error in input/output 

ELB See extended local bus 

ELBU See extended local bus unit 

Enhanced Adjunct Data Processor (EADP) 
An adjunct processing element supporting two SmaIl Computer System Interfaces (SCSI) (to two 
SCSI buses), eight or sixteen megabytes of memory, and a. local BIC. Two EADPs may share a 
common peripheral. 

enhanced ports (EPORTS) 
EPORTS provides eight 8-pin modular jacks for serial RS-232C interface. EPORTS also includes 
software that must be installed before the hardware can be recognized by the system. The software 
contains diagnostic programs, enhanced ports driver, simple administration menus, and support files. 

ENODEV 
The error message value that indicates that there is no such device. See also intro(2) in the Bel 
Driver Reference Manual. Location: errno.h 

EPERM 
The error that indicates an attempt to modify a file forbidden except to its owner or superuser. It 
also returns for attempts by ordinary users to do things allowed only by the superuser. See also 
intro(2) in the Bel Driver Reference Manual. Location: errno.h 

EQD_EFC 
The error that indicates a device error for an external floppy controller. For further information, see 
the bdeeqd(D3X) function. 

EQD_EHDC 
The error that indicates a device error for an external hard disk controller. For further information, 
see the hdeeqd function. 

EQD_ID 
The error that indicates a device error for an integral disk drive. For further information, see the 
hdeeqd function. 
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EOD_IF 
The error that indicates a device error for an integral floppy drive. For further information, see the 
bdeeqd function. 

EOD_TAPE 
The error that indicates a device error for a cartridge tape device. For further information, see the 
bdeeqd function. 

equipped device table (EDT) 
A list generated by the computer at boot time with an entry for each attached peripheral device. This 
list ,allows the computer to know what devices are active. See the Bel Driver Development Guide, 
Appendix A, The Equipped Device Table (EDT) for instructions on adding devices. 

error correction code (ECC) 
A generic term applied to coding schemes that allow for the correction of errors in one or more bits 
of a word of data. The error-correcting circuitry on an EADPf ADP provides single bit error 
detection and correction, an multiple bit error detection for RAM. 

error in input/output (EIOj' 
An error that may occur on a call following the one to which it actually applied. This is a physical . 
I/O error. See also intro(2). Location: errno.h 

I etc!master.d 
A directory that contains driver information files. The information supplies driver definitions and 
parameters used when a computer is configured. A master file is an individual file in this directory 
associated with a driver. Information in the master file is only used if there is a corresponding 
boatable object file in the I boot directory. 

I etc! system 
A file that contains statements indicating whether a driver should De included or excluded during 
configuration. 

extended IQcal bus (ELB) 
An extension to the local bus providing additional I/O slots. 

extended local bus unit (ELBU) 
A 3B4000 computer Master Processor or 3B15 computer card cage for UN-type circuit boards that 
provides local bus I/O slots in addition to those in the basic control unit and the growth control unit. 
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external major numbers 
External major numbers for software devices are static and are assigned sequentially to the 
appropriate field in the master file by the drvinstall(lM) command; external major numbers for 
hardware drivers correspond to the board slot and are dynamically assigned by the Iboot process as 
system boot time. 

external minor number 
Part of the name of the device file usually corresponds to the unit number of the device to be 
accessed via the file, or specifically, the minor number. 

EXTPROC 
The flag that indicates a peripheral is performing semantic processing of data. Semantic processing 
entails input validation of the characters received from a character device. Location; t_state
tty-tty.h 

FAPPEND 
The flag that indicates a file is open. This value is passed to the driver open(D2X) routine by the 
kernel. Location: file.h 

FCREAT 
The constant that opens a new file, This value is passed to the driver open routine by the kernel. 
Location: file.h 

FEXCL 
The constant that causes an open(D2X) to fail if a file already exists if used with FCREA T. This· 
value is passed to the driver open routine by the kernel. Location: file.h 

file.h 
The header file that contains definitions used for opening and accessing a file. Location:file.h 

file_name 
The D_FILE(D4X) structure member that contains the name of the file to be accessed. Location: 
syste~.h 

file service 
The use of an EADPI ADP and MP for file system storage and manipulation. 
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firmware 
Computer circuitry, such as silicon chips, that contains commands that can be read, but not deleted. 
Firmware, also known as read-only memory (ROM), generally contains commands that are used to 
boot the operating system. 

firmware.h 
The header file that contains pointers to a computer's firmware. Some of these pointers include 
random access memory start addresses, structures for system generation, booting, error handling, and 
for sending pumpcode to an intelligent controller. Location: firmware.h 

FNDELA Y(D2X) 
The constant that indicates non-blocking I/O permission has been granted to a user program for file 
access. This value is passed to the driver open(D2X) routine by the kernel. Location: file.h 

FREAD(D2X) 
The constant that indicates read permission has been granted to a user program for file access. This 
value is passed to the driver open(D2X) routine by the kernel. Location: file.h 

FSYNC(D2X) 
The constant that indicates synchronous write permission is granted to a user program for file access. 
This value is passed to the driver open(D2X) routine by the kernel. Location: file.h 

FTRUNC(D2X) 
The constant that opens an existing file and truncates its length to zero. This value is passed to the 
driver open routine by the kernel. Location: file.h 

fubyte(D3X) 
The function that copies a character (byte) from user program space to a driver. This is an obsolete 
function. Location: mllmisc.s 

fuword(D3X) 
The function that copies a word of data from user program space to a driver. This is an obsolete 
function. Location: mllmisc.s 
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FWRITE 
The constant that indicates write pennission has been granted to a user program for file access. This 
value is passed to the driver open(D2X) routine by the kernel. Location: file.h 

getc(D3X) 
The function that gets a character from a clist. Location: iolciist.c 

getcb(D3X) 
The function that gets the first cblock on a clist. Location: iolciist.c 

getcf(D3X) 
The function that gets a free cblock. Location: iolciist.c 

geteblk(D3X) 
The function that gets an empty block. Location: oslbio.c 

getmajor(lM) 
The command that returns the major number for the specified device. 

getsrama(D3X) 
The function that gets the starting address of the segme~t descriptor table (SDT). It is used on the 
3BtS computer and the 3B4000 MP to access the proper memory management unit (MMU) when 
doing direct memory access (DMA). Location: immu.h 

getsramb(D3X) 
The function that gets the length of segment descriptor table (SDT). It is used on the 3B15 computer 
and the 3B4000 MP to access the proper memory management unit (MMU) when doing direct 
memory access (DMA). Location: immu.h 

getvec(D3X) 
The function for the 3B2 computer that gets an interrupt vector given a virtual board address. 
Location: oSlmachdep.c 

header tile 
A file that ties declarations together for a set of programs. It guarantees all source files are supplied 
with the same definitions and declarations. 
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hdeeqd(D3X) 
The function that initiates hard disk error logging. Location: iol hde. c 

hdelog(D3X) 
The function that logs hard disk errors to a table in the kernel and to the console. Location: iolhde.c 

high water mark 
The point at which data being processed in the output clists is transmitted to the terminal. 

IASLP 
The flag that indicates the processes associated with the device should be awakened when input 
completes. Location: Cstate-tty-tty.h 

IDFC See integral disk file controller 

IDUART integral dual universal asynchronous receiver transmitter. See universal asynchronous 
receiver transmitter . 

init(D2X) 
The routine that initializes a device. init is called by the operating system when the computer is 
started. 

initialization entry points 
. Driver initialization routines that are executed during system initialization. See also init and start. 

input/output accelerator (lOA) 
A UN-type circuit board that directs peripheral controllers to interlace with the 3B15 computer or 
3B4000 Master Processor local bus and main memory. 

int(D2X) 
The routine processes a device interrupt. The driver interrupt handler is entered when a hardware 
interrupt is received from a driver-controlled device. 
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integral disk tile controller (IDFC) 
A UN-type circuit board that interfaces to a storage module device controller (SMDC), which 
interfaces FSD disk drives to the 3B4000 Master Processor or the 3B15 computer. The IDFC resides 
in an I/O slot on the primary local bus. 

interface 
The routines, data structures, command arguments, major and minor numbers, and master and 
system files used to develop a driver. 

internal major numbers 
An index into the switch tables. Internal major numbers are assigned by the self-configuration 
process when the drivers are loaded, and probably change every time the system is booted. 

internal minor numbers 
The internal minor number is assigned by the driver writer (although there are conventions enforced 
for some types of devices by some utilities), and usually refers to subdevices of the device. 

interprocess communication (IPC) 
A set of facilities supported through softWare that enables independent processes, running at the same 
time, to exchange information tJ:rrough messages, semaphores, or shared memory. 

interrupt entry points 
Driver interrupt routines that are activated when an interrupt is received from a hardware device. 
The system accesses the interrupt vector table, determines the major number of the device, and passes 

. control to the appropriate interrupt routine. 

interrupt priority level (IPL) 
The interrupt priority level (1 to 15) at which the device requests that the CPU call an interrupt 
process. This priority can be overridden in the driver's int routine for critical sections of code with 

. the spln(D3X) function. 

interrupt vector 
Interrupts from a device are sent to the device's interrupt vector, activating the interrupt entry point 
for the device. 

lOA See input/output accelerator 
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ioctl(D2X) 
The character driver base level routine that conveys hardware or software control information to a 
character device. 

iodone(D3X) 
The function used by a block driver for resuming the execution of a process after a block va request 
has completed. Location: os/bio.c 

iomove(D3X) 
A function used for copying data. The routine decides whether the source and target addresses are 
within kernel or user program space and calls bcopy(D3X), copyin(D3X), or copyout(D3X) 
accordingly. This is an obsolete function. Location: os/move.c 

-
iowait(D3X) 
The function used by a block driver fot suspending execution of a process until a request for input or 
output completes. Location: os/bio.c 

IPC See interprocess communication 

IPL See interrupt priority level 

ISOPEN 
The flag that indicates a device is open. Location: t_state-tty-tty.h 

ivec See interrupt vector 

kernel buffer cache 
A linked list of buffers used to minimize the number of times a block-type device must be accessed. 

kseg(D3X) 
The function that makes memory pages available for a driver's use. Location: os/mmgt.c 

I_close 
The linesw(D4X) structure member that invokes the ttclose(D3X) function (for line discipline 

. zero) to discontinue access to a terminal. Location: linesw--conf.h 
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I_input 
The linesw(D4X) structure member that invokes the ttin function (for line discipline zero) to 
service an input interrupt from a terminal. Location: linesw-conf.h 

Lioctl 
The linesw(D4X) structure member that invokes the ttioctl(D3X) function (for line discipline 
zero) to service an ioctl request for a terminal. Location: linesw-conf.h 

Lmdmint 
The linesw(D4X) structure member handles modem interrupts. In line discipline zero, this 
member is set to nulldev and is non-functional. Location: linesw-conf.h 

~l_open 

The linesw(D4X) structure member that invokes the ttopen(D3X) function (for line discipline 
zero) to service an open request for a terminal. Location: linesw-conf.h 

I_output 
The linesw(D4X) structure member that invokes the ttout(D3X) function (for line discipline zero) 
to service an output interrupt for a terminal. Location: linesw-conf.h 

I_read 
The linesw(D4X) structure member that invokes the ttread(D3X) function (for line discipline 
zero) to service a read request from a terminal. Location: linesw-conf,h 

I_write 
The linesw(D4X) structure member that invokes the ttwrite(D3X) function (for line discipline 
zero) to service a write request to a terminal. Location: linesw-conf.h 

layers(l) 
The UNIX system user command that provides multiple command windows on a terminal. 

LBE See local bus extender 

lOOlt 
The system variable of time_t type that contains the number of Hertz (HZ) clock ticks since system 
boot time. It can be used to determine a precise relative time. For example, a driver can determine 
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the elapsed time for an 110 operation by taking the difference between the recorded starting time 
lbolt value and the completion time lbolt value. 

lboot 
The lboot prograIJ.l runs when the system is booted and reads the #VEC field in the driver's master 
file to determine the number of interrupt vectors per controller and assigns numbers accordingly. 

line discipline switch table 
Line discipline interprets input and output characters between the operating system and a terminal. 
The line discipline switch table, linesw(D4X), is a list of pointers to the character driver processing 
kernel routines that interpret and buffer the characters received from and sent to a terminal. The 
linesw structure is defined in lusrlincludelsys/conj.h. The protocols for processing and buffering 
characters are referred to as a line discipline. Valid line discipline values are: 0, 1, and 2. Line 
discipline 0 is the default standard value, 1 is for a special protocol for AT&T 630 terminals, and 2 is 
for use with shI(l), the shelliayers(l) command. The line discipline switch table is defined in conf.h 
header file. For further information, see the Bel Driver Development Guide, Chapter 7, ''Drivers in 
the TTY Subsystem." 

line discipline zero 
See li~e discipline switch table. 

linesw(D4X) 
See line discipline switch table. 

local bus extender (LBE) 
A circuit board that provides the interface between the 3B4000 Master Processor or the 3B15 
computer and the bus extension facilities. The LBE is optional, but if purchased, it must be located 
in the basic control unit of the basic cabinet. 

logical controller numbers 
Numbers that are assigned sequentially by the central controller firmware at self-configuration time. 

logmsg(D3X) 
The function that logs an error message. Location: erriog.c 

logstray(D3X) 
The function that logs spurious (nonlocatable) errors and interrupts. Location: iolerriog.c 
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longjmp(D3X) 
The function that transfers program control from the current point of execution back to a previous 
point quickly. Location: mllcswitch.s 

low water mark 
The point at which more data is requested from a terminal because the amount of data being 
processed in the, character lists has fallen creating room for more. 

MAJOR table 
The MAJOR table maps internal major numbers to the external major number. Each table is a 
character array that is 128 entries long. 

major(D3X) 
The macro that obtains an internal major device number from a device number. Location: 
sysmacros. h -

major number, 
, The number that identifies a device class. Internal major numbers are known only to the kernel and 
are logical values. The bdevsw and cdevsw switch tables are referenced by the internal major 
number. External'major numbers are found in two ways. If the rnajor number is associated with a 
hardware device, the number is' created when the computer is automatically configured and accessed 
with the getmajor(lM) command, If the major number is associated with a software driver, the 
number is created by drvinstaIl(lM). 

makedev(D3X) 
The macro that creates an external device number from a major number and a minor number. 
Location: sysmacros.h 

malloc(D3X) 
The function that allocates a private map structure. Location: oslmalloc.c 

manufacturer's defect table (MDT) . 
A disk defect table supplied by the manufacturt:?r of a given disk. 

map.h 
The header file that is used when declaring private map structures. The header file provides the 
definition of the mapinit function. Location: map.h 
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mapinit(D3X) 
The macro that initializes a private space management map. Location: map.h 

mapwant(D3X) 
The macro that requests a free buffer for a private space management map. Location: map.h 

master tile 
The file that supplies infonnation to the system initialization software to describe the attributes of a 
driver. This file also contains the driver prefix and device number, and whether it is a software or 
hardware driver. 

Master Processor (MP) 
The controlling processor that interfaces with the adjuncts on the ABUS thru the XBUS connection 
and a remote BIC. The MP contains a WE 32100 chip set running at 14 MHz, and 8 or 16 
megabytes of random access memory. The MP is the single point of control for bootstrap, system 
configuration, centralized resource service, and maintenance. 

max(D3X) 
The function that returns the larger of two numbers. Location: mllmisc.s 

MDT See manufacturer's defect table 

member 
A field or element of a structure. 

memory management 
The memory management scheme of the UNIX operating system imposes certain restrictions on 
drivers that transfer data between devices. 

memory management unit (MMU) 
WE 32101 and' WE 32201 chips provide support for running the paging scheme of memory 
management. The chips make use of tables maintained by the kernel for performing. address 
translations. 
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mfree(D3X) 
The function that frees a space in private memory. Location: os/malloc.c 

min(D3X) 
The function that returns the smaller of two numbers. Location: mllmisc.s 

MINOR table 
The table that maps internal minor numbers to the external major number. Each t.able is a character 
array that is 128 entries long. 

minor(D3X) 
The macro that obtains an internal minor device number from a device number. Location: 
sysmacros .h 

minor device number 
A number used to identify a specific device on a controller. An internal minor number is Ialown 
only to the kernel and is a logical number. An external minor number is created by the driver 
developer and is usually a collection of information about the device. 

mknod(lM) . 
The command that creates special device files or nodes that are used by the system to access the 
device. . 

MMU See memory management unit 

modem 
A contraction of modulator-demodulator. A modulator converts digital signals from the computer 
into tones that can be transmitted across phone lines. A demodulator converts the tones received 
from the phone lines into digital signals so that the computer can process the data. 

MP See Master Processor 

multiprocessor 
Multiprocessor architecture contains two or more CPUs that share common memory and peripherals. 
A multiprocessing computer can provide greater throughput, because processes can run concurrently 
on different processors. 
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NCC 
The constant that indicates the maximum number of control characters defined in the t_cc member of 
tty structure (in tty.h). The valid control characters are described in termio(7) and contained in the 
c_cc array of the termio structure. The default value for NCC is 8. Location: termio.h 

nodev(D3X) 
The function that indicates that a driver \>ase-Ievel routine was omitted. nodev places the ENODEV 
error message in u.u_error when nodev is called. When the cdevsw and bdevsw switch tables are 
built, the kernel interrogates each driver to detennine the names of the base level routines. A 
character driver normally has five base-level routines: open(D2X), c1ose(D2X), read(D2X), 
write(D2X), and ioctl(D2X). A block driver normally has four base-level routines: open, close, 
strategy (D2X), and print(D2X). When one of the base-level routines does not exist in the driver, 
the kernel substitutes nodev in the routine's position in the switch table. Location: oslsubr.c 

NULL 
The constant that indicates a 0 (zero). Location: param.h 

OASLP 
The flag that indicates the processes associated with the device should be awakened when output 
completes. Location: t_state--tty-tty.h 

open(D2X) 
The driver switch table entry point routine that is called by the system when a user program invokes 
the open(2) instruction. The kernel then executes the driver's open routine. 

open_close 
The D_FILE(D4X) structure member that sets an open or close flag. Location: system.h 

open.h 
The header file that contains constants specifying a driver open routine. Location: open.h 

oposr 
The flag that indicates output characters are post-processed as indicated by the other flags in the same 
structure. Location: termio.h 

otyp 
The argument used in the open(D2X) a routine. The possible values for otyp are described in 
open.h. Location: system.h 
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page descriptor (PD) 
The base address of a memory page used by the memory management unit (M:MU) to map pages 
within paged segments from virtual to physical memory. 

page descriptor table (PDT) 
A table containing a list of page descriptors (PDs) used by the memory management unit (NlMU) to 
map pages within paged segments .from virtual to physical memory. 

p_pgrp 
The proc(D4X)structure member that contains the process group identification number. The 
number is used to determine which processes should receive a HANGUP or BREAK signal. A 
driver detects these signals. Location: proc-proc.h 

p_pid 
The proc(D4X) structure member that contains the process identification number. Location: 
proc-proc.h 

p_pri 
The proc(D4X) structure member that contains the priority of a proc~o The value is used by the 

. scheduler to detennine which process gets to execute from a number of executable processes: 
Location: proc-proc.h -

p_uid 
The real user ID of a process. LoCation: chead-tty.h 

panic 
The state where an unrecoverable error has occurred. In most cases, when a panic occurs, a message 
is displayed on the console to indicate the cause of the problem. The computer must be rebooted or 
repaired to remedy the problem. 

param.h 
The header file that contains definitions for constants that change infrequently: Examples of such 
constants are HZ, NULL, and PZERO. Location: param.h 

parent process 
Almost every process is created when another process executes a fork(2) system call. This process is 
called the parent process. The newly created process is called the child process. 
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PCATCH 
The constant that instructs the kernel sleep(D3X) routine not to call the kernellongjmp routine, but 
to return value 1 to the calling routine. Location: param.h 

PCB See process control block 

PD See page descriptor 

PDI See portable driver interface 

PDT See page descriptor table 

pbysck(D3X) 
The function that verifies a requested ~lock exists on the device. Location: os/physio.c 

pbysio(D3X) 
The function that processes an I/O request. LoCation: os/physio.c 

PIR See programmed interrupt requests 

portable driver interface (PDI) I 

A collection of driver routines, kernel· functions, and data structures that provide a standard interface 
for writing UNIX System V block drivers. PDI is usable on all 3B2, 3B15, and 3B4000 computers 
running UNIX System V Release, 2.0.5, 3.0, 3.1, or later. 

prefU: 
A two-, three-, or four-character name that uniquely identifies a driver's routines to the kernel. The 
prefix name starts each routine in a block or character driver. For example, a RAM disk might be 
given the ramd prefix. If it is a block driver, the routines are ramdopen, ramdclose, ramdstrategy, 
and ramdprint. The prefix must be registered with AT&T. 

print(D2X) 
The routine that uses the minor number to determine what part of the device is not performing 
correctly. 
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proc(D2X) 
The routine that processes various character device-dependent operations. This routine is required 
for a character driver that accesses the tty or' linesw structtrres. 

proc(D4X) 
The structure that contains information required by the operating system for a process 
Location: proc.h 

process 
An instance of a program in. execution. 

process control block (PCB) 
An operating system structure that stores process information. 

process ID (PID) . 
The kernel identifies each process by its ill. 

proc.h 
The header file contains the proc structure used only by the kernel for 'storing information aqaut the 
currently running process. Location: proc.h 

programmed intenupt request (PIR) 
An interrupt sent by a software device. 

psignal(D3X) 
The function that sends a signal to a single process. Location: oslsig.c 

pumpcode 
Executable code that is downloaded to the controller. 

putc(D3X) 
The function that places a character on a clist. Location: iolclist.c 

putcb(D3X) 
The function that links a cblock to a clist. Location: iolclist.c 
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putcf(D3X) 
The function that places a cblock on the free list. Location: iolclist.c 

putbuf 
A buffer, accessible Mth crash(lM), that records messages displayed with cmn_err(D3X). A 
message is placed in putbuf routinely each time COlD_err is called, or exclusively, if an exclamation 
mark (!) is encoded in the first position of the message. putbuf can be avoided by encoding a caret 
("') in the first position of the message. 

PZERO 
The constant that indicates the point in the range of sleep(D3X) priority values that determines 
whether the system will awaken a sleeping process on receipt of a signal. PZERO is generally set to 
25. Priority values with a range of 0 to PZERO, keep the system from awakening sleeping processes 
receiving a signal. Priority values with a range of PZERO+ 1 to 39 cause the system to awaken a 
sleeping process when a signal is received. When a sleeping process is awakened on a signal, the 
process is awakened before the event on which it was sleeping occurs. Location: param.h 

raw 110 
Movement of data directly between user address spaces and the device. Raw I/O is used primarily for 
administrative functions where the speed ot a specific operation is more important than overall system 
performance. 

raw mode 
The method of transmitting data from a terminal to a user without processing. This mode is defined 
in the line discipline modules. See also canonical processing. 

revint 
A member of the sysinfo(D4X) structure. It increments the entry to rint(illX). Location: 
sys inf o-sysinfo.h 

read(D2X) 
The routine for the cdevsw(D4X) table that copies information from a character device to a user 
address space. 

read(2) 
The system call that reads data from a file. It is only used in user programs and not in a driver. 
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readtype 
The hdedata(D4X) structure member that indicates either a CRC or ECC hard disk error. 
Location: hdelog.h 

remote file sharing (RFS) 
Transparent sharing of directory structures by independent machines. 

RFS See remote file sharing 

rint(D2X) 
The routine that services a receive interrupt. A receive interrupt occ~ when a device has data ready 
to be read. 

routine 
A section of C programming language 01; assembler code handling a specific task. Driver routines 
differ from a complete program or other types of routines because driver routines do not include the 
syntax required to identify a program to the system. In the C programming language, a program is 
identified by the use of the mainO function. A driver routine does not contain mainO. 

RTO 
The flag that indicates a timeout is in progress for a device operating in raw mode. Location: 
t_state-tty-tty .h 

SCCS See Source Code Control System 

SCSI See Small Computer System Interface 

SCSI driver interface (SDI) 
A collection of machine-independent input/output controls, functions, and data structures, that 
provide a standard interface for writing SCSI target drivers to access a SCSI device. 

SCSI local interface circuit (SLIC) 
A UN-type circuit board that provides the interface between two Small Computer System Interface 
buses and the primary local bus on the 3B4000 Master Processor or the 3E1S computer. 
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SD See segment descriptor 

SDI See SCSI driver interface 

SDT ·See segment descriptor table 

SGS See Software Generation System 

segment descriptor (SD) 
The base address of a paged segment that is used by the memory management unit (MMU) to map 
contiguous segments from virtual to physical memory. 

segment descriptor table (SDT) 
A table of segment descriptors (SDs) used by the memory management unit (MMU) to map 
contiguous segments from virtual to physical memory. 

self-configuration 
Self-configuration refers to the construction of the specific kernel for the computer. Because drivers -
function as part of the kernel, you need to ~eate or modify self-configuration files and reconfigure 
the system to install your driver. 

semantic processing 
Semantic processing entails input validation of the characters received from a character device. 

severity 
The hdedata(D4X) structure member that indicates hard disk error severity; an error is either 
marginal or unreadable. Location: hdelog.h 

shJ(l) . 
The system user command lets a user have multiple simultaneous shell command line prompts (called 
layers). On terminals equipped with multiple windowing capability (such as the Teletype 4425), after 
a number of windows are created, sbl allows a user to be able to execute shell commands from each 
window. sbl is terminal independent. Each window (layer) is given a unique process ID. 

signal(D3X) 
The function that sends a signal to a process group. Location: os/ sig.c 
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signal.h 
The header file contains signal values described in the signal(2) system call. Location: signal.h 

single board computer (SBC) 
The WE 321SB single board computer (SHC). A computer on a single c.ircuit board that permits 
install able device drivers. 

sleep(D3X) 
The function that suspends the execution of a process until an event occurs. sleep is normally given 
the address of a structure as its argument. This structure may be a repository for data from an I/O 
request. When an I/O request completes, the driver checks for processes that have.called sleep with 
the address of the structure. The wakeup(D3X) routine is called by the driver to awaken the sleeping 
processes. Location: oslslp.c 

SLIC See SCSI local interface circuit 

Small Computer System Interface (SCSI) 
In the 3B4000 or 3B15 computer, SCSI refers to the disk and tape interface supported by the SCSI 
local interface circuit (SLIC) and an EADP/ADP or ACP. See also SCSI controller, SCSI device, 
SCSI host adapter, SCSI local jnt.erface circuit (SLIC) , and SCSI peripheral cabinet. 

Software Generation System (SGS) 
A package of tools designed to aid in program development. 

Source Code Control System (SCCS) 
A utility for tracking, maintaining, and controlling access to source code files. 

special device file 
The file that identifies the device's access type (block or character), the external major and minor 
numbers of the device, the device name used by user-level programs, and Security control (owner, 
group, and access permissions) for the device. 

spl*(D3X) 
A series of functions used to suppress or restore the interrupt level for the execution of critical code. 
spU, sp14, splS, spl6, spl7, splhi, splpp, and spltty suppress some or all interrupts so that critical 
code can be executed without the danger of having an interrupt disrupt execution. splO restores the 
state where all interrupts are serviced. spIx returns the interrupt state to a previous state. Location: 
mllmisc.s 
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splhi(D3X) 
The function that ensures interrupts do not occur while critical regions of code are executing. splhi 
blocks all interrupts. Location: mllmisc.s 

splx 
The function that restores the previous interrupt inhibit level. For example, if a previous spl4 call 
was made, and then splhi was called,. the driver program should return to the spl4 state. splx is used 
to ensure that the correct level is reached. Location: mllmisc.s 

sptalloc(D3X) 
The function that allocates pages of memory. Location: os/page.c 

sptfree(D3X) 
The function that frees previously allocated pages of memory. Location: os/page.c 

start(D2X) 
A system initialization driver entry point routine. 

strategy(D2X) 
The block driver routine that transmits data between the buffer cache and the device. One of the 
functions of the strategy routine is to schedule reads and writes for maximum device efficiency. For 
example, on a hard disk, the heads take a certain amount of time to move in and out to access data. 
The strategy routine may group read and write requests together by the relative head position that 
each request is calling, while the disk heads are moving back for a new movement command to be 
issued by the disk controller. When the disk heads are ready, the read and write requests are given to 
the controller, and sorted by the data's position on the disk relative to how the disk head moves. The 
heads are then allowed to move in a coordinated way allowing the data to be read and written in the 
most efficient manner. In additi'on to scheduling, strategy may validate the block number contained 
in the read or write request, and also check the device for the end-of-file condition. 

STREAMS 
A modular system used to build device drivers and protocol handlers that reside in the kernel. 
STREAMS allow modules to pass messages to implement a full-duplex connection between the kernel 
and the device. 

subyte(D3X) 
The function that copies a character (byte) from a driver to user program space. This is an obsolete 
function. Location: mllmisc.s 
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suser(D3X) 
The function checks to see if the current process has superuser permissions. Location: oslfio.c 

suword(D3X) 
The function that copies a word of data from a driver to user program space. This is an obsolete 
function. Location: mllmisc.s 

switch table 
The operating system that has two switch tables, cdevsw(D4X) and bdevsw(D4X). These tables 
hold the entry point routines for character and block drivers and are activated by I/O system calls. 

switch table entry points 
Driver routines that are activated through bdevswor cdevsw switch tables. 

sxt driver 
The shell layers sbl(l) device driver. 

synchr.onous 
. Events occurring at fixed, regular, or predictable interval~. 

synchronous device 
A device that communicates with the CPl! in a fixed, regular, or predictable way. 

sysadm(lM) 
The system administrative command that contains menus for performing many operations and 
administrative tasks. 

sysinfo(D4X) 
The structure used by character drivers rint(D2X) and xint(D2X) driver interrupt routines to indicate 
the number of times each routine is entered. Location: sysinfo.h 

system initialization 
The routines from the driver code and the information from the master file to initialize that initialize 
the system (including device drivers). 
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T_BLOCK 
The constant that indicates that the driver proc(D2X) routine should block further input because the 
input queue has reached the high water mark. T_BLOCK turns off TTXON and turns on TTXOFF 
and TBLOCK in the t_state member of the tty structure (in the driver proc routine). Location: 
tty.h 

T_BREAK 
The constant that indicates that the driver proc(D2X) routine should send a break character to a 
terminal device. The driver sets the t_state member of the tty structure to TIMEOUT and initiates 
delay timing. Refer to the proc routine in Appendix D for an example of how T _BREAK is used. 
Location: tty.h 

t_canq 
The tty(D4X) structure member that contains data accepted from a terminal after canonical 
processing (erase character, deletes, and so on) has taken place. Location: tty-tty.h 

t_cc 
The tty(D4X) structure member'that contains an array of control characters. Location: tty
tty.h 

t_ctlag 
The tty(D4X) structure member that corresponds to the control modes flag (c_ctlag) defined in the 
termio structure. See also termio(7). Location: tty-tty.h 

Cdelct 
The tty(D4X) structure member used by the tty subsystem to keep track of the number of 
delimiters found while performing semantic processing of data from a terminal. Semantic processing 
entails input validation of the characters received from a character device. Location: tty-tty.h 

T_DISCONNECf 
The constant that indicates that the driver proc(D2X) routine should disconnect a tty device. 
Location: tty.h 

Citlag 
The t ty(D4 X) structure member that corresponds to the input modes c_itlag defined in the termio 
structure and described in termio(7). Location: tty-tty.h 
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T_INPUf 
The constant that indicates the driver proc(D2X) routine should flag a terminal device to receive 
input. Location: tty.h 

Lltlag . 
The tty(D4X) structure member that corresponds to the local modes c_ltlag defined in the termio 
structure. See also termio(7). 
Location: tty-tty.h 

t_line 
The tty(D4X) structure member that holds the line discipline type specified in the c_line member 
of the termio structure. Refer to termio(7) for more information. 

t_oflag 
The tty(D4X) structure member that corresponds to the output modes c_oflag defined in the 
termio structure. See also termio(7). Location: tty-tty.h 

T_OUfPUf 
The constant that indicates the driver proc(D2X) routine should initiate output to the terminal 
device. This condition is not set irthe device is busy or 'if output has been suspended. Location: 
tty.h 

t_outq 
The tty(D4X) structure member that contains all of the data that is accepted from a terminal. 
Location: tty-tty.h 

t_pgrp 
The tty(D4X) structure member that identifies the process group associated with the device. This 
member is needed to send signals to the process group. Location: tty-tty.h 

t_proc 
The tty(D4X) structure member that holds the address of a character driver proc routine. 
Location: tty-tty.h 
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Crawq 
The tty(D4X) structure member that contains the data being sent to a tenninal. Location: tty
tty.h 

Crbuf 
The tty(D4X) structure member that is the receive buffer for a TrY device. Location: tty-tty,h 

T_RESUME 
The constant that indicates the driver proc(D2X) routine should resume output on a terminal because 
a ( crRL-q) character has been received. The TTSTOP bit in the t_state member of the tty structure 
should be cleared. Location: tty.h 

T_RFLUSH 
This constant is the same as T_UNBLOCK if TBLOCK:is set in the t_state member of the tty 
structure; otherwise, this indicator means nothing. Location: tty.h 

t_state 
The tty(D4X) structure member that maintains the internal state of the device and the driver. 
Note the t_state member is fully utilized and cannot be extended for additional state information that 
a partlculardriver may rieed._ Location: tty-tty.h 

T_SUSPEND 
The constant that indicates that the driver proc(D2X) routine should suspend output to a terminal 
because a ( crRL-s) character has been received. The TfSTOP bit in the t_state member of the tty 
'structure should be set~ Location: tty.h 

t_tbuf 
The tty(D4X) structure member is the transmit buffer for a TrY device. Location: tty-tty.h 

T_TIME 
The constant that indicates the driver proc(D2X) routine should delay timing becauSe a BREAK, 
carriage return, and so on, has completed. Location: tty.h 

T_UNBLOCK 
The constant that indicates the driver proc(D2X) routine should allows more input because the input 
queue has gone below the high-water mark. The driver proc routine resets TTXOFF and TBLOCK 
in the Cstate member of the tty structure. Location: tty.h 
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T_WFLUSH 
The constant that indicates the driver proc(D2X) routine should clear out the characters in the 
transmit buffer. Location: tty.h 

TACT' 
The flag that indicates a timeout is in progress for a TrY device. Location: t_state-t ty-tty.h 

TBLOCK 
The flag that indicates the driver has sent a control character to the tenninal to block transmission· 
from the tenninal. Location: Cstate-tty-tty.h 

TCFLSH 
The constant that flushes the input or output queue for a ITY device. It is used by ttiocom(D3X) 
and is described in the Administrator's Reference Manual under termio(7). Location: termio.h 

TCGETA 
The constant that gets and stores the parameters for a terminal. (This constant is used by ttiocom 
and is described in the Administrator's Reference Manual under termio(7).) Location: termio.h 

TCSBRK 
This constant is used as a case condition in the ttiocom function. When an ioct(2) system call 
accesses TCSBRK, ttioeom calls ttywait(D3X) to allow the UART to drain. If the argument to the 
ioctl command is zero, the driver proc(D2X) routine is called with the T _BREAK argument to send 
a break character to the device and to initiate delay timing. If the ioctl argument is other than zero 
and after the proc routine completes, control returns to the caller. Location: termio.h 

TCSETA 
The constant that sets parameters for a terminal from a structure. This constant is used by ttiocom 
and is described in the Administrator's Reference Manual under termio(7). Location: termio.h 

TCSETAW 
This Constant is a case condition in the ttiocom function that is used to wait for output to drain from 
a UART and to flush the read and write buffers before new parameters are set. Location: termio.h 
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TCXONC 
The constant that suspends output or restarts suspended output. This constant is used by ttiocom and 
is described in the Administrator's Reference lvlanual under termio(7). Location: termio.h 

termio.h 
The header file that contains information relevant to accessing a 1TY device. Location: termio.h 

TIl\IIEOUT 
The flag that indicates a delay timeout is in progress. Location: t_state-t ty-tty.h 

timeout(D3X) 
The function that suspends the execution of a process for a designated time interval. Location: 
oslclock.c 

timestmp 
The hdeda ta(D4X) structure member that puts a time stamp on a hard disk error logging table 
entry. Location: hdelog.h 

trace(7)· 
A special file that allows event records generated within the kernel to be passed to a user program so 
that the activity of a driver or other system routines can be monitored for debugging purposes. 

ttclose(D3X) 
The function that closes a TTY device. Location: iolttl.c 

ttin(D3X) 
The function that moves a character from the t_rbuf to the raw queue. Location: iolttl.c 

ttinit(D3X) 
The function that initializes a tty structure. Location: ioltty.c 

ttiocom(D3X) 
The function that examines the parameters of a TTY device. Location: ioltty.c 

ttioctl(D3 X) 
The function that changes the parameters of a TrY device. Location: iolttl.c 

Glossary GL-45 



TTIOW 
The flag that indicates the process associated with the device is sleeping, awaiting completion of 
output to the tenninal. Location: t_state--tty-tty.h 

ttopen(D3X) 
The function that opens a TrY device. Location: iolttl.c 

ttout(D3X) 
The function that moves a TrY character output queue to t_tbuf. Location: iolttl.c 

ttread(D3X) 
The function that processes an input TrY character. Location: iolttl.c 

ttrstrt(D3X) 
The function that restarts TrY output after a delay timeout. Location: iolttl.c 

tttimeo(D3X) 
The function that times a character device terminal read request. Location: ttl.c 

ttwrite(D3X) 
The function that moves a TrY character user data space to the t_outq device. Location: iolttl.c 

TfSTOP 
The flag that indicates output has been stopped by a ( crRL-s) character received from the tenninal. 
Location: t_state-tty-tty.h 

TIXOFF 
The flag that indicates the CPU has hit the high water mark in receiving data from a TrY device. 
Calls the driver proc routine with T_BLOCK as the cmd argument. Location: t_state-tty-tty.h 

TIXON 
The flag that indicates the data processed by the CPU has hit the low-water mark. Calls the driver 
proc routine with T _UNBLOCK as the cmd argument. Location: t_state-t ty-tty.h 
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ttxput(D3X) 
The function that puts characters into the TrY output buffer (Coutq). Location: ttl.c 

tty(D4X) 
The structure that maintains all information relevant to a TrY device. Location: tty.h. 

tty.h 
The header file that contains a structure used for buffering data between a tenninal device and a 
character driver. Location: tty.h 

ttyflusb(D3X) 
The function that clears the I/O queues used in a'character driver. Location: io/tty.c 

TIYHOG 
The constant that defines the maximum number of characters allowed in a TrY device's raw queue. 
Location: tty.h 

ttywait(D3X) 
The function that delays a process until an 110 operation has completed. Location: io/tty.c 

types.h 
The header file that contains data type definitions for expressions frequently used in the kernel and 
drivers. Location: types.h 

o.o_base 
The user(D4X) structure member that specifies the base address for I/O actions to and from user 
data space. Location: user-user.h 

u.u_count 
The user structure member that specifies the number of characters (bytes) not yet transferred 
during an I/O transaction. Location: user-user.h 

u.u_error 
The user structure member that returns an error code to the user (in the errno external variable). 
Valid error codes are described in intro(2), Chapter 4 of the Bel Driver Development Guide. 
Location: user-user.h 
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u.u_gid 
The us er structure member that contains the effective group identification number. This member 
provides a process with the access permissions group. Location: user-user.h 

u.u_offset 
The user structure member that specifies the offset into the file where data is being transferred to 
or from. Location: user-user.h 

u.u_procp 
The user structure member that contains the address of the proc(D4X) structure associated with 
the user process. Location: user-user.h 

u.u_qsav 
The user structure member that is an argument to the kemellongjrnp(D3X) routine. This address 
is set automatically by the operating system each time a driver is started. Location: user-user.h 

u.u_rgid 
The user structure member that identifies the real group ID. Location: user-user.h 

uou_mid 
The user structure member that identifies the real user ID. Location: user-user.~ 

u.u_segflg 
The" user structure member is an flag that determines if the user kernel initiated the I/O. Location: 
user-user.h 

u.u_Uyp 
The user structure member that contains the address of the process group member (t_pgrp) of the 
tty structure for the terminal associated with this process. Location: user-user.h 

" u.u_uid 
The user structure member that contains the effective user ID. This member provides access 
permissions of another user. Location: user-user.h 

UART See universal asynchronous receiver transmitter 
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universal asynchronous'receiver transmitter (UART) 
A circuit board chip that conveys bytes of data between a serial communications line and a 
microprocessor (for example between a 3B computer and a TrY device). In transmit mode, the 
UART reads a byte from a microprocessor's data bus and outputs the byte a bit at a time on a serial 
line for- a tenninal. In receive mode, the UART converts bit data from a serial line and forms a byte 
which is then given to the microprocessor. UARTs can generally handle data speeds between 50 bits 
per second (bps) and 19.2 thousand bps with character widths from 5 to 8 bits. 

unkseg(D3X) 
The function that frees previously allocated memory pages. Location: os/page.c 

untimeout(D3X) 
The function that cancels a previous timeout(D3X) call. Location: os/clock.c 

user.h 
The header file that contains the user(D4X) structure. Location: user.h . 

user(D4X) 
The structure that contains status information for a process. One user structure is defined for each 
process in the kernel.· The kernel uses the information for proc~ status checking. For the currently 
running process, u is used to access the members of the user block. Location: user.h 

useracc(D3X) 
The function that verifies a user data space 
The portion of kernel memory used to store data for programs executing in user space. 

user space 
The part of the operating system where programs that do not have direct access to the kernel 
structures and services execute. The UNIX operating system is divided into two major areas: the user 
program and the kernel. Drivers execute in the kernel, and the user programs that interact with 
drivers generally execute in the user program area. This space is also referred to as user data area. 

useracc(D3X) 
The function that verifies a user.has access to a requested data structure. Location: os/probe.c 

virtual protocol machine (VPM) 
A software module that handles communications to the lOA. 
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volume table of contents (VTOC) 
Lists the beginning and ending points of the disk partitions by the system administrator for a given 
disk. 

VPM See virtual protocol machine 

VTOC See volume table of contents 

vtop(D3X) 
The function that converts· a virtual address to a physical address. Location: mil mise .s 

wakeup(D3X) 
The function that resumes execution of a suspended process. Location: oslsop.c 

WOPEN 
The flag that indicates the driver is waiting for an open request to complete. 
Location: t_state-tty-tty.h 

write(2) 
The system call that stores information on a device. Information is copied from user program· space 
to a driver. This function is executed only from a user program and not from a driver. 

write(D2X) 
The routine for the bdevsw(D4X) or cdevsw(D4X) tables that conveys data from user space to 
kernel space. 

xint(D2X) 
A routine that services a transmit interrupt. 

xmtint 
The sysinfo(D4X) structure member that increments the entry to xint. 
Location: sys inf o-sysinfo.h 
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sleep(D3X) 1: 25; 9: 4; 14: 1; E: 3'6 

PCATOI usage 11: 21 
interrupt routine restrictions 10: 12 
priority argument relation to signals 11: 20 
priority values 11: 20 
recording errors wben done 1 ~: 2 

usage example in while loop 10: 23 
slot number A: 2 
smart board A: 14 
SOFf field of the master file 11: 6 
software device 1: 7 
Software Generation System E: 36 
software interrupts 10.: 3 
Source Code Control System E: 36 
special device file 1: 9; E: 36 
spl 14: 1,21 

porting considerations 15: 1 
spl*(D3X) 10: 13; 11: 7; 13: 22; E: 37 

restriction about masking clock interrupts 10: 24 
usage example 10: 23 

splbi(D3X) 9: 4; E: 37 
splx(D3X) E: 37 
sptaIloc(D3X) 6: 20; E: 37 
sptfree(D3X) 6: 20; E: 37 
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SSCA.NF(D8X) function B: 14 
stack 13: 9, 21 
standard library functions B: 14 

EXCRET(D8X) function B: 14 
GETEDT(D8X) function B: 14 
GETS(D8X) function B: 14 
GETSTAT(D8X) function B: 14 
PRINTF(D8X) function B: 14 
SSCANF(D8X) function B: 14 
STRCMP(D8X) function B: 14 

start(02X) 3: 2; 5: 21; 13: 3; E: 37 
description 5: 22 

stat function of crash 13: 8 
strategyroutine 1: 19 

coding 6: 10 
strategy routine(D2X) 1: 16 
strategy(D2X) 13: 3; E: 37 

error codes 4: 2 
error handling 11: 2 

example E: 38 
routine 3: 4; 4: 7; 6: 5, 8 

STRCMP(D8X) function B: 14 
STREAMS E: 38 
strip(l) command 11: 25 
structures 10: 16 

integrity can be destroyed 10: 22 
stub routine in the master file 11: 7 

subdevices A: 10 
one interrupt vector 10: 7 
two interrupt vectors 10: 8 

subroutines 
porting considerations 15: 3 

subyte(D3X) E: 38 
suword(D3X) E: 38 
swapping enabled 6: 8 
sWitch table 1: 3, 10; E: 38 
switch table entry points 3: 3, 7; E: 38 

• SXT line discipline 7: 4 

symbol table 5: 6 
synchronization function summary 9: 1 
synchronous (base) section of a driver 10: 21 
synchronous reads or writes 4: 11 
sysadm startmap 13: 7 

sysgen 10: 16 
system .board 

diagnostic RAM for the HRI card B: 16 
resident diagnostic files B: 15 

system buffer cache 6: 5, 8 
system buffering scheme 6: 10 

close routine 6: 10 
coding 6: 10 
coding interrupt routine 6: 10 
open routine 6: 10 



print routine 6: 10 

strategy routine 6: 10 

system buffers 

affect on system performance 14: 22 

system error log 11: 12 

system file 5: 2; 11: 19 

relation to EDT A: 1 

system initialization E: 39 

process 5: 11 

system performance 

asm 14: 17 

cc 14: 17 

critical code 14: 17 

private buffering scheme 14: 22 

resource usage 14: 1 

sleep 14: 22 

system buffers 14: 22 

tunable parameters 14: 1, 23 

system performance improvements 

sample code 14: 8 

system performance tools 14: 1 

asm 14: 1, 19-21 

profiler 14: 1 

sar 14: 3 

size 14: 2 
system priority 14: 21 

system tabl~ .5: 7 
syswait.iowait flag 9: 2 

tape drive device files 11: 11 

terminal close routines 7: 24 

terminal interrupt routines 7: 30 

terminal ioctl routin~ 7: 28 
terminal open routin~ 7: 21 

terminal proc routin~ 7: 35 
terminal read routin~ 7: 25 

terminal routin~ 7: 21 

terminal timing routines 7: 36 

terminal write routines 7: 26 

terminfo( 4) 7: 5 
termio(7) 

T 

association with rint(D2X) 10: 15 
te.rmio(7) TIME· variable 7: 15 

termio.h E: 43 

TEST 13: 5 
testing a driver 13: 1 

dummy driver 13: 2 
functionality 13: 3 

testing driver functionality 13: 3 
~ting the hardware 13: 2 

timeout(D3X) 9: 3; E: 43 

timing errors 13: 21 

touch( 1) command 11: 26, 30 

trace driver 13: 11 

trace(7) 13: 11; E: 43 

trsave 13: 11 

tt* functions 7: 5 

ttl.c, tty.c, and ciist.c 7: 1 

ttclose(D3X) E: 43 

ttin(D3X) E: 43 

caffingsequenc~ 7:11 

ttinit(D3X) E: 43 

caffing sequence 7: 15 

ttiocom(D3X) E: 43 

caffing sequence 7: 13 

ttioctl(D3X) E: 43 

caffing sequenc~ 7: 11 

ttopen(D3X) E: 44 

ttout(D3X) E: 44 

calling sequence 7: 12 

ttread(D3X) E: 44 

caffing sequences 7: 10 

ttrstrt(D3X) E: 44 

caffing sequence 7: 15 

tttimeo(D3X) E: 44 

caffing sequence 7: 12 

ttwri~D3X) E: 44 
caffing sequences 7: 10 

ttxput(D3X) E: 44 . 

c3rnng sequence 7: 12 

TTY 
device interrupts 10: 3 

devic~' 10: 16 

drivers compared to other character drivers 7: 5 

functions 7: 2 

line discipline 6: 18 

subsystem 6: 5, 18 

tty and termio structures 7: 17 

tty structure 1: 24; 7: 16 

tty(D4X) E: 45 

tty.h 6: 5; 7: 1; E: 45 

ttyflush(D3X) E: 45 

caffing sequence 7: 15 

example 11: 19 

ttywait(D3X) E: .45 
caffing sequence 7: 15 

tunable parameters 

affect on system performance 14: 23 

tunable variabl~ in a master file 11: 9 

txint 7: 5 

types.h 4: 4; E: 45 

cline 7: 4-5, 7; E: 40 

Cpgrp E: 40 
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relation to signal(D3X) 11: 19 

T_ TIME 7: 15; E: 41 

u block 4: 7; 13: 22 

u structure 4: 7 

u. u_base field E: 4S 

u.u_count field E: 4S 

u.u_error 

u 

for storing base level errors 11: 2 
u.u_error field E: 4S 

u. u_offset field E: 46 

u. u_procp field E: 46 

u3blS 11: 24 

u3b2 11: 24 

u3bacp 11: 24 

u3badp 11: 24 

u3beadp 11: 24 

DART 7: 15; E: 46 

association to CSR 10: 14 

unavailable interrupt routine functions (03X) 10: 13 

unbuffered character I/O 6: 17-18 

undefined symbols S: 6 

UNINST ALL 16: 4 
UNIT EQUIPAGE A: 6 
universal asynchronous receiver tr3;OSmitter (UART) E: 46 

unix 13:.4 

. unix file 11: 22 

unkseg(D3X) 6: 20; E: 47 

unload pointer 10: 16 

usage example 10: 17 

untimeout(03X) 9: 3; E: 47 

updates 

packaging a driver update 16: 5 

upper caseIIowercase presentation 7: 2 

user area 4: 7 

user block 4: 7 

user function of crash 13: 8 

user space 4: 7; E: 47 

user structure fields 4: 8 

user(D4X) structure 4: 7; 10: 12; 11: 4; 13: 22; E: 47 

user.h 4: 7; E: 47 

useracc(03X) E: 47 

usr/admJerrfile 11: 7 

usr/dumps 13: 7 

u_base field 4: 7 

u_count field 4: 7 

u_error 11: 1 

u_proc field 4: 8 

u_procp 

relation to psignal(03X) 11: 19 
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value of initialized global variables 13: 21 

variables set for a driver in the master file 11: 8 

VEC 

read by Iboot 10: 5 

relationsip to interrupts 10: 5 

VEC field of the master file 11: 5 

vector (interrupts) number or table 10: 5 

virtual protocol machine (VPM) E: 47 

virtuaI-to-physicai mapping 5: 12 

volume table of contents (VfOC) E: 47 
VPMSETC 13:12 • 
VfOC 11: 9 

vtop(03X) E: 48 

w 

waiting for an event 9: 1 
wakeup 1: 25; E: 48 
wakeup(D3X) 9: 5; E: 48 

servicing interrupts 10: 10 
waking up a sleeping process 9: S 
WE~ 32101 memory management unit 6: 33 
WOPEN E: 48 
word size A: 8 
word size field of the EDT A: 2 
write operation problems 13: 16 
write routine 1: 27 
write(D2X) 13: 3; E: 48 

error codes 4: 2 
example 0: 1; E: S9 

~te(D2X) routine 6: 8 
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