
UNIX® System V, Release 3
Block and Character Interface (BCI)
Driver Development Guide

,

. -- ATs.T

UNIX® System V, Release 3
Block and Character Interface (BCI)
Driver Development Guide

,

· · .. . · .. . · .. . · .. . · .. . · · ·
••••••• _ ••• a ••• · ~ .. ~. ·

• I.a • :. ;.:.~. · .. -. · · · · ·-. -... .
• ••..• ·0 •••••••••••••••••••••••••••• :~:: • . :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:. :.:.:. :.:.:.:.:.:.:.:.:.:.:.:.:~~~;~. · :~ . . ;.:.:.:.:. :. :.:.:.:.:.:.:~. · : .
...........................• ~.
::::::::::: :: ::::::::::::::::: ~ ... ,• ~. ,. · · -...................... . · ·••.. ,. · ;•...............•.......•.•. -..•........ ~.~: ..
_ -... ;:~ .. · -. · · -. . · -..... -......................... . -: -: -:.: -:.:.:.:.:.:.:.:.:.:.:.:.:. :.:.:. :.:.:.:.:.:.:.:~:.:.:.:.:.: ... : _ ..•..•..... , ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·~·;·l . · :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: .:.:.:.:.: .:.:.:.:.:.:.:.:.:.:.:~::~:: ... ~ ,., .. . · . -. . :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: .:.:.: .:. :.:. :.:.:.:.:.:.:.:.:.:.:.: .. . · · :.: · :.:.:.:.:.:.:.:. :.:. :.:.:.:,.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: ,. · :. :.:.:.:.:.: .. , ;,:. ... _ -.-.-.-..... -.-.-.-.-.-.:...-.~;:.:

-.

307-191
Issue 1
Preliminary

C1988 AT&T
Work in Progress
All Rights Reserved
Printed in U.S.A

All UNIX System V code is:
c1984 AT&T
Unpublished and Not for Publication
All Rights Reserved

Notice

Information in this document is subject to change without notice. AT&T assumes no
responsibility for any errors that may appear in this document.

ETHERNET is a registered trademark of Xerox Corporation.

UNIX is a registered trademark of AT&T.

VAX is a trademark of Digital Equipment Corporation.

WE is a registered trademark of AT&T.

For ordering information on this document or related learning support materials, see
"Related Learning Support Materials," in "About This Document."
The ordering number for this document is 307-191

Con te n ts

Abo u t T h isD 0 cum en t
About This Document 1-1
How to Use This Document 1-3
Conventions Used in This Document 1-7
Related Learning Support Materials 1-10
How to Make Comments About This Document 1-15

Introduction to UNIX Device Drivers
Introduction 2-1
Application Programs vs. Drivers 2 - 3
Types of Devices 2-6
The Block and Character Interface 2-7
Driver Environment 2-8
Example Block Driver 2 -13
Example Character Driver 2 - 20
Driver Development 2 - 29
References 2-33
System and Configuration Files 2 - 34

Drivers in the UNIX Operating System
Introduction 3-1
Driver Entry Points 3-2

iii

Header Files and Data Structures
Introduction 4-1
Header Files 4-2
Drivers and Data Structures 4-6

System and Dr.iver Initialization
Introduction 5-1
System Configuration 5 - 2
System Initialization Process 5 -11
3B4000 ABUS Bootstrap Process 5 -19
Initializing Drivers 5 - 22
Example Initialization Routines 5-24

Input/Output Operations
Introduction 6-1
Driver and Device Types· 6-2
Data Transfer 6-3
Block Device Data Transfer Methods 6-7
Character Device Data Transfer Methods 6-16
Private Buffering Schemes 6-23
Machine-Specific Memory Management Information 6-32
Scatter/Gather 110 Implementations 6-35

Drivers in the TTY Subsystem
Introduction 7-1
Line Disciplines 7 - 4
The tty Structure 7 -16
Terminal Routines 7 - 21

iv

Input/Output Control (ioctl)
Introduction 8-1
Defining I/O Control Command Names and Values 8-2
Coding the ioctl Routine 8-4
AT &T-Defined I/O Control Commands 8-7
Using I/O Control Commands With Remote File Sharing 8-15

S y n c h ron iz in g H a r d war e and So ftw are Eve n ts
Introduction 9-1
Event Synchronization and Driver Development 9-2
Using the Sleep and Wakeup Functions 9-5
Block Driver iowaitliodone Event Synchronization 9-10
timeoutluntimeout Event Synchronization 9-11
Using the delay Function 9-15
Time Constants 9-16

Interrupt Routines
Introduction 10-1
Interrupts and the UNIX Operating System 10-2
Interrupt Vectors 10 - 5
Servicing Interrupts 10-10
Writing Interrupt Routines 10-11
Writing Data Receive and Transmit Interrupt Routines 10-14
Writing Interrupt Routines for Intelligent Boards 10-16
Writing int Interrupt Routines 10-20
Preventing Interrupt Contention 10-21

Error Reporting
Introduction 11 -1
Recording Error Messages in System Structures 11 - 2
Sending Messages to the Console 11-6
Panicking the System 11 - 9

v

Writing to the Error Log (3B15 and 3B4000 Computers) 11-10
Logging Oisk Errors 11-11

In sta lIa tio n
Introduction 12-1
Installing a Driver For the First Time 12-2
Installing an Existing Driver 12 - 22
Installing a Driver for Testing 12-38
Installing a Driver in a Cross Environment 12-40
Installation of A Completed Driver 12-41
Removing a Driver 12-43

Testing and Debugging the Driver
Introduction 13-1
Testing the Hardware 13-2
Testing Driver Functionality . 13 - 3
Using crash to Debug a Driver 13-6
Debugging with TRACE [3B400 Computer Only] 13-11
Integration Testing 13-13
Common Driver Problems 13-15

Perform ance Considerations
Introduction 14-1
Tools for Checking Driver Performance 14-3
Tuning the C Code for Performance 14-5
Example of Improved C Code 14-9
Using Assembly Language in Driver Code 14-16
Drivers and System Performance 14-21

. Porting. Drivers
Introduction 15-1
Making Driver Code Portable 15-2

vi

Porting Drivers from Other Systems 15-4
Machine-Specific Function and Structure Infonnation 15-5
M1vfU Implications for Porting 15 - 6

Packaging the Driver
Introduction 16-1
Items to Check Before Running INSTALL 16-2
Installation Steps 16-3
'The Driver Update Package 16-5

Appendix A: Equipped Device Table (EDT)
Displaying the EDT A - 3
Field Comparisons of EDTs for Different Systems A -11
IdgnIedLdata, The EDT Initialization File A -12
Adding Entries to a 3B15/3B4000 Master Processor EDT A -17
Adding Devices to the SBC, 3m Computers, and the 3B4000 ACP

EDT A-18
Removing an Entry From the EDT A -23

Appendix B: Writing 3B2 Computer Diagnostics Files
Introduction to Diagnostics Programs B-3
Accessing the MCP B-6
'The Diagnostic Monitor (dgmon) B-10
Standard Library Functions B-14
Writing Diagnostic Phases B-15
Putting Diagnostic Files on a Floppy Diskette B-19
Diagnostics Source File Organization B-21
Diagnostic Phase Table B-23
Diagnostic Template B-30
Compiling Diagnostic Phases B-35
ppc_dgn.h B-37
ciofw.h B-41
cio_dev.h B-42
make.lo B-47

vii

makefile B-48
sb<Cifile B-49
hrl_phztab.c B-50
scpu_1.c B-51
scpu_2.c B-54
scpu_3.c B-56
scpu_4.c B-58
scpu_5.c B-60
scpu_6.c B-63
scpu_7.c B-65
dumrny.c B-67
make.hi B-68
iodep.h B-69
per_dgn.h B-70
phaseload. h B-73

Appendix C: System Header Files
Hardware-Independent Header Files Used in Drivers C - 2

Appendix D: Sample Character Driver
Driver Routines D-1
Character Driver Code D-2

Appendix E: Sample Block Driver
doc_ Driver Master File E-2
doc_ Driver Header File E-6
Initial Comment Block E -1 0
Global Data Structure Declarations E-13
doc_init Driver Entry Point Routine E-19
doc_initdr Subordinate Driver Routine E-28
doc_open Driver Entry Point Routine E-30
doc_close Driver Entry Point Routine E-36
doc_strategy Driver Entry Point Routine E-37
doc_iostart Subordinate Driver Routine E-42

viii

doc_int Driver Interrupt Handler E-47
doc_intr Subordinate Driver Routine E-48
doc_breakup Subordinate Driver Routine E-57
doc_read and doc_write Driver Entry Point Routines E-58
doc~ocheck, doc_copy, and doc_setblk Subordinate Driver Routines E-59
doc_ioctl Driver Entry Point Routine E-62

Glossary

Index

ix

List of Figures

Figure 1-1 Roadmap to this Document 1-3
Figure 2-1 Driver Placement in the Kernel 2-2
Figure 2-2 How Driver Routines Are Called 2-3
Figure 2-3 Files and Directories Used by Drivers 2-35
Figure 3-1 Switch Table Entry Points and System Calls 3-3
Figure 3-2 MAJOR and MINOR Tables 3-8
Figure 4-1 Error Codes by Driver Routine 4-5
Figure 4-2 Sample master File 4-18
Figure 5-1 Driver Structure 5-5
Figure 5-2 Example letclinittab File 5-16
Figure 5-3 Software Driver Initialization Routine 5-24
Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device,

part 1 0/5 5-27
Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device,

part 20/5 5-28
Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device,

part 30/5 5-29
Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device,

part 4 0/5 5-30
Figure 5-4 Initialization Routine for 3B15/3B4000 Intelligent

Device, part 5 0/ 5 5-31
Figure 6-1 Two Methods of 110 Transfer (Block) 6-7
Figure 6-2 Disk read(D2X) Routine using Physical I/O 6-14
Figure 6-3 Disk write(D2X) Routine using Physical I/O 6-15
Figure 6-4 Three Methods of I/O Transfer (Character) 6-17
Figure 6-5 Initializing a Memory Map 6-21
Figure 6-6 Allocating Memory From a Memory Map 6-22
Figure 6-7 Routines Used for a Private Buffering Scheme 6--25
Figure 6-8 Memory Allocation Routine 6-26
Figure 6-9 Freeing Private Memory Blocks 6-27
Figure 6-10 Moving a Buffer from the Pool 6-28
Figure 6-11 Returning a Buffer to the Pool 6-29
Figure 6-12 Moving Data Between the Buffer and User Address

Space 6-30

xi

Figure 6-13
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-12
Figure 7-13

Figure 7-14
Figure 7-15
Figure 7-16
Figure 7-17
Figure 7-18
Figure 7-19
Figure 7-20
Figure 7-21 .
Figure 7-22
Figure 7-23
Figure 7-24
Figure 7-25
Figure 7-25
Figure 7-25
Figure 7-26
Figure 7-27
Figure 7-28
Figure 7-29
Figure 7-30
Figure 8-1
Figure 8-1
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 10-1

Example of Accessing Dual MMU
TrY Functions
Common I/O (CIO) Functions
Example kernel Master File
Example Line Discipline Switch Table
Line Discipline Functions in Driver Routines
Standard Line Disciplines
Calling Line Discipline Functions
ttopen and ttclose Calling Sequence
ttread and ttwrite Calling Sequence
ttioctl and ttin Calling Sequence
ttout, ttxput, and tttimeo Calling Sequence
ttiocom Calling Sequence (part 1 of 2)
ttiocom Calling Sequence (part 2 of2)
ttyflush, ttinit, ttywait, canon, and ttrstrt Calling

Sequence
Operational Modes for Terminal Devices
Example fetcJinittab File
Format of a fete! gettydefs Entry
Populating the tty Operational Modes
Initializing tty Structure Default Values
Opening a tty Device
Data Connection is Terminated
Processing an Input 1TY Character
The ttwrite Function
Changing Device Parameters
ttin - Move Character to Raw Queue
A Driver Accesses ttout Function (part 1 of 3)
A Driver Accesses ttout Function (part 2 of 3)
A Driver Accesses ttout Function (part 3 of 3)
proc Routine case Statements
Restart TrY Output After a Delay
tttimeo Function
clist Buffering Scheme
Functions for Manipulating clist Buffers
Sample ioctl Routine, part 1 of 2
Sample 110 Control Command Routine, part 2 of 2
sleep - while Loop for Condition Testing
The timeout Function
The untimeout Function
delay - Allows Manual Intervention
HZ - Usage Example
lbolt - Timing an I/O Operation
time - Timing an I/O Operation
Sample Configuration

xii

6-33
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14

7-15
7-17
7-18
7-19
7-20
7-22
7-23
7-24
7-25
7-27
7-29
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
8-5
8-6
9-7
9-13
9-14
9-15
9-17
9-18
9-19
10-6

Figure 10-1 Testing Interrupt Routine Load and Unload Pointers
(part I 0/2) 10-18

Figure 10-1 Testing Interrupt Routine Load and Unload Pointers
(part 2 0/2) 10-19

Figure 10-2 Sample spl* and splx Function Calls 10-22
Figure 11-1 Writing Error Code to user Structure 11-4
Figure 11-2 Writing Error Code to buf Structure 11-5
Figure 11-3 Using cmn_err for Infonnation 11-7

. "Figure 11-4 dfprint Routine from 3B15 IDFC Driver 11-8
Figure 11-5 Using cmn_err to Panic the System 11-9
Figure 12-1 Console Driver Master File 12-3
Figure 12-2 Dummy (Stub) Routine Names 12-7
Figure 12-3 3B15 or 3B4000 MP Minor Numbers and Names for

Tape Devices 12-12
Figure 12-4 SCSI Tape Drive Device Name 12-12
Figure 12-5 Disk Drive Device Name 12-13
Figure 12-6 3B15 or 3B4000 MP Minor Numbers and Names for

Disk Devices 12-14
Figure 12-7 Typical Access Pennissions for Special Device

Files 12-15
Figure 12-8 Excerpt from Sample Prototype File 12-18
Figure 12-9 Files to Copy Before Installing a Driver 12-23
Figure 12-10 Computer Types 12-24
Figure 12-11 SBC or 3B2 Computer Hardware Driver Installation

Checklist 12-26
Figure 12-12 SBC or 3B2 Computer Software Driver Installation

Checklist 12-28
Figure 12-13 3B15 Computer or 3B4000 MP Hardware Driver

Installation Checklist 12-30
Figure 12-14 3B15 Computer or 3B4000 MP Software Driver

Installation Checklist 12-32
Figure 12-15 3B4000 Adjunct Processor Hardware Driver Installation

Checklist 12-34
Figure 12-16 3B4000 Adjunct Processor Software Driver Installation

Checklist 12-36
Figure 13-1 Defining Test Options 13-5
Figure 14-1 Using b_start to Measure Block liD Performance 14-3
Figure 14-2 read Routine Before Being Improved 14-11
Figure 14-3 Rewritten Innermost Loop for pre_read 14-13
Figure 14-4 Improved pre_read Routine 14-15
Figure A-I Testing the EDT on a 3B2 Computer A-4
Figure A-2 Sample I etclprtconf Display A-I0
Figure A-3 SBC letcledittbl Display A-12
Figure A-4 3B2 Computer letcl edittbl Display A-13
Figure A-5 SBC Subdevice Display A-I5

xiii

/'

Figure A-6 3B2 Computer Subdevice Display A-16
Figure A-7 Adding an Entry to the SBe EDT Example A-19
Figure A-8 Adding an SBe Subdevice Example A-20
Figure A-9 Adding a 3B2 Device Example (part 1 of 2) A-21
Figure A-9 Adding a 3B2 Device Example (part 2 of 2) A-22
Figure B-1 Diagnostics Files Overview B-1
Figure B-2 3B2 Diagnostic Sequence B-9
Figure B-3 Diagnostic Utility Directories B-13
Figure B-4 Utilization of System Board Diagnostic RAM for the

HR1 Card B-16
Figure B-5 System Board Diagnostic RAM Utilization for Pumped

Cards B-i8
Figure B-6 Making a Diagnostic Floppy Diskette B-19
Figure B-7 Organization of the Diagnostics Development Floppy

Disk B-20
Figure B-8 mdgn Directory B-21
Figure B-9 Diagnostic Phase Table Example B-23
Figure B-IO Loader Option File Example B-25
Figure B-ll HRI Diagnostic Phase (part 1 of 4) B-26
Figure B-ll HR1 Diagnostic Phase (part 2 of 4) B-27
Figure B-ll HR1 Diagnostic Phase (part 3 of 4) B-28
Figure B-l1 HR1 Diagnostic Phase (part 4 of 4) B-29
Figure B-12 Pass-Fail Control Statements B-34
Figure E-l doc_ Master File (part 1 of 2) E-3
Figure E-I doc_ Master File (part 2 of 2) E-4
Figure E-2 doc_.h Header File (part 1 of 4) E-6
Figure E-2 doc_.h Header File (part 2 of 4) E-7
Figure E-2 doc_.h Header File (part 3 of 4) E-8
Figure E-2 doc_.h Header File (part 4 of 4) E-9
FigureE-3 Revision History (part 1 of 3) E-I0
Figure E-3 Revision History (part 2 of 3) E-ll
Figure E-3 Revision History (part 3 of 3) E-12
Figure E-4 doc_ Global Data Structure Declarations

(page 1 of6) E-13
Figure E-4 doc_ Global Data Structure Declarations

(page 2 of6) E-14
Figure E-4 doc_ Global Data Structure Declarations

(page 3 of6) E-15
Figure E-4 doc_ Global Data Structure Declarations

(page 4 of6) E-16
Figure E-4 doc_ Global Data Structure Declarations

(page 5 of6) E-17
Figure E-4 doc_ Global Data Structure Declarations

(page 6 of6) E-18
Figure E-5 doc_init Entry Point Routine (part 1 of 8) E-20

xiv

Figure E-5 doc_init Entry Point Routine (part 2 of 8) E-21
Figure E-5 doc_init Entry Point Routine (part 3 of 8) E-22
Figure E-5 doc_init Entry Point Routine (part 4 of 8) E-23
Figure E-5 doc_init Entry Point Routine (part 5 of 8) E-24
Figure E-5 doc_init Entry Point Routine (part 6 of 8) E-25
Figure E-5 doc_init Entry Point Routine (part 7 of 8) E-26
Figure E-5 doc_init Entry Point Routine (part 8 of 8) E-27
Figure E-6 doc_initdr Subordinate Driver Routine

(part 1 of2) E-28
Figure E-6 doc_initdr Subordinate Driver Routine

(part 2 of2) E-29
Figure E-7 doc_open Routine (part 1 of 6) E-30
Figure E-7 doc_open Routine (part 2 of 6) E-31
Figure E-7 doc_open Routine (part 3 of 6) E-32
Figure E-7 doc_open Routine (part 4 of 6) E-33
Figure E-7 doc_open Routine (part 5 of 6) E-34
Figure E-7 doc_open Routine (part 6 of 6) E-35
Figure E-8 doc_close Entry Point Routine E-36
Figure E-9 doc_strategy Driver Entry Point Routine

(part 1 of 5) E-37
Figure E-9 doc_strategy Driver Entry Point Routine

(part 2 of 5) E-38
Figure E-9 doc_strategy Driver Entry Point Routine

(part 3 of 5) E-39
Figure E-9 doc_strategy Driver Entry Point Routine

(part 4 of 5) E-40
Figure E-9 doc_strategy Driver Entry Point Routine

(part 5 of 5) E-41
Figure E-10 doc_iostart Subordinate Routine (part 1 of 5) E-42
Figure E-10 doc_iostart Subordinate Routine (part 2 of 5) E-43
Figure E-10 doc_iostart Subordinate Routine (part 3 of 5) E-44
Figure E-10 doc_iostart Subordinate Routine (part 4 of 5) E-45
Figure E-10 doc_iostart Subordinate Routine (part 5 of 5) E-46
Figure E-11 doc_int Driver Interrupt Handler E-47
Figure E-12 doc_intr Subordinate Driver Routine (part 1 of 9) E-48
Figure E-12 doc_intr Subordinate Driver Routine (part 2 of 9) E-49
Figure E-12 doc_intr Subordinate Driver Routine (part 3 of 9) E-50
Figure E-12 doc_intr Subordinate Driver Routine (part 4 of 9) E-51
Figure E-12 doc_intr Subordinate Driver Routine (part 5 of 9) E-52
Figure E-12 doc_intr Subordinate Driver Routine (part 6 of 9) E-53
Figure E-12 doc_intr Subordinate Driver Routine (part 7 of 9) E-54
Figure E-12 doc_intr Subordinate Driver Routine (part 8 of 9) E-55
Figure E-12 doc_intr Subordinate Driver Routine (part 9 of 9) E-56
Figure E-13 doc_breakup Subordinate Routine E-57
Figure E-14 doc_read Entry Point Routine E-58

.xv

Figure E-15
Figure E-16
Figure E-17
Figure E-18
Figure E-19
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20
Figure E-20

doc_write Entry Point Routine
doc~ocheck Subordinate Driver Routine
doc_copy Subordinate Driver Routine
doc_setblk Subordinate Driver. Routine
Excerpt of sys/vtoc.h Header File
doc_ioctl Entry Point Routine (part I of /3)
doc_ioctl Entry Point Routine (part 2 of /3)
doc_ioctl Entry Point Routine (part 3 of 13)
doc_ioctl Entry Point Routine (part 4 of 13)
doc_ioctl Entry Point Routine (part 5 of /3)
doc_ioctl Entry Point Routine (part 6 of /3)
doc_ioctl Entry Point Routine (part 7 of /3)
doc_ioctl Entry Point Routine (part 8 of /3)
doc_ioctl Entry Point Routine (part 9 of /3)
doc_ioctl Entry Point Routine (part /0 of /3)
doc_ioctl Entry Point Routine (part /1 of /3)
doc_ioctl Entry Point Routine (part /2 of /3)
doc_ioctl Entry Point Routine (part /3 of /3)

xvi

E-58
E-59
E-60
E-61
E-62
E-63
E-64
E-65
E-66
E-67
E-68
E-69
E-70
E-71
E-72
E-73
E-74
E-75

List of Tables

Table 1-1
Table 1-2
Table 1-3
Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 4-1
Table 4-2
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 5-1
Table 6-1
Table 6-2
Table 8-1
Table 8-1
Table 8-1
Table 8-1
Table 8-1
Table 8-1
Table 8-1
Table 8-1
Table 9-1
Table 9-2
Table 9-3
Table 10-1
Table 10-2
Table 11-1

Textual Conventions Used In This Book
Location of uts Subdirectories
Reference Manual Select Codes
Driver Entry Point Routines
System Files Used By Drivers
Switch Table Entries for Non-Coded Routines
Displaying External Major Numbers
Ranges for Major Numbers
Header Files Used by All Drivers
Driver Error Codes
Driver Error Codes
Common Data Types
Common Driver Header Files
Fields in the user Structure
Fields in the proc Structure
Fields in the buf Structure
Fields in the iobuf Structure
Directories and Files Called by I etclinittab
Memory Map Management Routines
Memory Page Allocation and Deallocation
AT&T Defined I/O Control Commands
AT&T Defined I/O Control Commands continued
AT&T Defined I/O Control Commands continued
AT&T Defined I/O Control Commands continued
AT&T Defined I/O Control Commands continued
AT&T Defined I/O Control Commands continued
AT&T Defined I/O Control Commands continued
AT&T Defined I/O Control Commands continued
Synchronization Function Summary
wakeup Calls in Functions
sleep Priority Levels
Subdevices With One Interrupt Vector
Unavailable Interrupt Routine Functions (D3X)
Driver Error Codes

xvii

1-7
1-9
1-12
2-33
2-36
3-4
3-5
3-6
4-2
4-3
4-4
4-5
4-7
4-9
4-10
4-11
4-12
5-17
6-19
6-20
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
9-2
9-8
9-9
10-7
10-13
11-3

Table 11-2
Table 13-1
Table 15-1
Table 15-2
Table A-I
Table A-2
Table A-3
Table A-4
Table A-5
Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table D-l
Table E-1
Table E-2
Table E-3

Error Codes Mapped to Function Return Values
Saving Core Image of Memory
C Preprocessor System Definitions
Machine-Specific Functions
EDT Display Commands
3B4000/3B15 getedt Listing
3B4000 ACP getedt Listing
I/O Bus Types
EDT Fields By System
Diagnostic Indicator LED Patterns
Interactive MCP Commands
dgmon Commands
Standard Library Function Subset Summary
Physical Address Assignment on Expansion Slots
HRI Feature Card Usable Addresses
Driver Routines
doc_ Driver Routine Summary
DEPENDENCIESIV ARIABLES Declarations
Buffer Header Members Restored by doc_close

Routine

xviii

11-4
13-7
15-2
15-5
A-3
A-5
A-8
A-9
A-II
B-4
B-7
B-12
B-14
B-32
B-32
D-I
E-1
E-5

E-36

Chapter I: About This Document

Contents

About This Document I-I

Driver Development Series 1-1
Systems Supported 1-1
Purpose 1-2
Intended Audience 1-2
Prerequisite Skills and Knowledge 1 - 2

How to Use This Document 1-3

Conventions Used in This Document 1-7

Conventions for Referencing Manual Pages 1-8
Path N arne Conventions 1-8

uts 1-9

Related Learning Support Materials 1-10

Related Documents 1-10
How to Order Documents 1-13
Related Training 1-13
How to Receive Training Information 1-14

About This Document 1-i

How to Make Comments About This Document 1-15

1- ii BCI Driver Development Guide

About This Document

The AT&T Block and Character interface (BCI) Driver Development Guide (shortened hereafter to
BCI Driver Development Guide) provides information needed to write, install, and debug drivers in
the UNIX® System V environment. It supplements the AT&T Block and Character Interface (BCI)
Driver Reference Manual (shortened hereafter to BCI Driver Reference Manual) with general
information and guidelines on writing, installing, and debugging drivers. It also includes background
information on such topics as how drivers are configured into the operating system at· boot time, how
the operating system accesses driver entry point routines, and the different I/O transfer schemes (with
or without kernel buffering). For more information about this document, see the 'How to Use This
Document" section in this chapter.

Driver Development Series

The BCI Driver Development Guide is part of the AT&T Driver Development Series. The
Block/Character Interface (BCI) Driver Reference Manual is a companion manual to this book. Other
documents in this series include the AT&T Portable Driver Interface (PDI) Reference Manual and the
AT&T SCSI Driver Interface (SDI) Reference Manual, which are listed in the ''Related Documents"
section at the end of this chapter.

System s Supported

This document supports driver development among many different AT&T computers. Although
most of the information presented in this book is applicable to any UNIX System V computer, the
manual contains examples and information specifically for the following computers and releases:

• WE® 321SB Single-Board-Computer (SBC), UNIX System VIVME Release 3.1

• AT&T 3B2/300 Computer, UNIX System V Release 3.1

• AT&T 3B2/400 Computer, UNIX System V Release 3.1

• AT&T 3B2/500 Computer, UNIX System V Release 3.1

• AT&T 3B2/600 Computer, UNIX System V Release 3.1

• AT&T 3B15 Computer, UNIX System V Release 3.1.1

• AT&T 3B4000 Computer, UNIX System V Release 3.1.1

About This Document 1-1

About This Document

Note the following about textual references to various systems:

• The tenn 3B2 computer is used for infonnation that is the same for all models of the
3B2 computer. The model number is specified only when information is not the same
for all models.

• The 3B15 computer and 3B4000 Master Processor (MP) share the same kernel, so most
driver infonnation that pertains to one pertains to both. When the information is
applicable to only one or the other system, it is so stated.

• The tenn adjuncts applies to the Adjunct Communications Processor (ACP), Adjunct
Data Processor (ADP), and 3B4000 Enhanced Adjunct Data Processor (EADP).
Information that is applicable to only certain adjuncts is so marked.

Purpose

The Bel Driver Development Guide provides the information needed to write, install, and debug
device drivers in the UNIX System V environment.

Intended Audience

Both this book and the Bel Driver Reference Manual are written for advanced C programmers who
write and maintain UNIX system drivers.

Prerequisite Skills and Knowledge

It is assumed that you are proficient with the advanced capabilities of the C programming language
(including bit manipulation, structures, and pointers) and familiar with UNIX system internals. A
number of documents and courses on these topics are available from AT&T. They are listed later in
this chapter.

1-2 BCI Driver Development Guide

How to Use This Docum ent
Figure 1-1 is a high-level roadmap to the topics covered in this book.

No

Read
Chapter 2,

'1ntroduction to
Writing UNIX
System Device

Drivers"

Read manual
for the

device for
which the
driver is

being written

Read
Chapter 3,
''Drivers in
the UNIX
Operating

System"

See

Read
Chapter 4,

"Header Files
and Data

Structures"

See
Read Appendix Appendix

Chapters C, D,
4-11, as "System "Sample

appropriate Header Character
Files" Driver"

Read
Appendix C,

"System
Header
Files"

See
Appendix

E,
"Sample
Block

Driver"

Read Chapter 12,
"Installation"

Read Chapter 13,
''Testing and Debugging"

See
Appendix A,

'''The Equipped
Device

Table (EDT)"

See
Chapter 3,

''Drivers in the
UNIX Operating

System"

Read

See
AppendixB,
'Writing 3B2

Computer
Diagnostic Files'

Yes
Chapter 14,

''Performance Considerations"

Yes

Yes

Read
Chapter 15,

''Porting Drivers"

Read
Chapter 16,

''Packaging the Driver"

Figure 1-1 Roadmap to this Document

About This Document 1-3

How to Use This Document

This rest of this chapter describes the conventions used in this document, related learning support
materials and how to order them, and how to give us your comments about the BCI Driver
Development Guide.

After this introductory chapter, this manual is organized as follows:

Chapter 2, Introduction to Writing UNIX System Drivers
describes the process of writing a driver, including an outline of steps taken and general
guidelines that driver writers should follow.

Chapter 3, Drivers in the UNIX Operating System
discusses how master files are created and how drivers interlace with the operating
system.

Chapter 4, Header Files and Data Structures
describes the use of system and driver-specific header files, and the relationship between
data structures and drivers. Chapter 4 introduces some standard system header files
delivered with the UNIX operating system that define error code, parameter, and data
structure information for all drivers, and describes the standard system data structure
fields frequently accessed by driver routines.

Chapter 5, System and Driver Initialization
discusses the self-configuration and system initialization processes. System initialization
initializes the kernel and drivers, creates process 0, executes the init(lM) process, and
starts the system processes.

Chapter 6, Input/Output Operations
provides general information on data transfer methods between the kernel and devices,
and between user space and the kernel; detailed information on block data transfer
methods, including information on character or physical I/O for a block device; detailed
information on character data transfer methods, including information on buffered and
unbuffered character I/O, and on allocating local driver memory; detailed information on
creating a private buffering scheme; information on processor-specific memory
management facilities; and information on scatter/gather I/O implementations.

Chapter 7, Drivers in the TrY Subsystem
describes the components of the TIY subsystem. The 1TY subsystem is a collection of
functions and the driver proc(D2X) routine that are used to transfer information
character-by-character between a CPU and a peripheral, such as a terminal or printer.

Chapter 8, Input/Output Control (ioetl)
discusses the ioctl routine, which usually controls device hardware parameters and
establishes the protocol used by the driver, and its relationship to the ioctl(2) system call.

1-4 Bel Driver Development Guide

How to Use This Document

Chapter 9, Synchronizing Hardware and Software Events
discusses how to use kernel functions, such as sleep and wakeup, that synchronize
hardware and software events.

Chapter 10, Interrupt Routines
discusses servicing interrupts, preventing interrupts, interrupt vectors, and writing
interrupt routines.

Chapter 11, Error Reporting
introduces interrupt handling and provides guidelines for writing interrupt handling
routines.

Chapter 12, Installation
describes how to compile and install a driver and remove it from the system.

Chapter 13, Testing and Debugging the Driver
describes the general testing process and the debugging tools that are available for driver
writers. It also discusses common driver bugs and gives suggestions for resolving them.

Chapter 14, Performance Considerations
discusses ways of checking and improving the performance of your driver as well as
information on modifications that may be needed to maintain acceptable system
performance when your driver is installed.

Chapter 15, Porting Drivers
summarizes the machine-specific features that must be considered when porting drivers
among machines and provides instructions for writing a driver that ports easily between
machines.

Chapter 16, Packaging the Driver
summarizes what to include in the software package that includes driver code.

Appendix A, The Equipped Device Table (EDT)
describes the Equipped Device Table (EDT). The EDT is a table in the private memory
associated with the CPU that lists all hardware devices present on the system (except
memory cardslboards).

Appendix B, Writing 3B2 Computer Diagnostics Files
explains how to write the files that test the integrity of a 3B2 computer feature card.

Appendix C, System Header Files
lists the system header files (from lusrlincludelsys directory and subdirectories) that can
be used in driver code. It includes a number of header files for system data structures
and structures associated with drivers that are bundled with the UNIX operating system.

Appendix D, Sample Character Driver
provides the code for a serial driver that interacts with a Dual Universal Asynchronous
Receiver-Transmitter (DUART), such as that used by a terminal.

About This Document 1-5

How to Use This Document

Appendix E, Sample Block Driver
provides the code for a disk controller driver (doc_driver) that runs on the SBC
computer. This is an example of a hardware driver for a block-access device that also
supports character access.

A Glossary and Index are also included at the end of this book.

1-6 BCI Driver Development Guide

Conventions Used in This Document

Table 1-1 lists the textual conventions used in this book. These conventions are also used in the Bel
Driver Reference Manual.

Table 1-1 Textual Conventions Used In This Book

Item Style Example
C Bitwise Operators (1&) CAPITALIZED OR

C Commands Bold typedef
C typedef Declarations Bold caddr t

Driver Routines Bold strategy routine
Error Values CAPITALIZED EINTR
File Names italics lusrlinclude/ sys/ conf.h

Flag Names CAPITALIZED B_WRITE

Kernel Macros Bold minor
Kernel Functions Bold ttopen

Kernel Function Arguments Italics bp

Keyboard Keys (Key] (crRL-d)
Structure Members Bold u base

Structure Names constant Width tty structure

Sytnbolic Constants CAPITALIZED NULL
UNIX System C Commands Bold (section reference) ioctl(2)

UNIX System Shell Commands Bold layers(1)
User-Defined Variable Italics prefzxclose

About This Document 1-7

Conventions Used in This Document

Con ve n tio n s Co r R e Ce r e n c in g Man u a I P age s

The BCI Driver Reference Manual, the most closely related document to the BCI Driver Development
Guide, is divided into four, alphabetically-arranged reference manual sections that provide specific
information (routines, functions, and data structures) for driver writers:

D2X describes the system entry point routines that comprise the driver code.

D3X describes the kernel functions that are used in BCI driver code. Whereas user-level code
uses system calls and library routines, driver code uses the kernel functions listed here.

D4X describes the kernel data structures that BCI drivers interface.

D8X describes the standard library functions used to write a diagnostics file for a 3B2 computer
custom feature card. This section is also applicable to the 3B4000 ACP.

Throughout the BCI Driver Development Guide are references to the BCI Driver Reference Manual.
Routines, functions, structures, and commands covered in the BCI Driver Reference Manual are used
in this text with a reference to the appropriate BCI Driver Reference Manual section number. For
example, open(D2X) refers to the driver entry point routine open page. The D in the (D2X)
reference indicates that the routine, function, structure, or command is covered in the BCI Driver
Reference Manual. The number following the D indicates the section number. For example,
open(D2X) refers to the driver entry point open page, which is in Section 2 of the BCI Driver
Reference Manual. If a routine, function, structure, or comment is in a UNIX System V Reference
Manual, the section number alone appears in parenthesis. For example, the open(2) system call
reference page is in Section 2 of the UNIX System V Programmer's Reference Manual.

See the introduction to any driver reference manual for a full explanation of the section numbers in
the reference manuals for other driver interfaces.

Path Name Conventions

This document is designed to be applicable for 3B computers. Differences among machines are
documented where appropriate. Because of the nature of the multiprocessing 3B4000 computer, it
must be set up a little differently from the uniprocessing systems (such as the 3B2 or SBC computers).
One of the most apparent places this shows up is in the paths to various files and directories
mentioned in this document. Whenever you see a path name specified, it is the path name of a

1-8 BCI Driver Development Guide

Conventions Used in This Document

uniprocessing UNIX system. For the multiprocessing 3B4000 computer, you can assume that the
path name is the same for the multiprocessing host or that this path name is prefaced by adjlpe#1
where # stands for the adjunt processor number. For example:

letclmaster.d directory means:
on a uniprocessing system: I etclmaster.d
on the 3B4000 adjunts: ladjlpe#letclmaster.d

u ts

The UNIX system convention stores operating system and driver source code in subdirectories under
the lusrlsrcluts directory. To support cross-environment development (developing software for one
system on a different system), the uts directory has subdirectories that specify the system name, with
each UNIX system kernel (3B2, 3B15, SBC, and so forth) having a unique name for this directory.
In addition, each type of 3B4000 adjunct processing element has its own uts subdirectory where
operating system and driver code for that type of adjunct processor is stored.

Table 1-2 Location of uts Subdirectories

Com)tuter Kernel Source Code
SBC lusrlsrdutsl3b2100vrne
3B2 lusrlsrdutsl3b2

3B15 lusrlsrdutsl3b 15
lusr/srdutslcom

3B4000 MP lusrlsrdutsl3b 15
lusrlsrdutslcom

3B4000 ACP lusrlsrdutslacp

3B4000 EADP lusrlsrdutsleadQ

3B4000 ADP lusrlsrdutsladp

A file's exact location in these directories may vary between releases so be sure to consult the
documentation supplied with your computer.

About This Document 1-9

Related Learning Support Materials

AT&T offers a number of documents and courses to support users of our systems. For a complete
listing of available documents and courses, see:

AT&T Computer Systems Documentation Catalog (300-000)
AT&T Computer Systems Education Catalog (300-002)

The following list highlights documents and courses that are of particular interest to device driver
writers. Most documents listed here are available from the AT&T Customer Information Center
(euIe). Documents available from euIe have an ordering code number, which is the six-digit
number in parentheses following the document title. In addition to AT&T documents, the following
list includes some commercially-available documents that are also relevant.

This document is the AT&T UNIX System V Block/Character Interface (BCI) Driver Development
Guide. Its ordering code number is 307-191.

Related Documents

Driver Development

UNIX System V Block/Character Interface (BCI) Driver Reference Manual (307-192)
includes reference material to be used in conjunction with this manual. Describes driver
entry point routines (Section D2X), kernel-level functions used in BCI drivers (Section
D3X), data structures accessed by BCI drivers (Section D4X), and standard library
functions used to write a diagnostics file for a 3B2 computer custom feature card (D8X).

UNIX System V Portable Driver Interface (PDI) Driver Design Reference Manual (305-014)
defines the kernel functions, routines, and data structures used for developing block drivers
that adhere to the UNIX System V, Release 3, Portable Driver Interface.

/

UNIX System V SCSI Driver Interface (SDI) Driver Design Reference Manual (305-009)
defines the input/output controls, kernel functions, and data structures used for developing
target drivers to access a SCSI device.

STREAMS

UNIX System V STREAMS Primer (307-299)
provides an introduction to using the STREAMS driver interface and accessing STREAMS
devices from user-level code.

1-10 BCI Driver Development Guide

Related Learning Support Materials

UNIX System V STREAMS Programmer's Guide (307-227)
tells how to write drivers and access devices that use the STREAMS driver interface for
character access.

C Programming Language and General Programming

Bentley, Jon Louis, Writing Efficient Programs (320-004), NJ, Prentice-Hall, 1982.
gives suggestions for coding practices that improve program perfonnance. Many of these
ideas can be applied to driver code.

Kernighan, B. and D. Ritchie, C Programming Language, Edition 1 (307-136), NJ, Prentice-Hall,
1978. defines the functions, structures, and interfaces that comprise the C programming
language in different UNIX system environments. A short tutorial is included.

Lapin, J. E., Portable C and UNIX System Programming, NJ, Prentice-Hall, 1987
discusses how to maximize the portability of e language programs.

UNIX System V Network Programmer's Guide (307-230)
provides detailed information, with examples, on the Section 3N library that comprises the
UNIX system Transport Level Interface (TLI).

UNIX System V Programmer's Guide (307-225)
includes instructions on using a number of UNIX system utilities, including make and the
Source Code Control System (SeCS).

Assembly Language

AT&T 38213B513BI5 Computers Assembly Language Programming Manual (305-000)
a description of the assembly language instructions used by most AT&T computers.

WE 32100 Microprocessor Information Manual, Maxicomputing in Microspace (307-730)
introduces the WE 32100 microprocessor and summarizes its available support products.

Operating System

Bach, Maurice J., Design of the UNIX Operating System (320-044), NJ, Prentice-Hall, 1986
discusses the internals of the UNIX operating system, including an explanation of how
drivers relate to the rest of the kernel.

UNIX System V Reference Manuals (see the table below for ordering numbers
the standard reference materials for various releases of the UNIX System V operating
system. This infonnation is divided between three books, published separately for each
system.

System Administrator's Reference Manual
administrative commands (Section 1M), special device files (Section 7), and
system-specific maintenance commands (Section 8).

About This Document 1-11

Related Learning Support Materials

Programmer's Reference Manual
programming commands (Section 1), system calls (Section 2), library routines
(Section 3), file fonnats (Section 4), and miscellaneous information (Section 5)

User's Reference Manual
all UNIX system user-level commands (Section 1)

Table 1-3 gives the select codes for the UNIX System V reference manuals that are published for
each AT&T computer covered in this documentation.. .

Table 1-3 Reference Manual Select Codes

Computer UNIX System V Reference Manual
System Release Administrator's Programmer's User's
SBC 3.1 307-056 307-053 307-057
3B2 3.1 305-570 307-013 307-012
3B15 3.1.1 305-205 305-212 305-205 t
3B4000 3.1.1 305-205 305-212 305-205 t

t For the 3B15 and 3B4000 computers, UNIX System V Release 3.1.1, the User's and Administrator's Reference Manuals arc published as

one volume.

Single Board Computer (SBC)

UNIX System VIVME System Builder's Reference Guide (307-068)
gives important information needed to write drivers for the SBC computer, including the
firmware interface, system operation, trouble shooting, and diagnostics.

Software Packaging

UNIX System V Application Software Packaging Guide (305-001)
a cross product book describing how to write the INSTALL and DEINST ALL scripts
necessary to install a driver (or other software) under the System Administration utility.

1-12 BCI Driver Development Guide

Related Learning Support Materials

How to Order Documents

To order the documents mentioned above

• within the continental United States, callI (800) 432-6600

• outside the continental United States, callI (317) 352-8556

• in Canada, callI (800) 255-1242

Related Training

Driver Development

UNIX System V Release 2 Device Drivers (UaCSI0I0)
explores device driver mechanisms, operating system supplied functions, and example device
driver source code.

UNIX System V Release 3 Device Drivers (UaCS1D41)
explores device driver mechanisms, operating system supplied functions, and example device
driver source code. .

C Programming

C Language/or Experienced Programmers (UaCS1001)
covers all constructs in C language.

Internal UNIX System Calls and Libraries Using C Language (UaCS1011)
Introduces the techniques used to write C language programs. Topics include the execution
environment, memory management, input/output, record and file locking, process
generation, and interprocess communication (IPC).

Operating System

Concepts of UNIX System Internals (CSI019)
overviews the main structures and concepts used internally by the UNIX operating system.

UNIX System V Release 2 Internals (UaCS1012)
an in-depth look at the UNIX System V Release 2 internal structures, concepts, and source
code.

UNIX System V Release 3 Internals (UaCSID42)
an in-depth look at the UNIX System V Release 3 internal structures, concepts, and source
code.

About This Document 1-13

Related Learning Support Materials

How to Receive Training Information

To receive infonnation (such as registration information, schedules and price lists, or ordering
instructions) about UNIX system or AT&T computer training

• within the continental United States, callI (800) 247-1212

• outside the continental United States, call 1 (201) 953-7554

1-14 BCI Driver Development Guide

How to Make Comments About This Document

Although AT&T has tried to make this document fit your needs, we are interested in your
suggestions to improve this document. Comments cards have been provided in the front of the
document for your use. If the comment cards have been removed from this document, or you have
more detailed comments you would like to give us, please send the name of this document and your
comments to:

AT&T
4513 Western Avenue
Lisle, IL 60532
Attn: District Manager--Documentation

About This Document 1-15

Chapter 2: Introduction to UNIX Device Drivers

Contents

Introduction 2-1

What is a Device Driver? 2 - 2

Application Programs vs. Drivers

Structure 2 - 3
Parallel Execution 2-4
Interrupts 2 - 4
Driver as Part of the Kernel 2 - 5

2-3

Types of Devices 2-6

Hardware Devices 2-6
Software Devices 2-6

The Block and Character Interface

Alternative Interfaces 2-7

2-7

Driver Environment 2-8

Configuration 2 - 8

.. Introduction to UNIX Device Drivers 2- i

Driver Structures 2 - 9
Driver Prefix 2-9

Initialization 2 - 9
Driver Header Files (1) 2-10
Memory Allocation (2) 2-11
Messages (3) 2-11
Other init Responsibilities 2-11

Example Block Driver

Base-Level Operation 2-13
The open Routine 2 -14

Validating the Minor Device Number 2-15
Writing Errors to the user Structure 2-15
Setting Up a Buffer 2-15
The Buffer Header 2-16
Other open Routine Responsibilities 2-16

The Strategy Routine 2-17
Check for Valid Block 2 -17
Reading and Writing Data 2-18
The 'iodone Function 2-18

The close Routine 2-19

Example Character Driver

Line Disciplines 2 - 20
The open Routine 2 - 21

Header Files 2 - 21
Declare Device Register Structure 2 - 22
Get Device Registers 2-22
Get Port Number 2-22
Initialize tty Structure 2 - 22
Wait for Physical Connection 2-23
The sleep Function 2-23
Call Line Discipline 2 - 24

The close Routine 2 - 24
The read Routine 2 - 24
The proc Routine 2-25

2-ii BCI Driver Development Guide

2-13

2-20

The write Routine 2 - 25
I/O Controls (The ioctl Routine) 2-25

Get tty Structure 2 - 26
Check tty Structure for Errors 2 - 26
Get Device Registers 2 - 26

Interrupt Routines 2 - 27
Setting Priority Levels 2 - 27

Driver Development

Basic Steps for Creating a Driver 2 - 29
Commenting Driver Code 2-30
Layered Structure 2 - 31
Driver Functions 2 - 31
Utilize Board Intelligence 2-31

References

System and Configuration Files

2-29

2-33

2-34

Introduction to UNIX Device Drivers 2 - iii

Introduction

This chapter introduces most of the basic concepts a programmer should understand before
attempting to write a UNIX system device driver. Each major topic is covered more fully in later
chapters; experienced driver writers may wish to tum directly to these detailed discussions. This
chapter gives an experienced C programmer an overview of how to write a device driver, by showing

• how device drivers resemble and differ from application programs

• the different types of device drivers, and what they have in common with each other

• what files must be created or modified so that a driver may be installed on a system

• two example drivers that illustrate the main components of most drivers and what those
components typically do

• some guidelines for developing a driver

Introduction .to UNIX Device Drivers 2-1

Introduction

W hat is a Device Driver?

To most programmers using the UNIX system, a device driver is part of the operating system. The
applications programmer is usually concerned only with opening and closing files and reading and
writing data. These functions are accomplished through standard system calls from a high-level
language. The system call gives the application program access to the kernel, which identifies the
device containing the file and the type of lIO request. The kernel then executes the device driver
routine provided to perform that function.

Device drivers isolate low-level, device-specific details from the system calls, which can remain
general and uncomplicated. Because there are so many details for each device, it is impractical to
design the kernel to handle all possible devices. Instead, a device driver is included for each
configured device. When a new device or capability is added to the system, a new driver must be
installed.

USER LEVEL

I

I
I SYSTEM CALL INTERFACE
I
~-------------T------- ______ a

I
FILE SUBSYSTEM

I PROCESS CONTROL
I I SUBSYSTEM
I I

KERNEL LEVEL ~-------------~-------------I
I DEVICE DRIVERS
I

~---------------------------I
I HARDWARE CONTROL
I
I

HARDWARE LEVEL

Figure 2-1 Driver Placement in the Kernel

Figure 2-1 shows how a driver provides a link between the user level and the hardware level. By
issuing system calls from the user level, a program accesses the file and process control subsystems,
which, in turn, access the device driver. The driver provides and manages a path for the data to or
from the hardware device, and services interrupts issued by the device's controller.

2-2 BCI Driver Development Guide

Application Programs vs. Drivers

This book is intended for experienced C programmers. All code examples are in the C language, and
it is quite possible to write your entire driver in C. However, there are some major differences
between writing a device driver and writing a program designed to execute at the user level. This
section reviews some of those differences and introduces some of the system facilities used in driver
development.

Structure

The most striking difference between a driver and a user-level program is its structure. An
application program is compiled into a single, executable image whose top-level structure is
determined by a main routine. Subordinate routines are called in the sequence controlled by the
main routine.

A driver, on the other hand, has no main routine. Rather, it is a collection of routines installed as
part of the kernel. But if there is no main routine to impose structure, how do the driver's routines
get called and executed?

Driver routines are called on an "as needed" basis in response to system calls or other requirements.
System data structures, called switch tables, contain the starting addresses for the principal routines
included in all drivers. In a·switch table, there is one row for each driver, and one column for each
standard routine. The standard routines are called entry point routines, referring to the memory
address where the routine is entered. The kernel translates the arguments of the system call into a
value used as an index into the switch table.

Switch Table

User issues open close · ..
system call to

A
Device A I

open device open close · ..
I open close · ..

B

I Device B
C

I

~ DriverC H Device C I ~ open routine: :
Figure 2-2 How Driver Routines Are Called

For example, when a user process issues a system call to open a file on a device that has a driver, the
request is directed to the switch table entry for an open of the device drive containing the file (see
Figure 2-2.). This routine is then executed, giving the process access to the file.

Introduction to·UNIX Device Drivers 2-3

Application Programs vs. Drivers

Parallel Execution

When an application program is running, the statements making up the program are executed one at
a time, in sequential order. Program control structures (loops and branches) repeat statements and
may branch to alternative sections of code, but the important point is that at any given instant only
one statement and one routine is being executed. This is true even of different instances of a
program being run by two users at the same time (for example, a text editor). As each process is
assigned a scheduled slot of CPU time, the statements are executed in the order maintained for that
invocation of the program.

Drivers, however, are part of the kernel and must be ready to run as needed at the request of many
processes. A driver may receive a request to write data to a disk while waiting for a previous request
to complete. The driver code must be designed specifically to respond to numerous requests without
being able to create a separate executable image for each request (as a text editor does). The driver
does not create a new version of itself (and its data structures) for each process, so it must anticipate
and handle contention problems resulting from overlapping I/O requests.

Interrupts

For the most part, the real work of a device driver is moving data between user address space and a
hardware device, such as a disk drive or a tenninal. Because devices are typically very slow
compared to the CPU, the data transfer may take a long time. To overcome this, the driver nonnalJy
suspends execution of the process until the transfer is complete, freeing the CPU to attend to other
processes. Then, when the data transfer is complete, the device sends an interrupt, which tells the
original process that it may resume execution.

The processing needed to handle hardware interrupts is another of the major differences between
drivers and application programs. Later in this chapter, a simplified model of an interactive terminal
driver is given that a describes how a driver synchronizes its data transfer functions with its response
to hardware interrupts. Chapter 9, "Synchronizing Hardware and Software Events," discusses how
data movement is synchronized, and Chapter 10, '1nterrupt Routines," covers interrupts in greater
detail.

2-4 BCI Driver Development Guide

Application Programs vs. Drivers

Driver as Part of the Kernel

Application programs, executing at the user level, are limited in the ways they can adversely impact
the system. Performance and efficiency considerations are mostly confined to the program itself. An
application program can hog disk space, but it cannot raise its own priority level to hog excessive
amounts of processing time, nor does it have access to sensitive areas of the kernel.

But drivers can and do have much greater impact on the kernel. Inefficient driver code can severely
degrade overall performance, and driver errors can corrupt or bring down the system. For this
reason, testing and debugging driver code is particularly challenging, and must be done carefully.
Chapter 13, "Testing and Debugging the Driver," discusses the facilities available for finding drivers
errors, as well as some of the special problems.that are encountered when testing driver code.

Also, while an application program is free (within reasonable limits) to declare and use data
structures and to use system services, a driver writer is constrained in several ways.

• A number of header files, used to declare data types, initialize constants, and define
system structures, must be included in the driver source code. The exact list of header
files varies from driver to driver. See Chapter 4, ''Header Files and Data Structures," for
more details.

• Various structure members and device registers must be read or written, and usually
some system buffering structure must be used. Many of the functions included in the
interface are designed to be used with these structures. These structures are explained in
Section D4X of the BCI Driver Reference Manual.

• Drivers have no access to standard C library routines. Yet, the routines included in the
block and character interface represent a kind of library and provide some functions
similar to those found in the standard C library. On the other hand, the interface also
provides many functions that are unlike standard C library functions. See Section D3X
of the BCI Driver Reference Manual for complete explanations of the interface routines.

• Drivers cannot use floating point arithmetic.

Introduction to UNIX Device Drivers 2-5

Types of Devices

So far, interactive terminals and disk drives have been mentioned as two kinds of devices that need
drivers. These two kinds of devices use very different types of drivers. On any UNIX System. V
processors, there are two kinds of devices: hardware devices and software, or pseudo, devices.

Hardware Devices

Hardware devices include familiar peripherals such as disk drives, tape drives, printers, AScn
terminals, and graphics terminals. The list could also include optical scanners, analog-to-digital
converters, robotic devices, and networks. But, in reality, a driver never talks to the actual piece of
hardware, but to its controller board. From the point of view of the driver, the device is usually a
controller.

In some cases, a controller may have only one device connected to it. More often, several devices are
connected to a single board (for example, eight terminals could be connected to a terminal
controller). A single driver is used to control that board and all similar terminal controllers
configured into the system.

Soft war e D e vic e s

The "device" driven by a software driver is usually a portion of memory and is sometimes called a
"pseudo" device. The driver's function may be to provide access to system structures unavailable at
the user level.

For example, a software device might be a RAM disk, which provides very fast access to files by
using a part of memory for mass storage. A RAM disk driver is, in many ways, similar to a driver
for an actual disk drive, but does not have to handle the complications introduced by actual
hardware. The first sample driver (shown later in this chapter) is a RAM disk driver .

. -2~ 6 BCI Driver Development Guide

The Block and Character Interface

An interface is the set of structures, routines, and optional functions used to implement a device
driver.

Block and character are the two interlaces described in this book, and correspond to the two basic
ways drivers move data. Block drivers, using the system buffer cache, are normally written for disk
drives and any mass storage devices capable of handling data in blocks. Character drivers, the typical
choice for interactive terminals, are normally written for devices that send and receive information
one character at a time.

It is the individual device, not ~e device type, that determines whether a driver should be the block
or character type. For example, one printer, capable of data buffering, may be a candidate for a
block driver, while another printer may need a character driver.

Furthermore, one device may have more than one interface. A disk drive may have both a block and
character interlace. This situation is explained in Chapter 6, ''Input/Output Operations."

Alternative Interfaces

The increasing number of network drivers has demonstrated one of the major weaknesses of the block
and character interface: its inability to divide a network's protocols into layered modules. The
solution, first introduced in UNIX System V Release 3, is called the STREAMS interface.

A stream is a structure made up of linked modules, each of which processes the transmitted
information and passes it the to the next module. One of these queues of modules connects the user
process to the device, and the other provides a data path from the device to the process.

The layered structure allows protocols to be stacked, and also increases the flexibility of the interface,
making it more likely that modules can be used by more than one driver.

See the UNIX System V STREAMS Primer and Chapters 9 and 10 of the UNIX System V STREAMS
Programmer's Guide for STREAMS driver details.

AT&T has defined an interface, called the Portable Driver Interface (PDI). The POI is a collection
of driver routines, kernel functions, and data structures that provide a standard interface for writing
UNIX System V block drivers. POI is usable on all3B2, 3BlS, and 3B4000 computers runing UNIX
System V Releases 2.0.5,3.0, 3.1, or later. For more information about our POI documentation,
see Chapter 1, "Related Documents."

Small Computer System Interface (SCSI) devices use a collection of machine-independent
input/output controls, functions, and data structures, that provide a standard interlace (called SCSI
Driver Interface (SOl» for writing SCSI target drivers to access a SCSI device. For more information
about our SOl documentation, see Chapter 1, ''Related Documents."

Introduction to UNIX Device Drivers 2-7

Driver Environment

A device driver is added to a working UNIX system in three basic steps including

1 Configuration Preparation -- Involves modifying or creating system files on an active
system. During the preparation phase, a bootable object file is created with either the
drvinstall(IM) or mkboot(IM).

2 Configuration -- Invoked by shutting down and rebooting the system. The system uses
information from the modified system files to include entries for the new driver in
system structures.

3 Initialization -- The driver itself is then initialized as part of overall system initialization.

The major steps are reviewed here; Chapter 12, "Installation," gives more details about how drivers
are configured and installed, and Chapter 5, "System and Driver Initialization," discusses system
initialization.

Con fi g u rat ion

For a driver to be recognized as part. of the UNIX system, information about what type of driver it
is, where its object code resides, what its interrupt priority level will be, and so on, must be stored in
appropriate files. Chapter 5, "System and Driver Initialization," summarizes what information is
required, and how it is used in configuration.

The following are used when configuring a driver into the system:

/ete/master.d

/ etc! system

/dev

/hoot

This directory contains the master files. A master file supplies information to
the system initialization software to describe the attributes of a driver. There
is one master file for each driver on the system.

This file contains entries for each driver and indicates to the system
initialization software whether a driver is to be included or excluded during
configuration.

This directory contains special device files. A device file establishes a link
between a driver and a device.

This directory contains bootable object files that are used to create a new
version of the UNIX operating system when the processor is booted.

2-8 BCI Driver Development Guide

Driver Environment

D river Structures

The master file is the source of some of the more important information used by the configuration
process. From information provided there, several system structures are built to make drivers part of
a bootable system. Three of them are of particular interest

• The MAJOR and MINOR tables contain numbers used by the kernel to identify drivers.
The major number identifies the driver, and the minor number identifies the subdevice.
A subdevice might be one of several disks controlled by a single driver or one of many
terminals. Usually, the minor number is passed as an argument to the driver to identify
the particular subdevice.

• Two switch tables (bdevsw(D4X) for block and cdevsw(D4X) for character drivers)
contain the starting addresses for the entry point routines for all installed drivers.

• Two other tables (io_init and io_start) are built to hold the initialization routines.

Driver Prefix

Every driver's master file contains information, used during system configuration, about the specific
attributes of drivers. One of the fields in the master file is the prefix (a string of up to four
characters) added to generic routine names (such as "init," "open," and so on). For example, a RAM
disk driver may have been given a prefix of "ram_" resulting in routines named "ram_open,"
"ram_init" and so on.

During configuration, the system looks in the master file for the prefix, and then looks for the entry
point routines with matching prefixes. The addresses of these routines are loaded into the switch
tables (and, in the case of the init(D2X) routine, into the io _init table).

In itia liz a tio n ./

Not ~ drivers have init(D2X) routines; some have nothing to initialize and others defer initialization
to the open(D2X) routine. In most cases, it doesn't matter if variables are zeroed in an init or an
open routine. On the other hand, the system should be infonned at the time of initialization if, for
example, a disk drive is off-line.

Software drivers typically have little to initialize because no hardware is involved. In fact, some
software drivers have completely empty init routines. Memory may be allocated as a simple'
two-dimensional array in the open routine. But even if no init routine is needed, the driver must have
an entry point routine in the switch table.

Introduction to UNIX Device Drivers 2-9

Driver Environment

In the following pseudo-code for a software driver, initialization processing required is minimal.
Some memory must be allocated and initialized, and a warning must be issued if the allocation fails.

The numbers in parentheses (before the lines of pseudo-code) are referenced by the section headers
below, to indicate which line is being explained in that section. In most cases, an actual code
fragment from a working driver is included to help illustrate the concept.

(1) include header files

(2)

(3)

init(dev)

if (memory can be allocated)
allocate memory
initialize memory
print informational message

else
print warning message

The standard library of C functions cannot be used in driver code. However, most of a driver's
processing is performed by the functions described in Section D3X of the BCI Driver Reference
Manual. To use the interface effectively, it is important that you become familiar with what these
functions can do. Some of them are introduced in the discussion of the sample drivers, but many
more are available and are illustrated both in this document and in the BCI Driver Reference Manual.

Driver Header Files (1)

The first file in the list of header files included in driver code should be sysltypes.h because many of
the other header files use the type definitions it contains. In the init routine, the device number
passed in as an argument is declared to have the type dev_t, which is an alias for a short integer.
Simple data types are abstracted to these types to enhance driver portability.

Other required header files are mentioned as needed, and a complete list of available header files
appears in Appendix B, ''Writing 3B2 Computer Diagnostics Files." Most drivers will need to include
a minimum of 5 to 10 header files and some may have more than 20.

2-10 BCI Driver Development Guide

Driver Environment

M em 0 r y A 110 C a tio n (2)

The function used to allocate memory is kseg(D3X), shown in the Bel Driver Reference Manual.
The reference page shows that kseg accepts as an argument the number of pages to be allocated (up
to 64), and that the pages are segment-aligned and cannot be swapped out. The kseg manual page
also tells you what conditions must exist for the allocation to succeed, how different types of failures
are handled, and which header files must be used.

Messages (3)

Another useful library function is cIDD_err(D3X). The printf(3S) library function cannot be used in
driver code; instead, the function cIDD_err is used for all types of messages, from the merely
informational to those reporting severe errors. The first argument to this function is a constant used
to indicate the severity level, the second is the text of the message, and the third is an optional
variable. For example, the following statement could be used to report why the initialization failed:

cmn_err(CE_WARN,"init: kseq cannot allocate %d buffers", BUFS);

The cIDD_err function can also be used to shutdown or panic the system when serious errors are
detected. For example, if a hardware driver is unable to allocate private buffer space there is
probably sufficient reason to halt system initialization. When this condition is detected, the next
statement should be

cmn_err(CE_PANIC,"init: Buffer space unavailable");

Other init Responsibilities

A working driver for a hardware device (for example, a disk drive) does not have an init routine as
simple as the one shown earlier. The additional processing required may include some of the
following:

• Check to see if the devices under the control of the driver are actually on-line.

• Check for the correct number of subdevices.

• Set each device's interrupt vector to correspond to the system's interrupt vector table.

• Set the virtual-to-physical address translation.

Introduction to UNIX Device Drivers 2-11

Driver Environment

• Set device-specific parameters to default values. These parameters include values for the
number of tracks, cylinders and sectors.

• Download executable code to the controller. Controllers for many devices have their
own processors and memory and are referred to as intelligent devices. The executable
code downloaded to the controller is called pumpcode.

See Appendix E, "Sample Block Driver," for a detailed explanation of actual code for a disk driver.

2-12 BCI Driver Development Guide

Example Block Driver

An example driver is described in this section and is similar, in most of its parts, to all block drivers.
It is a RAM disk driver (a software driver), which uses an area of memory for mass storage, but has
no hardware to control. Consequently, it doesn't have to recognize or respond to interrupts (a major
complication). Interrupt handling will not be covered until the second example.

The RAM driver example illustrates the general structure of real disk drivers at only one level, called
the base level. The base level includes the routines responsible for servicing the I/O request from the
user process. The other level, called the interrupt level, responds only to requests for servicing
hardware (non-existent for a RAM disk).

The work of the base level of a RAM disk driver is to open a file system, provide access to it, and
close it when necessary. The entry point routines required for these activities are open(D2X),
strategy(D2X) and c1ose(D2X). The only other part of the RAM disk driver is the initialization
routine (init(D2X», illustrated in the previous section.

Each routine is illustrated (with pseudo-code) in the pages that follow. After the pseudo-code is a
brief discussion of every line of the pseudo program. Some of these is include actual code fragments
from a working driver.

B ase-L evel 0 peration

The base-level entry point routines do most of the work of the driver. These are the routines that
respond to user I/O requests, expressed as system calls. The kernel then interprets the system call,
and, in turn, calls one of the driver's entry point routines.

There is not a one-to-one correspondence between system calls and-driver routines. For example, on
a multiuser system more than one user process may have opened a device. The kernel calls the driver
close routine only when the last of these user processes issues the close system call. A user's read or
write request results in a call to the block driver's strategy routine.

Introduction to UNIX Device Drivers 2-13

Example Block Driver

The open Routine

When a user process issues an open(2) system call, the file to be opened is most often a regular file.
The purpose is generally to read or write text or data. However, the driver open(D2X) routine is
opening the device, which looks like a file on a UNIX system. Chapter 3, 'Drivers in the UNIX
Operating System," explains these files in more detail, but two points are important here

• the special device file identifies which switch table (block or character) to look in for the
driver open routine

• after the correct switch table is identified, the major number is used to find the
corresponding open routine

Finally, when the open routine is called, it is passed the device number and the flags indicating the
type of open (read only, create new file, and so on).

include header files

open(device number, flags)

if (minor device number is invalid)
write error to user structure
return

else
set up buffer to read the superblock
call strategy

Each of the following sections cover the issues involved in implementing the processing represented
by a line of pseudo-code. Most sections will also give an actual code sample (in the C language) to
illustrate typical driver coding style.

2-14 BCI Driver Development Guide

Example Block Driver

Validating the Minor Device Num ber

The device number is a two-byte quantity containing both the major number (identifying the driver)
and the minor number (identifying the subdevice). By the time the open(D2X) routine has been
called, the major number has already been used as an index into the switch table to select the driver.
The device number is passed to the open routine as an argument and the minor portion of it is

. extracted with the minor(D3X) macro.

, if (minor(dev) > MAXDEV)

An error results if an invalid minor number, a number greater than the constant MAXDEV (declared
in the driver code), is detected.

Writing Errors to the user Structure

When a driver needs to report an error to the user, the usual method is to set the uou_error member
of the user structure, described in Section D4X of the Bel Driver Reference Manual. For example,
if the minor number (extracted with the minor macro) is found to be out of range, the RAM driver
uses the constant ENXIO to indicate a non-existent device.

u.u_error = ENXIO;

The available error constants are defined in errno.h and the user structure is defined in user.h.

Setting Up a Buffer

The kernel buffer cache is a linked list of buffers used to minimize the number of times a block-type
device must be accessed. A driver does not read or write directly to the disk, but rather to the buffer
cache.

The section called 'The strategy Routine" explains how the driver reads and writes blocks. This
section introduces the buffer header, the part of the buffer structure used to identify where the data
came from. The structure is called buf(D4X), and is defined in the file buf.h.

This RAM driver contains a file system and so must have access to file system information stored in
the superblock. To make this possible, the open routine declares a pointer to a buf structure, loads
some buffer header values, and then calls the driver strategy routine to read the superblock. (Notice
that it is possible for one entry point routine to call another.) If the read fails, the error is reported
by writing to the uou_error member of the user structure, as shown in the init routine.

Introduction to UNIX Device Drivers 2-15

Example Block Driver

The B u ffe r He a d e r

The buffer cache contains buffers of data belonging to many devices. The buffer header contains
infonnation used to keep them straight. The following header members must be set before reading
the superblock. For a complete description of the buf structure, see the structures section
(Section 4) of the Bel Driver Reference Manual.

• b_dev. The device number. (A composite value, made up of both the major and minor
number.) It is used to identify the RAM device.

• b_bcount. The number of bytes to be transferred. When reading the superblock, a full
block is to be read, so this member is set to 1024 for this system.

• b_blkno. The device's block number, set to the superblock.

• b_error. The open routine sets the error number to zero, before the first read. Later,
the strategy routine sets this member on 110 failure.

• b_ttags .. Values are ORed into this member (allowing more than one value to be on at a
time). For example, two values are set before a read of the superblock

B_BUSY indicates the buffer is in use; B_READ determines the direction of data tra.QSfer (from the
device to memory). A write is indicated by B_READ not being set.

After the buffer header values have been loaded, the driver's own strategy routine is called, with a
pointer to the buffer header as an argument (bp). After the read is attempted, the b_ftags member is
tested to see if an error has occurred.

Other open Routine Responsibilities

Like the init routine, the open routine for a RAM disk driver is simpler.than for a hardware device.
Other functions a hardware open routine may include are

• initialize error logging

• initialize the disk defect table

• read the volume table of contents (vtoc) and the bad block table

• read the physical description sector

2-16 BCI Driver Development Guide

Example Block Driver

The Strategy Routine

As shown in the previous section, the strategy(D2X) routine is called from the open routine to read
the superblock. More often, strategy is called in response to a system 110 request. That is the main
work of the driver, and strategy is the routine that does it.

For now, it is not necessary to understand in detail how the kernel manages the buffer cache. (More
information about that is provided in Chapter 6, ''Input/Output Operations. n) To transfer data, the
strategy routine is passed a pointer to a buffer header in the system buffer cache. The buffer header
contains all necessary information about the source and destination of the transfer and how many
bytes will be moved.

include header files

strategy(bp)

if (block number is out of range)
write error to user structure
return

if (I/O request is for read)
read block of data

else
write block of data

call iodone
return

C heck for Valid Block

As part of the kernel, the RAM disk driver has access to any part of memory, and so it is very
important to make sure that reading and writing of data is confined to the area allocated for the
RAM disk. The most basic checking uses the b_blkno member of the buffer structure to make sure
the requested block is within range. (RAMBLKS is the number of blocks in the RAM disk.
Because the first block number is 0, the block number equal to RAMBLKS is the first block beyond
the end of the RAM disk.)

if (bp->b_blkno < a I I bp->b_blkno >= RAMBLKS)

If the I/O request is for a block beyond the end of the disk, the driver must further check to see if a
read or a write is requested. For a read, the number of unread bytes is reported by assigning the
value of b_bcount to b_resid, which is passed by the system as a return value to the read system call.

Introduction to UNIX Device Drivers 2-17

Example Block Driver

if Cbp->b_blkno == RAMBLKS && bp->b_flaqs &. B_READ)
bp->b_resid = bp->b_count;

The read status is tested by logically ANDing the b_flagsmember with the value B_READ. If the
test fails, the 110 request is assumed to be a write. Any attempt to write beyond the end of the
RAM disk must be denied, and an error reported.

else
bp->b_error = ENXIO;
bp->b_flags 1= B_ERROR;

Reading and Writing Data·

Several different functions are available for moving data. Transfer can be between user space and the
driver (with copyin and copyout). But the RAM disk and the driver are both in kernel space, so the
bcopy function is used. The three arguments to the function are the source of the data, the
destination, and the number of bytes transferred.

if (bp->bflaqs &. B_READ)
bcopyCdisk_addr, b_un.b_addr, bp->b_bcount);

else

The iodone Function

When the data transfer is complete, the strategy routine calls the iodone(D3X) function. Hardware
drivers use iodone to awaken sleeping processes, which is not required for pseudo-devices. The
RAM driver uses this function to release the buffer block and to set the b_flags member to
B_DONE. The iodone function is called with a single argument, the pointer to the buffer header.

iodone C bp) ;

2-18 BCI Driver Development Guide

Example Block Driver

The close Routine

Many drivers (even hardware drivers) will have empty close(D2X} routines. Even though it does
nothing, the address of the empty routine is entered into the switch table.

close(
{

}

If not empty, a close routine may be responsible for unlocking the device (if locked by the
open(D2X) routine}, flushing buffers, making sure the device does not contain a mounted file
system, and reinitializing its data structures.

Because more than one process may have opened the device, the close routine is not called if any
process still has the device open. The way in which a file was opened may affect how it should be
closed, so one of the arguments to the close routine is taken from the f i 1 e structure (declared in
file.h).

For more information, see the reference page for for close in Section D2X on the Bel Driver
Reference Manual.

Introduction to UNIX Device Drivers 2-19

E x amp Ie C h a r a c te r Dr iv e r

Character drivers are used for data transfers where it is not possible to organized the data into blocks.
Interactive tenninals and networks are the most common devices of this type. Like block drivers,
character drivers use a switch table (cdevsw instead of bdevsw) to store base level routine entry
points, and have lnit, open, and close routines. But unlike block drivers, character drivers have read
and write routines instead of strategy, and can also include a general purpose 110 control (ioctl)
routine for changing tenninal settings, for example.

The tenninal driver described in this section demonstrates these and other features peculiar to
character drivers, along with some of the features common to both block and character hardware
drivers that are not part of the RAM disk driver. The most important of these is the code required
to handle interrupts.

Line Disciplines

The processing necessary to drive an interactive tenninal is more complicated than for the RAM disk
driver, but there are also more standard routines supplied as aids. Among these are a group of
routines known collectively as a line discipline.

While it is possible to write your own line discipline and configure it into the system, a standard line
discipline (called line discipline zero) is suitable for most character drivers.

The routines of the line discipline correspond to the routines of the driver, and like a driver, are
accessed through a switch table (linesw). Typically, a tenninal driver routine performs some
driver-specific processing and then calls the corresponding line discipline routine.

Another group of standard routines are known as the TrY subsystem. These are part of the
character interface, and each has a page in Section D3X of the Bel Driver Reference Manual. Their
use is demonstrated in the example pseudo-code driver that follows, and more fully in Chapter 7,
''Drivers in the TrY Subsystem."

2-20 BCI Driver Development Guide.

Example Character Driver

The open Routine

The most important component of the TrY subsystem is the tty structure. There is one instance of
this structure for each configured port, providing a standard method for storing most of the
information needed by the driver. Two members of the tty structure are used by the open(D2X)
routine.

• t_line, which identifies the line discipline used by this driver.

• t_state, which is a set of 16 flags used to describe the currertt state of the device and the
driver.

(For a complete description of this structure, see section D4X of the Bel Driver Reference Manual.)

The use of these and other members of the tty structure are described as they are used.

include header files
declare structure for device registers

open()

get device registers
get port number

if (device not open)
initialize tty structure

if (physical connection not made)
wait for connection

call line discipline open

He a d e r F He s

Except for buf.h, all of the header files mentioned in the block driver example must also be included
in the tenninal driver. In addition, include the tty.h file, which declares the tty structure. The line
discipline switch table (linesw) is defined in con/.h.

Introduction to UNIX Device Drivers 2-21

Example Character Driver

Declare Device Register Structure

Device registers are special memory locations by which the driver communicates with the device.
The structure includes four main members

• control word used to pass the type of parity, number of stop bits and other information.

• status word used to make the status of the device (sending, receiving, and so on) known
to the driver.

• receive character, to hold the last character received from the device.

• transmit character, to hold the last character transmitted to the device.

Get Device Reg isters

The device registers are accessed by using the minor device number to index an externally declared
array.

*rp = &addr[minor(dev) » 3];

Get Port Num ber

Like the device registers, the port number uses the minor device number (ANDed with the constant
'7" for this controller) to find the correct value.

port = minor(dev) & Ox07;

Initialize tty Structure

Because this driver uses line discipline zero, a standard TrY subsystem function can be used to
initialize the port's tty structure. The function ttinit sets t_line and several other values to zero,
and loads a default set of control characters into a character array, t_cc[]. The characters loaded are
delete, quit, erase, kill, and end of file.

The function is called with a pointer to the tty structure as an argument

ttinit(tp) ;

2-22 BCI Driver Development Guide

Example Character Driver

Wait for Physical Connection

The t_state member of the tty structure is used to test the carrier-present signal. If the device is
not found to be on-line, the WOPEN bit in the same member is set.

while(I(tp->state&CARR_ON))
tp->t_state 1= WOPEN;

The sleep Function

While waiting to detect a physical connection, the open(D2X) routine calls the sleep(D3X) function.
This function is used to suspend execution of the driver when it is called and wait for some event to
occur. Most often, the event is the completion of a data transfer, but here it is waiting for a line to
be activated. In either case, the routine sleeps until it receives a wakeup(D3X) call from the
interrupt routine.

Many sections of driver code use the sleep function and a variety of hardware events are detected by
the interrupt routine. The first argument to both the sleep and wakeup functions (sometimes called
an event) is an address used to identify a hardware event and match a sleep and wakeup call.

The address chosen in this case is one of the members of this port's tty structure. By choosing a
memory address allocated to this port's invocation of the driver, conflict with other calls to sleep and
wakeup can be avoided.

The second argument to the sleep function is the priority level, which is discussed later.

sleep«caddr_t)&tp->t_canq, TTIPRI);

In at least one place in the interrupt routine (there may be more), the above sleep call has a
corresponding wakeup call to resume execution.

wakeup«caddr_t)&tp->t_canq);
tp->t_state 1= CARR_ON;

Introduction to UNIX Device Drivers 2-23

Example Character Driver

Call Line Discipline

After the driver-specific processing is complete, the line discipline open(D2X) routine is called to
establish the logical data connection.

Among other functions,the line discipline open routine allocates a buffer to receive characters (the
t_rbuf member of the tty structure) and calls the drivers proc(D2X) routine. Both of these are
discussed later in this section.

The close Routine

The driver's close(D2X) routine does nothing more than call the line discipline close routine. The
line discipline takes care of both the logical and physical disconnection, and clearing and deallocating
buffers. Other driver close routines might have to reset driver structure members and perform other
clean-up.

close ()

call line discipline close

The rea d R 0 u tin e

The line discipline routine normally does everything the driver read(D2X) routine is required to do.
The line discipline mainly takes the data from the raw input queue, and calls the canon(D3X)
function to process ERASE and other non-data characters.

read(

call line discipline read

2-24 BCI Driver Development Guide

Example Character Driver

The proc Routine

This routine is called both directly by driver routines and indirectly by some of the line discipline
routines. To take "advantage of using line discipline calls, the device-specific processing must be
isolated in a proc(D2X) routine and made accessible to the line discipline.

The proc routine is passed a pointer to a tty structure and a command to be processed. The driver
open routine, for example, calls proc with the command set to T _INPUT, to prepare the device to
receive input. The driver write routine, on the other hand, calls proc indirectly through the line
discipline write routine (with a command value of T_OUfPUT). (See Section D4X of the BCI
Driver Reference Manual for more information about the commands a proc routine must be able to
process.)

The write R 0 u tin e

The line discipline write routine is responsible for some processing similar to the canonical processing
done by the read routine. Tab characters are expanded to the correct number of blanks and delay
routines accommodate newline and backspace characters.

write()

call line discipline write

1/0 Controls (The ioctl Routine)

A terminal driver has an ioctl(D2X) entry point routine to respond to user requests to change
terminal settings. (The request is expressed as an ioctl(2) system call, but may be indirectly called by
the stty(1) command.)

ioctl(dev, cmd, arq, flags)

get tty structure

if (tty structure has no errors)
get device registers
change terminal settings

Introduction to UNIX Device Drivers 2-25

Example Character Driver

Get tty Structure

The first argument to the routine is the device number, and it is used to set a pointer to the instance
of the tty.structure for this port.

device = minor(dev);
tp = &tty[device];

Check tty Structure for Errors

Next, the kernel function ttiocom(D3X) is called and its return value is tested. A non-zero return
value indicates no errors have been detected. At the same time, the cmd argument is passed to the
ttiocom function to set parameters in the tty structure.

if(ttiocom(tp, cmd, arg, flags»

Get Device Registers

Changing the tty structure does not change the terminal settings. The device is accessed only
through the device registers.

rp = &addr[minor(dev) » 3];

For portability, the code for setting terminal parameters is isolated in a subordinate routine and is
specific to the hardware involved.

param(dev) ;

2-26 BCI Driver Development Guide

Example Character Driver

Interrupt Routines

The terminal driver has to respond to interrupts caused by several different sources, including the
following:

• the terminal user has pressed a quit, delete, control-s or some other key

• the terminal is ready for output

• data transfer is complete

• some kind of error has been detected .

To ,service a variety of interrupts correctly, the interrupt routine selects from a list of cases by
interrupt opcode, a value passed to the routine. . A typical section will perfonn one or more of these
services

• set flags in the t_state member of the tty structure

• call a line discipline routine

• call the proc routine

• flush buffers

• set flags to reflect the state of the board

• call the wakeup function

Setting Priority Levels

Some data structures, such as tty, can be'modified by both base-level and interrupt-level routines.
Because interrupts can occur at any time, precautions must be taken to postpone an interrupt at
places in the code where common structures may be modified. These areas of driver code are called
critical sections.

A set of functions are used to temporarily raise a processor priority level and then return it to the
previous level after the critical section has finished executing. The spl7 and splhi functions set the
priority level to 15, preventing all interrupts. (See the spln(D3X) entry in the Bel Driver Reference
Manual for the uses of each level. See Chapter 9, "Synchronizing Hardware and Software Events.")

Normally, a critical section of code is protected by saving the old priority level and then restoring it
with the spa function, as shown.

Introduction to UNIX Device Drivers 2-27

Example Character Driver

oldlevel = sp14();

critical section

splx (oldlevel) ;

2 28 BCI Driver Development Guide

Driver Development

The rest of this chapter reviews a variety of steps and guidelines programmers should keep in mind
when planning and developing device drivers.

Basic Steps for Creating a Driver

Device driver development requires more upfront planning than most application programming
projects. At the very least, testing and debugging are more involved, and more knowledge about
hardware is required. The following steps can be used as a general guide to driver development.

Preparation

• Learn about the hardware. Most of the information you need can be found in the
documentation for the device, and should include

o how the device sends interrupts

o the range of addresses of the hardware board

o return codes and software protocols recognized by the device

o how the device reports hardware failures

• Test the hardware to make sure it is functioning. This is especially important for a
newly-developed device.

• Design the software. Even though the overall structure of a driver is not the same as an
application program, good· structured design remains important. Data flow diagrams,
functional specifications, and structure charts are all useful tools in driver development.
Design documents should cover not only the driver contents, but also the contents of any
utility programs that will be used with the driver.

• Select a software maintenance and tracking utility, such as the Source Code Control
System (SeCS) described in the UNIX System V Programmer's Guide.

Implementation

• Write and install a minimal driver. It is very helpful to test driver code from the earliest
stages, and to verify that it can be installed. A minimal driver might be one that simply
uses the COlD_err function to send a ''hello, world" message to the system console. See
Chapter 12, '1nstallation," for a detailed guide to driver installation.

• Write base.,.level routines before interrupt-level routines.

Introduction to UNIX Device Drivers 2-29

Driver Development

• If applicable to the device, write·and test any associated firmware driver.

• Develop utilities such as disk formatting, network administration, and diagnostic
programs at the same time as the driver.

Follow-up

• As much as possible, use the testing phase to create error conditions that exercise the
driver's ability to handle them.

• Evaluate the driver's performance both in isolation and in a production environment
where other drivers are installed. Regression testing should be performed to ensure that
a new device driver does not affect other system functionality.

• Make sure documents affected by the creation of the driver are updated. These may
include operator and diagnostic manuals and sales or ordering information.

• If the driver is to be installed by a customer, write and test installation and deinstallation
packages, as described in Chapter 16, ''Packaging the Driver."

Com m enting Driver Code

Good practice in commenting driver code is the same as for any type of programming. Because
driver code can be extremely difficult to maintain without adequate comments, these guidelines are
included here.

• Each file should have a comment block at the beginning, describing the type of file
functions and the services they perform. List the functions that call them and the
functions they call. For a hardware driver, describe the hardware, including version
numbers and hardware strapping values.

• Describe each global data structure or type declared, including its possible range of
values. Describe the protocol, if any, used to access it (such as flag-setting). If it is
useful, describe the functions that access structures, including those that are in other
files.

• Each routine should have a comment block at the beginning describing what it does,
how it does it (what are the algorithms or strategy), assumptionS about the environment
when it is called (processor interrupt priority level, outstanding I/O jobs, and so forth),
and what global variables are used.

• Each line that declares an argument to the routine should have a comment.

• Every local variable should be explained.

2-30 BCI Driver Development Guide

Driver Development

• Each loop or "if" test should have a comment to explain the exit condition.

Layered Structure

Hardware drivers will be easier to port and maintain if structured in layers. Separate the higher-level
protocol functionality from the low-level, machine-dependent routines. The high-level sections can
be readily ported, leaving only the low-level sections to be rewritten. If machine-specific code is not
isolated, all code may need to be rewritten to IU? on another processor.

Also, when your driver accesses system structures such as the system buffer cache and the user and
proc structures, use the standard functions included in the basic interface. Using non-standard
functions with standard structures can degrade the performance of other drivers on the system and
will impact portability.

Driver Functions

A device driver is made up of entry point routines that call standard interface functions and
subordinate routines written for the driver. Here are some things to consider when using these
functions and routines

• Standard functions, especially for timing and data allocation, are less likely to degrade
system stability and performance than similar routines coded in the driver.

• When subordinate routines must be written, declare them static to prevent name
conflicts with other drivers. In general, define as few global names (both functions and
names) as possible. To make the driver easier to maintain, use the driver prefix when
naming subordinate routines, even though the static declaration makes this step
unnecessary .

Utilize Board Intelligence

Many new peripheral devices are intelligent, meaning that they contain their own microprocessor that
can hold driver code. For optimal performance and portability, take full advantage of the board's
intelligence by writing a firmware driver that provides the basic functionality of the board, then
accesses the firmware driver from within the UNIX system driver.

With modem intelligent devices, some of the control for a device or controller may be in code
running on the controller board rather than in the driver running in kernel memory. The code for the
controller board may be in firmware or may be downloaded to controller RAM, for example, at
system boot time. If the device never needs to work in a non-UNIX system (firmware) mode, it is

Introduction to UNIX Device Drivers 2-31

Driver Development

not necessary to use firmware for anything more than diagnostics, interrupt structure, and the
interface to the Equipped Device Table (EDT), discussed in Appendix A, 'The Equipped Device
Table (EDT)." Otherwise, to copy data to and from your device in a non-UNIX system mode, the
fundamental functionality for the board must be burned in firmware. You may also want to include
in firmware a basic subset of the protocol necessary to talk to the host processor directly, such as the
memory management protocol. Proper use of firmware can enhance the features, portability, and
performance of your device.

Pumpcode is firmware code that is stored in UNIX system files and downloaded (or "pumped") to the
board during system startup. Code can be pumped by the initialization routines discussed in Chapter
5, "System and Driver Initialization," (if it is required that early), or by I/O control commands that
you define as discussed in Chapter 8, ''Input/Output Control (ioctl)." It is occasionally also pumped
by programs called by the init(lM) process. For instance, on the 3BtS computer, pumpcode for the
I/O Accelerator (lOA) is not sent to the board until the machine enters multiuser state.

Firmware must be coded according to the microprocessor board specifications. The
/usr/include/sys/firmware.h file defines the structures the memory board requires to communicate with
the boards. In addition, the firmware board must adhere to the diagnostic interface, EDT interface,
and interrupt structure for the system. Chapter 1, "About This Document," describes other
documents where this information is available for the microprocessors used in the computers
documented in this book. Appendixes A and B review the EDT interface and diagnostic interface,
respectively.)

2-32 BCI Driver Deveiopment Guide

R e fe r e n c e s

For more information on all of the driver routines mentioned in the two examples, refer to the
chapters listed in Table 2-1. Reference manual pages are provided for each routine in the Bel Driver
Reference Manual.

Table 2-1 Driver Entry Point Routines

Initialization init(D2X) Chapter 5

Entry Points start(D2X) Chapter 5
Switch Table open(D2X) Chapter 5

Entry Points close(D2X) Chapter 5

read(D2X) (character-access only) Chapter 6

write(D2X) (character-access only) Chapter 6

ioctl(D2X) (character-access only) Chapter 8

strategy (block-access only) Chapter 6

print (block-access only) Chap~er 11
Interrupt int(D2X) Chapter 10

Entry Points rint(D2X)/xint(D2X) Chapter 10

Introduction to UNIX Device Drivers 2-33

System and Configuration Files

This section is an introduction to the basic files you need to become familiar with when configuring a
driver into the UNIX operating system, such as the location of source files and the creation of a
master file in the letclmaster.d directory.

Figure 2·3 shows the files and directories used when creating or maintaining a driver.

/

unix

dgn

edcdata
(diagnostic

files

etc

2-34 BCI Driver Development Guide

System and Configuration Files

t NOTE:

Name For this type of computer

32100vme Single Board Computer (SBC)
3b15 3B15 Computer·
3b2 3B2 300/4001500/600 Family
acp 3B4000 Adjunct Communications Processor
adj 3B4000 Adjunct Processors' Common Directory
adp 3B4000 Adjunct Data Processor
com 3B4000 Master Processor and 3B15 Common Directory
eadp 3B4000 Enhanced Adjunct Data Processor

Figure 2-3 Files and Directories Used by Drivers

Of the files listed above, the following are important for system configuration:

letclmaster.d

letclsystem

Idev

Iboot

this directory contains the master files. A master file supplies information to
the system initialization software to describe the attributes of a driver.

this file contains entries for each driver and indicates to the system
initialization software whether a driver is to be included or excluded for
configuration.

this directory contains special device files. A device file establishes a link
between a driver and a device.

this directory contains bootable object files that are used to create a new
version of the UNIX operating system when a computer is booted.

Introduction to UNIX Device Drivers 2-35

System and Configuration Files

Certain system files and directories must be infonned of your driver; depending on the initialization
that is required, you may need to add entries to others.

Table 2-2 lists the files and directories you may need to modify for your driver.

t
t

*
*

Table 2-2 System Files Used By Drivers

System File Purpose
lete/system Controls construction of the operating system
Idgnlname Diagnostic code:
/dgnlX.name
letclscsi.dlname (3B4000 MP equipped with SCSI)
letclscsi.d/X.name
I adjlpeNNNldgnlname (3B4000 ACP, NNN is the processor element number)
ladjlpeNNNldgnlX.name

I ete/master .dI* Confi~ation information for the device or module
Iboot/* Compiled driver, processed with mkboot(1M)
llib/pumpl* SBc/3B2 computers (and 3B4000 ACP) pumpcode
/lib/bootpump.d/* 3B15/3B4000 com~uterspumpcode

I etc/ brc .dl* Scripts to be executed before those in letc/rc.d

I etc/rc .d1* Scripts to be executed when system goes to multiuser state
I etc/ bcheckrc (3B2 computers)
lete/rcO Script to be executed at shutdown

• indicates an element that must be updated for all drivers.
Idgn files must be present for new hardware boards (cards) and for all SBC drivers. For SBC drivers, you should link a file with the
same name as your driver in all upper case to the null diagnostics file and to the corresponding X. diagnostics files. These files are
required before your system can be booted. Refer to Appendix B, "Writing 3B2 Computer Diagnostics Files," for more information
on writing a Idgn file.

Refer to the reference manual pages in the Programmer s Reference Manual under master(4) and
system(4) for more detailed information on the I ete/ system and master files.

These files are used for self-configuration and system initialization. Chapter 5, "System and Driver
Initialization," discusses the self-configuration and system initialization processes.

2-36 BCI Driver Development Guide

Chapter 3: Drivers in the UNIX Operating System

Contents

Introduction

Driver Entry Points

Initialization Entry Points 3-2
Switch Table Entry Points 3-3

Entries in Switch Tables 3 - 4
Determining Major and Minor Numbers 3 - 5

Major Numbers 3-5
Minor Numbers 3-6

The MAJOR and MINOR Tables 3-7
External to Internal Translation 3-9
Interrupt Entry Points 3 - 9

3-1

3-2

Drivers in the UNIX Operating System 3-i

Introduction

This chapter describes the means by which drivers are accessed by the UNIX operating system. The
following subjects are discussed:

• driver initialization and driver initialization routines

• switch table entry points

• major and minor device numbers

• external and Internal major/minor number translation

• interrupt entry points

Drivers in the UNIX Operating System 3-1

Driver Entry Points

As discussed in Chapter 2, drivers are accessed in three ways

• through system initialization

• through system calls from user programs

• through device interrupts

When the system is initialized, several tables are created as a means for the system to enter drivers
through their routines. Because the system uses these tables to determine the appropriate driver
routines to activate, the routines themselves are sometimes referred to as driver entry points.

Each table is associated with a specific set of entry point routines. Initialization tables are associated
with either init(D2X) or start(D2X) routines. System calls use a pair of switch tables whose entry
points are open(D2X), close(D2X), read(D2X), write(D2X), and ioctl(D2X) routines for character
drivers, and open, close, and strategy(D2X) routines for block drivers. Device interrupts are
associated with their appropriate interrupt handling routine through an interrupt vector table whose
entry points are'either an int(D2X) routine, or a rint(D2X)/xint(D2X) routine pair.

The following sections discuss these system tables and their associated entry points in greater detail.

Initialization Entry Points

All driver initialization routines, either init or start, are executed during system initialization and are
executed in a different order each time the system is configured. The system uses only the routines
themselves and information from the driver's master file to initialize the drivers. Information such as

, the major/minor numbers, important when accessing driver switch table entry points, is not used to
initialize a driver. The system does not differentiate between character- and block-access drivers
when running the initialization routines.

The system initialization program first creates two internal tables, io_init and io_start, which it uses
to list the routines that must be executed. After the system is initialized, the io_init and io_start
tables are never accessed again. Not all drivers need initialization routines. A driver that does not
have an init or start routine has no entry in the io_init or io_start table.

Chapter 5 describes the internals of system and driver initialization. Chapter 5 also gives guidelines
for choosing and writing the type of initialization routine appropriate for your driver.

3-2 BCI Driver Development Guide

Driver Entry Points

Switch Table Entry Points

Two operating system switch tables, cdevsw(D4X) and bdevsw(D4X), hold the switch table entry
point routines for character and block drivers, respectively. These routines are activated by I/O
system calls, as illustrated in Figure 3-1.

system'[
Calls

File
Subsystem

Driver

open close

open close read write ioctl mount unmount read write

I I
I I

buffer cache

calls

I
Character Device Switch Table Block Device Switch Table

Driver
open close read write ioctl open close strategy

Driver
Entry

Driver

Points

f f
I interrupt handler I

f ,

I Device I
Figure 3-1 Switch Table Entry Points and System Calls

The process of calling the appropriate driver routine can be summarized as follows:

1 The I/O system call (open, close, read, write, etc.) is directed to a special device file.

2 The special device file includes the external major number for the device. Using the
MAJOR translation table, the operating system finds the corresponding internal major
number.

Drivers in the UNIX Operating System 3-3

Driver Entry Points

3 If the special device file is for block-access, the operating system will use the internal
major number as an index into the bdevsw table to find the appropriate routine. For
character-access, the operating system will look in the cdevsw table, using the same
method.

4 The operating system then calls the appropriate routine.

Whenever the character-access entry points are being used, the block-access entry points are
inaccessible, and vice versa. As will be discussed in Chapter 6, when doing a character-access read
or write operation on a device that supports both block- and character-access, the driver calls the
strategy routine. It calls this routine, however, as a subordinate routine to read or write, not as the
bdevsw entry point.

Note that the cdevsw entry point routines for TrY drivers access subordinate routines through the
linesw table. This is discussed in Chapter 7.

The next several sections give more details on the files and processes involved in accessing the switch
table entry point routines.

En tr ie s in S w itc h Tab Ie s

Figure 3-1 shows that bdevsw and cdevsw have a place for every switch table entry point that
could be coded for a driver. However, not all routines are appropriate for all devices. For instance,
a printer driver does not need a read routine. The operating system provides a place holder in the
switch table for routines that are not included in the driver. Table 3-1 summarizes what the self
configuration process will enter in the switch tables for routines that are not included, and the result
of attempting to call that routine.

Table 3-1 Switch Table Entries for Non-Coded Routines

Type of Driver If you omit: Self-config enters: If accessed:

Any driver open nulldev(D3X) no operation and
in bdevsw or cdevsw no error code

Character access read nodev(D3X) in ENODEV
("c"FLAG) write cdevsw in o.o_error

ioctl
Block access strategy nulldev(D3X) no operation and
(''b'' FLAG) print in bdevsw no error code

A ''b'' or "c" in the FLAGS column of the master file determines if entries are made in the bdevsw
or cdevsw tables, regardless of what routines are coded in the driver. For instance, if you include a
strategy routine but omit the ''b'' from the master file, bdevsw will have no entries for that device.
If a block special file is then created and accessed, routines for the wrong device maybe used, or the

3-4 BCI Driver Development Guide

Driver Entry Points

call may return the ENODEV (''No device") error.

D eterm ining Major and Minor N um bers

When a driver is installed and a special device file created, a device then appears to the operating
system as a file. A device is accessed by opening, reading, writing, and closing a special device file.
A special device file contains the major and minor device numbers. The major number identifies a
driver for a controller, such as a printer, disk drive, or terminal. The minor number identifies a
specific device. On AT&T computers, the major and minor numbers for a special device file are
referred to together as a device number.

Major numbers are assigned sequentially by either the system initialization software at boot time for
hardware devices, by a program such as drvinstaII(lM), or by administrator discretion. Minor
numbers are designed by the driver developer are identify characteristics of the subdevice. No
standard exists for the form of the minor number.

Major Numbers

Major numbers for hardware devices are determined as follows:

• 3B4000 and 3B15 computers - the hexadecimal board code of the device from the
equipped device table (EDT). Determining a new hardware device major number on the
3B4000 computer differs by the board's location on the system buses.

• 3B2 computer and SBC - after installing the board in the computer, the getmajor(lM)
command can be used to determine the major number.

After adding a device to the EDT, you can display the external major number with the following
commands:

Table 3-2 Displaying External Major Numbers

Processor

3B2
3B4000 Master Processor
3B15
SBe

Command

getmajor(lM)
getedt(lM), iau(8) disp edt, or getmajor(lM)
getedt(lM), iau(8) disp edt, or getmajor(lM)
getmajor(lM)

The major number for a software device is assigned automatically by the drvinstall command.
Specify a dash in the SOFT column of the master file, and drvinstall selects the next available
number and inserts it in the master file.

Drivers in the UNIX Operating System 3-5

Driver Entry Points

On the 3B and Single-Board Computers, major numbers range from 0 through 127. The following
table gives the major number ranges. If you must install a driver without benefit of drvinstall, then
search the master files for prior usage before selecting a free number.

Table 3-3 Ranges Cor Major Numbers

Computer Extended
Type Hardware Software Bus Devices

3B2 300/400, 1, 2, 4-15 16-19, 24-29, 71-127
500/600, 44,45,58

59, 63, 64, 66
3B4000 ACP 0-29 30-62, 64-70 71-127
3B15 4-15, 0-2, 74-127
3B4000 MP . 33-47 16-32

48-73
3B4000 EADP 0, 3, 16, 19, 24~ 72-127

28, 29, 58, 59,
63,64,66

SBC 0-15 48 - 127

Usually, the term "major number" refers to external major numbers. These are the major numbers
used for the special device files. External major numbers for Software devices are static and are
assigned sequentially to the appropriate field in the master file by the drvinsta1l(IM) command;
external major numbers for hardware drivers correspond to the board slot and are dynamically
assigned by the (boot process as system boot time. The getmajor(lM) command returns the major
number for the specified device. The mknod(IM) command is then used to create the files (or
nodes) to be associated with the device.

Internal major numbers serve as an index into the cdevsw and bdevsw switch tables. These are
assigned by the self-configuration process when the drivers are loaded, and may change every time a
full-configuration boot is done. The system uses the MAJOR table (see below) to translate external
major numbers (from the special device file) to the internal major numbers needed to access the
switch tables.

One driver may control several devices; each device will have its own external major number, but all
those external major numbers are mapped to one internal major number for the driver. Were this not
the case, each driver would need a separate entry in the switch tables for each device under its
control.

Minor N um bers

Minor numbers are determined differently for different types of devices. Typically, minor numbers
are an encoding of information needed by the controller board, although the driver may also have
information for it. For instance, for tape drives, the minor number indicates whether or not to
rewind the device. Hardware device minor numbers must fall in the range 0 through 255; software
device minor numbers must also fall in the range of 0 to 255.

3-6 BCI Driver Development Guide

Driver Entry Points

The external minor number is entirely under control of the driver writer (although there are
conventions enforced for some types of devices by some utilities), and usually refers to "subdevices"
of the device. A tape driver, for example, may talk to a hardware controller (the device) to which
several tape drives (subdevices) are attached. All the tape drives attached to one controller will have
the same external major number, but each drive will have a different external minor number. For
disk devices, the disk controller is assigned a major number, and individual disk partitions are the
subdevices, with each disk partition having separate special device files and separate minor numbers.

Internal minor numbers are used with hardware drivers to identify the logical controller that is being
addressed. Since drivers that control multiple devices (controllers) usually require a data structure for
each configured device, drivers address the per-controller data structure by a logical controller
number rather than the external major number, thus compacting the data structures in the kernel.

The logical controller numbers are assigned sequentially by the central controller firmware at self
configuration time. The controller with the lowest local bus address is assigned logical controller
number zero, and so forth. The internal minor number is calculated by multiplying this number by
the value of the #DEV field (number of devices per controller) in the master file.

The internal minor number for all software drivers is O.

The MAJOR and MINOR Tables

The MAJOR and MINOR tables map internal major and minor numbers to the external major
number. Each table is a character array of 128 entries. Figure 3-2 illustrates the MAJOR and
MINOR tables and their relationship to cdevsw and bdevsw.

The switch tables will have only as many entries as required to support the drivers installed on the
system, up to 128 entries.

Switch table entry points are activated by system calls that reference a special device file, which
supplies the external major number and instructions on whether to use bdevsw or cdevsw. By
mapping the external major number to the corresponding internal major number in the MAJOR
table, the system knows which driver routine to activate.

Drivers in the UNIX Operating System 3-7

Driver Entry Points

External
major
number 5

MAJOR table
external internal

major number major number
0 2
1 3
2 3
3 3
4 0

-.. 5 0
6 1

127 3

MINOR table
external internal

maior number minor number
0 0
1 0
2 0
3 0
4 0 -. 5 32
6 0

127 0

index

~ 0
1
2
3

~
127

index
~ 0

1
2
3

127

cdevsw table

open close read write
QQ_open QQ_close QQ. read QQ. write
aa open aa_close aa read aa write
dd open dd close nodev dd write
hh open hh close hh read hh write

xx_open xx close xx read xx write

bdevsw table

open close strategy

IQQ_open QQ. close I QQ. strategy
aa open aa close aa strategy
dd open dd close dd strategy
hh_open hh close hh strategy

xx open xx close xx strategy

Figure 3-2 MAJOR and MINOR Tables

ioctl

QQ. ioctl
aa ioctl
nodev

hh ioctl

xx ioctl

NOTE: In Figure 3-2, the entry "32" under the column entitled, "internal minor number" identifies
that the number of total number of devices for the driver. This value is set in the master file
under the #DEV column. This number is arbitrary in this circumstance.

3-8 BCI Driver Development Guide

Driver Entry Points

External to Internal Translation

Driver writers usually deal directly with external major and minor numbers, and the operating system
translates these to internal major and minor numbers. A driver can access an internal major minor
number as follows:

• Internal major numbers can be extracted from the MAJOR[] translation table. To
access the table, use the syntax:

uns igned char MAJOR [externaLmajor _number]
internal_major = MAJOR[externaLmajor_number]

• Internal major numbers can be determined with the built-in function #M in the master
file, which is used to refer to the internal major number for the current driver (for
example, imaj = #M). To refer to the internal major number of another driver in the
master file, use #M with the name of that driver (as found in the Iboot directory) as an
argument. For example #M(MEM).

• Internal major and minor numbers can be accessed with themajor(D3X) and
minor(D3X) macros (defined in lusrlincludelsyslsysmacros.h).

Drivers should not perform external-to-internal device number translation under the following
circumstances:

• During unbuffered read or write operations to "raw" devices. This translation is done
when the pbysio(D3X) function calls the strategy(D2X) routine, as discussed in
Chapter 6.

• In the print(D2X) routine used to handle errors arising during the execution of the
strategy routine.

Interrupt Entry Points

The operating system handles all system interrupts, including clock and software interrupts, system
exceptions such as page faults, and interrupts from peripheral devices controlled by drivers.
Peripheral devices generate interrupts when an 110 transfer encounters an error or completes
successfully. They also sometimes generate "stray" interrupts, which can cause general system havoc
if not handled by the logstray(D3X) function.

When an interrupt is received from a hardware device, the system determines the major number of
the device and passes control to the appropriate driver's interrupt handling routine(s). It does this by
accessing the interrupt vector table, populated during system initialization.

Each device can have up to sixteen interrupt vectors assigned to it. The number of the first interrupt

Drivers in the UNIX Operating System 3-9

Driver Entry Points

vector for a device is (16 * external-maJor-number). The number of intemIpt vectors for a device is
detennined by the value of the #VEC column in the driver's master file. So, if a driver has
#VEC=4, and the external major number of the device is three, the device has intemIpt vectors 48,
49, 50, and 51. See Chapter 10 for a more detailec1 discussion of how interrupt vectors are assigned
to devices.

Each interrupt vector for a hardware device has its own driver interrupt handler, assuming the driver
code includes an interrupt handler. The name of a driver interrupt handler must be either int(D2X),
or one of rint(D2X) or xint(D2X). As with all other driver entry point routines, the driver prefix
must be added to the name.

3-10 Bel Driver Development Guide

Chapter 4: Header Files and Data Structures

Contents

Introduction

Header Files

Error Codes in ermo.h
Data Types in types.h

4-3
4-5

4-1

4-2

Drivers and Data Structures 4-6

Standard System Data Structures 4-7
The user Structure 4-8
The proc Structure 4-10
The buf Structure 4-11
The iobuf Structure 4-12

Declaring Data Structures 4-14
Creating A Driver Header File 4-15
Defining Driver-Specific Data Structures 4-15
Defining Driver-Specific Data Structures in the Master File 4-17

Header Files and Data Structures 4-i

Introduction

This chapter describes the use of system and driver-specific header files, and the relationship between
data structures and drivers. It introduces some standard system header files delivered with the UNIX
operating system that define error code, parameter, and data structure information for all drivers, and
describes the standard system data structure fields frequently accessed by driver routines.

This chapter also provides procedures for declaring data structures in driver code, creating driver
header files for driver-specific data structures, and for defining driver-specific data structures in a
driver's master file.

This chapter discusses the following:

• Using system header files including detailed infonnation on the errno.h and types.h
header files.

• Using standard system data structures including detailed information on structures
defined in user.h, proc.h, buf.h, and iobuf.h. If you are already familiar with standard
UNIX data structures, skip this section and tum to ''Declaring Data Structures".

• Creating driver header files for defining driver-specific data structures and variables

• Defining system and driver-specific data structures in driver code

• Using the master file to define driver-specific data structures

All of the data structures introduced in this chapter are discussed elsewhere in this document. A
complete listing and description of all standard system data structures currently supported for driver
interface is provided in the Bel Driver Reference Manual in section D4X. Appendix C in this book
provides a listing of common and processor-specific header files.

Header Files and Data Structures 4-1

Header Files

A header file is a method of localizing common driver information in a file sharable by all drivers.
Localizing common information reduces the overhead to the driver code itself and enhances the
portability of each driver. There are two kinds of header files associated with drivers: system header
files, and driver-specific header files.

The system header files included in the lusrlincludelsys directory when the UNIX operating system is
delivered define a variety of standard system variables, data types, and data structures used by many

. or all drivers. Driver-specific header files define variables and data structures used only by the driver
routines.

Each driver that uses the information contained in a header file must include the header file name at
the beginning of the driver code with an #include line. Header files containing variable and error
code information must be included in almost all drivers. The following is a listing of header files
typically used by all drivers:

Table 4-1

Header File

types.h

param.h

errno.h

Header Files Used by All Drivers

Description
Contains data type definitions that are required by
standard system data structures; #include before
any other header files.
Contains parameter and macro definitions
required by other header files; #include after
types.h in all drivers.

Contains standard error code definitions for all
drivers.
Contains the cDlD_err(D3X) print interlace
definition.

Header files are called in the order they are listed. Header files that are dependent upon information
contained in other header files must be included after them. For instance, the dir.h header file must
be included before user.h. The types.h andparam.h header files are always in~luded before any other
header files.

The following sections discuss the information contained in the ermo.h and types.h header files in
more detail.

4-2 BCI Driver Development Guide

Header Files

Error Codes in errno.h

The errno.h header file defines the error codes that should be returned by a driver routine when an
error is encountered. Table 4-2 lists the error values in alphabetic order. In a driver open(D2X),
close(D2X), ioctl(D2X), read(D2X), and write(D2X) routines, errors are passed back to the user by
setting the u.u_error field of the process user block to the appropriate error code. In the driver
strategy(D2X) routine, errors are passed back to the user by setting the b_error member of the
buf(D4X) structure to the error codes.

Error
Value
EAGAIN

EFAULT

EINTR

EINVAL

EIO

ENXIO

Table 4-2 Driver Error Codes

Error
Description
kernel resources, such as memory,
are not available at this time;
cannot open device (device may
be busy, or the system resource is
not available).
an invalid address has been passed
as an argument; bad memory
addressing error
when a process is sleeping above
PZERO without peA TCH ORed
to the sleep priority and a signal is
received, longjmp(D3X) is called,
control returns to user and
EINTR is set in u.u_error.
invalid argument passed to routine

a device error occurred; a problem
is detected in a device status
register (the 110 request was
valid, but an error occurred on
the device)
an attempt was made to access a
device or subdevice that does not
exist (one that is not configured);
an attempt to perfonn an invalid
110 operation; an incorrect'minor
number was specified

Use in these
Driver Routines (D2X)

open, ioetl, read,
write, strategy

open, close, ioeti,
read, write, strategy

open, close, ioeti,
read, write, strategy

open, iocti, read,
write, strategy
open, close, ioetl,
read, write, strategy

open, close, ioeti,
read, write, strategy

Header Files and Data Structures 4-3

Header Files

Error
Value
EPERM

EROFS

Table 4-2 Driver Error Codes

. Error
Description
a process attempting an
operation did not have
required super-user
pennission.
an attempt was made to
write to, or to open a
read-ortlydevice

Use in these
Driver Routines (D2X)
open, ioctl

open

4-4 BCI Driver Development Guide

Header Files

Figure 4-1 cross references error values to the driver routines from which the error values can be
returned.

open EAGAIN close EFAULT ioctl EAGAIN read EAGAIN

EFAULT EINTR EFAULT
or

write EFAULT

EINTR EIO EINTR or EINTR

EINVAL ENXIO EINVAL
strategy

EINVAL

EIO EIO EIO

ENXIO ENXIO ENXIO

EPERM EPERM

EROFS

Figure 4-1 Error Codes by Driver Routine

Data Types in types.h

The header file types.h defines a number of special data types used widely within the kernel. Many
fields in the system data structures use these types. The data type for each structure field is defined
in the data structure's header file. Section D4X in the Bel Driver Reference Manual lists the fields in
each data structure together with their defined data type.

Maintaining a standard definition for data types enhances the portability of kernel and driver code.
Drivers storing values in system data structure fields must either declare variables of these types or
cast the value using the C cast construct.

The following is a list of some of the more common data types defined in types.h frequently used by
driver code:

Table 4-3 Common Data Types

Data Type
caddr_t
daddr_t·
dev_t
label_t
otT_t
paddr_t

Description
virtual memory address, byte aligned
block device block number
major/minor device number
setjmp data block
byte offset in file
·physical memory address

The types.h and param.h header files should always be the first header files included in the driver
code. .

Header Files and Data Structures 4-5

Drivers and Data Structures

Data structures provide a means for passing information between the kernel and the driver routines.
They are used to store process status information, to define. 110 transfer. methods, to define buffering
schemes, and to store driver and device specific information. There are basically three types of data
structures: system data structures declared globallyl for a driver, driver specific data structures
declared globally for a driver, and internal data structures defined within a driver routine and used
only by that routine.

System data structures are structures that define common methods of passing information to and from
the kernel and device drivers. Header files for these data structures are supplied with the delivered
operating system in the /usr/include/sys directory. Driver specific data structures are structures that
store information for use only by that driver and whose header files must be created by the driver
writer. Internal data structures are defined within a particular driver routine and store information of
use only to that routine, and often about a specific device.

Drivers declare the use of system data structures by adding the header file names with #include lines
to the beginning of the driver code. Driver-specific data structures are declared either by their own
header file or by an extern declaration at the beginning of the driver code. Internal data structures
are not declared, but are simply created within a particular routine for the use of that routine alone.

The following sections discuss some standard data structures, provide procedures for declaring data
structures, and provide procedures for creating header files for driver-specific data structures.

1. The term "global" means that the data strUcture has been declared at the beginning of the driver code with a #IDdude line, or with an extern
declaration. '

4-6 BCI Driver Development Guide

Drivers and Data Structures

Standard System Data Structures

System data structures are standard structures the UNIX operating uses to pass infonnation to and
from the kernel and driver routines. The header files defining these structures are delivered with the
operating system in the /usr/include/sys directory.

Many standard system data structures are used by all the computers discussed in this book (Appendix
C in this book contains a more complete listing of common header files). The following header files
define some of the data structures commonly used by device drivers:

Header File
buf·h

dir.h

elog.h

file.h

iobuf.h

proc.h

tty.h

user.h

Table 4-4 Common Driver Header Files

Description
Defines thebuf structure used for block I/O
transfers.
Defines the structure of a file system directory
entry.

Defines the iostat structure.

Defines UNIX file structure including flags passed
to open(D2X) and c1ose(D2X) routines.

Defines the iobuf structure (block 110 requests)
for use primarily with IDFC disk devices.

Defines the proc structure used for every active
process include in the process table.

Defines the clist structure and commands and
flags for the line discipline for TrY devices

Defines the user structure for the current process
and is referenced by the global variable u.

The user(D4X), proc(D4X), buf(D4X), and iobuf(D4X), structures, always accessed when
doing character or block 110, are discussed in more detail in the following sections.

Header Files and Data Structures 4-7

Drivers and Data Structures

The user Structure

The user(D4X) structure2 declared in the user.h header file defines the fields included in the user
block for each process. User blocks are created dynamically for each newly created process. The
process user block contains information such as where the data is coming from, its size, and how
much needs to be moved. Character driver read(D2X) or write(D2X) routines may use these fields
to read information they need about the status of an I/O request, and to write the I/O request's final
status.

When a process begins to execute in the CPU, the process's user block is placed at a fixed address in
the kernel. Only one user process can run in the CPU at one time. This means that the user block in
the CPU is always the block for the current running process. A new process that has a higher priority
than the process currently running may cause that process to be swapped out, in which case a new
user block is swapped in for the higher priority process. For this reason, strategy(D2X) and interrupt
routines must not access the us er structure. These routines operate independently of the currently
running process, and may alter the fields of a user block for a process not associated with them.

The majority of the fields defined in the user.h header file are pertinent only to character driver I/O
read and write routines. init(D2X), open, close, and ioctJ(D2X) routines can also access the user
structure, however, the u_base and u_count fields that define the size and location of the data
transfer are not meaningful to these routines. Block I/O requests are handled through the system
buffer cache defined by the buf structure. See 'The buf Structure" section in this chapter for
information.

2. The user structure is also commonly called the u structure or u block, and sometimes referred to as the user area. The term user area should
not be confused with the term user space which refers to the part of a system in which user processes execute.

4-8 BCI Driver Development Guide

Drivers and Data Structures

The following user structure fields are of particular interest to driver routines. A t sign preceding
the field name indicates the field is read-only:

Field

Table 4-5 Fields in the user Structure

Description
Contains a pointer to the virtual address of the
next user data byte. The driver should increment
the pointer for each byte moved. The
pbysio(D3X) function automatically increments
this pointer.
Contains the count of total bytes remaining in
virtual address space. The driver should decrement
this count each time a byte is moved. The
pbysio(D3X) function automatically decrements
this count.
Contains the position in the file when the read or
write was requested.
Contains the error status code for an 110 operation
as defined in the errno.h header file. This value
will be copied to the global variable errno, and a
failure will be indicated in the system call return
value if the operation was unsuccessful.
Contains a pointer to the proc(04X) structure
entry in the process table. The proc structure
defines information such as the process's priority
(See 'The proc Structure" section in this chapter
for information).

Information in the process user block is cross-referenced with information in the proc structure for
the process. The u_proc field in the user structure contains a pointer to the process's proc structure
entry in the process table. The proc structure defines static information such as the the process's
priority level (see 'The proc Structure" section in this chapter for more information).

The user structure is referenced by the global variable u. Driver code accesses user structure
fields through that name, for example: u.u_base. This name refers to the u_base field in the user
structure.

Header Files and Data Structures 4-9

Drivers and Data Structures

The proc Structure

The proc(04X) structure contains information used by memory management hardware and
software to locate the code, data, and stack information of the process. It also contains information
used by the scheduler in selecting processes to run.

One proc structure is created for every process, regardless of whether it is. the currently active
process. In most UNIX systems, each structure is an entry to an array called the process table which
includes all active processes and determines the maximum number of processes on a system at any
time.

The process table can be accessed through the user structure. The u_proc field in the user
structure contains a pointer to the process's process table entry. Fields in the proc structure can be
accessed by driver routines, however, driver routines must never alter the proc structure fields.

The following fields in the proc structure are of interest to device drivers. All fields in the proc
structure are read-only:

Field

p-pgrp

Table 4-6 Fields in the proc Structure

Description
Contains the status of the process and is used by
the scheduler to determine the current state of the
process. The process state is changed by driver
calls to the sleep(D3X) or wakeup(D3X) kernel
functions.
Contains the priority of the process and is used by
the scheduler to determine which process has
priority for CPU use. Process priority can be
changed by driver calls to the sleep) and wakeup
kernel functions.
Contains the process group ID of the process and
is used by a driver to send signals to· a group of
processes.
Contains the process IDand is used by a driver to
send a signal to a specific process.
Size of the process swappable image in pages.

4-10 BCI Driver Development Guide

Drivers and Data Structures

The buf Structure

The buf(D4X) structure declared in the buf.h header file defines the fields contained in the header
for each buffer in the system buffer cache. Fields in the buf structure define a requested block 110
operation by specifying the device to be used by its device number, the direction of the data transfer,
its size, the memory and device addresses, and other information. The kernel uses the information in
the buffer header to organize and maintain the system buffer cache. A block driver strategy(D2X)
routine uses the information in the buffer header to maintain an internal queue of 110 requests to be
processed, and to store information such as the address of an 110 completion routine. Block driver
strategy routines receive one argument, bp, that is a pointer to a buffer header.

The following is a list of some of the fields in the buffer header used by driver strategy routines. A t
sign preceding the field name indicates the field is read-only.

Field

t av_back

Table 4-7 Fields in the buf Structure

Description

Contains the device number (major and minor
numbers) for the block device storing the buffered
data.

Contains the virtual address of the data buffer.

Contains the amount of data to be transferred in
bytes.

Contains the device number for the block device.

Contains a forward pointer for an internal queue
of requests to be processed by the strategy
routine.

Contains a backward pointer for an internal queue
of requests to be processed by the strategy
routine.

Contains information on how the 110 request is to
be handled and its current status.

Driver code uses pointers to refer to fields within the buffer header. For example, the following line
uses the name bp as a pointer to the av _forw field in the buffer header:

bp->av_forw

Chapter 6 in this book describes the system buffer cache and discusses a strategy routine's use of the
fields define in the buf structure in detail.

Header Files and Data Structures 4-11

Drivers and Data Structures

The iobuf Structure

Most block device driver strategyD2X) routines require an internal queue to manage the device's
outstanding I/O requests, since the speed with which a typical block device can service requests is
considerably slower than the speed with which requests can be made.3 strategy routines also need a
structure to store specific device state information. The iobuf(D4X) data structure defined in
iobuf.h provides fields to serve these functions.

The iobuf structure stores such infonnation as the device number, an error count, the device's local
bus address, and other device specific information, and provides pointers to the av _forw and av _back
fields of the buf structure. These pointers can be used to create an internal request queue.

The following list is an example of the kinds of fields included in the iobuf structure:

Field

Table 4-8 Fields in the iobuf Structure

Description
Contains a pointer to the av _forw field in the
buf structure and can be used to indicate the
beginning of an outstanding job request queue in
the driver strategy routine.
Contains a pointer to the av_back field in the
buf structure and can be used to indicate the end
of an outstanding job request queue in the driver
strategy routine.
Contains the device number (major and minor
numbers) of the device.

strategy routines that wish to use the i obuf structure must declare the structure using the extern
declaration in the driver's header file. The structure is a standard name constructed from the driver
prefix in the form: prefixtab. For example, the iobuf structure for the doc_ driver included in
Appendix E is declared in line 175:

extern struct iobuf doc_tab[];

3. An exception to this would be a strategy routine for a RAM driver. Because the data to be read or written is already in memory. requests
can be serviced syncbronously.

4-12 BCI Driver Development Guide

Drivers and Data Structures

Although some form of structure is needed to provide a private I/O queue, it is not necessary to use
the structure defined in iobuf.h. In some cases, the fields provided may not be enough to hold all the
device specific information needed for your device. However, most of the fields provided are
required by any structure holding device specific information, and fields from the iobuf structure
are used in some example strategy routine code included in this book. For this reason, it is helpful
to know the above information.

Header Files and Data Structures 4-13

Drivers and Data Structures

Declaring Data Structures

All system and driver-specific data structures used by a driver are declared at the beginning of the
driver code. In most drivers, this is done in three steps:

1 Use an #include statement to reference the appropriate system header files from the
/usr/include/sys directory for system-wide data structures used in a driver.

2 Use an #include statement to reference the header files created for this driver and
modules for such items as buffering schemes that the driver uses.

3 Declare any structures that are defined in the master file (initialized data structures). Be
sure that the declaration matches the data element size used in the master file. See the
'Using the Master File for Data Structures" section for information on defining structures
in the master file. See the ''Mismatched Data Element Sizes" section in Chapter 13 for
information on checking data element sizes.

System header files should be included (using a #include statement) before driver-specific
declarations and header files. Note, however, that it may be necessary to use a #define statement
before some #include statements, for instance,

#define INKERNEL

This line should precede the following line unless the code will be compiled with the -DINKERNEL
option.

#include "sys/sysrnacros.h"

A header file that is dependent on another header file should be included after that file. After
including the system header file, include the data structures that are necessary for the new driver.

Some hardware drivers may have more than one header file. One may have the driver define
instructions themselves that are used for ioetl calls and the interface between the driver and the user
level programs, and another may have definitions for the interface between the driver and the
firmware!hardware. This latter header defines how to do operations on the board and is used by a
firmware developer. For instance, a tape driver on the 3B15 computer has two header files:
tape_drY .h, which defines data structures used when the driver interacts with the operating system,
and tapeJw.h, which defines the firmware data structures.

4-14 Bel Driver Development Guide

Drivers and Data Structures

Creating A Driver Header File

By creating a header file defining structures and variables specific to your driver, you make the driver
easier to read and maintain. You should create your driver header file using the following
conventions:

• the name must end with the ".h" suffix

• the name should relate to the driver, using either the name of the driver or the driver
prefix

• the he.ader file should be located in the sys directory that is associated with the the driver
source code directory, either /usr/add-on/sys or /usr/srcluts/sys as well as the
/usr/include/sys directory. Note that the /usr/include/sys directory on the 3B4000
computer has subdirectories for the Adjunct Communications Processor (ACP); acp/sys,
Adjunct Data Processor (ADP); adp/sys and the Enhanced Adjunct Data Processor
(EADP) eadp/sys, as well as a subdirectory for header files that are common to all
adjuncts; sys/adj. Header files for drivers that run on one of these adjunct processing
elements should be placed under the appropriate subdirectory.

• header files should be commented. When defining a structure, include comments that
tell how each element is updated and when it is used. When defining 110 control
commands in a header file (see Chapter 8), explain the use of each command
thoroughly.

Because drivers are a separate part of the system, driver programmers should not change or add to
standard system header files. Changing system data structures could cause user-level programs to
work incorrectly if they rely on the system data structure. For example, changes to the process table
will cause the ps(l) command to fail. In addition, modifying standard system header files makes
them incompatible with standard AT&T UNIX System V.

D e fi n in g D r i v e r - S pee Hi c D a t a S t rue t u res

When creating new header files and defining data structures in the driver code, adhere to the
following rules:

• One #include file may be nested inside another. If a header file has dependencies on
another header file, nested include statements ensure that the dependencies are always
honored.

• The names of driver data structures and variables should use the driver name as a prefix
to ease program readability and debugging, and to avoid conflict with other variables on
the system with the same name.

Header Files and Data Structures 4 -15

Drivers and Data Structures

• All declarations of structures that are allocated in the master file must be of the fonn
extern.

• Static data structures can be defined in the header file or the driver code itself, but will
require special initialization code. For instance

static int gzanyopen = 0

is not valid, since the value of gzanyopen at boot time is detennined by the value it had
when the mkunix(1M) was run. The proper initialization code would be

static int gzanyopen;

gzstart () {
gzanyopen 0;
}

• Most drivers should declare a data structure for each hardware unit (device or subdevice)
that may be driven by the driver. This data structure should contain a flag field to
record the device status, such as "open," "sleeping waiting for data to drain," and so forth
(the iobuf structure is a template for this kind of data structure). The majority of the
contents of this data structure are device dependent so no recommendation can be given
here. However, there should be one flag entry per unit, defined in the driver file and
declared in the header file. If it is not appropriate to hard-code this value, it can be
defined in the driver's master file and the system will calculate it at boot time; this is
discussed in the next section.

• The definition of the data structures (the place in the source code where the compiler
allocates memory storage) should be in the master file, especially if they are
configuration-dependent. Alternatively, they can be defined in a .c file, usually the
driver source file or its associated header file.

• Provide meaningful comments for all declarations, especially when values are set or flags
for ioctl(D2X) routines are defined.

4-16 Bel Driver Development Guide

Drivers and Data Structures

Defining Driver-Specific Data Structures in the M aster File

The value of global data variables can be defined in the DEPENDENCIESN ARIABLES column of
the master file for your driver, and then declared as a data structure in your driver. The boot
software will calculate the values of the variables, allocate, and initialize the data structures defined in
the master file (see Chapter 5). This practice should be used for values that might vary among
machines, configurations, or usage levels (such as the size of buffers). The master(4) reference page
and Chapter 12 list the valid operands for expressions that can be used and give instructions for
creating tunable parameters in the master file.

Static variables, pointer declarations, and local structures cannot be defined in the master file but
must be defined in the driver code itself. For example, the hypothetical "GZNORP" driver uses local
driver data areas to buffer data begin transferred between user address space and the device (see
Chapter 6 for a discussion of this VO scheme). It uses the master file to allocate system memory for
driver data areas as a function of the hardware configuration. The three elements defined are

slpbuf

gznctlr

gets the number of controllers (#c) that the bootstrap software finds configured in the
system, expressed as an integer (%i). For hardware drivers, this is determined by the
number of boards configured; for software drivers, it is determined by a number
specified on the INCLUDE line in the system file. For- example

INCLUDE: GZNORPL(5)

will result in a #C= 5.

calculates the maximum number of subdevices that could be configured for this driver
on the system. This is done by multiplying the number of controllers present (#C) by
the maximum number of subdevices each controller might have (#0) as defined in the
#DEV field. A Ox30 byte entry is allocated for each subdevice.

allocates Ox50 bytes for each controller

Header Files and Data Structures 4 -17

Drivers and Dara Structures

The master file that defines these elements is:

* GZNORP

*
*FLAG
bca

#VEC
1

PREFIX
gzn

SOFT #DEV
4

IPL DEPENDENCIES/VARIABLES
6

gzn_cnt(%i) ={#C}
slpbuf[#C*#D] (%Ox30)
gznctlr[#C] (%OxSO)

Figure 4-2 Sample master File

The header file for this driver then references these variables as shown below:

1* Number of gznorp controllers *1
extern int gzn_cnt;
1*

* Bookkeeping for the devices *1
extern struct gznent gznctlr[];
1*

* Base address for each controller's memory *1
extern paddr_t gzn_addr[];

In this case, the system calculates the amount of memory needed for the configuration found by the
bootstrap software. If the values should be set by the administrator, you can create a tunable
parameter table in the master file. Instructions for this are in Chapter 12.

The paddr _ t gzn_addr [] array is the array created because of the "a" flag in the master file.
For any driver with an "a" flag, Iboot creates and fills an array named prefix_addr. This variable
must not be declared as a variable in the master file, but should be declared in the driver code.

4 -18 Bel Driver Development Guide

Chapter 5: System and Driver Initialization

Contents

Introduction 5 - 1

System Configuration 5 - 2

Driver Files Needed for Self-Configuration 5-2
Starting Self-configuration 5 - 2
Steps in Self-Configuration 5 - 3

Creating the Driver Structure List 5 - 4
Downloading Pumpcode (3B15 computer and 3B4000 MP only) 5-6
Checking Symbolic Values 5 - 6
Generating System Tables 5 - 7
Generating Interrupt Vectors 5 - 7
Loading Driver Structures 5 - 8

Driver Rules Enforced by Self-Configuration 5 - 9

System Initialization Process 5 -11

Gate and Interrupt Vector Tables 5 - 11
Other Virtual-to-Physical Mapping 5-13

The letc/inittab File 5-14
Directories and Files Called by letc/inittab 5 -17

3B4000 ABUS Bootstrap Process 5 -19

Dri ver Input to the ABUS Bootstrap 5 - 19

System and Driver Initialization 5 - i

Pre-Bootstrap Processi ng 5 - 19
ABUS Self-Configuration 5-20
Adjunct Operating System Initialization 5 - 21

Initializing Drivers 5 - 22

Driver init and start Routines 5-23

Example Initialization Routines 5 - 24

Initialization Routine for a Software Driver 5 - 24
Initialization Routines for Hardware Drivers 5-25
Initializing Intelligent Devices on the 3B15/3B4000 Computers 5 - 25

S - ii Bel Driver Development Guide

Introduction

Device drivers must be installed as part of the kernel, and so must conform to a number of
predefined specifications and procedures. For example, the driver must be declared to be of a certain
type (block or character), driver routines must follow naming convention, and files must be stored in
particular directories. Although the details vary from system to system, the processing required to
prepare a driver for use occurs in three basic steps

• Installation. System files relating to the driver must be created or updated, and the
compiled driver code must be installed. Instructions for completing this step are given in
Chapter 12.

• Configuration. A new version of the kernel must be created to include information
about the driver. Information must be loaded into system tables, driver structures must
be created, the driver code must be linked into the kernel, and other functions must be
performed. The first part of this chapter described the main steps in this process.

• Initialization. The newly configured kernel is then executed. System processes are
begun, and the driver initialization routine (either init(D2X) or start(D2X)) is executed.
At the end of this chapter, example driver initialization routines are presented along with
guidelines for determining what initialization may be needed for different types of
drivers.

Many of the details of system configuration and initialization are independent of driver initialization.
They are included in this chapter mainly to help debug the driver. Errors in the driver init or start
routine may cause a system crash soon after booting. In that case, it is very helpful to have a clear
idea of what happens when the system is booted.

System and Driver Initialization 5-1

S y s t em Con fi g u rat ion

The next few sections cover some of what driver developers should know about system configuration.

Driver Files Needed for Self-Configuration

Before booting the system and invoking self-configuration, the following files must be created or
updated. These are discussed more fully in Chapter 12 and Appendix A.

• master file - provides driver-specific information, such as whether it uses the block or
character interface, the interrupt priority level (IPL) for the device, and dependencies
this driver has. Self-configuration does not itself access the master file; rather, the
master file information is incorporated into the bootable executable file in the I boot
directory.

• bootable executable file - the driver object code, residing in the source code directory,
with the information from the master file built into the optional header section (see
lusrlinciudela.out.h). The mkboot(1M) command creates this file in the Iboot directory.

• Equipped Device Table (EDT) - a table that lists all hardware devices present on the
system, taken from the IdgnledCdata file.

• system file - identifies software drivers that should be included and hardware drivers
which, though present, should not be included in this kernel.

The files in Iboot have upper case names; the corresponding files in letclmaster.d have lower case
names.

S tar tin g S elf - con fi g u rat ion

Installed drivers are configured into the operating system kernel when the system is booted. The
system firmware provides the pre-bootstrap processing, including running diagnostics, initializing
mainstore, building the EDT, and starting UNIX kernel booting by calling mboot. mboot calls
I boot , 1 which builds the kernel, including the drivers.

The mboot-(olboot)-lboot sequence is called self-configuration. Once the driver is installed, self
configuration makes it a functioning part of the operating system kernel.

1. On some systems, mboot calls olOOot, which in turn calls lOOot.

5 - 2 BCI Driver Development Guide

S};stem ConJiguration

Self-configuration has two modes of operation. The mode in which self-configuration runs is
detennined by the type of file self-configuration is told to load. On the 3B15 computer and the
3B4000 master processor, the operator tells the self-configuration process which file to load by
responding to the Enter path name: prompt that appears after the boot(8) command is issued.
On the 3B2 computer, the computer's firmware automatically displays an Enter name of
program to execute []: prompt.

The first mode, which runs when the name of a system file is provided, is referred to as the
autoconfig or full configuration boot. In this mode, the hardware and the system configuration file
are examined to determine what drivers are to be configured into the kernel. The second mode is
referred to as the absolute boot mode, or more commonly, "boot of lunix". In this mode, a boot
image is loaded. Most routine booting of the system is done in the absolute boot mode.

When the self-configuration process is complete, system initialization begins.

On the 3B4000 computer, the adjuncts are booted only after system initialization is completed for the
Master Processor. The adjuncts go through a self-configuration and system initialization process
similar to that of the Master Processor. On the ACP, self-configuration runs on the ACP with the
ACP integral disk housing boot critical files. Self-configuration for the ADP and EADP is controlled
by user-level processes that run on the Master Processor.

Steps in Self-Configuration

In effect, the self-configuration process acts as a dynamic link editor. It performs the following
functions of interest to driver developers:

• creates the driver structure list

• downloads pumpcode to the pump able device (3B15 and 3B4000 MP only)

• checks symbolic values

• assigns internal major numbers

• generates system tables

• generates interrupt vectors

• loads driver structures

System and Driver Initialization 5 - 3

System Configuration

• copies driver code and Ibootlkernel code into RAM and link-edits

• begins the system initialization process by passing control to the kernel physical startup
routines

The most important of these steps are described below.

Creating the Driver Structure List

The driver structure list is an internal linked list created by the self-configuration process. It contains
one structure for every driver that has an entry in the f boot directory. At the head of the list is the
kernel data structure, which is similar to the driver structure except it has fewer fields. Each entry is
marked either INCLUDE or EXCLUDE based on whether there are any corresponding devices in
the EDT and entries in the f etc! system file.

If an included driver is dependent on an excluded driver, (as indicated in the master file) neither
driver will be configured into the operating system. Error messages will indicate that the driver was
excluded.

Figure 5-2 illustrates the structure of each driver in the list. The number of controllers is determined
by:

• the EDT (for hardware drivers)

• the INCLUDE line in fetclsystem file (for software drivers)

• for required drivers ("r" under FLAGS in master file), the value is always 1

All drivers must have a .text section. If the driver object code does not include a .bss or .data
section, Ihoot creates a dummy header for a zero-length section.

5 - 4 BCI Driver Development Guide

System Configuration

struct driver *next
pointer to next driver in the list

char *name
driver name (corresponds to l{path}/boot name)

struct master *opthdr
optional header from driver object file (contains master file information)

unsigned char flag
flags (from l{path}etclmaster.d)

unsigned char nctl
number of controllers (expansion of #C variable in master file)

ushort int_major
internal major number

unsigned char ntc_lu
number of logical units across HA (used for SCSI devices only)

(expansion of #S variable in master file)

unsigned char maj[MAXCNTL]
external major number of each controller

unsigned char sys_bits[MAXCNTL]
corresponding ELB sys-bits for devices on 3B15 LBE

long timestamp
(Ltimdat from file header)

long nsyms
number of symbols (from filehdr in object file)

long symptr
pointer to sy!!!bol table

.text section header
(from driver object file)

.data section header
(from driver object file)

.bss section header
(from driver object file)

Figure 5 -1 Driver Structure

System and Driver Initialization 5 - 5

System Configuration

Dow n 10 a d in g P u m p co de (3 B 15 com p u te ran d 3 B4 000 M P 0 n Iy)

Pumpcode can be downloaded to a device by the driver's start(D2X) routine, which executes after
the self-configuration process is completed. It can also be downloaded by an ioctl(D2X) routine or
by a script in the letclrc.d directory. However, the 3B15 and 3B4000 MP support downloading
pumpcode to a device requesting it, so lboot must handle it. This is typically used for boot devices.
The downloaded code is never used during self-configuration.

When the boot process begins, it accesses the bootstrap programs from the unpumped boot device.
This implies that the firmware of the boot device does not rely on pumpcode for all its software.
After the driver list is populated, Iboot creates structures in kernel address space, then loads
pumpcode from the I libl boot pump .d directorY into these structures. The pumpcode structures are
then matched to the corresponding driver structures, and the pumpcode is downloaded to the
appropriate device.

After the configuration table is printed and the kernel and all drivers are loaded, Iboot instructs the
controllers to start executing the downloaded code. This is the last thing done before calling the
UNIX system to start initializing.

Checking Sym bolic Values

Before creating the symbol table, Iboot checks that no symbolic name has been defined more than
once. All symbolic names declared in the master files as well as those declared as extern in the
driver code are compared, including those for drivers that are excluded. If lboot finds a name with
more than one value, it first attempts to resolve it by checking that none of the multiple values are
defined for excluded drivers. If so, it prints a warning message and proceeds. If there are multiply
defined symbols for non-excluded drivers, lboot initializes them to zero. While this allows Iboot to
continue, it may cause the system to panic or seriously malfunction before the boot process
completes.

lboot also looks for referenced but undefined symbols. If it finds an undefined symbol, an error
message is printed and the symbol is initialized to O. This condition may also cause the system to
panic or seriously malfunction.

5 - 6 BCI Driver Development Guide

System Conjiguration

Generating System Tables

The MAJOR and MINOR tables are character arrays of 128 entries. For each external major
number, Iboot inserts the corresponding internal major number it has calculated into the appropriate
slot in the MAJOR table. Only one internal major number is assigned to each driver, whereas each
device controlled by a driver has its own major number. Consequently, several internal major
numbers (several devices) may map to the same internal major number (same driver).

Iboot determines the external major numbers in one of the following ways:

• External major numbers for software drivers are listed under the SOFT column of the
master file; Iboot gets this information from the optional header member of the driver
structure list.

• External major numbers for most hardware devices correspond directly to the slot in
which they are installed, and lboot uses these numbers.

• The 3B15 computer supports an extended local bus unit (ELBU); major numbers for
devices on the ELBU are 32 + board address. The lboot process calculates the major
numbers for ELB devices, then writes these values to the MAJOR table.

The type of access supported by a driver is determined by a "b" or "c" in the FLAGS column of the
master file. Iboot gets this information from the flag member of the driver structure.

This two-pass approach is taken to limit the size of the bdevsw(D4X) and cdevsw(D4X) tables.

At this point, Iboot generates the bdevsw and cdevsw tables and the corresponding bdevcnt
(number of block-access devices) and cdevcnt (number of character-access devices) values.

Generating Interrupt Vectors

lboot determines the number of required interrupt vectors by adding the numbers from the # VEe
column of all master files. It then sets up a single interrupt vector table, which is used to access the
drivers' interrupt routines.

Regardless of what is coded in the driver, lboot determines whether to use int(D2X) or
rint(D2X)/xint(D2X) pair for the interrupt routine(s) for each device according to the ratio of the
number of vectors per device (#VEC) to the number of subdevices per controller (#D). If the
number of vectors is double the number of devices, lboot will create two interrupt vectors per
subdevice and expect the rintlxint pair of routines. Otherwise it will expect the int routine.

2. Files in this directory must be named board-namepump. For instance, if the board name is ports, the pumpfile must be named portspump.

System and Driver Initialization 5-7

System Configuration

To populate the interrupt vector table, Iboot creates an assembly assist routine that pushes the device
number onto the stack, then calls the driver interrupt handler routine. 3 It then puts the" address of the
interrupt assist into the table and assigns the appropriate interrupt priority level (IPL) to each vector.

Each device can have up to sixteen interrupt vectors assigned to it; see Chapter 10 for an explanation
of how the interrupt vector numbers correspond to the external major number of the device.

Loading Driver Structures

Before loading the driver structures, Iboot calculates values for all driver variables and symbols and
adds them to the symbol table. It first computes values for variables defined in the master files, then
those defined as extern in the driver code, and finally static symbols defined in the driver code.

For extern symbols that are defined in the driver, Iboot computes the final value and saves the
original value.

The system is loaded in several steps.

1 First loaded are all sections of the kernel that run in physical addressing mode (those
whose names do not begin with "."). Undefined symbols are relocated. These sections
occupy the lower portion of mainstore.

2 Next loaded are all sections of the kernel that run in virtual addressing mode (those
whose names begin with ".") except for .text, .data, and .bss. Special symbols are
defined (Sname, Ename, and nameSIZE, where name is the name of the section without
the initial "."). The section corresponding to virtual address 0 must exist and be loaded;
its real address is stored so that interrupt vectors can be inserted. Each section is loaded
at the next highest word boundary.

3 Location counter for the kernel .text and .data sections are assigned.

4 The .text, . data , and .bss sections of the kernel object code are loaded, relocating
undefined symbols. The special symbols (Ename, Sname, and name SIZE) are loaded for
these sections.

5 The driver structure list is loaded.

6 Driver data structures are generated. They will be initialized by the drivers' init routines
when the self-configuration process is complete.

3. If the driver code includes an interrupt handling routine of any sort, lboot will create either an int or rintlxint assembly assist routine in the
interrupt vector table, according to the ratio of #VEC to #DEV in the master file. lboot will call the routine(s) that it creates; as long as the
driver was coded with the same routine, there are no problems. This is discussed more in Chapter to. -

5 - 8 BCI Driver Development Guide

System Configuration

7 The io_init and io_start tables are created. These structures are used to access the init
and start routines of the drivers, since these routines do not have entries in the device
switch tables.

8 The real addresses for the .bss sections are assigned.

9 The sys3b symbol table is completed.

10 The 3B4000 and 3B15 computers record the pathnames of any pumpfiles that were used
in a special section of the operating system.

At this point, control is passed to the physical entry point for the kernel, which begins system
initialization. Effectively, lboot has resolved several .a-like files into a fully-resolved a.out-like file.

D r i v erR u Ie sEn for c e d b Y Self - Con fi g u rat ion

The self-configuration process imposes coding restrictions for device drivers and configurable
modules. These restrictions arise as a result of the dynamic linking of the kernel and configuration
modules at boot time. These restrictions and requirements are

• Never assume that globally initialized, dynamic data is properly initialized; it must be
explicitly initialized in the driver code. There can be no static variables whose initial
contents are depended on by code fragments. Such items as "first-time" switches, lock
words, and initial pointers for linked lists are not allowed. The only initial value that
can be assumed is zero for variables allocated in the .bss section. (This restriction,
however, does not apply to statically allocated and initialized identifiers used as
constants.) Further, any initialized data may be different in the lunix file that is created
later.

• There can be no references to routines or identifiers defined within other modules unless
there is a strict dependency chain established by the dependency list in the master file.
The single exception is a reference to a routine in another module which is defined in the
routine definition lines of that module's master file entry.

• Any necessary data areas must be definable using the capabilities of the variable
definition lines in the master file. Furthennore, the sizes of all such data structures must
be adjusted based on the configuration that exists at configuration time, using the
capabilities allowed by the master file.

System and Driver Initialization 5 - 9

System Configuration

• Drivers must be written to expect the entire device number (composed of the major and
minor numbers) passed in their argument lists rather than just the minor number. This
is not true for drivers written for non-self-configuration systems. A device number must,
in general, be processed in the following three steps:

1 The minor number must be inspected to determine that it refers only to
devices on an individual controller.

2 The minor(D3X) macro must be invoked to convert the device number into
an internal minor number.

3 This internal minor number must be verified to ensure that it only refers to
an existing device.

• Any peripheral device on the system must be under the direct control of only one driver
on the system. Drivers that interface to hardware indirectly do not violate this
requirement.

• Any interrupt routines required for a peripheral must interface to one and only one
driver.

5-10 BCI Driver Development Guide

System Initialization Process

When the self-configuration process is completed, it begins system initialization by calling the
physical entry point of the kernel. System initialization initializes the kernel and drivers, creates
process 0, executes the init(lM) process, and starts the system processes such as the swapper.

Briefly, system initialization is executed in the following order:

1 The physical memory manager and the mapping parameters array are initialized, and the
virtual-to-physical mapping information is generated. The gate, interrupt, and exception
tables are the first to be mapped, followed by the kernel .bss, .data, and .text segments.
The following two sections outline the virtual to physical memory mapping.

2 All driver init(D2X) routines are run. Driver init routines are in the init data array.

3 The root file system is mounted internally in the kernel. Note that no entry is made in
the mnttab file at this point. The bcheckrc process that is run by init will zero out the
rnnttab file and then create an entry for root in the mount table.

4 All driver start(D2X) routines are run. Driver start routines are in the io_start data
array.

5 After the driver start routines have been executed, the system processes are started,
including sched and init(lM). init is a general process spawner, whose primary role is to
create processes as specified in the letclinittab file. See the 'The letc/inittab File" section
in this chapter for information on the structure of inittab and related files and
directories.

Gate and Interrupt Vector Tables

System initialization begins in physical mode. It first initializes the physical memory manager and
the mapping parameters array, then generates the virtual-to-physical mapping information in low
memory for the items listed below and in the next section. After completing all the mapping, the
system allocates table space, then retrieves these parameters and uses them to build the appropriate
Segment Descriptor Tables (SDTs) and Page Descriptor Tables (PDTs).

System and Driver Initialization 5 -11

System Initialization Process

The following tables and vectors are mapped at fixed locations by the gate.c file:

First level gate table

Process and stack exception
vectors

Interrupt vector table

Second level gate table

Normal exception gate table

Dummy gate vector

Location: virtual address O. Although the
hardware defines 32 entries, the UNIX operating
system only uses entries 0 and 1.

Locations: process exception, physical address
Ox84, stack exception, physical address Ox88.

Location: physical address Ox140. The hardware
defines 256 entries, each of which is defined as a
kernel fixed process control block. The second
entry in the interrupt vector table is the process
switcher (PIR #1), and the third entry is for
callout processing (PIR #2). Any entries that are
not used are assigned a nuLl process control block
and logged as stray interrupts.

The system call cage table that prevents
unauthorized entry to a system call throughout
GATE O. Note that os/trap.c is responsible for
checking that normal exceptions through GA TE 1
are valid. On the SBC and 3B2 computers, this
table has 64 entries; on the 3B4000 and 3B15
computers, it has 152 entries.

Contains normal exception entry points defined in
ttrap.s. This is the gate table that faults the user
process that attempts invalid gate access as well as
page faults and other faults. It is indexed by the
internal state code field in the program status word
(PSW).

Catches user code that does a GA TE with register
zero set to anything other than a 0 or 1. On the
SBC, 3B2, and 3B15 computers, this table has 29
entries; on the 3B4000 it has 197 entries.

5 -12 Bel Driver Development Guide

System Initialization Process

Other Virtual-to-Physical Mapping

After the gate and interrupt vector tables are mapped, the remaining virtual-to-physical mapping is
done in the following order:

1 kernel. text segment

2 kernel .data segment

3 kernel. bss segment

4 first segment of the central controller (CC) board (128K)

5 second segment of the CC board (128K)

6 scratch segments (each up to 1 page)

7 primary local bus I/O space

8 incore file system (3B4000 adjuncts only)

9 additional I/O space for extended local bus, if any

10 dynamic kernel segments

11 page frame identity map (pfdat), which is an array of structures containing page frame
information. This structure contains an entry for every unallocated page of memory left
in the system.

12 all remaining free memory

At this point, the Memory Management Unit (MMU) tables (process table pointers, proc table, and
region tables) are initialized. These tables are statically allocated in the kernel master file, beginning
in the first page of the free memory area mapped in pfdat.

The mainstore cache, console, and the second console port (contty) UART interrupt devices are also
initialized. Then the kernel zeros its .bss space, including the drivers.

System and Driver Initialization 5 -13

System Initialization Process

The letc/inittab File

The letclinittab file controls the processes executed by the init(lM) program when the computer is
initialized and any time the computer changes run level. When a new state is entered, the init
program reads inittab, finds the "instructions" that apply to that run state, and executes those
programs in the order in which they are listed in inittab. For most drivers, you will not modify
inittab but rather create other files that will be called automatically.

5-14 Bel Driver Development Guide

System Initialization Process

Each line in inittab has four fields, separated by colons. A comment should be added at the end of
the line; it is preceded with a "#" and can go to the end of the line. The four fields are:

id One or two characters used to uniquely identify an entry.

rstate The state or states in which this command can be executed. The valid values with their
meanings are:

value

s,S,O,l
2
3
4
5
6

state

Single-user state
Multi-user state
Multi-user state with RFS running
Not currently used
Go to firmware mode
Automatic reboot

NOTE: ° in rstate means power down on the 3B2 compute and single-user on the 3B15
or 3B4000 computers. If no number is specified, the default is that the
command can be executed in any run state.

More than one number can be used in this field; for instance, "56" means to execute this
process when the system state switches to either state 5 or 6.

action The conditions under which init should execute the process in this line. For a full
explanation of all actions, see inittab(4) in the UNIX System V Programmer's Reference
Manual. The options of interest to driver writers are:

wait start process and wait for it to terminate when system first enters that runstate

bootwait execute only once after system is booted, the first time the system enters a
state that matches rstate for this entry.

off do not restart this process when state changes

sysinit used for initializing devices, identifies entries to be executed before init
spawns a shell on the console

respawn restart this process if it dies or if it is not already running when system state
changes

process The full patbname of the process to be invoked and arguments to the process

System and Driver Initialization 5 -15

System Initialization Process

Figure 5-2 is an example of a pristine letclinittab file.

letc/inittab file
2 #

3 fs::sysinit:/etc/bcheckrc </dev/console >/dev/console 2>&1
4 xdc::sysinit:sh -c 'if [-x letc/rc.d/Oxdc] ;

then letc/rc.d/Oxdc ; fi' >/dev/console 2>&1
5 mt:23:bootwait:/etc/brc </dev/console >/dev/console 2>&1
6 pt:23:bootwait:/etc/ports </dev/console >/dev/console 2>&1
7 is:s:initdefault:
8 p1:s1234:powerfail:/etc/led -f # start green LED flashing
9 p3:s1234:powerfail:uadmin 2 0

10 fl:056:wait:/etc/led -f # start green LED flashing
11 sO:056:wait:/etc/rcO >/dev/console 2>&1 </dev/console
12 s1:1:wait:/etc/shutdown -y -is

-gO >/dev/console 2>&1 </dev/console
13 s2:23:wait:letc/rc2 >/dev/console 2>&1 </dev/console
14 s3:3:wait:/etc/rc3 >/dev/console 2>&1 </dev/console
15 of:O:wait:/etc/uadmin 2 0 >/dev/console 2>&1 </dev/console
16 fw:5:wait:/etc/uadmin 2 2 >/dev/console 2>&1 </dev/console
17 RB:6:wait:echo "Ohe system is being

restarted." >/dev/console 2>&1
18 rb:6:wait:/etc/uadmin 2 1 >/dev/console 2>&1 </dev/console
19 he:234:respawn:sh -c 'sleep 20 ;

exec letc/hdelogger >/dev/console 2>&1'
20 co:234:respawn:letc/getty console console
21 ct:234:off:letc/getty contty contty # Network out

Figure 5-2 Example letc/inittab File

5-16 BCI Driver Development Guide

System Initialization Process

Directories and Files Called by /etc/inittab

The letc!inittab file calls a number of programs that either execute actions or execute the files in
certain system-specific programs. Whenever possible, you should add to these files and directories
rather than augment letc!inittab itself. Any mention of shell scripts in this section can mean an
executable "e" program in addition to a shell script. Table 5-1 summarizes these files and directories;
the following sections describe each in more detail.

letclbrc .d

Table 5-1 Directories and Files Called by /etc/inittab

Program rstate action executes:
/etc/brc 2 bootwait files in letc!brc.d directory

/etc/rc2 2 wait files in the I etc! re2 .d
directory and then the
files in the letc!rc.d
directory

/etc/rc3 3 start Starts RFS
rfstart Initializes variables
stoE StoEs RFS

/etc/rcO 56 wait self

The /etc/brc program executes the shell scripts in the letclbre.d directory, in
alphabetical order. This happens once upon the first transition to multi-user state
after booting, after the file systems are checked but before they are mounted and
the daemons started. These scripts set up protocols and clean up the system before
the file systems are mounted and daemons started. This is a good place to start a
driver that is needed only when the system is in multi-user state. For instance, on
the 3B15 computer, the Input/Output Accelerator (lOA) is configured at this point.

On the SBC and 3B2 computers, the /etc/ports command that creates special device
files and entries in the letc!inittab file for the ports boards is run after brc.

System and Driver Initialization 5 -17

System Initialization Process

letclrc.d

letclrc3.d

letclrcO

The letc/rc2 program executes shell scripts that start with S or K in the letclrc2.d
directory and then executes the scripts in the letclrc.d directory in alphabetical
order. /etclrc.d is only searched for historic compatibility. New scripts should be
placed in letclrc2.d. The first file to execute mounts the file systems that are listed
in letcljstab. Most drivers should be initialized before this happens, but you may
have related processes to start at this point. For instance, the errlog daemon
associated with the err log driver on the 3B15 computer and 3B4000 master
processor is started here.

On the SBC and 3B2 computers only, rc2 runs the lete/disks program that recreates
special device files for all "disk" subdevices in Idgnledcdata. You should put a file
here to create the special device files for your device, unless it is an actual terminal
port (not a network or printer that uses a TrY port) or a disk. Because the
external major number of a device on these machines may be changed by the
addition/removal of another device, special device files should be recreated every
time the system is booted. On the 3B15 and 3B4000 computers, the major number
of a device changes only if the board is physically moved, so this step is not
necessary.

These scripts are executed by the lete/re3 program when the system goes to state 3,
which is multi-user state with Remote File Sharing (RFS) running. Driver
associated processes that should run only when RFS is running should be started
here.

The letcircO script controls the shutdown process. In general, processes that are
started by either bre or re2 should be explicitly stopped in letclrcO.

5 -18 Bel Driver Development Guide

3B4000 AB{;S Bootstrap Process

On the 3B4000 computer, the ABUS bootstrap process boots the adjunct processing elements after
system initialization is completed for the Master Processor. This is done automatically when the
system goes to multi-user state (state 2 in the inittab file), or can be initiated manually from the
console.

The ABUS bootstrap provides functionality similar to the standard UNIX system bootstrap discussed
above, but it consists of several user-level programs that execute on the master processor. The
bootape(lM) command boots an adjunct; the bootabus(lM) command calls bootape to boot all
configured adjunct processing elements.

Driver Input to the ABUS Bootstrap

The files and data required by the ABUS bootstrap process are similar to those used for the UNIX
bootstrap. The lad} directory on the Master Processor contains a subdirectory for each configured
adjunct processing element. These subdirectories are named ladjlpe# where "#" represents the
processing element number (for example, "peB" and "pel06"). The ABUS bootstrap gets its
information about drivers from

• master file in the ladjlpe#letcimaster.d directory

• bootable executable file in the ladjlpe#lroot directory

• EDT data file, which is ladjlpe#ledt

• system file, which is ladjlpe#letc/system

• special device files for the MSBI and each adjunct are in the Idev directory; special
device files for peripheral devices on the adjuncts are in the /adjlpe#/dev directory

Pre-Bootstrap Processing

ABUS booting begins by ensuring that the MSBI is in an operational state; if it is not, bootabus
downloads the MSBI operational firmware4 which allows communication to the Master Processor
over the Maintenance Access Path (MAP) port. Next, the MSBI diagnostics are downloaded over
the MAP port and executed. 5

4. The firmware is downloaded by the letclmsbidl command; the firmware download file is in /lib/msbi_image.

5. The diagnostics are downloaded and executed by the /etcldgndl command; the firmware download file is Ilibldgnlmsbi/selftest.

System and Driver Initialization 5-19

3B4000 ABUS Bootstrap Process

. Once the MSBI is operational, bootabus spawns a bootape process for each configured adjunct
processing element. All adjuncts are bootstrapped in parallel.

Booting an adjunct consists of the following:

1 verifying that all special device and configuration files For the adjunct exist and are of
the correct type6

2 checking if adjunct is in a bootable state (not running or being booted)

3 running ROM-resident diagnostics and verifying the results

4 executing the adjunct Self-Configuration process (letc/unixgen).

5 downloading the IIib/adjboot stand-alone process to the adjunct over the MAP port.
This provides the protocol that allows the adjunct to communicate over the ABUS.

6 adding the adjunct's incore file system (ladj/pe#ldevlicjs) to the letclmnttab file on the
Master Processor

7 executing the /etc/adjrc command which executes the scripts in the ladjlpe#letcirc.d
directory

ABU SSe If - Con fi g u rat ion

Full self-configuration for an adjunct is similar to full self-configuration for any UNIX system, with
the following exceptions:

1 It creates an incore file system for the adjunct using /etc/mkfs(lM).

2 It does not download code to controllers.

3 For file servers, it creates the adjunct edt file using the SCSI edtgen utility that
downloads a process that generates a temporary EDT called "inquiry data," then uses this
inquiry data information to create the adjunct edt data file.

4 The EDT is a data file (named edt) rather than a table in ROM.

5 It builds the I/O data structures for the adjunct kernel and fills in the switch table entries.
The interrupt assist routines and pcbs are not generated for the file server and
computational server;

6. The folI.owing files are checked: /dev/pe# and /conjig/pe#/pe, where # represents the processing element number.

5 - 20 BCI Driver Development Guide

3B4000 ABUS Bootstrap Process

6 It creates the sys 3bboot structure that contains system configuration information.
The bootpump and e_dumpdev structures are not created for an adjunct.

7 bootape uses the cc(l) compiler and the Id(l) link editor to create the boot image (in
the /adjlpe#/dev/unix file), then downloads this boot image to the adjunct and executes
it. Regular UNIX system self-configuration creates this boot image after system
initialization is completed, whereas adjuncts are always booted from this image.

Adjunct Operating System Initialization

The operating system initialization of an adjunct kernel is similar to regular UNIX system
initialization. It creates the virtual-to-physical mapping, zeros its .bss space (including drivers), and
creates the environment for process O.

The driver initialization routines are called, the kernel's I/O system and file system initialization
functions are called, and the incore file system is mounted.

At this point, the system processes are started. The adjunct operating system does not have an init
process, so the kernel idles while waiting for work.

System and Driver Initialization 5 - 21

Initializing Drivers

The tasks involved in initializing drivers differ for hardware and software drivers. Hardware driver
initialization can include the following:

• clearing flags and counts previously set by the driver

• setting interrupt vectors

• allocating resources

• initializing kernel structures and pointers required for device communication

• initializing the hardware device or devices

• determining whether the device or devices are online

Software driver generally require a less complicated initialization since there is no actual device.
Software driver initialization can include the following:

• initializing kernel data structures used by the driver

• allocating resources such as a memory map

A driver can be initialized by one or a combination of the following driver routines:

init(D2X)
An init routine can be used for any driver that does not need access to the root file
system in order to initialize, such as a driver that is downloading purnpcode from disk.
An init routine must be used with drivers for devices that the kernel uses to initialize
itself. A driver need by the kernel for kernel initialization is indicated by an "r" in the
FLAG column of the driver's master file.

start(D2X)
A start routine can be used for any driver and must be used for drivers that need access
to the root file system in order to initialize.

ioctl(D2X)
ioctl routines can be used for hardware device drivers if the device needs to be initialized
in different ways for different configurations. For instance, the 3B15 computer's lOA
driver is initialized with I/O control commands so that appropriate protocol-dependent
scripts for the devices supported by a specific lOA can be downloaded.

open(D2X)
An open routine can include initialization functions that should be run each time the
device is opened.

5 - 22 Bel Driver Development Guide

Initializing Drivers

Drivers can be initialized through a combination of the above routines at different times. For
example, the init or start routine for a hardware driver could initialize any kernel data structures
required for the device, but not initialize the device itself. The device initialization (such as
sysgening the board and setting the board's bit configuration) might be done with the ioctl and open
routines activated by user-level programs after the operating system is running.

Driver init and start Routines

Most drivers have either an init(D2X) or a start(D2X) routine, although it is quite permissible to use
both for one driver. A driver must have either an init or start routine if

• the driver needs kernel structures other than the standard structures (such as
clist(D4X» that are part of the operating system

• the driver has static data (data that is private to that driver). Static data is put in the
kernel's .data area. When an absolute boot is done, the initial contents of the .data
section are the same as when the mkunix command was executed. If the driver modifies
the static data, it must use an init or start routine to reinitialize it every time the system
is booted.

The init or start routine must initialize any arrays or data structures used in the driver code, and do
any set up required by the specific device such as resetting or establishing default parameters.

System and Driver Initialization 5 - 23

Exam pie Initialization Routines

The following sections show some different initialization routines that have been written. Each driver
has its own particular initialization needs, but by studying these examples you can learn the sorts of
checks and error handling that is done in initialization routines and how drivers initialize structures
and set up pointers and registers that are needed to communicate with a device. Initialization of
TTY drivers is discussed in Chapter 7.

Initialization Routine for a Software Driver

The simplest sort of initialization routine is that of a software driver, since all that is usually required
is to initialize kernel data structures that are needed for the driver. As an example, Figure 5-3 shows
the msginit routine from the msg driver, which initializes the rnsgrnap message allocation map.
Technically, msg is a module not a software driver, but the principles are the same.

This initialization could also have been done with a start(D2X) routine. It uses kseg(D3X) and
btoc(D3X) to allocate the memory, based on values set through the master file. This makes it
possible to change the amount of memory being allocated without recompiling the driver. It
initializes a private space management map with the mapinit(D3X) function, and frees all the space
in the map with the mfree(D3X) function.

1 msgini t ()
2 {
3 register int i; /* loop control */
4 register struct rnsg *mp; /* ptr to msg begin linked */
5 extern char msgsegment[];

7 /* Allocate physical memory for message buffer. */

9 if «msg = (paddr_t)kseg(btoc(msginfo.msgseg * msginfo.rnsgssz»)
1 0 NULL) {

11 cmn_err(CE_NOTE,"Can't allocate message buffer.\n");
12 msginfo.msgseg = 0;
13 }
14 mapinit(msgmap, msginfo.rnsgmap);
15 mfree(msgmap, msginfo.msgseg, 1);
16 for (i = 0, mp = msgfp = msgh;++i < msginfo.msgtql;mp++)
17 rnp->rnsg_next = mp + 1;
18 }

Figure 5 - 3 Software Driver Initialization Routine

5 - 24 Bel Driver Development Guide

Example Initialization Routines

Initialization Routines for Hardware Drivers

The doc_ driver code given in Appendix E provides a good example of how to initialize a hardware
device. This is a disk device driver that runs on the SEC computer, but is illustrative of hardware
device initialization in general. The doc_ driver is initialized through a combination of the following
routines:

• doc_init, the initialization entry point routine, that begins at line 283.

• doc_initdr, a subordinate routine called by doc_init, that begins at line 540. It
initializes drive parameters in the controller.

• doc_open, the entry point routine, that begins at line 592. It sets the physical
description for the device the first time it is opened.

Descriptions of each routine are provided in Appendix E.

Initializing Intelligent Devices on the 3B15/3B4000 Computers

To initialize an intelligent device, you must download code and initialize the queues that associate
interrupts with a particular subdevice, then sysgen the device. Sysgen is the procedure used to inform
a controller of the location, number of entries, and size of queues that a driver will use to
communicate with a controller.

The 3B15 and 3B4000 computers include the drv _rtile(D3X) to read a file into a buffer that it
creates. This function simplifies the coding required to pump files to an intelligent controller. Since
this function is not available on other machines, code that uses it should be isolated into a
subordinate driver routine which the initialization routine calls only for #if u3b 15. If the driver is
ported to other machines, alternate subordinate routines can be provided that provide the
functionality without using drv _dUe.

The start routine from the hypothetical gzn driver (Figure 5-4) is a good example of how an
intelligent device is initialized on the 3B15 and 3B4000 computers.

Each controller's microprocessor is driven by code which is downloaded ("pumped") onto the
controller during the boot process. This downloaded pump code is stored in a file in the form of a
binary memory image which is simply copied into the RAM memory of the controller. While the
download is being done, the controller executes from ROM code installed on the board. To effect
the transfer of control from ROM to pump code, a forced-call command is sent to the controller. If
the download attempt fails, the on-board ROM code may provide a "fall back" mode of operation
'with some degree of functionality.

System and Driver Initialization 5 - 25

Example Initialization Routines

The gznstart routine does the following:

• calls upon the kernel to read the gzn download code file

• copies the file into the controller's RAM

• when the download is complete, issues a forced call to start the downloaded code into
execution

• performs a SYSGEN operation on each controller after the download.

In Lines 13 - 65, the controllers driven by this device are initialized. This includes computing
addresses used to pass data between the kernel and the device (lines 20 - 23), sending a RESET
request to each controller (line 32), and waiting for an acknowledgement that the reset has been
completed (lines 39 - 56). The driver uses the delay(D3X) function when waiting for the RESET
COMPLETE message; it is important that the driver wait for this message with some mechanism that
will not hang the system if the device is not responding.

In lines 66 - 102, the downloaded code is read into a buffer with the 3B4000/3B15 kernel function
drv _rtile(D3X). The input is a pointer to an object file structure. This function will return a buffer
address and a buffer size in the download file structure. The open_close element (line 98) indicates if
the file should be opened and read (0) or closed (1). If a problem is encountered during the
download process, an appropriate code is written to u.o_error; the "fall-back" mode (lines 69 - 87) is
to continue on to the SYSGEN and let the controller come up with the resident firmware.

In lines 92 - 97, the driver resets the base address that it cleared for the pumpfile disk operation.
The driver then moves the pumpcode from the kernel-allocated buffer to Controller memory (lines 98
- 99) and frees the buffer (lines 100 - 128). The device firmware may do this rather than the driver.

Prior to the start of operation, the driver communicates with the controller through a temporary stand
alone command block (SACB) which is at a previously agreed upon address on the controller. To
start the downloaded code running, the SACB is constructed then copied over the Local Bus a word
at a time into the controller's memory. The controller is signaled to examine the SACB when the
driver sets a bit in the board's Control and Status Register (CSR) to raise a Program Interrupt
Request (PIR 1).

Now the driver waits for the SACBCMD flag to be reset by the interrupt handler (lines 132 - 150).
If this does not happen within a "reasonable" period of time, an error message is written to the
console and error log. This example ignores the failure and assumes that the device can be run from
code resident on the board as a fall-back.

To initialize the contents of controller's sysgen data block, the driver puts information into the SACB
for the sysgen request. This information would include such things as the addresses of the job request
and completion queues and their sizes, along with any other information needed to establish
communications between the driver and the controller. To do this, construct a temporary SACB,
then copy it into the controller's memory over the Local Bus a word at a time. The word size is
determined by the device, not the ce.

5 - 26 BCI Driver Development Guide

Example Initialization Routines

1 gznstart ()
2 {

3
4
5
6
7
8
9

10
11
12

~3

14
15
16
17
18
19
20
21
22
23

/

1*

1*
*
*1

24 1*
25 *
26 *

27 *
28 *
29 *
30 *1

struct cic_wcsr
struct cic_rcsr
struct pir32

*wcsrp;
*rcsrp;

*pirp;

1* write pointer to CSR *1
1* read pointer to CSR *1
1* write pointer to PIR *1

int
int

delcnt; 1* intermediate delay cntr *1
ctlr; 1* controller counter *1

int port; 1* port counter *1
int cnt; 1* transfer counter *1
register char *bufp; 1* Ptr to allocated buffer *1
register char *gznp; 1* Ptr to download memory *1

Initialize all controllers detected during boot *1
for(ctlr=O; ctlr<gzn_cnt; ctlr++)
{

compute addresses of importance

wcsrp (struct cic_wcsr *) (BIOADDRlOCSR);
rcsrp (struct cic_rcsr *) (BIOADORlOCSR);
sacbp (unsigned short *) (BIOADDRlOSACB);
pirp = (struct pir32 *) (BIOADDRlOPIR);

At this point set up any pointers needed for the Stand
Alone Control Block (SACB).

At this point the driver should contain code to initialize
data structures for the current controller and for each port
on this controller.

Send RESET request to controller *1
wcsrp->req_reset SET;

Allow CSR to be cleared by board from RESET request *1
for(delay = 0; delay < OELAYMAX; delay++);

Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device, part liS

System and Driver Initialization 5 - 27

Example Initialization Routines

35 1*

36 *
37 *
38 *1

wait for RESET COMPLETE to be set in controller's CSR
Look occasionally so as to not put unneeded traffic on
the bus

39 delay = 0;
40 TIMEDOUT = RESET;
41 while ({rcsrp->rcsr3 & RESET_COMPL) != SET)
42 {if (delay < DELAYMAX)
43 { for (delcnt=-512; delcnt!=O; delcnt++)
44 { if«rcsrp->rcsr3 & RESET_COMPL) == SET)
45 break;
46 }
47 delay++;
48 }
49 else
50 {
51 cmn_err(CD_WARN,

~GZNORPL %d: Reset timed out", ctlr);
52 TIMEDOUT = SET;
53 break;
54 }
55 }

56
57
58
59
60
61
62
63
64
65

1*

*
*
*
*
*1

if(TIMEDOUT -- SET) 1* check for reset timeout *1
{

}

At this point, take any action needed when a dead
controller is encountered. Usually, all that can
be done is to mark it out of ser'vice, and avoid
using it during normal operations.

continue; 1* Go on to next controller *1

Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device, part 2/5

5 - 28 BCI Driver Development Guide

66 1*
67

68
69
70
71
72
73
74 1*
75
76
77 1*
78
~'" IJ

80 1*
81
82
83
84 1*
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99

100 1*
101 *1
102

Example Initialization Routines

Clear the base io address to do the disk read. *1
clearbaseio;

pmpfile.open_close = 0;
if (drv_rfile(&pmpfile»
{ 1* Kernel Failed to read pumpfile *1

}

else

switch (u.u_error)
{

}

case ENOENT:
Do processing needed for missing pumpfile *1
break;

case EIO:
Do processing for read error on pumpfile *1
break;

Do processing for insufficient main memory to
read pumpfile *1

break;
default:

Do processing for non-of-the-above error *1
break;

u.u error = 0; 1* Reset error *1

baseio(gzn_addr[i]);

1* Successful Read of GZN Pumpfile *1

baseio(gzn_addr[ctlr]);

gznp = (char *)«long) BIOADDR : (long) GZNRAMADR);
bufp = pmpfile.buffer_addr;
for (cnt=O; cnt < pmpfile.buffer_size; cnt++)

*etcp++ = *bufp++;
pmpfile.open_close = 1;
drv_rfile(&pmpfile);

Set a flag that is cleared by gznint() to show completion *1

SACBCMD = SET;

Figure 5-4 Initialization Routine 3B15/3B4000 Intelligent Device, part 3/5

System and Driver Initialization 5 - 29

Example Initialization Routines

103 1*

104 *
105 *
106 *1

Set the PIR 1 bit in the controller's CSR to signal the
controller that a command is now available in the SACB

107 pirp->pir01 = SET;

108 delay=O;
109 while (SACBCMD == SET)
110 {
111 if (delay < DELAYMAX)
112 {
113 for (delcnt = -512; delcnt 1= OJ delcnt++)
114 {
115
116
117
118
119
120
121
122

}

else
{

if (SACBCMD != SET)
break;

}

delay++;

SACBCMD = FAIL;
123 cmn_err(CD_WARN,

"GZNORPL %d: Forced Call time out",
124 ctlr);
125 break;
126 }
127 }
128 }

129 if (SACBCMD == FAIL)
130 cmn_err(CD_NOTE,

"GZNORPL %d: Controller in fall-back mode",
131 ctlr);

Figure 5-4 Initialization Routine 3Bt5/3B4000 Intelligent Device, part 4/5

5 - 30 BCI Driver Development Guide

132
133
134
135
136
137
138
139
140
141
142
143
144
145
AA,-",
I-':V

147
148
149
150

151 1*
152
153
154
155
156
157
158 1*
159
160 }

Example Initialization Routines

SACBCMD = SET;
pirp->pir01 = SET;
delay = 0;
while(SACBCMD == SET)
{

1* set completion wait flag *1
1* set SACB command request pir *1
1* reset delay counter *1
1* wait for sysgen to complete *1

}

if(delay < DELAYMAX)
{

else

}

for(delcnt = -512; delcnt != 0; delcnt++)
{

if(SACBCMD != SET)

delay++;

SACBCMD
break;

FAIL;

break;

Check for valid SYSGEN *1
if(SACBCMD == FAIL)
{

cmn_err(CD_WARN, "GZNORPL %d: Failed SYSGEN", ctlr);
continue; 1* go on to next controller *1

}

}

Clean up a bit before returning *1
clearbaseio;

Figure 5-4 Initialization Routine for 3B15/3B4000 Intelligent Device, part 5/5

System and Driver Initialization 5 - 31

Chapter 6: Input/Output Operations

Contents

T_ __ ...I ... _.: __

.1...1.&.& Uuu"", .. ava.a

Driver and Device Types

Data Transfer

Data Movement Between the Kernel and the Device
DMA Lists 6-4

Data Movement Between the Kernel and User Space
Data Transfer Restrictions 6-6

Block Device Data Transfer Methods

The System Buffering Scheme 6-8
Using the System Buffering Scheme 6-10

Block Driver strategy Routine 6-10
Block Driver Interrupt Routine 6-11

Physical I/O for a Block Device 6-12

Character Device Data Transfer Methods

Buffered Character I/O
Unbuffered Character I/O
Allocating Local Memory

6-18
6-18
6-19

6-3

6-5

6-1

6-2

6-3

6-7

6-16

Input/Output Operations 6- i

Private Buffering Schemes 6- 23

Creating a Private Buffering Scheme 6- 23
Header File 6-24
Master File 6 - 24

Private Buffering Scheme Routines 6-25
Memory Allocation Routine 6- 26
Memory Deallocation Routine 6-27
Buffer Assignment Routine 6-28
Buffer Deassignrnent Routine 6-29
User-to-Kemel Transfer Routine 6- 30
Kernel-to-Device Transfer Routine 6-30

Coding the Driver to use the Private Buffering Scheme 6-31

Machine-Specific Memory Management Information 6 - 32

The WE® 32101 Memory Management Unit 6- 32
3B15 Dual MMU 6- 32
Accessing Non-Local Memory on the SBC 6-34
Accessing Local Processor Memory on 3B4000 Adjuncts 6- 34

Scatter/Gather 110 Implementations 6-35

Request Chaining 6- 35
Multiple Copying 6-36
Virtual DMA 6-36

6 - ii BCI Driver Development Guide

Introduction

The main work of most drivers is moving data between user space and a device, usually with an
intermediate transfer into kernel memory. This chapter provides the following information:

• General information on data transfer methods between the kernel and devices, and
between user space and the kernel.

• Detailed information on block data transfer methods including information on character
or physical I/O for a block device. This section assumes some familiarity with the
header files and data structures discussed in chapter 4.

• Detailed information on character data transfer methods including information on
buffered and unbuffered character I/O, and on allocating local driver memory. This
section assumes some familiarity with the header files and data structures discusseci in
chapter 4.

• Detailed information on creating a private buffering scheme.

• Additional information on processor-specific memory management facilities.

• Additional information on scatter/gather I/O implementations.

Input/Output Operations 6-1

Driver and Device Types

The UNIX kernel requires that all devices be classified as being character-access or block-access
devices and that all drivers be of either a block or a character type. The terms block and character
technically refer to the method used for data transfer. A block-access device transfers data one block
at a time, using a cache of buffers the system maintains for data transfers. Special device files for
block-access devices have a "b" in the first position of the file's permissions field.

Devices identified as character-access are basically devices that use any method other than the system
buffer cache for transferring data. Some character-access devices transfer data one character at a
time using clists(D4X), which are themselves a form of kernel buffering. The TrY line discipline
(see Chapter 7) provides functions that do most of the clist manipulation for devices that require
character processing such as terminals. STREAMS incorporates another character-access buffering
scheme that should be used for most new communications drivers. 1 Other character-access device
drivers may need to set up their own kernel buffering scheme, and transfer data in whatever unit that
buffering scheme uses, or use local driver data space to buffer data being transferred between user
address space and the device. Special device files for character-access devices have a "c" in the first
position of the mode field.

Both block and character access devices can also use "raw", or unbuffered, data transfer schemes,
although their implementations are different. Raw I/O is the movement of data directly between user
address space and the device and is used primarily for administrative functions where the speed of a
specific operation is more important than overall system performance. Character devices implement
raw I/O through the copyin(D3X) and copyout(D3X) functions. Raw I/O is appropriate only for
character devices such as line printers and some networking devices where the administrative software
provides the capability to restart after an error.

Block access devices (such as a disk or tape) implement raw I/O using using the physio(D3X)
function. The physio function locks the data in user address space (so it cannot be paged out) then
transfers data directly between user address space and the device. Block-access devices supporting raw
I/O must have both a block and a character special device file.

1. See Chapter 1 for ordering information for STREA...\{S documentation.

6-2 BCI Driver Development Guide

Data Transfer

Whenever a user program issues a read(2) or write(2) system call, the operation interacts with data
storage areas in the user data space. The driver then moves data between user space and the device
in one of three ways

• directly between user space and the device

• indirectly using local data space in the driver

• indirectly using buffers in kernel memory

The choice of which method to use depends on the type of the device, how much intelligence it
supports, and the system utilities that will access it. Many transfers of data between user space and
the device require an intermediate transfer of the data into the kernel memory.

Driver code should always use the function calls listed in Section D3X of the reference pages
(especially copyin and copyout) for the actual data movement. These functions handle most of the
memory management tasks that are required. The driver code must also validate the device number,
handle errors that may occur during the transfer, and synchronize the software with the hardware
event.

Whether a driver uses a private buffer or a system buffering scheme, every driver should be written
with the finite nature of the machine in mind. Space used for buffering and local driver memory is
taken away from memory that might otherwise be used for processes, so intense buffer use by a driver
can reduce the performance of others drivers, or require that more memory be devoted to buffers. If
more memory must be allocated to buffers, this decreases the memory available for user processes.

The discussion of data transfer in drivers has two facets: the driver's interaction with the operating
system and the driver's interaction with the device.

Data M ovem ent Between the Kernel and the Device

Data transfer methods between the kernel and the device are dependent upon the devices themselves.
Some devices require the CPU to instigate all data transfer, while others can perform data transfers
without the aid of the CPU. The details of a device's I/O scheme are always defined by the device,
and so each device must be studied to determine precisely what kind of I/O scheme it supports.

In general, I/O devices can be separated into two main classes according to the way in which they
transfer data to and from kernel memory

• programmed I/O devices that require the CPU to transfer data one byte or word at a
time using a single input or output instruction to perform the data transfer

Input/Output Operations 6-3

Data Transfer

• direct memory access (DMA) devices that have the intelligence to perform the data
transfer themselves and free the CPU to perform other tasks

For devices of the first class, the CPU transfers one byte or word of data by means of a specific
. instruction to or from a fixed register in memory to the device. Interrupts from the device control the
timing of the data transfer. These types of devices are typically slow devices such as interactive
terminals and older model line printers.

Devices that support DMA can transfer large amounts of data while freeing the CPU to perform
other tasks. To initiate a DMA transfer, the CPU typically writes a base address and byte or word
count defining the size of the block to be transferred to a previously allocated set of memory
addresses. These addresses are referred to as the device's Control and Status Registers (CSR). The
CPU then sets a bit in the device's CSR indicating that the transfer can begin. The device then
performs the actual block transfer. When the data transfer is complete, the device sets a bit in its
CSR indicating the transfer is complete, then issues an interrupt. Devices that support DMA are
typically newer model character devices, and high speed block devices such as disks and tapes. Most
devices supported by the computers discussed in this book utilize DMA I/O transfer schemes.

The characteristics of the DMA device itself determine how the driver is coded to do this transfer.
The more complicated the device, the more memory addresses are allocated for the device's CSR.
For example, a very simple device, such as a line printer, may have as few as two registers in
memory: a status register and a buffer register. Characters are moved into the buffer register as long
as a READY bit in the status register is on. When an interrupt is received from the device and the
READY bit goes off, characters are held until the READY bit is turned on again. All the driver has
to do is monitor and change the status register bits to effect the I/O transfer between memory and the
device, and provide an interrupt routine.

A more sophisticated device, such as a disk controller, may have many registers each storing status
information about specific subdevices including error logging. One register may contain a code for
the type of I/O operation to be performed, while additional registers may contain the address location
in memory where the data is to be moved to or from, the disk address, and a byte or word count.
The intelligence on the board handles the details of the I/O transfer. The driver manages an internal
queue of buffers using a private or system buffer scheme through its read, write, and strategy
routines, and provides an interrupt routine for handling device interrupts.

These devices typically transfer large amounts of data, organized by page (2K bytes) or segment
(128K bytes). If the device is equipped with DMA hardware, it may also provide a facility for
handling I/O operations on a chained list of pages called a DMA list. Using this facility, the driver
can transfer several pages of data at once rather than returning after each page transfer. The DMA
list facility is discussed in the next section.

D MAL ists

Each write or read operation can transfer up to 2K bytes, or one page. So, to write 8K bytes of
information, the driver actually executes 4 separate write requests. If the device has the requisite
intelligence, you can do such a transfer more efficiently by setting up a DMA list, which allows the
driver to transfer all 8K bytes to the device with one request. The DMA list organizes the

6-4 Bel Driver Development Guide

Data Transfer

information into 4, 2K byte pieces, each of which has a pointer to where the data is in physical
memory and a pointer to where the next piece is. After transferring one piece, it immediately begins
the transfer of the next piece rather than return to the driver. Usually the board firmware is coded to
handle this, in which case the actual registers, data, and control information all reside on the
controller or device and the board firmware handles the virtual-to-physical translation. The kernel
driver typically points the controller at the mapping structure and allows the controller to handle all
translations required as well as the transfer itself.

The DMA transfer can be done without a DMA list. In this case, the driver keeps the data and
control information in its own local area of memory. Data can be transferred between the device and
kernel memory one byte at a time or DMA circuitry on the device can be used to copy larger pieces
of data.

Data Movement Between the Kernel and User Space

Drivers moving data between kernel and user space can use either an array of private data storage in
the driver's local area, a buffering scheme provided by the UNIX system, or a private buffering
scheme. Private data storage can be used for character drivers that need to store small amounts of
data. Memory is allocated through kernel memory allocation functions. These functions are
described in ther "Allocating Local Memory" section of this chapter.

The following buffering schemes are provided by the UNIX system:

• the system buffering scheme defined in buf.h for block access operations

• the clist buffering scheme defined in tty.h for character access operations

• the STREAMS2 buffering scheme for character access operations

The system buffering scheme uses a cache of preallocated kernel buffers called the system buffer
cache. The system buffer cache is defined in the buf.h file. This file also declares a structure called
buf which defines the fields contained in the buffer header (see Chapter 4). Block driver strategy
routines receive a pointer to a buffer header through the bp argument. The buffer header defines all
the information needed to perfonn the data transfer including the address where the data is to be
transferred to or from and the amount of data to be transferred. The "Block Device Data Transfer
Methods" section of this chapter discusses the use of the system buffering scheme in detail.

The clist(D4X) buffering scheme is provided by the TTY subsystem as a method of buffering
character I/O. The clist buffering scheme is most frequently used with TTY line disciplines which
provide functions for the management of clists. clists can also be used independently with a
set of clist specific kernel functions. Chapter 7 of this book and the "Character Device Data

2. See Chapter 1 for ordering information for STREAMS documentation.

Input/Output Operations 6-5

Data Transfer

Transfer Methods" section of this chapter discusses the use of clists and the TrY subsystem in
more detail.

.. Private buffering schemes can also be implemented, however they should only be created when
. necessary as they increase the size of the driver substantially. See the "Private Buffering Schemes"
section of this chapter for more information.

Data Transfer Restrictions

The memory management scheme of the UNIX operating system does impose certain restrictions on
drivers that transfer data between devices. Although the virtual memory block of storage for the data
that is being transferred is contiguous in virtual memory space, it will be disjointed in the actual
physical memory spectrum. The largest amount of physically-contiguous memory is one page. So, if
the driver is going to pass 5K bytes of data to the controller for output, the driver will have to control
where the page boundaries fall. To do this, make transfer sizes a multiple of 2K, aligned on 2K
boundaries. Buffered I/O does this automatically, since buffers are preallocated and do not get
faulted. Direct user/device transfers (raw) for block devices are managed by the physio(D3X)
function, which handles the user data space schematics.

6- 6 BCI Driver Development Guide

Block Device Data Transfer Methods

Drivers for block-access devices use two data transfer methods: block VO and character or raw VO.
Block I/O uses the system buffer cache as an intermediate data storage area between user memory
and the device. Character or raw TJO bypasses the system buffer cache and transfers data directly
between user memory and the device using the physio(D3X) kernel function. 3

Both block and character-access operations use the buf structure declared in the buf.h header file,
but do so in different ways. For block-access operations, the buffer header is directly associated with
a specific address in the system buffer cache. For character-access operations, buffer headers are
taken from a separate pool of buffer headers called the physical VO buffer header (PBUF) pool.
These buffer headers are defined by the buf structure, but are associated with locked-in areas of
user address space instead of addresses in the system buffer cache. The following diagram illustrates
b!Gd~ I/O (l\1eth~d 1) :!.."!d ,:h~~ct~!' !lO (Mpthoci 2) on a block-access device:

(2) 0)
write (2) write (2)

r----- -----,
User ,~ I Locked, ~ I

Space
,

r
, , ,

I I

'------
_____ ..1

Kernel ~
Space

buf.h ~--- buf.h
Buffer header

~ ~
Device

Figure 6-1 Two Methods of I/O Transfer (Block)

3. Character or raw I/O for block devices is also referred to as physicall/O.

Input/Output Operations 6-7

Block Device Data Transfer Methods

Method 1 illustrates block-access to a block device. The system buffer cache is used to manage the
actual read/write operations that move data between user address space and the kernel and between
the kernel and the device. Your driver strategy(D2X) routine needs to define how to start and end
the 110 operation, and frequently needs to maintain a private job request queue for each device. The
kernel calls the strategy routine with the bp parameter which points to the buf.h buffer header
containing all the information about the 110 operation.

Method 2 illustrates raw-access to a block device. The user address space for the data is locked in
core, then the data transfer is done directly between the device and user address space using a buffer
header extracted from the PBUF pool to control the operation. Your driver must include read and
write routines which call the physio(D3X) function, and a strategy routine. The physio function
calls the strategy routine as a subordinate routine to the read or write routine and passes it the bp
parameter. The bp parameter points to the buffer header allocated for the data transfer.

The following sections discuss these two methods of block-access data transfer in greater detail.

The System Buffering Scheme

A block-access device uses block I/O, where data is read from or written to a device in units of a
buffered block. On the 3B2 computer and SBC, a buffer is 1024 bytes; on the 3B15 and 3B4000
computers a buffer is 2048 bytes. Block I/O uses the system buffer cache, which has a tunable
number of buffers and buffer headers (NBUF) and a tunable number of hash slots for the buffer
cache (NHBUF). Each buffer has a buffer header associated with it that holds the control
information about the buffer such as what block and what file system this data came from. This
buffering scheme is defined in the buf.h header file.

When a block driver needs to move data between user space and the device, an appropriate number
of buffers are made available to the device.

The data in a particular buffer remains in main memory until some other process needs a free buffer
for some other I/O or until the driver clears the buffer with the clrbuf(D3X) function. Block I/O
buffering has a number of advantages:

• Data Cacheing - The data remains in main memory as long as possible. This allows a
user process to access the same data several times without perfonning physical I/O for
each request. Since no physical 110 is done, the user process does not need to sleep
while waiting for the I/O and thus runs more quickly.

• Swapping Enabled - If no buffering of data were done, a user process undergoing I/O
would have to be locked in main memory until the device transferred data into or out of
the user data space. Since there is a system buffer between the user data space and the
device, the process can be swapped out until the transfer between the device and the
buffer is completed, then swapped back in to transfer data between the buffer and user
data space.

6-8 BCI Driver Development Guide

Block Device Data Transfer Methods

• Consistency - The operating system uses the same buffer cache as user processes when
doing I/O with a file system, so there is only one view of what a file contains. This
allows any process to access a file without worrying about timing.

Drivers that use the system buffering scheme must include the header file syslbuf.h and have a "b"
under FLAG in the /etc/master.d file. The buf(D4X) reference page lists the structure members that
can be used and set by the driver.

The system buffering scheme allows drivers to transfer linked lists of data by using the av _forw and
av _back members of the buffer header. Without this facility, an I/O operation would have to return
after each buffer was transferred. For instance, when writing 6Kb of data, the driver would write
2Kb, return, write 2Kb more, return, and so forth. By using a linked list, the driver looks for the
next buffer when it finishes transferring 2Kb of data, and only returns when the entire 6Kb are
transferred. Note that the driver still performs three distinct operations, but it avoids the overhead of
!~!J..!.-T!li!!g ~it~r ~~ch operation. With buffered I/O, no individual device/kernel transfer can exceed
the size of a system buffer. It is not possible to allocate "contiguous buffers."

Utilizing this facility requires that the device itself have sufficient intelligence to handle its own linked
list (defined in either pump code or operational code on the board). The firmware is coded to pick
up the head of the linked list of buffers. The firmware driver translates the virtual address to a
physical address goes to that physical location and writes the data, then goes to the physical location
of the next buffer and so forth until the I/O transfer is complete. By moving this activity to the
device itself, the kernel runs more efficiently.

The kernel handles memory management responsibilities such as controlling how segments and pages
are broken down. The kernel-level driver must be aware of the scheme and make adjustments needed
to accommodate the underlying device (such as presenting a job that crosses a segment boundary).
The kernel-level driver must pass the virtual address, segment table address, and page table address to
the firmware driver. The virtual-to-physical translation must be thoroughly tested by running
extensive write/read operations and ensuring that what is read matches what was written. If the
translation is wrong on a write operation, the driver writes invalid data; if the translation is wrong on
a read operation, the driver may overwrite critical data in the kernel.

Input/Output Operations 6-9

Block Device Data Transfer lvfethods

Using the System Buffering Scheme

For block drivers, kernel functions outside the driver itself control the actual data transfer operations.
The driver itself utilizes five routines (See section D2X)

• open to open the subdevice

• close to close the subdevice

• print to report errors that happen during the actual data transfer operation

• strategy to validate job requests, manage the request queue, update controller and drive
status, and generate work pending received interrupts

• int to report error status and release the buffers after the job completion interrupt is
received

The open, close, and print routines are discussed elsewhere in this document. The following sections
discuss the strategy and int routines.

Block Driver strategy Routine

The strategy routine is responsible for validating job requests, placing the request in the proper
request queue (if the driver is using queues), updating the appropriate controller and drive status, and
generating the work pending a programmed interrupt for the correct controller. All infonnation to
generate the job request is contained in the appropriate buffer header; the address of this buffer
header is passed to the routine as an input argument.

The following validation checks are typically made:

• check for section boundary error

• check that subdevice is equipped (indicated in the b_dev member of the buffer header)

• check that the size (b_blkno) of the job request is reasonable

When validation tests in the strategy routine fail, the B_ERROR flag is set, an appropriate error
code (usually ENXIO) is written to the b_error member, and iodone(D3X) is executed to terminate
the operation. The kernel propagates b_error to u_error for the user-level process to see.

After the request is validated, an entry is made in the job request queue. This section of code should
be protected from device-specific interrupts with an appropriate spl*(D3X) function; the priority level
is lowered after the request is sent to the controller for actual processing.

Then the buffer header is linked into the device work list. This is done using the av _forw and

6-10 BCI Driver Development Guide

Block Device Data Transfer Methods

av _back members of the buffer header.

If the driver is using job request queues, the job request, controller, and subdevice status data are
updated next. When this is done, the job request is entered in the controller request queue. The
buffer header address is used as the job id. The code checks whether b_flags is set to B_READ, and
if so enters a read request; otherwise, a write request is issued. The b_blkno member of the header
identifies the device-specific address to be read or written, and b_bcount specifies the number of
bytes to be transferred, starting at the beginning of the buffer's b_addr.

At this point, the job is sent to the controller, and the priority level is returned to normal. For an
example of a strategy(D2X) routine, see the driver in Appendix E.

Block Driver interrupt Kouiint!

When an I/O request is completed, or an error is detected, the device requests an interrupt. The
CPU associates the device's interrupt with a driver int(D2X) routine. The driver's int routine
identifies the type of interrupt and is passed a pointer to the buffer header in the system buffer hash
list for that device.

If the interrupt is a normal job-completion interrupt, the driver's int routine relinks the av _forw and
av _back members to set the next buffer transfer. Control of the data transfer is then given back to
the device and the driver's strategy routine until the device requests another interrupt. When there
are no more buffers to be transferred, the int routine issues a wakeup(D3X) for any processes that
might be sleeping on the job request queue, then uses the iodone function to notify the user process
that the I/O transfer is complete and to release the hash list of buffers.

If the device sends a failed-job interrupt, the int routine must set the b_flags member of the buf
structure to B_ERROR; note, however, that it does not assign a value to the b_error member. Since
such an error condition usually indicates some sort of hardware corruption, the error should also be
written to the error log; logberr(D3X) is used for block-device errors.

Input/Output Operations 6-11

Block Device Data Transfer Methods

Physical 1/0 for a Block Device

Most devices that use block-access also support raw or character I/O. Character 110 for a biock device
is referred to as physical 110 since data bypasses the system buffer cache and is transferred directly
from the device to in-core user memory space. The advantage to physical 110 is that data can be
transferred more quickly and in larger quantities than with the system buffer cache, and kernel
overhead is reduced by eliminating buffer handling. However, because physical liD actually locks
down portions of user memory and prevents it from being paged, overall system performance is
degraded. For this reason, physical 110 is used primarily for administrative functions where the speed
of the specific operation is more important than overall system performance. 4

A driver implements physical 110 for a block device through read(D2X) and write(D2X) routines.
The character special device file for a block device indicates that the device supports physical I/O.
The driver's read and write routines are then entered through the cdevsw(D4X) table. The read
and write routines use the physio function to lock down the user memory and to call the driver's
strategy routine. The strategy routine controls the actual 110 operation. Note that, in this case, the
driver's strategy routine is called as a subordinate routine and not as a entry point routine.

The physio function allocates a free buffer header from a pool of physical 110 buffer headers set by
the tunable parameter NPBUF. These buffer headers are defined by the buf structure, but do not
point to a specific address in the system buffer cache. Instead, the data pointer is assigned the
location in user memory where the data transfer should come from or go to. This location is
determined from the uou_base member of the user structure. The strategy routine then uses this
buffer header to control the 110 operation.

The following is typical job sequence for a physical 110 read operation. A write operation is usually
identical with the exception b_t1ags member of the buf structure is set to B_ WRITE instead of
B_READ. Figures 6-2 and 6-3 are example read and write routines for a disk driver using physical
I/O. The line numbers included in the following job sequence refer to the Figure 6-2:

1 The user program issues a read(2) system call to the kernel of the form "read 10,240
bytes from character-special-Jile to virtual-address-N". The virtual address is a portion
of user memory used to store user process data.

2 The kernel read routine started by the read(2) system call accesses the cdevsw table to
call the driver's read routine. The cdevsw table is indexed by the internal major
number; Chapter 3 describes how the operating system uses the MAJOR table to
determine the internal minor number that corresponds to this device.

4. For example, when backing up a file system, one usually cares more about completing the backup quickly than maintaining optimal system
performance during the time allotted for backup operations.

6-12 BCI Driver Development Guide

Block Device Data Transfer Methods

3 The driver's read(D2X) routine calls the pbysck(D3X) function to check that the range
of blocks being read is legal, and returns a 1 if it is (lines 9-15).

4 The driver's read routine then calls the pbysio function to setup the I/O transfer (line
16). The pbysio function passes the address of the strategy routine, allocates a buffer
header from the PBUF pool of buffer headers, and passes the buffer header the device
number and the B_READ flag.

S The pbysio function checks that all of the user pages in question are valid and have the
appropriate read pennissions, then locks the pages in user memory so they will not be
paged out.

6 The pbysio function then calls the strategy routine and goes to sleep (using the
sleep(D3X) or iowait(D3X) function) on the address of the buffer header until the I/O
operation is completed. The functions used to synchronize hardware and software events
are discussed in Cnapter Y.

7 The strategy routine now controls the IJO. It checks the requests, queues it up, and
does various conversions if necessary.

8 The strategy routine then starts the actual IJO operation. For example, it might put the
read request into the control registers for the disk controller.

9 When the transfer is complete, the controller interrupts and the driver's int(D2X) routine
is entered. The int routine uses the iodone(D3X) function to awaken the process that
called the pbysio routine. The pbysio function then updates information on the user
data structure, releases the buffer header, and eventually returns to the driver's read
routine, which in tum returns to the kernel's read routine.

Input/Output Operations 6-13

Block Device Data Transfer Methods

The following code examples are read and write routines from a sample disk driver:

1 dskread(dev)
2 register dev_t dev;
3 {
4 register unit; 1* disk controller ID *1
5 register unsigned char drv; 1* disk drive ID */
6 register struct dskc *dskcp; 1* disk controller pointer *1
7 register struct dskpart *partpt; 1* pointer to partition info *1
8 register unsigned char part; 1* drive partition *1
9
10 unit = minor(dev);
11 dskcp = &dsk_dskc[unit»5];
12
13
14
15
16
17
18 }

part = unit&'07;
drv = (dev &.030»>3;
if «partpt=dskcp->dsk_part[drv]) == NULL)

u.u_error = ENXIO;
else if (physck(partpt[part].nblocks, B_READ»

physio(dskstrategy, 0, dev, B_READ);

Figure 6-2 Disk read(D2X) Routine using Physical 110

6-14 BCI Driver Development Guide

1
2
3
4
5
6
7
8
9
10
11
12
i3
14
15
16
17
18

Block Device Data Transfer Methods

dskwrite(dev)
register dev_t dev;
{

}

register unit; 1* disk controller ID *1
register unsigned char drv; /* disk drive ID */
register struct dskc *dskcp; /* disk controller pointer */
register struct dskpart *partpt; /* pointer to partition info */
register unsigned char part; 1* drive partition */

unit = minor(dev);
dskcp = &dsk_dskc[unit»5];
part = unit&07;
...:1____ _ 1...;1 _.. t" n ') n , ') •
u,.L V - \ ~~ v, ..." _ I - _ ,

if «partpt=dskcp->dsk_part[drv]) == NULL)
u.u_error = ENXIO;

else if (physck(partpt[part].nblocks, B_WRITE»
physio(dskstrateqy, 0, dev, B_WRITE);

Figure 6-3 Disk write(D2X) Routine using Pbysical I/O

The pbysio function requires four arguments: strat, bp, dev, and rwflag. The pbysio function
examples in the read and write routines provided above supply the standard values for those
arguments:

• The strat argument is typically the address of the driver's strategy routine. In some
cases, however, the routine called is a subroutine that performs a subordinate activity,
such as calling the dma_breakup(D3X) function. The subroutine then calls the driver's
strategy routine.

• The bp argument is the address of the buffer header. The safest way to invoke the bp
parameter is with a null parameter; the pbysio function then assigns a buffer header
internally. The pbysio function expects that any buffer header passed in corresponds to
that defined in sys/buf.h.

• The dev parameter is the device number.

• The rwflag should be either B_READ or B_ WRITE according to the operation.

Input/Output Operations 6-15

C h a rae t e r D e vic e D a taT ran s fer ~f e tho d s

Any device that supports only character-access is considered a character-access device. Unlike block
I/O transfers that rely exclusively on the system buffer cache, there are many possible methods of
implementing character 110. It is important to know precisely what the device can and cannot do for
you. The following factors must be considered:

• How much intelligence the device controller supports.

Many character devices support DMA and can control their own I/O requests. Others
can only perform one I/O operation at a time and require the CPU to control their I/O.
Some character devices can even supply their own protocol requirements. Others need
protocol packages supplied by the UNIX operating system, such as tty line disciplines.

• How much memory the device controller supports.

Some character devices support DMA and are very intelligent, however, they may only
support a small amount of local memory. Devices of this type may require additional
kernel buffers.

• How much data is to be passed in a single 110 request, and how frequently requests are
going to be made. .

Decisions as to the size of the buffers to be used depends upon the amount of data that
is to be transferred.

In general, there are three possible schemes for doing I/O transfers for character-access devices: direct
data transfer between the device and user space data buffering in memory allocated by the driver,
data buffering in the kernel using a private buffering scheme, STREAMS5 or the clist(D4X)
buffering scheme. The following diagram illustrates these three character transfer schemes:

5. See Chapter 1 for a list of suggested STREAMS documentation.

6-16 BCI Driver Development Guide

Character Device Data Transfer lWethods

(2)
write (2) write (2) write (2)

User
Space

\ ,~ ~

Kernel \ 'f

Space Local
Driver Buffering
Data Scheme

Storage

~ \ " Device

Figure 6-4 Three Methods of I/O Transfer (Character)

The operating system leaves most of the implementation decisions for character devices to the writer
of the driver routines; you will need to select and implement the data transfer scheme that is most
appropriate for your device. The following is a list of some general guidelines:

• Direct data transfer between the device and user space is most appropriate for devices
that allow a restart after an error, such as network and printer devices.

• Use either STREAMS or clists for kernel buffering of asynchronous character 110
operations that happen frequently. Using system supplied buffering schemes reduces the
kernel overhead.

• Private buffering schemes should be used only when absolutely necessary, since they use
more memory and may be difficult to port to new machines and new UNIX System
releases.

The following sections discuss buffered and unbuffered I/O schemes in more detail.

Input/Output Operations 6-17

Character Device Data Transfer Methods

Buffered Character 1/0

Most character device I/O is asynchronous, and so most character device drivers buffer data when
passing it to and from the device. When reading, the driver must receive the data from the device in
a read buffer, then copy the data from the buffer to the user process's local buffer. When writing,
the driver must copy the data from the user process's local buffer into a write buffer, then transmit
the data from the buffer to the device.

The TrY subsystem provides semantic processing of asynchronous character I/O, and a character
buffering scheme called the clist(D4X) scheme. The clist buffering scheme is almost always
used with 1TY line disciplines, although clists can be used alone with clist specific kernel
functions. The benefit of using the clist buffering scheme is that the pool of buffers, called
cblocks(D4X), is allocated automatically when the system is initialized. However, the size of a
cblock is 64 characters and cannot vary. Therefore, when moving small amounts of data, it may be
more efficient to use memory that is allocated locally by the driver using memory allocation routines
provided by the kernel. The next section discusses the use of these functions. The TTY line
disciplines, the clist buffering scheme, and clist routines are discussed in detail in chapter 7.

Private buffering schemes that can range in complexity from a locally declared structure, to a module
of separate memory initialization, allocation, and deallocation routines. The ''Locally Allocated
Memory" section discusses the allocation and management of small amounts of memory by the driver.
The "Private Buffering Schemes" section discusses the types of routines and functions used to create a
private buffering scheme.

U n b u ffe red C h a rae te r 1/0

Unbuffered character I/O is the transfer of character data directly between user space and the device,
or using a small buffering area declared locally by the driver. Unbuffered I/O may be appropriate for
a simple programmed I/O device that does not have much memory on the controller, or for a very
intelligent device that maintains its own buffering scheme. Drivers for networking and printer devices
may use this method, since the administrative software enables a restart if an error occurs during data
transmission.

The kernel provides several routines to move unbuffered data. The most useful of these routines are
copyin(D3X) and copyout(D3X). The copyout function copies data blocks from the buffers
allocated by the driver to user space. It accepts as arguments the address of the driver buffer, the
address of the user buffer, and the number of bytes to be copied. The copyin function copies data
blocks from user space to the driver buffers and accepts the same arguments.

Because copyin and copyout handle page-faulting, they should always be used for unbuffered
character I/O between the kernel and user space. A page fault occurs when a process attempts to
access data that has been paged out. User processes can weather page faults by going to sleep until
the data is paged back in, but some kernel operations may not be able to sleep while waiting for
memory management to fault in a page. If a function that cannot handle a page fault attempts to
access the user buffer when the user buffer is paged out, the system will probably crash.

6-18 BCI Driver Development Guide

Character Device Data Transfer .Methods

A Hocating Local M em ory

Character devices frequently require a portion of memory to buffer small amounts of data, or to store
an image of the data in memory to use to recover from an error condition. For instance, the msg
module (see Figure 5-2) allocates memory to use when passing messages between processes. Some
drivers, such as the 3B15/3B4000 system error log driver, use local driver memory to store records of
device errors until the error daemon writes those records to a disk file. Other drivers need local
memory only for a short time, such as when downloading data from a disk file to the device.

The easiest and least demanding method of storing small amounts of data is to declare a private
structure or an array within the driver for the driver's private use. If more memory is needed,
driver's can allocate private buffer space from a space management map. A set of memory
allocation, deallocation, and management kernel functions can be used to allocate memory pages or
variable size blocks of contiguous memory for the private use of the driver. The map management
functions are defined in the map.h header file.

Tables 6-1 and 6-2 describe these kernel functions and the character driver routines in which they are
used:

Table 6-1 Memory Map Management Routines

Task Method Routine{D2Xl
Initialize a private mapinit(D3X) init or start
memory map.
Allocate space from a malloc(D3X) read/write
memory map
Release map entries mfree(D3X) init and read/write
Wait for a free buffer mapwant(D3X) read/write

Input/Output Operations 6-19

Character Device Data Transfer Methods

Table 6 - 2 Memory Page Allocation and Deallocation

Task Method

Allocate memory
pages

Release memory

Use lines in master file if
the amount of memory
required is configuration
dependent. Otherwise,
use kseg(D3X) or
sptalloc(D3X) in driver
code.

unkseg(D3X) or
sptfree(D3X)

init, start, or open

read, write, or ioctl if
memory usage is for a
special case.

The map itself is declared as a structure using the driver prefix in the form prefixmap. Memory is
initially allocated for the map either by a data array defined in the driver's master file, or by the kseg
or sptalloc functions in the driver's init or start routine. The space management map is used to
administer the buffer in bytes. Therefore, if kseg or sptalloc are used to allocate the initial memory,
the number of bytes per page must be computed using the ctob(D3X) (clicks to bytes) function.

A driver initializes the map by calling mapinit, to establish the number of slots or entries to the map,
and mfree to establish the decimal number of buffers free for use. Figure 6-5 illustrates the following
procedures:

• the map structure declaration (line 3)

• the use of kseg to allocate memory for the map including a panic message if enough
memory cannot be allocated (lines 10-14)

• the use of ctob to compute the number of bytes in the pages allocated by kseg (lines 17-
18)

• the use of mapinit to configure the total number of slots in the map, and mfree to
configure the total buffer area in bytes calculated by ctob (lines 15-21)

6-20 Bel Driver Development Guide

Character Device Data Transfer Methods

1
2

#define XX_MAPSIZE
#define XX_BUFSIZE

12
4

1* In terms of slots *1
1* In terms of pages *1

3 struct map xx_map[XX_MAPSIZE]; 1* Space management map for *1
4 1* a private buffer *1
5
6 xx_start()
7 {
8 register caddr_t bp;
9 register int bytes;
10 if «bp = kseg(XX_BUFSIZE) == 0) 1* Allocate private buffer; if *1
11 {/* insufficient memory, display message & halt system *1
12 cmn_err(CE_PANIC, " xx_start: kseg failed for %d page buffer allocation",
i3 XX_BU~SIZF)~

14 } 1* endif *1
15 mapinit(xx_map, XX_MAPSIZE);
16
17 bytes = ctob(XX_BUFSIZE);
18

1*
1*
1*
1*

Initialize space management
with number of slots in the
Compute the number of bytes
the pages allocated by kseg

map
map
in

19 mfree(xx_map, bytes, bp);
20

1* Initialize space management map
1* with total buffer area it is to

21 1* manage
22

Figure 6-5 Initializing a Memory Map

*1
*1
*1
*1
*1
*1
*1

The malloc(D3X) function is then used by the driver's read or write routine to allocate buffers for
specific data transfers. If the appropriate space cannot be allocated, the mapwant(D3X) macro is
used to wait for a free buffer and the process is put to sleep until a buffer is available. When a buffer
becomes available, the mfree(D3X) function is called to return the buffer to the map and to wake the
sleeping process (no wakeup(D3X) call is required). The copyin(D3X) and copyout(D3X) functions
are used to move the data between user space and local driver memory. The device then moves data
between itself and local driver memory through DMA.

Figure 6-6 illustrates the following procedures:

• The size of the I/O request is calculated and stored in the size variable (lines 10-11).

• While buffers are available, buffers are allocated through the maUoc function using the
size value (line 13).

• If there are not enough buffers free for use, the mapwant macro is called, and the
process is put to sleep (lines 14-19). When a buffer becomes available, the mfree
function returns the buffer to the map and wakes the process.

Input/Output Operations 6-21

Character Device Data Transfer Methods

• The copyin function is used to move data to the allocated buffer (line 21).

• If the address passed to the copyin function is invalid, the mfree function is called to
release the previously allocated buffer, and the u. u_ error field is passed a return
error code.

#define XX_MAPPRIO (PZERO + 6)
2 #define XX_MAPSIZE 12
3 #define XX_BUFSIZE 2560
4 #define XX_MAXSIZE (XX_BUFSIZE I 4)

5 struct map xx_map[XX_MAPSIZE]; 1* Private buffer space map *1
6 char xx_buffer[XX_BUFSIZE]; /* driver xx_ buffer area *1
7
8 register caddr_t addr;
9 register int size;
10 size = min(u.u_count, XX_MAXSIZE); 1* Break large I/O request */

11 /* into small ones
12 oldlevel = spI4();
13 while«addr = (caddr_t)malloc(xx_map, size» == NULL) /* Get buffer */

14 { /* if space is not available, then */

15 mapwant(xx_map)++; /* request a wakeup when space is */

16 sleep(xx_map, XX_MAPPRIO); 1* returned. Wait for space; mfree *1
17 /* will check mapwant and supply *1
18 1* the wakeup call. *1
19 } /* endwhile */
20 splx(oldlevel);

21 if (copyin(u.u_base, addr, size) -- -1) /* Move data to buffer*/
22 { /* If invalid address is found, */
23
24
25
26
27
28

oldlevel = spI4();
mfree(xx_map, size, addr); /* return buffer to map *1
splx(oldlevel);
u.u_error = EFAULT;
return;

} /* endif */

1* and return error code *1

Figure 6-6 Allocating Memory From a Memory Map

6 - 22 B_CI Driver Development Guide

Private Buffering Schem es

Character drivers may allocate independent buffer pools, although you should only do this when
necessary since this increases the size of the driver, and thus the size of the kernel.

There are three main considerations involved in creating a private buffering scheme:

• What sort of memory management scheme should be used, such as memory mapping

• What sort of buffer header should be used; coupled or uncoupled

Buffers and buffer headers can be either coupled or uncoupled. Buffers that are coupled
with their buffer headers must be of a fixed size and in a specified location. Buffers that
are not coupled with their buffer headers can be anywhere in memory, as long as the
buffer header is pointing to its location.

• What sort of list management scheme should be used

A buffering scheme can use any standard list management scheme. The most common
schemes are various combinations of doubly-linked and singly-linked; circular versus
noncircular; and with or without heads. 6 .

The functionality required determines the specifics of a private buffering scheme. The following
sections describe the requirements for any buffering scheme.

Creating a Private Buffering Scheme

The most practical way to implement a private buffering scheme is to write a separate module
defining the buffering scheme. This simplifies maintenance tasks and enables you to use the
buffering scheme for more than one device. This module should include subordinate routines for
initializing, allocating and deallocating free buffers and in-use buffers, as well as tracking and error
handling routines. Any buffering scheme must include the following:

• a header file
The header file defines the buffer and its headers. The buffer header should include
links as well as members that track the status of the buffer, including any error
conditions that have occurred. It may be appropriate to use the buf structure defined
in buf.h.

6. For more information on list management schemes, consult a general computer text such as Knuth, D.E., The An a/Computer Programming,
vol. 1.

Input/Output Operations 6- 23

Private Buffering Schemes

• a pool of free buffers.
These may be defined in the letclmaster.d file and allocated statically when the driver is
initialized, or defined in the driver code and allocated dynamically, usually in the driver
initialization routine.

• a set of lists used to manage buffers in different states (free, active, queues, and so forth)

• routines for moving buffers between lists (for instance, allocation of a free buffer,
releasing a buffer, queueing a buffer for work, and so forth) -

It is possible to dynamically allocate buffers based upon need, but this is usually very expensive if it
occurs frequently. The overhead is significant, but it does reduce the amount of allocated memory.
When a buffer is required only for device initialization or some other infrequent event, dynamically
allocated buffers may be useful. For buffers used for frequent events, statically-allocated buffers are
usually the preferred implementation.

Header File

The header file for the buffering scheme should define the structures being used. This usually
includes a structure that holds free buffers, a structure that holds buffers that are in use, and a
structure defining a header that holds status and flag information pertaining to a given buffer. If the
buffering scheme is a doubly-linked circular list, you may want to use the buf(D4X) structure
declared in the buf.h file. In any event, the buf structure provides a good example of the members
that should be included in a buffer header. The header file should also include a definition of any
flags, status indicators, or special error codes used by the buffering scheme.

In addition to the data structures defined for this module, the map.h system header file must be
included if the buffering scheme is managed by a memory map.

Master File

The master file for the module that defines the private buffering scheme should use the "0" and "x" in
the FLAGS field and define the module's prefix in the PREFIX field; all other columns except the
DEPENDENCIESN ARIABLES column are left blank.

The DEPENDENCIESIV ARIABLES column should include tunable parameters that control the size
of the buffer pool being allocated. For example, the sections that follow introduce a hypothetical
buffering module named qq_ used by a driver named "DDD". NDDDPORT is a tunable in the DDD
driver that defines the maximum number of ports that can be controlled by a single DDD device.
The qq_ module uses this number to determine the number of buffers to allocate.

The qq_ master file should include a comment that explains the algorithm used to determine the size
of the buffer pool.

6-24 Bel Driver Development Guide

Private Buffering Schemes

Private Buffering Schem e Routines

The code for allocating and deallocating memory, assigning and freeing buffers, and transferring data
between user space and the kernel should be defined in separate subroutines, each of which should
use a common prefix. Figure 6-7 summarizes the subroutines that have been created for the QQ
buffering module. The same types of subroutines should be creating for any private buffering
scheme.

., 11

I I"\. V Ci.ilCiUl\~ 1 nCiii.0i'j'

I ~

allocation deallocation
routine (qq_alloc) routine (qq_free)

\

Buffer Pool
~

assignment deassignment
routine (qq_bge~ routine (qq_bdlnk)

\~

Buffered Transaction Data
~ ~

user-to-Kernel
transfer routine
(qq_copy)

~ \

User Address Space Device Interface

Figure 6 -7 Routines Used for a Private Buffering Scheme

Input/Output Operations 6- 25

Private Buffering Schemes

M em ory Allocation Routine

The memory allocation routine (qq_a1loc) creates a map for the pool of frree buffers that are
available to drivers using the buffering scheme. The amount of memory allocated should be set as a
variable that is indirectly modified by tunable parameters in the module's master file.

As in the locally allocated memory examples previously outlined, the mapiDit(D3X) macro is used to
initialize a memory management map in the format of sys/map.h, and mfree(D3X) to "free" the
memory into the map (lines 19-20). The size of the buffer and the buffer's address are saved in cnt
and segp (lines 21-22), and the free buffer descriptor pointer is initialized to NULL (line 23).

Note that the second argument to the malloc(D3X) function, size, is expressed using ROV1'1>(x)
operand that ensures that memory is allocated on a word boundary. In other words, if you ask to
allocate three bytes, the system will actually allocate four bytes.

1 #define ROUND (X)
2
3 rnmini t ()
4 {

«X+3) & -3)

5 mapinit(mmmap, nmmd);
6 mfree(mmmap, rnmdsz, rnmd);
7 }
8
9 int first_call;

11
12
13
14
15
16

qq_alloc(qq_bufp, nbytes)
register struct qq_buf
int nbytes;

qq_bufp; 1 Ptr to qq_buf structure *1
/* Size to be allocated *1

register char
register unsigned

18 return(NULL);

*segp;
cnt;

19 mapinit(qq_bufp->qq_map, QQMAP);
20 mfree(qq_bufp->qq_map, cnt, segp);
21 qq_bufp->qq_bsz = cnt;
22 qq_bufp->segp = segp;
23 qq_bufp->freebdp = NULL;
24 return(nbytes);
25 }

Figure 6 - 8 Memory Allocation Routine

6-26 Bel Driver Development Guide

Private Buffering Schemes

Allocating and freeing pages should be done very carefully; if it is done incorrectly, it can crash the
system or corrupt user processes and the disk. Performance degradation may not show up until heavy
loads are applied, and it may be intermittent.

M em ory Deallocation Routine

The memory deallocation routine (qq_free) releases the memory mapped by a buffer header by first
allocating all the memory in the map with malloc(D3X) (line 6), then releasing the block with
mfree(D3X? (line 12). A pointer is used with the mfree function to indicate which block of memory
should be deallocated. The routine must first check whether the block is still owned (in other words,
whether memory is still allocated out of the buffer memory map). If so, it should send a message to
the console, then free the block in smaller pieces (lines 7-10).

2
3
4
5
6
7
8
9
10
11
12
13
14
}

register struct qq_buf
{

register int i 0;

if(malloc(qq_bufp->qq_map, qq_bufp->qq_bsz) == 0) {
cmn_err(CD_WARN,"qq_free: Can't free block\n");
for(i = QQBSZ; i; i »= 1)

while (rnalloc (qq_bufp->qq_map, i»;
i = -1;

rnfree(ksegmap,qq_bufp->qq_bsz, qq_bufp->segp);
qq_bufp->qq_bsz = 0;
return(i);

Figure 6-9 Freeing Private Memory Blocks

7. unkseg(D3X) could be used rather than mfree.

Input/Output Operations 6-27

Private Buffering Schemes

Buffer Assignment Routine

The assignment routine (qq_bget) assigns an appropriate number of memory pages from the buffer
pool to support the particular va transaction. The routine first checks that buffers are available; if
not, it can either wait on the buffer header until a buffer is available (as in the example, 'lines 11-14)
or return a 0 (zero) to indicate that all map entries are allocated. When a puffer is attached, the
freelist header must be updated to reflect that this buffer has been removed (line 20), then return to
the calling process that the buffer has been allocated (line 26).

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

struct qq_bd *
qq_bget(qq_bufp, nbytes, slpflg)
register struct qq_buf *qq_bufp; 1* Ptr to qq_buf structure */

1* Size of buffer to get */
1* Sleep flag *1

int

{

nbytes,
slpflg;

register char
register int
register struct qq_bd

*addr;
sps;
*bdp;

sps = sp15();
while«bdp = qq_bufp->freebdp) == NULL::

(addr = (char *)malloc(qq_bufp->qq_map, ROUND(nbytes») -- 0) {
if(slpflg)

else {

}

sleep«caddr_t)&qq_bufp->freebdp, QQSLP);

splx(sps) ;
return(NULL);

qq_bufp->freebdp = bdp->d_next;
splx(sps);
bdp->d_size = ROUND(nbytes);
bdp->d_ct = nbytes;
bdp->d_address = nbytes ? addr 0;
bdp->d_next = NOLIST;
return(bdp) ;

27 }

Figure 6-10 Moving a Buffer from the Pool

6-28 Bel Driver Development Guide

Private Buffering Schemes

Buffer Deassignment Routine

The deassignment routine (qq_brtn) returns a buffer to the freelist after the operation is completed.
The routine first checks that the address is not zero (line 7), frees the buffer with mfree (line 8), then
links the buffer to the freelist. A wakeup(D3X) call is issued in case any processes are sleeping on
the resource (line 12).

1
2
3
4
5

6
7

8
9
10
11
12

qq_brtn(qq_bufp, bdp)
register struct qq_buf
register struct qq_bd
{

sps = sp15();

*qq_bufp;
*bdp;

if(bdp->d_address && bdp->d_size)

1* Ptr to qq_buf structure *1
1* Ptr to bd to return *1

mfree(qq_bufp->qq_map, ROUND(bdp->d_size), bdp->d_address);
bdp->d_next = qq_bufp->freebdp;
qq_bufp->freebdp = bdp;
splx(sps) ;
wakeup«caddr_t)&qq_bufp->freebdp);

13 }

Figure 6-11 Returning a ButTer to the Pool

Input/Output Operations 6-29

Private Buffering Schemes

User-to-Kernel Transfer Routine

The private buffering scheme should include its own routine to move data between itself and the user
address space. This routine can call the iomove(D3X) or copyin(D3X)/copyout(D3X) functions
which handle page faults and update the user structure.

1
2
3
4
5
6

8
9
10
11
12
13
}

qq_copy(bdp, offset, cnt, rdwr)
struct
int

{

qq_bd *bdp;
offset,
cnt,
rdwr;

if(cnt == 0)
return(0) ;

1*
1*
1*
1*

Buffer dese. pointer *1
Offset into data buffer *1
Number of bytes to transfer *1
Read or write *1

iomove«eaddr_t)(bdp->d_address + offset), ent, rdwr);
if(u.u_error)

return (-1) ;
return(O);

Figure 6-12 Moving Data Between the Buffer and User Address Space

Kernel-to-Device Transfer Routine

The private buffering scheme may include its own routine to transfer data between the kernel buffers
and the device. If the device supports DMA, it can be given the location (address) of the buffer
along with some form of job request data structure. The device then handles the actual I/O
operation. Less intelligent devices may require the CPU to perform the actual I/O transfer, in which
case a specific routine must be written to facilitate the transfer.

6-30 BCI Driver Development Guide

Private Buffering Schemes

Coding the Driver to use the Private Buffering Schem e

To write a driver that utilizes the private buffering scheme, the system entry point routines use a
combination of the functions in Section D3X and functions that are routines in the module that
defines the buffering scheme. The following list outlines the types .of considerations:

• Header Files

The driver code that accesses the private buffering scheme must include the header file
for the buffering scheme as well as the sys/map.h, sys/user.h and sys/errno.h header files.
If the buffering scheme is using an existing header file (such as buf(D4X», include the
appropriate header file (in this case, sys/buj.h).

• Driver Initialization Routine

The driver's initialization routine (init or start) allocates the buffers for the private
buffering scheme. It does this by calling the allocation routine (qq_a1loc) then the
deassignrnent routine (qq_bdlnk) to ensure that the buffers are actually free. The code
should be written to handle the case where memory is exhausted by using
cmn_err(D3X) to print a warning notice to the console and setting the u.u_error
member of the user(D4X) structure to ENOMEM.

Some drivers may choose to allocate a "starting pool" of buffers and use this until
demand exceeds the size of the starting pool ("high-water mark"). It could then allocate
more memory to enlarge the pool. After the pool is back to a certain free level (,low
water mark"), the extra memory would be released.

• Driver read(D2X) Routine

The driver's read routine uses the assignment routines (qq_bget and qq_emptq) to
assign buffers to this operation, the device-interface routine (either from the module
code or the firmware driver) to move data from the device to the kernel buffer, and the
user-to-buffer transfer routine (qq_copy) to move the data to the user address space. It
then calls the deassignment routine, qq_brtn, to return the buffers to the buffer pool.

• Driver write(D2X) Routine

The driver's write routine uses the assignment routine, qq_bget, to assign buffers to this
operation, then calls the user-to-buffer transfer routine (qq_copy) to move the data from
user address space to the reserved buffer. The write routine calls a subordinate routine
to transfer the data from the buffer to the device. This subordinate routine should call
the buffering scheme's kemel-to-device routine. When all the data has been transferred
to the device, the driver's write routine calls the deassignment routine (qq_brtn) to
return the buffer to the buffer pool.

Input/Output Operations 6-31

Machine-Specific M em ory M anagem ent Inform ation

While the memory management schemes for the computers supported by this document are similar to·
each-other, some machine-specific memory management facilities have been introduced to fully
utilize the architectures of the various machines. These are discussed below.

The W E:3l 32101 M em ory M anagem ent Unit

All computers supported by this book are based on the WE 32101 chip. Maxicomputing in
Microspace8 gives a full description of the WE 32100 chip, including the Memory Management Unit
(rvtMU). This section provides some of the basic facts that are of particular interest to driver writers.

Each WE 32101 l\1MU has a cache for 32 segment descriptors and 64 page descriptors from previous
translations. 9 Cached entries reduce translation time on subsequent references to the same segments
and/or pages, since it is not necessary to access memory to read the translation table(s). Sections
provide a convenient way to divide virtual address space into separately managed chunks. This is
particularly valuable in maintaining a process's descriptor tables so as to lessen the chance that a table
will grow so much that it must be moved. For example, since both user data and stack areas are
expandable, if they were mapped within one section it might often be necessary to move all stack
segment descriptors to make room for more data segment descriptors. Moving the user stack to a
separate section minimizes this problem.

3B15 Dual MMU

The 3B15 computer and the 3B4000 Master Processor have dual M:MUs. In essence, virtual memory
is divided into eight separate sections, with each MMU handling four sections. This doubles the
MMU on-board descriptor cache and the available sections.

The dual MMU hardware is implemented as follows:

• The two WE 32101 MMUs are accessed in memory-mapped peripheral mode at two
discrete addresses: MMUO is accessed at 22000 and MMUl is accessed at 23000.

• Bit 29 of a virtual address is used by the hardware to select an MMU to perform the
address translation. In this sense, bit 29 becomes the field used to select an
SRAMAISRAMB register set or section.

8. See Chapter 1 for ordering information.

9. A page is 2K; a segment is 64 pages, or 128K.

6 - 32 Bel Driver Development Guide

Machine-Specific lvf emory Management Information

• Bit 29 is also still used by an individual MMU as the high-order bit in the Segment
Select.

The use of bit 29 to select an MMU and the separate memory-mapped locations for the MMUs result
in the following section/memory location mappings:

VA bits 31 30 29 = Section ~ SRAMAIB address
0 0 0 0 0 22600/22700
0 0 1 = 1 1 23600/23700
0 1 0 = 2 0 22604122704
0 1 1 3 1 23604/23704
1 0 0 = 4 0 22608/22708
1 0 1 = 5 1 23608/23708
1 1 0 = 6 0 2260c/2270c
1 1 1 7 1 2360c/2370c

Much of the work for utilizing the dual MMU is handled for drivers by the operating system. The
syslimmu.h and vuifile recognize the dual MMU and the user structure has additional storage areas
that hold SRAMNSRAMB values. In addition, memory fault handling utilities on the 3B15
computer and 3B4000 MP handle faults generated by either MMU.

Because of the dual MMU, drivers that are doing virtual-to-physical translation must specify which
part of memory is involved. For this purpose, 3B15 has the getsrama(D3X) and getsramb(D3X)
functions that return the contents of the SRAMA and SRAMB registers based on the section id and
address given. These macros should be used when the contents of an SRAM are to be used to
perform any type of address conversion, since the kernel and hardware view of the location of
memory management tables are totally different. The physical address of an MMU1 descriptor table
as lowered by Ox8000 to meet hardware needs does not represent the actual table location known by
the kernel and may, in fact, be an address less than that of the first physical page mapped by a
pfdat structure.

The following example illustrates how driver code determines which ~ is being used.

long sid; 1* Temp storage for section id from virt add *1
paddr _ t psdtpt; /* Pointer to top of segment descriptor tbl *1
long psdtln; /* length of sdt *1

sid = (* (V AR *) &.maddr) . v _ s id ; 1* get section id from virtual address * 1
psdtpt getsrama (sid) ; 1* get phys top of sdt *1
psdtln = getsramb (sid) ; 1* get length of sdt * 1

Figure 6-13 Example of Accessing Dual MMU

Input/Output Operations 6-33

""lachine-Specific lvlemory Management Information

A c c e s s in g Non - L 0 c a.1 M e m 0 r yon the S B C

On the SBC, the local memory pages on the CPU board are supplemented with non-local (YME)
memory. Local memory has a physical address below 0x200000; VME memory has a physical
address above 0x200000. To allocate non-local memory, ask for memory with the sptalloc(D3X)
function. Check to see if it is local or VME by translating its virtual address to a physical address
(use the vtop(D3X) function) and checking to see if it is local or VME. Using kseg(D3X) and
unkseg(D3X) may also work.

The VME A24 address space on the SBC is limited to 16 MB. By using VME A32 space, you can
get more memory if your device produces A32 address modifiers and you have a memory board that
accepts A32. However, if your driver uses this, no other device in the system (except the CPU board)
can produce an A32 address modifier and access that memory. This means that A32 memory cannot
be used for normal activities such as process pages. In most cases, do not use the A32 memory for a
driver.

Accessing Local Processor M em ory on 3B4000 Adjuncts

On the 3B4000 computer, user-level processes are usually assigned to whichever processor has the
least number of processes,10 which maximizes the performance advantages of the multiprocessor
architecture. Drivers, however, are located in the kernel of the processing element on which the
hardware is located. Because the ABUS bootstrap process (see Chapter 4) configures each adjunct
processing element individually, using a master file and an executable object file that are marked for
the appropriate processing element, all that is necessary is to put these files under the appropriate
ladjlpe# directory (Iadjlpe#letclmaster.d and ladjlpe#lboot), and, for software drivers, add an
INCLUDE line to the ladjlpe#letclsystem file and the driver will be part of the adjunct kernel.

10. This automatic assignment can be overridden with the pe(l) command or the sysmuItJ(2) system call.

6-34 BCI Driver Development Guide

Scatter/Gather 1/0 Implementations

A number of modem 110 boards (primarily disk controllers) support 110 schemes other than the
traditional "move this one piece of data to this one location." These schemes are referred to as
scatter/gather I/O implementations. Note that the term "scatter/gather" is used differently by different
vendors, so that a board that is advertised as supporting such I/O operations may support any or all
of the implementations discussed below. The following pages describe how to write a driver that
utilizes these board capabilities.

Request Chaining

Rt;yUcSL chaining is thc Capability 8£ :! devke (such 9.S ~ d!~k ~0ntr()l1er) to accept an array or linked
list of individual I/O jobs from the CPU. The disk controller will execute all the jobs and give one
completion interrupt at the end of the sequence.

A job is an operation such as "read block N to physical address X" or "read 5 blocks, starting at block
N, to memory starting at physical address X".

Request chaining can only be implemented for boards that support such an operation. The driver
code should then contain a private routine (based on dma_hreakup(D3X) but given a different
name) that passes an entire chain of requests to the strategy(D2X) routine rather than passing one
page at a time. The driver functions can then operate on the whole chain of requests simultaneously,
do all the checking and address translations, and give the whole chain to the disk controller.

Be sure that you have preserved the standard interface to the strategy routine. You may have to
move the bulk of the strategy routine to a driver-specific routine and have both your version of
dma_hreakup and what remains of the driver's strategy routine call this driver-specific routine.

The controller may set a "done" bit in each request block as the request is completed, so that the CPU
can peek at the list even before the job completion interrupt occurs. This is an optimization.

Input/Output Operations 6-35

ScatterlGather 110 Implementations

Multiple Copying

Multiple copying refers to the capability of a device to accept an 110 job that requires a one-to-many
copy. Several identical copies of the data are written to multiple places. For instance, "write 1 block.
of data from address X to disk blocks M, N, and 0" or "read block N from disk and copy it to
addresses X, Y, and Z".

Note that multiple copying is different from multi-block transfer. Multi-block transfer is the ability
to copy two blocks to one address X in one 110 request. Multiple copying is the ability to copy the
same two blocks to different addresses, such as OxlOOOOO, Ox700000, and Ox123450. This could be
used, for example, to set up mirroring capabilities where the actual write operation is done to a
mirror pseudo-device which then writes the same information to two physical devices.

Multiple copying can only be implemented for boards that have this capability.

Virtu al D M A

Virtual direct memory access (DMA) is the ability to accept 110 jobs that contain virtual addresses
rather than physical addresses. Each "job" would be of the form "read block N to virtual address X"
or "read 5 blocks, starting at block N, to memory starting a virtual address X".

To support this implementation, the board must be able to translate virtual addresses into physical
addresses, which means that the board's firmware must contain a basic subset of the memory
management scheme, including the format of the memory management tables used by the ~.

To utilize virtual DMA, create a private driver routine based on the dma_breakup(D3X) function.
Since a virtual DMA board understands page boundaries and address translation, rather than
breaking up the request the modified dma_breakup function can simply pass the entire request to the
strategy(D2X) routine. Create another private routine that is based on the iostart(D3X) function
but without the virtual-ta-physical translation. Give the entire request to the board. You should not
have to split up the strategy routine for virtual DMA 110.

Some boards (such as the MCf 6020 on the SBC) have to be given a special copy of the M:MU
tables. You have two options for accomplishing this

• Create these special tables from the real MMU tables every time an 110 request occurs.
This may hurt the performance of your driver but localizes the changes to your driver
and enhances its portability.

• Create the tables once when the process is created and then keep them consistent with
the MMU tables over the life of the process. This means that you must modify the
kernel memory management functions for the device every time a page is paged out or
created.

6-36 BCI Driver Development Guide

Chapter 7: Drivers in the TTY Subsystem

Contents

lntrmiuction 7 -1

Line Disciplines 7 - 4

Line Discipline Zero 7 - 5
Writing Line Disciplines 7-7
Line Discipline Functions Calling Sequences 7 - 9

Calling Sequences for ttread and ttwrite 7 -10
Calling Sequences for ttioctl and ttin 7 -11
Calling Sequences for ttout, ttxput, and tttimeo 7-12
Calling Sequence for ttiocom 7 -13
Calling Sequence for ttyflush, ttinit, ttywait, canon, and ttrstrt 7 -15

The tty Structure 7 -16

The tty and termio Structures 7 -17
The letc/inittab File 7-18

The letclgettydefs File 7-19

Terminal Routines 7 - 21

Terminal open Routines
Terminal close Routines
Terminal read Routines
Terminal write Routines

7-21
7-24
7-25
7-26

Drivers in the TTY Subsystem 7 - i

TerrrunruioctlRoutin~ 7-28
Terrrunru Interrupt Routin~ 7-30
Terrrunru proc Routin~ 7-35
Terrrunru Timing Routines 7 - 36
Using the clist Buffering Scheme 7-37

7 - ii BCI Driver Development Guide

Introduction

This chapter describes the components of the TrY subsystem. The TrY subsystem is a collection of
functions and the driver proc(D2X) routine that are used to transfer information character-by
character between a CPU and a peripheral device such as a terminal or printer. These functions are
found in the ttl.c, tty.c, and clist.c source code files. These functions are also known as Common
110 (or CIO). Another frequently used term is line discipline. A line discipline is a set of functions
that inte rets the data received from a terminal to extract special characters such as the (BREAK] and
the DELETE keys and moves data between a terminal and a user program. The TTY subsystem
involves access of the tty(D4X) structure defined in tty.h and is described in this chapter.

A line discipline ensures a user program that

!! Da!a !."ecei~.red frO!!! ~ ~~!'!'111n::ll is in the range of printable ASCII values, or if special
processing is disabled, that the data is conveyed to the program exactly as entered
(except for (BACKSPACE) , (BREAK) , (DELETE) , and "Quit").

• Characters sent from the user program are correctly displayed on the terminal screen.

All of these concepts are explained in greater detail in the sections that follow in this chapter.

A wide range of devices exist for moving data character-by-character between a device and the host
computer. Examples of these devices are

• terminals

• printers

• network handlers

• robots

• laboratory applications

Occasionally, these devices require drivers that convey the data from the device to a user program.
These drivers typically interpret the characters that are received from the device before they are
delivered to the user program. This is especially true in devices using some sort of keyboard that
allows data flow to be interrupted or terminated. For these applications, the driver must rely on
routines to initiate special processing requirements when interrupt or flow control keys are pressed.

Drivers in the TTY Subsystem 7-1

Introduction

The UNIX operating system TrY routines provide character interpretation (called canonical
pr~cessing). The characters which are processed include, the erase character, the kill character, the
end-of-file character, characters preceded by a backslash, and upper/lower case presentation
characters.

Canonical processing means translating the actual characters typed to produce what the user intended.
For instance, if the ERASE character is represented by # and the raw input is

the canonical output is

Hello

Data is received from the terminal keyboard and placed in the t_rbuf receive buffer. ttin(D3X) does
initial character processing and moves valid data to the Crawq raw character queue. canon processes
more characters and moves the valid characters to the Ccanq canonical (processed character) queue.
If characters are requested to be echoed to the screen, valid characters are placed in the Coutq output
queue. Input characters, whether echoed or not, are then conveyed to the user program by ttread.
ttwrite conveys characters from the user program to the t_outq output queue. ttout conveys
characters from the Coutq output queue that are echoed or being sent from the user program to the
Ctbuf transmit buffer. A terminal dependent output routine conveys the data from Ctbuf to the
terminal's display. Figure 7-1 illustrates how characters are transferred between a terminal and a user
program.

ttwrite

I
t_outq

~
u ser Process I

I

~ I

If ECHO is on
ttr ead * I

I
I

Ccanq t_rawq

Canonical
Processing '~ __________________ -J/

canon

Device dependent
ttout output routine

t_tbuf

"

L " I I

Crbuf
ttin Device dependent

input routine

Figure 7-1 TTY Functions

7 - 2 Bel Driver Development Guide

Introduction

In addition to the functions specified in the line switch table for interpreting characters, other support
functions are provided as well. Figure 7-2 lists the Common 110 functions.

Function (D3X)
canon(tp)

getc(elp)
getcb(elp)
getcfO
putc(c, elp)
putcb(cbp, elp)

putcf(cbp)
ttrln4Olp(tn)
... ""----- ,·r /

ttin(tp, code)

ttinit(tp)

ttiocom(tp, ernd, arg, mode)
ttioctl(tp, cmd, arg, mode)
ttopen(tp)
ttout(tp)

ttread(tp)
ttrstrt(tp)
tttimeo(tp)
ttwrite(tp)
ttxput(tp, ucp, ncode)
ttyflush(tp, ernd)
ttywait(tp)

Description
Evaluate characters and move data
from Crawq to Ccanq
Get a character
Get first character block
Get free character block
Put data on a character list
Link a character block to a character
list
Release a character block
Oose a character device
Get data from the device-dependent
input routine
Set a tty structure to default values
Process internal requests
Process internal requests
Open a character device
Transfer data to the device
dependent display routine
Move input data to user process
Restart data flow
Time function for termio(7) 'TIME"
Take data from user process
Put data into output queue
Release unneeded buffers
Delay processing

Figure 7-2 Common I/O (CIO) Functions

Detailed information on the functions in Figure 7-2 is presented in Section D3X of the Bel Driver
Reference Manual, referenced in Chapter 1.

Drivers in the TTY Subsystem 7 - 3

Line Disciplines

A line discipline contains functions for opening, closing, reading, writing, input/output control, data
receive interrupts, data transmit interrupts, and modem interrupts. Each of these activities is defined
by individual members of the linesw (line switch) structure found in conf.h. The primary
functions involved in writing a line discipline are: canon(D3X), ttin(D3X), ttout(D3X) and
ttxput(D3X) .

Currently, three line disciplines are defined; however, up to 256 are permissible. The t_line member
of the t ty(D4X) structure is the index into the line discipline switch table. A driver can access as
many line disciplines as required. The line disciplines allocate memory for data buffering purposes
for operations associated with the device (such as moving cblocks(D4X) from the free list to this
tty structure) and implementing flow control. Flow control is the ability of the operating system to
control the rate of data transfer between a device and the system. One example of flow control is
~ ahd (CTRL-s) for starting and stopping screen displays.

Line disciplines are defined by placing information about a line discipline in the kernel master file.
Figure 7-3 shows an example kernel master file.

1
2
3
4
5
6
7

8
9

10
11

* Line DiSCipline Switch Table
* order: open close read write ioctl rxint txint modemint
linesw (%1)
={

* TTY ----------------
&ttopen, &ttclose, &ttread, &ttwrite,
&ttioct1, &ttin, &ttout, &nulldev,

* XT -----------------
&nulldev, &nulldev, &nulldev, &nulldev,
&nulldev, &xtin, &xtout, &nulldev,

* SXT ----------------
12 &nulldev, &nulldev, &nulldev, &nul1dev,
13 &nulldev, &sxtin, &sxtout, &nulldev,
14 }

Figure 7-3 Example kernel Master File

The XT and SXT line disciplines consist of only two functions each (xtin and xtout in line 10, and
sxtin and sxtout in line 13). These functions are customized versions of the ttin and ttout functions.
The nulldev function is a null function that does not return a value. nulldev is described in Section
D3X of the Bel Driver Reference Manual.

7 - 4 BCI Driver Development Guide

Line Disciplines

When the system is booted, the operating system takes the information from the kernel master file
and creates a matrix in main memory called the line discipline switch table!. An example of the line
discipline switch table is shown in Figure 7-4.

t line open close read write ioctl rxint txint modem int

0 ttopen ttclose ttread ttwrite ttioctl ttin ttout nulldev
1 nulldev nulldev nulldev nulldev nulldev xtin xtout nulldev
2 nulldev nulldev nulldev nulldev nulldev· sxtin sxtout nulldev

Figure 7-4 Example Line Discipline Switch Table

NOTE: In the above table, rxint means receive interrupt, txint means transmit interrupt, and modem
int means modem interrupt. nulldev(D3X) is an empty function.

Line Discipline Zero

Line discipline zero (0 in Figure 7-4 or Number 0 in Figure 7-6) is a set of functions that provide a
terminal interface. Line discipline zero has the following characteristics:

• I/O processing functions are taken from the ttl.c source code file.

• support functions such as flushing input/output queues and canonical data processing are
taken from the tty.c source code file.

• provides for interrupts

• the eli s t buffering scheme is used to convey characters

In addition to terminals, drivers for network protocols and line printers can be written with the line
discipline zero. It is not usually necessary to write a driver to connect a new terminal to the system;
rather, you can write a new terminfo file as explained on the terminfo(4) manual page. However,
writing a terminfo file can only provide help for user-level programs that use the terminfo database.

Using the clist(D4X) and tty(D4X) data structures, the line discipline zero provides both
buffering and processing of character data. All the information needed to perform I/O operations
with a terminal is maintained in the tty structure.

1. 'Line discipline" means communication line protocols for processing characters received from character devices. The line discipline switch
table matches driver routines to base level and interrupt activities. This table is indexed by the CUne member of the tty structure.

Drivers in the TTY Subsystem 7 - 5

Line Disciplines

The following lists the differences between 1TY drivers and other character drivers:

• Drivers written in the TrY subsystem may have start(D2X) routines but not init(D2X)
routines.

• The tty structure is initialized when the TrY driver is opened.

• In addition to the system entry-point routines, TrY drivers must have a proc(D2X)
routine to process various device-dependent operations. The proc routine is not called
by the cdevsw switch table. This routine can be called by assigning its address to the
Cproe member of the tty structure.

• Drivers written in the TrY subsystem use a special set of functions which are described
in Section D3X of the BCl Driver Reference Manual. Figure 7-5 shows driver routines
and corresponding TrY functions:

Driver TTY
Routine Function Notes

open ttopen Connects device to process
ttinit Establish default terminal settings

close ttclose Called indirectly through linesw
read ttread Called indirectly through linesw
write ttwrite Called indirectly through linesw
ioetl ttioctI Set device parameters

ttiocom Change device parameters
rint ttin Called indirectly through linesw
xint ttout Called indirectly through linesw

Figure 7 - 5 Line Discipline Functions in Driver Routines

Refer to Line Discipline Functions Calling Sequences in this chapter for more information on how
each function is called.

7 - 6 Bel Driver Development Guide

The three AT&T line disciplines are shown in Figure 7-6.

Number Use

o tty - Regular terminals (default)
1 xt - AT&T bit-mapped graphics

terminals such as the AT&T 630

2 xt dxt - shl(l) command

Defined in

ttl.c, tty.c, and tty.h
xt.C, jerq.h and xt.h

sxt.c and sxt.h

Figure 7 - 6 Standard Line Disciplines

Line Disciplines

The *. c files are located in the source io directory appropriate for the computer in use. The *.h files
are in located in the /usr/include/sys directory.

Writing Line Disciplines

Writing a new line discipline involves writing kernel functions that correspond to the appropriate slots
in the linesw table. When a list of these functions is added to the line discipline switch table in the
kernel master file and the system is reconfigured, the new line discipline is installed in the system.

The new line discipline should be given a short (but unique) name that is used as a header to the Line
Discipline Switch Table and also as a prefix for the function names. Note that the t_line value
assigned to your line discipline may vary by configuration.

Should an intelligent terminal controller deliver a character directly from the terminal with special
character processing built-in, then drivers for such devices could be written without a line discipline.

Before writing a line discipline, consider the following alternatives:

1 If you need to change how data is interpreted by the terminal, you should use the stty(l)
user command, or the ioctl(2) system call to modify the termio structure described in
termio(7).

2 Most terminal definitions can be accomplished with a new terminfo file.

3 If you need to write a driver for a terminal, you may be able to use the existing line
discipline zero functions and supply new device-dependent input and output routines.

4 If you need to establish a new set of character evaluation procedures, you can replace the
ttin function.

The following three steps are required to write a line discipline.

1 Carefully planning your application to ensure that a line discipline really needs to be
written. Writing a line discipline is a very complex task and most devices can be well
served by the default TrY line discipline functions (shown as Number 0 in Figure 7-6).

Drivers in the TTY Subsystem 7-7

Line Disciplines

2 Refer to the TTY manual pages in Section D3X, to descriptions of the proc(D2X)
routine, and to the tty(D4X) structure described in the Bel Driver Reference Manual.

3 Writing the routines that you need for your application.

4 Putting the names of the routines in the kernel master file.

5 Ensuring that your driver open(D2X) routine sets Cline to the new value of your line
ili~~oo. .

For most driver applications, you must supply the following:

• Device Dependent Input/Output - a driver must be written to accept data from a
terminal and to send data to a terminal. This code is outside the scope of line
ilisciplines.

• A proe(D2X) routine to handle calls to the device dependent input-output routines.

System calls such as read(2) or write(2) access the driver routines through the cdevsw(D4X)
(character device switch table). Figure 7-7 illustrates how the cdevsw driver routines relate to the
line iliscipline functions. For example, when the open(2) system call is executed on a TTY device,
the open member of the cdevsw is accessed. This member in tum calls the driver open(D2X)
routine which calls 1 inesw Lopen. The ttopen function is associated with I_open (by the kernel
master file) and is then executed.

cdevsw

open

close

read

write

ioetI

driver
routines

open

close

read

write

ioetl

line switch
table< linesw)

I_open

I_close

I_read

I_write

l_ioetl

~ Linput

proc Loutput

~ Lmdmint

ttopen

ttclose

ttread

ttwrite

ttioetl

ttin

ttout

nulldev

Cline o

line
ilisciplines

nulldev

nulldev

nulldev

nulldev

nulldev

xtin

xtout

nulldev

1

Figure 7 -7 Calling Line Discipline Functions

7 - 8 BCI Driver Development Guide

nulldev

nulldev

nulldev

nulldev

nulldev

sxtin

sxtout

nulldev

2

Line Disciplines

Line Discipline Functions Calling Sequences

The following diagrams illustrate the sequence in which line discipline functions call each other and
the driver proc(D2X) routine. The outer most box in each figure depicts the first function called.
Each inner box represents a subsequent function or proc routine call. For example, in the first figure
for ttopen(D3X), this function calls the ttioctl(D3X) function with the LDOPEN flag. The ttioctl
function then calls the proc routine with the T _INPUT flag. These figures, while representative of
the actual calling sequence, should not be taken as depicting all of the activities that occur within the
functions or a driver routine. They are only meant to be simplified illustrations to aid in your
understanding of the way these functions work.

ttopen
~----------------~

ttioctl
LDOPEN

W proc routine
IT_INPUT

ttclose

proc routine
T_RESUME
T_OUTPUT-------------,

linesw
Loutput --;. ttout

Figure 7 - 8 ttopen and ttclose Calling Sequence

The ttopen function is called from the driver open routine to initialize the tty structure. ttopen is
called for the first terminal driver open. It calls ttioctl with the LDOPEN flag. ttioctl allocates the
receive buffer and then calls the proc(D2X) routine with T _INPUT as the second argument. In the
proc routine, the TIY device is prepared to receive input. This example of the proc routine makes
no further calls to TIY functions or to itself.

The ttclose function is called by the driver close routine to release allocated resources. ttclose is
called after the last terminal close. ttopen calls ttioctl with the LDCLOSE argument. ttioctl calls the
proc routine with the T_RESUME argument. ttioctl then waits for the serial port UART to drain
(in the ttioctl function), and then releases any allocated buffers. The call to the proc routine
(T_RESUrviE) causes a drop-through condition to the T_OUfPUT condition which calls ttout
through the I_output member of the linesw structure.

Drivers in the TTY Subsystem 7 - 9

Line Disciplines

Calling Sequences for ttread and ttwrite

ttread

canon .. Y tttimeo

~
proc routine
T_UNBLOCK

ttwrite

I

linesw --- ttout
Coutput

Figure 7 - 9 ttread and ttwrite Calling Sequence

The ttread function is called by the driver read(D3X) routine to convey input characters to the user
program. ttread calls both the canon(D3X) function and the proc routine with the T_UNBLOCK
argument. canon calls the tttimeo function (listed in this chapter).

The ttwrite routine is called by the driver write routine to convey output characters from the user
program. ttwrite calls ttxput to put the characters on the TrY output queue. Then the proc routine
is called. proc calls ttout to build up a block of characters to send to the tenninal.

7 -10 BCI Driver Development Guide

Calling Sequences for ttioctl and ttin

ttioctl

LDOPEN:

proc routine
T_INPUT

LDCLOSE:

~ proc routine
T_RESUMb
T_OUTPUT

linesw
I_output ~ ttout

LDCHG:

ttin

Line Disciplines

ttytlush

proc routine
T_BLOCK

.. proc routine

T_SWITCH

. ttxput

proc routine
T_OUTPUT

Iinesw I
l_output~ ttout

tttimeo

Figure 7 -10 ttioctl and ttin Calling Sequence

The ttioctl function is called by ttopen, ttciose, and by ttiocom to set or get terminal control
infonnation. ttioctl has the conditions, LDOPEN, LDCLOSE, and LDCHG. In the LDOPEN
condition, the proc routine is called. The LDCLOSE condition calls the proc routine. In the proc
routine, there is typically not a break statement so control drops through to the T _OUTPUT section
in the proc. A call is made to the I_output member of the linesw structure thus invoking ttout.

The ttin function is called from the driver interrupt routine and from ttiocom to process characters
received from the terminal. ttin, depending on the condition, calls ttytlush. The proc routine is
called, with T _BLOCK set and with T _ OUTPUT set, which then calls ttout through the line switch
table. The T _SWfCH condition is handled in the sxtproc routine (a part of the sxt driver for the
shl(1) shell layers user command) which is not described in the AT&T driver interface. The
T _SWfCH condition is provided for switching between context layers.

The ttxput command is then called. Finally, tttimeo is called to provide a means of timing input
when VTIME (the TThffi variable in termio(7)) is set.

Drivers in· the TTY Subsystem 7 -11

Line Disciplines

Calling Sequences for ttout, ttxput, and tttimeo

ttout
ttrstrt

proc routine
T_TIME

ttxput tttimeo

l.J Uxput l.J tttimeo

Figure 7 - 11 ttout, ttxput, and tttimeo Calling Sequence

The ttout function is called from the proc routine to move characters into the output queue. ttout
calls ttrstrt which calls the proc routine for the xt.C driver (not covered in the AT&T driver
interface). ttout builds a block of characters for transmission to the terminal.

The ttxput function is called from ttwrite and ttin to output characters to a terminal. ttxput calls
itself when only upper case letters are being displayed.

The tttimeo function is called by canon and ttin to delay execution when special characters are
entered to ensure that the string was entered by the user and was not entered as communications
protocol. tttimeo calls itself after an interval determined by the value in the termio(7) TIME
variable (in tenths of a second). tttimeo is listed in the Terminal Timing Routines section in this
chapter.

7 - 12 BCI Driver Development Guide

Line Disciplines

Calling Sequence for ttiocom

The ttiocom function is called from the driver ioctl routine. ttiocom is used to flush buffers, call the
line switch table l_ioctl member (ttioctl), or call the driver proc routine.

ttiocom

TCSET AF~:~_---,

~ ttyflush

I TCSETA:
~~-E~-.~-~-,----------------~

l_ioctl --. ttioctl

LDCLOSE

proc routine
T_RESUME
T_OUTPUT

linesw --. ttioctl
1 ioctl ~~-.----,
LDOPEN proc routme

. T_INPUT

linesw
l_ioctl --. ttioctl
LDCHG

Figure 7 -12 ttiocom Calling Sequence (part 1 of 2)

Drivers in the TTY Subsystem 7 -13

Line Disciplines

ttiocom (continued)

TCSBRK:
'" ttywait -,

r---
proc routine
T_BREAK

TCXONC:
arg=O·

f---a- 1: proc routine
T_SUSPEND

argt:
proc routine
T_RESUME
T_OUfPUT

f---+ t.. linesw --. ttout
I output

~

arg=2:

I
~ ~ proc routine

T_BLOCK

arg=3:
L:.: proc routine

T_UNBLOCK

~ .. linesw --. ttin
Cinput .. proc routine
T_INPUT

TCFLSH:

----- ~ ttyflush I
Figure 7 -12 ttiocom Calling Sequence (part 2 of 2)

7 -14 Bel Driver Development Guide

Line Disciplines

Calling Sequence for ttyflush, ttinit, ttywait, canon, and ttrstrt

ttytlush

f-w-

WRITE:

I proc routine
T WFLUSH

~ READ:

II"""~-r-~-c "O"""T-r~-~-~~·Tn-Te--"

~ __ I_l_~ __ L_u_~_n ___________________ ~1 I

ttinit

ttywait

I
canon

I I tttimeo
L..;.f'----_

I ttrstrt
I 1"""1 -n-ro-r--r-n-ll-:"ti-n-'pj I , f-TIME--'

Figure 7 -13 ttytlush, ttinit, ttywait, canon, and ttrstrt Calling Sequence

The ttyflush function is called from ttioctl when ttclose has been called, from ttiocom, from the
driver interrupt routine, and other support routines. tty flush calls the driver proc routine.

The ttinit function is called from the driver open routine to initialize the tty structure.

The ttywait function is called from ttioctl, ttiocom and from the driver write routine to delay process
execution for 13 clock ticks to let the universal asynchronous transmitter-receiver (UART) drain.
ttywait serves as a way of balancing timing problems that may occur between the speed of the CPU
and that of the terminal.

The canon function is called from ttread to perform special processing of characters transmitted from
the terminal that are outside the range of printable characters. canon calls tttimeo when handling the
termio(7) TIl\ffi variable.

The ttrstrt function calls the proc routine with T_ TIME set. T_ TIME is only implemented in the xt
driver for AT&T bit-mapped graphics terminals such as the AT&T 630.

Drivers in the TTY Subsystem 7 -15

The tty Structure

Each TrY terminal device has a tty(D4X) structure associated with it. The tty structure defines
the character queues and buffers associated with the device as well as the operational modes for the
device. The members of the tty structure can be divided into the following three groups:

1 control and status fields (Cline, t_proc, t_pgrp,t_state, CdeJct)

2 data buffer pointers (Crawq, t_canq, t_outq, t_tbuf, Lrbuf)

3 operational modes (t_oflag, Clflag, t_iflag, Ccflag, and Ccc)

The tty structure manages data buffering, terminal settings, and tracks the activity of the terminal.
The termio structure is used to retain terminal settings and functionality.

Each of the TrY functions and the canon function require a pointer to the current instance of the
tty structure for the terminal you are referencing. The tty structure and the termio structure,
described in termio(7), comprise the most important elements of the line discipline and line discipline
support functions. elements of the get* and put* functions.

The line discipline functions are used to manage a series of buffers that are members of the tty
structure. These members are

Lrawq contains the data from which the (BREAK) and (DELETE) keys have been stripped

Lcanq contains the data from which the backspace and other special characters have been
resolved

L outq contains the data from the user process or echoed characters

Ltbuf contains the data ready to be transmitted

Lrbuf contains the data received from the terminal

The TTY subsystem consists of a series of buffers in which data is inserted, processed, and then
extracted. The subsystem converts raw data received from a terminal into data usable by a user
program. When a key is pressed on a keyboard, an interrupt is generated and ttin(D3X) is called
from a device-dependent driver routine. ttin performs the following:

• conveys data from the t_rbuf receive buffer to the Crawq raw data buffer

• echoes characters to the t_outq output buffer

• resolves (BREAK) and (DELETE) key entries, signaling processes if necessary

7 -16 Bel Driver Development Guide

The tty Structure

After ttin is called, the following functions are called to convey data between the terminal and the
user program:

1 The ttwrite routine conveys the data from the user program to the Coutq output buffer.

2 The ttout function is called to convey the data from the t_outq output buffer to the
t_tbuf transmit buffer.

3 A driver device dependent output routine sends the data to the terminal screen.

The tty and term io Structures

The tty structure and the terrnio structure share many similarly named members. These two
structures govern the way tenninais behave III the (IN"IX operating sys-rem. Twu t;Xi:11'-lIii~ of ~hi5 we
how a terminal is accessed when a user logs on and how the software controls are set for a terminal.
The stty(l) and getty(lM) commands are used at user level to write to the termio structure. These
commands also call the ttiocom function through an ioctl(2) call. ttiocom copies the information in
the termio structure into the tty structure.

This section describes the process by which the terrnio structure is populated when users Jog on.

The termio structure has a group of members that have direct counterparts in the tty structure.
These members specify the operational modes for the device. Figure 7-14 shows how these two
structures relate.

termio tty Use

c_iflag t_iflag input control, such as parity checking, start/stop
output control, and mapping of newline to return

c_oflag t_oflag output control, such as delays on output and
mapping of newline to return

c_lflag t_lflag local terminal control, such as echoing and
enabling signals

c_cflag t_ct1ag hardware control of terminal, such as baud
settings, character size, and hang up on last close

c_cc t_cc control character definitions, such as the erase and
kill characters and the character to send SI G INT

Figure 7 -14 Operational Modes for Terminal Devices

The fields in the termio structure are set by the getty(1M) command. getty is executed by the
init(lM) command. init accepts as input the letclinittab file which contains a line for each terminal
device configured on the system. Each inittab terminal definition line contains a call to the getty
command. The getty command sets the terminal type, its baud rate, and its associated line discipline.
The driver open routine is called by the user level getty process the first time a device is opened. The
open routine is called each time a process is spawned for a terminal subdevice.

Drivers in the TTY Subsystem 7 -17

The tty Structure

The /etc/inittab File

The letclinittab file controls processes that execute when the computer changes run level. When a
new state is entered, the init(lM) program reads inittab, finds the "instructions" that apply to that run
state, and executes those programs in the order in which they are listed in inittab. For most drivers,
you will not modify inittab but rather create other files that will be called automatically.

Each line in inittab has four fields, separated by colons. A comment should be added at the end of
the line; it is preceded with a "#" and can go to the end of the line.

Figure 7-15 shows the getty(lM) lines from a sample letclinittab file. The fields are explained on the
inittab(4) manual page.

1 co:234:respawn:/etc/getty console console
2 ct:234:off:/etc/getty contty contty # Network out
3 31:234:respawn:/etc/getty tty31 9600 # Network in line #1
4 32:234:respawn:/etc/getty tty32 9600 # Network in line #2
5 33:234:respawn:/etc/getty tty33 9600 # Network in line #3
6 34:234:respawn:/etc/getty tty34 9600 # Network in line #4
7 41:234:off:/etc/getty tty41 9600 # Network out line #1
8 42:234:off:/etc/getty tty42 9600 # Network out line #2
9 43:234:off:/etc/getty tty43 9600 # Network out line #3

Figure 7 -15 Example /etc/inittab File

The fields in the inittab file are:

1 id: One or two characters used to uniquely identify an entry.

2 rstate: The state or states in which this command can be executed. The valid values
with their meanings are:

s,S,O,l
2
3
4
5
6

7 -18 BCI Driver Development Guide

Single-user state
Multi-user state
Multi-user state with RFS running
Not currently used
Go to firmware mode
Automatic reboot

The tty Structure

NOTE: 0 in rstate means power down on the 3B2 computer, but single-user on the
3B15 or 3B4000 computers. If no number is specified, the default is that the
command can be executed in any run state.

More than one number can be used in this field; for instance, "56" means to execute this
process when the system state switches to either state 5 or 6.

3 action: The conditions under which iiut should execute the process in this line. For a
full explanation of all actions, see inittab(4) in the UNIX System V Programmer's
Reference Manual. The options of interest to driver writers are:

wait - start process and wait for it to terminate when system first enters that
runstate

bootwait - execute only once after system is booted, the first time the system enters
a state that matches rstate for this entry.

otT - do not restart this process when state changes

sysinit - used for initializing devices, identifies entries to be executed before init
spawns a shell on the console

respawn - restart this process if it dies or if it is not already running when system
state changes

4 process: The full pathname of the process to be invoked and arguments to the process

The /etc/gettydefs File

letclgettydefs defines the speed and terminal settings (IOCTL values) to be moved into the tty
structure when the device is opened for the first time.' The format of a gettydefs line is shown in
Figure 7-16.

label#initial-flags#final-flags#login-prompt#next-label

For example:

9600#B9600#B9600 SANE IXANY TAB3 HUPCL#login:#4800

Figure 7 -16 Format of a /etc/gettydefs Entry

The # serves as a field delimiter. The second and third fields set default I/O control command values
for this device: initial-flags are the values assigned to this structure when it is inactive (typically only
the baud rate), andfinal-flags are the values assigned when a user accesses the device, just before the
login program executes.

Drivers in the TTY Subsystem 7 -19

The tty Structure

If the default baud rate for the TrY port does not match the speed given in the / etc/getty line for that
device, the user can press the (BREAK) key, and getty will try a different speed, meaning a different
line in gettydefs. The next-label field specifies the speed to try next.

The getty command can be executed without specifying the speed. In this case, the first line in
gettydefs is the default.

The values in the third field are typically used for terminals (although the b~ud rate may vary).
IXANY, T AB3, and HUPCL are documented on the termio(7) manual page. SANE is a composite
flag defined in getty.c that sets flags to coordinate processor and terminal communication.

The I/O control commands for the tty structure can also be set with the stty(l) command in the
fete/profile file, the user's .profile file, or as a user shell command. stty first calls the ioctl(2) system
call. The ioctl system call then calls the drivers ioctl(D2X) routine, which in tum calls the
appropriate functions from the line discipline through the linesw table to record the new rio
control command value in the appropriate flag or array of the tty structure for that terminal device.

Figure 7-19 summarizes how the operational modes in the tty structure are populated from
termio values, the getty values associated with each termio member, and from stty commands.

termio (7)
fields

getty (1M) SANE:

Settings IGNBRK

tty
structure

stty (1)
Commands

BRKINT
ISTRIP
ICRNL
IXON

Input
Modes

SANE:
OPOST
ONLCR

Output
Modes

SANE:
ISIG
ICANON
ECHO
EOiOK

Local
Modes

SANE: ERASE = #
CS7 Kll.L=@

CREAD
PARENB

Control Control
Modes Assignments

Figure 7 -17 Populating the tty Operational Modes

7 - 20 BCI Driver Development Guide

Terminal Routines

This section describes how driver routines are constructed to take advantage of the capabilities
provided in the TrY interlace.

Terminal op~n Routines

The TrY subsystem provides two functions, ttinit(D3X) and ttopen(D3X), for the driver open(D2X)
routine. The ttinit function is used only for drivers that use line discipline 0; if your driver uses its
own line discipline, you must write a similar routine for that line discipline. ttinit performs the
following:

• t_Iine is set to zero (line discipline zero)

• t_itlag is set to zero

• t_oftag is set to zero

• t_cftag is ORed with SSPEED (300 baud), CS8 (8-bit character size), CREAD (enable
receiver), and HUPCL (hang up on last close).

• t_ltlag is set to zero

• bcopy(D3X) is called to move ttechar to t_ce. ttechar is an eight-character array
containing:

1 CINTR - Delete character (octal 0177)

2 caurr - Quit character (octal 034)

3 CERASE - Erase character (#)

4 CKILL - Kill character (@)

5 EOF - End Of File character (CfRL-d)

6 NULL-O'

7 NULL-O

8 NULL-O

The ttinit function cannot be called through the line discipline switch table, since it establishes the
line discipline to be line discipline zero. If a different line discipline is used, the appropriate
initialization routine should be called in place of the ttinit function.

Drivers in the TTY Subsystem 7-21

Terminal Routines

The driver open routine (line 3 in Figure 7-18) calls the ttinit function (line 13) and ttopen via the
line switch table.

When the TIY subsystem is initialized, one instance of the tty structure is established for each
TIY port that can be configured on the system.

When a driver open routine is called for a tenninal device, the logical state of the device is checked
(line 11). If the device has not previously been opened (ISOPEN) and is not currently being opened,
the tty structure is initialized to its default values (ttinit in line 13). The address to the device
command processing routine is provided for the line discipline routines, and the hardware is
initialized to the present baud rate and error checking settings specified in the tty structure.

1 extern struet tty xx_tty[]; 1* Location of logical device structures */
2
3 xx_open(dev, flag)
4 dev_t dev;
5 {
6 register struet tty *tp;
7 register struct device *rp = &ocaddr[minor(dev) » 3]; /* Get device regs */
8 register int port = minor(dev) & 0x07; 1* Get port number *1
9
10 tp = &xx_tty[minor(dev)];
11 if «tp->t_state & (ISOPEN I WOPEN» == 0) 1* If device is not open and *1
12 { /* waiting to be opened, ... I
13 ttinit(tp); 1* initialize tty structure with default values *1
14 tp-> Lproc = xx_proc; 1* Provide line discipline routines access to *1
15 1* the driver command processing· routine * I
16 /* The appropriate device registers would be set to match the *1
17 /* values stored in the tty structure - hardware dependent. * I
18 } 1* endif *1
19

Figure 7-18 Initializing tty Structure Default Values

The ttopen function establishes the connection between the process group (t_pgrp) and the device. It
also allocates and initializes a cblock(D4X) for the receive buffer ,(t_rbuf) of the tty structure.
To take care of 'any initialization peculiar to the device hardware, ttopen calls the driver proc(D2X)
routine with the T _INPUT argument.

7 - 22 BCI Driver Development Guide

Terminal Routines

In Figure 7-19, when a tenninal device is being opened, the driver open routine is responsible for
establishing a physical and logical data connection. After the default settings are made in the tty
structure, and the device registers have been set by the ttinit function, the driver determines if a
physical connection has been made by testing carrier from the modem (line 2). If a carrier is present,
the tty structure indicates a physical connection has been made (line 4). Otherwise, the tty
structure indicates a physical connection has not been made (line 6).

If the process wishes to wait for carrier (line 8), and carrier is not present, the driver waits for carrier
(sleep(D3X) in line 12). The last driver operation open routine is used to establish a logical data
connection and associate the device to a process by making the appropriate settings in the tty
structure (ttopen). In order to allow other protocols, a driver must access the ttopen routine through
the line discipline switch table (line 15) (I_open is defined in conf.h). The t_line member of the
tty structure contains the line discipline (in this case zero) and serves as the index to the line
discipline switch table.

Interrupts are disabled during the ttopen call to ensure all parameter settings in the tty strucrure are
made before any testing and resetting of the parameters is done by a driver interrupt and/or polling
routines.

Refer to the ttopen(D3X) manual page for more information on this figure.

1 oldlevel = sp16();
2 if «rp->modem_status & (0x0100 « port» != 0) /* If there is carrier */
3 { /* to the modem, */
4 tp->t_state 1= CARR_ON; /* indicate carrier is established */
5 } else {
6 tp->t_state &= -CARR_ON; /* else indicate carrier is dropped */
7 } /* endif */

8 if «flag & FNDELA Y) = = 0) { /* If process wants to wait for carrier * /
9 while«tp->Lstate & CARR_ON) = = 0) /* while carrier is not present, */

10 { /* indicate process is waiting * /
11 tp->t_state 1= WOPEN; /* for carrier */
12 sleep«caddr_t)&tp->t_canq, TI1PRI); /* Wait for carrier */
13 } /* end while * /
14 } /* endif */
15 (*linesw[tp->t_line].Copen)(tp); /* Establish logical data connection */
16 splx(oldlevel);

Figure 7 -19 Opening a tty Device

Drivers in the TTY Subsystem 7-23

Terminal Routines

Term inal close Routines

The line discipline close function, ttclose, is called by the device driver close(D2X) routine. The
ttclose function disassociates the device from the process that opened it and resets the ISOPEN flag in
the device internal state register (t_state). ttclose calls the driver proc routine (with the T_RESUME
argument) to transmit any characters in the device transmit buffer (t_tbuf) out to the tenninal, clears
out all the TrY buffers and queues, and returns all cblock(s) allocated to the device.

On the last close of a terminal device, the driver close(D2X) routine (line 6 in Figure 7-20)
terminates the logical data connection and disassociates the device from a process that is specified in
the tty structure (ttclose). In order to allow other protocols, a driver must access the ttclose
function through the line discipline switch table (I_close is defined in cOn/.h).

After the logical data connection is terminated, the driver would break the physical connection (such
as instructing the modem to drop carrier) (line 6).

1 extern struct tty xx_tty[]; /* Location of logical device structure * /

2 xx_close(dev)
3 dev_t dey;
4 {
5 register struct tty *~ = x'ctty[minor(dev)]; /* Get device tty structure */

6 (*linesw[tp->Cline].Lclose)(tp); /* Break logical data connection */
7

Figure 7-20 Data Connection is Terminated

7 - 24 BCI Driver Development Guide

Terminal Routines

Terminal read Routines

When a process requests data from a terminal device, the driver read(D2X) routine locates the tty
structure associated with the device. The character data is copied from the input queues to the user
data area using ttread.

ttread calls canon to perfonn canonical processing of data (erase, kill, and escape) as it transfers
characters from the raw queue to the canonical queue. If no characters are available, it calls sleep to
wait on the address of the raw queue Wltil characters become available. After canonical processing,
ttread transfers data from the canonical queue to user data space. If transmission from the tenninal
is blocked because the number of characters in the raw input queue is above the high water mark,
:..~d if the !"e2!! C~1..!Se5 th~t nnmher to go below a safe level, ttread calls the driver proc routine (with
the T_UNBLOCK argument) to resume transmission from the tenninal. To allow for alternative line
protocols, a driver must access the ttread function through the line discipline switch table (line 7 in
Figure 7-21). ttread is accessed through the Cread member of the linesw table .which is defined in
conf·h.

1 extern struct tty DCtty[]; /* Location of logical device structures */
2
3 xx_read(dev)
4 dev_t dev;
5 {
6 register struct tty *tp = &xx_tty[minor(dev)];

7 (*linesw[tp->Cline].Cread)(tp); /* Copy character data from input */
8 . /* queues to user data area * /
9 } /* end xx_read * /

Figure 7-21 Processing an Input TTY Character

Drivers in the TTY-Subsystem 7 - 25

Terminal Routines

Term inal write Routines

Displaying a character on the screen of a terminal is simpler than reading information from the
keyboard since only one queue, the output queue (t_outq), is involved. Still, activities at both base
and interrupt levels are involved. A transmit buffer provides the buffering of characters between the
base and interrupt portions.

The terminal driver write(D2X) routine calls ttwrite to move the characters output from the user
data space to the output queue. ttwrite calls the driver proc routine with T_OUTPUT set to get
ttoutto transmit the data to the terminal.

Once initiated, output is sustained by interrupts from the device. A transmit-complete interrupt
causes control to be passed to the driver transmit interrupt handler. The driver outputs the next
character in the transmit buffer to the device. If the output buffer is empty, ttout(D3X) is called to
move characters from the output queue to the buffer.

The driver write routine receives the device number as an argument. It uses this argument to
determine the tty structure for the device being written. This is then passed to ttwrite.

The ttwrite function transfers characters from user data space to the output queue as long as the
output queue high water mark has not been exceeded. The characters are processed as they are put
on the output queue to expand tabs and to add appropriate delays for newline, carriage return, and
backspace characters. When the high water mark is reached, ttwrite calls sleep to wait on the output
queue.

When a process requests data be transferred to a terminal device, the driver write routine locates the
tty structure associated with the device (line 3 in Figure 7-22). The data is copied from the user
data area to the output queues with ttwrite (line 7). ttwrite is accessed through the L write member
of the linesw table which is defined in con/.h.

7 - 26 BCI Driver Development Guide

1 extern struct tty xx_tty[]; /* Location of logical device structures * /
2
3 '0,-write(dey)
4 dev_t dey;
5 {
6 register struct tty *tp = &xx_tty[minor(dev)];

7
8

(*linesw[tp->Cline].Lwrite)(tp); /* Copy character data from user */
/* data area to output queues * /

9 } /* end xx_write * /

Figure 7-22 The ttwrite Function.

Terminal Routines

Drivers in the TTY Subsystem 7 - 27

Terminal Routines

Term inal ioctl Routines

Changing the many parameters associated with terminal devices requires close cooperation between
the driver and the TrY subsystem. The ttiocom function provides access to reading and changing the
various 1TY parameters contained in the tty structtire. Changing such parameters usually requires
that device registers also be altered. The driver is responsible for changing these registers.

A request to read or change terminal parameters is initiated by an ioctl(2) system call from a user
process. This causes the driver ioctl(D2X) routine to be dilled. The driver locates the tty structure
associated with the device and calls the common ioctl routine, ttiocom.

Internally, ttiocom calls ttioctl(D3X). These two functions tog~ther affect the appropriate parameter
settings and return to the driver. Although ttiocom and ttioctl are together involved in parameter
access, each has a different purpose. ttiocom is a general-purpose function providing common
parameter handling. ttioctl is specialized in that it deals with parameters related to buffering and
character processing and is associated with the terminal protocol or line discipline.

A user process can get or set terminal parameters with the ioctl(2) system call. All standard
termio(7) commands access parameters in one or more of the members in the tty structure, and
possible changes to these parameters are made first (ttiocom). If changes are made in the parameters
of the tty structure, then the device registers may also need to be altered; the driver would make
the necessary changes upon return from the ttiocom function.

NOTE: Do not call the ttioctl function directly. This function should always be called through the
line discipline.

7 - 28 BCI Driver Development Guide

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15

16
17
18
19
20
21
22
23
24
25

extern struct device ,ocaddr(]; /* Location of physical device registers * /
extern struct tty xx_tty[]; /* Location of logical device structures */

xx_ioctl(dev, cmd, arg, flag)
dev_t dev;
caddr_t arg;
{

switch(cmd)
{

/* Driver specific commands would be handled by the case */
/* statements, such as getting the device registers. */

default: /* Handle termio(7) commands; if invalid command is * /
/* present ttiocom will update u. u_error with EINV AL * /

{
register struct tty *tp = &xx_tty[minor(dev)]; /* Get tty structure */

if (ttiocom(tp, cmd, arg, flag) = = 1) /* Get or set tty parameters; */
{ /* If tty parameters are changed, then * /

/* change the necessary device registers. * /
register struct device *rp;
rp = &xx_addr(minor(dev) » 3]; /* Get device regs */

/* The 'changes are usually determined by examining the parameter * /
/* settings in the t_iflag, t_oflag, t_cflag, and t_lflag members * /
/* of the tty structure for changes like baud rate, type of parity * /
/* testing, etc. -- hardware dependent. * /

} /* endif */

26 } /* endswitch * /
27 } /* end xx_ioctl * /

Figure 7 - 23 Changing Device Parameters

Terminal Routines

Drivers in the TTY Subsystem 7 29

Terminal Routines

Term inal Interrupt Routines

Interrupts can be handled by a single int(D2X) routine or with the rint(D2X)/xint(D2X) routine
pair.

After a driver rint (receive interrupt) routine validates an input character, it stores the character in
the receive buffer (t_rbuf). When the receive buffer is filled, the receive buffer is added to the raw
queue and a new receive buffer is allocated (ttin). In order to allow other protocols, a driver must
access the ttin routine through the line discipline switch table, linesw. The t_line member of the
tty structure contains the line discipline number and serves as the index to the line discipline switch
table.

If the number of characters in the raw queue exceeds a level called the high water mark, ttin calls the
driver proc(D2X) routine to send a stop character to the device. When the raw queue character
count exc~ the TIYHOG level of 256 characters, ttin flushes the tty structure input queues.
TIYHOG is ~efined in the tty.h header file. If the interrupt character (SIGINT), typically (DEL) or
the quit character (SIGQUIT), is found, ttin sends the appropriate signal to the process group
associated with the device. If processes associated with the device are executing sleep(D3X) and ttin
finds a line delimiter character, ttin awakens the process that called sleep.

The ttin fupction can also transmit characters to the terminal for display by calling taput.

When the terminal operates in raw mode, the fifth and sixth elements of the tty structure control
character array indicate the number of characters needed (VMIN), and the amount of time waited
before processes associated with the device should be awakened (VIlME). If the minimum character
count has been met (Cdeict), ttin awakens processes associated with the terminal.

7 - 30 BC, Driver Development Guide

1
2
3
4
5
6
7

struct device /'" Layout of physical device registers * /
{

int control; /* Physical device control word */
int status; /* Physical device status word * /
short recv _char; /'" Receive character from device * /
short xmicchar; /* Transmit character to device */

}; /'" End device * /

8 extern struct tty xx_tty[]; /'" Location of logical device structure '" /
9 . extern struct device ,ocadcir[]; /'" Location of physical device registers "'/
10 extern int xx_cot; /'" Number of physical devices "'/
11
12 xx_rint(board)
13 int board; /'" The hardware board that caused the interrupt '" /
14 {
15 register struct device *rp = xx_addr(board]; /* Get device registers "'/
16 register struct tty *tp;
17 register int c, port;

Terminal Routines

18 while«c = rp->recv_char) & DATAVALID) != 0) /'" While there is valid data */
19 { /'" in the input register, retrieve it "'/
20 port = (c » 8) & Ox7; /'" Get tenninal's port number */
21 tp = &x)ctty[(board « 3) & port]; /'" Get corresponding tty structure */

22 /'" After the character has been checked for errors and is stripped to "'/
23 /'" proper bit size, the character is stored in the receive buffer. '" /

24 "'tp->t:.-rbuf.c_ptr+ + = c; /* Store input character in receive buffer */
25 if (--tp->t_rbuf.c_count = = 0) /* If the receive buffer is full, "'/
26 { /'" reset the c_ptr to first character in the receive buffer. The */
27 /* driver must do this operation to insure the buffer is added "'/
28 tp->Crbuf.c_ptr -= tp->t_rbuf.c_size; /* to the raw queue correctly */

29 ("'linesw[tp->t_line].Linput)(tp); /* Add receive buffer to raw; */
30 /'" queue; get empty receive buffer"'/
31 } /'" endif "'/
32 } /'" end while "'/
33

Figure 7 - 24 ttin - Move Character to Raw Queue

The ttout function is called by the driver transmit interrupt (xint(D2X)) routine. ttout is passed the
address of the tty structure associated with the device.

Drivers in the TTY Subsystem 7-31

Terminal Routines

The ttout function moves characters from the output queue to the transmit buffer in preparation for
output by the driver. The ttout function implements the actual timing delays needed during output.
When it detects a delay in the output queue, it uses the timeout(D3X) function to arrange for an
entry after the appropriate time has elapsed. This delayed entry invokes the driver proc(D2X)
routine to resume output (from ttrstrt). The ttout function also awakens the sleeping processes when
a sufficient number of characters have been transmitted; that is, when the number of characters in the
output queue is less than the low water mark.

A driver transmit routine is entered when a device is ready to receive data. While the device is ready
to receive data and the transmit register is free, a character is taken from the transmit buffer (Ctbuf)
and placed in the transmit register. The state of the tty structure is changed to show a character is
present in the transmit register and the driver command process routine is called to complete the
output .

. The command processing routine determines the output port. If output is blocked or there is no
output for that port, then return to the caller. When the transmit buffer (t_tbuf) is empty, the buffer
is returned to the free list and a new transmit buffer is allocated from the output queue (ttout). The
output character is transmitted to the device and the state of the tty structure is changed to show
the transmit register is empty.

1
2
3
4
5
6
7
8
9

struct device /* Layout of physical device registers * /
{

int control; /* Physical device control word */
int status; /* Physical device status word ... /
short modem_status;!* Modem carrier (upper 8 bits) & ring */

j* (lower 8 bits) status word ... /
short recv_char; /* Receive character from device */
short xmit_char; /* Transmit character to device */

}; /* End device */

10 extern struct device Dcaddr[]; /* Location of physical device registers */
11 extern struct tty xx_tty[]; /* Location of logical device structures */
12
13 xx_xint(board)
14 int board; /* Board that caused the interrupt * /
15 {
16 register struct tty *tp;
17 register struct device *rp = &xx_addr(board); /* Get device regs */
18 register struct ccblock *cp;
19 register int port;

Figure 7-2S A Driver Accesses ttout Function (part 1 of 3)

7 ~ 32 BCI Driver Development Guide

Terminal Routines

20 port = rp->status & Ox7; /* Get tenninal's port number */
21 tp = &xx_tty(board « 3) & port]; /* Get corresponding tty structure */
22 cp = &tp->Ctbuf; /* Get transmit buffer */

23 while«rp->status & XX_TXRDY) != 0) /* While the device is ready for */
24 { /* a character to be transmitted * /
25 if (tp->t_state & BUSY) /* If xmit_char register is clear */
26 { /* and there is more data to send, * /
27 if (cp->c_count > 0) /* If there is data in the tbuf of the */
28 { /* tty structure, then give device the * /
29 rp->xmicchar = * cp-> c_ptr+ +; /* next character for transmission */
30 cp->c_count--; /* update counter of the number of */
31 /* characters remaining for output * /

} /* endif */ 32
33
34
35
36
37
38
39
40

tp->t_state &= -BUSY; /* Indicate xmit_char register is primed */
,ocproc(tp, T_OUfPUT); /* test to see if output is blocked and if */

/* not enable controller for transmission * /
} else {

rp->controll= XX_TXDONE; /* Indicate all data for port has been */
break; /* transmitted; terminate loop * /

} /* endif */
} /* endwhile * /

41 } /* end xx_xint * /

42 xx_proc(tp, cmd) /* Driver command processing routine */
43 register struct tty *tp;
44 int cmd;
45 {
46 register int dev = tp - xx_tty; /* Compute minor device number * /
47 register struct device *rp = &xx_addr[dev» 3]; /* Get device regs */
48 register int portmask = 0x0100 « (dev & Ox7); /* Setup output port mask */

49 switch(cmd)
50 {
51
52 case T_OUTPUT:
53 resume_output:

/* Perform output processing of data to the device */

Figure 7 - 2S A Driver Accesses ttout Function (part 2 of 3)

Drivers in the TTY Subsystem 7 - 33

Terminal Routines

54 {
55 register struct ccblock *cp = &tp->t_tbuf;

56 if «tp->Cstate & (BUSY / TISTOP» != 0) 1* If there is no data to *1
57 break; 1* transmit or output is blocked by a CfRL-s, do nothing *1

58 rp->xmit_char /= portmask; 1* Enable controller to transmit character *1

59 if (cp->c_ptr == NULL" cp->c_count == 0) 1* If there is no tbuf or *1
60 { 1* the tbuf is empty, then get a new one * I
61 if «*Iinesw[tp->Cline].Coutput)(tp) & CPRES) = = 0) 1* If there *1
62 break; 1* is no more output data, then terminate output *1
63 } 1* endif *1

64 tp->t_state 1= BUSY; 1* Indicate there is more output data in the tbuf *1
65 1* and that the xmit_char register is clear *1
66 break;
67 } 1* end T _ OUTPUT case *1
68

Figure 7-25 A Driver Accesses ttout Function (part 3 of 3)

7 - 34 BCI Driver Develop~ient Guide

Terminal Routines

Terminal proc Routines

The proc(D2X) routine processes information received from and sent to a TTY device. The proc
routine is unique in that it is called from both kernel TrY functions and other driver routines
(including itself). If you are using the ttiocom, ttioctl, ttin, ttread, ttrstrt, ttwrite, or ttytlush
functions in your driver, you must have a proc routine. The format for a proc routine is similar to
that of an ioctl routine in that the contents of the proc routine are little more than a series of
conditions that evaluate the cmd argument passed into the proc routine.

Figure 7-26 lists the case conditions that must be included in a proc routine (if the 1TY function is
used). See the BCI Driver Reference Manual, section D2X, for explanations of the case conditions
provided in this table.

Case

T_OUTPUT
T_OUTPUf
T _RESillvIE
T _RESillvIE
T_RFLUSH
T_SUSPEND
T_SWTCH

Required By

ttin

ttiocom
ttiocom
ttioctl

ttin
ttwrite
ttiocom
ttioctl
ttytlusb
ttiocom
ttin

ttrstrt
ttiocom
ttread

ttytlusb

Conditzon

if (tp->t_rawq. c_cc>TTXOHI) and
(tp->t_iflaq&IXOFF) && !(tp
>t_state&.TBLOCK)

When ttiocom cmd = TCXONC and arg = 2
When ttiocom cmd = TCSBRK and arg = 0
When ttioctl cmd = LDOPEN and if t p
>t_rbuf • c._ptr == NULL

if tp->t_iflaq&ECHO
When ready to send character to tenninal
When ttiocom cmd = TCXONC and arg = 1
When ttioctl cmd = LDCLOSE
When flushing read buffers
When ttiocom cmd = TCXONC and arg = 0
if (tp->Ciflag&ISIG), the next character in
tp->t_cc is VSWfCH, and if not tp
>t_iflaq&'NOFLSH (sxt driver only)
Whenever function is called (xt driver only)
When ttiocom cmd = TCXONC and arg = 3
If tp->t_state&TBLOCK and tp
>t_rawq.c_cc<TTXOLO

When flushing write buffers

Figure 7-26 proc Routine case Statements

Drivers in the TTY Subsystem 7 - 35

Terminal Routines

Terminal Timing Routines

Occasionally, a tenninal driver must provide a timing routine to wait for buffers, for a character to
be entered, or to cushion differences in baud rates between the terminal and the CPU. The ttrstrt
and tttimeo functiens are used for theses purposes. In addition, the delay, sleep, timeout, and
untimeout functions described in Chapter 9 provide additional timing capability.

The ttrstrt function restarts TIY output following a delay timeout. The name of the function to be
executed is assigned to tp~>Lproc before calling ttrstrt.

When a TCSBRK command is issued in a ioctl(2) system call, the line discipline routine ttiocom calls
the driver proc routine with the T _BREAK argument. The purpose of the driver proc routine is to
send a break to the device. After the break is sent, output must be suspended for 250 milliseconds.
The timeout(D3X) function is used to call ttrstrt after the 250. milliseconds have elapsed. The ttrstrt
function will call the driver command processing routine with the T _TIME command so that output
can be resumed.

1 case T _BREAK: /* Send a BREAK to a device' * /
2 rp->controll= XX_BRK; /* Enable a break to be sent */
3 rp->xmit_char 1= portmask; /* Enable controller/specify port * /
4 tp->t_state 1= TIMEOUT; /* Timeout condition in progress */
5 timeout(ttrstrt, tp, HZl4); /* Disable timeout in 114 of a */
6 /* second (HZ)-250 milliseconds */
7 break;
8

Figure 7 - 27 Restart TTY Output After a Delay

7 - 36 BCI Dt1ver Development Guide

Terminal Routines

The tttimeo function is normally used in conjunction with the canon function's VTIME option,
which is the same as the termio(7) TIME variable. However, ttimeo can be used independently to
time events. Figure 7-28 gives the code for tttimeo:

1 tttimeo(tp)
2 register struct tty *tp;
3 {
4 tp->t_state &= -r ACf;
5 if (tp->Clflag&ICANON II tp->ccc[VTIME] = = 0)
6 return;
7 if (tp->t_rawq.c_cc = = 0 && tp->ccc[VMIN])
8 return;
9 if (tp->Cstate&RTO) {

10 tp->Cdelct = 1;
11 if (tp->Cstate&IASLP) {
12 tp->t_state &= -IASLP;
13 wakeup«caddr_t)&tp->t_rawq);
14 }
15 } else {
16 tp->Cstate 1= RTOtrACf;
17 timeout(tttimeo, tp, tp->ccc[VTIME]*(HZl10»;
18 }
19 }

Figure 7 - 28 tttimeo Function

Using the clist Buffering Scheme

A clist structure is the head of a linked list queue of cblocks that have been assigned to the
driver. It contains a total count of the characters in the queue with pointers to the first and last
cblocks in the queue.

The clist buffering scheme buffers small amounts of data using a clist or cblock (character
list or character block). Interactive devices, such as tenninais, use the clist buffering scheme
through the 1TY line discipline routines which manage the structures and I/O transfers. Terminal
drivers do not need to use the clist buffering scheme; the driver writer is free to implement any
type of' data buffering scheme needed (including none) in a terminal driver.

Each cblock contains arrays in which the actual characters are stored, as well as indices for the first
(c_first) and last (c_last) valid characters in the array. Each c_block contains 64 characters.

Drivers in the TTY Subsystem 7-37

Terminal Routines

l1te cfreelist structure is the system pool of available cblocks, and is shared by all TrY
devices on the system. The chead data structure heads it, and contains a pointer to the next
available cblock, the size of the cblock structure, and a flag that indicates when a process is
waiting for a cblock.

The chead and cfreelist structures should never be accessed directly, but only through the
clist routines.

Figure 7-29 illustrates the clist buffering scheme.

User Address Space

eopyout(D3X) eopyin(D3X)

clist getcb(D3X) putcb(D3X)
::0 I cblock II cblock II cblock I - -

! putcf(D3X)

cfreelist getef(D3X)

I cblock II cblock II cblock I
Figure 7 - 29 elist ButTering Scheme

7 - 38 BCI Driver Development Guide

Terminal Routines

To use the clist buffering scheme, the driver code must include the header file tty.h. The
following table describes the functions used to read and write character lists. Each of these has a
corresponding reference page in Section D3X of the Bel Driver Reference Manual. Note that the
copyin(D3X) and copyout(D3X) functions are only described here as functions that are useful when
writing character handling routines. Refer to Chapter 6 for more information on these two functions.

Function

copyin
copyout
getc
getcb
getcf
putc
putcb
putcf

Activity

copy data from user address space to driver buffer
copy data from driver buffer to user address space
get a character from the c 1 is t
get first cblock on a clist
get a free cblock from system cfreelist
put character at end of c 1 i s t
link a cblock to the end of clist
return cblock to cfreelist

Figure 7 - 30 Functions for Manipulating clist ButTers

Drivers in the TTY Subsystem 7 - 39

Chapter 8: Input/Output Control (ioctl)

Contents

Introduction 8-1

Defining I/O Control Command Names and Values 8-2

Coding the ioctl Routine 8-4

AT&T-Defined I/O Control Commands 8-7

Using I/O Control Commands With Remote File Sharing 8-15

Input/Output Control (ioctl) 8-i

Introduction

The ioctl(D2X) routine provides character-access drivers with an alternate entry point that can be
used for almost any operation other than a simple transfer of characters in and out of buffers. Most
often, an 110 control command is used to control device hardware parameters and establish the
protocol used by the driver for processing data.

After the user-level program opens a special device file, it can pass 110 control command arguments.
The kernel looks up the device's file table entry, determines that this is a character device, and looks
up the entry point routines in cdevsw. The kernel then packages the user request and m-guments as
integers and passes them to the driver's ioctl routine with the copyin(D3X) or copyout(D3X)
function. The kernel itself does no processing of a 110 control command, so it is up to a user
program and a driver to agree on what the arguments mean.

110 control commands can be used to do many things including

• implement terminal settings passed from getty(lM) and stty(l)

• format disk devices

• implement a trace driver for debugging

• clean up character queues

Because the kernel does not interpret a command that defines an operation, a driver is free to define
its own commands.

Drivers that use an ioctl routine typically have a command to read the current I/O control command
settings, and at least one other command that sets new settings. You can use the mode argument to
determine if the device unit was opened for reading or writing, if necessary, by checking the FREAD
or FWRITE setting.

The ioctl routine can be used for transferring large chunks of data, such as when you need to pump
(download) data into the driver itself (not through the driver to the hardware). In this case, the
operation argument is a pointer to a buffer of an appropriate size that contains the data. The buffer
itself should be set up by a user-level process or daemon.

To implement I/O control commands for a driver, two steps are required

1 define the I/O control commands and the associated value in the driver's header file

2 code the driver ioctl routine to define the functionality for each I/O control command in
the header file

It is critical that 110 control command definitions and routines be conimented thoroughly. Because
there is so much flexibility in how I/O control commands are used, uncommented I/O control
commands are very difficult to interpret at a later time.

Input/Output Control (ioctl) 8-1

D e fi n in g I 10 Con t r 0 I Com man dNa m e san d Val u e s

The liD control command name is passed as the second argument (emd) to the driver ioetl routine.
It should be defined, along with an integer value that is actually passed, in the header file.

The 110 control command name and value can be defined in the driver code itself, but this is not
recommended. If 110 control commands are defined in a header file, the user program and the driver
can both access the same definitions to ensure that they agree about what each liD control command
value represents.

The 110 control comm3:lld name is traditionally an all uppercase alphabetic string. This alphabetic
name can be a mnemonic. You should try to keep the values for your 110 control commands distinct
from others on the system. Each driver's 1I0.control commands are discrete, but it is possible for
user-level code to access a driver with an 110 control command that is intended for another driver,
which can lead to serious consequences, such as if it meant to pass "drop carrier on a communication
line," but instead sends the argument to a disk where it is interpreted as "refonnat drive."
Pennissions can be set to prevent most such events, but the more unique your 110 control command
values are, the safer you are. Each driver has up to 232 values that can be passed as an integer, so it
is quite possible to avoid using numbers that are already in use.

A number of different schemes are legal for assigning values to 110 control command names. The
most straightforward is to use decimals; for example

#define COMMAND1 01
#define COMMAND2 02

Similarly, one can assign hexadecimal numbers as values

#define COMMANDA OxOa
#define COMMANDFF Oxff

The drawback to these methods is that one quickly gets an operating system that contains several
instances of each I/O control command value, with the inherent risks discussed above.

A common method to assign 110 control command values that are less apt to be duplicated is to use a
left-shifted 8 scheme. For instance

#define COMMAND10
#define COMMAND11
#define COMMAND12

8-2 BCI Driver Development Guide

('Q'«SI10)
('Q'«SI11)
('Q'«SI12)

Defining 110 Control Command Names and Values

Alternately, the shift-Ieft-8 scheme can be defined as a constant then used for the 110 control
command definitions. For example

#define ROTA
#define COMMAND23
#define COMMAND25

('q'«8)
(ROTAI234)
(ROTAI254)

An alternative coding style is to use enumerations for the command argument, to allow the compiler
to do additional type checking

typedef enum
XX_COMMAND 1 0 = 'Q'«8 10,
XX_COMMAND11 = 'Q'«8 11,
XX_COMMAND12 = 'Q'«8 12,

} xx_cmds_t;

Input/Output Control (ioctl) 8-3

Coding the ioctl Routine

The format for an ioctl(D2X) is

prejixioctl(dev, cmd, arg, mode)
dev_t dev;
int cmd, arg, mode;

The arguments are

dev a device number (both the major and minor number)

cmd the type of operation ("command")

-
arg an optional argument to the operation (often specifying the address of the structure in the

user program that contains settings for the hardware)

mode an optional argument containing values set when the device was open

The ioctl routine is coded with instructions on the proper action to take for each 110 control
command. Generally, a driver ioetl routine consists of a case statement for each I/O control
command that identifies the required action. The command passed to a driver by a user process is an
integer value that is associated with an I/O control command name in the header file.

The case statement should have a "default" case to send an error value if the driver is called with an
unknown I/O control command.

The general shape of an ioetl routine is illustrated in Figure 8-1. Note that the JlO control command
definitions are shown as part of the driver code in this example, although in practice these should be
defined in the header file.

For a full example of an ioetl routine, see the driver in Appendix E, "Sample Block Driver."

8-4 BCI Driver Development Guide

Coding the ioctl Routine

1 #define COMMAND1 01
2 #define COMMAND2 02
3 #define COMMAND3 04
4 extern int SUBDEVICES;

5 struct send_to_device
6 {
7 int flags;
8 char setup[64];
9 };

Figure 8-1 Sample ioctl Routine, part I of 2

Input/Output Control (ioctl) 8-5

Coding the ioctl Routine

10 struct receive_from_device
11 {
12 int flags;
13 char current_status[64];
14 };

15 xxioctl(dev, cmd, val,flag)
16 int dev;
17 int cmd;
18 caddr_t val;
19 int flag;
20 {

21 switch(cmd)
22 {
23 case COMMAND 1 :
24 /* send new status setup to device */
25 senddev«struct send_to_device *) val»;
26 return;

27 case COMMAND2:
28 /* get current status from device *1
29 recdev«struct receive_from_device *) val»;
30 return;

31 case COMMAND3:
32 /* return number of devices */
33 *val = SUBDEVICES;

34
35
36

default:
u.uerror = EIO;
break;

37 }
38 }

Figure 8-1 Sample 110 Control Command Routine, part 2 0/2'

8-6 BCI Driver Development Guide

AT&T-Defined 1/0 Control Commands

The following tables show the 110 control commands that are included in any of the UNIX System V
releases for the supported machines, along with the integer value of the 110 control command and the
header file where it is defined.

Table 8-1 AT&T Defined 110 Control Commands

Commaud Value Header F1Ie Description
AlC_IOC aic.h
BlOC extbw.h For BUS ioctlO commands
B_ADLDL 0 btdl.h download to specified adjunct
B_ADJ_DUMP 2 btdl.h dump specified area of adjunct physical memory
B_ADJ_EXEC 1 btdl.h transfer control to specified address in adjunct boot image
B_EDSD 'B' «813 extbw.h Regenerate and return Extended DSD structure
B_GETDEV 'B'«812 extbw.h Get device for pass through
B_GETPlPE 'B' «811 extbw.h Get bus and driver name
B_REDT 'B'«814 extbw.h Read extended equipped device table (EDT)
B_WEDT 'B'«8IS extbw.h Write extended EDT
CM_BLK_ALARM 0x2 cman.h ABUS bulk power alarm
CM_FAN_ALARM Oxl cman.h ABUS minor fan alarm
CM_IC_FCST ATE Oxb cman.h force configuration state of an APE
CM_IC_GACf 0x5 C11JIJ1J.h get a copy of the ACf
CM_IC_GDEV Oxa cman.h get the generic dev _t for the sdf
CM_IC_GSTOP Ox8 cman.h gracefully stop an APE
CM_IC_HTEST Ox7 cman.h host error handling test
CM_IC_MINOR 0x3 cman.h determine if a minor alarm exists
CM_IC_PRlVPUB 0x9 cman.h make an APE private or public
CM_IC_SCONF Ox6 cman.h SCSI configuration change
CM_IC_ST ART Oxl cman.h start an APE
CM_IC_STOP 0x2 cman.h stop an APE
CM_SCSI_ST ART Oxl C11JIJ1J.h start a SCSI device
CM_SCSI_STOP 0x2 cman.h stop a SCSI device
C_ABORT 14 msbih.h remove all packets for specified BIC
C_DIAG_STATIlS 0 msbih.h get diagnostic status
C_DL_SCN 11 msbih.h downlOad a section
C_EPOCH 17 msbih.h toggle the time epoch flag
C_FGETST A TUS 1 msbih.h force read of BICs status register
C_GETMODE 2 msbih.h get operational mode
C_GETOPTIONAL 3 msbih.h get optional MSBI internal statistics
C_GETSTATS 4 msbih.h get MSBI internal statistics
C_GETSTATUS 5 msbih.h return last normal read of BICs status register
C_INIT 6 msbih.h initial internal MSBI storage
C_RBICVERS 16 msbih.h RBIC version number
C_RESET 7 msbih.h physically reset MSBI
C_RSI'DST 15 msbih.h reset destination BIC id
C_RUNDIAG 8 msbih.h start specified diagnostics running
C_SELECT _ACf 13 msbih.h select which MSBI is the current active unit
C_SETCONTROL 9 msbih.h write BICs control register
C_SETMODE 10 msbih.h change current operational mode
C_START_EXEC 12 msbih.h transfer control to specified address

(continued)

Input/Output Control (ioctl) 8-7

AT&T-Defined liD Control Commands

Table 8-1 AT &T Defined I/O Control Commands continued

Command Value Header F1Ie Descri!tioo
DEV_SUBD Ox 193 vdUoctl.h return all subdevic:es for a cootroUer
DEV_TC Ox192 vdUoctl.h return all the target cootroUers for a driver
DIAGOFF ('0'« 8 I 2) dsmd.h Tum all diagnostic reporting off .,
DIAGON ('D'« 8 11) dsmd.h Tum diagnostic reporting 00 .,

DIOC ioctl.h
DIOCGETB 'd' «8 12 ioctl.h
DIOCGETC 'd' «811 ioctl.h
DIOCSETE 'd' «8 13 ioctl.h
DMIOC dfdrv.h
D_BLANK «'M' « 8) I 234) mlJ50.h blank display
D_UNBLANK «'M' < < 8) I 235) mlJ50.h unblank display
EDT_HEAD Ox191 vdUoctl.h return the header of the EDT
EMPCHAN empath.h building block for empath constants

FlOC temrfc·h
FORMAT 'r diskette .h ,. ioctl flag for format .,
GETADDR 1 ioadrv.h
GETEDr 7 ioadrv.h
GE:TSrAT 8 ioadrv.h
GE1TYPE 6 ioadrv.h
HA_VER OXOO83 sdi.h get the host adapter version
HDECEREP 15 hdeioctl.h clear error reports from the queue
HDEa..OSE 9 hdeioctl.h close hard disk
HDEERSLP 16 hdeioctl.h wait (sleep) for an error report
HDEFIXLK 11 hdeioctl.h "hdefix" locks hde log access
HDEFIXUL 12 hdeioctl.h ''hdefix'' unlocks hde log access
HDEGEOCT 1 hdeioctl.h get equipped disk count
HDEGEQDT 2 hdeioctl.h get equipped disk table
HDEGERcr 13 hdeioctl.h get . count of outstanding error reports
HDEGEREP 14 hdeioctl.h get outstanding error reports
HDEGETSS 4 hdeioctl.h get sector size of disk
HDEMLOOR 10 hdeioctl.h issue manual hdelog() requests
HDEOPEN 3 hdeioctl.h open hard disk
HDERDISK 7 hdeioctl.h read disk
HDERDPD 5 hdeioctl.h read physical description of disk
HDEWDISK 8 hdeioctl.h write disk
HDEWRTPD 6 hdeioctl.h write physical descriptioo of disk
HXI10CLINK vpmxt.h link channel 0
IBBNA 'r «8117 ib.h
IBCAC 'r «8122 ib.h
IBCLR T «8127 ib.h
IBCMD T «8112 ib.h
IBDINFO 'r «814 ib.h
IBDMA 'r «8130 ib.h
IBE~ 'r «8130 ib.h
IBEOr 'r «8130 ib.h
IBGET 'r «810 ib.h
IBGTS 'r «8 121 ib.h
IBIND 'I' «8 12 ib.h
IBIOAB 'r «8130 ib.h
IBISI' 'r «8130 ib.h
IBLLO T «8140 ib.h
IBLOC 'I' «8 128 ib.h
IBONL T «8119 ib.h

(continued)

8-8 BCI Driver Development Guide

AT&T-Defined liD Control Commands

Table 8-1 AT &T Defined 110 Control Commands continued

Command Value Header FIle Description

IBOUTB '1' «8 I 3 ib.h
IBPAD '1' «8 I 30 ib.h
IBPCr '1' «8 I 29 ib.h
IBPPC '1' «8 I 30 ib.h
IBRD '1' «8 I 10 ib.h
IBRDF '1' «8 I 40 ib.h
IBRPP '1' «8 I 16 ib.h
IBRSC '1' «8 I 30 ib.h
IBRSP '1' «8 115 ib.h
IBRSV '1' «8 I 20 ib.h
IBSAD '1' «8130 ib.h
IBSET '1' «8 I 1 ib.h
IBSGNL '1' «8 I 24 ib.h
IBSIC '1' «81 30 ib.h
IBSPOKE '1' «8 I 23 ib.h
IBSRE '1' «8 I 2S ib.h
IBTMO '1' «8 I 40 ib.h
IBTRG '1' «8 I 26 ib.h
IBWAIT '1' «8 I 18 ib.h
IBWRT 'I' «8 I 11 ib.h
IBWRTF '1' «8 I 40 ib.h -
IBXTRC '1' «8 I 14 ib.h
IBxnx '1' «8 I 13 ib.h
IFBCHECK 'F «812 if·h Check memory address (64K boundary)
IFBCHECK ('F« 812) if·h
IFCONFIRM 'F «813 if·h Verify part of the format
IFCONFIRM ('F« 8 I 3) if·h
IFFORMAT 'F «811 if·h Format floppy disk
IFFORMAT ('F« 8 11) if.h
noc ib.h
IOAINFO 2 ioadrv.h
IOClL_CNTRL{x) (x »3)&Ox7 had_ioctl.h Controller from PI minor number
IOClL_DPRlNTOFF 0x0110 mz74.h tum on selected information prints
IOClL_DPRlNTON OxOlll mz74.h tum off selected information prints
10000_DTRACEOFF 0x01O mz74.h turn off function entry, exit, and progress points
10000_DTRACEON 0x010 mz74.h turn on function entry,. exit, and progress points
IOClL_GMINOR Oxff had_ioctl.h General use minor number for PT
10000_HA(x) (x »6)&Oxl had_ioctl.h HA from pass through minor number
IOClL_HC(x) (x »3)&Oxf had_ioctl.h HAlconttoller from PT minor number
IOClL_LU(x) x&Ox7 had_ioctl.h LUfrom PT minor number
Ca..RBIGB 41 lo.h

(continued)

Input/Output Control (ioctl) 8-9

AT&T-Defined liD Control Commands

Table 8-1 AT &T Defined 110 Control Commands continued

Comm8Dd Value Header FIle Desc:ription

CCLRWOFF 53 lo.h
CDDARG 22 lo.h
CERRNAK 23 lo.h
CERROR 2S lo.h
CFDINSERT 'S' «81 020 stropts.h
CFIND 'S' «8 I 013 stropts.h
CFLUSH 'S' «8105 stropts.h
CFREE 51 lo.h
I_GETSIG 'S' «81 012 stropts.h
CGRAB 50 .lo.h
CGRDOPT 'S' «81 07 stropts.h
CINTART 21 lo.h
CLINK 'S' «8 I 014 stropts.h
CLOOK 's· «8104 stropts.h
i_MODCMD 30 lo.h
CNOARG 20 lo.h
U~READ 'S' «81 01 stropts.h
CPEEK 's· «8 I 017 stropts.h
CPOP ·s' «81 03 stropts.h
CPUSH 'S' «81 02 stropts.h
CRBVFD '5' «8 1"022 stropts.h
CSENDFD 's' «8 I 021 ·stropts.h
CSETBIGB 40 lo.h
CSETERR 43 lo.h
CSETHANG 42 lo.h
CSETOFAIL 44 lo.h
CSETSIG 's' «81 011 stropts.h
CSE'IWOFF 52 lo.h
CSLOW 28 lo.h
CSRDOPT 's' «81 06 stropts.h
CSTR 's' «8 I 010 stropts.h
CTIMOUT 24 lo.h
CTRCLOO 1 strlog.h process is tracer
CUDARG 26 lo.h
CUDARGB 27 lo.h
CUNLINK 's' «8 I 015 stropts.h
JAGENT 'f «819 jioctl.h Control for both directions
JBOOT 'f «811 jioctl.h
JMPX 'f «813 jioctl.k
ITERM 'f «812 jioctl.h
JTIMO 'f «814 jioetl.h Timeouts in seconds
JTIMOM 'f «81 6 jioctl.h TlDleouts in milliseconds
ITRUN 'f «8110 jioctl.h Send runlayer command to layers

continued

8-10 BCI Driver Development Guide

AT&T-Defined 110 Control Commands

Table 8-1 AT &T Defined 110 Control Commands continued

Command Value Header FOe Description

LIOCSETS 1'«SI6 ioctl.h
JTYPE jioctl.h
JWlNSIZE 'j' «SIS jioctl.h
JZOMBOOr 'j' «SI7 ftoctl.h
LDCHG '0' «SI 2 termio.h
LDCLOSE 'D' «SI1 termio.h
LDGETI 'D' «SIS termio.h
LDIOC termio.h
LDOPEN 'D' «81 0 termio.h
LDSE1T '0' «819 termio.h
LIOC ioctl.h
LIOCGEfP '1' «SI1 ioctl.h
LIOCGETS '1' «S I 5 ioctl.h
LIOCSEfP '1' «SI2 ioctl.h
LOAD 1 sadldrv.h
LOADOSR1N 9 ioadrv.h
LOCKED OOOOOOOO2 vpmtty.h lock for multiprocess running on a port
L_XRAM Ox142 vdUoctl.h load XASRAM with the pattern
MlRR mirror.h
NIERRNO '3' «SIS ni.h Error number
NIGETA '3' «SI2 ni.h Get value from Ethern~ header
NISETA '3' «S 11 ni.h Set value from Ethernet header
PPC_VERS 'v' «SI1 ppc.h request version number of a ppc board (ioctl) *'
PlJMP 'p' «SI S pump.h
PU_DLD 1 pump.h
PU_EQUIP 6 pump.h (not used)
PU_FCF 3 pump.h
PU_GAD 4 pump.h (not used)
PU_RST 2 pump.h
PU_SYSGEN 5 pump.h
RDBUF '3' «SI4 ni.h Shared memory supply buffer
R1NADDR 5 ioadrv.h
R_VME Ox111 vdUoctl.h subcommand to read a target device on VMEbus
SDCBRESET OXOO84 sdi.h reset the SCSI bus
SDCRELEASE OXOOS6 sdi.h release the device
SDI_RESERVE OXOO85 sdi.h reserve the device
SDI_RESTAT OXOO87 sdi.h device reservation status
SDCSEND OXOO81 sdi.h send a SCSI command
SDCTRESET OXOO82 sdi.h reset a target controUer
SD_CHAR sdOl_ioctl.h
SHA_RElNIT Oxff had_ioctl.h Reinitialize the drive
SHA_RSrATE Oxfd had_ioctl.h Read a device state (3B4000 only)
SHA_WSTATE Oxfe had_ioctl.h Write a device state (3B4000 only)
SM_DISMM Ox161 vdCioctl.h take vdi driver out of diagnostic mode
SM_ENAMM Ox162 vdCioctl.h put vdi driver in diagnostic mode
SM_SRTSYS Ox165 vdCioctl.h indicate that all VME subsystems should be started
SM_SRTVBUS . Ox163 vdCioctl.h indicate that this VME subsystem should be restored
SM_STPVBUS Ox164 vdCioctl.h subcommand to stop the VME bus subsystem
STGET "X" «SI 0 stermio.h get line options
STR stropts.h
SI'SET "X"«SI1 stermio.h set line options
S'ITHROW "X" «812 stermio.h throw away queued input
STISV "X" «8 I 4 stermio.h get all line information
STWLINE 'X" «8 I 3 stermio.h get synchronous line number
SUPBUF '3' «SI3 ni.h Shared memory supply buffer

(continued)

Input/Output Control (ioctl) 8-11

AT&T-Defined /10 Control Commands

Table 8-1 AT &T Defined I/O Control Commands continued

CommaDd Value Header File DescriptioD

SXTIOCBLK 'b' «815 SXf.h

SXTIOCLINK m.h
SXTIOCLINK vpmsxt.h c type
SXTIOCNOfRACE 'b' «812 sxt.h
SXTIOCSTAT 'b' «81·7 sXf.h

SXTIOCSWfCH 'b' «813 m.h
SXTIOCTRACE 'b' «811 sXf.h

SXTIOCUBLK 'b' «816 SXf.h
SXTIOCWF 'b' «8 14 SXf.h
TCDSET 'T' «8 I 32 termio.h
TCFLSH 'T' «8 I 7 termio.h
TCGETA 'T' «8 I 1 termio.h
TCSBRK 'T' «815 termio.h
TCSETA 'T' «812 termio.h
TCSETAF 'T' «8 I 4 termio.h
TCSETAW 'T' «8 I 3 termio.h
TCSONC 'T' «8 I 6 termio.h
TCSSICI1.. 'T «8 I 64 vpmtty.h pass 1 if set ctI, 0 is oorm
TCI"mMP 'T' «8 165 vpmtty.h pump BCr500; also pass pump
TIMOD tinwd.h
TIOC termio.h
tIOC ttold.h
TIOCEXa. vpmsxt.h exclusive cmd
TIOCEXa. vpmxt.h exclusive cmd
TIOCGETP 't' «8 I 8 nold.h
TIOCNXa. vpmsxt.h noo-exclusive cmd
TIOCNXa. vpmxt.h noo-exclusive cmd .
TIc:x::sETP 't' «8 I 8 nold.h
TI_BIND 'T «81102 tinwd.h
TI_GETlNFO 'T' «8 I 100 tinwd.h
TI_OPTMGMT 'T' «8 I 101 tinwd.h
TI_UNBIND 'T' «8 I 103 tinwd.h
TRCIOC trace.h
TI'YTYPE 'T' «8 18 termio.h (3b15 only)
T_EOD 17 stOl_ioctl.h space to end-of-data
T_ERASE 15 .rtOO _ioctl.h erase medium
T_ERASE 15 stOl_ioctl.h erase medium
T_ERRLOO 2 strlog.h process is error logger
T_LOAD 10 stOO_ioctl.h load medium
T_LOAD 10 stOl_ioctl.h load medium
T_LOCK 12 stOO _ioctl.h physically lock medium in driver
T_LOCK 12 stOl_ioctl.h pbysically lock medium in driver
T _RETBNSION 16 stOl_ioctl.h tape reteosioo
T_REVDIR 6 .rtOO _ioctl.h read reverse (oot supported)
T_REVDIR 6 stOl_ioctl.h read reverse (not supported)
T_REVDIR 6 tape_ioctl.h read reverse (oot supported)
T_RWD 5 .rtOO _ioetl.h rewind to beginning of tape
T_RWD 5 stOl_ioctl.h rewind to beginning of tape
T_RWD 5 tape_ioctl.h rewind to beginning of tape
T_SBB 4 .rtOO~tl.h space blocks backwards
T_SBB 4 stOCioctl.h space blocks backwards
T_SBB 4 tape_ioctl.h space blocks backwards
T_SBF 3 stOO~l.h space blocks forward
T_SBF 3 stOl_ioctl.h space blocks forward

(continued)

8-12 BCI Driver Development Guide

AT&T-Defined 110 Control Commands

Table 8-1 AT &T Defmed I/O Control Commands continued

Command Value Header File Description

T_SBF 3 tape_ioctl.h space blocks forward
T_SFB 2 stOO_ioctl.h space filemarks backwards
T_SFB 2 stOCioctl.h space filemarks backwards
T_SFB 2 tape_ioctl.h space filemarks backwards
T_SFF stOO_ioctl.h space filemarks forward
T_SFF stOl_ioctl.h space filemarks forward
T_SFF 1 tape_ioctl.h space filemarks forward
T_SFMB 8 stOO_ioctl.h space sequential filemarks backwards
T_SFMB 8 stOl_ioctl.h space sequential filemarks backwards
T_SFMF 7 stOO_ioctl.h space sequential filemarks forward
T_SFMF 7 stOl_ioctl.h space sequential filemarks forward
T_TRKSEL 14 stOO_ioctl.h move head to selected cartridge tape
T_TRKSEL 14 stOl_ioctl.h move head to selected cartridge tape
T_UNLOAD 11 stOO_ioctl.h unload medium
T_UNLOAD 11 stOl_ioctl.h unload medium
T_UNLOCK 13 stOO_ioctl.h physically unlock medium in driver
T_UNLOCK 13 stOl_ioctl.h physically unlock medium in driver
T_WFM 9 stOO _ioctl.h write filemarks
T_WFM 9 stO I _ioctl.h write filemarks
VERIFY 'v' diskettl.h ,. mode is 'v' to verify, 0 otherwise .,

VIOC vtoc.h
VPMT vpmt.h
V _AL_ TXLREG Ox170 vdUoctl.h allocated dma segment translation registers
V_BREDT B_REDT vdCioctl.h return edt for getedt command
V_CLRINT Ox200 vdCioctl.h clear the interrupts
V_FORMAT 'V'«816 vtoc.h Get formatting parameters
V_GETFORMAT 'V'«817 vtoc.h Get PO values
V_GETINT Ox210 ydCioctl.h return interrupt registers
V_GETMODE OxleO vdCioctl.h get vdi driver mode
V_GETSSZ 'V'«8IS vtoc.h Get sector size for current disk.
V_HA Ox101 vdCioctl.h subcommand to read/write the IOE
V_INIT_SC OxlfO vdCioctl.h initialize the SC
V _INIT_XRAM Oxl40 vdCioctl.h initialize the SC XASRAM
V_PDRBAD 'V'«813 vtoc.h Read Physical Description area
V_PDSETUP 'V'«818 vwc.h Set PO values without writing to disk
V_PDWRITE 'V'«814 vtoc.h Write Physical Description area
V_POSTINTR Ox180 vdCioctl.h post an interrupt to a VME device
V_PREAD 'V'«811 vtoc.h Physical read.
V_PWRITE 'V'«812 vtoc.h Physical write
V_RD_WRT OxlSO vdCioctl.h issue read and write to host adaptor
V_READ_ADP Ox 100 vdCioctl.h read host adapter
V_RETEDT Oxl90 vdCioctl.h return EDT table information
V_SC Oxl02 vdCioctl.h subcommand to read/write the System Controller
V_SETMODE Oxl60 vdCioctl.h set VMEbus stae
V_TRAN_VME Ox110 vdCioctl.h read from the VMEbus
V_VI'OP Ox220 vdCioctl.h return physical address for a supplied virtual address
V_WRT_ADP Ox120 vdCioctl.h write to host adapter
W_VME Ox131 vdUoctl.h - subcommand to write to a target device on VMEbus
XERO_RAM Ox141 vdCioctl.h zero the XASRAM
XGETADDR 3 ioadrv.h

(continued)

Input/Output Control (ioctl) 8-13

AT&T-Defined 110 Control Commands

Table 8-1 AT&T Defined I/O Control Commands continued

Command Value Header F1Ie Desc:ripUon

XLOADSC 4 ioadrv.h
XTIOCDATA 'b' «815 xt.h
XTIOCLINK 'b' «811 xt.h
XTIOCLINK 'b' «816 xt.h
XTIOCLINK vpmJCt.h link channel 0
XTIOCNOfRACE 'b' «814 xt.h
XTIoc:sTA 1'5 'b' «812 xt.h
XTIOCfRACE 'b' «813 xt.h
XTIOCTYPE vpmJCt'h c type
XTIOCTYPE xt.h

8-14 BCI Driver Development Guide

Using 1/0 Control Com m ands With Rem ote File Sharing

UNIX System V Release 3 includes the Remote File Sharing (RFS) utility that allows a process on
one machine to access a file on another machine as if it were local. A heterogeneous environment is
one in which RFS or a similar facility links machines with different architecture. I/O control
commands that are accessed by a machine that uses different byte ordering and word size will not
work and may corrupt the system. Note that the architectures of the SBC, 3B2, 3B1S, and 3B4000
computers are similar, so accessing devices that use 110 control commands over an RFS network of
these devices should not cause problems. However, if you are using RFS network to connect
machines running different releases of UNIX System V, you may need to link the software against
the system headers on the server machine to get the expected results.

When working with non-System V implementations of the UNIX system, advertising devices that use
110 control commands in an RFS network may not be advisable.

Input/Output Control (ioctl) 8-15

C hap te r 9: S y n c h ron iz in g H a r d war e and So ftw are Eve n ts

Contents

Introduction

Event Synchronization and Driver Development

Waiting for an Event 9-3
Waiting For Hardware 9-3
Waiting For Software 9-4
Waiting By Timing an Event 9-4

Using the Sleep and Wakeup Functions

Sleep Addresses 9-6
Waking Up a . Sleeping Process 9-6
Preventing Signals 9-8

Block Driver iowaitliodone Event Synchronization

timeoutluntimeout Event Synchronization

. Using Timeout with Sleep 9-11
Using timeout For An Operator Request 9-12

9-1

9-2

9-5

9-10

9-11

Synchronizing Hardware and Software Events 9-i

Using the delay Function

Time Constants

HZ 9-17
lbolt 9-18
time 9-19

9-H BCI Driver Development Guide

9-15

9-16

Introduction

This chapter describes the use of functions provided by the UNIX operating system to synchronize
hardware and software events. It provides infonnation on the following:

• using the sleep(D3X) and wakeup(D3X) function pair

• using the iowait(D3X) and iodone(D3X) functions in block drivers

• using the timeout(D3X) and untimeout(D3X) functions

• using the delay(D3X) function

• using system time constants

Synchronizing Hardware and Software Events 9-1

Event Synchronization and Driver Developm ent

Synchronizing hardware and software events concerns five areas of driver development.

• using sleep(D3X)/wakeup(D3X) to wait for an event

• using iowait(D3X)/iodone(D3X) to wait for an event

• using timeout(D3X)/untimeout(D3X) to delay the execution of a function

• using delay(D3X) to put a user process to sleep for a specified time

• using the built-in time constants

Table 9-1 summarizes how these functions are used:

Function(D3X)
delay(ticks)
iodone(bp)
iowait(bp)
sleep(event, priority)
~eoutQUnction, arg, ticks)
untimeout(id)
wakeup(event)

Description

Delay execution for ticks clock ticks
Signal I/O completion
Suspend execution during block I/O
Suspend execution until event
Call function in ticks clock ticks
Cancel timeout With matching id
Resume suspended execution

Table 9-1 Synchronization Function Summary

Level
Base Only
Base or Interrupt
Base Only
Base Only
Base or Interrupt
Base or Interrupt
Base or Interrupt

The Level column indicates from which execution level the function can be called.

CAUTION: The sleep, iowait, and delay functions must never be called from an mit or interrupt
routine. Called from an init routine, the computer hangs when booted. Called from
an interrupt routine, an unknown process is put to sleep with no mechanism for
wakeup.

9-2 BCI Driver Development Guide

Event Synchronization and Driver Development

Waiting for an Event

An important component of the driver data movement concerns how drivers wait for and respond to
certain hardware or software events. Usually, waiting for an event is a result of different hardware
and software execution speeds. The waiting functions are called under three circumstances.

• waiting for a hardware action to be accomplished such as transferring data between a
computer and a disk drive, or between a computer and a terminal

• waiting for a software action to occur such as a buffer to be freed for use

• waiting in a stopwatch mode until a specified number of time units have elapsed

Waiting For Hardware

By human terms, the time required for a device such as a disk drive or terminal to perform some
action seeins instantaneous. Actually the CPU is operating much faster than the device and the time
required by the device seems interminable. A waiting function is required to release the CPU from
wasting precious fractions of seconds waiting for a device to complete an action. The functions used
to wait for a hardware action are the iowait and sleep. iowait is only used to suspend processing in a
block driver when waiting for buffered 110 to complete. sleep is used for any type of driver.

The computer is designed so that when a device has a block of data ready to be transferred, the
device sends a cue (called an interrupt) to the operating system to tell it to call a driver interrupt
routine to fetch the data. The operating system keeps track of which driver is associated with the
device generating the interrupt and calls the proper driver interrupt routine. While the interrupt
routine call is automatic, a command required to resume execution of a suspended process must be
handled by the driver. When execution is suspended with iowait, iodone must be called to restart
process execution; when sleep is called to suspend execution, wakeup is called to resume execution.

Technically, sleep could be called instead of iowait, but iowait is a convenience for working with the
system buffer cache for these reasons

• iowait executes a while-loop to check bp->b_flaqs&B_DONE

• iowait decrements syswait.iowait

• If bp->b_flaqs&B_ERROR is true, then u.u_error is set to bp->b_error, if a
value is there, or set to EIO if not.

A negative with using iowait is that it executes splO thereby enabling all interrupts.

Synchronizing Hardware and Software Events 9-3

Event Synchronization and Driver Development

iowait and iodone have as an argument a pointer to the buf structure (bp). sleep and wakeup use
as their argument, an arbitrary address to guarantee that the wakeup call restarts the proper
suspended process. (sleep has an additional argument which is explained later in this chapter.) Each
oithe event synchronization functions are described in separate sections in this chapter.

Waiting For Software

Use geteblk when requesting a buffer for a block driver or getcb for a character driver. Should a
buffer not be readily available both functions sleep until one is available. When using a private
buffering scheme and a buffer is not available, sleep on the last element of that structure.

Some functions provide an automatic wakeup function call. For example, getc and putcf both wake
up processes that have called sleep to wait for a buffer on the character block free list, cfreelist.
As a rule, though, unless so indicated in the function you are calling in the Bel Driver Design
Reference Manual, a wakeup must be provided for every sleep call.

Waiting By Timing an Event

The "stopwatch" mode for timing an event requires specifying the number of time units that a
process is to be suspended. This is useful for transferring data character-by-character such as when
the hardware imposes a baud rate on your driver, or for retrying some event at a later time when a
sleep on a device may not succeed. The delay and timeout functions are used to suspend a process
for a specified length of time. delay suspends execution of the immediate process.· timeout is used
to execute a function after the time elapses. The difference between the two is that timeout returns
immediately after scheduling the future event, and delay stops execution until the time elapses. The
untimeout function is provided to stop a previously set timeout. (timeout returns an int
identification number that is passed as the argument to untimeout to stop the previous call~) The
time arguments for delay and timeout are generally expressed using the HZ constant which is equal
to one second. For example, HZJI00 is one one-hWldredth of a second, or HZ*2 is two seconds.

9-4 BCI Driver Development Guide

Using the Sleep and Wakeup Functions

The most common mechanism for waiting for an event to occur is the sleep/wakeup function pair.
The driver issues an 110 request and then waits for it by calling the sleep function. While the driver
is waiting, the system perfonns a context switch and starts another process executing. When the
event (a system state In hardware or software) happens, an interrupt is generated that calls the
interrupt routine in the driver. The wakeup function is called from the driver interrupt routine to
resume the execution of the suspended process.

For example, when a read(2) request is made to obtain data from a disk drive, the disk drive does
not have the capacity to deliver data as quickly as the request is made. Therefore, sleep must be
called to suspend execution of the process while the data is fetched from the disk drive.

A sleeping process is still considered to be an active process, but is kept on a queue of jobs whose
execution is suspended while they wait for a particular event. When the process goes to sleep it
specifies the event that must occur before it may continue its task. The sleep call records the process
number and the event, then places it on the list of sleeping processes. Control of the machine is then
transferred to the highest-priority runnable process.

The sleep function requires two arguments: the address upon which the process will sleep, and a
priority value that is assigned to the process when it is awakened:

sleep(addr, pri)

Interrupt handler routines should never call sleep since sleep affects the currently executing process,
and a process independent of the device could be executing when the device interrupted. If the
interrupt routine were to call sleep, the process that was interrupted would be put to sleep for reasons
beyond its control. More importantly, in some UNIX system implementations, sleeping in an
interrupt routine could cause the system to crash because of the interdependency of the process
context switch mechanism and interrupt levels. The interrupt routine must therefore not invoke other
functions that could lead to a call to sleep, such as iowait or copyin/copyout. See the reference pages
for the interrupt routines in section D2X for a complete list of functions that cannot be called from
an interrupt routine.

NOTE: Any sleep call with a corresponding wakeup in the interrupt routine, should be protected
from interrupts with the splbi function to ensure that no interrupts occur when that section
of code is being executed. Otherwise, the wakeup call could come before the process goes
to sleep, in which case the process will never awaken. This is discussed later in this chapter.

Synchronizing Hardware and Software Events 9-5

Using the Sleep and Wakeup Functions

S,I e epA d d res s e s

The first argument to the sleep function is an address that has no meaning except to the
corresponding 'wakeup function call; addresses are used because their uniqueness is easy to control.
The event should be an external (rather than a local) variable. If a process sleeps on a local variable,
a chance is taken that the wrong process will awake or that the process associated with your driver
will be awaken for the wrong reason.

The sleep addresses are usually taken from the entry in the device data structure of the device the
process is accessing to guarantee uniqueness across the system. When a process sleeps on the device
data structure, the driver should set a flag in that structure indicating the reason to sleep.

sp16()
driver. state 1= condition;
sleep(&driver.state, PRIORITY);

splx()

A driver can sleep on other structures, such as bfreelist or cfreelist. When sleeping on
bfreelist, set B_ WANTED in the b_t1ags member of the buffer header. When sleeping on
cfreelist, set cfreelist.c_t1ag to a positive value. When sleeping on a private buffering pool, you
should sleep on the last element of that structure.

Waking Up a Sleeping Process

Either an interrupt handler or another process later calls the wakeup function to awaken the sleeping
process. The wakeup function takes one argument: the address upon which the process was sleeping
as set by the corresponding sleep function:

wakeup(addr)

The code invoking the wakeup function should check for a particular flag bit, indicating the reason
that the process is sleeping. The driver then calls wakeup with one argument, namely the address
where a process could be sleeping.

if (driver.state&condition)
wakeup(&driver.state);

else
ERROR;

9-6 DC! Driver Development Guide

Using the Sleep and Wakeup Functions

There should be a one-to-one correspondence between events and sleep addresses; one address should
not be used for sleeping for two events. This helps ensure kernel sanity, enhances driver efficiency
and code readability. If several processes are sleeping for the same resource and do not have one-to
one correspondence, they may all be awakened at the same time, and the firSt to run will grab the
resource. NOTE: This is desirable in some circumstances such as when two processes are reading
the same disk block.

The wakeup function awakens all processes sleeping on the address, enabling them to execute when
the scheduler chooses them. If no process is sleeping on the address when wakeup is called, wakeup
returns without an error.

When a process receives a wakeup call, the driver may need to check that certain conditions are true
before actually resuming execution. Checking conditions is important when more than one process is
sleeping on the same address. You can use whlle or another programming loop to check for a certain
condition, as shown in Figure 9-1.

1 1*
2 An example of a while loop for getting a resource.
3 If the resource is not available, sleep is called.
4 *1

5 struct cblock *
6 alloccblock()
7 {
8 register struct cblock *bp;
9 register int s;

10 s = splhi();
11 while «bp = cfreelist.c_next) == NULL) {
12 cfreelist.c_flag = 1;
13 sleep(&cfreelist);
14 }
15 cfreelist.c_next = bp->c_next;
16 bp->c_next = NULL;
17 bp->c_first = 0;
18 bp->c_last = c~reelist.c_size;
19 splx(s);
20 return(bp);
21 }

Figure 9-1 sleep - while Loop for Condition Testing

Synchronizing Hardware and Software Events 9-7

Using the Sleep and Wakeup Functions

Table 9-2 lists functions that wake up processes sleeping on buffer list addresses. This infonnation is
useful for knowing which functions will wake up a process without need for your driver to call
wakeup.

Table 9-2 wakeup Calls in Functions

Function(D3X) Code
brebe if (bp->b_flags&B_WANTED)

getc, putcf

mfree

physio

Preventing Signals

wakeup«caddr_t)bp);

if (bfreelist.b_flags&B_WANTED) {
bfreelist.b_flags &= B_WANTED;
wakeup«caddr_t)&bfreelist);
}

if (cfreelist.c_flag) {
cfreelist.c_flag = 0;
wakeup(&cfreelist);
}

if (mapwant(mp» {
mapwant(mp) = 0;
wakeup«caddr_t)mp);
}

/* if a buffer was allocated, then wakeup
* processes sleeping on pfreelist */

<If a buffer was allocated, then:>
sp16 () ;
bp->av_forw = pfreelist.av_forw;
pfreelist.av_forw = bp;
pfreecnt++;
wakeup(&pfreelist);
splO();
}

The second argument to the sleep function is a scheduling parameter that controls when the process
will be awakened from its sleep; this argument is usually a constant rather than a variable. The
argument, called the sleep priority, has critical effects on the sleeping process's reaction to signals.

9~ 8 BCI Driver Development Guide

Using the Sleep and Wakeup Functions

Priority values range between 0 (highest priority) and 39 (lowest system priority). You should use a
defined constant for sleep priorities, either one of the standard ones or one you define yourself.
Some priority constants are included in UNIX System V. Table 9-3 lists these.

Constant
PRIBIO
PZERO

TIIPRI
TIOPRI

Value

20
25

28
29

Table 9-3 sleep Priority Levels

Defined In
param.h
param.h

tty.h
tty.h

Used For
Sleep priority for block devices
Priority for deciding whether signals
can awaken the process
Sleep priority for TrY device's input
Sleep priority for TrY device's output

Constants for your own driver should be defined either in the header file for your driver or in the
global data structure section of the driver code itself. The declaration can assign either an absolute
value or a value relative to PZERO. For instance,

#define DRVPRI 29
#define DRVPRI (PZERO + 4)

result in the same priority for the DRVPRI priority.

SyncbronizingHardware and Software Events 9-9

Block Driver iowait/iodone Event Synchronization

Block-access drivers using the buffer header buffer scheme that are waiting for an 110 event use the
iowaitliodone pair instead of sleep and wakeup.

The iowait function can be used to put a block driver to sleep until the 110 operation is complete.
iowait sleeps at a priority of 20 (PRIBIO). Since it operates on an 110 buffer header, it is not used
by a character device (although it is used by "a block devices doing raw 110 through physio).

iowait sets b_flags to B_READ, B_ WRITE, or B_PHYS to indicate the type of operation and
calls the sleep function. The interrupt routine should call the iodone function when the 110 is
complete; iodone sets the b _ flag member to B_DONE. If the b_asynch bit is set, the interrupt
routine must call brelse to release the buffer.

9-10 BCI Driver Development Guide

tim eout/untim eout Event Synchronization

In some cases' a driver must be sure that it is awakened after a maximum period. For those situations
where a limit must be placed on how long a process will sleep, the timeout facility is available.

The timeout function can be used in conjunction with sleep to ensure that the driver is awakened
after a certain period of time. timeout can also be used alone to indicate that a driver function is to
be called after a specified period of time. The timeout function can be canceled with the untimeout
function.

NOTE: The function called by timeout is called from an interrupt mode. Therefore, functions that
can't be executed from an interrupt routine cannot be called from timeout.

timeout is invoked as:

timeout(function, function-argument, clock-ticks)

The function argument can be any kernel function that can operate from an interrupt routine
including timeout itself. function-argument is an argument to the function. If you do not need an
argument for the function you are specifying, include any value, such as zero. Each argument must
be specified. clock-ticks is the number of time units that the function will be delayed before
executing. clock-ticks are usually specified as a multiple of HZ. HZ (defined in param.h) gives the
clock frequency used by a given kernel.

A sample timeout call is

timeout(repeat, n, HZ);

where n is the argument to the function repeat, to be called after one second's worth of clock cycles.
The exact time until the timeout takes effect may not be precise because of the interaction of other
parts of the system. The compiler requires prior declaration of the function name argument to
timeout, as in

extern char *repeat();
timeout(repeat, n, HZ);

depending where the function repeat is defined.

Using Timeout with Sleep

A driver can ensure that it will be able to resume its execution even if no call to wakeup is made by
first calling timeout and then sleep This should be done, however, only if truly necessary, as it
carries some heavy processing requirements. When the call to timeout is made, it inserts the
specified event into the callout table. This data structure is a list of events in a simple array. Insertion
of the event requires copying all elements of the list following the inserted event.

Synchronizing Hardware and Software Events 9-11

timeoutluntimeout Event Synchronization

I{the sleeping process is not awakened before the "timeout" event, the specified function is be called
unless you have called untimeout. The second argument to the timeout routine could be the event
the driver was about to sleep on. When the function is called, it can use this infonnation to call
wakeup to wake the driver. The function called from the callout table should also set some internal
flag to permit the driver to distinguish between the two ways it can be awakened.

Using tim eout For An Operator Request

Another use for the timeout function is in a driver that sends a message to the system console
requesting that the operator take a certain action. For instance, the write(D2X) routine for a tape
drive may have a section that tells the operator to mount a tape. Use the sleep function to suspend
processing until the new tape is mounted. If a number of other console messages are generated, the
message telling the operator to mount the tape could disappear from the screen before it is seen. By
using a while statement in conjunction with sleep, the driver will continue to display the mount
request on the console. Rather than have this message displayed continuously, the timeout function
can specify how often to redisplay the message. Once the request is honored, the driver's interrupt
routine cancels the timeout operation with the untimeout function.

The following routine called by an open(D2X) routine (starting in line 20 in Figure 9-2) illustrates
this. After the input arguments have been verified, the status of the device is tested. If the device is
not on-line, a message is displayed on the system console (line 39). The driver schedules a wakeup

. calI with the timeout (lirie 41) and waits for 5 minutes (sleep). If the device is" still not ready, the
procedure is repeated.

When the device is made ready, an interrupt is generated (this assumes that the device was designed
to generate an interrupt when a tape is mounted). The driver interrupt handling routine (line 53)
notes there is a suspended process. It cancels the timeout request with untlmeout (line 61) and
wakens the suspended process (line 63).

9-12 Bel Driver Development Guide

stroot nt:u
{

timeoutluntimeout Event Synchronization

1* la}alt of ~ dev:ioe n:qi.sters *1

1* 9lys:i.oal. dev:ioe cxnt:rol WJtd *1
1* 9lys:i.oal. dev:ioe status lad *1
1* N:Irb!r of l?It:es to l:e tr::ansfer:a:d *1
1* rM\ start.i:rq Ji1ysicsl acXfress *1

8
9

10
11
12
13
14
15

sb:\x:t mE -IIll'tIJ....head; 1* R:xint:er to head of I/O cp:ue *1
sb:\x:t mE -IIll'tIJ....tail; 1* R:xint:er to tail of blffer I/O q\Sle *1
:int ntu..:flaq; 1* r."..pca1 st:at:us :flaq *1
:int ntu..to_:id; 1* T.lne aJt :id IUti:er *1

}; 1* E!Xl nt:u *1

16 extern sb:\x:t nt:u..devioe ~act:fr[] ;1* I.ocat.icn of ~ device n:qi.sters *1
17 extern st::rxd: ntl1 ntu..tbl.[]; 1* I.ocat.icn of 1cgica1 device st:rtx:tures *1
18 extern :int nt:u..aIt;
19
2D
21
22
Z3
24

25 j£ ({m:iror{dev»> 3) > ntu..aIt) { 1* If device Cbes oot exist, *1
26 u.u.ea.or: = ENXIO; 1* then %etm:n ec:or o:::rxti.tial *1
Zl retm:n;
2S } 1* eXH£ *1
29 dp = &ntu...tbl.[m:iror(dev)]; 1* Get lcgica1 devioe st:::t1x:t *1
30 j£ (dp->ttt:u....f1aq & MIU~) 1= 0) { 1* If dev.i.oe :is :in use, *1
31 u.u.ea.or: = Eam'; 1* then retm:n h1sy st::atus *1
32 retm:n;
33 } 1* E!'Xti.f *1

Figure 9-2 The timeout Function

Synchronizing Hardware and Software Events 9-13

timeoutluntimeout Event Synchronization

Figure 9-3 The untimeout Function

9-14 BCI Driver Development Guide

Using the delay Function

This function is used to stop execution of the current process for a given period of time. Drivers can
use the delay function instead of the timeout function, to instruct the driver to sleep for a specified
amount of time and then wakeup.

To use delay, specify the amount of time to wait. delay automatically calls wakeup to resume
execution.

Figure 9-4 illustrates the use of delay. This code is from a driver for a line printer. Before allocating
buffers and storing data in them, the driver checks the status of the device (line 10). If the printer
needs to have paper loaded, it displays a message on the system console (line 12). If the driver called
sleep directly, the operator would have to signal when the paper was loaded. By using delay, the
driver waits one minute (line 13) and tries again. If paper is loaded, processing will resume
automatically.

1 stmct deuioe
2 {
3 :int a:nt:ml;
4 :int st:at1ls;
5 shxt xn:it_dlar;
6 }; 1* E!'Xl device *1

1* Ia,ycut of ~ device req:ist:er:s *1

1* ~ device a::zlf:rol. ~ *1
1* ~ deuioe st:atllS lad *1
1* Ttarsnit daracter to device *1

7 ex:t:eJ:n st:z\x:t device xx..,.aciir[]; 1* Icx:at:ial of ~ der.r.il:e req:ist:er:s *1
8
9 l:Egist:er st::t\x:t device *zp = &xx....aciir[m:i:ra:(dev') » 4)]; 1* Get device regs *1

Figure 9-4 delay - Allows Manual Intervention

Synchronizing ~dware and Software Events 9-15

Time Constants

The UNIX operating system provides a set of constants that are updated by the system clock
interrupt. The clock ticks every 10 milliseconds on all computers referenced in this book except the
3B4000 ADP. The clock on the 3B4000 ADP ticks every 50 milliseconds. lbolt cQntains the number
of seconds since the last system boot. time contains the number of seconds since 00:00:00 GMT
(Greenwich Mean Time) January 1, 1970. HZ is provided to indicate the value of one second. The
UNIX operating system clock is accurate to within plus or minus five clock ticks. Therefore, the
time can never be determined exactly.

• HZ - (hertz)t is one second. HZ is defined inparam.h.

• lbolt - (lightning bolt) is updated by the kernel each tick and represents the time in
ticks since the last boot. lbolt is a dme_t (long) data type. Note that as previously
mentioned, lbolt is updated five times slower on the 3B4000 ADP than on any other
AT&T computer referenced in this book.

• time - the time in seconds since 00:00:00 (GMT) January 1~ 1970. time is a time_t
(long) data type- and is updated once every second.

t HZ is an abbreviation for hertz. However, HZ bas no association with the e1cdrical notation "hertz ...

9-16 BCI Driver Development Guide

Time Constants

HZ

HZ is a defined constant found in param.h which specifies the number of clock ticks per seconds on a
given machine. HZ is normally used in calling the timeout function for some amount of time, since
the time passed to timeout is given in ticks and HZ is set to the number of ticks in a second.

For example, the tttimeo function uses HZ to determine how many ticks to delay when a driver has
requested non-canonical processing with t_cc[VI'Th1E] tenths of seconds waiting period. Hz/10 is
the number of ticks in a tenth of a second.

Refer to Figure 9-5 for another usage example.

1 1* sc:sn xx device fer ~ ellerY seo:ni *1

2 xxscan()

3 {

4 1* sc:sn fer jr.pE *1

5 1* c:all xxsam after 1 sean! *1

6 t:ina:1lt(xxsam,O,Hl);

7 }

Figure 9-5 HZ - Usage Example

Synchronizing Hardware and Software Events 9-17

Time Constants

Ib 0 It

lbolt is a system external integer of the number of ticks since the last system boot. This value may be
used as a counter for driver response time. lbolt is used to save a starting time for some driver
operation, and then compared with the lbolt value once the operation is over to get a response time
for the operation.

Figure 9-6 shows how lbolt is used to time an 110 operation.

2 extern t::iIre_ t llxllt;
3 sb:\x:t .xxst::at xxst:at; 1* stats al:x:ut :xx device I/O *1

4
5
6

7 1* scb:d.il.e I/O far :xx device *1

8 xxstat.bi!g:int:iIte = ll:olt;
9 }

11 xx:int(der)
12 {

13 1* det:e!:mine Vtidi :int::ern1pt cate. tl1roJ3h am ltiIidl qa;ati01S
14 -were a::npl.et:e::l *1

15 xxstat.en::tt:::me = ll:olt;
16 xxstat.cp:!rat:ia1t::: = xxst:at.emt::iIre - :xxst:at.l:leg:intine;
17 xxstat. tct:alt.::iIte += xxstat.qma:t::ialt:irr;
18 xxstat .. cpmlt:ials++;

19 :i£ (xxstat.q:s:atims > 0)
2) .xxst::at.avgt:ine = xxstat. tctalt::iIre I xxstat.q:s:atims;
21 }

Figure 9-6 lbolt - Timing an I/O Operation

9-18 BCI Driver Development Guide

Time Constants

time

time is an external integer set to the number of seconds since 111170 00:00:00 GMT. It is updated
once each second by the system clock. time may be used when any timing in seconds needs to be
done, or when the time of the last update on a structure needs to be stored.

The following example shows the use of time for timing an 110 operation in a driver write routine.

1 ext:eEn t:irce_t t:irce;

2 stz1x:t dat:alcq dat:alcq;

3 xxwdte(dev)
4 {
5 /* up:fat:e data to dev.ioe or: st::r:u::ture */
6 dat:alcq.st:art_t:iIre_:in...secs = tine;
7 /* ci) I/O */
8 dat:alcq. tine_of'_last..1D = tine - dat:alcq .st"art_t:Ute_:in...sec:s;
9 dat:alcq.J.asbJp:8t:et:i = t:irce;
10 }

Figure 9-7 time - Timing an IiO Operation

Synchronizing Hardware and Software Events 9-19

Chapter 10: Interrupt Routines

Contents

Introduction

Interrupts and the UNIX Operating System

Hardware Interrupts 10 - 2
Software Interrupts 10-3
Exceptions 10-3

Interrupt Vectors

Interrupt Vectors and System Initialization 10-5
Interrupt Vector Number Assignment 10-6

Absolute Assignment of Interrupt Vectors 10-9

Servicing Interrupts

Writing Interrupt Routines

The Interrupt Routine Argument 10-12
Interrupt Routine Restrictions 10-12

10-1

10-2

10-5

10-10

10-11

Interrupt Routines 10-i

Writing Data Receive and Transmit Interrupt Routines

Writing a Receive Interrupt Routine (rint) 10-14
Writing a Transmit Interrupt Routine (xint) 10-15

Writing Interrupt Routines for Intelligent Boards

Shared DriverlDevice Structures 10-16

Writing int Interrupt Routines

Interrupt Routines for Character Devices 10-20
Interrupt Routines for Block Devices 10-20

10-14

10-16

10-20

Preventing Interrupt Contention 10-21 .

Setting Processor Priority Levels 10-22

10-ii BCI Driver Development Guide

Introduction
This chapter introduces interrupt handling in the UNIX operating system, and provides guidelines on
writing interrupt handling routines for both character and block devices. The following general topics
are discussed:

• interrupt vectors, how the interrupt vector table is accessed, and how interrupt vector
numbers are assigned to' specific interrupt vectors

• how the operating system services interrupts

• writing int, rint, and xint interrupt routines for intelligent and non-intelligent character
and block devices

• using the spl* set of functions to set processor priority levels and protect critical sections
of driver code

Interrupt Routines 10-.1

Interrupts and the UNIX Operating System

An interrupt is any service request that causes the CPU to stop its current execution stream and to
execute an instruction stream that services the interrupt. When the CPU finishes servicing the
interrupt, it returns to the original stream and resumes execution at the point it left off. Interrupts
ar~ requested from one of the three following sources:

• hardware devices

• software interrupts (Programmed Interrupt Requests or PIRs)

• exceptions such as page faults

Hardware devices use interrupt requests to signal a range of conditions including: successful device
connections, write acknowledgements, data availability, and read/write completions. The CPU is
responsible for associating the interrupt request with a specific driver interrupt routine using entries in
an internal table called the interrupt vector table1• The driver's interrupt routine determines the
reason for the interrupt, services the interrupt, and wakes up any base level processes waiting on the
interrupt completion. For example, when a disk drive is ready to transfer information to the host to
satisfy a read request, the disk drive generates an interrupt. The CPU acknowledges the interrupt and
calls the disk driver's interrupt routine. The driver interrupt routine then wakes up the process
waiting for data which conveys the data to the user.2

AT&T computers that use a WE 32000 series microprocessor accept fifteen levels of interrupts. The
level indicates the degree of priority given the interrupt by the CPU. The higher the priority, the
quicker the system will service the interrupt when multiple interrupts are pending. Level zero is the
highest priority, level 14 is the lowest. Level 15 indicates that no interrupts are pending. The
Interrupt Priority Level (IPL) for the requesting device is determined by the device itself and is
entered in the device driver's master file under the IPL column. 3

The following sections discuss the types of interrupt requests the CPU processes.

H a r d war e In te r r u p ts

For hardware devices, interrupts are the primary method of communication with the CPU.
Hardware interrupts tell the CPU that a read or write have been completed, or .that a character has
been received or transmitted.

2. Sec "Interrupt Vectors" in this chapter for information on the interrupt vector table.
2. Refer to Maxicomputing in Microspace, (referenced in Chapter 1) for a detailed explanation of how interrupts are initiated and acknowledged.
3. Sec Chapter 3 in this book for a desc:riptiOD of the master file.

10-2 Bel Driver Development Guide

Interrupts and the UNIX Operating System

The driver writer is responsible for writing the interrupt portion of the device's driver. UNIX
provides a few generic interrupt handling routines for hardware interrupts, but the driver writer has to
supply the specifics about the particular device. Some devices send only one type of interrupt and the
interrupt routine must be responsible for determining the kind of interrupt sent. Other devices,
primarily TrY devices, send two types of interrupts: one receive and one transmit.

.
In general, an int(D2) routine should be written for any device that does not send separate transmit
and receive interrupts. TIY devices that do request separate transmit and receive interrupts have two
separate routines associated with them: xint(D2), for a transmit interrupt, and rint(D2), for a
receive interrupt. 4

Not all hardware devices send interrupt requests directly to the CPU. Some device interrupts are first
handled by an intermediary interrupt routine that is part of an intermediary driver. Devices that
must first send their interrupts through an intermediary interrupt handler are called external devices.
For example, on the 3B4000 computer, interrupts sent by SCSI devices supported by an extended
SCSI bus are first captured by firmware on the SCSI bus host adapter called a SLIC. The host adapter
then issues an interrupt request to the CPU. The CPU then associates the interrupt with one
interrupt routine for the host adapter. The identity of the specific device that originally issued the
interrupt request is passed through the ivec argument to the interrupt routine. 5

Software Interrupts

In addition to the hardware interrupts discussed in this chapter, the AT&T computers support
software interrupts called Programmed Interrupt Requests (PIRs). A PIR is generated by writing an
integer into a logical register address assigned to the interrupt vector table.

PIRs are seldom used for drivers other than those developed as part of the operating system itself,
and so are not discussed here. To establish a PIR, you must modify the system initialization software
and run extensive tests on the bootstrap software to ensure that the PIR is not corrupting the system
timing mechanism and interrupt vectors.

Exceptions

Exceptions are error conditions that interrupt the current processing of the CPU and require special
fault handler processing for recovery. Fault handlers are responsible for executing instructions to
handle the specific' fault, and for restarting the interrupted instruction sequence once the fault is
handled. Like device interrupts, exceptions are associated with their fault handlers through a separate
exception vector table.

4. Sec "Writing Interrupt Routines" in this chapter for more information.

S. Sec 'The Interrupt Routine Argument" in this chapter for information on the ivee argument.

.lnterrupt Routines 10-3

Interrupts and the UNIX Operating System

The following three types of events cause exceptions:

• Internal faults - error conditions detected by the processor during an instruction
sequence.

• External faults - error conditions detected outside the processor and conveyed to it over
its fault input.

• Traps - internal error conditions detected by the processor at the end of an instruction.

It is not the responsibility of the driver writer to account for exceptions that may occur in the system.
However, it is important to note that exceptions contend with device interrupt requests for the use of
the CPU.

10-4 BCI Driver Development Guide

Interrupt Vectors

An interrupt vector is an entry to a table, called the interrupt vector table, that is assigned to an
interrupt when the system is booted. The interrupt vector table resides in kernel space in main
memory and associates interrupts with their appropriate interrupt routines. Every device that is not
external has at least one interrupt vector table entry. Each entry is assigned an interrupt vector
number that associates the interrupt with the text address identifying the starting address of the
interrupt handler for that interrupt. When an interrupt occurs, the CPU associates the interrupt with
its interrupt vector number, fetches the starting address of the interrupt handler, and executes the
address to service the interrupt.

The #VEC column of a driver's master file determines the number of interrupt vectors required for
the device the driver supports. When the system boots, the #VEC column is accessed, and the
appropriate number of interrupt vector table entries are created for that device. The AT&T
computers referenced in this book can support up to 256 interrupt vector table entries.

Not all devices need interrupt vectors for every interrupt they request. Most disk controllers for 3B
computers that support multiple devices .have the capability of interpreting the interrupts issued by
each subdevice. Therefore, the controller for these devices only then sends one interrupt to the CPU.
Other devices, such as serial ports that each generate transmit and receive interrupts, have separate
interrupt vectors for transmit and receive.

Interrupt Vectors and System Initialization

The system initialization program, lboot, runs when the system is booted and reads the #VEC field
in the driver's master file to determine the number of interrupt vectors per controller and assigns
numbers accordingly. The CPU uses these vector number assignments to associate the interrupt with
the appropriate interrupt handler routine. lboot compares the value in the #DEV (number of
subdevices) column to the value in the #VEC (number of vectors) column to determine whether the
driver requires an int(D2) routine or the rint(D2X)/xint(D2X) pair of routines. If the value of
#VEC is double the value of #DEV (indicating that each subdevice has two interrupt vectors), lboot
assumes riot and xint routines are being used; otherwise, lboot assumes an int routine is being used.
lboot assigns what it deems to be the appropriate interrupt handler for the #VEC-to-#DEV ratio
regardless of what is coded for the driver. If the proper routines (riotlxint or int) have not been
coded, interrupts received for the device will be spurious and may corrupt another driver or crash the
system.

Interrupt Routines 10-5

Interrupt Vectors

Interrupt Vector Num ber Assignm ent

Entries for most devices in the interrupt vector table are assigned transparently by the system. Driver
writers do not need to know how numbers are assigned by the system. However, some devices
require their vector numbers hardcoded in the driver master file. The following section discusses
these devices. This section is provided primarily for your interest.

For 3B2, 3B15, and 3B4000 systems, the system automatically generates vector numbers in groups of
16 for each device that is listed in the Equipped Device Table (EDT). The first vector assigned to a
device (controller) is detennined by multiplying the external major number (board code) by 16.
Subsequent vectors count up from there. Note that this imposes a limit of 16 subdevices per
controller unless the device has the intelligence necessary to associate interrupts with a subdevice in
some way other than the interrupt vectors. 6

If each controller has only one interrupt vector, its number is:

ext-maJor-number * 16

If each subdevice has one interrupt vector, each number is detennined by the formula:

(ext-maJor-number * 16) + s"-bdevice-number.

Consider the configuration in Figure 10-1 of one driver controlling two devices (controllers), each of
which has four subdevices.

cntrl 0
major=3

...
......... "'1-----.

cntrl1
major=5

Figure 10-1 Sample Configuration

S. See "Interrupt Vector Number Assignment" for more information.
6. All devices discussed in tbis book require interrupt vectors.

10-6 BCI Driver Developm~nt Guide

Interrupt Vectors

Table 10-1 gives the interrupt vectors assigned for the sample configuration if each subdevice has one
interrupt vector. 7

Table 10-1 SUbdevices With One Interrupt Vector

Master File Values: #VEC=4 #DEV=4
vector

controller subdev ivec number equation

0 0 0, 48 (3 * 16) + 0
'(major=3) 1 1 49 (3 * 16) + 1

2 2 50 (3 * 16) + 2
3 3 51 (3 * 16) + 3

1 0 4 80 (5 * 16) + 0
(major=5) 1 5 81 (5 * 16) + 1

2 6 82 (5 * 16) + 2
3 7 83 (5 * 16) + 3

If each subdevice supports two interrupt vectors (meaning the driver must use the rintlxint routines),
the vectors are divided into transmit and receive portions. Table 10-2 gives the interrupt vectors
assigned for the configuration if each subdevice has eight interrupt vectors.

7. The figures listed in this section include entries for the ivec argument. The ivee argument is passed to the interrupt routine as a means of
identifying the specific device or subdevice requesting the interrupt. See the "The Interrupt Routine Argument" section in this chapter for
more information.

Interrupt Routines 10-7

Interrupt Vectors

Master File Values: #VEC=8 #DEV=4
vector

controller subdev ivec vector portion
0 0 0 48 o (transmit)
(major=3) 1 49 1 (receive)

. 1 2 50 o (transmit)
3 51 1 (receive)

2 4 52 o (transmit)
5 53 1 (receive)

3 6 54 o (transmit)
7 55 1 (receive)

1 0 8 80 o (transmit)
(major=5) 9 81 1 (receive)

1 10 82 o (transmit)
11 83 1 (receive)

2 12 84 o (transmit)
13 85 1 (receive)

3 14 86 o (transmit)
15 87 1 (receive)

10-8 BCI Driver Development Guide

Interrupt Vectors

On the SBC, the init routine is responsible for programming the interrupt vector number. Each
successive controller is assigned interrupt vectors starting with the next multiple of 16. The next
controller interrupt vector numbers start at 16, the interrupt vector numbers of the next controller
start at 32 (regardless of the number of interrupt vectors assigned to the first controller), and so on.
Refer to the init routine for a disk driver in Appendix E, lines 383 to 415 for an example of how the
driver determines the proper interrupt vector to program into the board.

Absolute Assignment of Interrupt Vectors

Integral devices and devices whose interrupts are first processed by an intennediary interrupt handler
(for example, SCSI devices) do not have direct entries in the EDT, and so cannot be assigned
interrupt vector numbers in the same fashion as devices that do. These devices, such as the system
console, must have their starting interrupt vector number hardcoded in the FLAG column of their
driver's master file.

The following drivers support devices whose starting interrupt vector number can be entered in the
FLAG column:

• drivers for integral devices

• software drivers

• drivers for SBC-VME devices with non-progrCl:lMlable interrupt vectors

• drivers that access extended bus devices such as SCSI

The starting vector number is then assigned to the interrupt vector table when the system boots.

Interrupt Routines 10-9

Servicing Interrupts

When a user process issues an I/O request, such as a read or write, it must wait for the transfer to be
completed, and so it uses the sleep function as discussed in Chapter 9. Similarly, an open routine
may sleep until the device interrupts and announces its connection. When the device interrupts the
CPU, the CPU calls the driver's interrupt routine. The driver interrupt routine then calls wakeup to
inform the process that the transfer is complete.

The interrupt handler is responsible for identifying the reason for the interrupt (device connect, write
acknowledge, data available) and set or clear device state bits as appropriate.

The following illustrates how the system handles operational interrupts:

1 A process accessing the base level of a driver issues an I/O request and goes to sleep
awaiting its completion. The code that calls the sleep(D3X) function should be
protected with splhi as discussed in Chapter 9. Going through the appropriate switch
tableS, the I/O transfer is requested.

2 When the I/O transfer is complete, the I/O board requests an interrupt by sending a
signal on the bus.

3 The CPU board receives the interrupt signal and passes it on to the microprocessor.

4 The interrupt acknowledge hardware determines which device is signaling the interrupt
and accesses a table of interrupt vectors to transfer control to the appropriate driver's
interrupt routine.

5 The driver's interrupt routine generates a wakeup call. 'The process that was suspended
in the base level of the driver then sends the data to the user.

8. Switch tables are discussed in Chapter 2.

10-10 BCI Driver Development Guide

Writing Interrupt Routines

Interrupt routines are written for all hardware drivers that have interrupt capability. The device's
controller must be physically attached to the bus of a computer to have an interrupt routine initiated
by the CPU. Devices that reside external to the computer such as the SCSI bus which is attached to
an external bus, do not generate interrupts in the same manner as internal devices. (The ABUS for
the 3B4000 computer is considered an internal ?us.)

The UNIX operating system defines three general names for the types of interrupt handling routines
that must be written for UNIX devices: int(D2X), rint(D2X), and xint(D2X). If the device sends
one interrupt, then the driver must include an int routine that uses case statements to determine the
kind of interrupt that was sent. If the device sends two separate receive and transmit interrupts, then
the CPU can determine the kind of interrupt being sent and the driver includes separate rint and xint
routines for each type of interrupt. Descriptions of these routines found in the D2X section of the
Reference guide.

In general, every interrupt routine must be responsible for the following tasks:

• keeping a record of interrupt occurrences

• interpreting the interrupt routine argument into a meaningful device or subdevice
number

• rejecting requests for devices that are not served by the device's controller

• processing interrupts that happen without cause (called spurious interrupts)

• handling all possible device errors

• waking processes that are sleeping on the resolution of an interrupt request

Depending on how the master file information is stated when an interrupt occurs, either the int
routine, or the rintlxint set is called. Interrupt routines for external devices can be named in any
manner since they must be called by an intermediary driver (for example the host adapter driver for
SCSI drivers). The names for these routines are conveyed to the system by special device structures.
SCSI drivers, for example, inform the host adapter of the interrupt routine name via the sc_int
member of the SCSI control block structure.

Writing an interrupt routine requires a merging of disciplines. As a driver developer, you must
visualize the workings of the hardware and firmware to be able to write an effective interrupt routine.
As already explained, an interrupt is generated by the hardware. For the purposes of writing your
driver, you should know the exact chip set that produces the interrupt. You need to know the exact
bit patterns of the device's control/status register and how data is transmitted into and out of your
computer. This information differs for every device you access.

Interrupt Routines 10-11

Writing Interrupt Routines

The Interrupt Routine Argument

To avoid having to create an interrupt routine for every possible interrupt vector, 3B computers
developed a method of passing an argument to the interrupt routines. By passing an argument, one
interrupt routine can handle many different interrupt vectors. However, not all interrupts receive or
need paICUnleters.9

The name of this argument to the Int(D2X) and rint(D2X)/xint(D2X) routines, ivec, is slightly
misleading, as its value is not the intemipt vector number associated with the interrupt. Rather, the
ivec argument represents a '10gical" interrupt number and its value is determined by the driver. Each
driver may use ivec differently, depending on whether the board generates one interrupt vector per
subdevice, one per controller, or some other arrangement.

The ivec argument can provide two important pieces of information to the driver. The first is the
logical controller number. The logical controller number is the logical number of the controller
supporting the device. This number is assigned by the system when the EDT is built. The second is
the logical device number for the device causing the interrupt for that controller. A maximum of 16
logical interrupt numbers can be assigned per controller, one for each subdevice.

For example, if a controller supports one device, the logical interrupt value for the ivec argument
represents the logical controller number. If a controller supports four subdevices and must send an
interrupt for each~ then the logical interrupt value for the ivec argument represents both the logical
controller number and the logical device number of the device sending the interrupt.

ivec values begin at 0 and are incremented upwardS. For example, for two controllers issuing four
interrupts each, values 0 through 3 would represent controller 0 and its four subdevices. Values 4
through 7 would represent controller 1 and its four subdevices. The two tables presented in the
'1nterrupt Vector Number Assignment" section include ivec assignments for two sample
configurations. See these tables for more examples of ivec assignments.

Interrupt Routine Restrictions

You must keep the following restrictions in mind when developing an interrupt routine:

• Interrupt routines must not set any fields in the user or proc structures, because the
interrupted process is independent from the interrupt. For the same reason, interrupt
routines must not call the sleep function directly or indirectly. The following- functions
either call sleep directly, or access the user or proc structures: -

9. For the 3B213B15 passing of parameters to interruPt routines is done through the usc of "assembly assist" routines. These assist routines are
entered first from the interrupt Process Control Block (PCB) and then call the "real" interrupt routines. Some of these interrupt assist routines
arc ''bard'' coded in the operating system. The usc of these assist routines also allows a common "return from interrupt" routine. This is very
important for the UNIX operating system since at the end of every interrupt some system processing must be done. For the 3B systems which
usc "scIf-coofiguration" the driver assembly assist routines are built by self configuration.

10-12 BCI Driver Development Guide

Writing Interrupt Routines

canon getvec sptfree ttread
copyin iomove subyte ttwrite
copyout iowait suser ttywait
delay kseg suword unkseg
drv_rtile longjmp ttclose useracc
fubyte physck ttiocom
fuword sleep ttioctl
geteblk sptalloc ttopen

Table 10-2 Unavailable Interrupt Routine Functions (D3X)

• spl* functions must not drop the processor execution level below the level set for the
interrupt routine. Doing so can corrupt the stack.

For example, an integral disk drive (IDFC) on a 3B15 computer has an IPL value of 5'
and the IPL bit in the Program Status Word (PSW) is set to a processor execution level
of 10 (on the 3B15 computer, spl6 is equivalent to a PSW IPL value of 10). If you set
the processor execution level below sp16, then an interrupt from another device can take
precedence over the IDFC interrupt and may corrupt the stack.10

10. Refer to the spa. manual page in Chapter 3 of the Bel Reference Manual for a table that relates the spa. function to the IPL values (sp16 is
for IPL 10 on the 3B1S Computer). See also "Preventing Interrupt Contention" in this chapter for more information on protecting critical
sections of interrupt routines.

Interrupt Routines 10-13

Writing Data Receive and Transm it Interrupt Routines

Transmit and receive interrupt routines must be written for character devices that send specific
transmit and receive interrupts to the CPU. Because the two interrupts are unique, the CPU can
detennine which type of interrupt was sent, and so can associate the interrupt with a specific routine.
Character drivers for these device require special interrupt routines to send data to a terminal and to
receive data from it. The rintlxint routines are provided for this purpose. .

Generally, a device that sends separate transmit and receive interrupts is not an intelligent device.
An interrupt must be sent each time a character is transmitted or received. The followi.ng procedures
outline rint and xint routines for unintelligent terminal devices that transmit and receive one
character at a time.

Writing a Receive Interrupt Routine (rint)

When a character is received from a tenninal device, a receive interrupt is sent to the CPU which
associates the interrupt with the device's rint(D2X) routine. The riot input argument is used as an
index to the device that generated the interrupt. This is not a device number as described by dev _t,
but an integer value. When interfacing with a terminal, follow these steps:

1 Detennine the subdevice number from the ivec argument to the riot routine.

2 Increment the interrupt-received flag. Commonly, the sysinfo(D4X) rcviDt flag is
~. (This long integer variable is defined in sysinfo.h.)

3 Check the control and status register (CSR). On tenninal devices supported by AT&T
3B systems, the CSR is usually a structure associated with the Universal Asynchronous
Receiver-Transmitter (UART). If the DART has a receive-ready status, continue with
the next steps. Otherwise, exit the routine. (The proper UART is selected with the rint
routine's input argument. All subsequent descriptions of UART access assume the
appropriate UART has been selected.)

4 Reset the error status information register on the UART.

S Read in a character from the UART. This is typically accomplished through a while
loop that receives one character at a time as long as there are characters to receive.

6 If the tenninal has start/stop control enabled, test the character to determine if it is a
stop character (such as CfRL-s) or a start character (such as CfRL-q). To start the
display, call the proc(D2X) routine with the T _RESUME flag set. To stop the display,
call the proc routine with the T_SUSPEND flag set. After processing the character, exit
the routine. If the character is not a start or stop character, continue.

10-14 BCI Driver Development Guide

Writing Data Receive and Transmit Interrupt Routines

7 Check the character for an error in framing or parity, for display overrun, and for being
a BREAK character. Process according to the state of the termio structure's c_iflag
member as explained in termio(7).

8 Read the character into your line buffer.

9 Echo the character back to the screen.

Writing a Transm it Interrupt Routine (xint)

When a character is ready to be transmitted to a device, the device driver's xint routine is called.
Generally, the device is a terminal and access to the terminal is provided via a Universal
AsYnchronous Receiver-Transmitter (UART). Follow these steps for a transmit interrupt routine:

1 Determine the subdevice number using the ivec argument to the xint routine.

2 Increment the transmit-interrupt flag. Commonly, the sysinfo. xmtint flag is used.
(This long integer variable is defined in·sysinfo.h.)

3 Check the control/status register (CSR). On terminal devices, the CSR is usually a
structure associated with the Universal Asynchronous Receiver Transmitter (UART).
As long as the UART is showing a transmit-ready status, continue with the steps listed
here. Otherwise, exit the routine .. (The proper UART is selected with the xint routine's
input argument. All subsequent descriptions of UART access assume the appropriate
UART has been selected.)

4 While the CSR indicates a transmit-ready state, continue processing the interrupt. If this
state is not evident, exit the routine.

5 Check the t_state member of the tty(D4X) structure. If the TIXON or TIXOFF
flags are set (indicating that a start or stop character must be transmitted)

o transmit the proper characters to the terminal (via the UART)

o disable the respective flag in t_state

o exit the routine

6 Set t_state to BUSY and send the next character to the terminal.

Interrupt Routines 10-15

Writing Interrupt Routines for Intelligent Boards

Intelligent boards provide the facility to share a queue with the interrupt handling routine and can
take on some responsibility for moving data to and from the device. By using queues in memory, the
number of interrupts that need to be requested by the device can be reduced. Devices controlled by
unintelligent boards, frequently TrY devices, must interrupt the CPU each time a character is sent or
received.

The driver's init or start routine formats an area of memory as a circular queue with pointers to the
beginning and end of the queue. When this queue is set up, init notifies the board by writing a
start-up message directly into the hardware. Typically, until the board has been successfully
sysgened, the board waits for "stand-alone" commands sent by the driver that poll an area on its
internal memory. The driver first formats a command buffer, then writes one word into the board
memory to indicate that a command has been issued. That command contains pointers to the places
in memory where the board should look for jobs that are associated with this device, such as the job
request queue and the job completion queue. Typically, the driver writes a job in this buffer, updates
the load pointer to indicate that there is a -job waiting, and signals the hardware by either a control
status request (CSR) bit or through some mechanism on the board that causes it to look at the job
queue.

The advantage of this protocol is that it avoids memory contention between the hardware and the
software because the driver updates the load pointer and the hardware updates the unload pointer
when it gets the job. When the job is completed, the hardware puts a job in the queue (assuming
there is room), updates the load pointer, and sends an interrupt to indicate that the job is completed.
The driver interrupt routine checks the data structures to determine which of the devices interrupted
and how many jobs are in the queue.

The following section discusses some specific concerns when sharing structures between a driver and a
device.

Shared Driver/Device Structures

Structures shared between a driver a device present some specific difficulties that must be addressed
by the interrupt routines.

• Information in the shared structure may be updated at any time by the device. The
structure "must be monitored frequently by the interrupt routine so that the structure is
not abruptly changed. spl* functions cannot be used to prevent the device from
changing a structure shared between a driver and hardware; only previously agreed on
protocol can accomplish this task (where the hardware is smart enough to examine a flag
in the controVstatus register to determine if it is safe to update the structure).

• Additional interrupts may occur signaling the placement of jobs on the request queue
while the interrupt routine is processing a previous interrupt. One means of handling this
problem is to have a loop that compares the load and the unload pointers on the

10-16 BCI Driver Development Guid~

Writing Interrupt Routines for Intelligent Boards

completion queue.

A job placed on the queue cannot be seen or acknowledged by the driver code when the
driver is in the interrupt routine. What the driver can see is that the load pointer has
moved. Using this indicator, the driver can handle the new job. This presents an
additional problem: the driver interrupt routine must be prepared to unload more than
one job from the queue.

• An interrupt is normally requested after the last request is processed. Since this interrupt
is issued by the last request, the last job will have already been unloaded. This interrupt
has no job associated with it and the interrupt routine must recognize that this interrupt
is not an error conCiition.

One way to ensure that the last interrupt is a holdover with no work attached to it is to
keep a count of the n~ber of jobs outstanding. The counter is incremented when the
job is put on the request queue and decremented in the interrupt routine when the job is
removed from the queue. Generally, this information may be kept in a separate data
structure used for job status for each device or controller.

Figure 10-2 illustrates how a driver interrupt routine tests load and unload pointers. The interrupt
routine shown in the example makes the following assumptions about the queue and the queue's load
and unload pointers:

1 The completion queue contains two or more elements and is circular.

2 The queue is full when the load pointer plus one equals the unload pointer, and empty
when the load pointer and unload pointers are equal.

,
3 The unload pointer always follows the load pointer.

4 Queue elements are loaded and unloaded consecutively.

5 The load pointer indicates where the next job will be placed; that is, the load pointer
points to an empty element.

6 The load pointer is only updated by whatever fills in the elements.

7 The unload pointer indicates where the next completed element to remove resides.

8 The unload pointer is only updated by the interrupt routine.

9 The completion queue element(s) are filled in and the load pointer is updated before the
interrupt· is issued.

Interrupt Routines 10-17

Writing Interrupt Routines for Intelligent Boards

1 drv_int(logical_dev)
2 int logical_dev; /* This is the logical device number */

3 {
4 struct drv *drvpt; /* Pointer to the device
5 * structure. Get the
6
7
8

* device structure for
* the logical device
.* requesting service. */

9 drvpt = &drvstruct[loqical_dev];

10 /* Check if work is pending
11 * by testing the load and
12 * unload pointers. If they
13 * are equal, then there is
14 * no work to do.
15 */

16 if (drvpt->compq.loadptr == drvpt-,>compq.unloadptr)
17
18
19

return; /* For some applications
* this may be an error condition
* that requires some action. */

20 /* Work pending, so
21 * unload queue until
22 * the pointers are equal
23 * More than one job
24 * can be unloaded. */

Figure 10-1 Testing Interrupt Routine Load and Unload Pointers (part 1 0/2)

10-18 BCI Driver Development Guide

Writing Interrupt Routines for Intelligent Boards

25 while (drvpt->compq.unloadptr 1= devpt->compq.loadptr)
26 {
27 unload job from completion queue;
28 perform necessary steps to
29 signal this job completed;
30 check for unload pointer going
31 past end of queue;
32 upd~te unload pointer as required;
33 }

34
35

36 return;
37 }

1* All jobs have been
removed, so exit *1

Figure 10-1 Testing Interrupt Routine Load and Unload Pointers (part 2 of 2)

Interrupt Routines 10-19

Writing int Interrupt Routines

An int routine is written for a device that sends one type of interrupt. The interrupt routine itself is
responsible for determining the type of interrupt requested. Both character and block devices utilize
intelligent controllers. The following sections provide examples of interrupt routines for both an
intelligent character device and an intelligent block device.

Interrupt Routines for Character Devices

Some character devices send only one type of interrupt and are intelligent enough to share request
and completion queues with the device driver. Interrupts are requested when a job is transmitted or
received. Typically, a flag is set in the CSR by the device that determines what type of interrupt has
been requested. The interrupt routine must use a case condition statement to provide separate
sections of code to handle either case.

The interrupt routine for the driver illustrated in Appendix D (line 179) is an example of an int
routine for an intelligent character device.

Interrupt Routines for Block Devices

Block devices are typically controlled by an intelligent controller that sends one type of interrupt.
Block device interrupt routines must determine ,the reason the interrupt was requested ..

The interrupt routine provided in Appendix E is an example of an int routine for an intelligent disk
controller.

10-20 BCI Driver Development Guide

Preventing Interrupt Contention

Interrupts do not occur in isolation and in an orderly and coherent fashion. Interrupts from all the
devices on the system can occur at any time and can impact both the base and interrupt portions of
one driver, as well as two drivers sharing common data. If an interrupt switches control of the system
from the base portion of a driver to the interrupt driven portion of a driver, the common data they
are sharing may be corrupted by contending instructions.

When two sections of kernel code have a common interest in the same data, the driver must be able
to coordinate access. Driver code that accesses common data is identified as a critical section. The
word section refers to a portion of code that affects the common data, rather than the data itself. A
critical section of code is one that manipulates data that is of concern to another piece of code
capable of interrupting the first.

To get a clearer understanding of how interrupt contention can cause damage to common data,
consider the following example:

A section of code in the base or synchronous portion of a hypothetical driver sets status flags as a way
of communicating to the interrupt portion of the driver. Another section of code in the interrupt
portion of the driver also sets those flags. Both sections of code do not set the flags in a single
machine operation.

The synchronous portion of the driver receives a request that requires it to set the values of several
flags. In the midst of setting the flags-, the device requests an interrupt, transferring control to the
interrupt portion of the driver. The condition of the interrupt forces the interrupt routine to first
consult the current flag values set by the base portion of the driver, and then set them to new values.

Because the interrupt occurred before the base level portion of the driver could set the flags properly,
the interrupt routine did not find the flags set to their proper values. Corruption like this could cause
the interrupt routine to lose sanity, or it may simply continue the corruption. When the interrupt
returns, the synchronous portion of the code, unaware that it was interrupted, finishes the changes it
had started.

The section of code in the synchronous routine that shares data with the interrupt routine is the
critical section. Whether the data identified in a critical section is changed by the interrupting
routine is unimportant. The section is considered critical if a portion of code that manipulates data
can be interrupted.

Critical sections of code must be protected from being interrupted when accessing critical data. The
spl*(D3X) functions pemrit code to set the processor's execution level so that interrupts are serviced
in order of priority. When a critical section is identified, it can be protected from interruption by a
call to an spl* function of the proper level. The following section discusses the use of these spl*
functions.

Interrupt Routines 10-21

Preventing Interrupt Contention

Setting Processor Priority Levels

The system allows devices to interrupt the CPU and request immediate handling of interrupts. The
integrity of system data structures could be destroyed if an interrupt routine were to affect the same
data structures as a process already executing in the driver.

To prevent such problems, the system has special functions that set the processor execution level so
that the CPU prohibits interrupts below certain levels. The functions are spl*(D3X) where * ranges
between 0 and 7, corresponding to the priority level that it has in the kernel. These priority levels are
defined on the spl*(D3X) reference page.

In most cases, the spl* function is given a variable to which it can pass the old priority level.
Another function, spJx, takes the value of that variable as an argument and resets the processor
priority level to that value. The splx function is useful in cases where the processor priority level may
have been raised already, but the driver does not know that it has been raised sufficiently to block out
the proper level of interrupts. When the driver is ready to lower the priority level, it should_return
the priority level to its previous value ..

The following code illustrates the use of the spl* and splx functions. The spl* functions first sets the
processor priority level to 5, then saves the previous priority level in s (line 2). In line 6, the splx then
resets the processor priority to the value saved by the spl* function in s.

register int.s;
s = splS () ;
while «cp = getcb(&tp->t_rawq» 1= NULL)

putcf(cp) ;
tp->t_delct = 0;
splx(s);

Figure 10-2 Sample spl* and splx Function Calls

10-22 BCI Driver Development Guide

Preventing Interrupt Contention

Contention conditions can occur if the code containing sleep functions is not protected by spl*
functions. For example, the following code segment in the base level of a driver causes a process to
sleep until the condition bit is cleared (by some other code) in the driver. state field:

driver.state := condition;
while (driver. state & condition)

sleep(&driver.state, PRIORITY);

The following code segment in the interrupt routine for that driver checks the condition bit to
detennine if a process should be awakened:

if (driver.state & condition)
{

}

driver.state &= -condition;
wakeup(&driver.state);

Given the above examples, a process accessing the base level of the driver could check the condition
bit, find it true, and call sl~p. However, should an interrupt from another device occur after the
condition has been cleared but before the base level portion of the driver called sleep, the interrupt
routine would assume the process was asleep and call wakeup. By the time the interrupted process
does c~ sleep, the wakeup call will have already been issued and another one may never come. By
bracketing the calls to sleep with spl* function calls, the driver prevents the contention condition.

x=sp15();
driver.state := condition;
while (driver. state & condition)

sleep(&driver.state, PRIORITY);
splx(x) ;

The above example protects the code from all interrupts occurring at a priority level less than or equal
to 5.

NOTE: sleep contains a call to splO (spll on the 3B15 and 3B4000 computers) that re-enables all
interrupts while this process is sleeping.

10. Since processes could sleep on the address for several events, the sleep call is enclOllCd in the while loop, so that when awakened, the code will
again check that the condition is indeed no longer true. This is one reason that it is recommended that processes sleep on different address
values for different sleep reasons.

Interrupt Routines 10-23

Preventing Interrupt Contention

Do not set spl* functions that mask clock interrupts for long sections of code as this will make your
system clock sluggish. Refer to the spl* manual page in Chapter 3 of the Bel Driver Reference
Manual for more information on which spl* command to use to block interrupts for the different
devices.

10-24 BCI Driver Development Guide

Chapter 11: Error Reporting

Contents

Introduction

Recording Error Messages in System Structures

Sending Messages to the Console

Using the cmn_err Function 11-6
Recording Errors with logmsg 11-7
Writing a print Routine 11-8

Panicking the System

Writing to the Error Log (3D15 and 3D4000 Computers)

Logging Disk Errors

Initializing Hard Disk Error Logging 11-11
HDE Functions and StructUres 11-12
HDE Demon 11-13

11-1

11-2

11-6

11-9

11-10

11-11

Error Reporting 11- i

Signals 11-19

Sending a Signal 11 -19
Controlling Signal Priorities 11-20

ll-ii BCI Driver Development Guide

In tr 0 doc tio n

One of the most important aspects of writing a device driver is the correct handling of errors. This
chapter presents general guidelines and discusses how to implement the various error-handling
facilities and signals. Driver code must handle any error condition, or the consequences may be
severe. For instance, a stray interrupt should be a trivial event, but could panic the system if the
driver is not prepared to handle it. The panic could cause data corruption and physically damage the
system.

This chapter presents general guidelines and discusses how to implement the various error-handling
facilities and signals. Chapter 13, ''Testing and Debugging the Driver," discusses how to test for
proper error handling.

When an error occurs, the driver can do one or more of the following:

• Write the error condition to a structure so the driver knows about it. Usually, at base
level, the error is recorded in the o.o_error member of the user(D4X) structure. At the interrupt
or base level, errors on block devices can be recorded in the b_error member of the buf(D4X)
structure.

• Retry the process. The error may be" a transient problem. Some hardware device boards
have retry capabilities; let these boards do the retry. But if the error is software related, the driver
must decide how many times to retry.

• Report the error to a system error log. If the error is severe, take the faulty hardware out
of service to minimize the damage and keep the system running nonnally.

• Report the error to the system administrator, either by printing it on the system console, or
by writing it to potbuf (to be reviewed with the crash(1M) utility).

• Send a signal to a user process.

• Panic the operating system.

Error Reporting 11-1

Recording Error Messages in System Structures

Base-level driver errors should always be recorded to the u.u_error member in the user structure.
This is where a driver function checks to see if an error has already been logged.

Block-access devices should record errors in two members of the buf structure. The b_tlags
member is set to B_ERROR,indicating an error has occurred, and the b_error member is set with
the actual error code. The error code is written to the u.u_error member of the us er structure
when the iowait(D3X) function returns from sleep. When writing error codes, make sure the code
describes the error and is meaningful. All other devices can mark base-level routine errors by writing
the error code directly to the u.u_error member of the user structure. If your driver uses a private
buffering scheme, set up error-handling members in the buffer header, as discussed in Chapter 6,
''Input/Output Operations."

If the strategy routine finds an error in setting up the I/O, or if the device reports an error with an
interrupt, the driver should set the following members of the but structure.

should have the B_ERROR bit ORed in. The driver should not assign a value to
b_tlags because that may erase other bit patterns that the kernel relies on. The driver
must never clear the b_tlags member.

should be set to an appropriate error value. Typical values are: EIO, for some
physical I/O error, ENXIO, for attempting I/O on non-existent device, and EACCES,
for attempting to access a device illegally. The kemellater sets u.u_error with the
value of b_error, so any appropriate value for u.u_error could be set. Refer to
Chapter 4, ''Header Files and Data Structures," for more information on error codes
used in drivers.

should be set to the number of bytes that have not been transmitted.

The b_error and O.D_error members accept any error code defined in Table 11-1.

Because error codes change from release to release, refer to the Programmer's Reference Manual for
system-defined driver error codes.

11-2 BCI Driver Development Guide

Recording Error Messages in System Structures

Table 11-1 lists error codes used by drivers.

Error
Value

EAGAIN

EFAULT

EINTR

EINVAL

EIO

ENXIO

EPERM

EROFS

Table 11-1 Driver Error Codes

Error
Description

kernel resources, such as memory,
are not available at this time;
cannot open device (device may
be busy, or the system resource is
not available).

an invalid address has been passed
as an argument; bad memory
addressing error

when a process is sleeping above
PZERO without PCATCH ORed
to the sleep priority and a signal is
received, longjmp(D3X) is called,
control returns to user and
EINTR is set in D.D_error.
invalid argument passed to routine

a device error occurred; a problem
is detected in a device status
register (the 110 request was
valid, but an error occurred on
the device)
an attempt was made to access a
device or subdevice that does not
exist (one that is not configured);
an attempt to perfonn an invalid
110 operation; an incorrect minor
number was specified
a process attempting an operation
did not have required super-user
permission. _
an attempt was made to write to,
or to open a read-only device

Use in these
Driver Routines (D2X)

open, iocd, read,
write, strategy

open, close, iocd,
read, write, strategy

open, close, ioctl,
read, write, strategy

open, ioctl, read,
write, strategy
open, close, iocti,
read, write, strategy

open, close, ioctl,
read, write, strategy

open, iocd

open

IMPORT ANT: Before officially installing the driver, be sure to remove any debugging code not
enclosed in conditional compiler statements, as described in Chapter 13, "Testing and Debugging the
Driver."

Error Reporting 11-3

Recording Error Messages in System Structures

Table 11 ~2 lists error values that should be set in your code when functions return failure values.

Table 11-2 Error Codes Mapped to Function Return Values

Return
Function Value Condition Error Code
copyin -1 Paging Fault EFAULT

Invalid user/stack area
Invalid address

copyout -1 Memory management fault EFAULT
Invalid user/stack area
Invalid address '

pbysck 0 Block does not exist ENXID
pbysio EID

DMA error EFAULT
suser 0 Current user not superuser EPERM
useracc 0 User does not have access pennission EFAULT

The b_error and u.u_error members each hold only one error code at a time; if no error has been
logged, the value is "0". Because a second error code will overwrite any previous value, the driver
should test that the error member is blank before writing a new code. For a permanent record of
errors encountered, write the error to the system error log.

Figure 11-1 illustrates how errors are written to the user structure.

if (useracc(uou_base, uou_count, B_WRITE) == 0)
{

}

if (uou_error = = 0)
uou_error = EFAULT;

return;

Figure 11-1 Writing Error Code to user Structure

11-4 BCI Driver Development Guide

Recording Error Messages in System Structures

Figure 11-2 illustrates how errors are written to the buf structure.

bp->b_flaqs :=B_ERROR
bp->b_error = EIO;

Figure 11-2 Writing Error Code to but Structure

Note that the B_ERROR is ORed into the b_ftags member. The driver should not directly assign a
value to b_ftags because that may overwrite other bit patterns required by the kernel.

Error Reporting 11-5

Sending Messages to the Console

Some driver errors should be sent to the system console, so that the system administrator can be
alerted to the problem, and a hard-copy record can be made of error messages received. Sometimes,
however, an important message will be lost because the printer was off-line or jammed when the
message was sent. Furthermore, messages sent to the console, if numerous, can significantly slow
system performance.

An alternative way to record errors is by using the od command of the crash(lM) utility, which can
be used to access a message buffer called putbole This section explains how a driver writer can direct
error messages to one or both of these destinations! .

U sin g the C m n _e r r Fun c ti 0 n

The cDlD_err(D3X) function can be used to write error messages to the system console, putbol, or
both.2 Except for some block device error conditions (which use print(D2X) routines, explained
below), the CDlD_err is the main channel for reporting driver errors.

The CDlD_err function takes three arguments. The first, level, specifies the severity of the error. The
second,jormat, is the message itself, and the third, args, contains any variable data that must be sent
along with the message.

cmn_err(level, "format", args);

The level maybe anyone of four pre-defined constants, listed below in order of severity.

CE_CONT is used to display infonnation not associated with an error condition, or to continue
another error message.

CE_NOTE errors do not require immediate attention but should be noted by system
administrator.

CE_ W ARN errors are caused by resource exhaustion not detrimental to the operating system. For
example, running out of file table entries.

CE_P ANIC causes a system panic. The results of using this value are discussed more fully below,
under the heading ''Panicking the Syster,n."

1. On the lB1S and 3B4000 computers, most driver error messages may also be sent to the system error log, providing another alternative to the
system console.

2. Note that the priIItf kernel fuoction should not be used on UNIX System. V Release 3 and later systems.

11-6 BCI Driver Development Guide

Sending Messages to the Console

The second argument to CDlD_err is the actual string to be printed, enclosed in double quotes (").
To send a message to putbuf only, use an exclamation point (!) as the first character in the string.
This is especially useful for debugging messages, since they can be viewed using·crash(1M) and yet
will no~ slow the system as much as messages to the console do. Send messages to the console and
not putbol by using a carat (A) as the first character in the string. Omit both of these characters to
direct the message to both the console and putbol.

The remainder of the second argument is the text to be printed, in the format of a printf(3S) style
string. The d, D, 0, s, and x conversion characters used by printf are available. Always include
device information in the string printed to identify the driver involved. Also include the driver
routine name issuing the CDlD_err and the major and minor device numbers.

The CDlD_err function ignores a length specification used with the conversion character. For
instance, the code segment in Figure 11-3 sends a message that the open function has been called.
The minor/major number of the device will be printed in hexadecimal because the "%x" conversion
character is used. Because the function call is enclosed inside the #if TEST - #endif construct,
this message will not be part of the final driver code.

register struct device *rp;
rp = xx_addr[(minor(dev) » 4)& Oxf)];

#if TEST
cmn_err(CE_NOTE, "xx_-open functioI?- called - dev = Ox"x", dev);

#endif

Figure 11-3 Using CDlD_err for Information

The CDlD_err function automatically adds "\.n" to all strings. If used, the "\.n will print a blank line
below the message.

The third argument (args) is reserved for the variable value or values to be printed with the string. In
the example above, the device number (dev) is the third argument.

Recording Errors with logmsg

The logmsg(D3X) function is frequently used in with CDm_err to ensure that an error meSsage is
displayed and retained for further analysis. logmsg(D3X) is used to place an error message in the
/usr/adm/errjile error file, which is accessible by the errpt(1M) error report command. The message
can be up to 256 characters long and must be enclosed in double quotes ("). logmsg provides a way
to log errors outside the range of existing error types or when a console is not be available. (The
number of characters in the string is determined by the EMSGSZ constant defined in erec .h.)
Messages longer than 256 characters are truncated.

Error Reporting 11-7

Sending Messages to the Console

Writing a print Routine

Any driver that has a strategy(D2X) routine must also have a print(D2X) routine. This routine
"reports errors to the console that occur during I/O operations normally handled by the system
buffering scheme. One such abnonnal condition would occur when the device is out of space.

This routine prints literals from the kernel routine that describe the error. The routine you code
should identify the device and subdevice. For example, Figure 11-4 lists the print routine from the
IDFC disk controller driver on the 3B15 computer.

dfprint(dev, str)
reqister"dev_t dev;
char *str;
{

cmn_err(CD_WARN,""s on IDFC("d) drive 0"0'" str, (dev»8) & Ox7f, dev&Oxff);
}

Figure 11-4 dfprint Routine from 3Bl! IDFC Driver

11-8 BCI Driver Development Guide

Panicking the System

The cmD_err(D3X} function called with the level set to CE_P ANIC is used to send an error message
to the console and panic the system. A driver should panic the system only when the error condition
stops the system from functioning, such as when the root device loses sanity. The code segment
shown in Figure 11-5 halts the system when a bad disk volume table of contents (VfOC) is found on
the root device. All messages using CE_P ANIC should be written to both the console and the putbuf
(by omitting the leading "!" or" A "from the message string). Any condition that could cause a
system panic must also be recorded in the system error log.

register struct device *rp;
rp = xx_addr[(minor(dev) »,4) & Oxf)];
if (rp->error == BADVTOC && dev == rootdev)

cmn_err(CE_PANIC,- "xx_open: Bad VTOC on root device");

Figure 11-5 Using CDlD_err to Panic the System

Error Reporting 11-9

W r~ting to the Error Log (3D15 and 3D4000 Computers)

Logged errors, error reports, and error messages are a critical part of analyzing system problems.
Error reports can help you look back over a period of time to pinpoint hardware problems. Error
messages provide up-to-the-minute notification of both hardware and software troubles. The UNIX
system also records general errors and places them in a central system error"log file, lusrladmlerrflle.
The contents of the file are collected in the following manner.

When the system enters multiuser state, the errdemon(lM) (a system error-logging daemon) is
started. errdemon collects error records from the operating system by reading a special file and
places the errors in a designated file. If a file is not specified when the daemon is activated, error
records are written to lusrladmlerrflle.

logstray(D3X) is a function used to record spurious system interrupts, also known as stray interrupts.
This function helps the driver developer define an unusual error type. An error record header is
built. After an error has been logged with logstray, the system administrator can produce a summary
report or an overview of errors for a specific device. No analysis of the error records is done by
errdemon; that responsibility is left to errpt(lM).

errpt(lM) processes data collected by errdemon and generates a report of the data. If no particular
files are specified as errpt options, errpt useS lusrladm/errjiZe as the file to report on. (See the
System V Administrator s Reference Manual for the complete list of errpt options.)

Another utility used to display errors is errdump(lM). Use the errdump(lM) command to display
the error history file, which includes the contents of various system registers and the last five error
messages receiVed. The output of errdump may be sent to a line printer. The output can help to
trace the cause of a system crash. "

11-10 BCI Driver Development Guide

Logging Disk Errors

Disk defects are logged separately from the general error logging information. These errors can range
from marginal to severe. If an disk error is severe, it will be logged in the disk error queue and the
system error log.

When a disk defect message is logged, it usually means that the data stored in the bad block is
damaged or lost, or that the disk may be unusable in its current state. The system administrator
should take immediate steps to use the disk error information to map out these bad blocks and restore
the data in full to the disk.

The disk defect management feature allows the system administrator to rewrite internal defect tables
of a disk. If a disk supports this feature, any physical error that occurs on it is logged, enabling the
administrator to identify areas of the disk that are becoming corrupt. In order for a disk device to
use this feature, the driver writer must

• Ensure that the current operating system includes the hde.o object module.

• #include the sys/hdelog.h and sys/hdeioctl.h header files in the driver code.

• In the driver's open(D2X) or init(D2X) routine, initialize disk defect management tables
either on a controlling sector of the disk or as a static table in the driver code using the
bdeeqd(D3X) routine. bdeeqd also initializes the hdedata(D4X) structure which
contains members that must be defined.

• Use the bdelog(D3X) routine to log errors in the driver's interrupt handler routine.

Initializing Hard Disk Error Logging

When a disk device is being opened for the first time (usually with a mount(2) system call), the
driver open(D2X) or init(D2X) routine run during initialization must identify the device and set up
controlling information (hdedata structure) about the device using the bdeeqd(D3X) function.
This function is called once per device.

The bdeeqd function takes three arguments

hdeeqd(dev, pdsno, edtyp)

The first argument is the device number (composed of the external major and minor numbers). The
second argument is a pointer to the table in the physical description (PD) sector. The third argument
identifies the type of the device. (See the Bel Driver Reference Manual page for this function for
valid device types.) ,

Error Reporting 11-11

Logging Disk E"ors

HDE Functions and Structures

The bdeJog(D3X) and bdeeqd(D3X) functions, the hdeda ta structure and the HDE demon all play
an important role in logging disk errors. Their interaction is summarized below.

• At boot time, hdeeqd initializes a hdedata structure for every disk in the system. A
demon for the HDE driver should also be started at boot time. See the next section,
''HOE Demon" for further information.

• At the same time, hdeeqd also initializes an error queue in kernel memory. The
structure of the error file is defined in hdelog .h.

• When an error occurs, a retry is made. If the retry is unsuccessful, the driver provides
hdeJog with error information, and puts a new hdedata structure in the error queue.
This error queue is a list of bad blocks that have not been remapped. It resides in the
kernel and not on the disk. If a disk error is severe enough, it may also be sent to the
system error log.

• While hdeJog logs the error on the error queue, the HDE demon displays the error
message on the console alerting the operator to the problem.

• After an error has been logged, the system administrator can use bdeJogger(lM) (for
IDFC and Lark™ II disks) or sbdeJogger(lM) (for SCSI disks) to format the log and
print out reports on all known bad blocks. The infonnation is printed to the terminal
that executes the utility, not to the console.

After a number of errors have accumulated, the administrator may examine the error queue and
determine if any of the entries should be fixed. To fix the disk, the administrator will use the
bdetb(lM) (for IDFC and Lark II disks) or sbdeflx(lM) (for SCSI disks) utility to remap bad
blocks. Remapping a bad block causes that block address to be written to a Manufacturer's Defect
Table (MDT) on the disk. The disk physical description (PD) sector points to the l\IDT.

This mapping allows the administrator to make the defective physical disk tracks inaccessible to the
system and maintain system integrity. (For more infonnation on the bdeflx and sbdefix, see the
System Administrator s Reference Manual.)

11-12 BCI Driver Development Guide

Logging Disk Errors

HDE Demon

At system boot time, the HDE driver usually initializes a demon (background program). This
demon prints logged errors on the console. The demon is necessary for the following reasons.

It may happen that a disk is going bad and starts generating hundreds of bad block reports. If the
HDE driver or another disk driver printed these error messages, the entire system would be dedicated
to printing HDE error messages since drivers have a higher priority than other processes.

An administrator would have a difficult time fixing the bad blocks while the HDE driver
monopolized the system, printing these messages. To prevent this from happening, the demon (a
user process) is started when the system is booted. The demon sleeps until a bad block report is
received by the HDE driver. The HDE driver wakes up the demon, which then prints the pertinent
error information on the system console.

When the demon prints the error, the process runs at a user-level priority. The administrator's
processes now get at least equal time with the demon (because they both are user processes) and may
take corrective action.

EXAMPLE 1

In the following example, the information is kept on a controlling sector of the disk. To initialize
disk defect management, the following steps are taken:

• Allocate a system buffer with geteblk(D3X) (line 48). The disk defect table is created
in this buffer, then written to the appropriate area of the disk.

• Read the controlling sector from the xx_strategy routine using the iowait(D3X) function
(lines 53-54).

o If an error occurred on the read attempt, it displays an error message using
the driver's print(D2X) routine and returns an error condition
(lines 55-58).

o Otherwise, move information from the buffer to the controlling sector with
the bcopy(D3X) function (line 60), initiate error logging for the device with
bdeeqd (line 61), and indicate that the device has been opened (line 62).

• Release the system buffer with the brelse(D3X) function (line 64)

Error Reporting 11 - 13

Logging Disk Errors

1 #define XX_CNTLBLKNO 0 /* Block number of controlling sector */

2
3

struct device
{

/* Layout of physical device registers */

4 . char reserve[4]; /* Reserve space on card * /
5 ushort control; /* Physical device control word * /
6 char status; /* Physical device status word */
7 char ivec_num; /* Device interrupt vector number */
8 /* in 0xf0; subdevice reporting in 0x0f */
9 paddr_t addr; /* Address of data to be read/written * /
10 int count; /* Amount of data to be read/written * /
11 }; /* end device * /

12 struct DC
13 {

/* Logical device structure * /

14
15
16
17
18

struct but * xx_head; /* I/O buffer queue pointer head * /
struct but *xx_tail; /* I/O buffer queue pointer tail */
short xx_flag; /* Logical status flag * /
struct hdedata xx_edata; /* Hard disk error record log * /
struct iostat xx_stat; /* Unit I/O statistics for * /

/* establishing an error rate during error logging * / 19
20 }; /* end xx_ */

21 struct xx_info
22 {
23
24
25
26

long xx_id;
long xx_cyl;
long xx_trk;
long xx_sec;

27
28

char xx_serial [12] ;
}; /* end xx_info * /

/* Infonnation on control sector * /

/* of disk device id code * /
/* Total number of cylinders */

/* Number of tracks per cylinder */
/* Number of sectors per track * /
/* Device serial number * /

29 extern struct xx_ xx_devtab[]; /* Logical device structure table */
30 extern struct device *xx_addr[]; /* Physical device registers location */
31 extern struct xx_info xx_info[]; /* Device control infonnation * /
32 extern int xx_cnt; /* Number of devices * /
33

Figure 11-6 Hard Disk Error Logging Is Initialized (part 1 of 2)

11-14 BCI Driver Development Guide

34 xx_open(dev, flag)
35 dev_t dev;
36 int flag;
37 {
38 register struct xx_ *dp;
39 register struct device *rp;
40 register int unit;
41

Logging Disk Errors

42 unit = minor(dev) » 4; 1* Get drive unit number *1
43 dp = &xx_devtab[unit]; 1* Get logical device information *1
44 if «dp->xx_flag & XX_OPEN) == 0) 1* First time opening the device,*1
45 {
46 register struct buf *bp;
47 hdeeqd(dev, XX_CNTLBLKNO, EQD_ID); 1* Initialize error logging *1
48 bp = geteblk(); 1* Get a buffer for control sector *1
49 bp->b_flags = B_READ; 1* Set up buffer to read *1
50 bp->b_blkno = XX_CNTLBLKNO; 1* Control sector from disk *1
51 bp->b_count = 512;
52 bp->b_dev = dev & (Oxf); 1* Use partition 0 on disk *1
53 xx_strateqy(bp); 1* Read control sector *1
54 iowait(bp); 1* Wait for read to complete *1
55 if «bp->b_flags & B_ERROR) 1= 0) 1* If data error occurred, *1
56 { 1* display message on console *1
57 xx_print(dev, "xx_open: cannot read control sector");
58 u.u_error = bp->b_error; 1* Get error code *1
59 } else { 1* Copy control sector data to info table *1
60 bcopy(bp->b_un.b_addr, &xx_info[unit], sizeof(struct xx_info»;
61 hdeeqd(dev, XX_CNTLBLKNO, EQD_ID); 1* Initiate error logging *1
62 dp->flag := XX_OPEN; 1* Indicate device open *1
63 } 1* endif *1
64 brelse(bp); 1* Release system buffer *1
65 } 1* endif *1

66 if (u.u_error 1= 0) 1* If error found at this point, return *1
67 return;
68 1* endif *1

Figure 11-6 Hard Disk Error Logging Is Initialized (part 2 of 2)

Error Reporting 11-15

Logging Disk Errors

EXAMPLE 2

A driver interrupt routine is responsible for checking for data transfer errors (these errors are called
data checks). When a data check occurs (reported by the device in the status or error register), the
driver detennines if there have been sufficient attempts at resolving the error. If so, the driver
abandons the liD request by marking the buffer as being in error, logging an unresolved error with
hdelog, and marking the liD operation complete with iodone(D3X). When an error persists in spite
of multiple attempts to resolve it, the driver logs marginal errors with bdelog and attempts the 110
operation again. NarE: the driver may try to resolve the error with software by using the error
correction bits in the error correction code (ECC) register.

1
2
3
4
5
6
7
8
9
10

struct device /* Layout of physical device registers * /
{

char reserve [4]; /* Reserve space on card * /
ushort control; /* Physical device control word */
char status; /* Physical device status word */
char ivec_num; /* Device interrupt vector number * /

/* in 0xf0; subdevice reporting in 0x0f */
paddr_t addr; /* Address of data read/written */
int count; /* Amount of data read/written * /

}; /* end device */

11 struct xx_ /* Logical device structure */
12 {
13
14
15
16
17
18

struct buf * xx_head; /* liD buffer queue head pointer * /
struct buf * xx_tail ; /* liD buffer queue tail pointer * /
short xx_flag; /* Logical status flag * /
struct hdedata xx_edata; /* Hard disk error record log * /
struct iostat xx_stat; /* Unit 110 statistics for * /
/* establishing an error rate during error logging * /

19 }; /* end DC */

Figure 11-7 bdelog - Logs Media Errors (part 1 of 3)

11-16 BCI Driver Development Guide

Logging Disk Errors

20 struct xx_info
21 {

1* Information on control sector of disk

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

} ; 1*

long
long
long
long
char

end xx_info

xX_id;
xx_cyl;
xx_trk;
xx_sec;
xx_serial[12];

*1

1* Device id code *1
1* Total number of cylinders *1

1* Number of tracks per cylinder *1
1* Number of sectors per track *1
1* Device serial number *1

extern struct xx_ xx_devtab[] ; 1* Logical device structure table *1
extern struct device *xx_addr [] ; 1* Physical device register location
extern struct xx_info xx_info[] ; 1* Device control information *1
extern int xx_cnt; 1* Number of devices *1

xx_int(board)
int board;
{

register struct device *rp = xx_addr[board]; 1* Get device registers *1
register struct xx_ *dp;
register struct buf *bp;
register int unit;

40 unit = (board « 4) 1 (rp->ivec_num & Oxf); 1* Construct unit number *1
41 dp = &xx_devtab[unit];

42 if
43 {

44
45
46
47
48
49
50
51
52

«rp->status & DATACHK) 1= 0) 1* If data check error occurred, *1

if (++dp->xx_edata.badrtcnt > XX_MAXTRY) 1* If sufficient *1
{ 1* attempts have been made, then abandon the I/O request *1

bp = dp->xx_head; 1* Get buffer from I/O queue *1
dp->xx_head = bp->av_forw; 1* Remove buffer from I/O queue *1
bp->b_flags 1= B_ERROR; 1* Mark buffer in error *1
bp->b_error = EIO; 1* Supply error condition *1

1* Supply information needed for error logging *1
dp->xx_edata.diskdev = bp->b_dev; 1* The device number *1
dp->xx_edata.blkaddr = bp->b_blkno; 1* The error block number *1

Figure 11-7 bdelog - Logs Media Errors (part 2 of 3)

Error Reporting 11-17

Logging Disk Errors

53 dp->xx_edata.readtype = HDEECC; 1* Error type: error check *1
54 dp->xx_edata.severity = HDEUNRD; 1* Data unreadable *1
55 dp->xx_edata.bitwidth = 0;
56 dp->xx_edata.timestmp = time; 1* Time recording occurred *1
57 bcopy(dp->xx_edata.dskserno, xx_info[unit].serial, 12);
58 hdelog(&dp->xx_edata); 1* Log abandoned I/O operations *1
59 iodone(bp); 1* Mark I/O operation complete *1

60 } else if(dp->xx_edata.badrtcnt > 1) { 1* If more then one retry, *1
61 1* log error as marginal *1
62 bp = dp->xx_head; 1* Get buffer from I/O queue but leave on I/O *1
63 1* queue so I/O operation is repeated *1
64 1* Supply information needed for error logging *1
65 dp->xx_edata.diskdev = bp->b_dev; /* The device number *1
66 dp->xx_edata.blkaddr = bp->b_blkno; 1* The block number in error*1
67 dp->xx_edata.readtype = HDEECC; 1* Error type: error check *1
68 dp->xx_edata.severity = HDEMARG; 1* Marginal error *1
69 dp->xx_edata.bitwidth = 0;
70 dp->xx_edata.timestmp = time; /* Time recording occurred *1
71 bcopy(dp->xx_edata.dskserno, xx_info[unit].serial, 12);
72 hdelog(&dp->xx_edata); 1* Log data check error *1
73 } 1* endif *1
74 } 1* endif *1
75

Figure 11-7 bdelog - Logs Media Errors (part 3 of 3)

11-18 BCI Driver Development Guide

Signals

A signal is a type of message sent to user processes alerting them to an important event. Drivers send
signals to user processes to alert them of conditions on the device. For example, when a user on a
terminal presses the ~ key, it generates an interrupt. When the terminal driver handles that
interrupt, it sends a signal to any user processes in the process group for that terminal.

Signals are used principally by character-access drivers.

Sending a Signal

Signals are sent from a driver's interrupt handler or base routines to a user process with the
psignal(D3X) and signal(D3X) functions. The psignal function sends a signal to a single process,
whereas the signal function alerts a process group. The needs of the individual device determine the
sorts of signals that are used. psignal usually sends a signal to the u.u_procp member of the user
structure, but not from the interrupt level. signal usually sends a signal to the t_pgrp member of the
tty structure. The user process can intercept the signal with the signal(2) system call.

Figure 11-8 contains example signal code.

62 if (code == L_BREAK) {
63 signal (tp->t_pgrp, SIGINT);
64 ttyflush(tp, (FREADIFWRITE));
65 return;

Figure 11-8 Signal Code

Error Reporting 11-19

Signals

A driver that sends signals must #include the sys/ signal.h header file, which defines all available
signals. Signals frequently used in drivers include SIGINT, SIGQUIT, and SIGHUP. Figure 11-9
illustrates signal handling.

User
Process

ITemUnrul Leader
Process

user structure

psignal (D3X)

Process

tty structure

signal (D3X)

Driver's Interrupt Handler

Figure 11-9 Processing Signals

Controlling Signal Priorities

The sleep function causes the current running process to sleep. The priority argument to the
sleep(D3X) function determines if the user process will be awakened by signals or not. This is done
in relation to the system-defined constant, PZERO (see Figure 11-10). Processes sleeping with
priority values lower than or equal to PZERO will not be awakened by a signal; processes sleeping
with priority values greater than PZERO will interrupt the current sleep and return to user level.
(For more information on sleep, see Chapter 9, "Synchronizing Hardware and Software Events. ")

Sleep Priorities 1-25
not awakened by signals

PZERO
25

Sleep Priorities 26-39
awakened by signals

Figure 11-10 sleep Priorities

You can use an absolute value (for instance, 27) as the sleep priority, but the preferred method is to
use a value relative to PZERO (for instance, PZERO+2).

11-20 BCI Driver Development Guide

Signals

If the operating system handles the error processing, it simply returns the EINTR error code to the
user program· that. called the driver. While EINTR is not very precise, the user program can use it as
an indicator of a signal arrival. Generally, when EINTR is received at user level, the user program
should retry the original command.

To process the signal in your driver, use the C programming language OR (D instruction to add the
value PCATCH to the priority argument that you assign for sleep, for example:

}

if (sleep(&Sleepaddr ,(PZERO+ 1)IPCA TCH» {
u. u_error = EINTR;
cmn_err(CE_CONT,''Disk drive #103 is getting flaky");
return;

Figure 11-11 sleep and PCATCH

Should a signal be received by a call to sleep with the priority OR-ed with PCA TCH, sleep returns a
value of 1 (true).

NOTE: Being awakened from a sleep call does not end the life of a signal. The user-level program
should have invoked a mechanism for trapping signals that can provide further insight into what may
have caused the error.

Error Reporting 11-21

Chapter 12: Installation

Contents

Introduction

Installing a Driver For the First Time

Creating a Master File
Master File Fields

12-3
12-3

Creating Special Device Files 12-10
Types of Special Device Files and Device File Names 12-11
Access Permissions for Special Device Files 12-14
Adding to a Prototype File 12-17

Adding Information to the letdsystem File 12-19
Creating Diagnostics Files 12-20
Adding a Device to the EDT 12 - 20
Preparing Pump Files 12 - 21

12-1

12-2

Installing an Existing Driver 12-22

Compiling a Driver for Installation 12-24
Installing an SBC or 3B2 Computer Hardware Driver 12-26
Installing an SBC or 3B2 Computer Software Driver 12-28
Installing a 3B15 Computer or 3B4000 MP Hardware Driver 12-30
Installing a 3B15 Computer or 3B4000 MP Software Driver 12-32
Installing a 3B4000 Adjunct Processor Hardware Driver 12-34
Installing a 3B4000 Adjunct Processor Software Driver 12- 36

Installation 12 - i

Installing a Driver for Testing

Installing a Driver in a Cross Environment

Installation of A Completed Driver

Code Oean Up 12-41

Removing a Driver

12-ii BCI Driver Development Guide

12-38

12-40

12-41

12-43

Introduction

Installing a driver, also called configuration, consists of creating or modifying a series of files to
ultimately produce a bootable object file. Then when the computer on which you are working is
shutdown and brought up again, a new version of the operating system is created that includes your
driver as part of the kernel.

This chapter provides the following information:

• installing a driver for the first time

• installing an existing driver

• suggestions for installing the driver during the testing/debugging phase of development

• installation of a driver when you are using a different type of computer for development
than the computer for which the driver is being written (cross-environment)

• how to remove an installed driver from the computer

If you are installing your driver on several computers or selling it to other customers, create
INSTALL and UNINSTALL scripts that run through the sysad.m(IM) administrator command. This
and other concerns when packaging a driver are discussed in Chapter 15.

This chapter tells you how and when to create or modify the files used for self-configuration and
system initialization.

Installation 12-1

Ins t a I Ii n gaD r i v e r. For the Fir s t Tim e

When installing your driver for the first time:

• Create a master file

• Create special device files

• For a software driver, insert a line in the letclsystem file

• For a hardware driver on the 3B2 computer or SBC, create the diagnostics files

• For a hardware driver on the 3B2 computer or SBC, add the device to the EDT

• For a hardware driver on the 3B2 computer or SBC, move pump files to a special
directory

This section contains information that precedes subsequent sections in this chapter. If you have
already installed a driver using the material described in this chapter, precede to the next section,
"Installing an Existing Driver" for information on how to install your driver on a specific computer.

NOTE: You can install your driver software from any directory except Iboot. Iboot is not usable
because an object file created by the cc command stored in I boot may prevent a new
operating system from being generated. After you have completed installing a driver and
have tested it, you may wish to move the source and object code to the
lusrlsrclutsl<computer-type>lio directory, making new directories as required. This
directory typically contains driver source code. «computer-type> choices are explained
later.) 3B4000 computer adjunct processor code should be stored in the lusrladd
on/package-namelio directory, once again, you should create directories as needed.

12-2 Bel Driver Development Guide

Installing a Driver For the First Time

Creating a M aster File

The easiest way to create a master file is to copy an existing master file; this saves time because you
do not have input column headers. Master files reside in the /etclmaster.d directory or in the
/adjlpe#/etc/master.d directory for a 3B4000 adjunct processor. Each file is named for the driver it
defines, in lower case letters, and corresponds to a file in the /boot-directory (/adj/pe#/boot for an
adjunct processor) that has the same name in upper case letters.

The master file fields are separated by either a tab or a blank; no field can contain a blank. Any line
with an asterisk (*) in column 1 is treated as a comment. By convention, each master file begins
with a comment line that has the name of the driver, followed by another comment line that gives
column headers for the fields used in the file. The fields in the second comment line define the
configuration information for the driver.

The following is an example of the console master file. The following master file is used as an
example throughout this section:

* console

*
* FLAG #VEC
orcst24 1

PREFIX
con

SOFT
o

#DEV
1

IPL DEPENDENCIES/VARIABLES
7

con_tty[2] (%Ox58)
con_cnt(%i) = {2}

Figure 12 -1 Console Driver Master File

M aster File Fields

Each field in the master file contains configuration information specific to your driver. Some fields
can be filled before you begin development, such as the FLAG, PREFIX, and SOFT columns.
Others may only be filled once the restrictions placed on your driver by the device hardware have
been determined, such as the #VEC, #DEV, and IPL columns. The
DEPENDENClESN ARIABLES information cannot be included until the dependencies of your
driver on other drivers and/or defined structures, and the number and types of variables needed for
your driver have been detennined.

The following sections discuss the contents of each field.

Installation 12-3

Installing a Driver For the First Time

FLAG

The FLAG field of the master file contains a combination of letters and/or numbers defirung a
number of characteristics specific to your driver for the system's boot programs. Each letter and
number indicates a specific characteristic of the driver. The following list describes each symbol:

Access and Interface Definers

b Indicates that the driver's device supports block-access~ This letter must be
included if the driver includes a strategy(D2X) routine.

c Indicates that the driver's device supports character-access. This letter must be
included if the driver includes a read(D2X), write(D2X), or ioctl(D2X)
routine.

f Indicates that the driver is a STREAMS driver (both hardware and software).

m Indicates that the master file is for a STREAMS module.

s Indicates that the driver is a software driver. If the s flag is used, the
drvinstall(lM) command will put the major number in the SOFf column.

t Indicates that the device uses the tty structure. This flag causes the
cdevsw[].d_ttys field to be initialized for the device.

x Indicates that the master file is for a loadable module that is not a driver.

Other Configuration Instructions

o Indicates that only one device can be configured for this driver.

r Indicates that this device must be present or the system should not be
configured. For instance, the console and mem (memory) master files use this
flag.

a Indicates that (boot should generate and fill a segment descriptor array. The
name of this array is:

extern paddr _t prefzx_addr

number The first interrupt vector for an integral device. For an SBC with a non
programmable interrupt vector, the interrupt vector physically set on the board
(either with DIP switches or with connectors) must be specified in this field in
decimal.

12 - 4 BCI Driver Development Guide

Installing a Driver For the First Time

In the console master file example, the following characters and numbers are used:

orcst24

This indicates the following about the driver:

o Only one device can be configured for the driver.

r The device supported by this driver must be 'present in order to configure the system.

c The device supported by the driver is a character device. See Chapter 6 for more
information on block and character access.

s The driver is a software driver.

t The device is a TrY device and the driver uses the tty structure.

24 The first interrupt vector for the device is assigned to be 24. Software drivers can have their
interrupt vector permanently assigned. See the #VEC section and Chapter 10 for more
information on interrupt vectors and absolute address assignment.

#VEC

The # VEC column defines the number of interrupt vectors to be generated for each device or device
controller. An interrupt vector is an offset to an interrupt vector table the system uses to associate
interrupts with their appropriate interrupt routines, and with their appropriate devices.

The number of interrupt vectors a device needs is dependent upon how the device initially sends its
interrupts. For instance, a controller that supports four subdevices may interpret those interrupts
itself, or it may not. If it does interpret them, only 1 interrupt vector must be assigned to that
device, and the controller determines the type of interrupt being sent. If it does not, 4 interrupt
vectors must be assigned to the device, one for each subdevice.

In the console driver example above, 7 interrupt vectors are supplied.

The #VEC field in the master file defines the number of interrupt vectors per device, in this case per
controller:

One interrupt vector per device (controller)
If the value of #VEC is 1, the controller itself has only one interrupt vector. Either the
device supported by the driver does not support subdevices or the driver must determine
which subdevice is associated with a given interrupt in some other way, such as by
reading a controller register. Most intelligent controllers on the 3B15 and 3B4000
computers use completion queues rather than vectors, so use #VEC= 1.

One interrupt vector per subdevice
If each subdevice has one interrupt vector and the controller can support up to four
subdevices, #VEC is assigned a value of 4.

Iilstallation 12 - 5

Installing a Driver For the First Time

Multiple interrupt vectors per subdevice
Some character-access subdevices require more than one interrupt vector. For example, a
serial port that has separate receive and transmit interrupts (coded using the rint/xint
combination) must have two interrupt vectors per subdevice. If the sample configuration
is for such devices, the value of #VEC is 8.

Refer to Chapter 10 for infonnation on the handling and the assignment of interrupt vectors.

PREFIX

The 2-, 3-, or 4-digit prefix assigned to your driver and used as a prefix to the system routines. The
kernel uses the driver's prefix to identify the appropriate kernel routine to use for this driver. The
most important thing to remember about driver prefixes is that they must be unique. Different
drivers cannot use the same prefix or their routines would be mismatched. Ensure that the ,prefix you
select is unique by examining all other master files.

SOFT

The SOFf column is used to identify the major number for a software devicel . Software device
major numbers can either be automatically assigned by the drvinstaIl(IM) command, or hardcoded
by the driver writer. If you wish to have the drvinstall command assign the major number, enter a
dash (-) in this column. Master files for drivers supporting hardware devices should contain only a
dash. See "determining Major and Minor Numbers" for more information on major number
assignment.

#DEV

The #DEV column defines the maximum number of subdevices the device controlled by this driver
can support.

IPL

The IPL column defines the interrupt priority level (1 to 15) at which the processor's CPU will
service the interrupt request. Level 0 is the highest priority and level 14 is the lowest. Level 15
indicates that no interrupts are waiting to be serviced.

The CPU services interrupts based on its current processor execution level and in order of interrupt
priority. The interrupt's IPL is the priority level at which the interrupt is requesting service. The
CPU's processor execution level is the level at which the processor is executing. If the IPL is a higher
priority than the current execution level, the CPU stops it's current execution, sets its execution level
to the level of the IPL, and services the interrupt. If the IPL is a lower priority than the current
execution level, it is queued until the CPU services those interrupts with higher priority.

1. The master file for a software device contains an "s" in the FLAG column.

12-6 BCI Driver Development Guide

Installing a Driver For the First Time

A device's interrupt priority level is usually strapped in hardware and is totally independent of slots or
interrupt vectors .. The interrupt request level for a device is marked by one of the bergs (physical
connectors) on the backplane. The IPL value to use in the IPL column of the master file is usually
included in the installation documentation for the device.

However; a device's IPL value can be overridden for critical sections of code with the spl*(D3X)
function. See Chapter 10 and the spl* manual page for more information on spl* function and
setting interrupt priority levels.

DEPENDENCIESN ARIABLES

The DEPENDENCIESN ARIABLES field can have several lines. This field is used to

• Define other driver(s) on which this driver is dependent. (A driver is considered
dependent on another if by the lack of the other driver, the former will not work.) For
example, for two drivers X and Y, if letc!system has INCLUDE X and the
letc!master.dlA has "B" in the Dependencies field, Iboot will bring in X (based on
letc!system) and Y (based on the dependency).

• Generate dummy functions if driver is not loaded when the system is booted.

• Assign values to variables according to the capacity of the driver rather than the actual
hardware configuration.

• Assign values to variables according to administrator-supplied information about the
specific configuration.

Generating Dummy Routines

A dummy, or stub routine is simply a function call with no arguments and no instructions. An
example is:

myroutine(){}

A stub routine allows the system boot program to resolve symbols when a driver is not included in the
system. Other means for generating stub routines are shown in Figure 12-2.

Value
{nosys}
{nodev}
{false}
{true}

{}

Description

Send SIGSYS to current process when accessed
Return ENODEV error code when accessed
Return 0
Return 1
No return value

Figure 12-2 Dummy (Stub) Routine Names

Installation 12-7

Installing a Driver For the First Time

Variables Set for A Driver

Variable definition lines define certain variables to be calculated by the system at boot time. The line
has four fields, two of which are optional, separated by specific field delimiters; the line can contain
spaces as long as they are not between elements of the length specifiers. The fonnat of a variable
definition line is:

variable-name[array-size](length) = {elements}

The variable-name and length fields are required. The variable-name corresponds to the name used
in the header file (or global data structure declaration section) for the driver. The length specifies the
length of the variable value with any combination of the following length specifiers:

%i integer
% I long integer
%s short integer
% nc character string n bytes long (default = 1)
$n field n bytes long

Each specification is properly aligned and the variable length is rounded up to the next word
boundary during processing.

The array-size field specifies the size of the segment descriptor array to be generated. If you use the
a flag under the FLAG column, you must use this field; otherwise you must not use this field.

The elements field is an optional field used to initialize individual elements of a variable. If the
calculations are based on numbers which the administrator can tune according to the configuration,
this field should be filled as described in the next section.

The array-size and elements fields are infix expressions. An infix expression is in the form of a
standard equation such as 1 + 2 = 3.

12 - 8 Bel Driver Development Guide

Installing a Driver For the First Time

Tunable Variables

Variables that will be modified by the system administrator should be defined using a tunable
variable table at the end of the master file. To set this up:

1 Use a three to six character upper case string for the elements field in the variable
definition line. For example:

err_neslot (%i) ={NESLOT}

2 After all DEPENDENCIESIV ARIABLE, start the tunable table with the string "$$$"
beginning in the first column of the row.

3 List each tunable on a separate line followed by a space, an equal sign, and the default
value. For example:

NESLOT = 50

4 To change the value of the variable, the administrator will modify the value in the
tunable table. Comment lines in the tunable table should give guidelines on setting the
value.

Note that other variable definition line can use this tunable as they could use any other elements.

NOTE: If you are installing a software driver and have created an alternate master file directory, a
risk exists that a duplicated major number may be assigned for a driver. Before installing a
driver in the kernel that may have been previously assigned a major number, ensure that the
number is unique before continuing (use the grep(l) command). If a number is duplicated,
either use grep to find a new, unused major number, or edit the master file of one of the
drivers to put a dash under the SOFT' column and reinstall the driver using drvinstall(lM).

Installation 12 - 9

Installing a Driver For the First Time

Creating Special Device Files

The special device files provide user level access to a driver. After a driver is installed, a user
program accesses the driver by opening the special device file.

On the SBC and the 3B2 computer, special device files are created with the mknod(lM) command.

On the3B4000 adjunct processors, special device files are created on the master processor with
mknod only for testing purposes. When the device files are created as part of the system, the
information is added to a special file called a prototype file2• This file contains a list of all the devices
in use by an adjunct processor. The prototype file ensures that the device files are created thereafter
each time the adjunct processor is put into service (booted).

The format for mknod is:

For character devices:

mknod name c major-number minor-number

For block devices:

mknod name b major-number minor-number

The first argument to the mknod command is the name of the special device file. The names of
special device files have no meaning to the operating system itself, but some programs expect a
particular name to reference a particular device.

The second argument is b for a block device or c for a character device. The third argument is the
major number; the fourth argument is the minor number. (Refer to Chapter 3 for information on
determining major and minor numbers).

As an example, use this command to create a character special file named /dev/grzOl with major
number 32 and minor number 1:

mknod /dev/grzOl
filename

c
character

device

32
major

number

1
minor

number

A special device file can be removed with the rm(l) command; to modify a special device file, delete
it with rm then recreate it.

2. Refer to "Adding to a Prototype File" at the .end of this section for more information.

12 -10 Bel Driver Development Guide

Installing a Driver For the First Time

NOTE: On the 3B2 computer, the 3B4000 ACP, and the SBC, many devices have subdevices for
which device files must also be created. If this is the case, use the instructions that follow.
If not, move to the next subsection.

Use edittbl(lM) to check the subdevices for your device in the Idgnletc_data file. If the
subdev _name field contains Hard or Serial, skip this step (the letc/disk(lM) or letdports(8)
commands that are already set to run will create the appropriate special device files). Otherwise,
create a shell script in the appropriate directory (Ietclbrc.d or letclrc.d) to generate special device files
for the subdevices associated with your driver. Do this so that the Idev files can be dynamically
created at boot time to accommodate configuration changes. You may also want to add to the
I etc! bcheckrc shell script if your driver application will need to check file systems, date, or perform
other activities before a file system is mounted.

Types of Special Device Files and Device File N am es

The types of device files you create for the device depends on the kind of access your device supports.
For instance, all tenninals are character devices, and so require only character special device files.
Disk devices, on the other hand, support both character and block access, and so require both
character and block special device files. The following sections discuss the types of device files
required for some commonly supported devices.

Tape Subsystem

A tape drive can be accessed as either a character (raw) device or a block device. The special files
for tape are in the Idevlmt directory (for block tape devices) and in the /dev/rmt directory (for raw
tape devices). Every tape drive has two entries in both directories, so any tape can be accessed as
either a block or a raw device, with or without rewind. A tape drive with rewind automatically
rewinds after the operation. You must make four new Idev entries for each tape drive, using either
the sysadm(l) mkdevmt or the mknod(lM) command. Each tape drive also has a file in IdevlSA
and IdevlrSA; these are used by System Administration to access tapes, and are created with the

, sysadm mkdevdsk command.

NOTE: sysadm only recognizes existing devices. Use mknod to create Idev files for new devices.

One convention is that the name of a tape special file with rewind is the tape drive number followed
by an '1" (low density) for an 800 bpi (bits per inch) drive, "m" (medium density) for a 1600 bpi
drive, and ''b'' (high density) for a 6250 bpi drive. For example, the special file for tape drive 0 is Om
if it is 1600 bpi and Oh if it is 6250 bpi. The name for using a tape special file without rewind is the
tape drive number followed by mn for a 1600 bpi drive, and hn for a 6250 bpi (high density) drive.
For example, the special file for tape drive 0 with no rewind is Omn or Ohn. Tape drives without
rewind enable you to write more than one file to one tape.

The minor number for a tape special file is calculated to indicate the type of access.

Installation 12 -11

Installing a Driver For the First Time

The traditional naming conventions and formulae for calculating minor numbers for tape devices are
summarized in Figure 12-3. This is only valid for the AT&T tape driver. Another method that is in
wider acceptance, particularly in SCSI products is described after the table. The question mark (?)
represents the tape drive number.

Type Special File Minor Number =
Block, rewind; 1600 bpi Idevlmtl?m (4 * ?)
Block, no rewind; 1600 bpi Idevlmtl?mn . (4 * ?) + 1
Raw, rewind; 1600 bpi Idevlrmtl?m (4 * ?) + 2
Raw, no rewind; 1600 bEi Idevlrmtl?mn {4 * ?l + 3
Block, rewind; 6250 bpi Idevlmtl?h [(4 * ?)] + 128
Block, no rewind; 6250 bpi Idevlmtl?hn [(4 * ?) + 1] + 128
Raw, rewind; 6250 bpi Idevlrmtl?h [(4 * ?) + 2] + 128
Raw, no rewind; 6250 bpi Idevlrmtl?hn [(4 * ?) + 3] + 128

Figure 12-3 3B1S or 3B4000:MP Minor Numbers and Names for Tape Devices

For example, the special file Omn in the rmt . directory has the minor number 3, calculated from:

(4 * 0) + 3

The special file for the same device in the mt directory has the minor number 1, calculated from:

(4 * 0) + 1

Simple Administration accesses tape devices through special files in the IdevlSA and IdevlrSA
directories. These files are linked to the appropriate files in the Idevlmt and Idevlrmt directories, and
named IdevlSAl9track# or IdevlrSAI9track#, where # corresponds to the tape drive number. System
Administration allows you to work with tape drives with rewind; no rewind is not supported.

SCSI-based tapes support the convention for naming and minor numbers in the format:
IdevlcO[tx}dOm{n} or IdevlcO{tx}dOh{n}. The fields are described in Figure 12-4:

cO
{tx}
dO
m orh
{n}

Figure 12-4

12 -12 BCI Driver Development Guide

controller number
optional target controller
tape drive number
density
no rewind

SCSI Tape Drive Device Name

Installing a Driver For the First Time

Disk Subsystem

Each disk has two listings in Idev: one as a block device and one as a character (raw) device. The
special files for block disk devices are in the /devldsk directory; the special files for raw disk devices
are in the /devlrdsk directory. Each disk partition has a separate special file. Each disk drive also
has entries in Idev/SA and /devlrSA for block and character devices, respectively. These are used by
System Administration to access disks, and are created with the sysadm(l) mkdevdsk command. The
SA rSA device nodes are different for SCSI disks. .

The common method for identifying disk device files has been interpreted for SCSI disks is similar to
that of the SCSI tape drive. The format is Idev/cO{txjdOsO and is described in Figure 12-5.

cO controller number
{txj target controller
dO disk drive number
sO section number

FigUre 12-5 Disk Drive Device Name

The traditional name of a disk special file is the disk number and the partition number separated by
an "s". For example, the special file for disk 1, partition 0 is IsO. If a disk drive has 8 physical
partitions, they are numbered (named) 0 through 7 on each drive. The first disk drive in the system
is number O.

The minor number of a disk special file also identifies the disk and partition number with which the
file is associated. Frequently, however, the minor numbers are assigned for the disk controller (which
may control several disks) rather than the individual disks. For each controller, minor numbers start
at 0 and increment by 1 to correspond to the partitions on the disks. The first disk on the controller
has minor numbers 0 through 7, the second disk on the controller has minor numbers 8 through 15.
So, partitions 0 through 7 on Disk 0 on CONTROLLER 0 have minor numbers 0 through 7, and
partitions 0 through 7 on Disk 1 have minor numbers 8 through 15. If you had a second controller,
the first disk on that controller would have minor numbers 0 through 7, but the major number would
be different than for disks under controller O.

The corresponding files for the raw disks have the same names and major and minor numbers but are
located in the /devlrdsk directory.

The Idev/SA and /dev/rSA directories also have regular ASCII files for fixed disk devices, named
hddisk#, where # corresponds to the disk drive number. These contain an ASCII character string
which defines the type of disk this is. Because these are regular files, not special files, they do not
have major and minor numbers.

After the Idev/dsk and /dev/rdsk files are created, use the sysadm(l) mkdevdsk or the mknod(IM)
command to create the rmdisk# and hddisk# files in the /deviSA and /dev/rSA directories. Figure
12-6 describes how minor numbers are formed on the 3B15 and 3B4000 computers.

Installation 12 -13

Installing a Driver For the First Time

Type
Block access
Character/raw access
Block access (sysadm)
Character/raw access (sysadm)

Special File
Idevldskl ?x?
Idevlrdskl?x?
I devl SAl hddisk?
I devlrSAI hddisk?

Minor Number =
Partition per controller
Partition per controller
none
none

Figure 12-6 3B15 or 3B4000:MP Minor Numbers and Names for Disk Devices

Other Devices

Minor numbers for other devices are assigned in a number of different ways. Several of the drivers
that are released with UNIX System V (such as errlog, swap, and dump) have major and minor
numbers that correspond to the disk partition they use; for instance, the major and minor numbers of
Idevlswap are the same as the major and minor numbers of the disk partition used as the swap device.

In some cases, the minor number of a software driver has little meaning and can be assigned any
value.

Access Permissions for Special Device Files

The special device files used for drivers have access permissions, owners, and groups like any other
file. Assigning appropriate values to these fields is critical for maintaining system security.

You must have super-user permissions to create special files with the mknod command. You can
change the group with the chgrp(lM) command, and change the owner of a file with the chown(lM)
command. The format for these two commands is:

chgrp new-group special-file-name
chown new-owner special-file-name

The default permissions are those specified by umask (in the letclsystem file or in the root .profile
file), usually 644. Permission modes can be modified with the chmod(l) command. Default
permission modes can be modified with the umask(l) command.

chmod new-mode special-file-name

12-14 Bel Driver Development Guide

Installing a Driver For the First Time

Figure 12-7 summarizes the recommended permissions, owner, and group for standard types of
devices. The following sections discuss this in more detail.

Sub~stem Device Mode Owner Grou~

Terminal terminal (idle) 622 or 600 root sys

printer 200 lp sys

networks 644 UUcp4 any

Disk /devlrdsk directory 755 root sys
/ devl dsk directory 755 root sys

disk files 400 root sys

Tape /devlrmt directory 755 root sys
/devlmt directory 755 root sys

tape files 666 or 600 root sys

Figure 12 -7 Typical Access Permissions for Special Device Files

Terminal Subsystem - Terminals
When a user logs on to the terminal port, that user becomes the owner and group for the
port. The mode is 600 if the terminal is not open for writing from other users (mesg n)
or 622 if it is. An active terminal should not normally be open for reading by other
users, since this would enable other users to capture everything typed at or printed on the
terminal. If wider permissions are necessary, any user can modify the mode of the
terminal port to which slhe is logged in.

Some terminal special files retain the last user as the group when the user logs off, others
will revert to the sys group. In any event, the idle terminal always reverts to an owner of
root and mode 666.

Terminal Subsystem - Networks
Access permissions for networks should be considered very carefully, since system security
is most easily compromised through network connections. The network itself is the
owner. For instance, ACU nodes are usually owned by uucp. If another networking
application needs to use the ACU, the software could execute a setuid(uucp). The group
can be left as the default sys or changed to match the owner.

The mode of networking devices must be determined according to how applications will
access the network. If the networking connection is only for administrative programs,
you can assign the secure mode of 600. If, however, application programs that

4. an example network name. This also could be the name for other networks.

Installation 12-15

Installing a Driver For the First Time

understand the protocol will be accessing the network, you may require a 666 mode. If
only a few users need to access the network, you can use the group modes. Most
networks have a background program that writes to and reads from the special device file.
Users rarely access it directly.

Terminal Subsystem - Printers
Special device files for printers are owned by Ip; the group can be changed to Ip or left as
the default sys. Normally print jobs will run only through the Ipspooler, so the 600 mode
is adequate. If you have applications that will bypass Ipspooler to go to the printer, you
may need to set the mode to 644. However, read permissions are not necessary on a
printer so you can set it to 200.

Disk Subsystem
The mode of a special device file for a disk only controls access permission to the physical
disk. Once the disk is mounted, access to that disk is controlled by the file subsystem and
the access permissions of each individual file. Special device files for disks have 400
permission, allowing reading and writing of the raw disk only by the owner (root). If
read/write privileges were granted to others, the UNIX system security of all files on that
disk would be subverted, since any user could read and write the contents of the disk
without going through the file system. Application program may require different
permission modes and ownership.

Tape Subsystem
Access permissions for tapes can vary from site to site. The most secure option is to use
600 permission, which will enable the superuser to use the tape but no one else to access
it. The least secure option is to use 666 permission, which allows all users to read and
write directly to/from that drive. Realize, however, that 666 permission will enable any
user to read the information on that drive directly; for instance, when a tape is mounted
for backup, a user could read all the information off that tape, thus accessing files that
might contain sensitive information.

If several users need to access a tape drive, you could make those users part of the sys
group or set up a group of users who need to access the tape and make that the group for
the drive. By giving that drive 660 permission, these users would be able to access the
tape without opening up access to the world.

The sysadm mkdevdsk or mknod command creates entries in the /dev/SA and /dev/rSA
directories for removable disks and tape. The corresponding /dev entries must be created
first, either through sysadm mkdevdsk and sysadm mkdevrnt or with the mknod
command; the idevlSA IdevlrSA entries are then linked to the appropriate Idev special
files. In order to use the System Administration commands for disks and tapes, you must
have this directory.

12-16 BCI Driver Development Guide

Installing a Driver For the First Time

Adding to a Prototype File

On a 3B4000 adjunct processor a device file is created in three ways:

• With mknod(lM) in the adjlpe#ldev directory on the adjunct processor

• With mknod in the Idev directory on the 3B4000 Master Processor

• By adding an entry to the ladjlpe#lprototype file.

Use the directions for mknod discussed earlier in the "Creating a Device File" section to create special
device files for the first two items. The third item is discussed in this section.

Each adjunct processor has a prototype file (ladjlpe#lprototype) used to configure the incore file
system at boot time. This file specifies the size and contents of the incore file system. The prototype
file is only activated after the adjunct processor is rebooted.

The prototype file contains a single line for each device for the adjunct processor. A prototype file
line is in this format:

device-name type bits modes owner-ID group-owner-ID major-num minor-num

For example

device-nam£ type bits modes owner-ID group-owner-ID major-num minor-num

icfs b 640 0 0 66 0

Installation 12 -17

Installing a Driver For the First Time

Figure 12-8 lists an excerpt from a sample prototype file.

icfs b--640 0 0 66 0
mem c--440 0 0 19 0
kmem c--440 0 0 19 1
null c--666 0 0 19 2
error c--660 0 0 16 0
dsk d--7S5 0 0

cOt1dOsO b--400 0 0 113 0
cOt1dOs1 b--400 0 0 113 1
cOt1dOs6 b--400 0 0 113 6
cOt1dOs7 b--400 0 0 113 7
cOt1dOs8 b--400 0 0 113 8
cOt2dOsO b--400 0 0 114 0
cOt2dOs1 b--400 0 0 114 1
(Additional Entries)
$

Figure 12 - 8 Excerpt from Sample Prototype File

12 -18 Bel Driver Development Guide

Installing a Driver For the First Time

Adding Inform ation to the lete/system File

When you are installing a software driver for the first time, you must insert a line in the I etcl system
file so that the driver is included when the new version of UNIX is created system. This step is not
required for a hardware, driver.

The fetclsystem file is used to initially configure or to reconfigure the UNIX operating system. After
the system configures, an operating system image is made in memory and booted. Then, by invoking
the letc/mkunix program (done automatically on the SBC and 3B2 computers), a bootable image of
the operating system is created which, by convention, is named lunix. The lunix file can then be used
to boot the system quickly.

Among other kinds of information, the letefsystem file lists the drivers that are to be included when
the system is configured. In order to configure your driver into the system, you must include the
name of your driver in the fetclsystem file and then reboot the system from this file.

Edit the system file (fete/system) and add an INCLUDE line for your driver to the end of the file.
Comments can be added by placing an asterisk (*) in the first column. The new lines in an example
system file are

* * Include line for mydriver. Added 1/25/88 by Jane Doe.

*
INCLUDE:MYDRIVER

The sections of letclsystem are referred to as lines, even though many of them have several lines. The
system(4) manual page explains all the lines that are in fete/system. Discussed here are only those
lines used for drivers. They are

EXCLUDE Specifies hardware listed in the EDT that should not be configured. This line can
list hardware for which the software driver is not working or a board that needs
repair and is affecting system stability.

INCLUDE Lists drivers with files in the Iboot directory but no corresponding device in the
EDT, typically software drivers.

Installation 12-19

Installing a Driver For the First Time

Creating Diagnostics Files

on the 3B2 computer, the SBC, or the 3B4000 ACP, if you are installing a new circuit board (feature
card), obtain the diagnostics files from your diagnostics developer or create the files yourself. Refer
to Appendix B for information on how to write or modify diagnostics files and to Section D8X of the
Bel Driver Reference Manual. If the diagnostics files are not available or if you would prefer to
install your driver before the files are available, execute the following commands:

cd/dgn
In SBD name
In X.SBD X.name

Linking to the system board (SBD) diagnostics files has no effect on the system; when your circuit
board is tested, the system board is tested instead. This solution should only be regarded as
temporary; no product is well-served by deluding the operating system.

If you are installing an existing circuit board, ensure that there are two files in the Idgn directory for
your driver. The first diagnostic file (required in the Idgn directory) has the same name as the master
file for your driver, except that the diagnostics file name is in all upper case. The second required
diagnostics file has the same name as the first, except that the second file is preceded with nx. n.

Adding a Device to the EDT

On the 3B2 computer, the SBC, or the 3B4000 MP equipped with SCSI, use the edittbl(lM)
command to update the I dgn/ edCdata table to reflect the new device.

NOTE: Two edittbl(lM) exist, one for non-SCSI and the other for editing the SCSI Equipped
Device Table (EDT). Use the command appropriate for your system. edittbl is in the /dgn
directory (for non-SCSI editing) and in the letclscsi.d directory for SCSI. Refer to
Appendix A for information about using edittbl.

12-20 BCI Driver Development Guide

Installing a Driver For the First Time

Preparing Pump Files

On the 3B2 computer or the SBC, if intelligent boards need to be pumped with operational code,
copy the pump code file to Iliblpumpl<board-name> and write a shell script to execute the pump
code file. Place the shell script in the letclrc2.d directory. (Exami:t:le the shell scripts in the letclrc2.d
directory for information on creating a shell script for your pump code.) The shell script is executed
at boot time. The permission modes should be 500 with both owner and group being root.

On the 3B4000 MP, copy the pump code file to the lliblbootpump.d directory.

Installation 12-21

Installing an Existing Driver

This section describes how to install both hardware and software drivers on these computers

• Single Board Computer (SBC) and the 3B2 computers

• 3Bl5 computer or the 3B4000 Master Processor

• 3B4000 adjunct processor

• 3Bl5 computer

Separate installation instructions are provided for each computer by the type of driver being installed.
Preceding these sections is information about how to compile a driver program for installation. This
step is common to all computer types and is repeated many times in the process of installing a driver.

Before starting the driver installation, you should be familiar with the material in the last section.
This section assumes that you have moved the driver code to a source directory, created a master file,
and created any device files that are needed. If you are installing a driver for the first time and have
not completed these activities, return to the last section, "Installing a Driver for the First Time", and
ensure that all pre-installation files are in place.

CAUTION: Before installing a driver, you must back up /unix. Failure to do so can mean
performing a complete install of your original pristine software and rerunning all
add-on installations. This process could require many hours of system down-time to
complete. Select any name for the copy and write the name down. Should the need
arise that you need to boot from the alternative file name, you will not have access
to the disk to determine the file's name. Use the mV(l) command to move lunix to
another name and then use cp(l) to copy the file back to lunix. This ensures that
when the system is booted, a new version of the operating system is generated. An
example set of commands for this procedure are

cd f
mv funix fold.unix
cp fold.unix funix

12 - 22 BCI Driver Development Guide

Installing an Existing Driver

In addition, the following files should be copied before starting a driver installation:

File or Directory
/ boot directory

/etc!master.d directory
/ etc! system file

Description

bootable object files used for
building a new version of the
operating system
system configuration information
indicates which files to include in
a new version of the operating
system

Figure 12-9 Files to Copy Before Installing a Driver

The files in the /boQt directory, those in the /ete/master.d directory, and the fete/system file are
backed up for safe keeping and are seldom ever in jeopardy. However, if these files were erased,
restoring them could take many hours of loading the original system software and then rerunning all
add-on installations. The minutes of copying these files now can save you hours or days of time later
on.

Installation 12 - 23

Installing an Existing Driver

C om piling a D river for Installation

You can use the normal ee(1) command to ensure that your driver is free of syntax errors. However,
for driver installation, more ec options are used to ensure that the driver produces the correct output
and that the output files are in a format compatible with debugging tools. 1)le compile line is

ec -c -DINKERNEL -Dcomputer -0 file.c

The options are

-c suppress the link editing phase of the compilation and do not remove any produced
object files

-DINKERNEL enable access to macros and parts of source code enclosed as follows

-Dcomputer

#ifdef INKERNEL

#endif

substitute your computer type for computer. Figure 12-10 lists the available
choices.

Name
ADJUNCf
u3b15
u3b2
u3bacp
u3badp
u3beadp

Figure 12-10

Computer
Any type of adjunct processor
3B15 or 3B4000 MP
3B2 300, 400, 500, 600, and SBC
3B4000 ACP adjunct
3B4000 ADP adjunct
3B4000 EADP adjunct

Computer Types

Use ADJUNCf for all types of adjunct processors; use u3bacp, u3badp, or
u3beadp for the specific adjunct processor type.

12-24 BCI Driver Development Guide

-0

Other Options

Installing an Existing Driver

This option enables access to macros and source code enclosed, for example, for a
3B2 computer as follows

#if u3b2

endif

optimize the code. (Do not use on SBC drivers.)

Other options that you may need are

-r

-I

-Dm32b

when compiling more than one .c file together to create a single driver object file.

when you need to specify the location of the header files when the location differs
from lusrlincludel sys.

if the driver may have code ported from a 16-bit computer to a 3B15 computer or
3B4000 computer and the code is enclosed in this unit

#ifdef m32b

endif

NOTE: When debugging is complete, use strip(l) to strip symbol and line number information
from the resulting .0 file. This saves space in the resulting bootable image.

Installation 12-2S

Installing an Existing Driver

Installing an SBCor 3B2 Computer Hardware Driver

Figure 12-11 provides a checklist for installing a hardware driver. Included in the checklist are steps
from the previous section on installing a driver for the first time. Photocopy this page and include it
with the documentation packet for your driver.

Step# Description Perform Completed?

1 create a master file once

2 create necessary device files once

3 create diagnostics files once

4 update the /dgnfedt data file once

5 put pump code files in special directory once

6 back up funix before each installation as needed

7 compile driver source code as needed

8 create a bootable object file as needed

9 run touchJ11 on fete/system as needed

10 run shutdown(1M) as needed

Figure 12-11 SBC or 3B2 Computer Hardware Driver Installation Checklist

The Perform column indicates how many times you should perlorm a step in preparation for
installing the driver. Steps perlormed once are found in the previous section, "Installing a Driver for
the First Time"; steps that are performed as needed are explained in this section. (Compiling a driver
is explained in the previous section.)

Install an SBC or a 3B2 computer hardware driver as follows:

Step 8 Create a bootable object file for your driver with the mkboot command.

The command syntax for mkboot(1M) is

I etc/mkboot file-name.o

This command creates the /boot/file-name file. Refer to the mkboot(1M) manual page
for more information on command options.

Step 9 Run the touch(1) command on fetclsystem. This command sets the date of last
modification to the current date.

12 - 26 BCI Driver Development Guide

Step 10

Installing an Existing Driver

Bring the system down with the shutdown(lM) command (from the root directory)

shutdown -gO -y -i6

If the installation is successful, no error messages are displayed and the "Console Login:"
prompt is displayed. If the installation fails, turn to Chapter 13 to debug your driver. To
recover your system for debugging, shutdown your computer as follows:

shutdown -gO -y ~iS

At the FIRMW ARE MODE prompt, enter the Maintenance and Control Program
(MCP) password, usually mcp and press the (RETURN J key. At the following prompt,
enter lold.unix (assuming that you backed up the previous version of lunix as explained at
the start of this section).

Enter name of program to execute []:

Installation 12 - 27

Installing an Existing Driver

Installing an SBC or 3B2 Computer Software Driver

Figure 12-12 provides a checklist for installing a software driver. Included in the checklist are steps
from the previous section on installing a driver for the first time. Photocopy this page and include
with the documentation packet for your driver.

Step# Description Perform Completed?

1 create a master file once

2 create necessary device files once

3 insert an INCLUDE line in fetclsystem once

4 backup funix before each installation as needed

5 compile driver source code as needed

6 create a bootable object file as needed

7 run touch(l) on fetclsystem as needed

8 run shutdown(1 M) as needed

Figure 12 - 12 SBC or 3B2 Computer Software Driver Installation Checklist

The Perform column indicates how many times the step should be performed. Steps performed once
are found in the previous section, "Installing a Driver for the First Time"; steps that are performed as
needed are explained in this section. (Compiling a driver is explained at the start of this section.)

Install an SBC or a 3B2 computer software driver as follows:

Step 6 Create a boatable object file with the drvinstall(lM) command. (Once a major device
number is assigned, you can use either drvinstaU or mkboot as shown in the sections on
installing a hardware driver.) The drvinstall command has the following format:

letc/drvinstall -d pathname-of-objectJile -vt.O

Use the -d option to identify the pathname of the input object file. Use the -vl.0
argument (required) to specify the version number of drvinstall. When run, drvinstall
returns the major number. drvinstall creates a new major number if a dash (-) is
encoded in the SOFf column of the master file. If a number is already in the SOFT
field, drvinstall echoes that number as the return value. If a major number is created,
drvinstall replaces the dash under SOFf in the master file with the new major number.
drvinstall creates a boatable driver file in the /boot directory in the form of the driver
name in upper case.

12 - 28 BCI Driver Development Guide

Step 7

Step 8

Installing an Existing Driver

NOTE: drvinstall can be run from any directory. However, drvinstall does not accept
a dot (.) as the directory name. It only accepts the full pathname of the input
object file created with the appropriate cc(l) command. An input object file
compiled by cc must never be placed in the boot directory. Therefore, put the
input object file elsewhere and always use drvinstall with the -d option.

If key files that drvinstall accesses are located in non-standard locations or are for
adjunct processors, identify the files to drvinstall with ~he following options:

file default option
master file fetclmaster.d -m
system file fetclsystem -s
output directory fboot -0

If you are installing a previously installed driver, run the touch(l) command on
fetclsystem. If this is the first installation of a driver, skip this step. When you added the
INCLUDE line to fetefsystem, you achieved the same purpose as this step. This
command sets the date of last modification to the current date.

Bring the system down with the shutdown(lM) command (from the root directory)

shutdown -gO -y -i6

If the installation is successful, no error messages are displayed and the "Console Login:"
prompt is displayed. If the installation fails, tum to Chapter 13 to debug your driver. To
recover your system for debugging, shut down your computer as follows:

shutdown -gO -y -is

At the FIRMW ARE MODE prompt, enter the Maintenance and Control Program
(MCP) password, usually mcp and press the (RETURN) key. At the following prompt,
enter fold. unix (assuming that you backed up the previous version of funix as explained at
the start of this section).

Enter name of program to execute []:

Installation 12 - 29

Installing an Existing Driver

Installing a 3B15 Computer or 3B4000 M P Hardware Driver

Figure 12-13 provides a checklist for installing a hardware driver. Included in the checklist are steps
from the previous section on installing a driver for the first time. Photocopy this page and include it
with the documentation packet for your driver.

Step# Description Perform Completed?

1 create a master file once
2 create necessary device files once
4 SCSI only: update the Idgnledt data file once
5 3B4000 MP only: put pump code files in lliblbootpump.d once
6 back up lunix before each installation as needed
7 compile driver source code as needed
8 create a boatable object file as needed
9 run touch(1) on fetclsystem as needed

10 run shutdown(1 M) as needed
11 run mkunix(1M) as needed

Figure 12 -13 3B 15 Computer or 3B4000 MP Hardware Driver Installation Checklist

The Perform column indicates how many times you should perform a step in preparation for
installing the driver. Steps performed once are found in the previous section, "Installing a Driver for
the First Time"; steps that are performed as needed are explained in this section. (Compiling a driver
is explained in the previous section.)

Install a 3B15 computer or 3B4000 MP hardware driver as follows:

Step 8 Create a bootable object file for your driver with the mkboot command.

The command syntax for mkboot(1M) is

letc/mkboot file-name.o

This command creates the Ibootlfile-name file. Refer to the mkboot(1M) manual page
for more information on command options.

Step 9 Run the touch(1) command on letclsystem. This command sets the date of last
modification to the current date.

12-30 BCI Driver Development Guide

Step 10

Step 11

Installing an Existing Driver

Bring the system down with the shutdown(lM) command (from the root directory)

shutdown -gO -y -i6

If the installation is successful, no error messages are displayed and the system boots
normally. If the installation fails, turn to Chapter 13 to debug your driver. To recover
your system for debugging, shut down your computer as follows:

shutdown -gO -y -is

At the following prompt, enter fold.unix (assuming that you backed up the previous
version of /unix as explained at the start of this section).

Enter path name:

After your driver is working and you want to preserve your driver in the lunix file, run
mkunix to create a new version of the operating system. This step must be performed
each time the driver is installed if you are going to bring the computer down to test
firmware.

Installation 12-31

Installing an Existing Driver

Ins t a II i n g a 3 B 1 5 Com put e r 0 r 3 B 4 0 0 0 M P Soft war e D r i v e r

Figure 12-14 provides a checklist for installing a software driver. Included in the checklist are steps
from the previous section on installing a driver for the first time. Photocopy this page and include
with the documentation packet for your driver.

Step# Description Perform Completed?

1 create a master file once

2 create necessary device files once

3 insert an INCLUDE line in letclsystem once

4 backup lunix before each installation as needed

5 compile driver source code as needed

6 create a boatable object file as needed

7 run touch(l) on letelsystem as needed

8 run shutdown(lM) as needed

9 run mkunix(1 M) as needed

Figure 12-14 3DlS Computer or 3D4000 :MP Software Driver Installation Checklist

The Perform column indicates how many times the step should be performed. Steps performed once
are found in the previous section, "Installing a Driver for the First Time"; steps that are performed as
needed are explained in this section. (Compiling a driver is explained at the start of this section.)

Install a 3B15 computer or 3B4000 MP software driver as follows:

Step 6 Create a boatable object file with the drvinstall(lM) command. (Once a major device
number is assigned, you can use either drvinstall or mkboot as shown in the sections on
installing a hardware driver.) The drvinstall command has the following format:

letcldrvinstaII -d pathname-of-objeet-file -vl.O

Use the -d option to identify the pathname of the input object file. Use the -vl.0
argument (required) to specify the version number of drvinstall. When run, drvinstall
returns the major number. drvinstall creates a new major number if a dash (-) is
encoded in the SOFf column of the master file. If a number is already in the SOFf
field, drvinstall echoes that number as the return value. If a major number is created,
drvinstall replaces the dash under SOFT in the master file with the new major number.
drvinstall creates a boatable driver file in the I boot directory in the form of the driver
name in upper case.

12 - 32 BCI Driver Development Guide

Step 7

Step 8

Step 9

Installing an Existing Driver

NOTE: drvinstall can be run from any directory. However, drvinstall does not accept
a dot (.) as the directory name. It only accepts the full pathname of the input
object file created with the appropriate cc(l) command. An input object file
compiled by cc must never be placed in the boot directory. Therefore, put the
input object file elsewhere and always use drvinstall with the -d option.

If key files that drvinstall accesses are located in non-standard locations or are for
adjunct processors, identify the files to drvinstall with ~he following options:

file default option
master file f etcl master. d -m
system file fetclsystem -s
output directory fboot -0

If you are installing a previously installed driver, run the touch(l) command on
fetclsystem. If this is the first installation of a driver, skip this step. When you added the
INCLUDE line to fetclsystem, you achieved the same purpose as this step. This
command sets the date of last modification to the current date.

Bring the system down with the shutdown(lM) command (from the root directory)

shutdown -gO -y -i6

If the installation is successful, no error messages are displayed and the system boots
normally. If the installation fails, turn to Chapter 13 to debug your driver. To recover
your system for debugging, shut down your computer as follows:

shutdown -gO -y -is

At the following prompt, enter fold.unix (assuming that you backed up the previous
version of funix as explained at the start of this section).

Enter path name:

After your driver is working and you want to preserve your driver in the funix file, run
mkunix to create a new version of the operating system.

Installation 12 - 33

Installing an Existing Driver

Installing a 3B4000 Adjunct Processor Hardware Driver

Figure 12-15 provides a checklist for installing a hardware driver. Included in the checklist are steps
from the previous section on installing a driver for the first time. Photocopy this page and include it
with the documentation packet for your driver.

Step# Description Perform Completed?

1 create adjunct master file once

2 create device files on the Master Processor once

3 update adjunct prototype file once

4 create adjunct dia~ostics files once

5 update adjunct edCdata file once

6 _putp_ump code files in special directory once

7 compile driver source code as needed

8 create adjunct bootable object file as needed
9 run touch(l) on ladjlpe#letclsystem as needed

10 stop adjunct processor as needed

11 restart adjunct processor as needed

Figure 12 -15 3B4000 Adjunct Processor Hardware Driver Installation Checklist

The Perform column indicates how many times you should perlorm a step in preparation for
installing the driver. Steps performed once are found in the previous section, "Installing a Driver for
the First Time"; steps that are performed as needed are explained in this section. (Compiling a driver
is explained in the previous section.)

Install an adjunct processor hardware driver as follows:

Step 8 Create a bootable object file for your driver with the mkboot command.

The command syntax for mkboot(lM) is

letc/mkboot .p pe# file-name.o

This command creates the ladjlpe#lbootIJiZe-name file. Refer to the mkboot(lM) manual
page for more information on command options.

12 - 34 BCI Driver Development Guide

Step 9

Step 10

Step 11

Installing an Existing Driver

Run the touch(1) command on /adjlpe#/etc/system. This command sets the date of last
modification to the current date.

Take the adjunct processor out-of-service with the stopape(1M) command. For example,
to stop adjunct processing element # 120, enter .

/etc/stopape -P 120

If a file system on the adjooct has active processes, the adjooct is not stopped unless you
add the -K option to the command.

Restore an out-of-service adjooct processor with the bootape(1M) command. bootape
creates a new version of the operating system if the date on the /adjlpe#/etc/system file
has been updated with touch or /adjlpe#/unix file has been moved and copied back. For
example, to boot adjooct processing element 120, enter

bootape -P 120

Installation 12 - 35

Installing an Existing Driver

Installing a 3B4000 Adjunct Processor Software Driver

Figure 12-16 provides a checklist for installing a software driver. Included in the checklist are steps
from the previous section on installing a driver for the first time. Photocopy this page and include
with the documentation packet for your driver.

Step# Description Perform Completed?

1 create adjunct master file once

2 create device files on the Master Processor once

3 insert INCLUDE line in adjunct ~ystem file once

4 update adjunct prototype file once

5 compile driver source code as needed

6 create bootable object file as needed

7 run touch(l) on system file as needed

8 stor> adjunct processor as needed

9 restart adjunct processor as needed

Figure 12-16 3B4000 Adjunct Processor Software Driver Installation Checklist

The Perform column indicates how many times the step should be performed. Steps performed once
are found in the previous section, "Installing a Driver for the First Time"; steps that are performed as
needed are explained in this section. (Compiling a driver is explained at the start of this section.)

Install adjunct processor software driver as follows:

Step 6 Create a bootable object file with the drvinstall(IM) command. (Once a major device
number is assigned, you can use either drvinstall or mkboot as shown in the sections on
installing a hardware driver.) The drvinstall command has the following format:

letc/drvinstall -P pe# -d pathname-of-object-file -vl.O

Use the -d option to identify the pathname of the input object file. Use the -vl.O
argument (required) to specify the version number of drvinstall. When run, drvinstall
returns the major number. drvinstall creates a new major number if a dash (-) is
encoded in the SOFT' column of the master file. If a number is already in the SOFf
field, drvinstall echoes that number as the return value. If a major number is created,
drvinstall replaces the dash under SOFT' in the master file with the new major number.
drvinstall creates a bootable driver file in the !boot directory in the fonn of the driver
name in upper case.

12-36 BCI Driver Development Guide

Step 7

Step 8

Step 9

Installing an Existing Driver

NOTE: drvinstall can be run from any directory. However, drvinstall does not accept
a dot (.) as the directory name. It only accepts the full pathname of the input
object file created with the appropriate cc(l) command. An input object file
compiled by cc must never be placed in the boot directory. Therefore, put the
input object file elsewhere and always use drvinstall with the -d option.

If key files that drvinstall accesses are located in non-standard locations or are for
adjunct processors, identify the files to drvinstaIl with ~he following options:

file default option
master file fetclmaster.d -m
system file fetclsystem -s
output directory fboot -0

If you are installing a previously installed driver, run the touch(l) command on
fetclsystem. If this is the first installation of a driver, skip this step. When you added the
INCLUDE line to fetefsystem, you achieved the same purpose as this step. This
command sets the date of last modification to the current date.

Take the adjunct processor out-of-seIVice with the stopape(lM) command. For example,
to stop adjunct processing element #120, enter

/etc/stopape -P 120

If a file system on the adjunct has active processes, the adjunct is not stopped unless you
add the -K option to the command.

Restore an out-of-seIVice adjunct processor with the bootape(lM) command. bootape
creates a new version of the operating system if the date on the fadjfpe#letclsystem file
has been updated with touch or fadjlpe#funix file has been moved and copied back. For
example, to boot adjunct processing element 120, enter

bootape -P 120

Installation 12 - 37

Installing a Driver for Testing

During the testing and debugging phase, you may want to install your driver in an "unofficial"
manner so you can easily restore the system to a normal operating state, without the driver. How
you install your driver during this phase will be determined by considerations such as whether the
system is dedicated to development or also a production machine and whether other people are
developing other drivers on this same machine.

On the 3B15 or 3B4000 computers, you can bring your computer up in "magic mode". At the "Enter
pathname" prompt, enter

magic mode boot -dir

Where boot-dir is an alternative Iboot directory. You are then prompted for the system file name.
The configuration is generated and then a load map is listed. Control returns at firmware mode.
This is useful when using specialized debugging tools that permit break point setting and memory
examination. If your site supports such a tool or if you wish to configure a system with an alternative
Iboot directory, you may wish to substitute this procedure in the following installation steps when
booting the computer is necessary.

This section recommends installation steps to take if you are developing your driver on a computer
that is used for other purposes, that will need to be restored to normal operation in between your
testing times

1 If it is necessary to modify the letclsystem file for your driver, make a copy of it (such as
letcljanesystem). The installation will be performed on the letclsystem file. Should
something go wrong, copy letcljanesystem back to letclsystem to restore the system file to
its previous state.

2 For hardware drivers, add an EXCLUDE line to the letclsystem file. This will prevent
your driver from being configured when you boot from letclsystem.

3 Copy the lunix file to another name that is not currently in use (such as Iholdunix) or
back it up to tape or floppy disk. Be sure you do not overwrite a copy of lunix that
someone else is holding.

4 If necessary, modify the letclinittab or letclrcO files or add scripts to the letclbrc.d or
letclrc.d directories. If you have to restore the system to normal operating status after
your testing, you will need to remove these entries and files.

5 For software drivers, run the letc/drvinstall(lM) command.

6 Create the special device files with the mknod(lM) command.

12-38 BCI Driver Development Guide

Installing a Driver for Testing

7 Create the master file in the letclmaster.d directory, under a name such as newmaster.
As an alternative, you can create a separate master directory and indicate it with the
mkboot -m option. When installing one or a few drivers, using /etclmaster.d should not
cause any problems. However, if you create an alternative master file directory, when
you use drvinstall, specify the -m option so that the new master file directory is
checked. In addition, if you are installing a software driver, you should be aware that
since drvinstall selects the major number, you may have a duplicated major number.
This may necessitate re-installation of your driver when you want to place your master
file in letclmaster.d.

Several installation tasks can be done once and used throughout the testing/debugging phase, while
other tasks must be redone every time you modify the driver code.

1 Create the driver object code by compiling the driver source code. This should not be
done in the Iboot directory, but in the development directory.

2 Run mkboot to create a bootable object file in /boot. Run this from the development
directory where you have created the master.d and driver object file. A sample
command line is

letc/mkboot driver.o

Installation 12 - 39

")

Installing a Driver in a Cross Environment

You can develop a driver for a different type of computer or UNIX System Release than the one on
which you are developing; this is referred to as working in a cross environment or native environment.
This discussion is restricted to UNIX System V Release 3.0 and later on the 3B2, 3B15, 3B4000, and
SBC computers, although many of the principles can be applied to other situations.

For this discussion, development machine refers to the machine on which you are working; target
machine refers to the other computer or operating system on which you want the driver to run.

To compile in a cross environment, you must have the following installed on your development
machine:

• The C compiler and assembler for the target computer (cross Software Generation
System - SGS)

• Set of system headers for the target computer

12 - 40 BCI Driver Development Guide

Installation of A Com pleted Driver

This section discusses the steps to take to officially install a driver on your own machine. If you
intend to install this driver on a number of machines, you may want to follow the procedures in the
section on Packaging Installation and Removal Procedures in Chapter 16.

CodeCleanU'p

Before officially installing the driver, you should clean up the code. You can remove statements used
for debugging or surround the code in the conditional compile #if .•. #endif statements. For
example

#if DEBUG
cmn_err(CE_CONT,"Starting Shutdown.O);

#endif

Specific items to look for in driver code include

• Remove or surround in #if ..• #endif all cmn_err statements put in for tracing and
debugging.

• Check that the text of cmn_err statements are clear and contain no spelling or
grammatical errors.

• Remove or surround in #if ... #endif all calls to the TRACE driver.

• Check that the sleep priorities have been reset to an appropriate level for a production
driver.

• Disable private logging and debugging utilities built into the driver.

Installation 12-41

Installation of A Completed Driver

In addition, you should check for the following items before releasing any software for production
work

• Be sure that code is thoroughly commented.

• If appropriate, be sure that all unnecessary references to proprietary information and
development names are removed from the comments.

• Check that the #ident statement is present and contains the appropriate version
information. The information enclosed in the #ident statement is placed into the
.comment section of an a.out file. This capability, known as an S-list, is useful for
keeping software version information. Refer to the documentation that accompanied
your "e" programming language utilities for more information.

• If you are copyrighting the software, this may be the time to change all copyright notices
to reflect a final product rather than work in progress. Check with your own legal
counsel about when to take this step.

12 - 42 Bel Driver Development Guide

Rem oving a Driver

To remove a driver from the system, you must remove (or restore to their former state) all files that
you modified to add the driver to the system. The procedure is

1 For hardware drivers, physically remove the hardware device and associated subdevices
from the system.

2 For hardware devices on the SBC, 3B2 computers, and the 3B4000 ACP, edit the
edCdata file to remove the device and its associated subdevices. If necessary, remove
any associated diagnostics files from the /dgn directory.

3 For hardware devices, delete the files in the /etclmaster.d and the /boot directories for
your driver.

4 For software drivers, run one of the following commands:

letc/drvinstall -u -dobject
letc/drvinstall -u -mmaster

This removes the boatable object file from the /boot directory, replaces the major
number in the appropriate fetclmaster.d file with a dash, thus unassigning the major
number, and removes the INCLUDE line from the fetclsystem file.

5 Remove special device files and any fetc/rc* or /etc/brc.d scripts you created. This will
vary with the functionality. For instance, if the script will actually be looking for the
kernel routines from the driver, it must be removed. Other drivers, such as those that
remake special device files, may be harmless if not removed. All such files should be
removed (or restored) when you permanently remove the driver from the system.

You can temporarily remove a driver from the system (such as during testing and debugging) by

Hardware Driver: Add an EXCLUDE line to the fetclsystem file for the hardware device.

Software Driver: Remove the INCLUDE line for the software device from the fetclsystem
file.

After altering the system file, reboot your system and make a new funix file. The new funix should
be identical to the /unix you saved before adding the new drivers.

~aIIation 12-43

Chapter 13: Testing and Debugging the Driver

Contents

Introduction 13-1

Testing the Hardware 13-2

Testing Driver Functionality 13-3

Getting Started 13 - 3
Using cmn_err 13-4

Using crash to Debug a Driver 13-6

Saving the Core Image of Memory 13-7
Initializing crash on the Memory Dump 13-8
Initializing crash on an Active System 13-9
Using crash Functions 13-10

Debugging with TRACE [3B400 Computer Only) 13-11

Using TRACE 13-11
Using the putbuf to Select Specific Channels 13-12

Testing and Debugging the Driver 13-i

Integration Testing

ASSERT 13-13

Common Driver Problems

Coding Problems 13-15
C Optimizer Bugs 13 -15
Installation Problems 13-16
Data Structure Problems 13-16
Mismatched Data Element Sizes 13-17
Value of Initialized Global Variables 13-21
Timing Errors 13 - 21
Improper IPL in Master File 13-21
Corrupted Interrupt Stack 13-22
Referencing u_block Data Elements from Interrupt Level 13-22
Accessing Critical Data 13-22
Overuse of Local Driver Storage 13-22
Incorrect DMA Address Mapping 13-22

13- ii BCI Driver Development Guide

13-13

13-15

Introduction

Debugging a driver is largely a process of analyzing the code and thinking about what could have
caused the problem. The UNIX operating system includes some tools that may help, but because the
driver operates at the kernel level, the tools can only provide limited information. For this reason, it
is useful to do simulation testing of the driver as a user-level process before installing it and beginning
formal testing.

This chapter describes the tools that are available for testing the installed driver and how to use them.
It then discusses some of the common errors in drivers and some of the symptoms that might identify
each.

The six aspects of debugging a driver are

1 Test the basic functionality of the hardware (hardware drivers only).

2 Debug the C code with the standard C programming language debugging tools. (This is
not discussed here.)

3 Simulation test the driver at the user level.

4 Install the driver and ensure that the system can be booted with the driver in place.

5 Test the functionality of the driver in single-user mode.

6 Test the driver on a fully-loaded system (integration testing).

During the first phases of testing, remember that your driver code is probably not perfect and that
bugs in the driver code may well panic or damage the system, even parts of the system that may seem
unrelated to your driver. Testing should be done when no other users are on the system and all
production data files are backed up.

You should test the functionality of the driver as you write it. If you are actually changing code from
another driver, it is useful to install and test the driver after you have modified the initialization
routines and the read/write or strategy routines. This testing involves writing a little program that
just reads and writes to the device to ensure that you can get into the device. When all the routines
for the driver are written, install the hardware and do full functionality testing.

Testing and Debugging the Driver 13-1

Testing the Hardware

In addition to testing and debugging the driver, you must also test the hardware device itself. While.
the area of developing, testing, and debugging the hardware is beyond the scope of this book, the
following guidelines are suggested:

• Very early in the development process, you should get the equipment and do some basic
tests on its integrity, such as ensuring that it can be powered up without problems and
access registers on the peripherals. If the device does not pass these tests, it can be
returned to the vendor for further development while you write the driver.

• Write a stand-alone board exerciser that runs at the firmware level (not under the UNIX
operating system) to detect hardware bugs. This is an interactive program that is used to
exercise a board under controlled conditions. The device should pass these tests before
you attempt to test it with your driver.

• Test the diagnostics that are hard coded on the board by corrupting the hardware and
booting the system. Check that the diagnostics detect the corruption and that the
messages are sufficient to indicate the maintenance that is required. Power-up
diagnostics should verify sanity at a gross level. Demand-phase diagnostics should be
used for more extensive checks on the board, such as identifying marginal or intermittent
errors.

To ensure that the kernel-device interface is functioning properly, write a simplified driver that
contains dummy routine calls for the init(D2X), start(D2X), open(D2X), c1ose(D2X), read(D2X),
and write(D2X) routines. For instance

qq_open()
{

cInn_err(CE_CONT,"Open routine entered\n");
}

This simplified driver should contain an ioctI(D2X) routine that gives user program control to each
control bit in the control status register (CSR). This lets you test each hardware function and ensure
that the hardware is perfonning in the proper operational sequence. The exact layout of the CSR is
specified in the /usr/include/sys/cc.h file.

13-2 BCI Driver Development Guide

Testing Driver Functionality

The process of testing driver functionality is piecemeal: you have to take small pieces of your driver
and test them individually, building up to the implementation of your complete driver. The UNIX
operating system provides tools, such as crash(1M) (which can be used either for a post mortem
analysis or for interactive monitoring of the driver) and the trace driver (for the 3B4000 computer),
to help you.

Driver routines should be written and debugged in the following order:

1 init(D2X), start(D2X)

2 open(D2X), close(D2X)

3 interrupt routines

4 ioctl(D2X), read(D2X), write(D2X) and/or strategy(D2X) and print(D2X)

When the driver seems to be functioning properly under nonnal conditions, begin testing the error
legs by provoking failures. For instance, take a tape or disk off-line while a readiwriteoperation is
going.

After you are comfortable that both the hardware and software behaves as it should during error
situations, it is time to concentrate on fonnal perfonnance testing. This is discussed in Chapter 14,
"Performance Considerations."

Getting Started

CAUTION: Before trying to install or debug the driver, back up all information in your file
system(s). Drivers can cause serious problems with disk sanity should an
unanticipated problem occur.

Compile your driver and produce an up-to-date listing and an object file. The following conventions
must be observed:

• Ensure that all your cDlD_err(D3X) calls direct output to at least the putbuf memory
array. (putbuf defaults to a maximum size of 10,000 bytes.)

• Compile your driver without the optimizer, with the -g option enabled.

• Use the pr -n(1) command to produce a listing of the source code with line numbers.
Alternatively, list(1) can be used to pull line number information out of the driver object
file.

Testing and Debugging the Driver 13-3

Testing Driver Functionality

• Use dis(l) to produce a disassembly listing. This is useful to have on hand, even though
you get the same .information using the crash dis function.

• Use Iist(1) to produce a listing that correlates the line numbers in the disassembly listing
back to original source file.

Using the instructions in Chapter 12, "Installation," install your driver. If the UNIX system does not
come up, divide your driver into separate sections and install these separately until you find the
problem. Fix the problem and install the driver.

After the driver is installed, run mkunix(IM) to create a new lunix file.

In single-user mode, run nm(l) on lunix (with the -neC options) to create a name list for the entire
kernel. All addressing is virtual. The name list gives the starting locations (routine names and
starting addresses) of the instructions and variables.

U sin g c m n _e r r

Use the cmn_err(D3X) function to put debugging comments in the driver code; when the driver
executes, you can use these to tell what part of the driver is executing. The CDlD_err function is
similar to the printf(2) system call but it executes from inside the kernel. For instructions on using
the cmn_err statement, see Chapter 11, "Error Reporting. "

cmn_err statements for debugging should be written to the putbuf where they can be viewed using
crash. Because they are written by the kernel, they cannot be redirected to a file or to a remote
terminal. You can also write CDlD_err statements to the console, but massive amounts of statements
to the console will severely slow system speed.

Calculations and CDlD_err statements that are for debugging and other testing should be coded within
conditional compiler statements in the driver. This saves you the task of removing extraneous code
when you release the driver for production, and makes that debugging code readily available should
you need to troubleshoot the driver after it is in the field.

13-4 BCI Driver Development Guide

Testing Driver Functionality

You can provide separate code for different types of testing to which the driver will be sUbjected.
For instance, you might use TEST for functionality testing, PERFON for minimal performance
testing, and FULLPERF for full performance monitoring. Each of the testing options is then defined
in the code as either 0 (turned off) or 1 (turned on), as illustrated in Figure 13-1.

1*
* TEST = 1 for functionality testing
*1

#define TEST 1
1*
* PERFON = 1 for minimal performance monitoring
*1

#define PERFON o
1*
* FULLPERF = 1 for full performance monitoring
*1

#define FULLPERF 1

Figure 13-1 Defining Test Options

Note that minimal performance monitoring is turned off, which is appropriate because full
performance monitoring is turned on.

Debug code is then enclosed within #if TEST and #endif. When the code is compiled with the
-DTEST option, the test code will execute.

The testing procedure can be refined further by using flags within the conditionally-compiled code.
Then, when TEST is turned on, you can specify the exact sort of testing without recompiling and
reinstalling the driver. The flags should use the driver prefix. For instance, the following code sets
three flags for testing the int routine, the strategy routine, and driver performance:

#if TEST
int xX_intpr, xx_stratpr, xx_perfpr;
#endif

The flags reside as the first words in the .bss section of the driver code. To turn on one or more flags

• get the start address of . bss from the namelist with a command similar to

nm -x lunix I egrep 'xx_intprlxx_stratprlxx_perfpr'

• write a little program that prompts you for the address of the flag(s) you want turned on,
then specifies location in memory

Testing and Debugging the Driver 13-5

Using crash to Debug a Driver

The crash(lM) utility allows you to analyze the core image of the operating system. It is most
frequently used in postmortem analysis of a system panic, but can also be run on an active system.
The output from crash can help you identify such driver errors as corrupted data structures and
pointers to the wrong address. Its shortcoming as a debugging tool is that it is difficult to freeze the
core image at exactly the point where the error occurred; even if the error causes a system panic, the
core image may be from beyond the point of actual error. This is especially true when debugging an
intelligent board, because an autonomous intelligent controller continues processing even though you
have halted kernel-level processing on the main memory. Moreover, for intelligent boards, the crash
dump cannot get at the onboard data structures.

On the 3B4000 computer, the crash command is used with the -P PE-number option to specify an
adjunct processing element. The crash command run without a -P option or with -P 121 analyzes the
Master Processor (MP) kernel. When running crash on an adjunct, the system uses the following
files:

/adjlpe#/unix
/adjlpe#/dev/mem

for symbol table (located on MP)
for memory access (located on the adjunct)

Each invocation of crash can only look at one kernel. Should you need to view more than one
kernel simultaneously, use a separate terminal or window to invoke crash on each kernel.

13-6 BCI Driver Development Guide

Using crash to Debug a Driver

Saving the C ore 1m age of M em ory

To run crash as a postmortem analysis on a panicked system, you must save the core image of
memory before rebooting the system and have a copy of the bootable kernel image (I unix file) that
was running.

The following table summarizes how to save the core image of memory on the various computers
covered in this book:

Table 13-1 Saving Core Image of Memory

30mputer Command Destination of Dump

SBe sysdump(8) Floppy on 1st disk controller

3B2 sysdump(8) Floppy disk(s) mounted on /dev/cOdOs6

3B15 and 3B4000 MP dump(8) Partition specified in Idev/dump, as
specified by DUMPDEV in
I etc! system, unless otherwise specified

3B4000 Adjunct adjdump(8) adjdump.out in current directory unless
otherwise specified

On the SBC and 3B2 computer, you use a series of floppies to hold the memory dump. The system
prompts you to load the next diskette. Be sure that these diskettes are labeled clearly so you can load
them in the proper sequence when running crash. The label information should include the date and
time of the dump.

On the 3B1S computer and 3B4000 Master Processor, the system automatically takes the dump
when the automatic reboot feature is enabled. You should copy the contents of the Idevldump
partition to a regular file after the system is rebooted to avoid overwriting the information. A
common procedure is to create a directory, such as lusrldumps, to hold memory dumps. The regular
files in this directory should have names that include date and time information and, for the 3B4000
computer, PE number.

On the 3B4000 Adjuncts, the MP must be running in either single- or multiuser state and the MAP
must be running before you run adjdump. If necessary, start it with the sysadm startmap command.

For full instructions on running these commands, consult the administrative documentation for the
appropriate system.

Testing and Debugging the Driver 13-7

Using crash to Debug a Driver

Before running crash, check that the memory dump is sane. Verify the following:

• The size of the dump file should match processor memory size.

• The stat function should give the correct system name, node, and release of the running
operating system. Be sure that the UNIX system version agrees with the namelist file
being used.

• The date and time of the crash reported from the dump file should be reasonable given
the actual date and time of the system panic. Note that the dump may be usable even if
this information is wrong.

• The PID, PPID, PGRP, UID, PRJ, and CPU fields should have reasonable numbers
when reported by the proc function. Note that the values will be decimal.

• The user function should not respond with a read error.

If these checks indicate that the memory dump is not sane, try to reproduce the error and take a new
dump.

Initializing crash on the M em ory Dum p

To run crash on the core image of memory at the time the system panicked, you must have saved the
core image before rebooting and the file containing the kernel bootable image (/unix file by default)
that was running at the time of the crash. The crash command can be run by any user with read
permission on the Idumpfile.

The command to initialize crash is

fete/crash -d dumpfile [-n namelist] [-w outputfile]

For a 3B4000 adjunct, use the -P PE-number option to specify an adjunct kernel. For example, to
initialize crash on PE 8, the command is

fete/crash -P 8 -d dumpfile [-n namelist] [-w outputfile]

When running a postmortem crash analysis, you must specify the file that contains the memory
dump. On the SBC and 3B2 computer, you can run crash directly from the floppy disks by
specifying -d fdevfifdsk06, or you can first run Jdsysdump(lM) to write the contents of the floppies
to a file on hard disk and specify the name of that file.

If the bootable kernel image is named something other than lunix (either because it was named
something else at the time of the panic or because you copied it to another name after the panic), use

13-8 BCI Driver Development Guide

Using crash to Debug a Driver

the -n option or the second positional parameter to specify that file name. If you want the output of
crash to be written to· a file rather than your tenninal (standard output), use the -w option with the
name of the file. Note that the output of a specific crash function can be redirected to a file even if
you do not use the -w in the crash command line.

The first step in using crash to analyze a post mortem dump is to detennine your program's offset.
The technique for doing this is

1 Find the registers for your program, specifically the stack pointer.

2 Locate the stack and trace back through the stack to find the last routine called by your
driver. The very last routine on the stack pointer should be the panic message that
invoked the crash. Data in the stack previous to the crash can contain pointers to
various parts of the kernel. You have to sift through the data in the stack to find the last
routine called by your driver. This involves cross referencing between driver listings and
the core dump using the crash om function to examine the stack addresses until the
information is found.

3 The offset is the difference between the program counter and where the last routine
started.

From the program counter, you can determine from the name list the exact routine that was
executing at the time of the failure. Going back to the disassembled listing of your driver, you can
then detennine the exact instruction that was running. You should then use the output of the list
command to determine the exact line in your source file where the failure occurred.

In the postmortem dump, you will need the offset described previously. crash displays in absolute
code segments without access to your program's symbolic constants. You must use your program's
offset to determine where your program is in the kernel and to trace its flow.

Initializing crash on an Active System

Running crash on an active system is useful for checking the buffer pools, determining that the
members of driver structures have correct values, and ensuring that all operations are synchronized.
Interactive crash also enables you to examine the contents of the putbuf at any time, which is useful
if your driver code is written to utilize this feature. You may want to use two terminals for
debugging: one to monitor the driver with interactive crash and the other to issue commands that
exercise the driver.

When you run crash on an active system, you access the /dev/mem node, which is the default for the
-d option. The command is

fetclcrash [-n /unix] [-woutputfile]

Testing and Debugging the Driver 13-9

Using crash to Debug a Driver

You must use the kernel image that is running; if this is not named /unix, specify the name of the file
with the -d option. If you want the crash output to go to a file rather than to your terminal
(standard output), use the -w option to specify the file. Note that the output of a specific crash
function can be redirected to a file even if you do not use the -w in the crash command line.

Note that crash does not allow you to view active memory as it-runs. Rather, you take an image of
memory every time you issue a command and this is what you look at.

Using crash Functions

The crash session begins by reporting the dumpfile, name list , and outfile being used, followed by the
crash prompt (». Requests in the crash session have the following standard format

function [argument . ..]

where function is one of the supported functions of crash and argument includes any qualifying data
relevant to the requested function. Use the q function to end the crash session.

Consult the crash(lM) page in the System Administrator's Reference Manual for a list of functions
supported on your computer. Note that a number of crash functions from UNIX System V Release
2 were replaced with other functions on UNIX System V Release 3. Note also that, while most
crash functions are common to all computers, each system also has unique functions that relate to
specific devices supported on that machine. The crash(lM) manual page lists the valid crash
commands.

13-10 BCI Driver Development Guide

Debugging with TRACE [3B400 Computer Only]

A TRACE driver allows you to look at a buffer in the crash dump to find out what the last few
kernel events were. It is useful when debugging an internally complex driver. For instance, TRACE
can help identify the cause of a deadlock condition for a driver that is handling communication
protocols.

The UNIX operating system on the 3B15 and 3B4000 computers includes a TRACE driver as part of
the basic system. Although this is part of the Virtual Protocol Machine (VPM) subsystem, you can
use it for drivers that are not part of VPM as long as you obey the interface requirements. You will
need to write a user program to interpret the output.

Using TRACE

The 1RACE driver is described in trace(7) in the 3B4000 System Administrator's Manual. The
procedure for using this tool is

1 Put many trsave function calls in your code. The calls are in the form

where:

trsave(dev, chno, buf, cnt)
char dev, chno, buj, cnt;

dev a minor device number for the trace driver

chno data stream channel number in the range of 0 to 15.

buf buffer containing the data for an event

cnt the number of characters in the buffer

An example of a trsave call is

trsave(O, 7, &entry, sizeof(entry));

Where "0" is the device number, "7" is the channel number, and "&entry" is the
address of the buffer to be listed. In general, you can define this structure any way that
is appropriate for your driver.

Testing and Debugging the Driver 13-11

Debugging with TRACE [3B400 Computer Only]

2 From user space, use open(2) to open the minor device number.

3 Then use ioctl(2) with the VPMSETC command to enable the selected channel.

Using the putbuf to Select Specific Channels

As an alternative to using the previously described trace driver, you can use the putbuf to select
certain channels. To do this, use cmn_err(D3X) statements like the following in the driver code:

CInn_err(CE_NOTE, "tDEBUG: CH%, message, more message",channo);

The following crash command enables you to select only those messages for channel 4:

crash «: I grep 'CH4'
putbuf d a

13-12 BCI Driver Development Guide

Integration Testing

When you are satisfied with the performance of the driver in a fairly isolated environment, you
should test the driver's functionality, error handling, and performance in an integrated environment.
Activate as many other drivers on the system as possible, and do error-provoking tests as well as tests
to ensure that the performance level remains adequate on an active system. As you will see later in
this chapter, the interaction between drivers in a system may uncover errors that would never surface
in tests run on an isolated driver. As a general rule of thumb, never ignore unexpected behavior on
the system when you are testing the driver, particularly system level activity. For instance, watch for
an increase in errors logged by other devices - your driver may be the cause.

Some examples of configurations on which the driver and the device should be tested are

• multiple copies of the new peripheral board in the system

• multiple subdevices on the new peripheral board

• various mixes of other peripherals, including those at the same or different bus request
and interrupt pnority levels

• (SBC-only) with and without VME memory boards present, using both block 110 and
character 110

• system heavily loaded with user processes (to ensure that pages are being allocated
properly)

When testing a driver for an intelligent board, you may find it useful to use an emulator tool that
enables you to start and stop the microprocessor used in that board.

ASSERT

ASSERT puts debugging code in the driver that checks for some condition that must be true. It
panics the system if that condition is not true. This enables you to confirm that the kernel remains
sane when your driver is installed.

To use ASSERT, include debug.h and compile the driver code with the "-DDEBUG" option to the
cc(l) command.

Testing and Debugging the Driver 13-13

Integration Testing

The format for ASSERT is

#include <sys/debuq.h>

AS S ER T (expression);

ASSERT displays a message in the following format

PANIC: assertion failed: expression, file: file, line: line#

The message is also written to putbuf. ASSERT is defined in the /usrlinclude/debug.h file.

An example is

35 ASSERT(mp 1= NULL);

If mp is equal to NULL, the system panics and displays

PANIC: assertion failed: mp != NULL, file: file, line: 35

13-14 BCI Driver Development Guide

Com m on D river Problem s

The next several pages discuss some of the common bugs in drivers with possible symptoms. These
should be used only as suggestions. Each driver is unique and will have unique bugs.

Coding Problem s

Simple coding problems will usually show up when you try to compile the driver. In general, these
will be similar to coding problems for any C program, such as failure to #include necessary header
files, define all data structures, or properly delineate comment lines. Specific coding errors unique to
driver code include

• ifdef-related problems, such as not providing for certain combinations

• inadequate handling of error legs

C 0 ptim izer Bugs

The optimizer (-0 option to cc(l» on all CPLU 4 releases can be used on drivers without causing
problems. However, some old versions of the C optimizer cause problems when used on driver code.
For instance, assume a device register is being set to 0 inside a loop, the register is not accessed
anywhere else in the loop, and that the register must be set to 0 for every iteration of the loop. The
optimizer pulls the statement that initializes the variable to just before the loop, which results in a
bug in the driver. Disassembly, using either the dis(l) command or the crash dis function, can
identify such problems.

Testing and Debugging the Driver 13-15

Common Driver Problems

Installation Problem s

Installation problems refer to problems that prevent a system boot with your device configured. If
the system won't boot, first try to boot it without the driver to verify that the driver is the problem.
Chapter 5, "System and Driver Initialization," includes a list of .driver rules· that are enforced by the
self-configuration process. Other driver problems that prevent a system boot are

• Missing information in the letclmaster.d file. Specifically, external variables that are not
defined in the master file will not be detected when the driver is compiled but will cause
the following lboot error message:

symbol undefined set to zero

and will probably cause a kernel MMU panic when the variable is referenced.

• Errors in the init or start routine. You can check that the initialization routine is being
entered by inserting an unconditional cmn_err statement at the beginning of the routine.

• Allocating an array in the letclmaster.d file then not declaring it as a global data
structure for the driver or initializing it in an init or start routine. This will not prevent
you from booting the system the first time, but may preclude a reboot from a lunix file.

Data Structure Problem s

A driver can corrupt the kernel data structures. If the driver is setting or clearing the wrong bits in a
device register, a write operation may put bad data on the device and a read operation may put bad
data anywhere in the kernel. Such errors may affect other drivers on the system. Finding this bug
involves painstaking walk-throughs of the code. Look for a place where perhaps a pointer is freed
(or never set) before the driver tries to access it, or places where the code forgets to check a flag
before accessing a certain structure.

13-16 BCI Driver Development Guide

Common Driver Problems

M ism a tc h e d Data E Ie men t S iz e s

Data element sizes in the master file should match those defined in the driver code. If the master file
size is larger than the C-Ievel definition, kernel memory is wasted but otherwise no harm is done.
However, if the master file size is smaller than the C-Ievel definition, the driver may overwrite some
other driver's data when storing into what appears to be its own variable. This could cause the other
driver to behave strangely, or might cause a kernel panic if it attempts to write beyond the mapped
kernel memory.

To check this, use the nm(l) command to display the symbol table of the driver object file. For
instance, if the header file includes

struct drv_struct {
int x;
short y;
}

and the driver source code includes

struct drv_struct drv_xx
struct drv_struct drv_yy[10];

Testing and Debugging the Driver 13-17

Common Driver Problems

compile the code and examine the name list as follows:

$ cc -c -0 drv.o drv.c

$ nm -x drv.o

Symbols from drv.o:

$

Value

L0000008
~0000050

Gass Type

~
file
xtern
xtern

Size Line Section

Because the value of an external variable in an object file is the number of bytes of storage it
requires, the corresponding master file should define these elements as shown below. Note that the
values of the columns other than DEPENDENCIESIV ARIABLES are irrelevant for this discussion.

* DRV driver

*
* FLAG

cs
#VEC
1

PREFIX
drv

SOFT #DEV IPL DEPENDENCIES/VARIABLES
1 4 drv_xx(Ox8)

drv_yy[10] (Ox8)
or, as an alternative

drv_yy(Ox50)

The above sequence works if the data items are defined and declared in the C code. The process is
more complex if (boot is doing dynamic data definitions. For instance, if the driver code has

extern struct drv_struct drv_xx;
extern struct drv_struct drv_yy[];

drv _sub() {
drv_xx.x++;
drv+yy[O].y++

13-18 BCI Driver Development Guide

/* number of array elements varies
/* dynamically at boot time

/* need to use extems or they disappear! ... /

the compilation/name list session would yield the following:

$ cc -C -0 drv.o drv.c

$ om -x drv.o

Symbols from drv.o:

Name Value
drv.c
drv_sub 50000000
drv_xx 0000000
drv_yy 0000000

$

Gass

~file xtem
xtern
xtern

Type

int()

Size Line

r1e

and the external variables are not flagged with any size.

Common Driver Problems

Section

. text

Testing and Debugging the Driver 13-19

Common Driver Problems

To figure out what is needed in the master file, compile the driver with debugging information.
Actually, during driver development, most compilations will include debugging information anyhow.
Thus,

$ cc -g -c -0 drv.o drv.c

$ om -x m.o

Symbols from drv.o:

Name Value Qass Type Size Line Section
drv.c file
drv_struct
x 0000000 (ABS)
y 0000004 (ABS)
.eos 008 (ABS)
drv_sub 0000000 Ole . text
.bf 0000009 Ole . text
.ef 0000017 Ole . text
drv_xx 0000000
drv_yy 0000000

$

This gives some excess information, and doesn't directly specify the size of drY_xx and drv..ss, but
the size field of the de~struct structure indicates the size of the element. To accurately
communicate the size of the dynamic array, one more variable is required. So, the code becomes

extern struet drv_struet drv_xx;
extern struct drv_struet drv_yy[];
extern int

drv_sub() {
drv_xx.x++;
drv+yy[0] .y++

13-20 BCI Driver Development Guide

/* number of array elements varies
/* dynamically at boot time
drv _ en t/* size of drv -yy * /

/* need to use extems or they disappear! * /

The master file contains the following information:

* DRV driver

*
* FLAG

cs
#VEC
1

PREFIX
drv

SOFT #DEV
1

Common Driver Problems

IPL DEPENDENCIES/VARIABLES
4 drv_xx(Ox8)

drv_yy[10] (Ox8)
drv_cnt(%i) = { #C }

This dynamically allocates space for drv sy according to the number of controllers present, and
initializes de~cnt to that number, so the C code can determine the size of the drvsy array.

Value of Initialized Global Variables

The driver should not depend on initialized global variables having the value assigned them in the
driver source file. When the system is booted in absolute mode (from a lunix file), driver global
variables that are not explicitly initialized will be in .bss and will be zero. Global variables with
initializers will be in .data and will have whatever value they had at the time the lunix file was
created.

Timing Errors

Timing errors occur when the driver code executes too quickly or too slowly for the device being
driven. For instance, the driver might read a status register on a device too soon after sending the
device a command. The device may not have had time to update the status register, so the status
register is perceived by the driver to be all 0 bits when, in fact, the device may just be slow in posting
the correct status register setting.

When testing the driver, it is useful to verify that a simple, single interrupt is being handled properly.
After this is confirmed, you should check that the interrupt handler can handle a number of
interrupts that happen at almost the same time.

-1m proper IPL in M aster File

If the IPL in the master file is not appropriate for this device on this system, the driver may cause
system-wide data corruption or system sanity failure on a heavily-loaded system.

Testing and Debugging the Driver 13-21

Common Driver Problems

Corrupted Interrupt Stack

If a driver's interrupt handler runs at an execution level lower than the corresponding IPL for the
device, the processing of one interrupt may be interrupted by a second interrupt from the same
device. This will seriously corrupt the interrupt stack, which may cause the system to panic with a
stack fault or kernel MMU fault. Sometimes, however, it will only cause random operational
irregularities, which can make this a difficult problem to detect. You can identify this problem by
looking at the interrupt stack in the system dump. If it is corrupted, check the execution level of the
driver's interrupt handling routine.

Referencing u_block Data Elements from Interrupt Level

The data elements of the u_block (see user(D4X)) should never be referenced from interrupt
handling routines or subordinate routines that are called by these routines. This will cause random
failure of processes on the system, frequently even processes that are not accessing this driver.

Accessing Critical Data

Check the driver code for data structures that are accessible to both the base and interrupt levels of
the driver. Ensure that any section of the base-level code that accesses such structures cannot be
interrupted during that access by using the spln(D3X) function.

Overuse of Local Driver Storage

If the driver routines use large amounts of local storage, they may exceed the bounds of the kernel
stack or the interrupt stack, which in tum will panic the system.

Incorrect DM A Address Mapping

Failure to set up address mapping for DMA transfers correctly is another common mistake. On a
read operation, a bad address map may cause data to be placed in the wrong location in the main
store, overwriting whatever is there including, for example, a portion of the operating system text.

To check for this, write a simple user program that writes data to all possible memory locations
(including shared memory, stack, and text), then reads it back and compares the input and output.
As soon as anyone of these operations fails, you should reboot the system immediately to ensure that
kernel memory is sane.

13-22 BCI Driver Development Guide

Chapter 14: Perform ance Considerations

Contents

Introduction

General Performance Guidelines 14-2
Optimizing for Speed and Size 14 - 2

14-1

Tools for Checking Driver Performance 14-3

Testing I/O Operations for Block Devices 14-3
Using the Disa5sembler to Analyze C Code 14-4

Tuning the C Code for Performance 14-5

Improving Both Speed and Code Size 14 - 5
Increasing Speed 14-7
Reducing Driver Object Size 14-8

Example of Improved C Code 14-9

Using Assembly Language in Driver Code

Writing asm Pseudo-functions 14-16
Definition of asm 14-17
Optimizing Code Containing asm 14-19

14-16

Performance Considerations 14-i

How to Use asm 14-20

Drivers and System Performance 14-21

Using System Buffers 14-21
Checking Sleep Priorities 14-21
Driver Impact on System Tunable Parameters 14-22

14-ii BCI Driver Development Guide

Introduction

One of the most important phases of driver development is evaluating the performance of the driver,
which must include the overall impact a driver has on system performance. After a driver is written,
tested, and debugged, adjustments may still be necessary to optimize performance and reliability.
You may also want to create tools (or augment existing system tools) to monitor a driver's impact on
system performance.

The first step in optimizing the performance of the driver is to run the kernel profiling tools
(protiler(IM) to identify where the driver spends the most time. Optimizing those areas will give
the greatest gains in performance for the least effort. In most cases, these improvements can be
accomplished by rewriting portions of C code.

If further performance enhancements are needed, some critical functions can be rewritten as asm
pseudo-functions. The lusrlincludelsyslinline.h file defines a number of system functions (including
spl*) as asm macros. Including this header file in driver code may improve execution speed, but may
also impact the portability of the driver to other UNIX System V processors or releases.

Using assembly language code in a driver will also make the driver more difficult to port and
maintain. When converting C code to assembler to improve performance, be sure to comment out
(rather than delete) the C code that provided the same functionality.

A driver with satisfactory performance may still degrade general system performance, either because
it is monopolizes system resources or because the driver's tunable parameters are not set correctly.
Integration testing of a driver, should include checking both resource usage and tunable parameters.
Tools may be created to monitor the activity a driver, but be careful. Experienced programmers
know that complex tools often create more system performance problems than they solve.

Performance Considerations 14-1

Introduction

General Perform ance Guidelines

A number of general performance guidelines are summarized below.

1 Do not include extraneous code in the interrupt routines, but get in and out of these as
quickly as possible.

2 Keep critical code sections (those that are protected by spl*) as small as possible.

3 Choose sleep priorities that do not cause your driver to hog system resources.

o ptim izing for Speed and Size

Optimizing code can mean either increasing execution speed, reducing the size of the code, or both.
For driver code, "size" can refer to either the executable codesize or data size. Here the general term
"driver object size" refers to the sum of code and the data size. Some optimization techniques will
reduce both driver code and data size, while other techniques will trade off between them. Still other
techniques will optimize for speed and the cost of driver object size.

The size(l) command can help to evaluate the driver object size, but it does not include any storage
defined in the master file and allocated by self-configuration. For instance

size /boot/xdrv
5176 + 364 = 0 = 5540

does not include the variables defined in the master file:

xdrv_xdc[#C] (%Ox29fc)
xdrv_cnt(%i) = {#C}
xdrv_spint[#C] (%Ox08)

so the XDRV driver will need 0x3044 bytes of .bss and 4 bytes of .data per controller, in addition to
the 5540 bytes that size lists.

14-2 BCI Driver Development Guide

Tools for Checking Driver Perform ance

Most driver perfonnance improvements will come from analyzing how the driver works and l<;>oking
for sections where it could be more efficient. The tools discussed in this section can be used to
support this kind of analysis.

Testing 1/0 Operations for Block Devices

The system buffer cache header includes the b_start member, which can be used to monitor the
amount of time required for an I/O operation. To use this, update the b_start member when
updating other status information in the driver's strategy(D2X) routine, then write this value to the
putbuf where it can be examined with the crash(lM) utility, as shown in Figure 14-1. Whenever
measuring performance, write messages to putbuf to avoid the overhead of writing to the console.

The driver's interrupt handling routine will be called when the I/O transfer is completed. The int
routine subtracts the value of b_start from the current time to determine the time required for the
I/O transfer. The following code, from a disk driver, illustrates how this value is written to a queue
that holds performance data, where it can be accessed for sar(lM) reports. Other options are to
write it to a private queue that records performance data or to the putbuf.

dfstrategy(bp)

bp->b_start = Ibolt;

#if TEST
crnn_err(CE_NOTE, n!start time = %x'\nn,bp->b_start);

#endif

dfint(unit)

dfcp->df_stat[drv].io_resp += (lbolt - bp->b_start);

Figure 14-1 Using b_start to Measure Block 110 Performance

Performance Considerations 14 - 3

Tools for Checking Driver Performance

Using the Disassem bier to Analyze C Code

Disassembly involves "un-compiling" the object code to see what the compiler actually did with it.
Driver code can be disassembled with either the dis(l) command or the crash(IM) dis function. In
most cases, the crash dis function provides more useful information for analyzing driver code.
Chapter 13 discusses how to use these tools.

14-4 BCI Driver Development Guide

Tuning the C Code for Performance

Significant performance improvements can often be realized by fine-tuning C code. Most application
programming practices that enhance performance are also effective on driver code. These are well
documented in the general industry literature, such as Jon Louis Bentley's Writing Efficient Programs.

In addition to algorithm analysis and code profiling, disassembling the C code and seeing what the
compiler actually did with it may indicate areas that could be improved.

To use the code optimizer, the cc command line should include the -0 option with the -K sd option
(for speed optimization) or the -K sz option (for size optimization). The optimizer called by the -0
option does not optimize assembler code or references to global variables.

The following sections discuss programming practices that may enhance the performance of C code.

Improving Both Speed and Code Size

In general, a shorter piece of code tends to run faster than a longer piece of code, although there are
exceptions where a shorter piece of code might be slower, due to interactions with the instruction
cache. Here are some suggestions that can be used to produce both smaller and faster code.

• Use local variables where possible (that is, when a variable is used only in one function
and does not need to be global). Local variables can be addressed with shorter
addressing modes and can be selected by the optimizer's register allocation algorithm to
be placed into registers.

• In for loops that count from 0 to n, recode if possible so that counting is from n to 0 (so
that the loop termination condition is a test against zero).

• Use integers in place of char and short variables unless the variables are in an array or
an array of structures.

• Use integers or characters in place of bit fields unless the bit fields are in an array or an
array of structures.

Performance Considerations 14 - 5

Tuning the C Code for Performance

• Put frequently used, inner block local variables and procedure arguments into registers.
If you know which variables are used frequently at run-time, you can complement the
optimizer's register allocation algorithm by declaring frequently used variables as
registers. The following example shows how this technique can be used:

msg_process(type,msg_ptr)
int type;
char *msg_ptr;
{

}

if(type == MSG)
{

register char *cp;
for(cp msg_ptr;*cp;cp++)

}

else

In this example, the variable cp is explicitly defined as a register variable.

• Replace array indexing operations with pointer operations. As an example, the array
indexing operations

int matrix[50];
int i;
for(i=O; i < 50; i++)

matrix[i]=O;

can be transformed into the pointer operations

int matrix[50];
int *ip;
for (ip=matrix; ip <= &matrix[49];ip++)

*ip=O;

to increase execution speed and reduce code size. This array will be in the kernel's .bss,
if it is external to the function. Since for a driver this runs only once during system
initialization, the performance impact is minimal.

14-6 BCI Driver Development Guide

Tuning the C Code for Performance

• Replace frequent references to global data structures by a local pointer which can be
optimized into a register. For instance, consider code that frequently writes to the
u_block:

routine(...)

u.arg =
u.otherarg

Performance may be improved when the above example is rewritten to include a local
pointer to the u_block:

routine(...)

Increasing Speed

{

register struct user * uptr = &u;

uptr->arg = ...
uptr->otherarg =

}

The following recommendations may help to increase code execution speed, although driver object
size may be increased.

• Use the -0 -K sd options on the cc command line.

• Put small routines in the same file as the routines calling them. The small routines can
then be expanded in-line by the optimizer.

• Use short integers or characters in place of bit fields, even in arrays or arrays of
structures.

• Use signed in place of unsigned integers, unless the higher numeric range of unsigned
values is required.

Performance Considerations 14-7

Tuning the C Code for Performance

• Some low repetition loops (less than three iterations) can be unrolled into straight-line
code to decrease the loop indexing overhead. For example

for(sum=O,i=O;i<=2;i++)
sum += X[i];

can be replaced with

sum = X [0] + X [1]] + X [2] ; .

Unroll the loop only if the unrolled loop is smaller than 256 bytes or if the original loop
is already larger than 256 bytes, (size of the instruction cache). While this will improve
performance, it may make the driver code harder to read and maintain. Be sure to
provide adequate comments.

Reducing Driver Object Size

The following techniques can be used to reduce the size of object code, possibly at the expense of
execution speed.

• Use the -0 -K sz options on the cc command line.

• Use characters or short integers in place of integers within arrays and structures. In the
case of structures, care must be taken in the ordering of structure members so that
alignment requirements (for example, shorts on halfword boundary) do not negate
potential savings from the smaller data size by creating holes.

14-8 Bel Driver Development Guide

Exam pie of 1m proved C Code

This example shows how some careful reworking of the C code can significantly improve
performance. Figure 14-2 is a simplified version of the read(D2X) routine for a network driver
before it was reworked. A perfonnance analysis tool measured the receive throughput for the driver
at 5966 characters per second (cps). The read routine contains statements that are executed once
per-64 characters, once-per-16 characters, and once-per-character.Because they are executed most
often, the once-per-character statement should be examined most closely.

Note the definition of the first two variables (Lines 3 and 4). The compiler being used allows only
one pointer register variable and one register variable for a short integer or character. These register
variables are taken as the first two variables defined in a function. Placing the most frequently used
variables in registers improves the perfonnance of the driver.

Performance Considerations 14-9

Example of Improved C Code

1 pre_readO
2 {
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

register unsigned char *ptr;l* MUST BE FIRST * /
register short _fib;!* MUST BE FIRST * /
unsi gned short c;
struct pre_pkbufr * pkb;
unsigned short bitIoc = 0100000;

WHILE not empty
*/

while (!(inw(ST A TUS) & RCVR_EMPTY)) {
MOV_I(c);

j*

* * WHILE not empty AND no frame or parity error
* * AND char is channel number
*/

while (!(inw(ST A TUS) & RCVR_EMPTY)) {
if «c & (PARITY _ERR I FRAME_ERR») {
if (c & PARITY_ERR) {
stats.parity_err-t- +;
}
if (c & FRAME_ERR) {
stats.frame_err+ +;
}
break;
}
if (!(c & CHAN_NUM)) {/* keep looking for chan */
break;
}
ptr = &pkb->Pdata[O];

WHILE not empty AND not a channel number
*/

while (!(inw(STATUS) & RCVR_EMPTY) {
MOV_I(c);
if (c & (PARITY_ERR I FRAME_ERR» {j* parity/frame error */
continue;
}
if (c & a-IAN_NLTM) {I· it's a channel number */
break;
}

switch (c = c & MASKl) {
!* Protocol control characters * /
case P _C_O:
case P_C_l:
case P_C_2:

case P _C_n:
default:
if (c & DATA_CHAR) {/* we got data */
if (pre_p->tail) { } j* trailer started? */
else {j* just data * /
*ptr+ + = c & CHAR_MASK;
pkb-> Plen+ +;
bitIoc »= 1;
}
break;
}

14-10 Bel Driver Development Guide

Example of Improved C Code

63
64 f- more frequent protocol control characters -/
65 if «(c & MASK2) = = P _C_xO) II «c & MASK2) = = P _C_xl» {}
66 if «c & MASK2) = = P _Cx2) { }
67 if «c & MASlG) = = P _Cx3) {}
68 if «c & MASK2) == P_C_x4) {}
69 if (c & SUPERVlS) {} /- supervisory control -/
70 else {/- in-line control character -/
71 -ptr+ + = c & CHAR_MASK;
72 pkb-> Plen+ +;
73 pkb-> Phibits 1= bitloc;
74 bitloc »= 1;
~ }
76 }!* end of switch on 'c' -/
77 } /- not empty A.1I.lD not channel number -/
78 }!* not empty AND channel number -/
79 }/. not empty • /
80 }

Figure 14-2 read Routine Before Being Improved

The body of the pre_read routine contains three nested loops. The outermost loop reads characters
from the receive FIFO into the variable c. The middle loop searches for a channel number (signified
by the CHAN_NUM bit being set). This loop does not read characters. It is always entered at the
top with a character in c. This character comes either from the outermost loop or from breaking out
of tjle innermost loop when a channel number is found. The innermost loop processes the packet
contents. For each character, the character type is determined and appropriate actions taken.

In lines 38 - 49 the code first checks that the character received is data, then checks for a number of
other conditions. Less frequently encountered protocol control characters are checked for before the
more frequent control characters. Unlike many compilers, the one being used implements the switch
as a series of test-and-jumps. Figure 14-3 shows how this innermost loop was rewritten, increasing
receive throughput to 7071 cps.

Performance Considerations 14-11

Example of Improved C Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

/*
* * WHILE not empty AND not a channel number
*/

while (!(inw(STATUS) & RCVR_EMPTY» {
MOV_I(c);
if (c & (PARITY_ERR 1 FRAME_ERR» {/* parity/frame error */
continue;
}
if (c & CHAN_NUM) {/* it's a channel number */
break;
}
c &= MASK1;
if (c & DATA_CHAR) {/* data rather than control */
if (pre_p->tail) { } /* trailer started? */
else {/* just data * /
*ptr+ + = c & 0377;
pkb-> Plen+ +;
bitloc »= 1;
}
break;
}

/* more frequent protocol control characters * /
switch (c & MASK2) {
case P _C_xO:
case P _ C_xl :
case P _ C_x2:
case P_C_x4:
default:
}

if «c & MASIG) == P_C_x3) {}
if (c & SUPER VIS) { } /* handle supervisory control * /
else if (c & INLINE) { /* in-line control character * /
*ptr+ + = c & 0377;
pkb-> PI en + + ;
pkb-> Phibits 1= bitloc;
bitloc »= 1;
}

/* less frequent protocol control characters * /
switch (c) {
case P_C_O:
case P_C_l:
case P_C_2:

14-12 Bel Driver Development Guide

Example of Improved C Code

47 case P_C_n:
48 default:
49 }

Figure 14-3 Rewritten Innermost Loop for pre_read

Rather than using interrupts, this driver has statements in the two inner loops that check for frame or
parity errors. By removing these, (lines 6-11) throughput increased to 7282 cps.

Next the developers looked at the "character is data" case within the innermost loop. The sole short
register variable was being wasted by the implementation of MOV _I(A). The macro was changed to
leave the 16-bit word in _val (which resides in the ex register of the 80186 microprocessor) rather
than moving it to a passed argument. The macro, now called MOV _1_ V AL() had two advantages
over its predecessor.

1 The new macro could be implemented with fewer instructions, since a final "move" to
the passed argument was no longer required.

2 The 16-bit word in _val could now be used in computations. Previously, the stack
variable c had been used for computation.

All references to c were changed to _val, making the most critical variable in the routine a register
variable. The throughput increased to 7816 cps.

The innermost loop of the routine is now reading the next character, checking for a channel number,
masking, then checking the "character is data" case.

When processing a data character, only the lower 8 bits of the character were used. This made the
masking done before the "character is data" check redundant if the character was indeed data. By
moving the "masking" statement from before the "character is data" check to after the check,
throughput increased to 8309 cps.

Next, the variable bitloc (line 18) was removed from the routine. Since in-line control characters
were rare events, driver performance was improved by having the driver calculate bitloc when it was
needed, thus eliminating another statement from the frequently-used "just data" case.

Another change to the "just data" case was to remove the masking off of the upper byte of _val
before the character was put into the packet buffer. This modification was also made when handling
in-line control characters. Disassembling the code showed that the statement

*ptr+ + = _val & 0377

was turned into assembly instructions which performed the logical AND operation on _val, then put

Performance Considerations 14 -13

Example of Improved C Code

the lower half of the ex register (_val) into the buffer. Casting _val to an unsigned character had the
same effect, eliminating the logical AND instruction. So, the statement was changed to

*ptr+ + = (unsigned char) _val;

With these two modifications improved, throughput increased to 8503 cps. Figure 14-4 shows the
improved read routine.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

pre_readO
{
register unsigned char *ptr;l* MUST BE FIRST */
register short val;/* MUST BE FIRST * /
struct pre_pkbufr *pkb;

/*
* * WHILE not empty
*/

while (!(inw(STATUS) & RCVR_EMPTY)) {
MOV_I_VALO;

/*
* * WHILE· not empty AND char is channel number
*/

while (!(inw(STATUS) & RCVR_EMPTY)) {

ptr = &pkb-> Pdata[O];

/*
* * WHILE not empty AND not a channel number
*/
while (! (inw(ST A TUS) & RCVR_EMPTY)) {
MOV_I_VALO;
if (val & CHAN_NUM) {/* it's a channel number */
break;
}

if (val & DATA_CHAR) { /* data rather than control * /
if (pre_p->tail) { } /* trailer started? */
else {/* just data * /
*ptr+ + = (unsigned char) val;
pkb-> Plen+ +;
}
break;
}

/* more frequent protocol control characters * /

else if (val & INLINE) { /* in-line control character */
*ptr+ + = (unsigned char) val;

14-14 Bel Driver Development Guide

41
42
43
44
45
46
47
48}

Example of Improved C Code

pkb-> Phibits 1= (0100000 > > pkb-> Plen);
pkb-> Plen+ +;
}

} /* not empty AND not channel number * /
}/* not empty AND channel number */
}/* not empty * /

Figure 14-4 Improved pre_read Routine

Performance Considerations 14-15

Using Assem bly Language in Driver Code

Ifrewriting the C code does not give you acceptable periormance for the driver, you may want to
rewrite the critical sections in assembler. If you only need to write a small piece of a routine in
assembler, you can use an asm escape from C. In general, however, the asrn escapes are hard to
maintain and you should write asm pseudo-functions for the appropriate sections.

Writing asm Pseudo-functions

The asm facility lets you define constructs that look like static C functions and can access C symbols.
Each asrn macro has one definition and zero or more uses per source file. The definition must
appear in the same file as its use or be included in that file; the same asm macro can be defined
differently in different files for one driver.

The body of an asrn pseudo-function contains lines specifying possible storage classes of the
arguments. Each storage specification line is followed by lines of text into which the pseudo-function
call will be expanded if the storage class specification line matches the actual arguments.

The asm macro definition declares a return type for the macro code, specifies patterns for the formal
patterns, and provides bodies of code to expand when the patterns match.

As the cc compiler expands the code body, it replaces each formal parameter in an asrn macro with
its idea of the assembly language locations of the actual arguments.

When used, asm macros look like normal C function calls. The can be used in expressions and can
return values. The arguments to an asm macro can be arbitrary expressions, as long as they do not
contain uses of the same or other asm macros.

When the argument to an asrn macro is a function name or structure, the compiler generates code to
compute a pointer to the structure or function; the resulting pointer is used as the actual argument of
the macro.

If the asm definition and the asrn use differ in number of parameters, the compiler silently generates
a normal subroutine call. This may lead to an unresolved external reference.

The asrn body is processed by the C preprocessor. C-style comments (prefaced by 1*) are removed at
that time. The C preprocessor recognizes conditional blocks (#if, #ifdef, and #ifndef constructs)
that are contained within an asrn macro.

A #ident statement in an asm macro will be ignored by both as and cc. As expected, a .ident
pseudo-op used within an asrn macro produces a .comment section in the .0 file.

14-16 BCI Driver Development Guide

Using Assembly Language in Driver Code

D e fin itio n 0 f as m

The syntactic descriptions that follow are presented in the style of The C Programming Language by
Brian Kernighan and Dennis Ritchie. The syntactic classes type-specifier, identifier, and parameter
list have the same form as in that document. Elements enclosed in square brackets "[]" are
optional, unless the right bracket is followed by "+", which means
"one or more repetitions" of a description. Similarly, "*,, means "zero or more repetitions."

asm macro:
asm [type-specifier] identifier ([parameter-list])
{
[storage-mode-speciJication-line

asm-body] +
}

That is, an asm macro consists of the keyword asm, followed by what looks like a C function
declaration. Inside the macro body there are one or more pairs of storage-mode-speciJication-line
(pattern) and corresponding asm-body. If the type-specifier is other than void, the asm macro should
return a value of the declared type.

storage-mode-specification-line:
% [storage-mode [identifier [, identifier] *] ;] +

That is, a storage-mode-speciJication-line consists of a single line (no continuation with \) that begins
with % and contains the names (identifiers) and storage modes of the formal parameters. Modes
for all formal parameters must be given in each storage-mode-speciJication-line (except for error).
Both the % and the terminating "}" must be the first character on that line. If an asm macro has no
parameter-list, the storage-mode-speciJication-line can be omitted.

Performance Considerations 14-17

Using Assembly Language in Driver Code

The compiler recognizes the following storage modes in asm macros:

treg A compiler-selected temporary register.

ureg A C register variable that the compiler has allocated in a machine register.

reg A treg or ureg.

con A compile-time constant.

mem An operand that matches any allowed machine addressing mode, including reg and COD.

lab A new label. The identifier(s) that are specified as being of mode lab do not appear as
formal parameters in the asm macro definition, unlike the preceding modes. Such
identifiers must be unique.

error Generate a compiler error. This mode exists to allow the programmer to flag errors at
compile time if no appropriate pattern exists for a set of actual arguments.

The asm body represents assembly code that the compiler generates when the modes for all of the
formal parameters match the associated pattern. Syntactically, the asm body consists of the text
between two pattern lines (that begin with "%") or between the last pattern line and the } that ends
the asm macro. C language comment lines are not recognized as such in the asm body. Instead they
are simply considered part of the text to be expanded.

Formal parameter names can appear in any context in the asm body, delimited by non-alphanumeric
characters. For each instance of a fonnal parameter in the asm body the compiler substitutes the
appropriate assembly language operand syntax that will· access the actual argument at run-time. As
an example, if one of the actual arguments to an asm macro is x, an automatic variable, a string like
4(%fp) would be substituted for occurrences of the corresponding formal parameter. An important
consequence of this macro substitution behavior is that asm macros can change the value of their
arguments. Note that this is different from standard C semantics.

For lab identifiers, a unique label is chosen for each new expansion.

If an asm macro is declared to return a value, it must be coded to return a value of the proper type in
the machine register that is appropriate for the implementation.

No line within the asm body can start with "%" or "$".

14-18 Bel Driver Development Guide

Using Assembly Language in Driver Code

Optimizing Code Containing asm

The -0 option to the cc command optimizes all code in a function except the asm code.

An asm must confonn to the following restrictions if the surrounding code is to be optimized:

• The asm cannot contain a branch to or from another asm or any other point in the
program outside the body of the asm itself. Function calls are permitted within the asm,
and it is not required that the called function return. Except for functions that do not
return, control following execution must fall through to the next executable statement.

• The asm should not modify code generated by the compiler or affect the contents of
registers on which the generated code depends. It might change the contents of scratch
registers (%rO through %r2) but should not modify user registers (%r3 through %r8).

It is the programmer's responsibility to ensure that code containing asm works correctly when
optimized.

Performance Co~derations 14-19

Using Assembly Language in Driver Code

How to Use asm

This example shows how to define and use asm macros. Two macros are defined: spl7 and splx.
The spl7 macro changes the priority to the highest possible level; the splx macro restores the priority 0

to its previous . level.

The definition of spl7 is:

asm int
sp17(
{

}

The definition of splx is:

MOVW
MOVW

asm int
sp1x(opsw)
{

%. mem
MOVW
MOVW

" reg
MOVW
MOVW

%psw,%rO
&.Ox1e100,%psw

opsw;
%psw,%rO
opsw,%psw
opsw;
%psw,%rO
opsw,%psw

An example of the use of these macros is:
untimeout(untid)
register untid;
{

#mask all interrupts

register struct callo *pl, *p2;
register s;

}

·s = spl7()
/ * protected code * I
splx(s);

14-20 BCI Driver Development Guide

Drivers and System Perform ance

In addition to optimizing the performance of your driver, you need to ensure that your driver is not
degrading system performance. To do this, you will need to monitor system performance with your
driver active on a live system. Factors in your driver to check include.the following:

• Intense buffer use in your driver may reduce performance of other drivers or user
processes because of the reduced memory available on the system.

• Sleep priorities that are set too Jrigh may be causing your driver to unnecessarily "hog"
system resources.

• Some system tunable parameters may need to be modified because of the presence of the
new driver.

Using System Buffers

Whether the driver is using a standard or private buffering scheme, avoid consuming a
disproportionate amount of system resources. The following practices are suggested:

• Be sure to release buffers when they are no longer needed (brelse(D3X) and putcf(D3X)
functions). . -

• The kernel tunable parameters NBUF (for system buffers) or NCLISTS (for cblocks)
may need to be modified because of your driver.

C be c kin g Sle e p P r io r itie s

Chapter 9 discussed how to determine sleep priorities levels -and whether or not the process should
ignore the receipt of signals.

Performance Considerations 14-21

Drivers and System Performance

D r i v e"r Imp act 0 n S y s t e m Tun a b Ie Par a met e r s

The fetclmaster.d/kernel file contains several system tunable parameters that may need to be modified
to accommodate a new driver. The administrative documentation describes these in more detail.
This section only discusses the impact a new device may have on tunable parameters.

NCLIST

NBUF

NHBUF

NINODE

NFILE

Specifies the num~r of cblocks to allocate to the cfreelist structure. If the
new character device(s) use clists for buffering, this parameter should be
increased. The general rule is to allocate eight buffers for each device that is using
clists.

Specifies the number of system buffers to be allocated to the system buffer cache.
This number may need to be increased for a new block-access device.

Specifies the number of ''hash buckets" to allocate in the system buffer cache. This
value must be a power of 2 and should be equal to NBUF.

Specifies the number of inode table entries to allocate. If the driver being installed
significantly increases the number of files that will be opened at a given time, this
number may need to be increased.

Specifies the number of open file table entries to allocate. This number should be
slightly less than NINODE; if NINODE is increased, NFILE should also be
increased. ."

14-22 BCI Driver Development Guide

Chapter 15: Porting Drivers

Con te n ts

Introduction

Making Driver Code Portable

Using Conditional Compilation Statements 15-2
Writing Machine-Dependent Subroutines 15':"'3

15-1

15-2

Porting Drivers from Other Systems 15 - 4

printf Driver Function 15 - 4
panic Driver Function 15-4
Conditional Preprocessor Statements 15 - 4

Machine-Specific Function and Structure Information 15 - 5

Machine-Specific Functions 15 - 5
IPL-to-spl Correspondence 15-5

MMU Implications for Porting 15-6

Porting Drivers 15 - i

Introduction

Porting a device driver to another machine can be difficult, because drivers are more sensitive to
machine-specific details than other software. This chapter discusses problems likely to be
encountered when porting between systems supported by this manual. It shows how to isolate
machine-dependent sections of code, and gives guidelines for porting drivers from other UNIX
System releases and machines.

Although object-code portability for drivers is not feasible at this time, many drivers can be ported by
merely recompiling their source code on the new system. When the driver is recompiled, it picks up
much system-specific information from the header files. For instance, while there are some
differences in the user structure between machines, the sys/user.h header file always defines the
structure as it is implemented on that machine.

For more infonnation about porting drivers, see J. E. Lapin's Portable C and UNIX System
Programming. It explains the relationships between the various UNIX dialects, points out common
pitfalls when porting code, and provides some helpful insight into writing portable C code. Of
particular interest is the section describing a portable interface to the version-dependent features of
TrY drivers.

Porting Drivers 15-1

Making Driver C ode Portable

For a number of reasons, some sections of most driver code is not totally portable. The following
sections discuss methods for writing driver code that isolates non-portable code sections.

Using Conditional Com pilation Statem ents

Conditionally compiled statements are useful when only a few sections of the driver code, master
files, and header files are non-portable. However, if used excessively, they can make the code
difficult to read and maintain.

Driver code and header files use the standard C compiler conditional statements, primarily #if. The
-D directive to the C preprocessor (called by cc(I» lets you specify the version- or machine-specific
code that should be included or excluded. The two left columns in Table 15-1 give the system
definitions that are recognized by the preprocessor; the two right columns give the conventional
system definitions for 3B4000 adjuncts, which must be defined to the C compiler.

Table 15-1 C Preprocessor System Definitions

Definition Svstem Definition Svstem.

u3b2 Any 3B2 computer or SBC u3badp . 3B4000 ADP kernel

u32100vrne SBC computer u3badp 3B4000 EADP kernel

u3b15 3B15 u3bacp 3B4000 ACP kernel
or HOST or 3B4000 Master Processor

ADJUNCf any 3B4000 adjunct
u3b 3B20 computer (ACP, ADP, or EADP)

vax DEC® V AX system

pdpll DEC PDP-l1 system

15-2 BCI Driver Development Guide

Making Driver Code Portable

Double OR bars are used to indicate an alternative system. For instance, if you have code that
should run for the 3B2, the 3B15, or the 3B4000 ACP kernels, the syntax is:

#if u3b2 I I u3b15 I I u3bacp
code

#endif l*u3b2 :: u3b15 :: u3bacp *1

The conditional statements can also be used to specify a section of code that should not be included
for a specific system. For example:

#if !(u3badp I u3beadp)

is interpreted to mean "if neither u3badp or u3beadp." The #ifndef statement has a similar meaning,
so:

#ifndef u3b2

means "if u3b2 is not defined", or "do this on any kernel other than u3b2."

The following syntax is also legal:

#if Idefined{u3b15) && Idefined{u3b2)

meaning "if neither u3b15 nor u3b2 is defined, do this."

All conditionally compiled sections of code must be terminated with a #endif statement; this line
should be commented to indicate the condition being closed, as in the example above.

Writing Machine-Dependent Subrou"tines

When a driver must have large portions of machine-dependent code it should be isolated in separate
routines. The conditional statements can then be used to call the appropriate subroutine for the
system. This is the recommended approach, for example, for isolating code that must interact
directly with the 3B4000/3B15 dual-MMU.

Porting Drivers 15-3

Porting Q rivers from 0 ther System s

This section lists some of the modifications that may be necessary when porting drivers from other
hardware, other versions of the UNIX operating system, or UNIX System V Release 2. This list is
not exhaustive, but provides infonnation on some known porting problems.

printf Driver Function

Earlier UNIX releases used the printf kernel function to send driver messages to the console. The
kernel's printf(3S) should be replaced (in UNIX System V, Release 3) with the cmn_err(D3X)
function.

panic Driver Function

In other UNIX system releases, BCI drivers used the panic kernel function to send a message to the
console and panic the system. The proper convention in UNIX System V Release 3 is to use
cDlD_err(D3X) with the "CE_PANIC" argument. For example

panic("shminit: tunable parameter PREGPP too small for shared memory\n");

should be replaced with:

cmn_err(CD_PANIC,"shminit: tunable parameter PREGPP too small for shared memory");

Conditional Preprocessor Statements

In UNIX System V C Programming Language Utilities (CPLU) Release 3.1 and forward, the
preprocessor requires a matching #endif statement for all #if, #ifdef, and #ifndef statements. If a
#endif is omitted, the compiler gives the following error message:

Unexpected EOF within #if, #ifdef, or #ifndef

With the use of #include statements, the #endif statement can be in a file other than the initial
conditional statements, although driver code is easier to maintain when the conditional statements
and tenninators are in the same file.

Labels on #endif statements may produce warnings during compilation, which may be ignored.

15-4 BCI Driver Development Guide

Machine-Specific Function and Structure Inform ation

This section discusses function and structure differences that may impact driver portability among the
machines supported by this book.

Machine-Specific Functions

Table 15-2 lists the Section D3X functions that are supported on some but not all computers covered
in this document.

Table 15 - 2 Machine-Specific Functions

Computer -Function SBC 382 38151384000

getvec X
dma_breakup X
d.rv rfile X
getsrama X
getsramb X

IPL-to-spl Correspondence

As the table on the spln(D3X) reference page shows, the IPL-to-spl correspondence varies between
machines. When porting hardware and the associated drivers, it may be necessary to modify the spl
numbers or the IPL of the device to ensure that critical code sections run at the proper execution
level.

Porting Drivers 15 - 5

M M U 1m plications for Porting

Chapter 6 discusses the dual-rvfMUs used on the 3B15 computer and 3B4000 Master Processor.
Many drivers will not require special coding for the dual MMUs, as long as the driver is compiled
using the 3B15 header files. Drivers that extract a section id from a virtual address or reference
SRAMs as simple arrays will have to be recoded to utilize the dual MMUs, as.will drivers that do
virtual-to-physical translation, although the impact on drivers that use the vtop(D3X) function will be
less than on those that have their own software translation routines.

In conjunction with driver changes, any corresponding intelligent device firmware must be analyzed
for possible dual rvtMU impacts. When firmware accesses memory management tables or relies upon
a breakdown of a virtual address to translate addresses, the rules and assumptions made must be
carefully examined. Data passed from software to firmware for use in address translation must be
coordinated. In some cases, a choice can be made as to whether firmware will be changed or whether
the corresponding software driver will acconunodate the dual MMU changes. For example, the
driver for the IDFC disk controller on the 3B15 computer is passed SRAMA and SRAMB values and
performs its own virtual-to-physical translations. The firmware, which was originally designed to run
on a single MMU computer, uses bit 29 as part of the SSL (Segment Select field). Rather than
change the firmware to ignore bit 29, the IDFC driver departs from the standard use of the
getsrama(D3X) function and passes unadjusted SRAMAISRAMB values so that using bit 29 will still
result in the correct address translation.

15-6 BCI Driver Development Guide

Chapter 16: Packaging the Driver

Contents

Introduction 16-1

Items to Check Before Running INSTALL, 16-2

Installation Steps 16-3

The Driver Update Package 16-5

Packaging the Driver 16-i

Introduction

This chapter gives instructions for packaging the driver software for resale and installation on other
systems.

All software packaged -for any of the systems covered in this book must include INSTALL and
DEINSTALL scripts that run under the system administration utility (sysadm(lM)). Detailed
instructions on writing these scripts are in the Application Software Packaging Guide. See Chapter 1
for infonnation on how to order this document.

Packaging the Driver 16-1

Items to Check Before Running INSTALL

INSTALL scripts for drivers should check for the following conditions before proceeding to install the
driver on the system:

1 this driver has not already been installed

2 no file in the letclmaster.d directory uses the same prefix as this driver

3 all dependencies of this driver are honored

4 files associated with this driver do not have the same mune as any existing files on the
system. Check the lusrlincludelsys, letclmaster.d, Iboot, and appropriate lusr/~rclutslio
subdirectories.

Such checks are more necessary for drivers than for most other software, since driver software and
associated files must go into certain specified directories.

16-2 BCI Driver Development Guide

Installation Steps

Chapter 12 discusses the general steps for installing a driver.
The following list describes how and when these should be performed in relationship to the system
administration INSf ALL script:

I The following should be complete before running INSTALL:

o Inst~ the hardware on the system.

II The following functions should be performed by the INSTALL script:

o Confirm that this driver is not already installed.

o Check that all dependencies of this driver are met.

o Check that the space requirements for this driver are met.

o Create any letcfpasswd or fetclgroup entries that may be required for
software related to this driver.

o Create the header file(s) in lusrlincludelsys or appropriate subdirectories.

o If you are releasing driver source code, create the source code files in the io,
master.d, and sys subdirectories of the lusrladd-onIDRIVER-NAME directory.

o Compile the object file in the same directory as the source code.

o Create the master file in the fetclmaster.d directory

o For software drivers, generate a major number in the master file and create
the bootable object file in the boot directory using the drvinstall(lM)
command.

o For hardware drivers, generate the bootable object file in the boot directory
using the mkboot(lM) command.

o On systems other than the 3B15 and 3B4000 MP, create the diagnostics
package in I dgn and add the driver to the· edcdata table with the
edittbl(lM) command.

o On the SBC and 3B2 computers, set up scripts that create special device
files in either the letclbrc.d or letclrc.d directory (for devices other than
Disk or Serial). Use the getmajor(lM) command to get the external major
number for these scripts. On the 3B15 and 3B4000 computers, create the
special device files under the f dev directory.

Packaging the Driver 16-3

Installation Steps

o If required, install pumpcode for this device.

o Install the edtgen utility.

o Create the package tracking file(s) in the /usr/options/xxx directory.

m The following activities should be done manually after running INSTALL:

o Make a backup copy of the /unix file.

o. Shutdown and reboot the system.

o If necessary, adjust the values of kernel tum~ble parameters that may be
affected by the presence of the driver.

The UNINSf ALL S¢pt can do all deinstallation steps listed in Chapter 12, except for physically
removing installed hardware.

16-4 BCI Driver Development Guide

The Driver Update Package

A driver update package is installed on top of an existing driver package to correct errors or enhance
capabilities of the driver.

The INSTALL script for an updated software driver or loadable module must

• use the major number already assigned to the /etclmaster.d file

• accept the object, master, and system files and creates a driver image for use with "driver
add at boot" (using the mkboot command)

• edit the /etc/system file, removing the old INCLUDE line and replacing it with the new
INCLUDE linel

The INSf ALL script for an updated hardware driver accepts the object, master, and system files and
creates a driver image for use with "driver add at boot" (using the mkboot command). The major
numbers for hardware drivers are assigned by the getmajor utility. The board address is used as the
major nwnber in the /etc/master.d file. Hardware drivers are automatically self-configured if a board
is plugged into the system at boot time. Customers should be told to add an EXCLUDE line
manually to the / etc/ system file if they want to boot the system with the hardware board and not
include the driver image in the configuration.

1. The drvtnstaD(lM) command does this for software drivers.

Packaging the Driver 16-5

Appendix A: Equipped Device Table (EDT)

Contents

SBC EDT Architecture A-1
3B2 Computer or 3B4000 ACP EDT Architecture A-2

Displaying the EDT

edt and show Commands A - 3
getedt and disp edt Commands A - 5
letclprtconf Command A-10

A-3

Field Comparisons of EDTs for DitTerenf Systems A-II

/dgn/edt_data, The EDT Initialization File A -12

SBC edt_data File A-12
3B2 edt_data File A -13
SBC Subdevice Display A -15
3B2 Computer Subdevice Display A -16

Adding Entries to a 3BlS/3B4000 Master Processor EDT A-17

Adding Devices to the SBC, 3B2 Computers, and the 3B4000 ACP EDT A-IS

EDT Command Examples A -18

Equipped Device Table (EDT) A - i

Adding an Entry to the EDT on an SBC A -19
Adding an Entry to the EDT on a 3B2 Computer A-20

Removing an Entry From the EDT A-23

A - ii -JICI Driver Development Guide

Appendix A: Equippe4 Device Table (EDT)

This appendix describes the equipped device table (EDT) for the Single Board Computer (SBC), the
3B2 computers, and the 3B15 and 3B4000 computers.

The EDT is a table in the private memory associated with the CPU that lists all hardware devices
present on the system (except memory cardslboards) . Self-configuration configures all devices listed
here, unless they are specifically listed in an EXCLUDE line in the /etc/system file or if there is no
driver in the / boot directory.

When a SBC, 3B2 computer, or 3B4000 ACP is brought up, the computer firmware builds a skeleton.
EDT. The firmware then calls tilledt(8), which accesses the edcdata file and populates the EDT in
memory. The edCdata file is in the /dgn directory on the SBC and 3B2 computers, and in the
/adjlpe#/dgn directory on an ACP. (# is the Processing Element (PE) number.)

When a 3B15 computer or a 3B4000 Master Processor (MP) is brought up, the EDT·is built by the
initialization software from edt_data files that are kept for the MP, the 3B4000 ACP, ·and the Small
Computer System Interface (SCSI) bus. Extended EDTs are built on intelligent controllers by the
controller firmware, such as the SCSI Local Bus Interface Circuit (SLIC). The extended EDTs exist
in the memory of the controller.

SBC EDT Architecture

The UNIX system firmware on the SBC was developed from that on the 3B2/400 computer and was
kept as similar to it as possible. The SBC has no slots and devices can be placed at any physical
address as long as no two are at the same address. To continue using the same mechanisI)1 as the

. 3B2/400 for system configuration, the concept of slots was replaced by an index into the EDT table. '
Consequently, device drivers get their addresses from tables. Interrupt vectors and external major
device numbers are still derived from slots and lboot still uses the presence of a device in the EDT to
decide whether to include the corresponding device driver when linking a UNIX system kernel.

Because SBC peripherals do not contain ROMs with WE 32100 microprocessor code for firmware
execution and the system boot, this code must be compiled into the firmware for boot devices. A
mechanism was added to the firmware so that the boot device can be discovered before booting.
Other devices can be added by tilledt(8) later.

Equipped Device Table (EDT) A-I

3B2 Computer or 3B4000 ACP EDT Architecture

The 3B2 computer (or 3B4000 ACP) has YO slots with predetermined addresses into which
peripheral boards may be plugged for YO devices. The boards appear in the CPU's physical address
space at known addresses (determined by the slot in which they are located). Each board has a
read-only register that defines what kind of board it is.

When the firmware is initialized, the computer probes all the slots and puts information from the
ROM on each board in the EDT in main memory. EDT information includes such things as whether
the.device can be a boot device, whether it can be a system console, or if it requires that firmware be
loaded before operation. The system console and integral floppy and hard disks are treated as
controllers for device #0. The slot number is used for such things as determining the device's
external major number and calculating the device's physical address and interrupt vector(s).

When the system is powered up, it runs mledt(8). The tiUedt process uses information in the
IdgnledCdata file (/adjlpe#ldgn on the ACP) to add further information to the EDT tables in
memory, including the subdevices attached to each controller. The diagnostic program, dgmon(8),
uses this information to load and run diagnostic packages from the system disk. The system
booterllinker (Iboot) uses the EDT tables to decide which device drivers should be linked into the
kernel and which external major device numbers should be used for them.

The 3B2 500/600 computers differ from the 3B2 300/400 computers in these ways

• BUBUS - or BUffered micro BUS, a bus designed for handling devices external to the
main bus. The inclusion of this bus does not affect driver development and is mentioned
here only as a reference. When the EDT is displayed from firmware, the BUBUS is
displayed as either the "buffered microbus" or the "microbus."

• coos_cap and.coDS_f"de fields - not used. These fields. in the EDT indicate the device's
use of the console. However, when inserting an entry into the edcdata file, you are still
prompted to enter information for these fields. These prompts are maintained for
downward compatibility among members of the'3B2 computer family.

• word_size - has a different meaning. In the past, this one-bit wide field designated
that the word size would be either 8 bits (0) or 16 bits (1). With the advent of the 32-bit
word sizes required by some of the interlaces built-in to the 3B2 500/600 computers, this
field came to have a different meaning. The 0 value still means an 8-bit word size, but
the 1 now indicates th8:t the word size is at least 16 bits. The exact word size can only
be found by using the edt command in firmware mode, or the show command with the
diagnostics monitor, DOMaN. In these EDT listings, the word size is found under the
"word width" notation expressed in bytes.

Finally, the 3B4000 ACP differs from all other 3B2 computers in that it does not have its own
console. Therefore, commands that interact with finnware cannot be invoked on the ACP. Instead,
the ACP uses a command shared with the 3B4000 MP and 3B15 computers to display the contents of
the EDT. .

A - 2 BCIDriver Development Guide

Displaying the EDT

The EDT can be displayed in a variety of ways depending on the type of computer and the processing
mode. Table A-I summarizes these commands.

Table A-I EDT Display Commands

MODE: SBC.3B2 3B4000 ACP 3B15. 3B4000 MP 3B4000 EADP
Firmware edt -- disp edt disp edt
DGMON show -- -- --
From the letclprtconf -- letclprtconf --
UNIX command edittbl edittbl -- e_

line -- getedt getedt getedt

The getedt and disp edt commands are combined. into the same subsection, as are the edt and show
commands. The following subsections list the other display commands alphabetically.

edt and show Com m ands

The 3B2 computer edt and the DGMON show comrn~d are accessed from firmware mode. show
has exactly the same output as edt. NOTE: The 3B4000 ACP dOes not have a console,.so all
firmware mode prompts are not usable.

Equipped Device Table (EDT) A - 3

Displaying the EDT

On the 3B2 computers, execute the following commands shown in bold in Figure A-I after booting:

shutdown -is -gO -y
FIRMWARE MODE

password
Enter name of proqram to execute

CUrrent System Configuration

]: edt

System Board memory size: 12 megabyte (s)
#0 - 4 megabyte (s), #1 - 4 megabyte (s), #2 - 2 megabyte (s), #3 - 2 megabyte (s)

00 - device name = SBD , occurrence = 0, slot = 00, m code = OxO 1
type = inteqral i/o bus
boot device = y, board width = double, word width = 2 byte (s)
req Q size = OxOO, camp Q size = OxOO
subdevice (s)
#00 = FDS , m code = Ox01

Press any key to continue

01 - device .name = SCSI , occurrence = 0, slot = 01, m code = Ox100
type = inteqral i/o bus
boot device = y, board width = single, word width = 2 byte (s)
req Q size = Ox38, camp Q size = Ox38, indirect edt
subdevice (s)
#00 = disk , m code = Ox100, #01 = tape ., ID code =. Ox101

Press any key to continue

Enter name of program to execute []: lunix

Figure A-I Testing the EDT on a 3B2 Computer

In Figure A-I., the first command line (shutdown) brings the system down to single user mode and
then to firmware mode. password is the firmware password, usually mcp. At the "Enter name ... "
prompt, edt displays the EDT, and lunix takes you back to multiuser mode. Refer to the System
Administration Guide supplied with your system for more information on bringing a computer to
firmware or to the diagnostic monitor modes.

This display is for a 3B2 600 computer, but each 3B2 computer will have a similar display.

A - 4 B~I Driver Development Guide

Displaying the EDT

getedt and disp edt Com m ands

On the 3B4000 MP, adjunct processors, or the 3B15 computer, to display the EDT, use the disp edt
command from firmware mode or the getedt (see Table A-2) command when the UNIX system is
running.

Table A-2 3B4000/3BtS getedt Listing

System EQUIPPED DEVICE TABLE

BD DEY DEY DEVICE AUTO INT UNIT
CODE SIZE TYPE NAME + NUMBER ADDRESS CN11. LEV EQUIPAGE PHNUM ROMSZ RELS.

1 4 1 CCS 0 0 4bd01ad 19 20000 102 1087
2 2 MASC 0 100000 0 ffffff 37 4000 101
1 4 1 CCC 0 0 4 18 20000 102 1087
3 4 21 TAPE 0 180000 3 0 22 8000 103
4 4 89 SUC 0 200000 5 0 311 20000 22
5 2 11 IDFC 0 280000 5 10073 32 10000 102
6 4 1 ABI 0 300000 5 16 200000 1 486
7 1 2 ADU 0 380000 3 0 11 4000 101
8 2 1 MAU 0 400000 4 1 21 8000 0
9 4 1 lOA 0 480000 3 0 16 10000 103
a 2 SOU 0 500000 - 9 3 0 18 4000 101
b 2 ADU' 1 580000. 9 3 0 11 4000 101
c 4 1 lOA 1 600000 3 0 16 10000 103
d 2 11 IDFC 1 680000 5 3e373 32 10000 102
e 2 1 SADL 0 700000 9 3 0 15 8000 102
f 2 1 NTS 0 780000 4 24 8000 201

EXTENDED EQUIPPED DEVICE TABLE FOR SUC AT ADDRESS 200000

MAl DEVICE DEVICE EQUIPPED
NUMBER NAME + NUMBER TYPE LOOlCAL UNITS

4 HA 0 3 NONE
114 DISKID 1 1 0
120 DISK1D 7 1 0

4 HA 8 3 NONE

This display is from the getedt command; the firmware disp edt command gives a listing with an 8 to
the left of the first column to identify bootable devices. The definitions of these columns are

• BD CODE - the board code. For hardware devices (except those on the extended bus),
this is the major number. In this configuration, devices from the first ADLI have the
major number 3; devices from the second have the major number 10 (indicated by the
a). This number corresponds to the board code on the bus. The number is the major
number for boards on the primary and growth units. Refer to the Operations and
Administration Guide supplied with your system for information on major numbers on

Equipped Device Table (EDT) A - 5

DATE

483

485
12,86
685

483
0

584
483
483
584
685
685
185

Displaying the EDT

extended buses.

• DEV SIZE - the device size; the number of bits used to address a board. "I" indicates
I-byte or 8 bits (every byte is addressable), ''2'' indicates 2 bytes or 16 bits (that every
half word is addressable), "3" indicates 2 bytes or 16 bits (that every other half word is
addressable), a.I!d "4" indicates 4 bytes or 32 bits (every word is addressable). Number
''2'' or "3" means that boards can be addressed with 8 or 16 bits; number "4" means that
8, 16, or 32 bits can be used. NOTE: ·"3" is not implemented at this time.

• DEV TYPE - the device type; the type of circuit board. The right digit is 1 for an I/O
controller board, 2 for an I/O interface board. The left digit indicates a copy device,
where 1 represents a disk copy device and 2 indicates a tape copy device.

• DEVICE NAME - the device name designation for this type of circuit board.

• DEVICE NUMBER - all circuit boards of the same type are numbered, beginning with
0, in this column to differentiate them. Disk drive 0 must be connected to IDFC 0 for
booting purposes.

• ADDRESS - device address code reference from the local bus address of the demand
paging central controller (DPCC) boards.

• AUTO CNTL - automatic controller; the board code of the controlling circuit board.
For example, for ADLIs, SDLIs, and SADLs, this is the board code of the lOA by
which they are controlled.

• INT LEV - the interrupt level at which a circuit board is served by the Central Control
and Cache (CCC). The higher the number, the greater the interrupt priority.

• UNIT EQUIP AGE - device dependent equipment data base.

• PHNUM - phase number; the total number of diagnostic phases for this device. Refer
to Appendix B for more information on diagnostic phases.

• ROMSZ - the amoWlt of on-board read-only memory (ROM), expressed in bytes.

• RELS and DATE - the release version of the board and the date (month and year) the.
firmware was released.

The definitions of the columns in the extended EDT for SCSI are

• MAJ NUMBER - The major external device number for the SCSI device.

• DEVICE NAME - The name of the device. These names are· administered by and
registered with AT&T.

• DEVICE NUMBER - All circuit boards of the same type are numbered, beginning
with 0, in this column to differentiate them.

A - 6 BCI.Driver Development Guide

Displaying the EDT

• DEVICE TYPE - The SCSI subdevice supported by the specified device. In the getedt
listing, DISKTD is the SCSI disk drive, HA is the SCSI Host Adapter that allows the
device-independent SCSI bus to communicate with the device-dependent host computer.

• EQUIPPED LOGICAL UNITS - The logical disk or tape (logical uni,t) number. This
number is either 0 or NONE. SCSI target controllers on the 3B4000 computer support
one device, labeled O. NONE indicates that no devices are supported.

Equipped Device Table (EDT) A-7

Displaying the EDT

The getedt EDT listing for the SCSI devices on the 3B4000 ACP is shown in Table A-3.

Table A - 3 3B4000 ACP getedt Listing

System EQUIPPED DEVICE TABLE FOR PE=# TYPE=ACP MEMORY=NNNNNNNN

OPT WORD OPT DEVICE DEV SMRT DIAG
CODE SIZE TYPE NAME + NUMBER SLOT BRD FILE

1 1 0 SBD 0 0 1 SBD
100 1 0 SCSI 0 1 1 SCSI

EXTENDED EQUIPPED DEVICE TABLE FOR SCSI AT slot 1

MAJ
NUMBER

DEVICE
NAME + NUMBER

DEVICE EQUIPPED
TYPE LOGICAL UNITS

121 SD01 1 1 0 1

The definitions of these columns are

• OPr CODE - Same as the ID_code1 in the finnware EDT display, a number between
OXO and Oxffff that a device uses to identify itself. ID codes must be registered with and
are administered by AT&T. Some devices are assigned special opt codes. Coprocessors
are assigned numbers starting at OxfdOO; unbuffered· microbus devices are assigned
numbers starting at OxfeOO; and buffered microbus devices are assigned numbers starting
at 0xff00.

• WORD SIZE - The word size of a device I/O bus. A "1" indicates devices with a bus
word greater than 8-bits; a "0" indicates devices with an 8-bit bus word.

1. ID_code appears in a listing created with the edlUbI(lM) command. This command is described later in this chapter.

A - 8 BCI Driver Development Guide

Displaying the EDT

• OPT TYPE - The type of I/O bus (seen Table A-4) associated with the device.

Table A -4 I/O Bus Types

Value Bus Type
0 Integral I/O Bus Slot

1 Coprocessor Slot

2 Unbuffered Microbus Slot

3 BUffered Microbus BUS (BUBUS) Slot

7 Miscellaneous Slot

• DEVICE NAME - Field name for a device. Device names are administered by
AT&T. This string is also the field name that DGMON loads·to diagnose a device.

• DEVICE NUMBER - All circuit boards of the same type are numbered, beginning
with 0, in this column to differentiate them. Disk drive ° must be connected to IDFC 0
for booting purposes.

• DEV SLOT - The device slot is the physical slot number in which the board resides.

• SMRT BRD - The smart board designation indicates whether the device is intelligent,
meaning either that it requires downloaded code for normal operation or supports
subdevices. A "1" indicates an intelligent device; a "0" specifies a "dumb" device ..

• DIAG FILE - The name of the diagnostics file in the /adjlpe#/dgn directory.

The definitions of the columns in the extended EDT for SCSI are

• MAJ NUMBER - The major external device number for the SCSI device.

• DEVICE NAME - The name of the device. These names are administered by and
registered with AT&T.

• DEVICE NUMBER - All circuit boards of the same type are numbered, beginning
with 0, in this column to differentiate them.

• DEVICE TYPE - The SCSI subdevice supported by the specified device. In the getedt
listing, SDOI is the SCSI disk drive.

• EQUIPPED LOGICAL UNITS - The logical disk or tape (logical unit) number. This
number is either 0, 1, or NONE. SCSI target controllers on the 3B4000 ACP supports
up to two devices with 0 indicating the floppy disk driver, and the one indicating a hard
disk driver. NONE indicates that no devices are supported.

Equipped Device Table (EDT) A-9

Displaying the EDT

/etc/prtconf Com m and

To display the EDT, use the following UNIX system command

/etc/prtconf

A sample display from /etclprtconf is shown in Figure A-2.

AT&T 3B2 SYSTEM CONFI~ION:

Memory size: 2 Megabytes
System Peripherals:

Device Name Subdevices

SBD

SCSI

PORTS
MAO

Floppy Disk
72 Megabyte Disk

SD01 ID1

ST01 ID2

Extended Subdevices

147 Megabyte Disk IDO

TAPE IDO

Figure A - 2 Sample /etclprtconf Display

The definitions for the columns are

• Device Name - a name taken from the edCdata file when the computer is booted.

• Subdevices - the names of subdevices associated with the device. These names are built
into the /etclprtconf program. When additional devices are added to the edcdata, and
prtconf cannot obtain all of the information for the device, a new prtconf program must
be created and placed in the letclprtconf.d directory.

A -10 BCI Driver Development Guide

Field Com parisons of EDTs for Different System s

The following table (Table A-5) shows which fields correspond for the EDTs on the different
systems. This information is useful when you are examining multiple EDTs.

Table A - 5 EDT Fields By System

3B2 3BIS/3B4000 MP 3B4000 ACP
ID_code -- OPT Code

(hexadecimal) -- (hexadecimal)

-- Board Code Major Number (Extended EDT Table)
-- (hexadecimal) (decimal)

dev name Device Name dev name

rq_size -- rq. size

cq_size -- cq_size

boot dev {embedded in Board Code] boot dev

word_size Device Size word_size
1= 16-bit 1=8-bit 1= 16-bit
O=8-bit 2,3= 16-bit O=8-bit

4=32-bit

brd size -- brd size

smrCbrd -- smrcbrd

cons_cap -- --
consJile -- --
indir_dev -- indir_dev

-- Device Type Device Type (Extended EDT Table)

-- Device Number Device Number

-- Device Address --
-- Auto Control --
-. Interrupt Level --
-- Unit Equipage --
-- Phase Number --
-- ROM Size --
-. Release and Date --
-- -- OPT Type

-- -- Device Slot

-- -- Diagnostics File

Equipped Device Table (EDT) A-II

/dgn/edt_data, The EDT Initialization File

On the SBC, 3B2 computer, and 3B4000 ACP, the /dgn/edcdata file lists all hardware devices that
may be configured on the system. The ftIIedt(8) process uses this file to search for hardware devices,
and adds any that are found to the EDT (only when the· system is booted). The edcdata file is
supplied with a computer when purchased and is upgraded automatically when AT&T add-on
products are installed. Your installation package should do this task as well. When installing a
driver for the first time with a new piece of hardware, use edittbl with the -i option to add the
appropriate information to edCdata. The command syntax is

/etc/edittb1 /dgn/edt_data -d -i

To display the edCdata table, use the following command:

/etc/edittb1 /dgn/edt_dat~ -1 -d

S Bee d t _d a t a F it e

The /etc/edittbl display for the SBC is shown in Figure A-3.

In_code: OxOOO 1 dev _name: SBD dev _addr: £8000000

ID_code: Ox0003 dev_name: PORTS

Figure A - 3 SHe /etc/edittbl Display

A -12. BCI Driver Development Guide

/dgn/edcdata, The EDT Initialization File

The definitions of these fields are

• Dum_dev: The number of devices described in the listing.

• ID_code: A number between 0x0 and Oxffff that a device uses to identify itself.

• dey _name: Field name for a device. This string is also the field name that DGMON
loads to diagnose a device.

• dey _addr: Physical address that can be read (single· byte read) to detect the device.

3B2 edt...;,data File

The letcledittbl display for the PORTS and EPORTS boards on the 3B2 computer is shown in Figure
A-4 (from a 3B2 500 computer).

ID_code: OxOOO3 dev_name: PORTS rq_size: Ox03 cq_size:
OOot_dev: 0 word_size: 1 brd_size: 0 smrt_brd:
in4ir_dev: 0 cons_file: 1

ID_code: Ox0102 dev_name: EPORTS rq_size: Ox21 cq_size:
OOot_dev: 0 word_size: 1 brd_size: 0 smrt_brd:
indir_dev: 0 cons_file: 1

Figure A-4 3B2 Computer letcledittbl Display

The definitions of these fields are

Ox23
1

Ox46
1

• ID_code: A number between 0x0 and Oxffff that a device uses to identify itself. ID
codes must be registered with and are administered by AT&T.

• dey _name: Device name; a field name for a device. Device names are administered by
AT&T. This string is also the field name that DGMON loads to diagnose a device.

• rq_size: Request queue size; a number between 0x0 and Oxff that represents the count
of entries in a device's job request queue.

..~ Equipped Device Table (EDT) A-13

Idgnledcdata, The EDT Initialization File

• cq_size: Completion queue size; a number between OxO and Oxff that represents the
count of entries in a device's job completion queue.

• boot_deY: Boot device; indicates whether this device can be used to boot the system. A
"1" means that it is bootable; a "0" means that it is not.

• word_size: The word size of a device I/O bus. A "1" indicates devices with a 16-bit bus
word; a "0" indicates devices with an 8-bit bus word.

• brd_size: Board size; specifies the I/O connector slots that a device requires. A "I"
indicates that two slots are needed; a "0" indicates that one slot is required.

• smrt_brd: Smart board; indicates whether the device is intelligent, meaning either that
it requires downloaded code for normal operation or supports subdevices. A "1"
indicates an intelligent device; a "0" specifies a "dumb" device.

• coos_cap: Console capability; shows whether this device can support the system console
terminal. A "1" is used for devices that can; a "0" for those that cannot.

• indir _deY: Indirect device; indicates whether all the information on the subdevices
associated with a device can be directly accessed by /etclprt~onf. Indicate "0" if all the
information for a device is directly accessible. Indicate "1" if subdevice information
must be determined by another program. If "1" is indicated, a special file for getting
information about the subdevices must reside in the letclprtconf.d directory. Refer to
the end of this appendix for an exampie of theprtcon/.c file.

• coos_tile: Console file; indicates whether a device that can support the system console
terminal requires extra code to do so. This feature is not supported and the value in this
field is not evaluated.

To display the EDT for a subdevice, use the'command

/etc/edittbl /dgnledt_data -I -s

A -14 BCI Driver Development Guide

,ldgn1edcdata, The EDT Initialization File

SBC Subdevice Display

The subdevice display generated for the SBC is shown in Figure A-5.

Device: xxxx (OxOOOa) Unit: 0 subdev_name: Hard

Figure A - 5 SBC SUbdevice Display

The definitions of these fields are

• Device: Field name for a device. This string is also the field name that DGMON loads
to diagnose a device.

• (Oxnumber): The identification code (ID_code). A number between OXO and Oxffff that
a device uses to identify itself.

• Unit: The subdevice number. This infonnation confonns to the maximum number of
subdevices per device defined in the #DEV column of the /etc/master.d file for the
driver.

• subdev_oame: The name assigned to the subdevice (a designation for a type of device).
Subdevice names are all uppercase and one to nine characters long. Can be either the
device type (Hard, Floppy, cartridge, Serial, Bootable) or the actual board name
(HD20, FD5, and so on).

Equipped Device Table (EDT) A-IS

Idgnledcdata. The EDT Initialization File

3B2 Computer Subdevice Display

The 3B2 computer subdevice display is shown in Figure A-6.

num_sbdev: Oxe
ID_code: OxOOOO subdev_name: NULL
ID_code: Ox0001 subdev_name: FD5
ID_code: Ox0002 subdev _name: HD20
ID_code: Ox0003 subdev_name: HD30
ID_code: Ox0005 subdev_name: HD72
ID_code: Ox0006 sulxiev_name: HD72A
ID_code: Ox0007 subdev_name: HD72B
ID_code: Ox0008 subdev_name: HD72C
ID_code: OxOOO9" subdev _name: HD43
ID_code: OxOOOa subdev _name: HD72D
ID_code: Ox0100 subdev_name: disk
ID_code: OxO 101 subdev _name: tape
ID_code: OxO 104 sulxlev _name: worm
ID_code: OxQ004 subdev_name: FT25

Figure A - 6 3B2 Computer Subdevice Display

The definitions of these fields are

• nUDl_sbdev: Indicates how many subdevices are associated with the device.

• ID_code: Number that identifies a subdevice, in the range 0x0 to Dxfff. Subdevice ID
codes are administered by and must be registered with AT&T.

• subdev _name: Designation for this type of device. Subdevice names are all uppercase,
one to nine characters, and are administered by and must be registered with AT&T.

A -16 BCI Driver Development Guide

Adding Entries to a 3B15/3B4000 M aster Processor EDT

On the 3B15 and 3B4000 computers, any properly-installed board will be added to the EDT at boot
time. This requires the following:

• The ID register must be hard-assigned in the firmware of the board.

• The On-board Device Information Table (ODIT) structure must be hard-assigned in the
firmware at Ox48F. The ODIT contains the board's generic name, release and point
issue, and the date stamp from inside the PROMs. The structure of the ODIT is defined
in the firmware.h file.

• Three bergs (connectors) must be installed on the pins of the backplane. These assign
the local bus address, the interrupt level, and the bus arbitration level for the board
(already preserit and must be adjusted).

• The board must be properly installed in the slot .

. To check the hardware installation, check disp edt in firmware mode to validate the fields, and then
boot the system with the hardware in place but without a master or /boot file for the device. If the
hardware is correctly installed, you will get a message that the driver was not found.

Equipped De~ce Table (EDT) A -17

Adding Devices to the SBC, 3B2 Computers, and the 3B4000

ACP EDT

If you are installing a new piece of hardware not supplied as an AT&T add-on, you must manually
add entries for new the device to the Idgnledcdata table that is used to create the EDT. Note that
none of the changes. you make in the edcdata file actually affect the configuration of the computer
until it is rebooted. If you make a mistake, remove the entry (refer to that section for more details),
and insert it again until correct. When you are using edittbl on a 3B4000 ACP, include the -P option
to specify the proper processing element. The steps for inserting an entry in the EDT are

. 1 In the Idgn directory (or ladjlpe#ldgn on an adjunct), make a copy of the edCdata file
that you can use to recover from a mistake

2 View the existing contents of the EDT

edittbl -1 -d -s

3· Ensure that the edCdata has write permission enabled.

4 Add infonnation about the new device

edittbl -d -i

5 Add infonnation about subdevices for the new device. Note that every device must have
at least one subdevice or it will be ignored. If necessary, you can use the subdevice .
name "Other" to create a phantom subdevice.

Exit by typing q or (CTRL-d) to the device ID prompt.

6 Verify your entry in edcdata

edittbl -I -d -s

7 When you are finished, reboot your system so that the new EDT is recognized.

8 Verify that the device was included in the EDT by running the /etc/prtconf command.

EDT Com m and Exam pies

In the following examples, the computer prompts are in constant width type, the programmer
responses are in bold type. The computer does not update the file until after all the infonnation is
entered; if you quit i(OS) entering q or by pressing (BREAK) or (DELETE) , the file is not
changed. Enter"." or CI'RL-d to complete entering data. No validity checking is done on the

A - 18 BCI Driver Development Guide

Adding Devices to the S8C, 382 Computers, and the 384000 ACP EDT

information you enter, if a value does not correspond to the device, the boot software will not be able
to load the device and will fail. If you enter a value that is out of range, for example, specifying a
completion queue size of Oxffff, edittbl wi.ll truncate the value down to the maximum value, Oxff.

If you enter data that you later discover is incorrect, you can remove the entry by using edittbl with
the -r option. The prompts for this option are the same as for the -i option. All of the information
for the entry being removed must match that entered originally for the entry.

Adding an Entry to the EDT on an SBC

Figure A-7 is a session to add the fictional XXXX device to the EDT.

edittbl -d -I
utility program for edt_data

ID_code: OxOOOO dev_name:
edittbl -d -i
utility program for edt_data

Enter device data

Enter device ID code: Oxl
Enter device name: ~
Device address? : oxfftT8000

Enter device ID code: Ox.

saD dev_addr:O

Figure A -7 Adding an Entry to the SBC EDT Example

You should enter the following information for each prompt:

1 Device ID code: Use the next available number. This number is used only to associate
a subdevice with a device and does not correspond to other numbers

2 Device name: Use the same name as the file in Iboot in all uppercase letters.

3 Device address: Physical address that can be read to detect the device. At system boot
time, filledt(1M) reads a byte at the device address. If something responds to the read,
the device is considered present and is logged into the EDT.

Equipped Device Table (EDT) A -19

Adding Devices to the SBC, 3B2 Computers, and the 384000 ACP EDT

Figure A-8 shows how a subdevice is added to the EDT for the SBC.

edittbl -s -i
utility program for edt_data

Enter device data

Enter device ID code: Oxt
Enter subdevice unit: 0
Enter subdevice name: Hard

Enter device ID code: ox.

Figure A - 8 Adding an SBC Subdevice Example

You should enter the following information for each prompt:

t Device ID code: Use the same number Jhat w~ specified when the device was added to
the EDT.

2 SUbdevice unit: Start at 0 and increase sequentially. Ensure that this information
conforms to the maximum number of subdevices per device defined in the #DEV
column of the /etclmaster.d file for the driver.

3 SUbdevice name: Designation for this type of device. Subdevice names can be upper or
lowercase and are one to nine characters long. Can be either the device type (Hard,
Fl()ppy, cartridge, Serial, Bootable) or the actual board name (HD20, FD5, and so on).

Adding an Entry to the EDT on a 3B2 Computer

The following is a session to add the fictional THUD device to the EDT. Information in {italics]
provides a reference to the names displayed when edittbl is used to list the edCdata file. . Refer to
the previous section on displaying the EDT on a 3B2 computer for more information about individual
prompts.

A - 20 BCI Driv.er Development Guide

Adding Devices to the SBC, 382 Computers, and the 384000 ACP EDT

edittbl -d -I
utility program for edt_data

ID_code: Ox0001 dev_name: SBD rq_size: OxOO cq_size: OxOO
boot_dev: 1 word_size: 1 brd_size: 1 smrt_brd: 1 cons_cap: 1
indir_dev: 0 cons_file: a

ID_code: Ox0003 dev_name: PORTS rq_size: Ox03 cq_size: 0x23
boot_dev: a word_size: 1 brd_size: a smrt_brd: 1 cons_cap: 1
indir_dev: a cons_file: 1

edittbl -d -i
utility program for edt_data

Enter device data

Enter device ID code (> Ox10000 if indirect): oxS
Enter device name: THUD
Enter request queue size: OxO
Enter completion queue size: 0x0
Boot device? (1 - yes / 0 - no): 0
16 bit I/O bus? (1 - yes / a - no): 0
Double width :board? (1 - yes / a - no): 0
Intelligent board? (1 - yes i a - no): 1
Console capability? (1 - yes / a - no): 1
Console pump file? (1 - yes / a - no): O·

Enter device m code (> Ox10000 if indirect): Ox.

{ID_code]
{dev_name]
{rq_size]
{cq_size]
{booCdev]
{word_size]
{brd_size]
. {smrcbrdl
{cons_cap]
{consJile]

Figure A-9 Adding a 3B2 Device Example (part 1 0/2)

Equipped Device Table (EDT) A - 21

Adding. Devices to the SBC, 382 Computers, and the 384000 ACP EDT

edittbl -I -d
utility program for edt_data

ID_code: Ox0001 dev_name:
boot_dev: 1 word_size: 1
indir_dev: a cons_file: a

ID_code: Ox0003 dev_name:
boot_dev: 0 word_size: 1
indir ... dev: 0 conS_file: 1

ID_code: OxOOOS dev_name:
boot_dev: a word_size: 0
indir_dev: a cons_file: a

edittbl -s .j
utility program for edt_data

Enter subdevice data

Enter subdevice ID code: Ox34
Enter subdevice unit: 0
Enter subdevice name: Hard

Enter subdevice ID code: Ox.

SBD rq_size: OxOO cq_size: OxOO
brd_size: 1 smrt_brd: 1 cons_cap: 1

PORTS rq_size: Ox03 cq_size: 0x23
brd_size: a smrt_brd: 1 cons_cap:

THUD. rq_size: OxOO cq_size: OxOO
brd_size: a smrt_brd: 1 cons_cap: 1

Figure A - 9 Adding a 3B2 Device Example (part 2 of 2)

A - 22 .·~·.·~BCI Driver Development Guide

Removing an Entry From the EDT

The edittbl command contains the -r option for removing an entry from the EDT. 'This option
prompts you for information and then uses that information to remove the appropriate device from
the edCdata file. NOTE: Removing an entry has no effect until the system is rebooted. When you
execute edittbl -r, the command prompts you for the same information you specified for inserting an
entry. However, only the ID_code is used to detect the entry to be removed from edcdata.

When a device is removed from the EDT, all associated subdevices are also removed. As with
inserting an entry, use "." or ~ to end the data input.

Equipped Device Table (EDT). A - 23

Appendix B: Writing 3B2 Com puter Diagnostics Files

Contents

Introduction to Diagnostics Programs

MCP Noninteractive Mode B-3
MCP Interactive Mode B-5

Accessing the MCP

The Diagnostic Monitor (dgmon)

Diagnostic Monitor Commands B-11

Standard Library Functions

Writing Diagnostic Phases

Diagnostic Files B-15
System Board Resident Diagnostic Files B-15
Feature Car~ Resident Diagnostic File B-16

Diagnostic Return Structure B-17

B-3

B-6

B-10

B-14

B-1!

Writing 3B2 Computer Diagnostics Files B - i

Putting Diagnostic Files on a Floppy Diskette B -19

Organization of the Diagnostic Development Floppy B-20

Diagnostics Source File Organization B - 21

System Board Diagnostics Directory (m32) B-22
Feature Card Object Code Directory (01) B-22
Common Header File Directory (com) B-22

Diagnostic Phase Table

A Loader Option File B-25
Diagnostic Phases B-26

Diagnostic Template

pb_slot B-31
PASS - FAIL B-34

Compiling Diagnostic Phases

ciofw.h

B - ii BCI Driver Development Guide

B-23

B-30

B-35

B-37

B-41

B-42

make. 10 B-47

maketile B - 48

hrl_phztab.e B-SO

scpu_l.e B-SI

scpu_2.e B-S4

scpu_3.e B-S6

scpu_4.e B-S8

scpu_S.e B-60

scpu_6.e B-63

scpu_7.e B-65

dummy.e B-67

make. hi B-68

Writing 3B2 Computer Diagnostics Files B - iii

B-69

per_dgn.h B-70

phaseload.h B-73

B-iv BCI Driver De~elopment Guide

Appendix B: Writing 3B2 Computer Diagnostics Files

This appendix explains how to write diagnostics files. The two diagnostic files are referred in this
appendix as a diagnostics design. The Appendix B shows a complete diagnostics design for a custom
feature card (non-common 110 based card) including examples for all required files. The code

. examples listed in this appendix can be used as a template for writing diagnostics.

Common I/O is a specification for circuit board design that ensures that bus-to-processor
communication is standardized. The design specified in this appendix does not utilize common 110.

The first part of this appendix serves as background information for the organization of diagnostic
files for the 3B2 computer family. The second part describes the diagnostic programs or modules that
are necessary for proper operation.

A diagnostic file passes information to an intelligent controller so that the system initialization
softWare can ensure the integrity of a 3B2 computer feature card (circuit bOard). Each hardware
device requires two diagnostics files and these files are stored in the / dgn directory. BOth file names
are in uppercase and both have the same name as the driver's master file name, except that one file is
prefaced with X. The X.file contains object code to be downloaded to the feature card. The other
file is an object file, which is to be loaded into main memory and executed by the CPU. Figure B-1
illustrates these two files for the mydev device.

at boot

feign directory CPU

MYDEV------------------~ memory

X.MYDEV
diagnostics

Board
(Feature Card)

Figure B-1 Diagnostics Files Overview

Writing 3B2 Computer Diagnostics Files B-1

If downloading is unnecessary, a NULL object file must be supplied such as SBD and X.SBD. Link
the name of your product to /dgn/SBD and X.product-name to X.SBD. For example, for the nodev
device

cd /dgn
In SBO NODEV
In X.SBO X.NODEV

B-2 BCI Driver Development Guide

Introduction to Diagnostics Programs

The diagnostic programs on a 3B2 computer are part of the Maintenance and Control Program
(MCP). The MCP has two operation modes

• Noninteractive mode - a mode in which the integrity of a 3B2 computer hardware is
checked automatically when the computer is powered up, or at any time that the
computer is brought down to firmware mode an~ back to a multiuser mode. Because a
3B2 computer can bring itself up into full multiuser mode without user intervention, the
noninteractive mode of the MCP is also referred to as autoboot mode.

• Interactive mode - a mode of the MCP in which the integrity of a 3B2 computer
hardware is checked when specifically requested. This mode is entered from either
multiuser mode or automatically when hardware or system software failures occurs. In
interactive mode, more extensive diagnostics can be run. . .

M C P Non in te r a c tiv e Mod e

Noninteractive (autoboot) mode is entered when the computer is powered on. A total system reset
occurs at this time and basic sanity checks are performed on the computer hardware. The sanity
checks include testing the processor (CPU), the Memory Management Unit (MMu), the erasable
programmable read-only memory (EPROM), the non-volatile random-access memory (NVRAM),
the Integral Dual Universal Asynchronous Receiver-Transmitter (IDUART), and the first 16
kilobytes of dual-ported dynamic RAM.

If a problem occurs during the sanity checks, the front panel diagnostic indicator light emitting diode
(LED) pulses on and off in a defined pattern to identify the type of sanity failure.

Writing 3B2 Computer Diagnostics Files B-3

Introduction to Diagnostics Programs

Table B-1 defines the LED patterns.

Table B-1

Pulse Count
1

2
3
4
5

Diagnostic Indicator LED Patterns

Failure Type
System is in a finnware null state
with no console device; connect a
tenninal to the default console
port
Processor sanity test failed
(EP)ROM sanity test failed
RAM (first 16k) sanity test failed
IDUART sanity test failed

After the sanity checks are done, a self-configuration process takes place by the MCP calling
tilledt(8) to identify and locate all of cards on the bus. (Moot resides in the root directory.)

As self-configuration terminates, a more extensive diagnostic run begins. All diagnostics for the 3B2~
computer are under the control of dgmon(8), the diagnostic monitor. The dgmon program resides in
the root directory and is invoked by noninteractive MCP. dgmon loads the diagnostic files from the
/dgn directory of the integral hard disk into main memory and executes them.

B-4 BCI DrlverDevelopment Guide

Introduction to Diagnostics Programs

M CP Interactive Mode

The MCP interactive mode is entered only when a failure condition occurs for disk diagnostics, self
configuration, boot or by means of a specific request of the UNIX operating system. Entry to ~e
MCP interactive mode is also possible by activating the reset button during a diagnostic sequence,
which simulates a failure condition.

The procedure to enter the MCP interactive mode is

1 Bring the computer to in it 5 state with the shutdown(lM) command

shutdown -is -gO -y<CR>

2 Upon entering the MCP interactive mode, the cOQ§Ole displays

FIRMWARE MODE

If entry to interactive MCP is made from any of the failing conditions previously ~escribed, the
console displays

SYSTEM FAILURE: CALL YOUR SERVICE REPRESENTATIVE

Writing 3Bl Computer Diagnostics Files B - S

Accessing the Me P

All 3B2 computers are factory equipped with the Maintenance and Control Program (MCP) password
mcp. (This default password can be changed using the interactive MCP passwd(8) command.) The
MCP is accessed as follows

1 At the prompt, enter the password. The entry is not displayed on the console.

2 After the password is entered, the console displays one of the following messages

Enter Name of Program To Execute []:

or

3B2 Monitor/Control Proqram- era~e 'H', kill '@'

Physical Mode

B-6 BCI Driver Development Guide

Accessing the i\tfCP

To enter the MCP interactive mode on machines equipped with DEbug MONitor (DEMON)
EPROMS, enter

> boot

The system responds

Enter Name of Program To Execute []:

When the compu~er is in the interactive mode of MCP, the following firmware-resident programs (see
Table B-2) can ~e executed

Table B-2 Interactive MCP Commands

Program
baud
boot
edt
errinfo
express
newkey
passwd
q or quit
sysdump
version
?

Description
change console baud rate
execute a system or user supplied program
display the Equipped Device Table (EDT)
display contents of internal registers
change automatic diagnostics toggle
write disk key for NVRAM
change the firmware password
escape to FIRMW ARE MODE prompt
call crash(1M)
display firmware version and load data
list help information

Each program is described in Section 8 of the System Administrator's Reference Manual. Refer to the
1/87 update of the manual for information on errorinfo and express.

Writing 3B2 Co~puter Diagnostics Files B-7

Accessing the MCP

In addition to the firmware resident programs listed, it is possible to execute any user-supplied or
system-supplied program resident on one of the available disk storage devices. Two restrictions apply

• The storage device must be present in EDT. A storage device cannot be mounted from
firmware mode and, consequently, programs can be retrieved only from the devices that
are in the EDT.

• The user program must be loaded above the highest memory location used by the
system; location Ox200400 is recommended. When the boot command is entered, the
MCP asks for the name of the program to execute. The user program does not have to
reside in a root directory of the particular storage device. The MCP accepts a fully .
qualified path name of the file as well.

The boot firmware is also used by the MCP to bring up the diagnostic monitor when a computer is
powered on and by the operating system after diagnostics. The difference between the two programs
and the user programs is that the fully qualified path is automatically provided by MCP. .

B-8 BCI Driver Development Guide

Accessing the MCP

Figure B-2 shows the power-up diagnostic sequence for the 3B2 computer.

Non Interactive
MCP

Entered

Reset Entry
(PojerUp)

~-----t,

Firmware
Sanity Checks

~ Pass

Fail

Self Configure Fail
(first part)

~ Pass

Disk Sanity

! Pass

Call FILLEDT
(Self Configure-second part)

~ Pass

Call DGMON

~ Pass

Run Normal Phases
On the Installed

Hardware

~ Pass

Fail

Fail ...

Fail

Fail

Boot UNIX OS . Fail·_
(Self Configure-third part)

Figure B-2 3B2 Diagnostic Sequence

Flash LED
(multipulse)

Flash LED
Single Pause

l no

Console
Found

~ yes

Enter Interactive
MCP

(Null Mode)

Writing 3B2 Computer Diagnostics Files B-9

The Diagnostic Monitor (dgmon)

All diagnostics for the 3B2 computer are under the control of the diagnostic monitor dgmon(8).
Diagnostics are run during system initialization and are loaded from the integral hard disk. The
program dgmon also resides in the root (/) directory and is invoked by the noninteractive mode of
the MCP. The dgmon program loads diagnostics from the integral hard disk's /dgn directory into
main memory and executes the diagnostics.

Diagnostics invoked from interactive MCP mode can be called explicitly and loaded from the integral
hard disk, external hard disk (such as a Small Computer System Interlace (SCSI», integral floppy, or
other device.

The MCP autoboot mode is used during power up to run nonnal diagnostics on each peripheral
device, including System Board Diagnostics (SBD). Secondly, the demand mode is initiated from the
console while in finnware mode.

Typically, you should write several diagnostic programs to test the integrity of custom hardware.
These diagnostic programs are called diagnostic phases. Any diagnostic program or phase on any
peripheral can be run in demand mode. Also, demand mode is .the only mode in which interactive
phases can execute.

The diagnostic monitor (dgmon) can execute a diagnostic program or phase written to test a custom
designed feature card automatically. Because the diagnostic phases are being executed by dgmon, the
phases must adhere to several rules imposed by dgmon. This is necessary to ensure that the results of
the test can be interpreted properly and that the syntax for invoking the diagnostic tests through the
dgn comman~ is unifonn for all 3B2 computer peripherals.

The 3B2 computer diagnostics reside in two separate files and are downloaded into main memory
from either the hard disk or the floppy disk. One of the diagnostics files contains system board code
(m32 executable) and the other file contains the object code of the processor. A 3B computer
peripheral receives (is pumped) the object code that is then executed.

The diagnostic phases shown in this appendix are actual working diagnostics written for the general
purpose 3B2 computer interlace card model HRl.

B-IO Bel Driver Development Guide

The Diagnostic Monitor (dgmon)

Diagnostic Monitor C om.m ands

The diagnostic monitor is entered from the interactive MCP at the following prompt

Enter Name of Program to Execute []:

Enter Idgmon and press the (RETURN) key. dgmon then displays the following prompt

Load Device Option Number default loader]:

Writing 3B2 Computer Diagnostics·~~es B-ll

The Diagnostic Monitor (dgmon)

If Yfur systej is equipped with a SCSI bus, the default loader message reads 1 (SCSI). Press
the RETIJRN key and the following additional prompt is displayed for selecting a SCSI subdevice

Enter Sulxievice Option Number [0 (disk)]:

Again, press the (RETURN) key. The following diagnostic monitor prompt is displayed

DIAGNOSTIC MONITOR
DGMON >

Table B-3 lists the available dgmon(8) commands

Command
dgn*
errorinfo
help
list
quit
run
show

Table B-3 dgmon Commands

Abbreviation Description
diagnose one or more devices
enable/disable error info

h list commands and arguments
I list phases for the specified device
q return to the MCP interactive prompt
r run diagnostic phases
s show equipped device table

$Refer to the System AdmirWtrator' s Refrrenc~ Manual on the dgmoo(8) manual page for more information on the dgn command and all its

options.

Q~ 12 BCI Driver Development Guide

The Diagnostic Monitor (dgmon)

Figure B-3 illustrates the diagnostic utility directories in the root file system

!filledt /dgn /dgmon /unix

SBD
X.SBD

EPORTS
X.EPORTS

HRI
X.HRI

YOURBD
X.YOURBD

Figure B-3 Diagnostic Utility Directories

Writing 3B2 Computer Diagnostics Files B-13

Standard Library Functions

A set of common functions, 'called the standard library functions, are available to the diagnostics
developer. The standard library functions are a set of macros defined infirmware.h that contain calIs
to the system board code. The functions give diagnostics programs access to custom hardware.

The following is a partial list of the standard library functions. (The HRl feature card diagnostic
phase functions that are used do not appear in the list.) Use both the functions listed here and the
HRl functions when creating the HRl diagnostic phases.

NOTE: The functions summarized in this appendix (and presented in detail in Section D8X of the
Bel Driver Reference Manual) should not be confused with similarly named functions in
either Section 2 of the Programmer's Reference Manual or in Section D3X of the Bel Driver
Reference Manual. All function names in Section D8X are in uppercase.

Table B-4 summarizes a subset of the standard library functions.

Table B-4 Standard Library Function Subset Summary

Function

EXCRETO
Errn'O
GETS(ptr)
GETSTATO
PRINTF("string %options",argl,arg2)
SSCANF(string. "%options",argl.arg2)
STRCMP(string 1 ,string2)

B-14 BCI Driver Development Guide

Description

set up .return point for exception

get ·string from standard input
return value of current console character
display message
read from string
compare strings

Writing Diagnostic Phases

Maintenance is an important part of the AT&T 3B2 computer. The maintenance for a 3B2 computer
is comprised of diagnostic programs as well as hardware replacement or repair .. In addition to the
hardware diagnostics (for example, the system board, memory, disk drives, and so on), diagnostics
are also run on option feature cards installed in a 3B2 expansion bus. All of the above is done to
ensure hardware integrity. If for any reason there is a problem in the system, the console operator
should be alerted.

The same is true for a custom feature card development computer. The 3B2 computer with the
appropriate diagnostic files is used as a sophisticated test setup to ensure proper operation of the
feature cards before the cards are sent to a customer.

Typically, the diagnostics run are more extensively than diagnostics used when the machine is first
autobooted. Normal diagnostics, called noninteractive phases, are run automatically when the system
is powered up and more extensive diagnostics are run upon demand (called interactive or demand
phases).

Diagnostic Files

Every option feature card has to have two files on the 3B2 computer hard disk in the / dgn directory
for diagnostics to be activated. The two files contain insiru.ctions that direct the diagnostic monitor
dgmon to test a specified hardware unit.

dgmon provides information to each phase to indicate the position of a hardware device in the EDT.
The diagnostic phase interface consists of a structure containing all necessary information pertaining
to the phase target. When the address of a feature card (slot number) or a type of feature card.
changes, the phase should not be affected becaUse its only interface to the feature cards and the
computer resident hardware is not direct but through the dgmon.

If the two diagnostic files do not exist in the /dgn directory, then the diagnostics fail. The computer
must pass the diagnostic tests so it may progress to multiuser mode.

System Board Resident Diagnostic Files

The first diagnostic file has the same name as the name of the feature card it serves. It is declared in
the EDT. Refer to edittbl(lM) in System Administration Reference Manual for more information.

For example, if the name of the feature card in the EDT is HRl, then the name of the system board
based diagnostic file in the /dgn directory is HRl. This file contains the system board resident code
for diagnostic phases with accompanying phase table.

Writing 3B2 Computer Diagnostics Files B-15

Writing Diagnostic Phases

The system board resident diagnostic file is the only file required to exercise a feature card that
cannot download programs. Typically, such a feature card has an onboard microprocessor that
executes its program from ROM memory rather then from the downloadable RAM. The system
board resident diagnostic program interacts with the microprocessor on the feature card to assign jobs
to be perfonned and to collect data from the feature card.

NOTE: The system board resident diagnostic file must be loaded into main memory at address
OO00COOO (hexadecimal). This address is stored in the DOWNADDR constant defined in
diagnostics.h. After the system board diagnostic file is loaded by dgmon, dgmon begins
execution of every diagnostic phase at this address. Other diagnostic files can be loaded
anywhere after this address.

The system board diagnostic file dOwluoads the executable file into feature card memory and executes
it there. The next section describes the feature card object code. This file type is in the m32.out file
fonnat.

Figure B-4 shows the utilization of system board diagnostic RAM for ROM-based feature card
diagnostics.

00000000

DOMaN

Ox200cOOO
Diagnostic

Phase Table
Ox200c???

SBD

Ox200f000
Diagnostic Phase

Diagnostic
Return Structure

Ox200dOOO \ I f ------------------
Figure B-4 Utilization of System Board Diagnostic RAM Cor the HR.l Card

Feature Card Resident Diagnostic File

The second diagnostic file (in the dgn directory) for the hardware device is the file containing the
feature card object code for the diagnostic tests. Its name is fonned by prefacing the file name with
X. to the system board resident code file. For example, HRl converts to X.HRI. This file is
optional, and cannot be zero bytes in length.

B-16 BCI Drive,J;' l)evelopment Guide

Writing Diagnostic Phases

Feature cards that can download programs into local card memory, use the X. file. The X. file can be
either in common object format or contain data that is used to create the device object code in
memory of the feature card. In either case, the X. file is object code that is usable by a processor on
the feature card.

For a common I/O feature card, this file is x86 executable fonnat common object code. This type of
object code is compiled and loaded in accordance with ifile specifications. File section headers are
created to specify the location for the disk to download to the system board memory.

When the X. file is not in common object code format (such as when the feature card is not a
common 110 feature card or when a 3B2 computer compiler does not exist for a given processor),
dgmon attempts to read the file into memory as raw data, starting at the END phase address. If the
feature card can download programs, you can download from a 3B2 computer hard disk.

Refer to Figure B-5 for a description of system board memory on feature cards that can download
programs.

Diagnostic Return Structure

A section of main memory starting at the location Ox200fOOO has been allocated as the
communication ch~el between phases. The structure defined for this purpose consists of four
unsigned integers starting at location Ox200f000. If this address and structure is not satisfactory for
your needs, you may create your own structure or define your own memory address. However, this
address and structure are recommended and should be used whenever possible to avoid contention
problems at other addresses.

Writing 3B2 Computer Diagnostics Files B-17

Writing Diagnostic Phases

Figure B-5 illustrates how system board diagnostic RAM is used for feature card diagnostics when
feature cards are downloaded (pumped).

Ox2000000

DGMON
Ox200cOOO

Diagnostic
Phase Table

0x200c???
SBD

Diagnostic Phase
0x200f000

Diagnostic
Return Structure

0x2010100

Feature Card
Phase #1 (Pumped)

00011100
Feature Card

Ox2012100
Phase #2 (Pumped)

Feature Card

Ox2013100
Phase #3 (Pumped)

Feature Card

Ox2014100
Phase #4 (Pumped)

Feature Card
Phase #5 (Pumped)

Ox200dOOO _ "
~ -----------------

Figure B-5 System Board Diagn~stic RAM Utilization for Pumped Cards

Refer to later sections of this appendix for more infonnation on writing and compiling a C language
source file to create diagnostic files. Before starting with code development, create a separate
diagnostic floppy diskette for storing your work.

B-18 BCI Driver Development Guide

Putting Diagnostic Files on a Floppy Diskette

Diagnostic files should be created on a separate floppy diskette to minimize the possibility of deleting
or corrupting valuable system files. Figure B-6 describes the commands required to make such a
diskette that is boatable from finnware mode and mountable in multiuser mode.

fmtflop -v Idev/rdsklcOdOs6
newboot lIib/olboot lIib/mboot
~ewboot: confirm request to write boot programs to /dev/rdsk/cOdOs7:y
mlds /dev/dsklcOdOsS 1303 118 .
MItts: /dev/dsk/cOdOsS?
(DEL if wrong)
b¥tes per logical blocks = 1024
total logical blocks = 702
total inodes = 160
gap (physical blocks) = 1
cylinder size (physical blocks) = 18
mkfs: Available blocks = 689
labelit Idev IrdskicOdOsS dgn 060487
CUrrent fsname: , CUrrent volname: , Blocks: 1404,' Inodes: 160
FS Units: 1KB, Date last mounted: date'

. NBW fsname = dgn, NEW volname = 060487 -- DEL if wrong!!
mount /dev/dsk/cOdOsS install
find Idemon /dgn /tilledt -print I cpio -puvdm /install
/install/dgmon
/install/dgn/edt_data
/install/dgn/SBD
/install/dgn/X.SBD
/install/dgn/PORTS
/install/dgn/X.PORTS
/install/dgn/HR1
/install/dgn/X.HR1
442 blocks
umount Idev/dskicOdOsS

. Figure B-6 Making a Diagnostic Floppy Diskette

Writing 3B2 Computer Diagnostics Files B-19

Putting Diagnostic Files on a Floppy Diskette

Organization of the Diagnostic Development Floppy

Figure B-7 shows the directories and files that should be included on the diagnostics development
floppy. The floppy includes diagnostic files and the source for the diagnostics. The floppy can be
mounted in the multiuser system and the programs (diagnostic phases) can be written, edited, and
compiled using the standard UNIX system tools. Subsequently, the same floppy can be used as a
source of diagnostic programs when a 3B2 computer is querying from the firmware mode. The
"Compiling Diagnostic Phases" section in this appendix descJibes this in detail.

!filledt /dgmon

HRI
hrl~hztab.c

sbd_ifile
makefile
make.lo
scpu_l.c
scpu_2.c

/dgn

X.HRI
makefile
make.lo
dummy.c

phaseload.h
iodep.h.

Figure B -7 Organization of the Diagnostics Development Floppy Disk

B - 20 BCI Driver Development Guide

Diagnostics Source File 0 rganization

Figure B-8 shows the organization of diagnostic files for HRl feature card. The top directory, mdgn,
contains three subdirectories

• m32 - systems board diagnostics directory

• x51 - feature card object code directory

• com - common header files directory

The mdgn directory also contains two makefiles, makefile and make.hi. From the mdgn directory,
enter make to compile all of the subordinate diagnostic files.

HRI
hrl..J1hztab.c

sbd_ifile
makefile
make.lo
scpu_l.c
scpu_2.c

X.HRl
makefile
make.Lo
dummy.c

Figure B-8 mdgn Directory

phaseLoad.h
iodep.h

A full listing of the HRl diagnostic source is presented in the source code sections at the end of this
appendix. .

Writing 3B2 Computer Diagnostics Files B-21

Diagnostics Source File Organization

System Board Diagnostics Directory (m32)

The m32 directory contains all the necessary files to generate the system board based diagnostics.
The purpose and the functions of the individual programs in this directory can be surnmerized as
follows

• The diagnostic monitor runs the diagnostic phases according to the phase table
hr I-phztab.c.

• Individual diagnostic programs (phases) are in files scpu_l.c, scpu_2.c, scpu_3.c, and so
on. These diagnostic programs interact with HRI feature card, causing it to go through
specified test phases.

• The individual diagnostic phases and the phase table is compiled according to rules
stated in makefile and make.lo .

• The individual phases and-the phase table is loaded into a 3B2 computer's main memory
in accordance with sbd_ifile.

• Objects of the individual phases are combined into one HRI file.

F eat u r e Car d 0 b j e'c t Cod e D ire c tor y (x 5 1)

The x51 directory contains all the files necessary to generate feature card object code if this feature is
selected. Because the diagnostic files for the HRI feature card are stored in ROM, this directory
contains only the files needed to compile the dummy file to satisfy dgmon requirements. This
dummy file is assigned the name X.HRI. If the feature card can download programs into its memory
(see Table B-3), objects of the individual phases are combined into a one file: X.BRi. In this case,
the directory contains all the diagnostic phases to be downloaded into the feature card memory.
These diagnostic phases are downloaded by the system board diagnostic phases. For example,
systems board diagnostic phase scpu_l. downloads scpu_l.c, scpu_2.c downloads scpu_2.c, and
scpu_3.c downloads scpu_3.c, and so on.

Common Header File"Directory (com)

The com directory contains all the common header files. These header files contain definitions for
generic feature cards as well as specific common 110 feature cards. Figure B-8 describes the files that
should be in the com directory.

B-22 BCI Driver Development Guide

Diagnostic Phase Table

The diagnostic phase table is the first program loaded into main memory. All other diagnostic phases
are loaded after the diagnostic phase table (a map that includes the load point for the diagnostic
phase table is shown in Figure B-4). Figure B-9 lists a sample diagnostic phase table.

1 /**
2 . * Copyright (c) 1986 AT&T
3 * - pb_phztab.c -
4 *
5 * Diagnostic phase table for -HR- Board
6 **"/

7 #include <sys/firmware.h>
8 #include <sys/diagnostic.h>

9 extern unsigned char scpu_1(), scpu_2(), scpu_3(), scpu_4(), scpu_5();
10 extern unsigned char scpu_6(), scpu_7();
11
12 struct phtab phptr[] = {
13 {scpu_1, NORML, "Phase 1 - Init IDInt.Register Check~'},
14 {scpu_2, NORML, "Phase 2 - Parallel Port Out Test"},
15 {scpu_3, NORML, "Phase 3 - Serial Port Out Check"},
16 {scpu_4, INTERACT, "Phase 4 - Serial Port In Check"},
17 {scpu_5, DEMAND, "Phase 5 - Memory Read / Write Test"},
18 {scpu_6, INTERACT, "Phase 6 - Parallel Port In Check"},
19 {scpu_7, DEMAND, "Phase 7 - dummy"},
20 {scpu_7, END, ""}
21 };

Figure B-9 Diagnostic Phase Table Example

As shown in Figure B-9 in lines 12 through 21, the diagnostic phase table structure contains three
fields: the phase name, the phase type, and a description. For example, in line 13 the phase name is
scpu_l, the phase type is NORML, and the description is "Phase 1 - lnit ID Int Register Check."

If the phase type field is NORML (normal), the phase is executed by dgmon in noninteractive mode
during autoboot. If the phase type field "is DEMAND or INTERACf, the phase can only be run in
the interactive mode of MCP. DEMAND indicates that the phase performs comprehensive
diagnostics.

Writing 3B2 Computer Diagnostics Files B-23

Diagnostic Phase Table

The interactive phase type (noted by the INTERACf phase type) requires operator interaction.

NOTE: The END phase type must be the last phase type specified. In addition, the END phase
type should repeat the previously specified phase name and the description field must end
with a period (". If).

B-24 BCI Driver Development Guide

Diagnostic Phase Table

A Loader Option File

The loader option file is created to ensure that the diagnostic phase table is loaded into memory first,
at address-Qx200cOO. In the example in Figure B-10, the loader option file is named sbd_ifile (this
file is invoked by makefile in the m32 directory).

1 1*
2 * Copyright (c) 1986 AT&T

3 *
4 * This file loads SBD diagnostic code. The phase table must
5 * be loaded first and must start at address Ox200cOOO.
6
7
8
9

10

*1
MEMORY
{

PHZTBL:
}

11 SECTIONS
12 {
13 .phztab:
14 {

origin = Ox200cOOO, length = Ox70000

15 _start = .,
16 hr1~phztab.o(.data)

17 } > PHZTBL
18 .text:
19 {
20 } > PHZTBL
21 .data:
22 {
23 } > PHZTBL
24 .bss:
25 {
26 } > PHZTBL
27 }

Figure B-I0 Loader Option File Example

Writing 3B2 Computer Diagnostics Files B-2S

Diagnostic Phase Table

Diagnostic Phases

Figure B-ll is an example of a diagnostic phase for the HRI feature card. This program tests to see
if the HRl feature card is able to read the identification code from the ID hardware register located
on the feature card and tests the interrupt vector register.

1 #inelude<sys/diagnostic.h>
2 #include<sys/firmware.h>
3 #inelude<sys/~bd.h>
4 #inelude<sys/edt.h>
5 #inelude<sys/cio_defs.h>
6 #include<ciofw.h>
7 #include<iodep.h>
8 #include<sys/queue.h>
9 #inelude<phaseload.h>

10 #include<per_dgn.h>
11 #include<ppc_dgn.h>

12 #define DEBUG ,.

13 /**
14 * - scpu_1()
15 *
16 * Copyright (e) 1986
17 *

AT&T

18 * This routine starts the
19 **/

HR1 tests.

Figure B -11 HR.l Diagnostic Phase (part 1 of 4)

B - 26 BCI Driver Development Guide

20 struct dgnret dgnret;
21 char ph_no;
22 unsigned short etime;
23 int (*efunc)();
24 scpu_1()
25 {
26 register int i, j;
27 register int delay1 = 1000;
29 long dly1, save_int;
30 int pb_slot; /* slot # of this board */
31 int vec_num; /* interrupt vector number */
32 int ass_ID = Ox72; /* assigned board's id */
33 int ID, VEC; /* board's id */
34 char *pb_id; /* id address */

char *pb_vec; /* interrupt address */
char *pb_par; /* parallel port address */

35
36
37
38

char *pb_sero; /* serial out port address */
char *pb_seri; /* serial in port address */

39 /* phase execution time */
40 unsigned short etime = 2;

41 /* global phase number */
42 ph_no = 1;

Diagnostic Phase Table

43
44
45

/* print test header */
PRINTF("HR1 Phase: %d
PRINTF("Test Count: 1

Name: SCPU_ 1 Type: NORMAL\.n", ph_no);
Time: %d sec.\.n", etime);

46 pb_slot = EDTP(OPTION)->opt_slot; /* get board slot # from EDT */

Figure B-ll HR.l Diagnostic Phase (part 2 of 4)

Writing 3Bl Computer Diagnostics Files B-27

Diagnostic Phase Table

47 /* calculate board access vectors */
48 pO_id = (char *)«pb_slot * Ox200000) + Ox1); /* ID code req*/
49 po_seri = (char *)«po_slot * Ox20000~) + Ox5); /* serial in */
50 po_vec = (char *)«pb_slot * Ox200000) + Ox7); /* int vec loc */
51 pD_sero = (char *)«pb_slot * Ox200000) + Oxfe); /* serial out *(
52 po_par = (char *)«pb_slot * Ox200000) + Oxff); * parallel port */

53 #ifdef DEBUG
54 PRINTF("BOARD LOCATED IN SLOT %d\n", po_slot);
55 #endif

56 /* calculate vector number */
57 vec_num = po_slot * Ox10;

58 /* Read the board's ID number back from the ID register */
59 ID = *po_id;
60 PRINTF (n ID CODE = %x\n", ID);

61 /* Write vector number into vector register */.
62 for (j = 0; j < delay1; j++);
63 . *pb_vec = (char)vec_num;

64 /* Read the vec~or number back from the vector register */
65 for (j = 0; j < delay1; j++);
66 VEC = *pb_vec;
67 PRINTF("INTERRUPT VECTOR = %x\n", VEC);

Figure B-ll HR.l Diagnostic Phase (part 3 of 4)

B-28 BCI Driver Development Guide

Diagnostic Phase Table

68 if (IO 1= ass_ID)
69 {
70 PRINTF (II \n \nIO CODE = %x IT SHOU.LO BE %x \n n, IO, as s _ ID) ;
71 return(FAIL);
72 }
73 else if (VEC 1= vec_num)
74 {
75 PRINTF("\n\nVECTOR IO = %x IT SHOULD BE %x \nn, VEC,vec_num);
76 return(FAIL);
77 }
78 else
79 return(PASS);

Figure B-l1 HRI Diagnostic Phase (part 4 of 4)

Writing 3B2 Computer Diagnostics Files B-29

Diagnostic Template

A template should be used to maintain standardization between messages for normal and demand
diagnostic phases. This template allows one 72-column line for each of the following

• phase title and type

• output of the warning'messages and input directions

• time it should take for the phase to execute

• total number of times the phase executes

To comply with the above requirements, a test header should be printed using PRINTF(D8X)
statements. The first PRINTF statement should identify the phase and its type. The second PRINTF
statement should list the number of times and the time (in seconds) for the phase to execute.

Note that these messages are only displayed during interactive MCP mode when the phase number is
specified. For example, if the following commands are entered in firmware mode

dgn hrl

B-30 BCI Driver Development Guide

Diagnostic Template

Because 110 is turned off by the dgmon, no used messages are displayed. However, when the phase
number is specified, PRINTF messages are displayed.

dgn hr1 ph=1

A call to the standard library functions (located in lusrlinclude/firmware.h) is in the body of the
source program for scpu_l.c. The code for this call is contained in line 44 of the program is
provided at the end of this appendix.

44 pb_slot = EDTP(OPTIbN) ->opt_siot;

This sta~ement generates a slot number for a 3B2 expansion bus in which the feature card to be
diagnosed is located. The slot number permits calculation of the base address for the feature card.

Writing 3B2 Computer Diagnostics Files B-31

Diagnostic Template

This is possible because the feature card slots in a 3B2 expansion bus are assigned unique addresses as
shown in Table B-5.

Table B-5 Physical Address Assignment on Expansion Slots

slot number 3B2 physical address

1 Ox200000

2 Ox400000

3 Ox600000

4 Ox800000

5 OxaOOOOO

6 OxcOOOOO

7 OxeOoooo

8 Oxl000000

9 Ox1200000

10 Ox 1 400000

11 Ox 1 600000

t2 Ox1800000

13 OxlAOOOOO

14 OxlCOOOOO

15 Ox 1 EOOOOO

From the base address of the feature card, all useful feature card addresses can be calculated. For the
HRl feature card, the following addresses are significant

Table B-6 HR.l Feature Card Usable Addresses

Address
pb_id
pb_vee
pb_par
pb_sero
pb_seri

Description
HRl feature card identification register
interrupt vector register . .
parallel port (input and output)
serial port output
serial port input

In addition, there is also an address defined in the phase scpu_5 for the beginning of the RAM on the
HRl feature card.

B-32 BCI Driver Development Guide

Diagnostic Template

The phase SCPl'CI tests to see if the HRI feature card can identify itself properly. The HRI feature
card phase provides an identification code when tested by the 3B2 computer. Also, the card has the
ability to accept and present its interrupt vector.

Writing 3B2 Computer Diagnostics Files B-33

Diagnostic Template

PASS - FAIL

Control of pass-fail actions occurs by return statements sent back to dgmon. In the case of the HRI
feature card scpu_l phase, pass-fail is controlled by the statements in Figure B-12. Complete code
for this phase is provided at the end of this appendix.

66 if (ID 1= ass_ID)
67 {
68 PRINTF("\n\nID CODE = %x IT SHOULD BE %x \n", ID,ass_ID);
69 return(FAIL);
70 }
71 else if (VEC 1= vec_num)
72 {
73 PRINTF("\n\nVECTOR ID = %x IT SHOULD BE %x \n", VEC 9 vec_num);
74 return(FAIL);
75 }
76 else
77 return(PASS);

Figure B -12 Pass-Fail Control Statements

In line 77, the return(PASS) statement causes dgmon to pass the phase. In lines 69 and 74, the
return(F AIL) statements signals dgmon to fail the phase.

B-34 BCI Driver Development Guide

C om piling Diagnostic Phases

This section describes how to compile diagnostic phases on the 3B2 computer for feature cards.
Included is the compile process for the HR 1 feature card.

In the previous section on making a diagnostic floppy, a set of existing / dgn diagnostic files were
transferred onto a specially initialized floppy diskette. In addition to these copied files, you should
create and populate the mdgn directory as shown in the Figure B-7 and Figure B-8. Finally, you need
to populate the subdirectories with source code.

IMPORTANT: The compilation procedure that follows assumes that you have two 3B2 computers,
one in firmware mode for the execution and testing of diagnostic code
(computer #1), and one in multiuser mode to be used for compilation of diagnostics
(computer #2).

Any new feature cards should be previously installed on the computer that is in
firmware mode before starting the activities in this section.

The following proc~ure describes how to compile a diagnostic phase.

1 Put computer #1 into firmware mode by entering

shutdown -is -y -gO

2 At the FIRMWARE MODE message, enter the firmware password. If your computer
displays a ">" prompt, enter

boot

3 Install the mdgn floppy in the floppy disk drive.

4 Atthe Enter name of program to execute] prompt, enter

dgmon

S Next, the system asks for the disk option, either hard disk (which is the default) or
floppy disk (FD5), enter

FDS

6 The green light on the floppy disk drive illuminates- and and about 45 seconds later the
dgmon prompt appears.

7 Display the HRl feature card diagnostic phases by entering

I hrl

Writing 3B2 Computer Diagnostics Files B-3S

Compiling Diagnostic Phases

8 Execute all the HRI phases observing the HRI feature card performance.

9 To do this step and the next step, change the phase source programs and recompile
them.

Change the diagnostic phase #5 (memory read/write test for the HRl feature card) to be
a NORML phase. The phase should identify itself as such.

10 Write phase #7 for the HRl feature card to be a demand type. This phase should write
ten patterns of 0x0f and OxfO to the parallel output port. Each time a pattern is
executed, a sequence number is displayed on the terminal (serial out) such as: 1, 2, 3, ...
10.

11 After computer #1 finishes executing dgmon, wait until the green light on the floppy
disk drive illuminates and remove the floppy disk.

12 In computer #2, install the mdgn floppy and enter

mount /dev/dskicOdOsS

The green light on the floppy disk drive then illuminates.

CAUTION: Do not remove the. floppy diskette from the drive until after executing
step 16.

13 Change directory tolinstalllmdgn.

14 Edit or create the appropriate code as needed.

15 Change directory to linstalllmdgn and enter make. The command recompiles all the
affected files and remakes the diagnostic object file located in linstallldgnlHRl.

In case of an error, edit the affected source files and repeat this step.

16 Change directory to root (I) and enter

umount /dev/dskicOdOsS

This unmounts the diskette. When the green light on the floppy disk drive goes out,
r~move the "mdgn floppy from comput~r #2.

17 Insert the mdgn floppy in the computer #1 and execute the newly created phase.

Repeat steps 12 through 17 as needed.

The following sections list the source code for the programs previously explained in this appendix.

B-36 BCI Driver Development Guide

2 *
3 *
4 * Diagnostic information for the 3B2 ports board.
5 **1

6 1*
7 * memory boundaries
8
9

10
11
12
13

*1
#define
#define
#define
#define
1*

T (unsigned int *)OxOOOO 1* Low RAM test range (16k) *1
LRAMEND (unsigned int *)Ox3fff
HI{AMSTRT (unsigned int *)Ox4000 1* High RAM te$t range (16k) *1
HRAMEND (unsigned int *}Ox7fff

14 * peripheral rom test values
15
16
17

*1
#define
#define

18 1*

ROMS TART (unsigned char *)OxfcOOO 1* 16k ROM *1
ROMCHKSM(unsigned char *)Oxfffee 1* checksum addr *1·

19 * SBD memory info
20
21
22
23

*1
#define
#define
#define

24 1*

PIOPAGE 2 1* page register value for PIa tests *1
SRMCSTRT (u.nsigned char *) Ox80000 1* PIa byte start location *!
SRMISTRT (unsigned int *)Ox80000 1* PIa int start location *1

25 * DMA page register value
26
27
28

*1
#define DMAPAGE Ox03 1* use fifth page so we don't

overwrite the diagnostic code *1
29 1*
30 * Last SBD RAM address to use in PIa diagnostics
31 * (pio_1.c, pio_2.c)
32 *1
33 #define SRMCEND (unsigned char *)Ox9ffff 1* PIa byte end address *1
34 #define SRMIEND (unsigned int *)Ox9fffe 1* PIa int end address *1
35 1*
36 * interrupt vector returned to SBD
37 *1
38 #define INTVECT Ox3
39 1*
40 * address offset to peripheral devices

Writing 3B2 Computer Diagnostics Files B - 37

41 */
42 #define IO_BASE Ox600
43 /*
44 * duart 0 addresses
45 */
46 #define DO_MR1_2ACIO_BASE + OxOO)
47 #define DO_A_SR_CSR (IO_BASE + Ox02)
48 #define DO_A_CMND(IO_BASE + Ox04)
49 #define DO_A_DATA(IO_BASE + Ox06)
50 #define DO_IPC_ACR (IO_BASE + Ox08)
51 #define DO_IS_IMR(IO_BASE + OxOa)
52 #define DO_CTUR (IO_BASE + OxOc)
53 #define DO_CTLR (IO_BASE + OxOe)
54 #define DO_MR1_2B{IO_BASE + Ox10)
55 #define DO_B_SR_CSR (IO_BASE + Ox12)
56 #define DO_B_CMND(IO_BASE + Ox14)
57 #define DO_B_DATA(IO_BASE + Ox16)
58 #define DO_IP_OPCR ("IO_BASE + Ox1a)
59 #define DO_SCC_SOPBC (IO_BASE + Ox1c)
60 #define DO_SCC_ROPBC (IO_BASE + Ox1e)
61 /*
62 * duart 1 addresses
63 */
64 #define D1_MR1_2ACIO_BASE + Ox80)
65 #define D1_A_SR_CSR (IO_BASE + Ox82)
66 #define D1_A_CMND(IO_BASE + Ox84)
67 #define D1_A_DATA(IO_BASE + Ox86)
68 #define D1_IPC_ACR (IO_BASE + Ox88)
69 #define D1_IS_I~(IO_BASE + Ox8a)
70 #define D1_CTUR C IO_BASE + Ox'8c)
71 #define D1_CTLR (IO_BASE + Ox8e)
72 #define D1_MR1_2BCIO_BASE + Ox90)
73 #define D1_B_SR_CSR (IO_BASE + Ox92)
74 #define D1_B_CMND(IO_BASE + Ox94)
75 #define D1_B_DATA(IO_BASE + Ox96)
76 #define D1_IP_OPCR (IO_BASE + Ox9a)
77 #define D1_SCC_SOPBC (IO_BASE -+ Ox9c)
78 #define D1_SCC_ROPBC (IO_BASE + Oxge)
79 /*
80 * duart control variables
81
82
83
84
85
86

*/
#define RSTMRPT
#define INT7BT
#define INT8BT
#define EXT7BT
#define EXT8BT

Ox10
Ox12
Ox13
Ox12
Ox13

87 #define INTLP Ox8f

B-38 BCI Driver Development Guide

88 #define EXTLP OxOf
89 #define BAUDA Ox44 1* 300 baud *1
90 #define BAUDB Ox66 1* 1200 baud *1
91 #define BAUDC Ox99 1* 4800 baud *1
92 #define BAUDO Oxbb 1* 9600 baud *1
93 #define BAUDE Oxcc 1* 19.2K baud *1
94 1*
95 * duart status variables
96 *1
97 #define TXRDYO !*STATRGO &. Ox04)
98 #define RXRDYO (*STATRGO &. OxO 1)
99 #define TXRDY1 (*STATRG1 &. Ox04)

100 #define RXRDY1 (*STATRG1 &. Ox01)
101 #define TXRDY2 (*STATRG2 &. Ox04)
102 #define RXRDY2 (*STATRG2 &. Ox01)
103 #define TXRDY3 (*STATRG3 &. Ox04)
104 #define RXRDY3 (*STATRG3 &. Ox01)
105 #define FFULLO (*STATRGO &. Ox02)
106 #define FFULL1 (*STATRQ1 &. Ox02)
107 #define FFULL2 (*STATRG2 &. Ox02)
108 #define FFULL3 (*STATRG3 &. Ox02)
109 #define OVRRUNO (*STATRGO &. Ox10)
110 #define OVRRUN1 (*STATRG1 &. Ox10)

- 111 #define OVRRUN2 (*STATRG2 &. Ox10)
112 #define OVRRUN3 (*STATRG3 &. Ox10)
113 1*
114 * printer addresses
115 *1
116 #define PORTA (IO_BASE + Ox100)
117 #define PORTC (IO_BASE + Ox101)
118 1*
119 * printer status variables
120 *1
121 #define PRBUSY (*PORTC &. Ox10)
122 #define PRPE (*PORTC &. Ox20)
123 #define PRSEL (*PORTC &. Ox40)
124 #define PRFALT (*PORTC &. Ox80)
125 #define PRREST (*PORTC &. Ox01)
126 #define PRSTRB (*PORTC &. Ox02)
127 #define PRAUTF (*PORTC &. Ox04)
128 1*
129 * test variables
130 *1
131 #define SHORTZERO OxOOOO
132 #define BYTEZERO OxOO
133 #define SHORTONES Oxffff
134 #define BYTEONES Oxff

Writing 3B2 Computer Diagnostics Files B - 39

135
136
137
138

#define
#define
#define
#define

SHORTAOAZ Oxaaaa

BYTEAOAZOxaa

SHORTAZAO Ox5555
BYTEAZAO Ox55

B-40 BCI Driver Development Guide

c io fw • h

2
3
4

*
*
*

5 *1
6
7
8
9

#define
#define
#define
#define
#define
#define

Copyright 1984 AT&T
This header file contains declarations and defines
those which are used by the common I/O routines only.

MAX_XFER Ox400 1* max bytes XFERd by movoffb&movoffbw
CLR_BRQ Ox2000004 1* addr to write BDID - clear bus reqs
DPD_OFFS Ox80000 1* DPD RAM offset
UMCS Oxfc38 1* value for upper memory chip select
LMCS Ox3ff8 1* value for lower memory chip select
MMCS Ox8000 1* value for middle memory chip select

#ifdef MEMSPACE
define PACS Oxc03a 1* value for PACS register
define MPCS OxaOfS 1* value for memory block size
#else
def:Lne PACS Ox7a 1* value for PACS register
define MPCS· OxaObS 1* value for memory block size
#endif

*1
*1
*1
*1
*1
*1

*1
*1

*1
*1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#define FULL OxO 1* value for queue full in putcomp *1
#define DMA_CWB Oxb6ae 1* DMA cntrl word val to xfer bytes*1
#define DMA_CWW Oxb6af 1* DMA cntrl word val to xfer words*1
#define INTOMSK Ox10 1* mask value for INT 0 *1
#define INT1MSK Ox20 1* mask value for INT 1 *1
#define RQ 1 1* request queue *1
#define CQ 0 1* completion queue *1

27 1*
28 This file is included by both 'c' language source and assembly
29 language source. The assembly code does not wish to see the
30 'c' specific stuff, and so it defines a macro named "ASSY".
31 *1
32
33 #ifndef ASSY
34 typedef struct cmds{
35 char opcode;
36 short (*func)();
37 }CMDS;
38 #endif

Writing 3B2 Computer Diagnostics Files B-41

1
2 Copyright 1984 AT&T

3 This file contains macros for accessing the various IAPX186
4 devices, located in I/O space or memory space, depending upon
5 how one compiles the common I/O.

6 The following are the base locations of the various locations
7 within the I/O (or memory) spectrum.
8 */
9 #ifdef MEMSPACE

10 #define CHAR(x)
11 #define SHORT(x)
12 #define USHORT(x)
13 #define LONG(x)
14 #define ULONG(x)

15
16
17
18
19

#define.
#define
#else
#define
#define

#endif
/*

I
X

I
X

Oxc040·0
OxcOOOO

OxffOO
Ox0400

*«char *)x)
*«short *)x)
*«unsigned short *)x)
*«long *)x)
*«unsigned long *)x)

/* internal registe~ space */
/* external reqis·ter space */

/* internal register space *1
/* external register space *1

20
21
22
23
24
25
26
27
28

The following section comes in two versions: one for C
programs and one for assembiy language programs. The only
difference is the convention for expression inclusion: C
uses parentheses and the assembler uses square brackets.
If you change data in one area, BE SURE TO CHANGE THE
CORRESPONDING DATA IN THE OTHER.

29

30
31
32
33
34
35

*/

#ifdef

#define
#define
#define
#define
#define
#define

ASSY

IC [I+Ox20]
TO [I+Ox50]
T1 [I+Ox58]
T2 [I+Ox60]
CS [I+OxaO]
DO [I+OxcO]

B-42 BCI Driver Development Guide

/* Interrupt controller control regs */

/* Timer 0 control registers */
/* Timer 1 control registers */
/* Timer 2 control registers */
/* Chip Select control registers *1
/* DMA 0 control registers *1

36 #define 01 [I+OxdO] 1* OMA 1 control registers *1

37 /*
38 Interrupt Controller control registers
39 *1

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

#define IC_EOI
#define IC_POLL
#define IC_PSTAT
#define IC_MASK
#define IC_PMASK
#define IC_INSVC
#define IC_IREQ
#define IC_ISTAT
#define IC_TCTRL
#define IC_OMAO
#define .IC_OMA1
#define IC~INTO
#define IC_INT1
#define IC_INT2
#define IC_INT3

55 /*

[IC+Ox2]
[IC+Ox4]
[IC+Ox6]
[IC+Ox8]
[IC+Oxa]
[IC+Oxc]
[IC+Oxe]
[IC+Ox10]
[IC+Ox12]
[IC+Ox14]
[IC+Ox16]
[IC+Ox18]
[IC+Ox1a]
[IC+Ox1c]
[IC+Ox1e]

1* end of interrupt */

/* poll */
/* poll status */

/* mask */
/* priority mask */

/* in-service *1
/* interrupt request */
/* interrupt status */
/* timer control */

/* DMA 0 */
/* DMA 1 */
/* interrupt 0 */
1* interrupt 1 */
/* interrupt 2 */
/* interrupt 3 */

56 The following are areas of-I/O space used to
57 control t~e timer~.
58 */

59
60
61
62

63
64
65
66

67
68
69

#define TO_COUNT
#define TO_MCA
#define TO_MCB
#define TO_MODE

#define T1_COUNT
#define T1_MCA
#define T1_MCB
#define T1_MODE

#define T2_COUNT
#define T2_MCA
#define T2_MODE

[TO+OxO]
[TO+Ox2]
[TO+Ox4]

_ [TO+Ox6]

[T1+0xO]
[T1+0x2]
[T1+0x4]
[T1+0x6]

[T2+0xO] .
[T2+0x2]
[T2+0x6]

/* count */
/* max count a */
/* mas count b */
/* count register */

/* count */
/* max count a */
/* mas count b */
/* count register */

/* count */
/* max count a */
/* count register */

70 /*
71
72

The following define the control area for the
chip select registers.

73

74 [CS+OxO] /* upper memory

Writing 3B2 Computer Diagnostics Files B-43

75
76
77
78

#define CS_LM
#define CS_PA
#define CS_MM
#define CS_MP

[CS+Ox2]
[CS+Ox4]
[CS+Ox6]
[CS+Ox8]

/* lower memory
1* PACS register
1* middle memory
1* memory block size

79
80 The following the control space of the DMA units
81 *.1

82
83
84
85
86
87

88
89
90
91
92
93

#define DO_SRCL
#define DO_SRCH
#define DO_DESTL
#define DO_DESTH
#define DO_TCOUNT
#define DO_CTRL

#define D1_SRCL
#defi:oe D1_SRCH
#define D1_DESTL
#define D1_DESTH
#define D1_TCOUNT
#define D1_CTRL

94 1*

[DO+OxO]
[DO+Ox2]
[DO+Ox4]
[DO+Ox6]
[DO+Ox8]
[DO+Oxa]

[D1+0xO]
[D1+0x2]
[D1+0x4.]
[D1+0x6]
[D1+0x8]
[D1+0xa]

1* source lower 16 bits *1
1* source upper 4 bits *1
1* destination lower 16 bits *1
1* destination upper 4 bits */
1* transfer count*/
1* DMA unit zero control word */

1* source lower 16 bits *1
1* source upper 4 bits *1
1* destination lower 16 bits *1

.1* destination upper 4 bits *1
1* transfer count*1
1* DMA unit one control word *1

95 The following 'define the space of the off-chip
96 registers located on the peripheral board.
97 *1

98
99

100
101
102
103
104
105
106
107

#define CLRINTO
#define CLRINT1
#defi,ne CLRINT2
#define CLRINT3
#define ID_16
#define INTV_ID
#define PAGE_REG
#define PCSR_REG
#define BAF_BIT
#define SYS_INT

108 #else

109
110
111
112
113
114

#define IC
#define TO
#define T1
#define T2
#define CS
#define DO

(I+Ox20)
(I+Ox50)
(I+Ox58)
(I+Ox60)
(I+OxaO)
(I+OxcO)

[X+Ox88]
[X+Ox89]
[X+Ox8a]
[X+Ox8b]
[X+Ox80]
[X+Ox81]
[X+Ox82]
[X+Ox84]
[X+Ox8e]
[X+"Ox8f]

1* reset intO latch */
1* reset int1 latch */
/* reset int2 latch */
1* reset int3 latch */
/* 16-bit ID register */
/* interrupt vector ID reg */
/* page register */
/* PCSR register */
/* bus abort feature *1
/* system interrupt */

/* Interrupt Controller control regs */
/* Timer 0 ~ontrol registers */
/* Timer 1 control registers */
/* Timer 2 control registers */
/* Chip Select control registers */
/* DMA 0 control registers */

B-44 BCI Driver Development Guide

115 #define 01 (I+OxdO) 1* DMA 1 control registers *1
116 1*
117 Interrupt Controller control registers
118 *1

119 #define IC_EOI (IC+Ox2) 1* end of interrupt *1
120 #define IC_POLL (IC+Ox4) 1* poll *1
121 .#define IC_PSTAT (IC+Ox6) 1* poll status *1
122 #define IC_MASK (IC+Ox8) 1* mask *1
123 #define IC_PMASK (IC+Oxa) 1* priority mask *1
124 #define IC_INSVC (IC+Oxc) 1* in-service *1
125 #define IC_IREQ (IC+Oxe) 1* interrupt request *1
126 #define IC_ISTAT (IC+Ox10) 1* interrupt status *1
127 #define IC_TCTRL (IC+Ox12) 1* timer control *1
128 #define IC_DMAO (IC+Ox14) 1* DMA 0 *1
129 #define IC~DMA1 (IC+Ox16) 1* DMA 1 *1
130 #define IC_INTO (IC+Ox18) 1* interrupt 0 *1
131 #define IC_INT1 (IC+Ox1a) 1* interrupt 1 *1
132 #define 'IC_INT2 (IC+Ox1c) 1* interrupt 2 *1
133 #define IC_INT3 (IC+Ox1e) 1* interrupt 3 *1

134 1*
135 The following are areas of IIO space used to
136 . control the timers.
137 *1

138 #define TO_COUNT (TO+OxO) 1* count *1
139 #define TO_MCA (TO+Ox2) 1* max count a *1
140 #define TO_MCB (TO+Ox4) 1* mas count b *1
141 #define TO_MODE (TO+Ox6) 1* count register *1

142 #define T1_COUNT (T1+0xO) 1* count *1
143 #define T1_MCA (T1+0x2) 1* max count a *1
144 #define T1_MCB (T1+0x4) 1* mas count b *1
145 #define T1_MODE (T1+0x6) 1* count register *1

146 #define T2_COUNT (T2+0xO) 1* count *1
147 #define T2_MCA (T2+0x2) 1* max count a *1
148 #define T2_MODE (T2+0x6) 1* count register *1

149 1*
150 The following define the control area for the
151 chip select registers.
152 *1

153 #define CS_UM (CS+OxO) 1* upper memory *1
154 #define CS_LM (CS+Ox2) 1* lower memory *1

Writing 3B2 Co.mputer Diagnostics Files B-45

155
156
157

#define CS_PA
#define CS_MM
#define CS_MP

(CS+Ox4)
(CS+Ox6)
(CS+Ox8)

1* PACS register
1* middle memory
1* memory block size

158 /*
159 The following the control space of the DMA units
160

161
162
163
164
165
166

167
168
169
170
171
172

#define DO_SRCL
#define DO_SRCH
#define DO _DESTL'
#define DO_DESTH
#define DO_TCOUNT
#define DO_CTRL

#define D1_SRCL
#define D1_SRCH
#define D1_DESTL
#de'fine D1_DESTH
#define D1_TCOUNT
#define D1_CTRL

(DO+OxO)
(DO+Ox2)
(DO+Ox4)
(DO+Ox6)
(DO+Ox8)
(DO+Oxa)

(D1+0xO)
(D1+0x2)
(D1+0x4)
(D1+0x6)
(D1+0x8)
(D1+0xa)

1* source lower 16 bits *1
1* source upper 4 bits */
1* destination lower 16 bits *1
1* destination upper 4 bits */
1* transfer count*1
1* DMA unit zero control word */

1* source lower 16 bits *1
/* source upper 4 bits */
1* destination lower 16 bits *1
1* destination upper 4 bits */
1* transfer count*1
1* DMA unit one control 'word *1

173
174
175
176

~be following define the space of the off:-chip.·
registers located on the peripheral board.

177
178
179
180
181
182
183
184
185
186

#define CLRINTO
#define CLRINT1
#define CLRINT2
#define CLRINT3
#define ID_16
#define INTV_ID
#define PAGE_REG
#define PCSR_REG
#define BAF_BIT
#define SYS_INT

187 #endif

(X+Ox88)
(X+Ox89)
(X+Ox8a)
(X+Ox8b)

· (X+Ox80)
(X+Ox81)
(X+Ox82)
(X+Ox84)
(X+Ox8e)
(X+Ox8f)

B-46 BCI Driver Development Guide

1* reset intO latch *1
1* resetint1 latch *1
1* reset int2 latch *1
1* reset int3 latch *1
1* 16-bit ID register *1
1* interrupt vector id reg *1
1* page register *1
1* PCSR register *1
1* bus abort feature */
1* system interrupt *1

m ake.to

1 ########
2 #

3 # Copyright (c) 1986 AT&T
4 #
5 # make.lo for x51 side of HR1 diagnostics
6 #
7 ########
8 TITLE = makefile (x51 make.lo) for x51 side of hR1 Diagnostics
9 MACHINE = m32

10 DEFS = -Dm32
11 CFLAGS =
12
13 all:
14
.15 d= 'pwd '; echo II '\n Now in $ $d directory '\n II ;

16
17 SRC = dummy. c
18
19 OBJ =dummy.o
20
21 PRODUCTS = X.HR1
22
23 $(PRODUCTS): $(OBJ)
24 $(LD) -0 $ (PRODUCTS) $(OBJ)
25 cp $ (PRODUCTS) $(ROOT)/instal+/dgn/$(PRODUCTS)
26 $(STRIP) $(PRODUCTS)
27
28 .PRECIOUS: $ (PRODUCTS)
29
30 #install: all

Writing 3B2 Computer Diagnostics Files B-47

m a k e file

1 all: X.HR1
2 co dummy.c X.HR1

B-48 BCI Driver Development Guide

1 1*
2 * - sbd_ifile -

3 *
4 * This file is used to .load the SBD diagnostic initialization.
5 * code. The order is critical in that the phase table must
6 * be the first thing loaded and must start at Ox200cOOO.
7 *1
8 MEMORY
9 {

10
11

PHZTBL:
}

origin = Ox200cOOO, length = Ox70000

12 SECTIONS
13 {
14 .phztab:
15 {
16 _start = .,
17 hr1_phztab.o(.data)
18 } > PHZTBL

19 .text:
20 {
21 } > PHZTBL

22 .data:
23 {
24 } > PHZTBL

25 .bss:
26 {
27 } > PHZTBL
28 }

Writing 3B2 Computer Diagnostics Files B-49

hrl--phztab.c

1 /**
2 *
3 * Copyright (c) 1986 AT&T

4 *
5 '* Diagnostic phase table for -HR- Board
6 **/

7 #include <sys/firmware.h>
8 #include <sys/diagnostic.h>

9 extern unsigned char scpu_1(), scpu_2(), scpu_3(), scpu_4();
10 extern unsigned char scpu_5(), scpu_6(), scpu_7();

11 struct phtab phptr[] = {
12 {scpu_1, NORML, "Phase 1 - Init ID Int Register Check "},
13 {scpu_2, NORML, "Phase 2 - Parallel Port Out Test"},
14 {scpu_3, NORML, "Phase 3 - Serial Port Out Check"},
15 {scpu_4, INTERACT, "Phase 4 - Serial Port In Check"},
16 '{scpu_5,:OEMAND, "Phase 5 Memory Rea,d / Write Test"},
17 {scpu_6, INTERACT, "Phase 6 - Parallel Port In Check"},
18 {scpu_7, DEMAND, "Phase 7 - dummy"},
19 { scpu_ 7, END, II It }

20 };

B - SO BCI Driver Development Guide

sc p u _1 . c

2
3
4
5

6
7

8
9

10
11

12

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define

*

<sys/diagnostic.h>
<sys/firmware.h>
<sys/sbd.h>
<sys/edt.h>
<sys/cio_defs.h>
<ciofw.h>
<iodep.h>
<sys/queue.h>
<phaseload.h>
<per_dgn.h>
<ppc_dgn.h>

DEBUG

14
15 * Copyright (c) 1986 AT&T
16 *
17 * This routine starts the HR1 tests.
18 **1

19 struct dgnret dgnret;
20 char ph_no;
21 unsigned short etime;
22 scpu_ 1()
23 {
24 register int i, j;
25 register int delay1 = 1000;
26 long dly1, save_int;
27 int pb_slot; 1* slot # of this board *1
28 int vec_num; 1* interrupt vector number *1
29 int ass_ID = Ox72; 1* assigned board's id *1
30
31
32
33
34
35

int ID, VEC;
char *pb_id;
char *pb_vec;
char *pb_par;
char *pb_sero;
char *pb_seri;

1* board's id *1
1* id address *1
1* interrupt address *1
1* parallel port address *1

1* serial out port address *1
1* serial in port address *1

36 1* phase execution time *1

37 unsigned short etime = 2;

Writing 3B2 Computer Diagnostics Files B-51

scpu_l.c

38 /* global phase·number */

39 ph_no = 1;
40
41 /* print test header */

42
43

PRINTF("HR1 Phase: %d
PRINTF("Test Count: 1

Name: SCPU_ 1 Type: NORMAL \n", ph_no);
Time: %d sec.\n", etime);

44 pb_slot = EDTP(OPTION)->opt_slot; /* get board slot # from edt */

45 /* calculate board access vectors */

46
47
48
49
50

pb_id = (char *)«pb_slot * Ox200000) + Ox1);
pb_seri = (char *)«pb_slot * Ox200000) + Ox5);
pb_vec = (char *)«pb_slot * Ox200000) + Ox7);
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe);
pb_par = (char *)«pb_slot * Ox200000) + Oxff);

51 #ifdef DEBUG
52 PRINTF("BOARD LOCATED IN SLOT %d\n", pb_slot);
53 #endif

54 /* calculate vector number */
55 vec_num = pb_slot * Ox10;

/* id code regist.*/
/* serial in */
/* int vec loc */
/* serial out */

/* parallel port */

56 /* Read the board's ID number back from the ID register */
57 ID = *pb_id;
58 PRINTF("ID CODE = %x\n", ID);

59 /* Write vector number into vector register */

60 for (j = 0; j < delay1; j++);
61 *pb_vec = (char)vec_num;

62 /* Read the vector number back from the vector register */
63 for (j = 0; j < delay1; j++);
64 VEC = *pb_vec;
65 PRINTF ("INTERRUPT VECTOR = %x\n", VEC);

66 if (ID 1= ass_ID)
67 {
68 PRINTF("\n\nID CODE = %x IT SHOULD BE %x \n", ID,ass_ID);
69 return(FAIL);
70 }

B - 52 Bel Driver Development Guide

71
72
73

else if (VEC != vec_num)
{

PRINTF(~\n\nVECTOR ID
74 return(FAIL);
75 }

76 else
77 return(PASS);

scpu_l.c

%x IT SHOULD BE %x \n~, VEC,vec_num);

Writing 3B2 Computer Diagnostics Files B - 53

sc p u _2. c

1
2
3
4
5
6
7
8
9

10
11

12

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define

<sys/diagnostic.h>
<sys/firrnware.h>
<sys/sbd.h>
<sys/edt.h>
<sys/cio_defs.h>
<ciofw.h>
<iodep.h>
<sys/queue.h>
<phaseload.h>
<per_dgn.h>
<ppc_dgn.h>

DEBUG

13 1* Byte pattern to be used to test parallel out port *1

14 static char a[]={Ox01,Ox02,Ox04,Ox08,Ox10,Ox20,Ox40,Ox80,
15 Ox80,Ox40,Ox20,Ox10,Ox08,Ox04,Ox02,Ox01,
16 Oxff,Ox11,Oxff,Ox22,Oxff,Ox44,Oxff,Ox88,0};

18
19
20

* Copyright (c) 1986 AT&T

*
* This routine tests the "parallel out" port of the HR1 tests.

22 struct dgnret dgnret;
23 extern char ph_no;
24 unsigned short etime;
25 scpu_2()
26 {
27 register int i, j;
28 register int delay1 = 20000;
29 long dly1, save_int;
30 int pb_slot; 1* slot # of this board *1
31 int vec_num; /* interrupt vector number */
32 char *pb_id; 1* ID address *1
33
.34
35
36
37

char
char
char
char
char

*pb_vec;
*pb_par;
*pb_sero;
*pb_seri;
*p;

1* interrupt address *1
1* parallel port address *1

1* serial out port address *1
1* serial in port address *1

B - 54 BCI Driver Development Guide

38 unsigned short etime = 2; 1* phase execution time *1
39 ph_no = 2; 1* global phase number *1

40 1* print test header *1

41
42

PRINTF("HR1 Phase: %d
PRINTF("Test Count: 3

Type: NORMAL\n" , ph_no);
Time: %d sec.\n", etime);

43 1* execute onboard diagnostic *1

44 pb_slot = EDTP(OPTION)->opt_slot; 1* get board slot # from edt *1

45 1* calculate board access vectors *1

46
47
48
49
50

pb_id = (char *)«pb_slot * Ox200000) + Ox1);
pb_seri = (char *)«pb_s1ot * Ox200000) + Ox5);
pb_vec = (char *)«pb_s10t * Ox200000) + Ox7);
pb_sero = (char *)«pb_s1ot * Ox200000) + Oxfe);
pb_par = (char *)«pb_slot * Ox200000) + Oxff);

51 PRINTF(II PARALLEL PORT TEST\n");

52 1* Parallel out test *1

53 for(i=O; i < 5; i++)
54 {
55 p = a;
56 while (*p != 0)
57 {
58 for(j=O; j < de1ay1; j++);
59 *pb_par = *p++;

60 } 1* end while *1
61 } /* end for *1

62 return(PASS);

1* ID code regist.*1
1* serial in *1
1* int vec 10c *1
/* serial out *1

1* parallel port *1

Writing 3B2 Computer Diagnostics Files B - 55

sc p u _3 .C

1 #include <sys/diagnostic.h>
2 #include <sys/firmware.h>
3 #include <sys/sbd.h>
4 #include <sys/edt.h>
5 #include <sys/cio_defs.h>
6 #include <ciofw.h>
7 #include <iodep.h>
8 #include <sys/queue.h>
9 #include <phaseload.h>

10 #include <per_dgn.h>
11 #include <ppc_dgn.h>

12 #define DEBUG

13 1**
14 *

*
*

Copyright (c) 1986 AT&T 15
16
17 * This routine tests "serial out" port of HR1

19 struct dgnret dgnret;
20 extern char ph_no;
21 unsigned short etime;
22 scpu_3()
23 {
24 register char *p;
25 register int j;
26 register int delay1 = 10000;
27 long dly1, save_int;
28 int pb_slot; 1* slot # of this board */

int vec_num; 1* interrupt vector number
char *pb_id; 1* ID address *1
char *pb_vec; /* interrupt address *1
char *pb_par; /* parallel port address *1

*1 29
30
31
32
33
34

char *pb_sero; 1* serial out port address
char *pb_seri; 1* serial in port address

35 1* phase execution time *1

B - 56 Bel Driver Development Guide

*1
*1

36 unsigned short etime = 2;

37 1* global phase number *1

39 1* print test header *1

40
41

PRINTF("HR1 Phase: %d
PRINTF("Test Count: 3

Type: NORMAL\n" , ph_no);
Time: %d sec.\n", etime);

42 1* execute onboard diagnostic *1

43 pb_slot = EDTP(OPTION)->opt_slot; 1* get board slot # from edt *1

44 1* calculate board access vectors *1

45
46
47
48
49

pb_id = (char *)«pb_slot * Ox200000) + Ox1);
pb_seri = (char *)«pb_slot * Ox200000) + Ox5);
pb_vec = (char *)«pb_slot * Ox200000) + Ox7);
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe);
pb_par = (char *)«pb_slot * Ox200000) + Oxff);

50 PRINTF("\nSERIAL OUT PORT TEST\n");

51 1* Serial out test *1

1* ID code regist.*1
1* serial in *1
1* int vec loc *1

1* serial out *1
1* parallel port *1

52 p="\n\r******* Serial Port Output Test ********\n\r";
53 while (*p 1= '\0')
54
55 for(j=O; j < delay1; j++);
56 *pb_sero *p++;
57 }

58 return(PASS);

Writing 3B2 Computer Diagnostics Files B- 57

1 #include <sys/diagnostic.h>
2 #include <sys/firmware.h>
3 #include <sys/sbd.h>
4 #include <sys/edt.h>
5 #include <sys/cio_defs.h>
6 #include <ciofw.h>
7 #include <iodep.h>
8 #include <sys/queue.h>
9 #include <phaseload.h>

10 #include <per_dgn.h>
11 #include <ppc_dgn.h>

12 #define DEBUG

13 /**
14 *
15
16
17

* Copyright (c) 1986 AT&T

*
* This routine tests serial in port of HR1

19 struct dgnret dgnret;
20 extern char ph_no;
21 unsigned short etime;
22 scpu_4()
23 {
24 register int i, j;

25 register int delay1 = 30000;
26 long dly1, save_int;
27 int pb_slot; /* slot # of this board */
28
29
30
31
32
33
34
35

int
char
char
char
char
char
char
char

vec_num;
*pb_id;
*pb_vec;
*pb_par;
*pb_sero;
*pb_seri;
byte 1 ;
byte2;

/*
1*
1*
1*

interrupt vector number *1
ID address *1
interrupt address */
parallel port address *1
1* serial out port address */
1* serial in port address *1

36 /* phase execution time *1

B - 58 Bel Driver Development Guide

37 unsigned short etime = 2;

38 1* global phase number *1

39 ph_no = 4;
40
41 1* print test header *1

42
43

PRINTF(tl HR1 Phase: %d
PRINTF(tlTest Count: 3

Type: NORMAL'n tl , ph_no);
Time: %d sec.'n tl , etime);

44 1* execute onboard diagnostic *1

45 pb_slot = EDTP(OPTION)->opt_slot; 1* get board slot # from edt *1

46 1* calculate board access vectors *1

47
48
49
50
51

pb_id = (char *)«pb_slot * Ox200000) + Ox1);
pb_seri = (char *)«pb_slot * Ox200000) + Ox5);
pb_vec = (char *)«pb_slot * Ox200000) + Ox?);
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe);
pb_par = (char *)«pb_slot * Ox200000) + Oxff);

52 PRINTF(tlSERIAL IN PORT TEST'r'n");

1* ID code regist.*1
1* serial in *1
1* int vec loc *1

1* serial out *1
1* parallel port *1

53 PRINTF(tlBEGIN TYPING WHEN YOU HEAR BELLS AND 'GO' IS DISPLAYED'n'n tl);
54 for(j=O; i < delay1; j++);
55 for(j=O; i < delay1; j++);
56 PRINTF("GGGGGGO!!!! !'n'n");

57 1* Serial in test *1

58 for(i=O; i < 100; i++)
59 {
60 PRINTF(tI%c",*pb_seri);
61 for(j=O; j < delay1; j++);
62 }

63 return(PASS);

Writing 3B2 Computer Diagnostics Files B - 59

sc p u _5.c

1 #include <sys/diagnostic.h>
2 #include <sys/firmware.h>
3 #include <sys/sbd.h>
4 #include <sys/edt.h>
5 #include <sys/cio_defs.h>
6 #include <ciofw.h>
7 #include <iodep.h>
8 #include <sys/queue.h>
9 #include <phaseload.h>

10 #include <per_dgn.h>
11 #include <ppc_dgn.h>

12 #define DEBUG

14
15
16
17

* Copyright (c) 1986 AT&T

*
*
*

This routine tests READ/WRITE capabilities
of onboard RAM of HR1

19 struct dgnret dgnret;
20 extern char ph_no;
21 unsigned short etime;
22 scpu_5()
23 {
24 register int i, j;
25 register int delay1 = 1000;
26 int pb_slot; /* slot # of this board */
27 int vec_num; /* interrupt vector number */
28 int ram_size Ox61; / * 8751. ram size -9 */
29 char *pb_id; /* ID address */
30 char *pb_vec; /* interrupt address */
31 char *pb_sram; /* start of ram */
32 char *pb_par; /* parallel port address */
33 char *pb_sero; /* serial out port address */
34 char *pb_seri; /* serial in port address */
35 char wbyte1 Ox55, wbyte2 = Oxaa; /* bytes with */
36
37 char rbyte;

/* which RAM is tested */
/* byte with which RAM is tested */

B - 60 Bel Driver Development Guide

38 1* phase execution time *1

39 unsigned short etime = 10;

40 1* global phase number *1

42 1* print test header *1

43
44

PRINTF("\n\r\nHR1 Phase: %d Type: DEMAND\n" , ph_no);
PRINTF("Test Count: 6 Time: %d sec.\n", etime);

45 1* execute onboard diagnostics *1

46 pb_slot = EDTP(OPTION)->opt_slot; 1* get board slot # from edt *1

47 1* calculate board access vectors *1

48
49
50
51
52
53

pb_id = (char *)«pb_slot * Ox200000) + Ox1);
pb_seri = (char *)«pb_slot * Ox200000) + Ox5);
pb_vec = (char *)«pb_slot * Ox200000) + Ox7);
pb_sram = (char *)«pb_slot * Ox200000) + Ox9);
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe);
pb_par = (char *)«pb_slot * Ox200000) + Oxff);

54 PRINTF("\n\rON BOARD READ/WRITE RAM TEST \r\nn);

1* ID code regist.*1
1* serial in *1
1* int vec loc *1

1* start ram loc *1
1* serial out *1

1* parallel port *1

55 for(i = 0; i < ram_size; i++) 1* ram_size -9 *1
56 {
57 *(pb_sram + i) = wbyte1; 1* write first pattern *1
58 for(j=O; j < delay1; j++);
59 rbyte = *(pb_sram + i); 1* read first time *1
60 for(j=O; j < delay1; j++);
61 rbyte = *(pb_sram + i); 1* read second time *1

62 PRINTF (n%x", rbyte); 1* display the read back byte *1
63 if (rbyte 1= wbyte1)
64
65
66
67
68

PRINTF("\n\r LOCATION %xh FAILED! READ %xh SHOULD READ %xh\n\r n ,

69

(pb_sram + i),
return(FAIL) ;

} 1* end if *1

wbyte2;

rbyte, wbyte1) ;

1* write second pattern *1

Writing 3B2 Computer Diagnostics Files B- 61

70
71
72

for(j=O; j < delay1j j++);
rbyte = *(pb_srarn + i);
for(j=O; j < delay1; j++);
rbyte = *(pb_srarn + i);
PRINTF("%x", rbyte);
if (rbyte != wbyte2)
{

/* read first time */

/* read second time */
/* display the read back byte */

73
74
75
76
77 PRINTF("'\n'\rLOCATION %xh FAILED!

READ %xh SHOULD READ %xh'\n'\r" ,
78 (pb_srarn + i), rbyte, wbyte2);
79 return(FAIL);
80 } /* end if */

81 } 1* end for */

82 return(PASS);

B - 62 Bel Driver Development Guide

sc p u _6.c

1
2
3
4
5
6
7
8
9

10
11

12

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define

13 1**
14 *

<sys/diagnostic.h>
<sys/firmware.h>
<sys/sbd.h>
<sys/edt.h>
<sys/cio_defs.h>
<ciofw.h>
<iodep.h>
<sys/queue.h>
<phaseload.h>
<per_dgn.h>
<ppc_dgn.h>

DEBUG

15 * Copyright (c) 1986 AT&T
16 *
17 * This routine tests parallel in port of HR1
18 **1

19 struct dgnret dgnret;
20 extern char ph_no;
21 unsigned short etime;
22 scpu_6()
23 {
24 register int i, j;
25 register int delay1 = 50000;
26 long dly1, save_int;
27 int pb_slot; 1* slot # of this board *1
28
29
30
31
32
33
34
35

int
char
char
char
char
char
char
char

vec_num;
*pb_id;
*pb_vec;
*pb_par;
*pb_sero;
*pb_seri;
byte 1 ;
byte2;

1*
1*
1*
1*

interrupt vector number *1
ID address *1
interrupt address *1
parallel port address *1
1* serial out port address *1
1* serial in port address *1

36 1* phase execution time *1

37 unsigned short etime = 10;

Writing 3B2 Computer Diagnostics Files B-63

38 /* global phase number *1

39 ph_no = 6;
40
41 /* print test header *1

PRINTF(II\n\r\nHR1 Phase: %d Type: NORMAL\nll, ph_no); 42
43 PRINTF(IITest Count: 3 Time: %d sec.\n ll , etime);

44 /* execute onboard diagnostic *1

45 pb_slot = EDTP(OPTION)->opt_slot; /* get board slot # from edt *1

46 /* calculate board access vectors */

47 pb_id = (char *)«pb_slot * Ox200000) + Ox1); 1* IO code reg*/
48 pb_seri = (char *)«pb_slot * Ox200000) + Ox5); /* serial in */
49 pb_vec = (char *)«pb_slot * Ox200000) + Ox7); /* intvec loc*/
50 pb_sero = (char *)«pb_slot * Ox200000) + Oxfe);/* serial out*/
51 pb_par = (char *)«pb_slot * Ox200000) + Oxff);I*parallel prt*/

52 PRINTF (II PARALLEL IN PORT TEST\r\n II) ;
53 PRINTF (II PLEASE , START START CHANGING DIP

SWITCHES ON MY COMMANO\n\n");
54 for(j=O; i < delay1; j++);
55 for(j=O; i < delay1; j++);
56 for(j=O; i < delay1; j++);
57 for(j=O; i < delay1; j++);
58 PRINTF (IIGGGGGGO! 1 ! ! 1 \n \n") ;

59 1* Serial in test */

60 for(i=O; i < 300; i++)
61 {
62 PRINTF (II%XIl ,*pb_par) ;
63 for(j=O; j < delay1; j++);
64 }

65 return(PASS);

B - 64 BCI Driver Development Guide

scpu_7.c

1
2
3

4
5
6
7
8
9

10
11

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<sys/diagnostic.h>
<sys/firmware.h>
<sys/sbd.h>
<sys/edt.h>
<sys/cio_defs.h>
<ciofw.h>
<iodep.h>
<sys/queue.h>
<phaseload.h>
<per_dgn.h>
<ppc_dgn.h>

12 #define DEBUG

13 1**
14 *
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

* Copyright (c) 1986 AT&T

*

struct dgnret dgnret;
extern char ph_no;
unsigned short etime;
scpu_7 ()
{

register int i, j;
register int delay1 = 30000;
long dly1, save_int;
int pb_slot; /* slot # of this board */
int vec_num;
char *pb_id;
char *pb_vec;
char *pb_par;
char *pb_sero;
char *pb_seri;
char byte 1 ;
char byte2;

/* interrupt vector number *1
1* ID address *1
1* interrupt address *1
/* parallel port address *1

1* serial out port address *1
1* serial in port address *1

35 1* phase execution time *1

36 unsigned short etime = 2;

Writing 3B2 Computer Diagnostics Files B - 65

37

38
39
40

1* global phase number *1

1* print test header *1

41
42

PRINTF("\n\r\nHR1 Phase: %d, Name: SCPU_7, Type: OEMANO\n", ph_no);
PRINTF("Test count: 3 Time: %d sec.\n", etime);

43 1* execute onboard diagnostic *1

44 pb_slot = EOTP(OPTION)->opt_slot; 1* get board slot # from edt *1

45

46
47
48
49
50

1* calculate board access vectors *1

pb_id = (char *)«pb_slot * Ox200000) + Ox1);
pb_seri = (char *)«pb_slot * Ox200000) + Ox5);
pb_vec = (char *)«pb_slot * Ox200000) + Ox7);
pb_sero = (char *)«pb_slot * Ox200000) + Oxfe);
pb_par = (char *)«pb_slot * Ox200000) + Oxff);

51 1* start your coding here *1

52 return(PASS);

B - 66 Bel Driver Development Guide

1* IO code regist.*1
1* serial in *1
1* int vec loc *1

1* serial out *1
1* parallel port *1

dum m y.c

1 main ()
2 {
3 1* this is an empty file to satisfy DGMON requirement *1
4 }

"'"riting 3B2 Computer Diagnostics Files B-67

m ake.hi

1 TITLE = High Level makefile for 3B2 -HR1- Diagnostics
2 PRODUCTS = m32 x56

B - 68 BCI Driver Development Guide

iodep .h

1 typedef long RAPP;
2 typedef long CAPP;

3 #define CQSIZE 10
4
5

6

#define RQSIZE 5
#define NUM_QUEUES1

#define REQUEST

7 1*

o 1* request queue *1

8 Number of sub-devices. The Ports board actually has no
9 sub devices; however we must make NUM_OEVS at least 1

10 for C declaration purposes. The initialization value within
11 the subdevice table informs the SBO that there are actually
12 zero devices.
13 *1

14 #define NUM_DEVS

15 1* Board IO *1
16 #define BOID 2

Writing 3B2 Computer Diagnostics Files B - 69

per _d g n.h

2
3
4

*
*
*

Common header file for peripheral diagnostics
using "phzrun()".

6 1* PB RAM page size (K bytes) *1

7 #define SEGSIZE Ox100

8 1* DMA control word (transfer bytes) used in phasend() *1

9 Oxb7ae

10 1* page register value for returning dgn structure *1

11 #define DGN_PAGEOxOI* Ox2000000 - Ox201ffff *1

12 1* diagnostic return address - this value is used
13 as the destination address for DMA of the diagnostic
14 results to the SBD *1

15 #define DMARETADOx8fOOO

16 1* pointer to diagnostic return structure. this is the
17 only place where the address is actually defined. *1

18 #define DGNRETST«struct dgnret *)Ox200fOOO)

19 1* character on which to abort diagnostics *1

20 #define ABORTKEYOx04

21 1* additional time to allow for phase execution *1

22 #define ETIMEPAD4 1* seconds (decimal) *1

23 1* mode flags for phzrun() - a variable is set to
24 indicate the current process. If for some reason
25 diagnostics fail, this value can be looked at with
26 a debug monitor to determine what happened and why. *1

B -70 BCI Driver Development Guide

#define QUEINIT Oxa 11a 1* initialization *1
#define BSYSGEN Oxa22a 1* board sysgen *1
#define DOS EXEC Oxa33a 1* executing DOS *1
#define DWNLOAD Oxa44a 1* diagnostic download *1
#define DGNEXEC Oxa55a 1* executing FCF *1

27
28
29
30
31
32 #define DGNRETN Oxa66a 1* waiting for dgn results

33 1* failing return codes for phzrun(), PASS is
34 returned if all is well *1

35 #define RSPERR Oxb11b 1* incorrect response *1

per_dgn.h

*1

36 #define RSPTMOUTOxb22b 1* timeout waiting for response *1
37 #define DGNTMOUTOxb33b 1* timeout during dgn execution *1
38 #define NORESULTOxb44b 1* no diagnostic results returned *1
39 #define UNEXPINTOxb55b 1* unexpected interrupt *1
40 #define UNEXPEXCOxb66b 1* unexpected exception *1
41 #define WRITFAILOxb77b 1* write of dgn return struct failed *1
42 #define CONABORTOxbffb 1* console interruption *1

43 1* diagnostic return structure - if the variable
44 names or types are changed, be sure to update the
45 macros used to reference them *1

46
47
48
49
50
51
52

struct dgnret
{

unsigned short
unsigned short
unsigned short
unsigned short

} ;

d_flag;
d_ftst;
d_rawd;
d_supd;

1* pass/fail flag
1* first failing
1* raw data *1
1* supplementary

*1
test # *1

data *1

53 1* size of diagnostic return structure (bytes) *1

54 #define DGRTSIZEOx8

55 1* Macros used to access dgnret variables. The
56 first definition is used by phasend(), the second
57 by presult() *1

58 1* pass/fail flag *1

59
60

#define RESLT
#define PRESLT

(dgnret.d_flag)
(DGNRETST->d_flag)

61 1* failing test # *1

62 #define FFTEST (dgnret.d_ftst)

Writing 3B2 Computer Diagnostics Files B-71

per_dgn.h

63 #define PFFTEST (DGNRETST->d_ftst)

64 1* raw data *1

65 #define RAWD (dgnret.d_rawd)
66 #define PRAWD (DGNRETST->d_rawd)

67 1* supplementary data *1

68 #define SUPD (dgnret.d_supd)
69 #define PSUPD (DGNRETST->d_supd)

70 1* macro used to access completion queue opcode *1

71 #define C_opcode(R)
72 ((CQUEUE *)C_ADDR)->queue.entry[R].common.codes.bytes.opcode

73 1* macros abed to access express request queue *1

74 #define R_Xbytcnt
75 ((RQUEUE *)R_ADDR)->express.common.codes.bytes.bytcnt

76 #define R_Xcmdstat
77 ((RQUEUE *)R_ADDR)->express.common.codes.bits.cmd_stat

78 #define R_Xseqbit
79 ((RQUEUE *)R_ADDR)->express.common.codes.bits.seqbit

80 #define R_Xsubdev
81 ((RQUEUE *)R_ADDR)->express.common.codes.bits.subdev

82 #define R_Xopcode
83 ((RQUEUE *)R_ADDR)->express.common.codes.bytes.opcode

84 #define R_Xaddr
85 ((RQUEUE *)R_ADDR)->express.common.addr

86 #define R_Xappl
87 ((RQUEUE *)R_ADDR)->express.appl.addr

88 1* macro used to access express completion queue opcode *1

89 #define C_Xopcode
90 ((CQUEUE *)C_ADDR)->express.common.codes.bytes.opcode

B -72 BCI Driver Development Guide

P h a,s e loa d . h

1 1**
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *

10 *
11 *
12 *
13 *
14 *
15 *
16 *
17 *
18 *
19 *
20 *
21 *
22 *
23 *
24 *
25 *
26 *
27 *
28 *
29 *
30 *
31 *
32 *
33 *
34 *
35 *
36 *
37 *
38 *
39 *
40 *
41 *
42 *

- phaseload.h -

This header file defines the load addresses for each
x86 diagnostic phase when loaded into SBD RAM. They
are referenced primarily in the ifile "phz_ifile.c".

These values are also used by the phase startup
routine as the source and destination addresses for
download to the peripheral board and also determine
the number of bytes to be downloaded.

Unfortunately there is no easy way to calculate these
values. Each phase was compiled and then it's size
used to determine starting address and space needed.

Utilization of SBD RAM is

Ox2000000 ----------------
: Diagnostic
: Monitor :

Ox200cOOO ----------------
l Diagnostic
I Phase Table I

Ox200c??? ----------------
SBD

: Diagnostic
I Startup Code

Ox200???? ----------------
SBD Common

I Diagnostic
: Routines

Ox200fOOO ----------------
I Diagnostic
I Return Struct

Ox2010100 ----------------
I Diagnostic
I Phase

Ox2011100 ----------------
Diagnostic

I Phase

Writing 3B2 Computer Diagnostics Files B-73

phaseload.h

43 * Ox2012100 -----------------
44 *

I Diagnostic I

45 *
I Phase I

46 * -----------------
47 *
48 * V V

49 * Ox20dOOOO -----------------
50 **1

51 1* define low and high peripheral load addresses *1

52 #define LCSTEST Ox0500 1* used to load low chip select test *1
53 #define LDLORAM Ox1000
54 #define LDHIRAM Ox5000

55 1* define the starting address for each phase *1

56 #define PHASE01 Ox2010100 1* cio *1
57 #define PHASE02 Ox2011100 1* pcsr *1
58 #define PHASE03 Ox2012100 1* ram_h *1
59 #define PHASE04 Ox2013100 1* ram_l *1
60 #define PHASE05 Ox2014100 1* rom *1
61 #define PHASE06 Ox2015100 1* cpu_1 *1
62 #define PHASE07 Ox2016100 1* cpu_2 *1
63 #define PHASE08 Ox2017100 1* cpu_3 *1
64 #define PHASE09 Ox2018100 1* cpu_4 *1
65 #define PHASE10 Ox2019100 1* cpu_5 *1
66 #define PHASE11 Ox201a100 1* pio_1 *1
67 #define PHASE12 Ox201b100 1* pio_2 *1
68 #define PHASE13 Ox201c100 1* DMA byte *1
69 #define PHASE14 Ox201d100 1* DMA word *1
70 #define PHASE15 Ox201e100 1* print_1 *1
71 #define PHASE16 Ox201f100 1* print_2 *1
72 #define PHASE17 Ox2020100 1* duartO_1 *1
73 #define PHASE18 Ox2022100 1* duart1_1 *1
74 #define PHASE19 Ox2024100 1* duartO_2 *1
75 #define PHASE20 Ox2025100 1* duart1_2 *1
76 #define PHASE21 Ox2026100 1* duartO_3 *1
77 #define PHASE22 Ox2027100 1* duart1_3 *1
78 #define PHASEND Ox2028100 1* END OF DIAGNOSTIC PHASES *1

B -74 BCI Driver Development Guide

Appendix C: System Header Files

Contents

Hardware-Independent Header Files Used in Drivers

Header Files from Other Drivers C - 4
System Definition Header Files for 110 C-4

C-2

System Header Files C - i

Appendix C: System Header Files

The lusrlincludel sys directory and subdirectories includes a number of header files for system data
structures and other structures associated with drivers that are bundled with the UNIX operating
system. The following sections list the system header files that can be used in driver code.

System Header Files C-l

Hardware-Independent Header Files Used in Drivers

The following header files contain predominantly hardware-independent and implementation
independent information; their contents do not vary substantially between machines or releases. They
contain definitions of data structures used to maintain kernel state information, definitions of data
objects used throughout the kernel, and the internal flags used as state indicators in the data
structures defined here.

buf.h defines the members of the buffer header used with the system buffer cache, including
the valid flags for the b_flags member. #include this header file in all block-access
drivers and in character-access drivers that use a buffering scheme that relies on this
same header.

cmn_err.h defines the cDlD_err(D3X) print interface. #include in all driver code.

conf.h defines the switch table structures, bdevsw(D4X), cdevsw(D4X), and
linesw(D4X).

debug.h defines all facilities available with cc -DDEBUG. Drivers that include ASSERT code
for debugging should #include this file.

elog.h defines external major numbers for use by error logging, statistics used for estimating
error rates during error logging, and the structure that tracks I/O activity for system
accounting. Drivers for disk, tape, printer, network, and other hardware drivers
should #include this file.

errno.h defines standard error codes; used in all drivers.

file.h defines the UNIX System V file structure, including valid values for the f_flag
member; used by drivers that use control flags on open(D2X) routine.

immu.h contains the source for the getsrama(D3X) and getsramba(D3X) macros. immu.h is
used in memory management.

inline.h redefines the spl* functions and contains memory management functions outside the
AT&T driver interface.

iobuf.h defines IDFC controller status information and a private buffer header structure for
this disk device.

map.h defines the memory mapping scheme discussed in Chapter 6; required for all drivers
that use a map to manage dynamically-allocated memory.

open.h defines types of open(2) and c1ose(2) system calls. These types can be used to
determine when these system calls will activate the corresponding driver routines and
when they will not. If the device for your driver requires this facility, #include this
header file and use the defined types as the third argument to the open(D2X) and
c1ose(D2X) routines.

C - 2 BCI Driver Development Guide

Hardware-Independent Header Files Used in Drivers

param.h gives parameter definitions that are required by other header files; #include after
types.h in all drivers.

proc.h defines the proc(D4X) structure that contains reference to the current process.

signal.h defines signal mechanism; required in any driver that uses signal(D3X) or
psignal(D3X) .

stream.h defines data structures used for the STREAMS interface; required in any
STREAMS-interface driver.

stropts.h defines options and IOCTLs for STREAMS drivers; required in any STREAMS
interface driver.

strstat.h defines the counters used for gathering statistics for the STREAMS interface; required
in any STREAMS-interface driver.

sysinfo.h contains several counters and flags used by drivers to record event status, such as
when an interrupt routine is serviced.

systm.h defines system entry table, system devices (such as rootdev and swapdev) and system
scheduling variables; required for any driver that uses dma_breakup(D3X),
drv_rtile(D3X), geteblk(D3X), logstray, or bdelog(D3X).

termio.h defines the I/O control commands that are supported for tenninal drivers; required for
all tenninal drivers.

trace .h used by the trace driver.

tty.h defines structures used for TTY devices, including clist(D4X), ccblock(D4XX),
cblock(D4X), cfreelist(d4), tty(D4X). Also defines commands and flags
used with the tty line discipline. #include in any driver that uses a cblock
buffering scheme or a TTY structure.

types.h gives type definitions that are required by other header files; #include in all drivers,
usually before any other header files.

user.h defines the user(D4X) structure

vtoc.h defines I/O control commands, error codes, and structures used for VTOC' ed disks.
should #include in all drivers for VTOC'ed disk devices.

System Header Files C - 3

Hardware-Independent Header Files Used in Drivers

H e a d e r File s fr 0 mOt her D r i v e r s

In general, header files defined for one driver should not be used in another driver. The following
header files are exceptions

log.h defines the STREAMS log driver, should be included in all STREAMS driver code.

hdelog.h defines drivers structures, tables, and queues used for the Disk Defect Management
feature. All drivers for disk devices that run under Disk Defect Management should
include this file. See Chapter 11, "Error Reporting," for more information.

strlog.h defines STREAMS log driver interface, should be included in all STREAMS driver
code.

System Definition Header Files for 1/0

The following UNIX System V header files define the I/O bus of the AT&T 3B2 computer, the
common software/firmware, and pumpcode conventions used in all peripherals attached to the
system's I/O bus. Also included here are files that describe hardware (such as the DMA controller)
used explicitly by more than one device driver. These files may be included by appropriate device
drivers.

cio_defs.h defines common status from all I/O applications and drivers and gives macros for
common 110 firmware functions.

diskette.h defines diskette formatting structures; required in all drivers for controllers that
support diskette devices.

dma.h defines Direct Memory Access (DMA) conventions

io.h defines disk partition tables.

l/a.h defines common I/O queue entry opcodes.

pump.h defines purnpcode I/O control commands and other information used when
downloading information to an intelligent controller

queue .h defines queue pointer macros.

C - 4 BCI Driver Development Guide

Appendix D: Sample Character Driver

Contents

Driver Routines D-l

Character Driver Code D-2

Sample Character Driver D- i

Appendix D: Sam pie Character Driver

Driver Routines

This appendix lists a serial driver that interacts with a Dual Universal Asynchronous Receiver
Transmitter (DUART) such as that used by a tenninal.

Table D-l Driver Routines

Routine Line Number Purpose
init 60 initialize variables when system is booted

open 72 start access to device
close 102 complete access to device
read 116 read tenninal data
write 124 send character to tenninal
ioctl 132 110 control command routine

int 179 interrupt routine
rint 209 character-received interrupt routine
xint 296 character-transmitted interrupt routine

modem 395 enable! disable modem
param 139 request modem to hang up phone line
proc 318 process input characters

Sample Character Driver D-l

Character Driver Code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"sys/param.h"
"sys/types.h"
"sys/signal.h"
"sys/dir.h"
"sys/immu.h"
"sys/psw.h"
"sys/pcb.h"
"sys/user.h"
"sys/errno.h"
"sys/file.h"
"sys/tty.h"
"sys/termio.h"
"sys/conf.h"
"sys/sysinfo.h"
"sys/sysmacros.h"
"sys/inline.h"

17 struct duart {
18 char uart_cmnd; /* command register */
19 char uart_csr; /* control/status register */

20 char dtr; /* data terminal ready status reg */
21 char dcd; /* data carrier detect reg*/
22 char uart_data; /* receive-transmit data holding reg */
23 char vector; /* interrupt vector register */
24 intspeed; /* baud rate register*/
25 intmr1; /* mode register - channel 1 */
26 intmr2; /* mode register - channel 2 */
27 };

28 extern struct duart duarte]; /* the uart device */
29 extern struct tty DRVR_tty[]; /* tty data structures */
30 extern int nduart;

31 /*
32 * Device commands
33 */

34 #define DISABLE 0
35 #define ENABLE 1
36 #define RESET 2
37 #define STRT_BRK 3

D-2 BCI Driver Development Guide

38 #define STOP_BRK4
39 #define CLEAR_INT 5
40 #define RESET_ERR 6

41 1*
42 * Register bits
43 *1

44 #define BITS5 0
-45 #define BITS6 1
46 #define BITS7 2
47 #define BITS8 3
48 #define OPAR Ox10
49 #define NO_PAR Ox20

50 #define ONESB 1
51 #define TWOSB 2

52 #define RCVRDY Ox01
53 #define XMTRDY Ox02
54 #define FE Ox04
55 #define OVRRUN Ox08
56 #define PARERR Ox10
57 #define RCVD_BRK Ox20

58 1* internal major number
59 extern int DRVR_maj;

60 DRVRini t ()
61 {
62 int i, j;

from master.d file *1

63 for(i = 0; i < nduart;i++) {
64 duart[i].uart_cmnd = DISABLE;
65 for (j=O; j< 128; j++)
66 if (MAJOR[j] == DRVR_maj && MINOR[j] == i) {
67 duart[i].vector = j « 4;
68 break;
69 }
70 }
71 }

72 DRVRopen(dev, flag)
73 register dev, flag;
74 {

Character Driver Code

Sample Character Driver D-3

Character Driver Code

75 register struct tty *tp;
76 int oldpri;
77 extern DRVRproc();

78 dev = minor (dev) ;

79 if (dev >= nduart) {
80 u.u_error = ENXIO;
81 return;
82 }

83
84
85

tp = &DRVR_tty[dev];
if «tp->t_state & (ISOPEN

ttini t (tp) ;
86 tp->t_proc = DRVRproc;
87 DRVRparam(dev);
88 }

89 oldpri = spltty();

WOPEN» -- 0) {

90 if (tp->t_cflag & CLOCAL I I DRVRmodem(dev, ON»
91 tp->t_state 1= CARR_ON;
92 else
93 tp->t_state &= -CARR_ON;

94 if (!(flag & FNDELAY))
95 while «tp->t_state & CARR_ON == 0) {
96 tp->t_state 1= WOPEN;
97 sleep«caddr_t) & tp->t_canq, TTIPRI);
98 }

99 (*linesw[tp->t_line].l_open) (tp);
100 splx(oldpri);
101 }

102 DRVRclose(dev)
103 register dev;
104 {
105 register struct tty *tp;
106 register int oldpri;

107 dev = minor(dev);

108 tp = &DRVR_tty[dev];
109 (*linesw[tp->t_line].l_close)(tp);

110 if (tp->t_cflag & HUPCL) {

D-4 BCI Driver Development Guide

111 oldpri = spltty();
112 DRVRmOdem(dev, OFF);
113 splx(oldpri);
114 }
115 }

116 DRVRread(dev)
117 register dev;
118 {
119 register struct tty *tp;

120 dev = minor (dev) ;

121 tp = &DRVR_tty[dev];
122 (*linesw[tp->t_line].l_read)(tp);
123 }

124 DRVRwrite(dev)
125 register dev;
126 {
127 register struct tty *tp;

128 dev = minor (dev) ;

129 tp = &DRVR_tty[dev];
130 (*linesw[tp->t_line].l_write)(tp);
131 }

132 DRVRioctl(dev, cmd, arg, mode)
133 register dev, cmd, arg, mode;
134 {
135 dev = minor (dev) ;

Character Driver Code

136 if (ttiocom(&DRVR_tty[dev], cmd, arg, mode»
137 DRVRparam(dev);
138 }

139 DRVRparam(dev)
140 register dev;
141 {

142 register struct tty *tp;
143 register flag, mr1, mr2;
144 int s;

Sample Character Driver D-S

Character Driver Code

145
146
147

148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163

s = spltty();
tp = &DRVR_tty[dev];
flags = tp->t_cflag;

if «flags & eBAUD) --
/* hang up modem */

DRVRmodem(dev, OFF) ;
splx(s) ;
return;

}

mr1 = 0;
if ((flags & eSIZE) ==

mr1 1 BITS8; 1=
if ((flags & eSIZE) --

mr1 1= BITS7;
if ((flags & eSIZE) --

mr1 1= BITS6;
if ((flags & PARENB) --

mr1 1= NO_PAR;
if «flags & PARODD) 1=

0) {

eS8)

eS7)

eS6)

0)

0)
164 mr1 1= OPAR; /* if not odd, then even assumed */

165
166
167
168
169

mr2 = 0;
if (flags

mr2 1=
else

mr2 I ,=

& CSTOPB)
TWOSB;

ONESB;

171 duart[dev] .uart_cmnd = RESET;

172 duart[dev].mr1 = mr1;
173 duart[dev].mr2 = mr2;
174 duart[dev].speed = flags & CBAUD;
175 duart[dev].uart_cmnd = ENABLE;
176 (*tp->t_proc) (tp,T_RESUME);

177 splx(s);
178 }

179 DRVRint(dev)
180 register dev;
181 {

D-6 BCI Driver Development Guide

Character Driver Code

182 register struct tty *tp;
183 register char sr;

184 dev = 0;
185 tp = &DRVR_tty[dev];

186 duart[dev].uart_cmnd = CLEAR_INT;
187 if (tp->t_cflag & CLOCAL :: duart[dev].dcd) {
188 if «tp->t_state & CARR_ON) == 0) {
189 wakeup{&tp->t_canq);
190 tp->t_state := CARR_ON;
191 }
192 } else {
193 if (tp->t_state & CARR_ON) {
194 if (tp->t_state & ISOPEN)
195 signal(tp->t_pgrp, SIGHUP);
196 duart[dev].dtr = OFF;
197 ttyflush(tp, (FREAD: FWRITE»;
198 }
199 tp->t_state &= -CARR_ON;
200 }
201 }

202 1* check status register *1
203 sr = duart[dev].uart_csr;

204 if (sr & RCVRDY)
205 DRVRrint(dev);
206 if (sr & XMTRDY)
207 DRVRxint(dev);
208 }

209 DRVRrint(dev)
210 register dev;
211 {
212 register struct tty *tp;
213 register char c, stat;
214 register char *sr;
215 register struct ccblock *rbuf;

216 sysinfo.rcvint++;
217 if (dev >= nduart)
218 return;
219 tp = &DRVR_ tty[dev] ;

220 sr = &duart[dev].uart_csr;

Sample Character Driver D-7

Character Driver Code

221 while ({stat = *sr) & RCVRDY) {
222 c = duart[dev].uart_data;

223. /* check for CSTART/CSTOP */

224 if (tp->t_iflag & IXON) {
225 register char ctmp;
226 ctmp = c & 0177;
227 if (tp->t_state & TTSTOP) {
228 if (ctmp == CSTART I I tp->t_iflag & IXANY)
229 (*tp->t_proc) (tp, T_RESUME);
230 } else {
231 if (ctmp == CSTOP)
232
233 }

234 if (ctmp == CSTART I I ctmp == CSTOP)
235 continue;
236 }

237 /* Check for errors */
238 {
239 register int fIg;
240 char Ibuf[3]; /* local character buffer */
241 short lcnt; /* count of chars in lbuf */

242
243
244
245

246
247

248
249
250
251

252
253
254
255
256

lcnt = 1;
fIg = tp->t_iflag;
if (stat & (FE I PARERR I OVRRUN»

duart[dev].uart_cmnd = RESET_ERR;

if (stat & PARERR && f(flg & INPCK»
stat &= -PARERR;

if (stat & (RCVD_BRK I FE
if «c & 0377) == 0) {

if (fIg & IGNBRK)
continue;

PARERR OVRRUN» {

if (fIg & BRKINT) {
(*linesw[tp->t_Iine].I_input){tp,

L_BREAK) ;
continue;

}

D- 8 BCI Driver Development Guide

257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293 }

294 }

295 }

} else {

}

if (fIg & IGNPAR)
continue;

if (fIg & PARMRK) {
Ibuf[2] = 0377;
Ibuf[1] = 0;
lcnt = 3;
sysinfo.rawch += 2;

} else
c = 0;

} else {

}

if (fIg & ISTRIP)
c &= 0177;

else {

}

c &= 0377;
if (c == 0377 && fIg & PARMRK) {

Ibuf[1] = 0377;
lcnt = 2;

}

Ibuf[O] = c;
rbuf = &tp->t_rbuf;
while (lcnt) {

}

*rbuf->c_ptr++ = Ibuf[--lcnt];
if (--rbuf->c_count == 0) {

rbuf->c_ptr -= rbuf->c_size;
(*linesw[tp->t_line].l_input)(tp,

L_BUF) ;
}

Character Driver Code

if (rbuf->c_size {= rbuf->c_count) {
rbuf->c_ptr -= rbuf->c_size - rbuf->c_count;
(*linesw[tp->t_line].l_input)(tp, L_BUF);

}

296 DRVRxint(dev)
297 register dev;
298 {
299 register struct tty *tp;

Sample Character Driver D-9

Character Driver Code

300 register char *sr;

301 sysinfo.xrntint++;
302 tp = &DRVR_tty[dev);
303 if (tp->t_state & TTXON)
304 tp->t_state 1= BUSY;
305 duart[dev].uart_data = eSTART;
306 tp->t_state &= -TTXON;
307 } else
308 if (tp->t_state & TTXOFF) {
309 tp->t_state 1= BUSY
310 duart[devl.uart_data = eSTOP;
311 tp->t_state &= -TTXOFF;
312 } else
313 if (tp->t_state & BUSY && !(tp->t_state&(TIMEOUTITTSTOP») {
314 tp->t_state &= -BUSY;
315 DRVRproc(tp, T_OUTPUT);
316 }
317 }

318 DRVRproc(tp, cmd)
319 register struct tty *tp;
320 register cmd;
321 {
322 register dev;
323 int s;
324 extern ttrstrt();

325 s = spltty();
326 dev = tp - DRVR_tty;
327 switch(cmd) {
328 case T_TIME:
329 if (tp->t_state&TIMEOUT) {
330 tp->t_state &= -TIMEOUT;
331 duart[dev].uart_cmnd = STOP_BRK;
332 }
333 goto start;

334 case T_WFLUSH:
335 tp->t_tbuf.c_size -= tp->t_tbuf.c_count;
336 tp->t_tbuf.c_count = 0;

337 case T_RESUME:
338 tp->t_state &= -TTSTOP;
339 goto start;

D-IO Bel Driver Development Guide

340 case T_OUTPUT:
341 start:
342 {
343 register struct ccblock *tbuf;

344
345
346

if (tp->t_state & (BUSY 1 TTSTOP
break;

tbuf = &tp->t_tbuf;

1* check if tbuf is empty *1

Character Driver Code

TIMEOUT))

347
348
349
350
351
352
353
354
355

if (tbuf->c_ptr == NULL II tbuf->c_count -- 0) {
if (tbuf->c_ptr)

tbuf->c_ptr -= tbuf->c_size;
if (l(CPRES&(*linesw(tp->t_line].l_output)(tp»)

break;
}

tp->t_state 1= BUSY;
duart[dev].uart_data

356 tbuf->c_count--;
357 break;
358 }

359 case T_SUSPEND:
360 tp->t_state 1= TTSTOP;
361 break;

362 case T_BLOCK:
363 tp->t_state &= -TTXON;
364 tp->t_state 1= TBLOCK;

365 if (tp->t_state & BUSY)
366 tp->t_state 1= TTXOFF;
367 else {
368
369

tp->t_state 1= BUSY;
duart[dev].uart_data = CSTOP;

370 }
371 break;

372 case T_RFLUSH:
373 if (1 (tp->t_state & TBLOCK»
374 break;

375
376

case T;...UNBLOCK:
tp->t_state &= -(TTXOFF

377 if (tp->t_state & BUSY)

TBLOCK) ;

Sample Character Driver D-l1

Character Driver Code

378 tp->t_state 1= TTXON;
3.79 else {
380
381
382 }

tp->t_state 1= BUSY;
duart[dev].uart_data = CSTART;

383 break;

384 case T_BREAK:
385 duart[dev].uart_cmnd = STRT_BRK;
386 tp->t_state 1= TIMEOUT;
387 timeout(ttrstrt, tp, HZ/4);
388 break;

389 case T_PARM:
390 DRVRparam(dev);
391 break;
392 } 1* end of switch cmd */
393 splx(s) ;
394 }

395 DRVRmodem(dev, flag)
396 register dev, flag;
397 {
398 register bit;

399 if (flag == OFF)
400 duart[dev].dtr = OFF;
401 else
402 duart[dev].dtr = ON;

403 return(duart[dev].dcd);
404 }

D-12 Bel Driver Development Guide

Appendix E: Sam pie Block Driver

Contents

doc_ Driver Master File E-2

doc_ Driver Header File E-6

Initial Comment Block E -10

Global Data Structure Declarations E -13

doc_init Driver Entry Point Routine E-19

doc_initdr Subordinate Driver Routine E - 28

doc_open Driver Entry Point Routine E-30

doc_close Driver Entry Point Routine E-36

doc_strategy Driver Entry Point Routine E-37

Sample Block Driver E - i

doc_iostart Subordinate Driver Routine E-42

doc_int Driver Interrupt Handler E-47

doc_intr Subordinate Driver Routine E-48

doc_breakup Subordinate Driver Routine E-S7

doc_read and doc_write Driver Entry Point Routines E-S8

doc_gocheck, doc_copy, and doc_setblk Subordinate Driver Routines E-S9

doc_ioctl Driver Entry Point Routine E-62

E-ii Bel Driver Development Guide

Appendix E: S"ample Block Driver

The doc_ driver is a block driver for a disk controller that runs on the Single Board Computer (SBC).
This driver is an example of a working hardware driver for a block-access device that also supports
character access.

Table E-1 summarizes the driver entry point routines (Bel Driver Reference Manual, Section D3X),
kernel functions used in each, and the subordinate routines each calls. The initial line number of
each routine is giyen in parentheses following the routine name.

Table E -1 doc_ Driver Routine Summary

Entry Table Entry Point Routine Name Subordinate Routines
io_init doc_init doc_initdr

doc gocbeck
bdevsw doc_open doc_copy, doc_setblk, doc_strategy
or
cdevsw doc_close
bdevsw doc strategy doc iostart
cdevsw doc_read doc_breakup, doc_strategy

doc_write doc_breakup, doc_strategy

doc_ioctl

Interrupt
Vector doc_int doc_intr, doc_iostart
Table

This appendix includes the full master file and header file for the driver in addition to the full driver
code. The lines in the driver code are numbered sequentially, with section headers inserted for ease
of reference. Note that some lines had to be split to fit on the physical page. The continuation
portions of such lines are not given numbers.

Sample Block Driver E-l

doc Driver M aster File

The values assigned to the first six columns of the master file indicate the following:

FLAG This driver supports both block and character access.

VEC Each device controlled by this driver has one interrupt vector. This indicates that the
device itself must have some way of indicating which subdevicegenerated an interrupt,
which is typical of intelligent disk controllers. Because the value of #VEC is not double
the number in #DEV, Iboot will create an entry for the doc_int routine in the Interrupt
Vector Table rather than doc_rint and doc_xint entries.

PREFIX The prefix for this driver is "doc_", so the entry point routines will be named
"doc_open," "doc_close," and so forth.

SOFT This field has no number in it, so this is not a software driver; the external major number
for devices controlled by this driver is determined by the board slot of the device, not the
master file.

#DEV Each doc_ device (controller) can support a maximum of four subdevices.

rPL Devices controlled by this driver will interrupt at priority level 10, which is the
appropriate IPL for a disk device. Checking the table on the spln(D3X) reference page,
you see that, on the SBC, this means that critical code protected by splS or higher will
not be interrupted by devices controlled by this driver.

E-2 Bel Driver Development Guide

doc_ Driver A1aster File

*--
2 * Master file for doc disk controller.
3
4
5
6
7
8

9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

*
* DOC

*
* NOTE: doc_cpaddr is array, maximum [#C] size
* (set by initializer below)

*
*--
*FLAG
bc

#VEC
1

PREFIX
doc_

SOFT #DEV
4

IPL DEPENDENCIES/VARIABLES
10

*--
* Controller physical addresses.
* These are VME A24 physical addresses.

doc_cpaddr (%i%i) = {
OxfdOOOO,
OxfeOOOO

}

*--
* Drive types.
* Floppy disk drive is drive select O.
* 1st hard disk drive is usually drive select 2, because that is
* what installation scripts (on installation floppies) mandate.
* 2nd hard disk drive should be set at drive select 1, because
* there is some hardware funniness about drive select 3. The
* funniness is that whenever no drive is being accessed, drive 3
* gets selected. Upon power-up or power-down, drive 3 is selected
* but the control lines may glitch as power ramps up or down. So
* there may be a risk of corruption of the drive set to drive
* select 3.

doc_itype (%i%i%i%i) = {
FLOPPY,
HARD,
HARD,
HARD

37 *--
38 * Driver internal major number.
39 doc_intmaj (%i) = {#M}

40 *--

Figure E-l doc_ Master File (part I of 2)

Sample Block Driver E-3

doc_ Driver Master File

41 * Controller virtual addresses.
42 doc_caddr[#C] (%i)

43 *--
44 * VTOCs.
45 doc_vtoc[#C*#D] (%Ox108)

46 *--------------~--------------------------------~--------------------
47
48

* Drive types.

49 *--
50 doc_tab[#C] (%Ox44)
51 doc_iostat[#C*#D] (%Ox10)
52 doc_count[#C*#D] (%i)
53 doc_tcount[#C*#D] (%i)
54 doc_time[#C*#D] (%Ox20)
55 doc_info[#C*#D] (%i)
56 doc_fmtflag[#C] (%i)
57 doc_retrys[#C*#D] (%c)
58 doc_defect[#C*#D] (%Ox800)
59 doc_elog[#C*#D] (%Ox20)
60 doc_pdsect[#C*#D] (%Ox200)
61 doc_tbufon[#C*#D] (%i)

62 *--
63
64

* Number of equipped controllers.
doc_numcontr (%i) = {#C}

65 *--
66 $$$

67
68
69
70
71

* Drive Types
HARD =
FLOPPY
STREAM
NODRIVE

o
=
=

1
2
3

72 *--

Figure E -1 doc_ Master File (part 2 of 2)

E- 4 BCI Driver Development Guide

doc_ Driver }faster File

The DE f}ENDENCIESIV ARIABLES column defines a number of variables that cite declared and
used in the driver. Note how this master file includes comments that explain what these variables
are. The Table E-2 shows the line numbers from the driver code where each of these variables are
declared and used.

Table E - 2 DEPENDENCIESIV ARlABLES Declarations

Variable Same Declared on Line ~umber ' L'sed on Line ~umber(s)

217

159

317

33

146

160

: doc_tab 175

· doc_iostat 176

i doc_count 180

doc_tcount 184

doc_time 188

· doc_info 192

: doc_fmtftag 202

doc_retrys 222

· doc_defect 226

doc_eIoll 230

doc_pdsed 236

, doc_tbufoD 140

303

331

317,409

35 - 54. 218. 302. 306

i 496,640.703.704.790.796.802,803.955. 1153.
I 1197. 1263, 1348. 1357. 1621

: 22.333.336.341.346.351.356.361.366.370.
; 489.534.562.575.638.998.1037.1142.1144.

1162. 1230. 1234.1502.1510. 1603, 1604. 1610.
1620. 1638. 1642. 1697. 1757, 1761

· 329.330,809,919. 1100, 1475

; 330

975,993. 1042. 1297

· 983, 1296. 1297

840.841,865, 1315, 1316

: 327,497,524.554.610,618,619,624.625.639,
! 641, 642, 711, 724. 728, 729, 774

414.930,1106. 1109, 1110.1117. 1140. 1188.1220.
! 1222. 1223. 1487, 1490. 1513, 1515. 1520

328.1141. 1143. 1145. 1161. 1189, 1190. 1205. 1122

· 631.632.689.948.1613

1243. 1253, 1255, 1262. 1266. 1274. 1275. 1277

369.494.571-574.626. 781. 949. 1 :5 1198, 1264.
1281.1301, 1435.1708-1733

326. 1038, 1041, 1157, 1201

Sample Block Driver E - 5

doc Driver Header File

The header file for the doc_ driver defines a number of structures and variables that are used in the
driver and board registers with which the driver must interact. By defining structures and variables in
the header file rather than the driver code itself, you make the driver easier to read and maintain
because all related information is listed together. When modifying the driver to run on a different
machine or for an updated version of the hardware, you can modify the header file rather than recode
the driver.

1*---
2 * DOC_ disk controller include file

3 *---
4
5
6
7

*1
#define
#define
#define

8 1*

u_short unsigned short
u_char unsigned char
u_long unsigned long

9 * custom ioctl calls: set these so they don't conflict with vtoc.h
10 * ioctl defs DTRACE is func entry, exit and progress pOints DPRINT
11 * is selected info prints
12
13
14
15
16

*1
#define
#define
#define
#define

IOCTL_DTRACEOFF Ox0100
IOCTL_DTRACEON Ox0101
IOCTL_DPRINTOFF Ox0110
IOCTL_DPRINTON Ox0111

18 * per disk type control structure (used by firmware only)
19 *1

doc_types { 20 struct
21 int mt_maxbn; 1* largest block number (calculated)
22 int mt_ncyl; 1* number of cylinders *1
23 int mt_nhead; 1* number of tracks per cylinder *1
24 int mt_nsectrk; 1* number of sectors per track *1
25 int mt_seclen; 1* sector length (bytes) *1
26 };

Figure E-2 doc_.h Header File (part I of 4)

E - 6 BCI Driver Development Guide

*1

doc_ Driver Header File

27 1*--*1
28
29 * variables for accessing DPDRAM

31 extern unsigned int doc_caddr[]; 1* base addrs of cntrllers *1

32
33
34
35
36
37

/* same
#define
#define
#define
#define
#define

for all commands *1
DOC_GOFLAG(C) (*«unsigned
DOC_COMMAND(C) (*«unsigned
DOC_ERRCODE(C) (*«unsigned
DOC_DRIVENO(C) (*«unsigned
DOC_IVECTOR(C) (*«unsigned

38 /* for "init drive" command *1

char *)(doc_caddr[C]+Ox1»)
short *)(doc_caddr[C]+Ox2»)
char *)(doc_caddr[C]+Ox5»)
char *)(doc_caddr[C]+Ox7»)
char *)(doc_caddr[C]+Ox11»)

39 #define DOC_NHEADS(C) (*«unsigned char *)(doc_caddr[C]+Ox9»)
40 #define DOC_MAXCYL(C) (*«unsigned short *)(doc_caddr[C]+OxA»)
41 #define DOC_NSECTRK(C) (*«unsigned char *)(doc_caddr[C]+OxD»)
42 #define DOC_NBYTSEC(C) (*«unsigned short *)(doc_caddr[C]+OxE»)
43 #define DOC_HDGAP(C) (*«unsigned char *)(doc_caddr[C]+Ox13»)

44 /* for "initialize track buffer" command *1
45 #define DOC_TBADDR_H(C) (*«unsigned short *)(doc_caddr[C]+OxC»)
46 #define DOC_TBADDR_L(C) (*«unsigned short *)(doc_caddr[C]+OxE»)

47 /* for "force read/write", "read/write with buffering" and "write
48 with track buffer and verify" commands *1
49 #define DOC_LBN_H(C) (*«unsigned short *)(doc_caddr[C]+Ox8»)
50 #define DOC_LBN_L(C) (*«unsigned short *)(doc_caddr[C]+OxA»)
51 #define DOC_SBADDR_H(C) (*«unsigned short *)(doc_caddr[C]+OxC»)
52 #define DOC_SBADDR_L(C) (*«unsigned short *)(doc_caddr[C]+OxE»)

53 /*-- -----------*1
54 /* command and status value definitions *1

55
56
57

/* "go flag" definitions *1
#define GO_DONE
#define GO_START Ox01

OxOO

Figure E- 2 doc_.h Header File (part 2 of 4)

Sample Block Driver E-7

doc_ Driver Header File

58 1* command word bit definitions */
59 #define CMD_READ Ox0001
60
61
62
63
64
65
66
67
68

·69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

#define CMD_WRITE
#define CMD_VERIFY
#define CMD_FORCE
#define CMD_INTWD
#define CMD_INITTB
#define CMD_INITDR
#define CMD_FORMAT
#define CMD_DMAIO
#define CMD_FLIO
#define CMD_HDIO
#define CMD_STATUS
#define CMD_FLCMD
#define CMD_DDENC
#define CMD_SDENC
#define CMD_ENBAUTOFL
#define CMD_DISAUTOFL
#define CMD_STARTSO
#define CMD_RESERVED

OxOOOO
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
Ox0080
Ox0100
Ox0200
Ox0400
Ox0800
OxOOOO
Ox1000
Ox2000
Ox2001
Ox4000
Ox8000

1* command word complete commands */
#define CMD_RESET Ox4242
1* "error register" definitions *1
#define ERR_NOERROR OxOO
#define ERR_DNOTREADY
#define ERR_RESERVED
#define ERR_ACCESSERR
#define ERR_VERIFYERR
#define ERR_DMAERR
#define ERR_DRVNOTINIT
#define ERR_NUMTBS
#define ERR_ILLEGALCMD
#define ERR_ILLEGALLBN
#define ERR_CRCERR
#define ERR_SEEKERR
#define ERR_WRITEPROT
#define ERR_BADMEDIA

Ox81
Ox82
Ox83
Ox84
Ox85
Ox86
Ox87
Ox88
Ox89
Ox8A
Ox8B
Ox8C
Ox8D

Figure E - 2 doc_.h Header File (part 3 of 4)

E-8 BCI Driver Development Guide

doc_ Driver Header Ftle

-----_.--
95 1*---*1
96 * addresses of on-board track buffers *1 hard disk ~rack == 9K
97 * bytes, floppy disk track -- 4.5K bytes. total internal 7400
98 * memory for track buffers == 24K bytes (at present).
99

100
101
102
103

104
105
106
107
108

109
110
111
112
113
114
115

116
117
118
119

120

*1
#define BUFRAMBASE OxOO022000
#define TBADDR_HO BUFRAMBASE
#define TBADDR_H1 TBADDR_HO+Ox2400
#define TBADDR_FO TBADDR_H1+0x2400

1* track buffer addresses (code assumes
* that these go hard, hard, floppy)
*1

static unsigned int tbaddr[3] = { TBADDR_HO, TBADDR_H1, TBADDR_FO };
#define NTB 3

1*---*1
1* hard disk gap parameters *1
1* these are the numbers given to the controller;

* the actual gap is this number plus 3.

*1
#define HDG_256 19
#define HDG_512 16

1*---*1
1* defines for splitting int into shorts *1
#define hihalf(X) «short)«X»>16))
#define lohalf(X) «short)«X)&OxOOOOFFFF))

1*---*1

Figure E-2 doc_.h Header Flle (part 4 of 4)

Sample Block Driver E - 9

Initial Com m ent Block

The initial comment block for the doc_ driver includes a log of all modifications made to the driver
and other miscellaneous information that will ease maintenance of the driver. Note that each change
that is logged is accompanied with a date.

Line 102 is the control information used by the S-list capability of the C programming language
utilities.

1 * revision history:

2 *
3 * 051587 DOC_

4 *
5 * - changed to have hard disks be drives 1,2,3 instead of 2,3.
6 * - changed doc_diskmaj to doc_intmaj.
7 * - changed majnum to extmaj.

8 *
9 * 022787 DOC_ 1.4

10 *
11 * moved "majnum" calculation in doc_init earlier and replaced
12 * "DOC_O" with "majnum". Calculation of "majnum" will not
13 * work correctly for multiple controllers.
14 * - removed u+111 in doc_iostart calculation of firstbn, and "_111
15 * in doc_int error message printing. Defect table always assumes
16 * sectors start at 0 now.
17 * - changed doc_int hard-disk error logging so correct block number
18 * is used and message is printed before hdeloq is called. Case
19 * where a bad sector is mapped to a IIgood ll one and the "good" one
20 * causes an error will still not work. The original bad sector
21 * will be logged instead of the "good" one. Corrected messages
22 * so proper distinction is made between logical and physical
23 * accesses.
24 * - removed "not full disk ll message from doc_open.
25 * - removed hard-coded "hard_pdsect"; replaced with just enough to
26 * read real pdsect. This required that the "init drive" code be
27 * moved out to a new function, doc_initdr, and called
28 * in a coupl~ of places.

Figure E - 3 Revision History (part 1 of 3)

E-IO BCI Driver Development Guide

-----~

29 *
30 *
31 *
32 *
33 *
34 *
35 *
36 *
37 *
38 *
39 *
40 *
41 *
42 *
43 *
44 *
45 *
46 *
47 *
48 *
49 *
50 *
51 *
52 *
53 *
54 *
55 *
56 *
57 *
58 *
59 *
60 *
61 *
62 *
63 *
64 *
65 *

InitiaL Comment Block

- these changes should make everything but multiple controllers
work in SVR3.1.

- comments need improving; note "majnum" is external major
number, "doc_diskmaj" is internal major number, and so on.

111386 DOC_ 1.3

- added goflag check before initial reset in case it was
busy from firmware driver hand-off during boot.

092986 DOC_ 1.2

- improve error detection for cases where DOC_ board does not
respond within 1 second after starting a command. After
unusually long failures to perform some operation on a drive,
action should be to stop the requested operation rather than
continue as did the original driver.

- add timeout test BEFORE ALL controller commands if go-flag
wasn't clear; original driver just reported the unclear
go-flag and continued, now it will wait about 1 sec then
exit with a message.

- do the same thing AFTER ALL NON-INTERRUPT-SETTING commands;
original driver did a wait forever, now it will wait for 1
second and exit with a message.

082986 DOC_ 1.1

fix 9 head problem, misc. cleanups:
- open: set OPEN flag if fulldisk on badopen to avoid the

sanity reload chicken/egg problem.
- ioctl PDSETUP: removed "generic values" test.
- struct hard_pdsect: changed dflt to 9 head disk defaults

(prob not nee, but just as well changed).
- cpaddr: moved values to master.d file instead of being

hard coded (users need reconfig flexibility).

Figure E - 3 Revision History (part 2 of 3)

Sample Block Driver E -11

Initial Comment Block

66 * - ioctl: added cmds to turn onloff the debug prints so
67 * recompile isn't necessary to change it; added TRACE.
68 * - while in the code, cleaned up a few minor things in
69 * printing messages, shortened messages so the console
70 * terminal doesn't lose so much output, removed some unused
71 * variables, added a few messages for end-cases, and so on.
72 * - errors: changed logic to force single-sector reads or writes
73 * after disk errs (code 83 on hards, codes 8A and 8B on
74 * floppies); for hard disks, this allows flaw mappi~g to be at
75 * the sector level instead of the track level, so hde error
76 * logging, and so on, works; before, it overflowed reloc-sector
77 * tables, hdelog, and so on. When there were many
78 * manufacturer's defects (the normal case). NOTE: the
79 * formatdisk flaw entry "T" option is no longer necessary for
80 * the DOC_; includes extern doc_tbufon in master.d.
81 * - extern variable ndoc_ violated kernel rules for naming
82 * globals, changed to doc_numcontr.
83 * - a block number calc in doc_intr was using a short which
84 * gave a bad block number--changed to an into
85 * - biased blk number by + 1 before sending to hde so hdefix -a
86 * works correctly; it still reports wrong but does map the
87 * c-t-s in the same way as formatdisk preentry does it (s+=1)
88 * so they are consistent;
89 *
90 * Original notes on DOC_:

91 *
92 * Note: DOC_ only seems to work for disks with 8 heads or less,
93 * may not work with "their" disks, and the "get status"
94 * command may not work correctly.
95 *
96 * Note: This driver does not support cartridge tape.
97 *
98 * Note: Since the DOC_ does track buffering, defects must
99 * be entered with the "T" option (bad track) under

100 * formatdisk.

101 *--*1
102 #ident _."@(#) kern: doc. c 1.4"

Figure E - 3 Revision History (part 3 of 3)

E -12 BCI Driver Development Guide

Global Data Structure Declarations

The driver code itself begins by declaring and defining a number of global data structures that will be
used throughout the code. First system and driver-specific header files are #inc1uded, then the
structures defined in the master file and other structures are declared. A number of structures are
defined here that could have been defined in the header file. Note how virtually every structure
declared or defined is given at least a brief comment that explains its purpose.

103 #include "sys/types.h ll

104 #include "sys/param.h ll

105 #include "sys/sbd.h"
106 #include "sys/vtoc.h"
107 #include "sys/doc_.h"
108 #include "sys/dma.h"
109 #include "sys/immu.h"
110 #include "sys/dir.h"
111 #include "sys/sysmacros.h"
112 #include "sys/signal.h"
113 #include "sys/psw.h"
114 #include "sys/pcb.h"
115 #include "sys/user.h"
116 #include "sys/errno.h"
117 #include sys/buf.h"
118 #include sys/elog.h"
119 #include sys/iobuf.h"
120 #include sys/systm.h"
121 #include sys/firmware.h"
122 #include sys/cmn_err.h"
123 #include sys/hdelog.h"
124 #include sys/open.h"
125 #include sys/inline.h"
126 #include sys/if.h"

Figure E-4 doc_ Global Data Structure Declarations (page I of 6)

Sample Block Driver E - 13

Global Data Structure Declarations

127 #define GOWAITSECS 1 /* max time to wait for cntrlr to clr go flag */
128 #define GOCHECKLPS 300000 /* loops, make it corne out to seconds */

129 int doc_dtrace = 0; /* debug prints at start, rtrn & go thru funcs *1
130 int doc_dprint = 0; 1* specific debug prints *1

131
132
133
134
135
136
137
138

#define
#define
#define
#define
#define
#define
#define
#define

DTRACE if(doc_dtrace)printf
DPRINT if(doc_dprint)printf
DEBUGinit if(doc_dprint)printf
DEBUGform if(doc_dprint)printf
DEBUGnurns if(doc_dprint)printf
DEBUGdefect if(doc_dprint)printf
DEBUGretry if(doc_dprint)printf
DEBUGhde if(doc_dprint)printf

139 #define TBUFFER 1 /* 1 for track buffering, 0 otherwise *1
140 extern int doc_tbufon[]

141 extern int doc_nurncontr; /* num of doc_OO cntrlrs in master file*1

142 #define HRETRYS 5 1* num of positioning retrys for hard disks *1
143 #define FRETRYS 1* num of positioning retrys for floppy disks*/

144 #define DOC_FRSTBLK 0
145 #define DOC_NULL 0

146 extern struct vtoc doc_vtoc[]; 1* in core copy of vtoc *1

147 /* doc_type is set in the master file (i.e. master.d/doc_)
148 * to reflect the type of disks connected to the controller.
149 * Each element in doc_type corresponds to the unit number
150 * of the controller
151 */

152
153
154
155
156
157

struct
int
int
int
int

} ;

doc_t {

unitO;
unit 1;
unit2;
unit3;

Figure E - 4 doc_ Global Data Structure Declarations (page 2 of 6)

E-14 BCI Driver Development Guide

158 extern struct doc_t doc_itype;

160 extern short doc_type[1;

162
163

* Possible types of disk

164 #define DT_HARD
165 #define DT_FLOPPY
166
167

#define DT_STREAMING
#define DT_NODRIVE

o

2
3

Glohal Data Structure Declarations

168 1* given a unit num (0-(4*C-1», return controller num (0-(C-1»*1
169 #define contr(x) «x»>2)
170 1* given a unit num (O-(4*C-1», return subdevice number (0-3) *1
171 #define subdev(x) (x)&Ox3)

173 * the io queue headers

175 extern struct iobuf doc_tab[];
176 extern struct iostat doc_iostat[]; 1* errlog *1

178 * total count of amount of data transferred so far

180 extern int doc_count[];

182 * the size of the current io being done on this unit

Figure E"':" 4 doc_ Global Data Structure Declarations (page 3 of 6)

Sample Block Driver E -15

Global Data Structure Dec!ararzons

184 extern int doc_tcount[];

186
187

188

* IO performance stats area

extern struct iotime

189 1* These are used to give us current
190 * information about the drive
191 *1

192 extern int doc_info[];

193
194
195
196

197

#define
#define
#define
#define

INFO_NULL OxOO
INFO_EQUIPPED Ox01
INFO_OPEN Ox02
INFO_OPENING Ox04

1* uninitialized *1
1* drive equipped *1
1* open complete *1
1* open not yet complete *1

flags used during formatting :
198 *
199
200
201
202
203

*
*
*
*
*

204 *1

FMT_IDLE == no format in progress on that controller
FMT_INPROGRESS == format in progress
FMT_SUCCEED == format finished and succeeded but

IOCTL not awake
FMT_FAIL == format finished & failed but IOCTL not awake

205 extern int doc_fmtflag[];
206 #define FMT_IDLE 0
207 #define FMT_INPROGRESS
208 #define FMT_SUCCEED 2
209

211
212
213
214
215

#define FMT_FAIL 3

*
*
*
*
*

physical VME addresses of controller boards;
the order decides the unit numbers.
this will be determined from the EDT.

The VIRTUAL addresses will be calculated by sptalloc
and stored in doc_caddr[].

Figure E - 4 doc_ Global Data Structure Declarations (page 4 of 6)

E-16 BCI Driver Development Guide

GlobaL Data Structure Declaranons

217 extern unsigned int doc_cpaddr[] ; 1* physical *1
218 extern unsigned int doc_caddr[]; 1* virtual *1

219 1*
220 * retry count for positioning errors
221 *1

222 extern char doc_retrys[];

223 1*
224 * disk defect maps
225 *1

226 extern struct defstruct doc_defect[];
227 1*
228 * Error logging structures
229 *1

230' extern struct hdedata doc_elog[];
231 extern hdelog();
232 static int doc_initdr();

233
234
235

*
Physical information from Physical Descriptor

sector (block 0)

236 extern struct pdsector doc_pdsect[];

238
239
240
241
242
243

*
*

Physical Descriptor information fo~ initializing
pdsect on floppy drives

*1
#define IFNUMSECT
#define IFBYTESCT
#define IFPDBLKNO

9
512
1422

Figure E~4 doc_ Global Data Structure Declarations (page 5 of 6)

Sample Block Driver E -17

Global Data Structure Declarations

static struct pdinfo floppy_pdsect = {

1 , /* driveid */

VALID_PO, /* sanity */

1 , /* version */

"" /* serial */

IFTRKSIDE, /* cyls */

IFNTRAC, /* tracks */

IFNUMSECT, /* sectors */

IFBYTESCT, /* bytes */

0, /* logicalst */

IFTRACKS * IFNUMSECT - 1 , /* errlogst */

IFBYTESCT, /* errlogsz */

Oxffffffff, /* mfgst */
Oxffffffff, /* mfgsz */

IFPDBLKNO + 1 , /* defectst */

IFBYTESCT, /* defectsz */

1 , /* relno */
IFPDBLKNO + 2, /* relst */

IFNUMSECT * 2 - 3, /* relsz */

IFPDBLKNO +2 /* relnext */

} ;
/*

* partition information for floppy disks
*/

static struct partition floppy_sizes[IF_NUMPAR]

} ;
/*

0, 0, 432, 990,
0, 0, 612, 810,
0, 0, 810, 612,
0, 0, 1008, 414,
0, 0, 1206, 216,
V_ROOT, 0, 18, 1404,
V_BACKUP, 0, 0, 1422,
V_BOOT, 0, 0, 18

/* partition a -
/* partition 1 -
/* partition 2 -
/* partition 3 -
/* partition 4 -
/* partition 5 -
/* partition 6 -
/* partition 7 -

* Misc stuff for decoding device numbers
*/

cyl
cyl
cyl
cyl
~yl

cyl
cyl
cyl

= {

24-78 */

34-78 */

45-78 */

56-78 */

67-78 */

1-78 */

0-78 */

a */

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

#d~fine doc_hard(~) (subdev(p) != 0) /* units 1,2,3=hard disks */

extern int doc_intmaj; /* internal maj devnum from master file*/

Figure E - 4 doc_ Global Data Structure Declarations (page 6 of 6)

E -18 BCI Driver Development Guide

doc _J nit D r i v erE n try Poi n t R 0 uti n e

The initialization entry point routine performs the following tasks

• Sets up virtual-to-physical address translation for each configured controller (lines 301 -
312).

• Finds the external major number for each controller (lines 316 - 318) and determines the
default parameters for each subdevice (lines 324 - 378). These parameters are initialized
for each subdevice in lines 422 - 427 with a call to the subordinate driver routine,
doc_initdr. Note the use of case statements (defined in the table in the master file) to
handle differentsubdevice types (HARD, FLOPPY, STREAM, or NODRIVE) on the
controller.

• Resets each controller and sets its interrupt vector to match that in the system's interrupt
vector table generated by lboot (lines 383 - 415).

• Sets track buffer addresses (lines 429 - 457) and enable auto-flushing of those buffers
(lines 460 - 481).

• Verifies status of controllers. Check for correct number of subdevices (lines 488 - 499)
and if initialization of each is complete (lines 502 - 539). The polling for completion is
necessary because an initialization routine cannot use the sleep/wakeup pair to
synchronize hardware and software events. An alternate method for doing this check is
to use the delay function.

Note that the header file defines the variables used for accessing the device, such as DOC_GOFLAG
and DOC_COMMAND.

Sample Block Driver E-19

doc_init Driver Entry Point Routine

283 1*---*1
284 1* initialization routine called once
285 * during system startup,
286 *1
287 doc_init()
288 {
289 register struct doc_OO *addr;
290 register int con, unit, subd, pi, j;
291 int vector, extmaj;
292 extern int hdeeduc, hdeedct;
293 dev_t ddev;
294 struct pdsector *pd;
295 DTRACE(" doc_init: start; tk buf %s\n" ,

296 1*
297
298
299

*
*
*

300 *1

(TBUFFER? "ON" : "OFF"»;

set up each controller's address translation from kernel
virtual to VME physical, using sptalloc. Virtual
addresses are in doc_caddr; physical in doc_cpaddr.

301 for (con=O; con < doc_numcontr; con++) {
302 doc_caddr[con] = sptalloc(btoc(2048),(PG_P!PG_LOCK),
303 btoc(doc_cpaddr[con]) ,0);
304 DEBUGinit (" doc_init: controller %d doc_caddr[]==Ox%x\n",
305 con, doc_caddr[con]);
306 if (doc_caddr[con] == NULL) {
307 cmn_err(CE_WARN,
308 "doc_: sptalloc on controller %d failed.

309
310
311 }

return;

Do not use device.\n",
con) ;

312 } 1* for all controllers *1

314 * find the controller's external major number
315 *1
316 for (j=O; j<128; j++)
317 if (MAJOR[j] == doc_intmaj) break;
318 extmaj = j;

Figure E - 5 doc_init Entry Point Routine (part I of 8)

E - 20 BCI Driver Development Guide

319 1*
320 *
321 *
322 *
323 *1

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

340
341
342
343
344
345
346
347
348
349

350
351
352

doc_init Dri"'.'er Entry Point Routine

set up each unit's pointer block and initialize the device
with default parameters; these parameters will be changed
when the physical descriptor is read in on first open

for (unit=O; unit < doc_numcontr*4j unit++) {
con = contr(unit);
doc_tbufon[unit] = TBUFFER; 1* tbuf is on for this unit *1
doc_info[unit] = INFO_NULL;
doc_retrys[unit] = 0;
doc_tab[con].b_dev = makedev(extmaj,(unit«4»j
doc_tab[con].io_stp = &doc_iostat[unit]j
switch (doc_itype[unit%4]) {
case DT_NODRIVE:

doc_type[unit] = DT_NODRIVE;
continue;

case DT_HARD:
doc_type[unit] = DT_HARDj
if (!doc_hard(unit»{

cmn_err(CE_WARN,
"doc_: controller %d drive %d cannot be

initialized as hard disk--ignored.\n",
con,subdev(unit»;

doc_type[unit] = DT_NODRIVE;
continue;

}

break;
case DT_FLOPPY:

doc_type [unit] = DT_FLOPPY;
if (doc_hard(unit» {

cmn_err(CE_WARN,
"doc_: controller %d drive %d cannot

be initialized as floppy disk--ignored.\n",
con,subdev(unit»;

doc_type[unit] = DT_NODRIVEj
continue;

Figure E - S doc_init Entry Point Routine (part 2 of 8)

Sample Block Driver E-21

doc_init Driver Entry Point Routine

353
354
355
356
357
358
359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

}

break;
case DT_STREAMING:

doc_type[unit] = DT_STREAMING;
if (unit%4 != 1) {

cmn_err(CE_WARN,
"doc_: controller %d drive %d

cannot be initialized as stream tape--ignored.\n",
con,subdev(unit»;

doc_type[unit] = DT_NODRIVE;
continue;

}

break;
default:

}

doc_type[unit] = DT_NODRIVE;
continue;

pd = &doc_pdsect[unit];
if (doc_type[unit] == DT_HARO) {

} else

1* just enough to be able to read the real PDsect */

pd->pdinfo.cyls = 1;
pd->pdinfo.tracks = 1;
pd->pdinfo.sectors = 18;
pd->pdinfo.bytes = 512;

pd->pdinfo = floppy_pdsect;

378 } 1* end for all units (all controllers) *1
379 1* for each controller, reset it and then set its
380 * interrupt vector. lboot initializes interrupt
381 * vectors to be 16 * the external major number
382 *1

383 for (con=Q ; con<doc_numcontr; con++) {
384 1* reset controller *1
385 DEBUGinit(" doc_init: resetting %d'n",con);

Figure E-S- doc_init Entry Point Routine (part 3 of 8)

E - 22 BCI Driver Development Guide

386
387
388

389
390

391
392
393
394
395
396
397

398
399
400
401
402

403
404

405
406

doc_init Driver Entry Point Routine

if (doc_gocheck(con» {
cmn_err(CE_WARN,

"doc_init: controller
error: go-flag not clear\n");

cmn_err(CE_WARN,
"doc_init: before initial

reset--don't use doc_\ntl);
return;

DOC_COMMAND(con) = CMD_RESET;
DOC_GOFLAG(con) = GO_START;
if(doc_gocheck(con» {

cmn_err(CE_WARN,
"doc_init: go not clear

after reset don't use doc_\n");
return;

if(DOC_ERRCODE(con) != ERR_NOERROR)
cmn_err(CE_WARN,

"doc_init: 'reset
controller' failed errcode==Ox%x\n" ,

DOC_ERRCODE(con»;
cmn_err(CE_WARN,"doc_init: don't

use doc._ \n") ;
return;

}

407 1* set controller interrupt vector *1
408 for (j=O; j<128; j++)
409 if (MAJOR[j] == doc_intmaj && MINOR[j] -- 4*con) {
410
411
412
413
414

415

vector = j « 4;
break;

DOC_IVECTOR(con) = vector;
doc_fmtflag[con] = FMT_IDLE;

} 1* for all controllers *1

Figure E-5 doc_init Entry Point Routine (part 4 of 8)

Sample Block Driver E - 23

doc_init Driver Entry Point Routine

416 1*
417 * for each controller, initialize
418 * drive parameters to those set above, set track
419 * buffer addresses (4 per controller) and enable
420 * auto-flushing of track buffers (once per controller).
421 *1
422 for (con=O ; con<doc_numcontr; con++) {
423 for (subd=O; subd<4; subd++) {

424 1* do "initialize drivell command, polling for completion *1
425 unit = (con*4) + subd;
426 if (doc_initdr(unit»)
427 return;
428 } 1* end for all subdv *1
429 for (subd=O; subd<NTB; subd++)

430 1* do "initialize track buffer ll cmd, polling for completion *1
431 1* error if go-flag says controller is busy *1
432 if (doc_gocheck(con» {
433 cmn_err(CE_WARN,
434 IIdoc_init: controller error: go-flag not clear\nll);
435 cmn_err(CE_WARN,
436 "doc_init: before init trk buf--don't use doc_\n");
437 return;
438
439
440
441

442
443
444
445
446
447
448

449
450

}

1* set command *1
1* first two track buffer addresses are for hard disks*1

DOC_COMMAND(con) = «subd<2) ?
CMD_HDIO : CMD_FLIO) l CMD_INITTB;

DOC_TBADDR_H(con) = hihalf(tbaddr[subd));
DOC_TBADDR_L(con) = lohalf(tbaddr[subd);
DEBUGini t (It doc _ ini t : ' ini t track buffer' \n") ;
DOC_GOFLAG(con) = GO_START;

if(doc_gocheck(con» {
cInn_err(CE_WARN,

}

Itdoc_init: go not clear after
init trkbuf don't use doc_\n");

return;

Figure E - S doc_init Entry Point Routine (part 5 of 8)

E - 24 Bel Driver Development Guide

doc_inzt Dri1/er Entry Point Routine

451 if(DOC_ERRCODE(con) != ERR_NOERROR)
452 cmn_err(CE_WARN,
453 "doc_init: init trkbuf failed

errcode==Ox%x don't use doc_\n",
454 DOC_ERRCODE (con)) ;
455 return;
456 }
457 } 1* end for all subdv *1

458 1* enable auto-flushing for hard disks on this *1
459 1* controller. Error if go-flag says controller is busy *1

460 if (doc_gocheck(con» {
461 cmn_err (CE_WARN,
462 IIdoc_init: controller error:

go-flag not clear\nll);
463 cmn_err (CE_WARN,
464 IIdoc_init: before enable

autoflush--don't use doc_\nll);
465 return;
466 }
467
468
469
470
471
472

473
474
475
476
477

478
479
480
481

DOC_COMMAND(con) = CMD_ENBAUTOFL;
DEBUGinit(" doc_init: 'enable auto-flush'\n ll):
DOC_GOFLAG(con) = GO_START;

if(doc_gocheck(con»
cmn_err(CE_WARN,

}

"doc_init: go not clear after
enab autoflush don't use doc_\nll);

return;

if (DOC_ERRCODE(con) != ERR_NOERROR) {
cmn_err(CE_WARN,

}

doc_init: enab autoflush failed
errcode==Ox%x don't use doc_\nll,

DOC_ERRCODE(con»;
return;

} 1* end for all controllers *1

Figure E-S doc_init Entry Point Routine (part 6 of 8)

Sample Block Driver E - 25

doc_tnit Dnver Entry Point Routine

482 1* To verify that the controller is equipped with
483 * the correct number of drives, do a "get status"
484 * and check the results. Use the true number of
485 * sectors per track to determine block offsets
486 * of partitions for floppies
487 *1

488
489

for (unit=O ; unit<doc_numcontr*4
switch (doc_type[unit]) {

490 case DT_NODRIVE:
491 break;
492 case DT_STREAMING:
493 case DT_FLOPPY:
494 pd = &doc_pdsect[unit];
495 for (j=O; j<IF_NUMPAR; j++)

unit++) {

496 doc_vtoc[unit] ,v_part[j] = floppy_sizes[j];
497 doc_info[unit] = INFO_EQUIPPED;
498 break;

500 1* do "get status" command, polling for completion */

501 1* error if go-flag says controller is busy *1

502 if (doc_gocheck(contr(unit») {
503 cmn_err(CE_WARN,
504 "doc_init: controller error:

go-flag not clear\n");
505 cmn_err(CE_WARN,
506 "doc_init: before get status

507
508 }

--don't use doc_\n");
return;

Figure E - 5 doc_init Entry Point Routine (part 7 of 8)

E - 26 BCI Driver Development Guide

doc_mit Driver Entry Point Routlne

509 DOC_COMMAND(contr(unit» = CMD_HDIO : CMD_STATUS;
510 #ifdef DRIVETMP
511
512
513
514
515
516
517
518
519
520

521
522
523
524
525
526
527
528
529
530
531
532

#else

#endif

*

if (subdev(unit)==3) DOC_DRIVENO(contr(unit) = 1
else DOC_DRIVENO(contr(unit» = subdev(unit);

DOC_DRIVENO(contr(unit» = subdev(unit);

DEBUGinit(" doc_init: 'get status' on %d\n",unit);
DOC_GOFLAG(contr(unit» = GO_START;

if(doc_gocheck(contr(unit») {
cmn_err(CE_WARN,

"doc_init: go not clear after
get status don't use doc_\n");

return;

if (DOC_ERRCODE(contr(unit» == ERR_NOERROR) {
doc_info[unit] = INFO_EQUIPPED;
DPRINT(" doc_init: unit %d equipped\n" , unit);

}

else DPRINT(" doc_init: unit %d not equipped\n", unit);
} 1* end switch *1

1* end for all units (all controllers) *1

Initialize bad block driver for each equipped drive

533 for (unit=O; unit<4*doc_numcontr; unit++)
534 if (doc_type[unit]==DT_HARD && doc_info[unit]&INFO_EQUIPPED)
535 ddev = makedev(extmaj, idmkmin(unit»;
536 hdeeqd(ddev, IDPDBLKNO, EQD_ID);
537 }
538 DTRACE(" doc_init: return\n");

539 1* end init *1

Figure E - 5 doc_init Entry Point Routine (part 8 of 8)

Sample Block Driver E - 27

doc _i nit drS u b 0 r din ate D r i v erR 0 uti n e

'This subordinate driver routine is called by the doc_init entry point routine to actually initialize the
subdevices of the controllers. You may have noticed the comment (lines 26 - 29) that explains why
this is now in a subordinate routine. Because this is a part of the driver that interacts directly with
the device itself, it makes good sense to isolate it in a subroutine; should this code be rewritten at a
later date to support another device (or an enhanced version of this device), this subordinate routine
may need to be rewritten but other parts of the initialization routine will not.

Note how this routine utilizes the variables that are defined in the header file (lines 571 - 576; see the
header file, lines 40 - 45) for accessing the subdevices.

540 1*---*1
541 1*
542 * doc_initdr - Initialize drive parameters in controller.
543 * Used whenever pdsect is changed.
544 * Return 1 if failure, 0 if success.
545 *1
546 static int
547 doc_initdr(unit)
548 int unit;
549
550 int con, subd;

551 con = contr(unit);
552 subd = subdev(unit);

553 1* error if go-flag says controller is busy *1
554 if (doc_gocheck(con» {
555 cmn_err(CE_WARN,
556 "doc_initdr: controller error:

go-flag not clear\n");
557 cmn_err(CE_WARN,
558 "doc_initdr: before init

drive--don't use doc_\n");
559 return(1);
560 }

561
562

DOC_COMMAND(con) = CMD_INITDR
I «doc_type[subd] == DT_HARD) ? CMD_HDIO

Figure E - 6 doc_initdr Subordinate Driver Routine (part 1 of 2)

E - 28 BCI Driver Development Guide

doc_initdr Subordinate Driver Routine

563 #ifdef DRIVETMP
564 if (subd==3)
565

566
567
568 #else

else
DOC_DRIVENO(con) = 1 ;

DOC_DRIVENO(con) = subdj

569 DOC_DRIVENO(con) = subdj
570 #endif

571 DOC_NHEADS(con) = (u_char)(doc_pdsect[(4*con)+subd].pdinfo.tracks) j
572 DOC_MAXCYL(con) = (u_short) (doc_pdsect[(4*con)+subd] .pdinfo.cyls-1)j
573 DOC_NSECTRK(con) = (u_char)(doc_pdsect[(4*con)+subd].pdinfo.sectors)j
574 DOC_NBYTSEC(con) = (u_short) (doc_pdsect[(4*con)+subd] .pdinfo.bytes)j
575 if (doc_type[subd] == DT_HARD)
576 DOC_HDGAP(con) = HDG_512;

577 DEBUGinit(" doc_initdr: 'init drive' on %d\n", con)j
578 DOC_GOFLAG(con) = GO_STARTj

579 if(doc_gocheck(con» {
580 cmn_err(CE_WARN,
581 "doc_initdr: go not clear after

init drive don't use doc_\n")j
582 return(1)j
583 }

584 if(DOC_ERRCODE(con) != ERR_NOERROR) {
585 cmn_err(CE_WARN,
586 "doc_initdr: init drive failed

errcode==Ox%x don't use doc_\n",
587 DOC_ERRCODE(con»j
588 return(1)j
589 }
590 return(O);
591 }

Figure E.-6 doc_initdr Subordinate Driver Routine (part 2 of 2)

Sample Block Driver E - 29

doc _0 pen D r i v erE n try Poi n t R 0 uti n e

The doc_ driver does some further initialization of the device the first time it is opened. This enables
it to use the file system to download physical description, vtoc, and defect information to the disk.

Before doing any initialization, the open routine checks that the device is there (lines 610 - 614), that
no other opens are executing against the device (lines 618 - 620), that this is the first open of the
device since boot (lines 624 - 626), and that the unit is equipped with a hard disk (lines 638 - 644).

Note how the physical descriptor sector is read into a buffer (lines 648 - 657) using the doc_strategy
routine (line 651), iowait (line 652) to acquire the information, and the subordinate static routine
doc_copy (line 657) to move it into a local variable on the stack. A similar approach is used to read
in the defect map (lines 676 - 691) and the VTOC (lines 695 - 707).

592 1*---*1
593 1*
594 * doc_open - on first open read in physical
595 * description, vtoc, and defect info
596 *1
597 I*ARGSUSED*I
598 doc_open(dev,flag,otyp)
599 {
600 struct buf *geteblk();
601 struct buf *bufhead;
602 register int unit, defcnt;
603 int defaddr;
604 struct pdsector *pd;

605 DTRACE(tI doc_open: dev %d flag %d otyp %d\n", dev,flag,otYP)j
606 unit = iddn(minor(dev»;
607 1*
608 * Make sure there is a device there
609 *1
610 if (l(doc_info[unit]&INFO_EQUIPPED» {
611 1* no disk out there *1
612 u.u_error = ENXIO;
613 return;
614 }

Figure E -7 doc_open Routine (part J of 6)

E - 30 BCI Driver Development Guide

doc_open Driver Entry Point Routine

------.---

616 * wait for any other open to complete

618 while (doc_info[unit]&INFO_OPENING) {
619 sleep(&doc_info[unit],PZERO);
620

622 * For the first open do all the hard work

624 if (1 (doc_info[unit]&INFO_OPEN)) {
625 doc_info[unit] 1= INFO_OPENING;

626 pd = &doc_pdsect[unit];
627
628
629

* initialize defect tables

630
631
632
633

for(defcnt=O; defcnt«DEFCNT); defcnt++) {
doc_defect[unit].map[defcnt].bad.full = Oxffffffffj
doc_defect[unit].map[defcnt].good.full = Oxffffffffj

}

634
635
636

*
*

if the unit is not equipped with a hard disk, sk~p reading the
pdsect, vtoc and bad block info

638 if (doc_type[unit] 1= DT_HARD) {
639 doc_info[unit] 1= INFO_OPEN;
640 doc_vtoc[unit].v_sanity 1= VTOC_SANE;
641 doc_info[unit] &= INFO_OPENING;
642 wakeup(&doc_info[unit]);
643 return;
644 }

Figure E-7 doc_open Routine (part 2 of6)

Sample Block Driver E - 31

doc_open Driver Entry Point Routine

645 1*
646 *
647 *1

648
649
650
651
652
653
654

655
656
657

658 1*
659 *
660 *1

661
662

663
664
665
666
667
668
669
670

671
672

read physical description sector

bufhead = geteblk();
doc_setblk (bufhead, B_READ, IDPDBLKNO, dev);
bufhead->b_bcount = pd->pdinfo.bytes;
doc_strategy(bufhead);
iowait(bufhead);
if (bufhead->b_flags&B_ERROR) {

cmn_err(CE_WARN,
"doc_: Cannot read physical descriptor
sector on controller %d,
drive %d.'n",contr(unit),subdev(unit»);

goto badopen;

doc_copy (bufhead->b_un.b_addr, pd, sizeof(struct pdsector));

If it wasn't valid undo the damage

if (pd->pdinfo.sanity 1= VALID_PO) {
cmn_err(CE_WARN, "doc_: Bad physical

descriptor sanity word on controller %d,
drive %d.\n",contr(unit),subdev(unit));

1* just enough to be able to read the real PDsect *1
pd->pdinfo.cyls = 1;
pd->pdinfo.tracks = 1;
pd->pdinfo.sectors = 18;
pd->pdinfo.bytes = 512;

doc_initdr(unit); 1* re-initialize controller *1
goto badopen;

if (doc_initdr(unit)}
goto badopen;

1* re-initialize controller *1

Figure E-7 doc_open Routine (part 30/6)

E - 32 BCI Driver Development Guide

674
675
676
677

678
679
680

681

682
683
684
685
686

687
688
689

690

691

*

doc_open Driver Entry Point Routine

read the defect map

if (pd->pdinfo.defectsz > DEFSIZ)

}

cmn_err (CE_WARN,
"doc_: Too liOttle space allocated
in driver for defect table on controller %d,
drive %d\n", contr(unit) ,subdev(unit));

goto badopen;

for (defcnt=O; defcnt <

(pd->pdinfo.defectsz/pd->pdinfo.bytes); defcnt++) {
doc_setblk (bufhead, B_READ,

pd->pdinfo.defectst+defcnt, dev);
bufhead->b_bcount = pd->pdinfo.bytes;
doc_strategy(bufhead);
iowait(bufhead) ;
if (bufhead->b_flags & B_ERROR)

cmn_err(CE_WARN, "doc_: Cannot read defect
map on controller %d, drive %d\n" ,
contr(unit),subdev(unit»;

goto badopen;
}

defaddr = «int)&doc_defect[unit]) +

(defcnt*pd->pdinfo.bytes);
doc_copy (bufhead->b_un.b_addr, defaddr,

pd->pdinfo.bytes);

Figure E-7 doc_open Routine (part 4 of6)

Sample Block Driver E - 33

doc_open Driver Entry Point Routine

692 /*
693 *
694 */
695

696
697
698
699
700

701
702
703

704

705

706
707

read in the vtoc

doc_setblk (bufhead,B_READ,
pd->pdinfo.logicalst+IDVTOCBLK,dev);

bufhead->b_bcount = pd->pdinfo.bytes;
doc_strategy(bufhead);
iowait(bufhead);
if (bufhead->b_flags & B_ERROR)

cmn_err(CE_WARN, "doc_: Cannot read VTOC
on controller %d, drive %d\n",contr(unit),
subdev(unit));

goto opendone;

doc_copy (bufhead->b_un.b_addr,
&doc_vtoc[unit],sizeof(struct vtoc»;

if (doc_vtoc[unit].v_sanity != VTOC_SANE) {

}

cmn_err(CE_WARN, "doc_: Bad sanity word in
VTOC on controller %d, drive %d.\n",
contr(unit),subdev(unit»;

goto opendone;

Figure E-7 doc_open Routine (part 50/6)

E - 34 BCI Driver Development Guide

doc _open Driver Entry Point Routzne

709 * open is complete - wakeup sleeping processes and return buffer

711
712

doc_info[unit] l= INFO_OPEN;
goto opendone;

713 1* If the open was for a physical device (whole drive) but
714 * the open was bad, mark the drive as open anyway. This
715 * is so the drive can be opened even though no
716 * information has been written to the disk; thus an
717 * ioctl call can be used to format the disk.
718 *1

719 badopen:
720 if (!idnodev(minor(dev»){
721 u.u_error = ENXIO;
722
723 else {
724
725
726 }

doc_info[unit] := INFO_OPEN;
u.u_error = 0;

727 opendone:
728 doc_info[unit] &= INFO_OPENING;
729
730
731
732 }

wakeup(&doc_info[unit]);
bufhead->b_flags l= B_ERROR;
brelse(bufhead);

733 OTRACEC" doc_open: return\.nn);
734 } 1* end doc_open *1

1* mark the buffer bad *1

Figure E-7 doc_open Routine (part 6 of 6)

Sample Block Driver E - 35

doc _c los e 0 r i v erE n try Poi n t R 0 uti n e

The doc_close entry point routine is an empty routine. An installed driver must have an entry in the
switch table for the close routine, but this device requires no special action.

Lines 746 - 748 restore the names of three buffer-header members to ensure that they are accessible
by another process. Table E-3 summarizes these members and where they are used in the driver
code.

Table E - 3 Butter Header lVlembers Restored by doc_close Routine

Member Header File Where used in doc (line numbers)

b resid syslbuj.h as cylin, 832, 835, 868, 870
io_sl sysliobuf.h as acts, 855, 867, 1310, 1311
jrqsleep sysl iobuf.h a counter that is modified indirectly

735 1*---*/
736
737 * doc_close - provided as standard interface

739 doc_close()
740 {
741 }

743
744
745

746
747
748

*
*

Change the names of things in buffers
and buffer headers for different uses

#define cylin
#define acts
#define ccyl

b_resid
io_s1
jrqsleep

Figure E-8 doc_close Entry Point Routine

E - 36 Bel Driver Development Guide

doc _s t rat e g y D r i v erE n try Poi n t R 0 uti n e

The doc_strategy entry point routine is responsible for the actual Lla transfer when doing bloek
access for the device. Note that this same routine is accessed as a subordinate routine when doing
character-access of the device (see line 1340) and when reading the physical description sector, defect
map, and device vtoe in the doc_open routine (lines 651, 683, and 697).

The doc_strategy routine does a series of checks (lines 765 - 824), collects some information needed
to do and track the transfer (lines 826 - 843), puts the buffer header in the queue (lines 847 - 879),
and calls the subordinate routine, doc_iostart (line 856) to do the actual va operation. The diskerr
subroutine (lines 888 - 892) is called if any of the checks in the doc_strategy routine fail.

749 1*---*1
750
751 *
752 *1

Device strategy routine: do partition
checks, sort I/O queue, and so on

753 doc_strategy (bufhead)
754 register struct buf *bufhead;
755 {
756 register struct iobuf *drvtab; 1* drive status pOinter *1
757 register struct pdsector *pd; 1* pOinter to phys desc *1
758 register int unit; 1* drive unit ID *1
759 daddr_t lastblk; 1* last block in partition *1
760
761
762
763
764 1*

int
int
int
int

partition; 1*
iplsave; 1*
sectoff; 1*
mdev; 1*

765 * Decode the device number
766 *1

drive
saved
start
minor

767 mdev = minor(bufhead->b_dev);
768 partition = idslice(mdev);
769 unit = iddn(mdev);

partition number *1
interrupt level */
sector of partition
dev nwn of device *1

770 DTRACE(" doc_strategy: mdev %d partition %d
unit %d\n",mdev,partition,unit);

Figure E-9 doc_strategy Driver Entry Point Routine (part 1 of 5)

*1

Sample Block Driver E - 37

doc_strategy Driver Entry Point Routine

771
772 *
773 */

Check to see if there is really a device there

774 if (l(doc_info[unit]&INFO_EQUIPPED)) {
775 goto diskerr;
776 }

777
778
779
780

*
*

Get the device physical information and pick
up the partition beginning and end.
The whole disk (idnodev) is a special case.

781 pd = &doc_pdsect[unit];
782 if (idnodev(mdev» { /* writing on whole disk */

783 lastblk = (pd->pdinfo.sectors * pd->pdinfo.tracks *
784 pd->pdinfo.cyls);
785 sectoff = OxOO;
786 else {
787 /*

788
789
790
791
792

*

793 /*

794 *
795 */

check for invalid VTOC

if (doc_vtoc[unit].v_sanity != VTOC_SANE) {
goto diskerrj

}

check for read only partition

796 if «
(doc_vtoc[unit] .v_part(partition].p_flag&V_RONLY)

== V_RONLY)
797 && «bufhead->b_flags&B_READ) 1= B_READ» {
798 u.u_error = ENXIO;
799 cmn_err (CE_WARN, "doc_: partition %d on

controller %d, drive %d is marked read only\n",
partition, contr(unit),subdev(unit»;

800 goto diskerr;
801 }
802 lastblk = doc_vtoc[unit].v_part[partition].p_sizej
803 sectoff = (doc_vtoc[unit].v_part[partition].p_start
804 + pd->pdinfo.logicalst)j
805 }

Figure E - 9 doc_strategy Driver Entry Point Routine (part 2 of 5)

E - 38 BCI Driver Development Guide

doc_strategy Driver Entry Point Routzne

806 1*
807 * Get the queue header
808 *1
809 drvtab = &doc_tab[contr(unit)];
810 1* Check to see if the requested block exists
811 * within requested partition
812 *1
813 if «bufhead->b_blkno +

«bufhead->b_bcount-1)/pd->pdinfo.bytes»=lastblk)
814 :: (bufhead->b_blkno < DOC_FRSTBLK)) {
815 if «bufhead->b_blkno==lastblk) &&

(bufhead->b_flags&B_READ)) {

817 * Make eof on read work correctly
818 *1
819 bufhead->b_resid = bufhead->b_bcount;
820
821
822
823
824
825
826 *
827 *1

}

}

iodone (bufhead) ;
return;

goto diskerr;

ENTER CRITICAL REGION - sp15 = 10 on
the processor = sp15 on the VMEbus

828 iplsave = sp15();

Figure E-9 doc_strategy Driver Entry Point Routine (part 3 of 5)

Sample Block Driver E - 39

doc_strategy Driver Entry Point Routine

829 1*
830 * store the cylinder number for disk sort
831 *1
832 bufhead->cylin = «bufhead->b_blkno+sectoff) I

833 (pd->pdinfo.sectors*pd->pdinfo.tracks»;
834 DEBUGnums(tI doc_strategy: bufhead->b_blkno,

bufhead->cylin==%d,%d\ntl,
835 bufhead->b_blkno,bufhead->cylin);
836 1*
837 * Collect some statistics
838 *1
839 bufhead->b_start = lbolt; 1* time stamp request *1
840 doc_time[unit].io_cnt++; 1* inc operations count *1
841 doc_time[unit].io_bcnt +=

(bufhead->b_bcount+pd->pdinfo.bytes-1)
842 pd->pdinfo.bytes;
843 drvtab->qcnt++; 1* inc drive current request count *1

844 1*
845 * Put the buffer header in the queue
846 *1
847 bufhead->av_forw DOC_NULL;
848 if (drvtab->b_actf == DOC_NULL) {
849 1*
850
851
852
853
854
855
856
857

* If the queue is empty, just put it at the
head and then call the start IO routine

drvtab->b_actf = bufhead;
drvtab->b_actl = bufhead;
drvtab->acts = (int)bufhead;
doc_iostart(unit);

} else

Figure E - 9 doc_strategy Driver Entry Point Routine (part 4 of 5)

E-40 BCI Driver Development Guide

doc_strategy Driver Entry Point Routlne

* Otherwise we do a disk sort to figure 859
860 * out where to put the buffer on the queue
861 *1
862
863 register struct buf *ap, *cp;
864 int s1, s2;

865 if «(int)doc_time[unit] .io_cnt&OxOf) == ~)

866 drvtab->acts = (int)drvtab->b_actl;
867 for (ap=(struct buf *)drvtab->acts; cp=ap->av_forw; ap=cp) {
868 if «s1 = ap->cylin - bufhead->cylin)<O)
869 s 1 = -s 1 ;
870 if «s2 = ap->cylin - cp->cylin)<O)
871 s2 = -s2;
872 if (s1 < s2)
873 break;
874 }
875 ap->av_forw = bufhead;
876 if «bufhead->av_forw = cp) == DOC_NULL)
877 drvtab->b_actl = bufhead;
878 bufhead->av_back = ap;
879 }
880 1*
881 * .FGIT CRITICAL REGION
882 *1
883 splx (iplsave);
884 return;
885 1* If an error occurs wake up who ever is
886 * waiting so they can get an error
887 *1
888 diskerr:
889 bufhead->b_flags 1= B_ERROR;
890 bufhead->b_error = ENXIO;
891 iodone (bufhead);
892 return;
893 } 1* end strategy *1

Figure E-9 doc_strategy Driver Entry Point Routine (part 5 of 5)

Sample Block Driver E-41

doc _i 0 s tar t Sub 0 r din ate D r i v erR 0 uti n e

The doc_iostart routine provides the device-specific interaction necessary for the I/O transfer. It is
called by the doc_strategy routine to start the I/O transfer and by the doc_int routine to handle the
job completion interrupt generated when the I/O transfer is completed. The controller associated
with this driver has the intelligence to handle much of the I/O transfer itself; isolating the code that
intimately interacts with the intelligent firmware is a good programming practice that enhances both
the portability and maintainability of the driver.

Note the use of variables for interfacing with the hardware that are defined in the driver's header file.
Should a new version of the hardware require modification of these values, they can be redefined in
the header file without recoding the driver.

894 1*---*1
895 1* start a disk I/O, this must called with disk
896 * interrupts disabled. Set up parameters for
897 * controller and start command. It is called
898 * from two places, the strategy routine when a
899 * buffer is put onto an empty queue, and after
900 * an I/O completes in the interrupt routine.
901 *1

902 static
903 doc_iostart(unit)
904 register int unit;
905 {
906 register struct buf *bp; 1* pOinter to buffer header *1
907 register struct iobuf *dp; 1* pOinter to queue header *1
908 register int i; 1* temporary *1
909 register struct defect *deftab; 1* pOinter of defect table */
910 register struct pdsector *pd; 1* pointer to physical info *1
911 int firstbn; 1* block number of job start *1
912 int cylsize; 1* temp, num of blks in acyl *1
913 long paddress; 1* buffer address *1
914 long addr; 1* buffer address *1
915 union diskaddr firstsect; 1* the first sector in the IO *1

Figure E-IO doc_iostart Subordinate Routine (part I of 5)

E - 42 BCI Driver Development Guide

doc_iostart Subordinate Driver Routine

917 * Get the queue header
918 *1
919 dp = &doc_tab[contr(unit)];
920 1*
921 * Pull the buffer from the start of the list.
922 * If there is no work to do, or if a format
923 * is in progress, just return.
924 *
925
926
927
928
929
930
931
932
933
934
935
936
937

*
*
*

938 1*

Note: a format on anyone unit of a controller
occupies that controller totally. Jobs
for any other unit on that controller just
pile up in the queue until the format finishes.

if (doc_fmtflag[contr(unit)] != FMT_IDLE) {
return;

}

bp=dp->b_actf;
if (bp == DOC_NULL)

}

wakeup (dp) ;
return;

1* wake up any formatting request *1

939 * all the requests for any unit on the same controller
940 * are in the same queue. When we get new entries from the
941 * queue we have to recompute the unit number ...
942 *1
943 unit = iddn(minor(bp->b_dev»;
944 1*
945 * set up pointers to relevant data structures.
946 * Now we have a context for the IO
947 *1
948 deftab = doc_defect[unit].map;
949 pd = &doc_pdsect[unit];
950 1*
951 * calculate the true block number from the partition offset
952 *1
953 firstbn = bp->b_blkno;
954 if (lid~odev(minor(bp->b_dev») {
955 firstbn +=

doc_vtoc[unit].v_part[idslice(minor(bp->b_dev»].p_start
956 + pd->pdinfo.logicalst;
957 }

Figure E-IO doc_iostart Subordinate Routine (part 2 of 5)

Sample Block Driver E - 43

doc_iostart Subordinate Driver Routine

958 DE..aUGnums(" doc_iostart: bp->b_blkno==%d; real firstbn==%d\n ll
,

959 bp->b_blkno,firstbn) ;
960 1*
961
962

* get physical address from buffer header

963 paddress = vtop«int)bp->b_un.b_addr, bp->b_proc);
964 if (paddress == DOC_NULL) {
965 cmn_err(CE_PANIC,lIdoc_: Bad address returned by VTOP\n");
966 return;
967
968 cylsize = pd->pdinfo.tracks * pd->pdinfo.sectors;
969 1*
970
971

*
*

972 *1

on the first time around set the residual correct
and time stamp it

973 if (dp->b_active == 0) {
974 bp->b_resid = bp->b_bcount;
975 doc_count[unit] = 0;
976 dp->b_active++;
977 dp->io_start = lbolt;
978
979 1*
980
981

*
*

982 *1

don't transfer more than (pd->pdinfo.bytes) bytes at
once because this is a one-block-at-a-time controller.

983 doc_tcount[unit] = (bp->b_resid > pd->pdinfo.bytes
984 ? pd->pdinfo.bytes : bp->b_resid);
985 1* compute disk address
986 * 1) get the first block of this IO
987 * 2) convert it to the units of the device (128/256/512)
988 * 3) figure out block after the last one in the job
989 * 4) calculate the values for the sector/head/tracks
990 *
991 * first block number in terms of this
992
993

* device's physical sectors
firstbn += (doc_count[unit] » 9);

Figure E..;..10 . doc_iostart Subordinate Routine (pan 3 of 5)

E - 44 BCI Driver Development Guide

doc_iostart Subordinate Driver Routine

994
995
996
997
998
999

1000
1001

1002
1003
1004
1005

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

1019
1020
1021
1022

1023

*
*

look for bad blocks for this job
(but only for hard disks)

if (doc_type[unit] != DT_HARD)
goto startcmd; 1* no bad blocking for floppies! *1

}

1* convert block number into disk-address format *1

firstsect.part.pcn = firstbn I cylsize; 1* cyl *1
i = firstbn %'cylsize;
firstsect.part.phn = i I pd->pdinfo.sectors; 1* head *1
firstsect.part.psn = i % pd->pdinfo.sectors; 1* sector *1

1* search defect map *1
for (i=O;

*
*
*
*

«i<DEFCNT) && (firstsect.full > deftab->bad.full»
; i++)

deftab++;
if there are any, then all that has to be done
is to substitute the good block number for the
bad one. Since we only transfer one sector at
a time, we don't have to worry about crossing
over track boundaries and such.

if «i<DEFCNT) && (firstsect.full == deftab->bad.full» {
DPRINT(" doc_iostart: defect hit; block %d

remapped'n",firstbn);

}

firstbn = (deftab->good.part.pcn * cylsize)
+ (deftab->good.part.phn * pd->pdinfo.sectors)
+ (deftab->good.part.psn);

DPRINT(" doc_iostart: defect remapped to
block %d'n",firstbn);

Figure E-IO doc_iostart Subordinate Routine (part 4 of 5)

Sample Block Driver E - 45

doc_iosfart Subordinate Driver Routine

1025
1026
1027
1028
1029
1030
1031

1032
1033
1034
1035
1036
1037
1038

1039
1040
1041

* set up the io packet and do it
*/

startcmd:
/* error if go-flag says controller is busy */
if (doc_gocheck(contr(unit») {

cmn_err(CE_WARN,

}

"doc_iostart: error: go-flag not clear
before iostart\n");

cmn_err(CE_WARN,
"doc_iostart: aborting i/o request\n");

return;

DOC_COMMAND(contr(unit» =
«doc_type[unit]==DT_HARD) ? CMD_HDIO : CMD_FLIO)

(doc_tbufon[unitJ ? 0 : CMD_FORCE)
/* force sing sec io after errs */

«bp->b_flags&B_READ) ? CMD_REAO : CMD_WRITE)
CMD_INTWO; /* interrupt when done */

doc_tbufon[unit] = TBUFFER j

/* always reset init tbuf condition */

1042 addr = VMEMEM(paddress+doc_count[unit])j
1043 DOC_SBAODR_H(contr(unit» = hihalf(addr)j
1044 DOC_SBAODR_L(contr(unit» = lohalf(addr);

1045 startio:
1046 #ifdef DRIVETMP
1047 if (subdev(unit)==3) DOC_ORIVENO(contr(unit» = 1 ;
1048 else DOC_ORIVENO(contr(unit» = subdev(unit);
1049 #else
1050 DOC_DRIVENO(contr(unit» = subdev(unit);
1051 #endif
1052 DOC_LBN_H(contr(unit» = hihalf(firstbn);
1053 OOC_LBN_L(contr(unit» = lohalf(firstbn);
1054
1055
1056
1057

*
*

poke the device to start the i/o; return immediately,
so an inter~upt coming soon after the go isn't lost

1058 DOC_GOFLAG(contr(unit» = GO_START;
1059 }

Figure E- to doc_iostart Subordinate Routine (part 5 of 5)

E - 46 BCI Driver Development Guide

doc _i n t D r i v e r In t err u p t Han dIe r

The doc_int routine is the driver's interrupt handler. [n this driver, it identifies which subdevice
generated the interrupt (which is an operating system interface) then calls the doc_intr subordinate
routine to service the actual interrupt. By separating the code that interracts with the device itself
into a separate subroutine, the portability and maintainability of the driver code is enhanced.

1060 1*---*1
1061 1*
1062 * the device interrupt service routine, figure out which
1063 * disks have interrupted and call their service routines
1064 *1
1065 doc_int(ivec)
1066 int ivec;
1067
1068
1069
1070
1071
1072
1073

#ifdef DRIVETMP
register int unit,drv;

#else
register int unit;

#endif

1074
1075
1076

* ivec is the number of the controller that had the interrupt

*1
#ifdef DRIVETMP

1077 if ((drv=DOC_DRIVENO(ivec» -- 1) drv=3;
1078 unit = (4 * ivec) + dry;
1079 #else
1080 unit = (4 * ivec) + DOC_DRIVENO(ivec);
1081 #endif
1082
1083
1084

DPRINT(" doc_int: ivec Ox%x unit %d'n",ivec, unit);
doc_intr(unit);

}

Figure E-ll doc_int Driver Interrupt Handler

Sample Block Driver E - 47

doc _i n t r Sub 0 r din ate 0 r i v erR 0 uti n e

The doc_intr routine handles any possible interrupt that could come from a subdevice.

1085 1*---*1
1086 1*
1087 * this routine is called from the one above when the
1088 * unites) that caused the interrupt has been discovered
1089 *1
1090 static
1091 doc_intr(unit)
1092 register int unit;
1093 {
1094 register struct buf *bp;
1095 register struct iobuf *dp;
1096 register int i;
1097 short prterr;
1098 u_char errcode;

1099 DTRACE(II doc_intr: start\n") j

1100 dp = &doc_tab[contr(unit)];
1101 errcode = DOC_ERRCODE(contr(unit»;
1102
1103
1104

*
*

1105 *1

handle formatting interrupt if format is in progress
and was successful.

1106 if «doc_fmtflag[contr(unit)]==
FMT_INPROGRESS) && (errcode==ERR_NOERROR»

1107 {
1108 DEBUGform(" doc_intr: format succeeded\n");
1109 doc_fmtflag[contr(unit)] =

FMT_SUCCEED; 1* finished successfully *1
1110 wakeup(&doc_fmtflag[contr(unit)l);

1* wake sleeping IOCTL*I
1111 return;
1112 }
1113 bp = dp->b_actf;

Figure E - 12 doc_intr Subordinate Driver Routine (part I of 9)

E-48 BCI Driver Development Guide

1115
1116
1117
1118
1119
1120
1121
1122
1123

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

1135
1136
1137

1138

doc_intr Subordinate Driver Routine

* if not formatting, look for spurious interrupts
*/

if (doc_fmtflag[contr(unit)] 1= FMT_INPROGRESS) {
if (dp->b_active == 0)

goto spurious;
if (bp == 0) {

dp->b_active = 0;
spurious:

*

}

cmn_err(CE_WARN, "doc_: Spurious interrupt
for controller %d, drive %d\n",contr(unit),subdev(unit»;

return;
}

now see if the previous io completed ok

if (errcode != ERR_NOERROR) {
prterr = 0;
switch (errcode) {

case ERR_DNOTREADY:
cmn_err(CE_WARN,"doc_: controller %d,

drive %d Drive not ready\n",contr('.lnit),
subdev(unit»;

break;
case ERR_RESERVED:

cmn_err(CE_WARN, "doc_: controller %d,
drive %d Reserved error code returned\n",
contr(unit),subdev(unit»;

break;

Figure E-12 doc_intr Subordinate Driver Routine (part 2 of 9)

Sample Block Driver E-49

doc_intr Subordinate Driver Routine

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

1150
1151
1152
1153
1154
1155

1156
1157

1158
1159
1160
1161
1162
1163
1164

1165
1166
1167

1168

case ERR_ACCESSERR:
if (doc_fmtflag[contr(unit)] != FMT_INPROGRESS) {

doc_retrys[unit]++;
if «(doc_type[unit] == DT_HARD)

&& (doc_retrys[unit] < HRETRYS»
I I «doc_type[unit] == DT_FLOPPY)

&& (doc_retrys[unit] < FRETRYS»)
{

if (idnodev(bp->b_dev» {
1* access was "physical" *1

DEBUGretry(" doc_: controller %d,
drive %d, phys block %d:

retry - access error\n" ,
contr(unit) ,subdev(unit) ,bp->b_blkno);

} else {
1* access was "logical" *1

i = bp->b_blkno
+ doc_vtoc[unit].v_part[idslice(minor(bp->b_dev»].p_start
+ doc_pdsect[unit].pdinfo.logicalst;

DEBUGretry(" doc_: controller %d,
drive %d, partition %d, log block %d,

phys block %d: retry - access error\n" ,
contr(unit),subdev(unit),
idslice(minor(bp->b_dev»,bp->b_blkno,i);

}

}

doc_tbufon[unit] = 0; 1* turn off
tbuf for retry *1

doc_iostart(unit);
return;

doc_retrys[unit] = 0;
if (doc_type[unit]==DT_HARD) prterr++;

}

cmn_err(CE_WARN, "doc_: controller %d,
drive %d Disk access error\n",
contr(unit),subdev(unit»;

break;
case ERR_VERIFYERR:

cInn_err(CE_WARN, "doc_: controller %d,
drive %d Verify error\n",contr(unit),
subdev(unit»;

break;

Figure E -12 doc_intr Subordinate Driver Routine (part 3 of 9)

E - SO Bel Driver Development Guide

doc_intr Subordinate Driver Routine

--... --.-.--------------~-------------

1169
1170

1171
1172
1173

1174
1175
1176

1177
1178
1179

1180
1181
1182

1183
1184
1185

1186

case ERR_DMAERR:
cmn_err(CE_WARN, "doc_: controller %d,

drive %d DMA error\n",contr(unit),
subdev(unit)) ;

break;
case ERR_DRVNOTINIT:

cmn_err(CE_WARN, "doc_: controller %d,
drive %d Drive or track buffer not
initialized\n",contr(unit),subdev(unit));

break;
case ERR_NUMTBS:

cmn_err(CE_WARN, "doc_: controller %d,
drive %d Too many track buffers'\n",
contr(unit),subdev(unit»;

break;
case ERR_ILLEGALCMD:

cmn_err(CE_WARN, "doc_: controller %d,
drive %d Illegal command\n",contr(unit),
subdev(unit»;

break;
case ERR_ILLEGALLBN:

cmn_err(CE_WARN, "doc_: controller %d,
drive %d Illegal block number',:1." ~ C'o~tr (uni t) ,
subdev(unit»;

break;
case ERR_SEEKERR: 1* floppy only *1

cmn_err(CE_WARN,"doc_: controller %d,
drive %d floppy seek error\n",contr(unit),
subdev(unit»;

1* fall thru t *1

Figure E-12 doc_intr Subordinate Driver Routine (part 4 of 9)

Sample Block Driver E-Sl

doc_intr Subordinate Driver Routine

1187
1188
1189
1190
1191
1192
1193

1194
1195
1196
1197
1198
1199

1200
1201
1202
1203
1204
1205
1206
1207

1208

1209
1210

1211

case ERR_CRCERR: 1* floppy only *1
if (doc_fmtflag[contr(unit)] 1= FMT_INPROGRESS)

doc_retrys[unit]++;
if (doc_retrys[unit] < FRETRYS) {

if (idnodev(bp->b_dev» {
1* access was "physical" *1

DEBUGretry(" doc_: controller %d,
drive %d, phys block %d:

retry - CRC error\n",contr(unit),
subdev(unit),bp->b_blkno);

} else {
1* access was tllogical" *1

i = bp->b_blkno
+ doc_vtoc[unit] .v_part[idslice(minor(bp->b_dev»].p_start
+ doc_pdsect[unit].pdinfo.logicalst;

DEBUGretry(tl doc_: controller %d,
drive %d, partition %d, log block %d, phys block %d:
retry - CRC error\ntl,contr(unit),subdev(unit),

idslice(minor(bp->b_dev»,bp->b_blkno,i);
} 1* turn off tbuf for retry *1

doc_tbufon[unit] = 0;
doc_iostart(unit);
return;

}

doc_retrys[unit] = 0;
}

cmn_err(CE_WARN,"doc_: controller %d,
drive %d floppy CRC error\n",contr(unit),
subdev(unit»;

break;

case ERR_WRITEPROT: 1* floppy only *1
cmn_err(CE_WARN,"doc_: controller %d,

drive %d Attempt to write on
write-protected media\n",contr(unit),
subdev(unit»;

break;

Figure E -12 doc_intr Subordinate Driver Routine (part 5 of 9)

E - 52 BCI Driver Development Guide

12'12
1213

1214
1215
1216
1217
1218
1219
1220
1221
1222

1223

1224
1225
1226
1227
1228
1229
1230
1231

1232

1233
1234
1235

1236

1237
1238
1239
1240
1241
1242
1243

doc_intr Subordinate Drn,'er ROlltlne

case ERR_BADMEDIA:
cmn_err(CE_WARN,"doc_: controller %d,

drive %d Uninitialized or un-readable
media\n",contr(unit),subdev(unit»;

break;

1* If error occurred during formatting, just
* return error code to IOCTL and don't worry
* about error logging or specifics
*1

*
*

if (doc_fmtflag[contr(unit)] == FMT_INPROGRESS) {
DEBUGform(" doc_intr: format failed\n");
doc_fmtflag[contr(unit)] =

FMT_FAIL; 1* finished and failed *1
wakeup(&doc_fmtflag[contr(unit)]);

1* wake sleeping IOCTL *1
return;

If accessing removable media, just print a generic error
message and don't worry about error logging or specifics

if (doc_type[unit] == DT_FLOPPY) {
cmn_err(CE_NOTE,"doc_: Floppy Access

Error: See Error Message");
cmn_err(CE_CONT,"Section of the System

Administrator's Guide\nn);
goto berr;

} else if (doc_type[unit] == DT_STREAMING) {
cmn_err(CE_NOTE,"doc_: CTC Access Error:

}

See Error Message");
cmn_err(CE_CONT,nSection of the System

Administrator's Guide\n");
goto berr;

otherwise log the error and print a nasty message ...

if .~ prterr) {
doc_elog[unit].diskdev = bp->b_dev

& (IDNODEVlidslice«-1»);

Figure E -12 doc_intr Subordinate Driver Routine (pan 6 of 9)

Sample Block Driver E - S3

doc_imr Subordinate Driver Routine

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

1255
1256

1257
1258
1259
1260
1261
1262
1263
1264
1265

1266
1267
1268
1269

1270
1271
1272
1273
1274

1* The correct way to calculate the physical block
* number is to simply read it back from the
* controller so that defect mapping is accounted for.
* Unfortunately, the controller apparently destroys
* this field, so we just recalculate the number
* assuming no defects.
*1

if (idnodev(minor(bp->b_dev»){

} else

1* access was ~physical~ *1

doc_elog[unit].blkaddr = bp->b_blkno;
cmn_err(CE_WARN,~doc_: cannot

access physical block %d~,
doc_elog[unit].blkaddr);

cmn_err(CE_CONT,~on controller %d,
drive %d: errcode Ox%x~,

contr(unit),
subdev(unit),
errcode) ;

1* access was ~logical~ *1

doc_elog[unit].blkaddr = bp->b_blkno
+ doc_vtoc[unit].v_part[idslice(minor(bp->b_dev»].p_start

+ doc_pdsect[unit].pdinfo.logicalst;
cmn_err(CE_WARN,~doc_: cannot access physical

block %d (Ibn %d in partition %d)",
doc_elog[unit].blkaddr,
bp->b_blkno,
idslice(minor(bp->b_dev»);

cmn_err(CE_CONT,~on controller %d,
drive %d: errcode Ox%x~,

contr(unit),
subdev(unit),
errcode);

DEBUGhde(~doc_int: bp->b_dev==Ox%x,
bp->b_blkno==%d, doc_elog[%d].blkaddr==

%d'n~,bp->b_dev,bp->b_blkno,unit,

doc_elog[unit].blkaddr);

Figure E -12 doc_intr Subordinate Driver Routine (part 7 of 9)

E - 54 BCI Driver Development Guide

doc_intr Subordinate Driver Routine

1275 doc_elog[unit].readtype HDECRC;
1276 doc_elog[unit].severity = HDEUNRD;
1277 doc_elog[unit].bitwidth = 0;
1278 doc_elog[unitl.timestmp time;
1279 for (i=O; i<12; i++)
1280 doc_elog[unit].dskserno[i] =
1281 doc_pdsect[unit].pdinfo.serial[i];

1282 1* do this last, because it may do more I/O
and cause more errors *1

1283 hdelog(&doc_elog[unit]);
1284 }
1285 berr:
1286 1*
1287·
1288
1289
1290
1291
1292

/*.

*
*/

/*

*

}

mark the buffer in error

bp->b_flags 1= B_ERROR;
.bp->b_error = EIO;
goto err;

now update the residual, this makes EOF work

bp->b_resid -= doc_tcount[unit];
doc_count[unit] + = doc_tcount[unit];

1293
1294
1295
1296
1297
1298
1299
1300
1301

* then if there is no more to transfer then go to the next buffer
*/

if (bp->b_resid < doc_pdsect[unit].pdinfo.bytes) {

Figure E-12 doc_intr Subordinate Driver Routine (part 8 of 9)

Sample Block Driver E-55

doc_intr Subordinate Driver Routine

1302 /*
1303 * now unlink the buffer from the queue and set us up for the
1304 * next io
1305 */ '

1306 err:
1307 dp->b_active = 0;
1308 dp->b_actf = bp->av_forw;
1309
1310
1311
1312
1313
1314
1315

.1316
1317
1318
1319
1320
1321 }

dp->qcnt--;
if (bp == (struct buf *)dp->acts)

dp->acts = (int)dp->b_actf;

update status information

doc_time[unit].io_resp += Ibolt - bp->b_start;
doc_time[unitJ.io_act += lbolt - dp->io_start;

wake up any processes waiting for- this buffer

iodone (bp) ;

1322 doc_xetrys[unit] = 0;
.1323 - /*

1324 * start the next ib
1325 */
1326 doc_iostart(unit);
1327 DTRACE(" doc_intr: return\n lt

);

1328 } /* end intr */

Figure E-12 doc_intr Subordinate Driver Routine (part 9 of 9)

E - 56 BCI Driver Development Guide

doc _b rea k upS u b 0 r din ate D r i v erR 0 uti n e

1329 1*---*1
1330 1* Break up the request that came from physio into
1331 * chunks of contiguous memory so we can get around
1332 * the DMA controller limitations. We must be sure
1333 * to pass at least 512 bytes (one sector) at a
1334 * time (except for the last request).
13.35 *1
1336 static
1337 doc_breakup(bp)
1338 register struct buf *bp;
1339 {
1340
1341 }

dma_breakup(doc_strategy, bp);

Figure E -1~ doc_breakup Subordinate Routine

Sample Block Driver E- 57

doc _r e a dan d doc _ w- r i teD r i v erE n try Poi n t R 0 uti n e s

The read and write entry point routines are very short and fairly simple. The physck(D3X) function
checks that the requested block exists, then physio locks the block in memory (without moving it
from user address space) and transfers the data. See Olapter 6, "Input/Output Operations," for a
further discussion of physical 110 for a block-access device.

1342 /*-- ---*1
1343 /*
1344 * physical read
1345 */
1346 doc_read(dev)
1347 {
1348

1349
1350 }

if (idnodev(minor(dev» tl
physck(doc_vtoc[iddn(minor(dev})].

v_part[idslice(minor(dev»].p_size, B_READ»
physio(doc_b~eakup, 0, dev, B_READ);

Fig~e E-14 .doc_read-Entry Point Routine

1351 /*-----------------------------~---------------------- ---*1
1352
1353 * physical write

1355 doc_write (dev)
1356 {
1357

1358
1359 }

if (idnodev(minor(dev» I I
physck (doc _ vto'c [iddn (minor (dev))] .
v_part[idslice(minor(dev»].p_size, B~WRITE»

physio{doc_breakup, 0, dev, B_WRITE);

Figure E -15 doc_write Entry Point Routine

E-58 BCI Driver 'Development Guide

doc _g 0 c h e c k, doc _C 0 P y, and doc _s e t b I k Sub 0 r din ate D r i v e r

Routines

The doc_gocheck subordinate routine is called by the driver's initialization entry point routine. It
uses four variables that are defined elsewhere

DOC_GOFLAG defined line 35, header file

GO_DONE defined line 58, header file

GOW AITSECS defined line 127, driver code

GOCHECKLPS defined line 128, driver code

1360 I*-------------~---*1
1361 I~ qocheck -- if go flag is clear, return 0; if not
1362 * wait about GOWAITSECS secs, checking each loop;
1363 * if it never clears return 1.

1364 1*---*1
1,365 static
1366 doc_gocheck(ctlr)
1367
1368
1369

int ctlr;
{

int i;

/* the doc_ board, O-n *1

1370 if (DOC_GOFLAG(ctlr) == GO_DONE) return 0;
1* quick exit on normal case *1

1371 else {
1372 for(i=(GOWAITSECS*GOCHECKLPS); i>O ; i--)
1373 if (DOC_GOFLAG(ctlr) == GO_DONE) return 0;
1374 return 1;
1375 }
1376 } 1* end doc_gocheck *1

Figure E-16 doc~ocbeck Subordinate Driver Routine

. Sample Block Driver E-S9

doc~ocheck, doc_copy, and doc_setblk Subordinate Driver Routines

The doc_copy subordinate routine is called by the doc_open entry point routine to read physical
description sector data, defect map, and the VTOC into a buffer when the device is first opened.

1378
1379 * copy count bytes by words

1381 /*VARARGS*/
1382 static
1383 doc_copy(faddr, taddr, count)
1384
1385
1386
1387
1388
1389
1390

1391
1392
1393
1394
1395
1396

unsigned int *faddr;
unsigned int *taddr;
unsigned int count;
{

register unsigned int *fptr;
register unsigned int *tptr;
register int i,cnt;

cnt = count/4;
tptr = taddr;

/* # of words to transfer */

}

fptr= faddr;
for- (i=O; i<cnt;. i+~)

*tptr++ = *fptr++;

Figure E-17 doc_copy Subordinate Driver Routine

E-60 BCI Driver Development Guide

doc-'5ocheck, doc_copy, and doc_setblk Subordinate Driver Routines

The doc_sethlk subordinate routine is used to setup the buffer for the doc_copy routine.

1397 1*---*1
1398 1*
1399
1400

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

- 1415

initialize buffer for command

I*VARARGS1*1.
static
doc_setblk (bufhead, cmd, blkno, dev)
struct buf *bufhead;
u_char cmd;
daddr_t blkno;
dev_t dev;
{

}

clrbuf (bufhead);
bufhead->b_flaqs 1= cmd;
bufhead->b_hlkno = blkno;
bufhead->h_dev = (dev : IDNODEV);
bufhead->b_proc = OxOO;
bufhead->b_flaqs &= B_DONE;

Figure E -18 doc_setblk Subordinate Driver Routine

Sample Block Driver E-61

doc _i 0 c tiD r i v erE n try Poi n t R 0 uti n e

The doc_ driver uses the ioctl(D2X) routine to fonnat a disk subdevice. The ioctl routine is only
available when the subdevice is accessed as a character device, not when it is mounted and accessed
as a block device. Because it makes no sense to fonnat a mounted disk device, this works perfectly
well.

The I/O control commands in lines 1438 - 1441 are defined in lines 15 - 18 of the driver's header
file. Other I/O control commands are defined in the syslvtoc.h header file, to which all VTOC disk
devices on the system must adhere. The relevant lines from vtoc.h are

1* driver ioctl()
#define VIoe
#define V_PREAD
#define V_PWRITE
#define V_PDREAD
#define V_POWRITE
#define V_GETSSZ

commands *1
('V'«ij)

(VIOC\1)
(vloeI2)
(vIoeI3)
(VIOCI4)
(vIcels)

#define V_FORMAT
#define V_GETFORMAT

(vloeI6)
(vIoel7)
(vIcels) #define V_PDSETUP

1* ioctl() error return codes *1

#define V_BADREAD Ox01
#define V_BADWRITE Ox02
#define V_BADFORMAT Ox04

1* Physical Read *1
1* Physical Write *1
1* Read o~ Physical Description Area *1
1* Write of Physical Description Area *1
1* Get the sector size of media */
1* Format disk */
1* Get formatting parameters *1
1* Set physical descri'ptors values. *1
1* without writing them to disk *1

1* Sanity word for the physical description area *1
#define VALID_PO OxCASE6000

Figure E -19 Excerpt of sys/vtoc.h Header File

E - 62 Bel Driver Development Guide

doc_ioctl Driver Entry Point Routine

1416 1*---*1
1417 1*
1418
1419

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

1432
1433
1434
1435

1436 "

1437

1438
1439
1440
1441

Do device specific ioctls

I*ARGSUSED*I
doc_ioctl(dev,cmd,argsptr,flag)
char *argsptr;
{

struct buf *geteblk();
struct buf *bufhead;
int errno, xfersz;
register int unit;
unsigned int sector, mem, count, numbytes, defblock;
struct pdsector *pd;
struct io_arg arg, *args;
int iplsave; 1* saved interrupt level *1

errno = DOC_NULL;
args = &.arg;"
unit = iddn(minor(dev»;
pd = &.doc_pdsect[unit];

DTRACE(n doc_ioctl: dev,cmd,f %d,%d,%d\.n",dev,cmd,flag);

switch(cmd) {

case IOCTL_DTRACEON: doc_dtrace = 1; break;
case IOCTL_DTRACEOFF: doc_dtrace = 0; break;
case IOCTL_DPRINTON: doc_dprint = 1; break;
case IOCTL_DPRINTOFF: doc_dprint = 0; break;

Figure E-20 doc_ioctl Entry Point Routine (part I of 13)

Sample Block Driver E- 63

doc_ioctl Driver Entr,,;.' Point Routine

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
-1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479

*
*
*

-*

*

Format the media: V_FORMAT is used to format
a disk. The data structure vfmt_arg (defined
in "sys/vtoc.h") is used to pass parameters.

_ N.B.
The entire drive must be formatted in one shot.

case V_FORMAT: {
register struct buf *bp;
struct vfmt_arg vfmtarg, *format;
register caddr_t cp;
register u_short cyl;
register u_char head;
register int nsct;
register char hard;
register struct iobuf *dp; 1* pOinter to queue header *1
DTRACE(" doc_ioctl: format option entered\nn);
format = &'vfmtarg;
if (copyin(argsptr, format, sizeof(struct vfmt_arg» f= 0) {

u.u_error = EFAULT;
return;

}

DPRINT(" doc_ioctl: format: r %d i %d t %d s %d\n",
format->retval,format->interleave,
format->trackcount,format->startsector);

1* -return fail unless asked to format-entire disk */
if (format->trackcount l=(pd->pdinfo.tracks*pd->pdinfo.cyls» {

errno = V_BADFORMAT;

}

suword(&'«struct io_arg *)argsptr)->retval,errno);
DPRINT(n doc_ioctl: trackcount 1= pdinfo t * c\n");
return;

dp = &.doc_tab[contr(unit)]; 1* Get the queue header */
/* ENTER CRITICAL REGION - splS = 10 on the

* processor = splS on the VMEbus
*/

iplsave = splS();

Figure E - 20 doc_ioetl Entry Point Routine (part 2 of 13)

E-:- 64 BCI Driver Development Guide

doc_ioetl Driver Entry Point Routine

1480 1* If there are no jobs on the controllers queue, and no
1481 * other format in progress, grab the controller for a
1482 * a format job. Else sleep until iostart exhausts the
1483 * queue and issues wakeup.
1484
1485
1486
1487
1488
1489
1490

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502

1503
1504
1505
1506
1507
1508

1509
1510
1511

while «dp->b_actf != DOC_NULL)

}

I I (doc_fmtflag[contr(unit)] 1= FMT_IDLE» {
sleep(dp,PZERO);

doc_fmtflag[contr(unit)] = FMT_INPROGRESS;

1* do "format drive" command *1
1* error if go-flag says controller is busy *1

if (doc_gocheck(contr(unit») {
cmn_err(CE_WARN,

"doc_ioctl: error: go-flag not clear before format\.n");
cmn_err(CE_WARN,

"doc_ioctl: aborting request\'n");
return;

}

1* set command *1
DOC_COMMAND(contr(unit» = CMD.:.,FORMAT I CMD_INTWD

I «doc_type[unit] == DT_HARD) ? CMD_HDIO : CMD_FLIO);

#ifdef DRIVETMP

#else

#endif

if (subdev(unit)==3) DOC_DRIVENO(contr(unit» = 1
else DOC_DRIVENO(contr(unit» = subdev(unit);

DOC_DRIVENO(contr(unit» = subdev(unit);

DPRINT(n doc_ioctl: 'format drive' unit %d type %d\.nn,
unit,doc_type[unit]);

DOC_GOFLAG(contr(unit» = GO_START;

Figure E-20 doc_ioctl Entry Point Routine (part 3 of 13)

Sample Block Driver E-65

doc_ioctl Driver Entry Point Routine

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523 *
1524 *1

1* sleep until interrupt routine wakes us *1
sleep(&doc_fmtflag[contr(unit)],PZERO);
DPRINT (It doc_ioctl: back from sleep\n"); -
if (doc_fmtflag[contr(unit)] == FMT_FAIL)

{

DPRINT(" doc_ioctl: format failed\n");
u.u_error = EIO;
}

doc_fmtflag[contr(unit)] = FMT_IDLE;
doc_iostart(unit); 1* let any pending io start *1

.FGIT CRITICAL REGION

1525 splx (iplsave);
1526 break;
1527 }

Physical Read
1528
1529
1530
1531
1532
1533
153-4
1535
1536
1537
1538
1539
1540

case V_PREAD:

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551

if (copyin(argsptr, args, sizeof(struct io_arg» 1= 0) {
u.u_error = EFAULT;
return;

}

bufhead = geteblk();
sector = args->sects~;
mem = args->memaddr;
count = args->datasz;
DTRACE(" doc_ioctl: pread: %d bytes from

sector %d\n",count,sector);
while (count) {

doc_setblk (bufhead, B_READ, sector, dev);
bufhead->b_bcount = pd->pdinfo.bytes;
doc_strategy(bufhead);
iowait(bufhead);
if (bufhead->b_flags & B_ERROR) {

}

errno = V_BADREAD;
suword(&«struet io_arg *)argsptr)->retval,errno);
brelse(bufhead) ;
return;

Figure E-20 doc_ioctl Entry Point Routine (part 4 of 13)

E-66 Bel Driver Development Guide

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

*

doc_ioctl Driver Entry Point Routine

xfersz = min(count, bufhead->b_bcount-bufhead->b_resid);
if (copyout(bufhead->b_un.b_addr, mem, xfersz) != 0) {

u.u_error = EFAULT;

}

errno = V_BADREAD;
suword (&. ((struct io_arg *) argsptr) - >retvaL, errno) ;0
brelse(bufhead);
return;

if (lxfersz) break;
sector += 1;
count -= xfersz;
mem += xfersz;

}

brelse(bufhead);
break;

Physical Write

case V_PWRITE:
if (copyin(argsptr, args, sizeof(struct'io_arg» 1= 0) {

u.u_error = EFAULT;
return;

}

bufhead = geteblk();
sector = args->sectst;
mem = args->memaddr;
count = args->datasz;
DTRACE(" doc_ioctl: PWRITE sec %d count %d\.n" ,sector,cQunt);
defblock = pd->pdinfo.defectst;
numbytes = 0;
while (count) {

doc_setblk(bufhead, B_WRITE, sector, dev);
bufhead->b_bcount = pd->pdinfo.bytes;
xfersz = mine count, pd->pdinfo. bytes).;
if (copyin(mem, bufhead->b_un.b_addr, xfersz) 1= 0) {

u.u_error = EFAULT;

}

errno = V_BADWRITE;
suword{&.«struct io_arg *)argsptr)->retval, errno);
brelse(bufhead);
return;

Figure E-20 doc_ioctl Entry Point Routine (part 5 of 13)

Samp'e Block Driver E-67

doc_ioctl Driver Entry Point Routine

1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603

1604

1605
1606
1607
1608
1609
1610

1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628

doc_strateqy(bufhead);
iowait(bufhead);
if (bufhead->b_flaqs & B_ERROR)

errno = V_BADWRITE;
{

suword(&«struct io_arq *)argsptr)->retval, errno);
bufhead->b_bcount = pd->pdinfo.bytes;
brelse(bufhead);
return;

}

1* update memory image if special data *1
if «(bufhead->b_blkno == IDPDBLKNO) &&

(doc_type[unit] == DT_HARD» I:
«bufhead->b_blkno -- IFPDBLKNO) &&

(doc_type[unit] -- DT_FLOPPY»)
{

}

doc_copy (bufhead->b_un.b_addr, pd, 512);
defblock = pd->pdinfo.defectst;

1* update defect map *1.
if «bufhead~>b_blkno == defblock)

}

&& (doc_type [unit] == DT_~D» {
defblock++,;
doc_copy (bufhead->b_un.b_addr~

«(unsigned int) &doc_defect[unit]) +

numbytes) ,
512);

numbytes += 512;

1* update VTOC *1
if « bufhead->b_'blkno == (pd->pdinfo .1ogicalst+IDVTOCBLK))

&& (doc_type[unit]==DT_HARD»
doc_copy(bufhead->b_un.b_addr, &doc_vtoc[unit] ,

sizeof(struct vtoc»;
sector += 1;
count -= xfersz;
mem += xfersz;

}

brelse(bufhead) ;
break;

Figure E - 20 doc_ioctl Entry Point Routine (part 6 of 13)

E-68 BCI Driver Development Guide

1629 1*
1630 *
1631 *1

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648.
1649
1650
1651
1652
1653
1654
1655
1656

1657
1658
1659
1660
1661
1662
1663
1664

doc_ioctl Driver Entry Point Routine

Read the Physical Descriptor Sector off the disk

case V_PDREAD:
DTRACE(n doc_ioctl: PDREAD\nn);
if (copyin(argsptr, args, sizeof(struct io_arg» l= 0) {

u.u_error = EFAULT;
return;

}

if (doc_type[unit] == DT_HARD) {
bufhead = g~teblk();
doc_setblk (bufhead, B_READ, IDPDBLKNO, dev);

}

else if (doc_type[unit] == DT_FLOPPY) {
bufhead = geteblk();
doc_setblk (bufhead, B_READ, IFPDBLKNO, dev);

}

else break;
bufhead->b_bcount = 512;
doc_strategy(bufhead);
iowai t (bufhead) ;
if (bufhead->b_flags&. B_ERROR) {

}

errno = V_BADREAD;
suword (&'«struct io_arg *)argsptr)->retval,errno);
brelse(bufhead);
return;

if (copyout (bufhead->b_un. b_addr, args->memaddr,
sizeof(struct pdsector» l= 0) {

u.u_error = EFAULT;
errno = V_BADREAD;
suword (&'«struct io_arg *)argsptr)->retval,errno);
brelse(bufhead);
return;

}

brelse(bufhead) ;
break;

Figure E-20 doc_ioctl Entry Point Routine (part 7 of 13)

Sample Block Driver E - 69

doc_ioctl Driver Entry Point Routine

1665
1666
1667
1668
1669
1670

*
*
*
*
*

Set up the controller with supplied pdsect values.
° Used to set up the parameters for a disk that has yet
to be formatted and has no physical descriptor sector.
Note that if the supplied pdsector is not valid, the
current pdsector is copied in it's place and returned;
nothing is initialized.

1672 case V_PDSETUP: {
1673 struct pdsector pdtest;

1674 DTRACE{IJ dqc_ioctl: PDSETUP\n tl
);

1675 if (copyin(argsptr, args, sizeof(struct io_arg» 1= 0) {
1676 u.u_error = EFAULT;
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692

1693
1694
1695

1697
1698

*
*

return;
}

if (copyin(args->memaddr, &pdtest, sizeof(struct pdsector»!=O){
uou_error = EFAULT;

}

errno = V_BADWRITE;
suword (&«struct io_arg *)argsptr)->retval,errno);
return;

if (pdtestopdinfo.sanity != VALID_PO) {

}

if (copyout(pd, args->memaddr, sizeof(struct pdsector»!=O) {
u.u_error = EFAULT;
errno = V_BADREAD;
suword {&«struct

O

io_arg *)argsptr)->retval,errno);
}

return;

The pdsect for floppy disks is hard-wired into the driver
It's not necessary to be able to change it

if (doc_type[unit] -- OT_FLOPPY)
return;

Figure E - 20 doc_iocd Entry Point Routine (part 8 of 13)

E-70 BCI Driver Development Guide

1700
1701

*
*

1702 *
1703
1704
1705
1706
1707

*
*
*
*

doc_ioctl Driver Entr'j' Point Routine

Modify the drivers copy of the pdsect and then tell the
controller about the new parameters.

The values coming in for tracks/cyl and sectors/track
will be wrong if this is an attempt to set up "generic"
values. If so, adjust the. values and recalculate the rest
of the pdsect fields.

1708 doc_pdsect[unit] = pdtest;
1709 DPRINT(" doc_ioctl PDSETUP: logicalst==%d

errlogst==%d defectst==%d\n",
1710 doc_pdsect[unit].pdinfo.logicalst,
1711 doc_pdsect[unit].pdinfo.errlogst,
1712 doc_pdsect[unit].pdinfo.defectst);

1713 /* do "initialize drive"conunand, polling for completion */
1714 DPRINT(" doc_ioctl PDSETUP: 'init drive' on %d\n",unit);
1715 /* error if go-flag says controller is busy *1
1716 if (doc_gocheck(contr(unit») {
1717 cmn_err(CE_WARN,
1718 "doc_ioctl: error: go-flag not clear in PDSETUP\n");
1719 cmn_err(CE_WARN,
1720 "doc_ioctl: aborting request\n");
1721 return;

} 1722
1723 DOC_COMMAND(contr(unit» = CMD HDIO

1724 #ifdef DRIVETMP

CMD_INITDR;

1725 if (subdev(unit)==3) DOC_DRIVENO(contr(unit» = 1
1726 else DOC_DRIVENO(contr(unit» = subdev(unit);
1727 #else
1728 DOC_DRIVENO(contr(unit» = subdev(unit);
1729 #endif

Figure E-20 doc_ioctl Entry Point Routine (part 9 of /3)

Sample Block Driver E-71

doc_ioctl Driver Entry Point Routine

1730 DOC_NHEADS(contr(unit»=(u_char)(doc_pdsect[unit].pdinfo.tracks);
1731 DOC_MAXCYL(contr(unit»=(u_short)(doc_pdsect[unit].pdinfo.cyls-1);
1732 DOC_NSECTRK(contr(unit»=(u_char)(doc_pdsect[unit].pdinfo.sectors);
1733 DOC_NBYTSEC(contr.(unit»=(u_short) (doc_pdsect[unitJ .pdinfo.bytes);
1734 DOC_GOFLAG(contr(unit» = GO_START;
1735 if(doc_gocheck(contr(unit») {
1736 cmn_err(CE_WARN,
1737 "doc_ioctl: goflag not clear after

init drive in PDSETUP\n");
1738 return;
1739 }
1740 if(DOC_ERRCODE(contr(unit» 1= ERR_NOERROR) {
1741 cmn_err(CE_WARN,
1742 "doc_ioctl: PDSETUP reinit drive

failed errcode==Ox%x\n",
1743 DOC_ERRCODE(contr(unit»);
1744 return;
1745 }
1746 break;
1747 }
1748 1*
1"749 * write the 'supplied Physical Descriptor ,sector on to disk.

1751 case V_PDWRITE:
1752 DTRACE(" doc_ ioctl PDWRITE\n");
1753 if (copyin(argsptr, arqs, sizeof(struct io_arq» (= 0) {
1754 u.u_error = EFAULT;
1755 return;
1756 }
1757 if (doc_type[unit] == DT_HARD) {
1758 bufhead = qeteblk();
1759 doc_setblk (bufhead, B_WRITE, IDPDBLKNO, dev);
1760 }
1761 else if (doc_type[unit] == DT_FLOPPY) {
1762 bufhead = qeteblk();
1763 doc_setblk (bufhe'ad, B_WRITE, IFPDBLKNO, dev);
1764 }

Figure E - 20 doc_ioctl Entry Point Routine (part 10 of 13)

, E-72 ~CI Driver Development Guide

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784

1785
1786 *

else break;'
bufhead->b_bcount = 512;

doc_ioctl Driver Entry Point Routine

if (copyin (args->memaddr, bufhead->b_un.b_addr,
sizeof(struct pdsector» != 0) {

u.u_error = EFAULT;
errno = V_BADWRITE;
suword(&'«struct io_arg *)argsptr)->retval, errno);
brelse(bufhead);
return;

}

doc_strategy(bufhead);
iowait(bufhead);
if (bufhead->b_flags &. B_ERROR) {

errno = V_BADWRITE;
suword(&'«struct io_arg *)argsptr)->retval, errno)j
brelse(bufhead);
return;

}

brelse(bufhead);
break;

Return sector size for current disk

1788 case V_GETSSZ:
1789 DTRACE(n doc_ ioctl GETSZ\nn);
17-90 if (copyin(argsptr, args, sizeof(struct io~arg» 1= 0) {
1791 u.u_error = EFAULT;
1792 return;
1793 }
1794 suword(args->memaddr, pd->pdinfo.bytes);
1795 break;

Figure E-20 doc_ioctl Entry Point Routine (part 11 of 13)

Sample Block Driver E -73

doc_ioctl Driver Entry Point Routine

1796 /*
1797 *
1798 *
1799 *
1800 *
1801 *
1802 */

1803
1804

1805

1806
1807

1808
1809
1810

Return sizes of interblock gaps and unformatted tracks
and sectors.

Used to determine what sectors to mark bad while
setting up bad block tables.
Uses formatarg data structure' (defined
in "sys/vtoc.h") to pass parameters.

case V_GETFORMAT: {
struct trck_fmt formatarg, *formatargs;

DTRACE(II doc_ ioctl GETFORMAT'n");

formatargs = &formatarg;
if (copyin(argsptr, formatargs,

sizeof(struct trckjfmt» 1= 0) {
u.u_error = EFAULT;
return;

}

Figure E-20 doc_ioctl Entry Point Routine (part 12 q/13)

E-74 BCI Driver Development Guide

1812
1813
1814
1815
1816
1817

*
*
*
*
*
*

1818 *1

doc_ioctl Driver Entry Point Routine

These parameters should be made less generic and determined
according to device used

These settings attempt to guarantee that any defect on the
track will be caught, causing the entire track to be remapped.
This is done because the ~ctual format used by the controller
is unknown. Besides, .it is most straightforward.

1819 1* number of bytes in an unformatted ST506 track (I think) *1

1820

1821
1822
1823
1824

1825

1826
1827
1828
1829
1830

1831
1832
1833
1834

1835
1836

#define RAWBPT 10416

}

}

formatargs->bot_gap = 0;
formatargs->eot_gap = 0;
formatargs->sector_sz = RAWBPT/(pd->pdinfo,sectors);
formatargs->track_sz = RAWBPT;

if (copyout(formatargs, argsptr,
sizeof(struct trck_fmt»!=O) {

u.u_error = EFAULT;
return;

}

break;

default:

}

u.u_error
break;

EIO;

DTRACE(" doc_ioctl: return\.n");

Figure E-20 doc_ioctl Entry Point Routine (part 13 of 13)

Sample Block Driver E-7S

GL: Glossary

Contents

Introduction GL-l
Terms and Definitions GL-2

Glossary GL-i

Glossary

Introduction

This glOSSaIy is an alphabetical listing of tenns and their definitions. The purpose of the glossary is
to define specific system names, programming tenns, and driver concepts for device driver writers.

In this glossary, notations are used for some entries to descri.b~ the location of the entry.

For structures, the definition gives the structure name followed by the header file in which the
structure is defined. For example, ccblock(D4X) structure location is denoted in the glossary
definition as: ''Location: tty.h".

For flags, the definition gives the flag name followed by the associated structure and header file -in
which it is defined. For example, CARR_ON is a flag or value that is assigned to the structure
member tty and its-location is denoted in the glossary definition as:
''Location: t_static-tty-tty.h".

Any references to header files are found in the /usr/include/sys directory. All references to source
code are found in the /usr/srcluts/ computer (source code requires a special licensing agreement from
AT&T). Consult the directory appropriate to the type of processor you are using.

NOTE: Source files have special reserve suffixes to denote the programming language in which the
driver code is written. The.c denotes a file written in the C programming language. The.s
denotes a file written in assembler language.

Glossary GL-l

Term s and Definitions

ACP See Adjunct Communications Processor

ACU See automatic calling unit

Adjunct Data Processor
An a.djunct data processing element that is housed in the ABUS cabinet and is plugged directly into
the ABUS physical interface. The ADP containing a BIe, a WE@ 32100 chip set running at 14
MHz, one SCSI port, and four megabytes of random access memory. The ADP provides
computational and file service. See also Enhanced 1\djunct Data Processor (EADP), Adjunct
Communications Processor (ACP), and MP.

Adjunct Communications Processor (ACP)
- An adjunct processing element that provides tenninal support, networking connectivity,
computational power, and printer interfaces for 3134000 computer configurations. Unlike other
adjuncts, the ACP is housed in a separate cabinet and connected to the appropriate ABUS slot by an
XBI circuit. board and XBUS cable.

ADP See Adjunct Communications Processor

AlC See alarm interface unit

alarm interface unit (AlC)
A UN-type circuit board that provides a series of alarm indications and the ability to access the
computer from either the system console or a remote terminal. The AIC provides the following:
external signaling of five alarm types, a sanity timer, non-volatile random access memory, a control
and status register, and two R~232C ports for the remote control feature.

alignment
The position in memory of a unit of data such as a word or half-word on an integral boundary. A
data unit is properly aligned if its address is completely divisible by the data unit's size in characters.
For example, a word is correctly aligned if its address is divisible by four. A half-word is aligned if
its address is divisible by two.

GL-2 BCI Driver Development Guide.

allocated resource
A private map structure after memory has been allocated using the malloc command.

asm macro
The macro that defines a number of system functions used to improve driver execution speed. They
aie assembler language code sections (instead of C code). Location: inline. h.

asynchronous
An event occurring in an unpredictable fashion. A signal is an example of an asynchronous event.
A signal can occur when something in the system fails, but it is not known when the failure will
occur. This term is sometimes defined to be the interrupt level of driver.

automatic calling unit (ACU)
A device that permits processors to dial calls automatically over the communications network.

av_back
The buf(D4X) structure member that links the buffer to a free list. When no 110 transfer is
currently scheduled, buf structures are linked together on an available list through the av _forw and
av _back pointers. When a buf structure is needed for an 110 transfer, the first buf structure is
taken from the available tist. If no buf structures are available, the process needing a b,,"~
structure calls sleep, using the address of the head of the available list (bfreelist) as the event
argument to sleep. Location: buf-buJ.h

av_forw
The buf(D4X) structure member that links the buffer to a free list. When no 110 transfer is
currently scheduled, a buf structure on the active 110 queue uses the av _forw pointer to maintain its
place in the queue. The buf structures where no 110 transfer is currently scheduled are linked
together on an available list via the av _forw and av _back pointers. When a buf structure is needed
for an 110 transfer, the first buf structure is taken from the available list. If no buf structures are
available, the process needing a buf structure calls sleep, using the address of the head of the list of
available buffers (bfreelist). Location: buf-buf.h

awaken
The command that restarts a suspended process. Related commands are untimeout(D3X) and
wakeup(D3X) .

b_addr
The buf(D4X) structure member that contains the buffer's virtual address. Location: buf-buJ.h

Glossary GL-3

b_bcount
The buf(D4X) structure member that specifies the number of characters (bytes) to be transferred.
Location: buf-buJ.h

b_blkno
The buf(D4X) structure member that identifies which logical block on the device (defined by the
'minor device number) is to be accessed. Location: buf-buJ.h

B_BUSY
The flag that indicates a buffer is in use. Location: b_flags--buf-buJ.h

b_dev
The buf(D4X) structure member contains the major and minor device numbers of the device being
accessed. Location: buf-buj.h

B_DONE
The flag that indicates the transfer has completed. Location: b_flags--buf-buf.h .

b __ error
The buf(D4X) structure member that holds the error code aSsigned by the kernel to the u_error
member of the user data structure. This member is set with the B_ERROR flag. Location: buf-
buf·h .

B_ERROR
The flag that indicates an error occurred during an I/O transfer. Location: b_flagS--buf-buj.h

b_flags
The buf(D4X) structure member that stores the status of the buffer and tells the driver whether the
device is to be read from or written to. Location: buf-buf.h

B_PHYS
The flag that indicates the buffer is being used for physical (direct) I/O to a user data area. The
b_UD field contains the starting address for the user data. Location: b_flagS--buf-buf.h

b_proc
The buf(D4X) structure member that contains the process table entry address for the process that is
requesting a data transfer (when the transfer is unbuffered). This member is set to 0 (zero) when the

GL-4 BCI Driver Development Guide

transfer is buffered. The process table entry performs proper virtual to physical address translation of
the b_UD member. Location: buf-buj.h

B_READ
The flag that indicates data is to be read from a peripheral device into main memory. Location:
b_flags-buf-buJ.h

b_resid
The buf(D4X) structure member that indicates the number of characters (bytes) not transferred
because of an error. Location: buf-buJ.h

b_start
Thebuf(D4X) structure member that holds the start time of the I/O operation. This member
measures d~vice response time. The system constant lbolt initiates this member. Location: buf-

. buJ.h

b_un~b_addr

The buf(D4X) structure member that contains the virtual address of the buffer controlled by the
buffer header. Data is written from this address to the device, or read to the address from the device.
Location: buf-buj.h .

B_WANTED
The flag that indicates the buffer is sought for allocation. Location: b_flags-buf-buJ.h

B_WRITE
The flag that indicates the data is to be transferred from main memory to the peripheral device (the
pseudo flag that occupies the same bit location as B_READ). This value does not exist, it can only
be tested as the "not" state of B_READ. Location: b_flags-buf-buJ.h

badrtcnt
The hdedata(D4X) structure member that indicates the number of unreadable tries made to a hard
disk. Location: hdelog.h

base address
The address where a buffer is declared in memory. 'This can be a private map structure, or system
buffers such as the user structure. In the latter case, the u.u_base member points to the base
address of the user buffer.

Glossary GL-S

base level
The code that synchronously interacts with a user program. The driver's initialization and switch
table entry point routines constitute the base level. It is one of two logical parts of a driver. See also
interrupt level.

Bel See block and character interface

bcopy(D3X)
The function that copies data between kernel addresses. This routine should never be used to copy
data to or from an address in user space. Location: mllmisc.s

bdevsw(D4X)
The block driver switch table that is constructed during automatic configuration and exists only in
mem9ry or in the /unix file (the structure is defined in con/.h) ..

bfreelist .
The structure that points to a list of available (free) buf structures. The bfreelist address is
used by processes accessing block devices as the event argument to sleep(D3X) when no free buf
structures are available.

BIC See bus interface circuit

blkaddr
The hdeda ta(D4X) structure member that is a physical block adcttess of a hard disk error in
machine-dependent form. Location: hdelog.h

block
The basic unit of data for I/O access. A block is measured in bytes. The size of a block differs
between computers, file system sizes, or devices.

block and character interface
A collection of driver routines, kernel functions, and data structures that provide a standard interface
for writing UNIX System V, Release 3 block and character drivers.

block data transfer
The method of transferring data in units (blocks) between a block device such as a magnetic tape
drive or disk drive and a user program.

GL-6 Bel Driver Development Guide

block device
A device, such as a magnetic tape drive or disk drive that conveys data in blocks through the buffer
management code (for example, the buf structure). See also character device.

block device switch table
The table constructed during automatic configuration that contains the address of each block driver
base-level routine (open(D2X), c1ose(D2X), strategy(D2X), and print(D2X». This table is called
bdevsw and its structure is defined in con/.h.

block driver
A driver for a device, such as a magnetic tape device or disk drive, that conveys data in blocks
through the buffer management code (for example, the buf structure). One driver is written for
each major number employed by block devices. On most systems, there are generally few block
drivers.

block 110
A data transfer method used by drivers for block access devices. Block I/O uses the system buffer
cache as an intennediate data storage area between user memory and the device .

boot
The process of starting the operating system. The boot process consists of self-configuration and
system initialization.

boot device
The bOot device stores the boot code and necessary file systems to start the operating system.

bootable object tile
A file that is created and used to build a new version of the operating system.

bootstrap
The process of bringing up the operating system by its own action. The first few instructions load the
rest of the operating system into the computer.

brelse(D3X)
The function that releases unneeded buffers for block driver use. Location: oslbio.c

btoc(D3X)
The macro that converts bytes to clicks (pages). Location: sysmacros.h

Glossary GL-7

buf(D4X)
The structure that provides buffering for block driver data transfers. Location: buf.h

buf.h
The header file that defines the buf structure. Location: buf.h

butTer
A staging area for input-output (I/O) processes where arbitrary-length transactions are collected into
convenient units for system operations. A buffer consists of two parts: a memory array that contains
data from the disk and a buffer header that identifies the buffer.

butTer_address
The D_FILE(D4X) structure member that contains the buffer address, which is set to (zero) before
an open is called. Location: system.h

butTer_size
The D_FILE(D4X) structure member that sets the buffer size to NULL. Location: system.h

bus. interface circuit (BIC)
A hardware interface between a bus and a processor. The BIC handles the sending·and receiving of
packets and distributed bus arbitration on the ABUS. A parallel interface connects each BIC to its
processor.

BUSY
The flag that indicates output is in progress. Location: t_state--t ty-tty.h

bzero(D3X)
The function that fills a buffer with zeros (clearing it) so that the buffer can be used for another
purpose. Location: mllmisc.s

c_cc
The clist structure member that contains the number of characters in a clist. Location:
clist-tty.h. Also, the termio structure member that contains the control characters contained
in the termio structure. Location: termio-termio.h

c_cf
The clist(D4X) structure member that points to the first cblock. Location: clist-tty.h

GL- 8 BCI Driver Development Guide

c_cflag
The termio structure member that describes the terminal hardware control modes. c_cflag is
represented in the tty structure by the t_cflag member. See also termio(7). Location: termio
termio.h

c_cl
The clist(D4X) structure member that points to the last cblock. Location: clist-tty.h

c_count
The ccblock(D4X) structure member that is initialized to the size of the cblock character array.
This member is decreased by the number of characters in the cblock character buffer. The
difference between c_count and c_size is used to indicate the number of characters in the buffer.
Location: ccblock-tty.h

c_data
The cblock structure member that contains the data in the cblock. The maximum number of
data characters in a cblock is defined l?y the CLSIZE constant. Location: cblock-tty.h

c_tirst
The clist(D4f() structure member that indexes the first character in the c_data array of a
cblock. Location: clist-tty.h .

c~flag
The chead(D4X) structure member that indicates a process is waiting for a cblock. Location:
chead-tty .h

c_iflag
The termio structure member that describes the basic terminal input control modes. c_iflag is
represented in the tty structure by the t_iflag member. See also termio(7). Location: termio
termio.h

c_Iast
The cblock(D4X) structure member that indexes to the last character in a c_data array of a
cblock. Location: cblock-tty.h

Glossary GL-9

c_Iflag
The termio structure member used by the line discipline to control terminal functions. c_lflag is
represented in the tty structure by the Clflag member. See also termio(7). Location: termio
termio.h

c_line
The termio structure member that contains the line discipline value. The t line member of the
tty structure has the same purpose and value. Valid line discipline values are: 0, 1, and 2. The
default standard value is O. 1 is for a special protocol for AT&T 630 terminals and 2 is for use with
shl(l), the sheUlayers(l) command. Location: termio-termio.h

c_next
The cblock(D4X) structure member that points to the next cblock. Location: cblock-tty.h

c_oflag
The termio structure member that specifies the system treatment of output. c_oflag is represented
in the tty structure by the t_oflag member. See also termio(7). Location: termio-termio.h

c_ptr
The ccb;tock(D4X) structure member that points to the c_data character buffer. Location:
ccblock-tty.h .

c_size
The chead(D4X) structure member that indicates the size of the cblock character buffer. The
c_count and c_size members are initialized to the size of the cblock character array
(64 characters - CLSlZE). The c_count member is then decreased by the number of characters in
the cblock character buffer. The difference between the two values indicates the number of
characters in the buffer. Location: chead-tty.h

cache
A section of computer memory where the most recently used buffers, inodes, pages, and so on are
stored for quick access. A separate controller is normally assigned to handle the cache 110 requests
to leave the main processor free for other activity.

caddr_t
The character pointer data type used for memory addresses. Location: types.h

canon(D3X)
The function that transfers characters from t_rawq to t_canq. Location: tty.e

GL-IO .. ~~ .. BCI Driver Development Guide

canonical processing
Tenninal character processing in which the erase character, delete, and other commands are applied
to the data received from a tenninal before the data is sent to a receiving program. This type of
processing can be thought of as "what the user really meant" when the data was keyed in at the
terminal. Other tenns used in this context are canonical queue, which is a buffer used to retain
information while it is being canonically processed, and canonical mode, which is the state where
canonical processing takes place. See also raw mode.

carrier
The continuous signal intennixed with another signal. The first (carrier) signal acts as a standard so
that the second signal can be detennined. The second signal is used for carrying data. A carrier is
used by modems to convey data across phone lines. The modem indicates to the computer that the
carrier is present by asserting the RS-232C received line signal detected signal lead to the computer.
The 3B computers recognize the carrier signal when the carrier detect lead of the RS-232C interface
is high.

CARR_ON
The flag that contains the signal software image indicating that a carrier is present for a terminaL
Location: t_state-t ty-tty.h

cblock(D4X)
The character block structure that contains a blOCk of data used when a driver is accessing data from
or to a tenninal. Location: tty.h

ccblock(D4X)
The character control block structure that is used as a temporary buffer for characters not iIi a queue.
Location: tty.h

cdevsw(D4X)
The character driver switch table is constructed during automatic configuration and exists in memory
and in the lunix file. Location: conf.h.

CE_CONT
The flag indicates that the message being passed to the cmn_err function should be displayed without
a label such as. NanCE, PANIC, or WARNING. This display form appends the last message sent
or displays an informative message not associated with an error. Location: cmn_err.h

Glossary GL-ll

CE_NOTE
The flag indicates that the message being passed to the emn_err function should be displayed
prefaced with "NanCE:". Location: cmn_err.h

CE_PANIC
The flag indicates that the message being passed to the emn_err function should be displayed
prefaced with "PANIC:". Specifying CE_PANIC with CDlD_err causes the computer to begin a
panic. If a secondary panic state occurs while a panic message is being processed, the message is
prefaced with "DOUBLE PANIC:". "Location: cmn_err.h

CE_WARN
The flag indicates that the message being passed to the COlD_err function should be displayed
prefa~ed with "WARNING:". Location: cmn_err.h "

cf re e1 i s t(D4X)
The structure that contains a list of the free cb1ocks. cfreelist is declared to be a structure
the same as chead. Location: tty.h

character device
The device, such as a terminal or printer ~at conveys data character by character." Si!e also block
device.

character driver
The driver that conveys data character by character between the device and the user program.
Character drivers usually written for with terminals, printers, and network devices, although block
devices such as tapes and disks also support character-access.

character I/O
The process of reading and writing to/from a temrinal.

chead(D4X)
The structure indicates the start of the cfreelist. Location: tty.h

child process
When a process executes a fork(2) system call to create a new process, the new process is called a
child process.

GL-12 BCI Driver Development Guide

CLESC
The flag that indicates the last character processed was an escape character. Location: Lstate
tty-tty.h

clist(D4X)
The structure that contains pointers to the first and last cblocks. A clist is used as a way of
storing small quantities of data when a driver is moving data between a device controller and a
terminal. Location: tty.h

c1ose(D2X)
The base level routine that is used to end access to an open device. This routine is called only at the
end of a device cycle and only if no other processes have the device open. The close routine
examines the file table to ensure that the device is not being accessed, and then reinitializes the driver
data structures and the device itself.

c1ose(2)
The system call that releases a file descriptor when its use is no longer required.

c1rbuf(D3X)
The function that is used by a-block driver for zeroing a buffer in the buf structure. Location:
-os/bio.c -

CLSIZE
The constant that specifies the number of data characters in a cblock is set by the CLSlZE
constant. The current value for CLSlZE is 64. A single cblock can contain up to 64 characters.
Location: tty.h

cIDD_err(D3X)
The function that displays a message on the system console and stores the message in putbuf, or for
causing the computer to panic. Location: os/prj.c

cmn_err.h
The header file that contains the four cmn_err severity-level definitions. These definitions define
whether a message to be displayed on the system console does or does not cause a panic on the
system. Location: cmn_err.h

common synchronous interface (CSI)
A set of functions designed to be used in drivers for virtual protocol machine (VPM) devices.

Glossary GL-13

conf·h
The header file that contains the structure of the block device switch table (bdevsw), the character
device switch table (cdevsw), and the line discipline switch table (linesw). Location: conf.h

control and status register (CSR)
Memory locations providing communication between the device and the driver. The driver sends
control infonnation to the to the CSR, and the device reports its current status to it.

controller
The circuit board that connects a device such as a terminal or disk drive to a computer. A controller
converts software commands from a driver into hardware commands that the device understands.
For example, on a disk drive, the controller accepts a request to read a file and converts the request
into hardware commands to have the reading apparatus move to the precise location and send the
information until a delimiter is reached.

copyin(D3X)
'The function that copies data from a user program to a driver buffer. Location: mllmisc.s

copyout(D3X)
The function that copies data from a driver to user"program space. Location: mllmisc.s

crasb(lM)
A command that is used to analyze the core image.

CRe See cyclic redundancy check

critical code
A section of code is critical if execution of arbitrary interrupt handlers could result in consistency
problems. The kernel raises the processor execution level to prevent interrupts during a critical code
section.

CSI See common synchronous interface

CSR See control status register

ctob(D3X)
The macro that converts the clicks (pages) to bytes. Location: sysmacros.h

GL- 14 B~I Driver Development Guide

cyclic redundancy check (CRC)
A way to check the transfer of information over a channel. Binary code is sent over a channel in
lengths. Each piece of code is divided by a fixed divisor. The result is added to the end of the
message. When the message is received, the computer calculates the remainder and checks it against
the transmitted remainder.

data structure
The memory storage area that holds dissimilar data types such as integers and strings. The data
structures associated with drivers are used as buffers for holding data being moved between user data
space and the device, as flags for indicating error device status, as pointers to link buffers together,
and so on.

data terminal ready (DTR)
The signal that a tenninal device sends to a host computer to indicate that a terminal is ready to
recei ve data.

debug monitor (DEMON)
A low-level utility for verifying hardware and debugging software or firmware .

. delay (D3 X)"
A function that is used by a block or character driver to delay the execution of a process for a
specified time interval. Location: os/clock.c

demand paging
The implementation of demand paging allows processes to execute even though their entire virtual
address space is not loaded in memory; so the virtual size of a process can exceed the amount of

. physical memory available in a system. .

DEMON See debug monitor

device number
The value used by the operating system to designate a device. The device number contains the major
number and the minor number. If it is denoted as internal, than the dev:ice number is logical and is
known only to the kernel. External device numbers are half system-derived (the major number) and
half created by the driver developer (the minor number).

dev_t
The C programming language data type declaration that is used to store the driver major and the
minor device numbers. The data declaration is of the integer type short. Location: types.h

Glossary GL-15

diagnostic
A software routine for testing, identifying, and isolating a hardware error. A message is generated to
notify the tester of the results.

direct memory access controller (DMAC)
The WE321041WE32204 chips that handle the access of data to and from memory, bypassing the
CPU.

diskdev
The hdeda ta(D4X) structure member that contains the major/minor disk device number for the
hard disk error. Location: hdelog.h

diskette.h
The header file for the 3B2 computer that contains structures and symbolic constants for floppy
diskette acc'ess on the 3B2 computer. Location: diskette.h

dma_breakup(D3X)
The function that breaks up physio requests into manageable data blocks .. Location: physdsk.c

DMAC See direct memory access controller

driver
The set of routines and data structures installed in the kernel that provide an interface between the
kernel and a device. A driver provides all of the necessary programming so an interfaced device
appears as a file to the rest of the UNIX operating system.

driver entry points
Driver routines that are activated during system initialization.

driver initialization
System initialization uses only the appropriate routines from the driver code and the infonnation
from the master file to initialize the drivers. Information such as the major/minor numbers that is so
important when accessing driver switch table entry points is irrelevant when initializing a driver.

driver prefix
The unique two, three, or four digit prefix that is assigned in the driver master file and used as a
prefix for driver routines.

GL-16 Bel Driver Development Guide

driver routines
System structures and kernel functions used by the driver.

drv _rtile(D3 X)
The 3B15 and 3B4000 computer function that reads a driver file. Location: os/ sys3. c

drvinstall(1M)
The command that assigns the sequential major numbers file to the appropriate field in the master
file.

dskserno
The hdeda ta(D4X) structure member that contains the disk pack serial number of the disk where
the error is logged. Location: hdelog.h

DTR See data terminal ready

DUART dual universal asynchronous receiver transmitter. See universal asynchronous receiver
transmitter

EADP See Enhanced Adjunct Data Processor

ECC See error correction code

EDT See equipped device table

EFAULT
The error message value that indicates a bad address. See also intro(2). Location: errno.h

EINTR
The error message value that indicates an interrupted system call. See also intro(2) in the Bel Driver
Reference Manual. Location: errno.h

ElNVAL
The error message value that indicates an invalid argument. See also intro(2). Location: errno.h

Glossary GL-17

EIO See error in input/output

ELB See extended local bus

ELBU See extended local bus unit

Enhanced Adjunct Data Processor (EADP)
An adjunct processing element supporting two SmaIl Computer System Interfaces (SCSI) (to two
SCSI buses), eight or sixteen megabytes of memory, and a. local BIC. Two EADPs may share a
common peripheral.

enhanced ports (EPORTS)
EPORTS provides eight 8-pin modular jacks for serial RS-232C interface. EPORTS also includes
software that must be installed before the hardware can be recognized by the system. The software
contains diagnostic programs, enhanced ports driver, simple administration menus, and support files.

ENODEV
The error message value that indicates that there is no such device. See also intro(2) in the Bel
Driver Reference Manual. Location: errno.h

EPERM
The error that indicates an attempt to modify a file forbidden except to its owner or superuser. It
also returns for attempts by ordinary users to do things allowed only by the superuser. See also
intro(2) in the Bel Driver Reference Manual. Location: errno.h

EQD_EFC
The error that indicates a device error for an external floppy controller. For further information, see
the bdeeqd(D3X) function.

EQD_EHDC
The error that indicates a device error for an external hard disk controller. For further information,
see the hdeeqd function.

EQD_ID
The error that indicates a device error for an integral disk drive. For further information, see the
hdeeqd function.

GL-18 BCI Driver Development Guide

EOD_IF
The error that indicates a device error for an integral floppy drive. For further information, see the
bdeeqd function.

EOD_TAPE
The error that indicates a device error for a cartridge tape device. For further information, see the
bdeeqd function.

equipped device table (EDT)
A list generated by the computer at boot time with an entry for each attached peripheral device. This
list ,allows the computer to know what devices are active. See the Bel Driver Development Guide,
Appendix A, The Equipped Device Table (EDT) for instructions on adding devices.

error correction code (ECC)
A generic term applied to coding schemes that allow for the correction of errors in one or more bits
of a word of data. The error-correcting circuitry on an EADPf ADP provides single bit error
detection and correction, an multiple bit error detection for RAM.

error in input/output (EIOj'
An error that may occur on a call following the one to which it actually applied. This is a physical .
I/O error. See also intro(2). Location: errno.h

I etc!master.d
A directory that contains driver information files. The information supplies driver definitions and
parameters used when a computer is configured. A master file is an individual file in this directory
associated with a driver. Information in the master file is only used if there is a corresponding
boatable object file in the I boot directory.

I etc! system
A file that contains statements indicating whether a driver should De included or excluded during
configuration.

extended IQcal bus (ELB)
An extension to the local bus providing additional I/O slots.

extended local bus unit (ELBU)
A 3B4000 computer Master Processor or 3B15 computer card cage for UN-type circuit boards that
provides local bus I/O slots in addition to those in the basic control unit and the growth control unit.

Glossary GL-19

external major numbers
External major numbers for software devices are static and are assigned sequentially to the
appropriate field in the master file by the drvinstall(lM) command; external major numbers for
hardware drivers correspond to the board slot and are dynamically assigned by the Iboot process as
system boot time.

external minor number
Part of the name of the device file usually corresponds to the unit number of the device to be
accessed via the file, or specifically, the minor number.

EXTPROC
The flag that indicates a peripheral is performing semantic processing of data. Semantic processing
entails input validation of the characters received from a character device. Location; t_state
tty-tty.h

FAPPEND
The flag that indicates a file is open. This value is passed to the driver open(D2X) routine by the
kernel. Location: file.h

FCREAT
The constant that opens a new file, This value is passed to the driver open routine by the kernel.
Location: file.h

FEXCL
The constant that causes an open(D2X) to fail if a file already exists if used with FCREA T. This·
value is passed to the driver open routine by the kernel. Location: file.h

file.h
The header file that contains definitions used for opening and accessing a file. Location:file.h

file_name
The D_FILE(D4X) structure member that contains the name of the file to be accessed. Location:
syste~.h

file service
The use of an EADPI ADP and MP for file system storage and manipulation.

GL-20 BCI Driver Development Guide

firmware
Computer circuitry, such as silicon chips, that contains commands that can be read, but not deleted.
Firmware, also known as read-only memory (ROM), generally contains commands that are used to
boot the operating system.

firmware.h
The header file that contains pointers to a computer's firmware. Some of these pointers include
random access memory start addresses, structures for system generation, booting, error handling, and
for sending pumpcode to an intelligent controller. Location: firmware.h

FNDELA Y(D2X)
The constant that indicates non-blocking I/O permission has been granted to a user program for file
access. This value is passed to the driver open(D2X) routine by the kernel. Location: file.h

FREAD(D2X)
The constant that indicates read permission has been granted to a user program for file access. This
value is passed to the driver open(D2X) routine by the kernel. Location: file.h

FSYNC(D2X)
The constant that indicates synchronous write permission is granted to a user program for file access.
This value is passed to the driver open(D2X) routine by the kernel. Location: file.h

FTRUNC(D2X)
The constant that opens an existing file and truncates its length to zero. This value is passed to the
driver open routine by the kernel. Location: file.h

fubyte(D3X)
The function that copies a character (byte) from user program space to a driver. This is an obsolete
function. Location: mllmisc.s

fuword(D3X)
The function that copies a word of data from user program space to a driver. This is an obsolete
function. Location: mllmisc.s

Glossary GL-21

FWRITE
The constant that indicates write pennission has been granted to a user program for file access. This
value is passed to the driver open(D2X) routine by the kernel. Location: file.h

getc(D3X)
The function that gets a character from a clist. Location: iolciist.c

getcb(D3X)
The function that gets the first cblock on a clist. Location: iolciist.c

getcf(D3X)
The function that gets a free cblock. Location: iolciist.c

geteblk(D3X)
The function that gets an empty block. Location: oslbio.c

getmajor(lM)
The command that returns the major number for the specified device.

getsrama(D3X)
The function that gets the starting address of the segme~t descriptor table (SDT). It is used on the
3BtS computer and the 3B4000 MP to access the proper memory management unit (MMU) when
doing direct memory access (DMA). Location: immu.h

getsramb(D3X)
The function that gets the length of segment descriptor table (SDT). It is used on the 3B15 computer
and the 3B4000 MP to access the proper memory management unit (MMU) when doing direct
memory access (DMA). Location: immu.h

getvec(D3X)
The function for the 3B2 computer that gets an interrupt vector given a virtual board address.
Location: oSlmachdep.c

header tile
A file that ties declarations together for a set of programs. It guarantees all source files are supplied
with the same definitions and declarations.

GL-22 Bel Driver Development Guide

hdeeqd(D3X)
The function that initiates hard disk error logging. Location: iol hde. c

hdelog(D3X)
The function that logs hard disk errors to a table in the kernel and to the console. Location: iolhde.c

high water mark
The point at which data being processed in the output clists is transmitted to the terminal.

IASLP
The flag that indicates the processes associated with the device should be awakened when input
completes. Location: Cstate-tty-tty.h

IDFC See integral disk file controller

IDUART integral dual universal asynchronous receiver transmitter. See universal asynchronous
receiver transmitter .

init(D2X)
The routine that initializes a device. init is called by the operating system when the computer is
started.

initialization entry points
. Driver initialization routines that are executed during system initialization. See also init and start.

input/output accelerator (lOA)
A UN-type circuit board that directs peripheral controllers to interlace with the 3B15 computer or
3B4000 Master Processor local bus and main memory.

int(D2X)
The routine processes a device interrupt. The driver interrupt handler is entered when a hardware
interrupt is received from a driver-controlled device.

Glossary GL-23

integral disk tile controller (IDFC)
A UN-type circuit board that interfaces to a storage module device controller (SMDC), which
interfaces FSD disk drives to the 3B4000 Master Processor or the 3B15 computer. The IDFC resides
in an I/O slot on the primary local bus.

interface
The routines, data structures, command arguments, major and minor numbers, and master and
system files used to develop a driver.

internal major numbers
An index into the switch tables. Internal major numbers are assigned by the self-configuration
process when the drivers are loaded, and probably change every time the system is booted.

internal minor numbers
The internal minor number is assigned by the driver writer (although there are conventions enforced
for some types of devices by some utilities), and usually refers to subdevices of the device.

interprocess communication (IPC)
A set of facilities supported through softWare that enables independent processes, running at the same
time, to exchange information tJ:rrough messages, semaphores, or shared memory.

interrupt entry points
Driver interrupt routines that are activated when an interrupt is received from a hardware device.
The system accesses the interrupt vector table, determines the major number of the device, and passes

. control to the appropriate interrupt routine.

interrupt priority level (IPL)
The interrupt priority level (1 to 15) at which the device requests that the CPU call an interrupt
process. This priority can be overridden in the driver's int routine for critical sections of code with

. the spln(D3X) function.

interrupt vector
Interrupts from a device are sent to the device's interrupt vector, activating the interrupt entry point
for the device.

lOA See input/output accelerator

GL-24 BCI Driver Development Guide .

ioctl(D2X)
The character driver base level routine that conveys hardware or software control information to a
character device.

iodone(D3X)
The function used by a block driver for resuming the execution of a process after a block va request
has completed. Location: os/bio.c

iomove(D3X)
A function used for copying data. The routine decides whether the source and target addresses are
within kernel or user program space and calls bcopy(D3X), copyin(D3X), or copyout(D3X)
accordingly. This is an obsolete function. Location: os/move.c

-
iowait(D3X)
The function used by a block driver fot suspending execution of a process until a request for input or
output completes. Location: os/bio.c

IPC See interprocess communication

IPL See interrupt priority level

ISOPEN
The flag that indicates a device is open. Location: t_state-tty-tty.h

ivec See interrupt vector

kernel buffer cache
A linked list of buffers used to minimize the number of times a block-type device must be accessed.

kseg(D3X)
The function that makes memory pages available for a driver's use. Location: os/mmgt.c

I_close
The linesw(D4X) structure member that invokes the ttclose(D3X) function (for line discipline

. zero) to discontinue access to a terminal. Location: linesw--conf.h

Glossary GL-2S

I_input
The linesw(D4X) structure member that invokes the ttin function (for line discipline zero) to
service an input interrupt from a terminal. Location: linesw-conf.h

Lioctl
The linesw(D4X) structure member that invokes the ttioctl(D3X) function (for line discipline
zero) to service an ioctl request for a terminal. Location: linesw-conf.h

Lmdmint
The linesw(D4X) structure member handles modem interrupts. In line discipline zero, this
member is set to nulldev and is non-functional. Location: linesw-conf.h

~l_open

The linesw(D4X) structure member that invokes the ttopen(D3X) function (for line discipline
zero) to service an open request for a terminal. Location: linesw-conf.h

I_output
The linesw(D4X) structure member that invokes the ttout(D3X) function (for line discipline zero)
to service an output interrupt for a terminal. Location: linesw-conf.h

I_read
The linesw(D4X) structure member that invokes the ttread(D3X) function (for line discipline
zero) to service a read request from a terminal. Location: linesw-conf,h

I_write
The linesw(D4X) structure member that invokes the ttwrite(D3X) function (for line discipline
zero) to service a write request to a terminal. Location: linesw-conf.h

layers(l)
The UNIX system user command that provides multiple command windows on a terminal.

LBE See local bus extender

lOOlt
The system variable of time_t type that contains the number of Hertz (HZ) clock ticks since system
boot time. It can be used to determine a precise relative time. For example, a driver can determine

GL-26 Bel Driver Development Guide

the elapsed time for an 110 operation by taking the difference between the recorded starting time
lbolt value and the completion time lbolt value.

lboot
The lboot prograIJ.l runs when the system is booted and reads the #VEC field in the driver's master
file to determine the number of interrupt vectors per controller and assigns numbers accordingly.

line discipline switch table
Line discipline interprets input and output characters between the operating system and a terminal.
The line discipline switch table, linesw(D4X), is a list of pointers to the character driver processing
kernel routines that interpret and buffer the characters received from and sent to a terminal. The
linesw structure is defined in lusrlincludelsys/conj.h. The protocols for processing and buffering
characters are referred to as a line discipline. Valid line discipline values are: 0, 1, and 2. Line
discipline 0 is the default standard value, 1 is for a special protocol for AT&T 630 terminals, and 2 is
for use with shI(l), the shelliayers(l) command. The line discipline switch table is defined in conf.h
header file. For further information, see the Bel Driver Development Guide, Chapter 7, ''Drivers in
the TTY Subsystem."

line discipline zero
See li~e discipline switch table.

linesw(D4X)
See line discipline switch table.

local bus extender (LBE)
A circuit board that provides the interface between the 3B4000 Master Processor or the 3B15
computer and the bus extension facilities. The LBE is optional, but if purchased, it must be located
in the basic control unit of the basic cabinet.

logical controller numbers
Numbers that are assigned sequentially by the central controller firmware at self-configuration time.

logmsg(D3X)
The function that logs an error message. Location: erriog.c

logstray(D3X)
The function that logs spurious (nonlocatable) errors and interrupts. Location: iolerriog.c

Glossary GL-27

longjmp(D3X)
The function that transfers program control from the current point of execution back to a previous
point quickly. Location: mllcswitch.s

low water mark
The point at which more data is requested from a terminal because the amount of data being
processed in the, character lists has fallen creating room for more.

MAJOR table
The MAJOR table maps internal major numbers to the external major number. Each table is a
character array that is 128 entries long.

major(D3X)
The macro that obtains an internal major device number from a device number. Location:
sysmacros. h -

major number,
, The number that identifies a device class. Internal major numbers are known only to the kernel and
are logical values. The bdevsw and cdevsw switch tables are referenced by the internal major
number. External'major numbers are found in two ways. If the rnajor number is associated with a
hardware device, the number is' created when the computer is automatically configured and accessed
with the getmajor(lM) command, If the major number is associated with a software driver, the
number is created by drvinstaIl(lM).

makedev(D3X)
The macro that creates an external device number from a major number and a minor number.
Location: sysmacros.h

malloc(D3X)
The function that allocates a private map structure. Location: oslmalloc.c

manufacturer's defect table (MDT) .
A disk defect table supplied by the manufacturt:?r of a given disk.

map.h
The header file that is used when declaring private map structures. The header file provides the
definition of the mapinit function. Location: map.h

GL-28 BCI Driver Development Guide

mapinit(D3X)
The macro that initializes a private space management map. Location: map.h

mapwant(D3X)
The macro that requests a free buffer for a private space management map. Location: map.h

master tile
The file that supplies infonnation to the system initialization software to describe the attributes of a
driver. This file also contains the driver prefix and device number, and whether it is a software or
hardware driver.

Master Processor (MP)
The controlling processor that interfaces with the adjuncts on the ABUS thru the XBUS connection
and a remote BIC. The MP contains a WE 32100 chip set running at 14 MHz, and 8 or 16
megabytes of random access memory. The MP is the single point of control for bootstrap, system
configuration, centralized resource service, and maintenance.

max(D3X)
The function that returns the larger of two numbers. Location: mllmisc.s

MDT See manufacturer's defect table

member
A field or element of a structure.

memory management
The memory management scheme of the UNIX operating system imposes certain restrictions on
drivers that transfer data between devices.

memory management unit (MMU)
WE 32101 and' WE 32201 chips provide support for running the paging scheme of memory
management. The chips make use of tables maintained by the kernel for performing. address
translations.

Glossary GL-29

mfree(D3X)
The function that frees a space in private memory. Location: os/malloc.c

min(D3X)
The function that returns the smaller of two numbers. Location: mllmisc.s

MINOR table
The table that maps internal minor numbers to the external major number. Each t.able is a character
array that is 128 entries long.

minor(D3X)
The macro that obtains an internal minor device number from a device number. Location:
sysmacros .h

minor device number
A number used to identify a specific device on a controller. An internal minor number is Ialown
only to the kernel and is a logical number. An external minor number is created by the driver
developer and is usually a collection of information about the device.

mknod(lM) .
The command that creates special device files or nodes that are used by the system to access the
device. .

MMU See memory management unit

modem
A contraction of modulator-demodulator. A modulator converts digital signals from the computer
into tones that can be transmitted across phone lines. A demodulator converts the tones received
from the phone lines into digital signals so that the computer can process the data.

MP See Master Processor

multiprocessor
Multiprocessor architecture contains two or more CPUs that share common memory and peripherals.
A multiprocessing computer can provide greater throughput, because processes can run concurrently
on different processors.

GL-30 BCI Driver Development Guide

NCC
The constant that indicates the maximum number of control characters defined in the t_cc member of
tty structure (in tty.h). The valid control characters are described in termio(7) and contained in the
c_cc array of the termio structure. The default value for NCC is 8. Location: termio.h

nodev(D3X)
The function that indicates that a driver \>ase-Ievel routine was omitted. nodev places the ENODEV
error message in u.u_error when nodev is called. When the cdevsw and bdevsw switch tables are
built, the kernel interrogates each driver to detennine the names of the base level routines. A
character driver normally has five base-level routines: open(D2X), c1ose(D2X), read(D2X),
write(D2X), and ioctl(D2X). A block driver normally has four base-level routines: open, close,
strategy (D2X), and print(D2X). When one of the base-level routines does not exist in the driver,
the kernel substitutes nodev in the routine's position in the switch table. Location: oslsubr.c

NULL
The constant that indicates a 0 (zero). Location: param.h

OASLP
The flag that indicates the processes associated with the device should be awakened when output
completes. Location: t_state--tty-tty.h

open(D2X)
The driver switch table entry point routine that is called by the system when a user program invokes
the open(2) instruction. The kernel then executes the driver's open routine.

open_close
The D_FILE(D4X) structure member that sets an open or close flag. Location: system.h

open.h
The header file that contains constants specifying a driver open routine. Location: open.h

oposr
The flag that indicates output characters are post-processed as indicated by the other flags in the same
structure. Location: termio.h

otyp
The argument used in the open(D2X) a routine. The possible values for otyp are described in
open.h. Location: system.h

Glossary GL-31

page descriptor (PD)
The base address of a memory page used by the memory management unit (M:MU) to map pages
within paged segments from virtual to physical memory.

page descriptor table (PDT)
A table containing a list of page descriptors (PDs) used by the memory management unit (NlMU) to
map pages within paged segments .from virtual to physical memory.

p_pgrp
The proc(D4X)structure member that contains the process group identification number. The
number is used to determine which processes should receive a HANGUP or BREAK signal. A
driver detects these signals. Location: proc-proc.h

p_pid
The proc(D4X) structure member that contains the process identification number. Location:
proc-proc.h

p_pri
The proc(D4X) structure member that contains the priority of a proc~o The value is used by the

. scheduler to detennine which process gets to execute from a number of executable processes:
Location: proc-proc.h -

p_uid
The real user ID of a process. LoCation: chead-tty.h

panic
The state where an unrecoverable error has occurred. In most cases, when a panic occurs, a message
is displayed on the console to indicate the cause of the problem. The computer must be rebooted or
repaired to remedy the problem.

param.h
The header file that contains definitions for constants that change infrequently: Examples of such
constants are HZ, NULL, and PZERO. Location: param.h

parent process
Almost every process is created when another process executes a fork(2) system call. This process is
called the parent process. The newly created process is called the child process.

GL-32 BCI Driver Development Guide

PCATCH
The constant that instructs the kernel sleep(D3X) routine not to call the kernellongjmp routine, but
to return value 1 to the calling routine. Location: param.h

PCB See process control block

PD See page descriptor

PDI See portable driver interface

PDT See page descriptor table

pbysck(D3X)
The function that verifies a requested ~lock exists on the device. Location: os/physio.c

pbysio(D3X)
The function that processes an I/O request. LoCation: os/physio.c

PIR See programmed interrupt requests

portable driver interface (PDI) I

A collection of driver routines, kernel· functions, and data structures that provide a standard interface
for writing UNIX System V block drivers. PDI is usable on all 3B2, 3B15, and 3B4000 computers
running UNIX System V Release, 2.0.5, 3.0, 3.1, or later.

prefU:
A two-, three-, or four-character name that uniquely identifies a driver's routines to the kernel. The
prefix name starts each routine in a block or character driver. For example, a RAM disk might be
given the ramd prefix. If it is a block driver, the routines are ramdopen, ramdclose, ramdstrategy,
and ramdprint. The prefix must be registered with AT&T.

print(D2X)
The routine that uses the minor number to determine what part of the device is not performing
correctly.

Glossary GL-33

proc(D2X)
The routine that processes various character device-dependent operations. This routine is required
for a character driver that accesses the tty or' linesw structtrres.

proc(D4X)
The structure that contains information required by the operating system for a process
Location: proc.h

process
An instance of a program in. execution.

process control block (PCB)
An operating system structure that stores process information.

process ID (PID) .
The kernel identifies each process by its ill.

proc.h
The header file contains the proc structure used only by the kernel for 'storing information aqaut the
currently running process. Location: proc.h

programmed intenupt request (PIR)
An interrupt sent by a software device.

psignal(D3X)
The function that sends a signal to a single process. Location: oslsig.c

pumpcode
Executable code that is downloaded to the controller.

putc(D3X)
The function that places a character on a clist. Location: iolclist.c

putcb(D3X)
The function that links a cblock to a clist. Location: iolclist.c

GL-34 BCI Driver Development Guide

putcf(D3X)
The function that places a cblock on the free list. Location: iolclist.c

putbuf
A buffer, accessible Mth crash(lM), that records messages displayed with cmn_err(D3X). A
message is placed in putbuf routinely each time COlD_err is called, or exclusively, if an exclamation
mark (!) is encoded in the first position of the message. putbuf can be avoided by encoding a caret
("') in the first position of the message.

PZERO
The constant that indicates the point in the range of sleep(D3X) priority values that determines
whether the system will awaken a sleeping process on receipt of a signal. PZERO is generally set to
25. Priority values with a range of 0 to PZERO, keep the system from awakening sleeping processes
receiving a signal. Priority values with a range of PZERO+ 1 to 39 cause the system to awaken a
sleeping process when a signal is received. When a sleeping process is awakened on a signal, the
process is awakened before the event on which it was sleeping occurs. Location: param.h

raw 110
Movement of data directly between user address spaces and the device. Raw I/O is used primarily for
administrative functions where the speed ot a specific operation is more important than overall system
performance.

raw mode
The method of transmitting data from a terminal to a user without processing. This mode is defined
in the line discipline modules. See also canonical processing.

revint
A member of the sysinfo(D4X) structure. It increments the entry to rint(illX). Location:
sys inf o-sysinfo.h

read(D2X)
The routine for the cdevsw(D4X) table that copies information from a character device to a user
address space.

read(2)
The system call that reads data from a file. It is only used in user programs and not in a driver.

Glossary GL- 3S

readtype
The hdedata(D4X) structure member that indicates either a CRC or ECC hard disk error.
Location: hdelog.h

remote file sharing (RFS)
Transparent sharing of directory structures by independent machines.

RFS See remote file sharing

rint(D2X)
The routine that services a receive interrupt. A receive interrupt occ~ when a device has data ready
to be read.

routine
A section of C programming language 01; assembler code handling a specific task. Driver routines
differ from a complete program or other types of routines because driver routines do not include the
syntax required to identify a program to the system. In the C programming language, a program is
identified by the use of the mainO function. A driver routine does not contain mainO.

RTO
The flag that indicates a timeout is in progress for a device operating in raw mode. Location:
t_state-tty-tty .h

SCCS See Source Code Control System

SCSI See Small Computer System Interface

SCSI driver interface (SDI)
A collection of machine-independent input/output controls, functions, and data structures, that
provide a standard interface for writing SCSI target drivers to access a SCSI device.

SCSI local interface circuit (SLIC)
A UN-type circuit board that provides the interface between two Small Computer System Interface
buses and the primary local bus on the 3B4000 Master Processor or the 3E1S computer.

GL-36 BCI Driver Development-:Guide

SD See segment descriptor

SDI See SCSI driver interface

SDT ·See segment descriptor table

SGS See Software Generation System

segment descriptor (SD)
The base address of a paged segment that is used by the memory management unit (MMU) to map
contiguous segments from virtual to physical memory.

segment descriptor table (SDT)
A table of segment descriptors (SDs) used by the memory management unit (MMU) to map
contiguous segments from virtual to physical memory.

self-configuration
Self-configuration refers to the construction of the specific kernel for the computer. Because drivers -
function as part of the kernel, you need to ~eate or modify self-configuration files and reconfigure
the system to install your driver.

semantic processing
Semantic processing entails input validation of the characters received from a character device.

severity
The hdedata(D4X) structure member that indicates hard disk error severity; an error is either
marginal or unreadable. Location: hdelog.h

shJ(l) .
The system user command lets a user have multiple simultaneous shell command line prompts (called
layers). On terminals equipped with multiple windowing capability (such as the Teletype 4425), after
a number of windows are created, sbl allows a user to be able to execute shell commands from each
window. sbl is terminal independent. Each window (layer) is given a unique process ID.

signal(D3X)
The function that sends a signal to a process group. Location: os/ sig.c

Glossary GL-37

signal.h
The header file contains signal values described in the signal(2) system call. Location: signal.h

single board computer (SBC)
The WE 321SB single board computer (SHC). A computer on a single c.ircuit board that permits
install able device drivers.

sleep(D3X)
The function that suspends the execution of a process until an event occurs. sleep is normally given
the address of a structure as its argument. This structure may be a repository for data from an I/O
request. When an I/O request completes, the driver checks for processes that have.called sleep with
the address of the structure. The wakeup(D3X) routine is called by the driver to awaken the sleeping
processes. Location: oslslp.c

SLIC See SCSI local interface circuit

Small Computer System Interface (SCSI)
In the 3B4000 or 3B15 computer, SCSI refers to the disk and tape interface supported by the SCSI
local interface circuit (SLIC) and an EADP/ADP or ACP. See also SCSI controller, SCSI device,
SCSI host adapter, SCSI local jnt.erface circuit (SLIC) , and SCSI peripheral cabinet.

Software Generation System (SGS)
A package of tools designed to aid in program development.

Source Code Control System (SCCS)
A utility for tracking, maintaining, and controlling access to source code files.

special device file
The file that identifies the device's access type (block or character), the external major and minor
numbers of the device, the device name used by user-level programs, and Security control (owner,
group, and access permissions) for the device.

spl*(D3X)
A series of functions used to suppress or restore the interrupt level for the execution of critical code.
spU, sp14, splS, spl6, spl7, splhi, splpp, and spltty suppress some or all interrupts so that critical
code can be executed without the danger of having an interrupt disrupt execution. splO restores the
state where all interrupts are serviced. spIx returns the interrupt state to a previous state. Location:
mllmisc.s

GL-38 BCI Driver Development Guide

splhi(D3X)
The function that ensures interrupts do not occur while critical regions of code are executing. splhi
blocks all interrupts. Location: mllmisc.s

splx
The function that restores the previous interrupt inhibit level. For example, if a previous spl4 call
was made, and then splhi was called,. the driver program should return to the spl4 state. splx is used
to ensure that the correct level is reached. Location: mllmisc.s

sptalloc(D3X)
The function that allocates pages of memory. Location: os/page.c

sptfree(D3X)
The function that frees previously allocated pages of memory. Location: os/page.c

start(D2X)
A system initialization driver entry point routine.

strategy(D2X)
The block driver routine that transmits data between the buffer cache and the device. One of the
functions of the strategy routine is to schedule reads and writes for maximum device efficiency. For
example, on a hard disk, the heads take a certain amount of time to move in and out to access data.
The strategy routine may group read and write requests together by the relative head position that
each request is calling, while the disk heads are moving back for a new movement command to be
issued by the disk controller. When the disk heads are ready, the read and write requests are given to
the controller, and sorted by the data's position on the disk relative to how the disk head moves. The
heads are then allowed to move in a coordinated way allowing the data to be read and written in the
most efficient manner. In additi'on to scheduling, strategy may validate the block number contained
in the read or write request, and also check the device for the end-of-file condition.

STREAMS
A modular system used to build device drivers and protocol handlers that reside in the kernel.
STREAMS allow modules to pass messages to implement a full-duplex connection between the kernel
and the device.

subyte(D3X)
The function that copies a character (byte) from a driver to user program space. This is an obsolete
function. Location: mllmisc.s

Glossary GL-39

suser(D3X)
The function checks to see if the current process has superuser permissions. Location: oslfio.c

suword(D3X)
The function that copies a word of data from a driver to user program space. This is an obsolete
function. Location: mllmisc.s

switch table
The operating system that has two switch tables, cdevsw(D4X) and bdevsw(D4X). These tables
hold the entry point routines for character and block drivers and are activated by I/O system calls.

switch table entry points
Driver routines that are activated through bdevswor cdevsw switch tables.

sxt driver
The shell layers sbl(l) device driver.

synchr.onous
. Events occurring at fixed, regular, or predictable interval~.

synchronous device
A device that communicates with the CPl! in a fixed, regular, or predictable way.

sysadm(lM)
The system administrative command that contains menus for performing many operations and
administrative tasks.

sysinfo(D4X)
The structure used by character drivers rint(D2X) and xint(D2X) driver interrupt routines to indicate
the number of times each routine is entered. Location: sysinfo.h

system initialization
The routines from the driver code and the information from the master file to initialize that initialize
the system (including device drivers).

GL-40 Bel Driver Development Guide

T_BLOCK
The constant that indicates that the driver proc(D2X) routine should block further input because the
input queue has reached the high water mark. T_BLOCK turns off TTXON and turns on TTXOFF
and TBLOCK in the t_state member of the tty structure (in the driver proc routine). Location:
tty.h

T_BREAK
The constant that indicates that the driver proc(D2X) routine should send a break character to a
terminal device. The driver sets the t_state member of the tty structure to TIMEOUT and initiates
delay timing. Refer to the proc routine in Appendix D for an example of how T _BREAK is used.
Location: tty.h

t_canq
The tty(D4X) structure member that contains data accepted from a terminal after canonical
processing (erase character, deletes, and so on) has taken place. Location: tty-tty.h

t_cc
The tty(D4X) structure member'that contains an array of control characters. Location: tty
tty.h

t_ctlag
The tty(D4X) structure member that corresponds to the control modes flag (c_ctlag) defined in the
termio structure. See also termio(7). Location: tty-tty.h

Cdelct
The tty(D4X) structure member used by the tty subsystem to keep track of the number of
delimiters found while performing semantic processing of data from a terminal. Semantic processing
entails input validation of the characters received from a character device. Location: tty-tty.h

T_DISCONNECf
The constant that indicates that the driver proc(D2X) routine should disconnect a tty device.
Location: tty.h

Citlag
The t ty(D4 X) structure member that corresponds to the input modes c_itlag defined in the termio
structure and described in termio(7). Location: tty-tty.h

Glossary GL- 41

T_INPUf
The constant that indicates the driver proc(D2X) routine should flag a terminal device to receive
input. Location: tty.h

Lltlag .
The tty(D4X) structure member that corresponds to the local modes c_ltlag defined in the termio
structure. See also termio(7).
Location: tty-tty.h

t_line
The tty(D4X) structure member that holds the line discipline type specified in the c_line member
of the termio structure. Refer to termio(7) for more information.

t_oflag
The tty(D4X) structure member that corresponds to the output modes c_oflag defined in the
termio structure. See also termio(7). Location: tty-tty.h

T_OUfPUf
The constant that indicates the driver proc(D2X) routine should initiate output to the terminal
device. This condition is not set irthe device is busy or 'if output has been suspended. Location:
tty.h

t_outq
The tty(D4X) structure member that contains all of the data that is accepted from a terminal.
Location: tty-tty.h

t_pgrp
The tty(D4X) structure member that identifies the process group associated with the device. This
member is needed to send signals to the process group. Location: tty-tty.h

t_proc
The tty(D4X) structure member that holds the address of a character driver proc routine.
Location: tty-tty.h

GL-42 BCI Driver Development Guide

Crawq
The tty(D4X) structure member that contains the data being sent to a tenninal. Location: tty
tty.h

Crbuf
The tty(D4X) structure member that is the receive buffer for a TrY device. Location: tty-tty,h

T_RESUME
The constant that indicates the driver proc(D2X) routine should resume output on a terminal because
a (crRL-q) character has been received. The TTSTOP bit in the t_state member of the tty structure
should be cleared. Location: tty.h

T_RFLUSH
This constant is the same as T_UNBLOCK if TBLOCK:is set in the t_state member of the tty
structure; otherwise, this indicator means nothing. Location: tty.h

t_state
The tty(D4X) structure member that maintains the internal state of the device and the driver.
Note the t_state member is fully utilized and cannot be extended for additional state information that
a partlculardriver may rieed._ Location: tty-tty.h

T_SUSPEND
The constant that indicates that the driver proc(D2X) routine should suspend output to a terminal
because a (crRL-s) character has been received. The TfSTOP bit in the t_state member of the tty
'structure should be set~ Location: tty.h

t_tbuf
The tty(D4X) structure member is the transmit buffer for a TrY device. Location: tty-tty.h

T_TIME
The constant that indicates the driver proc(D2X) routine should delay timing becauSe a BREAK,
carriage return, and so on, has completed. Location: tty.h

T_UNBLOCK
The constant that indicates the driver proc(D2X) routine should allows more input because the input
queue has gone below the high-water mark. The driver proc routine resets TTXOFF and TBLOCK
in the Cstate member of the tty structure. Location: tty.h

Glossary GL-43

T_WFLUSH
The constant that indicates the driver proc(D2X) routine should clear out the characters in the
transmit buffer. Location: tty.h

TACT'
The flag that indicates a timeout is in progress for a TrY device. Location: t_state-t ty-tty.h

TBLOCK
The flag that indicates the driver has sent a control character to the tenninal to block transmission·
from the tenninal. Location: Cstate-tty-tty.h

TCFLSH
The constant that flushes the input or output queue for a ITY device. It is used by ttiocom(D3X)
and is described in the Administrator's Reference Manual under termio(7). Location: termio.h

TCGETA
The constant that gets and stores the parameters for a terminal. (This constant is used by ttiocom
and is described in the Administrator's Reference Manual under termio(7).) Location: termio.h

TCSBRK
This constant is used as a case condition in the ttiocom function. When an ioct(2) system call
accesses TCSBRK, ttioeom calls ttywait(D3X) to allow the UART to drain. If the argument to the
ioctl command is zero, the driver proc(D2X) routine is called with the T _BREAK argument to send
a break character to the device and to initiate delay timing. If the ioctl argument is other than zero
and after the proc routine completes, control returns to the caller. Location: termio.h

TCSETA
The constant that sets parameters for a terminal from a structure. This constant is used by ttiocom
and is described in the Administrator's Reference Manual under termio(7). Location: termio.h

TCSETAW
This Constant is a case condition in the ttiocom function that is used to wait for output to drain from
a UART and to flush the read and write buffers before new parameters are set. Location: termio.h

GL-44 BCI Driver Development Guide

TCXONC
The constant that suspends output or restarts suspended output. This constant is used by ttiocom and
is described in the Administrator's Reference lvlanual under termio(7). Location: termio.h

termio.h
The header file that contains information relevant to accessing a 1TY device. Location: termio.h

TIl\IIEOUT
The flag that indicates a delay timeout is in progress. Location: t_state-t ty-tty.h

timeout(D3X)
The function that suspends the execution of a process for a designated time interval. Location:
oslclock.c

timestmp
The hdeda ta(D4X) structure member that puts a time stamp on a hard disk error logging table
entry. Location: hdelog.h

trace(7)·
A special file that allows event records generated within the kernel to be passed to a user program so
that the activity of a driver or other system routines can be monitored for debugging purposes.

ttclose(D3X)
The function that closes a TTY device. Location: iolttl.c

ttin(D3X)
The function that moves a character from the t_rbuf to the raw queue. Location: iolttl.c

ttinit(D3X)
The function that initializes a tty structure. Location: ioltty.c

ttiocom(D3X)
The function that examines the parameters of a TTY device. Location: ioltty.c

ttioctl(D3 X)
The function that changes the parameters of a TrY device. Location: iolttl.c

Glossary GL-45

TTIOW
The flag that indicates the process associated with the device is sleeping, awaiting completion of
output to the tenninal. Location: t_state--tty-tty.h

ttopen(D3X)
The function that opens a TrY device. Location: iolttl.c

ttout(D3X)
The function that moves a TrY character output queue to t_tbuf. Location: iolttl.c

ttread(D3X)
The function that processes an input TrY character. Location: iolttl.c

ttrstrt(D3X)
The function that restarts TrY output after a delay timeout. Location: iolttl.c

tttimeo(D3X)
The function that times a character device terminal read request. Location: ttl.c

ttwrite(D3X)
The function that moves a TrY character user data space to the t_outq device. Location: iolttl.c

TfSTOP
The flag that indicates output has been stopped by a (crRL-s) character received from the tenninal.
Location: t_state-tty-tty.h

TIXOFF
The flag that indicates the CPU has hit the high water mark in receiving data from a TrY device.
Calls the driver proc routine with T_BLOCK as the cmd argument. Location: t_state-tty-tty.h

TIXON
The flag that indicates the data processed by the CPU has hit the low-water mark. Calls the driver
proc routine with T _UNBLOCK as the cmd argument. Location: t_state-t ty-tty.h

GL-46 BCI Driver Development Guide

ttxput(D3X)
The function that puts characters into the TrY output buffer (Coutq). Location: ttl.c

tty(D4X)
The structure that maintains all information relevant to a TrY device. Location: tty.h.

tty.h
The header file that contains a structure used for buffering data between a tenninal device and a
character driver. Location: tty.h

ttyflusb(D3X)
The function that clears the I/O queues used in a'character driver. Location: io/tty.c

TIYHOG
The constant that defines the maximum number of characters allowed in a TrY device's raw queue.
Location: tty.h

ttywait(D3X)
The function that delays a process until an 110 operation has completed. Location: io/tty.c

types.h
The header file that contains data type definitions for expressions frequently used in the kernel and
drivers. Location: types.h

o.o_base
The user(D4X) structure member that specifies the base address for I/O actions to and from user
data space. Location: user-user.h

u.u_count
The user structure member that specifies the number of characters (bytes) not yet transferred
during an I/O transaction. Location: user-user.h

u.u_error
The user structure member that returns an error code to the user (in the errno external variable).
Valid error codes are described in intro(2), Chapter 4 of the Bel Driver Development Guide.
Location: user-user.h

Glossary GL - 47

u.u_gid
The us er structure member that contains the effective group identification number. This member
provides a process with the access permissions group. Location: user-user.h

u.u_offset
The user structure member that specifies the offset into the file where data is being transferred to
or from. Location: user-user.h

u.u_procp
The user structure member that contains the address of the proc(D4X) structure associated with
the user process. Location: user-user.h

u.u_qsav
The user structure member that is an argument to the kemellongjrnp(D3X) routine. This address
is set automatically by the operating system each time a driver is started. Location: user-user.h

u.u_rgid
The user structure member that identifies the real group ID. Location: user-user.h

uou_mid
The user structure member that identifies the real user ID. Location: user-user.~

u.u_segflg
The" user structure member is an flag that determines if the user kernel initiated the I/O. Location:
user-user.h

u.u_Uyp
The user structure member that contains the address of the process group member (t_pgrp) of the
tty structure for the terminal associated with this process. Location: user-user.h

" u.u_uid
The user structure member that contains the effective user ID. This member provides access
permissions of another user. Location: user-user.h

UART See universal asynchronous receiver transmitter

GL-48 BCI Driver Development Guide

universal asynchronous'receiver transmitter (UART)
A circuit board chip that conveys bytes of data between a serial communications line and a
microprocessor (for example between a 3B computer and a TrY device). In transmit mode, the
UART reads a byte from a microprocessor's data bus and outputs the byte a bit at a time on a serial
line for- a tenninal. In receive mode, the UART converts bit data from a serial line and forms a byte
which is then given to the microprocessor. UARTs can generally handle data speeds between 50 bits
per second (bps) and 19.2 thousand bps with character widths from 5 to 8 bits.

unkseg(D3X)
The function that frees previously allocated memory pages. Location: os/page.c

untimeout(D3X)
The function that cancels a previous timeout(D3X) call. Location: os/clock.c

user.h
The header file that contains the user(D4X) structure. Location: user.h .

user(D4X)
The structure that contains status information for a process. One user structure is defined for each
process in the kernel.· The kernel uses the information for proc~ status checking. For the currently
running process, u is used to access the members of the user block. Location: user.h

useracc(D3X)
The function that verifies a user data space
The portion of kernel memory used to store data for programs executing in user space.

user space
The part of the operating system where programs that do not have direct access to the kernel
structures and services execute. The UNIX operating system is divided into two major areas: the user
program and the kernel. Drivers execute in the kernel, and the user programs that interact with
drivers generally execute in the user program area. This space is also referred to as user data area.

useracc(D3X)
The function that verifies a user.has access to a requested data structure. Location: os/probe.c

virtual protocol machine (VPM)
A software module that handles communications to the lOA.

Glossary GL-49

volume table of contents (VTOC)
Lists the beginning and ending points of the disk partitions by the system administrator for a given
disk.

VPM See virtual protocol machine

VTOC See volume table of contents

vtop(D3X)
The function that converts· a virtual address to a physical address. Location: mil mise .s

wakeup(D3X)
The function that resumes execution of a suspended process. Location: oslsop.c

WOPEN
The flag that indicates the driver is waiting for an open request to complete.
Location: t_state-tty-tty.h

write(2)
The system call that stores information on a device. Information is copied from user program· space
to a driver. This function is executed only from a user program and not from a driver.

write(D2X)
The routine for the bdevsw(D4X) or cdevsw(D4X) tables that conveys data from user space to
kernel space.

xint(D2X)
A routine that services a transmit interrupt.

xmtint
The sysinfo(D4X) structure member that increments the entry to xint.
Location: sys inf o-sysinfo.h

GL-50 BCI Driver Development Guide

In d e x

A

absolute assignment of interrupt vectors 10: 9

ABUS
bootstrap process 5: 18

driver input to bootstrap 5: 18

self-configuration 5: 19
ACP 1: 2; E: 2

differences between all other 3B2 computers A: 2

add-on (non-AT&T) A: 18

adjdump(8) 13: 7
ADJUNcr 11: 24
adjunct

operating system initialization 5: 20

Adjunct Data Processor E: 2
adjunct processor crash comand 13: 6

adjuncts 1: 2

alarm interface unitj (AlC) E: 2
alignment E: 2
allocated resource E: 2

asm 14: 1, 17-21

asm macro E: 3
assembly assist functions 10: 12

ASSERT 13: 13

asynchronous E: 3
AT&T 630 terminal" 7: 15

AUTO CN1L A: 6

autoboot B: 3

autoboot mode B: 10

automatic calling unit (ACU) E: 3
av_back 6: 9; E: 3
av Jorw 6: 9; E: 3

base address E: 5

base level E: 5

bcopy(D3X) 1: 20; E: 6

example 11: 18

B

BDCODE A: 5

bdevsw(D4X) 3: 3; 5: 7; E: 6
bergs (Physical connectors) 11: 7; A: 17
bfreelist 9: 5; E: 6
block access 6: 2

block and character interface 1: 8; E: 6
block device E: 6

interrupt routine 10: 20,

switch table E: 6

block driver E: 7

sample E: 1
block-access entry points 3: 4
boardsize A: 14
boot device A: 14; E: 7
boot directory

relation to EDT A: 1
bootable executable file 5: 2

boatable object file E: 7

bootabus 5: 18

bootstrap processing 5: 18

bp argument 6: 5, 8
brelse(D3X) 11: 13; E: 7

bss section 13: 5, 21

btoc:(D3X) E: 7
BUBUS A:2
buf(04X) structure 4: 10; 6: 7; 11: 5; E: 7

recording errors 11: 2

use of b_error 4: 2

buf.h 6: 5, 7; E: 8
buffer header 1: 17; 6: 7-8

buffered character I/O 6: 18

buffering schemes

private 6: 3, 17,23; 14: 22

system 6: 5, 8
buffers

system 14: 22
bugs 13: 15

bus (I/O) types A: 9

bzero(D3X) E: 8

b_addr E: 3

Index IN-I

b_bcount E: 3

b.-.blkno E: 4
B_BUSY E: 4

b_dev E: 4

B_DONE 9: 2; E: 4

B_ERROR 9: 2

b_error 1 t: 1

B_ERROR 11: 2; E: 4

b_error

possible error codes 11: 2

b~ags 9: 2, 5; 11: 2; E: 4
ORed with B_ERROR 11: 2

b_proc E: 4
B_READ E:5
b_resid 11: 2
B_WANTED -9: 5

B_WRITE E: 5

C compiler 14: 17

C optimizer bugs 13: 15

cache E: 10
caddr_t 4: 4; E: 10

canon(D3X) E: 10

calling sequence 7: 15

canonical processing 7: 2; E: 10

cast construct 4: 4

c

~block(D4X} 6: 18; 7: 37; E: 11

cc 14: 5, 17

cc(l) 13: IS, 19

-g option 13: 3
command 11: 24

ccblock(D4X) E: 11

CCC A: 6
cdevsw(D4X) 3: 3; 5: 7; E: 11
CE_CONT 11: 6; E: 11
CE_NorE 11: 6; E: 11
CE_PANlC 11: 6; E: 11
CE_WARN 11: 6; E: 11

cfreelist(D4X) 7: 37; 9: 3, 5; E: 12

cfreelist.c~ag 9: 5
character access 6: 2

block device 6: 12; E: 12

character device
data transfer 6: 16

direct data transfer 6: 17

character device ~ routines 10: 20

character driver. 1: 22; E: 12

sample D: 1

character 110 E: 12
character-access entry points 3: 4

IN - 2 BCI Development Guide

chead(D4X) 7: 37; E: 12
structure, c_flag E: 9

ciofw.h B: 41

cio_dev.h B: 42

dist 6: 5, 18

clist buffering scheme 7: 37; E: 12
dist buffers, functions for manipulating 7: 39

clist(D4X) structure E: 12

c_cc E: 8

c_cf E: 8

c_cl E: 8

clock 10: 24

close routine 1: 21

close(D2X) 13:_ 3; E: 12-13

error codes 4: 2

example 0: 1; E: 37

clrbuf(D3X) 6: 8; E: 13

CtDIl.-err(D3X) 1: 12; 11: 6; 13: 4; E: 13

example 11: 21
Gmn_err.h E: 13

coding problems 13: 15

command

disp edt A: 5

edittbl A: 19

edt A: 3

getedt A:5
prtconf A: 10

show A: 3
commenting driver code 1: 32

common driver bugs 13: 15

common driver problems 13: 15

common 110 (CIO)

functions 7: 3
common 110 hardware B: 2

common IIO(CIO) 7: 1

compiling a driver 11: 24

completion queue 10: 17; A: 14

conditional compilation statements

affect on portability 15: 2

conditional preprocessor statments
porting considerations IS: 5

conf.h 7: 4; E: 13

configuration 5: 2

console A: 14

file A: 14
messages 11: 6

cons_cap and consfle fields of the EDT A: 2

control and status register E: 13

controller E: 13

number 10: 12
coprocessor A: 9

copyin(D3X) 1: 20; 6: 18; 8: 1; E: 14

copyout(D3X) 1: 20; 6: 18; 8: 1; E: 14

corrupted interrupt stack 13: 21
crash 14: 3

crash dis 14: 4

crash(IM) 11: 1, 6; 13: 6; E: 14

-ppe# option for the 3B4000 13: 6

dis function 13: 4

example command 13: 8

proc function 13: 8

running on an active system 13: 9
user function 13: 8

crash(IM)

stat 13: 8

creating a master file 11: 3
creating special device files 11: 10

critical code 14: 1, 17; E: 14

section 10: 21

critical data 13: 22
CSI E: 13
CSR 13: 2; E: 13

character device access 10: 20

checking 10: 14

ctob(D3X) 6: 20; ~: 14
current process 4: 7
c_first 7: 37

c_Iast 7: 37

cbiddr~t 4: 4

data caching 6: 8
data declaration 5: 9

data element mismatch 13: 17

data section 13: 21

data structure problems 13: 16

data structures 4: 5; E: 14
declaring 4: 12

data transfer

block data E: 6
methods 6: 3

data types, common 4: 4

data types in types.h 4: 4

DATE A: 6

debug monitor (DEMON) E: 15

DEbug MONitor EPROMs B: 6

debug.h 13: 14
debugging a driver 13: 1

D

with trace [3B400 computer only] 13: 11

defect table 11: 11

delay(D3X) 9: 3; E: 15

demand paging E: 15

DEMON E: 15

DEPENDENCIESIV ARIABLES field of the master file 4: 15; 11: 7

DEV

read by Iboot 10: 5

DEV field of the master file 11: 6

device

equipped device table A: 1

device driver 1: 2
implementation 1: 31

device files

access permissions 11: 14
creating 11: 10

disk subsystem 11: 13
. tape subsystem 11: 11

device files for subdevices, creating 11: 11

device files types and device file names 11: 11

device number 10: 12; E: 15

device registers 1: 24

device structures 10: 16

device types 6: 2
dev_t 4: 4; E: 15

dgmon(8) B: 4

commands B: 12

description B: 10

dgn command B: 12

errorinfo command B: 12

help command B: 12

list command B: 12

quit command B: 12
run command B: 12

show~ommand B: 12

use of the EDT A: 2
dgn directory B: 4

dgnledt_data 11: 20

diagnostic E: 15

diagnostic phases B: 26

compiling B: 34

diagnostics

cio_dev.h B: 42

ciofw:h B: 41

compiling diagnostic phases B: 34

design B: 2

development floppy organization B: 20

dummy.c B: 67

files B: 15

files on floppy diskette B: 19
hrl_pbztab.c B: SO
iodep.h B: 69

make.hi B: 68

make.lo B: 47
makefile B: 48

per_dgn.h B: 70

phase table B: 23

phaseload.h B: 73

phases B: to, 26

Index IN-3

phases. writing B: 15
ppc_dgn.h B: 37

return structure B: 17

sbdjfile B: 49

scpu_l.c B: 51
, scpu_2.c B: 54

scpu_3.c B: 56

scpu_4.c B: 58

scpu_S.c B: 60

scpu_6.c B: 63

scpu_7.c B: 65

sequence B: 9

source file organization B: 21

template B: 30

utility directories B: 13

diagnostics design B: 2

diagnostics files, creating .11: 20
diagnostics floppy diskette

com common header file directory B: 22

rn32 systems board diagnostics directory B: 22

lO1 feature card object code directof1' B: 22

direct m~ory access (DMA) 6: 4; 13: 22

OMA lists 6: 4
Direct Memory Access (OMA)

dma_breakup(D3X) E: 16

direct memory access (DMA)
incorrect address mapping 13: 22

direct memory. access controUer (DMAC) E: 15

dis 14: 4
dis(1) 13: 4

disk drive device files 11: 13

disk errors ll: 11

disk interrupts 10: 5

disk reads 9: 6
disk(1M) command 11: 11

diskette. h E: 15

disp edt command A: 5

OMA
header file containing OMA conventions C: 4

dma_breakup(D3X) E: 16

example E: 58
doc_ driver

doc_breakup subordinate driver routine E: 58

doc_close driver entry point routine E: 37

doc_copy subordinate driver routine E: 60

doc~ocheck subordinate driver routine E: 60
doc_init driver entry point routine E: 20

doc_initdr subordinate routine E: 29

doc_int driver interrupt handler E: 48

doc_intr subordinate driver routine E: 49

doc_ioctl driver entry point routine E: 63
doc_iostart subordinate driver routine E: 43

doc_open driver entry point routine E: 31

IN -4 BCI Development Guide

doc_read driver entry point routines E: 59

doc_setblk subordinate driver routine E: 60

doc_strategy driver entry point routine E: 38

doc_write driver entry point routines E: 59

entry point routines E: 1

global data structure declarations E: 14
header file E: 7

master file E: 3

downloading pumpcode S: 6

OPeC A: 6
drain 4: 14

driver E: 16
initiaIization 5: 21

driver debug 13: 1

driver entry point routines E: 1
driver entry points 3: 2; E: 16

driver initialization E: 16
driver input to the ABUS bootstrap 5: 18

driver installation ll: 22
driver packaging 16: 1

driver prefix 1: 10; 11: 6; E: 16

driver problems 13: 15

driver routines E: 16
driver storage 13: 22
driver structure list S: 4'

driver strucures S: 8
drvinstall(lM) 3: 5-6; 11: 28, 32, 36, 39; E: 16

dualMMUs
proting considerations 15: 2

OUART driver D: 1

dummy driver 13: 2

dummy.c B: 67

dump 13: 8

EACCES 11:2

E

EADP (Enhanced Adjunct Data Processor) E: 17

EAGAIN 4:2
ECC 11: 16

edittbl

-I (list the EDT) example A: 12

-r (remove an entry) A: 23

usage example A: 19

edittbl(1M) 11: 11,20

EDT, adding a device 11: 20
edt command A: 3

edt_data

described A: 12

EFAULT 4: 2; E: 17

EINTR 4: 2; 11: 20; E: 17

EINVAL 4: 2; E: 17

EIO 4: 2; 9: 2; 11: 2

EMSGSZ 11: 7
end-of-file character processing 7: 2
ENOOEV E: 17
entry point routines 1: 3

ENXIO 4: 2; 11: 2
EPER.\J{ 4: 2; E: 18

EPORTS E: 17

EPROM sanity cbeck B: 3

equipped device table (EDT) 3: 5; E: 18

3B2 computer architecture A: 2

3B2 edUiata file A: 13

3B4000 ACP architecture A: 2

BUBUS A: 2
I/O bus types A: 9
ID code A: 8, 13, 15-16

ROM size (3B4000 MP and 3B15 computer) A: 6

SOC architecture A: 1

SOC edt_data file A: 12

adding an entry to the EDT (3B2 computer) A: 20

adding entries to the EDT A: 17 -19
automatic control (3B4000 MP and 3B15 computer) A: 6

board code (3B4000 MP and 3B15 computer) A: 5

board size (3B2 computer) A: 14

boot device designation (3B2 computer) A: 14

completion queue size (3B2 computer) A: 14

computer differences A: 2.
coos_cap and coos_file A: 2

console capability designation (3B2 computer) A: 14

console file designation (3B2 computer) A: 14

definition A: 1

device address A: 6

device name A: 6, 9-10, 13, 15

device number A: 6, 9, 13

device size A: 6

device slot A: 9

device type A: 6,9

diagnostic phase number (3B4000 MP and 3B15 computer) A: 6

diagnostics file name (3B4000 ACP) A: 9
disp edt command A: 5
displaying A: 3

edt command A: 3

edt_data file A: 12

equipped logical units in extended EDT (3B4000 ACP) A: 9

equipped logical units in extended EDT (3B4000 MP and 3B15

computer) A: 7

extended EDT A: 1

field comparisoos A: 11

getedt command A: 5

indirect device designation (3B2 computer) A: 14

interrupt level (3B4000 MP and 3B15 computer) A: 6

lboot access A: 1

major number A: 6, 9

modification command examples A: 18

opt code (384000 ACP) A: 8

opt type (384000 ACP) A: 9

prtconf command A: 10

release date (3B4000 MP and 3B15 computer) A: 6

release verion (3B4000 MP and 3B15 computer) A: 6

removing an entry A: 23

request queue size (3B2 computer) A: 13

show ~ommand A: 3

smart board designation (382 computer) A: 14

smart board designation (3B4000 ACP) A: 9

subdevice display A: 14-16

subdevice name A: to, 15-16

subdevice number A: 15-16

unit equipage (3B4000 MP and 3B15 computer) A: 6

word size A: 2, 8, 14

equipped logical units A: 9

erase character processing 7: 2

EROFS 4: 2

mdemon(1M) 11: 10

errdump(1M) 11: 10

errfi1e 11: 7

errno.b 4: 2

error codes 4: 2; 11: 2

error codes mapped to function return values 11: 4

error correction code (EeC) E: 18

error bandling

buf structure example 11: 5

cmn_err(D3X) usage 11: 6

console messages 11: 6'

controlling signal priorities 11: 20

disk error logging 11: 1l

driver error codes 11: 3

error codes mapped to function return values 11: 4

error log access (3B15/3B4000 computers) 11: 10

hard disk error driver demon 11: 12

hard disk error logging initialization 11: 11

hard disk error logging initialization example 11: 13
bdeeqd(03X) usage 11: 12

bdefix(1M) usage 11: 12

bdelog(D3X) usage 11: 12

bdelogger(1M) usage 11: 12

include file for signals 11: 19

initializing disk defect management 11: 13

intercepting signals in user space 11: 19

logmsg(D3X) usage 11: 7
panic the system 11: 9

print(D2X) example 11: 8

print(D2X) usage 11: 8

processing signals 11: 20

recording messages in system structures 11: 2

relation of sleep(03X) to PZERO 11: 20

remove conditional compiler code 11: 3

Index IN-S

sending a signal 11: 19

shdefix(lM) usage 11: 12

shdelogger(lM) usage 11: 12

signal life 11: 21

signals 11: 19

user structure example 11: 4
error in input/output (EIO) E: 18

error log 11: to
error logging 11: 4

error message recording in system structures 11: 2

errpt(lM) 11: 7, 10

etc/gettydefs file 7: 19

etcIinittab

directories and files 5: 15

file 5: 11, 13; 7: 18

etcImaster.d(4) 7: 4; E: 19

etcIsystcm file 11: 19

etcIsystem(4) E: 19

event 9: 1
exceptions 10: 3

EXCLl.JDE 5: 4; A: 1

EXctUDE command in system file 11: 19

EXCRET(D8X) function B: 14

extended EDT
3B4000 MP and 3B15 computers listing described A: 6

how they are created A: 1

extended local bus (ELB) E: 19

extended local bus unit (ELBU) 5: 7; E: 19

extern declaration 4: 5
external devices 10: 3

external major number 3: 6; E: 19

external minor number 3: 6; E: 19

external variable problems 13: 19

F

failure

382 computer LED patterns B: 4

fault handlers 10: 3

field comparisons of EDTs for different systems A: 11

file service E: 20

file.h E: 20

filledt(8) A: 2; B: 4

firmware E: 20

FIRMWARE MODE prompt 11: 27, 29; B: 5

firmware.h E: 20

FLAG column of the master file 10: 9

FLAG field of the master file 11: 4

flow control 7: 4

FREAD 8: 1; E: 20

front panel diagnostic indicator light B: 4

fubyte(D3X) E: 21

IN - 6 BCI Development Guide

FULLPERF 13: 5
functions that cannot be called from an interrupt routine 10: 12

fuword(D3X) E: 21

FWRITE 8: 1; E: 21

G

gate vector table S: 11

generating dummy master file routines 11: 7
generating interrupt vectors 5: 7

getc(D3X) 9: 3; E: 21

getcb(D3X) 9: 3; E: 21

getcf(D3X) E: 21

geteblk(D3X) 9: 3; 11: 13; E: 21

getedt command A: 5
GETEDT(D8X) function B: 14

getmajor(lM) 3: 5-6; E: 21

GETS(D8X) function B: 14

getsrama(D3X) 6: 34; E: 21

getsramb(D3X) 6: 34; E: 21

GETSTAT(D8X) function B: 14

getVec:(D3X) E: 21

global data structure 4: 5
global variables 13: 21

hard subdevice type 11: 11

hardware device i: 7

hardware interrupts 10: 2

hardware testing 13: 2

HDE demon 11: 12

hdedata(D4X) 11: 11

bdeeqd(D3X) 11: 11; E: 22

bdefix(1M) 11: 12

bdelog(D3X) 11: 12; E: 22

example 11: 18

bdeiogger(1M) 11: 12

header file E: 22

creating 4: 12

beader files 1: 11; 4: 2; 13: 15

I/O bus definition files C: 4

buf.h E: 8
cmn_err.h E: 13

H

common synchronous interface E: 13

conf.h E: 13

diskette.h E: 15

driver 4: 6

file.h E: 20

fumware.h E: 20

from other drivers C: 4

hardware-independent C: 2

map.h E: 27

open.h E: 30

param.b E: 31

proc.b E: 33

signal.b E: 36

termio.b E: 43

tty.h E: 45

types.h E: 45

user.b E: 47

beterogeneous environment 8: 14

bigh water mark E: 22

hr1_phztab.c B: SO

HZ 9:3

I/O

block 6: 7; E: 7

buffered character 6: 18

character 6: 16; E: 12

device to kernel 6: 3

kernel to device 6: 3

kernel to user space 6: 5

physical 6: 7

I

physical, block device 6: 12-13

programmed 6: 3

raw E: 34

restrictions 6: 6
scatter/gather 6: 36
unbuffered character 6: 17-18

user space to kernel 6: 5

I/O bus types A: 9

I/O control commands 8: 1

AT&T-defined 8: 7
creating 8: 1
with remote file sharing 8: 14

I/O control routine 1: 27

I/O slots A: 2

IDFC
assigning IPLs for, example 10: 13

IDUART sanity check B: 3

ID_code A: 8
improper IPL in master file 13: 21

INCLUDE 5: 4

include

lines 4: 5
statements 1: 9

INCLUDE command in system file 11= 19

indirect device A: 14

init(1M) 3: 2; 5: 11
init(D2X) 9: 1; 13: 3; E: 22

description 5: 22

example D: 1; E: 20

initialization entry points 3: 2; E: 22

initialization file 1: 10

initialization routine

example 5: 23

hardware drivers 5: 24

. software driver 5: 23

initialized global variables 13: 21

initializing drivers 5: 21

initializing intelligent devices on the 3BI5/3B4000 computers 5: 24

inittab

description 5: 13

directories and files 5: 15

~FL~L 4: 12; 11: 24

inputJoutput accelerator (lOA) E: 22

inquiry data 5: 19

INSTALL 16: 2

installation code clean up 11: 41

installation of a completed driver 11: 41

installation problems 13: 16

installing a 3B15 computer or 3B4000 hlP hardware driver 11: 30

installing a 3B15 computer or 3B4000 MP software driver: 11: 32

installing a 3B4000 adjunct processor hardware driver 11: 34

installing a 3B4000 adjunct processor software driver 11: 36

installing a driver, removing a driver 11: 43

installing a driver for testing 11: 38

installing a driver for the first time 11: 2

installing a driver in a cross environment 11: 40

installing an existing driver 11: 22

installing an SBC or 3B2 computer hardware driver 11: 26

installing an SBC or 3B2 computer software driver 11: 28

INTLEV A: 6

int(D2X) E: 22

creating 10: 20

example D: 1; E: 48

routine 10: 3

integral disk file controller (IDFC) E: 23
integration testing 13: 13

intelligent boards 10: 16

intelligent controller A: 14

intelligent devices 1: 13

initializing 5: 24

interface E: 23

internal major number 3: 6, 9; E: 23

internal minor number 3: 7-8; E: 23
interprocess communication (IPC) E: 23

interrupt entry points 3: 9; E: 23

interrupt priority level (IPL) 10: 2; E: 23
interrupt routine 1: 29; 4: 7; 9: 1, 4

argument 10: 12

block devices 10: 20

block drivers 6: 11

character devices 10: 20

Index IN-7

creating 10: 11

example routine 11: 17

functions that cannot be called 10: 12

intelligent boards 10: 16

job request queue 10: 16

load pointer 10: 16

proc(D4X) restriction 10: 12

responsibilities 10: 11

restrictions 10; 12

return from 10: 12

rini(D2X) 10: 14

sleep(D3X) restriction 10: 12

unload pointer 10: 16

user(D4X) restriction 10: 12

writing data receive and transmit routines 10: 14

rioi(D2X) 10: 15

interrupt vector E: 23

interrupt vector table 5: 11

interrupt vectors 11: 5

interrupts 1: 4; 13: 21
TTY device 10: 3

absolute assignment of interrupt vectors 10: 9

berg connectors used to assign interrupt levels A: 17
described 10: 2

disk 10: 5

exceptions 10: 3

handling operational interrupts 10: 10

hard disk error logging example 1~: 16

hardware 10: 2

int(D2X) 10: 20

interrupt level designation in EDT A: 6

interrupt vector 10: 5
interrupt vector number 10: 5
interrupt vector number assignment 10: 6

interrupt vector table 10: 5
interrupt vectors, absolute assignmeitt of 10: 9
interrupt vectors and system initialization 10: 5
levels 10: 2

preventing interrupt contention 10: 21

processor priority levels 10: 22

protecting critical code sections from interrupts 10: 24

serial device 10: 5
shared driver/device structures 10: 16

sleep(D3X) while loop example 10: 23

software 10: 3
structure integrity 10: 22

subdevices with one interrupt vector 10: 7

subdevices with two interrupt vectors 10: 8

intr routine

example E: 49

intterupts

servicing interrupts 10: 10

iobuf structure fields 4: 11

IN - 8 Bel Development Guide

iobuf(D4X) structure 4: 10

iocti commands, creating 8: 1

ioctl routine

coding 8: 4

sample 8: 5
ioctl(D2X) 8: 1; 13: 2-3; E: 23

error codes 4: 2

example D: 1; E: 63

iodep.b B: 69

iodone(D3X) 1: 20; 9: 2; E: 24
example 11: 18

iomove 1: 20

iomove(D3X) E: 24

iostart routine

example E: 43

iowait(D3X) 9: 2; E: 24

recording errors 11: 2
io_init table 5: 9
io_start table 5: 9

IPL 10: 2, 13; 13: 21

IPL field of the master file 11: 6

ivec 10: 7

job request queue 10: 16

job status 10: 17

kernel buffer cache E: 24
kernel file 7: 4
kernel master file 7: 4
kernel serial driver code 0: 1
kill character processing 7: 2

kseg 1: 12
kseg(D3X) 6: 20; E: 24

label_t 4: 4

layers(l) E: 2S

lbolt E: 2S

J

K

L

lOOot 5: 2; 11: 4; E: 26

relationship to interrupts 10: 5

use of the EDT A: 2

LED patterns B: 4
lib/pump directory 11: 21
line discipline 7: 1, 4

definition 7:5
standard disciplines 7: 7

writing 7: 7

line discipline functions

calling sequences 7: 9

in driver routines 7: 6

line discipline switch table 7: 5

example 7: 5

line discipline switch table (linesw) E: 26

line discipline zero 7: 5; E: 26

line disciplines 1: 22

discipline zero E: 26

linesw E: 26

linesw(D4X)

structure 7: 4r

linked list 6: 9
list(1) 13: 3

load pointer 10: 16

usage example 10: 17

loader option file B: 25
example B: 25

loading driver structures 5: 8

local bus extender (LBE) E: 26

logical

controUer number 10: 12

device number 10: 12

equipped logical units A: 9

interrupt value 10: 12

logical controUer

number 3: 7.

logical controUer number E: 26

logmsg(D3X) 11: 7; E: 26

logstray(D3X) 3: 9; 11: 10; E: 26

longjmp(D3X) . E: 26

low-water mark E: 27

m32 format B: 10

magic mode 11: 38

M

maintenance control program (MCP) B: 3

autoboot mode B: 3

baud command B: 7

boot command B: 7

edt command B: 7

errinfo command B: 7

express command B: 7

interactive mode B: 3, 5

newkey command B: 7

noninteractive (autoboot) mode B: 3

passwd command B: 7

password B: 6

q or quit command B: 7

sysdump command B: 7

version command B: 7

major device number 3: 5

major number E: 27

in EDT A: 6

MAJOR table 1: 10; 3: 7; E: 27

major(D3X) E: 27

make.lo B: 47

makedev(D3X) E: 27

muefile B: 48

maUoc(D3X) 6: 19,21; E: 27

map.h 6: 19; E: 27

mapinit(D3X) 6: 19; E: 27

mapwant(D3X) 6: 19; E: 28

master file 1: 9; 4: 12, 15; 13: 16,21; E: 28

#DEV field 11: 6

#VEC field 11: 5

DEPENDENCIESIVARIABLES field 11: 7

FLAG field 11: 4

IPL field 11: 6

PREFIX field 11: 6

SOFT field 11: 6

booting the system without to test hardware A: 17

fields 11: 3

generatiitg dummy routines 11: 7

tunable variables 11: 9

variables set for a driver 11: 8

Master Processor (MP) 1: 2; E: 28

master(4) 4:.15

max(D3X) E: 28

mcp A: 4

MDT 11: 12

memory aUoc:ation 6: 19

local to driver 6: 19

memory dump 13: 8

memory management E: 28

3B15/3B4000 dual MMU 6: 33

3B4000 adjunct local memory 6: 35

SBC non-local memory 6: 35

WE~ 32101 memory management unit 6: 33

getsrama 6: 34

getsramb 6: 34

memory management unit (MMU) 5: 13; E: 28

memory managment

machine specific 6: 33

memory mapping 6: 19

messages 11: 6

rofree(D3X) 6: 19,21; E: 28

microbus A: 2

devices A: 8

min(D3X) E: 28

minor device number 1: 16; 3: 6; E: 29

MINOR table 1: 10; 3: 7; E: 29

minor(D3X) E: 29

Index IN-9

mismatched data element sizes 13: 17

mkboot(IM) S: 2

mknod(IM) 3: 6; E: 29

command 11: 10

mkunix(IM) 13: 4
MMU (Memory Management Unit) E: 28

MMU sanity check B: 3

modem routine example ~: 1

namelist 13: 8
NBUF parameter 6: 8

NHBUF parameter 6: 8
nm(l) 13: 4

example 13: 5
nodev(D3X) E: 29

nuIldev(D3X) 7: 5

NVRA\f sanity check B: 3

ODIT A: 17

ofLt 4: 4
open routine 1: 15

open(D2X) 13: 3; E: 30

error·codes 4: 2
example D: 1; E; 31

open.h E: 30

operational interrupts 10: 10

OPrCOOE A:8

packaging
driver 16: 1

packaging a driver update 16: 5
paddr_t 4: 4

N

o

p

page descriptor table (PDT) E: 30

page fault 6: 18

panic 11: 9; E: 31

porting considerations 15: 4

panic recovery 13: 7

param routine example D: 1

param.h 4: 4; E: 31

PASS - FAll. B: 33

PBUF pool 6: 7

pb_slot B: 31

PCATCH 4: 2; 11: 21; E: 31

PCB 10: 12

PO sector 11: 12

IN-tO BCI Development Guide

PDT E: 30

PERFON 13: 5
perionnance 13: 13

monitoring 13: 5
pecdgn.h B: 70

phaseload. h B: 73

PHNUM A: 6

physck(03X) E: 32

physical description 11: 12

physical descriptor table (PDT) 5: 11

physio function 6: 15

physio(03X) 6: 6-7. 12, 15; E: 32

PIR E: 33

PIRs 10: 3
pointer. load and unload 10: 17

portable driver interface (POI) E: 32

ports(8) 11: 11
postmortem analysis 13: 7

ppc_dgn.h B: 37

pr(1) 13: 3
pre-bootstrap processing 5: 18

PREFIX field of the master file 11: 6
preventing interrupt contention 10: 21

preVenting signals 9: 8

print(D2X) 13: 3; E: 32

creating 11 : 8
example 11: 8

printf 11:6 .

porting· considerations 15: 4-

PRINTF(08X) function B: 14

priority

system 14: 21

priority argument to sleep(D3X) 9: 8

priority levels 10: 22

private buffering schemes 6: 23

CST 6: 23
aff~ on system performance 14: 22

allocation routine 6: 27

assignment routine 6: 29

coding the driver 6: 32

deallocation routine 6: 28

deassignment routine 6: 30

how to create 6: 24

kernel-to-device transfer 6: 31

routines 6: 26 .
user-to-kernel transfer 6: 31

proc function of crash 13: 8

proc routine 1: 26-27

proc structure fields 4: 9

p_pgrp E: 30

p_pid E: 31

p_pri E: 31

p_uid E: 31

proc(D2X) E: 32

example D: 1

proc(D4X)

structure 4: 9; 10: 12

proc(D4X) structure E: 32

proc.h E: 33

process control block (PCB) 10: 12; E: 33

process table 4: 9
processor priority levels 10: 22

profiler 14: 1
program counter 13: 9
programmed interrupt request E: 33

programmed interrupt request (PIR) 6: 10

prtconf command A: 10

psignal(D3X) E: 33

described 11: 19
PSW 10: 13
pump 8: 1

pump files, preparing 11: 21

pumpcode 1: 13; 5: 6; E: 33
putbuf 11: 1, 6-7, 9; 13: 3-4,12, 14; E: 33

putc(D3X) E: 33
putcb(D3X) E: 33
putcf(D3X) 9: 3; E: 33
PZERO 11: 20; E: 33

p_pgrp E: 30

p_pid E: 31

p_pri E: 31 .

p_uid E: 31

queue, completion 10: 17

RAM sanity check B: 3
raw 110 E: 34

read error 13: 8

read operation problems 13: 16

read routine 1: 26

read(2) E: 34

read(D2X) 9: 4; 13: 3; E: 34

errorcodes 4:2
example D: 1; E: 59

read(D2X) routine 6: 8

RELS A:6

Q

R

remote file sharing (RFS) 8: 14; E: 34

request queue A: 13

required driver 5: 4

RFS E: 34

rint(D2X) 11: 6; E: 34

creating 10: 14

example D: 1

overview 10: 14

ROMSZ A: 6

root device 11: 9
routine E: 34

close 1: 21

driver 1: 3
entry point 1: 3
interrupt 1: 29

ioctl 1: 27

proc 1: 27

read 1: 26

strategy 1: 19
write 1: 27

rxint 7: 5

sanity checks B: 3

sanity failure LED patterns B: 4

sar 14: 3

s

saving the core image of memory 13: 7

SBC E: 36

SBC (single board computer) E: 36

SBC edUlata file, A: 12

SBC non-local memory 6: 35

SBC, subdevice display A: 15

SBD diagnostics file 11: 20

slxUfile B: 49

scatter/gather I/O 6: 36

multiple copying 6: 36

request chaining 6: 36

virtual DMA 6: 37
scheduler 9; 6
SCSI 10: 3; A: 6; E: 36

subdevice in EDT A: 6

SCSI devices 10: 9

SCSI driver interface (SDI) E: 35

SCSI local interface circuit (SUC) E: 35

defined A: 1

SCSI tape drive device file names 11: 12

sur E: 35
segment descriptor table (SUI') 5: 11; E: 35

self-configuration 5: 2; E: 35
semantic processing E: 35

serial device interrupts 10: 5

serial driver example D: 1

serial subdevice type 11: 11

setting processor priority 1: 29
shared driver/device structures 10: 16

sbdelogger(1M) 11: 12

Index IN-II

show command A: 3
shutdowo(1 M) B: 5

shutdowo(IM) command 11: 27, 31
SIGHUP 11: 19
SIGINT 11: 19
signal priorities 11: 20

signal(2) 11: 19

signal(D3X) E: 36
described 11: 19
example 11: 19

signa1.h E: 36
sigIials

PZERO relationship 11: 20
controlling priorities 11: 20

include file 11: 19
life of a signal 11: 21
sending 11: 19
sleep(D3X) used with PCATa-I 11: 21

SIGQUIT 11: 19
single board computer (SBC) E: 36

EDT architecture A: 1
adding entries to the EDT A: 18
adding entries to the EDT example A: 19

size 14: 2

sleep 14: 22
while loop for condition testing 9: 6

sleep addresses 9: 5
sleep and wakeup functions, using· 9: 4
sleep priority argument 9: 8
sleep(D3X) 1: 25; 9: 4; 14: 1; E: 3'6

PCATOI usage 11: 21
interrupt routine restrictions 10: 12
priority argument relation to signals 11: 20
priority values 11: 20
recording errors wben done 1 ~: 2

usage example in while loop 10: 23
slot number A: 2
smart board A: 14
SOFf field of the master file 11: 6
software device 1: 7
Software Generation System E: 36
software interrupts 10.: 3
Source Code Control System E: 36
special device file 1: 9; E: 36
spl 14: 1,21

porting considerations 15: 1
spl*(D3X) 10: 13; 11: 7; 13: 22; E: 37

restriction about masking clock interrupts 10: 24
usage example 10: 23

splbi(D3X) 9: 4; E: 37
splx(D3X) E: 37
sptaIloc(D3X) 6: 20; E: 37
sptfree(D3X) 6: 20; E: 37

IN -12 BCI Development Guide

SSCA.NF(D8X) function B: 14
stack 13: 9, 21
standard library functions B: 14

EXCRET(D8X) function B: 14
GETEDT(D8X) function B: 14
GETS(D8X) function B: 14
GETSTAT(D8X) function B: 14
PRINTF(D8X) function B: 14
SSCANF(D8X) function B: 14
STRCMP(D8X) function B: 14

start(02X) 3: 2; 5: 21; 13: 3; E: 37
description 5: 22

stat function of crash 13: 8
strategyroutine 1: 19

coding 6: 10
strategy routine(D2X) 1: 16
strategy(D2X) 13: 3; E: 37

error codes 4: 2
error handling 11: 2

example E: 38
routine 3: 4; 4: 7; 6: 5, 8

STRCMP(D8X) function B: 14
STREAMS E: 38
strip(l) command 11: 25
structures 10: 16

integrity can be destroyed 10: 22
stub routine in the master file 11: 7

subdevices A: 10
one interrupt vector 10: 7
two interrupt vectors 10: 8

subroutines
porting considerations 15: 3

subyte(D3X) E: 38
suword(D3X) E: 38
swapping enabled 6: 8
sWitch table 1: 3, 10; E: 38
switch table entry points 3: 3, 7; E: 38

• SXT line discipline 7: 4

symbol table 5: 6
synchronization function summary 9: 1
synchronous (base) section of a driver 10: 21
synchronous reads or writes 4: 11
sysadm startmap 13: 7

sysgen 10: 16
system .board

diagnostic RAM for the HRI card B: 16
resident diagnostic files B: 15

system buffer cache 6: 5, 8
system buffering scheme 6: 10

close routine 6: 10
coding 6: 10
coding interrupt routine 6: 10
open routine 6: 10

print routine 6: 10

strategy routine 6: 10

system buffers

affect on system performance 14: 22

system error log 11: 12

system file 5: 2; 11: 19

relation to EDT A: 1

system initialization E: 39

process 5: 11

system performance

asm 14: 17

cc 14: 17

critical code 14: 17

private buffering scheme 14: 22

resource usage 14: 1

sleep 14: 22

system buffers 14: 22

tunable parameters 14: 1, 23

system performance improvements

sample code 14: 8

system performance tools 14: 1

asm 14: 1, 19-21

profiler 14: 1

sar 14: 3

size 14: 2
system priority 14: 21

system tabl~ .5: 7
syswait.iowait flag 9: 2

tape drive device files 11: 11

terminal close routines 7: 24

terminal interrupt routines 7: 30

terminal ioctl routin~ 7: 28
terminal open routin~ 7: 21

terminal proc routin~ 7: 35
terminal read routin~ 7: 25

terminal routin~ 7: 21

terminal timing routines 7: 36

terminal write routines 7: 26

terminfo(4) 7: 5
termio(7)

T

association with rint(D2X) 10: 15
te.rmio(7) TIME· variable 7: 15

termio.h E: 43

TEST 13: 5
testing a driver 13: 1

dummy driver 13: 2
functionality 13: 3

testing driver functionality 13: 3
~ting the hardware 13: 2

timeout(D3X) 9: 3; E: 43

timing errors 13: 21

touch(1) command 11: 26, 30

trace driver 13: 11

trace(7) 13: 11; E: 43

trsave 13: 11

tt* functions 7: 5

ttl.c, tty.c, and ciist.c 7: 1

ttclose(D3X) E: 43

ttin(D3X) E: 43

caffingsequenc~ 7:11

ttinit(D3X) E: 43

caffing sequence 7: 15

ttiocom(D3X) E: 43

caffing sequence 7: 13

ttioctl(D3X) E: 43

caffing sequenc~ 7: 11

ttopen(D3X) E: 44

ttout(D3X) E: 44

calling sequence 7: 12

ttread(D3X) E: 44

caffing sequences 7: 10

ttrstrt(D3X) E: 44

caffing sequence 7: 15

tttimeo(D3X) E: 44

caffing sequence 7: 12

ttwri~D3X) E: 44
caffing sequences 7: 10

ttxput(D3X) E: 44 .

c3rnng sequence 7: 12

TTY
device interrupts 10: 3

devic~' 10: 16

drivers compared to other character drivers 7: 5

functions 7: 2

line discipline 6: 18

subsystem 6: 5, 18

tty and termio structures 7: 17

tty structure 1: 24; 7: 16

tty(D4X) E: 45

tty.h 6: 5; 7: 1; E: 45

ttyflush(D3X) E: 45

caffing sequence 7: 15

example 11: 19

ttywait(D3X) E: .45
caffing sequence 7: 15

tunable parameters

affect on system performance 14: 23

tunable variabl~ in a master file 11: 9

txint 7: 5

types.h 4: 4; E: 45

cline 7: 4-5, 7; E: 40

Cpgrp E: 40

Index IN-13

relation to signal(D3X) 11: 19

T_ TIME 7: 15; E: 41

u block 4: 7; 13: 22

u structure 4: 7

u. u_base field E: 4S

u.u_count field E: 4S

u.u_error

u

for storing base level errors 11: 2
u.u_error field E: 4S

u. u_offset field E: 46

u. u_procp field E: 46

u3blS 11: 24

u3b2 11: 24

u3bacp 11: 24

u3badp 11: 24

u3beadp 11: 24

DART 7: 15; E: 46

association to CSR 10: 14

unavailable interrupt routine functions (03X) 10: 13

unbuffered character I/O 6: 17-18

undefined symbols S: 6

UNINST ALL 16: 4
UNIT EQUIPAGE A: 6
universal asynchronous receiver tr3;OSmitter (UART) E: 46

unix 13:.4

. unix file 11: 22

unkseg(D3X) 6: 20; E: 47

unload pointer 10: 16

usage example 10: 17

untimeout(03X) 9: 3; E: 47

updates

packaging a driver update 16: 5

upper caseIIowercase presentation 7: 2

user area 4: 7

user block 4: 7

user function of crash 13: 8

user space 4: 7; E: 47

user structure fields 4: 8

user(D4X) structure 4: 7; 10: 12; 11: 4; 13: 22; E: 47

user.h 4: 7; E: 47

useracc(03X) E: 47

usr/admJerrfile 11: 7

usr/dumps 13: 7

u_base field 4: 7

u_count field 4: 7

u_error 11: 1

u_proc field 4: 8

u_procp

relation to psignal(03X) 11: 19

IN -14 BCI Development Guide

v

value of initialized global variables 13: 21

variables set for a driver in the master file 11: 8

VEC

read by Iboot 10: 5

relationsip to interrupts 10: 5

VEC field of the master file 11: 5

vector (interrupts) number or table 10: 5

virtual protocol machine (VPM) E: 47

virtuaI-to-physicai mapping 5: 12

volume table of contents (VfOC) E: 47
VPMSETC 13:12 •
VfOC 11: 9

vtop(03X) E: 48

w

waiting for an event 9: 1
wakeup 1: 25; E: 48
wakeup(D3X) 9: 5; E: 48

servicing interrupts 10: 10
waking up a sleeping process 9: S
WE~ 32101 memory management unit 6: 33
WOPEN E: 48
word size A: 8
word size field of the EDT A: 2
write operation problems 13: 16
write routine 1: 27
write(D2X) 13: 3; E: 48

error codes 4: 2
example 0: 1; E: S9

~te(D2X) routine 6: 8

.... ,.." ,.., ,..,.,.., "' ,.. 'V', .""...,,..,.., •

AT&T values your opinion. We'd like to know how well this document meets your needs. Please
check the appropriate column below to indicate your opinion of the document for the
categories listed on the right.

If we need more information may we contact you? Yes D No D

Name (Optional) _________ _ Excellent Good Fair Poor

Job Title or Function _______ _ Ease of Use

Accuracy
Organization ___________ _

Examples

Address ____________ _ Completeness

Organization

Appearance

Writing

Phone (Clarity

Does the document meet your needs? Illustrations

Why or why not? ________ _

BCI Driver Development Guide, Issue 1 307·191

AT&T values your opinion. We'd like to know how well this document meets your needs. Please
check the appropriate column below to indicate your opinion of the document for the
categories listed on the right.

If we need more information may we contact you? Yes D No D

Name (Optional) _________ _ Excellent Good Fair Poor

Job Title or Function _______ _ Ease of Use

Accuracy
Organization ______ ~ ____ _

Examples

Address ____________ _ Completeness

Organization

Appearance

Writing

Phone (Clarity

Does the document meet your needs?
Illustrations

Why or why not? _________ _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NQ 5 NEW PROVIDENCE N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

AT&T
4513 Western Avenue
Lisle, Illinois 60532
Attn: District Manager-Documentation

1.11 •• 11 •••• 1.1 •• 11 ••• 11 •• 1.1 •• 1.1 •• 1 •• 1 ••• 1.11.1 •• 1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.5 NEW PROVIDENCE N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

AT&T
4513 Western Avenue
Lisle, Illinois 60532
Attn: District Manager-Documentation

1.111.11 •••• 1.1 •• 11 ••• 11 •• 1.1 •• 1.1 •• 1 •• 1 ••• 1.11.1 •• 1

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

