

UNIX* System

User's Manual

System V

January 1983

Pursuant to Judge Greene's Order of August 5, 1983, begin
ning on January 1, 1984, AT&T will cease to u~.; "BELL"
and the Bell symbol, with the exceptions asset forth in
that Order. Pursuant thereto, any reference to "BELL" and I
or the BELL symbol in this document is hereby deleted
and "expunged".

*UNIX is a trademark of Bell Telephone Laboratories, Incorporated.

Copyright © 1983 Western Electric Company, Incorporated.

Portions of this document were copyrighted
1979 Bell Telephone Laboratories, Incorporated.
1980 Western Electric Company, Incorporated.

This document includes specific reference to the use of the UNIX
System on a particular processor, the Western Electric Company 3B20S,

which is not presently available except for internal use
within the Bell System; however, the information contained herein is

generally applicable to the use of the UNIX System on
various processors which are available in the general trade.

PDP, VAX, DEC, UNIBUS, MASSBUS,
and SBI are trademarks of Digital Equipment Corporation.

This manual was set on an AUTOLOGIC, Inc.
APS-5 phototypesetter driven by the TROFF
formatter operating under the UNIX system.

INTRODUCfION

This manual describes the features of the UNIX System. It provides neither a general
overview of the UNIX System (for that, see "The UNIX Time-Sharing System," BSTJ,
Vol. 57, No.6, Part 2, pp. 1905-29, by D. M. Ritchie and K. Thompson), nor details of
the implementation of the system (see "UNIX Implementation," BSTJ, same issue,
pp. 1931-46).

Not all commands, features, and facilities described in this manual are available in
every UNIX System. The entries not applicable for a particular hardware line will have
an appropriate caveat stamped in the center of the mast of an entry. Also, programs or
facilities being phased out will be marked as "Obsolescent" on the top of the entry.
When in doubt, consult your system's administrator.

This manual is divided into six sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands.
1 C. Communications Commands.
IG. Graphics Commands.

2. System Calls.
3. Subroutines:

3C. C and Assembler Library Routines.
3F. FORTRAN Library Routines.
3M. Mathematical Library Routines.
3S. Standard 1/0 Library Routines.
3X. Miscellaneous Routines.

4. File Formats.
5. Miscellaneous Facilities.
6. Games.

Section 1 (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to subrou
tines, which are intended to be called by the user's programs. Commands generally
reside in the directory Ibin (for binary programs). Some programs also reside in
/usrlbin, to save space in Ibin. These directories are searched automatically by the
command interpreter called the shell. Sub-class IC contains communication programs
such as CU, send, uucp, etc. These entries may not apply from system to system
depending upon the hardware included on your processor. Some UNIX Systems may
have a directory called /usr/lbin, containing local commands.

Section 2 (System Calls) describes the entries into the UNIX System kernel, including
the C language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions
reside in various system libraries in the directories /lib and /usr /lib. See intro (3) for
descriptions of these libraries and the files in which they are stored.

Section 4 (File Formats) documents the structure of particular kinds of files; for exam
ple, the format of the output of the link editor is given in a.out (4). Excluded are files
used by only one command (for example, the assembler's intermediate files). In gen
eral, the C language struct declarations corresponding to these formats can be found in
the directories /usr/include and /usrlinclude/sys.

Section 5 (Miscellaneous Facilities) contains a variety of things. Included are descrip
tions of character sets, macro packages, etc.

Section 6 (Games) describes the games and educational programs that, as a rule, reside
in the directory /usr /games.

- 3 -

Introduction

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section
are alphabetized, with the exception of the introductory entry that begins each section.
The page numbers of each entry start at 1. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, alphabetized under its
"major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program
names found elsewhere in the manual (they are underlined in the typed ver
sionof the entries).

Square brackets [I around an argument prototype indicate that the argument
is optional. When an argument prototype is given as "name" or "file", it
always refers to a file name.

Ellipses 000 are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument begin
ning with a minus -, plus +, or equal sign - is often taken to be some sort of
flag argument, even if it appears in a position where a file name could appear.
Therefore, it is unwise to have files whose names begin with -, +, or -.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the
suggested fix is also described.

A table of contents and a permuted index derived from that table precede Section 1.
On each index line, the title of the entry to which that line refers is followed by the
appropriate section number in parentheses. This is important because there is consider
able duplication of names among the sections, arising principally from commands that
exist only to exercise a particular system call.

On most systems, all entries are available on-line via the man (1) command, q.v.

- 4 -

HOW TO GET STARTED

This discussion provides the basic information you need to get started on the UNIX Sys
tem: how to log in and log out, how to communicate through your terminal, and how to
run a program. (See the UNIX System User's Guide for a more complete introduction
to the system.)

Logging in. You must dial up the UNIX System from an appropriate terminal. The
UNIX System supports full-duplex ASCII terminals. You must also have a valid user
name, which may be obtained (together with the telephone number(s) of your UNIX
System) from the administrator of your system. Common terminal speeds are 10, 15,
30, and 120 characters per second (II0, 150,300, and 1,200 baud); occasionally, speeds
of 240, 480, and 960 characters per second (2,400, 4,800, and 9,600 baud) are also
available. On some UNIX Systems, there are separate telephone numbers for each
available terminal speed, while on other systems several speeds may be served by a sin
gle telephone number. In the latter case, there is one "preferred" speed; if you dial in
from a terminal set to a different speed, you will be greeted by a string of meaningless
characters (the login: message at the wrong speed). Keep hitting the "break" or
"attention" key until the login: message appears. Hard-wired terminals usually are set
to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and a
half-/full-duplex switch that should be set to full-duplex. When a connection (at the
speed of the terminal) has been established, the system types login: and you then type
your user name followed by the "return" key. If you have a password (and you
should!), the system asks for it, but does not print ("echo") it on the terminal. After
you have logged in, the "return", "new-line", and "line-feed" keys will give exactly the
same result.

It is important that you type your login name in lower case if possible; if you type
upper-case letters, the UNIX System will assume that your terminal cannot generate
lower-case letters and that you mean all subsequent upper-case input to be treated as
lower case. When you have logged in successfully, the shell will type a $ to you. (The
shell is described below under How to run a program.)

For more information, consult login(I), which discuss the login sequence in more detail,
and stty (1), which tells you how to describe the characteristics of your terminal to the
system (profile (4) explains how to accomplish this last task automatically every time
you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.
2. You can log out by typing an end-of-file indication (ASCII EOT character, usu

ally typed as "control-d") to the shell. The shell will terminate and the login:
message will appear again.

How to communicate through your terminal. When you type to the UNIX System, a
gnome deep in the system is gathering your characters and saving them. These charac
ters will not be given to a program until you type a "return" (or "new-line"), as
described above in Logging in.

The UNIX System terminal input/output is full-duplex. It has full read-ahead, which
means that you can type at any time, even while a program is typing at you. Of course,
if you type during output, the output will have interspersed in it the input characters.
However, whatever you type will be saved and interpreted in the correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be
exceeded unless the system is in trouble. When the read-ahead limit is exceeded, the
system throws away all the saved characters.

- 5 -

How To Get Started

On an input line from a terminal, the character @ "kills" all the characters typed
before it. The character # erases the last character typed. Successive uses of # will
erase characters back to, but not beyond, the beginning of the line; @ and # can be
typed as themselves by preceding them with \ (thus, to erase a \, you need two #s).
These default erase and kill characters can be changed; see stty(l).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is use
ful with CRT terminals to prevent output from disappearing before it can be read. Out
put is resumed when a DCI (control-q) or a second DC3 (or any other character, for
that matter) is typed. The DCI and DC3 characters are not passed to any other pro
gram when used in this manner.

The ASCII DEL (a.k.a. "rubouC') character is not passed to programs, but instead gen
erates an interrupt signal, just like the "break", "interrupt", or "attention" signal. This
signal generally causes whatever program you are running to terminate. It is typically
used to stop a long printout that you don't want. However, programs can arrange
either to ignore this signal altogether, or to be notified when it happens (instead of
being terminated). The editor ed(l), for example, catches interrupts and stops what it
is doing, instead of terminating, so that an interrupt can be used to halt an editor print
out without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to terminate, but also generates a file with the "core image" of the
terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, the UNIX System tries to be intelligent as
to whether you have a terminal with the "new-line" function, or whether it must be
simulated with a "carriage-return" and "line-feed" pair. In the latter case, all input
"carriage-return" characters are changed to "line-feed" characters (the standard line
delimiter), and a "carriage-return" and "line-feed" pair is echoed to the terminal. If
you get into the wrong mode, the stty (1) command will rescue you.

Tab characters are used freely in the UNIX System source programs. If your terminal
does not have the tab function, you can arrange to have tab characters changed into
spaces during output, and echoed as spaces during input. Again, the stty(1) command
will set or reset this mode. The system assumes that tabs are set every eight character
positions. The tabs (I) command will set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into the UNIX System, a
program called the shell is listening to your terminal. The shell reads the lines you
type, splits them into a command name and its arguments, and executes the command.
A command is simply an executable program. Normally, the shell looks first in your
current directory (see The current directory below) for a program with the given name,
and if none is there, then in system directories. There is nothing special about system
provided commands except that they are kept in directories where the shell can find
them. You can also keep commands in your own directories and arrange for the shell
to find them there.

The command name is the first word on an input line to the shell; the command and its
arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you
to indicate that it is ready for another command. The shell has many other capabilities,
which are described in detail in sh (1).

The current directory. The UNIX file system is arranged in a hierarchy of directories.
When the system administrator gave you a user name, he or she also created a direc
tory for you (ordinarily with the same name as your user name, and known as your
login or home directory). When you log in, that directory becomes your current or
working directory, and any file name you type is by default assumed to be in that direc
tory. Because you are the owner of this directory, you have full permissions to read,

- 6 -

How To Get Started

write, alter, or destroy its contents. Permissions to have your will with other directories
and files will have been granted or denied to you by their respective owners, or by the
system administrator. To change the current directory use cd(t).

Path names. To refer to files not in the current directory, you must use a path name.
Full path names begin with I, which is the name of the root directory of the whole file
system. After the slash comes the name of each directory containing the next sub
directory (followed by a f), until finally the file name is reached (e.g., lusr/ae/filex
refers to file filex in directory ae, while ae is itself a subdirectory of usr; usr springs
directly from the root directory). See intro(2) for a formal definition of path name.

If your current directory contains subdirectories, the path names of files therein begin
with the name of the corresponding subdirectory (without a prefixed f). Without
important exception, a path name may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(t), mY, and rm(I), which
respectively copy, move (i.e., rename), and remove files. To find out the status of files
or directories, use Is(I). Use mkdir(I) for making directories and rmdir(I) for des
troying them.

For a fuller discussion of the file system, see the references cited at the beginning of the
INTRODUCTION above. It may also be useful to glance through Section 2 of this
manual, which discusses system calls, even if you don't intend to deal with the system at
that level.

Writing a program. To enter the text of a source program into a UNIX System file, use
ed(I). The principal languages available under the UNIX System are C (see cc(1»,
Fortran (see j77(I», and assembly language (see as(I». After the program text has
been entered with the editor and written into a file (whose name has the appropriate
suffix), you can give the name of that file to the a ppropria te language processor as an
argument. Normally, the output of the language processor will be left in a file in the
current directory named a.out (if that output is precious, use mv(I) to give it a less
vulnerable name). If the program is written in assembly language, you will probably
need to load with it library subroutines (see /d(I». Fortran and C call the loader
automatically.

When you have finally gone through this entire process without provoking any diagnos
tics, the resulting program can be run by giving its name to the shell in response to the
$ prompt.

If any execution (run-time) errors occur, you will need sdb(I) to examine the remains
of your program.

Your programs can receive arguments from the command line just as system programs
do; see exec (2) .

Text processing. Almost all text is entered through the editor ed(1). The commands
most often used to write text on a terminal are cadI), pr(I), and nroff. The cat(I)
command simply dumps ASCII text on the terminal, with no processing at all. The
pr(t) command paginates the text, supplies headings, and has a facility for multi
column output. Nroff is an elaborate text formatting program, and requires careful
forethought in entering both the text and the formatting commands into the input file;
it produces output on a typewriter-like terminal. Troff(t) is very similar to nroff, but
produces its output on a phototypesetter {it was used to typeset this manual}. There
are several "macro" packages (especially the so-called mm package) that significantly
ease the effort required to use nroff and troff(l); Section 5 entries for these packages
indicate where you can find their detailed descriptions.

Surprises. Certain commands provide inter-user communication. Even if you do not
plan to use them, it would be well to learn something about them, because someone else
may aim them at you. To communicate with another user currently logged in, write (I)
is used; mai/(I) will leave a message whose presence will be announced to another user

- 7 -

How To Get Started

when he or she next logs in. The corresponding entries in this manual also suggest how
to respond to these two commands if you are their target.

When you log in, a message-of-the-day may greet you before the first $.

- 8 -

TABLE OF CONTENTS

1. Commands and Application Programs

intro • • • introduction to commands and application programs
300 ...•...•. handle special functions of DASI 300 and 300s terminals
4014 paginator for the Tektronix 4014 terminal
450 handle special functions of the DASI 450 terminal
acctcom search and print process accounting file(s)
adb .•. . . • . • • • . . absolute debugger
admin create and administer sees files
ar archive and library maintainer for portable archives
ar. pdp • archive and library maintainer
arcv. convert archive files from PDP-II to common archive format
as • • . common assembler
as.pdp•......•..•....... assembler for PDp·ll
asa • • . . . interpret ASA carriage control characters
awk pattern scanning and processing language
banner . . . • • • make posters
basename deliver portions of path names
be • arbitrary-precision arithmetic language
bdiff. • big diff
bfs . • . . . • . • • . . • big file scanner
bs. • . . . a compilerlinterpreter for modest-sized programs
cal ...•.....................•.. print calendar
calendar . • . • . . reminder service
cat • • concatenate and print files
cb • . . C program beautifier
cc • • e compiler
cd . . • . • . . . • change working directory
cdc . . change the delta commentary of an sees delta
cflow . . generate e flow graph
chmod . . • • . change mode
chown change owner or group
cmp•..•......... compare two files
col . . • • . . • . . • filter reverse line-feeds
comb•......••...... combine sees deltas
comm select or reject lines common to two sorted files
convert . . • convert object and archive files to common formats
cp • • • • .. •.. • copy, link or move files
cpio . . copy file archives in and out
cpp . the e language preprocessor
cprs compress an IS25 object file
crypt encode/decode
csplit . . . • • . context split
ct • . spawn getty to a remote terminal
cu call another UNIX system
cut • . . •. ... cut out selected fields of each line of a file
cw . . . •. .. prepare constant-width text for troff
cxref . . . • . . generate C program cross reference
date. • • • print and set the date
dc . . • . • • . desk calculator
dd • . . . • . • • . . • • . . . convert and copy a file
delta • . • • make a delta (change) to an sees file
deroff • . • • . . remove nroff/troff, tbl, and eqn constructs
diff • • differential file comparator
diff3 ...•......•••..•..• 3-way differential file comparison
diffmk . . • mark differences between files

- 1 -

Table of Contents

dircmp ••..•.•.••••..••.••..... directory comparison
dis • . • . • • • . • • . . . • • . • . . . • . 3B20S disassembler
dpd • . . . • . HONEYWELL sending daemon, line printer daemon
dpr . • . . • • • . . off-line print
du . • • • . • • • • . • . . • . . . • summarize disk usage
dump • • • dump selected parts of an object file
echo • . . . • • • . • • • . • • • . • . • . . . • . • . . echo arguments
ed . . • . . . • . • . . . • . . . • . • . . . • • . . text editor
eft • Extended Fortran Language
enable. . • . • • . . • . . enable/disable LP printers
env . • • . • • . . set environment for command execution
eqn • format mathematical text for nroff or troff
expr . . . • • • • evaluate arguments as an expression
f77 . • Fortran 77 compiler
factor • • . factor a number
fget • . . • • . retrieve files from the HONEYWELL 6000
file••.•...•.......•...... determine file type
find • . . • . . find files
fsend . . . • . • . • . . . send files to the HONEYWELL 6000
fsplit . • • . . . • . . • split f77, ratfor, or efl files
gcat .•• send phototypesetter output to the HONEYWELL 6000
gcosmail . . • • . • • . send mail to HIS user
gdev . . . • . . • • . . • . graphical device routines and filters
ged •....•..••...•............. graphical editor
get • . • • • • get a version of an sees file
getopt • . • • . • . . . • parse command options
graph .•...•.•......•..•...•.•... draw a graph
graphics . . • • • . • . . • . . • • access graphical and numerical commands
greek • . . . • • select terminal filter
grep • • . . • . • . • . • • search a file for a pattern
gutil • • • • . . . • . . . • • . . • graphical utilities
help . ..•.•••.........•.....••.• ask for help
hp • • handle special functions of HP 2640 and 2621-series terminals
hpio • . • • . . • . • HP 2645A terminal tape file archiver
hyphen . • • . • . . . • . . • . . • find hyphenated words
id • . • . • . • . • . • . . • print user and group IDs and names
ipcrm .••...• remove a message queue, semaph"ore set or shared memory id
ipcs . . • • . . • . . • . • report inter-process communication facilities status
join • • . • • . . • . . • • . . • . . • . • . • relational database operator
kasb • • . assembler/un-assembler for the KMe 11 B microprocessor
kill • . • . • . . . • . • • . . • • • . • . • term ina te a process
Id . . . • • . . . • . • . • • • . • . . . link editor for common object files
Id.pdp . . • . . • . • • . . . • . . • . • • . . . • . . link editor
lex'. . • • . generate programs for simple lexical tasks
line. . • • . • . • • . . • . . . • . . • . . • • • . • . • . read one line
lint • . • • • . . . • . . • • a e program checker
list . • . • . • . • • produce e source listing from 3B20S object file
login. . . • • . • . . • . . • • • . . . • . • . . • . • sign on
logname • • . . • • • • • . . • • . • . • . • . . • . . • • get login name
lorder . . find ordering relation for an object library
Ip • . . • • • • . . • • . send/cancel requests to an LP line printer
Ipr •..••.•.••.•.••.•......••• line printer spooler
Ipstat . . • • . . print LP status information
Is • . • • • • • . • • • • • • . • • . • . . • • . list contents of directories
m4 .•.••.••.•••••...••.•..••.. macro processor
machid . . provide truth value about your processor type
mail ••••...••.••..•..••. send mail to users or read mail

- 2 -

Table of Contents

make .••......• maintain, update, and regenerate groups of programs
makekey • • . generate encryption key
man • • . . • . . . • . print entries in this manual
mesg • • • . . . • permit or deny messages
mkdir . . . • . . • . • • • . . • • . . . • make a directory
mm ...•.....• print/check documents formatted with the MM macros
mmt•.•..•.•••. typeset documents, view graphs, and slides
net . • • • . . . execute a command on the peL network
newform••.• change the format of a text file
newgrp • log in to a new group
news. • . • • . • • • . • . • print news items
nice . run a command at low priority
nl . • . . . • • • • line numbering filter
nm .••............... print name list of common object file
nm.pdp . • . . print name list
nohup •....•...•.•. run a command immune to hangups and quits
nroff • . . . • • • . . . • format text
nscstat . . query the operation status of the Nse network
nsctorje . • . . . • . . . • . • . re-route jobs from the NSe network to RJE
nusend . • • . send files to another UNIX on the NSe network
od . • • • . . . octal dump
pack. • • . compress and expand files
passwd • . . . • • • . • . . change login password
paste. • • merge same lines of several files or subsequent lines of one file
pr • . • . . . • print files
prof . • . • • display profile data
prs • • print an sees file
ps . • . report process status
ptx . permuted index
pwd . • . • . . • • . . working directory name
ratfor . . . • rational Fortran dialect
regcmp • . • . • . • • . regular expression compile
rjestat ...•....•... RJE status report and interactive status console
rm ...••.....•............ remove files or directories
rmdel•.•..... remove a delta from an sees file
sact print current sees file editing activity
sadp . . . • disk access profiler
sag • system activity graph
sar • . . . system activity reporter
scat•....... concatenate and print files on synchronous printer
scc. • . e compiler for stand-alone programs
sccsdiff • • . . . • . . . • . • compare two versions of an sees file
sdb • . • . • . . . • symbolic debugger
sdiff • . . • side-by-side difference program
se • • . • . • . • . • screen editor for video terminals
sed. • . stream editor
send .•. • . . • . . gather files and/or submit RJE jobs
sh. shell, the standard/restricted command programming language
size. • . • • . . . print section sizes of common object files
size. pdp • . . print sizes of object files
sleep •.•..•..•••.••..... suspend execution for an interval
sno•...•......•......... SNOBOL interpreter
sort . • . • • • • . • . • . . sort and/or merge files
spell • • • • . • • • . find spelling errors
spline. • • interpolate smooth curve
split . . . • • • • • . . • • split a file into pieces
stat • . • • . • . statistical network useful with graphical commands

- 3 -

Table of Contents

stlogin . . . • • . . • . • . • sign on to synchronous terminal
strip ••• strip symbol and line number information from a common object file
strip. pdp . . • . . • • . • . • • • . • . . remove symbols and relocation bits
ststat . . • • report synchronous terminal facilities status
stty. • • • . • . • • . • • . . • • . . set the options for a terminal
su . . • . • . . . • . • . . • . . • . . . become super-user or another user
sum. • . • . • . • . • . • . • . • . print checksum and block count of a file
sync . • . • • . . • • . . • . . • • update the super block
tabs. • • • ..• • . • . . • • . • . . • . . • . set tabs on a terminal
tail . . . deliver the last part of a file
tar . • • • . . . • • • • • • . • • tape file archiver
tbl • . . • • . • • . . format tables for nroff or troff
tc • . . • • . • • . . • phototypesetter simulator
tee . . • . • . • • . • • . . . • pipe fitting
test . . • . . . • • • • . condition evaluation command
time. • . • . • . . . • . • . . . • time a command
timex . • • . time a command; report process data and system activity
toc . • . • . • . • • • • • • . graphical table of contents routines
touch . . update access and modification times of a file
tplot •.•.........•.•.........•.. graphics filters
tr•••.....••......... translate characters
troff • . . . • . . . • . • . • . • • . . . • typeset text
trouble . . . • log a trouble report
true .•.•.•.••..•............. provide truth values
tsort . • . • . . . • . . . • . . . • . . . • • . topological sort
tty . • . • . • . • . . . • . • . • • get the terminal's name
umask set file-creation mode mask
uname . . . • . . . print name of current UNIX system
unget • • . . undo a previous get of an sees file
uniq . report repeated lines in a file
units • • . • conversion program
uucp • unix to unix copy
uustat . . uucp status inquiry and job control
uuto • ..•.•. public UNIX-to-UNIX file copy
uux . . unix to unix command execution
val validate sees file

. • version control
. . . • Versatec printer spooler

vc
vpr
wait . . • . • . • • • • • . • • . . • await completion of process
wc • . . . • . . . • • word count
what • . . . • . . . • . . • • . • identify sees files
who • • who is on the system
write • . . . • . • • write to another user
xargs . construct argument list(s) and execute command
yacc • • • . . • yet another compiler-compiler

2. System Calls

intro. . . • . • . . . • • . . • introduction to system calls and error numbers
access . • determine accessibility of a file
acct •••.••.••..•..•... enable or disable process accounting
alarm . • . • • set a process's alarm clock
brk • • . • . • . • • . . • . change data segment space allocation
chdir. • • . . . • • • • change working directory
chmod change mode of file
chown . . • • •. . change owner and group of a file
chroot • . . . change root directory
close. • close a file descriptor

- 4 -

Table of Contents

creat • . . . • • create a new file or rewrite an existing one
dup . duplicate an open file descriptor
exec • . . . execute a file
exit. . . . • . • terminate process
fcntl • . . . • file control
fork . create a new process
getpid••.. get process, process group, and parent process IDs
getuid . • get real user, effective user, real group, and effective group IDs
ioctl • control device
kill • . . send a signal to a process or a group of processes
link • • . . link to a file
lseek. . • . . . • . • . • . . move read/write file pointer
rna us • . • . multiple-access-user-space (shared memory) operations
mknod . . . make a directory, or a special or ordinary file
mount. • • • . • • mount a file system
msgctl ..•...•.............. message control operations
msgget get message queue
msgop • • message operations
nice change priority of a process
open • . • open for reading or writing
pause • . . . suspend process until signal
pipe create an interprocess channel
plock lock process, text, or data in memory
profil execution time profile
ptrace•.......•.......... process trace
read • • . . . read from file
semctl . semaphore control operations
semget•................. get set of semaphores
semop • . . . • . . . • • semaphore operations
setpgrp . . • . • set process group ID
setuid • . . . set user and group IDs
shmctl • . . . • . • • shared memory control operations
shmget. • • . get shared memory segment
shmop•...•.....•....... shared memory operations
signal . . • . . . • . • specify what to do upon receipt of a signal
stat •.. get file status
stime . . • . set time
sync . update super-block
sys3b . . . • . • 3B20S specific system calls
time . • get time
times .•................ get process and child process times
ulimit get and set user limits
umask . . • • . . . set and get file creation mask
umount • • unmount a file system
uname . . . • . . • • get name of current UNIX system
unlink • . . . • • . • • remove directory entry
ustat . . . • • get file system statistics
utime • • . • set file access and modification times
wait . • wait for child process to stop or terminate
write. • • write on a file

3. Subroutines

intro • • introduction to subroutines and libraries
a641 • convert between long integer and base-64 ASCII string
abort . . • generate an lOT fault
abort . • • • . . terminate Fortran program
abs . • . . . return integer absolute value

- 5 -

Table of Contents

abs. . . . • . • • . . . • Fortran absolute value
acos . . . • . • . Fortran arccosine intrinsic function
aimag . . Fortran imaginary part of complex argument
aint • Fortran integer part intrinsic function
asin Fortran arcsine intrinsic function
assert verify program assertion
atan . . • . • Fortran arctangent intrinsic function
atan2 •.... Fortran arctangent intrinsic function
atof •. •.... ... convert ASCII string to floating-point number
bessel . • . . . • Bessel functions
bool. • Fortran bitwise boolean functions
bsearch • binary search
clock • report CPU time used
conjg • • . . Fortran complex conjugate intrinsic function
conv • translate characters
cos • . Fortran cosine intrinsic function
cosh . . . • Fortran hyperbolic cosine intrinsic function
crypt. . . . • . • generate DES encryption
ctermid . . • generate file name for terminal
ctime . convert date and time to string
ctype. . • . • . classify characters
cuserid • get character login name of the user
dial • establish an out-going terminal line connection
drand48 generate uniformly distributed pseudo-random numbers
ecvt • convert floating-point number to string
end ...•................... last locations in program
erf•.....•. error function and complementary error function
exp • . . Fortran exponential intrinsic function
exp • . . . • . . . • . . . exponential, logarithm, power, square root functions
fclose. . • • close or flush a stream
ferror. • . • stream status inquiries
floor • floor, ceiling, remainder, absolute value functions
fopen • • open a stream
fread . . • . . • binary input/output
frexp . . . • manipulate parts of floating-point numbers
fseek •.•.•.........•... reposition a file pointer in a stream
ftw • walk a file tree
ftype • . • • . . . • . explicit Fortran type conversion
gamma • . . . • log gamma function
getarg • . . . • • . return Fortran command-line argument
getc get character or word from stream
getcwd . . . • . • • . . get path-name of current working directory
getenv . • • . • . • return value for environment name
getenv • return Fortran environment variable
getgrent . . • . get group file entry
getlogin • . • • • get login name
getopt . • • . • get option letter from argument vector
getpass read a password
getpw•...... get name from UID
getpwent • . • . . • get password file entry
gets • . . . get a string from a stream
getut . • . • . • • • . • . • access utmp file entry
hsearch • . • . • • . • • . • manage hash search tables
hypot ..••......•..•......• Euclidean distance function
index . • . . . • . . . • . . return location of Fortran substring
13tol . • . • convert between 3-byte integers and long integers
Idahread • • read the archive header of a member of an archive file

- 6 -

Table of Contents

ldclose•...•..... close a common object file
ldfhread • • . read the file header of a common object file
ldlread manipulate line number entries of a common object file function
ldlseek seek to line number entries of a section of a common object file
ldohseek seek to the optional file header of a common object file
ldopen • • open a common object file for reading
Idrseek seek to relocation entries of a section of a common object file
ldshread read an indexed/named section header of a common object file
ldsseek • . . seek to an indexed/named section of a common object file
ldtbindex . compute the index of a symbol table entry of a common object file
ldtbread read an indexed symbol table entry of a common object file
ldtbseek •.......... seek to the symbol table of a common object file
len . • . • . • • return length of Fortran string
log. • • Fortran natural logarithm intrinsic function
10giO •............. Fortran common logarithm intrinsic function
logname . return login name of user
lsearch • . • linear search and update
malloc main memory allocator
matherr • error-handling function
max . . . • • . • Fortran maximum-value functions
mclock return Fortran time accounting
memory . memory operations
min. . . . • . . . Fortran minimum-value functions
mktemp. • make a unique file name
mod. • • . Fortran remaindering intrinsic functions
monitor prepare execution profile
nlist • get entries from name list
perror. • system error messages
plot graphics interface subroutines
popen . . • initiate pipe to/from a process
printf print formatted output
putc . . . put character or word on a stream
putpwent write password file entry
puts•.•............ put a string on a stream
qsort quicker sort
rand•.....•........ simple random-number generator
rand . . . • Fortran uniform random-number generator
regcmp • . • • • . compile and execute regular expression
round . . . Fortran nearest integer functions
scanf • convert formatted input
setbuf . . • . • assign buffering to a stream
setjmp • . . . non-local goto
sign . Fortran transfer-of-sign intrinsic function
signal . specify Fortran action on receipt of a system signal
sin. Fortran sine intrinsic function
sinh . Fortran hyperbolic sine intrinsic function
sinh • hyperbolic functions
sleep . . • . • suspend execution for interval
sputl . access long numeric data in a machine independent fashion.
sqrt • • . . • • • • . Fortran square root intrinsic function
ssignal • . . • • . . . • • . software signals
stdio .•••...••...•••. standard buffered input/output package
stdipc •.......•••.• standard interprocess communication package
string • • . . . • • • • • • string operations
strtol . . . • • . . . convert string to integer
swab . . • swap bytes
system • . issue a shell command from Fortran

- 7 -

Table of Contents

system . • • . . . • • • • . . • • . . • . . • issue a shell command
tan . • • . • . • • • • • . • Fortran tangent intrinsic function
tanh ..•..•...••..• Fortran hyperbolic tangent intrinsic function
tmpfile • . • create a temporary file
tmpnam . create a name for a temporary file
trig • . trigonometric functions
tsearch . . • . . manage binary search trees
ttyname . . • . . . • . . . • . find name of a terminal
ttyslot . . find the slot in the utmp file of the current user
ungetc • • push character back into input stream
x25alnk . . attach or install a BX.25 link
x25clnk•........ change over a BX.25 link
x25hlnk •................... halt or detach a BX.25 link
x25ipvc•........... install or remove a PVC on a link

4. File Formats

intro introduction to file formats
a.out common assembler and link editor output
a.out.pdp . • . . PDP-II assembler and link editor output
acct per-process accounting file format
ar common archive file format
ar.pdp • • . archive file format
checklist list of file systems processed by fsck
core . format of core image file
cpio • . . . • format of cpio archive
dir • format of directories
errfile error-log file format
filehdr . file header for common object files
fs format of system volume
fspec . . . format specification in text files
gettydefs . speed and terminal settings used by getty
gps . graphical primitive string, format of graphical files
group • . . . • . • group file
inittab • . • script for the init process
inode•......•...•...•... format of an inode
issue • • . • issue identification file
Idfcn • • . common object file access routines
linenum . . . line number entries in a common object file
master.dec master device information table
master.u3b master device information table
mnttab. • . • . • mounted file system table
passwd•.•. . password file I

plot••..•...•.... graphics interface
pnch . • • • . • . • file format for card images
profile • . . . • setting up an environment at login time
reloc • . • . . relocation information for a common object file
sccsfile • • format of SCCS file
scnhdr section header for a common object file
syms . . common object file symbol table format
system • . . format of 3B20S system description file I

utmp . . • . • . • . . utmp and wtmp entry formats

5. Miscellaneous Facilities

intro
ascii •.
environ

- 8 -

. . introduction to miscellany

. map of ASCII character set
. . • . . . user environment

Table of Contents

eqnchar • . . special character definitions for eqn and neqn
fcntl file control options
greek. • graphics for the extended TTY-37 type-box
man • . . . • . • . . . macros for formatting entries in this manual
mm•.•••. the MM macro package for formatting documents
mosd •...•.. the OSDD adapter macro package for formatting documents
mptx the macro package for formatting a permuted index
mv . a troff macro package for typesetting view graphs and slides
regexp . regular expression compile and match routines
stat • data returned by stat system call
term conventional names for terminals
types . primitive system data types

6. Games

intro introduction to games
arithmetic provide drill in number facts
back. • . . the game of backgammon
bj the game of black jack
chess . the game of chess
craps • . . . • • . the game of craps
hangman•...•............... guess the word
jotto . . . • . . . • secret word game
maze _......................... generate a maze
moo . guessing game
quiz test your knowledge
reversi a game of dramatic reversals
sky obtain ephemerides
ttt tic-tac-toe
wump • the game of hunt-the-wumpus

- 9 -

PERMUTED INDEX

/functions of HP 2640 and 2621-series terminals.
handle special functions of HP 2640 and 2621-series/ hp:

archiver. hpio: HP 2645A terminal tape file
functions of DASI 300 and/ 300, 300s: handle special .

/special functions of DASI 300 and 300s terminals.
of DASI 300 and 300s/ 300, 300s: handle special functions

functions of DASI 300 and 300s terminals. /special
dis: 3B20S disassembler. . . .

produce e source listing from 3B20S object file. list:
sys3b: 3B20S specific system calls.

system: format of 3B20S system description file.
13tol, !to13: convert between 3-byte integers and long/

comparison. diff3: 3-way differential file
Tektronix 4014 terminal. 4014: paginator for the

paginator for the Tektronix 4014 terminal. 4014:
of the DASI 450 terminal. 450: handle special functions

special functions of the DASI 450 terminal. 450: handle
files from the HONEYWELL 6000. /fget.demon: retrieve

send files to the HONEYWELL 6000. fsend:
output to the HONEYWELL 6000. /send phototypesetter

f77: Fortran 77 compiler.
long integer and base-64/ a64l, 164a: convert between

abort: generate an lOT fault.
program. abort: terminate Fortran

Fortran absolute value. abs, iabs, dabs, cabs, zabs:
value. abs: return integer absolute

adb: absolute debugger.
abs: return integer absolute value.

dabs, cabs, zabs: Fortran absolute value. abs, iabs,
/floor, ceiling, remainder, absolute value functions.

of a file. touch: update access and modification times
utime: set file access and modification times.

accessibility of a file. access: determine
commands. graphics: access graphical and numerical

machine/ sput!, sget!: access long numeric data in a
sadp: disk access profiler.

Idfcn: common object file access routines.
/setutent, endutent, utmpname: access utmp file entry.

access: determine accessibility of a file.
enable or disable process accounting. acct:

acct: per-process accounting file format.
search and print process accounting file(s). acctcom:

mclock: return Fortran time accounting. •
process accounting. acct: enable or disable

file format. acct: per-process accounting
process accounting file(s). acctcom: search and print

sin, cos, tan, asin, acos, atan, atan2:/
intrinsic function. acos, dacos: Fortran arccosine

sag: system activity graph.
sar: system activity reporter.

current sees file editing activity. sact: print
report process data and system activity. /time a command;
formatting/ mosd: the OSDD adapter macro package for

adb: absolute debugger.
sees files. admin: create and administer

admin: create and administer sees files. .
imaginary part of complex/ aimag, dimag: Fortran .

part intrinsic function. aint, dint: Fortran integer
alarm: set a process's alarm clock. •.•..

clock. alarm: set a process's alarm .
change data segment space allocation. brk, sbrk:

- 1 -

hp(1)
hp(1)
hpio(1)
300(1)
300(1)
300(1)
300(1)
dis(1)
list(l)
sys3b(2)
system(4)
13tol(3e)
diff3(J)
4014(1)
4014(1)
450(1)
450(1)
fget (1 C)
fsend(lC)
gcat(1C)
f77(1)
a641(3C)
abort(3C)
abort (3 F)
abs(3F)
abs(3C)
adb(1)
abs(3C)
abs(3F)
floor (3 M)
touch(l)
utime(2)
access (2)
graphics(IG)
sput!(3X)
sadp(J)
Idfcn (4)
getut(3C)
access(2)
acct(2)
acct(4)
acctcom(l)
mclock(3F)
acct(2)
acct(4)
acctcom(l)
trig(3M)
acos (3 F)
sag(IG)
sar(1)
sact(1)
timex(I)
mosd(5)
adb(1)
admin(1)
admin(l)
aimag(3F)
aint(3F)
alarm(2)
alarm(2)
brk(2)

Permuted Index

realloc, calloc: main memory allocator. malloc, free,
natural logarithm/ log, alog, dlog, clog: Fortran

logarithm intrinsic/ log 1 0, alog 1 0, dlog 1 0: Fortran common
Fortran/ max, maxO, amaxO, maxi, amaxI, dmaxI:

max, maxO, amaxO, max 1, amax 1, dmax 1: Fortran/ .
Fortran/ min, minO, aminO, mini, amini, dminI:

min, minO, aminO, min 1, amin 1, dmin 1: Fortran/
remaindering intrinsic/ mod, amod, dmod: Fortran

rshift: Fortran bitwise/ and, or, xor, not, lshift, .
sort: sort and/or merge files.

send, gath: gather files and/or submit RJE jobs.
Fortran nearest integer/ ani nt, dnint, nint, idnint:

link editor output. a.out: common assembler and
link editor output. a.out: PDP-II assembler and

introduction to commands and application programs. intro:
maintainer. ar: archive and library

maintainer for portable/ ar: archive and library
ar: archive file format.

format. ar: common archive file
language. bc: arbitrary-precision arithmetic

acos, dacos: Fortran arccosine intrinsic function. .
maintainer. ar: archive and library

for portable archives. ar: archive and library maintainer
cpio: format of cpio archive.

ar: common archive file format.
ar: archive file format.

header of a member of an archive file. /the archive
common archive/ arcv: convert archive files from PDP-Ii to

convert: convert object and archive files to common/
files from PDP-II to common archive format. /archive

an archive/ ldahread: read the archive header of a member of
HP 264SA terminal tape file archiver. hpio:

tar: tape file archiver. •
maintainer for portable archives. /archive and library

cpio: copy file archives in and out.
asin, dasin: Fortran arcsine intrinsic function. . .

atan2, datan2: Fortran arctangent intrinsic function.
atan, datan: Fortran arctangent intrinsic function.

from PDP-II to common archive/ arcv: convert archive files .
imaginary part of complex argument. /dimag: Fortran .

return Fortran command-line argument. getarg:
command. xargs: construct argument list(s) and execute

getopt: get option letter from argument vector.
expr: evaluate arguments as an expression.

echo: echo arguments. • . .
bc: arbitrary-precision arithmetic language. . . .

number facts. arithmetic: provide drill in
expr: evaluate arguments as an expression.

characters. asa: interpret
control characters.

ascii: map of
set.

long integer and base-64
number. atof: convert

and/ ctime, localtime, gmtime,
trigonometric/ sin, cos, tan,

intrinsic function.
help:

output. a.out: common
output. a.out: PDP-II

as: common

as: assembler for PDP-II.
as: common assembler. .
ASA carriage control
asa: interpret ASA carriage
ASCII character set.
ascii: map of ASCII character
ASCII string. /convert between
ASCII string to floating-point
asctime, tzset: convert date
asin, acos, atan, atan2: . .
asin, dasin: Fortran arcsine
ask for help. •....
assembler and link editor
assembler and link editor
assembler.

as: assembler for PDP-II. .

- 2 -

. malloc(3C)
log(3F)
10gi0(3F)
max(3F)
max(3F)
min(3F)
min(3F)
mod (3 F)
boo I (3 F)
sort (1)
send(l C)
round(3F)
a.out(4)
a.out.pdp(4)
intro(I)
ar.pdp(I)
ar(I)
ar.pdp(4)
ar(4)
bc(I)
acos(3F)
ar.pdp(I)
ar(I)
cpio(4)
ar(4)
ar.pdp(4)
Idahread(3X)
arcv(I)
convert(l)
arcv(I)
ldahread (3X)
hpio(I)
tarO)
ar(I)
cpio(I)
asin(3F)
atan2(3F)
atan(3F)
arcv(I)
aimag(3F)
getarg(3F)
xargs(I)
getopt(3C)
expr(I)
echo(I)
bc(I)
arithmetic(6)
expr(I)
as.pdp(I)
as(I)
asa(I)
asa(I)
ascii(S)
ascii(S)
a641(3C)
atof(3C)
ctime(3C)
trig(3M)
asin(3F)
help(I)
a.out(4)
a.out.pdp(4)
as(I)
as.pdp(I)

KMC 11 B/ kasb, kunb: assembler/un-assembler for the
assertion. assert: verify program

assert: verify program assertion.
setbuf: assign buffering to a stream.

sin, cos, tan, asin, acos, atan, atan2: trigonometric!
arctangent intrinsic/ atan, datan: Fortran . .
arctangent intrinsic/ atan2, datan2: Fortran . .

cos, tan, asin, acos, atan, atan2: trigonometric/ sin,
floating-point number. atof: convert ASCII string to

integer. strtol, atol, atoi: convert string to
integer. strtol, atol, atoi: convert string to

link. x25alnk, x25ilnk: attach or install a BX.25 .
wait: await completion of process.

processing language. awk: pattern scanning and
ungetc: push character back into input stream.

back: the game of backgammon.
back: the game of backgammon.

banner: make posters.
between long integer and base-64 ASCII string. /convert

portions of path names. basename, dirname: deliver
arithmetic language. bc: arbitrary-precision

bdiff: big diff. .
cb: C program beautifier.

jO, j 1, jn, yO, y 1, yn: Bessel functions.
bfs: big file scanner.

fread, fwrite: binary input/output.
bsearch: binary search.

tdelete, twalk: manage binary search trees. tsearch,
remove symbols and relocation bits. strip:..

/not, Ishift, rshift: Fortran bitwise boolean functions.
bj: the game of black jack.

bj: the game of black jack.
sum: print checksum and block count of a file. . .

sync: update the super block. . • . . • . . .
rshift: Fortran bitwise boolean functions. Ilshift,

space allocation. brk, sbrk: change data segment
modest-sized programs. bs: a compiler/interpreter for

bsearch: binary search.
stdio: standard buffered input/output package.

setbuf: assign buffering to a stream.
x25ilnk: attach or install a BX.25 link. x25alnk,

x25clnk: change over a BX.25 link.
x25dlnk: halt or detach a BX.25 link. x25hlnk,

swab: swap bytes. .• . . • .
cc, pec: C compiler.

programs. scc: C compiler for stand-alone
cflow: generate C flow graph. . • . . .

cpp: the C language preprocessor.
cb: C program beautifier.

lint: a C program checker.
cxref: generate C program cross reference.

object file. list: produce C source listing from 3B20S
value. abs, iabs, dabs, cabs, zabs: Fortran absolute

cal: print calendar.
dc: desk calculator.

cal: print calendar.
calendar: reminder service.

cu: call another UNIX system.
data returned by stat system call. stat: ..•.••.

malloc, free, realloc, calloc: main memory allocator.
intro: introduction to system calls and error numbers.

sys3b: 3B20S specific system calls. ••.•.....
to an LP line printer. lp, cancel: send/cancel requests

pnch: file format for card images.

- 3 -

Permuted Index

kasb(l)
assert(3X)
assert(3X)
setbuf(3S)
trig(3M)
atan(3F)
atan2(3F)
trig(3M)
atof(3C)
strtol(3C)
strtol(3C)
x25alnk (3C)
wait(l)
awk(l)
ungetc(3S)
back(6) .
back(6)
banned!)
a641(3C)
basename{ 1)
bc(l)
bdiff(l)
cb(l)
bessel (3 M)
bfs(l)
fread(3S)
bsearch (3C)
tsearch (3C)
strip.pdp(!)
boo 1 (3 F)
bj(6)
bj(6)
sum(l)
sync(!)
bool(3F)
brk(2)
bs(l)
bsearch (3C)
stdio(3S)
setbuf(3S)
x25alnk(3C)
x25clnk(3C)
x25hlnk(3C)
swab(3C)
cc(l)
scc(!)
cflow(l)
cpp(l)
cb(l)
lint (1)
cxref(l)
list(l)
abs(3F)
cal(l)
dc(l)
cal(!)
calendar(!)
cu(lC)
stat (5)
malloc(3C)
intro(2)
sys3b(2)
Ip(!)
pnch(4)

Permuted Index

asa: interpret ASA carriage control characters.
files. cat: concatenate and print

cb: C program beautifier. .
cc, pcc: C compiler.

function. cos, dcos, ccos: Fortran cosine intrinsic
cd: change working directory.

commentary of an SCCS delta. cdc: change the delta
ceiling, remainder,! floor, ceil, fmod, fabs: floor,

!ceil, fmod, fabs: floor, ceiling, remainder, absolute!
intrinsic! exp, dexp, cexp: Fortran exponential

cflow: generate C flow graph.
delta: make a delta (change) to an SCCS file.

pipe: create an inter process channel. •
!dble, cmplx, dcmplx, ichar, char: explicit Fortran type/

stream. ungetc: push character back into input .
and neqn. eqnchar: special character definitions for eqn

user. cuserid: get character login name of the
/getchar, fgetc, getw: get character or word from stream.

/putchar, fputc, putw: put character or word on a stream.
ascii: map of ASCII character set.

interpret ASA carriage control characters. asa:
tolower, toascii: translate characters. !_toupper,

- iscntrl, isascii: classify characters. !isprint, isgraph,
tr: translate characters.

directory. chdir: change working
constant-width text for! cw, checkcw: prepare
text for nroff or! eqn, neqn, checkeq: format mathematical

lint: a C program checker.
systems processed by fsck. checklist: list of file

formatted with the/ mm,osdd, checkmm: print/check documents
file. sum: print checksum and block count of a

chess: the game of chess. .•
chess: the game of chess. . .

chown, chgrp: change owner or group.
times: get process and child process times.

terminate. wait: wait for child process to stop or . .
chmod: change mode.
chmod: change mode of file.

of a file. chown: change owner and group
group. chown, chgrp: change owner or

chroot: change root directory.
isgraph, iscntrl, isascii: classify characters. !isprint,

status/ ferror, feof, clearerr, fileno: stream
alarm: set a process's alarm clock. •. •

clock: report CPU time used.
logarithm/ log, alog, dlog, clog: Fortran natural

ldclose, ldaclose: close a common object file.
close: close a file descriptor.

descriptor. close: close a file
fclose, ffiush: close or flush a stream.

cmp: compare two files.
/real, float, sngl, dble, cmplx, dcmplx, ichar, char:/

line-feeds. col: filter reverse
comb: combine SCCS deltas.

comb: combine SCCS deltas.
common to two sorted files. comm: select or reject lines

nice: run a command at low priority.
env: set environment for command execution. . .

uux: unix to unix command execution. • .
system: issue a shell command from Fortran.
quits. nohup: run a command immune to hangups and

net: execute a command on the PCL network.
getopt: parse command options. . • . . . • .

/shell, the standard/restricted command programming language.

- 4 -

asa(I)
cat(I)
cb(l)
cc(I)
cos (3 F)
cd(I)
cdc(I)
floor(3M)
floor(3M)
exp(3F)
cflow(I)
delta(I)
pipe(2)
ftype(3F)
ungetc(3S)
eqnchar(S)
cuserid (3S)
getc(3S)
putc(3S)
ascii(S)
asa(l)
conv(3C)
ctype(3C)
tr(I)
chdir(2)
cw(l)
eqn(I)
lint(I)
checklist (4)
mm(l)
sum(I)
chess(6)
chess(6)
chown(l)
times(2)
wait(2)
chmod(l)
chmod(2)
chown(2)
chown(l)
chroot(2)
ctype(3C)
ferror(3S)
alarm(2)
clock(3C)
log (3 F)
Idclose(3X)
close (2)
close (2)
fclose(3S)
cmp(l)
ftype (3 F)
coI(l)
comb(I)
comb(I)
comm(l)
nice(I)
env(l)
uux(IC)
system(3F)
nohup(I)
net (I C)
getopt(l)
sh(l)

and system/ timex: time a command; report process data
system: issue a shell command.

test: condition evaluation command. •..... .
time: time a

argument list(s) and execute
getarg: return Fortran

intro: introduction to
access graphical and numerical

network useful with graphical
cdc: change the delta

ar:
/archive files from PDP-II to

editor output. a.out:
as:

object and archive files to
logl0, alogIO, dlogIO: Fortran

routines. ldfcn:
ldopen, ldaopen: open a

/line number entries of a
ldclose, ldaclose: close a
read the file header of a
entries of a section of a

the optional file header of a
/entries of a section of a

/ section header of a
an indexed/named section of a

of a symbol table entry of a
symbol table entry of a

seek to the symbol table of a
line number entries in a

nm: print name list of
relocation information for a
scnhdr: section header for a

line number information from a
table format. syms:

filehdr: file header for
Id: link editor for

size: print section sizes of
comm: select or reject lines

ipcs: report inter-process
stdipc: standard interprocess

diff: differential file
cmp:

sees file. sccsdiff:
diff3: 3-way differential file

dircmp: directory
expression. regcmp, regex:
regexp: regular expression

regcmp: regular expression
cc, pcc: e

f7 7 : Fortran 77
programs. scc: e
yacc: yet another

modest-sized programs. bs: a
erf, erfc: error function and

wait: await
Fortran imaginary part of

conjg, dconjg: Fortran
cprs:

pack, peat, unpack:
table entry of a/ ldtbindex:

cat:
synchronous printer. scat:

test:

command.
command. xargs: construct
command-line argument. . •
commands and a pplica tion/
commands. graphics:
commands. stat: statistical
commentary of an sees delta.
common archive file format.
common archive format.
common assembler and link
common assembler.
common formats. /convert
common logarithm intrinsicl
common object file access
common object file forI
common object file function.
common object file.
common object file. ldfhread:
common object file. Inumber
common object file. Iseek to
common object file.
common object file.
common object file. Iseek to
common object file. !the index
common object file. /indexed
common object file. ldtbseek:
common object file. linenum:
common object file.
common object file. reloc:
common object file.
common object file. land
common object file symbol
common object files.
common object files. . . .
common object files. . . .
common to two sorted files.
communication facilities/
communication package.
comparator.
compare two files. . . .
compare two versions of an
comparison.
comparison.•
compile and execute regular
compile and match routines.
compile.
compiler. . ..•..
compiler. •..•..
compiler for stand-alone
compiler-compiler.
compiler/interpreter for
complementary error function.
completion of process.
complex argument. /dimag:
complex conjugate intrinsid
compress an IS25 object file.
compress and expand files.
compute the index of a symbol
concatenate and print files.
concatenate and print files on .
condition evaluation command.

- 5 -

Permuted Index

timex(l)
system(3S)
test (I)
time(l)
xargs(l)
getarg(3F)
intro(l)
graphics (J G)
stat(JG)
cdc(1)
ar(4)
arcv(I)
a.out(4)
as(l)
convert(l)
logI0(3F)
Idfcn(4)
Idopen(3X)
ldlread (3 x)
Idclose(3X)
ldfhread (3X)
Idlseek(3X)
Idohseek(3X)
ldrseek (3X)
ldshread (3X)
ldsseek (3 X)
Idtbindex OX)
Idtbread(3X)
ldtbseek (3X)
linenum(4)
nm(J)
reloc(4)
scnhdr(4)
strip(l)
syms(4)
filehdr(4)
Id(l)
size(l)
comm(l)
ipcs(l)
stdipc(3e)
diff(l)
cmp(l)
sccsdiff(I)
diff3(l)
dircmp(I)
regcmp(3X)
regexp(5)
regcmp(I)
cc(1)
f77(1)
scc(!)
yacc(l)
bs(I)
erf(3M)
wait(I)
aimag(3F)
conjg(3F)
cprs(l)
pack(I)
ldtbindex OX)
cat(l)
scat(l)
test(l)

Permuted Index

conjugate intrinsic function. conjg, dconjg: Fortran complex
conjg, dconjg: Fortran complex conjugate intrinsic function.

an out-going terminal line connection. dial: establish
report and interactive status console. rjestat: RJE status

cw, checkcw: prepare constant-width text for troff.
execute command. xargs: construct argument list (s) and

nroff/troff, tbl, and eqn constructs. deroff: remove
Is: list contents of directories.

toc: graphical table of contents routines.
csplit: context split.

asa: interpret ASA carriage control characters.
ioctl: control device.

fcnt!: file control.
msgct!: message control operations.

semct!: semaphore control operations.
shmctl: shared memory control operations. .

fcnt!: file control options.
uucp status inquiry and job control. uustat:

vc: version control.
terminals. term: conventional names for

char: explicit Fortran type conversion. /dcmplx, ichar,
units: conversion program.

dd: convert and copy a file.
PDP-II to common/ arcv: convert archive files from

floating-point number. atof: convert ASCII string to
integers and/ 13tol, !to13: convert between 3-byte .

and base-64 ASCII/ a64l, 164a: convert between long integer
archive files to common/ convert: convert object and
/gmtime, asctime, tzset: convert date and time to/

to string. ecvt, fcvt, gcvt: convert floating-point number
scanf, fscanf, sscanf: convert formatted input.

files to common/ convert: convert object and archive
strtol, atol, atoi: convert string to integer.
dd: convert and copy a file.

cpio: copy file archives in and out.
cp, In, mv: copy, link or move files.

uulog, uuname: unix to unix copy. uucp,
public UNIX-to-UNIX file copy. uuto, uupick:

file. core: format of core image
core: format of core image file.

cosine intrinsic function. cos, dcos, ccos: Fortran .
atan2: trigonometric/ sin, cos, tan, asin, acos, atan,

hyperbolic cosine intrinsic/ cosh, dcosh: Fortran . .
functions. sinh, cosh, tanh: hyperbolic

cos, dcos, ccos: Fortran cosine intrinsic function.
/dcosh: Fortran hyperbolic cosine intrinsic function.

sum: print checksum and block count of a file.
wc: word count. . . • . . • . .

files. cp, In, mv: copy, link or move
cpio: format of cpio archive.

and out. cpio: copy file archives in .
cpio: format of cpio archive.

preprocessor. cpp: the C language . . .
file. cprs: compress an IS25 object

clock: report CPU time used. • • . .
craps: the game of craps. • . . . • . . .

craps: the game of craps.
rewrite an existing one. creat: create a new file or

file. tmpnam, tempnam: create a name for a temporary
an existing one. creat: create a new file or rewrite

fork: create a new process.
tmpfile: create a temporary file.

channel. pipe: create an interprocess
files. admin: create and administer SCCS

- 6 -

conjg(3F)
• conjg (3 F)

dial(3C)
rjestat(IC)
cw(I)
xargs(I)
deroff(l)
Is(l)
toc(l G)
csplit(I)
asa(I)
ioctl(2)
fcntl(2)
msgct!(2)
semct!(2)
shmctl(2)
fcnt! (5)
uustat(IC)
vc(l)
term(5)
ftype(3F)
units(I)
dd(l)
arcv(I)
atof(3C)
13tol(3C)
a64I(3C)
convert (I)
ctime(3C)
ecvt(3C)
scanf(3S)
convert (I)
strtol(3C)
dd(l)
cpio(I)
cp(l)
uucp(I C)
uuto(IC)
core(4)
core(4)
cos(3F)
trig(3M)
cosh (3 F)
sinh(3M)
cos(3F)
cosh (3 F)
sum(I)
wc(I)
cp(I)
cpio(4)
cpio(I)
cpio(4)
cpp(I)
cprs(I)
clock(3C)
craps(6)
craps(6)
creat(2)
tmpnam(3S)
creat(2)

• fork(2)
tmpfile(3S)
pipe(2)
admin(l)

umask: set and get file creation mask.
cxref: generate C program cross reference.

crypt: encode/decode.
generate DES encryption. crypt, setkey, encrypt:

function. sin, dsin, csin: Fortran sine intrinsic
csplit: context split.

intrinsic/ sqrt, dsqrt, csqrt: Fortran square root
terminal. ct: spawn getty to a remote

for terminal. ctermid: generate file name
asctime, tzset: convert date/ ctime, local time, gmtime, .

cu: call another UNIX system.
ttt, cubic: tic-tac-toe.

activity. sact: print current SCCS file editing
uname: print name of current UNIX system.

una me: get name of current UNIX system. .
slot in the utmp file of the current user. /find the .
getcwd: get path-name of current working directory.
spline: interpolate smooth curve.

name of the user. cuserid: get character login
of each line of a file. cut: cut out selected fields

each line of a file. cut: cut out selected fields of
constant-width text fori cw, checkcw: prepare

cross reference. cxref: generate C program
absolute value. abs, iabs, dabs, cabs, zabs: Fortran .

intrinsic function. acos, dacos: Fortran arccosine
sending daemon, line printer daemon. dpd, Ipd: HONEYWELL

dpd, Ipd: HONEYWELL sending daemon, line printer daemon.
/handle special functions of DASI 300 and 300s terminals.

special functions of the DASI 450 terminal. /handle
intrinsic function. asin, dasin: Fortran arcsine

/time a command; report process data and system activity. . ..
/sgetl: access long numeric data in a machine independent/
plock: lock process, text, or data in memory.

prof: display profile data.
call. stat: data returned by stat system

brk, sbrk: change data segment space allocation.
types: primitive system data types.

join: relational database operator.
intrinsic function. atan, datan: Fortran arctangent

intrinsic function. atan2, datan2: Fortran arctangent
/asctime, tzset: convert date and time to string.
date: print and set the date.

date: print and set the date.
/idint, real, float, sngl, dble, cmplx, dcmplx, ichar,/

dc: desk calculator.
/float, sngl, dble, cmplx, dcmplx, ichar, char: explicit/

conjugate intrinsic/ conjg, dconjg: Fortran complex
intrinsic function. cos, dcos, ccos: Fortran cosine •
cosine intrinsic/ cosh, dcosh: Fortran hyperbolic

dd: convert and copy a file.
adb: absolute debugger.
sdb: symbolic debugger.•

eqnchar: special character definitions for eqn and neqn.
names. basename, dirname: deliver portions of path

file. tail: deliver the last part of a
delta commentary of an SCCS delta. cdc: change the

file. delta: make a delta (change) to an SCCS
delta. cdc: change the delta commentary of an SCCS

rmdel: remove a delta from an SCCS file. . •
to an SCCS file. delta: make a delta (change)

comb: combine SCCS deltas. • . •
mesg: permit or deny messages.

tbl, and eqn constructs. deroff: remove nroff/troff,
setkey, encrypt: generate DES encryption. crypt,

- 7 -

Permuted Index

umask(2)
cxref(I)
crypt(I)
crypt(3C)
sin(3F)
csplit{I)
sqrt(3F)
ct(JC)
ctermid OS)
ctime(3C)
cu(JC)
ttt (6)
sact(J)
uname(l)
uname(2)
ttyslot (3C)
getcwd(3C)
spline{IG)
cuserid (3S)
cut(I)
cut(I)
cw(l)
cxref(l)
abs(3F)
acos(3F)
dpd(1C)
dpd(IC)
300(1)
450(1)
asin(3F)
timex(1)
sputl(3X)
plock(2)
prof(l)
stat(5)
brk(2)
types (5)
join(1)
atan(3F)
atan2(3F)
ctime(3C)
date{I)
date{I)
ftype (3 F)
dc(1)
ftype(3F)
conjg(3F)
cos (3 F)
cosh(3F)
dd(l)
adb(l)
sdb(I)
eqnchar(S)

· basenamd I)
tail (I)
cdc(I)
delta(I)
cdc(I)

• rmdel(l)
• delta(I)
• combO)

mesg(l)
deroff(I)
crypt(3C)

Permuted Index

system: format of 3B20S system description file.
close: close a file descriptor.

dup: duplicate an open file descriptor.
dc: desk calculator.

x2Shlnk, x2Sdlnk: halt or detach a BX.2S link.
file. access: determine accessibility of a

file: determine file type.
master: master device information table.
master: master device information table.

ioctl: control device.
/tekset, td: graphical device routines and filters.

exponential intrinsic/ exp, dexp, cexp: Fortran
terminal line connection. dial: establish an out-going

ratfor: rational Fortran dialect.
bdiff: big diff.

comparator. diff: differential file
comparison. diff3: 3-way differential file

sdiff: side-by-side difference program.
diffmk: mark differences between files.

diff: differential file comparator.
diff3: 3-way differential file comparison.

between files. diffmk: mark differences
of complex argument. aimag, dimag: Fortran imaginary part

intrinsic function. aint, dint: Fortran integer part . .
dir: format of directories. . .
dircmp: directory comparison.

dir: format of directories.
Is: list contents of directories.

rm, rmdir: remove files or directories.
cd: change working directory.

chdir: change working directory.
chroot: change root directory.

dircmp: directory comparison.
unlink: remove directory entry.

path-name of current working directory. getcwd: get
mkdir: make a directory.

pwd: working directory name. . . .
ordinary file. mknod: make a directory, or a special or

path names. basename, dirname: deliver portions of
dis: 3B20S disassembler.

printers. enable, disable: enable/disable LP
acct: enable or disable process accounting.

dis: 3B20S disassembler. . . .
sadp: disk access profiler.

du: summarize disk usage.
prof: display profile data.

hypot: Euclidean distance function.
/lcong48: generate uniformly distributed pseudo-random/

logarithm/ log, alog, dlog, clog: Fortran natural
logarithm/ loglO, aloglO, dlogIO: Fortran common .

max, maxO, amaxO, maxI, amaxl, dmaxl: Fortran maximum-value/
min, minO, aminO, minI, aminI, dminI: Fortran minimum-value/

intrinsic/ mod, amod, dmod: Fortran remaindering
nearest integer/ anint, dnint, nint, idnint: Fortran

mm, osdd, checkmm: print/check documents formatted with the/
macro package for formatting documents. mm: the MM
macro package for formatting documents. /the OSDD adapter

slides. mmt, mvt: typeset documents, view graphs, and
daemon, line printer daemon. dpd, Ipd: HONEYWELL sending

dpr: off-line print. • . . •
reversi: a game of dramatic reversals.

nrand48, mrand48, jrand48,1 drand48, erand48, lrand48,
graph: draw a graph.

arithmetic: provide drill in number facts.

- 8 -

system(4)
close (2)
dup(2)
dc(I)
x2Shlnk(3C)
access(2)
file(I)
master.dec(4)
master.u3b(4)
ioctl(2)
gdev(IG)
exp(3F)
dial(3C)
ratfor(I)
bdiff(l)
diff(I)
diff3(I)
sdiff(l)
diffmk(I)
diff(I)
diff3(J)
diffmk(I)
aimag(3F)
aint(3F)
dir(4)
dircmp(I)
dir(4)
Is(l)
rm(l)
cd(I)
chdir(2)
chroot(2)
dircmp(I)
unlink(2)
getcwd(3C)
mkdir(I)
pwd(I)
mknod(2)
basename(l)
dis(J)
enable(I)
acct(2)
dis(I)
sadp(I)
du(I)
proHI)
hypot(3M)
drand48 (3C)
log (3 F)
logIO(3F)
max(3F)
min(3F)
mod(3F)
round (3 F)

• mm(I)
mm(S)

• mosd(S)
mmt(I)
dpd(IC)
dpr(IC)
reversi(6)
drand48 (3C)
graph(1G)
arithmetic(6)

transfer-of-sign/ sign, isign, dsign: Fortran
intrinsic function. sin, dsin, csin: Fortran sine . . .

intrinsic function. sinh, dsinh: Fortran hyperbolic sine
root intrinsicl sqrt, dsqrt, csqrt: Fortran square

intrinsic function. tan, dtan: Fortran tangent
tangent intrinsicl tanh, dtanh: Fortran hyperbolic

du: summarize disk usage.
an object file. dump: dump selected parts of

od: octal dump. •
object file. dump: dump selected parts of an

descriptor. dup: duplicate an open file
descriptor. dup: duplicate an open file

echo: echo arguments.
echo: echo arguments.

floating-point number tol ecvt, fcvt, gcvt: convert
ed, red: text editor.

program. end, etext, edata: last locations in
sact: print current SCCS file editing activity. . . .

ed, red: text editor.
files. ld: link editor for common object

se: screen editor for video terminals.
ged: graphical editor.

ld: link editor. . . • . . .
common assembler and link editor output. a.out:
PDP-II assembler and link editor output. a.out:

sed: stream editor.
luser, real group, and effective group IDs.

andl Igetegid: get real user, effective user, real group,
Language. efl: Extended Fortran

fsplit: split f77, ratfor, or efl files.
for a pattern. grep, egrep, fgrep: search a file

enable/disable LP printers. enable, disable:
accounting. acct: enable or disable process

enable, disable: enable/disable LP printers.
crypt: encode/decode.

encryption. crypt, setkey, encrypt: generate DES
setkey, encrypt: generate DES encryption. crypt, . .

makekey: generate encryption key.
locations in program. end, etext, edata: last

/ getgrgid, getgrnam, setgrent, endgrent: get group filel
Igetpwuid, getpwnam, setpwent, endpwent: get password filel

utmp/ /pututline, setutent, endutent, utmpname: access
nlist: get entries from name list. . .

file. linenum: line number entries in a common object
man, manprog: print entries in this manual.

man: macros for formatting entries in this manual.
file/ /manipulate line number entries of a common object

commonl Iseek to line number entries of a section of a
Ildnrseek: seek to relocation entries of a section of al

utmp, wtmp: utmp and wtmp entry formats.
endgrent: get group file entry. Igetgrnam, setgrent,

endpwent: get password file entry. Igetpwnam, setpwent,
utmpname: access utmp file entry. Isetutent, endutent,
Ithe index of a symbol table entry of a common object file.

Iread an indexed symbol table entry of a common object file.
putpwent: write password file entry.

unlink: remove directory entry.
command execution. env: set environment for

environ: user environment.
profile: setting up an environment at login time.

environ: user environment.
execution. env: set environment for command

getenv: return value for environment name.
getenv: return Fortran environment variable.

- 9 -

Permuted Index

sign(3F)
sin(3F)
sinh(3F)
sqrt (3 F)
tan(3F)
tanh(3F)
du(I)
dump(I)
od(I)
dump(I)
dup(2)
dup(2)
echo (I)
echo(I)
ecvt(3C)
ed(I)
end(3C)
sact(I)
ed(I)
Id(I)
se(I)
ged(IG)
Id.pdp(I)
a.out(4}
a.out.pdp(4)
sed(I)
getuid(2)
getuid(2)
efl (I)
fsplit(I)
grep(I)
enable(l)
acct(2)
enable(I)
crypt(I)
crypt(3C)
crypt(3C)
makekey(I)
end (3 C)
getgrent (3C)
getpwent(3C)
getut(3C)
nlist(3C)
linenum(4)
man(I)
man(S)
Idlread(3X)
Idlseek(3X)
Idrseek(3X)
utmp(4)
getgrent (3C)
getpwent(3C)
getut(3C)
ldtbindex (3X)
ldtbread (3X)
putpwent(3C)
unlink(2)
env(I)
environ(S)
profile (4)
environ(S)
env(I)
getenv(3C)
getenv(3F)

Permuted Index

sky: obtain
character definitions for

remove nroff/troff, tbl, and
mathematical text for nroff/
definitions for eqn and neqn.

mrand48, jrand48,! drand48,
graphical device/ hpd,

complementary error function.
complementary error/ erf,

format.
system error/ perror,

complementary/ erf, erfc:
function and complementary

sys _errlist, sys _ nerr: system
to system calls and

matherr:
errfile:

hashcheck: find spelling
terminal line/ dial:

in program. end,
hypot:

expression. expr:
test: condition

execlp, execvp: execute a/
execvp: execute/ execl, execv,

execl, execv, execle, execve,
network. net:

execve, execlp, execvp:
construct argument list(s) and

\ regcmp, regex: compile and
set environment for command

sleep: suspend
sleep: suspend

monitor: prepare
profil:

uux: unix to unix command
execvp: execute a/ execl,

execute/ execl, execv, execle,
/execv, execle, execve, execlp,

a new file or rewrite an
process.

exit,
exponential intrinsic/

exponential, logarithm,!
peat, unpack: compress and
cmplx, dcmplx, ichar, char:

exp, dexp, cexp: Fortran
exp, log, 10gIO, pow, sqrt:

expression.
routines. regexp: regular

regcmp: regular
expr: evaluate arguments as an

compile and execute regular
efl:

greek: graphics for the

fsplit: split
remainder,! floor, ceil, fmod,

factor:

true,
data in a machine independent

abort: generate an lOT
a stream.

ephemerides.
eqn and neqn. /special
eqn constructs. deroff:
eqn, neqn, checkeq: format
eqnchar: special character
erand48, Irand48, nrand48,
erase, hardcopy, tekset, td:
erf, erfc: error function and
erfc: error function and
errfile: error-log file
ermo, sys_errlist, sys_nerr:
error function and
error function. /erfc: error
error messages. /ermo,
error numbers. /introduction
error-handling function.
error-log file format. . . .
errors. /hashmake, spellin,
establish an out-going
etext, edata: last locations
Euclidean distance function.
evaluate arguments as an .
evaluation command.
execl, execv, execle, execve,
execle, execve, execlp,
execlp, execvp: execute a/
execute a command on the PCL
execute a file. /execle, . .
execute command. xargs: .
execute regular expression.
execution. env:
execution for an interval.
execution for interval.
execution profile.
execution time profile.
execution.
execv, execle, execve, execlp,
execve, execlp, execvp: .
execvp: execute a file.
existing one. creat: create
exit, _exit: terminate ..
_exit: terminate process.
exp, dexp, cexp: Fortran
exp, log, 10gIO, pow, sqrt:
expand files. pack,
explicit Fortran type/ /dble,
exponential intrinsic/
exponential, logarithm, power,!
expr: evaluate arguments as an
expression compile and match
expression compile.
expression.
expression. regcmp, regex:
Extended Fortran Language.
extended TTY -37 type-box.
n7: Fortran 77 compiler.
n7, ratfor, or efl files.
fabs: floor, ceiling, • . •
factor a number.
factor: factor a number.
false: provide truth values.
fashion .. /access long numeric
fault. • •...•...
fclose, ffiush: close or flush

- 10 -

sky(6)
· eqnchar(S)
· deroff(l)
• eqn(I)
• eqnchar(S)

drand48 (3C)
gdev(IG)
erf(3M)
erf(3M)
errfile(4)
perror(3C)
erf(3M)
erf(3M)
perror(3C)
intro(2)
rna therr (3 M)
errfiie(4)
spell (I)

• diai(3C)
end(3C)

· hypot(3M)
expr(I)
test(I)
exec(2)
exec(2)
exec(2)
net (I C)
exec(2)
xargs(I)
regcmp(3X)
env(I)
sieep(I)
sieep(3C)
monitor(3C)
profil(2)
uux(IC)
exec(2)
exec(2)
exec(2)
creat(2)
exit(2)
exit (2)
exp(3F)
exp(3M)
pack(I)
ftype(3F)
exp(3F)
exp(3M)
expr(I)
regexp(S)
regcmp(l)
expr(I)
regcmp(3X)
efl (1)
greek(S)
n7(I)
fsplit (I)
floor(3M)

• factor(I)
• factor(l)
• true(I)

sput!(3X)
abort(3C)
fclose(3S)

fcnt!: file control.
fcnt!: file control options.

floating-point number/ ecvt, fcvt, gcvt: convert . . .
fopen, freopen, fdopen: open a stream. .

status inquiries. ferror, feof, clearerr, fileno: stream
fileno: stream status/ ferror, feof, clearerr, . .

stream. fclose, mush: close or flush a
files from the HONEYWELL/ fget, fget.demon: retrieve .

word from/ getc, getchar, fgetc, getw: get character or
from the HONEYWELL/ fget, fget.demon: retrieve files

stream. gets, fgets: get a string from a .
pattern. grep, egrep, fgrep: search a file for a

times. utime: set file access and modification
ldfcn: common object file access routines.

determine accessibility of a file. access: .
hpio: HP 264SA terminal tape file archiver.

tar: tape file archiver.
cpio: copy file archives in and out.

chmod: change mode of file.
change owner and group of a file. chown:

diff: differential file comparator.
diff3: 3-way differential file comparison.

fcnt!: file control. . .
fcnt!: file control options.

uupick: public UNIX-to-UNIX file copy. uuto,
core: format of core image file. • •

cprs: compress an IS2S object file. •
umask: set and get file creation mask.

fields of each line of a file. cut: cut out selected
dd: convert and copy a file.

a delta (change) to an SCCS file. delta: make
close: close a file descriptor.

dup: duplicate an open file descriptor.
file: determine file type.

selected parts of an object file. dump: dump
sact: print current SCCS file editing activity.

setgrent, endgrent: get group file entry. /getgrnam,
endpwent: get password file entry. /setpwent,
utmpname: access utmp file entry. /endutent,

putpwent: write password file entry.
execlp, execvp: execute a file. /execv, execle, execve,

grep, egrep, fgrep: search a file for a pattern.
ldaopen: open a common object file for reading. ldopen,

acct: per-process accounting file format.
ar: common archive file format.

ar: archive file format.
errfile: error-log file format.

pnch: file format for card images.
intro: introduction to file formats.

entries of a common object file function. /line number
get: get a version of an SCCS file. • . . .

group: group file.
files. filehdr: file header for common object

file. ldfhread: read the file header of a common object
ldohseek: seek to the optional file header of a common object/

split: split a file into pieces. .•....
issue: issue identification file. •

of a member of an archive file. /read the archive header
close a common object file. ldclose, ldaclose:

file header of a common object file. ldfhread: read the . .
a section of a common object file. /line number entries of

file header of a common object file. /seek to the optional .
a section of a common object file. /relocation entries of .

header of a common object file. /indexed/named section

- 11 -

Permuted Index

fcntl(2)
fcntl(S)
ecvt(3C)
fopen(3S)
ferror(3S)
ferror(3S)
fclose(3S)
fget(lC)
getc(3S)
fget(IC)
gets(3S)
grep(I)
utime(2)
ldfcn (4)
access(2)
hpio(I)
tadl)
cpio(I)
chmod(2)
chown(2)
diff(l)
diff3(I)
fcntl(2)
fcntl(S)
uuto(IC)
core (4)
cprs(I)

• umask(2)
cut(})
dd(l)
deita(I)
close (2)
dup(2)
file(I)
dump(})
sact(I)
getgrent(3C)
getpwent(3C)
getut(3C)
putpwent (3C)
exec (2)
grep(I)
Idopen(3X)
acct(4)
ar(4)
ar.pdp(4)
errfile(4)
pnch(4)
intro(4)
ldlread OX)
get(I)
group(4)
filehdr(4)
Idfhread(3X)
Idohseek(3X)
split (I)
issue(4)
Idahread(3X)
Idclose(3X)
Idfhread(3X)
ldlseek (3X)
ldohseek (3 X)
IdrseekOX)
Idshread(3X)

Permuted Index

section of a common object file. Ito an indexed/named
table entry of a common object file. /the index of a symbol
table entry of a common object file. /read an indexed symbol

table of a common object file. /seek to the symbol
entries in a common object file. linen urn: line number

link: link to a file. • . . •
listing from 3B20S object file. list: produce C source

or a special or ordinary file. /make a directory,
ctermid: generate file name for terminal.

mktemp: make a unique file name.
change the format of a text file. newform:
name list of common object file. nm: print

/find the slot in the utmp file of the current user.
one. creat: create a new file or rewrite an existing

passwd: password file.
or subsequent lines of one file. /lines of several files
/rewind, ftell: reposition a file pointer in a stream.

Iseek: move read/write file pointer.
prs: print an SCCS file. • . . •

read: read from file.
for a common object file. /relocation information

remove a delta from an SCCS file. rmdel:
bfs: big file scanner.

two versions of an SCCS file. sccsdiff: compare
sccsfile: format of SCCS file. • ..•...

header for a common object file. scnhdr: section
stat, fstat: get file status.

from a common object file. /line number information
checksum and block count of a file. sum: print

syms: common object file symbol table format.
volume. file system: format of system

mount: mount a file system.
ustat: get file system statistics.

mnttab: mounted file system table.
umount: unmount a file system.

of 3B20S system description file. system: format
fsck. checklist: list of file systems processed by

deliver the last part of a file. tail: . •
tmpfile: create a temporary file.

create a name for a temporary file. tmpnam, tempnam:
and modification times of a file. touch: update access

ftw: walk a file tree.
file: determine file type. .

undo a previous get of an SCCS file. unget:
report repeated lines in a file. uniq:

val: validate SCCS file.
write: write on a file.

umask: set file-creation mode mask.
common object files. filehdr: file header for
ferror, feof, dearerr, fileno: stream status/

and print process accounting file (s). acctcom: search
create and administer SCCS files. admin:

send, gath: gather files and/or submit RJE jobs.
cat: concatenate and print files. ..•......

cmp: compare two files.
lines common to two sorted files. comm: select or reject

cp, In, mv: copy, link or move files.
mark differences between files. diffmk:

file header for common object files. filehdr:
find: find files.

archive/ arcv: convert archive files from PDP-II to common
fget, fget.demon: retrieve files from the HONEYWELL 6000.

format specification in text files. fspec:
split f77, ratfor, or efl files. fsplit:

- 12 -

Idsseek(3X)
Idtbindex (3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
link(2)
list (1)
mknod(2)
ctermid (3S)
mktemp(3C)
newform(I)
nm(I)
ttyslot (3C)
creat(2)
passwd(4)
paste(I)
fseek(3S)
Iseek(2)
prs(I)
read(2)
reloc(4)
rmdel(l)
bfs(I)
sccsdiff(1)
sccsfile(4)
scnhdr(4)
stat(2)
stripe 1)
sum(1)
syms(4)
fs(4)
mount(2)
ustat (2)
mnttab(4)
umount(2)
system (4)
checklist (4)
tail (1)
tmpfile(3S)
tmpnam(3S)
touch(l)
ftw(3C)
file(I)
unget(l)
uniq(I)
val(I)
write(2)
umask(l)
filehdr(4)
ferror(3S)
acctcom(l)
admin(l)
send (1 C)
cat(I)
cmp(I)
comm(l)
cp(1)
diffmk(I)
filehdr(4)
find(l)
arcv(I)
fget (1 C)
fspec(4)
fsplit(I)

string, format of graphical
link editor for common object

scat: concatenate and print
rm, rmdir: remove

/merge same lines of several
unpack: compress and expand

pr: print
section sizes of common object

size: print sizes of object
sort: sort and/or merge

NSC network. nusend: send
/convert object and archive

fsend: send
what: identify SCCS

greek: select terminal
nl: line numbering

col:
graphicql device routines and

tplot: graphics
find:

hyphen:
ttyname, isatty:

object library. larder:
hashmake, spellin, hashcheck:

of the current user. ttyslot:
tee: pipe

int, ifix, idint, real,
atof: convert ASCII string to

ecvt, fcvt, gcvt: convert
/modf: manipulate parts of

floor, ceiling, remainder,!
floor, ceil, fmod, fabs:

cflow: generate C
fclose, ffiush: close or

remainder,! floor, ceil,
stream.

per-process accounting file
ar: common archive file

from PDP-II to common archive
ar: archive file

errfile: error-log file
pnch: file

nroft' or/ eqn, neqn, checkeq:
description file. system:

newform: change the
inode:
core:
cpio:

dir:
/graphical primitive string,

sccsfile:
file system:
files. fspec:

object file symbol table
troft'. tbl:

nroft':
and archive files to common

intra: introduction to file
wtmp: utmp and wtmp entry
scanf, fscanf, sscanf: convert

fprintf, sprintf: print
/checkmm: print/check documents

files. /graphical primitive
files. Id:
files on synchronous printer.
files or directories.
files or subsequent lines of!
files. pack, pcat,
files.
files. size: print
files.
files.
files to another UNIX on the
files to common formats.
files to the HONEYWELL 6000.
files.
filter.
filter.
filter reverse line-feeds.
filters. /tekset, td:
filters. . . .
find files
find: find files.
find hyphenated words.
find name of a terminal.
find ordering relation for an
find spelling errors. spell, .
find the slot in the utmp file
fitting
float, sngl, dble, cmplx,!
floating-point number.
floating-point number to/
floating-point numbers. .
floor, ceil, fmod, fabs:
floor, ceiling, remainder,!
flow graph.
flush a stream.
fmod, fabs: floor, ceiling,
fopen, freopen, fdopen: open a
fork: create a new process.
format. acct:
format.
format. /convert archive files
format.
format.
format for card images.
format mathematical text for
format of 3B20S system
format of a text file. . .
format of an inode.
format of core image file.
format of cpio archive. .
format of directories.
format of graphical files.
format of SCCS file ...
format of system volume.
format specification in text
format. syms: common .
format tables for nroft' or
format text.
formats. /convert object
formats.
formats. utmp,
formatted input.
formatted output. printf,
formatted with the MM macros.

- 13 -

Permuted Index

gps(4)
Id(I)
scat(I)
rm(1)
paste(1)
pack(J)
pr(I)
size(I)
size.pdp(I)
sort(J)
nusend(IC)
convert (1)
fsend(lC)
what(I)
greek (I)
nl(1)
col(1)
gdev(JG)
tplot(IG)
find(I)
find(J)
hyphen(1)
ttynameOC)
10rder(I)
spell(1)
ttyslot(3C)
tee(!)
ftype(3F)
atofOC)
ecvtOC)
frexp(3C)
floor OM)
floor(3M)
cflow(I)
fclose(3S)
floor OM)
fopenOS)
fork (2)
acct(4)
ar(4)
arcv(I)
ar.pdp(4)
errfile(4)
pnch(4)
eqn(I)
system(4)
newform(I)
inode(4)
core(4)
cpio(4)
dir(4)
gps(4)
sccsfile(4)
fs(4)
fspec(4)
syms(4)
tbl(I)
nroft'(I)

• convert(I)
intro(4)
utmp(4)
scanfOS)
printf(3S)
mm(I)

Permuted Index

mptx: the macro package for
mm: the MM macro package for

OSDD adapter macro package for
manual. man: macros for

f77:
abs, iabs, dabs, cabs, zabs:

system/ signal: specify
function. acos, dacos:
function. asin, dasin:

function. atan2, datan2:
function. atan, datan:

or, xor, not, lshift, rshift:
getarg: return

10gIO, alogIO, dloglO:
intrinsic/ conjg, dconjg:

function. cos, dcos, ccos:
ratfor: rational
getenv: return

function. exp, dexp, cexp:
intrinsic/ cosh, dcosh:
intrinsic/ sinh, dsinh:

intrinsic/ tanh, dtanh:
complex/ aimag, dimag:

function. aint, dint:
efl: Extended

amaxO, max I, amax I, dmax I:
aminO, min I, amin I, dmin I:

log, alog, dlog, clog:
anint, dnint, nint, idnint:

abort: terminate
functions. mod, amod, dmod:

function. sin, dsin, csin:
function. sqrt, dsqrt, csqrt:

len: return length of
index: return location of

issue a shell command from
function. tan, dtan:

mc!ock: return
intrinsic/ sign, isign, dsign:

/dcmplx, ichar, char: explicit
generator. srand, rand:

formatted output. printf,
word on a/ putc, putchar,

stream. puts,
input/output.

memory allocator. malloc,
stream. fopen,

parts of floating-point/
list: produce C source listing

land line number information
gets, fgets: get a string
rmdel: remove a delta

getopt: get option letter
read: read

system: issue a shell command
nlist: get entries

arcv: convert archive files
getw: get character or word

/fget.demon: retrieve files
nsctorje: re-route jobs

getpw: get name
formatted input. scanf,

of file systems processed by
reposition a file pointer in/

formatting a permuted index.
formatting documents. . .
formatting documents. /the
formatting entries in this
Fortran 77 compiler. . . .
Fortran absolute value. . .
Fortran action on receipt of a
Fortran arccosine intrinsic
Fortran arcsine intrinsic
Fortran arctangent intrinsic
Fortran arctangent intrinsic
Fortran bitwise boolean/ and,
Fortran command-line argument.
Fortran common logarithm/
Fortran complex conjugate
Fortran cosine intrinsic . .
Fortran dialect.
Fortran environment variable.
Fortran exponential intrinsic
Fortran hyperbolic cosine .
Fortran hyperbolic sine
Fortran hyperbolic tangent
Fortran imaginary part of
Fortran integer part intrinsic
Fortran Language.
Fortran maximum-value/ /maxO,
Fortran minimum-value/ IminO,
Fortran natural logarithm/
Fortran nearest integer/
Fortran program.
Fortran remaindering intrinsic
Fortran sine intrinsic
Fortran square root intrinsic
Fortran string.
Fortran substring. . . .
Fortran. system:
Fortran tangent intrinsic
Fortran time accounting.
Fortran transfer-of-sign
Fortran type conversion.
Fortran uniform random-number
fprintf, sprintf: print
fputc, putw: put character or
fputs: put a string on a .
fread, fwrite: binary . .
free, realloc, calloc: main
freopen, fdopen: open a
frexp, ldexp, modf: manipulate
from 3B20S object file.
from a common object file.
from a stream.
from an SCCS file.
from argument vector.
from file.
from Fortran.
from name list.
from PDP-II to common archive/
from stream. /getchar, fgetc, .
from the HONEYWELL 6000.
from the NSC network to RJE.
from UID
fscanf, sscanf: convert
fsck. checklist: list
fseek, rewind, ftell:

- 14 -

mptx(S)
mm(S)
mosd(S)
man(S)
f77(I)
abs(3F)
signaI(3F)
acos(3F)
asin(3F)
atan2(3F)
atan(3F)
bool(3F)
getarg(3F)
log 10 (3 F)
conjg (3 F)
cos (3 F)
ratfor(I)
getenv(3F)
exp(3F)
cosh (3 F)
sinh(3F)
tanh (3F)
aimag(3F)
aint(3F)
efl (1)
max(3F)
min(3F)
10g(3F)
round(3F)
abort (3 F)
mod (3 F)
sin(3F)
sqrt(3F)
len(3F)
index (3 F)
system (3 F)
tan(3F)
mc!ock(3F)
sign(3F)
ftype (3 F)
rand(3F)
printf(3S)
putc(3S)
puts(3S)
fread(3S)
malloc(3C)
fopen(3S)
frexp(3C)
list(I)
strip(I)
gets(3S)
rmdel(l)
getopt(3C)
read(2)
system (3 F)
nlist(3C)
arcv(I)
getc(3S)
fget(IC)
nsctorje(I C)
getpw(3C)
scanf(3S)
checklist (4)
fseek(3S)

HONEYWELL 6000. fsend: send files to the
text files. fspec: format specification in

efl files. fsplit: split f77, ratfor, or
stat, fstat: get file status.

pointer in a/ fseek, rewind, ftell: reposition a file .
ftw: walk a file tree. .

Fortran arccosine intrinsic function. acos, dacos:
Fortran integer part intrinsic function. aint, dint:

error/ erf, erfc: error function and complementary
Fortran arcsine intrinsic function. asin, dasin:

Fortran arctangent intrinsic function. atan2, datan2:
Fortran arctangent intrinsic function. atan, datan:
complex conjugate intrinsic function. /dconjg: Fortran

ccos: Fortran cosine intrinsic function. cos, dcos,
hyperbolic cosine intrinsic function. /dcosh: Fortran
and complementary error function. /error function

Fortran exponential intrinsic function. exp, dexp, cexp:
gamma: log gamma function

hypot: Euclidean distance function.• . .
of a common object file function. /line number entries

common logarithm intrinsic function. /dloglO: Fortran
natural logarithm intrinsic function. /dlog, clog: Fortran

matherr: error-handling function.
transfer-of-sign intrinsic function. /dsign: Fortran

csin: Fortran sine intrinsic function. sin, dsin,
hyperbolic sine intrinsic function. /dsinh: Fortran

Fortran square root intrinsic function. sqrt, dsqrt, csqrt:
Fortran tangent intrinsic function. tan, dtan:

hyperbolic tangent intrinsic function. /dtanh: Fortran
jO, j I , jn, yO, y I, yn: Bessel functions.

Fortran bitwise boolean functions. /lshift, rshift:
logarithm, power, square root functions. /sqrt: exponential,

remainder, absolute value functions. /floor, ceiling,
dmax I: Fortran maximum-value functions. /max I, amax I,
dminl: Fortran minimum-value functions. /minl, amini,

Fortran remaindering intrinsic functions. mod, amod, dmod:
300, 300s: handle special functions of DASI 300 and 300s/

hp: handle special functions of HP 2640 and/
terminal. 450: handle special functions of the DASI 450

Fortran nearest integer functions. Inint, idnint:
sinh, cosh, tanh: hyperbolic functions.
atan, atan2: trigonometric functions. Itan, asin, acos,

fread, fwrite: binary inputloutput.
jotto: secret word game. . . • • . • .

moo: guessing game. • .
back: the game of backgammon.

bj: the game of black jack.
chess: the game of chess.
craps: the game of craps.
reversi: a game of dramatic reversals.

wump: the game of hunt-the-wumpus.
intro: introduction to games.

gamma: log gamma function.
gamma: log gamma function.

submit RJE jobs. send, gath: gather files and/or
jobs. send, gath: gather files and/or ~ubmit RJE

output to the HONEYWELL 6000. gcat: send phototypesetter
user. gcosmail: send mail to HIS

number to string. ecvt, fcvt, gcvt: convert floating-point
ged: graphical editor.

maze: generate a maze.
abort: generate an lOT fault.
cflow: generate C flow graph.

reference. cxref: generate C program cross

- 15 -

Permuted Index

fsend(IC)
fspec(4)
fsplit(I)
stat(2)
fseek(3S)
ftw(3C)
acos(3F)
aint(3F)
erf(3M)
asin(3F)
atan2(3F)
atan(3F)
conjg (3 F)
cos(3F)
cosh(3F)
erf(3M)
exp(3F)
gamma(3M)
hypot(3 M)
Idlread(3X)
10gl0(3F)
log (3 F)
matherrC3M)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
besseI(3M)
bool (3 F)
exp(3M)
ftoor(3M)
max(3F)
min(3F)
mod (3 F)
300(1)
hp(I)
450(1)
round (3 F)
sinh(3M)
trig(3M)
fread(3S)
jotto(6)
moo(6)
back(6)
bj(6)
chess (6)
craps(6)
reversi(6)
wump(6)
intro(6)
gamma(3M)
gamma(3M)
send(1 C)
send(IC)
gcat(IC)
gcosmail (I C)
ecvt(3C)
ged(IG)
maze(6)
abort(3C)
cftow(I)
cxref(I)

Permuted Index

crypt, setkey, encrypt: generate DES encryption.
makekey: generate encryption key.

terminal. ctermid: generate file name for
lexical tasks. lex: generate programs for simple

/srand48, seed48, Icong48: generate uniformly distributed/
srand: simple random-number generator. rand,

Fortran uniform random-number generator. srand, rand: . • .
gets, fgets: get a string from a stream.

get: get a version of an SCCS file.
ulimit: get and set user limits. . .

the user. cuserid: get character login name of
getc, getchar, fgetc, getw: get character or word from/

nlist: get entries from name list.
umask: set and get file creation mask.

stat, fstat: get file status.•
ustat: get file system statistics.

file. get: get a version of an SCCS
/getgrnam, setgrent, endgrent: get group file entry.

getlogin: get login name. . .
logname: get login name. . •

msgget: get message queue.
getpw: get name from UID.

system. uname: get name of current UNIX
unget: undo a previous get of an SCCS file. .

argument vector. getopt: get option letter from
/getpwnam, setpwent, endpwent: get password file entry.

working directory. getcwd: get path-name of current
times. times: get process and child process

and/ getpid, getpgrp, getppid: get process, process group,
/geteuid, getgid, getegid: get real user, effective user,!

semget: get set of semaphores.
shmget: get shared memory segment.

tty: get the terminal's name.
time: get time. • . .

command-line argument. getarg: return Fortran
get character or word from/ getc, getchar, fgetc, getw:

character or word from/ getc, getchar, fgetc, getw: get
current working directory. getcwd: get path-name of

getuid, geteuid, getgid, getegid: get real user,!
environment variable. getenv: return Fortran .

environment name. getenv: return value for
real user, effective/ getuid, geteuid, getgid, getegid: get

user,! getuid, geteuid, getgid, getegid: get real
setgrent, endgrent: get group/ getgrent, getgrgid, getgrnam,

endgrent: get group/ getgrent, getgrgid, getgrnam, setgrent,
get group/ getgrent, getgrgid, getgrnam, setgrent, endgrent:

getlogin: get login name.
argument vector. getopt: get option letter from

getopt: parse command options.
getpass: read a password. . .

process group, and/ getpid, getpgrp, getppid: get process,
process, process group, and/ getpid, getpgrp, getppid: get
group, and/ getpid, getpgrp, getppid: get process, process

getpw: get name from UID.
setpwent, endpwent: get/ getpwent, getpwuid, getpwnam,
get/ getpwent, getpwuid, getpwnam, setpwent, endpwent:
endpwent: get/ getpwent, getpwuid, getpwnam, setpwent,

a stream. gets, fgets: get a string from
and terminal settings used by getty. gettydefs: speed . . .

ct: spawn getty to a remote terminal.
settings used by getty. gettydefs: speed and terminal
getegid: get real user,! getuid, geteuid, getgid, • •

pututline, setutent,! getutent, getutid, getutline,
setutent, endutent,! getutent, getutid, getutline, pututline,

- 16 -

crypt(3C)
makekey(l)
ctermid (3S)
lex(I)

• drand48 (3C)
• rand(3C)
• rand (3 F)

gets(3S)
get(I)
ulimit(2)
cuserid (3S)
getc(3S)
nlist(3C)

• umask(2)
stat (2)

· ustat(2)
· get(I)

getgrent(3C)
getlogin (3C)
logname(l)
msgget(2)
getpw(3C)
uname(2)
unget(l)
getopt(3C)
getpwent (3C)
getcwd(3C)
times (2)
getpid(2)
getuid(2)
semget(2)

• shmget(2)
tty (I)
time(2)
getarg (3 F)
getc(3S)
getc(3S)
getcwd(3C)
getuid(2)
getenv (3 F)
getenv(3C)
getuid(2)
getuid(2)
getgrent (3C)
getgrent(3C)
getgrent(3C)
getlogin (3C)
getopt(3C)
getopt(l)
getpass(3C)
getpid(2)
getpid(2)
getpid(2)
getpw(3C)
getpwent (3C)
getpwent (3C)
getpwent(3C)
gets(3S)

• gettydefs(4)
ct(IC)
gettydefs(4)
getuid(2)
getut(3C)

• getut(3C)

setutent,/ getutent, getutid, getutline, pututline,
from/ getc, getchar, fgetc, getw: get character or word
convert/ ctime, localtime, gmtime, asctime, tzset: .
setjmp, longjmp: non-local goto. .•......

string, format of graphical! gps: graphical primitive
cHow: generate C How graph. . •

graph: draw a graph.
graph: draw a graph.

sag: system activity graph. . •
commands. graphics: access graphical and numerical

/network useful with graphical commands.
/erase, hardcopy, tekset, td: graphical device routines andl

ged: graphical editor.
primitive string, format of graphical files. /graphical
format of graphical! gps: graphical primitive string,

routines. toc: graphical table of contents
gutil: graphical utilities.

numerical commands. graphics: access graphical and
tplot: graphics filters.

TTY -37 type-box. greek: graphics for the extended
plot: graphics interface. . . .

subroutines. plot: graphics interface . . .
mvt: typeset documents, view graphs, and slides. mmt,
package for typesetting view graphs and slides. Imacro
extended TTY -37 type-box. greek: graphics for the • .

greek: select terminal filter.
file for a pattern. grep, egrep, fgrep: search a

luser, effective user, real group, and effective group/
/getppid: get process, process group, and parent process IDs.

chown, chgrp: change owner or group.
setgrent, endgrent: get group file entry. Igetgrnam,

group: group file.
group: group file.

setpgrp: set process group 10.
id: print user and group IDs and names.

real group, and effective group IDs. /effective user,
setuid, setgid: set user and group IDs.

newgrp: log in to a new group. • .
chown: change owner and group of a file.
a signal to a process or a group of processes. Isend

update, and regenerate groups of programs. /maintain,
ssignal, gsignal: software signals.

hangman: guess the word. • ...
moo: guessing game.

gutil: graphical utilities.
x25hlnk, x25dlnk: halt or detach a BX.25 link.

DASI 300 and 300s/ 300, 300s: handle special functions of
2640 and 2621-series/ hp: handle special functions of HP

the DASI 450 terminal. 450: handle special functions of
hangman: guess the word.

nohup: run a command immune to hangups and quits.
graphical device/ hpd, erase, hardcopy, tekset, td: . . •

hcreate, hdestroy: manage hash search tables. hsearch,
spell, hashmake, spellin, hashcheck: find spellingl .

find spelling errors. spell, hashmake, spellin, hashcheck:
search tables. hsearch, hcreate, hdestroy: manage hash

tables. hsearch, hcreate, hdestroy: manage hash search
file. scnhdr: section header for a common object

files. filehdr: file header for common object
file. ldfhread: read the file header of a common object

/seek to the optional file header of a common object/
Iread an indexed/named section header of a common object/

Idahread: read the archive header of a member of ani
help: ask for help.

- 17 -

Permuted Index

getut(3C)
getc(3S)
ctime(3C)
setjmp(3C)
gps(4)
cHow(I)
graph(IG)
graph(IG)
sag(IG)
graphics (I G)
stat (I G)
gdev(lG)
ged(IG)
gps(4)
gps(4)
toc(IG)
gutil(lG)
graphics(IG)
tplot(lG)
greek(S)
plot(4)
plot{3X)
mmt(l)
mv(5)
greek(5)
greek(l)
grep(I)
getuid(2)
getpid (2)
chown(l)
getgrent (3C)
group(4)
group(4)
setpgrp(2)
id(l)
getuid(2)
setuid(2)
newgrp(I)
chown(2)
kill (2)
make(I)
ssignal (3C)
hangman(6)
moo(6)
gutiI(IG)
x25hlnk (3C)

• 300(1)
hp(I)
450(I)
hangman(6)
nohup(I)
gdev(IG)
hsearch(3C)
spell(l)
spell (I)
hsearch (3C)
hsearch(3C)
scnhdr(4)

• filehdr(4)
Idfhread (3X)
Idohseek(3X)
Idshread (3X)
Idahread(3X)
help(I)

Permuted Index

help: ask for help. .•.•..•...•..
retrieve files from the HONEYWELL 6000. /fget.demon:

fsend: send files to the HONEYWELL 6000. . . . • . .
phototypesetter output to the

printer daemon. dpd, Ipd:
handle special functions of

archiver. hpio:
of HP 2640 and 2621-series/
td: graphical device routines/

file archiver.
manage hash search tables.

wump: the game of
cosh, dcosh: Fortran

sinh, cosh, tanh:
sinh, dsinh: Fortran

tanh, dtanh: Fortran

hyphen: find
function.

Fortran absolute value. abs,
/sngl, dble, cmplx, dcmplx,

semaphore set or shared memory
and names.

setpgrp: set process group
issue: issue

what:
dble, cmplx,/ int, ifix,

integer/ anint, dnint, nint,
id: print user and group

group, and parent process
group, and effective group
setgid: set user and group

sngl, dble, cmplx,/ int,
core: format of core

pnch: file format for card
aimag, dimag: Fortran
nohup: run a command

long numeric data in a machine
for formatting a permuted

of a/ ldtbindex: compute the
ptx: permuted

Fortran substring.
a common/ ldtbread: read an

ldshread, ldnshread: read an
ldsseek, ldnsseek: seek to an

inittab: script for the
process. popen, pclose:

process.

inode: format of an
sscanf: convert formatted
push character back into

fread, fwrite: binary
stdio: standard buffered

fileno: stream status
uustat: uucp status

x2Salnk, x2Silnk: attach or
link. x2Sipvc, x2Srpvc:

sngl, dble, cmplx, dcmplx,/
abs: return

/164a: convert between long
nint, idnint: Fortran nearest
function. aint, dint: Fortran

atol, atoi: convert string to

HONEYWELL 6000. gcat: send
HONEYWELL sending daemon, line
HP 2640 and 2621-series/ hp:
HP 2645A terminal tape file
hp: handle special functions . •
hpd, erase, hardcopy, tekset,
hpio: HP 2645A terminal tape
hsearch, hcreate, hdestroy:
hunt-the-wumpus.
hyperbolic cosine intrinsic/
hyperbolic functions. . . .
hyperbolic sine intrinsic/ .
hyperbolic tangent intrinsic/
hyphen: find hyphenated words.
hyphenated words.
hypot: Euclidean distance
iabs, dabs, cabs, zabs:
ichar, char: explicit Fortran/
id. /remove a message queue,
id: print user and group IDs
10 ..•.....
identification file.
identify SCCS files.
idint, real, float, sngl,
idnint: Fortran nearest
IDs and names. . . •
IDs. /get process, process
IDs. /effective user, real
IDs. setuid,
ifix, idint, real, float,
image file.
images.
imaginary part of complex/
immune to hangups and quits.
independent fashion .. /access
index. /the macro package
index of a symbol table entry
index.•...
index: return location of
indexed symbol table entry of
indexed/named section header/
indexed/named section of a/
init process. ...•.
initiate pipe to/from a
inittab: script for the init
inode: format of an inode.
inode
input. scanf, fscanf,
input stream. ungetc:
input/output.
input/output package.
inquiries. !feof, clearerr,
inquiry and job control.
install a BX.25 link. . . .
install or remove a PVC on a
int, ifix, idint, real, float,
integer absolute value.
integer and base-64 ASCII/
integer functions. /dnint,
integer part intrinsic
integer. strtol,

- 18 -

help(I)
fget(IC)
fsend(IC)
gcat(IC)
dpd(IC)
hp(I)
hpio(I)
hp(I)
gdev(IG)
hpio(I)
hsearch (3C)
wump(6)
cosh (3 F)
sinh(3M)
sinh(3F)
tanh (3 F)
hyphen(I)
hyphen(I)
hypot(3M)
abs(3F)
ftype(3F)
ipcrm(I)
id(l)
setpgrp(2)
issue(4)
what(I)
ftype(3F)
round (3 F)
id(l)
getpid(2)
getuid(2)

• setuid(2)
ftype(3F)
core(4)
pnch(4)
aimag(3F)
nohup(I)
sput!(3X)

• mptx(S)
ldtbindex (3X)
ptx(I)
index (3 F)
Idtbread(3X)
Idshread(3X)
Idsseek(3X)
inittab(4)
popen(3S)
inittab(4)
inode(4)
inode(4)

• scanf(3S)
ungetc(3S)
fread(3S)
stdio(3S)

· ferror(3S)
uustat(IC)
x25alnk(3C)

• x25ipvc(3C)
• ftype(3F)

abs(3C)
a64I(3C)

• round (3 F)
aint(3F)

. . strtol (3C)

Ilto13: convert between 3-byte
3-byte integers and long

rjestat: RJE status report and
plot: graphics
plot: graphics

spline:
characters. asa:
sno: SNOBOL
pipe: create an

facilitiesl ipcs: report
package. stdipc: standard
suspend execution for an

sleep: suspend execution for
acos, dacos: Fortran arccosine

dint: Fortran integer part
asin, dasin: Fortran arcsine
datan2: Fortran arctangent

datan: Fortran arctangent
Fortran complex conjugate

dcos, ccos: Fortran cosine
Fortran hyperbolic cosine
cexp: Fortran exponential

Fortran common logarithm
Fortran natural logarithm

Fortran transfer-of-sign
sin, dsin, csin: Fortran sine

dsinh: Fortran hyperbolic sine
csqrt: Fortran square root
tan, dtan: Fortran tangent
Fortran hyperbolic tangent

dmod: Fortran remaindering
commands and applicationl

formats.

miscellany.
subroutines and libraries.
calls and error numbers.

application programs. intra:
intro:
intra:
intra:

and libraries. intra:
and error numbers. intra:

abort: generate an
semaphore set or sharedl
communication facilitiesl

cprs: compress an
lislower, isdigit, isxdigit,

isdigit, isxdigit, isalnum,l
lisprint, isgraph, iscntrl,

terminal. tty name,
lispunct, isprint, isgraph,
isalpha, isupper, islower,
lisspace, ispunct, isprint,

transfer-of-signl sign,
isalnum,l isalpha, isupper,
lisalnum, isspace, ispunct,
lisxdigit, isalnum, isspace,
lisdigit, isxdigit, isalnum,

Fortran. system:
system:

issue:
file.

integers and long integers.
integers. I convert between
interactive status console.
interface. • •..•.
interface subroutines.
interpolate smooth curve.
interpret ASA carriage control
interpreter. • . . . • . . .
interprocess channel. • . . .
inter-process communication
interprocess communication
interval. sleep:
interval. .•....
intrinsic function.
intrinsic function. aint,
intrinsic function.
intrinsic function. atan2,
intrinsic function. atan,
intrinsic function. Idconjg: '.
intrinsic function. cos,
intrinsic function. Idcosh:
intrinsic function. Idexp,
intrinsic function. IdloglO:
intrinsic function. Iclog:
intrinsic function. Idsign:
intrinsic function.
intrinsic function. sinh,
intrinsic function. Idsqrt,
intrinsic function.
intrinsic function. Idtanh:
intrinsic functions. lamod,
intra: introduction to . . .
intra: introduction to file
intra: introduction to games.
intra: introduction to . . .
intra: introduction to . . .
intro: introduction to system
introduction to commands and
introduction to file formats.
introduction to games.
introduction to miscellany.
introduction to subroutines
introduction to system calls
ioctl: control device.
lOT fault. ...•...
ipcrm: remove a message queue,
ipcs: report inter-process
IS2S object file.
isalnum, isspace, ispunct,l
isalpha, isupper, islower,
isascii: classify characters.
isatty: find name of a
iscntrl, isascii: classify I .
isdigit, isxdigit, isalnum,l
isgraph, iscntrl, isascii:1
isign, dsign: Fortran
islower, isdigit, isxdigit,
isprint, isgraph, iscntrl,l
ispunct, isprint, isgraph,l
isspace, ispunct, isprint,l
issue a shell command from
issue a shell command. .
issue identification file. .
issue: issue identification

- 19 -

Permuted Index

13tol (3C)
13tol(3C)
rjestat(} C)
plot (4)
plot(3X)
spline(IG)
asa(l)
sno(1)
pipe(2)
ipcs(I)
stdipc(3C)
sleep(I)
sleep(3C)
acos(3F)
aint(3F)
asin(3F)
atan2(3F)
atan(3F)
conjg(3F)
cos(3F)
cosh (3 F)
exp(3F)
logIO(3F)
10g(3F)
sign (3 F)
sin (3 F)
sinh(3F)
sqrt (3 F)
tan(3F)
tanh(3F)
mod (3 F)
intro(I)
intro(4)
intro(6)
intro(S)
intro(3)
intro(2)
intro(I)
intro(4)
intro(6)
intro(S)
intro(3)
intro(2)
ioctl(2)
abort(3C)
ipcrm(I)
ipcs(I)
cprs(I)
ctype(3C)
ctype(3C)
ctype(3C)
ttynameOC)
ctype(3C)
ctype(3C)
ctype(3C)
sign(3F)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
system (3 F)
system(3S)
issue(4)
issue(4)

Permuted Index

isxdigit, isalnum,/ isalpha, isupper, islower, isdigit,
lisupper, is lower, isdigit, isxdigit, isalnum, isspace,/

news: print news items. • • . . • • . . . •
functions. jO, jl, jn, yO, yl, yn: Bessel

functions. jO, jl, jn, yO, yl, yn: Bessel
bj: the game of black jack. .•••••..

functions. jO, j 1, jn, yO, y 1, yn: Bessel . .
operator. join: relational database

jotto: secret word game.
Ilrand48, nrand48, mrand48, jrand48, srand48, seed48,/
assembler/un-assembler forI kasb, kunb: • . • • . •

makekey: generate encryption key. • . • • . ••..
process or a group of! kill: send a signal to a

kill: terminate a process.
lassembler/un-assembler for the KMCIIB microprocessor.

quiz: test your knowledge. . . • • . • .
for the KMCII B/ kasb, kunb: assembler/un-assembler
3-byte integers and longl 13tol, Itol3: convert between

integer and base-641 a64l, 164a: convert between long
scanning and processing language. awk: pattern

arbitrary-precision arithmetic language. be:
efl: Extended Fortran Language. • . . • . •

cpp: the C language preprocessor.
command programming language. Istandard/restricted

Ijrand48, srand48, seed48, lcong48: generate uniformly/
object files. Id: link editor for common

Id: link editor. •...•
object file. Idclose, Idaclose: close a common .

header of a member of anI Idahread: read the archive
file for reading. Idopen, Idaopen: open a common object

common object file. Idclose, Idaclose: close a
of floating-pointl frexp, ldexp, mOOf: manipulate parts

access routines. ldfcn: common object file • . •
of a common object file. ldfhread: read the file header

line number entriesl ldlread, Idlinit, Idlitem: manipulate
numberl Idlread, Idlinit, ldlitem: manipulate line
manipulate line numberl ldlread, ldlinit, Idlitem: . •

number entries of a section I ldlseek,ldnlseek: seek to line
entries of a section I ldrseek, Idnrseek: seek to relocation

indexed/namedl ldshread, Idnshread: read an
indexed/namedl ldsseek, Idnsseek: seek to an
file header of a common I ldohseek: seek to the optional

object file for reading. ldopen, ldaopen: open a common
relocation entries of al Idrseek, Idnrseek: seek to .

indexed/named section header I Idshread, ldnshread: read an
indexed/named section of al ldsseek, ldnsseek: seek to an
of a symbol table entry of al Idtbindex: compute the index

symbol table entry of al ldtbread: read an indexed
table of a common objectl ldtbseek: seek to the symbol

string. len: return length of Fortran
len: return length of Fortran string.

getopt: get option letter from argument vector.
simple lexical tasks. lex: generate programs for

generate programs for simple lexical tasks. lex:
to subroutines and libraries. lintroduction •

relation for an object library. lfind ordering
ar: archive and library maintainer.

portablel ar: archive and library maintainer for
ulimit: get and set user limits. • . . • • . •

an out-going terminal line connection. lestablish
line: read one line. • • • • • • • • .

common object file. linen urn: line number entries in a
Ildlinit, ldlitem: manipulate line number entries of al

ldlseek,ldnlseek: seek to line number entries of a/

. 20·

• • ctype(3C)
ctype(3C)
news(I)
bessel(3M)
bessel (3 M)

• bj(6)
· • bessel (3 M)

• join(I)
• • jotto(6)
• • drand48 (3C)
• • kasb(l)

makekey(l)
• • kill (2)

· kilI(I)
• • kasb(I)

quiz(6)
• • kasb(I)
• • 13tol(3C)

a641(3C)
· • awk(I)
· • bc(I)

eft (I)
• • cpp(I)

sh(l)
drand48 (3C)

· • Id(I)
Id.pdp(I)

• Idclose(3X)
• Idahread (3X)

Idopen(3X)
• Idclose(3X)
• frexp(3C)
• Idfcn(4)
• Idfhread (3X)
• Idlread (3X)
• Idlread(3X)
• Idlread (3X)
• Idlseek(3X)
• Idrseek(3X)
• Idshread (3X)
• Idsseek (3X)

Idohseek(3X)
Idopen(3X)

• Idrseek(3X)
• Idshread (3X)
• Idsseek (3X)

Idtbindex OX)
Idtbread (3X)
Idtbseek(3X)
len (3 F)

• len(3F)
• getopt (3C)
• lex(I)
• lex(I)
• intro(3)
• 10rder(I)
• ar.pdp(I)
· ad!)
• ulimit(2)
• dial(3C)
• line(I)
• linenum(4)

ldlread (3X)
Idlseek(3X)

strip: strip symbol and line number information from al
nl: line numbering filter.

out selected fields of each line of a file. cut: cut
lpd: HONEYWELL sending daemon, line printer daemon. dpd,

send/cancel requests to an LP line printer. lp, cancel:
lpr: line printer spooler.

line: read one line. . • •
Isearch: linear search and update.

col: filter reverse line-feeds.•.
in a common object file. linen urn: line number entries

files. comm: select or reject lines common to two sorted
uniq: report repeated lines in a file. • • . • . .

of several files or subsequent lines of one file. Isame lines
subsequentl paste: merge same lines of several files or

files. ld: link editor for common object
Id: link editor. . • .

a.out: common assembler and link editor output.
a.out: PDP-II assembler and link editor output.

link: link to a file.
cp, In, mv: copy, link or move files.

link: link to a file.
attach or install a BX.25 link. x25alnk, x25ilnk:

x25clnk: change over a BX.25 link. . . • . • . . .
halt or detach a BX.25 link. x25hlnk, x25dlnk:

install or remove a PVC on a link. x25ipvc, x25rpvc:
lint: a C program checker.

Is: list contents of directories.
nlist: get entries from name list. • .

nm: print name list. • . .
nm: print name list of common object file.

by fsck. checklist: list of file systems processed
from 3B20S object file. list: produce C source listing

file. list: produce C source listing from 3B20S object
xargs: construct argument list(s) and execute command.

files. cp, In, mv: copy, link or move
tzset: convert datel ctime, localtime, gmtime, asctime, .

index: return location of Fortran substring.
end, etext, edata: last locations in program.

memory. plock: lock process, text, or data in
trouble: log a trouble report. • . .

natural logarithm intrinsicl log, alog, dlog, clog: Fortran
gamma: log gamma function ..
newgrp: log in to a new group.

exponential, logarithm,! exp, log, 10g10, pow, sqrt:
common logarithm intrinsicl log I 0, alog I 0, dlog I 0: Fortran
logarithm, power,! exp, log, 10glO, pow, sqrt: exponential,

laloglO, dloglO: Fortran common logarithm intrinsic function.
Idlog, clog: Fortran natural logarithm intrinsic function.

/loglO, pow, sqrt: exponential, logarithm, power, square root I
getlogin: get login name.
logname: get login name.

cuserid: get character login name of the user.
logname: return login name of user.
passwd: change login password.

login: sign on.
setting up an environment at login time. profile:

logname: get login name.
user. logname: return login name of

a64l, 164a: convert between long integer and base-64 ASCIII
between 3-byte integers and long integers. Iltol3: convert

sputl, sget1: access long numeric data in a machinel
setjmp, longjmp: non-local goto.

for an object library. lorder: find ordering relation
nice: run a command at low priority. • •.••..•

- 21 -

Permuted Index

strip(I)
nl(l)
cut(I)
dpd(IC)
Ip(I)
Ipr(I)
line(I)
Isearch (3C)
coI(l)
linenum(4)
comm(l)
uniQ(I)
paste(I)
paste(I)
Id(l)
Id.pdp(I)
a.out(4)
a.out.pdp(4)
link(2)
cp(l)
link(2)

• x25alnk (3 C)
x25clnk (3C)
x25hlnk (3C)
x25ipvc(3C)
lint(I)
Is(l)
nlist(3C)
nm.{)dp(I)
nm(I)
checklist (4)

• list(I)
list(I)
xargs(l)
cp(I)
ctime(3C)
index (3 F)
end(3C)
plock(2)
trouble(I)
log(3F)
gamma(3M)
newgrp(I)
exp(3M)
logI0(3F)
exp(3M)
10gI0(3F)
log (3 F)
exp(3M)
getlogin (3C)
logname(I)
cuserid (3S)
10gname(3X)
passwd(l)
10gin(l)
profile (4)
10gname(I)
10gname(3X)
a64I(3C)
13tol(3C)
sputI(3X)
setjmp(3C)
10rder(I)
nice(I)

Permuted Index

requests to an LP line/
send/cancel requests to an

disable: enable/disable
Ipstat: print

line printer daemon. dpd,

information.
jrand48,1 drand48, erand48,

directories.
update.
pointer.

bitwise/ and, or, xor, not,
integers and long/ 13tol,

/access long numeric data in a
permuted index. mptx: the
documents. mm: the MM
mosd: the OSDD adapter

view graphs and/ mv: a troff
m4:

in this manual. man:
formatted with the MM

send mail to users or read
users or read mail.

gcosmail: send
mail, rmail: send

malloc, free, realloc, calloc:
regenerate groups of! make:

ar: archive and library
ar: archive and library

SCCS file. delta:
mkdir:

or ordinary file. mknod:
mktemp:

regenerate groups of!
banner:

key.
main memory allocator.

entries in this manual.
this manual.

tsearch, tdelete, twalk:
hsearch, hcreate, hdestroy:

off Idlread, Idlinit, Idlitem:
frexp, Idexp, modf:

manual. man,
manprog: print entries in this
for formatting entries in this

ascii:
files. diffmk:

umask: set file-creation mode
set and get file creation

table. master:
table. master:

information table.
information table.

regular expression compile and
eqn, neqn, checkeq: format

function.
multiple-access-user-space/

dmax I: Fortran maximum-value/
dmaxI: Fortran/ max,

max, maxO, amaxO,
/maxI, amaxI, dmaxI: Fortran

Ip, cancel: send/cancel • •
LP line printer. Ip, cancel:
LP printers. enable, • . .
LP status information. . .

•••• Ip(l)
lp(l)
enable(I)

lpd: HONEYWELL sending daemon,
Ipr: line printer spooler.
Ipstat: print LP status
Irand48, nrand48, mrand48,
Is: list contents of
lsearch: linear search and •
lseek: move read/write file
Ishift, rshift: Fortran . • .
ltol3: convert between 3-byte
m4: macro processor.
machine independent fashion ..
macro package for formatting a
macro package for formatting .
macro package for formatting/
macro package for typesetting
macro processor. ...•..
macros for formatting entries •
macros. /print/check documents
mail. mail, rmail: • . •
mail, rmail: send mail to .
mail to HIS user.
mail to users or read mail.
main memory allocator.
maintain, update, and
maintainer. . . • . . •
maintainer for portable/
make a delta (change) to an
make a directory. • . • . . •
make a directory, or a special
make a unique file name. . .
make: maintain, update, and
make posters. . •
makekey: generate encryption
malloc, free, realloc, calloc: . •
man: macros for formatting . .
man, manprog: print entries in
manage binary search trees.
manage hash search tables. . •
manipulate line number entries
manipulate parts of! . • . .
manprog: print entries in this
manual. man, ...•..•
manual. man: macros
map of ASCII character set.
mark differences between
mask ..•..••..
mask. umask:
master device information
master device information
master: master device
master: master device
match routines. regexp:
mathematical text for nroff or/
matherr: error-handling
maus:
max, maxO, amaxO, max I, amax I,
maxO, amaxO, max I, amax I,
maxI, amaxI, dmaxI: Fortran!
maximum-value functions.
maze: generate a ma~e.

- 22 -

• Ipstat(I)
dpd(IC)
Ipr(I)
Ipstat(I)

• drand48 (3C)
Is(I)
lsearch (3 C)
Iseek(2)
bool (3 F)

• 13toI(3C)
• • m4(l)

sputl(3X)
mptx(S)
mm(S)
mosd(S)
mv(S)

• • m4(l)
man(S)
mm(I)
mail(I)
mail (I)
gcosmail (I C)

• mail (I)
• • malloc(3C)

make(I)
ar.pdp(I)
ar(I)

• delta(l)
mkdir(l)
mknod(2)
mktemp(3C)
make(l)

· banner(l)
• makekey (I)

• • malloc{3C)
· . man(S)

• man(l)
• tsearch (3C)

• • hsearch (3C)
• • Idlread(3X)

frexp(3C)
man(l)

• • man(l)
· man(S)

ascii(S)
diffmk(l)

• • umask(l)
• • umask(2)

master.dec{ 4)
master.u3b(4)

• • master.dec(4)
• • master.u3h(4)

regexp(S)
eqn(l)

· . matherr(3M)
• maus(2)

max (3 F)
max(3F)

• • max(3F)
• • max (3 F)
• • maze(6)

maze: generate a maze. .'•
accounting. mclock: return Fortran time

memcpy, memset: memory/ memccpy, memchr, memcmp,
memset: memory/ memccpy, memchr, memcmp, memcpy,

operations. memccpy, memchr, memcmp, memcpy, memset: memory
memccpy, memchr, memcmp, memcpy, memset: memory/

free, realloc, calloc: main memory allocator. malloc,
shmctl: shared memory control operations.

queue, semaphore set or shared memory id. /remove a message
/(shared memory) operations.

memcmp, memcpy, memset: memory operations. /memchr,
shmop: shared memory operations.

lock process, text, or data in memory. plock: . . . • . .
shmget: get shared memory segment.

/memchr, memcmp, memcpy, memset: memory operations.
sort: sort and/or merge files. • • . . . • . .

files or subsequent/ paste: merge same lines of several .
mesg: permit or deny messages.

msgctl: message control operations.
msgop: message operations.

msgget: get message queue. . . . • . .
or shared/ ipcrm: remove a message queue, semaphore set

mesg: permit or deny messages.
sys_nerr: system error messages. /errno, sys_errlist,

/for the KMCIIB microprocessor. . ..•..
dminI: Fortran minimum-value/ min, minO, aminO, minI, aminI,

dminl: Fortran/ min, minO, aminO, minI, aminI, .
min, minO, aminO, minI, aminI, dminI: Fortran/

IminI, aminI, dminI: Fortran minimum-value functions.
mkdir: make a directory. . .

special or ordinary file. mknod: make a directory, or a
name. mktemp: make a unique file

formatting documents. mm: the MM macro package for
documents formatted with the MM macros. /print/check

documents formatted with the/ mm, osdd, checkmm: print/check
formatting documents. mm: the MM macro package for

view graphs, and slides. mmt, mvt: typeset documents,
table. mnttab: mounted file system

remaindering intrinsic/ mod, amod, dmod: Fortran
chmod: change mode.

umask: set file-creation mode mask.
chmod: change mode of file.

bs: a compiler/interpreter for modest-sized programs.
floating-point/ frexp, Idexp, modf: manipulate parts of

touch: update access and modification times of a file.
utime: set file access and modification times.

profile. monitor: prepare execution
moo: guessing game. . . . •

package for formatting/ mosd: the OSDD adapter macro
mount: mount a file system. . . .

mount: mount a file system.
mnttab: mounted file system table.

cp, In, mv: copy, link or move files. . . •
Iseek: move read/write file pointer.

formatting a permuted index. mptx: the macro package for
/erand48, lrand48, nrand48, mrand48, jrand48, srand48,1

operations. msgctl: message control
msgget: get message queue.
msgop: message operations.

(shared memory)/ maus: multiple-access-user-space
typesetting view graphs and/ mv: a troff macro package for

cp, In, mv: copy, link or move files.
graphs, and slides. mmt, mvt: typeset documents, view

log, alog, dlog, clog: Fortran naturallogaritbm intrinsic/ .

- 23 -

Permuted Index

maze(6)
mclock (3 F)
memory (3C)
memory(3C)
memory(3C)
memory (3 C)
malloc(3C)
shmctl(2)
ipcrm(I)
maus(2)
memory(3C)
shmop(2)
plock(2)
shmget(2)
memory(3C)
sort (I)
paste(I)
mesg(I)
msgctl(2)
msgop(2)
msgget(2)
ipcrm(I)
mesg(l)
perror(3C)
kasb(I)
min (3 F)
min (3 F)
min(3F)
min(3F)
mkdir(I)
mknod(2)
mktemp(3C)
mm(5)
mm(l)
mm(I)
mm(5)
mmt(I)

· mnttab(4)
mod (3 F)
chmod(I)
umask(I)
chmod(2)
bs(I)
frexp (3 C)
touch(I)
utime(2)
monitor(3C)
moo (6)
mosd(5)
mount(2)
mount(2)
mnttab(4)
cp(I)

• Iseek(2)
mptx(5)
drand48 (3C)
msgctl(2)
msgget(2)
msgop(2)
maus(2)
mv(5)

• cp(I)
mmt(I)
log (3 F)

Permuted Index

Idnint, nint, idnint: Fortran nearest integer functions.
mathematical text forI eqn, neqn, checkeq: format

definitions for eqn and neqn. Ispecial character
PCL network. net: execute a command on the

execute a command on the PCL network. net: • . • . . •
operation status of the NSC network. nscstat: query the

to another UNIX on the NSC network. nusend: send files
re-route jobs from the NSC network to RJE. nsctorje:
commands. stat: statistical network useful with graphical

a text file. newform: change the format of
newgrp: log in to a new group.

news: print news items.
news: print news items.

process. nice: change priority of a
priority. nice: run a command at low

integerl anint, dnint, nint, idnint: Fortran nearest
nl: line numbering filter.

list. nlist: get entries from name
nm: print name list.

object file. nm: print name list of common
hangups and quits. nohup: run a command immune to

setjmp, longjmp: non-local goto. .•....
bitwise booleanl and, or, xor, not, lshift, rshift: Fortran . .

drand48, erand48, lrand48, nrand48, mrand48, jrand48,1
nroff: format text. . . .

format mathematical text for nroff or troff. Icheckeq:
tbl: format tables for nroff or troff.

constructs. deroff: remove nroff/troff, tbl, and eqn
the operation status of the NSC network. nscstat: query

files to another UNIX on the NSC network. nusend: send
re-route jobs from the NSC network to RJE. nsctorje:

status of the NSC network. nscstat: query the operation
the NSC network to RJE. nsctorje: re-route jobs from

nl: line numbering filter.
sputl, sgetl: access long numeric data in a machinel

graphics: access graphical and numerical commands.
UNIX on the NSC network. nusend: send files to another

commonl convert: convert object and archive files to
Idfcn: common object file access routines.

cprs: compress an IS25 object file.
dump selected parts of an object file. dump:

Idopen, ldaopen: open a common object file for reading.
number entries of a common object file function. Iline

Idaclose: close a common object file. Idclose,
the file header of a common object file. Idfhread: read

of a section of a common object file. Inumber entries
file header of a common object file. Ito the optional

of a section of a common object file. lentries
section header of a common object file. lindexed/named

section of a common object file. lindexed/named
symbol table entry of a common object file. /the index of a
symbol table entry of a common object file. Iread an indexed

the symbol table of a common object file. Iseek to
number entries in a common object file. linenum: line
C source listing from 3B20S object file. list: produce

nm: print name list of common object file.
information for a common object file. !relocation

section header for a common object file. scnhdr:
information from a common object file. land line number

format. syms: common object file symbol table
file header for common object files. filehdr:

Id: link editor for common object files. . .
print section sizes of common object files. size:

size: print sizes of object files. . •

- 24 -

round (3 F)
eqn(I)
eqnchar(5)
net (I C)
net (I C)
nscstat (I C)
nusend (I C)
nsctorje(l C)
stat(lG)
new form (I)
newgrp(1)
news(1)
news(1)

. nice(2)
nice(1)
round(3F)
nl (1)
nlist(3C)
nm.pdp(l)
nm(1)
nohup(1)
setjmp(3C)
bool (3 F)
drand48 (3C)
nroff(l)
eqn(I)
tbl(l)
deroff(l)

• nscstat(IC)
nusend(IC)
nsctorje(l C)
nscstat(1C)
nsctorje(l C)
nl(l)
sputl(3X)
graphics (1 G)
nus end (1 C)
convert(I)
Idfcn(4)
cprs(1)
dump(I)
Idopen(3X)
Idlread(3X)
Idclose(3X)
Idfhread(3X)
Idlseek (3X)
Idohseek(3X)
Idrseek(3X)
Idshread (3 X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
list (I)
nm(1)
reloc(4)
scnhdr(4)
strip(1)
syms(4)
filehdr(4)
Id(l)
size(I)
size.pdp(1)

find ordering relation for an object library. lorder:
sky: obtain ephemerides.
ad: octal dump.

ad: octal dump. . •
dpr: off-line print. . . .

reading. Idopen, Idaopen: open a common object file for
fopen, freopen, fdopen: open a stream. .•...

dup: duplicate an open file descriptor.
open: open for reading or writing.

writing. open: open for reading or .
network. nscstat: query the operation status of the NSC

/(shared memory) operations. • . . • • . .
memcmp, memcpy, memset: memory operations. memccpy, memchr,

msgct!: message control operations.
msgop: message operations.

semctl: semaphore control operations.
semop: semaphore operations.

shmctl: shared memory control operations.
shmop: shared memory operations.

strcspn, strtok: string operations. /strpbrk, strspn,
join: relational database operator. . • •

vector. getopt: get option letter from argument
common/ Idohseek: seek to the optional file header of a

fcnt!: file control options. ••....
stty: set the options for a terminal.

getopt: parse command options. .•..••
Fortran bitwise boolean/ and, or, xor, not, Ishift, rshift:

object library. lorder: find ordering relation for an
a directory, or a special or ordinary file. mknod: make

formatting/ mosd: the OSDD adapter macro package for
documents formatted with/ mm, osdd, checkmm: print/check

dial: establish an out-going terminal line/
assembler and link editor output. a.out: common
assembler and link editor output. a.out: PDP-II

sprintf: print formatted output. printf, fprintf,
gcat: send phototypesetter output to the HONEYWELL 6000.

chown: change owner and group of a file.
chown, chgrp: change owner or group. . • • • • •

and expand files. pack, peat, unpack: compress
permuted/ mptx: the macro package for formatting a

documents. mm: the MM macro package for formatting . . .
mosd: the OSDD adapter macro package for formatting/

graphs and/ mv: a troff macro package for typesetting view
standard buffered input/output package. stdio: . . • . .

interprocess communication package. stdipc: standard
4014 terminal. 4014: paginator for the Tektronix

process, process group, and parent process IDs. /get
getopt: parse command options.

passwd: change login password.
passwd: password file.

/setpwent, endpwent: get password file entry.
putpwent: write password file entry.

passwd: password file.
getpass: read a password.

passwd: change login password.
several files or subsequent/ paste: merge same lines of

dirname: deliver portions of path names. basename,
directory. getcwd: get path-name of current working

fgrep: search a file for a pattern. grep, egrep, • . . •
processing language. awk: pattern scanning and

signal. pause: suspend process until
expand files. pack, peat, unpack: compress and

cc, pec: C compiler.
net: execute a command on the PCL network. ..••.

- 25 -

Permuted Index

10rder(I)
sky(6)
od(I)

• od(I)
dpr(IC)
Idopen(3X)

• fopen(3S)
• dup(2)

open(2)
open (2)

• nscstat(IC)
maus(2)
memory(3C)
msgctl(2)

• msgop(2)
semctl(2)
semop(2)
shmct!(2)
shmop(2)
string(3C)
join(I)
getopt(3C)
Idohseek(3X)
fcntl(S)
stty(I)
getopt(I)
bool (3 F)
10rder(I)
mknod(2)
mosd(S)
mm(I)
dial(3C)
a.out(4)

• a.out.pdp(4)
printf(3S)

• gcat(IC)
• chown(2)

chown(l)
pack(I)
mptx(S)
mm(S)
mosd(S)
mv(S)
stdio(3S)
stdipc(3C)
4014(I)
getpid(2)
getopt(l)
passwd(I)
passwd(4)
getpwent(3C)
putpwent(3C)
passwd(4)
getpass(3C)
passwd(I)

• paste(I)
• basename(I)

getcwd(3C)
grep(I)

• awk(I)
• pause(2)

pack(I)
• cc(I)

net (I C)

Permuted Index

a process. popen, pclose: initiate pipe to/from .
as: assembler for PDP-II. •

editor output. a.out: PDP-II assembler and link
/convert archive files from PDP-II to common archive/

truth value about your/ pdpll, u3b, u3b5, vax: provide
mesg: permit or deny messages. .

macro package for formatting a permuted index. mptx: the
ptx: permuted index.

format. acct: per-process accounting file
sys_nerr: system error/ perror, errno, sys_errlist,

HONEYWELL 6000. gcat: send phototypesetter output to the
tc: phototypesetter simulator.

split: split a file into pieces. . • •
channel. pipe: create an interprocess

tee: pipe fitting.
popen, pclose: initiate pipe to/from a process. . . . •

data in memory. plock: lock process, text, or
plot: graphics interface.

subroutines. plot: graphics interface . .
images. pnch: file format for card .

ftell: reposition a file pointer in a stream. /rewind,
Iseek: move read/write file pointer. •.....•.

to/from a process. popen, pclose: initiate pipe
and library maintainer for portable archives. /archive

basename, dirname: deliver portions of path names.
banner: make posters. .•.•....

logarithm,! exp, log, logl0, pow, sqrt: exponential, . .
/sqrt: exponential, logarithm, power, square root functions.

pr: print files.
for troff. cw, checkcw: prepare constant-width text

monitor: prepare execution profile. .
cpp: the C language preprocessor. . • . . • .

unget: undo a previous get of an SCCS file.
graphical! gps: graphical primitive string, format of

types: primitive system data types.
prs: print an SCCS file.

date: print and set the date.
cal: print calendar.

of a file. sum: print checksum and block count
editing activity. sact: print current SCCS file

dpr: off-line print. .••.....•
man, manprog: print entries in this manual.

cat: concatenate and print files. .•...•.
scat: concatenate and print files on synchronous/

pr: print files. •.•....
printf, fprintf, sprintf: print formatted output.

Ipstat: print LP status information.
nm: print name list. . • • . .

object file. nm: print name list of common
system. uname: print name of current UNIX

news: print news items. •....
file(s). acctcom: search and print process accounting

object files. size: print section sizes of common
size: print sizes of object files.

names. id: print user and group IDs and
formatted/ mm, osdd, checkmm: print/check documents •..

HONEYWELL sending daemon, line printer daemon. dpd, Ipd:
requests to an LP line printer. /cancel: send/cancel

and print files on synchronous printer. scat: concatenate
Ipr: line printer spooler.

vpr: Versatec printer spooler.
disable: enable/disable LP printers. enable,

print formatted output. printf, fprintf, sprintf:
nice: run a command at low priority. • ••..••

- 26 -

popen(3S)
as.pdp(I)
a.out.pdp(4)
arcv(I)
machid(I)
mesg(I)
mptx(S)

• ptx(I)
acct(4)
perror(3C)
gcat(IC)
tc(I)
split(I)
pipe(2)
tee(I)
popen(3S)
plock(2)

• plot (4)
plot(3X) ,
pnch(4)
fseek(3S)
Iseek(2)
popen(3S)
ar(I)
basename (1)
banned I)
exp(3M)
exp(3M)
pr(l)
cw(l)
monitor(3C)
cpp(I)

· unget(l)
gps(4)
types(S)
prs(I)

• • date(I)
caI(I)
sum(l)
sact(I)
dpr(I C)

. • man(I)
cat(I)
scat(I)
pr(I)
printf(3S)
lpstat(l)
nm.pdp(I)
nm(l)
uname(l)
news(l)
acctcom(l)
size(I)
size.pdp(I)
id(l)

• mm(I)
dpd(lC)

• Ip(I)
scat(l)
IpdI)

• vpdI)
enable(I)
printf(3S)
nice(I)

nice: change priority of a process. • . •
acct: enable or disable process accounting.

acctcom: search and print process accounting file (s).
times. times: get process and child process

timex: time a command; report process data and system/
exit, _exit: terminate process. ••••. •.

fork: create a new process. .••.• •.
/ getpgrp, getppid: get process, process group, and parenti

setpgrp: set process group ID. • •.
process group, and parent process IDs. /get process,
inittab: script for the init process.

kill: terminate a process. ..•..•
nice: change priority of a process. ••...•

kill: send a signal to a process or a group ofl
initiate pipe to/from a process. popen, pclose:

getpid, getpgrp, getppid: get process, process group, and/
ps: report process status.

memory. plock: lock process, text, or data in
times: get process and child process times.

wait: wait for child process to stop or terminate.
ptrace: process trace. • . .

pause: suspend process until signal.
wait: await completion of process. .•..•

list of file systems processed by fsck. checklist:
to a process or a group of processes. Isend a signal

awk: pattern scanning and processing language. • . .
m4: macro processor. . ..••.•

provide truth value about your processor type. lu3b5, vax:
alarm: set a process's alarm clock.

3B20S object file. list: produce C source listing from
prof: display profile data.

profile. profil: execution time
prof: display profile data.

monitor: prepare execution profile. .••..
profil: execution time profile. .••..

environment at login time. profile: setting up an
sadp: disk access profiler. .••.•

standard/restricted command programming language. /the
arithmetic: provide drill in number facts.

pdpll, u3b, u3b5, vax: provide truth value about your/
true, false: provide truth values. • . •

prs: print an SCCS file.
ps: report process status.

/generate uniformly distributed pseudo-random numbers.
ptrace: process trace.
ptx: permuted index. . . •

stream. ungetc: push character back into input
put character or word on a/ putc, putchar, fputc, putw:

character or word on a/ putc, putchar, fputc, putw: put • .
entry. putpwent: write password file

stream. puts, fputs: put a string on a
getutent, getutid, getutline, pututline, setutent, endutent,l

a/ putc, putchar, fputc, putw: put character or word on
x25rpvc: install or remove a PVC on a link. x25ipvc,

pwd: working directory name.
qsort: quicker sort.

the NSC network. nscstat: query the operation status of
msgget: get message queue. • . • . • • . . • .

ipcrm: remove a message queue, semaphore set or sharedl
qsort: quicker sort. ..•...

command immune to hangups and quits. nohup: run a
quiz: test your knowledge.

random-number/ srand, rand: Fortran uniform
random-number generator. rand, srand: simple

- 27 -

Permuted Index

nice(2)
acct(2)
acctcom(l)
times(2)
timex(l)
exit(2)
fork (2)
getpid(2)

• setpgrp(2)
getpid(2)
inittab(4)
kill(I)
nice(2)
kill (2)
popen(3S)
getpid(2)
ps(I)
plock (2)
times (2)
wait(2)
ptrace(2)
pause (2)
wait(I)
checklist (4)
kill (2)
awk(I)

• m4(I)
machid(l)

• alarm(2)
list(l)

• prof(l)
profil (2)
prof(l)
monitor(3C)
profil(2)
profile(4)

• sadp(I)
sh(I)
arithmetic(6)

• machid(l)
• true(I)
• prs(I)

ps(I)
drand48 (3C)
ptrace(2)
ptx(I)
ungetc(3S)
putc(3S)
putc(3S)
putpwent (3C)

· puts(3S)
getut(3C)
putc(3S)
x25ipvc(3C)
pwd(I)

• qsort(3C)
nscsta t (1 C)
msgget(2)
ipcrm(I)
qsort(3C)

• nohup(I)
quiz(6)

• rand (3 F)
• rand<3C)

Permuted Index

rand, srand: simple random-number generator.
srand, rand: Fortran uniform random-number generator.

fsplit: split f77, ratfor, or efl files.
dialect. ratfor: rational Fortran .
ratfor: rational Fortran dialect.

getpass: read a password.
entry of a common! ldtbread: read an indexed symbol table
header/ ldshread,ldnshread: read an indexed!named section

read: read from file.
rmail: send mail to users or read mail. mail,

line: read one line. .
read: read from file.

member of an! ldahread: read the archive header of a
common object file. ldfhread: read the file header of a
open a common object file for reading. ldopen, ldaopen:

open: open for reading or writing.
lseek: move read!write file pointer. .

cmplx,/ int, ifix, idint, real, float, sngl, dble,
allocator. malloc, free, realloc, calloc: main memory

specify what to do upon receipt of a signal. signal:
!specify Fortran action on receipt of a system signal.

ed, red: text editor. • . . •
generate C program cross reference. cxref:

execute regular expression. regcmp, regex: compile and
compile. regcmp: regular expression

make: maintain, update, and regenerate groups of programs.
regular expression. regcmp, regex: compile and execute . .

compile and match routines. regexp: regular expression
match routines. regexp: regular expression compile and

regcmp: regular expression compile.
regex: compile and execute regular expression. regcmp,

sorted files. comm: select or reject lines common to two
lorder: find ordering relation for an object!

join: relational database operator.
for a common object file. reloc: relocation information

strip: remove symbols and relocation bits. .•...
ldrseek, ldnrseek: seek to relocation entries of a! . .

common object file. reloc: relocation information for a
!fmod, fabs: floor, ceiling, remainder, absolute value!

mod, amod, dmod: Fortran remaindering intrinsic!
calendar: reminder service.

ct: spawn getty to a remote terminal.
file. rmdel: remove a delta from an SCCS

semaphore set or! ipcrm: remove a message queue,
x2Sipvc, x2Srpvc: install or remove a PVC on a link. .

unlink: remove directory entry.
rm, rmdir: remove files or directories.

eqn constructs. deroff: remove nroff!troff, tbl, and
bits. strip: remove symbols and relocation

uniq: report repeated lines in a file. . .
console. rjestat: RJE status report and interactive status

clock: report CPU time used. . .
communication! ipcs: report inter-process

timex: time a command; report process data and system!
ps: report process status.

file. uniq: report repeated lines in a •
facilities status. ststat: report synchronous terminal

trouble: log a trouble report. . • . • • . • . .
sar: system activity reporter. • . •

stream. fseek, rewind, ftell: reposition a file pointer in a
lp, cancel: send!cancel requests to an LP line! . .

network to RJE. nsctorje: re-route jobs from the NSC
HONEYWELL! fget, fget.demon: retrieve files from the

argument. getarg: return Fortran command-line

- 28 -

• rand(3C)
• rand(3F)

fsplit(I)
ratfor(I)
ratfor(I)

• getpass(3C)
• Idtbread(3X)

ldshread (3 x)
read (2)

• mail(I)
• line(I)

read (2)
• Idahread(3X)

ldfhread (3 X)
• Idopen(3X)

open (2)
Iseek(2)
ftype(3F)
malloc(3C)
signal(2)
signal (3 F)
ed(I)
cxref(l)
regcmp(3X)
regcmp(I)
make(I)
regcmp(3X)
regexp(S)

• regexp(S)
regcmp(I)
regcmp(3X)
comm(l)
lorder(l)
join(I)
reloc(4)
strip.pdp(I)
Idrseek(3X)
reloc(4)
floor(3M)
mod (3 F)
calendar(I)
ct(I C)
rmdel(l)
ipcrm(I)
x25ipvc(3C)
unlink(2)
rm(l)
deroff(l)

• strip.pdp(I)
uniq(I)
rjestat (I C)
clock(3C)
ipcs(I)
timex(l)
ps(I)
uniq(I)
ststat(I)
trouble(I)
sar(I)
fseek(3S)

• Ip(I)
nsctorje(l C)
fget(IC)
getarg(3F)

variable. getenv: return Fortran environment .
accounting. mclock: return Fortran time

abs: return integer absolute value.
string. len: return length of Fortran

substring. index: return location of Fortran
logname: return login name of user.

name. getenv: return value for environment
stat: data returned by stat system call.

reversi: a game of dramatic reversals. •.•....
col: filter reverse line-feeds.
reversals. reversi: a game of dramatic

file pointer in a/ fseek, rewind, ftell: reposition a
creat: create a new file or rewrite an existing one.
gather files and/or submit RJE jobs. send, gath:

jobs from the NSC network to RJE. nsctorje: re-route
interactive status/ rjestat: RJE status report and
interactive status console. rjestat: RJE status report and

directories. rm, rmdir: remove files or
read mail. mail, rmail: send mail to users or .

SCCS file. rmdel: remove a delta from an
directories. rm, rmdir: remove files or
chroot: change root directory.

logarithm, power, square root functions. /exponential,
/dsqrt, csqrt: Fortran square root intrinsic function.
Itekset, td: graphical device routines and filters.

common object file access routines. Idfcn:
expression compile and match routines. regexp: regular

graphical table of contents routines. toc:
standard/restricted/ sh, rsh: shell, the
and, or, xor, not, Ishift, rshift: Fortran bitwise/ .

nice: run a command at low priority.
hangups and quits. nohup: run a command immune to •

editing activity. sact: print current SCCS file
sadp: disk access profiler. . .
sag: system activity graph.
sar: system activity reporter.

space allocation. brk, sbrk: change data segment
formatted input. scanf, fscanf, sscanf: convert

bfs: big file scanner. . . . •
language. awk: pattern scanning and processing

files on synchronous printer. scat: concatenate and print
stand-alone programs. scc: C compiler for

the delta commentary of an SCCS delta. cdc: change
comb: combine SCCS deltas.

make a delta (change) to an SCCS file. delta:
sact: print current SCCS file editing activity.

get: get a version of an SCCS file.
prs: print an SCCS file.

rmdel: remove a delta from an SCCS file.
compare two versions of an SCCS file. sccsdiff:

sccsfile: format of SCCS file.
undo a previous get of an SCCS file. unget:

val: validate SCCS file.
admin: create and administer SCCS files. . . .

what: identify SCCS files. . . .
of an SCCS file. sccsdiff: compare two versions

sccsfile: format of SCCS file.
common object file. scnhdr: section header for a

terminals. se: screen editor for video
inittab: script for the init process.

sdb: symbolic debugger.
program. sdiff: side-by-side difference

terminals. se: screen editor for video .
grep, egrep, fgrep: search a file for a pattern.

- 29 -

Permuted Index

getenv(3F)
mclock(3F)
abs(3C)
len(3F)

• index(3F)
10gname(3X)

• getenv(3C)
• stadS)
· reversi (6)

col(I)
• reversi (6)

fseek(3S)
creat(2)
send(lC)
nsctorje (1 C)
rjestat(IC)

• rjestat(IC)
rm(I)
mail(l)
rmdel(l)

• rm(I)
· chroot(2)

exp(3M)
sqrt (3 F)
gdev (I G)
Idfcn(4)
regexp(S)
toc(lG)
sh(l)
boo I (3 F)
nice(I)
nohup(I)
sact(I)
sadp(\)
sag (I G)
sar(I)
brk(2)
scanf(3S)
bfs(I)
awk(I)
scat(I)
scc(\)
cdc(I)
comb(I)
delta (I)
sact(I)
get(\)
prs(I)
rmdel(l)
sccsdiff(I)
sccsfile(4)
unget(l)
vaI(l)
admin(l)
what(I)
sccsdiff(I)

• sccsfile(4)
scnhdr(4)
se(I)
inittab(4)

· sdb(I)
sdiff(l)
se(I)
grep(I)

Permuted Index

accounting file(s). acctcom: search and print process
lsearch: linear search and update.

bsearch: binary search. •.....
hcreate, hdestroy: manage hash search tables. hsearch,

tdelete, twalk: manage binary search trees. tsearch,
jotto: secret word game. . .

object file. scnhdr: section header for a common
object/ tread an indexed/named section header of a common

Ito line number entries of a section of a common object/
Ito relocation entries of a section of a common object/

/seek to an indexed/named section of a common object/
files. size: print section sizes of common object

sed: stream editor.
/mrand48, jrand48, srand48, seed48, 1cong48: generate/
section off ldsseek, ldnsseek: seek to an indexed/named

a section/ ldlseek,ldnlseek: seek to line number entries of
a section/ ldrseek, ldnrseek: seek to relocation entries of .

header of a common/ ldohseek: seek to the optional file
common object file. ldtbseek: seek to the symbol table of a

shmget: get shared memory segment.
brk, sbrk: change data segment space allocation. . .

to two sorted files. comm: select or reject lines common
greek: select terminal filter. . . .

of a file. cut: cut out selected fields of each line
file. dump: dump selected parts of an object

semctl: semaphore control operations.
semop: semaphore operations.

ipcrm: remove a message queue, semaphore set or shared memory/
semget: get set of semaphores. ...•...

operations. semctl: semaphore control
semget: get set of semaphores.
semop: semaphore operations.

a group of processes. kill: send a signal to a process or
the NSC network. nusend: send files to another UNIX on

6000. fsend: send files to the HONEYWELL
and/or submit RJE jobs. send, gath: gather files .

gcosmail: send mail to HIS user. . . .
mail. mail, rmail: send mail to users or read

the HONEYWELL 6000. gcat: send phototypesetter output to
line printer. lp, cancel: send/cancel requests to an LP

daemon. dpd, lpd: HONEYWELL sending daemon, line printer
stream. setbuf: assign buffering to a .

IDs. setuid, setgid: set user and group
getgrent, getgrgid, getgrnam, setgrent, endgrent: get group/

goto. setjmp, longjmp: non-local
encryption. crypt, setkey, encrypt: generate DES

setpgrp: set process group 10.
getpwent, getpwuid, getpwnam, setpwent, endpwent: get/ . .

login time. profile: setting up an environment at
gettydefs: speed and terminal settings used by getty.

group IDs. setuid, setgid: set user and
/getutid, getutline, pututline, setutent, endutent, utmpname:/

data in a machine/ sputl, sgetl: access long numeric
standard/restricted command/ sh, rsh: shell, the

operations. shmctl: shared memory control
queue, semaphore set or shared memory id. /a message

/multiple-access-user-space (shared memory) operations. I
shmop: shared memory operations.

shmget: get shared memory segment. . .
system: issue a shell command from Fortran.
system: issue a shell command. . . . ~ . .

command programming/ sh, rsh: shell, the standard/restricted
operations. shmctl: shared memory control

segment. shmget: get shared memory . .

- 30 -

acctcom(l)
lsearch (3C)
bsearch (3C)
hsearch (3C)
tsearch (3C)
jotto(6)
scnhdr(4)
Idshread(3X)
Idlseek(3X)
Idrseek(3X)
Idsseek(3X)
size(I)
sed(l)
drand48 (3C)
ldsseek (3X)
Idlseek(3X)
Idrseek(3X)
ldohseek (3 X)
Idtbseek(3X)
shmget(2)
brk(2)
comm(l)
greek(l)
cut(I)
dump(I)
semctl(2)
semop(2)
ipcrm(I)
semget(2)
semctl(2)

. semget(2)
semop(2)
kill (2)
nusend(lC)
fsend(lC)
send (I C)
gcosmail (1 C)
mail(l)
gcat(IC)
Ip(I)
dpd(IC)
setbuf(3S)
setuid(2)
getgrent (3C)
setjmp(3C)
crypt(3C)
setpgrp(2)
getpwent (3C)
profile(4)
gettydefs(4)
setuid(2)
getut(3C)
sputl(3X)
sh(l)
shmctl(2)
ipcrm(I)
maus(2)
shmop(2)
shmget(2)
system (3 F)
system(3S)
sh (1)
shmctl(2)
shmget(2)

operations. shmop: shared memory .
program. sdiff: side-by-side difference

transfer-of-sign intrinsic/ sign, isign, dsign: Fortran
login: sign on. •.....

terminal. stlogin: sign on to synchronous
pause: suspend process until signal.
what to do upon receipt of a signal. signal: specify
action on receipt of a system signal. /specify Fortran

on receipt of a system/ signal: specify Fortran action
upon receipt of a signal. signal: specify what to do . .
of processes. kill: send a signal to a process or a group
ssignal, gsignal: software signals.

lex: generate programs for simple lexical tasks.
generator. rand, srand: simple random-number

tc: phototypesetter simulator.
atan, atan2: trigonometric/ sin, cos, tan, asin, acos,

intrinsic function. sin, dsin, csin: Fortran sine
sin, dsin, csin: Fortran sine intrinsic function.

/dsinh: Fortra,n hyperbolic sine intrinsic function.
functions. sinh, cosh, tanh: hyperbolic

hyperbolic sine intrinsic/ sinh, dsinh: Fortran
common object files. size: print section sizes of .

files. size: print sizes of object
size: print section sizes of common object files.

size: print sizes of object files.
sky: obtain ephemerides.

an interval. sleep: suspend execution for
interval. sleep: suspend execution for

documents, view graphs, and slides. mmt, mvt: typeset .
typesetting view graphs and slides. /macro package for

current/ ttyslot: find the slot in the utmp file of the
spline: interpolate smooth curve.

int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx,!
sno: SNOBOL interpreter.

sno: SNOBOL interpreter.
ssignal, gsignal: software signals.

sort: sort and/or merge files.
qsort: quicker sort.

sort: sort and/or merge files.
tsort: topological sort.

or reject lines common to two sorted files. comm: select
object file. list: produce C source listing from 3B20S

brk, sbrk: change data segment space allocation.
terminal. ct: spawn getty to a remote

sys3b: 3B20S specific system calls. . .
fspec: format specification in text files.

receipt of a system/ signal: specify Fortran action on
receipt of a signal. signal: specify what to do upon

used by getty. gettydefs: speed and terminal settings
hashcheck: find spelling/ spell, hashmake, spellin,

spelling/ spell, hashmake, spellin, hashcheck: find . .
spellin, hashcheck: find spelling errors. /hashmake,

curve. spline: interpolate smooth
split: split a file into pieces.

csplit: context split. .•.....
files. fsplit: split fl?, ratfor, or efl

pieces. split: split a file into
Ipr: line printer spooler.

vpr: Versatec printer spooler.
output. printf, fprintf, sprintf: print formatted

numeric data in a machine/ spud, sgetl: access long
square root intrinsic/ sqrt, dsqrt, csqrt: Fortran

power,! exp, log, 10glO, pow, sqrt: exponential, logarithm,
exponential, logarithm, power, square root functions. /sqrt:

- 31 -

Permuted Index

shmop(2)
sdiff(I)
sign(3F)
login(l)
stlogin(l)
pause(2)
signal(2)
signal(3F)
signal(3F)
signal(2)
kill (2)
ssignal (3C)
lex(I)
rand(3C)
tc(I)
trig(3M)
sin(3F)
sin(3F)
sinh(3F)
sinh(3M)
sinh(3F)
size(1)
size.pdp(I)
size(1)
size.pdp(I)
sky(6)
sleep(I)
sleep(3C)
mmt(I)
mv(S)
ttyslot (3C)
spline(IG)
ftype (3 F)
sno(I)
sno(1)
ssignal (3C)
sort(I)
qsort(3C)
sort(I)
tsort (I)
comm(I)
list(l)
brk(2)
ct(lC)
sys3b(2)
fspec(4)
signal(3F)
signal(2)
gettydefs(4)
spell(I)
spell(l)
spell(l)
spline (I G)
split(1)
csplit(I)
fsplit(I)
split(I)
Ipr(1)
vpr(I)
printf(3S)
sputl(3X)
sqrt (3 F)
exp(3M)
exp(3M)

Permuted Index

sqrt, dsqrt, csqrt: Fortran
random-number generator.

generator. rand,
/nrand48, mrand48, jrand48,

input. scanf, fscanf,
signals.

scc: C compiler for
package. stdio:

communication/ stdipc:
sh, rsh: shell, the

system call.

useful with graphical/
stat: data returned by
with graphical! stat:
ustat: get file system

status report and interactive
lpstat: print LP

feof, clearerr, fileno: stream
control. uustat: uucp

communication facilities
nscstat: query the operation

ps: report process
status console. rjestat: RJE

stat, fstat: get file
terminal facilities

input/output package.
communication package.

synchronous terminal.
wait for child process to

strncmp, strcpy, strncpy'/
/strcpy, strncpy, strlen,

strncpy,/ strcat, strncat,
/strncat, strcmp, strncmp,

/strrchr, strpbrk, strspn,
sed:

fHush: close or flush a
fopen, freopen, fdopen: open a

reposition a file pointer in a
get character or word from

fgets: get a string from a
put character or word on a

puts, fputs: put a string on a
setbuf: assign buffering to a

/feof, clearerr, fileno:
push character back into input

long integer and base-64 ASCII
convert date and time to
floating-point number to
gps: graphical primitive

gets, fgets: get a
len: return length of Fortran

puts, fputs: put a
strspn, strcspn, strtok:

number. atof: convert ASCII
strtol, atol, atoi: convert

relocation bits.
number information from a/

information from a/ strip:
/strncmp, strcpy, strncpy,

strcpy, strncpy'/ strcat,
strcat, strncat, strcmp,

/strcmp, strncmp, strcpy,

square root intrinsic/
srand, rand: Fortran uniform
srand: simple random-number
srand48, seed48, lcong48:/
sscanf: convert formatted
ssignal, gsignal: software .
stand-alone programs.
standard buffered input/output
standard interprocess
standard/restricted command/
stat: data returned by stat
stat, fstat: get file status.
stat: statistical network
stat system call. . . • .
statistical network useful
statistics. .•....
status console. rjestat: RJE
status information.
status inquiries. ferror, . .
status inquiry and job
status. /report inter-process
status of the NSC network.
status. •
status report and interactive
status.
status. /report synchronous
stdio: standard buffered
stdipc: standard interprocess
stime: set time.
stlogin: sign on to . •
stop or terminate. wait:
strcat, strncat, strcmp,
strchr, strrchr, strpbrk'/
strcmp, strncmp, strcpy,
strcpy, strncpy, strlen,/
strcspn, strtok: string/
stream editor.
stream. fclose,
stream.
stream. fseek, rewind, ftell:
stream. /getchar, fgetc, getw:
stream. gets,
stream. /putchar, fputc, putw:
stream.
stream.
stream status inquiries.
stream. ungetc: . . .
string. 1l64a: convert between
string. /asctime, tzset: . .
string. /fcvt, gcvt: convert
string, format of graphical!
string from a stream.
string.
string on a stream.
string operations. /strpbrk,
string to floating-point . •
string to integer.
strip: remove symbols and
strip: strip symbol and line
strip symbol and line number
strlen, strchr, strrchr,/ .
strncat, strcmp, strncmp,
strncmp, strcpy, strncpy'/
strncpy, strlen, strchr,/ .

- 32 -

sqrt (3 F)
rand(3F)
rand(3C)
drand48 (3C)
scanf(3S)
ssignal (3C)
scc(I)
stdio(3S)
stdipc(3C)
sh(l)
stat (5)
stat(2)
stat(lG)
stat(5)
stat(lG)
ustat(2)
rjestat (I C)
Ipstat(I)
ferror(3S)
uustat(1C)
ipcs(1)
nscstat<IC)
ps(1)
rjestat(1C)
stat(2)
ststat(I)
stdio(3S)
stdipc(3C)
stime(2)
stlogin (1)
wait(2)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
sed(l)
fclose(3S)
fopen(3S)
fseek(3S)
getc(3S)
gets(3S)

. putc(3S)
puts(3S)
setbuf(3S)
ferror(3S)
ungetc(3S)
a64I(3C)
ctime(3C)
ecvt(3C)
gps(4)
gets(3S)
len(3F)
puts(3S)
string(3C)
atof(3C)
strtol(3C)
strip.pdp(I)
strip(I)
strip(I)
string(3C)
string(3C)
string(3C)
string(3C)

!strlen, strchr, strrchr, strpbrk, strspn, strcspn,/
!strncpy, strien, strchr, strrchr, strpbrk, strspn,/

!strchr, strrchr, strpbrk, strspn, strcspn, strtok:1 •
Istrpbrk, strspn, strcspn, strtok: string operations.

string to integer. strtol, atol, atoi: convert
terminal facilities status. ststat: report synchronous

terminal. stty: set the options for a
another user. su: become super-user or

gath: gather files and/or submit RJE jobs. send,
intro: introduction to subroutines and libraries.

plot: graphics interface subroutines.
!same lines of several files or subsequent lines of one file.

return location of Fortran substring. index:
count of a file. sum: print checksum and block

du: summarize disk usage.
sync: update the super block.

sync: update super-block.•
su: become super-user or another user.

interval. sleep: suspend execution for an
interval. sleep: suspend execution for

pause: suspend process until signal.
swab: swap bytes.

swab: swap bytes. • •
information froml strip: strip symbol and line number

object! !compute the index of a symbol table entry of a common
Idtbread: read an indexed symbol table entry of a common!
syms: common object file symbol table format. . . .

object! ldtbseek: seek to the symbol table of a common
sdb: symbolic debugger.

strip: remove symbols and relocation bits.
symbol table format. syms: common object file .

sync: update super-block. .
sync: update the super block.

concatenate and print files on synchronous printer. scat:
facilities! ststat: report synchronous terminal

stlogin: sign on to synchronous terminal.
calls. sys3b: 3B20S specific system

error! perror, errno, sys_errlist, sys_nerr: system .
perror, errno, sys_errlist, sys_nerr: system error! ...

!compute the index of a symbol table entry of a common object! .
file. tread an indexed symbol table entry of a common object

common object file symbol table format. syms:
master device information table. master:
master device information table. master:

mnttab: mounted file system table.
Idtbseek: seek to the symbol table of a common object file.

toc: graphical table of contents routines.
tbl: format tables for nroff or troff.

hdestroy: manage hash search tables. hsearch, hcreate,
tabs: set tabs on a terminal.

tabs: set tabs on a terminal.
a file. tail: deliver the last part of

trigonometric! sin, cos, tan, asin, acos, atan, atan2:
intrinsic function. tan, dtan: Fortran tangent
tan, dtan: Fortran tangent intrinsic function.

!dtanh: Fortran hyperbolic tangent intrinsic function.
hyperbolic tangent intrinsic! tanh, dtanh: Fortran . .

sinh, cosh, tanh: hyperbolic functions.
hpio: HP 2645A terminal tape file archiver.

tar: tape file archiver.
tar: tape file archiver.

programs for simple lexical tasks. lex: generate
deroff: remove nroff!troff, tbl, and eqn constructs.

or troff. tbl: format tables for nroff

- 33 -

Permuted Index

string(3C)
string(3C)
string(3C)
string(3C)
strtol(3C)
ststat(I)
stty(1)
su(1)
send(lC)
intro(3)
plot(3X)
paste(I)
index (3 F)
sum(I)
du(I)
sync(I)
sync(2)
su(I)
sleep(I)
sleep(3C)
pause(2)
swab(3C)
swab(3C)
strip(I)
Idtbindex (3X)

· ldtbread (3X)
syms(4)
Idtbseek(3X)
sdb(I)
strip.pdp(J)
syms(4)
sync(2)

• sync(I)
scat(I)
ststat(I)

• stlogin (1)
sys3b(2)
perror(3C)
perror(3C)

• Idtbindex(3X)
Idtbread (3X)
syms(4)
master.dec(4)

• master.u3b(4)
· mnttab(4)

Idtbseek(3X)
toc(IG)
tbl(I)
hsearch (3C)
tabs(I)
tabs(I)
tail (I)
trig(3M)
tan (3 F)
tan (3 F)
tanh(3F)
tanh (3 F)
sinh(3M)
hpio(I)
tar(I)
tar(I)
lex(1)
deroff(l)
tbI(I)

Permuted Index

hpd, erase, hardcopy, tekset,
search trees. tsearch,

hpd, erase, hardcopy,
4014: paginator for the

temporary file. tmpnam,
tmpfile: create a

tempnam: create a name for a
terminals.

for the Tektronix 4014
functions of the DASI 450

ct: spawn getty to a remote
generate file name for

ststat: report synchronous
greek: select

dial: establish an out-going
getty. gettydefs: speed and

sign on to synchronous
stty: set the options for a

tabs: set tabs on a
hpio: HP 2645A

isatty: find name of a
functions of DASI 300 and 300s

of HP 2640 and 2621-series
tty: get the

se: screen editor for video
term: conventional names for

kill:
abort:

exit, exit:
for child process to stop or

command.
quiz:

ed, red:
change the format of a

fspec: format specification in
/checkeq: format mathematical

prepare constant-width
nroff: format

plock: lock process,
troff: typeset

ttt, cubic:
data and system/ timex:

time:
mclock: return Fortran

profil: execution
up an environment at login

stime: set

time: get
tzset: convert date and

clock: report CPU
process times.

update access and modification
get process and child process

file access and modification
process data and system/

file.
for a temporary file.

Itolower, _toupper, _tolower,
contents routines.

popen, pclose: initiate pipe

tc: phototypesetter simulator.
td: graphical device routines/
tdelete, twalk: manage binary
tee: pipe fitting. • • . . •
tekset, td: graphical device/ . •
Tektronix 4014 terminal. • .
tempnam: create a name for a
temporary file.
temporary file. tmpnam,
term: conventional names for
terminal. 4014: paginator
terminal. 450: handle special
terminal. •..•...
terminal. ctermid: . . .
terminal facilities status.
terminal filter.
terminal line connection.
terminal settings used by
terminal. stlogin:
terminal. ...••..
terminal. .•.•...
terminal tape file archiver.
terminal. ttyname,
terminals. /handle special
terminals. /special functions
terminal's name.
terminals.
terminals.
terminate a process.
terminate Fortran program.
terminate process. • . .
terminate. wait: wait
test: condition evaluation
test your knowledge.
text editor. . . •
text file. newform:
text files. • . . . •
text for nroff or troff.
text for troff. cw, checkcw:
text. . • • . . • . . .
text, or data in memory.
text.•.•
tic-tac-toe. . . . • . •
time a command; report process
time a command.
time accounting.
time: get time.
time profile.
time. profile: setting
time. • •....
time: time a command.
time. . ••.••.
time to string. / asctime,
time used. • •••..
times: get process and child
times of a file. touch:
times. times:
times. uti me: set
timex: time a command; report
tmpfile: create a temporary • •
tmpnam, tempnam: create a name
toascii: translate characters.
toc: graphical table of
tolfrom a process. • . . • •

- 34 -

tc(I)
gdev(IG)
tsearch (3C)
tee(I)
gdev(1G)
4014(1)
tmpnam(3S)
tmpfile(3S)
tmpnam(3S)
term(5)
4014(1)
450(1)
ct(1C)
ctermid (3S)
ststat(1)
greek(l)
dial(3C)
gettydefs(4)
stlogin(l)
stty(I)
tabs(I)
hpio(I)
ttyname(3C)
300(1)
hp(1)
tty (I)
se(1)
term(5)
kill (1)
abort (3 F)
exit(2)
wait(2)
test(l)
quiz(6)
ed(1)
newform(l)
fspec(4)
eqn(1)
cw(l)
nroff(l)

• plock (2)
troff(1)
ttt(6)
timex(l)
time(l)
mclock(3F)
time(2)
profil(2)
profile(4)
stime(2)
time(l)
time(2)
ctime(3C)
clock(3C)
times(2)
touch (1)
times (2)
utime(2)
timex(l)
tmpfile(3S)
tmpnam(3S)
conv{3C)
toc(1G)
popen(3S)

toupper, tolower, _toupper, _tolower, toascii: translate/
toascii: translate/ toupper, tolower, _toupper, _tolower,

tsort: topological sort. . • . . .
modification times of a file. touch: update access and .
translate/ toupper, tolower, _toupper, _tolower, toascii:
_tolower, toascii: translate/ toupper, tolower, _toupper,

tplot: graphics filters.
tr: translate characters.

ptrace: process trace.
sign, isign, dsign: Fortran transfer-of-sign intrinsic/

/ _toupper, _tolower, toascii: translate characters.
tr: translate characters. •

ftw: walk a file tree.
twalk: manage binary search trees. tsearch, tdelete,

tan, asin, acos, atan, atan2: trigonometric functions. /cos,
constant-width text for troff. cw, checkcw: prepare .

mathematical text for nroff or troff. /neqn, checkeq: format
typesetting view graphs/ mv: a troff macro package for

format tables for nroff or troff. tbl: ...•...
troff: typeset text.
trouble: log a trouble report.

trouble: log a trouble report.
values. true, false: provide truth

pdpll, u3b, u3bS, vax: provide truth value about your/
true, false: provide truth values.

manage binary search trees. tsearch, tdelete, twalk:
tsort: topological sort.
ttt, cubic: tic-tac-toe.
tty: get the terminal's name.

graphics for the extended TTY -37 type-box. greek: •
a terminal. ttyname, isatty: find name of

utmp file of the current/ ttyslot: find the slot in the
trees. tsearch, tdelete, twalk: manage binary search

ichar, char: explicit Fortran type conversion. /dcmplx,
file: determine file type.••..•

value about your processor type. /vax: provide truth
for the extended TTY -37 type-box. greek: graphics

types. types: primitive system data
types: primitive system data types.

graphs, and slides. mmt, mvt: typeset documents, view
troff: typeset text. ..•..

mv: a troff macro package for typesetting view graphs and/
/localtime, gmtime, asctime, tzset: convert date and timet

value about your/ pdp!!, u3b, u3bS, vax: provide truth
about your/ pdp!!, u3b, u3b5, vax: provide truth value

getpw: get name from UID. ••....•
limits. ulimit: get and set user . . . •

creation mask. umask: set and get file . • . •
mask. umask: set file-creation mode

umount: unmount a file system.
UNIX system. uname: get name of current
UNIX system. uname: print name of current .

file. unget: undo a previous get of an SCCS
an SCCS file. unget: undo a previous get of

into input stream. ungetc: push character back
srand, rand: Fortran uniform random-number/

/seed48, lcong48: generate uniformly distributed/
a file. uniq: report repeated lines in

mktemp: make a unique file name.
units: conversion program.

uuto, uupick: public UNIX-to-UNIX file copy.
entry. unlink: remove directory

umount: unmount a file system. . .
files. pack, pcat, unpack: compress and expand

- 35 -

Permuted Index

conv(3C)
conv(3C)
tsort (I)
touch(l)
conv(3C)
conv(3C)
tplot(IG)
tr(l)
ptrace(2)
sign(3F)
conv(3C)
tr(1)
ftw(3C)
tsearch (3C)
trig(3M)
cw(l)
eqn(I)
mv(S)
tbl(I)
troff(I)
trouble(I)
trouble(I)
true(I)
machid(l)
true(I)
tsearch (3 C)
tsort (I)
ttt(6)
tty(I)
greek(S)
ttyname(3C)
ttyslot(3C)
tsearch (3C)
ftype(3F)
file(I)
machid(l)
greek(S)
types(S)
types(S)
mmt(I)
troff(I)
mv(S)
ctime(3C)
machid(l)
machid(l)
getpw(3C)
ulimit(2)
umask(2)
umask(I)
umount(2)
uname(2)
uname(l)
unget(!)
unget(l)
ungetc(3S)
rand (3 F)
drand48 (3C)
uniq(I)
mktemp(3C)
units(I)
uuto(IC)
unlink(2)
umount(2)
pack(I)

Permuted Index

times of a file. touch:
of programs. make: maintain,

Isearch: linear search and
sync:
sync:

du: summarize disk
stat: statistical network

id: print
setuid, setgid: set

character login name of the
/getgid, getegid: get real

environ:
gcosmail: send mail to HIS

ulimit: get and set
logname: return login name of

/get real user, effective
become super-user or another

the utmp file of the current
write: write to another

mail, rmail: send mail to
statistics.

gutil: graphical
modification times.

utmp, wtmp:
endutent, utmpname: access

ttyslot: find the slot in the
entry formats.

/pututline, setutent, endutent,
control. uustat:

unix copy.
copy. uucp,
uucp, uulog,

file copy. uuto,
and job control.

UNIX-to-UNIX file copy.
execution.

val:
/u3b, u3bS, vax: provide truth

abs: return integer absolute
cabs, zabs: Fortran absolute

getenv: return
ceiling, remainder, absolute

true, false: provide truth
return Fortran environment

your/ pdpll, u3b, u3b5,

option letter from argument
assert:

vpr:
vc:

get: get a
sccsdiff: compare two

se: screen editor for
mmt, mvt: typeset documents,
macro package for typesetting

file system: format of system

process.
or terminate. wait:

to stop or terminate.
ftw:

update access and modification
update, and regenerate groups
update.
update super-block.
update the super block.
usag~
useful with graphical!
user and group IDs and names.
user and group IDs.
user. cuserid: get
user, effective user, real!
user environment.
user.
user limits. . • .
user. •
user, real group, and/
user. su:
user. /find the slot in
user. •.....
users or read mail.
ustat: get file system
utilities. ..•..
utime: set file access and
utmp and wtmp entry formats.
utmp file entry. /setutent,
utmp file of the current user.
utmp, wtmp: utmp and wtmp
utmpname: access utmp file/
uucp status inquiry and job .
uucp, uulog, uuname: unix to
uulog, uuname: unix to unix
uuname: unix to unix copy. .
uupick: public UNIX-to-UNIX
uustat: uucp status inquiry
uuto, uupick: public
uux: unix to unix command
val: validate SCCS file.
validate SCCS file.
value about your processor/
value. •
value. abs, iabs, dabs,
value for environment name.
value functions. Ifabs: floor,
values .•.•.......
variable. getenv:
vax: provide truth value about
vc: version control.
vector. getopt: get . . .
verify program assertion.
Versatec printer spooler.
version control.
version of an SCCS file.
versions of an SCCS file.
video terminals.
view graphs, and slides.
view graphs and slides. Itroff
volume. . ••.......
vpr: Versatec printer spooler.
wait: await completion of •.
wait for child process to stop
wait: wait for child process
walk a file tree. •
wc: word count. . • • .
what: identify SCCS files.

- 36 -

touch(I)
•••• make(I)

Isearch (3C)
sync(2)
sync(I)
du(I)
stat(lG)
id(l)
setuid(2)
cuserid (3S)
getuid(2)
environ(S)
gcosmail (1 C)
ulimit(2)
10gname(3X)
getuid(2)
su(I)
ttyslot(3C)
write(I)
mail(I)
ustat(2)
gutiI(lG)
utime(2)
utmp(4)
getut(3C)
ttyslot(3C)
utmp(4)
getut(3C)
uustat(IC)
uucp(I C)
uucp(I C)
uucp(IC)
uuto(IC)
uustat(I C)
uuto(IC)
uux(IC)
vaI(})
vaI(})
machid(l)
abs(3C)
abs(3F)
getenv(3C)

• floor(3M)
true(I)
getenv(3F)
machid(I)

• vc(I)
getopt(3C)
assert(3X)
vpr(})

• vc(l)
get(I)
sccsdiff(})
se(I)
mmt(I)

• mv(S)
fs(4)
vpr(})
wait(I)
wait(2)
wait(2)
ftw(3C)
wc(I)
what(I)

signal. signal: specify what to do upon receipt of a
who: who is on the system.

who: who is on the system.
cd: change working directory. • • . .

chdir: change working directory. . • . •
get path-name of current working directory. getcwd:

pwd: working directory name.
write: write on a file.

putpwent: write password file entry.
write: write to another user.

write: write on a file.
write: write to another user.

open: open for reading or writing.•..
utmp, wtmp: utmp and wtmp entry formats. . . .

formats. utmp, wtmp: utmp and wtmp entry
hunt-the-wumpus. wump: the game of

install a BX.25 link. x25alnk, x25ilnk: attach or .
link. x25clnk: change over a BX.25

BX.25 link. x25hlnk, x25dlnk: halt or detach a .
detach a BX.25 link. x25hlnk, x25dlnk: halt or .
BX.25 link. x25alnk, x25ilnk: attach or install a

remove a PVC on a link. x25ipvc, x25rpvc: install or
PVC on a link. x25ipvc, x25rpvc: install or remove a

list(s) and execute command. xargs: construct argument
Fortran bitwise/ and, or, xor, not, lshift, rshift:

jO, j 1, jn, yO, y I, yn: Bessel functions.
jO, j 1, jn, yO, y 1, yn: Bessel functions.

compiler-compiler. yacc: yet another
jO, j 1, jn, yO, y 1, yn: Bessel functions. . . .

abs, iabs, dabs, cabs, zabs: Fortran absolute value.

- 37 -

Permuted Index

· signal(2)
who(I)
who(I)

• cd(I)
• chdir(2)

getcwd(3C)
pwd(l)
write(2)
putpwent(3C)
write(I)
write(2)
write(I)
open (2)
utmp(4)
uttnp(4)
wump(6)
x25alnk (3C)
x25clnk (3C)
x25hlnk(3C)
x25hlnk(3C)
x25alnk(3C)
x25ipvc(3C)
x25ipvc(3C)
xargs(I)
bool(3F)
bessel(3M)
bessel(3M)
yacc(I)
besseJ(3M)
abs(3F)

INTRO(I) INTRO (I)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.
Certain distinctions of purpose are made in the headings:

(0 Commands of general utility.
(1 C) Commands for communication with other systems.
(1 G) Commands used primarily for graphics and computer-aided design.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options and
other arguments according to the following syntax:

name [option(s)) [cmdarg(s)]
where:

name

option

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargletter{s) or,
- argletter < > optarg
where < > is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

Path name (or other command argument) not beginning with
or, - by itself indicating the standard input.

SEE ALSO
getopt(1), getopt(3C).
Section 6 of this volume for computer games.
How to Get Started, at the front of this volume.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and Gn the case of "normal"
termination) one supplied by the program (see wait (2) and exit (2». The
former byte is 0 for normal termination; the latter is customarily 0 for success
ful execution and non-zero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is
called variously "exit code", "exit status", or "return code", and is described
only where special conventions are involved.

Regretfully, many commands do not adhere to the aforementioned syntax.

- 1 -

300(1) 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12] [-0] [-dt,l,c]

300s [+12] [-0] [-dt,l,c]

DESCRIPTION
300 supports special functions and optimizes the use of the DASI 300 (GSI 300
or DTC 300) terminal; 300s performs the same functions for the DASI 300s
(GSI 300s or DTC 300s) terminal. It converts half-line forward, half-line
reverse, and full-line reverse motions to the correct vertical motions. It also
attempts to draw Greek letters and other special symbols. It permits con
venient use of 12-pitch text. It also reduces printing time 5 to 70%. 300 can
be used to print equations neatly, in the sequence:

neqn file ... I nrofT I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle
12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals nor
mally allow only two combinations: 10-pitch, 6 lineslinch, or 12-
pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch combina
tion, the user should turn the PITCH switch to 12, and use the + 12
option.

-n controls the size of half-line spacing. A half-line is, by default, equal
to 4 vertical plot increments. Because each increment equals 1/48 of
an inch, a lO-pitch line-feed requires 8 increments, while a 12-pitch
line-feed needs only 6. The first digit of n overrides the default
value, thus allowing for individual taste in the appearance of sub
scripts and superscripts. For example, nroff half-lines could be made
to act as quarter-lines by using -2. The user could also obtain
appropriate half-lines for 12-pitch, 8 lines/inch mode by using the
option -3 alone, having set the PITCH switch to 12-pitch.

-dt,i,c controls delay factors. The default setting is -d3,90,30. DASI 300
terminals sometimes produce peculiar output when faced with very
long lines, too many tab characters, or long strings of blankless, non
identical characters. One null (delay) character is inserted in a line
for every set of t tabs, and for every contiguous string of c non
blank, non-tab characters. If a line is longer than i bytes, 1 +(total
length) /20 nulls are inserted at the end of that line. Items can be
omitted from the end of the list, implying use of the default values.
Also, a value of zero for t (c) results in two null bytes per tab (char
acter). The former may be needed for C programs, the latter for
files like /etc/passwd. Because terminal behavior varies according to
the specific characters printed and the load on a system, the user
may have to experiment with these values to get correct output. The
-d option exists only as a last resort for those few cases that do not
otherwise print properly. For example, the file /ete/passwd may be
printed using -d3,30,5. The value -dO,l is a good one to use for C
programs that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing car
riage return and line-feed delays. The stty (1) modes 010 er2 or 010
er3 are recommended for most uses.

- 1 -

300(1) 300 (1)

300 can be used with the nroff -s flag or .rd requests, when it is necessary to
insert paper manually or change fonts in the middle of a document. Instead of
hitting the return key in these cases, you must use the line-feed key to get any
response.

In many (but not all) cases, the following sequences are equivalent:

nroff -T300 files ... and nroff files ... I 300
nroff - T300-12 files... and nroff files... I 300 + 12

The use of 300 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 300
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 300 are shown in greek (5).

SEE ALSO

BUGS

450(1), eqn(I), graph(1G), mesg(I), nroff(1), stty(I), tabs(I), tbl(I),
tplot(1G), greek(5).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed pla
ten instead of a forms tractor; although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

- 2 -

4014 (1) 4014 (1)

NAME
4014 - paginator for the Tektronix 4014 terminal

SYNOPSIS
4014 [-t] [-0] [-eN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal; 4014 arranges
for 66 lines to fit on the screen, divides the screen into N columns, and contri
butes an eight-space page offset in the (default) single-column case. Tabs,
spaces, and backspaces are collected and plotted when necessary. TELETYPE@
Teletypewriter Model 37 half- and reverse-line sequences are interpreted and
plotted. At the end of each page, 4014 waits for a new-line (empty line) from
the keyboard before continuing on to the next page. In this wait state, the
command !cmd will send the cmd to the shell.

The command line options are:

-t Don't wait between pages (useful for directing output into a file).

-0 Start printing at the current cursor position and never erase the screen.

-eN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and I
(Jines); default is lines.

SEE ALSO
pr (I), tc(1), troff(I).

- 1 -

450(1) 450 (1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DASI 450 termi
nal, or any terminal that is functionally identical, such as the DIABLO 1620 or
XEROX 1700. It converts half-line forward, half-line reverse, and full-line
reverse motions to the correct vertical motions. It also attempts to draw Greek
letters and other special symbols in the same manner as 300(1). 450 can be
used to print equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNING: make sure that the PLOT switch on your terminal is ON before 450
is used. The SPACING switch should be put in the desired position (either 10-
or 12-pitch). In either case, vertical spacing is 6 lines/inch, unless dynamically
changed to 8 lines per inch by an appropriate escape sequence.

450 can be used with the nroff -s flag or .rd requests, when it is necessary to
insert paper manually or change fonts in the middle of a document. Instead of
hitting the return key in these cases, you must use the line-feed key to get any
response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of
the following:

nroff -T450 files ...
or

nroff -T450-12 files

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement optimization of 450
may produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special characters
supported by 450 are shown in greek (5).

SEE ALSO

BUGS

300(1), eqn(1), graph(1G), mesg(1), nroff(l), stty(1), tabs(1), tbI(l),
tplot(IG), greek(5).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed pla
ten instead of a forms tractor; although good enough for drafts, the latter has a
tendency to slip when reversing direction, distorting Greek characters and
misaligning the first line of text after one or more reverse line-feeds.

- 1 -

ACCTCOM(I) ACCTCOM(I)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcorn [[options] [file]]

DESCRIPTION
Acctcom reads file, the standard input, or lusr/adrn/pacct, in the form
described by acct (4) and writes selected records to the standard output. Each
record represents the execution of one process. The output shows the COM
MAND NAME, USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU
(SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for fork
without exec) and STAT (the system exit status).

The command name is prepended with a # if it was executed with super-user
privileges. If a process is not associated with a known terminal, a ? is printed
in the TTYNAME field.

If no files are specified, and if the standard input is associated with a terminal
or Idev/null (as is the case when using & in the shell), lusr/adm/pacct is read,
otherwise the standard input is read.

If any file arguments are given, they are read in their respective order. Each
file is normally read forward, i.e., in chronological order by process completion
time. The file /usr/adm/pacct is usually the current file to be examined; a busy
system may need several such files of which all but the current file are found in
/usr/adm/pacct? The options are:

-b
-f

-b

-i
-k
-m
-r
-t
-v
-I line
-u user

-g group

-d mm/dd

-s time

-e time
-S time
-E time
-n pattern

Read backwards, showing latest commands first.
Print the fork/exec flag and system exit status columns in the
output.
Instead of mean memory size, show the fraction of total available
CPU time consumed by the process during its execution. This
"hog factor" is computed as:

(total CPU time) / (elapsed time).
Print columns containing the I/O counts in the output.
Instead of memory size, show total kcore-minutes.
Show mean core size (the default).
Show CPU factor (user timet (system-time + user-time).
Show separate system and user CPU times.
Exclude column headings from the output.
Show only processes belonging to terminal /devlline.
Show only processes belonging to user that may be specified by: a
user ID, a login name that is then converted to a user ID, a #
which designates only those processes executed with super-user
privileges, or ? which designates only those processes associated
with unknown user IDs.
Show only processes belonging to group. The group may be

designated by either the group ID or group name.
Any time arguments following this flag are assumed to occur on
the given month mm and the day dd rather than during last 24
hours. This is needed for looking at old files.
Select processes existing at or after time, given in the format
hr [:min [:sec]].
Select processes existing at or before time.
Select processes starting at or after time.
Select processes ending at or before time.
Show only commands matching pattern that may be a regular
expression as in ed(1) except that + means one or more
occurrences.

- 1 -

ACCTCOM(I) ACCTCOM(I)

FILES

-0 ofile Copy selected process records in the input data format to ofile;
supress standard output printing.

-H factor Show only processes that exceed factor, where factor is the "hog
factor" as explained in option -h above.

-0 sec Show only processes with CPU system time exceeding sec seconds.
-C sec Show only processes with total CPU time, system plus user,

exceeding sec seconds.

Listing options together has the effect of a logical and.

/etc/passwd
/ usr / adm/ pacct
/etc/group

SEE ALSO

BUGS

ps(l), su(I), acct(2), acct(4) , utmp(4).
acct (I M), acctcms (I M), acctcon (I M), acctmerg (I M), acctprc(I M),
acctsh(IM), fwtmp(IM), runacct(IM) in the UNIX System Administrator's
Manual.

Acctcom only reports on processes that have terminated; use ps(I) for active
processes. If time exceeds the present time and option -d is not used, then
time is interpreted as occurring on the previous day.

- 2 -

ADB(I) (DEC only) ADB(I)

NAME
adb - absolute debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files
and to provide a controlled environment for the execution of UNIX System pro
grams.

Objfil is normally an executable program file, preferably containing a symbol
table; if not then the symbolic features of adb cannot be used although the file
can still be examined. The default for objfil is a.out. Corfil is assumed to be a
core image file produced after executing objfil; the default for eorfil is core.

Requests to adb are read from the standard input and responses are to the
standard output. If the -w flag is present then both objfil and corfil are
created if necessary and opened for reading and writing so that files can be
modified using adb. Adb ignores QUIT; INTERRUPT causes return to the next
adb command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to O. For
most commands count specifies how many times the command will be executed.
The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a sub
process is being debugged then addresses are interpreted in the usual way in
the address space of the subprocess. For further details of address mapping see
ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if
preceded by #; otherwise a decimal number.

integer .fraction
A 32 bit floating point number.

'ecce The ASCII value of up to 4 characters. \ may be used to escape a '.

< name
The value of name, which is either a variable name or a register name.
Adb maintains a number of variables (see VARIABLES) named by sin
gle letters or digits. If name is a register name then the value of the
register is obtained from the system header in corfil. The register
names are rO ... r5 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or
digits, not starting with a digit. The value of the symbol is taken
from the symbol table in objfil. An initial or - will be prefixed to
symbol if needed.

_ symbol
In C, the "true name" of an external symbol begins with _. It may be
necessary to utter this name to distinguish it from internal or hidden

- 1 -

ADB(I) (DEC only) ADB(I)

variables of a program.

routine .name
The address of the variable name in the specified C routine. Both rou
tine and name are symbols. If name is omitted the value is the
address of the most recently activated C stack frame corresponding to
routine.

(exp) The value of the expression exp.

Monadic operators:

*exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

-exp Integer negation.

-exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic opera
tors.

el +e2 Integer addition.

el -e2 Integer subtraction.

el*e2 Integer multiplication.

el %e2 Integer division.

el & e2 Bitwise conjunction.

el I e2 Bitwise disjunction.

el #e2 El rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers.
The following verbs are available. (The commands? and / may be followed by
*; see ADDRESSES for further details')

?f Locations starting at address in objfil are printed according to the
format f. dot is incremented by the sum of the increments for each
format letter (q.v.).

/f Locations starting at address in corfil are printed according to the
format f and dot is incremented as for?

= f The value of address itself is printed in the styles indicated by the
format f. (For i format ? is printed for the parts of the instruction
that reference subsequent words')

A format consists of one or more characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format dot is incre
mented by the amount given for each format letter. If no format is given then
the last format is used. The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output by adb are
preceded by o.

o 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.

- 2 -

ADB(I)

new-line

(DEC only) ADB(I)

u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
f 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in octal.
c 1 Print the addressed character.
C 1 Print the addressed character using the following escape con

vention. Character values 000 to 040 are printed as @ fol
lowed by the corresponding character in the range 0100 to
0140. The character @ is printed as @ @.

s n Print the addressed characters until a zero character is
reached.

S n Print a string using the @ escape convention. n is the length
of the string including its zero terminator.

Y 4 Print 4 bytes in date format (see clime OC»'
i n Print as PDP-II instructions. n is the number of bytes occu

pied by the instruction. This style of printing causes variables
1 and 2 to be set to the offset parts of the source and destina
tion respectively.

a 0 Print the value of dot in symbolic form. Symbols are checked
to ensure that they have an appropriate type as indicated
below.

P 2

o

r 0
n 0
" ... " 0

+

I local or global data symbol
? local or global text symbol

local or global absolute symbol

Print the addressed value in symbolic form using the same
rules for symbol lookup as a.
When preceded by an integer tabs to the next appropriate tab
stop. For example, 8t moves to the next 8-space tab stop.
Print a space.
Print a new-line.
Print the enclosed string.
Dot is decremented by the current increment. Nothing is
printed.
Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[? 111 value mask
Words starting at dot are masked with mask and compared with value
until a match is found. If L is used then the match is for 4 bytes at a
time instead of 2. If no match is found then dot is unchanged; other
wise dot is set to the matched location. If mask is omitted then -1 is
used.

[? 11w value ...
Write the 2-byte value into the addressed location. If the command is
W, write 4 bytes. Odd addresses are not allowed when writing to the
subprocess address space.

[? 11m bi el IJ[? /1
New values for (bI, eI, II) are recorded. If less than three expressions
are given then the remaining map parameters are left unchanged. If
the ? or / is followed by • then the second segment (b2, e2 ,f2) of the
mapping is changed. If the list is terminated by ? or / then the file
(objfil or corfil respectively) is used for subsequent requests. (So that,

- 3 -

ADB(O (DEC only)

.for example, 1m? will cause I to refer to objfil.)

> name Dot is assigned to the variable or register named.

A shell is called to read the rest of the line following !.

$ modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.

ADB(I)

> f Send output to the file f, which is created if it does not exist.
r Print the general registers and the instruction addressed by pc.

Dot is set to pc.
r Print the floating registers in single or double length. If the

floating point status of ps is set to double (0200 bit) then dou
ble length is used anyway.

b Print all breakpoints and their associated counts and com
mands.

a ALGOL 68 stack backtrace. If address is given then it is
taken to be the address of the current frame (instead of r4).
If count is given then only the first count frames are printed.

e C stack backtrace. If address is given then it is taken as the
address of the current frame (instead of rS). If C is used then
the names and (16 bit) values of all automatic and static vari
ables are printed for each active function. If count is given
then only the first count frames are printed.

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
d Reset integer input as described in EXPRESSIONS.
q Exit from adb.
v Print all non zero variables in octal.

. m Print the address map.

: modifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is executed
eount-l times before causing a stop. Each time the break
point is encountered the command e is executed. If this com
mand sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given explicitly then
the program is entered at this point; otherwise the program is
entered at its standard entry point. count specifies how many
breakpoints are to be ignored before stopping. Arguments to
the subprocess may be supplied on the same line as the com
mand. An argument starting with < or > causes the stan
dard input or output to be established for the command. All
signals are turned on on entry to the subprocess.

es The subprocess is continued with signal s (see signaI(2»). If
address is given then the subprocess is continued at this
address. If no signal is specified then the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the same
as for r.

ss As for e except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run as a
subprocess as for r. In this case no signal can be sent; the

- 4 -

ADBU) (DEC only) ADBU)

remainder of the line is treated as arguments to the subpro
cess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb
but are not used subsequently. Numbered variables are reserved for communi
cation as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil
does not appear to be a core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The "magic" number (0405, 0407, 0410 or 0411).
s The stack segment size.
t The text segment size.

ADDRESSES

FILES

The address in a file associated with a written address is determined by a map
ping associated with that file. Each mapping is represented by two triples (bI,
e 1, /1) and (b2, e2, f2) and the file address corresponding to a written address
is calculated as follows:

bi ~address <eI => file address =address +f 1 -bi
otherwise

b2 ~address <e2 => file address=address+f2 -b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs
with separated I and D space) the two segments for a file may overlap. If a ?
or / is followed by an • then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files.
If either file is not of the kind expected then, for that file, bi is set to 0, ei is
set to the maximum file size and fi is set to 0; in this way the whole file can be
examined with no address translation.

In order for adb to be used on large files all appropriate values are kept as
signed 32 bit integers.

Idev/mem
Idev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(4), core(4).

DIAGNOSTICS

BUGS

"Adb" when there is no current command or format. Comments about inac
cessible files, syntax errors, abnormal termination of commands, etc. Exit
status is 0, unless last command failed or returned nonzero status.

A breakpoint set at the entry point is not effective on initial entry to the pro
gram.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul up

- 5 -

ADBU) (DEC only) ADB(I)

the accessing of the external.

- 6 -

ADMIN (I) ADMIN(I)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-0] [-ilname]] [-rrel] [-t[name]] [-fflag[flag-vaI]]
[-dflag[flag-vaI]] [-alogin] [-elogin] [-m[mrlist]] [-ylcomment]] [-h]
[-z] files

DESCRIPTION
Admin is used to create new sees files and change parameters of existing ones.
Arguments to admin, which may appear in any order, consist of keyletter argu
ments, which begin with -, and named files (note that sees file names must
begin with the characters s.). If a named file doesn't exist, it is created, and its
parameters are initialized according to the specified key letter arguments.
Parameters not initialized by a keyletter argument are assigned a default value.
If a named file does exist, parameters corresponding to specified key letter argu
ments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component of
the path name does not begin with s.) and unreadable files are silently ignored.
If a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an sees file to be processed. Again, non
sees files and unreadable files are silently ignored.

The key letter arguments are as follows. Each is explained as though only one
named file is to be processed since the effects of the arguments apply indepen
dently to each named file.

-0

-ilname]

-rrel

-dname]

This keyletter indicates that a new sees file is to be
created.

The name of a file from which the text for a new sees
file is to be taken. The text constitutes the first delta of
the file (see -r keyletter for delta numbering scheme).
If the i key letter is used, but the file name is omitted,
the text is obtained by reading the standard input until
an end-of-file is encountered. If this keyletter is omit
ted, then the sees file is created empty. Only one
sees file may be created by an admin command on
'which the i keyletter is supplied. Using a single admin
to create two or more sees files require that they be
created empty (no -i keyletter). Note that the -i
key letter implies the -0 keyletter.

The release into which the initial delta is inserted. This
keyletter may be used only if the -i keyletter is also
used. If the -r keyletter is not used, the initial delta is
inserted into release 1. The level of the initial delta is
always 1 (by default initial deltas are named 1. 1).

The name of a file from which descriptive text for the
sees file is to be taken. If the -t keyletter is used and
admin is creating a new sees file (the -0 and/or -i
keyletters also used), the descriptive text file name must
also be supplied. In the case of existing sees files: (1)
a -t keyletter without a file name causes removal of
descriptive text (if any) currently in the sees file, and
(2) a -t keyletter with a file name causes text (if any)
in the named file to replace the descriptive text (if any)
currently in the sees file.

- 1 -

ADMIN(I) ADMIN(I)

-fflag This keyletter specifies a flag, and, possibly, a value for
the flag, to be placed in the sees file. Several f
keyletters may be supplied on a single admin command
line. The allowable flags and their values are:

b Allows use of the - b keyletter on a get (I) command to
create branch deltas.

cceil The highest release (i.e., "ceiling"), a number less than
or equal to 9999, which may be retrieved by a get (1)
command for editing. The default value for an
unspecified c flag is 9999.

ffloor The lowest release (i.e., "floor"), a number greater than
o but less than 9999, which may be retrieved by a
get (!) command for editing. The default value for an
unspecified f flag is I.

dSID The default delta number (SID) to be used by a get (I)
command.

Causes the "No id keywords (ge6)" message issued by
get(!) or delta(!) to be treated as a fatal error. In the
absence of this flag, the message is only a warning. The
message is issued if no sees identification keywords
(see get (1)) are found in the text retrieved or stored in
the sees file.

Allows concurrent get (I) commands for editing on the
same SID of an sees file. This allows mUltiple con
current updates to the same version of the sees file.

llist A list of releases to which deltas can no longer be made
(get -e against one of these "locked" releases fails).
The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to specifying all
releases for the named sees file.

D Causes delta(!) to create a "null" delta in each of those
releases (if any) being skipped when a delta is made in
a new release (e.g., in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as
"anchor points" so that branch deltas may later be
created from them. The absence of this flag causes
skipped releases to be non-existent in the sees file __
preventing branch deltas from being created from them
in the future.

qtext User definable text substituted for all occurrences of the
%Q% keyword in sees file text retrieved by get (1) .

mmod Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by get (!). If the m flag is not specified, the
value assigned is the name of the sees file with the
leading s. removed.

ttype Type of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text retrieved
by get (I).

- 2 -

ADMIN(I) ADMIN (1)

v[pgm] Causes delta (1) to prompt for Modification Request
(M R) numbers as the reason for creating a delta. The
optional value specifies the name of an M R number vali- i

dity checking program (see delta (1». (If this flag is set
when creating an sees file, the m key letter must also be
used even if its value is null).

-djlag Causes removal (deletion) of the specified flag from an
sees file. The -d key letter may be specified only

. when processing existing sees files. Several -d
keyletters may be supplied on a single admin command.
See the -f keyletter for allowable flag names.

Ilist A list of releases to be "unlocked". See the -f
keyletter for a description of the I flag and the syntax of
a list.

-alogin A login name, or numerical UNIX System group ID, to
be added to the list of users which may make deltas
(changes) to the sees file. A group ID is equivalent to
specifying all login names common to that group ID.
Several a keyletters may be used on a single admin
command line. As many logins, or numerical group IDs,
as desired may be on the list simultaneously. If the list
of users is empty, then anyone may add deltas.

-elogin A login name, or numerical group ID, to be erased from
the list of users allowed to make deltas (changes) to the
sees file. Specifying a group ID is equivalent to speci
fying all login names common to that group ID. Several
e key letters may be used on a single admin command
line.

-ylcomment1 The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical to
that of delta (I). Omission of the -y keyletter results
in a default comment line being inserted in the form:

-mlmrlist]

-h

date and time created YY/MM/DD HH:MM:SS by login

The -y key letter is valid only if the -i and/or -n
key letters are specified (i.e., a new sees file is being
created) .

The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason for creating the
initial delta in a manner identical to delta (I). The v
flag must be set and the M R numbers are validated if
the v flag has a value (the name of an M R number vali- \
dation program). Diagnostics will occur if the v flag is
not set or M R validation fails.

Causes admin to check the structure of the sees file
(see sccsjile(S», and to compare a newly computed
check-sum (the sum of all the characters in the sees
file except those in the first line) with the check-sum
that is stored in the first line of the sees file.
Appropriate error diagnostics are produced.

This keyletter inhibits writing On the file, so that it
nullifies the effect of any other key letters supplied, and
is, therefore, only meaningful when processing existing
files.

- 3 -

ADMIN(l) ADMIN (1)

FILES

-z The sees file check-sum is recomputed and stored in
the first line of the sees file (see -h, above).

Note that use of this keyletter on a truly corrupted file
may prevent future detection of the corruption.

The last component of all sees file names must be of the form s.jile-name.
New sees files are given mode 444 (see chmod(I». Write permission in the
pertinent directory is, of course, required to create a file. All writing done by
admin is to a temporary x-file, called x.jile-name, (see get (I», created with
mode 444 if the admin command is creating a new sees file, or with the same
mode as the sees file if it exists. After successful execution of admin, the
sees file is removed (if it exists), and the x-file is renamed with the name of
the sees file. This ensures that changes are made to the sees file only if no
errors occurred.

It is recommended that directories containing sees files be mode 755 and that
sees files themselves be mode 444. The mode of the directories allows only
the owner to modify sees files contained in the directories. The mode of the
sees files prevents any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be
changed to 644 by the owner allowing use of ed(I). Care must be taken! The
edited file should always be processed by an admin - h to check for corruption
followed by an admin -z to generate a proper check-sum. Another admin -h
is recommended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.jile-name) , which is
used to prevent simultaneous updates to the sees file by different users. See
get (1) for further information.

SEE ALSO
delta(1), ed(1), get(1), help(1), prs(l), what(1), sccsfile(4).
Source Code Control System User's Guide in the UNIX System User's Guide.

DIAGNOSTICS
Use help (1) for explanations.

- 4 -

AR(l) (not on PDP-l 1) AR(l)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is
to create and update library files as used by the link editor. It can be used,
though, for any similar purpose.

When ar creates an archive, it creates headers in a format that is portable
across all machines. The portable archive format and structure is described in
detail in ar (4). The archive symbol table (described in ar (4)) is used by the
link editor adO)) to effect multiple passes over libraries of object files in an
efficient manner. Whenever the arC!) command is used to create or update the
contents of an archive, the symbol table is rebuilt. The symbol table can be
forced to be rebuilt by the s option described below.

Key is one character from the set drqtprnx, optionally concatenated with one or
more of vuaibcls. Afile is the archive file. The names are constituent files in
the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u
is used with r, then only those files with modified dates later than the
archive files are replaced. If an optional positioning character from the
set abi is used, then the posname argument must be present and
specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.

rn Move the named files to the end of the archive. If a positioning char
acter is present, then the posname argument must be present and, as in
r, specifies where the files ~re to be moved.

x Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file description of
the making of a new archive file from the old archive and the consti
tuent files. When used with t, it gives a long listing of all information
about the files. When used with x, it precedes each file with a name.

c Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile is
created.

Local. Normally ar places its temporary files in the directory /trnp.
This option causes them to be placed in the local directory.

s Symbol table creation. Force the regeneration of the archive symbol
table even if arC!) is not invoked with a command which will modify
the archive contents. This command is useful to restore the archive

- 1 -

AR(l) (not on PDP-l 1) AR(l)

symbol table after the strip (1) command has been used on the archive.

FILES
/tmp/ar* temporaries

SEE ALSO

BUGS

arcv(1), Id(1), lorder(1), a.out(4), ar(4).

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

- 2 -

AR(I) (PDP-ll only) AR(I)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION

FILES

Ar maintains groups of files combined into a single archive file. Its main use is
to create and update library files as used by the link editor. It can be used,
though, for any similar purpose.

When ar creates an archive, it always creates the header in the format of the
local system. A conversion program exists to convert PDP-II archives to pre
UNIX System 5.0 VAX-I 1/780 archive format (see arcv(1». Another conver
sion program, convert(l), exists on the VAX and 3B20S to convert archives from
the pre-UNIX System 5.0 format to the "common" archive format described in
ar(4). Individual files are inserted without conversion into the archive file.

Key is one character from the set drqtpmx, optionally concatenated with one or
more of vuaibcl. Afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u
is used with r, then only those files with modified dates later than the
archive files are replaced. If an optional positioning character from the
set abi is used, then the posname argument must be present and
specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check
whether the added members are already in the archive. Useful only to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all
files in the archive are tabled. If names are given, only those files are
tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning char
acter is present, then the posname argument must be present and, as in
r, specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive
are extracted. In neither case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file description of
the making of a new archive file from the old archive and the consti
tuent files. When used with t, it gives a long listing of all information
about the files. When used with x, it precedes each file with a name.

c Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile is
created.

Local. Normally ar places its temporary files in the directory Itmp.
This option causes them to be placed in the local directory.

Itmp/v* temporaries

SEE ALSO
arcv(1), ld(l), 10rder(1), ar(4).

- I -

AR (1)

BUGS

(PDP-II only) AR(I)

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

- 2 -

ARCV(l) ARCV(I) "

NAME
arcv - convert archive files from PDP-II to common archive format

SYNOPSIS
arc\' infile outfile

DESCRIPTION
Arcv converts source archive files from the PDP-II format to the UNIX System
5.0 portable archive format. The input archive file infile is converted to an
equivalent output archive file outfile . Note that there is no conversion of the
members of the input archive file.

FILES
Itmp/arcv*

SEE ALSO
adO, convert(1), ar(4).

- 1 -

ASUJ (not on PDP-I 1) AS (I)

NAME
as - common assembler

SYNOPSIS
as [-0 objfile] [-n] [-m] [-R] [-r] [-[bwU] [-V] file-name

DESCRIPTION

FILES

The as command assembles the named file. The following flags may be
specified in any order:

-0 objfile Output of assembly is put in objfile. By default, the output file
name is formed by removing the .s suffix, if there is one, from the
input file name and appending a .0 suffix.

-n Turns off long/short address optimization. By default, address
optimization takes place.

-m

-R

-r

-[bwU

-v

Runs the m4 macro pre-processor on the input to the assembler.

Instructs the assembler to delete (unlink) the input file after
assembly is completed. This option is off by default.

For the V AX version of the common assembler only. This option
instructs the assembler to place all assembled data (normally
placed in the .data section) into the .text section. This option
effectively disables the .data pseudo operation. This option is off by
default.

For the VAX version of the common assembler only. This option
instructs the assembler to create byte (b) , halfword (w) or long (I)
displacements for undefined symbols. The default value for this
option is long (J) displacements.

Causes the version number of the assembler being run to be written
on standard error.

/usrltmp/as[1-6]XXXXXX temporary files

SEE ALSO
ld(t), m4(t), nm(1), strip(1), a.out(4).

DIAGNOSTICS
If the input file cannot be read, the assembly will terminate with the message
"Unable to open input file". If assembly errors are detected the following infor
mation is written to standard error: the input file name, line number where the
error occurred in the assembly code, a (hopefully) descriptive message of the
problem, and, if the input file was produced by the C compiler (see ec(t) the
line number in the C program that generated the erroneous code.

CAVEATS

~UGS

Those running the assembler explicitly should take note of some possible pit
falls:

If the -m (m4 macro pre-processor invocation) option is used, keywords
for m4 (see m4(1» cannot be used as symbols (variables, functions,
labels) in the input file since m4 cannot determine which are assembler
symbols· and which are real m4 macros.

The .align assembler directive is not guaranteed to work in the .text section
when optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per
expression.

- 1 -

AS (1) (PDP-ll only) AS(l)

NAME
as - assembler for PDP-II

SYNOPSIS
as [-] [-0 objfile] file

DESCRIPTION

FILES

As assembles the concatenation of the named files. If the optional first argu
ment - is used, all undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file obJfile; if that is omitted, a.out is
used. It is executable if no errors occurred during the assembly, and if there
were no unresolved external references.

llib/as2
Itmp/atm[I-3]?
a.out

pass 2 of the assembler
temporary
object

SEE ALSO
adb(l), Id(1), nm(1), a.out(4).
UNIX System Assembler Manual by D. M. Ritchie.

DIAGNOSTICS

BUGS

If the name chosen for the output file is of the form *? .lcsl, the assembler
issues an appropriate complaint and quits. When an input file cannot be read,
its name followed by a question mark is typed and assembly ceases. When syn
tactic or semantic errors occur, a single-character diagnostic is typed out,
together with the line number and the file name in which it occurred. Errors in
pass 1 cause cancellation of pass 2. The possible errors are:

Parentheses error
Parentheses error

< String not terminated properly
• Indirection used illegally

Illegal assignment to .
a Error in address
b Branch instruction is odd or too remote
e Error in expression
f Error in local (f or b) type symbol
g Garbage (unknown) character

End of file inside an .if
m Multiply-defined symbol as label
o Word quantity assembled at odd address
p . different in pass 1 and 2
r Relocation error
u Undefined symbol
x Syntax error

Syntax errors can cause incorrect line numbers in subsequent diagnostics.

- 1 -

ASA(I) ASA (I)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage con
trol characters. It processes either the files whose names are given as argu
ments or the standard input if no file names are supplied. The first character
of each line is assumed to be a control character; their meanings are:

(blank) single new line before printing

o double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with' '. The first character of a line is not printed. If any such lines
appear, an appropriate diagnostic will appear on standard error. This program
forces the first line of each input file to start on a new page.

To correctly view the output of FORTRAN programs which use ASA carriage
control characters, asa could be used as a filter thusly:

a.out I asa Ilpr

and the output, properly formatted and pagenated, would be directed to the line
printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO
efl(I), f77(I), fsplit(I), ratfor(I).

- 1 -

AWK(I) AWK(I)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [- Fc] [prog] [parameters] [files]

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified
in prog. With each pattern in prog there can be an associated action that will
be performed when a line of a file matches the pattern. The set of patterns
may appear literally as prog, or in a file specified as -f file. The prog string
should be enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern
portion of every pattern-action statement; the associated action is performed for
each matched pattern.

An input line is made up of fields separated by white space. (This default can
be changed by using FS, see below). The fields are denoted $1, $2, ... ; $0
refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An
action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression conditional; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, ., I, %, and
concatenation (indicated by a blank). The C operators + +, - -, + =, - =,
• =, 1=, and % = are also available in expressions. Variables may be scalars,
array elements (denoted xli]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows
for a form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if
>expr is present), separated by the current output field separator, and ter
minated by the output record separator. The printj statement formats its
expression list according to the format (see printj(3S».

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in functions
exp, log, sqrt, and into The last truncates its argument to an integer;
substr(s, m, n) returns the n-character substring of s that begins at position m.
The function sprintj(Jmt, expr, expr, .. .) formats the expressions according to
the printj(3S) format given by jmt and returns the resulting string.

- 1 -

AWK(I) AWK(I)

Patterns are arbitrary Boolean combinations (!, II, & &, and parentheses) of
regular expressions and relational expressions. Regular expressions must be
surrounded by slashes and are as in egrep (see grep (1» . Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either - (for contains) or !- (for does not contain). A conditional is an arith
metic expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pattern,
END the last.

A single character c may be used to separate the fields by starting the program
with:

BEG IN { FS = c }

or by using the - F c option.

Other variable names with special meanings include NF, the number of fields in
the current record; NR, the ordinal number of the current record; FILENAME,
the name of the current input file; OFS, the output field separator (default
blank); ORS, the output record separator (default new-line); and OFMT, the
output format for numbers (default % .6g) .

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END {print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --0 print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

command line: awk -f program n=5 input

SEE ALSO
grep(I), lex(I), sed(I).
Awk - A Pattern Scanning and Processing Language

- 2 -

AWK(1) AWK(1)

BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string ("") to it.

- 3 -

BANNER(l)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

BANNER(l)

Banner prints its arguments (each up to 10 characters long) in large letters on
the standard output.

SEE ALSO
echo(1) .

- 1 -

BASEN AME (1) BASENAME (1)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally used
inside substitution marks (, ,) within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c, com
piles the named file and moves the output to a file named cat in the current
directory:

cc $1
mv a.out 'basename $1 .c'

The following example will set the shell variable NAME to /usr/src/cmd:

NAME='dirname lusrlsrclcmd/cat.c'

SEE ALSO
sh(t) .

BUGS
The basename of / is null and is considered an error.

- 1 -

BC(I) BC(I)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-e] [-I] [file ...]

DESCRIPTION
Be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then reads
the standard input. The -I argument stands for the name of an arbitrary pre
cision math library. The syntax for be programs is as follows; L means letter
a-z, E means expression, S means statement.

Comments

Names

are enclosed in /. and ./.

simple variables: L
array elements: L [E]
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ - • / % " (% is remainder; " is power)
+ + - - (prefix and postfix; apply to names)
==<=>=!=<>
= = + =. =/ = % ="

Statements
E
{ S ; ... ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ... , L)

auto L, ... , L
S; ... S

Functions in
s(x)
c(x)
e(x)
I (x)
a (x)
j(n,x)

return (E)

-I math library
sine
cosine
exponential
log
arctangent
Bessel function

All function arguments are passed by value.

- 1 -

BC(I) BC (I)

The value of a statement that is an expression is printed unless the main opera
tor is an assignment. Either semicolons or new-lines may separate statements.
Assignment to scale influences the number of digits to be retained on arith
metic operations in the manner of dc(l). Assignments to ibase or obase set
the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables are
pushed down during function calls. When using arrays as function arguments
or defining them as automatic variables empty square brackets must follow the
array name.

Be is actually a preprocessor for dc(l), which it invokes automatically, unless
the -c (compile only) option is present. In this case the de input is sent to the
standard output instead.

EXAMPLE

FILES

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b=l
s = 1
forG=l; 1==1; i++){

a = a*x
b = b*i
c = alb
if(c == 0) return (s)
s = s+c

defines a function to compute an approximate value of the exponential function
and

forG=l; i<=lO; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

lusrllibllib.b
I usr Ibinl dc

mathematical library
desk calculator proper

SEE ALSO
deCl).

BUGS

BC-An Arbitrary Precision Desk-Calculator Language by L. L. Cherry and
R. Morris.

No & &, I I yet.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

- 2 -

BDIFF(t) BDIFF(I)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to dijJ(1) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow pro
cessing of files which are too large for diff. Bdiff ignores lines common to the
beginning of both files, splits the remainder of each file into n-line segments,
and invokes diff upon corresponding segments. The value of n is 3500 by
default. If the optional third argument is given, and it is numeric, it is used as
the value for n. This is useful in those cases in which 3500-line segments are
too large for diff, causing it to fail. If file] (file2) is -, the standard input is
read. The optional -s (silent) argument specifies that no diagnostics are to be
printed by bdijJ (note, however, that this does not suppress possible exclama
tions by diff. If both optional arguments are specified, they must appear in the
order indicated above.

The output of bdiff is exactly that of dijJ, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the files
had been processed whole). Note that because of the segmenting of the files,
bdiff does not necessarily find a smallest sufficient set of file differences.

/tmp/bd?????

SEE ALSO
diff(I) .

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

BFS(1) BFS(1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION
Bfs is (almost) like ed(l) except that it is read-only and processes much larger
files. Files can be up to 1024K bytes (the maximum possible size) and 32K
lines, with up to 255 characters per line. Bfs is usually more efficient than ed
for scanning a file, since the file is not copied to a buffer. It is most useful for
identifying sections of a large file where esplit (1) can be used to divide it into
more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file
written with the w command. The optional - suppresses printing of sizes.
Input is prompted with • if P and a carriage return are typed as in ed.
Prompting can be turned off again by inputting another P and carriage return.
Note that messages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular
expressions may be surrounded with two symbols besides / and ?: > indicates
downward search without wrap-around, and < indicates upward search without
wrap-around. Since bfs uses a different regular expression-matching routine
from ed, the regular expressions accepted are slightly wider in scope (see
regemp OX». There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.

The e, g, v, k, n, p, q, W, =, ! and null commands operate as described under
ed. Commands such as - - -, + + + -, + + + =, -12, and +4p are
accepted. Note that 1,10p and 1,10 will both print the first ten lines. The f
command only prints the name of the file being scanned; there is no remem
bered file name. The w command is independent of output diversion, trunca
tion, or crunching (see the XO, xt and xc commands, below). The following
additional commands are available:

xf file
Further commands are taken from the named file. When an end
of-file is reached, an interrupt signal is received or an error occurs,
reading resumes with the file containing the xf. Xf commands may
be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is miss
ing, output is diverted to the standard output. Note that each
diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the: and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

(. , •)xb/regular expressionllabel
A jump (either upward or downward) is made to label if the com
mand succeeds. It fails under any of the following conditions:

- 1 -

BFS(I) BFS (I)

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression doesn't match at least one line in
the specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to
label. This command is the only one that doesn't issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note that
the command

xbr/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe only a downward jump is
possible.

xt number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv. xv5100 or
xv5 100 both assign the value 100 to the variable 5. xv61,100p
assigns the value 1,100p to the variable 6. To reference a variable,
put a % in front of the variable name. For example, using the
above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of %, a \ must
precede it.

g/". *\%[cds]/p

could be used to match and list lines containing print! of characters,
decimal integers, or strings.
Another feature of the xv command is that the first line of output
from a UNIX System command can be stored into a variable. The
only requirement is that the first character of value be an!. For
example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

would put the current line into variable 5, print it, and increment
the variable 6 by one. To escape the special meaning of ! as the
first character of value, precede it with a \.

- 2 -

BFS(1)

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label

BFS(1)

These two commands will test the last saved return code from the
execution of a UNIX System command (!command) or nonzero
value, respectively, to the specified label. The two examples below
both search for the next five lines containing the string size.

xc [switch]

xv55
: I
Isizel
xv5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn I
xv45
: I
Isizel
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz I

If switch is 1, output from the p and null commands is crunched; if
switch is 0 it isn't. Without an argument, xc reverses switch. Ini
tially switch is set for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank lines suppressed.

SEE ALSO
csplit(I), ed(I), regcmp(3X).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.

- 3 -

BS(I) BS (1)

NAME
bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION
Bs is a remote descendant of Basic and Snobol4 with a little C language
thrown in. Bs is designed for programming tasks where program development
time is as important as the resulting speed of execution. Formalities of data
declaration and file/process manipulation are minimized. Line-at-a-time
debugging, the trace and dump statements, and useful run-time error messages
all simplify program testing. Furthermore, incomplete programs can be
debugged; inner functions can be tested before outer functions have been writ
ten and vice versa.

If the command line file argument is provided, the file is used for input before
the console is read. By default, statements read from the file argument are
compiled for later execution. Likewise, statements entered from the console are
normally executed immediately (see compile and execute below). Unless the
final operation is assignment, the result of an immediate expression statement is
printed.

Bs programs are made up of input lines. If the last character on a line is a \,
the line is continued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can
have the same name.

A bs statement is either an expression or a keyword followed by zero or more
expressions. Some keywords (clear, compile, !, execute, include, ibase, obase,
and run) are always executed as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment or function
call). The details of expressions follow the description of statement types
below.

break
Break exits from the inner-most forlwhile loop.

clear
Clears the symbol table and compiled statements. Clear is executed
immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution
default). The optional expression is evaluated and used as a file name for
further input. A clear is associated with this latter case. Compile is exe
cuted immediately.

continue
Continue transfers to the loop-continuation of the current forlwhile loop.

dump [name]
The name and current value of every non-local variable is printed. Option
ally, only the named variable is reported. After an error or interrupt, the
number of the last statement and (possibly) the user-function trace are
displayed.

- 1 -

BS(l) BS(l)

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect).
This statement does not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression, expression, expression statement
for expression , expression , expression

next
The for statement repetitively executes a statement (first form) or a group
of statements (second form) under control of a named variable. The vari
able takes on the value of the first expression, then is incremented by one on
each loop, not to exceed the value of the second expression. The third and
fourth forms require three expressions separated by commas. The first of
these is the initialization, the second is the test (true to continue), and the
third is the loop-continuation action (normally an increment).

fun f([a, ...]) [v, ...]

nuf
Fun defines the function name, arguments, and local variables for a user
written function. Up to ten arguments and local variables are allowed.
Such names cannot be arrays, nor can they be I/O associated. Function
definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interrogation
operator (?) below. If interrogation is not present, fretum merely returns
zero. When interrogation is active, fretum transfers to that expression
(possibly by-passing intermediate function returns).

goto name
Control is passed to the internally stored statement with the matching label.

ibase N
[base sets the input base (radix) to N. The only supported values for N are
8, 10 (the default), and 16. Hexadecimal values 10-15 are entered as a-I.
A leading digit is required (i.e., lOa must be entered as OlOa). [base (and
abase, below) are executed immediately.

if expression statement
if expression

[else

fi
The statement (first form) or group of statements (second form) is executed
if the expression evaluates to non-zero. The strings 0 and "" (null) evaluate
as zero. In the second form, an optional else allows for a group of state
ments to be executed when the first group is not. The only statement per
mitted on the same line with an else is an if; only other fi's can be on the
same line with a fi. The elision of else and if into an elif is supported.
Only a single fi is required to close an if ... elif ... [else ...] sequence.

- 2 -

BS(I) BS(I)

include expression
The expression must evaluate to a file name. The file must contain bs
source statements. Such statements become part of the program being com
piled. Include statements may not be nested.

obase N
Obase sets the output base to N (see ibase above).

onintr label
onintr

The onintr command provides program control of interrupts. In the first
form, control will pass to the label given, just as if a goto had been exe
cuted at the time onintr was executed. The effect of the statement is
cleared after each interrupt. In the second form, an interrupt will cause bs
to terminate.

return [expression]

run

The expression is evaluated and the result is passed back as the value of a
function call. If no expression is given, zero is returned.

The random number generator is reset. Control is passed to the first inter
nal statement. If the run statement is contained in a file, it should be the
last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or
evaluates to zero), tracing is turned off. Otherwise, a record of user
function calls/returns will be printed. Each return decrements the trace
expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expression for loop
continuation is given.

! shell command
An immediate escape to the Shell.

...
This statement is ignored. It is used to interject commentary in a program.

Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared in
fun statements, all names are global to the program. Names can take on
numeric (double float) values, string values, or can be associated with
input/ output (see the built-in function open 0 below).

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions Oisted
beloW), the name must be defined with a fun statement. Arguments to
functions are passed by value.

- 3 -

BS(I) BS(I)

name [expression [, expression] ...)
This syntax is used to reference either arrays or tables (see built-in table
functions below). For arrays, each expression is truncated to an integer and
used as a specifier for the name. The resulting array reference is syntacti
cally identical to a name; all,2) is the same as allll21. The truncated
expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
Fortran style, and contains digits, an optional decimal point, and possibly a
scale factor consisting of an e followed by a possibly signed exponent.

string
Character strings are delimited by "characters. The \ escape character
allows the double quote (\"), new-line (\n), carriage return (\r), backspace
(\b), and tab (\t) characters to appear in a string. Otherwise, \ stands for
itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) [expression)
The bracketed expression is used as a subscript to select a comma-separated
expression from the parenthesized list. List elements are numbered from
the left, starting at zero. The expression:

(False, True)[a == b]

has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than
its value. At the moment, it is useful for testing end-of-file (see examples in
the Programming Tips section below), the result of the eval built-in func
tion, and for checking the return from user-written functions (see fretum).
An interrogation "trap" (end-of-file, etc.) causes an immediate transfer to
the most recent interrogation, possibly skipping assignment statements or
intervening function levels.

- expression
The result is the negation of the expression.

+ + name
Increments the value of the variable (or array reference). The result is the
new value.

- - name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape com
mand.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments
separated by an operator denoting the function. Except for the assignment,
concatenation, and relational operators, both operands are converted to
numeric form before the function is applied.

Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a name or an
array element. The result is the right operand. Assignment binds right to
left, all other operators bind left to right.

- 4 -

BS(I) BS (1)

_ (underscore) is the concatenation operator.

& I
& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; I (logical or) has result
zero if both of its arguments are zero. It has result one if either of its argu
ments is non-zero. Both operators treat a null string as a zero.

< <= > >= == !=

+

The relational operators « less than, < = less than or equal, > greater
than, > = greater than or equal, = = equal to, ! = not equal to) return one
if their arguments are in the specified relation. They return zero otherwise.
Relational operators at the same level extend as follows: a>b>c is the
same as a>b & b>c. A string comparison is made if both operands are
strings.

Add and subtract.

• / %
Multiply, divide, and remainder.

Exponentiation.

Built-in Functions:

Dealing with arguments

arg(i)
is the value of the i -th actual parameter on the current level of function
call. At level zero, arg returns the i-th command-line argument (arg(O)
returns bs).

nargO
returns the number of arguments passed. At level zero, the command argu
ment count is returned.

Mathematical

abs(x)
is the absolute value of x.

atan(x)
is the arctangent of x. Its value is between -7r/2 and 7r12.

ceil (x)
returns the smallest integer not less than x.

cos (x)
is the cosine of x (radians).

exp(x)
is the exponential function of x.

ftoor(x)
returns the largest integer not greater than x.

log (x)
is the natural logarithm of x.

rand()
is a uniformly distributed random number between zero and one.

sin (x)
is the sine of x (radians).

- 5 -

BS(I) BS(I)

sqrt(x)
is the square root of x.

String operations

size(s)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format specification
in the style of printf{3S). Only the % ••• f, % ••• e, and % ••. s types are
safe.

index(x, y)
returns the number of the first position in x that any of the characters from
y matches. No match yields zero.

trans (s, f, t)
Translates characters of the source s from matching characters in f to a
character in the same position in t. Source characters that do not appear in
f are copied to the result. If the string f is longer than t, source characters
that match in the excess portion of f do not appear in the result.

substr (s, start, width)
returns the sub-string of s defined by the starting position and width.

matcb(string, pattern)
mstring(n)

The pattern is similar to the regular expression syntax of the ed(I) com
mand. The characters ., l, J, " (inside brackets), • and $ are special. The
mstring function returns the n-th (I < = n < = 10) substring of the subject
that occurred between pairs of the pattern symbols \(and \) for the most
recent call to match. To succeed, patterns must match the beginning of the
string (as if all patterns began with"). The function returns the number of
characters matched. For example:

match{"aI23abI23", ".*\([a-zl\)") == 6
mstring(I) == "b"

File handling

open (name, file, function)
close (name)

The name argument must be a bs variable name (passed as a string). For
the open, the file argument may be 1) a 0 (zero), 1, or 2 representing stan
dard input, output, or error output, respectively, 2) a string representing a
file name, or 3) a string beginning with an ! representing a command to be
executed (via sh -c). The function argument must be either r (read), w
(write), W (write without new-line), or a (append). After a close, the
name reverts to being an ordinary variable. The initial associations are:

open{"get", 0, "r")
open {"put", 1, "w")
open {"puterr", 2, "w")

Examples are given in the following section.

access (s, m)
executes access (2).

ftype(s)
returns a single character file type indication: f for regular file, p for FIFO
(i.e., named pipe), d for directory, b for block special, or c for character
special.

- 6 -

8S(I) BS (1)

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. "Sub
scripts" (called keys) are strings (numbers are converted). The name argu
ment must be a bs variable name (passed as a string). The size argument
sets the minimum number of elements to be allocated. Bs prints an error
message and stops on table overflow.

item(name, i)

key 0
The item function accesses table elements sequentially Gn normal use, there
is no orderly progression of key values). Where the item function accesses
values, the key function accesses the "subscript" of the previous item call.
The name argument should not be quoted. Since exact table sizes are not
defined, the interrogation operator should be used to detect end-of-table, for
example:

table("t", 100)

If word contains "party", the following expression adds one
to the count of that word:
++dword1

To print out the the key/value pairs:
for i = 0, ?(s = item(t, 0), ++i if keyO put = keyO _":" __ s

iskey(name, word)
The iskey function tests whether the key word exists in the table name and
returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a bs expression. The function is handy
for converting numeric strings to numeric internal form. Eval can also be
used as a crude form of indirection, as in:

name = "xyz"
eval ("++"_ name)

which increments the variable xyz. In addition, eval preceded by the inter
rogation operator permits the user to control bs error conditions. For exam
ple:

?evaI("open(\"X\", \"XXX\", \"r\")")

returns the value zero if there is no file named "XXX" (instead of halting
the user's program). The following executes a gala to the label L (if it
exists) :

label="L"
if ! (?evaI("goto "_ label) puterr = "no label"

plot(request, args)
The plot function produces output on devices recognized by tplot(IG). The
requests are as follows:

Call Function

plot (0, term)

- 7 -

causes further plot output to be piped
into tplot (I G) with an argument of
-Tterm.

BS(I)

plot (4)

plot (2, string)

plotO, xl, yl, x2, y2)

plot(4, x, y, r)

plot(5, xl, yl, x2, y2, x3, y3)

plot(6)

plot(7, x, y)

plot(8, x, y)

plot(9, x, y)

plot (1 0, string)

plot (1 1, xl, yl, x2, y2)

plot(12, xl, yl, x2, y2)

H~~l}

"erases" the plotter.

labels the current point with string.

draws the line between (xl,y]) and
(x2,y2). .

draws a circle with center (x,y) and
radius r.

draws an arc (counterclockwise) with
center (xl,y]) and endpoints (x2,y2)
and (x3,y3).

is not implemented.

makes the current point (x,y).

draws a line from the current point to
(x,y).

draws a point at (x,yL

sets the line mode to string.

makes (xl,y]) the lower left corner of
the plotting area and (x2,y 2) the
upper right corner of the plotting area.

causes subsequent x (y) coordinates to
be multiplied by xl (y]) and then
added to x2 (y2) before they are plot
ted. The initial scaling is plot(12, 1.0,
1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to tplot (I G). See plot (4) for
more details.

lastO
in immediate mode, last returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

$ bs
Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12 / le9
11.78496

Compound interest (6% for 5 years on $1,000).
int = .06 / 4
bal = 1000
for i = 1 5*4 bal = bal + bal*int
bal - 1000
346.855007

exit

The outline of a typical bs program:

initialize things:
varl = 1
open("read", "infile", "r")

compute:

- 8 -

BS(I)

while ?(str = read)

next
clean up:
close ("read ")

last statement executed (exit or stop):
exit
last input line:
run

Input/Output examples:

Copy "oldfile" to "newfile".
open ("read", "oldfile", "r")
open ("write", "newfile", "w")

while ?(write = read)

close "read" and "write":
close ("read")
close ("wri te ")

Pipe between commands.
open("ls", "!Is *", "r")
open ("pr", "!pr -2 -h 'List''', "w")
while? (pr = Is) ...

be sure to close (wait for) these:
close("ls")
close ("pr")

BS (1)

SEE ALSO
ed(I), sh(I), tplot(IG), access(2), printf(3S), stdio(3S), plot(4).
See Section 3 of this volume for further description of the mathematical func
tions (pow on exp OM) is used for exponentiation); bs uses the Standard
Input/Output package.

- 9 -

CAL(I) CAL(I)

NAME
cal - print calendar

SYNOPSIS
cal [month 1 year

DESCRIPTION

BUGS

Cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. Year can be between 1 and 9999. The
month is a number between 1 and 12. The calendar produced is that for Eng
land and her colonies.

Try September 1752.

The year is always considered to start in January even though this is histori
cally naive.
Beware that "cal 78" refers to the early Christian era, not the 20th century.

- 1 -

CALENDAR (1) CALENDAR (1)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION

FILES

Calendar consults the file calendar in the current directory and prints out lines
that contain today's or tomorrow's date anywhere in the line. Most reasonable
month-day dates such as "Dec. 7," "december 7," "12/7," etc., are recognized,
but not "7 December' or "7112". On weekends "tomorrow" extends through
Monday.

When an argument is present, calendar does its job for every user who has a
file calendar in their login directory and sends them any positive results by
mail(I). Normally this is done daily by facilities in the UNIX operating sys
tem.

calendar
lusrlliblcalprog to figure out today's and tomorrow's dates
letclpasswd
Itmp/cal.

SEE ALSO
maiI(I).

BUGS
Your calendar must be public information for you to get reminder service.
Calendar's extended idea of "tomorrow" does not account for holidays.

- 1 -

CAT(1) CAT(I)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-s] file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file, and:

cat file 1 file2 > file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from
the standard input file. Output is buffered unless the -u option is specified.
The -s option makes cat silent about non-existent files. No input file may be
the same as the output file unless it is a special file.

WARNING
Command formats such as

ca t file 1 file2 > file 1
will cause the original data in file1 to be lost, therefore, take care when using
shell special characters.

SEE ALSO
cp (1), pr (1) .

- 1 -

CB(l) CB(l)

NAME
cb - C program beautifier

SYNOPSIS
cb [-s] [-j] [-I leng] [file ...]

DESCRIPTION
Cb reads C programs either from its arguments or from the standard input and
writes them on the standard output with spacing and indentation that displays
the structure of the code. Under default options, cb preserves all user new
lines. Under the -s flag cb canonicalizes the code to the style of Kernighan
and Ritchie in The C Programming Language. The -j flag causes split lines
to be put back together. The -I flag causes cb to split lines that are longer
than leng.

SEE ALSO
cc(1).

BUGS

The C Programming Language by B. W. Kernighan and D. M. Ritchie.

Punctuation that is hidden in preprocessor statements will cause indentation
errors.

- 1 -

CC(I) CC (I)

NAME
cc, pcc - C compiler

SYNOPSIS
cc [option 1 ... file .. .
pcc [option 1 ... file .. .

DESCRIPTION
Ce is the UNIX System C compiler. Pee is the portable version for a PDP-II
machine. They accept several types of arguments:

Arguments whose names end with .c are taken to be C source programs; they
are compiled, and each object program is left on the file whose name is that of
the source with .0 substituted for .c. The.o file is normally deleted, however, if
a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to be assembly
source programs and are assembled, producing a .0 file.

The following options are interpreted by ee and pee. See [d(1) for link editor
options and epp(I) for more preprocessor options.

-c Suppress the link edit phase of the compilation, and force an object
file to be produced even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of
times each routine is called; also, if link editing takes place, replace
the standard startoff routine by one which automatically calls
monitorOC) at the start and arranges to write out a mon.out file at
normal termination of execution of the object program. An execution
profile can then be generated by use of prof{I).

-f Link the object program with the floating-point interpreter for systems
without hardware floating-point.

-g Cause the compiler to generate additional information needed for the
use of sdb{I). (Not for PDP-ll.)

-0 Invoke an object-code optimizer.

-8 Compile the named C programs, and leave the assembler-language
output on corresponding files suffixed .s.

-E Run only epp(I) on the named C programs, and send the result to the
standard output.

-p Run only epp(I) on the named C programs, and leave the result on
corresponding files suffixed .i.

-Bstring
Construct pathnames for substitute compiler, assembler and link edi
tor passes by concatenating string with the suffixes cpp, cO (or ccom
or comp, see under FILES below), cl, c2, as and Id. If string is empty
it is taken to be /lib/o.

-dpOl2al1
Find only the designated compiler, assembler and link editor passes in
the files whose names are constructed by a - B option. In the absence
of a - B option, the string is taken to be /lib/n. -t "" is equivalent to
-tpOI2.

-We,argllarg2 .. .l
Hand off the argumends1 argi to pass. e where e is one of [pOl2al1
indicating preprocessor, compiler first pass, compiler second pass,
optimizer, assembler, or link editor, respectively.

- I -

CC(I)

FILES

CC(I)

-d This option is no longer allowed because of a conflict of meaning. The
- W option must be used to specify precisely its destination. To indi
cate the -dn option for the VAX assembler, use -Wa, -dn. To indi
cate the -d option for the link editor, use -WI, -d.

Other arguments are taken to be either link editor option arguments, C prepro
cessor option arguments, or C-compatible object programs, typically produced
by an earlier ee or pee run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are
linked Gn the order given) to produce an executable program with the name
a.out.

file.c
file.o
a.out
/tmp/ctm*
/lib/cpp
/lib/elOl]
/usr /lib/ comp
/lib/ccom
/lib/c2
/lib/oc·
/lib/nc·
/bin/as
/bin/ld
/lib/crtO.o
/lib/mcrtO.o
/lib/fcrtO.o
/Ii b/ fmcrtO.o

/lib/libc.a

input file
object file
linked output
temporary
C preprocessor epp (1)
PDP-II compiler, ee
compiler, pee
V AX compiler, ee
optional optimizer
backup compiler, oee
test compiler, nee
assembler, as(I)
link editor, Id(I)
runtime startoff
startoff for profiling
startoff for floating-point interpretation (PDP-II only)
startoff for floating-point interpretation and profiling (PDP-II
only)
standard library, see (3)

SEE ALSO
The C Programming Language by B. W. Kernighan and D. M. Ritchie.
Programming in C-A Tutorial by B. W. Kernighan.
C Reference Manual by D. M. Ritchie.
adb(l), cpp(l), as(l), ld(l), prof(l), sdb(l), monitor(3C).

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occa
sional messages may be produced by the assembler or the link editor. Of these,
the most mystifying are from the PDP-II assembler, in particular m, which
means a multiply-defined external symbol (function or data).

- 2 -

CD(I) CD(I)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as the
new working directory. If directory specifies a complete path starting with t, .,
.. , directory becomes the new working directory. If neither case applies, cd
tries to find the designated directory relative to one of the paths specified by
the $CDPATH shell variable. $CDPATH has the same syntax as, and similar
semantics to, the $PATH shell variable. Cd must have execute (search) permis
sion in directory.

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recognized
and internal to the shell.

SEE ALSO
pwd (1), sh (I), chdir(2).

- 1 -

CDC(I) CDC(l)

NAME
cdc - change the delta commentary of an sccs delta

SYNOPSIS
cdc -rSID l -mlmrlist]] l -ylcomment]] files

DESCRIPTION
Cdc changes the delta commentary, for the SID specified by the -r keyletter,
of each named sees file.

Delta commentary is defined to be the Modification Request (MR) and com
ment information normally specified via the delta (1) command (-m and -y
key letters) .

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the
path name does not begin with s.) and unreadable files are silently ignored. If
a name of - is given, the standard input is read (see WARNINGS); each line of
the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu
ments, and file names.

All the described key letter arguments apply independently to each named file:

-rSID Used to specify the sees IDentification (SID) string of
a delta for which the delta commentary is to be
changed.

- mlmrlisd If the sees file has the v flag set (see admin (I» then a
list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the -r
keyletter may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same
manner as that of delta (1). In order to delete an MR,
precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a "com
ment" line. A list of all deleted MRs is placed in the
comment section of the delta commentary and preceded
by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see -y
key letter).

MRs in a list are separated by blanks and/or tab charac
ters. An unescaped new-line character terminates the
MR list.

Note that if the v flag has a value (see admin (1», it is
taken to be the name of a program (or shell procedure)
which validates the correctness of the MR numbers. If a
non-zero exit status is returned from the MR number
validation program, cdc terminates and the delta com
mentary remains unchanged.

-ylcomment] Arbitrary text used to replace the comment (s) already
existing for the delta specified by the -r key letter. The
previous comments are kept and preceded by a comment

- 1 -

COCO) COCO)

line stating that they were changed. A null comment
has no effect.

If -y is not specified and the standard input is a termi
nal, the prompt comments? is issued on the standard
output before the standard input is read; if the standard
input is not a terminal, no prompt is issued. An unes
caped new-line character terminates the comment text.

The exact permissions necessary to modify the sees file are documented
in the Source Code Control System User's Guide. Simply stated, they
are either (1) if you made the delta, you can change its delta commen
tary; or (2) if you own the file and directory you can modify the delta
commentary.

EXAMPLES
cdc -r1.6 -m"b178-12345 !bI77-54321 b179-00001" -ytrouble sofile

adds b178-12345 and b179-00001 to the MR list, removes b177-54321 from the
MR list, and adds the comment trouble to delta 106 of sofile.

cdc -r 1.6 sofile
MRs? !b177-54321 b178-12345 b179-00001
comments? trouble

does the same thing.

WARNINGS

FILES

If sees file names are supplied to the cdc command via the standard input (
on the command line), then the -m and -y keyletters must also be used.

x-file
z-file

(see d,elta (1»
(see delta (1»

SEE ALSO
admin(1), delta(1), get(1), help(1), prs(1), sccsfile(4).
Source Code Control System User's Guide in the UNIX System User's Guide.

DIAGNOSTICS
Use help(l) for explanations.

- 2 -

CFLOW(I) CFLOW(l)

NAME
cflow - generate C flow graph

SYNOPSIS
cftow [-r] [-ix] [-i.J [-dnum] files

DESCRIPTION
Cflow analyzes a collection of C, YACC, LEX, assembler, and object files
and attempts to build a graph charting the external references. Files
suffixed in .y, .I, .c, and .i are Y ACC'd, LEX'd, and C-preprocessed
(bypassed for .i files) as appropriate and then run through the first pass of
lint (1). (The - I, - D, and - U options of the C-preprocessor are also
understood.) Files suffixed with .s are assembled and information is
extracted (as in .0 files) from the symbol table. The output of all this
non-trivial processing is collected and turned into a graph of external refer
ences which is displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by
a suitable number of tabs indicating the level. Then the name of the global
(normally only a function not defined as an external or beginning with an
underscore; see below for the -i inclusion option) a colon and its
definition. For information extracted from C source, the definition consists
of an abstract type declaration (e.g., char *), and, delimited by angle brack
ets, the name of the source file and the line number where the definition
was found. Definitions extracted from object files indicate the file name
and location counter under which the symbol appeared (e.g., text). Leading
underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For un~efined references, only < > is printed.

As an example, given the following in file.c:

int i;

mainO
{

fO
{

the command

fO;
gO;
fO;

i = hO;

cflow file.c

produces the the output

1 main: intO, <file.c 4>
2 f: intO, <file.c 11 >
3 h: <>
4 i: int, <file.c 1 >
5 g: <>

- 1 -

CFLOW(1) CFLOW(1)

When the nesting level becomes too deep, the -e option of pr(1) can be
used to compress the tab expansion to something less than every eight
spaces.

The following options are interpreted by cfiow:

-r Reverse the "caller:callee" relationship producing an inverted list
ing showing the callers of each function. The listing is also sorted
in lexicographical order by callee.

-ix Include external and static data symbols. The default is to include
only functions in the flow graph.

- i_ Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flow
graph is cut off. By default this is a very large number. Attempts
to set the cutoff depth to a nonpositive integer will be met with
contempt.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro
grams used (e.g., the C-preprocessor).

SEE ALSO

BUGS

as(1), cc(1), lex(1), lint(1), nm(1), pr(1), yacc(1).

Files produced by lex(1) and yacc(1) cause the reordering of line number
declarations which can confuse cfiow. To get proper results, feed cfiow the
yacc or lex input.

- 2 -

CHMOD(l) CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode files

DESCRIPTION
The permissions of the named files are changed according to mode, which may
be absolute or symbolic. An absolute mode is an octal number constructed
from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod (2)
0400 read by owner
0200 write by owner
0100 execu te (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission]

The who part is a combination of the letters u (for user's permissions), g
(group) and 0 (other). The letter a stands for ugo, the default if who is omit
ted.

Op can be + to add permission to the file's mode, - to take away permission,
or = to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), S

(set owner or group ID) and t (save text, or sticky); u, g, or 0 indicate that per
mission is to be taken from the current mode. Omitting permission is only
useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are
performed in the order specified. The letter s is only useful with u or g and t
only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLES
The first example denies write permission to others, the second makes a file
executable:

SEE ALSO

chmod o-w file

chmod +x file

Is(I), chmod(2).

- I -

CHOWN(l)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chown owner file .. .

chgrp group file .. .

DESCRIPTION

CHOWN(l)

Chown changes the owner of the files to owner. The owner may be either a
decimal user 10 or a login name found in the password file.

FILES

Chgrp changes the group 10 of the files to group. The group may be either a
decimal group 10 or a group name found in the group file.

/etc/passwd
/etc/group

SEE ALSO
chown(2), group(4), passwd(4).

- 1 -

CMP(I) CMP(I)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I] [-s] filel file2

DESCRIPTION
The two files are compared. (If filel is -, the standard input is used.) Under
default options, cmp makes no comment if the files are the same; if they differ,
it announces the byte and line number at which the difference occurred. If one
file is an initial subsequence of the other, that fact is noted.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
comm (I), diff(1) .

DIAGNOSTICS
Exit code 0 is returned for identical files, I for different files, and 2 for an inac
cessible or missing argument.

- 1 -

COLO) COL(I)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [-bfpx]

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It per
forms the line overlays implied by reverse line feeds (ASCII code ESC-7), and
by forward and reverse half-line-feeds (ESC-9 and ESC-8). Col is particularly
useful for filtering multicolumn output made with the .rt command of nroff and
output resulting from use of the tbl(1) preprocessor.

If the -b option is given, col assumes that the output device in use is not capa
ble of backspacing. In this case, if two or more characters are to appear in the
same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit
them on output. Instead, text that would appear between lines is moved to the
next lower full-line boundary. This treatment can be suppressed by the -f
(fine) option; in this case, the output from col may contain forward half-line
feeds (ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO charac
ters are generated as appropriate to ensure that each character is printed in the
correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The VT
character is an alternate form of full reverse line-feed, included for compatibil
ity with some earlier programs of this type. All other non-printing characters
are ignored.

Normally, col will ignore any unknown to it escape sequences found in its
input; the -p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The use
of this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

SEE ALSO

NOTES

BUGS

nrofHI), tbl(1).

The input format accepted by col matches the output produced by nroff with
either the -T37 or -Tip options. Use -T37 (and the -f option of co/) if the
ultimate disposition of the output of col will be a device that can interpret
half-line motions, and -Tip otherwise.

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any super
scripts.

- 1 -

eOMB(I) eOMB(t)

NAME
comb - combine sees deltas

SYNOPSIS
comb [-0] [-s] [-psid] [-c1ist1 files

DESCRIPTION

FILES

Comb generates a shell procedure (see sh (1» which, when run, will reconstruct
the given sees files. The reconstructed files will, hopefully, be smaller than
the original files. The arguments may be specified in any order, but all
keyletter arguments apply to all named sees files. If a directory is named,
comb behaves as though each file in the directory were specified as a named
file, except that non-SeeS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read; each line of the standard input is taken to be
the name of an sees file to be processed; non-SeeS files and unreadable files
are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one
named file is to be processed, but the effects of any key letter argument apply
independently to each named file.

-pSID The sees IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

-clist A list (see get (1) for the syntax of a list) of deltas to be preserved.
All other deltas are discarded.

-0 For each get -e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, otherwise
the reconstructed file would be accessed at the most recent ancestor.
Use of the -0 keyletter may decrease the size of the reconstructed
sees file. It may also alter the shape of the delta tree of the original
file.

-s This argument causes comb to generate a shell procedure which, when
run, will produce a report giving, for each file: the file name, size (in
blocks) after combining, original size (also in blocks), and percentage
change computed by:

100 • (original - combined) / original
It is recommended that before any sees files are actually combined,
one should use this option to determine exactly how much space is
saved by the combining process.

If no key letter arguments are specified, comb will preserve only leaf deltas and
the minimal number of ancestors needed to preserve the tree.

s.eOMB
comb?????

The name of the reconstructed sees file.
Temporary.

SEE ALSO
admin(1), delta(1), get(1), help(t), prs(1), sccsfile(4).
Source Code Control System User's Guide in the UNIX System User's Guide.

DIAGNOSTICS

BUGS

Use help (1) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger than
the original.

- 1 -

COMM(I) COMM(I)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] filel file2

DESCRIPTION
Comm reads file1 and file2, which should be ordered in ASCII collating
sequence (see sort (1», and produces a three-column output: lines only in file1;
lines only in file2; and lines in both files. The file name - means the standard
input.

Flags l, 2, or 3 suppress printing of the corresponding column. Thus comm
-12 prints only the lines common to the two files; comm -23 prints only lines
in the first file but not in the second; comm -123 is a no-op.

SEE ALSO
cmp (1), diff(1), sort (1), uniq (1).

- 1 -

CONVERT(I) (not on PDP-ll) CONVERT(l)

NAME
convert - convert object and archive files to common formats

SYNOPSIS
convert infile outfile

DESCRIPTION

FILES

Convert transforms input infile to output outfile. Infile must be different from
outfile. Injile may be anyone of the following:

1) a pre-UNIX System 5.0 VAX object file or link edited (a.out)
module

2) a pre-UNIX System 5.0 VAX archive of object files or link
edited (a.out) modules

3) a pre-UNIX System 5.0 3B20S archive of object files or link
edited (a.out) modules.

Convert will transform infile to one of the following:

1) an equivalent UNIX System 5.0 VAX object file or link edited
(a.out) module

2) an equivalent UNIX System 5.0 portable archive of equivalent
object files or link edited (a.out) modules

3) an equivalent UNIX System 5.0 portable archive of unaltered
3B20S object files or link edited (a.out) modules.

All other types of input to the convert (1) command will be passed unmodified
from the input file to the output file (along with appropriate warning mes
sages). When transforming archive files, the convert (1) command will inform
the user that the archive symbol table has been deleted. The archive symbol
table may be restored by executing the ar(1) command with the s option.

The convert command may be used in conjunction with the arcv(1) command
to transform archives generated on a PDP-II to the UNIX System 5.0 archive
format for usage on a 3B20S or VAX processor.

Itmp/conv.

SEE ALSO
ar(1), arcv(1), a.out(4), ar(4).

- I -

CP(l) CP(l)

NAME
cp, In, mv - copy, link or move files

SYNOPSIS
cp file 1 [file2 ...] target
In file 1 [file2 ...] target
mv file 1 [file2 .. .1 target

DESCRIPTION
File] is copied Oinked, moved) to target. Under no circumstance can file] and
target be the same (take care when using sh (1) metacharacters). If target is a
directory, then one or more files are copied Oinked, moved) to that directory.

If rnv determines that the mode of target forbids writing, it will print the mode
(see chrnod (2» and read the standard input for one line (if the standard input
is a terminal); if the line begins with y, the move takes place; if not, rnv exits.

Only rnv will allow file] to be a directory, in which case the directory rename
will occur only if the two directories have the same parent.

SEE ALSO

BUGS

cpio(1), rm(I), chmod(2).

If file] and target lie on different file systems, rnv must copy the file and delete
the original. In this case the owner name becomes that of the copying process
and any linking relationship with other files is lost.

Ln will not link across file systems.

- 1 -

CPIO (1) CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -0 [acBv]

cpio -i [BcdmrtuvfsSb6] [patterns

cpio - p [adlmruv] directory

DESCRIPTION
Cpio -0 (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information.

Cpio -i (copy in) extracts files from the standard input which is assumed to be
the product of a previous cpio -0. Only files with names that match patterns
are selected. Patterns are given in the name-generating notation of sh (1). In
patterns, meta-characters ?, ., and [.. .1 match the slash / character. Multiple
patterns may be specified and if no patterns are specified, the default for pat
terns is • (i.e., select all files). The extracted files are conditionally created and
copied into the current directory tree based upon the options described below.

Cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree
based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not apply

to the pass option; meaningful only with data directed to or from
/dev/rmt?) .

d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is

skipped.
t Print a table of contents of the input. No files are created.
u Copy unconditionally (normally, an older file will not replace a newer

file with the same name).
v Verbose: causes a list of file names to be printed. When used with the

t option, the table of contents looks like the output of an Is -I com
mand (see Is (1».
Whenever possible, link files rather than copying them. Usable only
with the -p option.

m Retain previous file modification time. This option is ineffective on
directories thatare being copied.

f Copy in all files except those in patterns.
s Swap bytes. Use only with the -i option.
S Swap halfwords. Use only with the -i option.
b Swap both bytes and halfwords. Use only with the -i option.
6 Process an old (i.e., UNIX System Sixth Edition format) file. Only

useful with -i (copy in).

EXAMPLES
The first example below copies the contents of a directory into an archive; the
second duplicates a directory hierarchy:

Is I cpio -0 >/dev/mtO

cd olddir
find • -depth -print I cpio -pdl newdir

- 1 -

CPIO(t) CPIO(l)

The trivial case "find. -depth -print cpio -oB > Idev/rmtO" can be han-
dled more efficiently by:

find. -cpio Idev/rmtO

SEE ALSO

BUGS

ar(1), find(l), cpio(4).

Path names are restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super-user can copy special
files. The - B option does not work with certain magnetic tape drives (see
un32(7) in the UNIX System Administrator's Manual).

- 2 -

CPP(I) CPP(I)

NAME
cpp - the C language preprocessor

SYNOPSIS
llih/cpp [option ...] [ifile [ofile]

DESCRIPTION
Cpp is the C language preprocessor which is invoked as the first pass of any C
compilation using the cc(1) command. Thus the output of cpp is designed to
be in a form acceptable as input to the next pass of the C compiler. As the C
language evolves, cpp and the rest of the C compilation package will be
modified to follow these changes. Therefore, the use of cpp other than in this
framework is not suggested. The preferred way to invoke cpp is through the
cc(1) command since the functionality of cpp may someday be moved else
where. See m4 (1) for a general macro processor.

Cpp optionally accepts two file names as arguments. [file and ofile are respec
tively the input and output for the preprocessor. They default to standard
input and standard output if not supplied.

The following options to cpp are recognized:

- P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is specified,
all comments (except those found on cpp directive lines) are passed
along.

-Uname
Remove any initial definition of name, where name is a reserved sym
bol that is predefined by the particular preprocessor. The current list
of these possibly reserved symbols includes:

operating system: ibm, gcos, os, tss, unix
hardware: interdata, pdpll, u370, u3b, vax
UNIX System variant: RES, RT

-Dname
-Dname=def

Define name as if by a #define directive. If no =def is given, name is
defined as 1.

- Idir Change the algorithm for searching for #include files whose names do
not begin with I to look in dir before looking in the directories on the
standard list. Thus, #include files whose names are enclosed in "" will
be searched for first in the directory of the ifile argument, then in
directories named in - I options, and last in directories on a standard
list. For #include files whose names are enclosed in < >, the directory
of the ifile argument is not searched.

Two special names are understood by cpp. The name __ LINE __ is defined as
the current line number (as a decimal integer) as known by cpp, and __ FILE __
is defined as the current file name (as a C string) as known by cpp. They can
be used anywhere (including in macros) just as any other defined name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ••. , arg) token-string
Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma
separated tokens, and a) by token-string where each occurrence of an

- 1 -

CPP(l)

FILES

cPp(l)

arg in the token-string is replaced by the corresponding token in the
comma separated list.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include ''filename''
#include <filename>

Include at this point the contents of filename (which will then be run
through cpp). When the <filename> notation is used, filename is
only searched for in the standard places. See the -I option above for
more detail.

#line integer-constant ''filename''

#endif

Causes cpp to generate line control information for the next pass of the
C compiler. Integer-constant is the line number of the next line and
filename is the file where it comes from. If ''filename'' is not given, the
current file name is unchanged.

Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of an
intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name
has been the subject of a previous #define without being the subject of
an intervening #undef.

#if constant-expression
Lines following will appear in the output if and only if the constant
expression evaluates to non-zero. All binary non-assignment C opera
tors, the ?: operator, the unary -, !, and - operators are all legal in
constant-expression. The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined,
which can be used in constant-expression in these two forms: defined (
name) or defined name. This allows the utility of #ifdef and #ifndef
in a #if directive. Only these operators, integer constants, and names
which are known by cpp should be used in constant-expression. In
particular, the sizeof operator is not available.

#eIse Reverses the notion of the t~st directive which matches this directive.
So if lines previous to this directive are ignored, the following lines will
appear in the output. And vice versa.

The test directives and the possible #else directives can be nested.

lusr/include

SEE ALSO

standard directory for #include files

cc(l), m4(1).

DIAGNOSTICS

NOTES

The error messages produced by cpp are intended to be self-explanatory. The
line number and filename where the error occurred are printed along with the
diagnostic.

When newline characters were found in argument lists for macros to be

- 2 -

CPp(l) CPP(l)

expanded, previous versions of cpp put out the newlines as they were found and
expanded. The current version of cpp replaces these newlines with blanks to
alleviate problems that the previous versions had when this occurred.

- 3 -

CPRS(I) (3820S only)

NAME
cprs - compress an IS25 object file

SYNOPSIS
cprs [-pv] file 1 file2

DESCRIPTION

CPRS(I)

The cprs command reduces the size of an IS25 object file, filel, by removing
duplicate structure and union descriptors. The reduced file, file2, is produced
as output.

The options are:

-p Print statistical messages including: total number of tags, total duplicate
tags, and total reduction of filel.

-v Print verbose error messages if error condition occurs.

SEE ALSO
strip(l) .

- 1 -

CRYPT (I) CRYPT (I)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The
password is a key that selects a particular transformation. If no password is
given, crypt demands a key from the terminal and turns off printing while the
key is being typed in. Crypt encrypts and decrypts with the same key:

crypt key < clear > cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in
encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be infeasible;
"sneak paths" by which keys or clear text can become visible must be minim
ized.

Crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines
are known, but not widely; moreover the amount of work required is likely to
be large.

The transformation of a key into the internal settings of the machine is deli
berately designed to be expensive, i.e. to take a substantial fraction of a second
to compute. However, if keys are restricted to (say) three lower-case letters,
then encrypted files can be read by expending only a substantial fraction of five
minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to
users executing ps (1) or a derivative. To minimize this possibility, crypt takes
care to destroy any record of the key immediately upon entry. The choice of
keys and key security are the most vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed (1), makekey (1) .

If output is piped to nroff and the encryption key is not given on the command
line, crypt can leave terminal modes in a strange state (see stty(1).
If two or more files encrypted with the same key are concatenated and an
attempt is made to decrypt the result, only the contents of the first of the origi
nal files will be decrypted correctly.

- 1 -

CSPLIT(l) CSPLIT(l)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix] file argl [. .. argn]

DESCRIPTION
Csplit reads file and separates it into n+ I sections, defined by the arguments
argl. .. argn. By default the sections are placed in xxOO ... xxn (n may not
be greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line refer
enced by arg 1 .

01: From the line referenced by argl up to the line referenced by
arg2.

n+ I: From the line referenced by argn to the end of file.

The options to csplit are:

-s Csplit normally prints the character counts for each file
created. If the -s option is present, csplit suppresses the
printing of all character counts.

-k Csplit normally removes created files if an error occurs. If
the -k option is present, cspUt leaves previously created files
intact.

-f prefix If the -f option is used, the created files are named prefixOO
... prefixn. The default is xxOO ... xxn.

The arguments (argl ... argn) to csplit can be a combination of the follow
ing:

Irexpl A file is to be created for the section from the current line up
to (but not including) the line containing the regular expression
rexp. The current line becomes the line containing rexp. This
argument may be followed by an optional + or - some
number of lines (e.g., /Page/ -5).

%rexp% This argument is the same as Irexpl, except that no file is
created for the section.

In no A file is to be created from the current line up to (but not
including) lnno. The current line becomes lnno.

{num} Repeat argument. This argument may follow any of the above
arguments. If it follows a rexp type argument, that argument
is applied num more times. If it follows lnno, the file will be
split every In no lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters mean
ingful to the Shell in the appropriate quotes. Regular expressions may not con
tain embedded new-lines. Csplit does not affect the original file; it is the users
responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division!' IparS.! Ipar16.!

This example creates four files, cobolOO ... cobolO3. After editing the "split"
files, they can be recombined as follows:

cat cobolO[0-3] > file

- I -

CSPLIT(l) CSPLIT(l)

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The
- k option causes the created files to be r'.etained if there are less than 10,000
lines; however, an error message would still be printed.

csplit -k prog.c '%main(%' 'r}/+l' {20}

Assuming that prog.c follows the normal C coding convention of ending rou
tines with a } at the beginning of the line, this example will create a file con
taining each separate C routine (up to 21) in prog.c.

SEE ALSO
ed (1), sh (I), regexp(S).

DIAGNOSTICS
Self explanatory except for:

arg - out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

- 2 -

CT(tC> CT(tC>

NAME
ct - spawn getty to a remote terminal

SYNOPSIS
ct [-h] [-v] [-wn] [-sspeed] telno ...

DESCRIPTION

FILES

Ct dials the phone number of a modem that is attached to a terminal, and
spawns a getty process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate
places. If more than one telephone number is specified, ct will try each in suc
cession until one answers; this is useful for specifying alternate dialing paths.

Ct will try each line listed in the file lusrRibluucplL-devices until it finds an
available line with appropriate attributes or runs out of entries. if there are no
free lines, ct will ask if it should wait for one, and if so, for how many minutes
it should wait before it gives up. Ct will continue to try to open the dialers at
one-minute intervals until the specified limit is exceeded. The dialogue may be
overridden by specifying the -wn option, where n is the maximum number of
minutes that ct is to wait for a line.

Normally, ct will hang up the current line, so that that line can answer the
incoming call. The -h option will prevent this action. If the -v option is
used, ct will send a running narrative to the standard error output stream.

The data rate may be set with the -s option, where speed is expressed in
baud. The default rate is 300.

After the user on the destination terminal logs out, ct prompts, Reconnect? If
the response begins with the letter n the line will be dropped; otherwise, getty
will be started again and the login: prompt will be printed.

Of course, the destination terminal must be attached to a modem that can
answer the telephone.

lusrllib/uucp/L-devices
I usr I adml ctlog

SEE ALSO
cu(IC), login(l), uucp(IC).

- 1 -

cu(IC> cu (lC>

NAME
cu - call another UNIX System

SYNOPSIS
co [-sspeed] [-lline] [-h] [-t] [-d] [-m] [-ol-e] telno I dir

DESCRIPTION
Cu calls up another UNIX System, a terminal, or possibly a non-UNIX System.
It manages an interactive conversation with possible transfers of ASCII files.
Speed gives the transmission speed (11 0, 150, 300, 600, 1200, 4800, 9600); 300
is the default value. Most of our modems are either 300 or 1200 baud. For
dial out lines, cu will choose a modem speed (300 or 1200) as the slowest avail
able which will handle the specified transmission speed. Directly connected
lines may be set to speeds higher than 1200 baud.

The -I value may be used to specify a device name for the communications
line device to be used. This can be used to override searching for the first
available line having the right speed. The speed of a line is taken from the file
/usrRib/uucp/L-devices, overriding any speed specified by the -s option. The
-h option emulates local echo, supporting calls to other computer systems
which expect terminals to be in half-duplex mode. The -t option is used when
dialing an ASCII terminal which has been set to auto-answer. Appropriate
mapping of carriage-returns to carriage-return-line-feed pairs is set. The -d
oprtion cause diagnostic traces to be printed. The -m option specifies a direct
line which has modem control. The -e (-0) option designates that even
(odd) parity is to be generated for data sent to the remote. The -d option
causes diagnostic traces to be printed. Telno is the telephone number, with
equal signs for secondary dial tone or minus signs for delays, at appropriate
places. The string dir for telno may be used for directly connected lines, and
implies a null ACU. Using dir insures that a line has been specified by the -I
option.

Cu will try each line listed in the file /usrRib/uucp/L-devices until it finds an
available line with appropriate attributes or runs out of entries. After making
the connection, cu runs as two processes: the transmit process reads data from
the standard input and, except for lines beginning with -, passes it to the
remote system; the receive process accepts data from the remote system and,
except for lines beginning with -, passes it to the standard output. Normally,
an automatic DC3/DCl protocol is used to control input from the remote so the
buffer is not overrun. Lines beginning with - have special meanings.

The transmit process interprets the following:

terminate the conversation.

-! escape to an interactive shell on the local system.

-!cmd... run cmd on the local system (via sh -c).

-Scmd... run cmd locally and send its output to the remote sys-
tem.

-%take from [to] copy file from (on the remote system) to file to on the
local system. If to is omitted, the from argument is
used in both places.

-% put from [to] copy file from (on local system) to file to on remote sys
tem. If to is omitted, the from argument is used in
both places.

send the line - ... to the remote system.

-%nostop turn off the DC3/0Cl input control protocol for the
remainder of the session. This is useful in case the

- 1 -

CU(IC)

FILES

cu(tC)

remote system is one which does not respond properly to
the DC3 and DC 1 characters,

The receive process normally copies data from the remote system to its stan
dard output. A line from the remote that begins with -> initiates an output
diversion to a file. The complete sequence is:

-> [> 1:file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if > > is used) to file. The
trailing -> terminates the diversion.

The use of - % put requires stty (1) and cat (1) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current ones on the local system. Backslashes are inserted at
appropriate places.

The use of -%take requires the existence of echo (1) and cadI) on the remote
system. Also, stty tabs mode should be set on the remote system if tabs are to
be copied without expansion.

I usr IIi bl uucp/L-devices
lusrlspool/uucp/LCK .. (tty-device)
Idev/null

SEE ALSO
cat(1), ctOC), echo(1), stty(I), uucp(1C).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

Cu buffers input internally.
There is an artificial slowing of transmission by cu during the - % put operation
so that loss of data is unlikely.

- 2 -

CUT(I) CUT(I)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [filel file2 .. .1
cut -flist [-dchar] [-s] [filel file2 .. .1

DESCRIPTION

HINTS

Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by list can be fixed length, i.e., character positions as on a punched
card (-c option), or the length can vary from line to line and be marked with
a field delimiter character like tab (-f option). Cut can be used as a filter; if
no files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order),
with optional - to indicate ranges as in the -0 option of nroffltroff
for page ranges; e.g., 1,4,7; 1 - 3,8; -5,10 (short for 1 -5,10); or 3-
(short for third through last field).

-c/ist The list following -c (no space) specifies character positions (e.g.,
-c1-72 would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the
file by a delimiter character (see -d); e.g. , -fl,7 copies the first
and seventh field only. Lines with no field delimiters will be passed
through intact (useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only).
Default is tab. Space or other characters with special meaning to the
shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -f option must be specified.

Use grep(1) to make horizontal "cuts" (by context) through a file, or paste (I)
to put files together column-wise (i.e., horizontally). To reorder columns in a
table, use cut and paste.

EXAMPLES
cut -d: -£1,5 /etc/passwd mapping of user IDs to names

name='who am i I cut -£1 -d" '" to set name to current login name.

DIAGNOSTICS
line too long A line can have no more than 511 characters or fields.

bad list for c If option Missing -c or -f option or incorrectly specified list.

no fields

SEE ALSO
grep (1), paste(1) .

No error occurs if a line has fewer fields than the list
calls for.

The list is empty.

- 1 -

cwO) cwO)

NAME
cw, checkcw - prepare constant-width text for troff

SYNOPSIS
cw [-Ixx] [-rxx] [-fn] [-t] [+t] [-d] [files]

checkcw [-Ix x] [-rxx] files

DESCRIPTION
Cw is a preprocessor for troff(I) input files that contain text to be typeset in
the constant-width (CW) font.

Text typeset with the CW font resembles the output of terminals and of line
printers. This font is used to typeset examples of programs and of computer
output in user manuals, programming texts, etc. (An earlier version of this
font was used in typesetting The C Programming Language by B. W. Ker
nighan and D. M. Ritchie.) It has been designed to be quite distinctive (but not
overly obtrusive) when used together with the Times Roman font.

Because the cw font contains a "non-standard" set of characters and because
text typeset with it requires different character and inter-word spacing than is
used for "standard" fonts, documents that use the CW font must be prepro
cessed by cw.

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!$%&O"*+@.'!:;=?[]I __ A_"<>O#

plus eight non-ASCII characters represented by four-character troff(I) names
Gn some cases attaching these names to "non-standard" graphics):

Character Symbol Troff Name
"Cents" sign % t % %%(ct%

EBCDIC "not" sign %...,% %%(no%
Left arrow %-% %%«-%

Right arrow % -% %%(->%
Down arrow %! % %%(da%

Vertical single quote % '% %%(fm%
Control-shift indicator % t% %%(dg%
Visible space indicator % D % %%(sq%

Hyphen % -% %%(hy%

The hyphen is a synonym for the unadorned minus sign (-). Certain versions of
cw recognize two additional names: %\(ua% for an up arrow and %\Oh% for a
diagonal left-up (home) arrow.

Cw recognizes five request lines, as well as user-defined delimiters. The request
lines look like troff(I) macro requests, and are copied in their entirety by cw
onto its output; thus, they can be defined by the user as troff(I) macros; in
fact, the %.CW% and %.CN% macros should be so defined (see HINTS below).
The five requests are:

.CW Start of text to be set in the CW font; %.CW% causes a break; it can
take precisely the same options, in precisely the same format, as are
available on the cw command line .

. CN End of text to be set in the CW font; %.CN% causes a break; it can
take the same options as are available on the cw command line .

. CD Change delimiters and! or settings of other options; takes the same
options as are available on the cw command line.

- 1 -

CW(I) CW(I)

.CP argJ arg2 arg3 ... argn
All the arguments (which are delimited like troff(1) macro arguments)
are concatenated, with the odd-numbered arguments set in the CW font
and the even-numbered ones in the prevailing font.

.PC argl arg2 arg3 ... argn
Same as %.CP%, except that the even-numbered arguments are set in
the CW font and the odd-numbered ones in the prevailing font.

The %.CW% and %.CN% requests are meant to bracket text (e.g., a program
fragment) that is to be typeset in the CW font "as is." Normally, cw operates
in the transparent mode. In that mode, except for the %.CD% request and the
nine special four-character names listed in the table above, every character
between %.CW% and %.CN% request lines stands for itself. In particular, cw
arranges for periods (.) and apostrophes (,) at the beginning of lines, and
backslashes (%) everywhere to be "hidden" from troff(t). The transparent
mode can be turned off (see below), in which case normal troff(t) rules apply;
in particular, lines that begin with %.% and %'% are passed through untouched
(except if they contain delimiters-see below). In either case, cw hides the
effect of the font changes generated by the %.CW% and %.CN% requests; cw
also defeats all ligatures (%fi%, %ff%, etc.) in the CW font.

The only purpose of the %.CD% request is to allow the changing of various
options other than just at the beginning of a document.

The user can also define delimiters. The left and right delimiters perform the
same function as the %.CW%/%.CN% requests; they are meant, however, to
enclose CW "words" or "phrases" in running text (see example under BUGS
below). Cw treats text between delimiters in the same manner as text enclosed
by %.CW%/%.CN% pairs, except that, for aesthetic reasons, spaces and back
spaces inside %.CW% /%.CN% pairs have the same width as other CW charac
ters, while spaces and backspaces between delimiters are half as wide, so they
have the same width as spaces in the prevailing text (but are not adjustable).
Font changes due to delimiters are not hidden.

Delimiters have no special meaning inside %.CW%/%.CN% pairs.

The options are:

-Ixx The one- or two-character string xx becomes the left delimiter; if xx is
omitted, the left delimiter becomes undefined, which 'it is initially.

-fXX Same for the right delimiter. The left and right delimiters may (but
need not) be different.

-fn The CW font is mounted in font position n; acceptable values for n are
1, 2, and 3 (default is 3, replacing the bold font). This option is only
useful at the beginning of a document.

-t Turn transparent mode off.

+t Turn transparent mode on (this is the initial default).

-d Print current option settings on file descriptor 2 in the form of troff(t)
comment lines. This option is meant for debugging.

Cw reads the standard input when no files are specified (or when - is specified
as the last argument), so it can be used as a filter. Typical usage is:

cw files I troff ...

Checkcw checks that left and right delimiters, as well as the %.CW% /%.CN%
pairs, are properly balanced. It prints out all offending lines.

- 2 -

CW(I)

HINTS

CW(})

Typical definitions of the %.CW% and %.CN% macros meant to be used with
the mm (5) macro package:

At the very least, the %.CW% macro should invoke the
troff(l)
no-fill (%.n[%) mode.

When set in running text, the
CW
font is meant to be set in the same point size as the rest of the text.
In displayed matter,
on the other hand, it can often be profitably set one point
smaller
than the prevailing
point size
(the displayed definitions of %.CW% and %.CN% above
are one point smaller than the running text on this page).
The
CW
font is sized so that,
when it is set in 9-point,
there are 12 characters per inch.

Documents that contain
cw
text may also contain tables and/or equations.
If this is the case, the order of preprocessing should be:
CW,

tbl,
and
eqn.
Usually, the tables contained in such documents will not contain
any
cw
text, although it is entirely possible
to have
elements
of the table set in the
cw
font;
of course, care must be taken that
tbJ(l)
format information not be modified by
CWo

Attempts to set equations in the
cw
font are not likely to be either
pleasing or successful.

In the
cw
font,
overstriking is most easily accomplished with backspaces:
letting %-% represent a backspace,
%d --dg% yields %It%.
(Because backspaces are half as wide between delimiters
as inside %.CW%/%.CN% pairs-see above-two backspaces are required
for each overstrike between delimiters')

- 3 -

CwO) CwO)

FILES
/usr /lib/font/ftew ew font-width table

SEE ALSO
eqn(I), mmt(I), tbI(l), troff(l), mm(5), mv(5).

WARNINGS

BUGS

If text preprocessed by cw is to make any sense, it must be set on a typesetter
equipped with the ew font or on a STARE facility; on the latter, the ew font
appears as bold, but with the proper CW spacing.

Only a masochist would use periods (%. %), backslashes (%), or double quotes
(%"%) as delimiters, or as arguments to %.CP% and %.PC%.
Certain ew characters don't concatenate gracefully with certain Times Roman
characters, e.g., a ew ampersand (%&%) followed by a Times Roman
comma(%,%); in such cases, judicious use of troff(I) half- and quarter-spaces
(%% and %%) is most salutary, e.g., one should use %_&_,% (rather than just
plain %_&_,%) to obtain %&%, (assuming that %_% is used for both delim
iters) .
Using cw with nroff is silly.
The output of cw is hard to read.
See also BUGS under troff(l).

- 4 -

CXREF(l) CXREF(l)

NAME
cxref - generate C program cross reference

SYNOPSIS
cxref [options] files

DESCRIPTION

FILES

Cxref analyzes a collection of C files and attempts to build a cross reference
table. Cxref utilizes a special version of cpp to include #define'd information in
its symbol table. It produces a listing on standard output of all symbols (auto,
static, and global) in each file separately, or with the -c option, in combina
tion. Each symbol contains an asterisk (.) before the declaring reference.

In addition to the -D, -I and -U options (which are identical to their
interpretation by ceO», the following options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-w<num>
Width option which formats output no wider than <num> (decimal)
columns. This option will default to 80 if <num> is not specified or
is less than 51.

-0 file Direct output to named file.

-s Operate silently; does not print input file names.

-t Format listing for 80-column width.

lusr/lib/xcpp special version of C-preprocessor.

SEE ALSO
cdt).

DIAGNOSTICS
Error messages are unusually cryptic, but usually mean that you can't compile
these files, anyway.

- 1 -

DATE(l) DATE (I)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy]] [+format]

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set. The first mm is the
month number; dd is the day number in the month; hh is the hour number (24
hour system); the second mm is the minute number; yy is the last 2 digits of
the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is
mentioned. The system operates in GMT. Date takes care of the conversion to
and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the
user. The format for the output is similar to that of the first argument to
printfOS). All output fields are of fixed size (zero padded if necessary). Each
field descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % %. All other characters are
copied to the output without change. The string is always terminated with a
new-line character.

Field Descriptors:
n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS

day of year - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:
DATE: 08/01176
TIME: 14:45:05

DIAGNOSTICS

FILES

No permission if you aren't the super-user and you try to change the
date;

bad conversion if the date set is syntactically incorrect;
bad format character if the field descriptor is not recognizable.

Idev/kmem
WARNING

It is a bad practice to change the date while the system is running multi-user.

- 1 -

DC(l) DC(l)

NAME
dc - desk calculator

SYNOPSIS
de [file]

DESCRIPTION
De is an arbitrary precIsIon arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a number
of fractional digits to be maintained. The overall structure of de is a stacking
(reverse Polish) calculator. If an argument is given, input is taken from that
file until its end, then from the standard input. The following constructions are
recognized:

number
The value of the number is pushed on the stack. A number is an unbro
ken string of the digits 0-9. It may be preceded by an underscore ()
to input a negative number. Numbers may contain decimal points.

+_/*%A •
The top two values on the stack are added (+), subtracted (-), multi
plied (.), divided (f), remaindered (%), or exponentiated (A). The two
entries are popped off the stack; the result is pushed on the stack in their
place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where
x may be any character. If the s is capitalized, x is treated as a stack
and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized, regis
ter x is treated as a stack and its top value is popped onto the main
stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCII string,
removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by
two. If q is capitalized, the top value on the stack is popped and the
string execution level is popped by that value.

x treats the top element of the stack as a character string and executes it
as a string of de commands.

X replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x
is evaluated if they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

interprets the rest of the line as a UNIX System command.

e All values on the stack are popped.

The top value on the stack is popped and used as the number radix for
further input. I pushes the input base on the top of the stack.

- 1 -

DC(I)

o

o
k

z

z
?

, .

DC(I)

The top value on the stack is popped and used as the number radix for
further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable
if all are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and
executed.

are used by be for array operations.

EXAMPLE
This example prints the first ten values of n!:

SEE ALSO

Hal +dsa*plaIO>y]sy
Osal
lyx

bc(I), which is a preprocessor for de providing infix notation and a C-like syn
tax which implements functions and reasonable control structures for programs.

DIAGNOSTICS
x is unimplemented

where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

- 2 -

DD(1) DD(1)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conver
sions. The standard input and output are used by default. The input and out
put block size may be specified to take advantage of raw physical I/O.

option
if=Jile
of=Jile
ibs=n

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512) obs=n

bs=n set both input and output block size, superseding ibs and obs;
also, if no conversion is specified, it is particularly efficient since
no in-core copy need be done

cbs = n conversion buffer size
skip = n skip n input records before starting copy
seek=n seek n records from beginning of output file before copying
count = n copy only n input records
com = ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
... , ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end
with k, b, or w to specify multiplication by 1024, 512, or 2 respectively; a pair
of numbers may be separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case
cbs characters are placed into the conversion buffer, converted to ASCII, and
trailing blanks trimmed and new-line added before sending the line to the out
put. In the latter case ASCII characters are read into the conversion buffer,
converted to EBCDIC, and blanks added to make up an output record of size
cbs.

After completion, dd reports the number of whole and partial input and output
blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per record into the ASCII file x:

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physi
cal devices because it allows reading and writing in arbitrary record sizes.

SEE ALSO
cp(I) .

- 1 -

DD(I) DD(I)

DIAGNOSTICS

BUGS

j+p records in (out) numbers of full and partial records read (written)

The ASCII/EBCDIC conversion tables are taken from the 256 character stan
dard in the CACM Nov, 1968. The ibm conversion, while less blessed as a
standard, corresponds better to certain IBM print train conventions. There is no
universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only on
conversion to EBCDIC. These should be separate options.

- 2 -

DELTA (1) DELTA (1)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-s] [-n] [-glistl [-m[mrlistl] [-y[commentl] [-p] files

DESCRIPTION
Delta is used to permanently introduce into the named sees file changes that
were made to the file retrieved by get (1) (called the g-file, or generated file).

Delta makes a delta to each named sees file. If a directory is named, delta
behaves as though each file in the directory were specified as a named file,
except that non-sees files (last component of the path name does not begin
with sJ and unreadable files are silently ignored. If a name of - is given, the
standard input is read (see WARNINGS); each line of the standard input is
taken to be the name of an sees file to be processed.

Delta may issue prompts on the standard output depending upon certain
key letters specified and flags (see admin (1» that may be present in the sees
file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the
sees file. The use of this key letter is necessary only if
two or more outstanding gets for editing (get -e) on
the same sees file were done by the same person (login
name). The SID value specified with the -r keyletter
can be either the SID specified on the get command line
or the SID to be made as reported by the get command
(see get (1». A diagnostic results if the specified SID is
ambiguous, or, if necessary and omitted on the com
mand line.

-s

-n

-gUst

-m[mrlistl

Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the sees file.

Specifies retention of the edited g-file (normally
removed at completion of delta processing).

Specifies a list (see get (1) for the definition of list) of
deltas which are to be ignored when the file is accessed
at the change level (SID) created by this delta.

If the see~ file has the v flag set (see admin (1» then a
Modification Request (MR) number must be supplied as
the reason for creating the new delta.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output before
the standard input is read; if the standard input is not a
terminal, no prompt is issued. The MRs? prompt always
precedes the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab charac
ters. An unescaped new-line character terminates the
MR list.

Note that if the v flag has a value (see admin(1», it is
taken to be the name of a program (or shell procedure)
'.' hich will validate the correctness of the MR numbers.
If a non-zero exit status is returned from MR number
validation program, delta terminates {it is assumed that

- 1 -

DELTA (I) DELTA (I)

FILES

the MR numbers were not all valid).

-y[comment] Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid comment.

If -y is not specified and the standard input is a termi
nal, the prompt comments? is issued on the standard
output before the standard input is read; if the standard
input is not a terminal, no prompt is issued. An unes
caped new-line character terminates the comment text.

-p Causes delta to print (on the standard output) the sees
file differences before and after the delta is applied in a
dijJ(l) format.

All files of the form ?-file are explained in the Source Code Control System
User's Guide. The naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after comple
tion of delta.

p-file Existed before the execution of delta; may exist after comple
tion of delta.

q-file Created during the execution of delta; removed after comple
tion of delta.

x-file Created during the execution of delta; renamed to sees file
after completion of delta.

z-file Created during the execution of delta; removed during the exe
cution of delta.

d-file Created during the execution of delta; removed after comple
tion of delta.

lusr/bin/bdiff Program to compute differences between the "gotten" file and
the g-file.

WARNINGS
Lines beginning with an SOH Asell character (binary 00I) cannot be placed in
the sees file unless the SOH is escaped. This character has special meaning to
sees (see sccsjile(5» and will cause an error.

A get of many sees files, followed by a delta of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get/delta
sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y keyletters must also be present. Omission of these
keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(1), bdiff(l), cdc(l), get(1), help(1), prs(I), rmdel(l), sccsfile(4).
Source Code Control System User's Guide in the UNIX System User's Guide.

DIAGNOSTICS
Use help(I) for explanations.

- 2 -

DEROFF(I) DEROFF(I)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx] [-w] [files]

DESCRIPTION
Deroff reads each of the files in sequence and removes all troff(I) requests,
macro calls, backslash constructs, eqn (1) constructs (between .EQ and .EN lines,
and between delimiters), and tbl(1) descriptions, perhaps replacing them with
white space (blanks and blank lines), and writes the remainder of the file on
the standard output. Deroff follows chains of included files (.so and .ox troff
commands); if a file has already been included, a .so naming that file is ignored
and a .ox naming that file terminates execution. If no input file is given, deroff
reads the standard input.

The -m option may be followed by an m, s, or I. The -mm option causes the
macros be interpreted so that only running text is output (i.e., no text from
macro lines.) The -ml option forces the -mm option and also causes deletion
of lists associated with the mm macros.

If the -w option is given, the output is a word list, one "word" per line, with
all other characters deleted. Otherwise, the output follows the original, with
the deletions mentioned above. In text, a "word" is any string that contains at
least two letters and is composed of letters, digits, ampersands (&), and apos
trophes ('); in a macro call, however, a "word" is a string that begins with at
least two letters and contains a total of at least three letters. Delimiters are
any characters other than letters, digits, apostrophes, and ampersands. Trailing
apostrophes and ampersands are removed from "words."

SEE ALSO

BUGS

eqn(I), nroff(I), tbl(1), troff(I).

Deroff is not a complete troff interpreter, so it can be confused by subtle con
structs. Most such errors result in too much rather than too little output.
The -ml option does not handle nested lists correctly.

- 1 -

DIFF(I) DIFF(I)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbh] file 1 file2

DESCRIPTION

FILES

DijJ tells what lines must be changed in two files to bring them into agreement.
If filel (file2) is -, the standard input is used. If filel (file2) is a directory,
then a file in that directory with the name file2 (file]) is used. The normal
output contains lines of these forms:

nl a n3,n4
nl,n2dn3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers
after the letters pertain to file2. In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert file2 into filel. As in ed,
identical pairs where nl = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by
>.
The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c and d commands for the editor ed,
which will recreate file2 from filel. The -f option produces a similar script,
not useful with ed, in the opposite order. In connection with -e, the following
shell program may help maintain multiple versions of a file. Only an ancestral
file ($1) and a chain of version-to-version ed scripts ($2,$3, .. ') made by diff
need be on hand. A "latest version" appears on the standard output.

(shift; cat $.; echo 'l,$p') I ed - $1

Except in rare circumstances, dijJ finds a smallest sufficient set of file
differences.

Option -h does a fast, half-hearted job. It works only when changed stretches
are short and well separated, but does work on files of unlimited length.
Options -e and -f are unavailable with -h.

Itmp/d?????
/usr/lib/diffh for -h

SEE ALSO
cmp(I), comm(I), ed(I).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about creating
lines consisting of a single period (.).

- 1 -

DIFF3 (I) DIFF3 (t)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [- ex3] file 1 file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

====1

====2

====3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some
other is indicated in one of these ways:

f: nl a Text is to be appended after line number nl in file f,
where f = 1, 2, or 3.

f: nl , n2 c Text is to be changed in the range line n 1 to line n2.
If nl = n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower
numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will incor
porate into file 1 all changes between file2 and file3, i.e., the changes that nor
mally would be flagged ==== and ====3. Option -x (-3) produces a
script to incorporate only changes flagged ==== (====3). The following
command will apply the resulting script to file 1 .

(cat script; echo ' 1 ,$p') I ed - file 1

/tmp/d3*
/usr/lib/diff3prog

SEE ALSO

BUGS

diff(l).

Text lines that consist of a single. will defeat -e.
Files longer than 64K bytes won't work.

- 1 -

DIFFMK(I) DIFFMK(l)

NAME
diffmk - mark differences between files

SYNOPSIS
diffmk name I name2 name3

DESCRIPTION
Diffmk compares two versions of a file and creates a third file that includes
"change mark" commands for nroff or troff(1). Name1 and name2 are the old
and new versions of the file. Diffmk generates name3, which contains the lines
of name2 plus inserted formatter "change mark" (.me) requests. When name3
is formatted, changed or inserted text is shown by I at the right margin of each
line. The position of deleted text is shown by a single •.

If anyone is so inclined, diffmk can be used to produce listings of C (or other)
programs with changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp I pr

where the file macs contains:

.pl I

.11 77

.nf

.eo

.nc '

The .ll request might specify a different line length, depending on the nature of
the program being printed. The .eo and .nc requests are probably needed only
for C programs.

If the characters I and • are inappropriate, a copy of diffmk can be edited to
change them (diffmk is a shell procedure).

SEE ALSO

BUGS

diff(I), nroff(1), troff(I).

Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output,
i.e., replacing .sp by .sp 2 will produce a "change mark" on the preceding or
following line of output.

- I -

DIRCMP(I) DIRCMP(I)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp [-d] [-s] dirl dir2

DESCRIPTION
Dircmp examines dirl and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to each
directory are generated for all the options. If no option is entered, a list is out
put indicating whether the filenames common to both directories have the same
contents.

-d Compare the contents of files with the same name in both directories
and output a list telling what must be changed in the two files to bring
them into agreement. The list format is described in diff(l).

-s Suppress messages about identical files.

SEE ALSO
cmp(l), diff(l).

- 1 -

DIS (I) (3B20S only) DIS(I)

NAME
dis - 3B20S disassembler

SYNOPSIS
dis [-0] [-V] [-L] [-d sed [-da sec] [- t sed [-I string] files

DESCRIPTION
The dis command produces an assembly language listing of each of its object
file arguments. The listing includes assembly statements and the binary that
produced those statements.

The following options are interpreted by the disassembler and may be specified
in any order.

-0

-V

-L

. -d sec

-da sec

-t sec

-1 string

Will print numbers in octal. Default is hexadecimal.

Version number of the disassembler will be written to standard
error.

Invokes a lookup of C source labels in the symbol table for subse
quent printing .

Disassembles the named section as data, printing the offset of the
data from the beginning of the section.

Disassembles the named section as data, printing the actual
address of the data.

Disassembles the named section as text.

Will disassemble the library file specified as string. For example,
one would issue the command dis -I x -I z to disassemble Iibx.a
and libz.a. All libraries are assumed to be in lusr/lib.

If the -d, -da or -t options are specified, only those named sections from
each user supplied file name will be disassembled. Otherwise, all sections con
taining text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as
lSI, represents that the C breakpointable line number, starts with the following
instruction. An expression such as <40> in the operand field, following a
relative displacement for control transfer instructions, is the computed address
within the section to which control will be transferred. A C function name will
appear in the first column, followed by ().

SEE ALSO
as(I), cc(I), Id(I).

DIAGNOSTICS
The self explanatory diagnostics indicate errors in the command line or prob
lems encountered with the specified files.

- 1 -

DPD(tC) DPD(tC)

NAME
dpd, lpd - HONEYWELL sending daemon, line printer daemon

SYNOPSIS
lusr/lib/dpd
lusr llib/lpd

DESCRIPTION

FILES

Dpd is the daemon for the 200-series DAT A-PHONE® data set or for a
KMCll-B using vpm(7). It is designed to submit jobs to the HONEYWELL
6000 computer via the GRTS interface. Lpd is the daemon for a line printer.

Dpd uses the directory lusrlspool/dpd. Lpd uses the directory lusrlspool/lpd.
The file lock in either directory is used to prevent two daemons from becoming
active simultaneously. After the program has successfully set the lock, it forks
and the main path exits, thus spawning the daemon. The directory is scanned
for files beginning with "dr'. Each such file is submitted as a job. Each line of
a job file must begin with a key character to specify what to do with the
remainder of the line.

S directs dpd to generate a unique snumb card. The snumb number is
generated from the file snumb in the spooling directory in the case of
the DATA-PHONE data set daemon. This key character is not used by
/pd.

L specifies that the remainder of the line is to be sent as a literal.
I is the same as L, hut signals the $ IDENT card which is to be mailed

back by the mail option.
B specifies that the rest of the line is a file name. That file is to be sent

as binary cards.
F is the same as B except a form-feed is prepended to the file.
U specifies that the rest of the line is a file name. After the job has been

transmitted, the file is unlinked.
M is followed by a user ID; after the job is sent, a message is mailed to

the user via the mail (I) command to verify the sending of the job.
N is followed by a user file name, to be sent back under the mail option.
Q is followed by a string of characters, which is a message to be sent back

to the user under the mail option. (Not used by /pd).

Any error encountered will cause the daemon to drop the call, wait up to 20
minutes, (only 10 seconds for /pd), and start over. This means that an improp
erly constructed "dr' file may cause the same job to be submitted every 20
minutes.

Dpd is automatically initiated by all of the GCOS commands (dpr, gcat,
gcosmail, fget, and fsend). Lpd is automatically initiated by the line printer
command, /pr.

To restart dpd or /pd On the case of hardware or software malfunction), it is
necessary to first kill the old daemon Of it is still alive), and remove the lock
file Of present), before initiating the new daemon. This can be done automati
cally by letc/rc when the system is brought up, in the event there were jobs
left in the spooling directory when the system last went down.

/usr/spool/dpd/*
/usr/spool/lpd/*
/etc/passwd
/dev/dn?
/dev/du?
/dev/vpm?

spool area for GCOS daemons.
spool area for line printer daemon.
to get the user's name.
ACU device.
DATA-PHONE data set.
VPM device to interface to KMCII-B.

- 1 -

DPD(IC) DPD(IC)

/dev/lp line printer device.

SEE ALSO
dpr(IC), fget(IC), fsend(IC), gcat(IC), gcosmail(IC), lpr(l).

BUGS
If a umask(1) of 077 is used, the print jobs may be spooled but won't be able
to be printed.

- 2 -

DPR(IC) DPR(lC)

NAME
dpr - off-line print

SYNOPSIS
dpr [-destination] [options] [files]

DESCRIPTION
Dpr causes the named files to be printed off-line at the specified destination, by
GCOS at the Murray Hill Computation Center. GCOS identification must
appear in the UNIX System password file (see passwd (4», or be supplied by
the -i option. If no files are listed the standard input is assumed; thus dpr
may be used as a filter.

The destination is a two-character code which is taken to be a Murray Hill
GCOS "station id." Useful codes are rl for quality print, and ql for quality
print with special ribbon, both on regular wide paper. The codes r2 and q2 give
the same print on narrow paper. The code mx is a Xerox 9700 printer. The
default destination is on-line at the Murray Hill Computation Center.

The following options, each as a separate argument, and in any combination
(multiple outputs are permitted), may be given before or after the destination:

-c Makes a copy of the file to be sent before returning to the user.
-r Removes the file after sending it.
-ffile Use file as a dummy file name to report back in the mail. (This is use-

ful for distinguishing multiple runs, especially when dpr is being used
as a filter).

-ijob,bin
Supply the GCOS "ident card" image as the parameter -ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

-m When transmission is complete, reports by mail(1) the so-called snumb
of the receiving GCOS job. The mail is sent by the UNIX daemon;
there is no guarantee that the GCOS job ran successfully. This is the
default option.

- n Does not report the completion of transmission by mail(1).
-p Selects portrait mode. Used in conjunction with a XEROX 9700

printer.
-sn Submits job to GCOS with service grade n (n=l, 2, 3, 4). Default is

-s2.

EXAMPLES

FILES

The command:

dpr -r -n errorl error2

will send the files errorl and error2 to GCOS for printing, removing the files
after they have been sent, but not sending mail. The line:

pr filel I dpr -sl -fjobl -rl

will send the output of pr to GCOS for printing on the quality printer with ser
vice grade 1, and will send mail that jobl has been sent.

/etc/passwd
/usr/lib/dpd
/usr/spool/dpd/*

user's identification and GCOS ident card.
sending daemon.
spool area.

SEE ALSO
dpd (I C), fget (I C), fsend (I C), gcat (I C) .

- 1 -

DU(I) DU(I)

NAME
du - summarize disk usage

SYNOPSIS
du [-ars] [names

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recursively) direc
tories within each directory and file specified by the names argument. The
block count includes the indirect blocks of the file. If names is missing, . is
used.

The optional argument -s causes only the grand total (for each of the specified
names) to be given. The optional argument -a causes an entry to be gen
erated for each file. Absence of either causes an entry to be generated for each
directory only.

Du is normally silent about directories that cannot be read, files that cannot be
opened, etc. The -r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments are not listed.
If there are too many distinct linked files, du will count the excess files more
than once.
Files with holes in them will get an incorrect block count.

- 1 -

DUMP(I) (not on PDP-I 1) DUMP(I)

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [-a] [-f] [-0] [-h] [-s] [-r] [-I] [-t] [-z name] files

DESCRIPTION
The dump command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following options:

-a Dump the archive header of each member of each archive file
argument.

-f Dump each file header.

-0 Dump each optional header.

- h Dump section headers.

-s Dump section contents.

-r Dump relocation information.

-I Dump line number information.

-t Dump symbol table entries.

- z name Dump line number entries for the named function.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

-d number Dump the section number or range of sections starting at number
and ending either at the last section number or number specified
by +d.

+d number Dump sections in the range either beginning with first section or
beginning with section specified by -d.

-n name Dump information pertaining only to the named entity. This
modifier applies to -h, -S, -r, -I, and -t.

-t index Dump only the indexed symbol table entry. The -t used in con
junction with +t, specifies a range of symbol table entries.

+t index Dump the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table entry or
at the entry specified by the -t option.

-v Dump information in symbolic representation rather than numeric
(e.g., C_STATIC instead of OX02). This modifier can be used with
all the above options except -s and -0 options of dump.

-z name,number
Dump line number entry or range of line numbers starting at
number for the named function.

+z number Dump line numbers starting at either function name or number
specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma separat
ing the name from the number modifying the -z option may be replaced by a
blank.

The dump command attempts to format the information it dumps in a mean
ingful way, printing certain information in character, hex, octal or decimal
representation as appropriate.

- 1 -

DUMP(I) (not on PDP-ll) DUMP(I)

SEE ALSO
a.out(4), ar(4).

- 2 -

ECHO(I) ECHO(I)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a new-line on
the standard output. It also understands C-like escape conventions; beware of
conflicts with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\0 new-line
\r carriage return
\t tab
\ \ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit

octal number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE ALSO
sh(l) .

- 1 -

ED(I) ED(I)

NAME
ed, red - text editor

SYNOPSIS
ed [-] [-x] [file]

red [-] [-x] [file]

DESCRIPTION
Ed is the standard text editor. If the file argument is given, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed's
buffer so that it can be edited. The optional - suppresses the printing of char
acter counts bye, r, and w commands, of diagnostics from e and q commands,
and of the! prompt after a !shell command. If -x is present, an x command
is simulated first to handle an encrypted file. Ed operates on a copy of the file
it is editing; changes made to the copy have no effect on the file until a w
(write) command is given. The copy of the text being edited resides in a tem
porary file called the buffer. There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files in the
current directory. It prohibits executing shell commands via !shell command.
Attempts to bypass these restrictions result in an error message (restricted
shell) .

Both ed and red support the !spec(4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal
in stty -tabs or stty tab3 mode (see stty{I), the specified tab stops will
automatically be used when scanning file. For example, if the first line of a file
contained:

<:t5,10,15 s72:>
tab stops would be set at columns 5, 10 and 15, and a maximum line length of
72 would be imposed. NOTE: while inputting text, tab characters when typed
are expanded to every eighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in the
buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer.
While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions
are used in addresses to specify lines and in some commands (e.g., s) to specify
portions of a line that are to be substituted. A regular expression (RE)
specifies a set of character strings. A member of this set of strings is said to be
matched by the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one
character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

a. .,., l, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([]; see 1.4 below).

- 1 -

ED(I) ED(I)

b. "(caret or circumflex), which is special at the beginning of an
entire RE (see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets ([I) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE (see
3.2 below).

d. The character used to bound {i.e., delimit} an entire RE, which is
special for that RE (for example, see how slash U) is used in the g
command, below.)

1.3 A period (.) is a one-character RE that matches any character except
new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches anyone character in that string. If, how
ever, the first character of the string is a circumflex (,,), the one
character. RE matches any character except new-line and the remaining
characters in the string. The" has this special meaning only if it occurs
first in the string. The minus (-) may be used to indicate a range of
consecutive ASCII characters; for example, [0 -91 is equivalent to
[01234567891. The - loses this special meaning if it occurs first (after
an initial ", if any) or last in the string. The right square bracket (J)
does not terminate such a string when it is the first character within it
(after an initial ", if any); e.g., [Ia -fJ matches either a right square
bracket (]) or one of the letters a through f inclusive. The four charac
ters listed in 1.2.a above stand for themselves within such a string of
characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (.) is a RE that matches zero
or more occurrences of the one-character RE. If there is any choice, the
longest leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \(m\J, \(m,\}, or \(m,n\J is a RE that
matches a range of occurrences of the one-character RE. The values of
m and n must be non-negative integers less than 256; \(m\J matches
exactly m occurrences; \{m,\J matches at least m occurrences; \{m,n\J
matches any number of occurrences between m and n inclusive. When
ever a choice exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RB that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \ (and \) is a RE that
matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was matched
by an expression enclosed between \ (and \) earlier in the same RE.
Here n is a digit; the sub-expression specified is that beginning with the
n-th occurrence of \ (counting from the left. For example, the expression
"\<'.\)\1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be constrained to match only an initial segment or
final segment of a line (or both):

3.1 A circumflex (,,) at the beginning of an entire RE constrains that RE to
match an initial segment of a line.

- 2 -

ED (l) ED (l)

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to
match a final segment of a line.

The construction "entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., / /) is equivalent to the last RE encountered. See also the
last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is
a current line. Generally speaking, the current line is the last line affected by a
command; the exact effect on the current line is discussed under the description
of each command. Addresses are constructed as follows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. IX addresses the line marked with the mark name character x, which
must be a lower-case letter. Lines are marked with the k command
described below.

5. A RE enclosed by slashes U) addresses the first line found by searching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE.
If necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is
searched. See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line. See also
the last paragraph before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by
a decimal number specifies that address plus (respectively minus) the
indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken
with respect to the current line; e.g, -5 is understood to mean. -5.

9. If an address ends with + or -, then 1 is added to or subtracted from
the address, respectively. As a consequence of this rule and of rule 8
immediately above, the address - refers to the line preceding the current
line. (To maintain compatibility with earlier versions of the editor, the
character " in addresses is entirely equivalent to -.) Moreover, trailing
+ and - characters have a cumulative effect, so - - refers to the
current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a
semicolon (;) stands for the pair .,$.

- 3 -

ED(I) ED(I)

Commands may require zero, one, or two addresses. Commands that require
no addresses regard the presence of an address as an error. Commands that
accept one or two addresses assume default addresses when an insufficient
number of addresses is given; if more addresses are given than such a command
requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may
also be separated by a semicolon (;). In the latter case, the current line (.) is
set to the first address, and only then is the second address calculated. This
feature can be used to determine the starting line for forward and backward
searches (see rules 5. and 6. above). The second address of any two-address
sequence must correspond to a line that follows, in the buffer, the line
corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address; they show that the
given addresses are the default.

It is generally illegal for more than one command to appear on a line. How
ever, any command (except e, f, r, or w) may be suffixed by I, nor p, in which
case the current line is either listed, numbered or printed, respectively, as dis
cussed below under the I, nand p commands.

(.)a
<text>

(.)c
<text>

(',oM

efile

Efile

The append command reads the given text and appends it after the
addressed line; 0 is left at the last inserted line, or, if there were none,
at the addressed line. Address 0 is legal for this command: it causes
the "appended" text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal
is 256 per line (including the newline character).

The change command deletes the addressed lines, then accepts input
text that replaces these lines; 0 is left at the last line input, or, if there
were none, at the first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The
line after the last line deleted becomes the current line; if the lines
deleted were originally at the end of the buffer, the new last line
becomes the current line.

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; 0 is set to the last line of
the buffer. If no file name is given, the currently-remembered file
name, if any, is used (see the f command). The number of characters
read is typed; file is remembered for possible use as a default file name
in subsequent e, r, and w commands. If file is replaced by!, the rest
of the line is taken to be a shell {sh (1» command whose output is to
be read. Such a shell command is not remembered as the current file
name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to
see if any changes have been made to the buffer since the last w com
mand.

- 4 -

ED(I)

f file

ED(I)

If file is given, the file-name command changes the currently
remembered file name to file; otherwise, it prints the currently
remembered file name.

(t , $) g/ RE / command list
In the global command, the first step is to mark every line that
matches the given RE. Then, for every such line, the given command
list is executed with. initially set to that line. A single command or
the first of a list of commands appears on the same line as the global
command. All lines of a multi-line list except the last line must be
ended with a \; a, i, and c commands and associated input are permit
ted; the • terminating input mode may be omitted if it would be the
last line of the command list. An empty command list is equivalent to
the p command. The g, G, v, and V commands are not permitted in
the command list. See also BUGS and the last paragraph before FILES
below.

(t,$)G/RE/

h

H

(Ji
<text>

In the interactive Global command, the first step is to mark every line
that matches the given RE. Then, for every such line, that line is
printed, . is changed to that line, and anyone command (other than
one of the a, c, i, g, G, v, and V commands) may be input and is exe
cuted. After the execution of that command, the next marked line is
printed, and so on; a new-line acts as a null command; an & causes
the re-execution of the most recent command executed within the
current invocation of G. Note that the commands input as part of the
execution of the G command may address and affect any lines in the
buffer. The G command can be terminated by an interrupt signal
(ASCII DEL or BREAK).

The help command gives a short error message that explains the reason
for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error messages
are printed for all subsequent ? diagnostics. It will also explain the
previous ? if there was one. The H command alternately turns this
mode on and off; it is initially off.

The insert command inserts the given text before the addressed line; .
is left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the a command only in the placement
of the input text. Address 0 is not legal for this command. The max
imum number of characters that may be entered from a terminal is
256 per line (including the newline character).

C,. +OJ

CHu

The join command joins contiguous lines by removing the appropriate
new-line characters. If exactly one address is given, this command
does nothing.

The mark command marks the addressed line with name x, which
must be a lower-case letter. The address IX then addresses this line; •
is unchanged.

- 5 -

ED(I)

<.,.)1

<.,.)ma

<.,.)0

<.,.>p

p

q

Q

ED(I)

The list command prints the addressed lines in an unambiguous way: a
few non-printing characters (e.g., tab, backspace) are represented by
(hopefully) mnemonic overstrikes, all other non-printing characters are
printed in octal, and long lines are folded. An I command may be
appended to any other command other than e,j, r, or w.

The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file; it is an error if address
a falls within the range of moved lines; . is left at the last line moved.

The number command prints the addressed lines, preceding each line
by its line number and a tab character; . is left at the last line printed.
The n command may be appended to any other command other than e,
j, r, or w.

The print command prints the addressed lines; • is left at the last line
printed. The p command may be appended to any other command
other than e, j, r, or w; for example, dp deletes the current line and
prints the new current line.

The editor will prompt with a • for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is
done (but see DIAGNOSTICS below).

The editor exits without checking if changes have been made in the
buffer since the last w command.

($)r file
The read command reads in the given file after the addressed line. If
no file name is given, the currently-remembered file name, if any, is
used (see e and j commands). The currently-remembered file name is
not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at
the beginning of the buffer. If the read is successful, the number of
characters read is typed; • is set to the last line read in. If file is
replaced by!, the rest of the line is taken to be a shell (sh (1» com
mand whose output is to be read. For example, "$r !Is" appends
current directory to the end of the file being edited. Such a shell com
mand is not remembered as the current file name.

<.,.)s/RE/replacement/ or
(., .>s/RE/replacement /g

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match is found,
all (non-overlapped) matched strings are replaced by the replacement
if the global replacement indicator g appears after the command. If
the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on
all addressed lines. Any character other than space or new-line may
be used instead of / to delimit the RE and the replacement; . is left at
the last line on which a substitution occurred. See also the last

- 6 -

EO(l)

<.,.>ta

u

EO(l)

paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the
string matching the RE on the current line. The special meaning of &
in this context may be suppressed by preceding it by \. As a more
general feature, the characters \n, where n is a digit, are replaced by
the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions
are present, n is determined by counting occurrences of \ (starting
from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute com
mand is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of
more than one character or is preceded by a \.

A line may be split by substituting a new:line character into it. The
new-line in the replacement must be escaped by preceding it by \.
Such substitution cannot be done as part of a g or v command list.

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at
the last line of the copy.

The undo command nullifies the effect of the most recent command
that modified anything in the buffer, namely the most recent a, c, d, g,
i, j, m, r, s, t, v, G, or V command.

(1 ,$hIRElcommand list
This command is the same as the global command g except that the
command list is executed with. initially set to every line that does not
match the RE.

(1 ,$)V IREI
This command is the same as the interactive global command G except
that the lines that are marked during the first step are those that do
not match the RE.

<t,$)w file

x

($) =

The write command writes the addressed lines into the named file. If
the file does not exist, it is created with mode 666 (readable and writ
able by everyone), unless your umask setting (see sh (1» dictates oth
erwise. The currently-remembered file name is not changed unless file
is the very first file name mentioned since ed was invoked. If no file
name is given, the currently-remembered file name, if any, is used (see
e and f commands); . is unchanged. If the command is successful, the
number of characters written is typed. If file is replaced by!, the rest
of the line is taken to be a shell (s h (I)) command whose standard
input is the addressed lines. Such a shell command is not remembered
as the current file name.

A key string is demanded from the standard input. Subsequent e, r,
and w commands will encrypt and decrypt the text with this key by the
algorithm of crypt (1). An explicitly empty key turns off encryption.

The line number of the addressed line is typed; . is unchanged by this
command.

- 7 -

ED(I)

FILES

ED(I)

!shell command
The remainder of the line after the! is sent to the UNIX System shell
(sh (1» to be interpreted as a command. Within the text of that com
mand, the unescaped character % is replaced with the remembered file
name; if a ! appears as the first character of the shell command, it is
replaced with the text of the previous shell command. Thus,!! will
repeat the last shell command. If any expansion is performed, the
expanded line is echoed; . is unchanged.

(. +1) <new-line>
An address alone on a line causes the addressed line to be printed. A
new-line alone is equivalent to . + Ip; it is useful for stepping forward
through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a\. ? and retti'rns
to its command level.

Some size limitations: 512 characters per line, 256 characters per global com
mand list, 64 characters per file name, and 128K characters in the buffer. The
limit on the number of lines depends on the amount of user memory: each line
takes I word.

When reading a file, ed discards ASCII NUL characters and all characters after
the last new-line. Files (e.g., a.out) that contain characters not in the ASCII
set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the
last character before a new-line, that delimiter may be omitted, in which case
the addressed line is printed. The following pairs of commands are equivalent:

s/s1/s2 s/s1/s2/p
glsl g/sl/p
?sl ?sl?

Itmp/e#
ed.hup

DIAGNOSTICS

temporary; # is the process number.
work is saved here if the terminal is hung up.

?
?file

for command errors.
for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote
the entire buffer, ed warns the user if an attempt is made to destroyed's buffer
via the e or q commands: it prints ? and allows one to continue editing. A
second e or q command at this point will take effect. The - command-line
option inhibits this feature.

SEE ALSO
crypt(1), grep(t), sed(1), sh(1), stty(t), fspec(4), regexp(5).
A Tutorial Introduction to the UNIX Text Editor by B. W. Kernighan.
Advanced Editing on UNIX by B. W. Kernighan.

CA VEA TS AND BUGS
A ! command cannot be subject to a g or a v command.
The! command and the! escape from the e, r, and w commands cannot be
used if the the editor is invoked from a restricted shell (see sh (1» .
The sequence \0 in a RE does not match a new-line character.
The I command mishandles DEL.
Files encrypted directly with the crypt (1) command with the null key cannot
be edited.
Characters are masked to 7 bits on input.

- 8 -

EFL(I) EFL(1)

NAME
eft - Extended Fortran Language

SYNOPSIS
eft [options] [files]

DESCRIPTION
Eft compiles a program written in the EFL language into clean Fortran on the
standard output. Eft provides the C-like control constructs of ratfor(I):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:

struct
{
integer flags(3)
character(8) name
long real coords (2)
} table(IOO)

The language offers generic functions, assignment operators (+ =, & =, etc.),
and sequentially evaluated logical operators (& & and II). There is a uniform
input/output syntax:

write(6,x,y:f(7,2), do i==l,lO { a(i,j),z.b(i) })

EFL also provides some syntactic "sugar":

free-form input:
mUltiple statements per line; automatic continuation; statement
label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, > =, &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

Eft understands several option arguments: -w suppresses warning messages,
-# suppresses comments in the generated program, and the default option -C
causes comments to be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it had
appeared in an option statement at the start of the program. Many options are
described in the reference manual. A set of defaults for a particular target
machine may be selected by one of the choices: system=unix, system=gcos, or
system =cray. The default setting of the system option is the same as the
machine the compiler is running on. Other specific options determine the style
of input/output, error handling, continuation conventions, the number of char
acters packed per word, and default formats.

- 1 -

EFL(1) EFL(l)

Efl is best used withj77(1).

SEE ALSO
cd 1) , £17 (1), ratfor(I).
The Programming Language EFL by S.1. Feldman.

- 2 -

ENABLE(I) ENABLE(I)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [-c] [-r[reason]] printers

DESCRIPTION

FILES

Enable activates the named printers, enabling them to print requests taken by
lp (1). Use lpstat (1) to find the status of printers.

Disable deactivates the named printers, disabling them from printing requests
taken by lp (1). By default, any requests that are currently printing on the
designated printers will be reprinted in their entirety either on the same printer
or on another member of the same class. Use lpstat (1) to find the status of
printers. Options useful with disable are:

-c Cancel any requests that are currently printing on any of the
designated printers.

-r[reason] Associates a reason with the deactivation of the printers. This
reason applies to all printers mentioned up to the next -r option.
If the -r option is not present or the -r option is given without
a reason, then a default reason will be used. Reason is reported
by lpstat (1).

/usr/spoolllp/.

SEE ALSO
Ip(I),lpstat(1).

- 1 -

ENV(I) ENV(l)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args

DESCRIPTION
Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of the
form name = value are merged into the inherited environment before the com
mand is executed. The - flag causes the inherited environment to be ignored
completely, so that the command is executed with exactly the environment
specified by the arguments.

If no command is specified, the resulting environment is printed, one name
value pair per line.

SEE ALSO
sh(I), exec(2), profile(4), environ(5).

- 1 -

EQN(t) EQN(1)

NAME
eqn, neqn, checkeq - format mathematical text for nroff or troff

SYNOPSIS
eqn [-dxy] [-pn] [-sn] [-fn] [files]

neqn [-dxy] [-pn] [-sn] [-fn] [files]

checkeq [files]

DESCRIPTION
Eqn is a troff(I) preprocessor for typesetting mathematical text on a photo
typesetter, while neqn is used for the same purpose with nroff on typewriter-like
terminals. Usage is almost always:

eqn files I troff
neqn files I nroff

or equivalent.

If no files are specified (or if - is specified as the last argument), these pro
grams read the standard input. A line beginning with .EQ marks the start of
an equation; the end of an equation is marked by a line beginning with .EN.
Neither of these lines is altered, so they may be defined in macro packages to
get centering, numbering, etc. It is also possible to designate two characters as
delimiters; subsequent text between delimiters is then treated as eqn input.
Delimiters may be set to characters x and y with the command-line argument
-dxy or (more commonly) with delim xy between .EQ and .EN. The left and
right delimiters may be the same character; the dollar sign is often used as
such a delimiter. Delimiters are turned off by delim off. All text that is neither
between delimiters nor between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN
pairs.

Tokens within eqn are separated by spaces, tabs, new-lines, braces, double
quotes, tildes, and circumflexes. Braces {} are used for grouping; generally
speaking, anywhere a single character such as x could appear, a complicated
construction enclosed in braces may be used instead. Tilde (-) represents a full
space in the output, circumflex (,,) half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus
x sub j makes Xj' a sub k sup 2 produces ai, while eX'+Y' is made with

e sup {x sup 2 + y sup 2}. Fractions are made with over: a over b yields ~;
sqrt makes square roots: lover sqrt {ax sup 2 +bx +c} results in

1 ----------
n

The keywords from and to introduce lower and upper limits: lim »i is made
n-oo 0

with lim from {n - > inf} sum from 0 to n x sub i. Left and right brackets,
braces, etc., of the right height are made with left and right·

left [x sup 2 + y sup 2 over alpha right J - =- I produces [X2+~: 1 ~ I:
Legal characters after left and right are braces, brackets, bars, c and f for ceil
ing and floor, and "" for nothing at all (useful for a right-side-only bracket). A
left thing need not have a matching right thing.

- 1 -

EQN(I) EQN(t)

Vertical piles of things are made with pile, Ipile, cpile, and rpile:
a

pile {a above b above c} produces b. Piles may have arbitrary numbers of ele
c

ments; Ipile left-justifies, pile and cpile center (but with different vertical spac-
ing), and rpile right justifies. Matrices are made with matrix: matrix { Icol { x

Xi 1
sub i above y sub 2 } ceo I { 1 above 2 } } produces 2' In addition, there is

Y2
rcol for a right-justified column.

Diacritical marks are made whh_dot, dotdot, hat, tilde, bar, vee, dyad, and
under: x dot = f(t} bar is x=f(r), y dotdot bar -=- n under is y = !!, and
x vee - =- y dyad is x = y.
Point sizes and fonts can be changed with size n or size ±n, roman, italic, bold,
and font n. Point sizes and fonts can be changed globally in a document by
gsize nand gfont n, or by the command-line arguments -sn and -fn.

Normally, subscripts and superscripts are reduced by 3 points from the previous
size; this may be changed by the command-line argument -pn.

Successive display arguments can be lined up. Place mark before the desired
lineup point in the first equation; place lineup at the place that is to line up
vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:

define thing % replacement %

defines a new token called thing that will be replaced by replacement whenever
it appears thereafter. The % may be any character that does not occur in
replacement.

Keywords such as sum (~), int (f), inf (00), and shorthands such as >= (~),
!= (~), and -> (-) are recognized. Greek letters are spelled out in the
desired case, as in alpha (a), or GAMMA (r). Mathematical words such as sin,
cos, and log are made Roman automatically. TrojJ(I) four-character escapes
such as \(dd (:\:) and \(bs (@) may be used anywhere. Strings enclosed in
double quotes (" ... ") are passed through untouched; this permits keywords to
be entered as text, and can be used to communicate with trojJ(I) when all else
fails. Full details are given in the manual cited below.

SEE ALSO

BUGS

Typesetting Mathematics-User's Guide by B. W. Kernighan and L. L.
Cherry.
cw(I), mm(I), mmt(I), nroff(I), tbI(I), troff(I), eqnchar(5), mm(5), mv(5).

To embolden digits, parentheses, etc., it is necessary to quote them, as in bold
"12.3".
See also BUGS under trojJ(I).

- 2 -

EXPR(l) EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is writ
ten on the standard output. Terms of the expression must be separated by
blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings contain
ing blanks or other special characters should be quoted. Integer-valued argu
ments may be preceded by a unary minus sign. Internally, integers are treated
as 32-bit, 2's complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence, with
equal precedence operators grouped within {} symbols.

expr \1 expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns O.

expr { =, \>, \> =, \<, \< =, != } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { *, I, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr: expr

EXAMPLES
1.

2.

The matching operator: compares the first argument with the second
argument which must be a regular expression; regular expression syn
tax is the same as that of ed (1) , except that all patterns are
"anchored" (i.e., begin with A) and, therefore, A is not a special char
acter, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the
\(. •. \) pattern symbols can be used to return a portion of the first
argument.

a='expr $a + l'
adds 1 to the shell variable a.

'For $a equal to either "/usr/abc/file" or just "file'"
expr $a : '.*1\(.*\)' \1 $a

returns the last segment of a path name (i.e., file). Watch out
for I alone as an argument: expr will take it as the division
operator (see BUGS below).

3. # A better representation of example 2.
expr I/$a : '.*1\(.*\)'

The addition of the I I characters eliminates any ambiguity
about the division operator and simplifies the whole expression.

4. expr $VAR : '.-'

- 1 -

EXPR(I) EXPR(I)

returns the number of characters in $VAR.

SEE ALSO
ed(l), sh(1).

EXIT CODE
As a side effect of expression evaluation, expr returns the following exit values:

o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

DIAGNOSTICS

BUGS

syntax error
non-numeric argument

for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference between
an operator and an operand except by the value. If $a is an =, the command:

expr $a = '='

looks like:

expr

as the arguments are passed to expr (and they will all be taken as the
operator). The following works:

expr X$a = X=

- 2 -

F77 (I) F77 (I)

NAME
f77 - Fortran 77 compiler

SYNOPSIS
f77 [options] files

DESCRIPTION
F77 is the UNIX Fortran 77 compiler; it accepts several types of file argu
ments:

Arguments whose names end with .f are taken to be Fortran 77 source
programs; they are compiled and each object program is left in the
current directory in a file whose name is that of the source, with .0

substituted for .f.

Arguments whose names end with .r or .e are taken to be RA TFOR or
EFL source programs, respectively; these are first transformed by the
appropriate preprocessor, then compiled by 177, producing .0 files.

In the same way, arguments whose names end with .c or .s are taken to
be C or assembly source programs and are compiled or assembled, pro
ducing .0 files.

The following options have the same meaning as in cc (1) (see Id(1) for link
editor options):

-c
-p
-0
-S

-ooutput
-f

-g

Suppress link editing and produce .0 files for each source file.
Prepare object files for profiling (see prof(I)) .
Invoke an object-code optimizer.
Compile the named programs and leave the assembler-language
output in corresponding files whose names are suffixed with .s.
(No .0 files are created.)
Name the'final output file output, instead of a.out.
In systems without floating-point hardware, use a version of j77
that handles floating-point constants and links the object program
with the floating-point interpreter.
Generate additional information needed for the use of sdb (1)
(VAX-I 1/780 only).

The following options are peculiar to 177:

-onetrip

-1
-66
-C
-1[24s]

-u

-u

-w

-F

Compile DO loops that are performed at least once if reached.
(Fortran 77 DO loops are not performed at all if the upper limit
is smaller than the lower limit.)
Same as -onetrip.
Suppress extensions which enhance Fortran 66 compatibility.
Generate code for run-time subscript range-checking.
Change the default size of integer variables (only valid on
machines where the "normal" integer size is not equal to the size
of a single precision real). -12 causes all integers to be 2-byte
quantities, -14 (default) causes all integers to be 4-byte quanti
ties, and - Is changes the default size of subscript expressions
(only) from the size of an integer to 2 bytes.
Do not "fold" cases. F77 is normally a no-case language (i.e. a is
equal to A). The - U option causes 177 to treat upper and lower
cases to be separate.
Make the default type of a variable undefined, rather than using
the default Fortran rules.
Suppress all warning messages. If the option is -w66, only For
tran 66 compatibility warnings are suppressed.
Apply EFL and RA TFOR preprocessor to relevant files, put the
result in files whose names have their suffix changed to .of. (No

- I -

F77 (1)

FILES

F77 (I)

.0 files are created.)
-m Apply the M4 preprocessor to each EFL or RATFOR source file

before transforming with the ratfor (1) or eft (l) processors.
-E The remaining characters in the argument are used as an EFL I

flag argument whenever processing a .e file.
-R The remaining characters in the argument are used as a RA TFOR

flag argument whenever processing a .r file.

Other arguments are taken to be either link-editor option arguments or 177-
compilable object programs (typically produced by an earlier run), or libraries
of 177 -compilable routines. These programs, together with the results of any
compilations specified, are linked Gn the order given) to produce an executable
program with the default name a.out .

file.[fresc]
file.o
a.out
.lfordpidl?
/usrllib/f77pass 1
/lib/cl
llib/c2
/usrllib/libF77.a
/usrllib/libI77.a
llib/libc.a

input file
object file
linked output
temporary
compiler
pass 2
optional optimizer
intrinsic function library
Fortran 110 library
C library; see Section 3 of this Manual.

SEE ALSO
A Portable Fortran 77 Compiler by S. I. Feldman and P. J. Weinberger.
asa(l), ccO), efl(l), fsplit(l), ld(l), m4(1), prof 0), ratfor(l), sdb(l).

I

DIAGNOSTICS
The diagnostics produced by 177 itself are intended to be self-explanatory.
Occasional messages may be produced by the link editor Id(l).

- 2 -

FACTOR(I) FACTOR(I)

NAME
factor - factor a number

SYNOPSIS
factor [number]

DESCRIPTION
When factor is invoked without an argument, it waits for a number to be typed
in. If you type in a positive number less than 256 (about 7 .2x 1016

) it will fac
tor the number and print its prime factors; each one is printed the proper
number of times. Then it waits for another number. It exits if it encounters a
zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then
exits.

Maximum time to factor is proportional to .In and occurs when n is prime or
the square of a prime. It takes 1 minute to factor a prime near 1014 on a
PDP-ll.

DIAGNOSTICS
"Ouch" for input out of range or for garbage input.

- 1 -

FGET(IC) (DEC only) FGET(IC)

NAME
fget, fget.demon - retrieve files from the HONEYWELL 6000

SYNOPSIS
fget [options] [files]
lusr Ilib/fget.demon time

DESCRIPTION
Fget arranges to have one or more GCOS files sent to the UNIX System. GCOS
identification must appear in the UNIX System password file (see passwd(4»,
or be supplied by the -i option. Normally, the files retrieved will appear in
the UNIX System user's current directory under the GCOS file name.
Fget.demon is the daemon that does the actual retrieval.

The GCOS catalog from which the files are obtained depends on the form of the
file name argument. If the file name has only embedded slashes, then it is
assumed to be a full GCOS path name and that file is retrieved. If the file
name has no. embedded slashes or begins with a slash, then the GCOS catalog
from which the file is retrieved is the same as the UNIX System login name of
the person who issues the command. If, however, a user has a different name
in the third field of the GCOS "ident card image" (which image is extracted
from the UNIX System password file-see passwd(4», this name is taken as the
GCOS catalog name. Whatever GCOS catalog is finally used, the files must
either have general read permission or the user must have arranged that the
user ID network has read permission on that catalog (see fsend Cl C». This can
be accomplished with the GCOS command:

filsys mc <user ID>,(r)/networkl

The UNIX System file into which the retrieved GCOS file will ultimately be
written is initialized with one line containing the complete GCOS file name. If
the file contains the initial line for an extended period, it means that GCOS is
down or something has gone horribly wrong and you should try again.

The following options, each as a separate argument may appear in any order
but must precede all file arguments.

-a Retrieve files as ASCII (default).
- b Retrieve files as binary.
-ddir Use dir as the UNIX System directory into which retrieved files are

written.
-ffile Use file as the UNIX System filename for the retrieved file.
-ijob,bin

Supply the GCOS "ident card" image as the parameter -ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

-m When the request has been forwarded to GCOS, report by mail(I) the
so-called snumb of the receiving job; mail is sent by the UNIX System
dpdClC) daemon; there is no guarantee that the GCOS job ran or that
the UNIX System retrieved the output. This is the default option.

-n Do not report the forwarding of the request by mail(I).
-0 Print the on-line GCOS accounting output.
-t Toss out the on-line GCOS accounting output. This is the default

option.
-sn Submit job to GCOS with service grade n (n=l, 2, 3, 4). Default is

-sl.
-uuserid

Use userid as the GCOS catalog name for all files.

The GCOS job to send the requested files to the UNIX System is sent by the
dpd Cl C) daemon. Receiving these files is then done by a corresponding

- 1 -

FGET(IC) (DEC only) FGET(IC)

retrieval daemon, fget.demon, which stays alive for a minimum of time seconds,
(default 360), or until it has successfully retrieved one or more files. The file
glock in the spooling directory lusrlspool/dpd is used to prevent two daemons
from becoming active simultaneously. After the program has successfully set
the lock, it forks and the main path exits, thus spawning the daemon. GRTS is
interrogated for any output for the daemon's station-id. If none, fget.demon
will wait up to time seconds, interrogating GRTS every minute or so to see if
any output has arrived. All problems and successful transactions are recorded
in the errors file in the spooling directory.

To restart fget.demon (in the case of hardware or software malfunction), it is
necessary to first kill the old fget.demon (if still alive), and remove the lock file
(if present), before initiating fget.demon. This should be done automatically
by letclrc when the system is brought up, in case there are any files waiting to
come over.

EXAMPLES

FILES

The command:

fget -ugcosme -t -n -d/usr/meltest filel file2

will retrieve the GCOS files gcosme/filel and gcosme/file2, as the UNIX System
files lusr/me/test/filel and lusr/me/test/file2, respectively, but will not gen
erate any mail or GCOS accounting output as a result of the transaction.

letc/passwd
/usrllib/dpd
/usr/spool/dpd/*
/dev/dn?
/dev/du?
/dev/vpb?
/dev/vpm?

user's identification and GCOS ident card.
sending daemon.
spool area.
ACU device.
DATA-PHONE data set.
Bottom VPM device to interface to KMCII-B.
Top VPM device to interface to KMCII-B.

SEE ALSO
dpd (I C), dpr(I C), fsend (I C), passwd (4).

- 2 -

FILE (I) FILE(l)

NAME
file - determine file type

SYNOPSIS
file [-c] [-f ffile] [-m mfile] arg ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If
an argument appears to be ASCII, file examines the first 512 bytes and tries to
guess its language. If an argument is an executable a.out, file will print the
version stamp, provided it is greater than 0 (see ld (1».

If the -f option is given, the next argument is taken to be a file containing the
names of the files to be examined.

File uses the file /etc/magic to identify files that have some sort of magic (
number, that is, any file containing a numeric or string constant that indicates
its type. Commentary at the beginning of fete/magic explains its format.

The -m option instructs file to use an alternate magic file.

The -c flag causes file to check the magic file for format errors. This valida
tion is not normally carried out for reasons of efficiency. No file typing is done
under -c.

- 1 -

FIND(I) FIND (I)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the
path-name-Iist (i.e., one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descriptions,
the argument n is used as a decimal integer where +n means more than n, -n
means less than nand n means exactly n.

-name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for [, ?
and .).

-perm onum True if the file permission flags exactly match the octal
number onum (see chmod (1». If onum is prefixed by a
minus sign, more flag bits (017777, see stat (2» become
significant and the flags are compared:

(flags&onum) ==onum

-type c True if the type of the file is c, where c is b, c, d, p, or f for
block special file, character special file, directory, fifo (a.k.a
named pipe), or plain file.

-links n True if the file has n links.

-user uname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
taken as a group 10.

-size n True if the file is n blocks long (512 bytes per block).

-atime n True if the file has been accessed in n days.

- mtime n True if the file has been modified in n days.

-ctime n True if the file has been changed in n days.

-exec cmd True if the executed cmd returns a zero value as exit status.
The end of cmd must be punctuated by an escaped semi
colon. A command argument {} is replaced by the current
path name.

-ok cmd Like -exec except that the generated command line is
printed with a question mark first, and is executed only if the
user responds by typing y.

-print Always true; causes the current path name to be printed.

-cpio device Write the current file on device in cpio (4) format (5120
byte records).

-newer file True if the current file has been modified more recently than
the argument file.

(expression) True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

- 1 -

FIND(I) FIND(I)

I) The negation of a primary (! is the unary not opera tor) .

2) Concatenation of primaries (the and operation is implied by the juxtaposi
tion of two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE
To remove all files named a.out or •. 0 that have not been accessed for a week:

find / \ (-name a.out -0 -name ' •. 0' \) -atime +7 -exec rm {} \;

FILES
/etc/passwd, /etc/group

SEE ALSO
cpio(1), sh(l), test(1), stat(2), cpio(4), fs(4).

- 2 -

FSEND(IC) (DEC only) FSEND(IC)

NAME
fsend - send files to the HONEYWELL 6000

SYNOPSIS
fsend [options] [files]

DESCRIPTION
Fsend arranges to have one or more UNIX System files sent to HONEYWELL
GCOS. GCOS identification must appear in the UNIX System password file (see
passwd(4)), or be supplied by the -i option. If no names appear, the standard
input is sent; thus fsend may be used as a filter.

Normally, the catalog on the HONEYWELL file system in which the new file
will appear is the same as the UNIX System login name of the person who
issues the command. If, however, a user has a different name in the third field
of the GCOS "ident card image" (which image is extracted from the UNIX Sys
tem password file; see passwd(4)), this name is taken as the GCOS catalog
name. Whatever GCOS catalog is finally used, the user must have arranged
that the user 10 "network" has create permission on that catalog, or read and
write permission on the individual files. The latter is more painful but pre
ferred if access to other files in the catalog is to be fully controlled. This can
be accomplished with the GCOS commands:

filsys mc <user IO>,c/network/,ml <user 10>1
or

filsys cf <file> ,w/network/,bl <initial-size> ,unlimitedl

The name of the GCOS file is ordinarily the same as the name of the UNIX
System file. When the standard input is sent, the GCOS file is normally taken
to be pipe.end.

The following options, each as a separate argument, may appear in any order
but must precede all file name arguments.

-a Send succeeding files as ASCII (default). If the last character of the
file is not a new-line, one is added. All other characters are preserved.

-b Send succeeding files as binary. Each UNIX System byte is right
justified in a GCOS byte and the bytes packed into 120-byte logical
records (30 GCOS words). The last record is padded out with NULs.

-c Make copies of the files to be sent before returning to the user.
-r Remove the files after sending them.
-ffile Use file as the GCOS file name for the file being sent.
-ijob,bin

Supply the GCOS "ident card" image as the parameter -ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

-m When transmission is complete, report by rnai/(1) the so-called snumb
of the receiving GCOS job. The mail is sent by the UNIX System dae
mon; there is no guarantee that the GCOS job ran successfully. This is
the default option.

-n Do not report the completion of transmission by mail (1).
-0 Print the on-line GCOS accounting output.
-t Toss out the on-line GCOS accounting output. This is the default

option.
-sn Submit job to·GCOS with service grade n (n=l, 2, 3, 4). Default is

-51.
-uuserid

Use userid as the GCOS catalog name for all files.
-x Send succeeding files to be archived by the GCOS archive command.

- I -

FSEND(lC) (DEC only) FSEND(lC)

EXAMPLE
The command:

fsend -t -u unixsup -b -fgfile ufile

will send the binary UNIX System file ufile to become the GCOS file
unixsup/gfile, and will not produce anyon-line GCOS accounting output.

FILES
/etc/passwd
/usr/lib/dpd
/usr/spool/dpd/*

SEE ALSO

user's identification and GCOS ident card.
sending daemon.
spool area.

dpd(IC), dpr(IC), fget(1C), gcat(1C), mail(l).

- 2 -

FSPLIT(I) FSPLIT(I)

NAME
fsplit - split f77, ratfor, or efl files

SYNOPSIS
fsplit options files

DESCRIPTION
Fsplit splits the named file (s) into separate files, with one procedure per file. A
procedure includes blockdata, function, main, program, and subroutine pro
gram segments. Procedure X is put in file X.f, X.r, or X.e depending on the
language option chosen, with the following exceptions: main is put in the file
MAIN.lefrJ and unnamed blockdata segments in the files biockdataN.lefr1
where N is a unique integer value for each file.

The following options pertain:

-f (default> Input files are 177.
-r Input files are ratfor.

-e Input files are Eft.

-s Strip 177 input lines to 72 or fewer characters with trailing blanks
removed.

SEE ALSO
csplit(I), efl(I), f77(1), ratfor(1), split(1).

- 1 -

GCAT(IC) GCAT(1C)

NAME
gcat - send phototypesetter output to the HONEYWELL 6000

SYNOPSIS
gcat [options] [files]

DESCRIPTION
Gcat arranges to have troff(1) output sent to the phototypesetter or debugging
devices (STARE or line printer) attached to the HONEYWELL system. GCOS
identification must appear in the UNIX System password file (see passwd(4»,
or be supplied by the -i option. If no file name appears, the standard input is
sent; thus gcat may be used as an output pipe for troff(I).

The option -g (for GCOS) must be used with the troff(l) command to make
things work properly. This command string sends output to the GCOS photo
typesetter:

troff -g file I gcat

The following options, each as a separate argument, and in any combination
(multiple outputs are permitted), may be given after gcat:

-ph Send output to the phototypesetter. This is a default option.
-st Send output to STARE for fast turn-around.
-tx Send output as text to the line printer (useful for checking spelling,

hyphenation, pagination, etc.).
-du Send output to the line printer, dummied up to make the format

correct. Because many characters are dropped, the output is unread
able, but useful for seeing the shape (margins, etc.) of the document.

-c Make a copy of the file to be sent before returning to the user.
-r Remove the file after sending it.
-ffile Use file as a dummy file name to report back in the mail. (This is use-

ful for distinguishing multiple runs, especially when gcat is being used
as a filter).

-ijob,bin
Supply the GCOS "ident card" image as the parameter -ijob,bin
where job is the GCOS job number and bin the GCOS bin number or
any comment to the GCOS operators.

-m When transmission is complete, report by mai/(I) the so-called snumb
of the receiving GCOS job. The mail is sent by the UNIX daemon;
there is no guarantee that the GCOS job ran successfully. This is a
default option.

- n Do not report the completion of transmission by mail (1) .
-0 Print the on-line GCOS accounting output.
-t Toss out the on-line GCOS accounting output. This is a default option.
-sn Submit job to GCOS with service grade n (n=l, 2, 3, 4). Default is

-st.
If none of the output options are specified, phototypesetter output (-ph) is
assumed by default.

EXAMPLE

FILES

The command:

troff -g myfile I gcat -st -im1234,m567,myname -fmyfile

will send the output of troff(I) to STARE, with the GCOS "ident card" specify
ing "M1234,M567,MYNAME", and will report back that myfile has been sent.

/ etc/ passwd
/usrlIib/dpd

user's identification and GCOS ident card.
sending daemon.

- 1 -

GCAT(IC) GCAT(IC)

lusr/spool/dpd/. spool area.

SEE ALSO
dpd(IC), dpr(IC), fget(IC), fsend(1C), trofH!).

- 2 -

GCOSMAIL(IC) GCOSMAIL (IC)

NAME
gcosmail - send mail to HIS user

SYNOPSIS
gcosmail [option ...] [HISuserid ...]

DESCRIPTION

FILES

Gcosmai/ takes the standard input up to an end of file and sends it as mail to
the named users on the HONEYWELL 6000 system, using the HIS mail com
mand. The following options are recognized by gcosmail:

-fjile Use file as a dummy file name to report back in the mail. (This is use
ful for distinguishing multiple runs).

-ijob,bin
Supply the GCOS "ident card" image as the parameter -ijob,bin
where job is the GeOS job number and bin the GeOS bin number or
any comment to the GeOS operators.

-m When transmission is complete, report by mai/O) the so-called snumb
of the receiving GeOS job. The mail is sent by the UNIX System dae
mon; there is no guarantee that the GeOS job ran successfully. This is
a default option.

- n Do not report the completion of transmission by mail (1) .
-0 Print the on-line GeOS accounting output.
-t Toss out the on-line GeOS accounting output. This is a default option.
-sn Submit job to GeOS with service grade n (n=l, 2, 3, 4). Default is

-st.

/ etc/ passwd
/usrllib/dpd
/usr/spool/dpd/.

user's identification and GeOS ident card.
sending daemon.
spool area.

SEE ALSO
dpd(IC), dpr(IC), fsend(IC).

- 1 -

GDEV(IG) GDEV(IG)

NAME
hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
bpd [-options] [GPS file 00.1
erase
bard copy
tekset
td [-eurn] [GPS file 000]

DESCRIPTION
All of the commands described below reside in /usr/bin/graf (see
graphics (I G».
bpd Hpd translates a GPS (see gps(4», to instructions for the Hewlett

Packard 7221A Graphics Plotter. A viewing window is computed
from the maximum and mInImUm points in file unless the -u or
-r option is provided. If no file is given, the standard input is
assumed. Options are:

cn Select character set n, n between 0 and 5 (see the HP7221 A
Plotter Operating and Programming Manual, Appendix A).

pn Select pen numbered n, n between 1 and 4 inclusive.

rn Window on GPS region n, n between 1 and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left corner to n
inches.

xvn Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left corner to n
inches.

yvn Set h~ight of viewport to n inches.

erase Erase sends characters to a Tektronix 4010 series storage terminal
to erase the screen.

hardcopy When issued at a Tektronix display terminal with a hard copy unit,
hardcopy generates a screen copy on the unit.

tekset Tekset sends characters to a Tektronix terminal to clear the display
screen, set the display mode to alpha, and set characters to the
smallest font.

td Td translates a GPS to scope code for a Tektronix 4010 series
storage terminal. A viewing window is computed from the max
imum and minimum points in file unless the -u or -r option is
provided. If no file is given, the standard input is assumed.
Options are:

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

SEE ALSO
ged (I G), graphics (I G), gps(4).

- 1 -

GED(tG) GED(IG)

NAME
ged - graphical editor

SYNOPSIS
ged [-euRrnl [GPS file .. .l

DESCRIPTION
Ged is an interactive graphical editor used to display, construct, and edit GPS
files on Tektronix 4010 series display terminals. If GPS file(s) are given, ged
reads them into an internal display buffer and displays the buffer. The GPS in
the buffer can then be edited. If - is given as a file name, ged reads a GPS
from the standard input.

Ged accepts the following command line options:

e Do not erase the screen before the initial display.

rn Display region number n.

u Display the entire GPS universe.

R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects: lines, arc, and
text. Arc and lines objects have a start point, or object-handle, followed by
zero or more points, or point-handles. Text has only an object-handle. The
objects are positioned within a Cartesian plane, or universe, having 64K (-32K
to +32K) points, or universe-units, on each axis. The universe is divided into
25 equal sized areas called regions. Regions are arranged in five rows of five
squares each, numbered 1 to 25 from the lower left of the universe to the upper
right.

Ged maps rectangular areas, called windows, from the universe onto the display
screen. Windows allow the user to view pictures from different locations and at
different magnifications. The universe-window is the window with minimum
magnification, i.e. the window that views the entire universe. The home
window is the window that completely displays the contents of the display
buffer.

COMMANDS
Ged commands are entered in stages. Typically each stage ends with a <cr>
(return). Prior to the final <cr> the command may be aborted by typing
rubout. The input of a stage may be edited during the stage using the erase
and kill characters of the calling shell. The prompt • indicates that ged is wait
ing at stage 1.

Each command consists of a subset of the following stages:

1. Command line
A command line consists of a command name followed by
argument(s) followed by a <cr>. A command name is a single
character. Command arguments are either option(s) or a file
name. Options are indicated by a leading -.

2. Text Text is a sequence of characters terminated by an unescaped
<cr>. (120 lines of text maximum.)

3. Points Points is a sequence of one or more screen locations (maximum
of 30) indicated either by the terminal cross hairs or by name.
The prompt for entering points is the appearance of the
crosshairs. When the crosshairs are visible, typing:

sp (space) enters the current location as a point. The point is
identified with a number.

- 1 -

GED(IG)

4. Pivot

GED(IG)

$n enters the previous point numbered n.

> x labels the last point entered with the upper case letter x.

$x enters the point labeled x.

establishes the previous points as the current points. At the
start of a command the previous points are those locations
given with the previous command.

echoes the current pOints.

$.n enters the point numbered n from the previous points.

erases the last point entered.

@ erases all of the points entered.

The pivot is a single location, entered by typing <cr> or by
using the $ operator, and indicated with a •.

5. Destination
The destination is a single location entered by typing <cr> or
by using $.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Command
stages are printed in italics. Arguments surrounded by brackets "[J" are
optional. Parentheses "0" surrounding arguments separated by "or" means
that exactly one of the arguments must be given.

Construct commands:
Arc [-echo,style,weight] points

Box [-echo,style,weight] points

Circle [-echo,style,weight] points

Hardware [-echo] text points

Lines [-echo,style,weight] points

Text [- angle,echo,heigh t,mid -poin t,right -poin t, text, weigh t] t ex t
points

Edit commands:
Delete

Edit

Kopy

Move

Rotate

Scale

View commands:
coordinates

(- (universe or view) or points)

[-angle,echo,height,style,weightJ (- (universe or view) or
points)

[-echo,points,x] points pivot destination

[-echo,points,x] points pivot destination

[-angle,echo,kopy,x] points pivot destination

[-echo,factor,kopy,x] points pivot destination

points

erase

new-display

object-handles (- (universe or view) or points)

- 2 -

GED(IG)

point-handles

view

x

zoom

Other commands:
quit or Quit

GED(IG)

(- (labelled-points or universe or view) or points)

(- (home or universe or region) or [-x] pivot desti
nation)

[-view] points

[-out] points

read [-angle,echo,height,mid-point,right-point,text,weight] file
name [destination]

set [-angle,echo,factor,beight,kopy,mid-point,points, right-
point,style,text, weight,x]

write file-name

!command

?

Options:
Options specify parameters used to construct, edit, and view graphical objects.
If a parameter used by a command is not specifed as an option, the default
value for the parameter will be used (see set below). The format of command
options is

- option [,option]
where option is key Ie tter[value]. Flags take on the values of true or false indi
cated by + and - respectively. If no value is given with a flag, true is
assumed.

Object options:

anglen

echo

factorn

heightn

kopy

mid-point

points

right-point

styletype

Angle of n degrees.

When true, echo additions to the display buffer.

Scale factor is n percent.

Height of text is n universe-units (0 ~ n < 1280).

When true, copy rather than move.

When true, mid-point is used to locate text string.

When true, operate on points otherwise operate on objects.

When true, right-point is used to locate text string.

Line style set to one of following types:
so solid
da dashed
dd dot-dashed
do dotted
Id long-dashed

- 3 -

GED(tG) GED(IG)

text When false, text strings are outlined rather than drawn.

weighttype Sets line weight to one of following types:

Area options:

home

out

regionn

universe

view

x

n narrow
m medium
b bold

Reference the home-window.

Reduce magnification.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

Indicate the center of the referenced area.

COMMAND DESCRIPTIONS
Construct commands:

Arc and Lines
behave similarly. Each consists of a command line followed by points.
The first point entered is the object-handle. Successive points are point
handles. Lines connects the handles in numerical order. Arc fits a curve
to the handles (currently a maximum of 3 points will be fit with a circu
lar arc; splines will be added in a later version).

Box and Circle
are special cases of Lines and Arc, respectively. Box generates a rectan
gle with sides parallel to the universe axes. A diagonal of the rectangle
would connect the first point entered with the last point. The first point
is the object-handle. Point-handles are created at each of the vertices.
Circle generates a circular arc centered about the point numbered zero
and passing through the last point. The circle's object-handle coincides
with the last point. A point-handle is generated 180 degrees around the
circle from the object-handle.

Text and Hardware
generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by <cr>. Multiple lines of
text may be entered by preceding a cr with a backslash (i.e. \cr). The
Text command creates software generated characters. Each line of
software text is treated as a separate text object. The first point entered
is the object-handle for the first line of text. The Hardware command
sends the characters in text uninterpreted to the terminal.

Edit commands:
Edit commands operate on portions of the display buffer called defined-areas.
A defined-area is referenced either with an area option or interactively. If an
area option is not given, the perimeter of the defined-area is indicated by
points. If no point is entered, a small defined-area is built around the location
of the <cr>. This is useful to reference a single point. If only one point is
entered, the location of the <cr> is taken in conjunction with the point to
indicate a diagonal of a rectangle. A defined-area referenced by points will be
outlined with dotted lines.

Delete
removes all objects whose object-handle lies within a defined-area. The
universe option removes all objects and erases the screen.

- 4 -

GED(IG) GED(IG)

Edit modifies the parameters of the objects within a defined-area. Parameters
that can be edited are:

angle angle of text
height height of text
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined-area by
the displacement from the pivot to the destination.

Rotate

Scale

rotates objects within a defined-area around the pivot. If the kopy flag is
true then the objects are copied rather than moved.

For objects whose object-handles are within a defined-area, point dis
placements from the pivot are scaled by factor percent. If the kopy flag
is true then the objects are copied rather than moved.

View commands:
coordina tes

prints the location of point(s) in universe- and screen-units.

erase
clears the screen (but not the display buffer).

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object- (and/or point-handles) that lie within the defined-area with
o (or P). point-handles identifies labelled points when the labelled-points
flag is true.

view moves the window so that the universe point corresponding to the pivot
coincides with the screen point corresponding to the destination. Options
for home, universe, and region display particular windows in the universe.

x indicates the center of a defined-area. Option view indicates the center of
the screen.

zoom
decreases (zoom out) or increases the magnification of the viewing win
dow based on the defined-area. For increased magnification, the window
is set to circumscribe the defined-area. For a decrease in magnification
the current window is inscribed within the defined-area.

Other commands:
quit or Quit

exit from ged. quit responds with ? if the display buffer has not been
written since the last modification.

read inputs the contents of a file. If the file contains a GPS it is read directly.
If the file contains text it is converted into text object(s). The first line of
a text file begins at destination.

set when given option(s) resets default parameters, otherwise it prints current
default values.

write outputs the contents of the display buffer to a file.

- 5 -

GED(IG) GED(IG)

escapes ged to execute a UNIX System command.

? lists ged commands.

SEE ALSO
gdev(lG), graphics(lG), sh(t), gps(4).
An Introduction to the Graphical Editor in the UNIX System Graphics Guide.

- 6 -

GET(I) GET(l)

NAME
get - get a version of an sees file

SYNOPSIS
get [-rSID] [-ccutoff] [-ilistl [-xlistl [-aseq-no.1 [-k] [-e] [-Hp11
[-p] [-m] [-0] [-s] [-b] [-g] [-t] file ...

DESCRIPTION
Get generates an ASCII text file from each named sees file according to the
specifications given by its keyletter arguments, which begin with -. The argu
ments may be specified in any order, but all key letter arguments apply to all
named sees files. If a directory is named, get behaves as though each file in
the directory were specified as a named file, except that non-sees files (last
component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line
of the standard input is taken to be the name of an sees file to be processed.
Again, non-sees files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file whose name
is derived from the sees file name by simply removing the leading s.; (see also
FILES, below).

Each of the key letter arguments is explained below as though only one sees
file is to be processed, but the effects of any key letter argument applies
independently to each named file.

-rSID The Sees IDentification string (SID) of the version (delta) of an
sees file to be retrieved. Table I below shows, for the most useful
cases, what version of an sees file is retrieved (as well as the SID
of the version to be eventually created by delta (1) if the -e
key letter is also used), as a function of the SID specified.

-ccutoJJ Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file which were created after the
specified cutoff date-time are included in the generated ASCII text
file. Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to -c750228235959.
Any number of non-numeric characters may separate the various 2
digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form: "-c77 /2/2 9:22:25". Note that
this implies that one may use the %E% and %U% identification
keywords (see below) for nested gets within, say the input to a
send (I C) command:

-!get "-c%E% %U%" s.file

-e Indicates that the get is for the purpose of editing or making a
change (delta) to the sees file via a subsequent use of delta (1).
The -e keyletter used in a get for a particular version (SID) of the
sees file prevents further gets for editing on the same SID until
delta is executed or the j (joint edit) flag is set in the sees file
(see admin (1)). Concurrent use of get -e for different SIDs is
always allowed.

If the g-file generated by get with an -e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re
executing the get command with the -k keyletter in place of the
-e keyletter.

- I -

GET(l)

-b

-ilist

-xlist

-k

-Up]

-p

-s

-m

-0

-g

-t

GET (I)

sees file protection specified via the ceiling, floor, and authorized
user list stored in the sees file (see admin (I» are enforced when
the -e keyletter is used.

Used with the -e keyletter to indicate that the new delta should
have an SID in a new branch as shown in Table 1. This keyletter is
ignored if the b flag is not present in the file (see admin (1) or if
the retrieved delta is not a leaf delta. (A leaf delta is one that has
no successors on the sees file treeJ
Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the creation
of the generated file. The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= SID I SID - SID

SID, the sees Identification of a delta, may be in any form shown
in the "SID Specified" column of Table 1. Partial SIDs are inter
preted as shown in the "SID Retrieved" column of Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the -i keyletter for the list for
mat.

Suppresses replacement of identification keywords (see below) in
the retrieved text by their value. The - k keyletter is implied by
the -e keyletter.

Causes a delta summary to be written into an I-file. If -Ip is used
then an I-file is not created; the delta summary is written on the
standard output instead. See FILES for the format of the I-file.

Causes the text retrieved from the sees file to be written on the
standard output. No g-file is created. All output which normally
goes to the standard output goes to file descriptor 2 instead, unless
the -s key letter is used, in which case it disappears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descriptor
2) remain unaffected.

Causes each text line retrieved from the sees file to be preceded
by the SID of the delta that inserted the text line in the sees file.
The format is: SID, followed by a horizontal tab, followed by the
text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -m and -0 keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the -m
keyletter generated format.

Suppresses the actual retrieval of text from the sees file. It is pri
marily used to generate an I-file, or to verify the existence of a
particular SID.

Used to access the most recently created ("top") delta in a given
release (e.g., -rl), or release and level (e.g., -r1.2).

-aseq-no. The delta sequence number of the sees file delta (version) to be
retrieved (see sccsfile(5». This keyletter is used by the comb (1)
command; it is not a generally useful keyletter, and users should

- 2 -

GET(l)

SID*

GET(l)

not use it. If both the -r and -a key letters are specified, the -a
keyletter is used. Care should be taken when using the -a
key letter in conjunction with the -e keyletter, as the SID of the
delta to be created may not be what one expects. The -r key letter
can be used with the -a and -e keyletters to control the naming
of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the sees file.

If the -e key letter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more than
one named file or if a directory or standard input is named, each file name is
printed (preceded by a new-line) before it is processed. If the -i keyletter is
used included deltas are listed following the notation "Included"; if the -x
keyletter is used, excluded deltas are listed following the notation "Excluded".

TABLE 1. Determination of sees Identification String
-b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created
nonei
nonei

R
R
R
R

R

R

R.L
R.L

R.L

R.L.B
R.L.B
R.L.B.S
R.L.B.S
R.L.B.S

*

**

t

no R defaults to mR mR.mL mR.(mL+U
yes R defaults to mR mR.mL mR.mL.(mB+I).1
no R> mR mR.mL R.l ***
no R=mR mR.mL mR.(mL+l)
yes R> mR mR.mL mR.mL. (mB+ 1).1
yes R=mR mR.mL mR.mL.(mB+I).1

R < mR and hR.mL** hR.mL. (mB+ 1).1
R does not exist
Trunk succ.#
in release > R R.mL R.mL.(mB+1).1
and R exists

no No trunk succ. R.L R.(L+U
yes No trunk succ. R.L R.L.(mB+l).1

Trunk succ. R.L R.L. (mB+ 1).1
in release ~ R

no No branch succ. R.L.B.mS R.L.B. (mS+ U
yes No branch succ. R.L.B.mS R.L.(mB+1).1

no No branch succ. R.L.B.S R.L.B.(S+I)
yes No branch succ. R.L.B.S R.L.(mB+1).1

Branch succ. R.L.B.S R.L. (mB+ 1).1

"R", "L", "B", and "S" are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means "maximum".
Thus, for example, "R.mL" means "the maximum level number within
release R"; "R.L. (mB+ 1).1" means "the first sequence number on the
new branch (i.e., maximum branch number plus one) of level L within
release R". Note that if the SID specified is of the form "R.L", "R.L.B",
or "R.L.B.S", each of the specified components must exist.
"hR" is the highest existing release that is lower than the specified,
nonexistent, release R. ,
This is used to force creation of the first delta in a new release.
Successor.
The -b keyletter is effective only if the b flag (see admin (1» is present
in the file. An entry of - means "irrelevant".
This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is

- 3 -

GET(I) GET(I)

interpreted as if it had been specified on the command line. Thus, one of
the other cases in this table applies.

IDENTIFICATION KEYWORDS

FILES

Identifying information is inserted into the text retrieved from the sees file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an sees file:

Keyword
%M%

%1%

%R%
%L%
%8%
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

Value
Module name: either the value of the m flag in the file (see
admin(1», or if absent, the name of the secs file with the leading
s. removed.
SCCS identification (SIO) (%R%.%L%.%B%.%S%) of the retrieved
text.
Release.
Level.
Branch.
Sequence.
Current date (YY IMM/OO).
Current date (MM/OD/YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY IMM/OO).
Date newest applied delta was created (MM/OO/YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the secs file (see admin (1».
sces file name.
Fully qualified sces file name.
The value of the q flag in the file (see admin (1».
Current line number. This keyword is intended for identifying mes
sages output by the program such as "this shouldn't have happened"
type errors. It is not intended to be used on every line to provide
sequence numbers.
The 4-character string @(#) recognizable by what (1).
A shorthand notation for constructing what (1) strings for the UNIX
System program files. %W% = %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what (1) strings for
non-UNIX System program files.
%A% = %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get, These files are known generically
as the g-file, I-file, p-file, and z-file. The letter before the hyphen is called
the tag. An auxiliary file name is formed from the SCCS file name: the last
component of all sees file names must be of the form s.module-name, the aux
iliary files are named by replacing the leading s with the tag. The g-file is an
exception to this scheme: the g-file is named by removing the s. prefix. For
example, s.xyz.c, the auxiliary file names would be xyz.c, I.xyz.c, p.xyz.c, and
z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current direc
tory (unless the -p keyletter is used). A g-file is created in all cases, whether
or not any lines of text were generated by the get. It is owned by the real user.
If the -k keyletter is used or implied its mode is 644; otherwise its mode is
444. Only the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the
retrieved text. The I-file is created in the current directory if the -I keyletter
is used; its mode is 444 and it is owned by the real user. Only the real user
need have write permission in the current directory.

- 4 -

GET(I)

Lines in the I-jile have the following format:

a. A blank character if the delta was applied;
• otherwise.

GET(I)

b. A blank character if the delta was applied or wasn't applied
and ignored;
• if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the delta was or was
not applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY IMM/DD HH:MM:SS) of crea-

tion.
h. Blank.
1. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The p-jile is used to pass information resulting from a get with an -e key letter
along to delta. Its contents are also used to prevent a subsequent execution of
get with an -e keyletter for the same SID until delta is executed or the joint
edit flag, j, (see admin (1)) is set in the sees file. The p -jile is created in the
directory containing the sees file and the effective user must have write per
mission in that directory. Its mode is 644 and it is owned by the effective user.
The format of the p-jile is: the gotten SID, followed by a blank, followed by the
SID that the new delta will have when it is made, followed by a blank, followed
by the login name of the real user, followed by a blank, followed by the date
time the get was executed, followed by a blank and the -i key letter argument
if it was present, followed by a blank and the -x key letter argument if it was
present, followed by a new-line. There can be an arbitrary number of lines in
the p-jile at any time; no two lines can have the same new delta SID.

The z-jile serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-jile is created in the directory containing the sees file for
the duration of get. The same protection restrictions as those for the p-jile
apply for the z-jile. The z-jile is created mode 444.

SEE ALSO
admin(1), delta(1), help(1), prs(1), what(I), sccsfile(4).
Source Code Control System in the UNIX System Support Tools Guide.

DIAGNOSTICS

BUGS

Use help (1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the
directory containing the sees files, but the real user doesn't, then only one file
may be named when the -e keyletter is used.

- 5 -

GETOPT(I) GETOPT(I)

NAME
getopt - parse command options

SYNOPSIS
set - - 'getopt optstring $.'

DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by shell
procedures and to check for legal options. Optstring is a string of recognized
option letters (see getopt(3C)); if a letter is followed by a colon, the option is
expected to have an argument which mayor may not be separated from it by
white space. The special option - - is used to delimit the end of the options.
If it is used explicitly, getopt will recognize it; otherwise, getopt will generate
it; in either case, getopt will place it at the end of the options. The shell's posi
tional parameters ($1 $2 .. .) are reset so that each option is preceded by a -
and is in its own positional parameter; each option argument is also parsed into
its own positional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the options a or b, as well as the option 0, which
requires an argument:

set -- 'getopt abo: $*'
if [$? != 0]
then

fi

echo $USAGE
exit 2

for In $*
do

done

case $i in
-a I -b)
-0)
--)
esac

FLAG=$i; shift;;
OARG=$2; shift 2;;
shift; break;;

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
sh (1), getopt(3C).

DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

- 1 -

GRAPH(tG) GRAPH(lG)

NAME
graph - draw a graph

SYNOPSIS
graph [options]

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are c((>nnected by straight
lines. The graph is encoded on the standard output for display by the
tplot (I G) filters.

If the coordinates of a point are followed by a non-numeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with
quotes ", in which case they may be empty or contain blanks and numbers;
labels never contain new-lines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1) . A second
optional argument is the starting point for automatic abscissas
(default 0 or lower limit given by -x).

-b Break {disconnect} the graph after each label in the input.
-c Character string given by next argument is default label for each

point.
-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full

grid (default).
-I Next argument is label for graph.
-m Next argument is mode (style) of connecting lines: 0 disconnected,

1 connected (default). Some devices give distinguishable line styles
for other small integers (e.g., the Tektronix 4014: 2=dotted,
3=dash-dot, 4=short-dash, 5=long-dash).

-s Save screen, don't erase before plotting.
-x [1] If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are

lower (and upper) x limits. Third argument, if present, is grid
spacing on x axis. Normally these quantities are determined
automatically.

-y [1] Similarly for y.
-h Next argument is fraction of space for height.
-w Similarly for width.
-r Next argument is fraction of space to move right before plotting.
-u Similarly to move up before plotting.
-t Transpose horizontal and vertical axes. {Option -x now applies to

the vertical axis.}
A legend indicating grid range is produced with a grid unless the -s option is
present. If a 'specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO

BUGS

graphics(IG), spline(IG), tplot(IG).

Graph stores all points internally and drops those for which there isn't room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

- 1 -

GRAPHICS (IG) GRAPHICS(IG)

NAME
graphics - access graphical and numerical commands

SYNOPSIS
graphics [-r]

DESCRIPTION
Graphics appends the path name lusr/bin/graf to the current $PATH value,
changes the primary shell prompt to ", and executes a new shell. The directory
lusr/bin/graf contains all of the Graphics subsystem commands. If the -r
option is given, access to the graphical commands is created in a restricted
environment; that is, $PATH is set to I:rbin:/usr/rbin:/bin:/usr/bin:
lusrlbin/graf and the restricted shell, rsh, is invoked. To restore the environ
ment that existed prior to issuing the graphics command, type EOT (control-d
on most terminals). To logoff from the graphics environment, type quit.

The command line format for a command in graphics is command name fol
lowed by argument(s). An argument may be a file name or an option string.
A file name is the name of any UNIX System file except those beginning with
-. The file name - is the name for the standard input. An option string con
sists of - followed by one or more option(s). An option consists of a key letter
possibly followed by a value. Options may be separated by commas.

The graphical commands have been partitioned into four groups.

Commands that manipulate and plot numerical data; see stat (I G).

Commands that generate tables of contents; see toc(lG).

Commands that interact with graphical devices; see gdev (I G) and
ged(IG).

A collection of graphical utility commands; see guti[(l G).

A list of the graphics commands can be generated by typing whatis in the
graphics environment.

SEE ALSO
gdev(IG), ged(IG), gutil(IG), stat(IG), toc(IG), gps(4).
UNIX System Graphics Guide.

- 1 -

GREEK(I) GREEK(I)

NAME
greek - select terminal filter

SYNOPSIS
greek [- Tterminal]

DESCRIPTION

FILES

Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE@ Teletypewriter
Model 37 terminal (which is the nroff default terminal) for certain other termi
nals. Special characters are simulated by overstriking, if necessary and possi
ble. If the argument is omitted, greek attempts to use the environment variable
$TERM (see environ (5». The following terminals are recognized currently:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
300s DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI 450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

lusr/bin/300
lusr/bin/300s
I usr Ibin/40 14
lusr/bin/450
lusr/bin/hp

SEE ALSO
300(1), 4014(1), 450(1), eqn(1), hp(1), mm(1), tplot (1 G) , nroff(1) ,
environ (5), greek (5), term (5).

- 1 -

GREP(I) GREP(I)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options] expression [files]

egrep [options] [expression] [files]

fgrep [options] [strings] [files]

DESCRIPTION
Commands of the grep family search the input files (standard input default)
for lines matching a pattern. Normally, each line found is copied to the stan
dard output. Grep patterns are limited regular expressions in the style of
ed(1); it uses a compact non-deterministic algorithm. Egrep patterns are full
regular expressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact.
The following options are recognized:

-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (fgrep only).
-c Only a count of matching lines is printed.
-I Only the names of files with matching lines are listed (once), separated

by new-lines.
-0 Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This

is sometimes useful in locating disk block numbers by context.
-s The error messages produced for nonexistent or unreadable files are

suppressed (grep only).
-e expression

Same as a simple expression argument, but useful when the expression
begins with a - (does not work with grep).

-f file
The regular expression (egrep) or strings list (fgrep) is taken from the
file.

In all cases, the file name is output if there is more than one input file. Care
should be taken when using the characters $, *, [, A, I, (,), and \ in expression,
because they are also meaningful to the shell. It is safest to enclose the entire
expression argument in single quotes' ... '.

Fgrep searches for lines that contain one of the strings separated by new-lines.

Egrep accepts regular expressions as in ed(1), except for \(and \), with the
addition of:

1. A regular expression followed by + matches one or more occurrences of
the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of the
regular expression.

3. Two regular expressions separated by I or by a new-line match strings
that are matched by either.

4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is [1, then .? +, then concatenation, then
I and new-line.

SEE ALSO
ed (1), sed (I), sh (1) .

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inac
cessible files (even if matches were found).

- 1 -

GREP(I) GREP(I)

BUGS
Ideally there should be only one grep, but we don't know a single algorithm
that spans a wide enough range of space-time tradeoffs.
Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as [a - z], in character classes.

- 2 -

GUTIL(IG) GUTIL(IG)

NAME
gutil - graphical utilities

SYNOPSIS
command-name [options] [files]

DESCRIPTION
Below is a list of miscellaneous device independent utility commands found in
/usr/bin/graf. If no files are given, input is from the standard input. All out
put is to the standard output. Graphical data is stored in GPS format; see
gps(4).

bel

cvrtopt

- send bel character to terminal

[=sstring fstring istring tstring] [args] - options converter
Cvrtopt reformats args (usually the command line arguments of a
calling shell procedure) to facilitate processing by shell procedures.
An arg is either a file name (a string not beginning with a -, or a
- by itself) or an option string (a string of options beginning with a
-). Output is of the form:

-option -option . .. file name (s)
All options appear singularly and preceding any file names. Options
that take values (e.g., - r 1.1) or are two letters long must be
described through options to cvrtopt.

Cvrtopt is usually used with set in the following manner as the first
line of a shell procedure:

set - 'cvrtopt =[options] $@'
Options to cvrtopt are:

sstring

fstring

istring

tstring

String accepts string values.

String accepts floating point numbers as values.

String accepts integers as values.

String is a two letter option name that takes no value.

String is a one or two letter option name.

gd [GPS files] - GPS dump
Gd prints a human readable listing of GPS.

gtop [-rn u] [GPS files] - GPS to plot (4) filter

pd

ptog

quit

remcom

Gtop transforms a GPS into plot(4) commands displayable by plot
filters. GPS objects are translated if they fall within the window
that circumscribes the first file unless an option is given.
Options:

rn translate objects in GPS region n.

u translate all objects in the GPS universe.

[plot (5) files] - plot (4) dump
Pd prints a human readable listing of plot (4) format graphical
commands.

[plot (5) files] - plot (4) to GPS filter
Ptog transforms plot (4) commands into a GPS.

- terminate session

[files] - remove comments
Remcom copies its input to its output with comments removed.
Comments are as defined in C (i.e., /. comment ./).

- 1 -

GUTIL(IG)

whatis

yoo

SEE ALSO

GUTIL(IG)

[-0] [names] - brief online documentation
Whatis prints a brief description of each name given. If no name is
given, then the current list of description names is printed. whatis
\. prints out every description.
Option:

o just print command options

file - pipe fitting
Yoo is a piping primitive that deposits the output of a pipeline into
a file used in the pipeline. Note that, without yoo, this is not usu
ally successful as it causes a read and write on the same file simul
taneously.

graphics(1G), gps(4).

- 2 -

HELP(I) HELP (I)

NAME
help - ask for help

SYNOPSIS
help [args]

DESCRIPTION

FILES

Help finds information to explain a message from a command or explain the
use of a command. Zero or more arguments may be supplied. If no arguments
are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the following
types:

type 1

type 2

type 3

Begins with non-numerics, ends in numerics. The non
numeric prefix is usually an abbreviation for the pro
gram or set of routines which produced the message
(e.g., ge6, for message 6 from the get command).

Does not contain numerics (as a command, such as get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information related to the
argument, if there is any.

When all else fails, try "help stuck".

/usr/lib/help directory containing files of message text.

/usr/lib/help/helploc file containing locations of help files not in /usr/lib/help.

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

HP(I) HP(I)

NAME
hp - handle special functions of HP 2640 and 2621-series terminals

SYNOPSIS
bp [-e] [-m]

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 series of terminals,
with the primary purpose of producing accurate representations of most nroff
output. A typical use is:

nroff - h files ... I hp

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the "display
enhancements" feature, subscripts and superscripts can be indicated in distinct
ways. If it has the "mathematical-symbol" feature, Greek and other special
characters can be displayed.

The flags are as follows:
-e It is assumed that your terminal has the "display enhancements"

feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super
scripts are shown in Half-bright mode, and subscripts in Half-bright,
Underlined mode. If this flag is omitted, hp assumes that your termi
nal lacks the "display enhancements" feature. In this case, all over
struck characters, subscripts, and superscripts are displayed in Inverse
Video mode, i.e., dark-on-light, rather than the usuallight-on-dark.

-m Requests minimization of output by removal of new-lines. Any con
tiguous sequence of 3 or more new-lines is converted into a sequence of
only 2 new-lines; i.e., any number of successive blank lines produces
only a single blank output line. This allows you to retain more actual
text on the screen.

With regard to Greek and other special characters, hp provides the same set as
does 300(1), except that "not" is approximated by a right arrow, and only the
top half of the integral sign is shown. The display is adequate for examining
output from neqn.

DIAGNOSTICS
"line too long" if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO

BUGS

300(1), coHO, eqn(1), greek(1), nroff(l), tbl(1).

An "overstriking sequence" is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if either
printing character is an underscore, the other printing character is shown
underlined or in Inverse Video; otherwise, only the first printing character is
shown (again, underlined or in Inverse Video). Nothing special is done if a
backspace is adjacent to an ASCII control character. Sequences of control
characters (e.g., reverse line-feeds, backspaces) can make text "disappear"; in
particular, tables generated by tbl (1) that contain vertical lines will often be
missing the lines of text that contain the "foot" of a vertical line, unless the
input to hp is piped through co[(O.
Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

- 1 -

HPIO(I) (3B20S only) HPIO(I)

NAME
hpio - HP 2645A terminal tape file archiver

SYNOPSIS
bpio -ofrc] file .. ,

bpio -ifrta] f -n cound

DESCRIPTION
Hpio is designed to take advantage of the tape drives on Hewlett Packard
2645A terminals. Up to 255 UNIX System files can be archived onto a tape
cartridge for off-line storage or for transfer to another UNIX System. The
actual number of files depends on the sizes of the files. One file of about
115,000 bytes will almost fill a tape cartridge. Almost 300 I-byte files will fit
on a tape, but the terminal will not be able to retrieve files after the first 255.
This manual page is not intended to be a guide for using tapes on HP 2645A
terminals, but tries to give enough information to be able to create and read
tape archives and to position a tape for access to a desired file in an archive.

Hpio -0 (copy out) copies the specified file (s), together with path name and
status information to a tape drive on your terminal (which is assumed to be
positioned at the beginning of a tape or immediately after a tape mark). The
left tape drive is used by default. Each file is written to a separate tape file
and terminated with a tape mark. When hpio finishes, the tape is positioned
following the last tape mark written.

Hpio -i (copy in) extracts a file(s) from a tape drive (which is assumed to be
positioned at the beginning of a file that was previously written by a bpio -0).
The default action extracts the next file from the left tape drive.

Hpio always leaves the tape positioned after the last file read from or written to
the tape. Tapes should always be rewound before the terminal is turned off.
To rewind a tape depress the green function button, then function key 5, and
then select the appropriate tape drive by depressing either function key 5 for
the left tape drive or function key 6 for the right. If several files have been
archived onto a tape, the tape may be positioned at the beginning of a specific
file by depressing the green function button, then function key 8, followed by
typing the desired file number (I -255) with no RETURN, and finally function
key 5 for the left tape or function key 6 for the right. The desired file number
may also be specified by a signed number relative to the current file number.

The meanings of the available options are:

r Use the right tape drive.
c Include a checksum at the end of each file. The checksum is always

checked by bpio -i for each file written with this option by bpio -0.

n count The number of input files to be extracted is set to count. If this
option is not given, count defaults to 1. An arbitrarily large count
may be specified to extract all files from the tape. Hpio will stop at
the end of data mark on the tape.
Print a table of contents only. No files are created. Printed informa
tion gives the file size in bytes, the file name, the file access modes,
and whether or not a checksum is included for the file.

a Ask before creating a file. Hpio -i normally prints the file size and
name, creates and reads in the file, and prints a status message when
the file has been read in. If a checksum is included with the file, it
reports whether the checksum matched its computed value. With this
option, the file size and name are printed followed by a ? Any
response beginning with y or Y will cause the file to be copied in as
above. Any other response will cause the file to be skipped.

- I -

HPIO(1) (3B20S only) HPIO(1) \

FILES
/dev/tty??

to block messages while accessing a tape

SEE ALSO
2645A Display Station User's Manual, Hewlett-Packard Company, Part
Number 02645-9000l.

DIAGNOSTICS
BREAK

An interrupt signal terminated processing.
Can't create 'file'.

File system access permissions did not allow file to be created.
Can't get tty options on stdout.

Hpio was unable to get the input-output control settings associated
with the terminal.

Can't open 'file'.
File could not be accessed to copy it to tape.

End of Tape.
No tape record was available when a read from a tape was requested.
An end of data mark is the usual reason for this, but it may also occur
if the wrong tape drive is being accessed and no tape is present.

'file' not a regular file.
File is a directory or other special file. Only regular files will be copied
to tape.

Readcnt = rc, termcnt = tc.
Hpio expected to read rc bytes from the next block on the tape, but
the block contained tc bytes. This is caused by having the tape
improperly positioned or by a tape block being mangled by interference
from other terminal 110.

Skip to next file failed.
An attempt to skip over a tape mark failed.

Tape mark write failed.
An attempt to write a tape mark at the end of a file failed.

Write failed.
A tape write failed. This is most frequently caused by specifying the
wrong tape drive, running off the end of the tape, or trying to write on
a tape that is write protected.

WARNINGS

BUGS

Tape 110 operations may copy bad data if any other I/O involving the terminal
occurs. Do not attempt any type ahead while hpio is running. Hpio turns off
write permissions for other users while it is running, but processes started asyn
chronously from your terminal can still interfere. The most common indication
of this problem, while a tape is being written, is the appearance of characters
on the display screen that should have been copied to tape.

The keyboard, including the terminal's BREAK key, is locked during tape write
operations; the BREAK key is only functional between writes.

Hpio must have complete control of the attributes of the terminal to communi
cate with the tape drives. Interaction with commands such as cu (1 C) may
interfere and prevent successful operation.

Some binary files contain sequences that will confuse the terminal.

An bpio -i that encounters the end of data mark on the tape (e.g., scanning
the entire tape with bpio -itn 300), leaves the tape positioned after the end of
data mark. If a subsequent bpio -0 is done at this point, the data will not be
retrievable. The tape must be repositioned manually using the terminal's FIND

- 2 -

HPIO (1) (3B20S only) HPIO(l)

FILE -1 operation (depress the green function button, function key 8, and then
function key 5 for the left tape or function key 6 for the right tape) before the
hpio -0 is started.

If an interrupt is received by hpio while a tape is being written, the terminal
may be left with the keyboard locked. If this happens, the terminal's RESET
TERMINAL key will unlock the keyboard.

- 3 -

HYPHEN(1) HYPHEN (1)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen [files]

DESCRIPTION
Hyphen finds all the hyphenated words ending lines in files and prints them on
the standard output. If no arguments are given, the standard input is used;
thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nroff's hyphenation in textfile.

mm text file I hyphen

SEE ALSO

BUGS

mm (1), trofH 1) .

Hyphen can't cope with hyphenated italic (i.e., underlined) words; it will often
miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spurious
extra output.

- 1 -

ID(1)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRIPTION

ID(1)

Id writes a message on the standard output giving the user and group IDs and
the corresponding names of the invoking process. If the effective and real IDs
do not match, both are printed.

SEE ALSO
logname (1), getuid (2) .

- 1 -

IPCRM (I) IPCRM(I)

NAME
ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS
ipcrm [options]

DESCRIPTION
[perm will remove one or more specified message, semaphore or shared memory
identifiers. The identifiers are specified by the following options:

-q msqid removes the message queue identifier msqid from the system and
destroys the message queue and data structure associated with it.

-m shmid removes the shared memory identifier shmid from the system.
The shared memory segment and data structure associated with it
are destroyed after the last detach.

-s semid removes the semaphore identifier semid from the system and des
troys the set of semaphores and data structure associated with it.

-Q msgkey removes the message queue identifier, created with key msgkey,
from the system and destroys the message queue and data struc
ture associated with it.

-M shmkey removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data struc
ture associated with it are destroyed after the last detach.

-S semkey removes the semaphore identifier, created with key semkey, from
the system and destroys the set of semaphores and data structure
associated with it.

The details of the removes are described in msgctl(2) , shmctl(2) , and
semctl(2). The identifiers and keys may be found by using ipcs(1).

SEE ALSO
ipcs (1), msgct1(2), msgget (2), msgop (2), semct1(2), semget (2), semop (2),
shmctl (2), shmget (2), shmop (2) .

- 1 -

IPCS (1) IPCS (1)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION
[pes prints certain information about active inter-process communication facili
ties. Without options, information is printed in short format for message
queues, shared memory, and semaphores that are currently active in the sys
tem. Otherwise, the information that is displayed is controlled by the following
options:

380.spOu
-q Print information about active message queues.
-m Print information about active shared memory segments.
-s Print information about active semaphores.
If any of the options -q, -m, or -s are specified, information about only
those indicated will be printed. If none of these three are specified, information
about all three will be printed.
-b Print biggest allowable size information. (Maximum number of bytes

in messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphoresJ See
below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.
-0 Print information on outstanding usage. (Number of messages on

queue and total number of bytes in messages on queue for message
queues and number of processes attached to shared memory seg
mentsJ

-p Print process number information. (Process ID of last process to send a
message and process ID of last process to receive a message on message
queues and process ID of creating process and process ID of last process
to attach or detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last msgsnd
and last msgrev on message queues, last shmat and last shmdt on
shared memory, last semop(2) on semaphoresJ See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -0,

-p, and -0
-C eorefile

Use the file eorefile in place of Idev/kmem.
-N namelist

The argument will be taken as the name of an alternate namelist
Uunix is the default).

The column headings and the meaning of the columns in an ipes listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; all means that the heading always appears.
Note that these options only determine what information is provided for each
facility; they do not determine which facilities will be listed.

T (aU)
Type of the facility:

q message queue;
m shared memory segment;
s semaphore.

ID (aU)
The identifier for the facility entry.

- 1 -

IPCS(1)

KEY

MODE

OWNER

GROUP

CREATOR

CGROUP

CBYTES

QNUM

QBYTES

LSPID

LRPID

(all)

(all)

(all)

IPCS (t)

The key used as an argument to msgget, semget, or shmget
to create the facility entry. (Note: The key of a shared
memory segment is changed to IPC_PRIVATE when the seg
ment has been removed until all processes attached to the
segment detach it.)

The facility access modes and flags: The mode consists of 11
characters that are interpreted as follows:
The first two characters are:

R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has

been removed. It will disappear when the last
process attached to the segment detaches it;

C if the associated shared memory segment is to
be cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to the owner's permissions; the
next to permissions of others in the user-group of the facility
entry; and the last to all others. Within each set, the first
character indicates permission to read, the second character
indicates permission to write or alter the facility entry, and
the last character is currently unused.

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.

The login name of the owner of the facility entry.
(all)

(a,c)

The group name of the group of the owner of the facility
entry.

The login name of the creator of the facility entry.
(a,c)

(a,o)

The group name of the group of the creator of the facility
entry.

The number of bytes in messages currently outstanding on
the associated message queue.

(a,o)
The number of messages currently outstanding on the associ
ated message queue.

(a,b)
The maximum number of bytes allowed in messages out
standing on the associated message queue.

(a,p)
The process ID of the last process to send a message to the
associated queue.

(a,p)
The process ID of the last process to receive a message from
the associated queue.

- 2 -

IPes (I)

FILES

STIME

RTIME

crIME

NATTCH

SEGSZ

CPID

LPID

ATIME

DTIME

NSEMS

OTIME

IPCS(I)

(a,t)
The time the last message was sent to the associated queue.

(a,t)

(a,t)

The time the last message was received from the associated
queue.

The time when the associated entry was created or changed.
(a,o)

The number of processes attached to the associated shared
memory segment.

(a,b)
The size of the associated shared memory segment.

(a,p)
The process IO of the creator of the shared memory entry.

(a,p)

(a,t)

(a,t)

The process 10 of the last process to attach or detach the
shared memory segment.

The time the last attach was completed to the associated
shared memory segment.

The time the last detach was completed on the associated
shared memory segment.

(a,b)

(a,t)

The number of semaphores In the set associated with the
semaphore entry.

The time the last semaphore operation was completed on the
set associated with the semaphore entry.

/unix system namelist
/ dev /kmem memory
/etc/passwd user names
/etc/group group names

SEE ALSO

BUGS

msgop (2), semop (2), shmop (2) .

Things can change while ipcs is running; the picture it gives is only a close
approximation to reality.

- 3 -

JOIN (I) JOIN(I)

NAME
join - relational database operator

SYNOPSIS
join [options] file 1 file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the
lines of file! andfile2. If file! is -, the standard input is used.

File! and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in eac~ line.

There is one line in the output for each pair of lines in file! and file2 that have
identical join fields. The output line normally consists of the common field,
then the rest of the line from file! , then the rest of the line from file2.

Fields are normally separated by blank, tab or new-line. In this case, multiple
separators count as one, and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for each unpairable
line in file n, where n is 1 or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in
each file.

-0 list Each output line comprises the fields specifed in list, each element of
which has the form n.m, where n is a file number and m is a field
number.

-tc Use character c as a separator (tab character). Every appearance of c
in a line is significant.

SEE ALSO

BUGS

awk(l), comm(l), sort(1).

With default field separation, the collating sequence is that of sort -b; with
-t, the sequence is that of a plain sort.

The conventions of jOin, sort, comm, uniq and awk(1) are wildly incongruous.

- 1 -

KASB(l) (DEC only) KASB(I)

NAME
kasb, kunb - assembler/un-assembler for the KMC II B microprocessor

SYNOPSIS
kasb [name] [-0 namel] [-d name2]

kunb [name] [-0 namel]

DESCRIPTION

FILES

Kasb is an assembler/debuggerlIoader for the KMCIIB microprocessor. The
optional argument name specifies the input file; default is standard input. The
optional argument -0 indicates that the next argument name} will be the out
put of the assembler; default is a.out. The optional argument -d indicates that
the assembler is to be used in debug mode and that the next argument name2
is the device file name of the microprocessor. No output file is created in
debug mode.

Error diagnostics are written on the standard error output and contain the
input file name and line number and a brief description of the error. C prepro
cessor control lines to change the file name and line number are recognized.
This allows the use of the preprocessor to expand the input before assembly.

Kunb is an un-assembler for the KMCll/OMCll microprocessor. It produces
an output listing, acceptable to the assembler kasb, from the input object.

The optional argument name specifies the input object, default is standard
input. The format of the input is either assembler output (first word magic
0410), or formatted dump (first word magic 0440), or raw dump (anything
else). In the first two cases, the header is ignored.

The optional argument -0 indicates that the next argument name} is to con
tain the output listing, default is standard output.

The input object is first scanned to determine branch destinations. Labels will
be inserted at these locations with format Lint:, where int is the octal value of
the location in words. Immediate values of instructions are also printed in
octal. Page breaks are noted by the labels PO:, ..• , P3:.

a.out
Idev/kmc?
Ilib/cpp

output object
microprocessor device
C preprocessor

SEE ALSO
kmc(7), vpm(7).
Assembler for the DEC KMC}} Microprocessor

- 1 -

KILL(t) KILL(I)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo] PID

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. This will normally
kill processes that do not catch or ignore the signal. The process number of
each asynchronous process started with & is reported by the Shell (unless more
than one process is started in a pipeline, in which case the number of the last
process in the pipeline is reported). Process numbers can also be found by
using ps (1) .

The details of the kill are described in kill(2). For example, if process number
o is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by - is given as first argument, that signal is sent
instead of terminate (see signa[(2». In particular "kill -9 ... " is a sure kill.

SEE ALSO
ps (1), sh (I), kill (2), signaI(2).

- 1 -

LD(I) (not on PDP-II) LD(I)

NAME
ld - link editor for common object files

SYNOPSIS
Id [-e epsym1 [-f fiU] [-Ix] [-m1 [-r1 [-s1 [-0 outfile1 [-u sym
name] [-L dir] [-x] [-N] [-V] [-VS num] file-names

DESCRIPTION
The ld command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are
given, and ld combines them, producing an object module that can either be
executed or used as input for a subsequent ld run. The output of ld is left in
a.out. This file is executable if no errors occurred during the load. If any input
file, file-name, is not an object file, ld assumes it is either an ASCII file contain
ing link editor directives or an archive library.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an unresolved
external reference are loaded. The library (archive) symbol table (see ar(4» is
searched sequentially with as many passes as are necessary to resolve external
references which can be satisfied by library members. Thus, the ordering of
library members is unimportant.

The following options are recognized by ld.

-e epsym
Set the default entry point address for the output file to be that of the
symbol epsym.

-f fill This option sets the default fill pattern for "holes" within an output
section as well as initialized bss sections. The argument fill is a two
byte constant.

-Ix This option specifies a library named x. It stands for Iibx.a where x is
up to seven characters. A library is searched when its name is encoun
tered, so the placement of a -I is significant. By default, libraries are
located in /lib and /usr/lib.

-m This option causes a map or listing of the input/output sections to be
produced on the standard output.

-ooutfile
This option produces an output object file by the name outfile. The
name of the default object file is a.out.

-r This option causes relocation entries to be retained in the output object
file. Relocation entries must be saved if the output file is to become an
input file in a subsequent ld run. The link editor will not complain
about unresolved references.

-s This option causes line number entries and symbol table information to
be stripped from the output object file.

-u symname
Takes the argument symname as a symbol and enters it as undefined in
the symbol table. This is useful for loading entirely from a library,
since initially the symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

-x Do not preserve local (non-.globl) symbols in the output symbol table;
only enter external and static symbols. This option saves some space in
the output file.

- 1 -

LD(I)

FILES

(not on PDP-l 1) LD(I)

- L dir Change the algorithm of searching for libx.a to look in dir before look
ing in Ilib.

- N Put the data section immediately following the text in the output file

- V Output a message giving information about the version of ld being
used.

-VS num
The num argument is taken as a decimal version number identifying
the a.out file that is produced. The version stamp is stored in the
optional header.

llib/libx.a
a.out

libraries
output file

SEE ALSO
as(1) ,cc(I),a.out(4) ,ar(4).

CAVEATS
Through its input directives, the common link editor gives users great flexibility;
however, people who use the input directives must assume some added responsi
bilities. Input directives should insure the following properties for programs:

C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the data space.

- 2 -

LD(l) (PDP-ll only) LD(l)

NAME
ld - link editor

SYNOPSIS
Id [-sulxXrdnim] [-0 name] [-t name] [-V num] file ...

DESCRIPTION
Ld combines several object programs into one; resolves external references; and
searches libraries (as created by ar(I». In the simplest case several object
files are given, and ld combines them, producing an object module which can
be either executed or become the input for a further ld run. On the latter
case, the -r option must be given to preserve the relocation bits.) The output
of ld is left on a.out. This file is made executable if no errors occurred during
the load and the -r flag was not specified.

The argument routines are concatenated in the order specified. The entry point
of the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an unresolved
external reference are loaded. If a routine from a library references another
routine in the library, the referenced routine must appear after the referencing
routine in the library. Thus the order of programs within libraries is important.

The symbols _etext, _edata and _end (etext, edata and end in C) are reserved,
and if referred to, are set to the first location above the program, the first loca
tion above initialized data, and the first location above all data respectively. It
is erroneous to define these symbols.

Ld understands several flag arguments which are written preceded by a
Except for -I, they should appear before the file names.

-s "Strip" the output, that is, remove the symbol table and relocation bits
to save space (but impair the usefulness of the debugger). This infor
mation can also be removed by strip (0. This option is turned off if
there are any undefined symbols.

-u Take the following argument as a symbol and enter it as undefined in
the symbol table. This is useful for loading wholly from a library,
since initially the symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

-I This option is an abbreviation for a library name. -I alone stands for
/lib/libe.a, which is the standard system library for C and assembly
language programs. -Ix stands for /lib/libx.a, where x is a string. If
that does not exist, ld tries /usr/lib/libx.a A library is searched when
its name is encountered, so the placement of a -I is significant.

-x Do not preserve local (non-.globI) symbols in the output symbol table;
only enter external symbols. This option saves some space in the out
put file.

- X Save local symbols except for those whose names begin with L. This
option is used by cc to discard internally generated labels while retain
ing symbols local to routines.

-r Generate relocation bits in the output file so that it can be the subject
of another ld run. This flag also prevents final definitions from being
given to common sy~bols, and suppresses the "undefined symbol" diag
nostics.

-d Force definition of common storage even if the -r flag is present.

-n Arrange that when the output file is executed, the text portion will be
read-only and shared among all users executing the file. This involves

- 1 -

LD(I)

FILES

(PDP-ll only) LD(I)

moving the data areas up to the first possible 4K word boundary fol
lowing the end of the text. Use - N to turn it off.

-i When the output file is executed, the program text and data areas will
live in separate address spaces. The only difference between this option
and -n is that here the data starts at location o.

-m The names of all files and archive members used to create the output
file are written to the standard output.

-0 The name argument after -0 is used as the name of the ld output file,
instead of a.out.

-t The name argument is taken to be a symbol name, and any references
to or definitions of that symbol are listed, along with their types. There
can be up to 16 occurrences of -tname on the command line.

- V The num argument is taken as a decimal version number identifying
the a.out that is produced. Num must be in the range 0-32767. The
version stamp is stored in the a.out header; see a.out (4).

Ilibllih?a
lusr/libllib? .a
a.out

libraries
more libraries
output file

SEE ALSO
ar(t), asO), edt), a.out(4), ar(4).

- 2 -

LEX(l) LEX (I)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then the
corresponding program text is executed. The actual string matched is left in
yytext, an external character array. Matching is done in order of the strings in
the file. The strings may contain square brackets to indicate character classes,
as in labx -zl to indicate a, b, x, y, and z; and the operators ., +, and? mean
respectively any non-negative number of, any positive number of, and either
zero or one occurrences of, the previous character or character class. The char
acter . is the class of all ASCII characters except new-line. Parentheses for
grouping and vertical bar for alternation are also supported. The notation
r{d,e} in a rule indicates between d and e instances of regular expression r. It
has higher precedence than I, but lower than *, ?, +, and concatenation. The
character" at the beginning of an expression permits a successful match only
immediately after a new-line, and the character $ at the end of an expression
requires a trailing new-line. The character / in an expression indicates trailing
context; only the part of the expression up to the slash is returned in yytext,
but the remainder of the expression must follow in the input stream. An opera
tor character may be used as an ordinary symbol if it is within" symbols or
preceded by \. Thus la -zA -zl + matches a string of letters.

Three subroutines defined as macros are expected: inputO to read a character;
unput(c) to replace a character read; and output(c) to place an output charac
ter. They are defined in terms of the standard streams, but you can override
them. The program generated is named yylexO, and the library contains a
mainO which calls it. The action REJECT on the right side of the rule causes
this match to be rejected and the next suitable match executed; the function
yymoreO accumulates additional characters into the same yytext; and the func
tion yyless(p) pushes back the portion of the string matched beginning at p,
which should be between yytext and yytext+yyleng. The macros input and
output use files yyin and yyout to read from and write to, defaulted to stdin
and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes % % it is copied into the external definition area of the
lex.yy.c file. All rules should follow a % %, as in YACC. Lines preceding % %
which begin with a non-blank character define the string on the left to be the
remainder of the line; it can be called out later by surrounding it with {}. Note
that curly brackets do not imply parentheses; only string substitution is done.

EXAMPLE
D
%%
if
[a-z]+
O{D}+
{D}+
"++"
"+"
"I·"

[0-9]

printf("IF statement\n");
printf("tag, value %s\n",yytext);
printf("octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf("unary op\n");
printf("binary op\n");
{ loop:

- 1 -

LEX(I)

while GnputO != '.');
switch (inputO)

{
case ' /': break;
case '.': unput('.');
default: go to loop;
}

LEX(I)

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag -r indicates RA TFOR actions,
-c indicates C actions and is the default, -t causes the lex.yy.c program to be
written instead to standard output, -v provides a one-line summary of statistics
of the machine generated, -0 will not print out the - summary. Multiple files
are treated as a single file. If no files are specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

% p n number of positions is n (default 2000)

% 0 n number of states is n (500)

% t n n urn ber of parse tree nodes is n (I 000)

% a n number of transitions is n (3000)

The use of one or more of the above automatically implies the -v option,
unless the -0 option is used.

SEE ALSO
yacc(l).
LEX-Lexical Analyzer Generator by M. E. Lesk and E. Schmidt.

BUGS
The -r option is not yet fully operational.

- 2 -

LINE(I)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

LINE(I)

Line copies one line (up to a new-line) from the standard input and writes it on
the standard output. It returns an exit code of 1 on EOF and always prints at
least a new-line. It is often used within shell files to read from the user's termi
nal.

SEE ALSO
sh(I), read(2).

- 1 -

LINT (1) LINT (1) '-

NAME
lint - a C program checker

SYNOPSIS
lint [-abhlnpuvx] file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be \
bugs, non-portable, or wasteful. It also checks type usage more strictly than
the compilers. Among the things which are currently detected are unreachable
statements, loops not entered at the top, automatic variables declared and not
used, and logical expressions whose value is constant. Moreover, the usage of
functions is checked to find functions which return values in some places and
not in others, functions called with varying numbers of arguments, and func
tions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked for
mutual compatibility. By default, lint uses function definitions from the stan
dard lint library llib-Ie.ln; function definitions from the portable lint library
llib-port.ln are used when lint is invoked with the -p option.

Any number of lint options may be used, in any order. The following options
are used to suppress certain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that
are not long.

-b Suppress complaints about break statements that cannot be reached.
(Programs produced by lex or yacc will often result in a large number
of such complaints.)

-h Do not apply heuristic tests that attempt to intuit bugs, improve style,
and reduce waste.

-u Suppress complaints about functions and external variables used and
not defined, or defined and not used. (This option is suitable for run
ning lint on a subset of files of a larger program.)

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never
used.

The following arguments alter lint's behavior:

-Ix Include additional lint library llib-Ix.ln. You can include a lint version
of the math library llib-Im.ln by inserting -1m on the command line.
This argument does not suppress the default use of llib-Ie.ln. This
option can be used to keep local lint libraries and is useful in the
development of multi-file projects.

-n Do not check compatibility against either the standard or the portable
lint library.

-p Attempt to check portability to other dialects (IBM and GCOS) of C.

The -D, -U, and -I options of cd!) are also recognized as separate argu
ments.

Certain conventional comments in the C source will change the behavior of
lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable code.

/*VARARGSn*/
suppresses the usual checking for variable numbers of

- 1 -

LINT(1) LINT(1)

FILES

arguments in the following function declaration. The data
types of the first n arguments are checked; a missing n is
taken to be O.

I*ARGSUSED*I
turns on the -v option for the next function.

I*LINTLIBRARY*I
at the beginning of a file shuts off complaints about unused
functions in this file.

Lint produces its first output on a per source file basis. Complaints regarding
included files are collected and printed after all source files have been pro
cessed. Finally, information gathered from all input files is collected and
checked for consistency. At this point, if it is not clear whether a complaint
stems from a given source file or from one of its included files, the source file
name will be printed followed by a question mark.

/usr /lib/lint[12]
lusr/lib/llib-lc.In

/ usr /li b/lli b-port.ln

I usr IIi b/lli b-Im.In

programs
declarations for standard functions (binary format; source
is in lusr/lib/llib-ld
declarations for portable functions (binary format; source
is in lusr llib/llib-port)
declarations for standard math functions (binary format;
source is in lusr llib/llib-lm)

lusr/tmp/*lint*

SEE ALSO

temporaries

BUGS

ceO) .

Exit (2) and other functions which do not return are not understood; this causes
various lies.

- 2 -

LIST(t) UH2U:S Only} LIST(t)

NAME
list - produce C source listing from 3B20S object file

SYNOPSIS
list [- V) [-h] source-file . . . [object-file]

DESCRIPTION
The list command produces a C source listing with line number information
attached. If multiple C source files were used to create the object file, list will
accept multiple file names. The object file is taken to be the last non-C source
file argument. If no object file is specified the default object file, a.out, will be
used.

Line numbers will be printed for each breakpoint inserted by the compiler
(generally, ea,ch executable C statement that begins a new line of source).
Line numbering begins anew for each function. Line number 1 is always the
line containing the left curly brace ({) that begins the function body. Line
numbers will also be supplied for inner block redeclarations of local variables so
that they can be distinguished by the symbolic debugger.

The - V flag will supply version information of the list command.

The -h flag will suppress heading output.

CAVEATS
Object files given to list must have symbolic debugging symbols.

Since list does not use the C preprocessor, it may be unable to recognize func
tion definitions whose syntax has been distorted by the use of C preprocessor
macro substitutions.

SEE ALSO
as (1), cc C1), ld (1) .

DIAGNOSTICS
"list: name: cannot open" if name cannot be read.

- 1 -

LOGIN (I) LOGIN (1)

NAME
login - sign on

SYNOPSIS
login [name [env-var ...]]

DESCRIPTION
The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It may be invoked as a command
or by the system when a connection is first established. Also, it is invoked by
the system when a previous user has terminated the initial shell by typing a
cntrl-d to indicate an "end-of-file." (See How to Get Started at the beginning
of this volume for instructions on how to dial up initiallyJ

If login is invoked as a command it must replace the initial command inter
preter. This is accomplished by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if
appropriate, your password. Echoing is turned off (where possible) during the
typing of your password, so it will not appear on the written record of the ses
sion.

At some installations, an option may be invoked that will require you to enter a
second "dialup" password. This will occur only for dial-up connections, and
will be prompted by the message "dialup password:". Both passwords are
required for a successful login.

If you do not complete the login successfully within a certain period of time
(e.g., one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure letclprofile
is performed, the message-of-the-day, if any, is printed, the user-ID, the group
ID, the working directory, and the command interpreter (usually sh (1» is ini
tialized, and the file .profile in the working directory is excuted, if it exists.
These specifications are found in the /etc/passwd file entry for the user. The
name of the command interpreter is - followed by the last component of the
interpreter's pathname (i.e., -sh). If this field in the password file is empty,
then the default command interpreter, Ibinlsh is used.

The basic environment (see environ (5» is initialized to:

HOME=your-login-directory
PATH=:/bin:/usr/bin
SHELL=last -field -of-passwd -entry
MAIL=lusr/mail/your-login-name
TZ=timezone-specijication

The environment may be expanded or modified by supplying additional argu
ments to login, either at execution time or when login requests your login
name. The arguments may take either the form xxx or xxx =yyy. Arguments
without an equal sign are placed in the environment as

Ln=xxx
where n is a number starting at 0 and is incremented each time a new variable
name is required. Variables containing an = are placed into the environment
without modification. If they already appear in the environment, then they
replace the older value. There are two exceptions. The variables PATH and
SHELL cannot be changed. This prevents people, logging into restricted shell
environments, from spawning secondary shells which aren't restricted. Both
login and getty understand simple single character quoting conventions. Typing
a backslash in front of a character quotes it and allows the inclusion of such

- 1 -

LOGIN(I) LOGIN (I)

FILES

things as spaces and tabs.

/etc/utmp
/etc/wtmp
/usr /mail! your-name
/etc/motd
/etc/passwd
/etc/profile
.profile

accounting
accounting
mailbox for user your-name
message-of -the-da y
password file
system profile
user's login profile

SEE ALSO
maiI(l), newgrp(l), sh(I), su(I), passwd(4), profile(4), environ(S).

DIAGNOSTICS
Login incorrect if the user name or the password cannot be matched.
No shell, cannot open password file, or no directory: consult a UNIX System
programming counselor.
No utmp entry. You must exec "login" from the lowest level "sh". if you
attempted to execute login as a command without using the shell's exec inter
nal command or from other than the initial shell.

- 2 -

LOGNAME(I)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

LOGNAME(I)

Logname returns the contents of the environment variable $LOGNAME, which is
set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
env(1), login(l), logname(3X), environ(S).

- 1 -

LORDER(I) LORDER(l)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

FILES

The input is one or more object or library archive files (see ar (1». The stan
dard output is a list of pairs of object file names, meaning that the first file of
the pair refers to external identifiers defined in the second. The output may be
processed by tsort (1) to find an ordering of a library suitable for one-pass
access by Id(I). Note that the link editor (except on the PDP -11) Id(1) is
capable of multiple passes over an archive in the portable archive format (see
ar(4» and does not require that lorder(I) be used when building an archive.
The usage of the lorder(1) command may, however, allow for a slightly more
efficient access of the archive during the link edit process.

The following example builds a new library from existing .0 files.

ar cr library 'lorder *.0 I tsort'

*symref, *symdef temporary files

SEE ALSO

BUGS

ar(1), Id(I), tsort(1), ar(4).

Object files whose names do not end with .0, even when contained in library
archives, are overlooked. Their global symbols and references are attributed to
some other file.

- 1 -

LP(1) LP(l)

NAME
lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS
Ip [-c] [-ddest1 [-m] [-nnumbed [-ooption] [-s] [-Hitle] [-w] files
cancel [ids] [printers]

DESCRIPTION
Lp arranges for the named files and associated information (collectively called a
request) to be printed by a line printer. If no file names are mentioned, the
standard input is assumed. The file name - stands for the standard input and
may be supplied on the command line in conjunction with named files. The
order in which files appear is the same order in which they will be printed.

Lp associates a unique id with each request and prints it on the standard out
put. This id can be used later to cancel (see cancel) or find the status (see
Ipstat(I)) of the request.

The following options to lp may appear in any order and may be intermixed
with file names:

-c

-ddest

-m

Make copies of the files to be printed immediately when lp is
invoked. Normally, files will not be copied, but will be linked
whenever possible. If the -c option is not given, then the user
should be careful not to remove any of the files before the request
has been printed in its entirety. It should also be noted that in the
absence of the -c option, any changes made to the named files
after the request is made but before it is printed will be reflected in
the printed output.

Choose dest as the printer or class of printers that is to do the
printing. If dest is a printer, then the request will be printed only
on that specific printer. If dest is a class of printers, then the
request will be printed on the first available printer that is a
member of the class. Under certain conditions (printer unavaila
bility, file space limitation, etc.), requests for specific destinations
may not be accepted (see accept (I M) and lpstat (1)). By default,
dest is taken from the environment variable LPDEST (if it is set).
Otherwise, a default destination (if one exists) for the computer
system is used. Destination names vary between systems (see
lpstat (1)).

Send mail (see mail 0)) after the files have been printed. By
default, no mail is sent upon normal completion of the print
request.

-nnumber Print number copies (default of 1) of the output.

-ooption Specify printer-dependent or class-dependent options. Several
such options may be collected by specifying the -0 keyletter more
than once. For more information about what is valid for options,
see Models in Ipadmin(1M).

-s Suppress messages from lp (1) such as "request id is ... ".

-ttitle Print title on the banner page of the output.

-w Write a message on the user's terminal after the files have been
printed. If the user is not logged in, then mail will be sent instead.

Cancel cancels line printer requests that were made by the lp (1) command.
The command line arguments may be either request ids (as returned by Ip(1))
or printer names (for a complete list, use lpstat (1)). Specifying a request id
cancels the associated request even if it is currently printing. Specifying a

- 1 -

LP(I)

FILES

LP(I)

printer cancels the request which is currently printing on that printer. In either
case, the cancellation of a request that is currently printing frees the printer to
print its next available request.

/usr/spool/lp/*

SEE ALSO
enable(1), Ipstat(1), mail(1).
accept(1M), Ipadmin(1M), Ipsched(1M) in the UNIX System Administrator's
Manual.

- 2 -

LPR(I) (Obsolescent) LPR(I)

NAME
lpr - line printer spooler

SYNOPSIS
Ipr [option ...] [name ...]

DESCRIPTION

FILES

Lpr causes the named files to be queued for printing on a line printer. If no
names appear, the standard input is assumed; thus lpr may be used as a filter.

The following options may be given (each as a separate argument and in any
order) before any file name arguments:

-c Makes a copy of the file to be sent before returning to the user.
-r Removes the file after sending it.
-m When printing is complete, reports that fact by mail(1).
- n Does not report the completion of printing by mail (1) . This is the

default option.
-ffile Use file as a dummy file name to report back in the mail. (This is use

ful for distinguishing multiple runs, especially when lpr is being used as
a filter).

/etc/passwd
/usr/lib/lpd
/usr/spoolllpd/*

user's identification and accounting data.
line printer daemon.
spool area.

SEE ALSO
dpd(IC), dpr(IC), Ip(1).

- 1 -

LPSTAT(I) LPSTAT(I) \,

NAME
lpstat - print LP status information

SYNOPSIS
Ipstat [options]

DESCRIPTION

FILES

Lpstat prints information about the current status of the LP line printer system.

If no options are given, then /pstat prints the status of all requests made to
/p(I) by the user. Any arguments that are not options are assumed to be
request ids (as returned by /p). Lpstat prints the status of such requests.
Options may appear in any order and may be repeated and intermixed with
other arguments. Some of the keyletters below may be followed by an optional
list that can be in one of two forms: a list of items separated from one another
by a comma, or a list of items enclosed in double quotes and separated from
one another by a comma and/or one or more spaces. For example:

-u"userl, user2, user3"

The omission of a list following such key letters causes all information relevant
to the key letter to be printed, for example:

lpstat -0

prints the status of all output requests.

-a[/ist1 Print acceptance status (with respect to /p) of destinations for
requests. List is a list of intermixed printer names and class names.

-c[list] Print class names and their members. List is a list of class names.

-d Print the system default destination for /p.

-o[list] Print the status of output requests. List is a list of intermixed
printer names, class names, and request ids.

-p[list] Print the status of printers. List is a list of printer names.

-r Print the status of the LP request scheduler

-s Print a status summary, including the status of the line printer
scheduler, the system default destination, a list of class names and
their members, and a list of printers and their associated devices.

-t Print all status information.

-u[list] Print status of output requests for users. List is a list of login
names.

-v[list] Print the names of printers and the pathnames of the devices associ
ated with them. List is a list of printer names.

/usr/spooillp/*

SEE ALSO
enable(l), Ip(I).

- 1 -

LS(I) LS(I)

NAME
Is - list contents of directories

SYNOPSIS
Is [-Iogtasdrucifp] names

DESCRIPTION
For each directory named, Is lists the contents of that directory; for each file
named, Is repeats its name and any other information requested. By default,
the output is sorted alphabetically. When no argument is given, the current
directory is listed. When several arguments are given, the arguments are first
sorted appropriately, but file arguments are processed before directories and
their contents. There are several options:

-I List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see below). If the file
is a special file, the size field will contain the major and minor device
numbers, rather than a size.

-0 The same as -I, except that the group is not printed.

-g The same as -I, except that the owner is not printed.

-t Sort by time of last modification (latest first) instead of by name.

-a List all entries; in the absence of this option, entries whose names begin
with a period (.) are not listed.

-s Give size in blocks (including indirect blocks) for each entry.

-d If argument is a directory, list only its name; often used with -I to get
the status of a directory.

-r Reverse the order of sort to get reverse alphabetic or oldest first, as
appropriate.

-u Use time of last access instead of last modification for sorting (with the
- t option) and/or printing (with the -I option).

-c Use time of last modification of the inode (mode, etc.) instead of last
modification of the file for sorting (-t) and/or printing (-t).

-i For each file, print the i-number in the first column of the report.

-f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -I, -t, -S, and -r, and
turns on -a; the order is the order in which entries appear in the
directory.

-p Put a slash after each filename if that file is a directory. Especially
useful for CRT terminals when combined with the prO) command as
follows: Is -p I pr -5 -t -w80.

The mode printed under the -I option consists of 11 characters that are inter
preted as follows:

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (a.k.a. "named pipe") special file;

> if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each.
The first set refers to the owner's permissions; the next to permissions
of others in the user-group of the file; and the last to all others.
Within each set, the three characters indicate permission to read, to

- 1 -

LS(l)

FILES

LS(l)

write, and to execute the file as a program, respectively. For a direc
tory, "execute" permission is interpreted to mean permission to search
the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set
group-ID mode; likewise, the user-execute permission character is given
as s if the file has set-user-ID mode. The last character of the mode
(normally x or -) is t if the 1000 (octal) bit of the mode is on; see
chmod(l) for the meaning of this mode. The indications of set-ID and
1000 bit of the mode are capitalized (Sand T respectively) if the
corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

/etc/passwd
/etc/group

to get user IDs for Is -I and Is -0.

to get group IDs for Is -I and Is -g.

SEE ALSO
chmod(l), find(l).

- 2 -

M4UJ M4(I)

NAME
m4 - macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other
languages. Each of the argument files is processed in order; if there are no
files, or if a file name is -, the standard input is read. The processed text is
written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered. Using this mode requires a special state of mind.

-s Enable line sync output for the C preprocessor (#line ...)

- Bint Change the size of the push-back and argument collection buffers from
the default of 4,096.

- Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint Change the size of the call stack from the default of 100 slots. Macros
take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before any
-D or -U flags:

- Dname[= val]
Defines name to valor to null in val's absence.

-Uname
undefines name.

Macro calls have the form:

name(arg 1 ,arg2, ... , argn)

The (must immediately follow the name of the macro. If the name of a
defined macro is not followed by a (, it is deemed to be a call of that macro
with no arguments. Potential macro names consist of alphabetic letters, digits,
and underscore _, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting argu
ments. Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for
a matching right parenthesis. If fewer arguments are supplied than are in the
macro definition, the trailing arguments are taken to be null. Macro evaluation
proceeds normally during the collection of the arguments, and any commas or
right parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text. After argument collection, the
value of the macro is pushed back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but
once this is done the original meaning is lost. Their values are null unless oth
erwise stated.

define the second argument is installed as the value of the macro whose
name is the first argument. Each occurrence of $n in the
replacement text, where n is a digit, is replaced by the n-th argu
ment. Argument 0 is the name of the macro; missing arguments

- 1 -

M4(t)

undefine

defn

pushdef

popdef

ifdef

shift

changequote

changecom

divert

undivert

divnum

dnl

ifelse

incr

decr

eval

M4(t)

are replaced by the null string; $# is replaced by the number of
arguments; $* is replaced by a list of all the arguments separated
by commas; $@ is like $*, but each argument is quoted (with the
current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previ
ous one if any.

if the first argument is defined, the value is the second argument,
otherwise the third. If there is no third argument, the value is
null. The word unix is predefined on the UNIX System versions
of m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quoting
nullifies the effect of the extra scan that will subsequently be per
formed.

change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote without
arguments restores the original values (i.e., ' ,).

change left and right comment markers from the default # and
new-line. With no arguments, the comment mechanism is
effectively disabled. With one argument, the left marker becomes
the argument and the right marker becomes new-line. With two
arguments, both markers are affected. Comment markers may be
up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final output
is the concatenation of the streams in numerical order; initially
stream 0 is the current stream. The divert macro changes the
current output stream to its (digit-string) argument. Output
diverted to a stream other than 0 through 9 is discarded.

causes immediate output of text from diversions named as argu
ments, or all diversions if no argument. Text may be undiverted
into another diversion. Undiverting discards the diverted text.

returns the value of the current output stream.

reads and discards characters up to and including the next new
line.

has three or more arguments. If the first argument is the same
string as the second, then the value is the third argument. If not,
and if there are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7. Otherwise, the value is
either the fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value of
the argument is calculated by interpreting an initial digit-string
as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include +, -, *, t, %, '" (exponentiation),
bitwise &, I, "', and -; relationals; parentheses. Octal and hex

- 2 -

M4(I)

len

index

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

numbers may be specified as in C. The second argument specifies
the radix for the result; the default is 10. The third argument
may be used to specify the minimum number of digits in the
result.

returns the number of characters in its argument.

returns the position in its first argument where the second argu
ment begins (zero origin), or -1 if the second argument does not
occur.

returns a substring of its first argument. The second argument is
a zero origin number selecting the first character; the third argu
ment indicates the length of the substring. A missing third argu
ment is taken to be large enough to extend to the end of the first
string.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third. No
abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX System command given in the first argument.
No value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the current pro
cess 10.

causes immediate exit from m4. Argument 1, if given, is the exit
code; the default is O.

argument 1 will be pushed back at final EOF; example:
m4wrap('cleanupO ,)

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for
all if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

SEE ALSO
cc(I), cpp(l). The M4 Macro Processor by B. W. Kernighan and D. M.
Ritchie.

_ '1 _

MACHID(l) MACHID(l)

NAME
pdp11, u3b, vax - provide truth value about your processor type

SYNOPSIS
pdp 11
u3b

vax

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are on
a processor that the command name indicates.

pdp11 True if you are on a PDP-11145 or PDP-1I/70.

u3b True if you are on a 3B20S.

vax True if you are on a VAX-ll/750 or VAX-ll/780.

The commands that do not apply will return a false (non-zero) value. These
commands are often used within make (1) makefiles and shell procedures to
increase portability.

SEE ALSO
sh (1), test{l), true(l).

- 1 -

MAIL(l) MAIL(l)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
mail [-epqr] [-f file]

mail [- t] persons

rmail [- t] persons

DESCRIPTION
Mail without arguments prints a user's mail, message-by-message, in last-in,
first-out order. For each message, the user is prompted with a ?, and a line is
read from the standard input to determine the disposition of the message:

<new-line>
+
d
p

s [Jiles]
w [Jiles]

m [persons]

Go on to next message.
Same as <new-line>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named files (mbox is default).
Save message, without its header, in the named files
(mbox is default).
Mail the message to the named persons (yourself is
default).

q Put undeleted mail back in the mailfile and stop.
EOT (control-d) Same as q.
x Put all mail back in the mailfile unchanged and

stop.
!command Escape to the shell to do command.
• Print a command summary.

The optional arguments alter the printing of the mail:

-e

-p
-q

-r
-fJile

causes mail not to be printed. An exit value of 0 is returned if the user
has mail; otherwise, an exit value of 1 is returned.
causes all mail to be printed without prompting for disposition.
causes mail to terminate after interrupts. Normally an interrupt only
causes the termination of the message being printed.
causes messages to be printed in first-in, first-out order.
causes mail to use file (e.g., mbox) instead of the default mailfile.

When persons are named, mail takes the standard input up to an end-of-file
(or up to a line consisting of just a .) and adds it to each person's mailfile.
The message is preceded by the sender's name and a postmark. Lines that look
like postmarks in the message, (i.e., "From ... ") are preceded with a >. The
-t option causes the message to be preceded by all persons the mail is sent to.
A person is usually a user name recognized by login (1). If a person being sent
mail is not recognized, or if mail is interrupted during input, the file dead.letter
will be saved to allow editing and resending.

To denote a recipient on a remote system, prefix person by the system name
and exclamation mark (see uucpCI C». Everything after the first exclamation
mark in persons is interpreted by the remote system. In particular, if persons
contains additional exclamation marks, it can denote a sequence of machines
through which the message is to be sent on the way to its ultimate destination.
For example, specifying a!b!ede as a recipient's name causes the message to be
sent to user b!ede on system a. System a will interpret that destination as a
request to send the message to user ede on system b. This might be useful, for
instance, if the sending system can access system a but not system b, and sys
tem a has access to system b.

- 1 -

MAIL(l) MAIL(l)

FILES

The mailfile may be manipulated in two ways to alter the function of mail.
The other permissions of the file may be read-write, read-only, or neither read
nor write to allow different levels of privacy. If changed to other than the
default, the file will be preserved even when empty to perpetuate the desired
permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mai/jile to be forwarded to
person. This is especially useful to forward all of a person's mail to one
machine in a multiple machine environment.

Rmail only permits the sending of mail; uucp (1 C) uses rmail as a security pre
caution.

When a user logs in, the presence of mail, if any, is indicated. Also, notification
is made if new mail arrives while using mail.

letc/passwd
lusr/mailluser
$HOME/mbox
$MAIL
Itmp/ma*
lusr Imaill *.lock
dead.letter

to identify sender and locate persons
incoming mail for user; i.e., the mailfile
saved mail
variable containing path name of mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO

BUGS

10gin(I), uucp(1C), write(1).

Race conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

- 2 -

MAKE(I) MAKE(I)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-0] [-b] [-e] [-m]
[-t] [-d] [-q] [names]

DESCRIPTION
The following is a brief description of all options and some special names:

-f makefile Description file name. Makefile is assumed to be the name of a
description file. A file name of - denotes the standard input.
The contents of make file override the built-in rules if they are
present.

-p Print out the complete set of macro definitions and target descrip
tions.

-i Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the descrip
tion file.

-k Abandon work on the current entry, but continue on other
branches that do not depend on that entry.

-s Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name .SILENT appears in
the description file.

-r Do not use the built-in rules.

-0 No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ are printed.

-b Compatibility mode for old makefiles.

-e Environment variables override assignments within makefiles.

-m Print a memory map showing text, data, and stack. This option
is a no-operation on systems without the getu system call.

-t Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

-d Debug mode. Print out detailed information on files and times
examined.

-q Question. The make command returns a zero or non-zero status
code depending on whether the target file is or is not up-to-date .

• DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists .

• PRECIOUS Dependents of this target will not be removed when quit or inter-
ru pt are hit.

.SILENT Same effect as the -s option .

• IGNORE Same effect as the -i option.

Make executes commands in makefile to update one or more target names.
Name is typically a program. If no -f option is present, makefile, Makefile,
s.makefile, and s.Makefile are tried in order. If makefile is -, the standard
input is taken. More than one - makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than the tar
get. All prerequisite files of a target are added recursively to the list of targets.
Missing files are deemed to be out of date.

- 1 -

MAKE(l) MAKE~l)

Makefile contains a sequence of entries that specify dependencies. The first
line of an entry is a blank-separated, non-null list of targets, then a :, then a
(possibly null) list of prerequisite files or dependencies. Text following a ; and
all following lines that begin with a tab are shell commands to be executed to
update the target. The first line that does not begin with a tab or # begins a
new dependency or macro definition. Shell commands may be continued across
lines with the <backslash> <new-line> sequence. Everything printed by
make (except the initial tab) is passed directly to the shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.o and b.o, and that
they in turn depend on their corresponding source files (a.c and b.C> and a com
mon file iocl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The first one
or two characters in a command can be the following: -, @, - @, or @ -. If
@ is present, printing of the command is suppressed. If - is present, make
ignores an error. A line is printed when it is executed unless the -s option is
present, or the entry .SILENT: is in make file , or unless the initial character
sequence contains a @. The -0 option specifies printing without execution;
however, if the command line has the string $(MAKE) in it, the line is always
executed (see discussion of the MAKEFLAGS macro under Environment). The
-t (touch) option updates the modified date of a file without executing any
commands.

Commands returning non-zero status normally terminate make. If the -i
option is present, or the entry .IGNORE: appears in makefile, or the initial char
acter sequence of the command contains -. the error is ignored. If the - k
option is present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make)
to run without errors. The difference between the old version of make and this
version is that this version requires all dependency lines to have a (possibly null
or implicit) command associated with them. The previous version of make
assumed if no command was specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target is a depen
dency of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environment variables. The -e option causes the environ
ment to override the macro assignments in a makefile.

- 2 -

MAKE(l) MAKE(l)

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except -f, -p, and -d) defined for the command line.
Further, upon invocation, make "invents" the variable if it is not in the
environment, puts the current options into it, and passes it on to invocations of
commands. Thus, MAKEFLAGS always contains the current input options. This
proves very useful for "super-makes". In fact, as noted above, when the -0

option is used, the command $(MAKE) is executed anyway; hence, one can per
form a make -0 recursively on a whole software system to see what would
have been executed. This is because the -0 is put in MAKEFLAGS and passed
to further invocations of $(MAKE). This is one way of debugging all of the
makefiles for a software project without actually doing anything.

Macros
Entries of the form string1 - string2 are macro definitions. String2 is defined
as all characters up to a comment character or an unescaped newline. Subse
quent appearances of $ (string1 [:substl=[subst2]]) are replaced by string2.
The parentheses are optional if a single character macro name is used and
there is no substitute sequence. The optional :subst 1 =subst2 is a substitute
sequence. If it is specified, all non-overlapping occurrences of subst1 in the
named macro are replaced by subst2. Strings (for the purposes of this type of
substitution) are delimited by blanks, tabs, new-line characters, and beginnings
of lines. An example of the use of the substitute sequence is shown under
Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing rules
for building targets.

$- The macro $- stands for the file name part of the current dependent with
the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT
rule. It is the module which is out of date with respect to the target (i.e.,
the "manufactured" dependent file name). Thus, in the .c.o rule, the $ <
macro would evaluate to the .c file. An example for making optimized .0

files from .c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out of date with respect
to the target; essentially, those modules which must be rebuilt.

$ % The $ % macro is only evaluated when the target is an archive library
member of the form lib(file.o}. In this case, $@ evaluates to lib and $ %
evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or
F is appended to any of the four macros the meaning is changed to "directory
part" for D and "file part" for F. Thus, $(@D) refers to the directory part of
the string $@. If there is no directory part, ./ is generated. The only macro
excluded from this alternative form is $? The reasons for this are debatable.

Suffixes
Certain names (for instance, those ending with .0) have inferable prerequisites

- 3 -

MAKE(l) MAKE(l)

such as .c, .s, etc. If no update commands for such a file appear in makefile,
and if an inferable prerequisite exists, that prerequisite is compiled to make the
target. In this case, make has inference rules which allow building files from
other files by examining the suffixes and determining an appropriate inference
rule to use. The current default inference rules are:

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y-.o .l.o r.o

.y.c .y-.c .l.c .c.a .c-.a .s-.a .h-.h

The internal rules for make are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompilation,
the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which print!(3S) prints
when handed a null string.

A tilde in the above rules refers to an sees file (see sccsfile (4». Thus, the
rule .c-.o would transform an sees C source file into an object file (.0).
Because the s. of the sees files is a prefix it is incompatible with make's suffix
point-of-view. Hence, the tilde is a way of changing any file reference into an
sees file reference.

A rule with only one suffix (i.e .• c:) is the definition of how to build x from x.c.
In effect, the other suffix is null. This is useful for building targets from only
one source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

.SUFFIXES: .0 .c .y .1 .s

Here again, the above command for printing the internal rules will display the
list of suffixes implemented on the current machine. Multiple suffix lists accu
mulate; .SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user
may add rules to this list by simply putting them in the make file .

Certain macros are used by the default inference rules to permit the inclusion
of optional matter in any resulting commands. For example, eFLAGS, LFLAGS,
and YFLAGS are used for compiler options to cc(1), lex(1), and yacc(l) respec
tively. Again, the previous method for examining the current rules is recom
mended.

The inference of prerequisites can be controlled. The rule to create a file with
suffix .0 from a file with suffix .c is specified as an entry with .c.o: as the target
and no dependents. Shell commands associated with the target define the rule
for making a .0 file from a .c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true target.

Libraries
If a target or dependency name contains parenthesis, it is assumed to be an
archive library, the string within parenthesis referring to a member within the
library. Thus lib(fUe.o) and $(UB) (file.o) both refer to an archive library
which contains file.o. (This assumes the UB macro has been previously

- 4 -

lVIf\.l'I..n \ 1 J MAKE(I)

FILES

defined.} The expression $(UB) (filel.o file2.0) is not legal. Rules pertaining to
archive libraries have the form .xX.a where the xx is the suffix from which the
archive member is to be made. An unfortunate byproduct of the current imple
mentation requires the xx to be different from the suffix of the archive
member. Thus, one cannot have Iib(file.o) depend upon file.o explicitly. The
most common use of the archive interface follows. Here, we assume the source
files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object file names (inside lib) whose C source files are
out of date. The substitution mode translates the .0 to .c. (Unfortunately, one
cannot as yet transform to .c-; however, this may become possible in the
future.} Note also, the disabling of the .c.a: rule, which would have created
each object file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

[Mm1akefile and s.[Mm1akefile

SEE ALSO
shU).

BUGS

Make - A Program for Maintaining Computer Programs by S. I. Feldman.
An Augmented Version of Make by E. G. Bradford.

Some commands return non-zero status inappropriately; use -i to overcome the
difficulty. Commands that are directly executed by the shell, notably cd(1),
are ineffectual across new-lines in make. The syntax Oib(filel.o file2.0 file3.0)
is illegal. You cannot build Iib(file.o) from file.o. The macro $(a:.o=.c-)
doesn't work.

- 5 -

MAKEKEY(I) MAKEKEY~I}

NAME
makekey - generate encryption key

SYNOPSIS
Iusf /Iib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by
increasing the amount of time required to search the key space. It reads 10
bytes from its standard input, and writes 13 bytes on its standard output. The
output depends on the input in a way intended to be difficult to compute (i.e.,
to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters.
The last two (the salt) are best chosen from the set of digits, ., I, and upper
and lower-case letters. The salt characters are repeated as the first two charac
ters of the output. The remaining 11 output characters are chosen from the
same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to
select one of 4,096 cryptographic machines all based on the National Bureau of
Standards DES algorithm, but broken in 4,096 different ways. Using the input
key as key, a constant string is fed into the machine and recirculated a number
of times. The 64 bits that come out are distributed into the 66 output key bits
in the result.

Makekey is intended for programs that perform encryption (e.g., ed(1) and
crypt (1». Usually, its input and output will be pipes.

SEE ALSO
crypt(1), ed(I), passwd(4).

- 1 -

MAN (1) MAN (1)

NAME
man, manprog - print entries in this manual

SYNOPSIS
man [options] [section] titles

lusr /lib/manprog file

DESCRIPTION
Man locates and prints the entry of this manual named title in the specified
section. (For historical reasons, the word "page" is often used as a synonym
for "entry" in this context.) The title is entered in lower case. The section
number may not have a letter suffix. If no section is specified, the whole
manual is searched for title and all occurrences of it are printed. Options and
their meanings are:

-t Typeset the entry in the default format (8.5"x 11").
-s Typeset the entry in the small format (6"x9").
-T4014 Display the typeset output on a Tektronix 4014 terminal using

-Ttek
-Tst

-Tvp

-Tterm

-w

-d

-12

-e

tc(I).
Same as -T4014.
Print the typeset output on the MHCC STARE facility (this option
is not usable on most systems).
Print the typeset output on a Versatec printer; this option is not
available at all UNIX System sites.
Format the entry using nroff and print it on the standard output
(usually, the terminal); term is the terminal type (see term (5) and
the explanation below); for a list of recognized values of term, type
help term2. The default value of term is 450.
Print on the standard output only the path names of the entries,
relative to lusr/manV, or to the current directory for -d option.
Search the current directory rather than lusr/manV; requires the
full file name (e.g., eu.le, rather than just eu).
Indicates that the manual entry is to be produced in 12-pitch.
May be used when STERM (see below) is set to one of 300, 300s,
450, and 1620. (The pitch switch on the DASI 300 and 300s ter
minals must be manually set to 12 if this option is used.)
Causes man to invoke col (I); note that co[(I) is invoked automat
ically by man unless term is one of 300, 300s, 450, 37, 4000a, 382,
4014, tek, 1620, and X.

-y Causes man to use the non-compacted version of the macros.

The above options other than -d, -e, and -yare mutually exclusive, except
that the -s option may be used in conjunction with the first four -T options
above. Any other options are passed to troff, nrojJ, or the man (5) macro pack
age.

When using nroff, man examines the environment variable STERM (see
environ (5» and attempts to select options to nrojJ, as well as filters, that adapt
the output to the terminal being used. The -Tterm option overrides the value
of STERM; in particular, one should use -Tip when sending the output of man
to a line printer.

Section may be changed before each title.

As an example:

man man

would reproduce on the terminal this entry, as well as any other entries named
man that may exist in other sections of the manual, e.g., man (5).

- I -

MAN(l) MAN (1)

FILES

If the first line of the input for an entry consists solely of the string:

'\It x

where x is any combination of the three characters c, e, and t, and where there
is exactly one blank between the double quote (It) and x, then man will prepro
cess its input through the appropriate combination of cw(1), eqn(l) (neqn for
nrojj) and tbl (1), respectively; if eqn or neqn are invoked, they will automati
cally read the file /usr/pub/eqnchar (see eqnchar(S)).

The man command executes manprog that takes' a file name as its argument.
Manprog calculates and returns a string of three register definitions used by
the formatters identifying the date the file was last modified. The returned
string has the form:

-rdday -rmmonth -ryyear

and is passed to nroff which sets this string as variables for the man macro
package. Months are given from 0 to 11, therefore month is always 1 less than
the actual month. The man macros calculate the correct month. If the man
macro package is invoked as an option to nroffltroff (i.e., nroff -man file),
then the current day/month/year is used as the printed date.

lusr/man/u man/man[I-6]/*
lusr/man/a-man/man[1781/*
lusr/manllocallman[1-81/*
lusrllib/manprog

the UNIX System User's Manual
the UNIX System Administator's Manual
local additions
calculates modification dates of entries

SEE ALSO

BUGS

cw(1), eqn(1), nroff(l), tbl(1), tcO), troff(l), environ(S), man(S), term(S).

All entries are supposed to be reproducible either on a typesetter or on a termi
nal. However, on a terminal some information is necessarily lost.

Pages bearing the same name in both manuals will result in the UNIX System
Administrator's Manual entry being printed first, if no section argument is sup
plied.

- 2 -

MESG(l)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n] [y]

DESCRIPTION

MESG(l)

Mesg with argument n forbids messages via write(l) by revoking non-user
write permission on the user's terminal. Mesg with argument y reinstates per
mission. All by itself, mesg reports the current state without changing it.

FILES
/dev/tty·

SEE ALSO
write(I).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

- 1 -

MKDIR (I)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION

MKDIR(I)

Mkdir creates specified directories in mode 777 (possibly altered by
umas k (1». Standard entries, ., for the directory itself, and •• , for its parent,
are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
sh(1), rm(1), umask(1).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made; otherwise, it
prints a diagnostic and returns non-zero.

- 1 -

MM(I) MM(1)

NAME
mm, osdd, checkmm - print/check documents formatted with the MM macros

SYNOPSIS
mm [options] [files]

osdd [options] [files]

checkmm [files]

DESCRIPTION
Mm can be used to type out documents using nroff and the MM text
formatting macro package. It has options to specify preprocessing by tbl(I)
and/or neqn (see eqn(I» and postprocessing by various terminal-oriented out
put filters. The proper pipelines and the required arguments and flags for nroff
and MM are generated, depending on the options selected.

Osdd is equivalent to the command mm -mosd. For more information about
the OSDD adapter macro package, see mosd (5).

Options for mm are given below. Any other arguments or flags (e.g., -re3)
are passed to nroff or to MM, as appropriate. Such options can occur in any
order, but they must appear before the files arguments. If no arguments are
given, mm prints a list of its options.

-Tterm Specifies the type of output terminal; for a list of recognized values
for term, type help term2. If this option is not used, mm will use the
value of the shell variable $TERM from the environment (see
profile (4) and environ (5» as the value of term, if $TERM is set; oth
erwise, mm will use 450 as the value of term. If several terminal
types are specified, the last one takes precedence.

-12 Indicates that the document is to be produced in 12-pitch. May be
used when $TERM is set to one of 300, 300s, 450, and 1620. (The
pitch switch on the DASI 300 and 300s terminals must be manually
set to 12 if this option is used.)

-c Causes mm to invoke col(O; note that col(O is invoked automati
cally by mm unless term is one of 300, 300s, 450, 37, 4000a, 382,
4014, tek, 1620, and X.

-e Causes mm to invoke neqn; also causes neqn to read the
/usr/pub/eqnchar file (see eqnchar(5».

-t Causes mm to invoke tbl(O.
- E Invokes the -e option of nroff.
-y Causes mm to use the non-compacted version of the macros (see

mm(5».

As an example (assuming that the shell variable $TERM is set in the environ
ment to 450), the two command lines below are equivalent:

mm -t -rC3 -12 ghh*
tbl ghh* I nroff -cm -T450-12 -h -rC3

Mm reads the standard input when - is specified instead of any file names.
(Mentioning other files together with - leads to disaster.) This option allows
mm to be used as a filter, e.g.:

cat dws I mm -

Checkmm is a program for checking the contents of the named files for errors
in the use of the Memorandum Macros, missing or unbalanced neqn delimiters,
and .EQ/.EN pairs. Note: The user need not use the checkeq program (see
eqn(1». Appropriate messages are produced. The program skips all direc
tories, and if no file name is given, standard input is read.

- 1 -

MM(1)

HINTS

MM(1)

l. Mm invokes nroff with the -h flag. With this flag, nroff assumes that
the terminal has tabs set every 8 character positions.

2. Use the -olist option of nroff to specify ranges of pages to be output.
Note, however, that mm, if invoked with one or more of the -e, -t,
and - options, together with the -olist option of nroff may cause a
harmless "broken pipe" diagnostic if the last page of the document is
not specified in list.

3. If you use the -s option of nroff (to stop between pages of output),
use line-feed (rather than return or new-line) to restart the output.
The -s option of nroff does not work with the -c option of mm, or if
mm automatically invokes col(1) (see -c option above).

4. If you lie to mm about the kind of terminal its output will be printed
on, you'll get (often subtle) garbage; however, if you are redirecting
output into a file, use the -T37 option, and then use the appropriate
terminal filter when you actually print that file.

SEE ALSO
coHO, cw(1), env(O, eqn(1), greek(1), mmt(1), nroff(1) , tbl(1), profile(4),
mm(S), mosd(S), term(S).
UNIX System Document Processing Guide.

DIAGNOSTICS
mm "mm: no input file" if none of the arguments is a readable file and

mm is not used as a filter.
checkmm "Cannot open filename" if file(s) is unreadable. The remaining out

put of the program is diagnostic of the source file.

- 2 -

MMT(I) MMT(l)

NAME
mmt, mvt - typeset documents, view graphs, and slides

SYNOPSIS
mmt [options] [files]

mvt [options] [files]

DESCRIPTION

HINT

These two commands are very similar to mm(1), except that they both typeset
their input via trojf(l), as opposed to formatting it via nrojf; mmt uses the MM
macro package, while mvt uses the Macro Package for View Graphs and
Slides. These two commands have options to specify preprocessing by tbl(I)
and/ or eqn (1). The proper pipelines and the required arguments and flags for
trojf(1) and for the macro packages are generated, depending on the options
selected.

Options are given below. Any other arguments or flags (e.g., -rC3) are passed
to trojf(1) or to the macro package, as appropriate. Such options can occur in
any order, but they must appear before the files arguments. If no arguments
are given, these commands print a list of their options.

-e Causes these commands to invoke eqn (1); also causes eqn to read

-t
-Tst
-Tvp

the /usr/pub/eqncbar file (see eqnchar(5».
Causes these commands to invoke tbl(l).
Directs the output to the MH STARE facility.
Directs the output to a Versatec printer; this option is not available
at all UNIX System sites.

-T4014 Directs the output to a Tektronix 4014 terminal via the tc(1) filter.
-Ttek
-a
-y

Same as -T4014.
Invokes the -a option of trojf(l).
Causes mmt to use the non-compacted version of the macros (see
mm (5». No effect for mvt.

These commands read the standard input when - is specified instead of any
file names.

Mvt is just a link to mmt.

Use the -olist option of trojf(1) to specify ranges of pages to be output.
Note, however, that these commands, if invoked with one or more of the -e,
-t, and - options, together with the -olist option of trojf(1) may cause a
harmless "broken pipe" diagnostic if the last page of the document is not
specified in list.

SEE ALSO
env(1), eqn(1), mm(1), tbI(1) , tc(l), troff(1), profile (4) , environ (5) , mm(5),
mv(5).
UNIX System Document Processing Guide.

DIAGNOSTICS
"m[mv 11: no input file" if none of the arguments is a readable file and the
command is not used as a filter.

- 1 -

NET(1C) (DEC only) NET(1C) l

NAME
net - execute a command on the PCL network

SYNOPSIS
net system [command [args]]

DESCRIPTION
Net provides a bi-directional connection to another UNIX System. The first
argument is the name of the remote system. The second argument is a com
mand to be executed. Any remaining arguments are passed to the given com
mand as arguments.

System can be any name that exists in the directory Idev/pcl followed by a
channel number. Net passes the local nodename to the remote system.

All commands are passed to the user's default shell on the remote system exe
cuting in the user's home directory. If command is not given, then the default
command is an interactive shell (/bin/sh -i). Before execution starts, the
user's environment is extracted from the remote .profile file, if any.

Net reads the standard input, thus allowing command to be part of a "pipeline"
if command reads the standard input also.

At the remote end, a daemon logs all commands.

EXAMPLES

FILES

Execute the who(1) command on system A and return the output to your ter
minal:

net A who

Copy one file from system A to the local system:

net A "cat lfile/onl A" > lfile/on/localsys

Copy a directory structure from system A to the local system:

cd I dir I onllocalsys
net A "cd Idir/onl A; find. -print I cpio -oc" I cpio -icd

Send a directory structure from the local system to system A (this uses the
command's ability to read standard input):

find. -print I cpio -oc I net A "cd Idir/onl A; cpio -icd"

Idev/pcl/*[O-7] PCL channel interfaces for system *.
I usr I adml pcllog

Activity log.

SEE ALSO
cpio(I), find(1), pcldaemon(1C), sh(1), pcl(7).

DIAGNOSTICS
uid unknown

Your uid cannot be matched in the password file.

command list too long
A command and its arguments are restricted to less than 512 bytes.

user is unknown at remote
Your login name does not exist at the remote site.

user is denied access at remote
Your login name is not allowed to be used via net at the remote site.
N.B. This applies in particular to super-users.

home directory inaccessible
Your remote home directory is unavailable, possibly unmounted.

- 1 -

~VI!C only) NET (Ie)

cannot open channel to system
A connection can't be made to the requested system.

connection broken
A non-recoverable write error occurred.

write error
A recoverable write error occurred. The write will be retried until it
completes successfully without losing data.

cannot fork reader process
Net is unable to create a reader process and a writer process.

WARNINGS

BUGS

A successful invocation of net reads at least 2 blocks of the standard input, if
present, even if command does not use standard input. The standard input
must be explicitly closed (via < & -) or redirected (such as from /dev/nuII) if
this feature is not desired.
The use of net to invoke certain programs on the remote system may result in
delayed transmission of output to the user. This is because the PCL is not a tty
device. Data written to standard output by an invoked program will be treated
as though it is being written to an ordinary file, and not to a user terminal.

PCL channels are not "tty" files, so that commands that do "funny" things with
your terminal (i.e., cu (I C), passwd (1), su (I), etc.), or that expect "tty"
behaviour of the standard output file, won't work as expected.

- 2 -

NEWFORM(l) NEWFORM(l)

NAME
newform - change the format of a text file

SYNOPSIS
newform [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f]
[-cchad [-In] [files]

DESCRIPTION
Newform reads lines from the named files, or the standard input if no input file
is named, and reproduces the lines on the standard output. Lines are reformat
ted in accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with the optional files. Command line
options are processed in the order specified. This means that option sequences
like "-e15 -160" will yield results different from "-160 -e15". Options are
applied to all files on the command line.

-itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tabs 0). In addition, tabspec may be - -, in which
newform assumes that the tab specification is to be found in the
first line read from the standard input (see fspec (4». If no tabspec
is given, tabspec defaults to -8. A tabspec of -0 expects no tabs;
if any are found, they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to the
tab specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to -8. A
tabspec of -0 means that no spaces will be converted to tabs on
output.

-In Set the effective line length to n characters. If n is not entered, -I
defaults to 72. The default line length without the -I option is 80
characters. Note that tabs and backspaces are considered to be one
character (use -i to expand tabs to spaces).

-bn Truncate n characters from the beginning of the line when the line
length is greater than the effective line length (see -In). Default is
to truncate the number of characters necessary to obtain the
effective line length. The default value is used when -b with no n
is used. This option can be used to delete the sequence numbers
from a COBOL program as follows:

new form -11 -b7 file-name

The -11 must be used to set the effective line length shorter than
any existing line in the file so that the -b option is activated.

-en Same as -bn except that characters are truncated from the end of
the line.

-ck Change the prefix/append character to k. Default character for k
is a space.

-pn Prefix n characters (see -ck) to the beginning of a line when the
line length is less than the effective line length. Default is to prefix
the number of characters necessary to obtain the effective line
length.

-an Same as -pn except characters are appended to the end of a line.

-f Write the tab specification format line on the standard output
before any other lines are output. The tab specification format line
which is printed will correspond to the format specified in the last

- 1 -

NEWFORM(I) NEWFORM(I)

-0 option. If no -0 option is specified, the line which is printed
will contain the default specification of -8.

-s Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a • and any characters to the right
of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used
on a file without a tab on each line. The characters sheared off are
saved internally until all other options specified are applied to that
line. The characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after
the first expanded to spaces, padded with spaces out to column 72
(or truncated to column 72), and the leading digits placed starting
at column 73, the command would be:

newform -s -i -1 -a -e file-name

DIAGNOSTICS
All diagnostics are fatal.
usage: ...
not - s format
can't open file
internal line too long

tabspec in error

tabspec indirection illegal

Newform was called with a bad option.
There was no tab on one line.
Self explanatory.
A line exceeds 512 characters after being expanded
in the internal work buffer.
A tab specification is incorrectly formatted, or
specified tab stops are not ascending.
A tabspec read from a file (or standard input) may
not contain a tabspec referencing another file (or
standard input).

EXIT CODES
o - normal execution
1 - for any error

SEE ALSO

BUGS

csplit(I) , tabs(I), fspec(4).

Newform normally only keeps track of physical characters; however, for the -j
and -0 options, newform will keep track of backspaces in order to line up tabs
in the appropriate logical columns.

Newform will not prompt the user if a tabspec is to be read from the standard
input (by use of -j- - or -0- -).

If the -f option is used, and the last -0 option specified was -0 - -, and was
preceded by either a -0 - - or a -i - -, the tab specification format line will
be incorrect.

- 2 -

NEWGRP(I) NEWGRP(l)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [-] [group]

DESCRIPTION

FILES

Newgrp changes the group identification of its caller, analogously to /oginO).
The same person remains logged in, and the current directory is unchanged, but
calculations of access permissions to files are performed with respect to the new
group ID.

Newgrp without an argument changes the group identification to the group in
the password file; in effect it changes the group identification back to the
caller's original group.

An initial - flag causes the environment to be changed to the one that would
be expected if the user actually logged in again.

A password is demanded if the group has a password and the user himself does
not, or if the group has a password and the user is not listed in /etc/group as
being a member of that group.

When most users log in, they are members of the group named other.

fetcfgroup
fetcfpasswd

SEE ALSO

BUGS

10gin(1), group(4).

There is no convenient way to enter a password into fetc/group. Use of group
passwords is not encouraged, because, by their very nature, they encourage poor
security practices. Group passwords may disappear in the future.

- 1 -

NEWS(l) NEWS(l)

NAME
news - print news items

SYNOPSIS
news [-a] [-n] [-s] [items

DESCRIPTION

FILES

News is used to keep the user informed of current events. By convention, these
events are described by files in the directory lusr /news.

When invoked without arguments, news prints the contents of all current files
in /usr/news, most recent first, with each preceded by an appropriate header.
News stores the "currency" time as the modification date of a file named
.news_time in the user's home directory (the identity of this directory is deter
mined by the environment variable $HOME); only files more recent than this
currency time are considered "current."

The -a option causes news to print all items, regardless of currency. In this
case, the stored time is not changed.

The -n option causes news to report the names of the current items without
printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist, without
printing their names or contents, and without changing the stored time. It is
useful to include such an invocation of news in one's .profile file, or in the
system's /ete/profile.

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and the
next item is started. Another delete within one second of the first causes the
program to terminate.

fete/profile
/usr/news/·
$HOME/.news_time

SEE ALSO
profile (4) , environ (5).

- 1 -

NICE(l)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment] command [arguments

DESCRIPTION

NICE(1) ,

Nice executes command with a lower CPU scheduling pnorIty. If the incre
ment argument On the range 1-19) is given, it is used; if not, an increment of
lOis assumed.

The super-user may run commands with priority higher than normal by using a
negative increment, e.g., - -10.

SEE ALSO
nohup(1), nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

- 1 -

NL(I) NL(I)

NAME
nl - line numbering filter

SYNOPSIS
oJ [-htype] [-btype] [-ftype] [-vstart#] [-iincd [-p] [-Inurn] [-ssep]
[-wwidth] [-nformat] [-ddelim] file

DESCRIPTION
NI reads lines from the named file or the standard input if no file is named and
reproduces the lines on the standard output. Lines are numbered on the left in
accordance with the command options in effect.

NI views the text it reads in terms of logical pages. Line numbering is reset at
the start of each logical page. A logical page consists of a header, a body, and
a footer section. Empty sections are valid. Different line numbering options
are independently available for header, body, and footer (e.g. no numbering of
header and footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines containing nothing
but the following delimiter character{s):

Line contents Start of

\:\:\:
\:\:
\:

header

body

footer

Unless optioned otherwise, nl assumes the text being read is in a single logical
page body.

Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered. Recog
nized types and their meaning are: a, number all lines; t, number
lines with printable text only; n, no line numbering; pstring, number
only lines that contain the regular expression specified in string.
Default type for logical page body is t (text lines numbered).

-htype

-ftype

Same as -btype except for header. Default type for logical page
header is n (no lines numbered).

Same as -btype except for footer. Default for logical page footer
is n (no lines numbered).

-p Do not restart numbering at logical page delimiters.

-vstart# Start# is the initial value used to number logical page lines.
Default is 1.

-iincr [ncr is the increment value used to number logical page lines.
Default is 1.

-ssep Sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line number.
Default width is 6.

-nformat Format is the line numbering format. Recognized values are: In,
left justified, leading zeroes supressed; rn, right justified, leading
zeroes supressed; rz, right justified, leading zeroes kept. Default
format is rn (right justified).

-Inum Num is the number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank being

- 1 -

NL(I)

-dxx

EXAMPLE

NL(I)

numbered (if the appropriate -ba, -ba, and/or -fa option is set).
Default is 1.

The delimiter characters specifying the start of a logical page sec
tion may be changed from the default characters (\:) to two user
specified characters. If only one character is entered, the second
character remains the default character (:). No space should
appear between the -d and the delimiter characters. To enter a
backslash, use two backslashes.

The command:

nl -vl0 -il0 -d!+ filel file2

will number files 1 and 2 starting at line number 10 with an increment of ten.
The logical page delimiters are !+.

SEE ALSO
pr(I) .

- 2 -

NM(I) (not on PDP-I I) NM(I)

NAME
nm - print name list of common object file

SYNOPSIS
om [-0] [-x] [-h] [-y] [-0] [-e] [-f) [-u] [-V] file-names

DESCRIPTION

FILES

The nm command displays the symbol table of each common object file file
name. File-name may be a relocatable or absolute common object file; or it
may be an archive of relocatable or absolute common object files. For each
symbol, the following information will be printed:

Name The name of the symbol.

Value Its value expressed as an offset or an address depending on its
storage class.

Class Its storage class.

Type Its type and derived type. If the symbol is an instance of a structure
or of a union then the structure or union tag will be given following
the type (e.g. struct-tag). If the symbol is an array, then the array
dimensions will be given following the type (eg., char[nHmJ). Note
that the object file must have been compiled with the -g option of
the ee(I) command for this information to appear.

Size Its size in bytes, if available. Note that the object file must have
been compiled with the -g option of the ec(I) command for this
information to appear.

Line The source line number at which it is defined, if available. Note that
the object file must have been compiled with the -g option of the
edt) command for this information to appear.

Sectioo For storage classes static and external, the object file section contain-
ing the symbol (e.g., text, data or bss).

The output of nm may be controlled using the following flags:

-0 A symbol's value and size will be printed in octal instead of decimal.

-x A symbol's value and size will be printed in hexadecimal instead of
decimal.

-h The output header data is not displayed.

-y External symbols will be sorted by value before they are printed.

-0 External symbols will be sorted by name before they are printed.

-e Only static and external symbols are printed.

-f Full output is produced. Redundant symbols Ctext, .data and .bss) ,
normally suppressed, are printed.

-u Only undefined symbols are printed.

-V Version of nm command executing is displayed on stderr output.

Flags may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both om name -e -y and
nm -ye name print the static and external symbols in name, with external sym
bols sorted by value.

/usrltmp/nm????? ?

SEE ALSO
as(I), cc(I), Id(I), a.out(4), ar(4).

- 1 -

NM(I) (not on PDP-ll) NM(I)

DIAGNOSTICS
"nm: name: cannot open"

if name cannot be read.

"nm: name: bad magic"
if name is not an appropriate common object file.

"nm: name: no symbols"
if the symbols have been stripped from name.

- 2 -

, NM(I) (PDP-ll only) NM(I)

. NAME
nm - print name list

SYNOPSIS
om [-gooprsu] [file .,.]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list.
If an argument is an archive, a listing for each object file in the archive will be
produced. If no file is given, the symbols in a.out are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the
letters U (undefined), A (absolute), T (text segment symbol), D (data segment
symbol), B (bss segment symbol), R (register symbol), F (file symbol), or C
(common symbol). If the symbol is local (non-external) the type letter is in
lower case. The output is sorted alphabetically.

Options are:

-g Print only global (external) symbols.

-0 Sort numerically rather than alphabetically.

-0 Prefix file or archive element name to each output line rather than only
once. This option can be used to make piping to grep(1) more mean
ingful.

-p Don't sort; print in symbol-table order.

- r Sort in reverse order.

-s Sort according to the size of the external symbol (computed from the
difference between the value of the symbol and the value of the symbol
with the next highest value). This difference is the value printed. This
flag turns on -g and -0 and turns off -u and -po

-u Print only undefined symbols.

SEE ALSO
ar(I), a.out(4), ar(4).

- 1 -

NOHUP(l)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION

NOHUP(I)

Nohup executes command with hangups and quits ignored. If output is not
re-directed by the user, it will be sent to nohup.out. If nohup.out.is not writable
in the current directory, output is redirected to $HOME/nohup.out.

SEE ALSO
nice(I), signaI(2).

- 1 -

NROFF(l) NROFF(I)

NAME
nroff - format text

SYNOPSIS
nroff [options] [files

DESCRIPTION
Nroff formats text contained in files {standard input by default} for printing on
typewriter-like devices and line printers. Its capabilities are described in the
NROFFITROFF User's Manual cited below.

An argument consisting of a minus (-) is taken to be a file name correspond
ing to the standard input. The options, which may appear in any order, but
must appear before the files, are:

-olist Print only pages whose page numbers appear in the list of numbers
and ranges, separated by commas. A range N - M means pages N
through M; an initial - N means from the beginning to page N; and
a final N - means from N to the end. {See BUGS below,}

-oN Number first generated page N.
-sN Stop every N pages. Nroff will halt after every N pages (default

N- 1) to allow paper loading or changing, and will resume upon
receipt of a line-feed or new-line (new-lines do not work in pipelines,
e.g., with mm (1». This option does not work if the output of nroff
is piped through cot(1) . When nroff halts between pages, an ASCII
BEL is sent to the terminal.

-raN Set register a (which must have a one-character name) to N.
-j Read standard input after files are exhausted.
-q Invoke the simultaneous input-output mode of the .rd request.
-z Print only messages generated by .tm (terminal message) requests.
-mname Prepend to the input files the non-compacted {ASCII text} macro

file lusrllib/tmac/tmac.name.
-cname Prepend to the input files the compacted macro files

lusrllib/macros/cmp.[ntUdt].name and
lusr Ilib/macros/ucmp.[ntJ.name.

-kname Compact the macros used in this invocation of nroff, placing the
output in files [dt].name in the current directory (see the May 1979
Addendum to the NROFFITROFF User's Manual for details of com
pacting macro files).

-Tname Prepare output for specified terminal. Known names are 37 for the
(default) TELETYPE® Model 37 terminal, tn300 for the GE Ter
miNet 300 (or any terminal without half-line capability), 300s for
the DASI 300s, 300 for the DASI 300, 450 for the DASI 450, Ip for a
(generic) ASCII line printer, 382 for the DTC-382, 4000A for the
Trendata 4000A, 832 for the Anderson Jacobson 832, X for a (gen
eric) EBCDIC printer, and 2631 for the Hewlett Packard 2631 line
printer.

-e Produce equally-spaced words in adjusted lines, using the full resolu
tion of the particular terminal.

-h Use output tabs during horizontal spacing to speed output and
reduce output character count. Tab settings are assumed to be
every 8 nominal character widths.

-un Set the emboldening factor (number of character overstrikes) for the
third font position (bold) to n, or to zero if n is missing.

- 1 -

NROFF(l) NROFF(I) \

FILES
/usr!lib/suftab
/tmp/ta$#
/ usr!li b/ tmac/ tmac.·
/usr !lib/macros/·
/usr/lib/term/·

suffix hyphenation tables
temporary file
standard macro files and pointers
standard macro files
terminal driving tables for nroff

SEE ALSO

BUGS

NROFF/TROFF User's Manual
A TROFF Tutorial
col(I), cw(1), eqn(I), greek(I), mm(1), tbl(I), troff(I), mm(5).

Nroff believes in Eastern Standard Time; as a result, depending on the time of
the year and on your local time zone, the date that nroff generates may be off
by one day from your idea of what the date is.
When nroff is used with the -olist option inside a pipeline (e.g., with one or
more of ew(I), eqn(I), and tbl(1», it may cause a harmless "broken pipe"
diagnostic if the last page of the document is not specified in list.

- 2 -

NSCSTAT(IC) NSCSTAT (I C)

NAME
nscstat - query the operation status of the NSC network

SYNOPSIS
oscstat [netname ... 1 [-ludqrbpa1 [-0 names 1

DESCRIPTION
Nscstat, without arguments, gives a short operational status report of the NSC
network from the viewpoint of the local node. This includes the status of the
NSC network and the total number of files queued for transmission. A list of
network names may be specified. If no network names are given, the options
specified are performed for all known networks. Nscstat recognizes the follow
ing arguments:

-I Output a long listing. This option indicates the status of the printed node
(on-line or off-line), the total number of files queued waiting transmission
to this node, and the time when the first job was queued for transmission.

-p Report the last time the system received a poke from remote systems.

-r Report the last time the system received a request to transfer from remote
systems.

-b Report the last time the current system had to notify remote systems that
it was too busy to handle its request.

-u List the status of all nodes that are on-line (up).

-d List the status of all nodes that are off-line (down).

-q List the status of all nodes that have files queued for transmission.

-a List the status of all nodes configured on the network.

-n names
Name specifies that status is requested for this node only. If more than
one network is specified, this option is disabled.

Each of the above arguments may be used singly or together with several oth
ers. When used together, the output is the intersection of the sets of nodes
matching each option. If a node name list is specified, status for that node will
only be reported if it is in the intersection set of the specified options.

EXAMPLE

FILES

BUGS

To get a long listing of all nodes that are currently off-line and have files
queued for transmission:

nscstat -ldq

lusr/nsc/rvchan list of nodes currently configured on the network
lusr/nsc/cons/· nodes that are considered on-line
lusr/nsc/jobs/C. jobs queued for transmission
lusr I nscl consl on -line/.

whether the NSC network is active or not on this network

Nscstat tries to interpret the specified options intelligently. If none of the
options specified apply to any of the specified nodes, no detailed status will be
reported.

- 1 -

NSCTORJE(IC) NSCTORJE(IC) c

NAME
nsctorje - re-route jobs from the NSC network to RJE

SYNOPSIS
nsctorje [-d names]

DESCRIPTION
Nsctorje will resubmit jobs queued on the NSC local network (via nusend(IC) \
across the RJE link (if it exists). Nsctorje submits a nusend(IC) command to
re-route each queued job. By default, jobs will be re-routed if either the
remote host is marked down locally or if the NSC network on the local host is
inactive. Nsctorje recognizes the following options:

-d names re-route all jobs queued only to the remote machine name.

SEE ALSO

FILES

BUGS

nusend (I C).
nscmon(IM), rje(8) in the UNIX System Administrator's Manual.

lusr Insc/NORJE

I usr I nscl rvchan
lusr/asp/udest

file indicating that no RJE connection exists on this
machine
nusend(IC) network configuration file
nodes accessible through RJE

Any file larger than 190,000 bytes will not be re-routed across the RJE link. It
will remain queued on the NSC network until the remote node becomes avail
able.

- 1 -

NUSEND(IC) NUSEND(IC)

NAME
nusend - send files to another UNIX System on the NSC network

SYNOPSIS
nusend -d dest [-n netname1 [-a accd [-m] [-e] [-s] [-c] [-x]
[-u destused [[-f destfile] srcfile] [-!cmd [cmdfile]] ..•

DESCRIPTION
Nusend sends copies of the named files or command to another UNIX system
via the NSC network. If the file name - is given, the standard input is read at
that point.

-d dest Destination. Dest can be anyone of the UNIX systems on the NSC
local network. See lusr/nsc/rvchan for an up-to-date list of valid
NSC destinations.

-n netname
Network name. Netname can be anyone of the networks known to
the local system (see nscmon (I M) for the definition of a network.
This option is only needed when sending to your own system. See
lusr/nsc/nets for the up-to-date list of valid networks).

-a acct Use acct as the account number for the job. By default, the account
number is read from the password file.

-s Silent. Suppress the one-line message which contains the submitted
job name.

-c Copy. Make a copy of the file. Default is to set up a pointer to the
file in the user's directory. If any changes are made to the file before
transmission, the changes will be sent to the destination unless the -c
option is used.

-x Generate checksums on all data tranmissions.

Mail will normally be sent to the receiving login (s) to report the receipt of the
file(s). Mail will be sent to both sending and receiving logins if there were
errors in transmission. The default may be overridden with the following
switches:

-m Report by mail(1) when the file transfer is complete. The mail is
sent from the remote system via nusend.

-e Report by mail (1) only when an error occurred during the transfer.
No other mail will be sent.

Normally, the login name under which the new file will appear on the destina
tion system is the same as the login name of the person who issues the com
mand.

The following options, each as a separate argument, may be interspersed with
file name arguments:

-u Use the next argument as the destination user's login name for all
succeeding files.

-f Use the next argument as the destination file name for the succeeding
file. Srcfile must be specified. The destination path name is assumed
to be relative to the destination login directory if there is no leading I.
In either case, the target directory must be mode 777, or if the file
already exists, the file must be writable by others. By default, files
are delivered to directory rje under the destination login directory.
Rje must have been previously created in mode 777 for everything to
work. The name of the destination file is ordinarily the same as the
last component of the original file. When the standard input is sent,

- 1 -

NUSEND(lC) NUSEND(lC)

the destination file name is normally taken to be pipe.end. If - is
used, the standard input is taken.

-!cmd Cmd is sent to the remote machine for execution. A file name or -
can be used as standard input to the command. If no file is specified,
Idev/null is used.

EXAMPLES

FILES

Assuming XXAAA, XXBBB and XXCCC are machines on the NSC network,
then:

To send files file], file2, and file3 to XXAAA (assuming the source and destina
tion log ins are the same):

nus end -d XXAAA filel file2 file3

To send file cprog.c to login name dave on XXBBB and to get confirmation mail
returned:

nus end -d XXBBB -m -u dave cprog.c

To send file myfile to XXCCC and rename it to yourfile (assuming the source
and destination logins are the same):

nusend -d XXCCC -f your file myfile

To send file a.out from XXAAA to login name debbie on XXBBB via remote exe
cution:

nusend -d XXAAA .RS -!'nusend -d XXBBB -u debbie 'logdir
debbie'/a.out'

/etc/passwd
/usr/nsc/jobs/C.
/usr/nsc/rvchan
/usr/nsc/nets
I usr I nscllog/ n usend

account number for NSC job
job queue area
table of known destinations
table of known networks
usage log

SEE ALSO
mail(1), nscstat(1C).

- 2 -

00(1) 00(1)

NAME
od - octal dump

SYNOPSIS
od [-bcdosx] [file] [[+]offset[.][b]]

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If the
first argument is missing, -0 is default. The meanings of the format options
are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\O, backspace=\b, form-feed=\f, new-line=\n, return=\r,
tab=\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

-s Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument is
specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to com
mence. This argument is normally interpreted as octal bytes. If. is appended,
the offset is interpreted in decimal. If b is appended, the offset is interpreted in
blocks of 512 bytes. If the file argument is omitted, the offset argument must
be preceded by +.
Dumping continues until end-of-file.

SEE ALSO
dump(I).

- 1 -

PACK(I) t"ACK\lJ

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [-] name

pcat name ...

unpack name ...

DESCRIPTION
Pack attempts to store the specified files in a compressed form. Wherever pos
sible (and useful), each input file name is replaced by a packed file name.z
with the same access modes, access and modified dates, and owner as those of
name. If pack is successful, name will be removed. Packed files can be
restored to their original form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If
the - argument is used, an internal flag is set that causes the number of times
each byte is used, its relative frequency, and the code for the byte to be printed
on the standard output. Additional occurrences of - in place of name will
cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first
part of each .z file, it is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very skewed, which may
occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules,
which use a larger character set and have a more uniform distribution of char
acters, show little compression, the packed versions being about 90% of the ori
ginal size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters to
allow space for the appended .z extension. Directories cannot be compressed.

Pcat does for packed files what cat (1) does for ordinary files. The specified
files are unpacked and written to the standard output. Thus to view a packed
file named name.z use:

pcat name.z
or just:

pcat name

To make an unpacked copy, say nnn, of a packed file named name.z (without
destroying name .z) use the command:

pcat name >nnn

Pcat returns the number of files it was unable to unpack. Failure may occur if:

- 1 -

PACK(t) PACK(I)

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name ends
in .z). If this file appears to be a packed file, it is replaced by its expanded ver
sion. The new file has the .z suffix stripped from its name, and has the same
access modes, access and modification dates, and owner as those of the packed
file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in pcat, as well as for the
following:

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

- 2 -

PASSWD(I) PASSWD(I)

NAME
passwd - change login password

SYNOPSIS
passwd name

DESCRIPTION

FILES

This command changes (or installs) a password associated with the login name.

The program prompts for the old password (if any) and then for the new one
(twice). The caller must supply these. New passwords should be at least four
characters long if they use a sufficiently rich alphabet and at least six charac
ters long if monocase. Only the first eight characters of the password are
significant.

Only the owner of the name or the super-user' may change a password; the
owner must prove he knows the old password. Only the super-user can create a
null password.

The password file is not changed if the new password is the same as the old
password, or if the password has not "aged" sufficiently; see passwd (4).

letc/passwd

SEE ALSO
login(l), crypt(3C), passwd(4).

- 1 -

PASTE (I) PASTE(l)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file 1 file2 ...
paste -dlist filel file2
paste -s (-dlistl filel file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input
files file] ,file2, etc. It treats each file as a column or columns of a table and
pastes them together horizontally (parallel merging). If you will, it is the coun
terpart of cat (1) which concatenates vertically, i.e., one file after the other. In
the last form above, paste subsumes the function of an older command with the
same name by combining subsequent lines of the input file (serial merging). In
all cases, lines are glued together with the tab character, or with characters
from an optionally specified list. Output is to the standard output, so it can be
used as the start of a pipe, or as a filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file
(or last line in case of the -s option) are replaced by a tab character.
This option allows replacing the tab character by one or more alternate
characters (see below).

list One or more characters immediately following -d replace the default
tab as the line concatenation character. The list is used circularly, i. e.
when exhausted, it is reused. In parallel merging G. e. no -s option),
the lines from the last file are always terminated with a new-line char
acter, not from the list. The list may contain the special escape
sequences: \0 (new-line), \t (tab), \ \ (backs lash) , and \0 (empty string,
not a null character). Quoting may be necessary, if characters have
special meaning to the shell (e.g. to get one backslash, use -d"\\\\").

-s Merge subsequent lines rather than one from each input file. Use tab
for concatenation, unless a list is specified with -d option. Regardless
of the list, the very last character of the file is forced to be a new-line.

May be used in place of any file name, to read a line from the stan
dard input. (There is no prompting).

EXAMPLES
Is I paste -d" " -

Is I paste - - - -

list directory in one column

list directory in four columns

paste -s -d"\t\n" file combine pairs of lines into lines

SEE ALSO
grep(I), cut(1),
pr(1): pr -t -m ... works similarly, but creates extra blanks, tabs and new
lines for a nice page layout.

DIAGNOSTICS
line too long

too many files

Output lines are restricted to 511 characters.

Except for -s option, no more than 12 input files may
be specified.

- 1 -

PR(l) PR(l)

NAME
pr - print files

SYNOPSIS
pr [options] [files]

DESCRIPTION
Pr prints the named files on the standard output. If file is -, or if no files are
specified, the standard input is assumed. By default, the listing is separated
into pages, each headed by the page number, a date and time, and the name of
the file.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -s option is used, lines are not truncated
and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr bas completed printing.

The below options may appear singly or be combined in any order:

+ k Begin printing with page k (default is 1).

-k Produce k-column output (default is 1). The options -e and -i are
assumed for multi-column output.

-a Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column (overrides the
-k, and -a options).

-d Double-space the output.

-eck Expand input tabs to character positions k+l, 2*k+l, 3*k+l, etc. If
k is 0 or is omitted, default tab settings at every eighth position are
assumed. Tab characters in the input are expanded into the appropri
ate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for c is the tab character).

-ick In output, replace white space wherever possible by inserting tabs to
character positions k+l, 2*k+l, 3*k+l, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. If c (any
non-digit character) is given, it is treated as the output tab character
(default for c is the tab character).

-nck Provide k-digit line numbering (default for k is 5). The number occu
pies the first k+ 1 character positions of each column of normal output
or each line of -m output. If c (any non-digit character) is given, it is
appended to the line number to separate it from whatever follows
(default for c is a tab).

-wk Set the width of a line to k character positions (default is 72 for
equal-width multi-column output, no limit otherwise).

-ok Offset each line by k character positions (default is O). The number of
character positions per line is the sum of the width and offset.

-Ik Set the length of a page to k lines (default is 66).

-h Use the next argument as the header to be printed instead of the file
name.

-p Pause before beginning each page if the output is directed to a termi
nal (pr will ring the bell at the terminal and wait for a carriage
return).

-f Use form-feed character for new pages (default is to use a sequence of
line-feeds). Pause before beginning the first page if the standard

- 1 -

PR(I)

-r

-t

-sc

PR (I)

output is associated with a terminal.

Print no diagnostic reports on failure to open files.

Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

Separate columns by the single character c instead of by the appropri
ate number of spaces (default for c is a tab).

EXAMPLES

FILES

Print filel and file2 as a double-spaced, three-column listing headed by "file
list":

pr -3dh "file list" filel file2

Write filel on file2, expanding tabs to columns 10, 19, 28, 37, ... :

pr -e9 -t < file 1 > file2

/dev/tty. to suspend messages

SEE ALSO
cat{I).

- 2 -

PROF(1) PROF(t)

NAME
prof - display profile data

SYNOPSIS
prof [-tcao] [-ox] [-g] [-z] [-h] [-s] [-m mdata] [prog]

DESCRIPTION

FILES

Prof interprets the profile file produced by the monitor (3C) function. The
symbol table in the object file prog (a.out by default) is read and correlated
with the profile file (moo. out by default). For each external text symbol the
percentage of time spent executing between the address of that symbol and the
address of the next is printed, together with the number of times that function
was called and the average number of milliseconds per call.

The mutually exclusive options t, c, a, and 0 determine the type of sorting of
the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-0 Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the address of
each symbol monitored:

-0 Print each symbol address Gn octal} along with the symbol name.

-x Print each symbol address Gn hexadecimal} along with the symbol
name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

-z Include all symbols in the profile range (see monitor(3C», even if
associated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is useful if
the report is to be processed further')

-s Print a summary of several of the monitoring parameters and statistics
on the standard error output.

-m mdata
Use file mdata instead of moo. out for profiling data.

For the number of calls to a function to be tallied, the -p option of cd!) must
have been given when the file containing the function was compiled. This
option to the cc command also arranges for the object file to include a special
profiling start-up function that calls monitor(3C) at the beginning and end of
execution. It is the call to monitor at the end of execution that causes the
moo.out file to be written. Thus, only programs that call exit (2) or return from
main will cause the mOD.out file to be produced.

mon.out for profile
a.out for namelist

SEE ALSO
cd!), nm(!), exit(2), profil(2), monitor(3C).

- 1 -

PROF(I) PROF(I)

BUGS
There is a limit of 300 functions that may have call counters established during
program execution. If this limit is exceeded, other data will be overwritten and
the mOD.out file will be corrupted. The number of call counters used will be
reported automatically by the prof command whenever the number exceeds
250.

- 2 -

PRS(I) PRS(I)

NAME
prs - print an sees file

SYNOPSIS
prs [-d[dataspec]] [-r[SID]] [-e1 [-I] [-a] files

DESCRIPTION
Prs prints, on the standard output, parts or all of an sees file (see sccsfile (4»
in a user supplied format. If a directory is named, prs behaves as though each
file in the directory were specified as a named file, except that non-SeeS files
(last component of the path name does not begin with s.), and unreadable files
are silently ignored. If a name of - is given, the standard input is read; each
line of the standard input is taken to be the name of an sees file or directory
to be processed; non-SeeS files and unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter argu
ments, and file names.

All the described keyletter arguments apply independently to each named file:

-d[dataspec] Used to specify the output data specification. The
dataspec is a string consisting of sees file data key
words (see DATA KEYWORDS) interspersed with
optional user supplied text.

-r[SID] Used to specify the sees IDentification (SID) string of
a delta for which information is desired. If no SID is
specified, the SID of the most recently created delta is
assumed.

-e

-I

-a

DATA KEYWORDS

Requests information for all deltas created earlier than
and including the delta designated via the -r keyletter.

Requests information for all deltas created later than
and including the delta designated via the -r keyletter.

Requests printing of information for both removed, i.e.,
delta type = R, (see rmdeH 1) and existing, i.e., delta
type = D, deltas. If the -a keyletter is not specified,
information for existing deltas only is provided.

Data keywords specify which parts of an sees file are to be retrieved and out
put. All parts of an sees file (see sccsfile (4» have an associated data key
word. There is no limit on the number of times a data keyword may appear in
a dataspec.

The information printed by prs consists of: (1) the user supplied text; and (2)
appropriate values (extracted from the sees file) substituted for the recog
nized data keywords in the order of appearance in the dataspec. The format of
a data keyword value is either Simple (S), in which keyword substitution is
direct, or Multi-line (M), in which keyword substitution is followed by a car
riage return.

User supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/new-line is specified by \n.

- 1 -

PRS(l) PRS(l)

TABLE 1. sees Files Data Keywords
Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below* S
:DL: Delta line statistics :Li:I:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type D or R S

:1: SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S

:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S

:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :DS: :DS: ... S
:Dx: Deltas excluded (seq #) :DS: :DS: ... S
:Dg: Deltas ignored (seq #) :DS: :DS: ... S
:MR: MR numbers for delta text M

:C: Comments for delta text M
:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag text S

:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:BF: Branch flag yes or no S
:J: Joint edit flag yes or no S

:LK: Locked releases :R: ... S
:Q: User defined keyword text S
:M: Module name text S
:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :1: S
:ND: Null delta flag yes or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body text M
:W: A form of what (I) string N/A :Z::M:\t:I: S
:A: A form of what (I) string N/A :Z::Y: :M: :I::Z: S
:Z: what (I) string delimiter N/A @(#) S
:F: SCCS file name N/A text S

:PN: SCCS file path name N/A text S

* :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

- ") -

PRS(I) PRS(I)

EXAMPLES

FILES

prs -d"Users and/or user IDs for :F: are:\n:UN:" sofile

may produce on the standard output:

Users and/or user IDs for sofile are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r sofile

may produce on the standard output:

Newest delta for pgm mainoc: 307 Created 77/12/1 By cas

As a special case:

prs sofile

may produce on the standard output:

D 1.1 77/1211 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for So file initial delta

for each delta table entry of the "D" type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

Itmp/pr?????

SEE ALSO
admin(I), delta(I), get(I), help(I), sccsfile(4).
Source Code Control System User's Guide in the UNIX System User's Guide.

DIAGNOSTICS
Use help (1) for explanations.

PS(I) PS(I)

NAME
ps - report process status

SYNOPSIS
ps [options]

DESCRIPTION
Ps prints certain information about active processes. Without options, infor
mation is printed about processes associated with the current terminal. Other
wise, the information that is displayed is controlled by the following options:

-e Print information about all processes.
-d Print information about all processes, except process group

leaders.
-a Print information about all processes, except process group

leaders and processes not associated with a terminal.
-f Generate a luI/listing. (Normally, a short listing containing only

process ID, terminal ("tty") identifier, cumulative execution time,
and the command name is printed.) See below for meaning of
columns in a full listing.

-I Generate a long listing. See below.
-c corefile Use the file corefile in place of Idev/mem.
-s swapdev Use the file swapdev in place of Idev/swap. This is useful when

examining a corefile; a swapdev of Idev/oull will cause the user
block to be zeroed out.

-0 namelist The argument will be taken as the name of an alternate namelist
(/unix is the default).

-t tlist Restrict listing to data about the processes associated with the
terminals given in tlist, where tlist can be in one of two forms: a
list of terminal identifiers separated from one another by a
comma, or a list of terminal identifiers enclosed in double quotes
and separated from one another by a comma and/or one or more
spaces.

-p plist Restrict listing to data about processes whose process ID numbers
are given in plist, where plist is in the same format as tlist.

-u ulist Restrict listing to data about processes whose user ID numbers or
login names are given in ulist, where ulist is in the same format
as tlist. In the listing, the numerical user ID will be printed
unless the -f option is used, in which case the login name will be
printed.

-g glist Restrict listing to data about processes whose process groups are
given in glist, where glist is a list of process group leaders and is
in the same format as tlist.

The column headings and the meaning of the columns in a ps listing are given
below; the letters f and 1 indicate the option (full or long) that causes the
corresponding heading to appear; all means that the heading always appears.
Note that these two options only determine what information is provided for a
process; they do not determine which processes will be listed.

F O} Flags (octal and additive) associated with the process:
01 in core;
02 system process;
04 locked in core (e.g., for physical IIO);
10 being swapped;
20 being traced by another process;
40 another tracing flag.

S O} The state of the process:

- 1 -

PS(t)

FILES

UID

PID

PPID
C
STIME
PRI

NI
ADDR

sz
WCHAN

TrY
TIME
CMD

PS(t)

o non-existent;
S sleeping;
W waiting;
R running;
I interll1ediate;
Z terll1inated;
T stopped;
X growing.

(f,O The user ID nUll1ber of the process owner; the login nall1e is
printed under the -f option.

(all) The process ID of the process; it is possible to kill a process if

(f,O
(f,O
(f)
(1)

(1)
(1)

(1)
(1)

you know this datull1.
The process ID of the parent process.
Processor utilization for scheduling.
Starting till1e of the process.
The priority of the process; higher nUll1bers ll1ean lower
priority.
Nice value; used in priority cOll1putation.
The ll1ell1ory address of the process (a pointer to the segll1ent
table array on the 3B20S), if resident; otherwise, the disk
address.
The size in blocks of the core ill1age of the process.
The event for which the process is waiting or sleeping; if
blank, the process is running.

(all) The controlling terll1inal for the process.
(all) The cUll1ulative execution till1e for the process.
(all) The cOll1ll1and nall1e; the full cOll1ll1and nall1e and its argu

ll1ents are printed under the -f option.

A process that has exited and has a parent, but has not yet been waited for by
the parent, is ll1arked <defunct>.

Under the -f option, ps tries to deterll1ine the cOll1ll1and nall1e and argull1ents
given when the process was created by exall1ining ll1ell1ory or the swap area.
Failing this, the cOll1ll1and nall1e, as it would appear without the -f option, is
printed in square brackets.

/unix
/ dev / ll1ell1
/dev/swap
/etc/passwd
/etc/ps_data
/dev

systell1 nall1elist.
ll1ell1ory.
the default swap device.
supplies UID inforll1ation.
internal data structure.
searched to find terll1inal ("tty") nall1es.

SEE ALSO

BUGS

kill(!), nice(1).

Things can change while ps is running; the picture it gives is only a close
approxill1ation to reality. SOll1e data printed for defunct processes are
irrelevant.

- 2 -

PTX(1) PTX(1)

NAME
ptx - permuted index

SYNOPSIS
ptx [options] [input [output]]

DESCRIPTION

FILES

Ptx generates the file output that can be processed with a text formatter to
produce a permuted index of file input (standard input and output default). It
has three phases: the first does the permutation, generating one line for each
keyword in an input line. The keyword is rotated to the front. The permuted
file is then sorted. Finally, the sorted lines are rotated so the keyword comes at
the middle of each line. Ptx output is in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx is assumed to be an nroff or troff(I) macro provided by the user, or
provided by the mptx (S) macro package. The before keyword and keyword
and after fields incorporate as much of the line as will fit around the keyword
when it is printed. Tail and head, at least one of which is always the empty
string, are wrapped-around pieces small enough to fit in the unused space at the
opposite end of the line.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter.

-w n Use the next argument, n, as the length of the output line. The
default line length is 72 characters for nroff and 100 for troff.

-g n Use the next argument, n, as the number of characters that ptx
will reserve in its calculations for each gap among the four parts of
the line as finally printed. The default gap is 3.

-0 only Use as keywords only the words given in the only file.

-i ignore Do not use as keywords any words given in the ignore file. If the
-i and -0 options are missing, use /usrllib/eign as the ignore file.

-b break Use the characters in the break file to separate words. Tab, new-
line, and space characters are always used as break characters.

-r Take any leading non-blank characters of each input line to be a
reference identifier (as to a page or chapter), separate from the
text of the line. Attach that identifier as a Sth field on each out
put line.

The index for this manual was generated using ptx.

Ibin/sort
lusr Ilibl eign
lusr/lib/tmac/tmac.ptx

SEE ALSO

BUGS

nroff(I), troff(I), mm(S), mptx(S).

Line length counts do not account for overstriking or proportional spacing.
Lines that contain tildes (-) are botched, because ptx uses that character inter
nally.

- 1 -

PWD(1)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(l).

DIAGNOSTICS

PWD(1)

"Cannot open .. " and "Read error in .. " indicate possible file system trouble
and should be referred to a UNIX System programming counselor.

- 1 -

RATFOR(I) RATFOR(I)

NAME
ratfor - rational Fortran dialect

SYNOPSIS
ratfor [options] [files]

DESCRIPTION
Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran.
Ratfor provides control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement}

decision-making: .

loops:

if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment.

translation of relationals:
>, > =, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define:
define name replacement

include:
include file

The option - h causes quoted strings to be. turned into 27" constructs. The
-C option copies comments to the output and attempts to format it neatly.
Normally, continuation lines are marked with a & in column 1; the option
-6x makes the continuation character x and places it in column 6.

Ratfor is best used with j77 (1) .

SEE ALSO
eft (1), t77 (1).
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

- 1 -

REGCMP(I) REGCMP(I) 1

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
Regcmp, in most cases, precludes the need for calling regcmp (3X) from C pro
grams. This saves on both execution time and program size. The command
regcmp compiles the regular expressions in file and places the output in file.i.
If the - option is used, the output will be placed in file.c. The format of
entries in file is a name (C variable) followed by one or more blanks followed
by a regular expression enclosed in double quotes. The output of regcmp is C
source code. Compiled regular expressions are represented as extern char vec
tors. File.i files may thus be included into C programs, or file.c files may be
compiled and later loaded. In the C program which uses the regcmp output,
regex(abc,line) will apply the regular expression named abc to line. Diagnos
tics are self-explanatory.

EXAMPLES
name "([A-Za-z][A-Za-zO-9 J.)$O"

telno "\ ({O, 1}([2-9][Ol][1-9]) $O\){O, I} ."
"([2-9][O-9]{2})$I[-]{O,l}"
"([O-9]{4}) $2"

In the C program that uses the regcmp output,

reg ex (telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X) .

- 1 -

RJESTAT(lC) RJESTAT(IC)

NAME
rjestat - RJE status report and interactive status console

SYNOPSIS
rjestat [host 1... [-shost] [-chost cmd 1. ..

DESCRIPTION
Rjestat provides a method of determining the status of an RJE link and of
simulating an IBM remote console (with UNIX System features added). When
invoked with no arguments, rjestat reports the current status of all the RJE
links connected to to the UNIX System. The options are:

host

-shost

Print the st~tus of the line to host. Host is the pseudonym for a
particular IBM system. It can be any name that corresponds to
one in the first column of the RJE configuration file.

After all the arguments have been processed, start an interactive
status console to host.

-chost cmd
Interpret cmd as if it were entered in status console mode to host.
See below for the proper format of cmd.

In status console mode, rjestat prompts with the host pseudonym followed by :
whenever it is ready to accept a command. Commands are terminated with a
new-line. A line that begins with! is sent to the UNIX System shell for execu
tion. A line that begins with the letter q terminates rjestat. All other input
lines are assumed to have the form:

ibmcmd [redirect]

Ibmcmd is any IBM JES or HASP command. Only the super-user or rje login
can send commands other than display or inquiry commands. Redirect is a
pipeline or a redirection to a file (e.g., "> file" or " I grep ... "). The IBM
response is written to the pipeline or file. If redirect is not present, the
response is written to the standard output of rjestat.

An interrupt signal (DEL or BREAK) will cancel the command in progress and
cause rjestat to return to the command input mode.

EXAMPLE
The following command reports the status of all the card readers attached to
host A, remote 5. JES2 is assumed.

rjestat -cA '$du,rmt5 I grep RD'

DIAGNOSTICS

FILES

The message "RJE error: ... " indicates that rjestat found an inconsistency in
the RJE system. This may be transient but should be reported to the site
administrator.

lusr/rje/lines RJE configuration file

resp host response file that exists in the RJE subsystem directory
(e.g., lusr Irjel).

SEE ALSO
send(1C).
OSIVS2 HASP II Version 4 Operator's Guide, IBM SRL #GC27-6993.
Operator's Library: OSIVS2 Reference (JES2) , IBM SRL #GC38-021D.

- 1 -

RM(1) RM(1)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-fri] file

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry was
the last link to the file, the file is destroyed. Removal of a file requires write
permission in its directory, but neither read nor write permission on the file
itself.

If a file has no write permission and the standard input is a terminal, its per
missions are printed and a line is read from the standard input. If that line
begins with y the file is deleted, otherwise the file remains. No questions are
asked when the -f option is given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument -r has been used. In that case, rm recursively deletes the
entire contents of the specified directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file,
and, under -r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
unlink(2).

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file 00 merely to avoid
the antisocial consequences of inadvertently doing something like:

rm -r 0*

- 1 -

RMDEL(l) RMDEL(l)

NAME
rmdel - remove a delta from an sees file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

Rmdel removes the delta specified by the SID from each named sees file. The
delta to be removed must be the newest (most recent) delta in its branch in the
delta chain of each named sees file. In addition, the specified must not be
that of a version being edited for the purpose of making a delta G. e., ·if a p-file
(see get (1» exists for the named sees file, the specified must not appear in
any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the
path name does not begin with s.) and unreadable files are silently ignored. If
a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an sees file to be processed; non-SeeS files
and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
Source Code Control System User's Guide. Simply stated, they are either (1)
if you make a delta you can remove it; or (2) if you own the file and directory
you can remove a delta.

x-file (see delta (1»
z-file (see delta (1»

SEE ALSO
delta(1), get(1), help(l), prs(1), sccsfile(4).
Source Code Control System User's Guide in the UNIX System User's Guide.

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

SACT(1) SACT(1) t

NAME
sact - print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a named sees file. This \
situation occurs when get(1) with the -e option has been previously executed
without a subsequent execution of delta (1). If a directory is named on the
command line, sact behaves as though each file in the directory were specified
as a named file, except that non-SeCS files and unreadable files are silently \
ignored. If a name of - is given, the standard input is read with each line
being taken as the name of an sees file to be processed.

The output for each named file consists of five fields separated by spaces.

SEE ALSO

Field 1 specifies the SID of a delta that currently exists in the sees
file to which changes will be made to make the new delta.

Field 2

Field 3

Field 4

Field 5

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta
(i.e. executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

delta (1), get (1), unget (1) .

DIAGNOSTICS
Use he/p(1) for explanations.

- 1 -

SADP(1) SADP(I)

NAME
sadp - disk access profiler

SYNOPSIS
sadp [-th] [-d device[-drive]] s [n]

DESCRIPTION
Sadp reports disk access location and seek distance, in tabular or histogram
form. It samples disk activity once every second during an interval of s
seconds. This is done repeatedly if n is specified. Cylinder usage and disk dis
tance are recorded in units of eight cylinders.

Valid values of device are rp06, rm05, and disk. Drive specifies the disk drives
and it may be:

a drive number in the range supported by device,
two numbers separated by a minus (indicating an inclusive range),

or
a list of drive numbers separated by commas.

Up to eight disk drives may be reported. The -d option may be omitted, if
only one device is present.

The -t flag causes the data to be reported in tabular form. The - h flag pro
duces a histogram on the printer of the data. Default is -t.

EXAMPLE

FILES

The command:

sadp -d rp06 -0 900 4

will generate 4 tabular reports, each describing cylinder usage and seek dis
tance of rp06 disk drive 0 during a 15 minute interval.

Idev/kmem

- 1 -

SAG(lG) SAG(lG)

NAME
sag - system activity graph

SYNOPSIS
sag [options]

DESCRIPTION
Sag graphically displays the system activity data stored in a binary data file by
a previous sar(!) run. Any of the sar data items may be plotted singly, or in
combination; as cross plots, or versus time. Simple arithmetic combinations of
data may be specified. Sag invokes sar and finds the desired data by string
matching the data column header (run sar to see what's available). These
options are passed thru to sar:

-s time Select data later than time in the form hh l:mm1. Default is 08:00.

-e time Select data up to time. Default is 18:00.

-i sec Select data at intervals as close as possible to sec seconds.

-f file Use file as the data source for sar. Default is the current daily data
file lusr/adm/sa/sadd.

Other options:

-T term Produce output suitable for terminal term. See tplot(1 G) for known
terminals. If term is vpr, output is processed by vpr -p and queued
to a Versatec printer. Default for term is $TERM.

-x spec x axis specification with spec in the form:
"name lop name] ... [10 hi)"

-y spec y axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report, with
an optional device name in square brackets, e.g., r+w/sldsk-1], or an integer
value. Op is + - • or I surrounded by blanks. Up to five names may be
specified. Parentheses are not recognized. Contrary to custom, + and -
have precedence over • and I. Evaluation is left to right. Thus
A I A + B * 100 is evaluated (A/(A+B»*100, and A + B I C + D is
(A+B)/(C+D). Lo and hi are optional numeric scale limits. If unspecified,
they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to 5
spec's separated by ; may be given for -yo Enclose the -x and -y argu
ments in "" if blanks or \<CR> are included. The -y default is:

-y "% usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES

FILES

To see today's CPU utilization:
sag

To see activity over 15 minutes of all disk drives:
TS='date +%H:%M'
sar -0 tempfile 60 15
TE='date +%H:%M'
sag -f tempfile -s $TS -e $TE -y "r+w/s[dsk]"

lusr/adm/sa/sadd

SEE ALSO

daily data file for day dd.

sar(1), tplot(1G).

- 1 -

SAR(t) SAR(t)

NAME
sar - system activity reporter

SYNOPSIS
sar [-ubdycwaqvmA] [-0 file] t [n]

sar [-ubdycwaqvmA] [-s time] [-e time] [-i sec1 [-f file]

DESCRIPTION
Sar, in the first instance, samples cumulative activity counters in the operating
system at n intervals of t seconds. If the -0 option is specified, it saves the
samples in file in binary format. The default value of n is 1. In the second
instance, with no sampling interval specified, sar extracts data from a previ
ously recorded file, either the one specified by -f option or, by default, the
standard system activity daily data file lusr/adm/sa/sadd for the current day
dd. The starting and ending times of the report can be bounded via the -s
and -e time arguments of the form hh[:mm[:ss)). The -i option selects
records at sec second intervals. Otherwise, all intervals found in the data file
are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, running
in system mode, idle with some process waiting for block 110, and other
wise idle.

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers
and disk or other block devices;
lread/s, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, e. g., 1 - bread/lread;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.

-d Report activity for each block device, e. g., disk or tape drive:
%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w/s, blks/s - number of data transfers from or to device, number of
bytes transferred in 512 byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on
queue, and average time to be serviced (which for disks includes seek,
rotational latency and data transfer times).

-y Report TTY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate
processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt rates.

-c Report system calls:
scall/s - system calls of all types;
sread/s, swrit/s, fork/s, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system calls.

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number of
512 byte units transferred for swapins (including initial loading of some
programs) and swapouts;
pswch/s - process switches.

-a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

-q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready to
run.

- 1 -

SAR(l) SAR(I)

-v Report status of text, process, inode and file tables:
text-sz, proc-sz, inod-sz, file-sz - entries/size for each table, evaluated
once at sampling point;
text-ov, proc-ov, inod-ov, file-ov - overflows occurring between sampling
points.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

- A Report all data. Equivalent to -udqbwcayvm.
EXAMPLES

FILES

To see today's CPU activity so far:
sar

To watch CPU activity evolve for 10 minutes and save data:
sar -0 temp 60 10

To later review disk and tape activity from that period:
sar -d -f temp

/usr/adm/sa/sadd daily data file, where dd are digits representing the day of
the month.

SEE ALSO
sag(IG).
sar(IM) in the UNIX System Administrator's Manual.

- 2 -

SCAT(I) seAT(I)

NAME
scat - concatenate and print files on synchronous printer

SYNOPSIS
scat [-u] [-s] file ...

DESCRIPTION
Scat reads each file in sequence and writes it on the standard output, which is
assumed to be a synchronous printer device. Thus:

scat file> /dev/spO

prints the file, and:

cat filel file2 > /dev/spO

concatenates file] and file2 and places the result on the printer.

If no input file is given, or if the argument - is encountered, scat reads from
the standard input file. Output is buffered in 512-byte blocks unless the -u
option is specified. The -s option makes scat silent about non-existent files.

SEE ALSO
cp(I), pr(I), stty(I).

WARNINGS
Scat uses synchronous printers in line mode with the wrap around option
enabled. This means that the maximum line length is 79 characters; longer
lines will be wrapped back to the beginning of the next line each time the end
of a printer line is reached.

- 1 -

SCC(l) (DEC only) see(l) l

NAME
scc - C compiler for stand-alone programs

SYNOPSIS
see [+[lib]] [option] ... [file] ...

DESCRIPTION

FILES

See prepares the named files for stand-alone execution. The option and file
arguments may be anything that can legally be used with the ee command; it
should be noted, though, that the -p (profiling) option, as well as any object
module that contains system calls, will cause the executable not to run.

See defines the compiler constant, STANDALONE, so that sections of C pro
grams may be compiled conditionally when the executable will be run stand
alone.

The first argument specifies an auxiliary library that defines the device
configuration of the PDP-II computer for which the stand-alone executable is
being prepared. Lib may be one of the following:

A RP04/05/06 disk and TUI6 magnetic tape, or equivalent on the PDP
II plus RM05 and RM80 disks, and TU78 and TSII tapes, or
equivalent on the V AX

B RKIl1RK05 disk, RPIlIRP03 disk, and TMI1/TUI6 magnetic tape, or
equivalent

If no + lib argument is specified, + A is assumed. If the + argument is
specified alone, no configuration library is loaded unless the user supplies his
own.

llib/crt2.o
lusr Ilib/lib2.a
lusr llib/lib2A.a
lusr/libllib2B.a

execution start-off
stand-alone library
+ A configuration library
+ B configuration library

(PDP-II only)
(PDP-II only)

SEE ALSO
cc(I), Id(I), a.out(4).

- I -

SCCSDIFF(1) SCCSDIFF(1)

NAME
sccsdiff - compare two versions of an sees file

SYNOPSIS
sccsdiff -rSID 1 -rSID2 [-p] [-sn] files

DESCRIPTION

FILES

Sccsdiff compares two versions of an secs file and generates the differences
between the two versions. Any number of sces files may be specified, but
arguments apply to all files.

-rSID?

-p

-sn

SID1 and SID2 specify the deltas of an sees file that are to
be compared. Versions are passed to bdiff{I) in the order
given.

pipe output for each file through pr(1).

n is the file segment size that bdiff will pass to diff(l).
This is useful when diff fails due to a high system load.

/tmp/get????? Temporary files

SEE ALSO
bdiff(l), get(1), help(1), pr(1).
Source Code Control System UNIX System User's Guide.

DIAGNOSTICS
''file: No differences" If the two versions are the same.
Use help (1) for explanations.

- 1 -

SDB(1) (not on PDP-II) SDB(I)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-w] [-W] [objfil [corfil [directory]]]

DESCRIPTION
Sdb is a symbolic debugger which can be used with C and F77 programs. It
may be used to examine their object files and core files and to provide a con-
trolled environment for their execution. .

Objfil is normally an executable program file which has been compiled with the
-g (debug) option; if it has not been compiled with the -g option, or if it is
not an executable file, the symbolic capabilities of sdb will be limited, but the
file can still be examined and the program debugged. The default for objfil is
a.out. Corfil is assumed to be a core image file produced after executing objfil;
the default for corfU is core. The core file need not be present. A - in place
of corfil will force sdb to ignore any core image file. Source files used in con
structing objfil must be in directory to be located.

It is useful to know that at any time there is a current line and current file. If
corfil exists then they are initially set to the line and file containing the source
statement at which the process terminated. Otherwise, they are set to the first
line in main O. The current line and file may be changed with the source file
examination commands.

By default, warnings are provided if the source files used in producing objfil
cannot be found, or are newer than objfil. This checking feature and the
accompanying warnings may be disabled by the use of the -W flag.

Names of variables are written just as they are in C or F77. Variables local to
a procedure may be accessed using the form procedure:variable. If no pro
cedure name is given, the procedure containing the current line is used by
default.

It is also possible to refer to structure members as variable.member, pointers to
structure members as variable- > member and array elements as
variablelnumberl. Pointers may be dereferenced by using the form pointerlOI.
Combinations of these forms may also be used. F77 common variables may be
referenced by using the name of the common block instead of the structure
name. Blank common variables may be named by the form .variable. A
number may be used in place of a structure variable name, in which case the
number is viewed as the address of the structure, and the template used for the
structure is that of the last structure referenced by sdb. An unqualified struc
ture variable may also be used with various commands. Generally, sdb will
interpret a structure as a set of variables. Thus, sdb will display the values of
all the elements of a structure when it is requested to display a structure. An
exception to this interpretation occurs when displaying variable addresses. An
entire structure does have an address, and it is this value sdb displays, not the
addresses of individual elements.

Elements of a multidimensional array may be referenced as
variablelnumberHnumber1. .. , or as variablelnumber,number, ... 1. In place of
number, the form number;number may be used to indicate a range of values, •
may be used to indicate all legitimate values for that subscript, or subscripts
may be omitted entirely if they are the last subscripts and the full range of
values is desired. As with structures, sdb displays all the values of an array or
of the section of an array if trailing subscripts are omitted. It displays only the
address of the array itself or of the section specified by the user if SUbscripts
are omitted. A multidimensional parameter in an F77 program cannot be
displayed as an array, but it is actually a pointer, whose value is the location of

- 1 -

SDB(I) (not on PDP-I 1) SDB(I)

the array. The array itself can be accessed symbolically from the calling func
tion.

A particular instance of a variable on the stack may be referenced by using the
form procedure:variable,number. All the variations mentioned in naming vari
ables may be used. Number is the occurrence of the specified procedure on the
stack, counting the top, or most current, as the first. If no procedure is
specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer con
stants which are valid in C may be used, so that addresses may be input in
decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of the
file. If no procedure or file name is given, the current file is used by default. If
no number is given, the first line of the named procedure or file is used.

While a process is running under sdb all addresses refer to the executing pro
gram; otherwise they refer to objfil or corfil. An initial argument of -w per
mits overwriting locations in objfil.

Addresses.
The address in a file associated with a written address is determined by a map
ping associated with that file. Each mapping is represented by two triples (bI,
eI, II) and (b2, e2,12) and the file address corresponding to a written address
is calculated as follows:

bi address < el

file address==ad-!ress+lI-bi
otherwise

b2address < e2

file address ==address +12 -b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs
with separated I and D space) the two segments for a file may overlap.

The initial setting of both mappings is suitable for normal a.out and core files.
If either file is not of the kind expected then, for that file, bi is set to 0, ei is
set to the maximum file size, and 11 is set to 0; in this way the whole file can
be examined with no address translation.

In order for sdb to be used on large files, all appropriate values are kept as
signed 32 bit integers.

Commands.
The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.

T Print the top line of the stack trace.

variable / elm
Print the value of variable according to length I and format m. A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers are:

b one byte
h two bytes (half word)
I four bytes (long word)

- 2 "

SDB(l) (not on PDP-l1) SDB(l)

Legal values for mare:
c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32 bit single precision floating point
g 64 bit double precision floating point
s Assume variable is a string pointer and print characters

starting at the address pointed to by the variable.
a Print characters starting at the variable's address. This

format may not be used with register variables.
p pointer to procedure

disassemble machine-language instruction with addresses
printed numerically and symbolically.

I disassemble machine-language instruction with addresses
just printed numerically.

The length specifiers are only effective with the formats c, d, u, 0 and x.
Any of the specifiers, c, I, and m, may be omitted. If all are omitted, sdb
choses a length and a format suitable for the variable's type as declared
in the program. If m is specified, then this format is used for displaying
the variable. A length specifier determines the output length of the value
to be displayed, sometimes resulting in truncation. A count specifier c
tells sdb to display that many units of memory, beginning at the address
of variable. The number of bytes in one such unit of memory is deter
mined by the length specifier I, or if no length is given, by the size associ
ated with the variable. If a count specifier is used for the s or a com
mand then that many characters are printed. Otherwise successive char
acters are printed until either a null byte is reached or 128 characters are
printed. The last variable may be redisplayed with the command .r
The sh (1) metacharacters • and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no pro
cedure name is given, variables local to the current procedure and global
variables are matched, while if a procedure name is specified then only
variables local to that procedure are matched. To match only global vari
ables, the form :pattern is used.

linen umber ?1m
variable:? 1m

Print the value at the address from a.out or I space given by linenumber
or variable (procedure name), according to the format 1m. The default
format is 'i'.

variable = 1m
linenumber = 1m
number=lm

Print the address of variable or linenumber, or the value of number, in
the format specified by 1m. If no format is given, then Ix is used. The
last variant of this command provides a convenient way to convert
between decimal, octal and hexadecimal.

variable !value
Set variable to the given value. The value may be a number, a character
constant or a variable. The value must be well defined; expressions which
produce more than one value, such as structures, are not allowed. Char
acter constants are denoted 'character. Numbers are viewed as integers
unless a decimal point or exponent is used. In this case, they are treated
as having the type double. Registers are viewed as integers. The

- 3 -

.SOB(I) (not on PDP-II) SOB(I)

variable may be an expression which indicates more than one variable,
such as an array or structure name. If the address of a variable is given,
it is regarded as the address of a variable of type int. C conventions are
used in any type conversions necessary to perform the indicated assign
ment.

x Print the machine registers and the current machine-language instruction.

X Print the current machine-language instruction.

The commands for examining source files are:

e procedure
efile-name
e directory!
e directory file-name

The first two forms set the current file to the file containing procedure or
to file-name. The current line is set to the first line in the named pro
cedure or file. Source files are assumed to be in directory. The default is
the current working directory. The latter two forms change the value of
directory. If no procedure, file name, or directory is given, the current
procedure name and file name are reported.

/regular expression/
Search forward from the current line for a line containing a string match
ing regular expression as in ed (1). The trailing / maybe elided.

?regular expression?
Search backward from the current line for a line containing a string
rna tching regular expression as in ed (1) . The trailing ? rna y be elided.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the current line to
the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current line.

count +
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument beginning
with < or > causes redirection for the standard input or output respec
tively. If count is given, it specifies the number of breakpoints to be
ignored.

linen umber c count
linenumber C count

Continue after a breakpoint or interrupt. If count is given, it specifies the
number of breakpoints to be ignored. C continues with the signal which
caused the program to stop reactivated and c ignores it. If a linen umber
is specified then a temporary breakpoint is placed at the line and execu
tion is continued. The breakpoint is deleted when the command finishes.

- 4 -

SOB(I) (not on PDP-II) SOB (I)

linen umber g count
Continue after a breakpoint with execution resumed at the given line. If
count is given, it specifies the number of breakpoints to be ignored.

s count
S count

i

Single step the program through count lines. If no count is given then
the program is run for one line. S is equivalent to s except it steps
through procedure calls.

I Single step by one machine-language instruction. I steps with the signal
which caused the program to stop reactivated and i ignores it.

variable$m count
address:m count

Single step (as with s) until the specified location is modified with a new
value. If count is omitted, it is effectively infinity. Variable must be
accessible from the current procedure. Since this command is done by
software, it can be very slow.

level v
Toggle verbose mode, for use when single stepping with S, s or m. If
level is omitted, then just the current source file andlor subroutine name
is printed when either changes. If level is 1 or greater, each C source
line is printed before it is executed; if level is 2 or greater, each assembler
statement is also printed. A v turns verbose mode off if it is on for any
level.

k Kill the program being debu~ged.

proced ure (arg 1 ,arg2, .. J
procedure (arg 1 ,arg2, .. J / m

Execute the named procedure with the given arguments. Arguments can
be integer, character or string constants or names of variables accessible
from the current procedure. The second form causes the value returned
by the procedure to be printed according to format m. If no format is
given, it defaults to d.

linen umber b commands
Set a breakpoint at the given line. If a procedure name without a line
number is given (e.g. "proc:"), a breakpoint is placed at the first line in
the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, execution stops just before the breakpoint and con
trol is returned to sdb. Otherwise the commands are executed when the
breakpoint is encountered and execution continues. Multiple commands
are specified by separating them with semicolons. If k is used as a com
mand to execute at a breakpoint, control returns to sdb, instead of con
tinuing execution.

8 Print a list of the currently active breakpoints.

linen umber d
Delete a breakpoint at the given line. If no linen umber is given then the
breakpoints are deleted interactively: Each breakpoint location is printed
and a line is read from the standard input. If the line begins with a y or
d then the breakpoint is deleted.

D Delete all breakpoints.

Print the last executed line.

- 5 -

SOB (I)

FILES

(not on PDP-II) SOB (1)

linen umber a
Announce. If linen umber is of the form proc:number, the command
effectively does a linenumber b I. If linenumber is of the form proc:, the
command effectively does a proc: b T.

Miscellaneous commands:

!command
The command is interpreted by sh (1).

new-line
If the previous command printed a source line then advance the current
line by one line and print the new current line. If the previous command
displayed a memory location then display the next memory location.

control-D
Scroll. Print the next 10 lines of instructions, source or data depending
on which was printed last.

< filename
Read commands from filename until the end of file is reached, and then
continue to accept commands from standard input. When sdb is told to
display a variable by a command in such a file, the variable name is
displayed along with the value. This command may not be nested; <
may not appear as a command in a file.

M Print the address maps.

M [?/)[*) b e f
Record new values for the address map. The arguments? and / specify
the text and data maps respectively. The first segment, (b1, e1, fl), is
changed unless * is specified, in which case the second segment, (b1, e1,
f1), of the mapping is changed. If fewer than three values are given, the
remaining map parameters are left unchanged.

It string
Print the given string. The C escape sequences of the form \character
are recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

a.out
core

SEE ALSO
ccO), f77(1), shO), a.out(4), core(4).

WARNINGS

BUGS

On the VAX-ll/780, C variables are identified internally with an underscore
prepended. User variables which differ by only an initial underscore cannot be
distinguished, as sdb recognizes both internal and external names.

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some infor
mation may be missing.

If a procedure is called when the program is not stopped at a breakpoint (such

- 6 -

SDB(t) (not on PDP-l 1) SDB(1)

as when a core image is being debugged), all variables are initialized before the
procedure is started. This makes it impossible to use a procedure which for
mats data from a core image.

The default type for printing F77 parameters is incorrect. Their address is
printed instead of their value.

Tracebacks containing F77 subprograms with multiple entry points may print
too many arguments in the wrong order, but their values are correct.

The range of an F77 array subscript is assumed to be 1 to n, where n is the
dimension corresponding to that subscript. This is only significant when the·
user omits a subscript, or uses. to indicate the full range. There is no problem
in general with arrays having subscripts whose lower bounds are not 1.

On the 3B20S there is no hardware trace mode and single stepping is imple
mented by setting pseudo breakpoints where possible. This is slow.

The entry point to an optimized function cannot be found on the 3B20S. Set
ting a breakpoint at the beginning of an optimized function may cause the mid
dle of some instruction within the function to be overwritten. This problem can
be circumvented by disassembling the first few instructions of the function, and
manually setting a breakpoint at the first instruction after the stack pointer is
adjusted.

- 7 -

SDIFF(I) SDIFF(I)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ...] file 1 file2

DESCRIPTION
Sdiff uses the output of diff(1) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files is printed
with a blank gutter between them if the lines are identical, a < in the gutter if
the line only exists in file1 , a > in the gutter if the line only exists in file2, and
a I for lines that are different.

For example:

x
a
b
c
d

<
<

y
a

d
> c

The following options exist:

-w n Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

-I Only print the left side of any lines that are identical.

-s Do not print identical lines.

-0 output Use the next argument, output, as the name of a third file that is

) SEE ALSO

created as a user controlled merging of file1 and file2. Identical
lines of file 1 and file2 are copied to output. Sets of differences, as
produced by diff(1), are printed; where a set of differences share a
common gutter character. After printing each set of differences,
sdi./J prompts the user with a % and waits for one of the following
user-typed commands:

append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical lines

v turn off silent mode

e I call the editor with the left column

e r call the editor with the right column

e b call the editor with the concatenation of left and
right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the
end of the output file.

diff(I), ed (1).

SECt) SECt)

NAME
se - screen editor for video terminals

SYNOPSIS
se [-Tlterm]] [-ifile] [-ofile] [-s] [file]

DESCRIPTION
Se is an interactive screen editor for use on asynchronous, ASCII CRT termi- I

nals. If the file argument is given, se will read the file into its buffer so that it
can be edited. If no file is specified, the buffer will be empty and there will be
no current file name.

Options to se are:

-T Causes se to print a list of the terminal types it understands and
exit immediately, ignoring all other options.

-Tterm Specifies the terminal type being used. If no -T option is
specified, se will check the environment variables SETERM and
TERM On that order) to determine the terminal type specified (the
first non-null value it finds is the one used). If no terminal type is
specified or if the terminal type specified is unknown to se, se will
print a diagnostic followed by a list of terminal types it under
stands and then exit.

-ifile Causes a sequence of se commands to be read from the named file.
The file is read to end of file. If more than one -i option is given,
the files are read in the order specified on the command line.
When all -i options have been processed, commands are read
from the standard input. A maximum of five files may be
specified.

-ofile Causes a copy of all commands given to this invocation of se to be
piaced in fiie. This fiie may then be used with the -i option.

-s Reduce the number of messages printed on the status line. This is
intended for the expert user.

Other than the order of multiple -i options, the order of the options and the
filename on the command line is not important.

During editing, se displays the contents of the file on the screen. As the file is
edited, the screen is updated to reflect changes made in the file contents. If the
entire contents of the file will not fit on the screen, se displays a portion of it.
The limits of the file are indicated on the screen by the TOP OF FILE and BOT
TOM OF FILE messages.

The top line of the display is used for a status line. The status line contains
(from left to right): the last command entered (or being entered), error mes
sages and the name of the file being edited.

The current position in the file is indicated by the position of the cursor on the
screen. The cursor can be moved to different file positions by cursor movement
commands or find commands. The cursor is not restricted to text already
present. If text is inserted or overwritten to the right of the end of the line, the
line will be padded with blanks.

Se operates in command mode: each character typed is interpreted as part of
an se command. As each command is recognized, the appropriate action is per
formed. To add new text to the file, the insert command is used. During
insert, characters typed are interpreted as text to be added to the file. The text
is added before the current cursor position. For example, if the cursor is posi
tioned on the first r in the word edr-formatter and the insert command is given,
typing ito and ending the insert yields editor-formatter.

- 1 -

SECt) SE(t)

COMMAND SYNTAX
Most se commands are of the form:

[count] [text-identified command

The count is an optional field, an integer between 1 and 32,767. The default
value for count is one. The optional text-identifier specifies the block of text of
interest. Valid text-identifiers are described below; the default value for text
identifiers is dependent on the command. If more than one count or text
identifier is used, all but the last will be ignored. Commands are specified
below.

TEXT IDENTIFIERS
The valid text-identifiers (text-id) are:

Text-id

w
F
I
S (or s)
e
/

Text Represented
Character
Word
File
Line
Screen
Previously defined region
Region found by last find command

In general, a text-id block is identified as that in which the cursor is positioned.
A text-id may also be identified by a cursor positioned on the white space fol
lowing the text-id.

CURSOR KEYS
The cursor keys on the terminal keyboard are used to move the cursor around
the screen and through the file. For terminals with no cursor keys, the ctrl +z,
ctrl +x, ctrl +c, ctrl +v keys may be used instead of -, !, land - respectively.

NOTATION
In the list of se commands below, the following notations apply:

[] items within brackets are optional
{} one of the items within the braces must be used
text-id identifies a block of text
chars any string of characters
position-cursor a sequence of cursor-moves or find commands (see below)

TEXT COMMANDS
Commands longer than one character (for example, READ) may be invoked by
typing an unique initial substring followed by a RETURN (newline). If the sub
string is not unique the RETURN is ignored. The BREAK key causes se to stop
its current action and return to its command level.

cursor moves
[count] cursor key

[count] [text-id] cursor key

Move the cursor count lines up {f) or down (!>
or count characters to the left (-) or the right
(-) . Screen scroll will occur if the top or bot
tom of screen is encountered. The cursor will
wrap at line beginning and end as expected.

Move the cursor the specified amount of text-id
blocks. If the text-id is character (.) (default),
the action is the same as for plain cursor key use
(see above). For all other text-ids, - means
beginning of, - means end of, 1 means previous,
and 1 means next. For example, Sl means go to

- 2 -

SECt)

space-bar

RETURN

TAB

HOME

Define Region
b [position-cursor] ctrl +d

Copy text

SECt)

the next screen.

The space-bar moves the cursor one character to
the right (equivalent to .-).

The RETURN key moves the cursor to the begin
ning of the next line.

The TAB key moves the cursor to the next tab
position (set every 8 columns).

For terminals that have a HOME key, it moves
the cursor to the top left corner of the screen
(equivalent to S-).

Define an arbitrary linear region. Any command
that changes the file being edited will cause the
current region to be undefined.

[count1 [text-id] c [position-cursor] ctrl +d

Delete text
[count1 [text-id] d

Refresh document display
DISPLAY

Edit file

Copy text-id block (default is one character) at
new cursor position.

Delete text -id block (default is one character).

Rewrites display from the file. Useful to restore
contents of screen from the effects of line noise
etc.

EDIT [filename] { ctrl +d, RETURN}

Find string occurrence

Start editing the specified file. If no file name
has been specified, use the current file. If the
contents of the current file have been altered
since the last WRITE command, the user is first
queried as to whether to save those changes.

[text-id] f chars { ctrl +d, RETURN}
Search text-id (default is entire file) for chars
and position cursor there. The cursor is not
moved if chars are not found. The chars are
interpreted as a regular expression (see
regexp (5)) .

Find all and execute command automatically
[count] hext-id] g chars { ctrl +d, RETURN} command

Search text-id (default is entire file) for all
occurrences of chars; position-cursor at first
occurrence and execute command. Continue to
next occurrence and apply the same command,
and so on. The command may not be another
global command. The chars are interpreted as a
regular expression (see regexp(5».

Find all and execute command interactively
[count1 hext-id] G chars { ctrl +d, RETURN} command

Search text-id (default is entire file) for first
occurrence of chars; position-cursor at first
occurrence and wait for command; execute

- 3 -

SE(l)

Insert text
[text-id] i chars ctrl +d

Move text

SE(l)

command and continue to next occurrence where
a new command may be input, and so on. The
command may not be another global command.
The chars are interpreted as a regular expression
(see regexp(5».

Insert text at the current cursor position. If the
text-id is I, a blank line is inserted and the cursor
positioned at the beginning of that line. Use of
cursor-keys (no preceding count or text-id) posi
tions the cursor at the next character to be
inserted. The back-space key will cause the pre
vious character to be deleted.

[count] [text-id] m [position-cursor] ctrl +d

Overwrite text
o chars ctrl +d

Leave the editor
q

Get text

Reposition text-id block (default is one charac
ter) at new position. It is an error if the new
position is within the text to be moved.

Performs one-to-one character replacement
beginning at cursor position. Use of cursor-keys
(no preceding count or text-id) positions the cur
sor at the next character to be overwritten. The
back-space key will cause the previous character
to be deleted.

Exits from se. If the contents of the current file
have been altered since the last WRITE command,
the user is first queried as whether to save those
changes.

READ [filename] { ctrl +d, RETURN}

Replace text

Insert text from filename at cursor posltIon. If
no filename is specified, the current filename is
used. The cursor position is unchanged.

leount] [text-id] r chars ctr) +d

Undo last command
UNDO

Save text

Replace text-id block (default is one character)
with text.

Undoes last text-modifying command. An
UNDO may not be undone.

[count] [text-id] WRITE [filename] { ctrl +d, RETURN}
Save text from text-id (default is entire file) in
the named file. If filename is not specified, text
is saved in the file currently being edited. Note
that existing text in the file is replaced.

Process through the UNIX System
leount1 [text-id] X UNIX System command { etrl +d, RETURN}

Passes text -id block (default is no text) to the
UNIX System-command as standard input and
replaces text-id block with the standard output

- 4 -

SE(t) SECt)

from the UNIX System-command.

Request help
? Display a listing of available se text-ids, com

mands and their syntax.

Escape from editor
[countl [text-id1 ! UNIX System command { ctrl +d, RETURN}

If the text-id or count is specified, it is given as
standard input to the UNIX System command.
Otherwise, standard input is the same as for se.
No changes are made to the file being edited.

Repeat last command
" Ditto repeats the last command. This means the

command plus preceding text-id and count.

Go to line
N# Move to line N, where N is an integer between

and 32,767.

Erase input
@ Cause se to ignore any partially typed command

(including count, modifier, and multi-character
command).

TERMINAL REQUIREMENTS

FILES

Se can run on any terminal with suitable cursor addressing. In order to use cur
sor keys, they must emit characters to the host computer. Performance may be
degraded if the terminal does not have:

character insert and delete
- line insert and delete
- erase to end of line and page

If the terminal type specified is not suitable (i.e. it has no cursor addressing), se
prints a diagnostic and exits immediately.

The environment variable TERMINFO modifies the search for the specified ter
minal type in the terminal description file. If present, it should contain one of
two kinds of values:

an alternate file name for the terminal description file (in this case, the first
character must be a/). This file will be used to search for a description of
the specified terminal instead of the default terminal description file.

the description for a specific ter:ninal (this should be the entry from the ter
minal description file with the escaped new lines removed). This description
will be treated as though it had been prepended to the default terminal
description file. Using TERMINFO in this manner allows the redefinition of
a specific terminal description or the inclusion of a description for a termi
nal that is not included in the default terminal description file.

If the description contained in TERMINFO is that of the terminal to be used
with se, start-up time for se can be reduced considerably since the terminal
description file need not be searched.

Itmp/se#
Itmp/sei#
I usr IIi bl se. term

temporary; # is the process number.
record of keystrokes; # is the process number.
terminal description file

DIAGNOSTICS
Error messages are displayed on the message line on the screen during editing.

- 5 -

SE(l) SE(l)

WARNING
Regular expressions span more than one line, thus abc. *xyz may match the
entire file.

Some terminals need persuasion to make the cursor keys emit characters. For
example, HP2621 cursor keys only emit characters when the function labels are
displayed and the SHIFT key is held down and the cursor key struck.

SEE ALSO
regexp(5).

- 6 -

SED (1) SED(t)

NAME
sed - stream editor

SYNOPSIS
sed [-n] [-e script] [-{ sfile] [files]

DESCRIPTION
Sed copies the named files (standard input default) to the standard output,
edited according to a script of commands. The -f option causes the script to
be taken from file sfile; these options accumulate. If there is just one -e
option and no -f options, the flag -e may be omitted. The -n option
suppresses the default output. A script consists of editing commands, one per
line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under -n) and
deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files, a $ that addresses the last line of input, or a context address, i.e., a
/regular expression/ in the style of ed(O modified thus:

In a context address, the construction \?regular expression?, where?
is any character, is identical to /regular expression!. Note
that in the context address \xabc\xdefx, the second x stands
for itself, so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period. matches any character except the terminal new-line of the
pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range from

the first pattern space that matches the first address through
the next pattern space that matches the second. (If the second
address is a number less than or equal to the line number first
selected, only one line is selected.) Thereafter the process is
repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of
the negation function! (below).

In the following list of functions the maximum number of permissible addresses
for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end
with \ to hide the new-line. Backslashes in text are treated like backslashes in
the replacement string of an s command, and may be used to protect initial
blanks and tabs against the stripping that is done on every script line. The rfile
or wfile argument must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can
be at most 10 distinct wfile arguments.

(Oa\

- 1 -

SED(I) SED(I)

text Append. Place text on the output before reading the next input
line.

(2) b label Branch to the : command bearing the label. If label is empty,
branch to the end of the script.

(2) c\
text

(2) d
(2) D

(2) g

(2)G
(2) h

(2) H
(1) i\
text
(2)1

(2) n

(2) N

Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, place text on the output. Start the next
cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first
new-line. Start the next cycle.
Replace the contents of the pattern space by the contents of the
hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the pat
tern space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous
form. Non-printing characters are spelled in two-digit ASCII and
long lines are folded.
Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.
Append the next line of input to the pattern space with an embed
ded new-line. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
new-line to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before reading

the next input line.
(2) s/regular expression/replacement /flags

Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of I. For a fuller description see ed(I). Flags is zero or
more of:

g Global. Substitute for all nonoverlapping instances
of the regular expression rather than just the first
one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfile if a

replacement was made.
(2) t label Test. Branch to the: command bearing the label if any substitu

tions have been made since the most recent reading of an input line
or execution of a t. If label is empty, branch to the end of the
script.

(2) w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) y/stringl /string2/

Transform. Replace all occurrences of characters in stringl with
the corresponding character in string2. The lengths of stringl and
string2 must be equal.

(2)! function
Don't. Apply the function (or group, if function is () only to lines
not selected by the address (es) .

- 2 -

SED(t)

(0): label

(1)
(2) (

(0)

SEE ALSO

SED(I)

This command does nothing; it bears a label for. and t commands
to branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching } only when
the pattern space is selected.
An empty command is ignored.

awk(t), ed(I), grep(t).

- 3 -

SEND(lC) SEND(IC)

NAME
send, gath - gather files and/or submit RJE jobs

SYNOPSIS
gatb [-ib] file ...

send argument

DESCRIPTION
Gath

Gath concatenates the named files and writes them to the standard output.
Tabs are expanded into spaces according to the format specification for each
file (see jspec(4». The size limit and margin parameters of a format
specification are also respected. Non-graphic characters other than tabs are
identified by a diagnostic message and excised. The output of gath contains no
tabs unless the -b flag is set, in which case the output is written with standard
tabs (every eighth column).

Any line of any of the files which begins with - is interpreted by gath as a con
trol line. A line beginning ,,- " (tilde,space) specifies a sequence of files to. be
included at that point. A line beginning -! specifies a UNIX System command;
that command is executed, and its output replaces the -! line in the gath out
put.

Setting the -i flag prevents control lines from being interpreted and causes
them to be output literally.

A file name of - at any point refers to standard input, and a control line con
sisting of -. is a logical EOF. Keywords may be defined by specifying a replace
ment string which is to be substituted for each occurrence of the keyword.
Input may be collected directly from the terminal, with several alternatives for
prompting. In fact, all of the special arguments and flags recognized by the
send command are also recognized and treated identically by gath. Several of
them only make sense in the context of submitting an RJE job.

Send
Send is a command-level interface to the RJE subsystems. It allows the user to
collect input from various sources in order to create a run stream consisting of
card images, and submit this run stream for transmission to an IBM host com
puter. Output from the IBM system may be returned to the user in either
ASCII text form or EBCDIC punch format (see pnch (4)).

Possible sources of input to send are: ordinary files, standard input, the termi
nal, and the output of a command or shell file. Each source of input is treated
as a virtual file, and no distinction is made based upon its origin. Typical input
is an ASCII text file of the sort that is created by the editor ed(l). An optional
format specification appearing in the first line of a file (see jspec (4)) deter
mines the settings according to which tabs are expanded into spaces. In addi
tion, lines that begin with - are normally interpreted as commands controlling
the execution of send. They may be used to set or reset flags, to define key
word substitutions, and to open new sources of input in the midst of the current
source. Other text lines are translated one-for-one into card images of the run
stream.

The run stream that results from this collection is treated as one job by the RJE
subsystems. Send prints the card count of the run stream, and the queuer that
is invoked prints the name of the temporary file that holds the job while it is
awaiting transmission. The initial card of a job submitted to a host must have
a / / in the first column. Any cards preceding this card will be excised. If a
host computer is not specified before the first card of the runstream is ready to
be sent, send will select a reasonable default. All cards beginning with /*$ will
be excised from the runstream, because they are HASP command cards.

- 1 -

SEND(IC) SEND(tC)

The arguments that send accepts are described below. An argument is inter
preted according to the first pattern that it matches. Preceding a character
with \ causes it to loose any special meaning it might otherwise have when
matching against an argument pattern.

+
:spec:

:message

-:prompt

+:prompt

-flags

+flags

=-flags

!command

$line

@directory

-comment

?:keyword

? keyword ... "xx

? keyword - string

-:keyword

keyword - "xx

keyword-sUint

IwSI"

file-name

Close the current source.

Open standard input as a new source.

Open the terminal as a new source.

Establish a default format specification for included
sources,
e.g., :m6t -12:

Print message on the terminal.

Open standard input and, if it is a terminal, print
prompt.

Open the terminal and print prompt.

Set the specified flags, which are described below.

Reset the specified flags.

Restore the specified flags to their state at the previ
ous level.

Execute the specified UNIX System command via
the one-line shell, with input redirected to Idev/null
as a default. Open the standard output of the com
mand as a new source.

Collect contiguous arguments of this form and write
them as consecutive lines to a temporary file; then
have the file executed by the shell. Open the stan
dard output of the shell as a new source.

The current directory for the send process is changed
to directory. The original directory will be restored
at the end of the current source.

Ignore this argument.

Prompt for a definition of keyword from the termi
nal unless keyword has an existing definition.

Define the keyword as a two digit hexadecimal char
acter code unless it already has a non null replace
ment.

Define the keyword in 'terms of a replacement string
unless it already has a non null replacement.

Prompt for a 'd~finition of keyword from the termi
nal.

Define k(!YWOI'd as a two-digit hexadecimal character
code.

Define keyword in terms- of a replacement string.

The •. machine. tlla." the job sOOuld ,be submitted
to. It ,ca. heart)' 'namo:' that co.respot'lds to one 'in
the DIst· column of- the RJE con~ralion file
Uusr/rj_lliaft) .

Open the specified file as ait~w source of input.

- 2 -

SEND(IC> SEND(1C>

When commands are executed via $ or ! the shell environment (see
environ(S» will contain the values of all send keywords that begin with $
and have the syntax of a shell variable.

The flags recognized by send are described in terms of the special processing
that occurs when they ate set:

-I List card images on standard output. EBCDIC characters are
translated back to ASCII.

-q Do not output card images.

-f Do not fold lower case to upper.

-t Trace progress on diagnostic output, by announcing the opening of
input sources.

-k Ignore the keywords that are active at the previous level and erase
any keyword definitions that have been made at the current level.

-r Process included sources in raw mode; pack arbitrary 8-bit bytes one
per column (80 columns per card) until an EOF.

-i Do not interpret control lines in included sources; treat them as text.

-s Make keyword substitutions before detecting and interpreting control
lines.

-y Suppress error diagnostics and submit job anyway.

-g Gather mode, qualifying -I flag; list text lines before converting
them to card images.

-h Write listing with standard tabs.

-p Prompt with • when taking input from the terminal.

-m When input returns to the terminal from a lower level, repeat the
prompt, if any.

-a Make -k flag propagate to included sources, thereby protecting
them from keyword substitutions.

-c List control lines on diagnostic output.

-d Extend the current set of keyword definitions by adding those active
at the end of included sources.

-x This flag guarantees that the job will be transmitted in the order of
submission (relative to otboF jobs sent with this flag).

Control lines are input lines,that begin with -. In the default mode +ir,
they are interpret~'as commaAds' to send. Normally they are detected
immediately and read literall,. The, -s fla;g forces keyword substitutions
to be made before control li~ are intercepted and interpreted. This can
lead to unexpected resuJts iJ a control line uses a keyword which is defined
within an immediately preceding -$ sequence. Arguments appearing in
control lines are handled exactly like the command arguments to send,
except that they are processed at a nested ~vel of input.

The two possible formats for a control line are: "-argument" and ,,- argu
ment ... ". In the first case, where the - is not followed by a space, the
remainder' of tho line is take. as a sia&le argwnent to send. In the second
cue, the. line. is. pel" to obtaia a. sequence of arguments delimited by
SJI8Ci8. 1ft thia ca&e. the- quot~! and • may' be empm.yed to pass embedded
spaces.

,.lAe intelplotilltioA 0# the ar,.aent ... is chosen so that an input line COB-

, MsAJtg'-or-. &: trea.k4a5 a ~f-EQF.T_:fQl1owjllg example iUustra.'

SENO(tC)

some of the above conventions:

send
- argument ...

SEND(IC)

This sequence of three lines is equivalent to the command synopsis at the
beginning of this description. In fact, the - is not even required. By con
vention, the send command reads standard input if no other input source is
specified. Send may therefore be employed as a filter with side-effects.

The execution of the send command is controlled at each instant by a
current environment, which includes the format specification for the input
source, a default format specification for included sources, the settings of
the mode flags, and the active set of keyword definitions. This environ
ment can be altered dynamically. When a control line opens a new source
of input, the current environment is pushed onto a stack, to be restored
when input resumes from the old source. The initial format specification
for the new source is taken from the first line of the file. If none is pro
vided, the established default is used or, in its absence, standard tabs. The
initial mode settings and active keywords are copied from the old environ
ment. Changes made while processing the new source will not affect the
environment of the old source, with one exception: if -d mode is set in the
old environment, the old keyword context will be augmented by those
definitions that are active at the end of the new source.

When send first begins execution, all mode flags are reset, and the values
of the shell environment variables become the initial values for keywords of
the same name with a $ prefixed.

The initial reset state for all mode flags is the + state. In general, special
processing associated with a mode N is invoked by flag -Nand is revoked
by flag + N. Most mode settings have an immediate effect on the process
ing of the current source. Exceptions to this are the -r and -i flags,
which apply only to included source, causing it to be processed in an unin
terpreted manner.

A keyword is an arbitrary 8-bit ASCII string for which a replacement has
been defined. The replacement may be another string or the hexadecimal
code for a single 8-bit byte. At any instant, a given set of keyword
definitions is active. Input text lines are scanned, in one pass from left to
right, and longest matches are attempted between substrings of the line
and the active set of keywords. Characters that do not match are output,
subject to folding and the standard translation. Keywords are replaced by
the specified hexadecimal code or replacement string, which is then output
character by character. The expansion of tabs and length checking,
according to the format specification of an input source, are delayed until
substitutions have been made in a line.

All of the keywords definitions made in the current source may be deleted
by setting the -k flag. It then becomes possible to reuse them. Setting
the -k flag also causes keyword definitions active at the previous source
level to be ignored. Se~ting the +k flag causes keywords at the previous
level to be ignored but does not delete the definitions made at the current
level. The = k argument reactivates the definitions of the previous level.

When keywords are redefined, the previous definition at the same level of
source input is lost, however the definition at the previous level is only hid
den, to be reactivated upon return to that level unless a -d flag causes the
current definition to be retained.

- 4 -

SEND(iC) SEND(IC)

Conditional prompts for keywords, ?:A,/p which have already been defined
at some higher level to be null or have a replacement will simply cause the
definitions to be copied down to the current level; new definitions will not
be solicited.

Keyword substitution is an elementary macro facility that is easily
explained and that appears useful enough to warrant its inclusion in the
send command. More complex replacements are the function of a general
macro processor (m4(I), perhaps). To reduce the overhead of string com
parison, it is recommended that keywords be chosen so that their initial
characters are unusual. For example, let them aU be upper case.

Send performs two types of error checking on input text lines. Firstly,
only ASCII graphics and tabs are permitted in input text. Secondly, the
length of a text line, after substitutions have been made, may not exceed
80 bytes. The length of each line may be additionally constrained by a
size parameter in the format specification for an input source. Diagnostic
output provides the location of each erroneous line, by line number and
input source, a description of the error, and the card image that results.
Other routine errors that are announced are the inability to open or write
files, and abnormal exits froID.the shell. Normally, the occurrence of any
error causes send, before invoking the queuer, to prompt for positive
affirmation that the suspect run stream should be submitted.

Before submitting a job to a host, send translates 8-bit ASCII characters
into their EBCDIC equivalents. The conversion for 8-bit ASCII characters
in the octal range 040-176 is based on the character set described in
"Appendix H" of IBM System1370 Principles of Operation (IBM SRL
GA22-7000). Each 8-bit ASCII character in the range 040-377 possesses
an EBCDIC equivalent into which it is mapped, with five exceptions: - into
..... , 0345 into -, 0325 into ¢, 0313 into I, 0177 (DEL) is illegal. In listings
requested from send and in printed output returned by the subsystem, the
reverse translation is made with the qualification that EBCDIC characters
that do not have valid 8-bit ASCII equivalents are translated into ".

Additional control over the translation process is afforded by the -f flag
and hexadecimal character codes. As a default, send folds lower-case
letters into upper case. Setting the -f flag inhibits any folding. Non
standard character codes are obtained as a special case of keyword substi
tution.

SEE ALSO

BUGS

m4(I), rjestat(IC), sh(I), fspec(4), pnch(4), ascii(5), environ(5).
UNIX Remote Job Entry User's Guide in the UNIX System User's Guide.

Standard input is read in blocks, and unused bytes are returned via lseek (2).
If standard input is a pipe, multiple arguments of the form - and -:prompt
should not be used, nor should the logical EOF (-.).

- 5 -

SH(I) SH(I)

NAME
sh, rsh - shell, the standard/restricted command programming language

SYNOPSIS
sh [-ceiknrstuvx] [args]
rsh [-ceiknrstuvx] [args]

DESCRIPTION
Sh is a command programming language that executes commands read from a
terminal or a file. Rsh is a restricted version of the standard command inter
preter sh; it is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. See Invoca
tion below for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non-blank words separated by blanks (a
blank is a tab or a space). The first word specifies the name of the command
to be executed. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as argu
ment 0 (see exec(2». The value of a simple-command is its exit status if it
terminates normally, or (octal) 200+status if it terminates abnormally (see sig
nal (2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I (or, for his
torical compatibility, by A). The standard output of each command but the last
is connected by a pipe (2) to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to
terminate.

A list is a sequence of one or more pipelines separated by;, &, & &, or I I.
and optionally terminated by ; or &. Of these four symbols, ; and & have
equal precedence, which is lower than that of & & and II. The symbols & &
and II also have equal precedence. A semicolon (;) causes sequential execu
tion of the preceding pipeline; an ampersand (&) causes asynchronous execu
tion of the preceding pipeline (i.e., the shell does not wait for that pipeline to
finish). The symbol & & (I I) causes the list following it to be executed only
if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary
number of new-lines may appear in a list, instead of semicolons, to delimit
commands.

A command is either a simple-command or one of the following. Unless other
wise stated, the value returned by a command is that of the last simple
command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word ... is omitted, then the for
command executes the do list once for each positional parameter that
is set (see Parameter Substitution below). Execution ends when there
are no more words in the list.

case word in [pattern [I pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see File Name Generation below).

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next then
is executed. Failing that, the else list is executed. If no else list or
then list is executed, then the if command returns a zero exit status.

- 1 -

8H(I) 8H(I)

while list do list done

(list>

{list;}

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; oth
erwise the loop terminates. If no commands in the do list are exe
cuted, then the while command returns a zero exit status; until may be
used in place of while to negate the loop termination test.

Execute list in a sub-shell.

list is simply executed.

The following words are only recognized as the first word of a command and
when not quoted:

if then else elif fi case esac for while until do done { }

Comments.
A word beginning with # causes that word and all the following characters up
to a new-line to be ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents (,,)
may be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution.
The character $ is used to introduce substitutable parameters. Positional
parameters may be assigned values by set. Variables may be set by writing:

name =value [name = value] ...

Pattern-matching is not performed on value.

$ {parameterl
A parameter is a sequence of letters, digits, or underscores (a name), a
digit, or any of the characters ., @, #, ?, -, $, and!. The value, if
any, of the parameter is substituted. The braces are required only
when parameter is followed by a letter, digit, or underscore that is not
to be interpreted as part of its name. A name must begin with a letter
or underscore. If parameter is a digit then it is a positional parameter.
If parameter is • or @, then all the positional parameters, starting with
$1, are substituted (separated by spaces). Parameter $0 is set from
argument zero when the shell is invoked.

$ {parameter: -word}
If parameter is set and is non-null then substitute its value; otherwise
substitute word.

$ {parameter: = word}
If parameter is not set or is null then set it to word; the value of the
parameter is then substituted. Positional parameters may not be
assigned to in this way.

$ {parameter: ?word}
If parameter is set and is non-null then substitute its value; otherwise,
print word and exit from the shell. If word is omitted, then the mes
sage "parameter null or not set" is printed.

${parameter: +word}
If parameter is set and is non-null then substitute word; otherwise sub
stitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set or
is null:

- 2 -

SH(I) SH(I)

echo ${d:-'pwd'}

If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set com
mand.

? The decimal value returned by the last synchronously executed
command.

$ The process number of this shell.
The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below). The

user may not change PATH if executing under rsh.
CDPATH

The search path for the cd command.
MAIL If this variable is set to the name of a mail file, then the shell

informs the user of the arrival of mail in the specified file.
PSt Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> ".
IFS Internal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, PSt, PS2, and IFS, while HOME and
MAIL are not set at all by the shell (although HOME is set by login (1».

Blank Interpretation.
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null argu
ments ("" or ,,) are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the characters ., ?,
and [. If one of these characters appears then the word is regarded as a pat
tern. The word is replaced with alphabetically sorted file names that match the
pattern. If no file name is found that matches the pattern, then the word is left
unchanged. The character. at the start of a file name or immediately follow
ing a I, as well as the character I itself, must be matched explicitly.

Quoting.

• Matches any string, including the null string.
? Matches any single character.
[... 1 Matches anyone of the enclosed characters. A pair of charac- :

ters separated by - matches any character lexically between
the pair, inclusive. If the first character following the opening ,
"[" is a "!" then any character not enclosed is matched.

The following characters have a special meaning to the shell and cause termi
nation of a word unless quoted:

; & () I " < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with
a \. The pair \new-Iine is ignored. All characters enclosed between a pair of'
single quote marks ("), except a single quote, are quoted. Inside double quote
marks (""), parameter and command substitution occurs and \ quotes the char
acters \, " ", and $. "$-" is equivalent to "$1 $2 ... ", whereas "$@" is
equivalent to "$1" "$2"

- 3 -

SH(I) SH(I)

Prompting.
When used interactively, the shell prompts with the value of PSt before reading
a command. If at any time a new-line is typed and further input is needed to
complete a command, then the secondary prompt (i.e., the value of PS2) is
issued.

Input/Output.
Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. The following may appear anywhere
in a simple-command or may precede or follow a command and are not passed
on to the invoked command; substitution occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).
> word Use file word as standard output (file descriptor 1). If the file

does not exist then it is created; otherwise, it is truncated to
zero length.

»word Use file word as standard output. If the file exists then output
is appended to it (by first seeking to the end-of-file); otherwise,
the file is created.

«[- lword The shell input is read up to a line that is the same as word, or
to an end-of-file. The resulting document becomes the stan
dard input. If any character of word is quoted, then no
interpretation is placed upon the characters of the document;
otherwise, parameter and command substitution occurs, (unes
caped) \new-line is ignored, and \ must be used to quote the
characters \, $, " and the first character of word. If - is
appended to «, then all leading tabs are stripped from word
and from the document.

< & digit The standard input is duplicated from file descriptor digit (see
dup (2». Similarly for the standard output using >.

< & - The standard input is closed. Similarly for the standard output
using >.

If one of the above is preceded by a digit, then the file descriptor created is
that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the com
mand is the empty file /dey/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking shell as modified by
input/output specifications.

Redirection of output is not allowed in the restricted shell.

Environment.
The environment (see environ (5» is a list of name-value pairs that is passed to
an executed program in the same way as a normal argument list. The shell
interacts with the environment in several ways. On invocation, the shell scans
the environment and creates a parameter for each name found, giving it the
corresponding value. Executed commands inherit the same environment. If the
user modifies the values of these parameters or creates new ones, none of these
affects the environment unless the export command is used to bind the shell's
parameter to the environment. The environment seen by any executed com
mand is thus composed of any unmodified name-value pairs originally inherited
by the shell, plus any modifications or additions, all of which must be noted in
export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

- 4 -

SH(l) SH(l)

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command name. The following first prints a = b c
and then c:

echo a=b c
set -k
echo a=b c

Signals.
The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &; otherwise signals have the values inherited by the
shell from its parent, with the exception of signal 11 (but see also the trap com
mand below).

Execution.
Each time a command is executed, the above substitutions are carried out.
Except for the Special Commands listed below, a new process is created and an
attempt is made to execute the command via exec (2).

The shell parameter PATH defines the search path for the directory containing
the command. Alternative directory names are separated by a colon (:). The
default path is :lbin:/usrlbin (specifying the current directory, Ibin, and
lusrlbin, in that order). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If the command name contains
a I then the search path is not used; such commands will not be executed by
the restricted shell. Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission but is not an a.out file, it is
assumed to be a file containing shell commands. A sub-shell (i.e., a separate
process) is spawned to read it. A parenthesized command is also executed in a
sub-shell.

Special Commands.
The following commands are executed in the shell process and, ex.cept as
specified, no input/output redirection is permitted for such commands:

No effect; the command does nothing. A zero exit code is returned .
. file Read and execute commands from file and return. The search path

specified by PATH is used to find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. If n is specified then
break n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified then resume at the n-th enclosing loop.

cd [arg]
Change the current directory to argo The shell parameter HOME is the
default argo The shell parameter CDPATH defines the search path for
the directory containing argo Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the
current directory). Note that the current directory is specified by a
null path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg
begins with a I then the search path is not used. Otherwise, each
directory in the path is searched for argo The cd command may not be
executed by rsh.

- 5 -

SH(I) SH(I)

eval [arg ...]
The arguments are read as input to the shell and the resulting
command (s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may
appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omit
ted then the exit status is that of the last command executed (an end
of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the environment
of subsequently-executed commands. If no arguments are given, then
a list of all names that are exported in this shell is printed.

oewgrp [arg ...]
Equivalent to exec oewgrp arg

read [name ...]
One line is read from the standard input and the first word is assigned
to the first name, the second word to the second name, etc., with left
over words assigned to the last name. The return code is 0 unless an
end-of-file is encountered.

readooly [name ...]
The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no argu
ments are given, then a list of all readonly names is printed.

set [- -ekotuvx [arg ...]]
-e Exit immediately if a command exits with a non-zero exit

status.
-k All keyword arguments are placed in the environment for a

command, not just those that precede the command name.
-0 Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to he turned off. These flags
can also be used upon invocation of the shell. The current set of flags
may be found in $ -. The remaining arguments are positional parame
ters and are assigned, in order, to $1, $2, If no arguments are
given then the values of all names are printed.

shift [n]

test

times

The positional parameters from $0 + 1 ... are renamed $1 If n is
not given, it is assumed to be 1.

Evaluate conditional expressions. See test (1) for usage and description.

Print the accumulated user and system times for processes run from
the shell.

trap [arg] [n] ...
arg is a command to be read and executed when the shell receives
signal (s) n. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in order of
signal number. Any attempt to set a trap on a signal that was ignored
on entry to the current shell is ineffective. An attempt to trap on

- 6 -

8H(I) 8H(I)

signal 11 (memory fault) produces an error. If arg is absent then all
trap(s) n are reset to their original values. If arg is the null string
then this signal is ignored by the shell and by the commands it invokes.
If n is 0 then the command arg is executed on exit from the shell. The
trap command with no arguments prints a list of commands associated
with each signal number.

ulimit [-fp] [n]
imposes a size limit of n
-f imposes a size limit of n blocks on files written by child

processes (files of any size may be read). With no argument,
the current limit is printed.

-p changes the pipe size to n (UNIX System/RT only).
If no option is given, -f is assumed.

umask [nnn] .
The user file-creation mask is set to nnn (see umask (2». If nnn is
omitted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If n is
not given then all currently active child processes are waited for and
the return code is zero.

Invocation.
If the shell is invoked through exec (2) and the first character of argument zero
is -, commands are initially read from fetefprofile and then from
SHOMEf.profile, if such files exist. Thereafter, commands are read as described
below, which is also the case when the shell is invoked as fbinfsh. The flags
below are interpreted by the shell on invocation only; Note that unless the -e
or -s flag is specified, the first argument is assumed to be the name of a file
containing commands, and the remaining arguments are passed as positional
parameters to that command file:

-e string If the -e flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then commands

are read from the standard input. Any remaining arguments
specify the positional parameters. Shell output is written to file
descriptor 2.

-i If the -i flag is present or if the shell input and output are
attached to a terminal, then this shell is interactive. In this case
TERMINATE is ignored (so that kill 0 does not kill an interactive
shell) and INTERRUPT is caught and ignored (so that wait is inter
ruptible). In all cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

Rsh Only.
Rsh is used to set up login names and execution environments whose capabili
ties are more controlled than those of the standard shell. The actions of rsh
are identical to those of sh, except that the following are disallowed:

changing directory (see cd (1)) ,
setting the value of SPATH,
specifying path or command names containing f,
redirecting output (> and > >).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes
sh to execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a

- 7 -

SH(l) SH(l)

limited menu of commands; this scheme assumes that the end-user does not
have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete con
trol over user actions, by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e.,
lusr/rbin) that can be safely invoked by rsh. Some systems also provide a res
tricted editor red.

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively then execution
of the shell file is abandoned. Otherwise, the shell returns the exit status of the
last command executed (see also the exit command above).

letc/profile
$HOME/.profile
Itmp/sh·
/dev/null

SEE ALSO

BUGS

cd(I), env(I), 10gin(I), newgrp(l), test(I), umask(l), dup(2), exec(2),
fork (2) , pipe(2) , signal(2), ulimit(2) , umask(2) , wait(2), a.out(4), profile(4),
environ (5).

The command readonly (without arguments) produces the same output as the
command export.
If « is used to provide standard input to an asynchronous process invoked by
&, the shell gets mixed up about naming the input document; a garbage file
Itmp/sh. is created and the shell complains about not being able to find that
file by another name.

- 8 -

SIZE(I) (not on PDP-l 1) SIZE (I)

NAME
size - print section sizes of common object files

SYNOPSIS
size [-0] [-x] [-V] files

DESCRIPTION
The size command produces section size information for each section in the
common object files. The size of the text, data and bss (uninitialized data) sec
tions are printed along with the total size of the object file. If an archive file is
input to the size command the information for all archive members is
displayed.

Numbers will be printed in decimal unless either the -0 or the -x option is
used, in which case they will be printed in octal or in hexadecimal, respectively.

The -V flag will supply the version information on the size command.

SEE ALSO
asO), cc(l), ld'(l), a.out(4), ar(4).

DIAGNOSTICS
size: name: cannot open

if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

- 1 -

SIZE(t) (PDP-ll only)

NAME
size - print sizes of object files

SYNOPSIS
size [object ...]

DESCRIPTION

SIZE (I)

Size prints the (decimal) number of bytes required by the text, data, and bss
portions, and their sum in octal and decimal, of each object-file argument. If
no file is specified, a.out is used.

SEE ALSO
a.out(4).

- 1 -

SLEEP(I)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP(I)

Sleep suspends execution for time seconds. It is used to execute a command
after a certain amount of time as in:

(sleep 105; command) &

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
alarm (2), sleepOC).

BUGS
Time must be less than 65536 seconds.

- 1 -

SNO(I) SNO(I)

NAME
sno - SNOBOL interpreter

SYNOPSIS
sno [files]

DESCRIPTION
Sno is a SNOBOL compiler and interpreter (with slight differences). Sno
obtains input from the concatenation of the named files and the standard input.
All input through a statement containing the label end is considered program
and is compiled. The rest is available to syspit.

Sno differs from SNOBOL in the following ways:

SEE ALSO
awk(1).

There are no unanchored searches. To get the same effect:

a •• b
a .x. b = x c

There is no back referencing.

x = "abc"
a .x. x

unanchored search for b.
unanchored assignment

is an unanchored search for abc.

Function declaration is done at compile time by the use of the (non
unique) label define. Execution of a function call begins at the state
ment following the define. Functions cannot be defined at run time,
and the use of the name define is preempted. There is no provision for
automatic variables other than parameters. Examples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In partic
ular, the non-empty statement on end cannot merely name a label.

If start is a label in the program, program execution will start there.
If not, execution begins with the first executable statement; define is
not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies.
Because of this, the arithmetic operators / and • must be set off by
spaces.

The right side of assignments must be non-empty.

Either' or " may be used for literal quotes.

The pseudo-variable sysppt is not available.

SNOBOL, a String Manipulation Language, by D. J. Farber, R. E. Griswold,
and I. P. Polonsky, JACM 11 (1964), pp. 21-30.

- 1 -

SORT(I) SORT (I)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-cmubdfinrtx] [+posl [-pos2J1 ... [-0 output] [names]

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the stan
dard output. The name - means the standard input. If no input files are
named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by
bytes in machine collating sequence. The ordering is affected globally by the
following options, one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d "Dictionary" order: only letters, digits and blanks are significant in com
parisons.

f Fold upper case letters onto lower case.

Ignore characters outside the ASCII range 040-0176 in non-numeric com
parisons.

n An initial numeric string, consIstmg of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

tx "Tab character" separating fields is x.

The notation +pos1 -pos2 restricts a sort key to a field beginning at pos1
and ending just before pos2. Pos1 and pos2 each have the form m.n, option
ally followed by one or more of the flags bdfinr, where m tells a number of
fields to skip from the beginning of the line and n tells a number of characters
to skip further. If any flags are present they override all the global ordering
options for this key. If the b option is in effect n is counted from the first non
blank in the field; b is attached independently to pos2. A missing .n means .0;
a missing -pos2 means the end of the line. Under the -tx option, fields are
strings separated by x; otherwise fields are non-empty non-blank strings
separated by blanks.

When there are multiple sort keys, later keys are compared only after all ear
lier keys compare equal. Lines that otherwise compare equal are ordered with
all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no
output unless the file is out of sort.

m Merge only, the input files are already sorted.

D Suppress all but one in each set of equal lines. Ignored bytes and bytes
,~outside keys do not participate in thi~ comparison.

o The next argument is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs..

EXAMPLES
PriD1 in alpJiatictieai ordel" aU the unique spellings in a list of WOlds (ca.pitalized
words ~. ftoor,uweapitali:ied): ' ..

~Sort -D< +0(, +0 mt

-1 -

SORT(I) SORT(1)

FILES

Print the password file (passwd(4» sorted by user 10 (the third colon
separated field):

sort -t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month-day)
entries (the options -um with just one input file make the choice of a unique
representative from a set of equal lines predictable):

sort -urn +0 -1 dates

/usrltmp/stm???

SEE ALSO
comm(1), join(1), uniq (0.

DIAGNOSTICS

BUGS

Comments and exits with non-zero status for various trouble conditions and for
disorder discovered under option -c.

Very long lines are silently truncated.

- 2 -

SPELL(I) SPELL(I)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-I] [+local file] [files]

lusr /Iib/speU/hasbmake

lusr/lib/spell/spellin n

lusr /Iib/spell/hashcheck spellingJist

DESCRIPTION

FILES

Spell collects words from the named files and looks them up in a spelling list.
Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are printed
on the standard output. If no files are named, words are collected from the
standard input.

Spell ignores most troff(1), tbl(1), and eqn (1) constructions.

Under the -v option, all words not literally in the spelling list are printed, and
plausible derivations from the words in the spelling list are indicated.

Under the - b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise, Fowler and the OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with = for each word.

By default, spell Oike deroff(1» follows chains of included files (.so and .nx
troff(1) requests), unless the names of such included files begin with lusr /lib.
Under the -I option, spell will follow the chains of all included files.

Under the +localJile option, words found in localJile are removed from
spell's output. Local Jile is the name of a user-provided file that contains a
sorted list of words, one per line. With this option, the user can specify a set of
words that are correct spellings Gn addition to spell's own spelling list} for
each job.

The spelling list is based on many sources, and while more haphazard than an
ordinary dictionary, is also more effective with respect to proper names and
popular technical words. Coverage of the specialized vocabularies of biology,
medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below
with their default settings (see FILES). Copies of all output are accumulated in
the history file. The stop list filters out misspellings (e.g., thier=thy-y+ier)
that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hash make . Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

spellin Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output.

hashcheck Reads a compressed spelling_list and recreates the nine-digit hash
codes for all the words in it; it writes these codes on the standard
output.

D _SPELL=/usrllib/spell/hlisdabl
S_SPELL=/usrllib/spell/hstop
H_SPELL=/usrllib/spell/spellhist

hashed spelling lists, American & British
hashed stop list
history file

- 1 -

SPELL(l) SPELL(l)

lusr/lib/spell/spellprog program

SEE ALSO

BUGS

deroff(t), eqn(l), sed(l), sort(l), tbl(l), tee(l), troff(1).

The spelling list's coverage is uneven; new installations will probably wish to
monitor the output for several months to gather local additions; typically, these
are kept in a separate local file that is added to the hashed spelling_list via
spellin.
The British spelling feature was done by an American.

- 2 -

SPLINE(IG) SPLINE(IG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options]

DESCRIPTION
Spline takes pairs of numbers from the standard input as abscissas and ordi
nates of a function. It produces a similar set, which is approximately equally
spaced and includes the input set, on the standard output. The cubic spline
output (R. W. Hamming, Numerical Methods for Scientists and Engineers,
2nd ed., pp. 349ff) has two continuous derivatives, and sufficiently many points
to look smooth when plotted, for example by graph (1 G).

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument, or is assumed to be 1 if next
argument is not a number.

-k The constant k used in the boundary value computation:
y~ = kyi', y~' kY~'-1

is set by the next argument (default k = 0).

-n Space output points so that approximately n intervals occur between
the lower and upper x limits (default n = 100).

-p Make output periodic, i.e., match derivatives at ends. First and last
input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally,
these limits are calculated from the data. Automatic abscissas start at
lower limit (default 0).

SEE ALSO
graph{IG).

DIAGNOSTICS

BUGS

When data is not strictly monotone in x, spline reproduces the input without
interpolating extra points.

A limit of 1,000 input points is enforced silently.

- 1 -

SPLIT(I) SPLIT (1)

NAME
split - split a file into pieces

SYNOPSIS
split [-n] [file [name]]

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1 000 lines) onto a set of
output files. The name of the first output file is name with aa appended, and so
on lexicographically, up to zz (a maximum of 676 files). Name cannot be
longer than 12 characters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file
is used.

SEE ALSO
bfs(I), csplit(I).

- 1 -

STAT(tG) STAT(tG)

NAME
stat - statistical network useful with graphical commands

SYNOPSIS
node-name [options) [files)

DESCRIPTION
Stat is a collection of command level functions (nodes) that can be intercon
nected using sh (1) to form a statistical network. The nodes reside in
/usr Ibin/graf (see graphics (I G». Data is passed through the network as
sequences of numbers (vectors), where a number is of the form:

[sign) (digits) (digits) [e[sign)digits)

evaluated in the usual way. Brackets and parentheses surround fields. All
fields are optional, but at least one of the fields surrounded by parentheses must
be present. Any character input to a node that is not part of a number is taken
as a delimiter.

Stat nodes are divided into four classes.

Transformers, which map input vector elements into output vec
tor elements;

Summarizers,

Translators,

Generators,

which calculate statistics of a vector;

which convert among formats; and

which are sources of definable vectors.

Below is a list of synopses for stat nodes. Most nodes accept options indicated
by a leading minus (-). In general, an option is specified by a character fol
lowed by a value, such as c5. This is interpreted as c := 5 (c is assigned 5).
The following keys are used to designate the expected type of the value:

c characters,

integer,

f floating point or integer,

file file name, and

string string of characters, surrounded by quotes to include a Shell
argument delimiter.

Options without keys are flags. All nodes except generators accept files as
input, hence it is not indicated in the synopses.

Transformers:

abs

af

ceil

cusum

exp

floor

gamma

list

log

-[-ci) - absolute value
columns (similarly for -c options that follow)

[-ci tv) - arithmetic function
titled output, verbose

[-ci) - round up to next integer

[-cil - cumulative sum

[-ci) - exponential

[-cil - round down to next integer

[- cil - gamma

[-ci dstring) - list vector elements
delimiter(s)

[-ci bf) - logarithm
base

- 1 -

STAT(IG)

mod

pair

power

root

round

siline

sin

subset

[-ci mf] - modulus
modulus

[-ci Ffile xi] - pair elements
File containing base vector, x group size

[-ci pf] - raise to a power
power

[-ci rf] - take a root
root

STAT(lG)

[-ci pi si] - round to nearest integer, .5 rounds to 1
places after decimal point, significant digits

[-ci ifnisf] - generate a line given slope and intercept
intercept, number of positive integers, slope

[-ci] - sine

[-af bf ci Ffile ii V nl np pf si t;] - generate a subset
above, below, File with master vector, interval, leave, master
contains element numbers to leave, master contains element
numbers to pick, pick, start, terminate

Summarizers:

bucket

cor

hilo

Ireg

mean

point

prod

qsort

rank

total

var

Translators:

[-ai ci Ffile Iif ii V n;] - break into buckets
average size, File containing bucket boundaries, high, interval,
low, number

[- Ffile] - correlation coefficient
File containing base vector

[- h I 0 ox oy]- find high and low values
high only, low only, option form, option form with x
prepended, option form with y prepended

[- Ffile i 0 s] - linear regression
File containing base vector, intercept only, option form for
siline, slope only

[-ff ni pf] - (trimmed) arithmetic mean
fraction, number, percent

[-ff ni pf s] - point from empirical cumulative density func
tion
fraction, number, percent, sorted input

- internal product

[-ci] - quick sort

- vector rank

- sum total

- variance

bar [-a b f g ri wi xf xa yf ya yV yhf] - build a bar chart
suppress axes, bold, suppress frame, suppress grid. region,
width in percent, x origin, suppress x-axis label, y origin,
suppress y-axis label, y-axis lower bound, y-axis laigh bound

hist [- a b f g ri xf xa yf ya yV yhf) - build a histogram
suppress axes, bold, suppress frame, suppress grid, region, x
origin, suppress x-axis label, y origin, suppress y ... xis label, y
axis lower bound, y-axis high bound

- 2 -

STAT(IG)

label

pie

plot

title

Generators:

gas

prime

rand

RESTRICTIONS

STAT(IG)

l _: Ffile h p ri x xu y yr] - label the axis of a GPS file
. bar chart input, retain case, label File, histogram input, plot
input, rotation, x-axis, upper x-axis, y-axis, right y-axis

[-b 0 p pni ppi ri v xi yi] - build a pie chart
bold, values outside pie, value as percentage(:=100), value as
percentage(:=i), draw percent of pie, region, no values, x ori
gin, y origin
Unlike other nodes, input is lines of the form

[< i e f cc >] value [label]
ignore (don't draw) slice, explode slice, fill slice, color
slice c= (black, red, green, blue)

[-a b cstringd f Ffile g m ri xfxa xifxhf xVxnixt yfya
yifyhf yVyniyt] - plot a graph
suppress axes, bold, plotting characters, disconnected, suppress
frame, File containing x vector, suppress grid, mark points,
region, x origin, suppress x-axis label, x interval, x high
bound, x low bound, number of ticks on x-axis, suppress x
axis title, y origin, suppress y-axis label, y interval, y high
bound, y low bound, number of ticks on y-axis, suppress y-axis
title

[-b c istring vstring ustring] - title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

[-ci ifni sftf] - generate additive sequence
interval, number, start, terminate

[-ci hi Ii ni] - generate prime numbers
high, low, number

[-ci hf V mf ni si] - generate random sequence
high, low, multiplier, number, seed

Some nodes have a limit on the size of the input vector.

SEE ALSO
graphics (1 G), gps(4).

- 3 -

STLOGIN(I) STLOGIN (I)

NAME
stlogin - sign on to synchronous terminal

SYNOPSIS
stlogin [delay I

DESCRIPTION

FILES

The stlogin command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It is invoked by the system when
a synchronous terminal requests service on a connected synchronous line. You
can direct your synchronous terminal to request service by first hitting the
LOCAL key and then hitting the SIR key.

Stlogin asks for your user name and your password. If you have a password,
both must be entered before the SIR key is hit. The password field is not
displayed on the screen as you enter it.

At some installations, an option may be invoked that will require you to enter a
second "external" password. This will occur only for dial-up connections, and
will be prompted by the message "External security:". Both passwords are
required for a successful login.

If password aging has been invoked by the super-user on your behalf, your
password may have expired. In this case, you will be shunted into passwd(1)
to change it, after which you may attempt to login again.

If you do not complete the login successfully within the period specified by
delay (e.g., 60 seconds), you are likely to be silently disconnected.

After a successful login, accounting files are updated, you will be informed of
the existence (if any) of mail, and the profiles (i.e., /etc/profile and
$HOME/.profile) (if any) are executed (see profile (4». Stlogin initializes the
user and group IDs and the working directory, then executes a command inter
preter (usually sh (1» according to specifications found in the /etc/passwd file.
Argument 0 of the command interpreter is - followed by the last component
of the interpreter's path name. The environment (see environ (5» is initialized
to:

HOME=your-login-directory
PATH=:/bin:/usr/bin
LOGNAME=your-login-name

/etc/utmp
/etc/wtmp
/usr/mail/your-name
/etc/motd
/etc/passwd
/ etc/ profile
$HOME/. profile

accounting
accounting
mailbox for user your-name
message-of -the-da y
password file
system profile
personal profile

SEE ALSO
mail(I), newgrp(I), passwd(I), sh(1), su(I), passwd(4), profile(4), environ(S).

DIAGNOSTICS
Login incorrect

if the user name or the password is incorrect.
No shell, cannot open password file, no directory:

consult a UNIX System programming counselor.
Your password has expired. Choose a new one.

if password aging is implemented.

- 1 -

STRIP(l) (not on PDP-l 1) STRIP(l)

NAME
strip - strip symbol and line number information from a common object file

SYNOPSIS
strip [-11 [-x] [-r] [-s] [-V] file-names

DESCRIPTION

FILES

The strip command strips the symbol table and line number information from
common object files, including archives. Once this has been done, no symbolic
debugging access will be available for that file; therefore, this command is nor
mally run only on production modules that have been debugged and tested.

The amount of information stripped from the symbol table can be controlled by
using any of the following options:

-I Strip line number information only; do not strip any symbol table
information.

-x Do not strip static or external symbol information.

-r Reset the relocation indexes into the symbol table.

-s Reset the line number indexes into the symbol table (do not remove).
reset the relocation indexes into the symbol table.

- V Version of strip command executing.

If there are any relocation entries in the object file and any symbol table infor
mation is to be stripped, strip will complain and terminate without stripping
file-name unless the -r flag is used.

If the strip command is executed on a common archive file (see ar(4» the
archive symbol table will be removed. The archive symbol table must be
restored by executing the ar(O command with the s option before the archive
can be link edited by the Id(I) command. Strip(I) will instruct the user with
appropriate warning messages when this situation arises.

The purpose of this command is to reduce the file storage overhead taken by
the object file.

/usr Itmp/strp??????

SEE ALSO
as(I), cc(I), Id(I), ar(4), a.out(4).

DIAGNOSTICS
strip: name: cannot open

if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag is

not used, the symbol table information cannot be stripped.

- 1 -

STRIP(I) (PDP-ll only) STRIP(I)

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION

FILES

Strip removes the symbol table and relocation bits ordinarily attached to the
output of the assembler and link editor. This is useful to save space after a
program has been debugged.

The effect of strip is the same as use of the -s option of [d(I).

If name is an archive file, strip will remove the local symbols from any a.out
format files it finds in the archive. Certain libraries, such as those residing in
nib, have no need for local symbols. By deleting them, the size of the archive
is decreased and link editing performance is increased.

Itmp/stm. temporary file

SEE ALSO
ld(l), ar(4), a.out(4).

- 1 -

STSTAT(I) STSTAT(I)

NAME
ststat - report synchronous terminal facilities status

SYNOPSIS
ststat [options]

DESCRIPTION

FILES

Ststat prints certain information about synchronous terminal facilities. The
information that is displayed is controlled by options:

-a

-c corefile
-g

-I

-0 namelist

-p

-t

/dev
/dev/kmem

Use all print options. (This is shorthand notation for -g, -I,
-p, and -t.)
Use the file corefile in place of Idev/kmem.
Print information about gen paramaters. (Number of synchro
nous lines, number of printer ports, number of terminal ports,
number of message headers, and sizes of receive and transmit
buffer areas.)
Print information about synchronous lines. (For each synchro
nous line, whether or not the protocol script is running and
whether or not it has established communications with a con
troller on the line.)
The argument will be taken as the name of an alternate name list
Uuoix is the default).
Print printer port status information. (For each assigned printer
port, give the assigned path name and the synchronous line
number and device code for the assigned printer.) If none of the
print options -a, -g, -I, or -t are specified, -p is supplied as
a default.
Print terminal port status information. (For each active terminal
port, give the path name of the terminal device and tell whether
an open is waiting to be assigned to a terminal, open to an active
terminal, or open to a device that has hung up.)

searched to find terminal ("tty") names
memory

/unix
SEE ALSO

system namelist

st(IM), st(7).
DIAGNOSTICS

BUGS

Can't read system namelist.
Unable to find system name entries in the namelist file.

No synchronous terminal lines in namelist.
Synchronous terminals are not configured in the system in the namelist
file.

Can't open corefile.
Unable to open the specified corefile file.

Can't read core file.
A read failed on the corefile file.

/dev/?????
The name of an active terminal port could not be found in the Idev
directory.

Things can change while ststat is running; the picture it gives is only a close
apporoximation to reality.

- 1 -

STTY(I) STTY(I)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
Stty sets certain terminal 110 options for the device that is the current standard
input; without arguments, it reports the settings of certain options; with the -a
option, it reports all of the option settings; with the -g option, it reports
current settings in a form that can be used as an argument to another stty
command. Detailed information about the modes listed in the first five groups
below may be found in termio (7) for asynchronous lines, or in stermio (7) for
synchronous lines in the UNIX System Administrator's Manual. Options in the
last group are implemented using options in the previous groups. Note that
many combinations of options make no sense, but no sanity checking is per
formed. The options are selected from the following:

Control Modes
parenb (-parenb) enable (disable) parity generation and detection.
parodd (-parodd) select odd (even) parity.
es5 es6 es7 es8 select character size (see termio (7».
o hang up phone line immediately.
50 75 110 134 150200 300 600 1200 1800 2400 4800 9600 exta extb

hupel (-hupeI)

hup (-hup)
estopb (-estopb)
eread (-eread)
eloeal (-eloeaI)

Input Modes
ignbrk (- ignbrk)
brkint (-brkint)
ignpar (-ignpar)
parmrk (-parmrk)
inpek (- inpek)
istrip (-istrip)
inler (- inler)
igner (- igner)
iernl (- iernI)
iuele (- iuele)

ixon (-ixon)

ixany (-ixany)
ixoff (-ixoff)

Output Modes
opost (-opost)

oleue (-oleue)

onler (-onler)

Set terminal baud rate to the number given, if possible.
(All speeds are not supported by all hardware inter
faces.)
hang up (do not hang up) a DATA-PHONE® data set
connection on last close.
same as hupel (-hupeI) .
use two (one) stop bits per character.
enable (disable) the receiver.
assume a line without (with) modem control.

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors (see termio (7».
enable (disable) input parity checking.
strip (do not strip) input characters to seven bits.
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.
map (do not map) upper-case alphabetics to lower case
on input.
enable (disable) START/STOP output control. Output is
stopped by sending an ASCII DC3 and started by send
ing an ASCII DC 1.
allow any character (only DCI) to restart output.
request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

post-process output (do not post-process output; ignore
all other output modes).
map (do not map) lower-case alphabetics to upper case
on output.
map (do not map) NL to CR-NL on output.

- 1 -

STTYO)

ocrnl (-ocrnI)
onocr (-onocr)
onlret (-onlret)

ofiU (-ofin)
of del (-of de I)
crO crl cr2 cr3
nlO nll
tabO tab 1 tab2 tab3

bsO bsl
flO fft
vtO vtl

Local Modes
isig (- isig)

icanon (- icanon)

xcase (-xcase)
echo (-echo)
echoe (-eehoe)

echok (-eehok)
lfke (-lfke)
echonl (-eehonl)
noflsh (-noflsh)
stwrap (-stwrap)

stflush (-stflush)

stappl (-stappI)

Control Assignments
control-character c

line i
Combination Modes

evenp or parity
oddp
-parity, -evenp, or

STTY(1)

map (do not map) CR to NL on output.
do not (do) output CRs at column zero.
on the terminal NL performs (does not perform) the CR \
function.
use fill characters (use timing) for delays.
fill characters are DELs (NULs).
select style of delay for carriage returns (see termio (7».
select style of delay for line-feeds (see termio (7».
select style of delay for horizontal tabs (see termio (7) or
stermio (7».
select style of delay for backspaces (see termio (7».
select style of delay for form-feeds (see termio (7».
select style of delay for vertical tabs (see termio (7».

enable (disable) the checking of characters against the
special control characters INTR and QUIT.
enable (disable) canonical input (ERASE and KILL pro
cessing) .
canonical (unprocessed) upperllower-case presentation.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace
space-backspace string. Note: this mode will erase the
ERASEed character on many CRT terminals; however, it
does not keep track of column position and, as a result,
may be confusing on escaped characters, tabs, and back
spaces.
echo (do not echo) NL after KILL character.
the same as eehok (-eehok); obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR or QUIT.
disable (enable) truncation of lines longer than 79 char
acters on a synchronous line.
enable (disable) flush on a synchronous line after every
write (2).
use application mode (use line mode) on a synchronous
line.

set control-character to c, where control-character is
erase, kill, intr, quit, eof, eol, etab, min, or time (etab is
used with -stappl; see stermio (7», (min and time are
used with -icanon; see termio (7». If c is preceded by
an (escaped from the shell) caret (A), then the value
used is the corresponding CTRL character (e.g., "Ad" is
a CfRL-d); "A?" is interpreted as DEL and ,,'" "is
interpreted as undefined.
set line discipline to i (0 < i < 127).

enable parenb and es7.
enable parenb, cs7, and parodd.

-oddp
disable parenb, and set es8.

raw (-raw or cooked)

nl (-nO

enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, EOT, or output post processing).
unset (set) icrnl, onler. In addition - nl unsets inler,
igner, oernl, and onlret.

- 2 -

STTY(t)

lease (-lease)
LCASE (-LCASE)
tabs (-tabs or tab3)
ek

sane
term

SEE ALSO
ta bs (I), ioctl(2).

set (unset) xease, iucie, and olcue.
same as lease (-lease).
preserve (expand to spaces) tabs when printing.

STTY(l)

reset ERASE and KILL characters back to normal # and
@.

resets all modes to some reasonable values.
set all modes suitable for the terminal type term, where
term is one of tty33, tty37, vt05, tn300, ti700, or tek.

stermio(7), termio(7) in the UNIX System Adminstrator's Manual.

- 3 -

SU(l) SU(l)

NAME
su - become super-user or another user

SYNOPSIS
su [-] [name [arg ...]]

DESCRIPTION

FILES

Su allows one to become another user without logging off. The default user
name is root (i.e., super-user).

To use SU, the appropriate password must be supplied (unless one is already
super-user). If the password is correct, su will execute a new shell with the
user ID set to that of the specified user. To restore normal user ID privileges,
type an EOF to the new shell.

Any additional arguments are passed to the shell, permitting the super-user to
run shell procedures with restricted privileges (an arg of the form -c string
executes string via the shell). When additional arguments are passed. Ibin/sh
is always used. When no additional arguments are passed, su uses the shell
specified in the password file.

An initial - flag causes the environment to be changed to the one that would
be expected if the user actually logged in again. This is done by invoking the
shell with an argO of -su causing the .profile in the home directory of the new
user ID to be executed. Otherwise, the environment is passed along with the
possible exception of SPATH, which is set to Ibin:/etc:/usr/bin for root. Note
that the .profile can check argO for -sh or -su to determine how it was
invoked.

letc/passwd
$HOME/.profile

system's password file
user's profile

SEE ALSO
env (I), login (I), sh (1), environ (5) .

- 1 -

SUM(1)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION

SUM(I)

Sum calculates and prints a 16-bit checksum for the named file, and also prints
the number of blocks in the file. It is typically used to look for bad spots, or to
validate a file communicated over some transmission line. The option -r
causes an alternate algorithm to be used in computing the checksum.

SEE ALSO
wc(I).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the
block count.

- 1 -

SYNC(l)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

SYNC (I)

Sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure file system integrity. It will flush all previously unwrit
ten system buffers out to disk, thus assuring that all file modifications up to
that point will be saved. See sync(2) for details.

SEE ALSO
sync(2).

- 1 -

TABS(t) TABSO)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [+mn] [-Ttype]

DESCRIPTION
Tabs sets the tab stops on the user's terminal according to the tab specification
tabspec, after clearing any previous settings. The user must of course be
logged in on a terminal with remotely-settable hardware tabs.

Users of GE TermiNet terminals should be aware that they behave in a
different way than most other terminals for some tab settings: the first number
in a list of tab settings becomes the left margin on a TermiNet terminal. Thus,
any list of tab numbers whose first element is other than 1 causes a margin to
be left on a TermiNet, but not on other terminals. A tab list beginning with 1
causes the same effect regardless of terminal type. It is possible to set a left
margin on some other terminals, although in a different way (see below).

Four types of tab specification are accepted for tabspec: "canned," repetitive,
arbitrary, and file. If no tabspec is given, the default value is -8, i.e., UNIX
System "standard" tabs. The lowest column number is 1. Note that for tabs,
column 1 always refers to the leftmost column on a terminal, even one whose
column markers begin at 0, e.g., the DASI 300, DASI 300s, and DASI 450.

-code Gives the name of one of a set of "canned" tabs. The legal codes and
their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the
first typed character corresponds to card column 7, one space gets you
to column 8, and a tab reaches column 12. Files using this tab setup
should include a format specification as follows:

<:t-c2 m6 s66 d:>
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more tabs than
-c2. This is the recommended format for COBOL. The appropriate
format specification is:

<:t-c3 m6 s66 d:>
-f 1,7,11,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PLII
-s 1,10,55

SNOBOL
-u 1,12,20,44

UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns 1 +n, 1 +2*n, etc.
Note that such a setting leaves a left margin of n columns on Ter
miNet terminals only. Of particular importance is the value -8: this
represents the UNIX System "standard" tab setting, and is the most
likely tab setting to be found at a terminal. It is required for use with
the nroJf -h option for high-speed output. Another special case is the

- 1 -

TABS (I) TABS (I)

value -0, implying no tabs at all.
n} ,n2,... The arbitrary format permits the user to type any chosen set of

numbers, separated by commas, in ascending order. Up to 40 I

numbers are allowed. If any number (except the first one) is pre
ceded by a plus sign, it is taken as an increment to be added to the I

previous value. Thus, the tab lists 1,10,20,30 and 1,10,+10,+10 are
considered identical.

- -file If the name of a file is given, tabs reads the first line of the file,
searching for a format specification. If it finds one there, it sets the
tab stops according to it, otherwise it sets them as -8. This type of
specification may be used to make sure that a tabbed file is printed
with correct tab settings, and would be used with the pr(1) command:

tabs -- file; pr file

Any of the following may be used also; if a given flag occurs more than once,
the last value given takes effect:

-Ttype Tabs usually needs to know the type of terminal in order to set tabs
and always needs to know the type to set margins. Type is a name
listed in term (5). If no -T flag is supplied, tabs searches for the
$TERM value in the environment (see environ (5». If no type can be
found, tabs tries a sequence that will work for many terminals.

+mn The margin argument may be used for some terminals. It causes all
tabs to be moved over n columns by making column n +} the left ,
margin. If +m is given without a value of n, the value assumed is 10.
For a TermiNet, the first value in the tab list should be 1, or the mar
gin will move even further to the right. The normal (leftmost) margin
on most terminals is obtained by +mO. The margin for most termi
nals is reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS
illegal tabs
illegal increment

unknown tab code
can't open
file indirection

when arbitrary tabs are ordered incorrectly.
when a zero or missing increment is found in an arbitrary
specifica tion.
when a "canned" code cannot be found.
if - -file option used, and file can't be opened.
if - -file option used and the specification in that file
points to yet another file. Indirection of this form is not
permitted.

SEE ALSO

BUGS

nroff(1), environ (5), term (5).

There is no consistency among different terminals regarding ways of clearing
tabs and setting the left margin.
It is generally impossible to usefully change the left margin without also setting
tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is wil
ling to set 40.

- 2 -

TAlLO) TAlLO)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± [numbedUbc[f]]] [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from
the end of the input (if number is null, the value lOis assumed). Number is
counted in units of lines, blocks, or characters, according to the appended
option I, b, or c. When no units are specified, counting is by lines.

With the -f ("follow") option, if the input file is not a pipe, the program will
not terminate after the line of the input file has been copied, but will enter an
endless loop, wherein it sleeps for a second and then attempts to read and copy
further records from the input file. Thus it may be used to monitor the growth
of a file that is being written by some other process. For example, the com
mand:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that are
appended to fred between the time tail is initiated and killed.

SEE ALSO
dd(l).

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are
limited in length. Various kinds of anomalous behavior may happen with char
acter special files.

- 1 -

TARO) TAR (I)

NAME
tar - tape file archiver

SYNOPSIS
tar [key] [files]

DESCRIPTION
Tar saves and restores files on magnetic tape. Its actions are controlled by the
key argument. The key is a string of characters containing at most one func
tion letter and possibly one or more function modifiers. Other arguments to the
command are files (or directory names) specifying which files are to be
dumped or restored. In all cases, appearance of a directory name refers to the
files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function
implies this function.

x The named files are extracted from the tape. If a named file matches
a directory whose contents had been written onto the tape, this direc
tory is (recursively) extracted. The owner, modification time, and
mode are restored (if possible). If no files argument is given, the
entire content of the tape is extracted. Note that if several files with
the same name are on the tape, the last one overwrites all earlier ones.

t The names of the specified files are listed each time that they occur on
the tape. If no files argument is given, all the names on the tape are
listed.

u The named files are added to the tape if they are not already there, or
have been modified since last written on that tape.

c Create a new tape; writing begins at the beginning of the tape, instead
of after the last file. This command implies the r function.

The following characters may be used in addition to the letter that selects the
desired function:

0, .•• ,7 This modifier selects the drive on which the tape is mounted. The
default is 1.

v Normally, tar does its work silently. The v (verbose) option causes it
to type the name of each file it treats, preceded by the function letter.
With the t function, v gives more information about the tape entries
than just the name.

w causes tar to print the action to be taken, followed by the name of the
file, and then wait for the user's confirmation. If a word beginning
with y is given, the action is performed. Any other input means "no".

f causes tar to use the next argument as the name of the archive
instead of Idev/mt? If the name of the file is -, tar writes to the
standard output or reads from the standard input, whichever is
appropriate. Thus, tar can be used as the head or tail of a pipeline.
Tar can also be used to move hierarchies with the command:

cd fromdir; tar cf - • I (cd todir; tar xf -)

b causes tar to use the next argument as the blocking factcr for tape
records. The default is 1, the maximum is 20. This option should
only be used with raw magnetic tape archives (see f above). The
block size is determined automatically when reading tapes (key letters
x and t).
tells tar to complain if it cannot resolve all of the links to the files
being dumped. If I is not specified, no error messages are printed.

m tells tar to not restore the modification times. The modification time
of the file will be the time of extraction.

- 1 -

TAR (I)

FILES
/dev/mt?
Itmp/tar*

TARO)

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated.
The current magnetic tape driver cannot backspace raw magnetic tape. If the
archive is on a disk file, the b option should not be used at all, because updat
ing an archive stored on disk can destroy it.
The current limit on file-name length is 100 characters.

- 2 -

TBL(I) TBL(I) ,

NAME
tbl - format tables for nroff or troff

SYNOPSIS
tbl [-TX] [files]

DESCRIPTION
Tbl is a preprocessor that formats tables for nroff or troff{l). The input files
are copied to the standard output, except for lines between .TS and .TE com
mand lines, which are assumed to describe tables and are re-formatted by tbl.
(The .TS and .TE command lines are not altered by tbl) .

. TS is followed by global options. The available global options are:

center center the table (default is left-adjust);
expand make the table as wide as the current line length;
box enclose the table in a box;
doublebox enclose the table in a double box;
aUbox enclose each item of the table in a box;
tab (x) use the character x instead of a tab to separate items in a

line of input data.

The global options, if any, are terminated with a semi-colon (;).

Next come lines describing the format of each line of the table. Each such for
mat line describes one line of the actual table, except that the last format line
(which must end with a period) describes all remaining lines of the table.
Each column of each line of the table is described by a single key-letter, option
ally followed by specifiers that determine the font and point size of the
corresponding item, that indicate where vertical bars are to appear between
columns, that determine column width, inter-column spacing, etc. The avail
able key-letters are:

c center item within the column;
r right-adjust item within the column;
I left-adjust item within the column;
n numerically adjust item in the column: units positions of

numbers are aligned vertically;
s span previous item on the left into this column;
a center longest line in this column and then left-adjust all other

lines in this column with respect to that centered line;
span down previous entry in this column;
replace this entry with a horizontal line;
replace this entry with a double horizontal line.

The characters B and I stand for the bold and italic fonts, respectively; the
character I indicates a vertical line between columns.

The format lines are followed by lines containing the actual data for the table,
followed finally by .TE. Within such data lines, data items are normally
separated by tab characters.

If a data line consists of only _ or ==, a single or double line, respectively, is
drawn across the table at that point; if a single item in a data line consists of
only _ or ==, then that item is replaced by a single or double line.

Full details of all these and other features of tbl are given in the reference
manual cited below.

The -TX option forces tbl to use only full vertical line motions, making the
output more suitable for devices that cannot generate partial vertical line
motions (e.g., line printers).

- 1 -

TBL(I) TBL(I)

If no file names are given as arguments (or if - is specified as the last argu
ment), tbl reads the standard input, so it may be used as a filter. When it is
used with eqn (1) or neqn, tbl should come first to minimize the volume of data
passed through pipes.

EXAMPLE
If we let - represent a tab (which should be typed as a genuine tab), then the
input:

yields:

.TS
center box;
cB s s
cIlcIs
" Icc
I Inn.
Household Population

Town-Households
-Number-Size

Bedminster-789-3.26
Bernards Twp.-3087-3.74
Bernardsville-20 18 - 3.30
Bound Brook-3425-3.04
Bridgewater-7897 -3.81
Far Hills-240-3.19
.TE

Household Population

Town Households
Number Size

Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19

SEE ALSO

BUGS

TBL - A Program to Format Tables in the UNIX System Document Processing
Guide.
cw(1), eqn(1), mm(1), mmt(1), nroff(l), troff(1), mm(5), mv(5).

See BUGS under nroff(1).

- 2 -

TC(I) TCO) ,

NAME
tc - phototypesetter simulator

SYNOPSIS
tc [-t] [-sn] [-pI] [file]

DESCRIPTION
Tc interprets its input (standard input default) as device codes for a Wang
Laboratories, Inc. Cf AfT phototypesetter. The standard output of tc is
intended for a Tektronix 4014 terminal with ASCII and APL character sets.
The sixteen typesetter sizes are mapped into the 4014's four sizes; the entire
TROFF character set is drawn using the 4014's character generator, with over
struck combinations where necessary. Typical usage is:

troff -t files I tc

At the end of each page, tc waits for a new-line (empty line) from the key
board before continuing on to the next page. In this wait state, the command e
will suppress the screen erase before the next page; sn will cause the next n
pages to be skipped; and !cmd will send cmd to the shell.

The command line options are:

-t Don't wait between pages (for directing output into a file).

-sn Skip the first n pages.

-pi Set page length to I; I may include the scale factors p (points), i (inches),
c (centimeters), and P (picas); default is picas.

SEE ALSO
4014(1), sh(1), tplot(IG), troff(I).

BUGS
Font distinctions are lost.

- 1 -

TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i] [-a] [file]

DESCRIPTION

TEE (I)

Tee transcribes the standard input to the standard output and makes copies in
the files. The -i option ignores interrupts; the -a option causes the output to
be appended to the files rather than overwriting them.

- 1 -

TEST(I) TEST (I)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr)

DESCRIPTION
Test evaluates the expression expr and, if its value is true, returns a zero (true)
exit status; otherwise, a non-zero (false) exit status is returned; test also returns
a non-zero exit status if there are no arguments. The following primitives are
used to construct expr:

-r file true if file exists and is readable.

-w file true if file exists and is writable.

-x file

-f file

-dfile

-cfile

-bfile

-pfile

-ufile

-gfile

-kfile

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

-s file true if file exists and has a size greater than zero.

-t [fildes] true if the open file whose file descriptor number is fildes C1 by
default) is associated with a terminal device.

- z s 1 true if the length of string s 1 is zero.

-0 s1 true if the length of the string s1 is non-zero.

s 1 = s2 true if strings s 1 and s2 are identical.

s1 ! = s2 true if strings s1 and s2 are not identical.

s1 true if s1 is not the null string.

n1 -eq n2 true if the integers n1 and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, and -Ie may be used in place
of -eq.

These primaries may be combined with the following operators:

unary negation operator.

-a
-0

(expr)

binary and operator.

binary or operator (-a has higher precedence than -0).

parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice
also that parentheses are meaningful to the shell and, therefore, must be
escaped.

SEE ALSO
find (1) , sh (1).

- 1 -

TEST (I) TEST(I)

WARNING
In the second form of the command (i.e., the one that uses [J, rather than the
word test), the square brackets must be delimited by blanks.
Some UNIX systems do not recognize the second form of the command.

- 2 -

TIME(l) TIME(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in exe
cution of the command. Times are reported in seconds.

The execution time can depend on what kind of memory the program happens
to land in; the user time in MOS is often half what it is in core.

The times are printed on standard error.

SEE ALSO
timex (1), times (2) .

- 1 -

TIMEX(I) TIMEX(I)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time
spent in execution are reported in seconds. Optionally, process accounting data
for the command and all its children can be listed or summarized, and total
system activity during the execution interval can be reported.

The output of timex is written on standard error.

Options are:

-p List process accounting records for command and all its children.
Suboptions f, h, k, m, r, and t modify the data items reported, as defined
in acctcom (1). The number of blocks read or written and the number
of characters transferred are always reported.

-0 Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that
occurred during the execution interval of command. All the data items
listed in sar (1) are reported.

SEE ALSO
acctcom (1), sar(1) .

WARNING
Process records associated with command are selected from the accounting file
/usr/adm/pacct by inference, since process genealogy is not available. Back
ground processes having the same user-id, terminal-id, and execution time win
dow will be spuriously included.

EXAMPLES
A simple example:

timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub
shell:

timex -opskmt sh

session commands
EOT

- 1 -

TOC(IG) TOC(IG)

NAME
toe - graphical table of contents routines

SYNOPSIS
dtoc [directory]
ttoe mm-file
vtoe [-cdhnimsvn] [TTOC file]

DESCRIPTION
All of the commands listed below reside in lusr Ibinl graf (see graphics (1 G)) .

dtoe Dtoc makes a textual table of contents, TTOC, of all subdirectories
beginning at directory (directory defaults to .). The list has one
entry per directory. The entry fields from left to right are level
number, directory name, and the number of ordinary readable files
in tpe directory. Dtoc is useful in making a visual display of all or
parts of a file system. The following will make a visual display of
all the readable directories under I:

dtoe I I vtoe I td

ttoe Output is the table of contents generated by the .TC macro of
mm(I) translated to TTOC format. The input is assumed to be a
mm file that uses the .H family of macros for section headers. If no
file is given, the standard input is assumed.

vtoe Vtoc produces a GPS describing a hierarchy chart from a TTOC.
The output drawing consists of boxes containing text connected in a
tree structure. If no file is given, the standard input is assumed.
Each TTOC entry describes one box and has the form:

id [line-weight,line-style] "text" [mark]
where:

id is an alternating sequence of numbers and dots. The
id specifies the position of the entry in the hierarchy.
The id O. is the root of the tree.

line-weight is either:

line-style

text

mark

is either:

n, normal-weight; or
m, medium-weight; or
b, bold-weight.

so, solid-line;
do, dotted-line;
dd, dot-dash line;
da, dashed-line; or
Id, long-dashed

is a character string surrounded by quotes. The char
acters between the quotes become the contents of the
box. To include a quote within a box it must be
esca ped (\").

is a character string (surrounded by quotes if it con
tains spaces), with included dots being escaped. The
string is put above the top right corner of the box. To
include either a quote or a dot within a mark it must
be escaped.

Entry example: 1.1 b,da "ABC" DEF
Entries may span more than one line by escaping the new-line
(\new-line) .

- 1 -

TOC(tG)

SEE ALSO

TOC(IG)

Comments are surrounded by the /.,./ pair. They may appear
anywhere in a TTOC.

Options:

c Use text as entered, (default is all upper case).

d Connect the boxes with diagonal lines.

hn Horizontal interbox space is n% of box width.

Suppress the box id.

m Suppress the box mark.

s Do not compact boxes horizontally.

vn Vertical inter box space is n% of box height.

graphics(IG), gps(4).

- 2 -

TOUCH(l) TOUCH(l)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] files

DESCRIPTION
Touch causes the access and modification times of each argument to be
updated. If no time is specified (see date (1» the current time is used. The
-a and -m options cause touch to update only the access or modification
times respectively (default is -am). The -c option silently prevents touch
from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not
be successfully modified (including files that did not exist and were not
created).

SEE ALSO
date(1), utime(2).

- 1 -

TPLOT(lG) TPLOT(lG)

NAME
tplot - graphics filters

SYNOPSIS
tplot [-Tterminal [-e raster]]

DESCRIPTION

FILES

These commands read plotting instructions (see plot(4» from the standard
input and in general produce, on the standard output, plotting instructions suit
able for a particular terminal. If no terminal is specified, the environment
parameter $TERM (see environ (5» is used. Known terminals are:

300 DASI 300.
300S DASI 300s.
450 DASI 450.
4014 Tektronix 4014.
ver Versatec D1200A. This version of plot places a scan-converted image

in lusr/tmp/raster$$ and sends the result directly to the plotter device,
rather than to the standard output. The -e option causes a previously
scan-converted file raster to be sent to the plotter.

lusr !lib/OOO
lusr Ilib/t300s
lusr lliblt450
lusr/lib/t4014
lusr/lib/vplot
lusr/tmp/raster$$

SEE ALSO
plot(3X), plot(4), term(5).

- 1 -

TR(l) TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string1 [string2)

DESCRIPTION
Tr copies the standard input to the standard output with substitution or dele
tion of selected characters. Input characters found in string! are mapped into
the corresponding characters of string2. Any combination of the options -cds
may be used:

-c Complements the set of characters in string] with respect to the
universe of characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in string!.

-s Squeezes all strings of repeated output characters that are in string2
to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a -zl Stands for the string of characters whose ASCII codes run from char
acter a to character z, inclusive.

[a.nl Stands for n repetitions of a. If the first digit of n is 0, n is con
sidered octal; otherwise, n is taken to be decimal. A zero or missing n
is taken to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning
from any character in a string. In addition, \ followed by 1, 2, or 3 octal digits
stands for the character whose ASCII code is given by those digits.

The following example creates a list of all the words in file! one per line in
file2, where a word is taken to be a maximal string of alphabetics. The strings
are quoted to protect the special characters from interpretation by the shell;
012 is the ASCII code for newline.

tr -cs "[A-Z][a-z)" "[\012*)" <file1 >file2

SEE ALSO
ed(I), sh(I), ascii(5).

BUGS
Won't handle ASCII NUL in string! or string2; always deletes NUL from input.

- 1 -

TROFF(I) TROFF(I)

NAME
troff - typeset text

SYNOPSIS
troff [options] [files]

DESCRIPTION

FILES

Troff formats text contained in files (standard input by default) for a Wang
Laboratories, Inc., CI A/T phototypesetter. Its capabilities are described in the
NROFFITROFF User's Manual cited below.

An argument consisting of a minus (-) is taken to be a file name correspond
ing to the standard input. The options, which may appear in any order, but
must appear before the files, are:

-olist Print only pages whose page numbers appear in the list of numbers
and ranges, separated by commas. A range N - M means pages N
through M; an initial - N means from the beginning to page N; and
a final N - means from N to the end. (See BUGS below')

-oN Number first generated page N.
-sN Stop every N pages. Troff will stop the phototypesetter every N

pages, produce a trailer to allow changing cassettes, and resume
when the typesetter's start button is pressed.

-raN Set register a (which must have a one-character name) to N.
-i Read standard input after files are exhausted.
-q Invoke the simultaneous input-output mode of the .rd request.
-z Print only messages generated by .tm (terminal message) requests.
-mname Prepend to the input files the non-compacted {ASCII text} macro

file lusr Ilib/tmac/tmac.name.
-cname Prepend to the input files the compacted macro files

lusrlIib/macros/cmp.[ntUdt1.name and
lusr IIib/macros/ucmp.[nt].name.

-kname Compact the macros used in this invocation of troff, placing the out
put in files [dt].name in the current directory (see the May 1979
Addendum to the NROFFITROFF User's Manual for details of com
pacting macro files).

-t Direct output to the standard output instead of the phototypesetter.
-f Refrain from feeding out paper and stopping phototypesetter at the

end of the run.
-w Wait until phototypesetter is available, if it is currently busy.
-b Report whether the phototypesetter is busy or available. No text

processing is done.
-a Send a printable ASCII approximation of the results to the standard

output.
-pN Print all characters in point size N while retaining all prescribed

spacings and motions, to reduce phototypesetter elapsed time.
-g Prepare output for the Murray Hill Computation Center photo

typesetter and direct it to the standard output (this option is not
usable on most systems). This option is not compatible with the -s
option; furthermore, when this option is invoked, all .fp (font posi
tion) requests Of any) in the troff input must come before the first
break, and no .tI requests may come before the first break.

-Tname Use font-width tables for device name (the font tables are found in
lusrlIib/fontlnamel.). Currently, no names are supported.

lusr/lib/suftab
/tmp/ta$#

suffix hyphenation tables
temporary file

- 1 -

TROFF(I) TROFF(l)

lusr/lib/tmac/tmac.* standard macro files and pointers
lusrllib/macros/* standard macro files
lusrllib/font/* font width tables for troff

SEE ALSO

BUGS

NROFFITROFF User's Manual and A TROFF Tutorial in the UNIX System
Document Processing Guide.
cw(I), eqn(I), mmt(I), nroff(I), tbl(I), tc(I), mm(5), mv(?).

Troff believes in Eastern Standard Time; as a result, depending on the time of
the year and on your local time zone, the date that troff generates may be off
by one day from your idea of what the date is.
When troff is used with the -olist option inside a pipeline (e.g., with one or
more of cw(I), eqn(I), and tbl(I», it may cause a harmless "broken pipe"
diagnostic if the last page of the document is not specified in list.

- 2 -

TROUBLE(l) TROUBLE(l)

NAME
trouble - log a trouble report

SYNOPSIS
trouble

DESCRIPTION

FILES

The trouble command is a front end for the Piscataway Change Management
Tracking System (CMTS). It is used to log trouble reports on, or request
enhancements to the UNIX System. Trouble reports will be forwarded to Pis
cataway via uucp(IC}, where they are transformed into Modification Requests
(MRs).

The command will prompt for the following mandatory fields:

Name:

Location:
Phone:

Type:

System:
Machine:

Release:
Severity:

Date required:
Trouble Area:
Abstract:
Description:

The originator's name (F. M. Last, F. Last, or First
Last); (3 to 6 letter ID, if they are in the names file)
The external or internal mailing address
The telephone number (aaaa, aaa-bbb-cccc, 8aaa-bbbb,
or aaa-bbb-cccc xdddd)
sw (software), hdw (hardware), doc (documentation),
enh (enhancement), unk (unknown)
The product under discussion (usually unix)
The CPU on which the trouble was found; na if not
applicable
The product release number; na if not applicable
1 (out of commission, no circumvention), 2 (severity I
if not fixed by due date (mo/da/yr», 3 (needed), 4
(can be deferred)
The due date for a severity 2 trouble report
The command or area in which the trouble was found
A one-line summary of the problem
The exact description of the problem; ed(I) is the
entry mechanism, so an a (append) must first be typed.
Once the description has been entered and edited, a w
(write) followed by a q (quit) is required. Since nroff
is used to format these reports, all examples can be
enclosed within the .ES and .EE formatter macros that
are supplied by trouble. In addition, any backslashes
should be entered using the \e construct.

A response of ? will cause the expected format of the response to be displayed.

Unless the description states otherwise, the trouble report may be selected to
appear in the MINI-SYSTEM NEWSLETTER.

lusr/lib/troubleltr.a
lusr/lib/trouble/instruct
lusrllib/trouble/trsh
lusr/lib/trouble/trxmit
lusr/lib/trouble/names

archived trouble reports
instructions
trouble report shell
re-transmission shell
letter ID data base

SEE ALSO
uucp(IC}.

- 1 -

TRUE (I)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE(l)

True does nothing, successfully. False does nothing, unsuccessfully. They are
typically used in input to sh (1) such as:

SEE ALSO
sh(1).

DIAGNOSTICS

while true
do

command
done

True has exit status zero, false nonzero.

- 1 -

TSORl'(t) TSORT(t)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent
with a partial ordering of items mentioned in the input file. If no file is
specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate pres
ence, but not ordering.

SEE ALSO
10rder(1) .

DIAGNOSTICS

BUGS

Odd data: there is an odd number of fields in the input file.

Uses a quadratic algorithm; not worth fixing for the typical use of ordering a
library archive file.

- 1 -

TTY (I) TTY (I)

NAME
tty - get the terminal's name

SYNOPSIS
tty [-I] [-s]

DESCRIPTION
Tty prints the path name of the user's terminal. The -I option prints the syn
chronous line number to which the user's terminal is connected, if it is on an
active synchronous line. The -s option inhibits printing of the terminal's path
name, allowing one to test just the exit code.

EXIT CODES
2
o
1

DIAGNOSTICS

if invalid options were specified,
if standard input is a terminal,
otherwise.

"not on an active synchronous line" if the standard input is not a synchronous
terminal and -I is specified.
"not a tty" if the standard input is not a terminal and -s is not specified.

- 1 -

UMASK(t) UMASK(t)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [000]

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer to
read/write/execute permissions for owner, group, and others, respectively (see
chmod (2) and umask (2». The value of each specified digit is subtracted from
the corresponding "digit" specified by the system for the creation of a file (see
creat (2». For example, umask 022 removes group and others write permission
(files normally created with mode 777 become mode 755; files created with
mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

SEE ALSO
chmod (1), sh (1), chmod (2), crea t (2), umask (2) .

- 1 -

UNAME(l)

NAME
uname - print name of current UNIX System

SYNOPSIS
uname [- sorvma]

DESCRIPTION

UNAME(l)

Uname prints the current system name of the UNIX System on the standard
output file. It is mainly useful to determine what system one is using. The
options cause selected information returned by uname (2) to be printed:

-s print the system name (default).

-0 print the nodename (the nodename may be a name that the system is
known by to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

Arguments not recognized default the command to the -s option.

SEE ALSO
uname(2).

- 1 -

UNGET(l) UNGET(t)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-rSIO] [-s] [-0] files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the intended new
delta. If a directory is named, unget behaves as though each file in the direc
tory were specified as a named file, except that non-Sees files and unreadable
files are silently ignored. If a name of - is given, the standard input is read
with each line being taken as the name of an secs file to be processed.

Keyletter arguments apply independently to each named file.

-rSID

-s

-0

SEE ALSO

Uniquely identifies which delta is no longer intended. (This
would have been specified by get as the "new delta"). The
use of this keyletter is necessary only if two or more out
standing gets for editing on the same sees file were done
by the same person (login name). A diagnostic results if
the specified SID is ambiguous, or if it is necessary and
omitted on the command line.

Suppresses the printout, on the standard output, of the
intended delta's SID.

Causes the retention of the gotten file which would nor
mally be removed from the current directory.

delta(1), get(1), sact(1).

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

UNIQO) UNIQ(t)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-ude [+n] [-n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder is
written on the output file. Input and output should always be different. Note
that repeated lines must be adjacent in order to be found; see sort (I). If the
-u flag is used, just the lines that are not repeated in the original file are out
put. The -d option specifies that one copy of just the repeated lines is to be
written. The normal mode output is the union of the -u and -d mode out
puts.

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times it
occurred.

The n arguments specify skipping an initial portion of each line in the com
parison:

- n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated
by tabs and spaces from its neighbors.

+ n The first n characters are ignored. Fields are skipped before charac
ters.

SEE ALSO
comm(I), sort(I).

- 1 -

UNITS (1) UNITS(1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

Units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: em

• 2.540000e+OO
/3.937008e-Ol

A quantity is specified as a multiplicative combination of units optionally pre
ceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

You have: 15 Ibs force/in2
You want: atm

• 1.02068ge+OO
/ 9.79729ge-Ol

Units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations, and
metric prefixes are recognized, together with a generous leavening of exotica
and a few constants of nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; Ib is. Compound names are run
together, (e.g. light year) . British units that differ from their u.s. counterparts
are prefixed thus: brgaUon. For a complete list of units, type:

cat lusr/lib/unittab

lusrllib/unittab

- 1 -

UUCP(tC) UUCP(tC)

NAME
uucp, uulog, uuname - unix to unix copy

SYNOPSIS
uucp [options] source-files destination-file

uulog [options]

uuname [-I]

DESCRIPTION
Uucp.

Uucp copies files named by the source-file arguments to the destination-file
argument. A file name may be a path name on your machine, or may have the
form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows
about. The system-name may also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to send the file via the specified route, and
only to a destination in PUBDIR (see below). Care should be taken to insure
that intermediate nodes in the route are willing to foward information.

The shell metacharacters ?, • and l. . .1 appearing in path-name will be
expanded on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a login name on
the specified system and is replaced by that user's login direc
tory;

(3) a path name preceded by - /user where user is a login name on
the specified system and is replaced by that user's directory
under PUBDIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will fail.
If the destination-file is a directory, the last part of the source-file name is
used.

Uucp preserves execute permissions across the transmission and gives 0666 read
and write permissions (see chmod (2)) .

The following options are interpreted by uucp:

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying the file to
the spool directory (default).

-C Copy the source file to the spool directory.

-mfile Report status of the transfer in file. If file is omitted, send mail to the
requester when the copy is completed. I

-nuser Notify user on the remote system that a file was sent.

-esys Send the uucp command to system sys to be executed there. (Note:
this will only be successful if the remote machine allows the uucp I

command to be executed by /usr /Iib/uucp/uuxqtJ

- 1 -

UUCP(lC) UUCP(lC)

Uucp returns on the standard output a string which is the job number of the
request. This job number can be used by uustat to obtain status or terminate
the job.

Uulog.
Uulog queries a summary log of uucp and uux (I C) transactions in the file
lusr Ispool/uucp/LOGFILE.

The options cause uulog to print logging information:

-ssys Print information about work involving system sys.

-uuser Print information about work done for the specified user.

Uuname.

FILES

Uuname lists the uucp names of known systems. The -I option returns the
local system name.

/usr/spool/uucp
/ usr I spool! uucppu blic
/usr/lib/uucp/·

spool directory
public directory for receiving and sending (PUBDIR)
other data and program files

SEE ALSO
mail(1), uux (I C).

WARNING

BUGS

The domain of remotely accessible files can (and for obvious security reasons,
usually should) be severely restricted. You will very likely not be able to fetch
files by path name; ask a responsible person on the remote system to send them
to you. For the same reasons you will probably not be able to send files to arbi
trary path names. As distributed, the remotely accessible files are those whose
names begin lusrlspool/uucppublic (equivalent to -nuucp or just -).

All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single file. Receiving
multiple files specified by special shell characters? • l. .. J will not activate the
-m option.

- 2 -

UUSTAT(lC) UUSTAT(1C)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [options]

DESCRIPTION
Uustat will display the status of, or cancel, previously specified uucp com
mands, or provide general status on uucp connections to other systems. The
following options are recognized:

-iiohn Report the status of the uucp request john. If all is used for john,
the status of all uucp requests is reported. If john is omitted, the
status of the current user's uucp requests is reported.

-kjohn Kill the uucp request whose job number is john. The killed uucp
request must belong to the person issuing the uustat command
unless one is the super-user.

-rjohn Rejuvenate john. That is john is touched so that its modification
time is set to the current time. This prevents uuclean from deleting
the job until the jobs modification time reaches the limit imposed by
uuclean.

-chour Remove the status entries which are older than hour hours. This
administrative option can only be initiated by the user uucp or the
super-user.

-uuser Report the status of all uucp requests issued by user.
-ssys Report the status of all uucp requests which communicate with

remote system sys.
-ohour Report the status of all uucp requests which are older than hour

hours.
-yhour Report the status of all uucp requests which are younger than hour

hours.
-mmch Report the status of accessibility of machine mch. If mch is

specified as all, then the status of all machines known to the local
uucp are provided.

-Mmch This is the same as the -m option except that two times are
printed. The time that the last status was obtained and the time
that the last successful transfer to that system occurred.

-0 Report the uucp status using the octal status codes listed below. If
this option is not specified, the verbose description is printed with
each uucp request.

-q List the number of jobs and other control files queued for each
machine and the time of the oldest and youngest file queued for
each machine. If a lock file exists for that system, its date of crea
tion is listed.

When no options are given, uustat outputs the status of all uucp requests
issued by the current user. Note that only one of the options -j, -m, -k,
-c, -r, can be used with the rest of the other options.

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uucp requests that were issued by user hdc to com
municate with system mhtsa within the last 72 hours. The meanings of the job
request status are:

job-number user remote-system command-time status-time status

where the status may be either an octal number or a verbose description. The
octal code corresponds to the following description:

- 1 -

UUSTAT<tC) UUSTAT(lC)

FILES

OCTAL
000001
000002
000004
000010
000020
000040
000100
000200
000400
001000
002000
004000
010000
020000

STATUS
the copy failed, but the reason cannot be determined
permission to access local file is denied
permission to access remote file is denied
bad uucp command is generated
remote system cannot create temporary file
cannot copy to remote directory
cannot copy to local directory
local system cannot create temporary file
cannot execute uucp
copy (partially) succeeded
copy finished, job deleted
job is queued
job killed {incomplete}
job killed (complete)

The meanings of the machine accessibility status are:

system-name time status

where time is the latest status time and status is a self-explanatory description
of the machine status.

lusr / spool/uucp
lusr llib/uucp/L _stat
lusr/lib/uucp/R_stat

spool directory
system status file
request status file

SEE ALSO
uucpOC}.

- 2 -

UUTO(lC> UUTO(lC>

NAME
uuto, uupick - public UNIX System-to-UNIX System file copy

SYNOPSIS
uuto [options] source-files destination
uupick [-s system]

DESCRIPTION

FILES

Uuto sends source-files to destination. Uuto uses the uucp(1C) facility to
send files, while it allows the local system to control the file access. A source
file name is a path name on your machine. Destination has the form:

system!user

where system is taken from a list of system names that uucp knows about (see
uuname). Logname is the login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on sys
tem, where PUBDIR is a public directory defined in the uucp source.
Specifically the files are sent to

PUBD IR/ receive/ user! mysystem/files.

The destined recipient is notified by mail (1) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBDIR for files destined for the user. For each entry (file or direc
tory) found, the following message is printed on the standard output:

from system: [file file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the disposition
of the file:

<new-line> Go on to next entry.

d Delete the entry.

m [dir] Move the entry to named directory dir (current directory is
default).

a [dir] Same as m except moving all the files sent from system.

p Print the content of the file.

q Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

* Print a command summary.

Uupick invoked with the -ssystem option will only search the PUBDIR for files
sent from system.

PUBDIR/usr/spool/uucppublic public directory

SEE ALSO
mail(1), uuc1ean(1M), uucp(1C), uustat(1C), uux(1C).

- 1 -

uux(1C) uux(1C)

NAME
uux - unix to unix command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION

FILES

Uux will gather zero or more files from various systems, execute a command on
a specified system and then send standard output to a file on a specified system.
Note that, for security reasons, many installations will limit the list of com
mands executable on behalf of an incoming request from uux. Many sites will
permit little more than the receipt of mail (see mai/(l) via uux.

The command-string is made up of one or more arguments that look like a
Shell command line, except that the command and file names may be prefixed
by system-name!. A null system-name is interpreted as the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fl.diff"

will get the f1 files from the "usg" and "pwba" machines, execute a diff com
mand and put the results in fl.diff in the local directory.

Any special shell characters such as < >; I should be quoted either by quoting
the entire command-string, or quoting the special characters as individual
arguments.

Uux will attempt to get all files to the execution system. For files which are
output files, the file name must be escaped using parentheses. For example, the
command

uux a!uucp b!/usr/file \(c!/usr/file\)

will send a uucp command to system "a" to get /usr/file from system "b" and
send it to system "c".

Uux will notify you if the requested command on the remote system was disal
lowed. The response comes by remote mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command -string.

-0 Send no notification to user.

-mfile Report status of the transfer in file. If file is omitted, send mail to the
requester when the copy is completed.

Uux returns an ASCII string on the standard output which is the job number.
This job number can be used by uustat to obtain the status or terminate a job.

/usr /lib/uucp/ spool
/usr/lib/uucp/*

spool directory
other data and programs

SEE ALSO
uuclean(1M), uucp(1C).

- 1 -

uux(Ic) UUX(IC)

BUGS
Only the first command of a shell pipeline may have a system-name!. All other
commands are executed on the system of the first command.
The use of the shell metacharacter • will probably not do what you want it to
do. The shell tokens < < and > > are not implemented.

- 2 -

VAL(I) VAL (I)

NAME
val - validate sees file

SYNOPSIS
val -
val [-s] [-rSID] [-mnamel [-ytype] files

DESCRIPTION
Val determines if the specified file is an sees file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any
order. The arguments consist of keyletter arguments, which begin with a -,
and named files.

Val has a special argument, -, which causes reading of the standard input
until an end-of-file condition is detected. Each line read is independently pro
cessed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each command
line and file processed and also returns a single 8-bit code upon exit as
described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independently to each named file on the command line.

-s

-rSID

-mname

-ytype

The presence of this argument silences the diagnostic
message normally generated on the standard output for
any error that is detected while processing each named
file on a given command line.

The argument value SID (Sees IDentification String) is
an sees delta number. A check is made to determine if
the SID is ambiguous (e. g., rl is ambiguous because it
physically does not exist but implies 1.1, 1.2, etc. which
may exist) or invalid (e. g., rI.O or r1.1.0 are invalid
because neither case can exist as a valid delta number).
If the SID is valid and not ambiguous, a check is made
to determine if it actually exists.

The argument value name is compared with the sees
%M% keyword in file.

The argument value type is compared with the sees
%Y% keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e., can
be interpreted as a bit string where (moving from left to right) set bits are
interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate key letter argument;
bit 2 = corrupted sees file;
bit 3 = can't open file or file not sees;
bit 4 - SID is invalid or ambiguous;
bit 5 - SID does not exist;
bit 6 - % Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard input).
In these cases an aggregate code is returned - a logical OR of the codes gen
erated for each command line and file processed.

SEE ALSO
admin(I), delta(I), get(I), prs(I).

- 1 -

VAL (I) VAL(I)

DIAGNOSTICS

BUGS

Use helpO) for explanations.

Val can process up to 50 files on a single command line. Any number above 50
will produce a core dump.

- 2 -

VC(l) VC(l)

NAME
vc - version control

SYNOPSIS
vc [-a] [-t] [-cchar] [-s] [keyword==value ... keyword==value]

DESCRIPTION
The vc command copies lines from the standard input to the standard output
under control of its arguments and control statements encountered in the stan
dard input. In the process of performing the copy operation, user declared key
words may be replaced by their string value when they appear in plain text
and/or control statements.

The copying of lines from the standard input to the standard output is condi
tional, based on tests On control statements) of keyword values specified in con
trol statements or as vc command arguments.

A control statement is a single line beginning with a control character, except
as modified by the -t keyletter (see below). The default control character is
colon (:), except as modified by the -c keyletter (see below). Input lines
beginning with a backslash (\) followed by a control character are not control
lines and are copied to the standard output with the backslash removed. Lines
beginning with a backslash followed by a non-control character are copied in
their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic.
A value is any ASCII string that can be created with ed(I); a numeric value is
an unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a
key letter (see below) forces replacement of keywords in all lines of text. An
un interpreted control character may be included in a value by preceding it with
\. If a literal \ is desired, then it too must be preceded by \.

Keyletter arguments

-a

-t

-cchar

-s

Forces replacement of keywords surrounded by control
characters with their assigned value in all text lines and
not just in vc statements.

All characters from the beginning of a line up to and
including the first tab character are ignored for the pur
pose of detecting a control statement. If one is found,
all characters up to and including the tab are discarded.

Specifies a control character to be used in place of :.

Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword [, •.• , keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword-value
Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line and
all previous asg's for that keyword. Keywords declared, but not assigned
values have null values.

:if condition

:end

- 1 -

VCO)

::text

:on

:off

VC(l)

Used to skip lines of the standard input. If the condition is true all lines
between the if statement and the matching end statement are copied to
the standard output. If the condition is false, all intervening lines are dis
carded, including control statements. Note that intervening if statements
and matching end statements are recognized solely for the purpose of
maintaining the proper if-end matching.
The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::- ["not"] <or>
::- <and> I <and> "I" <or>
::- <exp> I <exp> "&" <and>
::- "(" <or> ")" I <value> <op> <value>
::== "-" I "!-" I "<" I">"
::== <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

!
&
I
>
<
()
not

equal
not equal
and
or
grea ter than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

The> and < operate only on unsigned integer values (e. g.: 012 > 12 is
false). All other operators take strings as arguments (e. g.: 012 !== 12 is
true). The precedence of the operators (from highest to lowest) is:

== !== > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least one
blank or tab.

Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and keywords
surrounded by control characters in text are replaced by their value
before the line is copied to the output file. This action is independent of
the -a keyletter.

Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line ... (915)
on the diagnostic output. Vc halts execution, and returns an exit code of 1.

- 2 -

YCO) YC(l)

DIAGNOSTICS
Use he/p(I) for explanations.

EXIT CODES
0- normal
1 - any error

- 3 -

VPR(1) (DEC only) VPR(1)

NAME
vpr - Versatec printer spooler

SYNOPSIS
vpr [options] [files]

DESCRIPTION
Vpr causes the named files to be queued for printing on a Versatec printer. If
no names appear, the standard input is assumed; thus vpr may be used as a
filter.

The following options may be given (each as a separate argument and in any
order) before any file name arguments:

- c Make a copy of the file to be sent before returning to the user.
-r Remove the file after sending it.
-m When printing is complete, report that fact by rnai/(l).
-0 Do not report the completion of printing by rnail(l). This is the

default option.
-ffile Use file as a dummy file name to report back in the mail. (This is use

ful for distinguishing multiple runs, especially when vpr is being used
as a filter).

-p [-e raster]
Use the plot filter vplot to output files produced by graph (lG). The
-e option will cause a previously scan converted file raster to be sent
to the Versate:c.

EXAMPLES

FILES

Two common uses are:

pr [options] file I vpr

and

graph [options] file I vpr -p

/ etc/ passwd
/usr/spool/vpd/*
/usrllib/vpd
/usrllib/vpd.pr
/usr/lib/vplot

user's identification and accounting data
spool area
line printer daemon
print filter
plot filter

SEE ALSO
dpr(lC), lpr(l), tplot(lG).

- 1 -

WAIT(I) WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with & have completed, and report on abnor
mal terminations.

Because the wait (2) system call must be executed in the parent process, the
shell itself executes wait, without creating a new process.

SEE ALSO
sh(I) .

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the shell,
and thus can't be waited for.

- 1 -

WC(O WC(O

NAME
wc - word count

SYNOPSIS
we [-Iwe] [names

DESCRIPTION
We counts lines, words and characters in the named files, or in the standard
input if no names appear. It also keeps a total count for all named files. A
word is a maximal string of characters delimited by spaces, tabs, or new-lines.

The options I, w, and e may be used in any combination to specify that a subset
of lines, words, and characters are to be reported. The default is -Iwe.

When names are specified on the command line, they will be printed along with
the counts.

- 1 -

WHAT(t) WHAT(l)

NAME
what - identify sees files

SYNOPSIS
what files

DESCRIPTION
What searches the given files for all occurrences of the pattern that get (1) sub
stitutes for %Z% (this is @(#) at this printing) and prints out what follows
until the first ", >, new-line, \, or null character. For example, if the C pro
gram in file f.c contains

char ident[] - "@(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the command get(1), which
automatically inserts identifying information, but it can also be used where the
information is inserted manually.

SEE ALSO
get(1), help(l).

DIAGNOSTICS

BUGS

Use help (1) for explanations.

It's possible that an unintended occurrence of the pattern @(#) could be found
just by chance, but this causes no harm in nearly all cases.

- 1 -

WHO(t) WHO(I)

NAME
who - who is on the system

SYNOPSIS
who [- uTlpdbrtas] [file]

who am i

DESCRIPTION
Who can list the user's name, terminal line, login time, elapsed time since
activity occurred on the line, and the process-ID of the command interpreter
(shell) for each current UNIX System user. It examines the letc/utmp file to
obtain its information. If file is given, that file is examined. Usually, file will
be letc/wtmp, which contains a history of all the logins since the file was last
created.

Who with the am i option identifies the invoking user.

Except for the default -s option, the general format for output entries is:

name [state] line time activity pid [commend [exid

With options, who can list logins, logoffs, reboots, and changes to the system
clock, as well as other processes spawned by the init process. These options are:

-u This option lists information about those users who are currently logged
in. The name is the user's login name. The line is the name of the line
as found in the directory Idev. The time is the time that the user logged
in. The activity is the number of hours and minutes since activity last
occurred on that particular line. A dot (.) indicates that the terminal
has seen activity in the last minute and is therefore "current". If more
than twenty-four hours have elapsed or the line has not been used since
boot time, the entry is marked old. This field is useful when trying to
determine whether a person is working at the terminal or not. The pid
is the process-ID of the user's shell. The comment is the comment field
associated with this line as found in letc/inittab (see inittab (4». This
can contain information about where the terminal is located, the tele
phone number of the dataset, type of terminal if hard-wired, etc.

-T This option causes the state of the terminal line to be printed. The state
describes whether someone elae can write to that terminal. A + appears
if the terminal is writable by anyone; a - appears if it is not. Root can
write to all lines having a + or a - in the state field. If a bad line is
encountered, a ? is printed.

-I This option lists only those lines on which the system is waiting for
someone to login. The name field is LOGIN in such cases. Other fields
are the same as for user entries except that the state field doesn't exist.

-p This option lists any other process which is currently active and has been
previously spawned by init. The name field is the name of the program
executed by init as found in letc/inittab. The state, line, and activity
fields have no meaning. The comment field shows the id field of the line
from letc/inittab that spawned this process. See inittab(4).

-d This option displays all processes that have expired and not been
respawned by in it . The exit field appears for dead processes and con
tains the termination and exit values (as returned by wait (2», of the
dead process. This can be useful in determining why a process ter
minated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the init process. Following
the run-level and date information are three fields which indicate the

- 1 -

WHO(1) WHO(l)

FILES

current state, the number of times that state was previously entered, and
the previous state.

-t This option indicates the last change to the system clock (via the
date (I) command) by root. See su (I) .

-a This option processes /etc/utmp or the named file with all options turned
on.

-s This option is the default and lists only the name, line and time fields.

letc/utmp
letc/wtmp
letc/inittab

SEE ALSO
init(IM) in the UNIX System Administrator's Manual.
date(I), 10gin(I), mesg(l), su(I), wait(2), inittab(4), utmp(4).

- 2 -

WRITE(I) WRITE(I)

NAME
write - write to another user

SYNOPSIS
write user [line 1

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user. When first
called, it sends the message:

Message from yourname (tty??) [date 1 •••
to the person you want to talk to. When it has successfully completed the con
nection it also sends two bells to your own terminal to indicate that what you
are typing is being sent.

The recipient of the message should write back at this point. Communication
continues until an end of file is read from the terminal or an interrupt is sent.
At that point write writes EOT on the other terminal and exits.

If you want to write to a user who is logged in more than once, the line argu
ment may be used to indicate which line or terminal to send to (e.g., ttyOO);
otherwise, the first instance of the user found in /etc/utmp is assumed and the
following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(J) command.
Writing to others is normally allowed by default. Certain commands, in partic
ular nroff(I) and pr(l) disallow messages in order to prevent interference with
their output. However, if the user has super-user permissions, messages can be
forced onto a write inhibited terminal.

If the character! is found at the beginning of a line, write calls the shell to exe
cute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each person
should end a message with a distinctive signal (i.e., (0) for "over") so that the
other person knows when to reply. The signal (00) (for "over and out") is sug
gested when conversation is to be terminated.

letc/utmp to find user
Ibin/sh to execute!

SEE ALSO
mail(l), mesg(I) , nroff(I), pr(l), sh(l), who(l).

DIAGNOSTICS
"user not logged in" if the person you are trying to write to is not logged in.

- 1 -

XARGS(I) XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read from standard
input to execute the specified command one or more times. The number of
arguments read for each command invocation and the manner in which they
are combined are determined by the flags specified.

Command, which may be a shell file, is searched for, using one's $PATH. If
command is omitted, ibiD/echo is used.

Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new-lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument if
escaped or quoted: Characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (\) will escape the next character.

Each argument list is constructed starting with the initial-arguments, followed
by some number of arguments read from standard input (Exception: see -i
flag). Flags -i, -I, and -D determine how arguments are selected for each
command invocation. When none of these flags are coded, the initial
arguments are followed by arguments read continuously from standard input
until an internal buffer is full, and then command is executed with the accumu
lated args. This process is repeated until there are no more args. When there
are flag conflicts (e.g., -I vs. -D), the last flag has precedence. Flag values
are:

-Inumber

-ireplstr

-Dnumber

-t

Command is executed for each non-empty number lines
of arguments from standard input. The last invocation
of command will be with fewer lines of arguments if
fewer than number remain. A line is considered to end
with the first new-line unless the last character of the
line is a blank or a tab; a trailing blank/tab signals con
tinuation through the next non-empty line. If number is
omitted I is assumed. Option -x is forced.

Insert mode: command is executed for each line from
standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial
arguments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not grow
larger than 255 characters, and option -x is also
forced. {} is assumed for replstr if not specified.

Execute command using as many standard input argu
ments as possible, up to number arguments maximum.
Fewer arguments will be used if their total size is
greater than size characters, and for the last invocation
if there are fewer than number arguments remaining. If
option -x is also coded, each number arguments must
fit in the size limitation, else xargs terminates execu
tion.

Trace mode: The command and each constructed argu
ment list are echoed to file descriptor 2 just prior to

- 1 -

XARGS(l)

-p

-x

-ssize

-eeo/str

XARGS(l)

their execution.

Prompt mode: The user is asked whether to execute
command each invocation. Trace mode (-t) is turned
on to print the command instance to be executed, fol
lowed by a ? .. prompt. A reply of y (optionally fol
lowed by anything) will execute the command; anything
else, including just a carriage return, skips that particu
lar invocation of command.

Causes xargs to terminate if any argument list would be
greater than size characters; -x is forced by the options
-i and -I. When neither of the options -i, -I, or -0

are coded, the total length of all arguments must be
within the size limit.

The maximum total size of each argument list is set to
size characters; size must be a positive integer less than
or equal to 470. If -s is not coded, 470 is taken as the
default. Note that the character count for size includes
one extra character for each argument and the count of
characters in the command name.

Eo/str is taken as the logical end-of-file string. Under
bar (_) is assumed for the logical EOF string if -e is
not coded. -e with no eo/str coded turns off the logical
EOF string capability (underbar is taken literally).
Xargs reads standard input until either end-of-file or the
logical EOF string is encountered.

Xargs will terminate if either it receives a return code of -1 from, or if it can
not execute, command. When command is a shell program, it should explicitly
exit {see sh (1» with an appropriate value to avoid accidentally returning with
-1.

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo
each move command just before doing it:

Is $1 I xargs -i -t mv $1I{} $2/{}

The following will combine the output of the parenthesized commands onto one
line, which is then echoed to the end of file log:

Oogname; date; echo $0 $.) I xargs > > log

The user is asked which files in the current directory are to be archived and
archives them into arch (1.) one at a time, or (2.) many at a time.

1. Is I xargs -p -1 ar r arch
2. Is xargs -p -1 I xargs ar r arch

The following will execute diff(1) with successive pairs of arguments originally
typed as shell arguments:

echo $. I xargs -n2 diff

DIAGNOSTICS
Self explanatory.

- 2 -

YACC(I) YACC(I)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [- vdlt] grammar

DESCRIPTION

FILES

Yacc converts a context-free grammar into a set of tables for a simple automa
ton which executes an LR(I) parsing algorithm. The grammar may be ambigu
ous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a pro
gram yyparse. This program must be loaded with the lexical analyzer pro
gram, yylex, as well as main and yyerror, an error handling routine. These
routines must be supplied by the user; lex(I) is useful for creating lexical
analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a descrip
tion of the parsing tables and a report on conflicts generated by ambiguities in
the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define statements
that associate the yacc-assigned "token codes" with the user-declared "token
names". This allows source files other than y.tab.c to access the token codes.

If the -I flag is given, the code produced in y.tab.c will not contain any #line
constructs. This should only be used after the grammar and the associated
actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional com
pilation control. By default, this code is not included when y.tab.c is compiled.
However, when yacc's -t option is used, this debugging code will be compiled
by default. Independent of whether the -t option was used, the runtime
debugging code is under the control of YYDEBUG, a pre-processor symbol. If
YYDEBUG has a non-zero value, then the debugging code is included. If its
value is zero, then the code will not be included. The size and execution time
of a program produced without the runtime debugging code will be smaller and
slightly faster.

y.output
y.tab.c
y.tab.h
yacc.tmp,

defines for token names

yacc.debug, yacc.acts temporary files
/usr/lib/yaccparparser prototype for C programs

SEE ALSO
lex(I) .
YACC- Yet Another Compiler Compiler in the UNIX System Support Tools
Guide.

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported on the stan
dard error output; a more detailed report is found in the y.output file. Simi
larly, if some rules are not reachable from the start symbol, this is also
reported.

Because file names are fixed, at most one yacc process can be active in a given
directory at a time.

- 1 -

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include < errno.h >

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise impossible
returned value. This is almost always -1; the individual descriptions specify
the details. An error number is also made available in the external variable
ermo. Ermo is not cleared on successful calls, so it should be tested only after
an error has been indicated.

All of the possible error numbers are not listed in each system call description
because many errors are possible for most of the calls. The following is a com
plete list of the error numbers and their names as defined in < errno.h > .

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way
forbidden except to its owner or super-user. It is also returned for
attempts by ordinary users to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist
but doesn't, or when one of the directories in a path name does not
exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in kill
or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the interrupted
system call returned this error condition.

5 EIO I/O error
Some physical I/O error. This error may in some cases occur on a call
following the one to which it actually applies. -

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for example,
a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member of
the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropri
ate permissions, does not start with a valid magic number (see
a.out(4».

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively
write) request is made to a file which is open only for writing (respec
tively reading).

10 ECHILD No child processes
A wait, was executed by a process that had no existing or unwaited-for
child processes.

- 1 -

INTRO(2) INTRO(2)

11 EAGAIN No more processes
A fork, failed because the system's process table is full or the user is
not allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than the
system is able to supply. This is not a temporary condition; the max
imum space size is a system parameter. The error may also occur if
the arrangement of text, data, and stack segments requires too many
segmentation registers, or if there is not enough swap space during a
fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protec
tion system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an argu
ment of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required,
e.g., in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt
was made to dismount a device on which there is an active file (open
file, current directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting when it is
already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a dev
ice; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for exam
ple in a path prefix or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; men
tioning an undefined signal in signal, or kill; reading or writing a file
for which lseek has generated a negative pointer). Also set by the
math functions described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens
can be accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a time.

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently
open for writing (or reading). Also an attempt to open for writing a

- 2 -

INTRO(2) INTRO (2)

pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes)
or ULIMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the
device.

29 ESPIPE Illegal seek
An lseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000)
to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This
condition normally generates a signal; the error is returned if the signal
is ignored.

33 EDOM Math argument
The argument of a function in the math package OM) is out of the
domain of the function.

34 ERANGE Result too large /
The value of a function in the math package (3M) is not representable
within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not
exist on the specified message queue; see msgop (2).

36 EIDRM Identifier Removed
This error is returned to processes that resume execution due to the
removal of an identifier from the file system's name space (see
msgctl(2), semctl(2), and shmctl(2».

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer
called a process 10. The range of this ID is from 0 to 30,000.

Parent Process ID
A new process is created by a currently active process; see fork (2). The parent
process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a posi
tive integer called the process group ID. This ID is the process 10 of the group
leader. This grouping permits the signaling of related processes; see kill (2).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a
positive integer called the tty group ID. This grouping is used to terminate a
group of related process upon termination of one of the processes in the group;
see exit (2) and signal (2) .

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer called a real
user ID.

- 3 -
\

INTRO(2) INTRO(2)

Each user is also a member of a group. The group is identified by a positive
integer called the real group 10.

An active process has a real user 10 and real group 10 that are set to the real
user ID and real group 10, respectively, of the user responsible for the creation
of the process.

Effective User ID and Effective Group ID
An active process has an effective user 10 and an effective group ID that are
used to determine file access permissions (see below). The effective user ID and
effective group 10 are equal to the process's real user 10 and real group 10
respectively, unless the process or one of its ancestors evolved from a file that
had the set-user-ID bit or set-group 10 bit set; see exec(2).

Super-user
A process is recognized as a super-user process and is granted special privileges
if its effective user 10 is O.

Special Processes
The processes with a process ID of 0 and a process 10 of 1 are special processes
and are referred to as procO and procl.

ProcO is the scheduler. Procl is the initialization process (in it) . Procl is the
ancestor of every other process in the system and is used to control the process
structure.

File Name.
Names consisting of 1 to 14 characters may be used to name an ordinary file,
special file or directory.

These characters may be selected from the set of all character values excluding
\0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, I, or) as part of file names because
of the special meaning attached to these characters by the shell. See sh (1).
Although permitted, it is advisable to avoid the use of unprintable characters in
file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional
slash (/), followed by zero or more directory names separated by slashes,
optionally followed by a file name.

More precisely, a path name is a null-terminated character string constructed
as follows:

<path-name> ::=<file-name> I <path-prefix> <file-name>l/
<path-prefix> ::= <rtprefix> 1/ < rtprefix>
<rtprefix> ::=<dirname> / I < rtprefix > <dirname>/

where <file-name> is a string of 1 to 14 characters other than the ASCII slash
and null, and <dirname> is a string of 1 to 14 characters (other than the
ASC II slash and null) that names a directory.

If a path name begins with a slash, the path search begins at the root direc
tory. Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named
a non-existent file.

Directory.
Directory entries are called links. By convention, a directory contains at least
two links, . and .. , referred to as dot and dot-dot respectively. Dot refers to
the directory itself and dot-dot refers to its parent directory.

- 4 -

INTRO(2) INTRO (2)

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path name searches. A process's
root directory need not be the root directory of the root file system.

File Access Permissions.
Read, write, and execute/search permissions on a file are granted to a process if
one or more of the following are true:

The process's effective user ID is super-user.

The process's effective user 10 matches the user ID of the owner of the
file and the appropriate access bit of the "owner" portion (0700) of the
file mode is set.

The process's effective user 10 does not match the user ID of the owner
of the file, and the process's effective group ID matches the group of
the file and the appropriate access bit of the "group" portion (070) of
the file mode is set.

The process's effective user 10 does not match the user ID of the owner
of the file, and the process's effective group 1 D does not match the
group ID of the file, and the appropriate access bit of the "other" por
tion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a
msgget (2) system call. Each msqid has a message queue and a data structure
associated with it. The data structure is referred to as msqid_ds and contains
the following members:

struct
ushort
ushort
ushort
ushort
time t
time t
time t

ipc yerm msgyerm;
msg_qnum;
msg_ q bytes;
msgJspid;
msgJrpid;
msg_stime;
msgJtime;
msg_ctime;

/* operation permission struct */
/* number of msgs on q */
/* max number of bytes on q */
/* pid of last msgsnd operation */
/* pid of last msgrcv operation */
/* last msgsnd time */
/* last msgrcv time */
/* last change time */
/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Msgyerm is a ipcyerm structure that specifies the message operation permis
sion (see below). This structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; / * user id * /
ushort gid; /* group id */
ushort mode; /* r/w permission */

Msg_qnum is the number of messages currently on the queue. Msg_qbytes is
the maximum number of bytes allowed on the queue. MsgJspid is the process
id of the last process that performed a msgsnd operation. MsgJrpid is the pro
cess id of the last process that performed a msgrcv operation. Msg_stime is the
time of the last msgsnd operation, msgJtime is the time of the last msgrcv
operation, and msg_ctime is the time of the last msgctl (2) operation that
changed a member of the above structure.

Message Operation Permissions.
In the msgop (2) and msgct[(2) system call descriptions, the pernllSSlOn
required for an operation is given as "{token}", where "token" is the type of

- " -

INTRO(2) INTRO(2)

permission needed interpreted as follows:

00400 Read by user
Write by user 00200

00060
00006

Read, Write by group
Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or mqre
of the following are true:

The process's effective user 10 is super-user.

The process's effective user 10 matches msgyerm.lc1uid in the data
structure associated with msqid and the appropriate bit of the "user"
portion (0600) of msgyerm.mode is set.

The process's effective user 10 does not match msgyerm.lc1uid and the
process's effective group 10 matches msgyerrn.lc1gid and the appropri
ate bit of the "group" portion (060) of msgyerm.rnode is set.

The process's effective user 10 does not match msgyerm.lc1uid and the
process's effective group ID does not match msgyerm.lc1gid and the
appropriate bit of the "other" portion (06) of msgyerm.rnode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier
A semaphore identifier (semi d) is a unique positive integer created by a
semget (2) system call. Each semid has a set of semaphores and a data struc
ture associated with it. The data structure is referred to as semid ds and con
tains the following members:

struct
ushort
time t
time t

ipcyerm sem--'perm;
sem_nsems;
sem_otime;
sem_ctime;

1* operation permission struct >t</
1* number of sems in set *1
1* last operation time *1
1* last change time *1
I * Times measured in secs since *1
1* 00:00:00 GMT, Jan. 1, 1970 *1

Semyerm is a ipcyerm structure that specifies the semaphore operation per
mission (see below). This structure includes the following members:

ushort cuid; 1* creator user id *1
ushort cgid; 1* creator group id *1
ushort uid; 1* user id *1
ushort gid; 1* group id *1
ushort mode; 1* ria permission *1

The value of sern_nserns is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a positive integer referred to as a
sem_num. Sem_num values run sequentially from 0 to the value of sem_nsems
minus 1. Sem_otime is the time of the last semop(2) operation, and sem_ctime
is the time of the last semct[(2) operation that changed a member of the above
structure.

A semaphore is a data structure that contains the following members:

ushort semval; 1* semaphore value *1
short sempid; 1* pid of last operation *1
ushort semncnt; 1* # awaiting semval > cval *1
ushort semzcnt; 1* # awaiting semval = 0 *1

Semval is a non-negative integer. Sempid is equal to the process ID of the last
process that performed a semaphore operation on this semaphore. Semncnt is a
count of the number of processes that are currently suspended awaiting this
semaphore's semval to become greater than its current value. Semzcnt is a

- 6 -

INTRO(2) INTRO(2)

count of the number of processes that are currently suspended awaiting this
semaphore's semval to become zero.

Semaphore Operation Permissions.
In the semop (2) and semct/(2) system call descriptions, the permISSIon
required for an operation is given as "{token}", where "token" is the type of per
mission needed interpreted as follows:

00400
00200
00060
00006

Read by user
Alter by user
Read, Alter by group
Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or more
of the following are true:

The process's effective user ID is super-user.

The process's effective user ID matches semjlerm-lc]uid in the data
structure associated with semid and the appropriate bit of the "user"
portion (0600) of sem jlerm.mode is set.

The process's effective user ID does not match semjlerm-lc]uid and the
process's effective group ID matches sem-,erm-lc]gid and the appropri
ate bit of the "group" portion (060) of semjlerm.mode is set.

The process's effective user ID does not match semjlerm-lc]uid and the
process's effective group ID does not match semjlerm-lc]gid and the
appropriate bit of the "other" portion (06) of sem-,erm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a
shmget (2) system call. Each shmid has a segment of memory (referred to as a
shared memory segment) and a data structure associated with it. The data
structure is referred to as shmid_ds and contains the following members:

struct ipcyerm shmyerm; /* operation permission struct */
int shm_segsz; /* size of segment */
ushort shm_cpid; /* creator pid */
ushort shmJpid; /* pid of last operation */
short shm_nattch; /* number of current attaches */
time t shm_atime; /* last attach time */
time t shm_dtime; /* last detach time */
time t shm_ctime; l'" last change time */

/ * Times measured in secs since * /
/* 00:00:00 GMT, Jan. 1, 1970 */

Shmjlerm is a ipcyerm structure that specifies the shared memory operation
permission (see below). This structure includes the following members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

l. creator user id */
/* creator group id */
/* user id */
/* group id */
/* r/w permission */

Shm_segsz specifies the size of the shared memory segment. Shm_cpid is the
process id of the process that created the shared memory identifier. ShmJpid is
the process id of the last process that performed a shmop (2) operation.
Shm_oattch is the number of processes that currently have this segment
attached. Shm_atime is the time of the last shmat operation, shm_dtime is the
time of the last shmdt operation, and shm_ctime is the time of the last

- 7 -

INTRO(2) INTRO(2)

shmctl (2) operation that changed one of the members of the above structure.

Shared Memory Operation Permissions.
In the shmop (2) and shmct[(2) system call descriptions, the permission
required for an operation is given as "{token}", where "token" is the type of per
mission needed interpreted as follows:

00400
00200
00060
00006

Read by user
W ri te by user
Read, Write by group
Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more
of the following are true:

The process's effective user 10 is super-user.

The process's effective user 10 matches shmyerm.lcJuid in the data
structure associated with shmid and the appropriate bit of the "user"
portion (0600) of shmyerm.mode is set.

The process's effective user 10 does not match shmyerm-lcluid and the
process's effective group ID matches shmyerm-lcJgid and the appropri
ate bit of the "group" portion (060) of shmyerm.mode is set.

The process's effective user 10 does not match shmyerm.lcluid and the
process's effective group 10 does not match shmyerm.lcJgid and the
appropriate bit of the "other" portion (06) of shmyerm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
intro(3) .

- 8 -

ACCESS (2) ACCESS (2)

NAME
access - determine accessibility of a file

SYNOPSIS
iot access (path, arnode)
char ·path;
iot arnode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for
accessibility according to the bit pattern contained in amode, using the real
user ID in place of the effective user ID and the real group ID in place of the
effective group ID. The bit pattern contained in amode is constructed as fol
lows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a null path
name. [ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

Write access is requested for a file on a read-only file system. [EROFS]

Write access is requested for a pure procedure (shared text) file that is
being executed. [ETXTBSY]

Permission bits of the file mode do not permit the requested access.
[EACCES]

Path points outside the process's allocated address space. [EFAUL T]

The owner of a file has permission checked with respect to the "owner" read,
write, and execute mode bits, members of the file's group other than the owner
have permissions checked with respect to the "group" mode bits, and all others
have permissions checked with respect to the "other" mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod (2), stat (2) .

- 1 -

ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char ·path;

DESCRIPTION
Aeet is used to enable or disable the system's process accounting routine. If the
routine is enabled, an accounting record will be written on an accounting file
for each process that terminates. Termination can be caused by one of two
things: an exit call or a signal; see exit (2) and signal (2). The effective user I D

of the calling process must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file
format is given in acet (4).

The accounting routine is enabled if path is non-zero and no errors occur dur
ing the system call. It is disabled if path is zero and no errors occur during the
system call.

Aeet will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user. [EPERM]

An attempt is being made to enable accounting when it IS already
enabled. [EBUSY]

A component of the path prefix is not a directory. [ENOTDIR]

One or more components of the accounting file's path name do not
exist. [ENOENT]

A component of the path prefix denies se~rch permission. [EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode permission is denied for the named accounting file. [EACCES]

The named file is a directory. [EISDIR]

The named file resides on a read-only file system. [EROFS]

Path points to an illegal address. [EFAUL T]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

SEE ALSO
acct(4).

- 1 -

ALARM (2) ALARM (2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the calling process's alarm clock to send the signal SIGALRM to
the calling process after the number of real time seconds specified by sec have
elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the calling process's alarm
clock.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the calling process's
alarm clock.

SEE ALSO
pause(2), signaJ(2).

- 1 -

I

BRK(2) BRK(~J

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
iot brk (eodds)
char *eodds;

char *sbrk Goer)
iot iocr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated fl
the calling process's data segment; see exec(2). The change is made by rese_
ting the process's break value and allocating the appropriate amount of space.
The break value is the address of the first location beyond the end of the dat..!:L
segment. The amount of allocated space increases as the break value increase
The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds incr bytes to the break value and changes the allocated spar.
accordingly. Incr can be negative, in which case the amount of allocated spa~
is decreased.

Brk and sbrk will fail without making any change in the allocated space if o~o
or more of the following are true:

Such a change would result in more space being allocated than 'is
allowed by a system-imposed maximum (see ulimi(2». [ENOMEM]

Such a change would result in the break value being greater than
equal to the start address of any attached shared memory segment (s'
shmop(2».

RETURN VALUE 1
Upon successful completion, brk returns a value of 0 and sbrk returns the 0

break value. Otherwise, a value of -1 is returned and errno is set to indica,_
the error.

SEE ALSO
exec(2) .

- 1 -

CHDIR(2) CHDIR(2)

"TAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char .path;

)ESCRIPTION
Path points to the path name of a directory. Chdir causes the named directory
to become the current working directory, the starting point for path searches
for path names not beginning with I.

Chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

A component of the path name is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the path name.
[EACCES]

Path points outside the process's allocated address spate. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and erma is set to indicate the error.

>:iEE ALSO
chroot(2) .

- 1 -

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char .path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permission
portion of the named file's mode according to the bit pattern contained in
mode.

Access permission bits are interpreted as follows:

04000
02000
01000
00400
00200
00100
00070
00007

Set user ID on execution.
Set group ID on execution.
Save text image after execution
Read by owner
Write by owner
Execute (or search if a directory) by owner
Read, write, execute (search) by group
Read, write, execute (search) by others

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user 10 of the process is not super-user, mode bit 01000 (save
text image on execution) is cleared.

If the effective user 10 of the process is not super-user or the effective group ID
of the process does not match the group 10 of the file, mode bit 02000 (set
group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the
system from abandoning the swap-space image of the program-text portion of
the file when its last user terminates. Thus, when the next user of the file exe
cutes it, the text need not be read from the file system but can simply be
swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more of the fol
lowing are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file and the
effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

SEE ALSO
chown (2), mknod (2) .

- 1 -

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char ·path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group I D of the
named file are set to the numeric values contained in owner and group respec
tively.

Only processes with effective user ID equal to the file owner or super-user may
change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file will remaIn
unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file and the
effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
U pan successful completion, a value of a is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
chmod(2).

- 1 -

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
iot chroot (path)
char .path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named
directory to become the root directory, the starting point for path searches for
path names beginning with I.
The effective user ID of the process must be super-user to change the root
directory.

The .. entry in the root directory is interpreted to mean the root directory itself
Thus, .. can not be used to access files outside the subtree rooted at the ro01
directory.

Chroot will fail and the root directory will remain unchanged if one or more oi
the following are true:

Any component of the path name is not a directory. [ENOTDIR]

The named directory does not exist. [ENOENT]

The effective user ID is not super-user. [EPERM]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

SEE ALSO
chdir(2).

- 1 -

CLOSE(2)

'NAME
close - close a file descriptor

SYNOPSIS
iot close (tildes)
iot fildes;

DESCRIPTION

CLOSE(2)

Fildes is a file descriptor obtained from a creal, open, dup, fcntl, or pipe sys
tem call. Close closes the file descriptor indicated by fildes.

Close will fail if fildes is not a valid open file descriptor. [EBADF]

. RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

,SEE ALSO
crea t (2), du p (2), exec(2), fcnt1(2), open (2), pipe (2) .

- 1 -

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, nBode)
char .path;
int nBode;

DESCRIPTION
Creal creates a new ordinary file or prepares to rewrite an existing file named
by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner ID is set to the process's effective user
ID, the file's group ID is set to the process's effective group ID, and the low
order 12 bits of the file mode are set to the value of mode modified as follows:

All bits set in the process's file mode creation mask are cleared. See
umask(2).

The "save text image after execution bit" of the mode is cleared. See
chmod(2).

Upon successful completion, a non-negative integer, namely the file descriptor,
is returned and the file is open for writing, even if the mode does not permit
writing. The file pointer is set to the beginning of the file. The file descriptor
is set to remain open across exec system calls. See !cntl(2). No process may
have more than 20 files open simultaneously. A new file may be created with a
mode that forbids writing.

Creal will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The path name is null. [ENOENT]

The file does not exist and the directory in which the file is to be
created does not permit writing. [EACCES]

The named file resides or would reside on a read-only file system.
[EROFS]

The file is a pure procedure (shared text) file that is being executed.
[ETXTBSY]

The file exists and write permission is denied. [EACCES]

The named file is an existing directory. [EISDIR]

Twenty (20) file descriptors are currently open. [EM FI LE]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file descriptor,
is returned. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO ,
close (2), du p (2), lseek (2), open (2), read (2), umask (2), write (2) .

- 1 -

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (tildes)
int tildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcnt I, or pipe sys
tem call. Dup returns a new file descriptor having the following in common
with the original:

Same open file (or pipe).

Same file pointer. (i.e., both file descriptors share one file pointer.)

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls. See
fcntt(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty (20) file descriptors are currently open. [EM FI LE]

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descriptor, is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), close(2), exec(2), fcntI(2), open(2), pipe(2).

- 1 -

EXEC (2) EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int exeel (path, argO, argl, ... , argn, 0)
char *path, *argO, *argl, ... , *argn;

int execv (path, argv)
char *path, *argv[1;
int exeele (path, argO, argl, ... , argn, 0, envp)
char *path, *argO, *argl, ... , *argn, *envp[1;
int execve (path, argv, envp)
char *path, *argv[1, *envp[1;
int exeelp (file, argO, argl, ... , argn, 0)
char * file, *argO, *argl, ... , *argn;

int execvp (file, argv)
char *file, *argv[1;

DESCRIPTION
Exec in all its forms transforms the calling process into a new process. The
new process is constructed from an ordinary, executable file called the new pro
cess file. This file consists of a header (see a.out (4», a text segment, and a
data segment. The data segment contains an initialized portion and an unini
tialized portion (bss). There can be no return from a successful exec because
the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char "argv, .. envp;

where argc is the argument count and argv is an array of character pointers to
the arguments themselves. As indicated, argc is conventionally at least one and
the first member of the array points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a
search of the directories passed as the environment line "PATH =" (see
environ (5». The environment is supplied by the shell (see sh (I».

ArgO, argJ, ... , argn are pointers to null-terminated character strings. These
strings constitute the argument list available to the new process. By conven
tion, at least argO must be present and point to a string that is the same as
path (or its last component).

Argv is an array of character pointers to null-terminated strings. These strings
constitute the argument list available to the new process. By convention, argv
must have at least one member, and it must point to a string that is the same
as path (or its last component). Argv is terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process. Envp is terminated by a null
pointer. For execl and execv, the C run-time start-off routine places a pointer
to the calling process's environment in the global cell:

extern char **environ;
and it is used to pass the calling process's environment to the new process.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fcnt! (2). For those file ;
descriptors that remain open, the file pointer is unchanged.

- 1 -

EXEC (2) EXEC (2)

Signals set to terminate the calling process will be set to terminate the new pro
cess. Signals set to be ignored by the calling process will be set to be ignored
by the new process. Signals set to be caught by the calling process will be set
to terminate new process; see signaf(2).

If the set-user-ID mode bit of the new process file is set (see chmod (2», exec
sets the effective user ID of the new process to the owner 1 D of the new process
file. Similarly, if the set-group-ID mode bit of the new process file is set, the
effective group 1 D of the new process is set to the group ID of the new process
file. The real user ID and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process will not be
attached to the new process (see shmop (2».

Profiling is disabled for the new process; see profil (2).

The new process also inherits the following attributes from the calling process:

nice value (see nice (2»
process ID
parent process ID
process group ID
semadj values (see semop (2»
tty group ID (see exit (2) and signal (2»
trace flag (see ptrace (2) request 0)
time left until an alarm clock signal (see alarm (2»
current working directory
root directory
file mode creation mask (see umask (2»
file size limit (see ulimit (2»
utime, slime, cutime, and cstime (see times (2»

Exec will fail and return to the calling process if one or more of the following
are true:

One or more components of the new process file's path name do not
exist. [ENOENT]

A component of the new process file's path prefix is not a directory.
[ENOTDIR]

Search permission is denied for a directory listed in the new process
file's path prefix. [EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission. [EACCES]

The exec is not an execlp or execvp, and the new process file has the
appropriate access permission but an invalid magic number in its
header. [ENOEXEC]

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. [ETXTBSY]

The new process requires more memory than is allowed by the system
imposed maximum MAXMEM. [ENOMEM]

The number of bytes in the new process's argument list is greater than
the system-imposed limit of 5120 bytes. [E2BIG]

The new process file is not as long as indicated by the size values in its
header. [EFAULT]

Path, argv, or envp point to an illegal address. [EFAUL T]

- 2 -

EXEC (2) EXEC (2)

RETURN VALUE
If exec returns to the calling procesS an error has occurred; the return value
will be -1 and errno will be set to indicate the error.

SEE ALSO
exit(2), fork(2), environ(5).

- 3 -

EXIT (2) EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, It IS
notified of the calling process's termination and the low order eight bits
(i.e., bits 0377) of status are made available to it; see wait (2).

If the parent process of the calling process is not executing a wait, the
calling process is transformed into a zombie process. A zombie process
is a process that only occupies a slot in the process table, it has no
other space allocated either in user or kernel space. The process table
slot that it occupies is partially overlaid with time accounting informa
tion (see <sys/proc.h» to be used by times.

The parent process ID of all of the calling process's existing child
processes and zombie processes is set to 1. This means the initializa
tion process (see intra (2» inherits each of these processes.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj
value (see semop (2», that semadj value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock, an unlock is performed
(see plock (2».

An accounting record is written on the accounting file if the system's
accounting routine is enabled; see acct (2).

If the process ID, tty group ID, and process group ID of the calling pro
cess are equal, the SIGHUP signal is sent to each processes that has a
process group ID equal to that of the calling process.

The C function exit may cause cleanup actions before the process exits. The
function Jxit circumvents all cleanup.

SEE ALSO
signal (2), wait (2) .

WARNING
See WARNING in signa[(2).

- 1 -

FCNTL(2) FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include < fcntl.h >
int fcntl (fildes, cund, arg)
int fildes, cund, arg;

DESCRIPTION
Fcntl provides for control over open files. Fildes is an open file descriptor
obtained from a creat, open, dup,jcntl, or pipe system call.

The cmds available are:

F_GETFD

F_GETFL

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal to
argo

Same-open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors
share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same
file status flags).

The close-on-exec flag associated with the new file descriptor is
set to remain open across exec (2) system calls.

Get the close-on-exec flag associated with the file descriptor
jildes. If the low-order bit is 0 the file will remain open across
exec, otherwise the file will be closed upon execution of exec.

Set the close-on-exec flag associated with jildes to the low-order
bit of arg (0 or 1 as above).

Get jile status flags.

Set jile status flags to argo Only certain flags can be set; see
jcntl (5).

Fcntl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]
I

Cmd is F _DUPFD and 20 file descriptors are currently open. [EMFILE]

Cmd is F _DUPFD and arg is negative or greater than 20. [EINVAL]

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F _DUPFD A new file descriptor.
F _ G ETFD Value of flag (only the low-order bit is defined).
F SETFD Value other than -1.
F _GETFL Value of file flags.
F SETFL Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close (2), exec(2), open (2), fcntl (5).

- 1 -

FORK (2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an
exact copy of the calling process (parent process). This means the child pro
cess inherits the following attributes from the parent process:

environment
close-on-exec flag (see exec (2»
signal handling settings (i.e., SIG_DFL, SIG_ING, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice (2»
all attached shared memory segments (see shmop (2»
process group ID
tty group I D (see exit (2) and signal (2»
trace flag (see ptrace (2) request 0)
time left until an alarm clock signal (see alarm (2»
current working directory
root directory
file mode creation mask (see umask (2»
file size limit (see ulimit (2»

The child process differs from the parent process in the following ways:

The child process has a unique process I D.

The child process has a different parent process ID (i.e., the process ID
of the parent process).

The child process has its own copy of the parent's file descriptors.
Each of the child's file descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared (see semop (2».

Process locks, text locks and data locks are not inherited by the child
(see plock (2».

The child process's utime, stime, cutime, and cstime are set to O.

Fork will fail and no child process will be created if one or more of the follow
ing are true:

The system-imposed limit on the total number of processes under exe
cution would be exceeded. [EAGAIN]

The system-imposed limit on the total number of processes under exe
cution by a single user would be exceeded. [EAGAIN]

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and
returns the process ID of the child process to the parent process. Otherwise, a
value of -1 is returned to the parent process, no child process is created, and
errno is set to indicate the error.

SEE ALSO
exec(2), times (2), wait (2).

- 1 -

I

GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process 10 of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork (2) , intro(2), setpgrp(2), signa1(2).

- 1 -

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS
int getuid ()

int geteuid ()

int getgid ()

int getegid ()

DESCRIPTION
Getuid returns the real user I D of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intra (2), setuid (2).

- 1 -

I

I

IOCTL(2) IOCTL(2 c

NAME
ioctl - control device

SYNOPSIS
ioctl (fildes, request, arg)

DESCRIPTION
Ioctl performs a variety of functions on character special files (devices). Thl
writeups of various devices in Section 7 discuss how ioctl applies to them.

Ioctl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Fildes is not associated with a character special device. [ENOTTY]

Request or arg is not valid. See Section 7. [EINVAL]

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicat~
the error.

SEE ALSO
termio(7) in the UNIX System Administrator's Manual.

- 1 -

KILL(2) KILL(2)

NAME
kill - send a signal to a process or a group of processes

YNOPSIS
iot kill (pid, sig)
iot pid, sig;

mSCRIPTION
Kill sends a signal to a process or a group of processes. The process or group
of processes to which the signal is to be sent is specified by pid. The signal
that is to be sent is specified by sig and is either one from the list given in sig
nal (2), or O. If sig is 0 (the null signal), error checking is performed but no
signal is actually sent. This can be used to check the validity of pid.

The real or effective user 10 of the sending process must match the real or
effective user ID of the receiving process unless, the effective user ID of the
sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes
(see intro (2» and will be referred to below as procO and procl respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is
equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and procl whose
process group 10 is equal to the process group I D of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be
sent to all processes excluding procO and procl whose real user ID is equal to
the effective user 10 of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding procO and procl.

If pid is negative but not -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are true:

Sig is not a valid signal number. [EINV AL]

No process can be found corresponding to that specified by pid.
[ESRCH]

The user ID of the sending process is not super-user, and its real or
effective user ID does not match the real or effective user ID of the
receiving process. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
kill (1), getpid (2), setpgrp (2), signal(2).

- 1 -

I

I

LINK (2) LINK (2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char ·pathl, ·path2;

DESCRIPTION
PathI points to a path name naming an existing file. Path2 points to a path
name naming the new directory entry to be created. Link creates a new link
(directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following are
true:

A component of either path prefix is not a directory. [ENOTDIR]

A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission. [EACCES]

The file named by pathI does not exist. [ENOENT]

The link named by path2 exists. [EEXIST]

The file named by path I is a directory and the effective user I D is not
super-user. [EPERM]

The link named by path2 and the file named by path] are on different
logical devices (file systems). [EXDEV]

Path2 points to a null path name. [ENOENT]

The requested link requires writing in a directory with a mode that
denies write permission. [EACCES]

The requested link requires writing in a directory on a read-only file
system. [EROFS]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

SEE ALSO
unlink(2).

- 1 -

LSEEK(2) LSEEK(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long Iseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or fcntl system call.
Lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes
from the beginning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the
following are true:

Fildes is not an open file descriptor. [EBADF]

Fildes is associated with a pipe or fifo. [ESPIPE]

Whence is not 0, 1 or 2. [EINVAL and SIGSYS signail

The resulting file pointer would be negative. [EINV All

Some devices are incapable of seeking. The value of the file pointer associated
with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returned and errno is set to indi
cate the error.

SEE ALSO
creat (2), dup(2), fcntI(2), open (2).

- 1 -

I

I

MAUS(2) (PDP-II only) MAUS(2)

NAME
rna us - multiple-access-user-space (shared memory) operations

SYNOPSIS
#include < sys/fcntl.h >
int getmaus (path, oftag)
char *path;
int oftag;

int freemaus (mausdes)
int mausdes;

char *enabmaus (mausdes)
int mausdes;

int dismaus (saddr)
char *saddr;

char *switmaus (mausdes, saddr)
int mausdes;
char *saddr;

DESCRIPTION
MAUS (Multiple Access User Space) is a dedicated portion of physical memory
that is subdivided into logical subsections. These subsections can be attached
to the calling process's data segment or released from its data segment with the
following calls.

Path points to a path name naming a special file that is one of the MAUS logi
cal subsections. Getmaus opens a rna us descriptor for the named file and sets
the file status flag according to the value of oflag. Oflag is one of the follow
ing:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

o RDWR Open for reading and writing.

No process may have more than eight (8) rna us descriptors open simultane
ously.

The named file is opened unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

The named file is not a maus special file. [EINY AU

A component of the path prefix denies search permission. [EACCES]

Oflag permission is denied for the named file. [EACCES]

Eight (8) rna us descriptors are currently open. [EMFILE]

The MAUS area associated with the special file does not exist. r

[ENXIO]

Path points to an illegal address. [EFAULT]

Freemaus closes the maus descriptor specified by mausdes. Note that if a I

maus descriptor has been enabled (see enabmaus below) it may still be closed:
a MAUS file remains attached to a process's data segment until a dismaus (see'
below) is used to free it.

Freemaus will fail if mausdes is not a valid open maus descriptor. [EBADF]

Enabmaus attaches the MAUS file associated with mausdes to the data seg-!,
ment of the calling process. The file is attached starting at the first available

- 1 -

MAUS(2) (PDP-II only) MAUS(2)

8k-byte boundary address beyond the current break value (see brk (2)). Note
that multiple enabmaus calls can be made with the same maus descriptor.
Each call will attach the file at a different 8k-byte boundary address.

Enabmaus will fail and not attach the MAUS file if one or more of the follow
ing are true:

Mausdes is not a valid open maus descriptor. [EBADF]

No more 8k-byte boundary starting addresses are available.
[ENOMEM]

Dismaus frees from the calling process's data segment the MAUS file that starts
at the data segment address given by {saddr - (saddr modulus 8192)).

Dismaus will fail and not free the MAUS file if {saddr - (saddr modulus
8192)) is not the data segment starting address ofa MAUS file. [EINVAU

Switmaus attaches the MAUS file associated with mausdes to the data segment
of the calling process. The file is attached starting at the address given by
{saddr - (saddr modulus 8192)).

Switmaus will fail if one or more of the following are true:

Mausdes is not a valid open maus descriptor. [EBADF]

The value of {saddr - (saddr modulus 8192)) is not a legal 8k-byte
boundary address above the current break value. [EINV AU

RETURN VALUES
Upon successful completion, the return value is as follows:

Getmaus returns a non-negative integer, namely a maus descriptor.

Freemaus returns a value of O.

Enabmaus returns the data segment starting address of the attached
MAUS file.

Dismaus and switmaus return the maus descriptor previously associ
ated with the data segment starting address given by {saddr - (saddr
modulus 8192)) if one exists. Otherwise, a value of -2 is returned.

On other than successful completion, a value of -1 is returned with ermo set to
indicate the error.

- 2 -

I

I

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The
mode of the new file is initialized from mode. Where the value of mode is
interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user I D on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The file's owner ID is set to the process's effective user !D. The file's group ID
is set to the process's effective group ID.

Values of mode other than those above are undefined and should not be used.
The low-order 9 bits of mode are modified by the process's file mode creation
mask: all bits set in the process's file mode creation mask are cleared. See
umask (2). If mode indicates a block or character special file, dev is a
configuration dependent specification of a character or block 110 device. If
mode does not indicate a block special or character special device, dev is
ignored.

Mknod may be invoked only by the super-user for file types other than FIFO
special.

Mknod will fail and the new file will not be created if one or more of the fol
lowing are true:

The process's effective user ID is not super-user. [EPERM]

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a read-only
file system. [EROFS]

The named file exists. [EEXIST]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
mkdir(I), chmod(2), exec(2), umask(2), fs(4).

- 1 -

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
iot mouot (spec, dir, rwftag)
char *spec, *dir;
iot rwflag;

DESCRIPTION
Mount requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. Spec and dir
are pointers to path names.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the mounted
file system; if 1, writing is forbidden, otherwise writing is permitted according
to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

The effective user 10 is not super-user. [EPERM]

Any of the named files does not exist. [ENOENT]

A component of a path prefix is not a directory. [ENOTDIR]

Spec is not a block special device. [ENOTBLK]

The device associated with spec does not exist. [ENXIO]

Dir is not a directory. [ENOTDIR]

Spec or dir points outside the process's allocated address space.
[EFAULT]

Dir is currently mounted on, is someone's current working directory or
is otherwise busy. [EBUSY]

The device associated with spec is currently mounted. [EBUSY]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
umount(2).

- 1 -

I

MSGCTL(2) MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, bur)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations as specified by cmd.
The following cmds are available:

IPC_STAT Place the current value of each member of the data structure asso
ciated with msqid into the structure pointed to by buf. The con
tents of this structure are defined in intro (2). {READ}

Set the value of the following members of the data structure asso
ciated with msqid to the corresponding value found in the struc-
ture pointed to by buf:

msgyerm.uid
msgyerm.gid
msgyerm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that has an effective
user ID equal to either that of super user or to the value of
msgyerm.uid in the data structure associated with msqid. Only
super user can raise the value of msg_qbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the
system and destroy the message queue and data structure associ
ated with it. This cmd can only be executed by a process that has
an effective user ID equal to either that of super user or to the
value of msgyerm.uid in the data structure associated with msqid.

Msgctl will fail if one or more of the following are true:

Msqid is not a valid message queue identifier. [EINVAL]

Cmd is not a valid command. [EINVAL]

Cmd is equal to IPC_STAT and {READ} operation permission is denied
to the calling process (see intro(2». [EACCES]

Cmd is equal to IPC_RMID or (PC_SET and the effective user ID of the
calling process is not equal to that of super user and it is not equal to
the value of msgyerm.uid in the data structure associated with msqid.
[EPERM]

Cmd is equal to IPC_SET, an attempt is being made to increase to the
value of msg_qbytes, and the effective user ID of the calling process is
not equal to that of super user. [EPERM]

Buf points to an iIlegal address. [EF AU L T]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

SEE ALSO
msgget (2), msgop (2) .

- 1 -

MSGGET(2) MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure
(see intra (2)) are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier associated with
it, and (msgffg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

Msgyerm.cuid, msgyerm.uid, msgyerm.cgid, and msgyerm.gid are
set equal to the effective user ID and effective group ID, respectively, of
the calling process.

The low-order 9 bits of msgyerm.mode are set equal to the low-order 9
bits of msgffg.

Msg_qnum, msgJspid, msgJrpid, msg_stime, and msgJtime are set
equal to O.

Msg_ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

A message queue identifier exists for key but operation permission (see
intra (2)) as specified by the low-order 9 bits of msgffg would not be
granted. [EACCES]

A message queue identifier does not exist for key and (msgffg &
IPC_CREAT) is "false". [ENOENT]

A message queue identifier is to be created but the system imposed
limit on the maximum number of allowed message queue identifiers
system wide would be exceeded. [ENOSPC]

A message queue identifier exists for key but ((msgffg &
IPC_CREAT) & (msgffg & IPC_EXCL)) is "true". [EEXIST]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a message queue
identifier is returned. Otherwise, a value of -1 is returned and errna is set to
indicate the error.

SEE ALSO
msgctl (2), msgop (2).

- 1 -

I

I

MSGOP(2) MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message
queue identifier specified by msqid. {WRITE) Msgp points to a structure con
taining the message. This structure is composed of the following members:

long mtype; /* message type */
char mtext[]; /* message text */

Mtype is a positive integer that can be used by the receiving process for mes
sage selection (see msgrcv below). Mtext is any text of length msgsz bytes.
Msgsz can range from 0 to a system imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes (see
intra (2)).

The total number of messages on all queues system wide is equal to the
system imposed limit.

These actions are as follows:

If (msgflg & IPC_NOWAIT) is "true", the message will not be sent and
the calling process will return immediately.

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend
execution until one of the following occurs:

The condition responsible for the suspension no longer exists,
in which case the message is sent.

Msqid is removed from the system (see msgctf(2». When
this occurs, errna is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught. In
this case the message is not sent and the calling process
resumes execution in the manner prescribed in signal (2».

Msgsnd will fail and no message will be sent if one or more of the following are
true:

Msqid is not a valid message queue identifier. [EINVALl

Opera tion permission is denied to the calling process (see intra (2».
[EACCES]

- 1 -

MSGOP(2) MSGOP(2)

Mtype is less than 1. [EINVAU

The message cannot be sent for one of the reasons cited above and
(msgflg & IPC_NOWAIT) is "true". [EAGAINI

Msgsz is less than zero or greater than the system imposed limit.
[EINVAU

Msgp points to an illegal address. [EFAUL Tl

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid (see intra (2)).

Msg_ qnum is incremented by 1.

MsgJspid is set equal to the process I D of the calling process.

Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the structure pointed to by msgp.
(READ) This structure is composed of the following members:

long mtype; /* message type */
char mtexdl; /* message text */

Mtype is the received message's type as specified by the sending process.
Mtext is the text of the message. Msgsz specifies the size in bytes of mtext.
The received message is truncated to msgsz bytes if it is larger than msgsz and
(msgflg & MSG_NOERROR) is "true". The truncated part of the message IS

lost and no indication of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is
received.

If msgtyp is less than 0, the first message of the lowest type that is less
than or equal to the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not
on the queue. These are as follows:

If (msgflg & IPC _NOW AIT) is "true", the calling process will return
immediately with a return value of -1 and errna set to ENOMSG.

If (msgflg & IPC_NOWAIT) is "false", the calling process will suspend
execution until one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errna
is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In
this case a message is not received and the calling process
resumes execution in the manner prescribed in signal (2)).

M sgrcv will fail and no message will be received if one or more of the following
are true:

Msqid is not a valid message queue identifier. [EINV AU

Operation permission is denied to the calling process. [EACCESI

M sgsz is less than 0. [EINV ALl

Mtext is greater than msgsz and (msgflg & MSG_NOERROR) is
"false". [E2BIG]

- 2 -

MSGOP(2) MSGOP(2)

The queue does not contain a message of the desired type and (msgtyp
& IPC_NOWAIT) is "true". [ENOMSG]

Msgp points to an illegal address. [EFAULT]

Upon successful completion, the following actions are taken with respect to the
data structure associated with msqid (see intro (2».

Msg_qnum is decremented by 1.

Msg_lrpid is set equal to the process 10 of the calling process.

MsgJtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of -I is
returned to the calling process and errno is set to EINTR. If they return due to
removal of msqid from the system, a value of -I is returned and errno is set to
EIORM.

Upon successful completion, the return value is as follows:

M sgsnd returns a value of O.

Msgrcv returns a value equal to the number of bytes actually placed
into mtext.

Otherwise, a value of '-1 is returned and errno is set to indicate the error.

SEE ALSO
msgctl (2), msgget (2) .

- 3 -

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice Gocr>
int iocr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process's
nice value is a positive number for which a more positive value results in lower
CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by
the system. Requests for values above or below these limits result in the nice
value being set to the corresponding limit.

Nice will fail and not change the nice value if incr is negative and the effective
user 10 of the calling process is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20. Other
wise, a value of -1 is returned and erma is set to indicate the error.

SEE ALSO
nice(1), exec (2) .

- 1 -

OPEN (2) OPEN (2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcotI.h>
iot open (path, oflag [, mode])
char ·path;
iot oflag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a file descriptor for the
named file and sets the file status flags according to the value of oflag. Oflag
values are constructed by or-ing flags from the following list (only one of the
first three flags below may be used):

O_RDONLY Open for reading only.

O_WRONLY

O_RDWR

° NDELAY

Open for writing only.

Open for reading and writing.

This flag may affect subsequent reads and writes. See read (2)
and write (2).

When opening a FIFO with O_RDONLY or O_WRONLY set:

If 0 N DELA Y is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no pro
cess currently has the file open for reading.

If 0 _NDELA Y is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

When opening a file associated with a communication line:

If 0 NDELA Y is set:

The open will return without waiting for carrier.

If ° _NDELA Y is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior to
each write.

If the file exists, this flag has no effect. Otherwise, the file's
owner ID is set to the process's effective user ID, the file's
group ID is set to the process's effective group ID, and the low
order 12 bits of the file mode are set to the value of mode
modified as follows (see creat (2)) :

All bits set in the process's file mode creation mask are
cleared. See umask (2).

The "save text image after execution bit" of the mode
is cleared. See chmod (2).

If the file exists, its length is truncated to 0 and the mode and
owner are unchanged.

If 0 EXCL and 0_ CREA T are set, open will fail if the file
exists.

- 1 -

OPEN (2) OPEN (2)

Upon successful completion a non-negative integer, the file descriptor, is
returned.

The file pointer used to mark the current position within the file is set to the
beginning of the file.

The new file descriptor is set to remain open across exec system calls. See
!cntf(2).

No process may have more than 20 file descriptors open simultaneously.

The named file is opened unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

O_CREAT is not set and the named file does not exist. [ENOENT]

A component of the path prefix denies search permission. [EACCES]

Oflag permission is denied for the named file. [EACCES]

The named file is a directory and oflag is write or read/write.
[EISDIR]

The named file resides on a read-only file system and oflag is write or
read/write. [EROFS]

Twenty (20) file descriptors are currently open. [EMFILE]

The named file is a character special or block special file, and the dev
ice associated with this special file does not exist. [ENXIO]

The file is a pure procedure (shared text) file that is being executed
and oflag is write or read/write. [ETXTBSY]

Path points outside the process's allocated address space. [EFAULT]

O_CREAT and O_EXCL are set, and the named file exists. [EEXIST]

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no
process has the file open for reading. [ENXIO]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a' file descriptor, is
returned. Otherwise, a value of -1 is returned and ermo is set to indicate the
error.

SEE ALSO
close(2), creat(2), dup(2), fcntl(2), lseek(2), read(2), write(2).

- 2 -

I

PAUSE(2) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal must
be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the
signal catching-function (see signal (2», the calling process resumes execution
from the point of suspension; with a return value of -I from pause and erma
set to EINTR.

SEE ALSO
alarm (2), kill (2), signal (2), wait (2) .

- 1 -

PIPE (2) PIPE (2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (tildes)
int fildes[2];

DESCRIPTION
Pipe creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[O] and fildes[11. Fildes[O] is opened for reading and fildes[1] is opened
for writing.

Writes up to 5120 bytes of data are buffered by the pipe before the writing
process is blocked. A read on file descriptor fildes[O] accesses the data written
to fildes[1] on a first-in-first-out basis.

No process may have more than 20 file descriptors open simultaneously.

Pipe will fail if 19 or more file descriptors are currently open. [EM FI LE]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errna is set to indicate the error.

SEE ALSO
sh(I), read(2), write(2).

- 1 -

PLOCK(2) PLOCK (2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include < sys/lock.h >
int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text lock), its data
segment (data lock), or both its text and data segments (process lock) into
memory. Locked segments are immune to all routine swapping. Plock also
allows these segments to be unlocked. The effective user ID of the calling pro
cess must be super-user to use this call. Op specifies the following:

PROCLOCK - lock text & data segments into memory (process lock)

TXTLOCK - lock text segment into memory (text lock)

DATLOCK - lock data segment into memory (data lock)

UNLOCK - remove locks

Plock will fail and not perform the requested operation if one or more of the
following are true:

The effective user ID of the calling process is not super-user. [EPERM]

Op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process. [EINV ALl

Op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process. [EINV ALl

Op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process. [EINV ALl

Op is equal to UNLOCK and no type of lock exists on the calling pro
cess. [EINVALl

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
exec(2), exit (2), fork(2).

- 1 -

PROFIL(2) PROFIL (2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char • buff;
iot bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length Gn bytes) is given by bufsiz. After
this call, the user's program counter (pc) is examined each clock tick (60th
second); offset is subtracted from it, and the result multiplied by scale. If the
resulting number corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at
the left: 0177777 (octal) gives a 1-1 mapping of pc's to words in buff; 077777
(octal) maps each pair of instruction words together. 02(8) maps all instruc
tions onto the beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by
giving a buJsiz of o. Profiling is turned off when an exec is executed, but
remains on in child and parent both after a fork. Profiling will be turned off if
an update in buff would cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(l), monitor(3C).

- 1 -

I

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution
of a child process. Its primary use is for the implementation of breakpoint
debugging; see sdb(l). The child process behaves normally until it encounters
a signal (see signa!(2) for the list), at which time it enters a stopped state and
its parent is notified via wait (2). When the child is in the stopped state, its
parent can examine and modify its "core image" using ptraee. Also, the parent
can cause the child either to terminate or continue, with the possibility of
ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by ptrace and
is one of the following:

o This request must be issued by the child process if it is to be
traced by its parent. It turns on the child's trace flag that stipu
lates that the child should be left in a stopped state upon receipt
of a signal rather than the state specified by June; see signal(2).
The pid, addr, and data arguments are ignored, and a return
value is not defined for this request. Peculiar results will ensue if
the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For
each, pid is the process 10 of the child. The child must be in a stopped state
before these requests are made.

1, 2 With these requests, the word at location addr in the address
space of the child is returned to the parent process. If I and D
space are separated (as on PDP-II s), request 1 returns a word
from I space, and request 2 returns a word from D space. If I
and D space are not separated (as on the 3B20S and VAX-
111780), either request 1 or request 2 may be used with equal
results. The data argument is ignored. These two requests will
fail if addr is not the start address of a word, in which case a
value of -1 is returned to the parent process and the parent's
errno is set to EIO.

3 With this request, the word at location addr in the child's USER
area in the system's address space (see < sys/user.h >) is
returned to the parent process. Addresses in this area range from
o to 1024 on the PDP-lIs and 0 to 2048 on the 3B20S and VAX.
The data argument is ignored. This request will fail if addr is
not the start address of a . word or is outside the USER area, in
which case a value of -1 is returned to the parent process and
the parent's errno is set to EIO.

4, 5 With these requests, the value given by the data argument is
written into the address space of the child at location addr. If I
and D space are separated (as on PDP-lIs), request 4 writes a
word into I space, and request 5 writes a word into D space. If I
and D space are not separated (as on the 3820S and VAX), either
request 4 or request 5 may be used with equal results. Upon suc
cessful completion, the value written into the address space of the
child is returned to the parent. These two requests will fail if
addr is a location in a pure procedure space and another process

- 1 -

PTRACE(2)

6

PTRACE(2)

is executing in that space, or addr is not the start address of a
word. Upon failure a value of -1 is returned to the parent pro
cess and the parent's ermo is set to EIO.

With this request, a few entries in the child's USER area can be
written. Data gives the value that is to be written and addr is
the location of the entry. The few entries that can be written
are:

the general registers (i.e., registers 0-11 on the 3 B20S,
registers 0-7 on PDP-II s, and registers 0-15 on the
VAX)

the condition codes of the Processor Status Word on the
3B20S.

the floating point status register and six floating point
registers on PDP-lIs

certain bits of the Processor Status Word on PDP-lls
(i.e, bits 0-4, and 8-11)

certain bits of the Processor Status Longword on the
VAX (i.e., bits 0-7, 16-20, and 30-31)

7 This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that caused
the child to stop are canceled before it resumes execution. If the
data argument is a valid signal number, the child resumes execu
tion as if it had incurred that signal and any other pending sig
nals are canceled. The addr argument must be equal to 1 for
this request. Upon successful completion, the value of data is
returned to the parent. This request will fail if data is not 0 or a
valid signal number, in which case a value of -1 is returned to
the parent process and the parent's ermo is set to EIO.

8 This request causes the child to terminate with the same conse
quences as exit (2).

9 This request sets the trace bit in the Processor Status Word of
the child (i.e., bit 4 on PDP-lIs; bit 30 on the VAX) and then
executes the same steps as listed above for request 7. The trace
bit causes an interrupt upon completion of one machine instruc
tion. This effectively allows single stepping of the child. On the
3B20S there is no trace bit and this request returns an error.
Note: the trace bit remains set after an interrupt on PDP-lIs but
is turned off after an interrupt on the V AX.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent
exec (2) calls. If a traced process calls exec, it will stop before executing the
first instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

SEE ALSO

Request is an illegal number. [EIO]

Pid identifies a child that does not exist or has not executed a ptrace
with request O. [ESRCH]

sd b (1), exec(2), signaI(2), wait (2) .

- 2 -

READ (2) READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fent!, or pipe sys
tem call.

Read attempts to read nbyte bytes from the file associated with fildes into the
buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given by
the file pointer associated with fildes. Upon return from read, the file pointer
is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read
and placed in the buffer; this number may be less than nbyte if the file is asso
ciated with a communication line (see ioct! (2) and termio (7)), or if the
number of bytes left in the file is less than nbyte bytes. A value of 0 is
returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FI FO):

If ° _N DELA Y is set, the read will return a O.

If O_NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data currently
available:

IfO_NDELAY is set, the read will return a o.
If ° _N DELA Y is clear, the read will block until data becomes avail
able.

Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading. [EBADFl

Buf points outside the allocated address space. [EFAUL Tl

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returned and errno is set to
indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctI(2), open(2), pipe(2), termio(7).

- 1 -

SEMCTL(2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sem.h>

int semetl (semid, semnum, emd, arg)
int semid, emd;
int semnum;
union semun {

int val;
struet semid ds *buf;
ushort arrayT J;

arg;

DESCRIPTION
Semet! provides a variety of semaphore control operations as specified by emd.

The following emds are executed with respect to the semaphore specified by
semid and semnum:

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

Return the value of semval (see intra (2». {READ}

Set the value of semval to arg.va!. {ALTER} When this
cmd is successfully executed the semadj value
corresponding to the specified semaphore in all processes
is cleared.

Return the value of sempid. (READ}

Return the value of semncnt. (READ}

Return the value of semzcnt. (READ}

The following emds return and set, respectively, every semval in the set of
semaphores.

GETALL

SETALL

Place semvals into array pointed to by arg.array.
{READ}

Set semvals according to the array pointed to by
arg.array. (ALTER} When this cmd is successfully exe-
cuted the semadj values corresponding to each specified
semaphore in all processes are cleared.

The following emds are also available:

IPC STAT

fPC SET

Place the current value of each member of the data
structure associated with semid into the structure pointed
to by arg.buf. The contents of this structure are defined
in intra (2). {READ}

Set the value of the following members of the data struc
ture associated with semid to the corresponding value
found in the structure pointed to by arg.buf:
sem j>erm.uid
sem j>erm.gid
semj>erm.mode 1* only low 9 bits *1

This cmd can only be executed by a process that has an
effective user ID equal to either that of super user or to
the value of semj>erm.uid in the data structure associ
ated with semid.

- 1 -

I

SEMCTL(2) SEMCTL(2)

IPC_RMID Remove the semaphore identifier specified by semid from
the system and destroy the set of semaphores and data
structure associated with it. This cmd can only be exe
cuted by a process that has an effective user ID equal to
either that of super user or to the value of semyerm.uid
in the data structure associated with semid.

Semell will fail if one or more of the following are true:

Semid is not a valid semaphore identifier. [EINV All

Semnum is less than zero or greater than sem_Dsems.
[EINVALl

Cmd is not a valid command. [EINVALl

Operation permission is denied to the calling process (see
inlro(2». [EACCES]

Cmd is SETVAL or SETALL and the value to which semval is
to be set is greater than the system imposed maximum.
[ERANGE]

Cmd is equal to IPC_RMID or IPC_SET and the effective user
ID of the calling process is not equal to that of super user and
it is not equal to the value of semyerm.uid in the data struc
ture associated with semid. [EPERM]

Arg.bufpoints to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

GETV AL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
semget (2), semop (2) .

SEMGET(2) SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h >
#include <sys/sem.h>

int semget (key, nsems, semftg)
key_t key;
int nsems, semftg;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems
semaphores (see intro (2» are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associated with it,
and (semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore identifier
is initialized as follows:

Semyerm.cuid, semyerm.uid, semyerm.cgid, and semyerm.gid are set
equal to the effective user ID and effective group ID, respectively, of
the calling process.

The low-order 9 bits of semyerm.mode are set equal to the low-order 9
bits of semflg.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal to the current
time.

Semget will fail if one or more of the following are true:

Nsems is either less than or equal to zero or greater than the system
imposed limit. [EINV AU

A semaphore identifier exists for key but operation permission (see
intro (2» as specified by the low-order 9 bits of semflg would not be
granted. [EACCES]

A semaphore identifier exists for key but the number of semaphores in
the set associated with it is less than nsems and nsems is not equal to
zero. [EINV AU

A semaphore identifier does not exist for key and (semflg &
IPC_CREAT) is "false". [ENOENT]

A semaphore identifier is to be created but the system imposed limit on
the maximum number of allowed semaphore identifiers system wide
would be exceeded. [ENOSPC]

A semaphore identifier is to be created but the system imposed limit on
the maximum number of allowed semaphores system wide would be
exceeded. [ENOSPC]

A semaphore identifier exists for key but { (semflg & IPC_CREAT) &
(semflg & IPC_EXCL)) is "true". [EEXIST]

- 1 -

SEMGET(2) SEMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore
identifier is returned. Otherwise, a value of -1 is returned and errna is set to
indicate the error.

SEE ALSO
semctl (2), semop(2).

- 2 -

SEMOP(2) SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf (*sops) [];
int nsops;

DESCRIPTION
Semop is used to atomically perform an array of semaphore operations on the
set of semaphores associated with the semaphore identifier specified by semid.
Sops is a pointer to the array of semaphore-operation structures. Nsops is the
number of such structures in the array. The contents of each structure includes
the following members:

short
short
short

sem_num;
sem_op;
sem_flg;

1* semaphore number */
1* semaphore operation */
1* operation flags *1

Each semaphore operation specified by sem_op is performed on the correspond
ing semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will occur:
{ALTER}

If semval (see intro (2» is greater than or equal to the a bso
lute value of sem_op, the absolute value of sem_op is sub
tracted from semval. Also, if (sem.flg & SEM_UNDO) is
"true", the absolute value of sem op is added to the calling
process's semadj value (see exit (2» for the specified sema
phore.

If semval is less than the absolute value of sem_op and
(sem.flg & IPC_NOWAIT) is "true", semop will return
immediately.

If semval is less than the absolute value of sem _op and
(sem.flg & IPC_NOWAIT) is "false", semop will increment
the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the fol
lowing occurs:

Semval becomes greater than or equal to the absolute value
of sem_op. When this occurs, the value of semncnt associ
ated with the specified semaphore is decremented, the abso
lute value of sem_op is subtracted from semval and, if
(sem.flg & SEM_UNDO) is "true", the absolute value of
sem_op is added to the calling process's semadj value for the
specified semaphore.

The semid for which the calling process is awaiting action is
removed from the system (see semell (2». When this occurs,
errno is set equal to EIDRM, and a val~e of -1 is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated with the
specified semaphore is decremented, and the calling process

- 1 -

SEMOP(2) SEMOP(2)

resumes execution in the manner prescribed in signal (2).

If sem_op is a positive integer, the value of sem_op is added to semval
and, if (semJlg & SEM_UNDO) is "true", the value of sem_op is sub
tracted from the calling process's semadj value for the specified sema
phore. {ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (semJlg & IPC_NOWAIT)
is "true", semop will return immediately.

If semval is not equal to zero and (semJlg & IPC_NOWAIT)
is "false", semop will increment the semzcnt associated with
the specified semaphore a~d suspend execution of the calling
process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt
associated with the specified semaphore is decremented.

The semid for which the calling process is awaiting action is
removed from the system. When this occurs, errno is set
equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semzcnt associated with the
specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal (2).

Semop will fail if one or more of the following are true for any of the sema
phore operations specified by sops:

Semid is not a valid semaphore identifier. [EINVAL]

Sem num is less than zero or greater than or equal to the number of
sema-phores in the set associated with semid. [EFBIG]

Nsops is greater than the system imposed maximum. [E2BIG]

Operation permission is denied to the calling process (see intro (2)).
[EACCES]

The operation would result in suspension of the calling process but
(semJlg & IPC_NOWAIT) is "true". [EAGAIN]

The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded. [ENOSPC]

The number of individual semaphores for which the calling process
requests a SEM_UNDO would exceed the limit. [EINV AL]

An operation would cause a semval to overflow the system imposed
limit. [ERANGE]

An operation would cause a semadj value to overflow the system
imposed limit. [ERANGE]

Sops points to an illegal address. [EFAULT]

Upon successful completion, the value of sempid for each semaphore specified
in the array pointed to by sops is set equal to the process ID of the calling pro
cess.

RETURN VALUE
If semop returns due to the receipt of a signal, a value of -1 is returned to the
calling process and errno is set to EINTR. If it returns due to the removal of a
semid from the system, a value of -1 is returned and errno is set to EIDRM.

- 2 -

SEMOP(2) SEMOP(2)

Upon successful completion, the value of semval at the time of the call for the
last operation in the array pointed to by sops is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit (2), fork (2), semctI(2), semget (2).

- 3 -

SETPGRP(2)

NAME
setpgrp - set process group 10

SYNOPSIS
int setpgrp ()

DESCRIPTION

SETPGRP(2)

Setpgrp sets the process group 10 of the calling process to the process 10 of the
calling process and returns the new process group I D.

RETURN VALUE
Setpgrp returns the value of the new process group 10.

SEE ALSO
exec(2), fork (2), getpid (2), intro (2), kilI(2), signal (2).

- 1 -

SETUID (2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) 1 D and effective user
(group) 1 D of the calling process.

If the effective user ID of the calling process is super-user, the real user (group)
ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real user
(group) ID is equal to uid (gid) , the effective user (group) 1 D is set to uid
(gid) .

Setuid (setgid) will fail if the real user (group) ID of the calling process is not
equal to uid (gid) and its effective user ID is not super-user. [EPERMl

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -\
is returned and errna is set to indicate the error.

SEE ALSO
getuid(2), intro(2).

- 1 -

I

I

SHMCTL(2) SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h >
#include <sys/shm.h>

int shmctI (shmid, cmd, bur)
int shmid, cmd;
struct shmid_ds -buf;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as specified by
cmd. The following cmds are available:

IPC_STAT Place the current value of each member of the data
structure associated with shmid into the structure
pointed to by buf. The contents of this structure are
defined in intra (2). {READ}

Set the value of the following members of the data struc
ture associated with shmid to the corresponding value
found in the structure pointed to by buf:
shm yermo uid
shmyerm.gid
shmyerm.mode 1* only low 9 bits *1

This cmd can only be executed by a process that has an
effective user ID equal to either that of super user or to
the value of shmj)erm.uid in the data structure associ
ated with shmid.

Remove the shared memory identifier specified by shmid
from the system and destroy the shared memory segment
and data structure associated with it. This cmd can only
be executed by a process that has an effective user ID
equal to either that of super user or to the value of
shmj)erm.uid in the data structure associated with
shmid.

Shmctl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier. [EINVALl

Cmd is not a valid command. [EINV AU

Cmd is equal to fPC_STAT and {READ} operation permission is
denied to the calling process (see intra (2». [EACCES]

Cmd is equal to IPC_RMfD or fPC_SET and the effective user
ID of the calling process is not equal to that of super user and
it is not equal to the value of shmj)erm.uid in the data struc
ture associated with shmid. [EPERM]

Bul points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errna is set to indicate the error.

SEE ALSO
shmget(2), shmop(2).

- 1 -

SHMGET(2) SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h >
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory
segment of size size bytes (see intro (2» are created for key if one of the fol
lowing are true:

Key js equal to IPC_PRIVATE.

Key does not already have a shared memory identifier associated with
it, and (shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

Shmjlerm.cuid, shmjlerm.uid, shmjlerm.cgid, and shmjlerm.gid are
set equal to the effective user 10 and effective group 10, respectively, of
the calling process.

The low-order 9 bits of shmjlerm.mode are set equal to the low-order 9
bits of shmflg. Shm_segsz is set equal to the value of size.

ShmJpid, shm_nattch, shm_atime, and shm_dtime are set equal to O.

Shm_ctime is set equal to the current time.

S hmget will fail if one or more of the following are true:

Size is less than the system imposed minimum or greater than the sys
tem imposed maximum. [EINV AU

A shared memory identifier exists for key but operation permission (see
intro (2» as specified by the low-order 9 bits of shmflg would not be
granted. [EACCES]

A shared memory identifier exists for key but the size of the segment
associated with it is less than size and size is not equal to zero.
[EINVAU

A shared memory identifier does not exist for key and (shmflg &
IPC_CREAT) is "false". [ENOENT]

A shared memory identifier is to be created but the system imposed
limit on the maximum number of allowed shared memory identifiers
system wide would be exceeded. [ENOSPC]

A shared memory identifier and associated shared memory segment are
to be created but the amount of available physical memory is not
sufficient to fill the request. [ENOMEM]

A shared memory identifier exists for key but ((shmflg &
IPC_CREAT) & (shmflg & IPC_EXCL)) is "true". [EEXIST]

- 1 -

I

I

SHMGET(2) SHMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory
identifier is returned. Otherwise, a value of -I is returned and errno is set to
indicate the error.

SEE ALSO
shmctl (2), shmop (2) .

- 2 -

SHMOP(2) SHMOP(2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated with the shared
memory identifier specified by shmid to the data segment of the calling process.
The segment is attached at the address specified by one of the following cri
teria:

If shmaddr is equal to zero, the segment is attached at the first avail
able address as selected by the system.

If shmaddr is not equal to zero and Cshmflg & SHM_RND) is "true",
the segment is attached at the address given by (shmaddr - (shmaddr
modulus SHMLBA».

If shmaddr is not equal to zero and (shmflg & SHM_RND) is "false",
the segment is attached at the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true"
{READ}, otherwise it is attached for reading and writing {READ/WRITE}.

Shmat will fail and not attach the shared memory segment if one or more of
the following are true:

Shmid is not a valid shared memory identifier. [EINV AU

Operation permission is denied to the calling process (see intra (2».
[EACCES]

The available data space is not large enough to accommodate the
shared memory segment. [ENOMEM]

Shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr
modulus SHMLBA» is an illegal address. [EINVAU

Shmaddr is not equal to zero, (shmflg & SHM_RND) is "false", and
the value of shmaddr is an illegal address. [EINVAU

The number of shared memory segments attached to the calling pro
cess would exceed the system imposed limit. [EMFILE]

Shmdt detaches from the calling process's data segment the shared memory
segment located at the address specified by shmaddr.

Shmdt will fail and not detach the shared memory segment if shmaddr is not
the data segment start address of a shared memory segment. [EINV AU

RETURN VALUES
Upon successful completion, the return value is as follows:

- 1 -

I

I

SHMOP(2) SHMOP(2)

Shmat returns the data segment start address of the attached shared
memory segment.

Shmdt returns a value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit (2), fork (2), shmctl (2), shmget (2).

- 2 -

SIGNAL(2) SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <sys/signal.h>

int (-signal (sig, fune}) ()
int sig;
int (-fune) () ;

DESCRIPTION
Signal allows the calling process to choose one of three ways in which it is pos
sible to handle the receipt of a specific signal. Sig specifies the signal and Junc
specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUPOI hangup
SIGINT 02 interrupt
SIGQUIT 03 * quit
SIGILL 04* illegal instruction (not reset when caught)
SIGTRAP 05* trace trap (not reset when caught)
SIGIOT 06* lOT instruction
SIGEMT07* EMT instruction
SIGFPE 08* floating point exception
SIGKILL09 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12 * bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it 2
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSRI 16 user defined signal 1
SIGUSR2 17 user defined signal 2
SIGCLD 18 death of a child (see WARNING below)
SIGPWR 19 power fail (see WARNING below)

See below for the significance of the asterisk (-) in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function address.
The actions prescribed by these values of are as follows:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be ter
minated with all of the consequences outlined in exit (2) plus a
"core image" will be made in the current working directory of the
receiving process if sig is one for which an asterisk appears in the
above list and the following conditions are met:

The effective user ID and the real user ID of the receiving
process are equal.

An ordinary file named core exists and is writable or can
be created. If the file must be created, it will have the fol
lowing properties:

a mode of 0666 modified by the file creation
mask (see umask (2»

a file owner ID that is the same as the effective
user ID of the receiving process

a file group ID that is the same as the effective
group ID of the receiving process

- 1 •

I

SIGNAL (2) SIGNAL(2)

SIG IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Junction address - catch signal
Upon receipt of the signal sig, the receiving process is to execute the
signal-catching function pointed to by June. The signal number sig
will be passed as the only argument to the signal-catching function.
Before entering the signal-catching function, the value of June for the
caught signal will be set to SIG_DFL unless the signal is SIGILL,
SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving process
will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a write, an
open, or an ioetl system call on a slow device (like a terminal; but not
a file), during a pause system call, or during a wait system call that
does not return immediately due to the existence of a previously
stopped or zombie process, the signal catching function will be exe
cuted and then the interrupted system call will return a -1 to the cal
ling process with ermo set to EINTR.

Note: the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL sig
nal.

Signal will fail if one or more of the following are true:

Sig is an illegal signal number, including SIGKILL. [EINV All

Fune points to an illegal address. [EFAUL Tl

RETURN VALUE
Upon successful completion, signal returns the previous value of June for the
specified signal sig. Otherwise, a value of -1 is returned and ermo is set to
indicate the error.

SEE ALSO
kill(l), kiII(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING
Two other signals that behave differently than the signals described above exist
in this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the UN IX System, these signals
will continue to behave as described below; they are included only for compati
bility with other versions of the UNIX System. Their use in new programs is
strongly discouraged.

For these signals, June is assigned one of three values: SIG_DFL, SIG_IGN, or a
Junction address. The actions prescribed by these values of are as follows:

SIC _ DFL - ignore signal
The signal is to be ignored.

SIC _IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling
process's child processes will not create zombie processes when they
terminate; see exit (2).

- 2 -

SIGNAL (2) SIGNAL(2)

Junction address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for June equal to function address. The same is
true if the signal is SIGCLD except, that while the process is execut
ing the signal-catching function any received SIGCLD signals will be
queued and the signal-catching function will be continually reen
tered until the queue is empty.

The SIGCLD affects two other system calls (wait (2), and exit (2)) in the fol
lowing ways:

wait If the June value of SIGCLD is set to SIG_IGN and a wait is exe
cuted, the wait will block until all of the calling process's child
processes terminate; it will then return a value of -1 with errno set
to ECHILD.

exit If in the exiting process's parent process the June value of SIGCLD is
set to SIG_IGN, the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline
the parent of the proceeding processes. A process that may be piped into in
this manner (and thus become the parent of other processes) should take
care not to set SIGCLD to be caught.

- 3 -

I

STAT (2) STAT (2)

NAME
stat, fstat - get file status

SYNOPSIS
#iuclude <sys/types.h>
#iuclude <sys/stat.h>

iut stat (path, buf)
char *path;
struct stat *buf;

iut fstat (fildes, bur>
jut tildes;
struct stat *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write or execute permission of
the named file is not required, but all directories listed in the path name lead
ing to the file must be searchable. Stat obtains information about the named
file.

Similarly, Jstat obtains information about an open file known by the file
descriptor fildes, obtained from a successful open, creal, dup, Jcntl, or pipe
system call.

BuJ is a pointer to a stat structure into which information is placed concerning
the file.

The contents of the structure pointed to by buJ include the following members:
ushort st_mode; /* File mode; see mknod(2) */
ino t stjno; /* Inode number */
dey t st_dev; /* 10 of device containing */

dev t stJdev;

short st_nlink;
ushort st_uid;
ushort st~id;
off t st_size;
time t st_atime;
time t st_mtime;
time t st_ctime;

/* a directory entry for this file */
/* 10 of device */
/* This entry is defined only for */
/* character special or block special files 4
/* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group */
/ * File size in bytes * /
/* Time of last access 4
/* Time of last data modification */
/* Time of last file status change */
/* Times measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

st atime Time when file data was last accessed. Changed by the following
system calls: creat(2), mknod(2) , pipe (2) , utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following sys
tem calls: creat (2), mknod (2), pipe (2), utime(2), and write (2).

st ctime Time when file status was last changed. Changed by the following
system calls: chmod (2), chown (2), creat (2), link (2), mknod (2),
pipe (2), unlink (2), utime (2), and write (2).

Stat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

- 1 -

STAT (2)

Bul or path points to an invalid address. [EFAUL T]

Fstat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Bul points to an invalid address. [EFAULT]

RETURN VALUE

STAT(2)

Upon successful completion a value of 0 is returned. Otherwise, a value of -1
is returned and erma is set to indicate the error.

SEE ALSO
chmod (2), chown (2), creat (2), link (2), mknod (2), time(2), unlink (2).

- 2 -

I

STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

STIME(2)

Stime sets the system's idea of the time and date. Tp points to the value of
time as measured in seconds from 00:00:00 GMT January 1, 1970.

Stime will fail if the effective user ID of the calling process is not super-user.
[EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
time(2).

- 1 -

SYNC(2) SYNC(2)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be written out.
This includes modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example fsck,
df, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return from
sync.

- 1 -

SYS3B (2) (3B20S only) SYS3B(2)

NAME
sys3b - 3B20S specific system calls

SYNOPSIS
void sys3b (cmd, argll, arg2])
int cmd, arg 1, arg2;

DESCRIPTION
This system call provides for 3B20S specific actions. Most require super-user
privileges as the effects can be dangerous. The cmd values available are:

Reboot the processor. This call causes an immediate entry into the
bootstrap code.

2 System print! interface. Argl is taken as a pointer to a null terminated
string to be copied into the operating system circular print buffer.

3 Attach to an address translation buffer.

4 System namelist interface. The value of argl is used to return the
address of various data elements in the system.

S Override for system Maintenance Reset Function (MRF) action. If argl
is non-zero, it is taken as the indicator for handling a processor MRF. If
zero, the current setting is returned.

6 Send a Processor Recovery Message (PRM). Argl is used as a pointer to
a 16 byte string to be converted to a PRM and transmitted to the Emer
gency Action Interface (EAI).

7 Modify the System Status Register (SSR). Bits set in argl are set or
cleared in the SSR if arg2 is non-zero or zero, respectively.

8 Read EAI Input Parameter Buffer. Argl is used as a location in user
space where the current Input Parameter Buffer is to be placed.

9 Change default Field Test Set utility-id. 10 Change the floating point
flag bits in the extended processor status word.

SEE ALSO
fts(} M), ipb(} M), prm(I M), reboot 0 M), setmrf(I M), ssr(1 M), in the UNIX
System Administrator's Manual.

- 1 -

TIME(2) TIME (2)

NAME
time - get time

SYNOPSIS
long time «long .) 0)

long time (tloC>
long .tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January I,
1970.

If tloc (taken as an integer) is non-zero, the return value is also stored in the
location to which tloc points.

Time will fail if tloc points to an illegal address. [EFAUL T]

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a value
of -I is returned and ermo is set to indicate the error.

SEE ALSO
stime(2).

- I -

TIMES(2) TIMES (2)

NAME
times - get process and child process times

SYNOPSIS
#include < sys/types.h >
#include <sys/times.h>

long times (buffed
struct tms * buffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting information.
The following is this contents of the structure:

struct tms {
time _t tms _utime;
time _t tms _stime;
time t tms _cutime;
time t tms _cstime;

} ;

This information comes from the calling process and each of its terminated
child processes for which it has executed await. All times are in 60ths of a
second on DEC processors, lOOths of a second on WECo processors.

Tms _utime is the CPU time used while executing instructions in the user space
of the calling process.

Tms _stime is the CPU time used by the system on behalf of the calling process.

Tms cutime IS the sum of the tms utimes and tms cutimes of the child
processes.

Tms cstime IS the sum of the tms stimes and tms cstimes of the child
processes.

Times will fail if buffer points to an illegal address. [EFAUL T]

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in 60ths
(100ths) of a second, since an arbitrary point in the past (e.g., system start-up
time). This point does not change from one invocation of times to another. If
times fails, a -1 is returned and errna is set to indicate the error.

SEE ALSO
exec(2), fork (2), time(2), wait(2).

- 1 -

ULlMIT(2) ULlMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit>
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values available
are:

Get the process's file size limit. The limit is in units of 512-byte blocks
and is inherited by child processes. Files of any size can be read.

2 Set the process's file size limit to the value of newlimit. Any process may
decrease this limit, but only a process with an effective user I D of super
user may increase the limit. Ulimit will fail and the limit will be
unchanged if a process with an effective user I D other than super-user
attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value. See brk (2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, a
value of -I is returned and errna is set to indicate the error.

SEE ALSO
brk (2), write(2).

- 1 -

I

UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to cmask and returns the pre
vious value of the mask. Only the low-order 9 bits of cmask and the file mode
creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh (I), chmod (2), crea t (2), mknod (2), open (2) .

- 1 -

UMOUNT(2) UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char • spec;

DESCRIPTION
Umount requests that a previously mounted file system contained on the block
special device identified by spec be unmounted. Spec is a pointer to a path
name. After unmounting the file system, the directory upon which the file sys
tem was mounted reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

The process's effective user ID is not super-user. [EPERM]

Spec does not exist. [ENXIO]

Spec is not a block special device. [ENOTBLK]

Spec is not mounted. [EINVALJ

A file on spec is busy. [EBUSY]

Spec points outside the process's allocated address space. [EFAUL T]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1
is returned and ermo is set to indicate the error.

SEE ALSO
mount(2).

- 1 -

I

I

UNAME(2) UNAME(2)

NAME
uname - get name of current UN IX system

SYNOPSIS
#include < sys/utsname.h >

int una me (name)
struct utsname *name;

DESCRIPTION
Uname stores information identifying the current UN IX system in the structure
pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose members are:

char sysname[9];
char nodename[9];
char release[9];
char version[9];
char machine[9];

Uname returns a null-terminated character string naming the current UN IX
system in the character array sysname. Similarly, nodename contains the
name that the system is known by on a communications network. Release and
version further identify the operating system. Machine contains a standard
name that identifies the hardware that the UNIX System is running on.

Uname will fail if name points to an invalid address. [EFAUL T]

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, -1 is
returned and ermo is set to indicate the error.

SEE ALSO
uname(l) .

- 1 -

UNLINK (2) UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char .path;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed to be
path.

The named file is unlinked unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[E~CCES]

Write permission is denied on the directory containing the link to be
removed. [EACCES]

The named file is a directory and the effective user I D of the process is
not super-user. [EPERM]

The entry to be unlinked is the mount point for a mounted file system.
[EBUSY]

The entry to be unlinked is the last link to a pure procedure (shared
text) file that is being executed. [ETXTBSY]

The directory entry to be unlinked is part of a read-only file system.
[EROFS]

Path points outside the process's allocated address space. [EFAUL T]

When all links to a file have been removed and no process has the file open, the
space occupied by the file is freed and the file ceases to exist. If one or more
processes have the file open when the last link is removed, the removal is post
poned until all references to the file have been closed.

RETURN VALUE
Upon successful completion, a value bf 0 is returned. Otherwise, a value of -1
is returned and erma is set to indicate the error.

SEE ALSO
rm (I), close (2), link (2), open (2).

- 1 -

I

USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev, bur)
int dev;
struct ustat *buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a device number
identifying a device containing a mounted file system. Buf is a pointer to a
ustat structure that includes to following elements:

daddr t f tfree; /* Total free blocks */
ino t - ftinode; /* Number of free inodes */
char f-fname[61; /* Filsys name */
char (fpack[6]; /* Filsys pack name */

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a mounted file sys
tem. [EINV All

Bul points outside the process's allocated address space. [EFAUL Tl

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

- 1 -

UTIME(2) UTIME (2)

NAME
utime - set file access and modification times

SYNOPSIS
#ioclude <sys/types.h>
iot utime (path, times)
char .path;
struct utimbuf .times;

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write permission
to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure
and the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user may use
utime this way.

The times in the following structure are measured in seconds since 00:00:00
GMT, Jan. I, 1970.

struct utimbuf
time t actime; /* access time */
time t mod time; /* modification time */

Utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT]

A component of the path prefix is not a directory. [ENOTDIR]

Search permission is denied by a component of the path prefix.
[EACCES]

The effective user ID is not super-user and not the owner of the file and
times is not NULL. [EPERM]

The effective user ID is not super-user and not the owner of the file and
times is NULL and write access is denied. [EACCES]

The file system containing the file is mounted read-only. [EROFS]

Times is not NULL and points outside the process's allocated address
space. [EFAULT]

Path points outside the process's allocated address space. [EF AUL T]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -I
is returned and errno is set to indicate the error.

SEE ALSO
stat(2) .

- 1 -

WAIT(2) WAIT (2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (statJoC>
int *stat Joe;

int wait «int *)0)

DESCRIPTION
Wait suspends the calling process until it receives a signal that is to be caught
(see signal (2», or until anyone of the calling process's child processes stops in
a trace mode (see ptrace (2» or terminates. If a child process stopped or ter
minated prior to the call on wait, return is immediate.

If stat _lac (taken as an integer) is non-zero, 16 bits of information called
status are stored in the low order 16 bits of the location pointed to by stat _lac.
Status can be used to differentiate between stopped and terminated child
processes and if the child process terminated, status identifies the cause of ter
mination and pass useful information to the parent. This is accomplished in the
following manner:

If the child process stopped, the high order 8 bits of status will contain
the number of the signal that caused the process to stop and the low
order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8 bits
of status will be zero and the high order 8 bits will contain the low
order 8 bits of the argument that the child process passed to exit; see
exit(2).

If the child process terminated due to a signal, the high order 8 bits of
status will be zero and the low order 8 bits will contain the number of
the signal that caused the termination. In addition, if the low order
seventh bit (i.e., bit 200) is set, a "core image" will have been pro
duced; see signal (2).

If a parent process terminates without waiting for its child processes to ter
minate, the parent process ID of each child process is set to 1. This means the
initialization process inherits the child processes; see intra (2).

Wait will fail and return immediately if one or more of the following are true:

The calling process has no existing unwaited-for child processes.
[ECHILD]

Stat_lac points to an illegal address. [EFAULT]

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -1 is returned to the
calling process and errno is set to EINTR. If wait returns due to a stopped or
terminated child process, the process ID of the child is returned to the calling
process. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
exec(2), exit (2), fork(2), pause(2), signaI(2).

WARNING
See WARNING in signaf(2).

- 1 -

WRITE(2) WRITE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char .buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe sys
tem call.

Write attempts to write nbyte bytes from the buffer pointed to by buf to the
file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write, the
file pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the 0 _APPEND flag of the file status flags is set, the file pointer will be set to
the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or more of the
following are true:

Fildes is not a valid file descriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for reading by
any process. [EPIPE and SIGPIPE signal]

An attempt was made to write a file that exceeds the process's file size
limit or the maximum file size. See ulimit (2). [EFBIG]

Buf points outside the process's allocated address space. [EFAULT]

If a write requests that more bytes be written than there is room for (e.g., the
ulimit (see ulimit (2» or the physical end of a medium), only as many bytes as
there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write of 512 bytes will return
20. The next write of a non-zero number of bytes will give a failure return
(except as noted below).

If the file being written is a pipe (or FIFO), no partial writes will be permitted.
Thus, the write will fail if a write of nbyte bytes would exceed a limit.

If the file being written is a pipe (or FIFO) and the 0 _NDELA Y flag of the file
flag word is set, then write to a full pipe (or FIFO) will return a count of o.
Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will block until
space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is returned.
Otherwise, -1 is returned and errno is set to 'indicate the error.

SEE ALSO
creat(2), dup(2), Iseek(2) , open (2) , pipe(2), ulimit(2).

- 1 -

INTRO(3) INTRO(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#include < stdio.h >

#include < math.h >

DESCRIPTION
This section describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described in
Section 2 of this volume. Certain major collections are identified by a letter
after the section number:

(3C) These functions, together with those of Section 2 and those marked
(3S), constitute the Standard C Library Ubc, which is automatically
loaded by the C compiler, cc(1). The link editor Id(I) searches this
library under the -Ie option. Declarations for some of these functions
may be obtained from #include files indicated on the appropriate pages.

(3F) These functions constitute the FORTRAN intrinsic function library,
UbF77. These functions are automatically available to the FORTRAN
programmer and require no special invocation of the compiler.

(3M) These functions constitute the Math Library, Ubm. They are automati
cally loaded as needed by the FORTRAN compiler 177(1). They are not
automatically loaded by the C compiler, cc(1); however, the link editor
searches this library under the -1m option. Declarations for these func
tions may be obtained from the #include file <math.h>.

(3S) These functions constitute the "standard 110 package" (see stdio (3S» .
These functions are in the library Ubc, already mentioned. Declarations
for these functions may be obtained from the #include file < stdio.h > .

(3 X) Various specialized libraries. The files in which these libraries are found
are given on the appropriate pages.

DEFINITIONS

FILES

A character is any bit pattern able to fit into a byte on the machine. The null
character is a character with value 0, represented in the C language as '\0'. A
character array is a sequence of characters. A null-terminated character
array is a sequence of characters, the last of which is the null character. A
string is a designation for a null-terminated character array. The null string
is a character array containing only the null character. A NULL pointer is the
value that is obtained by casting 0 into a pointer. The C language guarantees
that this value will not match that of any legitimate pointer, so many functions
that return pointers return it to indicate an error. NULL is defined as 0 in
<stdio.h>; the user can include his own definition if he is not using
<stdio.h>.

Many groups of FORTRAN intrinsic functions have generic function names that
do not require explicit or implicit type declaration. The type of the function
will be determined by the type of its argument(s). For example, the generic
function max will return an integer value if given integer arguments (maxO), a
real value if given real arguments (amaxI), or a double-precision value if given
double-precision arguments (dmaxI).

Ilib/libc.a
lusr Ilib/libF77.a
llibllibm.a

SEE ALSO
ar(I), cc(1), f77(1) , Id(I), nm(I), intro(2), stdio(3S).

- 1 -

INTRO(3) INTRO(3)

DIAGNOSTICS
Functions in the Math Library OM) may return the conventional values 0 or
HUGE (the largest single-precision floating-point number) when the function is
undefined for the given arguments or when the value is not representable. In
these cases, the external variable errno (see intro (2» is set to the value EDOM
or ERANGE. As many of the FORTRAN intrinsic functions use the routines
found in the Math Library, the same conventions apply.

- 2 -

A64L(3C) A64L (3C)

NAME
a641, l64a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char .s;

char .164a 0)
long I;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in base-64 ASC II charac
ters. This is a notation by which long integers can be represented by up to six
characters; each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for I, 0 through 9 for
2-11, A through Z for 12-37, and a through z for 38-63.

A641 takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a641 will use the first six.

L64a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, 164a returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of
which are overwritten by each call.

- 1 -

ABORT(3C) ABORT(3C) i

NAME
abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION
Abort causes an lOT signal to be sent to the process. This usually results in
termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which
case the value returned is that of the kill(2) system call.

SEE ALSO
adb(l), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writable, a
core dump is produced and the message "abort - core dumped" is written by
the shell.

- 1 -

ABORT(3F)

NAME
abort - terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION

ABORT(3F)

Abort terminates the program which calls it, closing all open files truncated to
the current position of the file pointer.

DIAGNOSTICS
When invoked, abort prints "Fortran abort routine called" on the standard
error output.

SEE ALSO
abort(3C).

- I -

ABS(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs G)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS

ABS(3C)

In two's-complement representation, the absolute value of the negative integer
with largest magnitude is undefined. Some implementations trap this error, but
others simply ignore it.

SEE ALSO
ftoorqM).

- 1 -

ABS OF) ABS (3F)

NAME
abs, iabs, dabs, cabs, zabs - Fortran absolute value

SYNOPSIS
integer it, i2
real rt, r2
double precision dpt, dp2
complex cxt, cx2
double complex dxt, dx2

r2 abs(rt)

i2 iabsGt)
i2 absGt)

dp2 dabs(dpt)
dp2 abs(dpt)

cx2 cabs(cxt)
cx2 abs(cxt)

dx2 zabs(dxt)
dx2 abs(dxt)

DESCRIPTION
Abs is the family of absolute value functions. labs returns the integer absolute
value of its integer argument. Dabs returns the double-precision absolute value
of its double-precision argument. Cabs returns the complex absolute value of
its complex argument. Zabs returns the double-complex absolute value of its
double-complex argument. The generic form abs returns the type of its argu
ment.

SEE ALSO
floor(3M} .

- 1 -

I

I

ACOS(3F) ACOS(3F)

NAME
acos, dacos - Fortran arccosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = acos(rt)

dp2 = dacos(dpt)
dp2 = acos(dpt)

DESCRIPTION
Acos returns the real arccosine of its real argument. Dacos returns the
double-precision arccosine of its double-precision argument. The generic form
acos may be used with impunity as its argument will determine the type of the
returned val ue.

SEE ALSO
trig(3M).

- 1 -

AIMAG(3F)

NAME
aimag, dimag - Fortran imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double precision dp
double complex cxd

r = aimag(cxr>

dp = dimag(cxd)

DESCRIPTION

AIMAG (3F)

Aimag returns the imaginary part of its single-precision complex argument.
Dimag returns the double-precision imaginary part of its double-complex argu
ment.

- 1 -

I

I

AINT(3F) AINT(3F)

NAME
aint, dint - Fortran integer part intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = aintCrt>

dp2 = dint(dpt>
dp2 = aint(dpt>

DESCRIPTION
Aint returns the truncated value of its real argument in a real. Dint returns
the truncated value of its double-precision argument as a double-precision
value. Aint may be used as a generic function name, returning either a real or
double-precision value depending on the type of its argument.

- 1 -

ASIN(3F) ASIN (3F)

NAME
asin, dasin - Fortran arcsine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = asin(rl)

dp2 = dasin(dpl)
dp2 = asin(dpl)

DESCRIPTION
Asin returns the real arcsine of its real argument. Dasin returns the double
precision arcsine of its double-precision argument. The generic form asin may
be used with impunity as it derives its type from that of its argument.

SEE ALSO
trig(3M).

- 1 -

I

I

ASSERT(3X) ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
#include < assert.h >
assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is exe
cuted, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is the name
of the source file and nnn the source line number of the assert statement.

Compiling with the preprocessor option -DNDEBUG (see cpp (1», or with the
preprocessor control statement "#define NDEBUG" ahead of the "#include
<assert.h>" statement, will stop assertions from being compiled into the pro
gram.

SEE ALSO
cpp(l), abort(3C).

- 1 -

ATAN(3F) ATAN(3F)

NAME
atan, datan - Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = atan(rt)

dp2 = datan(dpt)
dp2 = atan(dpt)

DESCRIPTION
Atan returns the real arctangent of its real argument. Datan returns the
double-precision arctangent of its double-precision argument. The generic form
atan may be used with a double-precision argument returning a double
precision value.

SEE ALSO
trig(3M).

- 1 -

I

I

ATAN2(3F)

NAME
atan2, datan2 - Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2, r3
double precision dpl, dp2, dp3

r3 = atan2(rl, r2)

dp3 = datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)

DESCRIPTION

ATAN2(3F)

Atan2 returns the arctangent of argJ /arg2 as a real value. Datan2 returns the
double-precision arctangent of its double-precision arguments. The generic
form atan2 may be used with impunity with double-precision arguments.

SEE ALSO
trig(3M).

- 1 -

ATOF(3C) ATOF(3C)

NAME
atof - convert ASCII string to floating-point number

SYNOPSIS
double atof (nptr)
char *nptr;

DESCRIPTION
AID! converts a character string pointed to by nplr to a double-precision
floating-point number. The first unrecognized character ends the conversion.
AID! recognizes an optional string of white-space characters, then an optional
sign, then a string of digits optionally containing a decimal point, then an
optional e or E followed by an optionally signed integer. If the string begins
with an unrecognized character, aID! returns the value zero.

DIAGNOSTICS
When the correct value would overflow, aID! returns HUGE, and sets errno to
ERANGE. Zero is returned on underflow.

SEE ALSO
scanf(3S).

- 1 -

BESSEL(3M) BESSEL (3M)

NAME
jO, j 1, jn, yO, y 1, yn - Bessel functions

SYNOPSIS
#include < math.h >
double jO (x)
double x;

double j 1 (x)
double x;

double jn (n, x)
int n;
double x;

double yO (x)
double x;

double y 1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
JO and j 1 return Bessel functions of x of the first kind of orders 0 and 1
respectively. In returns the Bessel function of x of the first kind of order n.

YO and y 1 return the Bessel functions of x of the second kind of orders 0 and 1
respectively. Yn returns the Bessel function of x of the second kind of order n.
The value of x must be positive.

DIAGNOSTICS
Non-positive arguments cause yO, yJ and yn to return the value HUGE and to
set ermo to EDOM. They also cause a message indicating DOMAIN error to be
printed on the standard error output; the process will continue.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(3M) .

- 1 -

BOOL(3F) BOOL(3F)

NAME
and, or, xor, not, lshift, rshift - Fortran bitwise boolean functions

SYNOPSIS
integer i, j, k
real a, b, c
double precision dpl, dp2, dp3

k = andO, j)
c = or(a, b)
j = xorO, a)
j = notO)
k = IsbiftO, j)
k = rsbiftO, j)

DESCRIPTION

NOTE

BUGS

The generic intrinsic boolean functions and, or and xor return the value of the
binary operations on their arguments. Not is a unary operator returning the
one's complement of its argument. Lshift and rshift return the value of the
first argument shifted left or right, respectively, the number of times specified
by the second (integer) argument.

The boolean functions are generic, that is, they are defined for all data types as
arguments and return values. Where required, the compiler will generate
appropriate type conversions.

Although defined for all data types, use of boolean functions on any but integer
data is bizarre and will probably result in unexpected consequences.

The implementation of the shift functions may cause large shift values to
deliver weird results.

- 1 -

BSEARCH (3C) BSEARCH(3C)

NAME
bsearch - binary search

SYNOPSIS
char .bsearch «char .) key, (char .) base, nel, sizeof (.key), compar)
unsigned nel;
int (.compar) ();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm
B. It returns a pointer into a table indicating where a datum may be found.
The table must be previously sorted in increasing order according to a provided
comparison function. Key points to the datum to be sought in the table. Base
points to the element at the base of the table. Nel is the number of elements
in the table. Compar is the name of the comparison function, which is called
with two arguments that point to the elements being compared. The function
must return an integer less than, equal to, or greater than zero according as the
first argument is to be considered less than, equal to, or greater than the
second.

DIAGNOSTICS

NOTES

A NULL pointer is returned if the key cannot be found in the table.

The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

SEE ALSO
Isearch(3C), hsearch(3C), qsort(3C), tsearch(3C).

- 1 -

CLOCK(3C) CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time On microseconds) used since the first
call to clock. The time reported is the sum of the user and system times of the
calling process and its terminated child processes for which it has executed
wait (2) or system (3S) .

The resolution of the clock is 10 milliseconds on Western Electric 3B proces
sors, 16.667 milliseconds on Digital Equipment Corporation processors.

SEE ALSO

BUGS

times (2), wait (2), system (3S).

The value returned by clock is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this,
the value returned will wrap around after accumulating only 2147 seconds of
CPU time (about 36 minutes).

- 1 -

CONJG(3F) CONJG(3F)

NAME
conjg, dconjg - Fortran complex conjugate intrinsic function

SYNOPSIS
complex cxt, cx2
double complex dxt, dx2

cx2 = conjg(cxt)

dx2 = dconjg(dxt)

DESCRIPTION
Conjg returns the complex conjugate of its complex argument. Dconjg returns
the double-complex conjugate of its double-complex argument.

- 1 -

CONV(3C) CONV(JC)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#ioclude < ctype.h >
iot toupper (d
iot c· ,
iot tolower (d
iot c· ,
iot _toupper (d
iot c;

iot tolower (d
iot c;

iot toascii (d
iot c· ,

DESCRIPTION
Toupper and to lower have as domain the range of getc (3S): the integers from
-1 through 255. If the argument of toupper represents a lower-case letter, the
result is the corresponding upper-case letter. If the argument of tolower
represents an upper-case letter, the result is the corresponding lower-case letter.
All other arguments in the domain are returned unchanged.

_toupper and _tolower are macros that accomplish the same thing as toupper
and tolower but have restricted domains and are faster. _toupper requires a
lower-case letter as its argument; its result is the corresponding upper-case
letter. _tolower requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause
undefined results.

Toascii yields its argument with all bits turned off that are not part of a stan
dard ASCII character; it is intended for compatibility with other systems.

SEE ALSO
ctype (3C), getc (3S) .

- 1 -

cos (3F)

NAME
cos, dcos, ccos - Fortran cosine intrinsic function

SYNOPSIS
real rt, r2
double precision dpt, dp2
complex cxt, cx2

r2 = cos(r1)

dp2 dcos (dp 1)
dp2 cos (dp 1)

cx2 ccos(cx1)
cx2 cos (cx1)

DESCRIPTION

COS(3F)

Cos returns the real cosine of its real argument. Dcos returns the double
precision cosine of its double-precision argument. Ccos returns the complex
cosine of its complex argument. The generic form cos may be used with
impunity as its returned type is determined by that of its argument.

SEE ALSO
trig(3M).

- 1 -

COSH(3F) COSH(3F)

NAME
cosh, dcosh - Fortran hyperbolic cosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = cosb(r 1)

dp2 = dcosb(dp 1)
dp2 = cosb(dpt)

DESCRIPTION
Cosh returns the real hyperbolic cosine of its real argument. Dcosh returns the
double-precision hyperbolic cosine of its double-precision argument. The gen
eric form cosh may be used to return the hyperbolic cosine in the type of its
argument.

SEE ALSO
sinh(3M).

- 1 -

CRYPT(3C) CRYPT(3C)

NAME
crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char -crypt (key, salt)
char -key, -salt;

void setkey (key)
char -key;

void encrypt (block, edflag)
char -block;
int edflag; .

DESCRIPTION
Crypt is the password encryption function. It is based on the NBS Data
Encryption Standard (DES), with variations intended (among other things) to
frustrate use of hardware implementations of the DES for key search.

Key is a user's typed password. Salt is a two-character string chosen from the
set [a-zA-ZO-9./1; this string is used to perturb the DES algorithm in one of
4096 different ways, after which the password is used as the key to encrypt
repeatedly a constant string. The returned value points to the encrypted pass
word. The first two characters are the salt itself.

The set key and encrypt entries provide (rather primitive) access to the actual
DES algorithm. The argument of setkey is a character array of length 64 con
taining only the characters with numerical value 0 and 1. If this string is
divided into groups of 8, the low-order bit in each group is ignored; this gives a
56-bit key which is set into the machine. This is the key that will be used with
the above mentioned algorithm to encrypt or decrypt the string block with the
function encrypt.

The argument to the encrypt entry is a character array of length 64 containing
only the characters with numerical value 0 and 1. The argument array is
modified in place to a similar array representing the bits of the argument after
having been subjected to the DES algorithm using the key set by set key . If
edflag is zero, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
10gin(1), passwd(t), getpass(3C), passwd(4).

BUGS
The return value points to static data that are overwritten by each call.

- 1 -

CTERMID (3S) CTERMID OS)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include < stdio.h >
char .ctermid (s)
char ·s;

DESCRIPTION

NOTES

Ctermid generates the path name of the controlling terminal for the current
process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the con
tents of which are overwritten at the next call to ctermid, and the address of
which is returned. Otherwise, s is assumed to point to a character array of at
least L_ctermid elements; the path name is placed in this array and the value of
s is returned. The constant L_ctermid is defined in the <stdio.h> header file.

The difference between ctermid and ttyname (3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal associated
with that file descriptor, while ctermid returns a string (/dev/tty) that will
refer to the terminal if used as a file name. Thus ttyname is useful only if the
process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

- 1 -

CTIMEOC) CTIMEOC)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS
#include < time.h >
char .ctime (clock)
long ·clock;

struct tm .Iocaltime (clock)
long .clock;

struct tm .gmtime (clock)
long • clock;

char .asctime <tm)
struct tm .tm;

extern long time zone;

extern int daylight;

extern char .tzname[2);

void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-
character string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to "tm" structures, described below.
Localtime corrects for the time zone and possible Daylight Savings Time;
gmtime converts directly to Greenwich Mean Time (GMT), which is the time
the UNIX System uses.

Asctime converts a "tm" structure to a 26-character string, as shown in the
above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the "tm" structure, are in
the <time.h> header file. The structure declaration is:

struct tm {

};

int tm sec; /. seconds (0 - 59) ./
int tm -min; /. minutes (0 - 59) ./
int tm -hour; /. hours (0 - 23) ./
int tm=mday; /. day of month (t - 31) ./
int tm_mon; /. month of year (0 - 11) ./
int tmj'ear; /. year - 1900 ./
int tm_wday; /. day of week (Sunday = 0) ./
int tmj'day; /. day of year (0 - 365) ./
int tmJsdst;

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds, between
GMT and local standard time Gn EST, timezone is 5.60.60); the external vari
able daylight is non-zero if and only if the standard U.S.A. Daylight Savings
Time conversion should be applied. The program knows about the peculiarities
of this conversion in 1974 and 1975; if necessary, a table for these years can be
extended.

If an environment variable named TZ is present, asctime uses the contents of
the variable to override the default time zone. The value of TZ must be a

- 1 -

CTIMEOC) CTIME(3C)

three-letter time zone name, followed by a number representing the difference
between local time and Greenwich Mean Time in hours, followed by an
optional three-letter name for a daylight time zone. For example, the setting
for New Jersey would be EST5EDT. The effects of setting TZ are thus to
change the values of the external variables timezone and daylight; in addition,
the time zone names contained in the external variable

char .tzname[2] == { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets these exter
nal variables from TZ; tzset is called by asctime and may also be called expli
citly by the user.

Note that in most installations, TZ is set by default when the user logs on, to a
value in the local/etc/profile file (see profile (4)).

SEE ALSO
time(2), getenv(3C), profile (4) , environ (5).

BUGS
The return values point to static data whose content is overwritten by each call.

- 2 -

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include < ctype.b >
int isalpba (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each is
a predicate returning nonzero for true, zero for false. Isascii is defined on all
integer values; the rest are defined only where isascii is true and on the single
non-ASCII value EOF (-1 - see stdio (3S».

isalpha

is upper

is lower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

DIAGNOSTICS

c is a letter.

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F] or [a-f1.

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, new-line, vertical tab, or
form-feed.

c is a punctuation character (neither control nor
alphanumeric) .

c is a printing character, code 040 (space) through 0176
(tilde) .

c is a printing character, like isprint except false for space.

c is a delete character (0177) or an ordinary control character
Cless than 040).

c is an ASCII character, code less than 0200.

If the argument to any of these macros is not in the domain of the function, the
result is undefined.

SEE ALSO
ascii(5) .

- 1 -

CUSERID OS) CUSERID (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include < stdio.b >

cbar .cuserid (s)
char .s;

DESCRIPTION
Cuserid generates a character-string representation of the login name of the
owner of the current process. If s is a NULL pointer, this representation is gen
erated in an internal static area, the address of which is returned. Otherwise, s
is assumed to point to an array of at least L_cuserid characters; the representa
tion is left in this array. The constant L_cuserid is defined in the <stdio.h>
header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a
NULL pointer, a null character <\0) will be placed at s [OJ.

SEE ALSO
getlogin (3C), getpwent (3C).

- 1 -

DIAL(3C) DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include < dial.h >
int dial {can>
CALL • call;

void undial (fd)
int fd;

DESCRIPTION

FILES

Dial returns a file-descriptor for a terminal line open for read/write. The argu
ment to dial is a CALL structure (defined in the <dial.h> header file.

When finished with the terminal line, the calling program must invoke undial
to release the semaphore that has been set during the allocation of the terminal
device.

The CALL typedef in the < dial.h > header file is:

typedef struct {

} CALL;

struct termio *attr;
int
int
char
char
int

baud;
speed;
.line;
*telno;
modem;

/* pointer to termio attribute struct */
/* transmission data rate */
/* 212A modem: low=300, high=1200 */
/* device name for out-going line */
/* pointer to tel-no digits string */
/* specify modem control for direct lines */

The CALL element speed is intended only for use with an outgoing dialed call,
in which case its value should be either 300 or 1200 to identify the 113A
modem, or the high or low speed setting on the 212A modem. The CALL ele
ment baud is for the desired transmission baud rate. For example, one might
set baud to 110 and speed to 300 (or 1200).

If the desired terminal line is a direct line, a string pointer to its device-name
should be placed in the line element in the CALL structure. Legal values for
such terminal device names are kept in the L-devices file. In this case, the
value of the baud element need not be specified as it will be determined from
the L-devices file.

The telno element is for a pointer to a character string representing the tele
phone number to be dialed. Such numbers may consist only of symbols
described on the acu (7). The termination symbol will be supplied by the dial
function, and should not be included in the telno string passed to dial in the
CALL structure.

The CALL element modem is used to specify modem control for direct lines.
This element should be non-zero if modem control is required. The CALL ele
ment attr is a pointer to a termio structure, as defined in the termio.h header
file. A NULL value for this pointer element may be passed to the dial function,
but if such a structure is included, the elements specified in it will be set for
the outgoing terminal line before the connection is established. This is often
important for certain attributes such as parity and baud-rate.

/usr /lib/uucp/L-devices
/usr/spool/uucp/LCK .. tty-device

SEE ALSO
u ucp (1 C), alarm (2), read (2), wri te(2) .
acu(7), termio(7) in the UNIX System Administrator's Manual.

- 1 -

DIAL(3C) DJAL(3C)

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be
returned. Mnemonics for these negative indices as listed here are defined in the
<dial.h> header file.

INTRPT
D_HUNG
NO_ANS
ILL BD
A_PROB
L_PROB
NO_Ldv
DV NT A
DV NT K
NO_BD_A
NO_BD_K

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11

/* interrupt occured */
/* dialer hung (no return from write) *j
/* no answer within 10 seconds */
/* illegal baud-rate */
/* acu problem (open 0 failure) */
/* line problem (openO failure) */
/* can't open LDEVS file */
/* requested device not available *j
/* requested device not known */
/* no device available at requested baud */
/* no device known at requested baud *j

WARNINGS

BUGS

Including the <diaI.h> header file automatically includes the <termio.h>
header file.

The above routine uses < stdio.h > , which causes it to increase the size of pro
grams, not otherwise using standard 110, more than might be expected.

An alarm (2) system call for 3600 seconds is made (and caught) within the
dial module for the purpose of "touching" the LCK .. file and constitutes the
device allocation semaphore for the terminal device. Otherwise, uucp(IC) may
simply delete the LCK .. entry on its 90-minute clean-up rounds. The alarm
may go off while the user program is in a read(2) or write(2) system call,
causing an apparent error return. If the user program expects to be around for
an hour or more, error returns from reads should be checked for
(errno = = EINTR), and the read possibly reissued.

- 2 -

DRAND48 (3C) DRAND480C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubil31;

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[31;

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubil31;

void srand48 (seedvaO
long seedval;

unsigned short .seed48 (seed16v)
unsigned short seed16v[31;

void Icong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision fioating
point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly distri
buted over the interval [-231, 231).

Functions srand48, seed48 and lcong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48 or mrand48 is called.
(Although it is not recommended practice, constant default initializer values
will be supplied automatically if drand48, lrand48 or mrand48 is called
without a prior call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization entry point to be called
first.

All the routines work by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula

n~O.

The parameter m = 248
; hence 48-bit integer arithmetic is performed. Unless

lcong48 has been invoked, the multiplier value a and the addend value care
given by

a = 5DEECE66D 16 = 273673163155 8
C = B 16 = 13 8,

The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-bit
Xi in the sequence. Then the appropriate number of bits, according to the type
of data item to be returned, are copied from the high-order (leftmost) bits of
Xi and transformed into the returned value.

- 1 -

DRAND48 (3C) DRAND48 (3C)

NOTES

The functions drand48, lrand48 and mrand48 store the last 48-bit Xi gen
erated in an internal buffer; that is why they must be initialized prior to being
invoked. The functions erand48, nrand48 and jrand48 require the calling pro
gram to provide storage for the successive Xi values in the array specified as an
argument when the functions are invoked. That is why these routines do not
have to be initialized; the calling program merely has to place the desired ini
tial value of Xi into the array and pass it as an argument. By using different
arguments, functions erand48, nrand48 and jrand48 allow separate modules of
a large program to generate several independent streams of pseudo-random
numbers, i.e., the sequence of numbers in each stream will not depend upon
how many times the routines have been called to generate numbers for the
other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32 bits
contained in its argument. The low-order 16 bits of Xi are set to the arbitrary
value 330E16.

The initializer function seed48 sets the value of X j to the 48-bit value specified
in the argument array. In addition, the previous value of X j is copied into a
48-bit internal buffer, used only by seed48, and a pointer to this buffer is the
value returned by seed48. This returned pointer, which can just be ignored if
not needed, is useful if a program is to be restarted from a given point at some
future time - use the pointer to get at and store the last X j value, and then
use this value to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial Xi, the
multiplier value a, and the addend value c. Argument array elements
paramfO-2] specify Xi' paramf3-5] specify the multiplier a, and paramf6]
specifies the 16-bit addend c. After lcong48 has been called, a subsequent call
to either srand48 or seed48 will restore the "standard" multiplier and addend
values, a and c, specified on the previous page.

The versions of these routines for the VAX-II and PDP-II are coded in assem
bly language for maximum speed. It requires approximately 80 Ilsec on a
VAX-I1I780 and 130 Ilsec on a PDP-IInO to generate one pseudo-random
number. On other computers, the routines are coded in portable C. The
source code for the portable version can even be used on computers which do
not have floating-point arithmetic. In such a situation, functions drand48 and
erand48 do not exist; instead, they are replaced by the two new functions
below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubil31, m;

Functions irand48 and krand48 return non-negative long integers uniformly
distributed over the interval [0, m -I].

SEE ALSO
rand(3C).

- 2 -

ECVT(3C) ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char .ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, .decpt, .sign;

char .fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, .decpt, ·sign;

char .gcvt (value, ndigit, buf)
double value;
char .buf;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit digits and returns a
pointer thereto. The low-order digit is rounded. The position of the decimal
point relative to the beginning of the string is stored indirectly through decpt
(negative means to the left of the returned digits). The decimal point is not
included in the returned string. If the sign of the result is negative, the word
pointed to by sign is non-zero, otherwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has been rounded for For
tran F-format output of the number of digits specified by ndigit.

Gcvt converts the value to a null-terminated string in the array pointed to by
buf and returns buf. It attempts to produce ndigit significant digits in Fortran
F-format if possible, otherwise E-format, ready for printing. A minus sign, if
there is one, or a decimal point will be included as part of the returned string.
Trailing zeros are suppressed.

SEE ALSO
printf(3S) .

BUGS
The return values point to static data whose content is overwritten by each call.

- 1 -

END(3C) END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents.
The address of etext is the first address above the program text, edata above
the initialized data region, and end above the uninitialized data region.

When execution begins, the program break (the first location beyond the data)
coincides with end, but the program break may be reset by the routines of
brk (2), mallod3C), standard input/output (stdio OS», the profile (- p)
option of edt), and so on. Thus, the current value of the program break
should be determined by sbrk (0) (see brk (2» .

SEE ALSO
brk(2), mallocOC).

- 1 -

ERF(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include < math.h >
double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION
x

Erf returns the error function of x, defined as -~ f e-t'dt.
"7r 0

ERF(3M)

Erfc, which returns 1.0 - erf{x} , is provided because of the extreme loss of
relative accuracy if erf{x} is called for large x and the result subtracted from
1.0 (e.g. for x = 5, 12 places are lost).

SEE ALSO
exp(3M) .

- 1 -

EXP(3F) EXP(3F)

NAME
exp, dexp, cexp - Fortran exponential intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = exp(rl)

dp2 dexp(dpl)
dp2 exp(dpI)

cx2 clog(cxI)
cx2 exp(cxI)

DESCRIPTION
Exp returns the real exponential function eX of its real argument. Dexp
returns the double-precision exponential function of its double-precision argu
ment. Cexp returns the complex exponential function of its complex argument.
The generic function exp becomes a call to dexp or cexp as required, depend
ing on the type of its argument.

SEE ALSO
exp(3M).

- 1 -

EXP(3M) EXP(3M)

NAME
exp, log, 10gIO, pow, sqrt - exponential, logarithm, power, square root functions

SYNOPSIS
#include < math.h >
double exp (x)
double x;

double log (x)
double x;

double loglO (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns eX.

Log returns the natural logarithm of x. The value of x must be positive.

LogJO returns the logarithm base ten of x. The value of x must be positive.

Pow returns xY. The values of x and y may not both be zero. If x is non
positive, y must be an integer.

Sqrt returns the square root of x. The value of x may not be negative.

DIAGNOSTICS
Exp returns HUGE when the correct value would overflow, and sets errno to
ERANGE.

Log and logJO return 0 and set errno to EDOM when x is non-positive. An
error message is printed on the standard error output.

Pow returns 0 and sets errno to EDOM when x is non-positive and y is not an
integer, or when x and yare both zero. In these cases a message indicating
DOMAIN error is printed on the standard error output. When the correct value
for pow would overflow, pow returns HUGE and sets errno to ERANGE.

Sqrt returns 0 and sets errno to EDOM when x is negative. A message indicat
ing DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
mat herr (3 M) .

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

- 1 -

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include < stdio.h >
iot fclose (stream)
FILE *stream;

iot mush (stream)
FILE *stream;

DESCRIPTION
Fc/ose causes any buffered data for the named stream to be written out, and
the stream to be closed.

Fc/ose is performed automatically for all open files upon calling exit (2).

Fflush causes any buffered data for the named stream to be written to that file.
The stream remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying to
write to a file that has not been opened for writing) was detected.

SEE ALSO
c1ose(2), exit (2), fopen (3S), setbuf(3S).

- 1 -

I

I

FERROR(3S) FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#indude < stdio.h >
int feof (stream)
FILE
*stream;

int ferror (stream)
FILE
*stream;

void dearerr (stream)
FILE
*stream;

int fileno (stream)
FILE
*stream;

DESCRIPTION

NOTE

Feo! returns non-zero when EOF has previously been detected reading the
named input stream, otherwise zero.

Ferror returns non-zero when an I/O error has previously occurred reading
from or writing to the named stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named
stream.

Fileno returns the integer file descriptor associated with the named stream; see
open (2).

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO
open (2), fopen OS).

- 1 -

FLOOR(3M) FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <matb.b>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not greater
than x.

Ceil returns the smallest integer not less than x.

Fmod returns x if y is zero, otherwise the number f with the same sign as x,
such that x = iy + f for some integer i, and lfI < Iy I.

F abs returns I x I.
SEE ALSO

abs(3C).

- 1 -

I

FOPEN(3S) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream ,

SYNOPSIS
#include < stdio.h >
FILE *fopen (file-name, type)
char *file-name, * type;

FILE *freopen (file-name, type, stream)
char *file-name, *type;
FILE * stream;

FILE *fdopen (fildes, type)
int fildes;
char * type;

DESCRIPTION
Fopen opens the file named by file-name and associates a stream with it.
Fopen returns a pointer to the FILE structure associated with the stream.

File-name points to a character string that contains the name of the file to be
opened.

Type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append; open for writing at end of file, or create for writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original
stream is closed, regardless of whether the open ultimately succeeds. Freopen
returns a pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated with stdin,
stdout and stderr to other files.

Fdopen associates a stream with a file descriptor obtained from open, dup,
creat, or pipe (2), which will open files but not return pointers to a FILE struc
ture stream which are necessary input for many of the section 3S library rou
tines. The type of stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the
resulting stream. However, output may not be directly followed by input
without an intervening fseek or rewind, and input may not be directly followed
by output without an intervening fseek, rewind, or an input operation which
encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it is impossi
ble to overwrite information already in the file. Fseek may be used to reposi
tion the file pointer to any position in the file, but when output is written to the
file the current file pointer is disregarded. All output is written at the end of
the file and causes the file pointer to be repositioned at the end of the output.
If two separate processes open the same file for append, each process may write
freely to the file without fear of destroying output being written by the other.
The output from the two processes will be intermixed in the file in the order in
which it is written.

SEE ALSO
open (2), fclose OS) .

- 1 -

FOPENOS) FOPEN(3S)

DIAGNOSTICS
Fopen and Jreopen return a NULL pointer on failure.

I

- 2 -

I

FREAD(3S) FREAD(JS)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#include < stdio.h >
int fread (ptr, size, nitems, stream)
char ·ptr;
int size, nitems;
FILE .stream;

int fwrite (ptr, size, nitems, stream)
char .ptr;
int size, nitems;
FILE .stream;

DESCRIPTION
Fread copies, into an array beginning at ptr, nitems items of data from the
named input stream, where an item of data is a sequence of bytes (not neces
sarily terminated by a null byte) of length size. Fread stops appending bytes if
an end-of-file or error condition is encountered while reading stream, or if
nitems items have been read. Fread leaves the file pointer in stream, if
defined, pointing to the byte following the last byte read if there is one. Fread
does not change the contents of stream.

Fwrite appends at most nitems items of data from the the array pointed to by
ptr to the named output stream. Fwrite stops appending when it has appended
nitems items of data or if an error condition is encountered on stream. Fwrite
does not change the contents of the array pointed to by ptr.

The variable size is typically sizeof(.ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr. If ptr points to a data type
other than char it should be cast into a pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S),
puts (3S), scanf(3S).

DIAGNOSTICS
Fread and fwrite return the number of items read or written. If nitems is
non-positive, no characters are read or written and 0 is returned by both fread
and fwrite.

- 1 -

FREXP(3C) FREXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int .eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, ·iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x. 2n, where the "mantissa"
(fraction) x is in the range 0.5 ~ Ixl < 1.0, and the "exponent" n is an
integer. Frexp returns the mantissa of a double value, and stores the exponent
indirectly in the location pointed to by eptr.

Ldexp returns the quantity value. 2exp
.

Mod! returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

DIAGNOSTICS
If ldexp would cause overflow, HUGE is returned and ermo is set to ERANGE.

- 1 -

I

I

F,SEEK(3S) FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include < stdio.h >
int fseek (stream, offset, ptrname)
FILE .stream;
long offset;
int ptrname;

void rewind (stream)
FILE .stream;

long ftell (stream)
FILE .stream;

DESCRIPTION
Fseek sets the posItIon of the next input or output operation on the stream.
The new position is at the signed distance offset bytes from the beginning, from
the current position, or from the end of the file, according as ptrname has the
value 0, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is
returned.

Fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for update may be
either input or output.

Ftell returns the offset of the current byte relative to the beginning of the file
associated with the named stream.

SEE ALSO
lseek (2), fopen (3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An improper seek
can be, for example, an fseek done on a file that has not been opened via Jopen;
in particular, fseek may not be used on a terminal, or on a file opened via
popen(3S).

WARNING
Although on the UNIX System an offset returned by ftell is measured in bytes,
and it is permissible to seek to positions relative to that offset, portability to
non-UNIX Systems requires that an offset be used by fseek directly. Arithmetic
may not meaningfully be performed on such a offset, which is not necessarily
measured in bytes.

- 1 -

FTw(3C) FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include < ftw.h >
int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path. For each
object in the hierarchy, ftw calls In, passing it a pointer to a null-terminated
character string containing the name of the object, a pointer to a stat structure
{see stat (2» containg information about the object, and an integer. Possible
values of the integer, defined in the <ftw.h> header file, are FTW _F for a file,
FTW _D for a directory, FTW _DNR for a directory that cannot· be read, and
FTW _NS for an object for which stat could not successfully be executed. If the
integer is FTW _DNR, descendants of that directory will not be processed. If the
integer is FTW _NS, the stat structure will contain garbage. An example of an
object that would cause FTW _NS to be passed to In would be a file in a direc
tory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn
returns a nonzero value, or some error is detected within ftw (such as an 110
error). If the tree is exhausted, ftw returns zero. If fn returns a nonzero value,
ftw stops its tree traversal and returns whatever value was returned by In. If
ftw detects an error, it returns -1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth argument
limits the number of file descriptors so used. If depth is zero or negative, the
effect is the same as if it were 1. Depth must not be greater than the number
of file descriptors currently available for use. Ftw will run more quickly if
depth is at least as large as the number of levels in the tree.

SEE ALSO

BUGS

stat (2), malloC(3C).

Because ftw is recursive, it is possible for it to terminate with a memory fault
when applied to very deep file structures.
It could be made to run faster and use less storage on deep structures at the
cost of considerable complexity.
Ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is
forcibly terminated, such as by /ongjmp being executed by fn or an interrupt
routine, ftw will not have a chance to free that storage, so it will remain per
manently allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have fn return a nonzero value at its
next invocation.

- 1 -

I

I

FTYPE(3F) FTYPE(3F)

NAME
int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char - explicit For
tran type conversion

SYNOPSIS
integer i, j
real r, s
double precision dp, dq
complex cx
double complex dcx
character* 1 ch

int(r)
int(dp)
int(cx)
int(dcx)
ifix(r)
idint(dp)

r = real(i)
r real (dp)
r reaI(cx)
r = real (dcx)
r = ftoat(j)
r = sngl(dp)

dp dbleO)
dp dble(r)
dp dble(cx)
dp dble(dcx)

cx cmplx(i)
cx cmplxO, j)
cx cmplx(r)
cx cmplx(r, s)
cx cmplx(dp)
cx cmplx (dp, dq)
cx cmplx(dcx)

dcx dcmplx(i)
dcx dcmplx 0, j)
dcx dcmplx(r)
dcx dcmplx(r, s)
dcx dcmplx(dp)
dcx dcmplx (dp, dq)
dcx dcmplx(cx)

i = ichadch)
ch = char (i)

DESCRIPTION
These functions perform conversion from one data type to another.

int converts to integer form its real, double precision, complex, or double com
plex argument. If the argument is real or double precision, int returns the
integer whose magnitude is the largest integer that does not exceed the magni
tude of the argument and whose sign is the same as the sign of the argument
(i.e. truncation). For complex types, the above rule is applied to the real part.
ifix and idiot convert only real and double precision arguments respectively.

real converts to real form an integer, double precision, complex, or double
complex argument. If the argument is double precision or double complex, as

- 1 -

FTYPE(3F) FTYPE(3F)

much preclSlon is kept as is possible. If the argument is one of the complex
types, the real part is returned. float and sngl convert only integer and double
precision arguments respectively.

dble converts any integer, real, complex, or double complex argument to dou
ble precision form. If the argument is of a complex type, the real part is
returned.

cmplx converts its integer, real, double precision, or double complex
argument (s) to complex form.

dcmplx converts to double complex form its integer, real, double precision, or
complex argument (s) .

Either one or two arguments may be supplied to cmplx and dcmplx . If there is
only one argument, it is taken as the real part of the complex type and a ima
ginary part of zero is supplied. If two arguments are supplied, the first is taken
as the real part and the second as the imaginary part.

ichar converts from a character to an integer depending on the character's posi
tion in the collating sequence.

char returns the character in the ith position in the processor collating sequence
where i is the supplied argument.

For a processor capable of representing n characters,

ichar(char(i» = i for 0 <= i < n, and

char(ichar(ch» = ch for any representable character ch.

- 2 -

I

I

GAMMA(3M) GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>

extern iot signgam;

double gamma (x)
double x;

DESCRIPTION

Gamma returns In<ir(x) I), where rex) is defined as fe-I tX-ldt. The sign of
o

rex) is returned in the external integer signgam. The argument x may not be
a non-positive integer.

The following C program fragment might be used to calculate r:

if «y = gamma(x)) > LOGHUGE)
errore);

y = signgam * exp(y);

where LOGHUGE is the least value that causes exp (3M) to return a range
error.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and ermo is set to
EDOM. A message indicating DOMAIN error is printed on the standard error
output.

If the correct value would overflow, gamma returns HUGE and sets ermo to
ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
exp(3M), matherr(3M).

- 1 -

GETARG(3F)

NAME
getarg - return Fortran command-line argument

SYNOPSIS
character· N c
integer i

getarg (i, c)

DESCRIPTION

GETARG(3F)

Getarg returns the i-th command-line argument of the current process. Thus, if
a program were invoked via

foo arg 1 arg2 arg3

getarg(2, c) would return the string "arg2" in the character variable c.

SEE ALSO
getopt (3C).

- 1 -

I

I

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#include < stdio.h >
int getc (stream)
FILE -stream;

int get char ()

int fgetc (stream)
FILE -stream;

int getw (stream)
FILE -stream;

DESCRIPTION
Getc returns the next character (i.e. byte) from the named input stream. It
also moves the file pointer, if defined, ahead one character in stream. Getc is a
macro and so cannot be used if a function is necessary; for example one cannot
have a function pointer point to it.

Getchar returns the next character from the standard input stream, stdin. As
in the case of getc, getchar is a macro.

Fgetc performs the same function as getc, but is a genuine function. Fgetc
runs more slowly than getc, but takes less space per invocation.

Getw returns the next word (i.e. integer) from the named input stream. The
size of a word varies from machine to machine. It returns the constant EOF
upon end-of-file or error, but as that is a valid integer value, feof and
ferror (3S) should be used to check the success of getw. Getw increments the
associated file pointer, if defined, to point to the next word. Getw assumes no
special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end-of-file or upon an error.

Because it is implemented as a macro, getc treats incorrectly a stream argu
ment with side effects. In particular, getc(-f++) doesn't work sensibly. Fgetc
should be used instead.
Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent, and may not be read using getw on a
different processor.

- 1 -

GETCWD(3C) GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char .getcwd (buf, size)
char ·buf;
int size;

DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The value of size
must be at least two greater than the length of the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using
maUoc OC). In this case, the pointer returned by getcwd may be used as the
argument in a subsequent call to free.

The function is implemented by using popen OS) to pipe the output of the
pwd (I) command into the specified string space.

EXAMPLE

SEE ALSO

char *cwd, *getcwd 0;

if «cwd = getcwd«char *)NULL, 64» == NULL)
perror("pwd");
exit (1);

printf("%s\n", cwd);

pwd(l), mallocOC), popenOS).

DIAGNOSTICS
Returns NULL with ermo set if size is not large enough, or if an error ocurrs in
a lower-level function.

- 1 -

GETENv(3C)

NAME
getenv - return value for environment name

SYNOPSIS
char .getenv (name)
char .name;

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ (5» for a string of the form
name = value, and returns a pointer to the value in the current environment if
such a string is present, otherwise a NULL pointer.

SEE ALSO
environ (5) .

- 1 -

GETENV(3F)

NAME
getenv - return Fortran environment variable

SYNOPSIS
character. N c

getenv(-TMPDIR-, c)

DESCRIPTION

GETENV(3F)

Getenv returns the character-string value of the environment variable
represented by its first argument into the character variable of its second argu
ment. If no such environment variable exists, all blanks will be returned.

SEE ALSO
getenv(3C), environ(S).

- 1 -

I

GETGRENT(3C) GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#include < grp.h >

struct group *getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

void setgrent ()

void endgrent ()

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the fol
lowing structure containing the broken-out fields of a line in the fetcfgroup file.
Each line contains a "group" structure, defined in the <grp.h> header file.

struct group {
char
char
int
char

} ;

·gr_name; f. the name of the group ./
.gryasswd; f. the encrypted group password ./
gr--.8id; f· the numerical group ID ./
**gr_mem; /. vector of pointers to member names ./

Getgrent when first called returns a pointer to the first group structure in the
file; thereafter, it returns a pointer to the next group structure in the file; so,
successive calls may be used to search the entire file. Getgrgid searches from
the beginning of the file until a numerical group id matching gid is found and
returns a pointer to the particular structure in which it was found. Getgrnam
searches from the beginning of the file until a group name matching name is
found and returns a pointer to the particular structure in which it was found.
If an end-of-file or an error is encountered on reading, these functions return a
NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is
complete.

/etc/group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

BUGS

The above routines use <stdio.h>, which causes them to increase the size of
programs, not otherwise using standard 110, more than might be expected.

All information is contained in a static area, so it must be copied if it is to be
saved.

- 1 -

G ETLOG IN (3C) GETLOGIN (3C)

NAME
getlogin - get login name

SYNOPSIS
char .getlogin ();

DESCRIPTION

FILES

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be
used in conjunction with getpwnam to locate the correct password file entry
when the same user ID is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, it
returns a NULL pointer. The correct procedure for determining the login name
is to call cuserid, or to call get login and if it fails to call getpwuid.

/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

- 1 -

I

GETOPT(3C) GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char .. argv;
char .optstring;

extern char .optarg;
extern int optind;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in optstring.
Optstring is a string of recognized option letters; if a letter is followed by a
colon, the option is expected to have an argument that mayor may not be
separated from it by white space. Optarg is set to point to the start of the
option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed.
Because optind is external, it is normally initialized to zero automatically
before the first call to get opt.

When all options have been processed {i.e., up to the first non-option argu
ment}, getopt returns EOF. The special option - - may be used to delimit the
end of the options; EOF will be returned, and - - will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?) when
it encounters an option letter not included in optstring.

WARNING
The above routine uses < stdio.h > , which causes it to increase the size of pro
grams, not otherwise using standard I/O, more than might be expected.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the options
f and 0, both of which require arguments:

main (argc, argv)
int argc;
char uargv;
{

int c;
extern int optind;
extern char *optarg;

while «c = get opt (argc, argv, "abf:o:"» != EOF)
switch (c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc();

- 1 -

GETOPT(3C)

SEE ALSO
getopt(1).

break;
case 'f':

case '0':

case '?':

}
if (errflg)

ifile = optarg;
break;

ofile = optarg;
bufsiza = 512;
break;

errflg++;

fprintf (stderr, "usage: ... ");
exit (2);

for ; optind < argc; optind++) {
if (access (argv[optindl, 4»

- 2 -

GETOPT(3C)

GETPASS (3C) GETPASS (3C;

NAME
get pass - read a password

SYNOPSIS
char .getpass (prompt>
char ·prompt;

DESCRIPTION

FILES

Getpass reads up to a newline or EOF from the file /dev/tty, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 charac
ters. If /dev/tty cannot be opened, a NULL pointer is returned. An interrupt
will terminate input and send an interrupt signal to the calling program before'
returning.

/dev/tty

SEE ALSO
crypt(3C).

WARNING

BUGS

The above routine uses <stdio.h>, which causes it to increase the size of pro
grams, not otherwise using standard 110, more than might be expected.

The return value points to static data whose content is overwritten by each call. ,

- 1 -

PETPWOC) GETPWOC)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, but)
int uid;
char *buf;

DESCRIPTION

FILES

Getpw searches the password file for a user id number that equals uid, copies
the line of the password file in which uid was found into the array pointed to
by buJ, and returns o. Getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should
not be used; see getpwent (3C) for routines to use instead.

/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses < stdio.h > , which causes it to increase the size of pro
grams, not otherwise using standard 110, more than might be expected.

- 1 -

G ETPWENT (3C) GETPWENT(3Ch

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNOPSIS
#include < pwd.h >
struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent ()

void endpwent ()

DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each returns a pointer to an object with the
following structure containing the broken-out fields of a line in the /etc/passwd
file. Each line in the file contains a "passwd" structure, declared in the
<pwd.h> header file:

struct passwd {
char
char

·pw_name;
·pw yasswd;
pw_uid;
pw~id;

};

int
int
char
char
char
char
char

·pw_age;
·pw _comment;
·pw~ecos;

.pw_dir;

.pw_shell;

struct comment {
char ·c_dept;
char *c _name;
char ·c _ acct;
char ·c _bin;

This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The pw _comment field is unused; the others have meanings described m
passwd(4).

Getpwent when first called returns a pointer to the first passwd structure in the
file; thereafter, it returns a pointer to the next passwd structure in the file; so
successive calls can be used to search the entire file. Getpwuid searches from
the beginning of the file until a numerical user id matching uid is found and
returns a pointer to the particular structure in which it was found. Getpwnam
searches from the beginning of the file until a login name matching name is
found, and returns a pointer to the particular structure in which it was found.
If an end-of-file or an error is encountered on reading, these functions return a
NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file when
processing is complete.

/etc/passwd

- 1 -

GETPWENT (3C) GETPWENT(3C)

SEE ALSO
getlogin DC), getgrent DC), passwd (4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of
programs, not otherwise using standard 110, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be
saved.

- 2 -

GETS OS) GETS OS)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include < stdio.h >
char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until a new-line character is read or an end-of-file condition is
encountered. The new-line character is discarded and the string is terminated
with a null character.

Fgets reads characters from the stream into the array pointed to by s, until
n-l characters are read, or a new-line character is read and transferred to s,
or an end-of-file condition is encountered. The string is then terminated with a
null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters
are transferred to s and a NULL pointer is returned. If a read error occurs,
such as trying to use these functions on a file that has not been opened for
reading, a NULL pointer is returned. Otherwise s is returned.

- 1 -

GETUT(3C) GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access
utmp file entry

SYNOPSIS
#include < utmp.h >
struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline Hine)
struct utmp *line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char * file;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a structure of the fol
lowing type:

struct utmp {
char ut user[8]; /* User login name */
char ut-id[4]; /* /etc/inittab id (usually line #) */
char ut-line[12]; /* device name (console, Inxx) */
short u(pid; /* process id */
short ut_type; /* type of entry */
struct exit_status {

short e _ termina tion; /* Process termination status */
short e_exit; /* Process exit status */

} ut_exit; /* The exit status of a process
* marked as DEAD _PROCESS. */

time t
} ;

ut_time; /* time entry was made */

Getutent reads in the next entry from a utmp-like file. If the file is not already
open, it opens it. If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the utmp file until it finds
an entry with a ut_type matching id->ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in id
is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS,
then getutid will return a pointer to the first entry whose type is one of these
four and whose ut id field matches id - > ut id. If the end of file is reached
without a match, it-fails. -

Getutline searches forward from the current point in the utmp file until it finds
an entry of the type LOGIN_PROCESS or USER_PROCESS which also has a
ut _line string matching the line - > ut }ine string. If the end of file is reached
without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It uses
getutid to search forward for the proper place if it finds that it is not already at
the proper place. It is expected that normally the user of pututline will have
searched for the proper entry using one of the getut routines. If so, pututline
will not search. If pututline does not find a matching slot for the new entry, it
will add a new entry to the end of the file.

- 1 -

GETUT(3C) GETUT(3C)

FILES

Setutent resets the input stream to the beginning of the file. This should be
done before each search for a new entry if it is desired that the entire file be
examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from
/etc/utmp to any other file. It is most often expected that this other file will be
/etc/wtmp. If the file doesn't exist, this will not be apparent until the first
attempt to reference the file is made. Utmpname does not open the file. It just
closes the old file if it is currently open and saves the new file name.

/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permissions or
having reached the end of file, or upon failure to write.

COMMENTS
The most current entry is saved in a static structure. Multiple accesses require
that it be copied before further accesses are made. Each call to either getutid
or getutline sees the routine examine the static structure before performing
more I/O. If the contents of the static structure match what it is searching for,
it looks no further. For this reason to use getutline to search for multiple
occurences, it would be necessary to zero out the static after each success, or
getutline would just return the same pointer over and over again. There is one
exception to the rule about removing the structure before further reads are
done. The implicit read done by pututline if it finds that it isn't already at the
correct place in the file will not hurt the contents of the static structure
returned by the getutent, getutid or getutline routines, if the user has just
modified those contents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between processes trying
to modify the utmp and wtmp files.

- 2 -

HSEARCH (3C) HSEARCH (3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include < search.h >
ENTRY .hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (neI)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm
D. It returns a pointer into a hash table indicating the location at which an
entry can be found. Item is a structure of type ENTRY (defined in the
<search.h> header file) containing two pointers: item.key points to the com
parison key, and item.data points to any other data to be associated with that
key. (Pointers to types other than character should be cast to pointer-to
character.) Action is a member of an enumeration type ACTION indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that
the item should be inserted in the table at an appropriate point. FIND indicates
that no entry should be made. Unsuccessful resolution is indicated by the
return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called before
hsearch is used. nel is an estimate of the maximum number of entries that the
table will contain. This number may be adjusted upward by the algorithm in
order to obtain certain mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by another call to
hcreate.

Hsearch uses open addressing with a multiplicative hash function. However,
its source code has many other options available which the user may select by
compiling the hsearch source with the following symbols defined to the prepro
cessor:

DIV

useR

Use the remainder modulo table size as the hash function
instead of the multiplicative algorithm.

Use a User Supplied Comparison Routine for ascertaining
table membership. The routine should be named hcompar
and should behave in a mannner similar to strcmp (see
string (3C».

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become available.

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in ascend
ing order.

SORTDOWN Keep the linked list sorted by key in des-
cending order.

Additionally, there are preprocessor flags for obtaining debugging printout
(- DDEBUC) and for including a test driver in the calling routine
(- DDRIVER). The source code should be consulted for further details.

- 1 -

I

HSEARCH OC) HSEARCH (3C)

SEE ALSO
bsearch (3C), lsearch (3C), string(3C), tsearch (3C).

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and the item could
not be found or the action is ENTER and the table is full.

Hcreate returns zero if it cannot allocate sufficient space for the table.

BUGS
Only one hash search table may be active at any given time.

- 2 -

HYPOT(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include < math.h >
double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x • x 1- Y • y),

taking precautions against unwarranted overflows.

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, hypot returns HUGE and sets errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
matherr(3M), sqrt(3F).

- 1 -

INDEX(3F)

NAME
index - return location of Fortran substring

SYNOPSIS
character-NI chI
character-N2 ch2
integer i

i = index(chl, ch2)

DESCRIPTION

INDEX(3F)

Index returns the location of substring ch2 in string chI. The value returned is
the position at which substring ch2 starts, or 0 is it is not present in string chI.

- 1 -

L3TOL(3C) L3TOL(3C)

NAME
13tol, Ito13 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol Op, cp, n)
long *Ip;
char *cp;
int n;

void Itol3 (cp, Ip, n)
char *cp;
long *Ip;
int n;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by Ip.

Lto13 performs the reverse conversion from long integers Up) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical values of the
long integers are machine-dependent.

- 1 -

I

I

LDAHREAD OX) (not on PDP-l 1) LDAHREAD OX)

NAME
ldahread - read the archive header of a member of an archive file

SYNOPSIS
#include < stdio.h >
#include < ar.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idahread Odptr, arhead)
LDFILE .Idptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE([dptr) is the archive file magic number, ldahread reads the archive
header of the common object file currently associated with ldptr into the area
of memory beginning at arhead.

Ldahread returns SUCCESS or FAILURE. Ldahread will fail if TVPE(/dptr)
does not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4).

- 1 -

LDCLOSEOX) (not on PDP-I 1) LDCLOSE (3X)

NAME
ldclose, ldaclose - close a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idclose Odptr)
LDFILE *Idptr;

int Ida close Odptr)
LDFILE *Idptr;

DESCRIPTION
Ldopen (3X) and Idclose are designed to provide uniform access to both simple
object files and object files that are members of archive files. Thus an archive
of common object files can be processed as if it were a series of simple common
object files.

If TYPE(/dptr) does not represent an archive file, Idclose will close the file and
free the memory allocated to the LDFILE structure associated with Idptr. If
TYPE(/dptr) is the magic number of an archive file, and if there are any more
files in the archive, Idclose will reinitialize OFFSET(/dptr) to the file address of
the next archive member and return FAILURE. The LDFILE structure is
prepared for a subsequent Idopen (3X). In all other cases, /dclose returns suc
CESS.

Ldaclose closes the file and frees the memory allocated to the LDFILE structure
associated with Idptr regardless of the value of TYPE Gdptr). Ldaclose always
returns SUCCESS. The function is often used in conjunction with Idaopen.

The program must be loaded with the object file access routine library)ibld.a.

SEE ALSO
fclose(3S), Idopen(3X), Idfcn(4).

- 1 -

I

I

LDFHREADOX) (not on PDP-ll) LDFHREAD OX)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

int Idfhread (Jdptr, filehead)
LDFILE .Idptr;
FILHDR .filehead;

DESCRIPTION
Ldfhread reads the file header of the common object file currently associated
with ldptr into the area of memory beginning at filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it cannot read
the file header.

In most cases the use of ldfhread can be avoided by using the macro
HEADER (fdptr) defined in Idfcn.h (seeldfcn (4». The information in any field,
fieldname, of the file header may be accessed using HEADER(ldptr).jieldname.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), ldopen OX), ldfcn (4).

- 1 -

LDLREAD OX) (not on PDP-II) LDLREAD(3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries of a common object
file function

SYNOPSIS
#include < stdio.h >
#include <filehdr.h>
#include < linenum.h >
#include < Idfcn.h >

int IdlreadOdptr, fcnindx, linenum, linent>
LDFILE *Idptr;
long fcnindx;
unsigned short linenum;
LlNENO linent;

int IdlinitOdptr, fcnindx)
LDFILE *Idptr;
long fcnindx;

int IdlitemOdptr, linenum, linent>
LDFILE *ldptr;
unsigned short linenum;
LlNENO linent;

DESCRIPTION
Ldlread searches the line number entries of the common object file currently
associated with ldptr. Ldlread begins its search with the line number entry for
the beginning of a function and confines its search to the line numbers associ
ated with a single function. The function is identified by fcnindx, the index of
its entry in the object file symbol table. Ldlread reads the entry with the smal
lest line number equal to or greater than linenum into linent.

Ldlinit and ldlitem together perform exactly the same function as ldlread.
After an initial call to ldlread or ldlinit, ldlitem may be used to retrieve a
series of line number entries associated with a single function. Ldlinit simply
locates the line number entries for the function identified by fcnindx. Ldlitem
finds and reads the entry with the smallest line number equal to or greater than
linenum into linent.

Ldlread, ldlinit, and ldlitem each return either SUCCESS or FAILURE.
Ldlread will fail if there are no line number entries in the object file, if fcnindx
does not index a function entry in the symbol table, or if it finds no line number
equal to or greater than linenum. Ldlinit will fail if there are no line number
entries in the object file or if fcnindx does not index a function entry in the
symbol table. Ldlitem will fail if it finds no line number equal to or greater
than linenum.

The programs must be loaded with the object file access routine library libld.a.

SEE ALSO
Idc1ose(3X), Idopen(3X), Idtbindex(3X), Idfcn(4).

- 1 -

I

I

LDLSEEK OX) (not on PDP-II) LDLSEEKOX)

NAME
ldlseek,ldnlseek - seek to line number entries of a section of a common object
file

SYNOPSIS
#include < stdio.h >
#include <filehdr.h>
#include < Idfcn.h >

int Idlseek <Idptr, sectindx)
LDFILE .ldptr;
unsigned short sectindx;

int Idnlseek <Idptr, sectname)
LDFILE .ldptr;
char .sectname;

DESCRIPTION
Ldlseek seeks to the line number entries of the section specified by sectindx of
the common object file currently associated with Idptr.

Ldnlseek seeks to the line number entries of the section specified by sectname.

Ldlseek and Idnlseek return SUCCESS or FAILURE. Ldlseek will fail if sec
tindx is greater than the number of sections in the object file; Idnlseek will fail
if there is no section name corresponding with *sectname. Either function will
fail if the specified section has no line number entries or if it cannot seek to the
specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

- 1 -

LDOHSEEK Ox) (not on PDP-II) LDOHSEEK OX)

NAME
ldohseek - seek to the optional file header of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >
int Idohseek (Jdptr)
LDFILE *Idptr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common object file currently
associated with ldptr.

Ldohseek returns SUCCESS or FAILURE. Ldohseek will fail if the object file
has no optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
Idc1oseOX), ldopen OX), ldfhread OX), ldfcn (4).

- 1 -

I

LDOPEN(3X) (not on PDP-l 1) LDOPEN(3X)

NAME
ldopen, ldaopen - open a common object file for reading

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include <Idfcn.h>

LDFILE *ldopen (filename, Idptr)
char *filename;
LDFILE *Idptr;

LDFILE *Idaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

DESCRIPTION
Ldopen and ldclose OX) are designed to provide uniform access to both simple
object files and object files that are members of archive files. Thus an archive
of common object files can be processed as if it were a series of simple common
object files.

If ldptr has the value NUll, then ldopen will open filename and allocate and ini
tialize the LDFILE structure, and return a pointer to the structure to the calling
program.

If ldptr is valid and if TYPE (/dptr) is the archive magic number, ldopen will
reinitialize the LDFILE structure for the next archive member of filename.

Ldopen and ldclose are designed to work in concert. Ldclose will return
FAILURE only when TYPE(/dptr) is the archive magic number and there is
another file in the archive to be processed. Only then should ldopen be called
with the current value of ldptr. In all other cases, in particular whenever a
new filename is opened, ldopen should be called with a NULL ldptr argument.

The following is a prototype for the use of ldopen and ldclose.

1* for each filename to be processed */

Idptr = NULL;
do

if ((Idptr = ldopen(filename, ldptr» != NULL)

}

/* check magic number */
/* process the file */

} while (Idc1ose(Idptr) == FAILURE);

If the value of oldptr is not NULL, ldaopen will open filename anew and allo
cate and initialize a new LDFILE structure, copying the TYPE, OFFSET, and
HEADER fields from oldptr. Ldaopen returns a pointer to the new LDFILE
structure. This new pointer is independent of the old pointer, oldptr. The two
pointers may be used concurrently to read separate parts of the object file. For
example, one pointer may be used to step sequentially through the relocation
information, while the other is used to read indexed symbol table entries.

Both ldopen and ldaopen open filename for reading. Both functions return
NULL if filename cannot be opened, or if memory for the LDFILE structure
cannot be allocated. A successful open does not insure that the given file is a
common object file or an archived object file.

The program must be loaded with the object file access routine library Iibld.a.

- 1 -

LDRSEEK Ox) (not on PDP-ll) LDRSEEK OX)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of a common object
file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include <Idfcn.h>

int Idrseek Odptr, sectindx)
LDFILE .Idptr;
unsigned short sectindx;

int Idnrseek Odptr, sectname)
LDFILE .Idptr;
char .sectname;

DESCRIPTION
Ldrseek seeks to the relocation entries of the section specified by sectindx of
the common object file currently associated with ldptr.

Ldnrseek seeks to the relocation entries of the section specified by sect name .

Ldrseek and ldnrseek return SUCCESS or FAILURE. Ldrseek will fail if sec
tindx is greater than the number of sections in the object file; ldnrseek will fail
if there is no section name corresponding with sectname. Either function will
fail if the specified section has no relocation entries or if it cannot seek to the
specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
IdcloseOX), IdopenOX), Idshread(3X), Idfcn(4).

- 1 -

I

LDSHREAD (3X) (not on PDP-II) LDSHREAD(3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a common
object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < scnhdr.h >
#include < Idfcn.h >
int Idshread Odptr, sectindx, secthead)
LDFILE *Idptr;
unsigned short sectindx;
SCNHDR *secthead;

int Idnshread Odptr, sectname, sect head)
LDFILE *Idptr;
char sectname;
SCNHDR *secthead;

DESCRIPTION
Ldshread reads the section header specified by sectindx of the common object
file currently associated with Idptr into the area of memory beginning at sect
head.

Ldnshread reads the section header specified by sect name into the area of
memory beginning at sect head .

Ldshread and Idnshread return SUCCESS or FAILURE. Ldshread will fail if
sectindx is greater than the number of sections in the object file; Idnshread will
fail if there is no section name corresponding with sectname. Either function
will fail if it cannot read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4).

- 1 -

LDSSEEK OX) (not on PDP-H) LDSSEEK OX)

NAME
ldsseek, ldnsseek - seek to an indexed/named section of a common object file

SYNOPSIS
#include < stdio.h >
#include <filehdr.h>
#include <Idfcn.h>

int Idsseek (Jdptr, sectindx>
LDFILE *Idptr;
unsigned short sectindx;

int Idnsseek Odptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
Ldsseek seeks to the section specified by sectindx of the common object file
currently associated with Idptr.

Ldnsseek seeks to the section specified by sectname.

Ldsseek and Idnsseek return SUCCESS or FAILURE. Ldsseek will fail if sec
tindx is greater than the number of sections in the object file; Idnsseek will fail
if there is no section name corresponding with sectname. Either function will
fail if there is no section data for the specified section or if it cannot seek to the
specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library)ibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

- 1 -

I

LDTBINDEX Ox) (not on PDP-ll) LDTBINDEX OX)

NAME
ldtbindex - compute the index of a symbol table entry of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < syms.h>
#include < Idfcn.h >

long Idtbindex Odptr>
LDFILE .Idptr;

DESCRIPTION
Ldtbindex returns the (tong) index of the symbol table entry at the current
position of the common object file associated with ldptr.

The index returned by ldtbindex may be used in subsequent calls to
Idtbread(3X). However, since ldtbindex returns the index of the symbol table
entry that begins at the current position of the object file, if ldtbindex is called
immediately after a particular symbol table entry has been read, it will return
the the index of the next entry.

Ldtbindex will fail if there are no symbols in the object file, or if the object file
is not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idtbseek(3X), Idfcn(4).

- 1 -

LDTBREAD (3X) (not on PDP-ll) LDTBREAD (3X)

NAME
Idtbread - read an indexed symbol table entry of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < syms.h >
#include < Idfcn.h >
int Idtbread Odptr, symindex, symbol)
LDFILE .Idptr;
long symindex;
SYMENT .symbol;

DESCRIPTION
Ldtbread reads the symbol table entry specified by symindex of the common
object file currently associated with Idptr into the area of memory beginning at
symbol.

Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail if symindex is
greater than the number of symbols in the object file, or if it cannot read the
specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library Iibld.a.

SEE ALSO
Idc1ose(3X), Idopen(3X), Idtbseek(3X), Idfcn(4).

- 1 -

I

LDTBSEEK (3X) (not on PDP-ll) LDTBSEEK (3X)

NAME
ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >
int Idtbseek (Jdptr)
LDFILE .Idptr;

DESCRIPTION
Ldtbseek seeks to the symbol table of the object file currently associated with
ldptr.

Ldtbseek return SUCCESS or FAILURE. Ldtbseek will fail if the symbol table
has been stripped from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idfcn(4).

- 1 -

LEN (3F)

NAME
len - return length of Fortran string

SYNOPSIS
character. N ch
integer i

i = len(ch)

DESCRIPTION
Len returns the length of string ch.

- 1 -

LEN(3F)

LOG(3F) LOG(3F)

NAME
log, alog, dlog, clog - Fortran natural logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = alog(rl)
r2 = log(rt)

dp2 dlog(dpt)
dp2 log(dpt)

cx2 clog (cxt)
cx2 log(cxt)

DESCRIPTION
Alog returns the real natural logarithm of its real argument. Dlog returns the
double-precision natural logarithm of its double-precision argument. Clog
returns the complex logarithm of its complex argument. The generic function
log becomes a call to alog, dlog, or clog depending on the type of its argu
ment.

SEE ALSO
exp(3M).

- 1 -

LOGlO(3F) LOGIOOF)

NAME
logIO, alogIO, dlogIO - Fortran common logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = aloglO(rt)
r2 = loglO(rt)

dp2 = dloglO(dpt)
dp2 = loglO(dpt)

DESCRIPTION
AlogIO returns the real common logarithm of its real argument. Dlog returns
the double-precision common logarithm of its double-precision argument. The
generic function log becomes a call to alog or dlog depending on the type of its
argument.

SEE ALSO
exp(3M).

- I -

LOGNAME OX)

NAME
logname - return login name of user

SYNOPSIS
char .Iogname ()

DESCRIPTION

LOGNAMEOX)

Logname returns a pointer to the null-terminated login name; it extracts the
$LOGNAME variable from the user's environment.

This routine is kept in lliblIibPW.a.

FILES
/ etc/ profile

SEE ALSO

BUGS

env(1), login(1), profile(4), environ(S).

The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

- 1 -

LSEARCH (3C) LSEARCH(3C)

NAME
lsearch - linear search and update

SYNOPSIS
char .Isearch «char .)key, (char .)base, nelp, sizeof(.key), com par)
unsigned .nelp;
int (.compar) ();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S.
It returns a pointer into a table indicating where a datum may be found. If the
datum does not occur, it is added at the end of the table. Key points to the
datum to be sought in the table. Base points to the first element in the table.
Nelp points to an integer containing the current number of elements in the
table. The integer is incremented if the datum is added to the table. Compar
is the name of the comparison function which the user must supply (strcmp, for
example). It is called with two arguments that point to the elements being
compared. The function must return zero if the elements are equal and non
zero otherwise.

The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

SEE ALSO

BUGS

bsearch (3C), hsearch (3C), tsearch (3C).

Undefined results can occur if there is not enough room in the table to add a
new item.

- 1 -

I

MALLOC(3C) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char .malloc (size)
unsigned size;

void free (ptr)
char ·ptr;

char .realloc (ptr, size)
char .ptr;
unsigned size;

char .calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Mal/oc and free provide a simple general-purpose memory allocation package.
Mal/oc returns a pointer to a block of at least size bytes suitably aligned for
any use.

The argument to free is a pointer to a block previously allocated by mal/oc;
after free is performed this space is made available for further allocation, but
its contents are left undisturbed.

Undefined results will occur if the space assigned by mal/oc is overrun or if
some random number is handed to free.

Mal/oc allocates the first big enough contiguous reach of free space found in a
circular search from the last block allocated or freed, coalescing adjacent free
blocks as it searches. It calls sbrk (see brk (2» to get more memory from the
system when there is no suitable space already free.

Real/oc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes. If no free block of size
bytes is available in the storage arena, then realloc will ask mal/ocr to enlarge
the arena by size bytes and will then move the data to the new space.

Real/oc also works if ptr points to a block freed since the last call of mal/oc,
real/oc, or cal/oc; thus sequences of free, mal/oc and realloc can exploit the
search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

DIAGNOSTICS

NOTE

Mal/oc, realloc and calloc return a NULL pointer if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. When this happens the block pointed to by ptr may be des
troyed.

Search time increases when many objects have been allocated; that is, if a pro
gram allocates but never frees, then each successive allocation takes longer.

- 1 -

MATHERR(3M) MATHERR(3M)

NAME
matherr - error-handling function

SYNOPSIS
#include < math.h >
int matherr (x)
struct exception .x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are detected.
Users may define their own procedures for handling errors by including a func
tion named matherr in their programs. Matherr must be of the form described
above. A pointer to the exception structure x will be passed to the user
supplied matherr function when an error occurs. This structure, which is
defined in the < math.h > header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

} ;

The element type is an integer describing the type of error that has occurred,
from the following list of constants (defined in the header file):

DOMAIN domain error
SING singularity
OVERFLOW overflow
UNDERFLOW underflow
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that
had the error. The variables argJ and arg2 are the arguments to the function
that had the error. Retval is a double that is returned by the function having
the error. If it supplies a return value, the user's matherr must return non
zero. If the default error value is to be returned, the user's matherr must
return O.

If matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error. These
procedures are also summarized in the table below. In every case, errno is set
to non-zero and the program continues.

EXAMPLE
matherr(x)
register struct exception *x;
{

switch (x->type)
case DOMAIN:
case SING: /* print message and abort */

fprintf(stderr, "domain error in %s\n", x->name);
abort();

case OVERFLOW:
if (!strcmp("exp", x- > name» {

/* if exp, print message, return the argument */
fprintf(stderr, "exp of %f\n", x->argl);
x->retval = x->argl;

} else if (!strcmp("sinh", x- > name» {
/* if sinh, set errno, return 0 */
errno = ERANGE;

- 1 -

MATH ERR (3M)

} else

break;

x->retval = 0;

1* otherwise, return HUGE *1
x->retval = HUGE;

case UNDERFLOW:
return (0); /* execute default procedure */

case TLOSS:
case PLOSS:

/* print message and return 0 */

MATHERR(3M) ,

fprintf(stderr, "loss of significance in %s\n", x->name);
x->retval = 0;
break;

}
return (1);

DEFAULT ERROR HANDLING PROCEDURES
Types of Errors

DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS
BESSEL: - - H 0 - *
yO, yl,yn M,-H - - - - -
(neg. no.)

EXP: - - H 0 -
POW: - - H 0 - -
(neg.) ** (non- M,O - - - - -
intJ,O**O

LOG:
10g(O): - M,-H - - - -
log (neg.) : M,-H - - - - -
SQRT: M,O - - - - -
GAMMA: - M,H - - - -
HYPOT: - - H - - -
SINH, COSH: - - H - - -
SIN, COS: - - - - M,O M, *
TAN: - - H - 0 *
ACOS, ASIN: M,O - - - -

ABBREVIATIONS
* As much as possible of the value is returned.

M Message is printed.
H HUGE is returned.

-H -HUGE is returned. ° 0 is returned.

- 2 -

~AX(3F) MAX(3F)

NAME
max, maxO, amaxO, maxI, amaxI, dmaxI - Fortran maximum-value functions

)YNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3

I = max(i, j, k)
c = max(a, b)
dp = max (a, b, c)
k = maxO(i, j)
a = amaxO (i, j, k)
i = maxt(a, b)
d = amaxt(a, b, c)
dp3 = dmaxt(dpl, dp2)

DESCRIPTION
The maximum-value functions return the largest of their arguments {of which
there may be any number}. Max is the generic form which can be used for all
data types and takes its return type from that of its arguments {which must all
be of the same type}. M axO returns the integer form of the maximum value of
its integer arguments; amaxO, the real form of its integer arguments; maxi,
the integer form of its real arguments; amaxi, the real form of its real argu
ments; and dmaxi, the double-precision form of its double-precision arguments.

SEE ALSO
min{3F} .

- 1 -

MCLOCK(3F)

NAME
mclock - return Fortran time accounting

SYNOPSIS
integer i

i = mclock()

DESCRIPTION

MCLOCK(3F)

Mclock returns time accounting information about the current process and its
child processes. The value returned is the sum of the current process's user time
and the user and system times of all child processes.

SEE ALSO
times (2), clock (3C), system (3 F) .

- 1 -

MEMORY(3C) MEMORy(3C)

NAME
memccpy, memchr, memcmp, memcpy: memset - memory operations

SYNOPSIS
#include < memory.h >
char .memccpy (sl, s2, c, n)
char .sl, ·s2;
int c, n;

char .memchr (s, c, n)
char .s;
int c, n;

int memcmp (sl, s2, n)
char .sl, .s2;
int n;

char .memcpy (sl, s2, n)
char .sl, .s2;
int n;

char .memset (s, c, n)
char .s;
int c, n;

DESCRIPTION

NOTE

BUGS

These functions operate efficiently on memory areas (arrays of characters
bounded by a count, not terminated by a null character). They do not check
for the overflow of any receiving memory area.

Memccpy copies characters from memory area s2 into s1, stopping after the
first occurrence of character c has been copied, or after n characters have been
copied, whichever comes first. It returns a pointer to the character after the
copy of c in s 1, or a NULL pointer if c was not found in the first n characters
of s2.

Memchr returns a pointer to the first occurrence of character c in the first n
characters of memory area s, or a NULL pointer if c does not occur.

Memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, according as s1 is lexi
cographically less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to s1. It returns s1.

Memset sets the first n characters in memory area s to the value of character
c. It returns s .

For user convenience, all these functions are declared in the optional
<memory.h> header file.

Memcmp uses native character comparison, which is signed on PDP-lIs,
unsigned on other machines.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

- I -

I

MIN(3F) MIN(3F)

NAME
min, minO, aminO, minI, aminI, dmini - Fortran minimum-value functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dpI, dp2, dp3

I = minG, j, k)
c = min (a, b)
dp = min (a, b, c)
k = minOG, j)
a = aminO G, j, k)
i = minI (a, b)
d = aminl (a, b, c)
dp3 = dminHdpI, dp2)

DESCRIPTION
The minimum-value functions return the mInimum of their arguments {of
which there may be any number}. Min is the generic form which can be used
for all data types and takes its return type from that of its arguments (which
must all be of the same type). MinO returns the integer form of the minimum
value of its integer arguments; aminO, the real form of its integer arguments;
minI, the integer form of its real arguments; aminI, the real form of its real
arguments; and dminI, the double-precision form of its double-precision argu
ments.

SEE ALSO
max(3F).

- I -

MKTEMP(3C) MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char .mktemp <template)
char ·template;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by template by a unique
file name, and returns the address of template. The string in template should
look like a file name with six trailing Xs; mktemp will replace the XS with a
letter and the current process ID. The letter will be chosen so that the resulting
name does not duplicate an existing file.

SEE ALSO
getpid (2), tmpfile OS), tmpnam OS).

BUGS
It is possible to run out of letters.

- 1 -

I

MOD(3F) MOD(3F)

NAME
mod, amod, dmod - Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k = modO, j)
r3 = amod(rl, r2)
r3 = mod(rl, r2)

dp3 = dmod(dpl, dp2)
dp3 = mod(dpl, dp2)

DESCRIPTION
Mod returns the integer remainder of its first argument divided by its second
argument. Amod and dmod return, respectively, the real and double-precision
whole number remainder of the integer division of their two arguments. The
generic version mod will return the data type of its arguments.

- 1 -

MONITOR (3C) MONITOR OC)

NAME
monitor - prepare execution profile

SYNOPSIS
void monitor (Iowpc, higbpc, buffer, bufsize, nfunC>
int (*)owpc)(), (*highpc)();
short * buffer;
int bufsize, nfunc;

DESCRIPTION

FILES

An executable program created by cc -p automatically includes calls for mon
itor with default parameters; monitor needn't be called explicitly except to gain
fine control over profiling.

Monitor is an interface to projiI(2). Lowpc and highpe are the addresses of
two functions; buffer is the address of a (user supplied) array of buJsize short
integers. Monitor arranges to record a histogram of periodically sampled
values of the program counter, and of counts of calls of certain functions, in the
buffer. The lowest address sampled is that of lowpc and the highest is just
below highpc. Lowpc may not equal ° for this use of monitor. At most nJunc
call counts can be kept; only calls of functions compiled with the profiling
option -p of ec(1) are recorded. (The C Library and Math Library supplied
when cc -p is used also have call counts recorded.} For the results to be
significant, especially where there are small, heavily used routines, it is sug
gested that the buffer be no more than a few times smaller than the range of
locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor (Gnt (.) 0) 2, etext, buf, bufsize, nfunc};

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file mon.out, use

monitor (Gnt (.) O)NULL, 0, 0, 0, 0);

ProJ(1) can then be used to examine the results.

mon.out

SEE ALSO
cd 1), prof(1), profiI(2), end (3C).

- 1 -

I

NLIST(3C) NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include < a.out.h >
int nlist (file-name, nJ)
char .file-name;
struct nlist .nIl 1;

DESCRIPTION
NUst examines the name list in the executable file whose name is pointed to by
file-name, and selectively extracts a list of values and puts them in the array of
nlist structures pointed to by nl. The name list nl consists of an array of struc
tures containing names of variables, types and values. The list is terminated
with a null name; that is, a null string is in the name position of the structure.
Each variable name is looked up in the name list of the file. If the name is
found, the type and value of the name are inserted in the next two fields. If
the name is not found, both entries are set to O. See a.out (4) for a discussion
of the symbol table structure.

This subroutine is useful for examining the system name list kept in the file
lunix. In this way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(4).

DIAGNOSTICS
All type entries are set to 0 if the file cannot be read or if it doesn't contain a
valid name list.

NUst returns -1 upon error; otherwise it returns O.

- 1 -

PERROROC) PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char .s;

extern iot errno;

extern char .sys _ errlist[J;
extern iot sys _ nerr;

DESCRIPTION
Perror produces a message on the standard error output, describing the last
error encountered during a call to a system or library function. The argument
string s is printed first, then a colon and a blank, then the message and a new
line. To be of most use, the argument string should include the name of the
program that incurred the error. The error number is taken from the external
variable errno, which is set when errors occur but not cleared when non
erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys _errlist is provided; errno can be used as an index in this table to get the
message string without the new-line. Sys_nerr is the largest message number
provided for in the table; it should be checked because new error codes may be
added to the system before they are added to the table.

SEE ALSO
intro(2).

- 1 -

I

PLOT(3X) PLOT(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openpl ()

erase 0
label (s)
char *S;

line (xl, yl, x2, y2)
int xl, yl, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, xO, yO, xl, yt)
int x, y, xO, yO, xl, yl;

move (x, y)
int x, y;

cont (x, y)
int x, y;

point (x, y)
int x, y;

linemod (s)
char *s;

space (xO, yO, xl, yt)
int xO, yO, xl, yl;

closepl 0
DESCRIPTION

FILES

These subroutines generate graphic output in a relatively device-independent
manner. Space must be used before any of these functions to declare the
amount of space necessary. See plot (4). Openpl must be used before any of
the others to open the device for writing. Closepl flushes the output.

Circle draws a circle of radius r with center at the point (X, y).

Arc draws an arc of a circle with center at the point (X, y) between the points
(xO, yO) and (xl, y 1).

String arguments to label and linemod are terminated by nulls and do not con
tain new-lines.

See plot (4) for a description of the effect of the remaining functions.

The library files listed below provide several flavors of these routines.

lusrllibllibplot.a
lusrllibllib300.a
lusrllibllib300s.a
lusr llibllib450.a
I usr IIi blli b40 14.a

produces output for tplot (I G) filters
for DASI 300
for DASI 300s
for DASI 450
for Tektronix 4014

WARNINGS
In order to compile a program containing these functions in file.c it is necessary
to use "cc file.c -lplot".

In order to execute it, it is necessary to use "a.out I tplot".

- 1 -

PLOT(3X) PLOT OX)

The above routines use < stdio.h > , which causes them to increase the size of
programs, not otherwise using standard 110, more than might be expected.

SEE ALSO
graph(1G), stat(1G), tplot(1G), plot(4).

- 2 -

I

I

POPEN(3S) POPEN (3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include < stdio.h >
FILE -popen (command, type)
char -command, -type;

int pclose (stream)
FILE -stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings contammg,
respectively, a shell command line and an I/O mode, either r for reading or w
for writing. Popen creates a pipe between the calling program and the com
mand to be executed. The value returned is a stream pointer such that one can
write to the standard input of the command, if the I/O mode is w, by writing to
the file stream; and one can read from the standard output of the command, if
the I/O mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter
and a type w as an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be created, or if the
shell cannot be accessed.

Pc/ose returns -1 if stream is not associated with a "popened" command.

If the original and "popen ed" processes concurrently read or write a common
file, neither should use buffered I/O, because the buffering gets all mixed up.
Problems with an output filter may be forestalled by careful buffer flushing, e.g.
with fJlush; see Iclose OS).

- 1 -

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include < stdio.h >
int printf (format [, arg] ...)
char -format;

int fprintf (stream, format [, arg] ...)
FILE -stream;
char -format;

int sprintf (s, format [, arg] ...
char -s, format;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places out
put on the named output stream. Sprintf places "output", followed by the null
character (\0) in consecutive bytes starting at *s; it is the user's responsibility
to ensure that enough storage is available. Each function returns the number
of characters transmitted (not including the \0 in the case of sprintfJ, or a
negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of
the format. The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output stream, and
conversion specifications, each of which results in fetching of zero or more args.
The results are undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag (see below) has
been given) to the field width;

A precision that gives the minimum number of digits to appear for the
d, 0, u, x, or X conversions, the number of digits to appear after the
decimal point for the e and f conversions, the maximum number of
significant digits for the g conversion, or the maximum number of
characters to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit string: a null
digit string is treated as zero.

An optional I specifying that a following d, 0, U, x, or X conversion
character applies to a long integer argo

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (-) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The
arg that is actually converted is not fetched until the conversion letter is seen,
so the args specifying field width or precision must appear before the arg (if
any) to be converted.

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+
or -).

- 1 -

I

PRINTF(3S)

blank

PRINTF(3S)

If the first character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an "alternate
form." For c, d, s, and u conversions, the flag has no effect. For 0

conversion, it increases the precision to force the first digit of the
result to be a zero. For x (X) conversion, a non-zero result will
have Ox (OX) prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions,
trailing zeroes will not be removed from the result (which they nor
mallyare).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal,
decimal, or hexadecimal notation (x and X), respectively; the letters
abcdef are used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. The default preci
sion is 1. The result of converting a zero value with a precision of
zero is a null string.

f The float or double arg is converted to decimal notation in the style
,,[-]ddd.ddd", where the number of digits after the decimal point
is equal to the precision specification. If the precision is missing, 6
digits are output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style ,,[- Jd.ddde±dd",
where there is one digit before the decimal point and the number of
digit:; after it i:; equal tv the plceisi0ii; wh~ii th~ fllt:;(;isiul1 i:s llli:s:s
ing, 6 digits are produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with E instead
of e introducing the exponent. The exponent always contains at
least two digits.

g,G The float or double arg is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number
of significant digits. The style used depends on the value converted:
style e will be used only if the exponent resulting from the conver
sion is less than -4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is
followed by a digit.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and characters

from the string are printed until a null character (\0) is encoun
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to be
infinite, so all characters up to the first null character are printed.
If the string pointer arg has the value zero, the result is undefined.
A null arg will yield undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by printf and
fprintf are printed as if pute OS) had been called.

- 2 -

PRINTF(3S) PRINTF(3S)

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02", where weekday
and month are pointers to null-terminated strings:

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min);

To print 7r to 5 decimal places:

printf("pi = %.5r', 4*atan(I.O»;

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

- 3 -

PUTC(3S) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#ioclude < stdio.h >
iot putc (c, stream)
char c;
FILE -stream;

iot putchar (c)
char c;

iot fputc (c, stream)
char c;
FILE -stream;

iot putw (w, stream)
iot w;
FILE -stream;

DESCRIPTION
Pute writes the character e onto the output stream' (at the position where the
file pointer, if defined, is pointing). Putehar(c) is defined as putc(e, stdout>.
Pute and putehar are macros. .

Fpute behaves like pute, but is a function rather than a macro. Fpute runs
more slowly than pute, but takes less space per invocation.

Putw writes the word (i.e. integer) w to the output stream (at the position at
which the file pointer, if defined, is pointing). The size of a word is the size of
an integer and varies from machine to machine. Putw neither assumes nor
causes special alignment in the file.

Output streams. with the exceotion of the standard error stream stderr. are bv
defa-ult buffered if the output- refers to a file and line-buffered if the' outpu"t
refers to a terminal. The standard error output stream stderr is by default
unbuffered, but use of jreopen (see jopen OS» will cause it to become buffered
or line-buffered. When an output stream is unbuffered information is queued
for writing on the destination file or terminal as soon as written; when it is
buffered many characters are saved up and written as a block; when it is line
buffered each line of output is queued for writing on the destination terminal as
soon as the line is completed (that is, as soon as a new-line character is written
or terminal input is requested). SetbujOS) may be used to change the
stream's buffering strategy.

SEE ALSO
fcloseOS), ferrorOS) , fopen OS), fread OS), printfOS), puts OS), setbuf(3S).

DIAGNOSTICS

BUGS

On success, these functions each return the value they have written. On
failure, they return the constant EOF. This will occur if the file stream is not
open for writing, or if the output file cannot be grown. Because EOF is a valid
integer, jerrorOS) should be used to detect putw errors.

Because it is implemented as a macro, pute treats incorrectly a stream argu
ment with side effects. In particular, putc(c, -f+ +); doesn't work sensibly.
Fpute should be used instead.
Because of possible differences in word length and byte ordering, files written
using putw are machine-dependent, and may not be read using getw on a
different processor. For this reason the use of putw should be avoided.

- 1 -

PUTPWENT (3C) PUTPWENT (3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include < pwd.h >
int putpwent (p, f)
struct passwd .p;
FILE .f;

DESCRIPTION
Putpwent is the inverse of getpwent (3C). Given a pointer to a passwd struc
ture created by getpwent (or getpwuid or getpwnam), putpwuid writes a line
on the stream f which matches the format of /etc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, other
wise zero.

WARNING
The above routine uses < stdio.h > , which causes it to increase the size of pro
grams, not otherwise using standard 110, more than might be expected.

I

PUTS (3S) PUTS (3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#incliide < stdio.h >
int puts (s)
char .s;

int fputs (s, stream)
char .s;
FILE .stream;

DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new-line
character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write
on a file that has not been opened for writing.

SEE ALSO
ferror(3S), fopen (3S), fread (3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while !puts does not.

- 1 -

QSORTOC) QSORTOC)

NAME
qsort - quicker sort

SYNOPSIS
void qsort ({char *) base, nel, sizeof (*base), com par)
unsigned int nel;
int (*compar) ();

DESCRIPTION

NOTES

Qsort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

Base points to the element at the base of the table. Net is the number of ele
ments in the table. Compar is the name of the comparison function, which is
called with two arguments that point to the elements being compared. The
function must return an integer less than, equal to, or greater than zero accord
ing as the. first argument is to be considered less than, equal to, or greater than
the second.

The pointer to the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.

SEE ALSO
sor1(1), bsearch OC), lsearch OC), stringOC).

- 1 -

I

I

RANDOC) RANDOC)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

NOTE

Rand uses a multiplicative congruential random-number generator with period
232 that returns successive pseudo-random numbers in the range from 0 to
215_1.

Srand can be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of 1.

The spectral properties of rand leave a great deal to be desired. Drand48 (3 C)
provides a much better, though more elaborate, random-number generator.

SEE ALSO
drand48 (3C).

- 1 -

RAND(3F)

NAME
srand, rand - Fortran uniform random-number generator

SYNOPSIS
integer i, j

call srand (n
j = rand()

DESCRIPTION

RAND(3F)

Srand takes its integer argument as the seed of a random-number generator,
the values of which are returned through successive invocations of rand.

SEE ALSO
randOC).

- 1 -

I

I

REGCMP(3X) REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char -regcmp(stringl l, string2, 00.1, 0)
char -stringl, -string2, .. 0;

char -regex (re, subjectl, retO, .. oJ)
char -re, -subject, -retO, 000;

extern char -locI;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled
form. Malloc(3C) is used to create space for the vector. It is the user's
responsibility to free unneeded space so allocated. A NULL return from
regcmp indicates an incorrect argument. Regcmp (1) has been written to gen
erally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional argu
ments are passed to receive values back. Regex returns NULL on failure or a
pointer to the next unmatched character on success. A global character pointer
locI points to where the match began. Regcmp and regex were mostly bor
rowed from the editor, ed(l); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their associated
meanings.

[] * 0" These symbols retain their current meaning.

$ Matches the end of the string, \0 matches the new-line.

Within brackets the minus means through. For example, [a -z] is
equivalent to [abcd .. oxyz1. The - can appear as itself only if used as
the last or first character. For example, the character class expression
[) -] matches the characters] and -.

+ A regular expression followed by + means one or more times. For
example, [0 -9] + is equivalent to [0 -9][0 -9]-.

{m} {m,} {m,u}

(.. 0)$n

Integer values enclosed in {} indicate the number of times the preced
ing regular expression is to be applied. m is the minimum number
and u is a number, less than 256, which is the maximum. If only m is
present (e.g., {m}), it indicates the exact number of times the regular
expression is to be applied. {m,} is analogous to {m,infinity}. The plus
(+) and star (-) operations are equivalent to {1,} and to,} respec
tively.

The value of the enclosed regular expression is to be returned. The
value will be stored in the (n + IJth argument following the subject
argument. At present, at most ten enclosed regular expressions are
allowed. Regex makes its assignments unconditionally.

("0) Parentheses are used for grouping. An operator, e.g. -, +, {}, can
work on a single character or a regular expression enclosed in
parenthesis. For example, (a*(cb+)*)$O.

By necessity, all the above defined symbols are special. They must, therefore,
be escaped to be used as themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

- 1 -

REGCMP(3X) REGCMP(3X)

newcursor = regex«ptr = regcmp("A\n", 0)), cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed at by
cursor.

Example 2:
char retO[9];
char *newcursor, *name;

name = regcmp("([A-Za-zHA-za-zO-9J{0,7})$0", 0);
newcursor = regex(name, "123Testing321", retO);

This example will match through the string "Testing3" and will return the
address of the character after the last matched character (cursor+ 1 I). The
string "Testing3" will be copied to the character array retO.

Example 3:
#inc1ude "filej"
char *string, *newcursor;

newcursor = regex (name, string);

This example applies a precompiled regular expression in file.i (see regcmp (I))
against string.

This routine is kept in /lib/libPW.a.

SEE ALSO

BUGS

ed(l), regcmp(l), malloc(3C).

The user program may run out of memory if regcmp is called iteratively
without freeing the vectors no longer required. The following user-supplied
replacement for maUoc (3C) reuses the same vector saving time and space:

/* user's program */

malloc(n) {
static int rebuf[256];
return rebuf;

- 2 -

I

I

ROUND(3F) ROUND(3F)

NAME
ani nt, dnint, nint, idnint - Fortran nearest integer functions

SYNOPSIS
integer i
real rl, r2
double precision dpl, dp2

r2 = anint (r 1)
i = nint(r1)

dp2 = anint(dp1)
dp2 = dnint(dp1)

i = nint(dp1)
i = idnint(dp1)

DESCRIPTION
Anint returns the nearest whole real number to its real argument (i.e.,
int(a+O.S) if a ~ 0, int(a-O.S) otherwise). Dnint does the same for its
double-precision argment. Nint returns the nearest integer to its real argu
ment. Idnint is the double-precision version. Anint is the generic form of
anint and dnint , performing the same operation and returning the data type of
its argument. Nint is also the generic form of idnint.

- 1 -

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] ...
char .format;

int fscanf (stream, format [, pointer] ...
FILE .stream;
char .format;

int sscanf (s, format [, pointer] ...
char .s, .format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each function
reads characters, interprets them according to a format, and stores the results
in its arguments. Each expects, as arguments, a control string format
described below, and a set of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the next
non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional assign
ment suppressing character ., an optional numerical maximum field width,
an optional I or h indicating the size of the receiving variable, and a conver
sion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated by •. The suppression of assignment pro
vides a way of describing an input field which is to be skipped. An input field
is defined as a string of non-space characters; it extends to the next inappropri
ate character or until the field width, if specified, is exhausted.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument should be given. The following conver
sion codes are legal:

% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an

integer pointer.
u an unsigned decimal integer is expected; the corresponding argument

should be an unsigned integer pointer.
o an octal integer is expected; the corresponding argument should be an

integer pointer.
x a hexadecimal integer is expected; the corresponding argument should

be an integer pointer.
e,f,g a floating point number is expected; the next field is converted accord

ingly and stored through the corresponding argument, which should be
a pointer to a float. The input format for floating point numbers is an
optionally signed string of digits, possibly containing a decimal point,

- 1 -

I

I

SCANFOS)

s

c

SCANFOS)

followed by an optional exponent field consisting of an E or an e, fol
lowed by an optionally signed integer.
a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to
accept the string and a terminating \0, which will be added automati
cally. The input field is terminated by a white-space character.
a character is expected; the corresponding argument should be a char
acter pointer. The normal skip over white space is suppressed in this
case; to read the next non-space character, use % Is. If a field width is
given, the corresponding argument should refer to a character array;
the indicated number of characters is read.
indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, which
we will call the scanset, and a right bracket; the input field is the max
imal sequence of input characters consisting entirely of characters in
the scanset. The circumflex, ("), when it appears as the first character
in the scanset, serves as a complement operator and redefines the scan
set as the set of all characters not contained in the remainder of the
scanset string. There are some conventions used in the construction of
the scanset. A range of characters may be represented by the con
struct first-last, thus [0123456789] may be expressed [0-91. Using
this convention, first must be lexically less than or equal to last, or else
the dash will stand for itself. The dash will also stand for itself when
ever it is the first or the last character in the scanset. To include the
right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and
in this case it will not be syntactically interpreted as the closing
bracket. The corresponding argument must point to a character array
large enough to hold the data field and the terminating \0, which will
be added automatically.

The conversion characters d, u, 0, and x may be preceded by I or h to indicate
that a pointer to long or to short rather than to int is in the argument list.
Similarly, the conversion characters e , f , and g may be preceded by I to indi
cate that a pointer to double rather than to float is in the argument list.

Scan! conversion terminates at EOF, at the end of the control string, or when
an input character conflicts with the control string. In the latter case, the
offending character is left unread in the input stream.

Scanf returns the number of successfully matched and assigned input items;
this number can be zero in the event of an early conflict between an input char
acter and the control string. If the input ends before the first conflict or
conversion, EOF is returned.

EXAMPLES
The call:

int i; float x; char name[50];
scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to i the value 25, to x the value 5.432, and name will contain
thompson\O. Or:

int i; float x; char name[50];
scanf ("%2d%f%*d %[0-9]", &i, &x, name);

- 2 -

SCANFOS) SCANF(3S)

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name.
The next call to get char (see getc (3S» will return a.

SEE ALSO

NOTE

atof(3C), getc (3S), printf(3S), strtol (3C).

Trailing white space (including a new-line) is left unread unless matched in the
control string.

DIAGNOSTICS

BUGS

These functions return EOF on end of input and a short count for missing or
illegal data items.

The success of literal matches and suppressed assignments is not directly deter
minable.

- 3 -

SETBUF(3S) SETBUF(3S)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >

void setbuf (stream, bur)
FILE .stream;
char .buf;

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read or written.
It causes the character array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is a NULL character pointer
input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an
array is needed:

char buf(BUFSIZ];

A buffer is normally obtained from maUoe (3C) at the time of the first gete or
pute (3S) on the file, except that the standard error stream stderr is normally
not buffered.

Output streams directed to terminals are always line-buffered unless they are
unbuffered.

SEE ALSO

NOTE

fopen(3S), getc(3S), malloc(3C), putc(3S).

A common source of error is allocating buffer space as an "automatic" variable
in a code block, and then failing to close the stream in the same block.

- 1 -

SETJMP(3C) SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include < setjrnp.h >
int setjmp (env)
jmp _ buf env;

void longjmp (env, val)
jmp _ buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in
a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp _buJ, is defined in
the <setjmp.h> header file), for later use by longjmp. It returns the value o.
Longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed program execution
continues as if the corresponding call of setjmp (which must not itself have
returned in the interim) had just returned the value val. Longjmp cannot
cause setjmp to return the value O. If longjmp is invoked with a second argu
ment of 0, setjmp will return 1. All accessible data have values as of the time
longjmp was called.

SEE ALSO
signal(2).

WARNING
If longjmp is called when env was never primed by a call to setjmp, or when
the last such call is in a function which has since returned, absolute chaos is
guaranteed.

- 1 -

SIGN(3F) SIGN (3F)

NAME
sign, isign, dsign - Fortran transfer-of-sign intrinsic function

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k = isign (i, j)
k = sign (i, j)

r3 = sign (r 1, r2)

dp3 = dsign(dpl, dp2)
dp3 = sign(dpl, dp2)

DESCRIPTION
[sign returns the magnitude of its first argument with the sign of its second
argument. Sign and dsign are its real and double-precision counterparts,
respectively. The generic version is sign and will devolve to the appropriate
type depending on its arguments.

- 1 -

SIGNAL(3F)

NAME
signal - specify Fortran action on receipt of a system signal

SYNOPSIS
integer i
external integer intfnc

call signalO, intfnd

DESCRIPTION

SIGNAL(3F)

Signal allows a process to specify a function to be invoked upon receipt of a
specific signal. The first argument specifies which fault or exception, the second
argument the function to be invoked.

SEE ALSO
kill (2), signal (2) .

- 1 -

SIN(3F)

NAME
sin, dsin, csin - Fortran sine intrinsic function

SYNOPSIS
real rt, r2
double precision dpt, dp2
complex cxt, cx2

r2 = sin(rl)

dp2 dsin(dpl)
dp2 sin (dp I)

cx2 csin(cxl)
cx2 sin(cxl)

DESCRIPTION

SIN(3F)

Sin returns the real sine of its real argument. Dsin returns the double
precision sine of its double-precision argument. Csin returns the complex sine
of its complex arguemnt. The generic sin function becomes dsin or csin as
required by argument type.

SEE ALSO
trig(3M) .

- 1 -

,INH OF) SINH OF)

~AME

sinh, dsinh - Fortran hyperbolic sine intrinsic function

~YNOPSIS

real rl, r2
double precision dpl, dp2

r2 = sinb(rl)

dp2 = dsinb(dpl)
dp2 = sinb(dpl)

>ESCRIPTION
Sinh returns the real hyperbolic sine of its real argument. Dsinh returns the
double-precision hyperbolic sine of its double-precision argument. The generic
form sinh may be used to return a double-precision value given a double
precision argument.

~EE ALSO
sinh(3M).

- 1 -

SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include < math.h >
double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION

SINH (3M)

Sinh, cosh and tanh return respectively the hyberbolic sine, cosine and tangent
of their argument.

DIAGNOSTICS
Sinh and cosh return HUGE when the correct value would overflow, and set
errno to ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
matherr(3M) .

- 1 -

SLEEP(3C) SLEEP (3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested for two reasons: (1) Because scheduled wakeups occur at fixed 1-
second intervals, (on the second, according to an internal clock) and (2)
because any caught signal will terminate the sleep following execution of that
signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to th.e scheduling of other activity in the
system. The value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept) in case the caller had an alarm
set to go off earlier than the end of the requested sleep time, or premature
arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or
some other signal) occurs. The previous state of the alarm signal is saved and
restored. The calling program may have set up an alarm signal before calling
sleep; if the sleep time exceeds the time till such alarm signal, the process
sleeps only until the alarm signal would have occurred, and the caller's alarm
catch routine is executed just before the sleep routine returns, but if the sleep
time is less than the time till such alarm, the prior alarm time is reset to go off
at the same time it would have without the intervening sleep.

SEE ALSO
alarm (2), pause (2), signa1(2).

- 1 -

I

I

SPUTL(3X) (not on PDP-II) SPUTL(3X)

NAME
sputl, sgetl - access long numeric data in a machine independent fashion.

SYNOPSIS
sputl (value, buffer)
long value;
char -buffer;

long sgetl (buffer)
char -buffer;

DESCRIPTION
Sputl(3X) will take the 4 bytes of the long value and place them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the
same across all machines. Sgetl will retrieve the 4 bytes in memory starting at
the address pointed to by buffer and return the long value in the byte ordering
of the host machine.

The usage of sputl(3X) and sgetl in combination provides a machine indepen
dent way of storing long numeric data in an ASCII file. The numeric data
stored in the portable archive file format (see ar(4» is written and read
into/from buffers with sputl(3X) and sgetl respectively.

A program which uses these functions must be loaded with the object file
access routine library libld.a.

SEE ALSO
ar(4).

- 1 -

SQRT(3F)

NAME
sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNOPSIS
real rl, r2
double precision dp 1, dp2
complex cxl, cx2

r2 = sqrt(rt)

dp2 dsqrt(dpt)
dp2 sqrt(dpt)

cx2 csqrt(cxl)
cx2 sqrt(cxt)

DESCRIPTION

SQRT(3F)

Sqrt returns the real square root of its real argument. Dsqrt returns the
double-precision square root of its double-precision arguement. Csqrt returns
the complex square root of its complex argument. Sqrt, the generic form, will
become dsqrt or csqrt as required by its argument type.

SEE ALSO
exp(3M).

- 1 -

I

I

SSIGNAL (3C) SSIGNAL(3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include < signal.h >
int (-ssignal (sig, action» (
int sig, (-action) ();

int gsignal (sig)
int sig;

DESCRIPTION

NOTES

Ssignal and gsignal implement a software facility similar to signal (2). This
facility is used by the Standard C Library to enable users to indicate the dispo
sition of error conditions, and is also made available to users for their own pur
poses.

Software signals made available to users are associated with integers in the
inclusive range 1 through 15. A call to ssignal associates a procedure, action,
with the software signal sig; the software signal, sig, is raised by a call to gsig
nal. Raising a software signal causes the action established for that signal to
be taken.

The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the action; it
is either the name of a (user defined) action function or one of the manifest
constants SIG _ DFL (default) or SIG _IGN (ignore). Ssignal returns the action
previously established for that signal type; if no action has been established or
the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset
fn cr~ nVT nnrl +1".0. n,-..+;"f'l1l ,... ... ;,,_ ~C1 .o._+.o.o.~ nr;f'h ~_- _+ n:_ ~,..:_
~_ -..... _&.IJl..A..J1..1.'-6 ".1..1."" ""' "'.1."'I.,-&.I.I."''''.I.'--'.I..I..I.~ "",.1..1"""",,,,,,"," 1'1'.1\".1..1 U.l6 U J..l.l"".l.l\. ""5- '-1""5-

nai returns the value returned to it by the action function.

If the action for sig is SIG _IGN, gsignai returns the value 1 and takes no
other action.

If the action for sig is SIG_DFL, gsignai returns the value 0 and takes no
other action.

If sig has an illegal value or no action was ever specified for sig, gsignai
returns the value 0 and takes no other action.

There are some additional signals with numbers outside the range 1 through 15
which are used by the Standard C Library to indicate error conditions. Thus,
some signal numbers outside the range 1 through 15 are legal, although their
use may interfere with the operation of the Standard C Library.

- 1 -

STDIO(3S) STDIO (3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >
FILE .stdin, ·stdout, .stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute
an efficient, user-level I/O buffering scheme. The in-line macros gete (3S) and
putcC3S) handle characters quickly. The macros getehar, putehar, and the
higher-level routines jgete, jgets, jprintj, jputc, jputs, jread, jseanJ, jwrite,
gets, getw, printj, puts, putw, and seanj all use gete and pute; they can be
freely intermixed.

A file with associated buffering is called -a stream and is declared to be a
pointer to a defined type FILE. Fopen (3S) creates certain descriptive data for a
stream and returns a pointer to designate the stream in all further transactions.
Normally, there are three open streams with constant pointers declared in the
<stdio.h> header file and associated with the standard open files:

stdin
stdout
stderr

standard input file
standard output file
standard error file.

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (- 1) is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descriptions for
details).

Any program that uses this package must include the header file of pertinent
macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this
manual are declared in that header file and need no further declaration. The
constants and the following "functions" are implemented as macros (redeclara
tion of these names is perilous): gete, getehar, pute, putehar, jeoj, jerror,
clearerr, and fileno.

SEE ALSO
open (2) , close(2), Iseek(2), pipe(2), read(2), write(2), ctermid(3S),
cuserid(3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S),
gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S),
system (3S), tmpfile (3S), tmpnam (3S), ungetc (3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible
error conditions.

- 1 -

I

I

STDIPC(3C) STDIPC(3C)

NAME
stdipc - standard interprocess communication package

SYNOPSiS
#include < sys/types.h >
#include < sys/ipc.h >
key _t ftok(path, id)
char .path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be
used by the msgget (2), semget (2) and shmget (2) system calls to obtain inter
process communication identifiers. One suggested method for forming a key is
to use the flOk subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining
portion as a sequence number. There are many other ways to form keys, but it
is necessary for each system to define standards for forming them. If some
standard is not adhered to, it will be possible for unrelated processes to uninten
tionally interfere with each other's operation. Therefore, it is strongly sug
gested that the most significant byte of a key in some sense refer to a project so
that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subsequent msgget,
semget and shmget system calls. Path must be the path name of an existing
file that is accessible to the process. Id is a character which uniquely identifies
a project. Note that ftok will return the same key for linked files when called
with the same id and that it will return different keys when called with the
same file name but different ids.

SEE ALSO
intro(2), !!!sgget(2), ~em.get (2), ~hrr.g~t (2).

DIAGNOSTICS
Ftok returns (key _0 -1 if path does not exist or if it is not accessible to the
process.

WARNING
If the file whose path is passed to ftok is removed when keys still refer to the
file, future calls to ftok with the same path and id will return an error. If the
same file is recreated, then ftok is likely to return a different key than it did
the original time it was called.

- 1 -

STRING(3C) STRING(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk,
strspn, strcspn, strtok - string operations

SYNOPSIS
#include < string.h >
char .strcat (sl, s2)
char .sl, .s2;

char .strncat (sl, s2, n)
char .sl, .s2;
int n;

int strcmp (sl, s2)
char .sl, .s2;

int strncmp (sl, s2, n)
char .sl, .s2;
int n;

char .strcpy (sl, s2)
char .sl, .s2;

char .strncpy (sl, s2, n)
char .sl, ·s2;
int n;

int strlen (s)
char .s;

char .strchr (s,
char .s, c;

c)

char ·strrchr (s, c)
char .s, c;

char .strpbrk (sl, s2)
char .sl, .s2;

int strspn (sl, s2)
char .sl, .s2;

int strcspn (s 1, s2)
char .sl, .s2;

char .strtok (sl, s2)
char .sl, .s2;

DESCRIPTION
The arguments sl, s2 and s point to strings (arrays of characters terminated by
a null character). The functions strcat, strncat, strcpy and strncpy all alter s 1.
These functions do not check for overflow of the array pointed to by s 1 .

Strcat appends a copy of string s2 to the end of string sl. Strncat appends at
most n characters. Each returns a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as sl is lexicographically less than, equal to, or
greater than s2. Strncmp makes the same comparison but looks at at most n
characters.

Strcpy copies string s2 to sl, stopping after the null character has been copied.
Strncpy copies exactly n characters, truncating s2 or adding null characters to
sl if necessary. The result will not be null-terminated if the length of s2 is n
or more. Each function returns s 1 .

- 1 -

I

I

STRING(3C) STRING(3C)

NOTE

BUGS

Str/en returns the number of characters in s, not including the terminating null
character.

Strchr (strrchr) returns a pointer to the first Clast) occurrence of character c in
string s, or a NULL pointer if c does not occur in the string. The null charac
ter terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s 1 of any character
from string s2, or a NULL pointer if no character from s2 exists in sl.

Strspn (strcspn) returns the length of the initial segment of string sl which
consists entirely of characters from (not from) string s2.

Strtok considers the string sl to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string
s2. The first call (with pointer sl specified) returns a pointer to the first char
acter of the first token, and will have written a null character into sl immedi
ately following the returned token. The function keeps track of its position in
the string between separate calls, so that on subsequent calls (which must be
made with the first argument a NULL pointer) will work through the string sl
immediately following that token. In this way subsequent calls will work
through the string sl until no tokens remain. The separator string s2 may be
different from call to call. When no token remains in sl, a NULL pointer is
returned.

For user convenience, all these functions are declared in the optional
< string. h > header file.

Strcmp and strncmp use native character comparison, which is signed on POP-
11 s, unsigned on other machines.

Character movement is performed differently in different implementations.
"T"1- ________ 1 ___ ! ___________ . ______ ~_l..l ____ .- __ _

.ll1U~ UV~II<1l-'l-'ll1o 1I1UVV~ 111<1y Y IvlU ~Ul"Jll~v~.

- 2 -

STRTOLOC> STRTOLOC>

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char .str;
char "ptr;
int base;

long atol (str)
char .str;

int atoi (str)
char .str;

DESCRIPTION
Strtol returns as a long integer the value represented by the character string
str. The string is scanned up to the first character inconsistent with the base.
Leading "white-space" characters are ignored.

If the value of ptr is not (char ••)NULL, a pointer to the character terminating
the scan is returned in .ptr. If no integer can be formed, .ptr is set to str, and
zero is returned.

If base is positive (and not greater than 36), it is used as the base for conver
sion. After an optional leading sign, leading zeros are ignored, and "Ox" or
"OX" is ignored if base is 16.

If base is zero, the string itself determines the base thus: After an optional
leading sign, a leading zero indicates octal conversion, and a leading "Ox" or
"OX" hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment, or by
an explicit cast.

Atof(str) is equivalent to strtof(str, (char **)NULL, 10).

Atodstr) is equivalent to unt) strtof(str, (char **)NULL, 10).

SEE ALSO
atof(3C), scanf(3S).

BUGS
Overflow conditions are ignored.

- 1 -

SWAB(3C) SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char .from, ·to;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the array pointed to by to,
exchanging adjacent even and odd bytes. It is useful for carrying binary data
between PDP-lIs and other machines. Nbytes should be even and non
negative. If nbytes is odd and positive swab uses nbytes-l instead. If nbytes is
negative swab does nothing.

- I -

I SYSTEM (3F)

"NAME
system - issue a shell command from Fortran

SYNOPSIS
character· N c

call system(c)

DESCRIPTION

SYSTEM(3F)

System causes its character argument to be given to sh (1) as input, as if the
string had been typed at a terminal. The current process waits until the shell
has completed.

SEE ALSO
sh (1), exec(2), system OS).

- 1 -

I

SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
#include < stdio.h >
int system (string)
char .string;

DESCRIPTION

SYSTEM(3S)

System causes the string to be given to sh (1) as input, as if the string had
been typed as a command at a terminal. The current process waits until the
shell has completed, then returns the exit status of the shell.

FILES
Ibin/sh

SEE ALSO
sh (1), exec(2).

DIAGNOSTICS
System forks to create a child process that in turn exec's Ibinlsh in order to
execute string. If the fork or exec fails, system returns -1 and sets errno.

- 1 -

TAN(3F) TAN(3F)

NAME
tan, dtan - Fortran tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = tan(rt)

dp2 = dtan(dpl)
dp2 = tan(dpt)

DESCRIPTION
Tan returns the real tangent of its real argument. Dtan returns the double
precision tangent of its double-precision argument. The generic tan function
becomes dtan as required with a double-precision argument.

SEE ALSO
trig(3M).

- 1 -

TANH(3F) TANH(3F)

NAME
tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = tanb(rt)

dp2 = dtanb(dpt)
dp2 = tanb(dpl)

DESCRIPTION
Tanh returns the real hyperbolic tangent of its real argument. Dtanh returns
the double-precision hyperbolic tangent of its double precision argument. The
generic form tanh may be used to return a double-precision value given a
double-precision argument.

SEE ALSO
sinh(3M).

- 1 -

TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE .tmpfile ()

DESCRIPTION

TMPFILE (3S)

Tmpfile creates a temporary file and returns a corresponding FILE pointer.
The file will automatically be deleted when the process using it terminates.
The file is opened for update.

SEE ALSO
creat(2), unlink(2), fopen OS), mktempOC), tmpnam OS).

- 1 -

I

TMPNAMOS) TMPNAMOS)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include < stdio.h >
char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, .pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary
file.

Tmpnam always generates a file name using the path-name defined as
P _tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves its result
in an internal static area and returns a pointer to that area. The next call to
tmpnam will destroy the contents of the area. If s is not NULL, it is assumed
to be the address of an array of at least L_tmpnam bytes, where L_tmpnam is a
constant defined in <stdio.h>; tmpnam places its result in that array and
returns s.

Tempnam allows the user to control the choice of a directory. The argument
dir points to the path-name of the directory in which the file is to be created.
If dir is NULL or points to a string which is not a path-name for an appropri
ate directory, the path-name defined as P _tmpdir in the <stdio.h> header file
is used. If that path-name is not accessible, Itmp will be used as a last resort.
This entire sequence can be up-staged by providing an environment variable
TMPDIR in the user's environment, whose value is a path-name for the desired
tern porary -file directory.

Many applications prefer their temporary files to have certain favorite initial
jeuer sequences in their names. Use the pfx argument for this. This argument
may be NULL or point to a string of up to five characters to be used as the first
few characters of the temporary-file name.

Tempnam uses maUoe (3C) to get space for the constructed file name, and
returns a pointer to this area. Thus, any pointer value returned from tempnam
may serve as an argument to free (see maUoe (3C)). If tempnam cannot
return the expected result for any reason, i.e. maUac failed, or none of the
above mentioned attempts to find an appropriate directory was successful, a
NULL pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fapen or creat are temporary only
in the sense that they reside in a directory intended for temporary use, and
their names are unique. It is the user's responsibility to use unlink (2) to
remove the file when its use is ended.

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will start
recycling previously used names.
Between the time a file name is created and the file is opened, it is possible for
some other process to create a file with the same name. This can never happen
if that other process is using these functions or mktemp, and the file names are
chosen so as to render duplication by other means unlikely.

- 1 -

TRIG(3M) TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include < math.h >
double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x' ,
double asin (x)
double x' ,
double acos (x)
double x' ,
double atan (x)
double x;

double atan2 (y, x)
double x, y;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of their argu
ment, which is in radians.

Asin returns the arcsine of x, in the range -1('12 to 1('12.

Acos returns the arccosine of x, in the range 0 to 1('.

Atan returns the arctangent of x, in the range -1('12 to 1('12.

Atan2 returns the arctangent of ylx, in the range -1(' to 1(', using the signs of
both arguments to determine the quadrant of the return value.

DIAGNOSTICS
Sin, cos and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return 0 when there would other
wise be a complete loss of significance. In this case a message indicating
TLOSS error is printed on the standard error output. For less extreme argu
ments, a PLOSS error is generated but no message is printed. In both cases,
ermo is set to ERANGE.

Tan returns HUGE for an argument which is near an odd multiple of 1('12 when
the correct value would overflow, and sets ermo to ERANGE.

Arguments of magnitude greater than 1.0 cause asin and acos to return 0 and
to set ermo to EDOM. In addition, a message indicating DOMAIN error is
printed on the standard error output.

These error-handling procedures may be changed with the function
mat herr (3 M) .

SEE ALSO
rna therr (3 M) .

- 1 -

I

TSEARCH(3C) TSEARCH (3C)

NAME
tsearch, tdelete, twalk - manage binary search trees

SYNOPSIS
#include < search.h >
char .tsearch ({char .) key, (char ..) rootp, compar)
int (.compar)();

char .tdelete ({char .) key, (char ..) rootp, compar)
int (.compar) ();

void twalk «char .) root, action)
void (·action) ();

DESCRIPTION

NOTES

Tsearch is a binary tree search routine generalized from Knuth (6.2.2) Algo
rithm T. It returns a pointer into a tree indicating where a datum may be
found. If the datum does not occur, it is added at an appropriate point in the
tree. Key points to the datum to be sought in the tree. Rootp points to a vari
able that points to the root of the tree. A NULL pointer value for the variable
denotes an empty tree; in this case, the variable will be set to point to the
datum at the root of the new tree. Compar is the name of the comparison
function. It is called with two arguments that point to the elements being com
pared. The function must return an integer less than, equal to, or greater than
zero according as the first argument is to be considered less than, equal to, or
greater than the second.

Tdelete deletes a node from a binary search tree. It is generalized from Knuth
(6.2.2) algorithm D. The arguments are the same as for tsearch. The variable
pointed to by rootp will be changed if the deleted node was the root of the tree.
Tdelete returns a pointer to the parent of the deleted node, or a NULL pointer
if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below that
node.) Action is the name of a routine to be invoked at each node. This rou
tine is, in turn, called with three arguments. The first argument is the address
of the node being visited. The second argument is a value from an enumeration
data type typedef enum {preorder, postorder, endorder, leaf} VISIT; (defined
in the < search.h > header file), depending on whether this is the first, second
or third time that the node has been visited (during a depth-first, left-to-right
traversal of the tree), or whether the node is a leaf. The third argument is the
level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may
be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be
cast into type pointer-to-element.
Warning: the root argument to twalk is one level of indirection less than the
rootp arguments to tsearch and tdelete.

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available to
create a new node.
A NULL pointer is returned by tsearch and tdelete if rootp is NULL on entry.

SEE ALSO
bsearch OC), hsearch OC), lsearch OC).

- 1 -

TSEARCH (3C)

BUGS

TSEARCH (3C)

Awful things can happen if the calling function alters the pointer to the root.

- 2 -

I

I

TTYNAME (3C) TTYNAME (3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char .ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

FILES

Ttynarne returns a pointer to a string containing the null-terminated path name
of the terminal device associated with file descriptor fi/des.

!satty returns 1 if fi/des is associated with a terminal device, 0 otherwise.

!dev!·

DIAGNOSTICS

BUGS

Ttynarne returns a NULL pointer if fi/des does not describe a terminal device
in directory Idev.

The return value points to static data whose content is overwritten by each call.

- 1 -

TTYSLOT (3C) TTYSLOT(3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION

FILES

Ttyslot returns the index of the current user's entry in the letc/utmp file. This
is accomplished by actually scanning the file letc/inittab for the name of the
terminal associated with the standard input, the standard output, or the error
output (0, 1 or 2).

/etclinittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of ° is returned if an error was encountered while searching for the
terminal name or if none of the above file descriptors is associated with a termi
nal device.

- 1 -

I

I

UNGETCOS) UNGETCOS)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include < stdio.h >
int ungetc (c, stream)
char c;
FILE -stream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an input stream.
That character, c, will be returned by the next getc call on that stream.
Ungetc returns c, and leaves the file stream unchanged.

One character of push back is guaranteed provided something has been read
from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Fseek (3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
In order that ungetc perform correctly, a read statement must have been per
formed prior to the call of the ungetc function. Ungetc returns EOF if it can't
insert the character. In the case that stream is stdin, ungetc will allow exactly
one character to be pushed back onto the buffer without a previous read state
ment.

- 1 -

X25ALNK (3C) X25ALNK (3C)

NAME
x25alnk, x25ilnk - attach or install a BX.25 link

SYNOPSIS
#include < x25lib.h >
int x25alnk (Hnkid, devname, lineno, mod name,
int Iinkid, lineno;
char .devname, .modname;
unsigned flags;

int x25ilnk (Hnkid, pktsize, flags)
int Iinkid, pktsize;
unsigned flags;

DESCRIPTION
X25alnk is used to attach a BX.25 logical link specified by linkid to a level 2
device whose name is devname by making the necessary connections between
data structures.

Linkid is the identifier for the link data structure to be used in the operating
system. This identifier can be thought of as the connector between x25ipvc
calls and the x25alnk call for the physical link on which the channels are mul
tiplexed. An example of a link identifier is 1.

Devname is the name of the physical device running the interpreter and script
for this link, e.g., Idev/kmcO.

Lineno is the physical line number (range 0-7) for a logical link on a physical
unit, e.g., 4.

Modname is the name of the synchronous modem control device. If the
LNKMOD flag is specified, the standard modem control functions performed for
the line are to raise data terminal ready and request to send. An example of
modname is Idev/kdmO.

Flags specifies the options for the attach call, e.g., LNKBACK requests dev
name as a backup device. The permissible flags bit settings for attach are:

LNKMOD modname specified.
LNKBACK attach a backup rather a primary device.

X25ilnk is used to initialize a link; more precisely, to start the level 2 protocol
in the associated device and to start the level 3 protocol in the UNIX System
driver for the link specified by linkid.

Pktsize is the packet size to be used for level 3 data packets. Pktsize must be
a number that is a power of 2 between 16 and 1024 inclusive. The default
packet size is 128. The LNKPKT flag must be raised to set a non-default size.

Flags specifies the options for the initialization call, e.g., LNKISB requests the
B address. The permissible flags bit settings for initialization are:

LNKPKT packet size specified
LNKISB tell interpreter line is an X.25 B address; default is A.
LNKBACK initialize the backup device.
LNKFAST the device speed is greater than 9.6 KB.

SEE ALSO
ioct1(2), open (2), stat(2), perror(3C), x25clnk(3C), x25hlnk(3C).
x25pvc(IM), nc(7) , vpm(7), x25(7) in the UNIX System Administrator's
Manual.
Operations Systems Network Protocol Specification: BX.25 Issue 2, Bell
La bora tories.

- 1 -

I

X25ALNK(3C)

DIAGNOSTICS
ELNKPKT
ELNKNCO
ELNKNCi
ELNKDS
ELNKDNC
ELNKMCO
ELNKMCI
ELNKLNO

packet size specified is illegal.
network control device open failed; check errno.
network control device ioctl failed; check ermo.
stat of physical device failed; check errno.

X25ALNK (3C)

file associated with device name not a character special device.
modem control device open failed; check errno.
modem control device ioctl failed; check errno.
device line number illegal.

- 2 -

X25CLNK OC) X25CLNK (3C)

NAME
x25clnk - change over a BX.25 link

SYNOPSIS
#include < x25lib.h >
int x25c1nk Oinkid}
int linkid;

DESCRIPTION
X25clnk is used to change over from the primary to the backup level 2 device
associated with link linkid. Linkid is the identifier for the link data structure
which is used in the operating system. This identifier was set up by the
x25alnk subroutine call.

SEE ALSO
ioctl(2), open(2), stat(2), perror(3C), x25alnk(3C), x25hlnk(3C).
x25pvc(lM), nc(7), vpm(7), x25(7) in the UNIX System Administrator's
Manual.
Operations Systems Network Protocol Specification: BX.25 Issue 2, Bell
Laboratories.

DIAGNOSTICS
ELNKNCO network control device open failed; check errno.
ELNKNCI network control device ioctl failed; check errno.
ELNKDS stat of physical device failed; check errno.
ELNKDNC file associated with device name not a character special device.

- 1 -

I

X25HLNK (3C) X25HLNK (3C)

NAME
x25hlnk, x25dlnk - halt or detach a BX.25 link

SYNOPSiS
#include <x25Iib.h>

int x25hlnk Oinkid, flags)
int Iinkid;
unsigned flags;

int x25dlnk Oinkid, flags)
int linkid;
unsigned flags;

DESCRIPTION
X25hlnk is used to halt a link; more precisely, to stop the level 2 protocol in the
associated device and to stop the level 3 protocol in the UNIX System driver for
the link specified by linkid. If a backup device has been attached and started,
the level 2 protocol on the backup will also be stopped.

X25dlnk is used to detach a BX.25 logical link specified by linkid. This
removes the logical connections which were made by x25alnk.

Linkid is the identifier for the link data structure which is used in the operating
system. This identifier was set up by the x25alnk subroutine call.

Flags specifies the options for the halt or detach call.

The permissible flags bit settings for halt is:

LNKBACK halt only the level 2 protocol on the backup device. The
level 3 protocol must not be running on this backup device.

The permissible flags bit settings for detach is:

LNKBACK detach a backup rather than a primary device.

SEE ALSO
ioctI(2), open(2), stat(2), perrorOC), x25alnk(3C), x25c1nkOC).
x25pvc(1M), nc(7) , vpm(7), x25(7) in the UNIX System Administrator's
Manual.
Operations Systems Network Protocol Specification: BX.25 Issue 2,Bell
Laboratories.

DIAGNOSTICS
ELNKNCO network control device open failed; check ermo.
ELNKNCI network control device ioctl failed; check ermo.
ELN KDS stat of physical device failed; check ermo.
ELNKDNC file associated with device name not a character special device.

- 1 -

X25IPVC (3C) X25IPVC (3C)

NAME
x25ipvc, x25rpvc - install or remove a PVC on a link

SYNOPSIS
#include < x25lib.h >
int x25ipvc (slotname, chno, Iinkid, flags)
char .slotname;
int chno, Iinkid;
unsigned flags;

int x25rpvc (slotname)
char ·slotname;

DESCRIPTION
X25ipvc may be used to install a BX.25 Permanent Virtual Circuit (PVC) on a
specified BX.25 interface (link). If slotname is currently connected (but
removable) this connection is removed and the new connection is made to the
logical channel chno on the link specified by linkid.

Slotname is a path name that specifies a BX.25 minor device (slot), e.g.,
Idev/x25s12.

Chno is the BX.25 level 3 logical channel number associated with the PVC, e.g.,
3. chno must be in the range 1 to 4095 and must not be currently in use for
any other BX.25 minor device associated with that link.

Linkid is the identifier for the link data structure to be used in the operating
system. This identifier can be thought of as the connector between x25ipvc calls
and the x25alnk call for the physical link on which the channels are multi
plexed. An example of a link identifier is 1.

Flags contains settings for specifying PVC install options; permissible PVC flags
bit settings are:

PVCSESS Session connect/disconnect packets used.
PVCREST RESET in-order/out-of-order responded to.
PVCNONE No establishment protocol used.

X25rpvc is used to remove the association between BX.25 minor device slot
name and the link and channel to which it is currently connected. The com
mand will fail if the slot is open, if packets are waiting to be transmitted, or if
there are unacknowledged packets outstanding.

SEE ALSO
ioct1(2), open(2), stat(2) , perror(3C).
nc(7), vpm(7), x25(7) in the UNIX System Admninistrator's Manual.
Operations Systems Network Protocol Specification: BX.25 Issue 2, Bell
Laboratories.

DIAGNOSTICS
EPVCNP

EPVCNCO
EPVCNCI
EPVCSS
EPVCSNC

no (or mUltiple) setup protocol specified (one of PVCSESS,
PVCREST, or PVCNONE must be in flags argument).
network control device open failed; check errno.
network control device ioctl failed; check errno.
stat of slot (PVC) name failed; check errno.
file associated with slotname not a character special device.

- 1 -

INTRO(4) INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct declarations for
the file formats are given where applicable. Usually, these structures can be
found in the directories lusr/include or lusr/include/sys.

References of the type name (1 M) refer to entries found in Section 1 of the
UNIX System Administrator's Manual.

- 1 -

I

A.OUT(4) (not on PDP-I 1) A.OUT(4) \

NAME
a.out - common assembler and link editor output

DESCRIPTION
The file name a.out is the output file from the assembler as(I) and the link edi
tor ld (I) . Both programs will make a.out executable if there were no errors in '
assembling or linking and no unresolved external references.

A common object file consists of a file header, a UNIX System header, a table
of section headers, relocation information, (optional) line numbers, and a sym- .
bol table. The order is given below.

File header.
UNIX System header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.

The last three sections (relocation, line numbers and symbol table) may be
missing if the program was linked with the -s option of ld(I) or if the symbol
table and relocation bits were removed by strip (1). Also note that if there
wt;rt; nu unresuived exiernal references after iinking, the relocation information
will be absent.

The sizes of each segment (contained in the header, discussed below) are in
bytes and are even.

When an a.out file is loaded into memory for execution, three logical segments
are set up: the text segment, the data segment (initialized data followed by
uninitialized, the latter actually being initialized to all O's), and a stack. The
text segment begins at location 0 in the core image; the header is not loaded.
If the magic number (the first field in the UNIX System header) is 407 (octal),
it indicates that the text segment is not to be write-protected or shared, so the
data segment will be contiguous with the text segment. If the magic number is
410 (octal), the data segment begins at the next segment boundary following
the text segment, and the text segment is not writable by the program; if other
processes are executing the same a.out file, they will share a single text seg
ment.

On the 3B20S, the stack begins at the end of the text and data sections and
grows towards higher addresses. On the VAX, the stack begins at the end of
memory and grows towards lower addresses. The stack is automatically
extended as required. The data segment is extended only as requested by the
brk (2) system call.

The value of a word in the text or data portions that is not a reference to an
undefined external symbol is exactly the value that will appear in memory when
the file is executed. If a word in the text involves a reference to an undefined
external symbol, the storage class of the symbol-table entry for that word will
be marked as an "external symbol", and the section number will be set to o.

- 1 -

A.OUT(4) (not on PDP-II) A.OUT(4)

When the file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the word in the file.

File Header
The format of the filehdr header is

struct filehdr
{

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

Cmagic;
Cnscns;
Ctimdat;
Csymptr;
Cnsyms;
Copthdr;
fJlags;

/* magic number */
/* number of sections */
/* time and date stamp */
/* file ptr to symtab */
/* # symtab entries */
/* sizeof(opt hdr) */
/* flags */

};

UNIX Header
The format of the UNIX System header is

typedef struct aouthdr {
short magic;
short vstamp;
long tsize;
long dsize;
long bsize;
long entry;
long text_start;
long data_start;

} AOUTHDR;

/* magic number */
/* version stamp */
/* text size in bytes, padded */
/* initialized data (data) */
/* uninitialized data (bss) */
/* entry point */
/* base of text used for this file */
/* base of data used for this file */

Section Header
The format of the section header is

Relocation

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN];I* section name */
syaddr; /* physical address */
s vaddr; / * virtual address * /
s=size; /* section size */
s_scnptr; /* file ptr to raw data */
sJelptr; /* file ptr to relocation */
sJnnoptr; /* file ptr to line numbers */
s_nreloc; /* # reloc entries */
s_nlnno; /* # line number entries */
s_flags; /* flags */

Object files have one relocation entry for each relocatable reference in the text
or data. If relocation information is present, it will be in the following format:

struct reloc
{

long r vaddr; /* (virtual) address of reference */
long r=symndx; /* index into symbol table */
short r_type; /* relocation type */

} ;

The start of the relocation information is relptr from the Section Header. If
there is no relocation information, reiptr is o.

- 2 -

A.OUT(4) (not on PDP-l 1) A.OUT(4)

Symbol Table
The format of the symbol table header is

#define SYMNMLEN 8
#define FILNMLEN 14
#define SYMESZ 18

struct syment
{

} ;

char
unsigned long n _value;
short
unsigned short n _type;
char
char

/* the size of a SYMENT * /

n_namelSYMNMLEN]; /* name of sym"
/* value of symbol */
n_scnum;/* section number */
/* type and derived type */
n_sc1ass;/* storage class */
n_numaux:/* number of aux entries */

Some symbols require more information than a single entry; they are followed
by auxiliary entries that are the same size as a symbol entry. The format fol
lows:

- 3 -

A.OUT(4)

union auxent {
struct {

(not on PDP-ll)

long x tagndx;
union { -

struct {
unsigned short x Jnno;
unsigned short x_size;

} x lnsz;
long x Jsize;

} x misc;
union {

struct {
long
long

} x fcn;
struct {

xJnnoptr;
x_endndx;

A.OUT(4)

unsigned short x_dimen[DIMNUM];
} x_ary;

};

} xJcnary;
unsigned short x_tvndx;

} x_sym;

struct {
char xJname[FILNMLEN];

} xJile;

struct {
long x _scnlen;
unsigned short x _ nreloc;
unsigned short x _ nlinno;

} x_scn;

struct {
long

} x_tv;

unsigned short
unsigned short

x_tvfill;
x tvlen;
x=tvran[2];

Indexes of symbol table entries begin at zero. The start of the symbol table is
symptr (from the file header) bytes from the beginning of the file. If the sym
bol table is stripped, symptr is O.

SEE ALSO
as(I), cc(I), Id(I), filehdr(4) , Idfcn(4) , linenum(4), reloc(4), scnhdr(4) ,
syms(4) .

- 4 -

A.OUT(4) (PDP-ll only) A.OUT(4)

NAME
a.out - PDP-II assembler and link editor output

DESCRIPTION
A.out is the output file of the assembler as (1) and the link editor Id (1). Both
programs will make a.out executable if there were no errors in assembling or
linking and no unresolved external references.

This file has four sections: a header, the program text and data segments, relo
cation information, and a symbol table Gn that order). The last two sections
may be missing if the program was linked with the -s option of Id (1) or if the
symbol table and relocation bits were removed by strip (1). Also note that if
there were no unresolved external references after linking, the relocation infor
mation will be removed.

The sizes of each segment (contained in the header, discussed below) are in
bytes and are even. The size of the header is not included in any of the other
sizes.

When an a.out file is loaded into memory for execution, three logical segments
are set up: the text segment, the data segment (initialized data followed by
uninitialized, the latter actually being initialized to all O's), and a stack. The
text segment begins at location 0 in the core image; the header is not loaded.
If the magic number (the first field in the header) is 407 (octal), it indicates
that the text segment is not to be write-protected or shared, so the data seg
ment will be contiguous with the text segment. If the magic number is 410
(octal), the data segment begins at the first 0 mod 8K byte boundary following
the text segment, and the text segment is not writable by the program; if other
processes are executing the same a.out file, they will share a single text seg
ment. If the magic number is 411 (octal) the text segment is again pure
(write-protected and shared) and, moreover, the instruction and data spaces are
separated; the text and data segment both begin at location o. See the PDP-
11/10 Processor Handbook for restrictions that apply to this situation.

The stack will occupy the highest possible locations in the core image: from
177776 (octal) on the PDP-II and growing downwards. The stack is automati
cally extended as required. The data segment is only extended as requested by
the brk (2) system call.

The start of the text segment in the a.out file is hsize; the start of the data seg
ment is hsize+St (the size of the text), where hsize is 20 (octal) on the PDP-
11.

The value of a word in the text or data portions that is not a reference to an
undefined external symbol is exactly the value that will appear in memory when
the file is executed. If a word in the text or data portion involves a reference to
an undefined external symbol, as indicated by the relocation information (dis
cussed below) for that word, then the value of the word as stored in the file is
an offset from the associated external symbol. When the file is processed by
the link editor and the external symbol becomes defined, the value of the sym
bol will be added to the word in the file.

- 1 -

A.OUT(4) (PDP-II only)

Header-POP-II
The format of the a.out header for the PDP-II is as follows:

struct
j* magic number *j
j* size of text segment *j
j* size of data segment *j
j* size of bss segment *j
j* size of symbol table *j

A.OUT(4)

exec
short
unsigned
unsigned
unsigned
unsigned
unsigned
char
char
char
char

a_magic;
a_text;
a_data;
a_bss;
a_syms;
a_entry; j* entry point of program *j

Relocation-POP-II

a_unused;
a_hitext;
ajlag;
a_stamp;

j* hi bits for large text spaces *j
j* set if relocation info stripped *j
j* version stamp *j

If relocation information is present, it amounts to two bytes per relocatable
datum. There is no relocation information if the "suppress relocation" flag
(a Jlag) in the header is on.

The format of the relocation data is:

struct r info
int r_symbolnum:II,

} ;

r_.segment:3,
rycrel:I;

The r ycrel field indicates, if on, that the reference is relative to the program
counter (pc) register (e.g., clr x); if off, that the reference is to the actual sym
bol (e.g., clr *$x).

The r _segment field indicates the segment referred to by the text or data word
associated with the relocation word:

00 indicates the reference is absolute;
02 indicates the reference is to the text segment;
04 indicates the reference is to initialized data;
06 indicates the reference is to bss (uninitialized data);
10 indicates the reference is to an undefined external symbol.

The field r _symbolnum contains a symbol number in the case of external refer
ences, and is unused otherwise. The first symbol is numbered 0, the second I,
etc.

The start of the relocation information on the PDP-II is:

hsize+a text +a data - -
Symbol Table-POP-II

The symbol table on the PDP-ll consists of entries of the form:

struct

} ;

nlist
char
int
unsigned

{
n_name[8];
n_type;
n_value;

The n_name field contains the ASCII name of the symbol, null-padded. The
nJype field indicates the type of the symbol; the following values are possible:

- 2 -

A.OUT(4) (PDP-ll only)

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
04 bss segment symbol
37 file name symbol (produced by Id(I)
40 undefined external symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

The start of the symbol table on the PDP-II is:

hsize+2 (a _text +a _data)

if relocation information is present, and

hsize+a text +a data
if it is not. - -

A.OUT(4) \

If a symbol's type on the PDP-II is undefined external and the value field is
non-zero, the symbol is interpreted by the link editor ld (1) as the name of a
common region whose size is indicated by the value of the symbol.

SEE ALSO
as(1), Id(I), nm(1), strip(I).

- 3 -

ACCT(4) ACCT(4)

NAME
acct - per-process accounting file form~t

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct (2) have records in the form defined by
<sys/acct.h> , whose contents are:

typedef ushort comp_t; /. "floating point" ./
/. 13-bit fraction, 3-bit exponent ./

struct acct
{

char ac_flag; /. Accounting flag ./
char ac_stat; /. Exit status ./
ushort ac_uid;
ushort ac~id;
dev_t ac_tty;
time t ac_btime; /. Beginning time ./
comp_t ac_utime; /. acctng user time in clock ticks ./
comp_t ac_stime; /. acctng system time in clock ticks ./
comp_t ac_etime; /. acctng elapsed time in clock ticks ./
comp_t ac_mem; /. memory usage in clicks ./
comp_t acjo; /. chars trnsfrd by read/write ./
comp_t aCJw; /. number of block reads/writes ./
char ac_comm[8]; /. command name ./

} ;

extern struct acct acctbuf;
extern struct inode ·acctp; /. inode of accounting file ./

#define AFORK 01 /. has executed fork, but no exec ./
#define ASU 02 /. used super-user privileges ./
#define ACCTF 0300 /. record type: 00 = acct ./

In ac Jiag, the AFORK flag is turned on by each fork (2) and turned off by an
exec (2). The ac _comm field is inherited from the parent process and is reset
by any exec. Each time the system charges the process with a clock tick, it
also adds to ac _ mem the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem/(ac_stime +ac_utime) can be viewed as an approxima
tion to the mean process size, as modified by text-sharing.

- 1 -

ACCT(4) ACCT(4) I

The structure tacct.h, which resides with the source files of the accounting com- I

mands, represents the total accounting format used by the various accounting
commands:

/*
* total accounting (for acct period), also for day
*/

struct tacct {
uid t
char
float
float
float
float
long
unsigned short
unsigned short
unsigned short

ta uid;
ta -name[8];
ta=cpu[2];
ta kcore[2];
ta=con[2];
ta_du;
tayc;
ta sc;
ta=dc;
tajee;

/* userid ./
/* login name */
/* cum. cpu time, p/np (mins) */
/* cum kcore-minutes, p/np */
/* cum. connect time, p/np, mins */
/* cum. disk usage */
/* count of processes */
/* count of login sessions */
/* count of disk samples */
/* fee for special services */

} ;

SEE ALSO

BUGS

acct (1 M), acctcom (1), acct (2) .

The ac_mem value for a short-lived command gives little information about the
actual size of the command, because ac_mem may be incremented while a
different command (e.g., the shell) is being executed by the process.

- 2 -

AR(4) (not on PDP-It) AR(4)

NAME
ar - common archive file format

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor ld (I).

Each archive begins with an archive file header which is made up of the follow
ing components:

#define ARMAG
#define SARMAG

"<ar>"
4

struct ar hdr { I * archive header * I
char ar_magic[SARMAG]; 1* magic number *1
char ar name[16]; 1* archive name *1
char ar - date[4]; 1* date of last archive modification *1
char ar=syms[4]; 1* number of ar_sym entries *1

} ;

Each archive which contains common object files (see a.out (4» includes an
archive symbol table. This symbol table is used by the link editor ld(I) to
determine which archive members must be loaded during the link edit process.
The archive file header described above is followed by a number of symbol
table entries. The number of symbol table entries is indicated in the ar _syms
variable. Each symbol table entry has the following format:

struct ar_sym {
char sym_name[S];
char symytr[4];

1* archive symbol table entry *1
1* symbol name, recognized by Id *j
1* archive position of symbol *1

The archive symbol table is automatically created and/or updated by the ar(1)
command.

Following the archive header and symbol table are the archive file members.
Each file member is preceded by a file member header which is of the following
format:

struct arf hdr {
cha~ arf name[16];
char arf-date[4];
char arf-uid[4];
char ar(gid[4];
char arf mode[4];
char ar(size[4];

} ;

j* archive file member header *1
j* file member name *1
1* file member date *1
1* file member user identification *1
1* file member group identification *j
1* file member mode *1
j* file member size .1

All information in the archive header, symbol table and file member headers is
stored in a machine independent fashion. All character data is automatically
portable. The numeric information contained in the headers is also stored in a
machine independent fashion. All numeric data is stored as four bytes and is
accessed by the special archive 110 functions described in sputlOX) functions
of the libld.a library. Common format archives can be moved from system to
system as long as the portable archive command ar(I) is used. Conversion
tools such as arcv (I) and convert (1) exist to aid in the transportation of non-

- 1 -

AR(4) (not on PDP-! 1) AR(4)

common format archives to this format.

Each archive file member begins on a word boundary; a null byte is inserted
between files if necessary. Nevertheless the size given reflects the actual size of
the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO

BUGS

ar(I), arcv(I), convert(l), ld(l), sputl(3X).

The common archive structure is not compatible between the PDP-11 and the
IBM-370, due to the different file formats. See arcv(l) and convert(I) to con
vert between machines.

Strip (0 will remove all archive symbol entries from the header. The archive
symbol entries must be restored via the s option of the ar(O command before
the archive can be used with the link editor ld (I).

- 2 -

AR(4) (PDP-II only) AR(4)

NAME
ar - archive file format

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor ld (1).

A file produced by ar has a magic number at the start, followed by the consti
tuent files, each preceded by a file header. The magic number is
0177545 (octal) Cit was chosen to be unlikely to occur anywhere else). The
header of each file is 26 bytes long:

#define ARMAG 0177545
struct ar hdr {

} ;

char ar_name[I4];
long ar_date;
char ar uid;
char ar :Eid;
int ar _mode;
long ar _size;

Each file begins on a word boundary; a null byte is inserted between files if
necessary. Nevertheless the size given reflects the actual size of the file
exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar(1),ld(1).

- 1 -

I

I

CHECKLIST (4) CHECKLIST (4)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory fete and contains a list of at most 15 special file
names. Each special file name is contained on a separate line and corresponds
to a file system. Each file system will then be automatically processed by the
!sck(IM) command.

SEE ALSO
fsck(IM) .

- 1 -

CORE(4) CORE(4)

NAME
core - format of core image file

DESCRIPTION
The UNIX System writes out a core image of a terminated process when any of
various errors occur. See signal (2) for the list of reasons; the most common
are memory violations, illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in the process's working
directory (provided it can be; normal access controls apply). A process with an
effective user ID different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per-user data for
the process, including the registers as they were at the time of the fault. The
size of this section depends on the parameter usize, which is defined in
lusr linclude/sys/param.h. The remainder represents the actual contents of the
user's core area when the core image was written. If the text segment is read
only and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user struc
ture of the system, defined in lusr/include/sys/user.h. The important stuff not
detailed therein is the locations of the registers, which are outlined in
lusr linclude/sys/reg.h.

SEE ALSO
crash (I M), sdb (1), setuid (2), signa1(2).

- 1 -

I

CPIO(4) CPIO(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio(I) is not used, is:

struct {

} Hdr;

short h _magic,
h_dev;

ushort h ino,
h -mode,
h=uid,
h~id;

short h nlink,
h -rdev,
h=mtimel21,
h namesize,
h -filesizel21;

char h=namelh_namesize rounded to word];

When the -c option is used, the header information is described by:

sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60% Illo%s",
&Hdr.h magic, &Hdr.h dev, &Hdr.h ino, &Hdr.h mode,
&Hdr.h=uid, &Hdr.h~id, &Hdr.h_nlink, & Hdr.h_rdev,
& Longtime, & Hdr.h _namesize, & Longfile,Hdr .h _name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.hJilesize,
respectively. The contents of each file are recorded in an element of the array
of varying length structures, archive, together with other items describing the
file. Every instance of h _magic contains the constant 070707 (octal). The
items h_dev through h_mtime have meanings explained in stat(2). The length
of the null-terminated path name h_name, including the null byte, is given by
h namesize.

The last record of the archive always contains the name TRAILER!!!. Special
files, directories, and the trailer are recorded with h Jilesize equal to zero.

SEE ALSO
cpio(I), find(I), stat(2).

- 1 -

DIR (4) DIR (4)

NAME
dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write
into a directory. The fact that a file is a directory is indicated by a bit in the
flag word of its i-node entry (see Is (4». The structure of a directory entry as
given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ino t d ino;
char d=name[DIRSIZ);

} ;

By convention, the first two entries in each directory are for . and ... The first
is an entry for the directory itself. The second is for the parent directory. The
meaning of .. is modified for the root directory of the master file system; there
is no parent, so .. has the same meaning as ..

SEE ALSO
fs(4).

- 1 -

I

ERRFILE(4) ERR FILE (4)

NAME
errfile - error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record is generated
and passed to the error-logging daemon for recording in the error log for later
analysis. The default error log is lusr/adm/errfile.

The format of an error record depends on the type of error that was encoun
tered. Every record, however, has a header with the following format:

struct errhdr {
short
short
time t

};

e_type;
eJen;
e_time;

1* record type *1
1* bytes in record {inc hdr} *1
1* time of day *1

The permissible record types are as follows:

#define E _ GOTS 010
#define E_GORT 011
#define E_STOP 012
#define E_TCHG 013
#define E_CCHG 014
#define E _ BLK 020
#define E_STRAY 030
#define E_PRTY 031
#define E_PIO 041
#define E_IOP 042

1* start for the UNIX System 3.0*1
1* start for the UNIX/RT System*1
1* stop *1
1 * time change * 1
1* configuration change *1
1* block device error *1
1* stray interrupt *1
1* memory parity *1
1* 3B-20 programmed I/O *1
1* 3B-20 I/O processor *1

Some records in the error file are of an administrative nature. These include
the startup record that is entered into the file when logging is activated, the
stop record that is written if the daemon is terminated "gracefully", and the
time-change record that is used to account for changes in the system's time-of
day. These records have the following formats:

struct estart {
short e_cpu;
struct utsname e name;

#ifndef u3b -
short e_mmr3;
long e _syssize;
short e _ bconf;

#endif
#ifdef u3b

int
#endif
};

e_mmcnt;

1* CPU type *1
1* system names *1

1* contents mem mgmt reg 3 *1
1* 11170 system memory size *1
1* block dev configuration *1

1* kbytes per array *1

#define eend errhdr 1* record header *1

struct etimchg {
time t

};
1* new time *1

- 1 -

ERRFILE(4) ERRFILE(4)

Stray interrupts cause a record with the following format to be logged:

struct estray {
#ifdef u3b

uint
#else

physadr
short

#endif
} ;

e saddr;
e=sbacty;

/* stray loc or device addr */

/* stray loc or device addr */
/* active block devices */

Memory subsystem error on 3B-20 and 11/70 processors cause the following
record to be generated:

struct eparity {
#ifdef u3b

int
#else

short
#endif
} ;

e---.parreg[3]; /* 3B memory registers */

e---.parreg[4]; /* memory subsys registers */

Memory subsystem errors on VAX-ll/780 processors cause the following record
to be generated:

struct ememory {
int
int

} ;

e_sbier;
e_memcad;

Error records for block devices have the following format:

struct eblock {
#ifdef u3b

ushort
struct iostat {

long
long
ushort

short
daddr t
uint
union ptbl {

int page[64];

e_num;

io_ops;
io_misc;
io_unlog;
e stats;
e=bflags;
e bnum;
e=bytes;

union ptbl *pnext;

struct ptbl
uint
uint
uint

#endif

e---.ptbl;
e---'ptbl;
e_voff;
e_statl;
e_stat2;

- 2 -

/* device number */

/* number read/writes */
/* number "other" operations */
/* number unlogged errors */

/* read/write, error, etc */
/* logical block number */
/* number bytes to transfer */

/* page table entries */

/* page table for transfer */
/* offset into page table */
/* status word 1 */
/* status word 2 */

I

ERRFILE(4)

#ifndef u3b
dev t
physadr
short
struct iostat {

long
long
ushort

short
short
daddr t
ushort
paddr_t
ushort
short

#endif
#ifdef vax

e dev;
e=regloc;
e_bacty;

io_ops;
io_misc;
io_unlog;
e_stats;
e_bflags;
e_cyloff;
e bnum;
e=bytes;
e_memadd;
eJtry;

struct mbaJegs {
long mba_csr;
long mba_cr;
long mba_sr;
long mba_var;
long mba_vcr;

} e_mba;
#endif
} ;

ERRFILE(4)

/* "true" major + minor dev no */
/* controller address */
/* other block I/O activity */

/* number read/writes */
/* number "other" operations */
/* number unlogged errors */

/* read/write, error, etc */
/* logical dev start cyl */
/* logical block number */
/* number bytes to transfer */
/* buffer memory address */
/* number retries */
/* number device registers */

The following values are used in the e _bflags word:

#define E _WRITE 0
#define E _READ 1
#define E_NOIO 02
#define E_PHYS 04
#define E _MAP 010
#define E_ERROR 020

/* write operation */
/ * read operation * /
/* no I/O pending */
/* physical I/O */
/* Unibus map in use */
/* I/O failed */

The following error records are for the 3B-20 only:

struct epio {
char
char
uint
uint

struct eiop {
char
uint
uint

e_chan;
e_dev;
e_chstat;
e_cmd;

e unit;
e-wordO;
e=wordl;

- 3 -

/* programmed I/O (pio) error */
/* which channel */
/* which devon channel */
/* channel status */
/* pio command */

/* I/O processor Gop) error */
/* unit number */
/ * iop report word * /
/ * iop report word * /

ERRFILE(4) ERRFILE(4)

The "true" major device numbers that identify the failing device are as follows:

Digital Equipment Western Electric
#define RKO 0 #define OFeO 0
#define RPO 1 #define IOPO 1
#define RFO 2 #define MTO 2
#define TMO 3
#define TeO 4
#define HPO 5
#define HTO 6
#define HSO 7
#define RLO 8
#define HPI 9
#define HP2 10
#define HP3 11

SEE ALSO
errdemon (1 M) .

- 4 -

I

FILEHDR(4) (not on PDP-ll) FILEHDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include < filehdr.h >

DESCRIPTION
Every common object file begins with a 20-byte header. The following C struct
declaration is used:

stfUct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic ;
f nscns ;
f-timdat;
(symptr;
Cnsyms;
Copthdr;
fJlags;

/. magic number ./
/. number of sections */
/. time & date stamp */
/. file ptr to symtab */
/. # symtab entries */
/. sizeof(opt hdr) */
/. flags *j

F _symptr is the byte offset into the file at which the symbol table can be found.
Its value can be used as the offset in fseek (3S) to position an 110 stream to the
symbol table. The UNIX System optional header is always 36 bytes. The valid
magic numbers are given below:

#define N3BMAGIC
#define NTVMAGIC

0550
0551

#define VAXWRMAGIC 0570
#define VAXROMAGIC 0575

/* 3B20S */
/* 3B20S */

/* VAX writable text segments */
/* VAX readonly sharable text segments */

The value in f_timdat is obtained from the time (2) system call. Flag bits
currently defined are:

#define F_RELFLG 00001 /. relocation entries stripped */
#define F EXEC 00002 /* file is executable */
#define F_LNNO 00004 /. line numbers stripped ./
#define F_LSYMS 00010 /. local symbols stripped */
#define F _MINMAL 00020 /* minimal object file */
#define F_UPDATE 00040 /* update file, ogen produced */
#define F SWABD 00100 /. file is "pre-swabbed" */
#define F AR16WR 00200 /. 16 bit DEC host */
#define F_AR32WR 00400 /* 32 bit DEC host */
#define F AR32W 01000 /* non-DEC host */
#define F_PATCH 02000 /. "patch" list in opt hdr */

SEE ALSO
time(2), fseek(3S), a.out(4).

FS(4) FS(4)

NAME
file system - format of system volume

SYNOPSIS
#include < sys/filsys.h >
#include < sys/types.h >
#include <sys/param.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital infor
mation. Every such volume is divided into a certain number of 512 byte long
sectors. Sector 0 is unused and is available to contain a bootstrap program or
other information.

Sector 1 is the super-block. The format of a super-block is:

/.
• Structur.e of the super-block
./

struct filsys
{

} ;

ushort
daddr t
short
daddr_t
short
ino t
char
char
char
char
time t
short
daddr t
ino t
char
char
long
long
long

sjsize;
sJsize;
s nfree;
s)ree[NICFREE);
s ninode;
s:inode[NICINOD);
s_flock;
sjlock;
sJmod;
sJonly;
s time;
s-dinfo[4);
s:tfree;
s tinode;
s -fname(6);
s)pack[6);
s _ fill[13);
s_magic;
s_type;

#define FsMAGIC Oxfd187e20

#define Fs 1 b
#define Fs2b

1
2

/. size in blocks of i-list ./
/. size in blocks of entire volume ./
/. number of addresses in s free ./
/. free block list ./ -
/. number of i-nodes in s inode ./
/. free i-node list ./ -
/. lock during free list manipulation ./
/. lock during i-list manipulation ./
/. super block modified flag ./
/. mounted read-only flag ./
/. last super block update ./
/. device information ./
/. total free blocks./
/. total free inodes ./
/. file system name ./
/. file system pack name ./
/. ADJUST to make sizeof filsys be 512 ./
/. magic number to indicate new file system ./
/. type of new file system ./

/. 512 byte block ./
/. 1024 byte block ./

S_type indicates the file system type. Currently, two types of file systems are
supported: the original 512-byte oriented and the new improved 1024-byte
oriented. S _magic is used to distinguish the original 512-byte oriented file sys
tems from the newer file systems. If this field is not equal to the magic
number, FsMAGIC, the type is assumed to be Fslb, otherwise the s_type field
is used. In the following description, a block is then determined by the type.
For the original 512-byte oriented file system, a block is 512 bytes. For the
1024-byte oriented file system, a block is 1024 bytes or two sectors. The
operating system takes care of all conversions from logical block numbers to
physical sector numbers.

S _isize is the address of the first data block after the i-list; the i-list starts just
after the super-block, namely in block 2; thus the i-list is s _isize-2 blocks long.

- 1 -

FS(4)

FILES

FS(4)

S Jsize is the first block not potentially available for allocation to a file. These
numbers are used by the system to check for bad block numbers; if an "impos
sible" block number is allocated from the free list or is freed, a diagnostic is
written on the on-line console. Moreover, the free array is cleared, so as to
prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s Jree array con
tains, in s Jree[1], ... , s Jree[s _nfree-l], up to 49 numbers of free blocks.
S Jree[O] is the block number of the head of a chain of blocks constituting the
free list. The first long in each free-chain block is the number (up to 50) of
free-block numbers listed in the next 50 longs of this chain member. The first
of these 50 blocks is the link to the next member of the chain. To allocate a
block: decrement s _ nfree, and the new block is s Jree[s _ nfree 1 If the new
block number is 0, there are no blocks left, so give an error. If s_nfree became
0, read in the block named by the new block number, replace s_nfree by its
first word, and copy the block numbers in the next 50 longs into the s Jree
array. To free a block, check if s_nfree is 50; if so, copy s_nfree and the sJree
array into it, write it out, and set s_nfree to O. In any event set sJree[s_nfree1
to the freed block's number and increment s _ nfree.

S _tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_inode array. To allocate an
i-node: if s_ninode is greater than 0, decrement it and return
s_inode[s_ninodel If it was 0, read the i-list and place the numbers of all free
inodes (up to 100) into the s_inode array, then try again. To free an i-node,
provided s_ninode is less than 100, place its number into s_inode[s_ninode1 and
increment s_ninode. If s_ninode is already 100, do not bother to enter the
freed i-node into any table. This list of i-nodes is only to speed up the alloca
tion process; the information as to whether the inode is really free or not is
maintained in the inode itself.

S _tinode is the total free in odes available in the file system.

S Jiock and s _ilock are flags maintained in the core copy of the file system
while it is mounted and their values on disk are immaterial. The value of
s Jmod on disk is likewise immaterial; it is used as a flag to indicate that the
super-block has changed and should be copied to the disk during the next
periodic update of file system information.

S Jonly is a read-only flag to indicate write-protection.

S _time is the last time the super-block of the file system was changed, and is
the number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT).
During a reboot, the s_time of the super-block for the root file system is used to
set the system's idea of the time.

S Jname is the name of the file system and s Jpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i
nodes are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is
reserved for the root directory of the file system, but no other i-number has a
built-in meaning. Each i-node represents one file. For the format of an inode
and its flags, see inode (4).

lusr lincludel sys/filsys.h
lusr/include/sys/stat.h

SEE ALSO
fsck(IM), fsdb(IM), mkfs(IM), inode(4).

- 2 -

FSPEC(4) FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX System with
non-standard tabs, (i.e., tabs which are not set at every eighth column). Such
files must generally be converted to a standard format, frequently by replacing
all tabs with the appropriate number of spaces, before they can be processed by
UNIX System commands. A format specification occurring in the first line of a
text file specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks
and surrounded by the brackets <: and :>. Each parameter consists of a
keyletter, possibly followed immediately by a value. The following parameters
are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following:

1. a list of column numbers separated by commas, indicating
tabs set at the specified columns;

2. a - followed immediately by an integer n, indicating tabs at
intervals of n columns;

3. a - followed by the name of a "canned" tab specification.

Standard tabs are specified by t -8, or equivalently, tl,9,17,25,etc.
The canned tabs which are recognized are defined by the tabs (1)
command.

ssize The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have
been expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the
line containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t -8 and
mO. If the s parameter is not specified, no size checking is performed. If the
first line of a file does not contain a format specification, the above defaults are
assumed for the entire file. The following is an example of a line containing a
format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to
code the d parameter.

Several UNIX System commands correctly interpret the format specification for
a file. Among them is gath (see send(1C» which may be used to convert files
to a standard format acceptable to other UNIX System commands.

SEE ALSO
ed(I), newform(1), send(1C), tabs(1).

- 1 -

I

GETTYDEFS(4) GETTYDEFS (4) l

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION

FILES

The /etc/gettydefs file contains information used by getty (1 M) (see the UNIX
System Administrator's Manual) to set up the speed and terminal settings for
a line. It supplies information on what the login prompt should look like. It
also supplies the speed to try next if the user indicates the current speed is not
correct by typing a < break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-Iabel

Each entry is followed by a blank line. Lines that begin with # are ignored
and may be used to comment the file. The various fields can contain quoted
characters of the form \b, \n, \c, etc., as well as \nnn, where nnn is the octal
value of the desired character. The various fields are:

label This is the string against which getty tries to match its second
argument. It is often the speed, such as 1200, at which the ter
minal is supposed to run, but it needn't be (see below).

initial-flags These flags are the initial ioctl(2) settings to which the terminal
is to be set if a terminal type is not specified to getty. Getty
understands the symbolic names specified in
/usr/include/sys/termio.h (see termio(7) in the UNIX System
Administrator's Manual). Normally only the speed flag is
required in the initial-flags. Getty automatically sets the termi
nal to raw input mode and takes care of most of the other flags.
The initial-flag settings remain in effect until getty executes
login (I).

final-flags These flags take the same values as the initial-flags and are set
just prior to getty executes login. The speed flag is again
required. The composite flag SANE takes care of most of the
other flags that need to be set so that the processor and terminal
are communicating in a rational fashion. The other two com
monly specified final-flags are TAB3, so that tabs are sent to the
terminal as spaces, and HUPCL, so that the line is hung up on
the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space, tab or new
line), they are included in the login-prompt field.

next-label This indicates the next label of the entry in the table that getty
should use if the user types a <break> or the input cannot be
read. Usually, a series of speeds are linked together in this
fashion, into a closed set. For instance, 2400 linked to 1200,
which in turn is linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the default
entry. It is also used if getty can't find the specified label. If /etc/gettydefs
itself is missing, there is one entry built into the command which will bring up
a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs, it be
run through getty with the check option to be sure there are no errors.

/ etc/ gettydefs

- 1 -

GETTYDEFS(4) GETTYDEFS (4)

SEE ALSO
getty(1M), termio(7) in the UNIX System Administrator's Manual.
login (1), ioctl (2) .

- 2 -

GPS (4) GPS (4)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines have been
developed to edit and display GPS files on various devices. Also, higher level
graphics programs such as plot Gn stat (lG)) and vtoc Gn toc(IG)) produce
GPS format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES
lines The lines primitive has a variable number of points from which zero

or more connected line segments are produced. The first point
given produces a move to that location. (A move is a relocation of
the graphic cursor without drawing.) Successive points produce line
segments from the previous point. Parameters are available to set
color, weight, and style (see below).

arc The arc primitive has a variable number of points to which a curve
is fit. The first point produces a move to that point. If only two
points are included a line connecting the points will result, if three
points a circular arc through the points is drawn, and if more than
three, lines connect the points. (In the future, a spline will be fit to
the points if they number greater than three.) Parameters are avail
able to set color, weight, and style.

text The text primitive draws characters. It requires a single point
which locates the center of the first character to be drawn. Param
eters are color, jont, textsize, and textangle.

hardware The hardware primitive draws hardware characters or gives control
commands to a hardware device. A single point locates the begin
ning location of the hardware string.

comment A comment is an integer string that is included in a GPS file but
causes nothing to be displayed. All GPS files begin with a comment
of zero length.

GPS PARAMETERS
color

weight

style

font

textsize

Color is an integer value set for arc, lines, and text primitives.

Weight is an integer value set for arc and lines primitives to indi
cate line thickness. The value 0 is narrow weight, 1 is bold, and 2
is medium weight.

Style is an integer value set for lines and arc primitives to give one
of the five different line styles that can be drawn on Tektronix 4010
series storage tubes. They are:

o solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

An integer value set for text primitives to designate the text font to
be used in drawing a character string. (Currently jont is expressed
as a four-bit weight value followed by a four-bit style value.)

Textsize is an integer value used in text primitives to express the
size of the characters to be drawn. Textsize represents the height
of characters in absolute universe-units and is stored at one-fifth
this value in the size-orientation (so) word (see below).

- 1 -

GPS (4) GPS(4)

textangle Textangle is a signed integer value used in text primitives to express
rotation of the character string around the beginning point.
Textangle is expressed in degrees from the positive x-axis and can
be a positive or negative value. It is stored in the size-orientation
(so) word as a value 256/360 of it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines cw points sw
arc cw points sw
text cw point sw so [string]
hardware cw point [string]
comment cw [string]

cw Cw is the control word and begins all primitives. It consists of four
bits that contain a primitive-type code and twelve bits that contain
the word-count for that primitive.

point(s) Point(s) is one or more pairs of integer coordinates. Text and
hardware primitives only require a single point. Point(s) are values
within a Cartesian plane or universe having 64K (-32K to +32K)
points on each axis.

sw Sw is the style-word and is used in lines, arc, and text primitives.
The first eight bits contain color information. In arc and lines the
last eight bits are divided as four bits weight and four bits style. In
the text primitive the last eight bits of sw contain the font.

so So is the size-orientation word used in text primitives. The first
eight bits contain text size and the remaining eight bits contain text
rotation.

string String is a null-terminated character string. If the string does not
end on a word boundary an additional null is added to the GPS file
to insure word-boundary alignment.

SEE ALSO
graphics (1 G).

- 2 -

I

I

GROUP(4) GROUP(4)

NAME
group - group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all user allowed in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no pass
word is demanded.

This file resides in directory fete. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical group ID's to names.

/etc/group

SEE ALSO
newgrp(l), passwd(I), crypt(3C), passwd(4).

- 1 -

INITTAB(4) INITTAB(4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process dispatcher.
The process that constitutes the majority of init's process dispatching activities
is the line process fete/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the
following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters per entry
are permitted. Comments may be inserted in the process field using the sh (1)
convention for comments. Comments for lines that spawn gettys are displayed
by the who(1) command. It is expected that they will contain some informa
tion about the line such as the location. There are no limits (other than max
imum entry size) imposed on the number of entries within the inittab file. The
entry fields are:

id This is one to four characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed.
Run-levels effectively correspond to a configuration of processes in the
system. That is, each process spawned by init is assigned a run-level
or run-levels in which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6. As an example,
if the system is in run-levell, only those entries having a 1 in the
rstate field will be processed. When init is requested to change run
levels, all processes which do not have an entry in the rstate field for
the target run-level will be sent the warning signal (SIGTERM) and
allowed a 20 second grace period before being forcibly terminated by
a kill signal (SIGKILL). The rstate field can define multiple run
levels for a process by selecting more than one run-level in any com
bination from 0 -6. If no run-level is specified, then action will be
taken on this process for all run-levels 0 -6. There are three other
values, a, band c, which can appear in the rstate field, even though
they are not true run-levels. Entries which have these characters in
the rstate field are processed only when the telinit (see in it (1 M» pro
cess requests them to be run (regardless of the current run-level of
the system). They differ from run-levels in that the system is only in
these states for as long as it takes to execute all the entries associated
with the states. A process started by an a, b or c command is not
killed when in it changes levels. They are only killed if their line in
letc/inittab is marked off in the action field, their line is deleted
entirely from letc/inittab, or init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in
the process field. The actions recognized by init are as follows:

respawn

wait

If the process does not exist then start the process, do not
wait for its termination (continue scanning the inittab
file), and when it dies restart the process. If the process
currently exists then do nothing and continue scanning
the inittab file.

Upon init's entering the run-level that matches the
entry's rstate, start the process and wait for its termina
tion. All subsequent reads of the inittab file while init is

- 1 -

INITTAB(4) INITTAB(4)

in the same run-level will cause init to ignore this entry.

once Upon init's entering a run-level that matches the entry's
rstate, start the process, do not wait for its termination
and when it dies, do not restart the process. If upon
entering a new run-level, where the process is still run
ning from a previous run-level change, the program will
not be restarted.

boot The entry is to be processed only at init's boot-time read
of the inittab file. [nit is to start the process, not wait for
its termination, and when it dies, not restart the process.
In order for this instruction to be meaningful, the rstate
should be the default or it must match init's run-level at
boot time. This action is useful for an initialization func
tion following a hardware- reboot of the system.

bootwait The entry is to be processed only at init's boot-time read
of the inittab file. [nit is to start the process, wait for its
termination and, when it dies, not restart the process.

powerfail Execute the process associated with this entry only when
init receives a power fail signal (SIGPWR see signal (2».

powerwait Execute the process associated with this entry only when
init receives a power fail signal (SIGPWR) and wait until
it terminates before continuing any processing of inittab.

off If the process associated with this entry is currently run
ning, send the warning signal (SIGTERM) and wait 20
seconds before forcibly terminating the process via the kill
signal (SIGKILL). If the process is nonexistent, ignore the
entry.

ondemand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is given
a different keyword in order to divorce its association with
run-levels. This is used only with the a, b or c values
described in the rstate field.

initdefault An entry with this action is only scanned when init ini
tially invoked. [nit uses this entry, if it exists, to deter
mine which run-level to enter initially. It does this by
taking the highest run-level specified in the rstate field
and using that as its initial state. If the rstate field is
empty, this is interpreted as 0123456 and so init will
enter run-level 6. Also, the initdefault entry can use s to
specify that init start in the SINGLE USER state. Addi
tionally, if init doesn't find an initdefault entry in
letc/inittab, then it will request an initial run-level from
the user at reboot time.

sysinit Entries of this type are executed before init tries to access
the console. It is expected that this entry will be only
used to initialize devices on which init might try to ask
the run-level question. These entries are executed and
waited for before continuing.

process This is a sh command to be executed. The entire process field is
prefixed with exec and passed to a forked sh as sh -c i exec com
mand'. For this reason, any legal sh syntax can appear in the the
process field. Comments can be inserted with the; #comment syntax.

- 2 -

INITTAB(4)

FILES
letc/inittab

SEE ALSO

INITTAB(4)

getty(lM), init(tM) in the UNIX System Administrator's Manual.
sh (t), who (t)' exec(2), open (2), signal(2).

- 3 -

I

INODE(4)

NAME
inode - format of an inode

SYNOPSIS
#include <sys/types.h>
#include < sys/ino.h >

DESCRIPTION

INODE(4)

An i-node for a plain file or directory in a file system has the following struc
ture defined by <sys/ino.h>.

FILES

j* Inode structure as it appears on a disk block. *j
struct dinode
{

} ;
j*

ushort
short
ushort
ushort
off t
char
time t
time t
time_t

di_mode;
di nlink;
dCuid;
dCgid;
di size;
dCaddrl401;
dCatime;
di_mtime;
di_ctime;

* the 40 address bytes:

*j

39 used; 13 addresses
of 3 bytes each.

j* mode and type of file *j
j* number of links to file *j
j* owner's user id *j
j* owner's group id *j
j* number of bytes in file *j
j* disk block addresses *j
j* time last accessed *j
j* time last modified */
j* time created */

For the meaning of the defined types ofJ_t and time _t see types (5).

/usr jinclude/ sysjino.h

SEE ALSO
stat(2), fs(4), types(5).

- 1 -

ISSUE(4) ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a
login prompt. This is an ASCII file which is read by program getty and then
written to any terminal spawned or respawned from the lines file.

FILES
/etc/issue

SEE ALSO
login(1).

- 1 -

I

LDFCN(4) (not on PDP-It) LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >

DESCRIPTION
The common object file access routines are a collection of functions for reading
an object file that is in VAX or 3B20S (common) object file form. Although
the calling program must know the detailed structure of the parts of the object
file that it processes, the routines effectively insulate the calling program from
knowledge of the overall structure of the object file.

The interface between the calling program and the object file access routines is
based on the defined type LDFILE, defined as struct Idfile, declared in the
header file Idfen.h. The primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are members of an
archive file.

The function ldopen OX) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through macros defined in
Idfcn.h and contain the following information:

LDFILE *ldptr;

TYPEOdptr) The file magic number, used to distinguish between archive
members and simple object files.

OPTROdptr) The file pointer returned by Jopen and used by the standard
input/output functions.

OFFSETOdptr) The file address of the beginning of the object file; the offset is
non-zero if the object file is a member of an archive file.

HEADEROdptr) The file header structure of the object file.

The object file access functions themselves may be divided into four categories:

(1) functions that open or close an object file

ldopen (3X) and ldaopen
open a common object file

ldclose (3X) and ldaclose
close a common object file

(2) functions that read header or symbol table information

ldahread OX)
read the archive header of a member of an archive file

ldfhread OX)
read the file header of a common object file

ldshread OX) and ldnshread
read a section header of a common object file

ldtbread (3X)
read a symbol table entry of a common object file

0) functions that position an object file at (seek to) the start of the
section, relocation, or line number information for a particular section.

ldohseek OX)
seek to the optional file header of a common object file

ldsseek OX) and ldnsseek

- 1 -

:LDFCN(4) (not on PDP-ll)

seek to a section of a common object file
ldrseek (3X) and ldnrseek

LDFCN(4)

seek to the relocation information for a section of a
common object file

ldlseek (3X) and ldnlseek
seek to the line number information for a section of a
common object file

ldtbseek (3X)
seek to the symbol table of a common object file

(4) the function ldtbindex (3X) which returns the index of a particular
common object file symbol table entry

These functions are described jn detail in their respective manual pages.

All the functions except ldopen, ldaopen and ldtbindex return either SUCCESS
or FAILURE, both constants defined in IdfeD.b. Ldopen and ldaopen both
return pointers to a LDFILE structure.

MACROS
Additional access to an object file is provided through a set of macros defined
in IdfeD.b. These macros parallel the standard input/output file reading and
manipulating functions, translating a reference of the LDFILE structure into a
reference to its file descriptor field.

The following macros are provided:

LDFILE .ldptr;

GETCOdptr)
FGETCOdptr)
GETWOdptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD«char .) ptr, sizeof (.ptr), nitems, ldptr)
FSEEKOdptr, offset, ptrname)
FTELLOdptr)
REWINDOdptr)
FEOFOdptr)
FERROROdptr)
FILENOOdptr)
SETBUFOdptr, bur)

See the manual entries for the corresponding standard input/output library
functions for details on the use of these macros.

The program must be loaded with the object file access routine library libld.a.

CAVEAT
The macro FSEEK defined in the header file Idfcn.b translates into a call to the
standard input/output function jseek(3S). FSEEK should not be used to seek
from the end of an archive file since the end of an archive file may not be the
same as the end of one of its object file members!

SEE ALSO
fseek(3S), Idahread(3X), Idclose(3X), Idfhread(3X), Idlread(3X), Idlseek(3X),
Idohseek(3X), ldopen (3X), Idrseek(3X), Idlseek(3X), ldshread (3X),
Idtbindex(3X), Idtbread(3X), Idtbseek(3X).
Common Object File Format, by I. S. Law.

- 2 -

LINENUM(4) (not on PDP-l I) LINENUM (4) :._

NAME
linenum - line number entries in a common object file

SYNOPSIS
#include < linenum.h>

DESCRIPTION
Compilers based on pee generate an entry in the object file for each C source
line on which a breakpoint is possible (when invoked with the -g option; see
ee(I». Users can then reference line numbers when using the appropriate -
software test system (see sdb(t). The structure of these line number entries
appears below.

struct lineno
{

union
{

long
long

l_symndx;
lyaddr;
l_addr;

unsigned short I Jnno ;
} ;

Numbering start~ with one for each function. The initial line number entry for
a function has I_In no equal to zero, and the symbol table index of the function's
entry is in l_symndx. Otherwise, Clnno is non-zero, and lyaddr is the physi
cal address of the code for the referenced line. Thus the overall structure is the
following:

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
cdt), sdb(t), a.out(4).

- 1 -

MASTER (4) (DEC only) MASTER (4)

NAME
master - master device information table

DESCRIPTION
This file is used by the conjig(IM) program to obtain device information that
enables it to generate the configuration files. The file consists of 3 parts, each
separated by a line with a dollar sign ($) in column 1. Part 1 contains device
information; part 2 contains names of devices that have aliases; part 3 contains
tunable parameter information. Any line with an asterisk (.) in column 1 is
treated as a comment.

Part 1 contains lines consisting of at least 10 fields and at most 13 fields, with
the fields delimited by tabs and/or blanks:

Field 1: device name (8 chars. maximum).
Field 2: interrupt vector size (decimal, in bytes).
Field 3: device mask (octaD-each "on" bit indicates that the

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:
Field 10:
Fields 11-13:

handler exists:
000100 initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.

device type indicator (octal):
000400 VAX-ll/780 massbus adapter
000200 allow only one of these devices
000100 suppress count field in the conf.c file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector.

handler prefix (4 chars. maximum).
device address size (decimaD.
major device number for block-type device.
major device number for character-type device.
maximum number of devices per controller (decimal).
maximum bus request level (4 through 7).
optional configuration table structure declarations (8
chars. maximum).

Part 2 contains lines with 2 fields each:

Field 1:
Field 2:

alias name of device (8 chars. maximum).
reference name of device (8 chars. maximum; specified
in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description file; 20
chars. maximum)

Field 2:

Field 3:

parameter name (as it appears in the conf.c file; 20
chars. maximum)
default parameter value (20 chars. maximum; parameter
specification is required if this field is omitted)

- 1 -

MASTER(4) (DEC only) MASTER (4)

Devices that are not interrupt-driven have an interrupt vector size of zero. The
040 bit in Field 4 causes config{1 M) to record the interrupt vector although
the low.s (univec.c on the VAX-II/780) file will show no interrupt vector
assignment at those locations (interrupts here will be treated as strays).

SEE ALSO
config (I M) .

- 2 -

MASTER (4) (3B20S only) MASTER (4)

NAME
master - master device information table

DESCRIPTION
This file is used by the config{I M} program to obtain device information that
enables it to generate the configuration file. Master contains lines of various
forms for controlling the configuration of hardware devices, software drivers,
parameters and aliases.

Hardware devices and software drivers are defined as follows:

Field 1:
Field 2:
Field 3:

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:
Field 10:

device name (8 chars maximum).
element type (del', mbd, pc or sw)
functions for this device:
o open handler
c close handler
r read handler
w write handler
i ioctl handler
d diagnostic handler
s startup routine
f fork
e exec
x exit
element characteristics:
o specify only once
s supress count field
r required device
b block device
c character device
handler prefix
major device number if block-type device
major device number if character-type device
number of sub-devices per device
diagnostic port number if diagnosable device
configuration table structure

Parameters are defined as follows:

Field 1: parameter name
Field 2: element type (param)
Field 3: element characteristics, as defined above
Field 4: parameter name to appear in conf.c file

UNIX System devices and UNIX System devices with arguments are defined as
follows:

Field 1:
Field 2:
Field 3:
Field 4:

device name
element type (udel' or udel'a)
element characteristics, as defined above
device name to appear in conf.c file

Aliases for names are defined as follows:

Field 1:
Field 2:
Field 3:

alias name
element type (alias)
reference name of device

- 1 -

MASTER (4) (3B20S only) MASTER (4)

Lines to be ignored by the config program, but are necessary to the diagnostic
system, are defined as follows:

SEE ALSO

Field 1: name to be ignored
Field 2: element type (ignore)

config (1 M) sysdef(1 M) .

- 2 -

iMNTTAB(4) MNTTAB(4)

,NAME
mnttab - mounted file system table

SYNOPSIS
#include < mnttab.h >

DESCRIPTION
Mnttab resides in directory letc and contains a table of devices, mounted by
the mount (1 M) command, in the following structure as defined by
< mnttab.h > :

struct

} ;

mnttab {
char
char
short
time_t

mt dev[IO];
mt=filsys[10];
mtJoJlg;
mt_time;

Each entry is 26 bytes in length; the first 10 bytes are the null-padded name of
the place where the special file is mounted; the next 10 bytes represent the
null-padded root name of the mounted special file; the remaining 6 bytes con
tain the mounted special file's read/write permissions and the date on which it
was mounted.

The maximum number of entries in mnttab is based on the system parameter
NMOUNT located in /usr/src/uts/cf/conf.c, which defines the number of allow
able mounted special files.

SEE ALSO
mount (1 M), setmnt (1 M).

- 1 -

PASSWD(4) PASSWD(4) l

NAME
passwd - password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
GCOS job number, box number, optional GCOS user ID
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from the
next by a colon. The GCOS field is used only when communicating with that
system, and in other installations can contain any desired information. Each
user is separated from the next by a new-line. If the password field is null, no
password is demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory fete. Because of the encrypted passwords, it can
and does have general read permission and can be used, for example, to map
numerical user ID's to names.

The encrypted password consists of 13 characters chosen from a 64 character
alphabet (., f, 0-9, A-Z, a-z), except when the password is null in which
case the encrypted password is also null. Password aging is effected for a par
ticular user if his encrypted password in the password file is followed by a
comma and a non-null string of characters from the above alphabet. (Such a
string must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximum number of weeks
for which a password is valid. A user who attempts to login after his password
has expired will be forced to supply a new one. The next character, m say,
denotes the minimum period in weeks which must expire before the password
may be changed. The remaining characters define the week (counted from the
beginning of 1970) when the password was last changed. (A null string is
equivalent to zero.) M and m have numerical values in the range 0-63 that
correspond to the 64 character alphabet shown above (i.e. f = 1 week; z = 63
weeks). If m = M = 0 (derived from the string . or ..) the user will be forced
to change his password the next time he logs in (and the "age" will disappear
from his entry in the password file). If m > M (signified, e.g., by the string
./) only the super-user will be able to change the password.

letc/passwd

SEE ALSO
10gin(1), passwd(l), a641(3C), crypt(3C), getpwent(3C), group(4).

- 1 -

PLOT (4) PLOT (4)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot OX) and are
interpreted for various devices by commands described in tplot (I G) . A graph
ics file is a stream of plotting instructions. Each instruction consists of an
ASCII letter usually followed by bytes of binary information. The instructions
are executed in order. A point is designated by four bytes representing the x
and y values; each value is a signed integer. The last designated point in an I,
m, D, or p instruction becomes the "current point" for the next instruction.

Each of the following descriptions begins with the name of the corresponding
routine in plot OX).

m move: The next four bytes give a new current point.

D cont: Draw a line from the current point to the point given by the next four
bytes. See tplot (I G).

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the point
given by the following four bytes.

label: Place the following ASCII string so that its first character falls on the
current point. The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style for draw
ing further lines. The styles are "dotted", "solid", "longdashed", "short
dashed", and "dotdashed". Effective only for the -T4014 and -Tver
options of tplot (1 G) (Tektronix 4014 terminal and Versatec plotter).

s space: The next four bytes give the lower left corner of the plotting area;
the following four give the upper right corner. The plot will be magnified or
reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below
for devices supported by the filters of tplot (I G). The upper limit is just outside
the plotting area. In every case the plotting area is taken to be square; points
outside may be displayable on devices whose face is not square.

DASI 300 space(O, 0, 4096, 4096);
DASI 300s space(O, 0, 4096, 4096);
DASI 450 space(O, 0, 4096, 4096);
Tektronix 4014 space(O, 0, 3120, 3120);
Versatec plotter space(O, 0, 2048, 2048);

SEE ALSO
graph(1G), tplot(IG), plot(3X), gps(4), term(5). I

I

PNCH(4) PNCH(4)

NAME
pnch - file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consisting of card
images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record consists
of a single control byte followed by a variable number of data bytes. The con
trol byte specifies the number (which must lie in the range 0-80) of data bytes
that follow. The data bytes are 8-bit codes that constitute the card image. If
there are fewer than 80 data bytes, it is understood that the remainder of the
card image consists of trailing blanks.

SEE ALSO
send(1C).

- 1 -

PROFILE (4) PROFILE (4)

NAME
profile - setting up an environment at login time

DESCRIPTION

FILES

If your login directory contains a file named .profile, that file will be executed
(via the shell's exee .profile) before your session begins; .profiles are handy for
setting exported environment variables and terminal modes. If the file
/ete/profile exists, it will be executed for every user before the .profile. The fol
lowing example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL=/usr/mail/myname
Add my'/bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

300)
300s)
450)
hp)

esac

745 1735)
43)
40141 tek)
.)

$HOME/.profile
/etc/profile

stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlO tabs; tabs;;
stty crt nIl -tabs; TERM=745;;
stty crt nlO -tabs;;
stty crO nlO -tabs ff1; TERM=4014; echo "\33;";;
echo "$TERM unknown";;

SEE ALSO
env(t), login(t), maiI(t), sh(t), stty(t), su(t), environ(5), term(5).

- 1 -

I

RELOC(4) (not on PDP-l 1) RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include < reloc.h >

DESCRIPTION
Object files have one relocation entry for each relocatable reference in the text
or data. If relocation information is present, it will be in the following format.

struct reloc
{

long r_vaddr ; /* (virtual) address of reference */
long r_symndx; /* index into symbol table */
short r_type ; /* relocation type */

} ;

/*
* All generics
* reloc. already performed to symbol in the same section
*/

#define R ABS o

/*
* 3B generic
* 24-bit direct reference
*
*
*
*

24-bit "relative" reference
16-bit optimized "indirect" TV reference
24-bit "indirect" TV reference
32-bit "indirect" TV reference

*/
#define R DIR24 04
#define R REL24 05
#define R-OPT16 014
#define R IND24 015
#define R IND32 016

/*
* DEC Processors VAX 11/780 and VAX 111750
*
*/

#define R RELBYTE
#define R=RELWORD
#define R RELLONG
#define R - PCRBYTE
#define R=PCRWORD
#define R _PCRLONG

017
020
021
022
023
024

As the link editor reads each input section and performs relocation, the reloca
tion entries are read. They direct how references found within the input section
are treated.

R DIR24

The reference is absolute, and no relocation is necessary. The
entry will be ignored.

A direct, 24-bit reference to a symbol's virtual address.

- 1 -

RELOC(4)

R REL24

R OPT16

R IND24

R IND32

(not on PDP-II) RELOC(4)

A "PC-relative", 24-bit reference to a symbol's virtual address.
Relative references occur .in instructions such as jumps and calls.
The actual address used is obtained by adding a constant to the
value of the program counter at the time the instruction is exe
cuted.

An optimized, indirect, 16-bit reference through a transfer vector.
The instruction contains the offset into the transfer vector table to
the transfer vector where the actual address of the referenced
word is stored.

An indirect, 24-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer vector,
where the actual address of the referenced word is stored.

An indirect, 32-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer vector,
where the actual address of the referenced word is stored.

R RELBYTE
A direct 8 bit reference to a symbol's virtual address.

R RELWORD
A direct 16 bit reference to a symbol's virtual address.

R_RELLONG
A direct 32 bit reference to a symbol's virtual address.

R PCRBYTE
A "PC-relative", 8 bit reference to a symbol's virtual address.

R PCRWORD
A "PC-relative", 16 bit reference to a symbol's virtual address.

R PCRLONG
A "PC-relative", 32 bit reference to a symbol's virtual address.

On the V AX processors relocation of a symbol index of -1 indicates that the
relative difference between the current segment's start address and the
program's load address is added to the relocatable address.

Other relocation types will be defined as they are needed.

Relocation entries are generated automatically by the assembler and automati
cally utilized by the link editor. A link editor option exists for removing the
relocation entries from an object file.

SEE ALSO
Id(I), strip(I), a.out(4), syms(4).

- 2 -

I -

SCCSFILE(4) SCCSFILE (4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical parts: the checksum, the
delta table (contains information about each delta), user names (contains
login names and/or numerical group IDs of users who may add deltas), flags
(contains definitions of internal keywords), comments (contains arbitrary
descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASCII SOH (start
of heading) character (octal 001). This character is hereafter referred to as
the control character and will be represented graphically as @. Any line
described below which is not depicted as beginning with the control character is
prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a number between
00000 and 99999).

Each logical part of an sces file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of
the first line. The @h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD

@d <type> <sees 10> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD

@iDDDDD •••

@x DDDDD .. .

@gDDDDD .. .

@m <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d) con
tains the type of the delta (currently, normal: D, and removed: R), the
sees ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor, respec
tively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

- 1 -

SCCSFILE (4) SCCSFILE (4)

The @e line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of users who may
add deltas to the file, separated by new-lines. The lines containing
these login names and/or numerical group IDs are surrounded by the
bracketing lines @u and @U. An empty list allows anyone to make a
delta.

Keywords used internally (see admin (1) for more information on their
use) . Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:
@f t < type of program>
@f v <program name>
@fi
@fb
@fm
@ff
@fc
@fd
@fn
@fj

<module name>
<floor>
<ceiling>
< default-sid>

@f I <lock-releases>
@f q < user defined>
@fz < reserved for use in interfaces>

The t flag defines the replacement for the % Y% identification keyword.
The v flag controls prompting for MR numbers in addition to com
ments; if the optional text is present it defines an MR number validity
checking program. The i flag controls the warning/error aspect of the
"No id keywords" message. When the i flag is not present, this mes
sage is only a warning; when the i flag is present, this message will
cause a "fatal" error (the file will not be gotten, or the delta will not
be made). When the b flag is present the - b key letter may be used
on the get command to cause a branch in the delta tree. The m flag
defines the first choice for the replacement text of the % M %
identification keyword. The f flag defines the "floor" release; the
release below which no deltas may be added. The c flag defines the
"ceiling" release; the release above which no deltas may be added.
The d flag defines the default SID to be used when none is specified on
a get command. The n flag causes delta to insert a "null" delta (a
delta that applies no changes) in those releases that are skipped when
a delta is made in a new release (e.g., when delta 5.1 is made after
delta 2.7, releases 3 and 4 are skipped). The absence of the n flag
causes skipped releases to be completely empty. The j flag causes get
to allow concurrent edits of the same base SID. The I flag defines a list
of releases that are locked against editing (get{l) with the -e
key letter) . The q flag defines the replacement for the % Q %
identification keyword. z flag is used in certain specialized interface
programs.

Comments
Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically will contain a description of the file's

- 2 -

I

SeeSFILE(4)

Body

SEE ALSO

sees FILE (4)

purpose.

The body consists of text lines and control lines. Text lines don't begin
with the control character, control lines do. There are three kinds of
control lines: insert, delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the
delta for the control line.

admin (1), delta (1), get(1), prs(1).
Source Code Control System User's Guide in the UNIX System User's Guide.

- 3 -

SCNHDR(4) (not on PDP-ll) SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include <scnhdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify the layout of
the data within the file. Each section within an object file has its own header.
The C structure appears below. .

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN); /* section name */
syaddr; /. physical address */
s_vaddr; /. virtual address */
s_size;
s_scnptr;
sJelptr;
sJnnoptr;
s_nreloc;
s_nlnno;
sJlags;

/. section size * /
/. file ptr to raw data */
/* file ptr to relocation */
/. file ptr to line numbers */
/. # reloc entries ./
/. # line number entries */
/. flags */

File pointers are byte offsets into the file; they can be used as the offset in a
call to fseek OS). If a section is initialized, the file contains the actual bytes.
An uninitialized section is somewhat different. It has a size, symbols defined in
it, and symbols that refer to it. But it can have no relocation entries, line
numbers, or data. Consequently, an uninitialized section has no raw data in the
object file, and the values for s_scnptr, sJelptr, s_lnnoptr, s_nreloc, and
s nlnno are zero.

SEE ALSO
Id(I), fseekOS), a.out(4).

- 1 -

II -

SYMS(4) (not on PDP-} 1) SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include < syms.h >

DESCRIPTION
Common object files contain information to support symbolic software testing
(see sdb (1). Line number entries, linenum (4), and extensive symbolic informa
tion permit testing at the C source level. Every object file's symbol table is
organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static ex terns for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the struc
ture hold the name (null padded), its value, and other information. The C
structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14

struct syment
{

} ;

char
long
short
unsigned short n_type;
char
char

n name[SYMNMLEN] ;
n=value ;/* value of symbol *1
n scnum ;1* section number *1
I; type and derived type *1
n_sclass ;1* storage class *1
n_numaux ;1* number of aux entries

Meaningful values and explanations for them are given in both syms.h and
Common Object File Format. Anyone who needs to interpret the entries
should seek more information in these sources. Some symbols require more
information than a single entry; they are followed by auxiliary entries that are
the same size as a symbol entry. The format follows.

- 1 -

SYMS(4)

union auxent
{

struet
{

long
union
{

(not on PDP-ll)

struet
{

unsigned short x Jnno;
unsigned short x_size;

} xJnsz;
long x fsize;

} x_mise; -
union
{

struet
{

struet
{

long
long
xJen;

xJnnoptr;
x_endndx;

SYMS(4)

unsigned short x_dimen[DIMNUM1;

};

} x_ary;
xJenary;

unsigned short x_tvndx;
x_sym;

struet
{

struet
{

struet
{

ehar xJnamelFILNMLEN1;
xJile;

long x _senlen;
unsigned short x _ nreloe;
unsigned short x_nlinno;
x_sen;

unsigned short x tvlen;
unsigned short x=tvran[21;
x_tv;

Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(I), a.out(4), linenum(4).
Common Object File Format by I. S. Law.

- 2 -

SYSTEM (4) (3B20S only) SYSTEM (4)

NAME
system - format of 3B20S system description file

DESCRIPTION
This file contains information about the hardware configuration and system
dependent parameters for the user's system. A more complete description of
the system file is found in Setting up the UNIX System in the UNIX System
Administrator's Guide. This information is used by the c01ifigClM) program in
configuring systems. The file is divided into two sections, separated by a line
with a dollar sign ($) in column 1. The first section describes the hardware
configuration and the second contains system-dependent information. Any lines
with a number sign (#) in column 1 are treated as comments and are ignored.
Blank lines are also ignored. All fields may be separated by one or more space
and tab characters.

The following codes are used throughout the following description:

Name
chan
count
dev
devname
driver
equip
hv
inter
low
minor
mt
mv
num
parm
pc
pumpcode
slot
unit
value

Hardware Configuration

Meaning
channel
number of disk blocks in swap or dump area
device on a channel
name of device
name of a software device driver
equipage
hardware version
interrupt source bit
lowest disk block in swap or dump area
minor device number
maintenance type
maintenance version
the number of instances of a software device driver
name of a UNIX System parameter
name of device driver for a PC
path name of pump code file
slot number of a sub-device on its device
logical unit number of a device
value of a UNIX System parameter

This section describes the configuration of the Control Unit (CU) and its com
ponents, the Disk File Controllers (DFCs) and their Moving Head Disks
(MHDs), and the Input Output Processors (lOPs) and their Peripheral Controll
ers (PCs). Any line that describes an lOP, DFC, MHO or PC may optionally
have an exclamation. point (!) preceding the first field. This indicates that a
device should not automatically be brought into service by the system (see
don Cl M». Note that an exclamation point which precedes an lOP implies that
neither the lOP nor its PCs will be brought into service. The same applies to a
OFC and its MHOs.

The CU and its components are specified as follows:

cu unit chan dev mt mv hv
cc unit mt mv hv equip 0
masc unit mt mv hv equip 0
sat unit mt mv hv equip 0
ch unit mt mv hv equip 0
ch unit mt mv hv equip 0
csu unit mt mv hv equip 0
dma unit mt mv hv equip 0

ch unit mt mv hv equip inter

- 1 -

SYSTEM (4) (3B20S only)

Each OFC and its MHOs are specified as follows:

dfc unit chan dey mt mv hv
mhd unit slot mt mv hv

Each lOP and its PCs are specified as follows:

iop unit chan dey mt mv hv
pc unit slot mt mv hv

System-Dependent Information

equip
equip

equip
equip

SYSTEM (4)

[pumpcode]

This section specifies UNIX System devices, UNIX System parameters and
software drivers.

The root and pipe devices are specified by:

root devname minor
pipe devname minor

The swap and dump devices are specified by:

swap devname minor low
dump devname minor low

Tunable parameters are specified by:

parm value

count
count

Software drivers are specified in one of two forms:

driver num
driver

SEE ALSO
config (I M), don (I M), master(4) .
Setting up the UNIX System in the UNIX System Administrator's Guide.

- 2 -

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include < utmp.h >

DESCRIPTION

FILES

These files, which hold user and accounting information for such commands as
who (1), write (I), and login (1), have the following structure as defined by
<utmp.h>:

#define UTMP FILE "/etc/utmp"
#define WTMP FILE "/etc/wtmp"
#define ut name ut user

struct utmp {
char
char
char
short
short
struct

ut user[S];
ut-id[4];
ut)ine[12];
utyid;
ut_type;
exit_status {

/* User login name */
/* /etclinittab id (usually line #) */
/ * device name (console, lnxx) * /
/* process id */
/* type of entry */

short
short

} ut_exit;

e_termination; /* Process termination status */
e_exit; /* Process exit status */

time t
} ;

/* Definitions for ut_type
#define EMPTY
#define RUN LVL
#define BOOT TIME
#define OLD TIME
#define NEW TIME
#define INIT PROCESS
#define LOG IN PROCESS
#define USER PROCESS
#define DEAD _PROCESS
#define ACCOUNTING

*/
0
1
2
3
4
5
6
7
8
9

/* The exit status of a process
* marked as DEAD_PROCESS. */

/* time entry was made */

/* Process spawned by "init" */
/* A "getty" process waiting for login .. 7
/ * A user process * /

#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

/* Special strings or formats used in the "utJine" field when */
/* accounting for something other than a process. */
/* No string for the utJine field can be more than 11 chars + */
/* a NULL in length. */
#define RUNLVL_MSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME_MSG "new time"

/usr linc1ude/utmp.h
/etc/utmp
/ptl'/whnn . ---... ----r

SEE ALSO
login(1), who(1), write(l), getut(3C).

- 1 -

INTRO(5)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRO (5)

This section describes miscellaneous facilities such as macro packages, charac
ter set tables, etc.

- 1 -

ASCII (S) ASCII (S)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION

FILES

Ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 aek 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 01S er 016 so 017 si
020 die 021 del 022 de2 023 de3 024 de4 02S nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 042" 043 # 044 $ 045 % 046 & 047'
OSO (051 052 * OS3 + 054 055 056. 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 0719 072 073; 074 < 075 076> 077
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110H 1111 112J 113K 114L 115M 116N 1170
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 ft 137
140' 141 a 142 b 143 e 144 d 145 e 146 147 g
150 h 151 152 153 k 154 I 155 m 156 n 157 0

160 P 161 q 162 r 163 s 164 165 u 166 v 167 w
170 x 171 y 172 z 173 174 175 176 - 177 del

00 nul
08 bs
10 die
18 can
20 sp
28 (
30 0
38 8
40 @
48 H
50 P
58 X
60 '
68 h
70 P
78 x

01 soh
09 ht
11 del
19 em
21
29
31 1
39 9
41 A
49 I
51 Q
59 Y
61 a
69
71 q
79 y

/ usr / pub/ ascii

02 stx
Oa nl
12 de2
la sub
22 "
2a *
32 2
3a
42 B
4a J
52 R
5a Z
62 b
6a
72 r
7a z

03 e tx I
Ob vt I
13 de3 I
1 b esc I
23 # I
2b + I
33 3
3b ;
43 C
4b K

I
I
I
I

53 S I
Sb [I
63 e I
6b k I
73 s I

04 eot
Oe np
14 dc4
1 e f s
24 $
2e
34 4
3e <
44 D
4e L
54 T
Se \
64 d
6c I
74

7b { I 7e

- 1 -

05 enq
Od er
15 nak
Id gs
25 %
2d -
35 5
3d =

45 E
4d M
55 U
Sd]
65 e

6d m
75 u
7d }

06 aek
Oe so
16 syn
Ie rs
26 &
2e .
36 6
3e >
46 F
4e N
56 V
5e ft

66
6e n
76 v
7e -

07 bel
Of si
17 etb
1 f us
27 '
2 f /
37 7
3f ?
47 G
4f 0
57 W
Sf
67 g
6f 0

77w
7f del

ENVIRON(S) ENVIRON(S)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2)
when a process begins. By convention, these strings have the form
"name=value". The following names are used by various commands:

PATH The sequence of directory prefixes that sh(I), time (1), nice(1),
nohup(I), etc., apply in searching for a file known by an incomplete
path name. The prefixes are separated by colons (:). Login(1) sets
PATH == : Ibin: lusr Ibin.

HOME Name of the user's login directory, set by login (t) from the password
file passwd(4).

TERM The kind of terminal for which output is to be prepared. This informa
tion is used by commands, such as mm(1) or tplot(1G), which may
exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is standard
local time zone abbreviation, n is the difference in hours from GMT,
and zzz is the abbreviation for the daylight-saving local time zone, if
any; for example, EST5EDT.

Further names may be placed in the environment by the export command and
"name=value" arguments in sh (1), or by exec(2). It is unwise to conflict with
certain shell variables that are frequently exported by .profile files: MAIL, PSt,
PS2,IFS.

SEE ALSO
env (1), login (1), sh (1), exec(2), getenv (3C), profile(4), term (5).

- 1 -

EQNCHAR(5)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnchar [files] I troff [options]

neqn /usr/pub/eqnchar [files] I nroff [options]

DESCRIPTION

EQNCHAR(5)

Eqnchar contains trojJ(1) and nroff character definitions for constructing char
acters that are not available on the Wang Laboratories, Inc. CI A/T photo
typesetter. These definitions are primarily intended for use with eqn (1) and
neqn; eqnchar contains definitions for the following characters:

dplus EB II II square 0

dtimes @ langle / circle 0 \
wig rangle \ blot • /
-wig - hbar Ti bullet •
> wig ~ ppd J. prop ex:

<wig :5. <-> empty 0

=wig - <=> ~ member E

star * 1< {: nom em rt
bigstar * I> :} cup u
=dot - ang L cap n
orsign V rang L inc! b
andsign A 3dot subset C

=del ~ thl supset ::)

oppA V quarter It4 !subset ~

oppE :3 3quarter % !supset :2
angstrom A degree scrL ~

==< :£ ==> ~
FILES

lusr/pub/eqnchar

SEE ALSO
eqn (1), nroff(1), troff(I).

- 1 -

FCNTL(S)

NAME
fcntl - file control options

SYNOPSIS
#include < fcntl.h >

DESCRIPTION
The fcntl (2) function provides for control over open files.
describes requests and arguments to fcntl and open (2).

/* Flag values accessible to open (2) and fcntl (2) */
/* (The first three can only be set by open) */
#define O_RDONLY 0
#define 0_ WRONL Y 1

/* Non-blocking I/O */

FCNTL(S)

This include file

#define ° _RDWR 2
#define O_NDELAY 04
#define O_APPEND 010 /* append (writes guaranteed at the end) */

/* Flag values accessible only to open(2) */
#define O_CREAT 00400 /* open with file create (uses third open arg)*/
#define O_TRUNC 01000 /* open with truncation */
#define O_EXCL 02000 /* exclusive open */

/* fcntI(2) requests */
#define F _DUPFD 0
#define F _ G ETFD 1
#define F _SETFD 2
#define F _GETFL 3
#define F _ SETFL 4

SEE ALSO
fcntl (2), open (2).

/* Duplicate fildes */
/ * Get tildes flags * /
/* Set fildes flags */
/* Get file flags */
/* Set file flags */

- 1 -

GREEK(5)

NAME
greek - graphics for the extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek [I greek -Tterminal]

DESCRIPTION

GREEK(5)

Greek gives the mapping from ASCII to the "shift-out" graphics in effect
between SO and SI on TELETYPE@ Model 37 terminals equipped with a 128-
character type-box. These are the default greek characters produced by nroff.
The filters of greek (1) attempt to print them on various other terminals. The
file contains:

alpha
GAMMA
epsilon
THETA
LAMBDA
xi
rho
tau
psi
OMEGA
partial

FILES
I usr I pu bl greek

SEE ALSO

a A
r G

S
e T
A E
~ X
p K
T I
If; V
.n Z
a]

beta {3 B gamma
delta 0 D DELTA
zeta r Q eta
theta () 0 lambda
mu J..L M nu
pi 7r J PI
sigma (j y SIGMA
phi cJ> U PHI
PSI W H omega
nabla \l [not
integral J

300(1), 4014(1), 450(1), greek(1), hp(}), tc(1), nrotf(}).

- 1 -

'Y \
~ W
11 N
A L
v @

IT P
~ R
<I> F
w C

MAN(S) MAN(S)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -man files

troff -man [-rsl] files

DESCRIPTION
These trojf(1) macros are used to layout the format of the entries of this
manual. A skeleton entry may be found in the file
lusr/manV lu_man/manO/skeleton. These macros are used by the man (I) com
mand.

The default page size is 8.5"x 11", with a 6.5"x 10" text area; the -rsl option
reduces these dimensions to 6"x9" and 4.75"x8.375", respectively; this option
(which is not effective in nrojf) also reduces the default type size from la-point
to 9-point, and the vertical line spacing from 12-point to la-point. The -rV2
option may be used to set certain parameters to values appropriate for certain
Versatec printers: it sets the line length to 82 characters, the page length to 84
lines, and it inhibits underlining; this option should not be confused with the
-Tvp option of the man (1) command, which is available at some UNIX System
sites.

Any text argument below may be one to six "words". Double quotes ("") may
be used to include blanks in a "word". If text is empty, the special treatment
is applied to the next line that contains text to be printed. For example, .I may
be used to italicize a whole line, or .SM followed by .B to make small bold text.
By default, hyphenation is turned off for nrojf, but remains on for trojf.

Type font and size are reset to default values before each paragraph and after
processing font- and size-setting macros, e.g., .1, .RB, .SM. Tab stops are neither
used nor set by any macro except .DT and .TH.

Default units for indents in are ens. When in is omitted, the previous indent is
used. This remembered indent is set to its default value (7.2 ens in tro!!, 5 ens
in nrojf-this corresponds to 0.5" in the default page size) by .TH, .P, and .RS,
and restored by .RE.

.TH t sen Set the title and entry heading; t is the title, s is the section
number, c is extra commentary, e.g., "local", n is new manual
name. Invokes .DT (see below) .

. SH text Place subhead text, e.g., SYNOPSIS, here .

. SS text Place sub-subhead text, e.g., Options, here .

. B text Make text bold.
• 1 text
. SM text
.RI a b

.P

.HP in

.TP in

.IP t in

.RS in

Make text italic .
Make text 1 point smaller than default point size .
Concatenate roman a with italic b, and alternate these two fonts
for up to six arguments. Similar macros alternate between any
two of roman, italic, and bold:

.IR .RB .BR .18 .BI
Begin a paragraph with normal font, point size, and indent. .PP is
a synonym for .P.
Begin paragraph with hanging indent.
Begin indented paragraph with hanging tag. The next line that
contains text to be printed is taken as the tag. If the tag does not
fit, it is printed on a separate line.
Same as .TP in with tag t; often used to get an indented paragraph
without a tag.
Increase relative indent (initially zero). Indent all output an extra
in units from the current left margin.

- 1 -

MAN(5) MAN(5)

.RE k

.PMm

. DT

.PD v

Return to the kth relative indent level (initially, k=l; k=O is
equivalent to k=1); if k is omitted, return to the most recent lower
indent level.
Produces proprietary markings; where m may be P for PRIVATE,
N for NOTICE, BP for BELL LABORATORIES PROPRIETARY, or
BR for BELL LABORATORIES RESTRICTED.
Restore default tab settings (every 7.2 ens in trojJ, 5 ens in nroJf) .
Set the interparagraph distance to v vertical spaces. If v is omit
ted, set the interparagraph distance to the default value (OAv in
trojJ, 1 v in nroJf).

The following strings are defined:

\.R ® in trojJ, (Reg.) in nrojJ.
\.S Change to default type size.
\.(Tm Trademark indicator.

The following number registers are given default values by .TH:

IN Left margin indent relative to subheads (default is 7.2 ens in trojJ,
5 ens in nroJf).

LL
PD

CAVEATS

Line length including IN.
Current interparagraph distance.

FILES

In addition to the macros, strings, and number registers mentioned above, there
are defined a number of internal macros, strings, and number registers. Except
for names predefined by trojJ and number registers d, m, and y, all such inter
nal names are of the form XA, where X is one of), I, and}, and A stands for
any alphanumeric character.

If a manual entry needs to be preprocessed by cw (1), eqn (1) (or neqn), and/or
tbl(1), it must begin with a special line (described in man (1), causing the
man command to invoke the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted Index for
this Manual assume the NAME section of each entry consists of a single line of
input that has the following format:

namer, name, name .. .J \- explanatory text

The macro package increases the inter-word spaces (to eliminate ambiguity) in
the SYNOPSIS section of each entry.

The macro package itself uses only the roman font (so that one can replace, for
example, the bold font by the constant-width font-see cw (1». Of course, if
the input text of an entry contains requests for other fonts (e.g., .I, .RB, \fI), the
corresponding fonts must be mounted.

I usr Ili bl tmacl tmac.an
lusrllib/macros/cmp.[ntUdt1.an
lusrllib/macros/ucmp.[nt1.an
lusr/man/[ua]_man/manO/skeleton

SEE ALSO

BUGS

man (1), nroff(1), troff(1) .

If the argument to .TH contains any blanks and is not enclosed by double
f"ll1At,:lt.C' (II") .. 1,0 ... 0 ",;11 hoOt. h; ... rl_rl.,." ;,.."n_l;t,.o fl-.;n C" 1"\7"\ +1,.0 "'11t-",,"I1+
'1-,,,,,,,",,u , /, "'1..1""1.'-' .. T.l.l..l v,", u.lJ.u-uJ.vl-'l-'J.J.1.6-.I..1.n..v ".1.J..I..lJ.6~ V.l1. "'.1.1"" VU\....,UL.

- 2 -

) MM(5) MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff - mm [options] [files]

nroff -em [options] [files]

mmt [options] [files]

troff - mm [options] [files]

troff -em [options] [files]

DESCRIPTION

FILES

This package provides a formatting capability for a very wide variety of docu
ments. It is the standard package used by the BTL typing pools and documen
tation centers. The manner in which a document is typed in and edited is
essentially independent of whether the document is to be eventually formatted
at a terminal or is to be phototypeset. See the references below for further
details.

The -mm option causes nroff and troff(I) to use the non-compacted version of
the macro package, while the -em option results in the use of the compacted
version, thus speeding up the process of loading the macro package.

lusr Ilib/tmac/tmac.m

lusr/lib/macros/mm[nt]
lusr/lib/macros/cmp.[ntUdd.m
lusr/lib/macros/ucmp.[nt].m

pointer to the non-compacted version of the
package
non-compacted version of the package
compacted version of the package
initializers for the compacted version of the
package

SEE ALSO
mm(I), mmt(I), nroff(I), troff(I).
MM-Memorandum Macros by D. W. Smith and 1. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

- 1 -

MOSD(5) MOSD(5)

NAME
mosd - the OSDD adapter macro package for formatting documents

SYNOPSIS
osdd [options] [files]

mm -mosd [options] [files]

nroff - mm - mosd [options] [files]

nroff -em -mosd [options] [files]

mmt -mosd [options] [files]

troff -mm -mosd [options] [files]

troff -em -mosd [options] [files]

DESCRIPTION
The OSDD adapter macro package is a tool used in conjunction with the MM
macro package to prepare Operations Systems Deliverable Documentation.
Many of the OSDD Standards are different than the default format provided by
MM. The OSDD adapter package sets the appropriate MM options for
automatic production of the OSDD Standards. The OSDD adapter package also
generates the correct OSDD page headers and footers, heading styles, Table of
Contents format, etc.

OSDD document (input) files are prepared with the MM macros. Additional
information which must be given at the beginning of the document file is
specified by the following string definitions:

.ds HI document-number

.ds H2 section-number

.ds H3 issue-number

.ds H4 date

.ds H5 rating

The document-number should be of the standard 10 character format. The
words "Section" and "Issue" should not be included in the string definitions;
they will be supplied automatically when the document is printed. For exam
ple:

.ds HI OPA-IP135-01

.ds H2 4

.ds H3 2
automatically produces

OPA-IP135-01
Section 4
Issue 2

as the document page header. Quotation marks are not used in string
definitions.

If certain information is not to be included in a page header, then the string is
defined as null; e.g.,

.ds H2
means that there is no section-number.

The OSDD Standards require that the Table of Contents be numbered begin
ning with Page 1. By default, the first page of text will be numbered Page 2.
If the Table of Contents has more than one page, for example n, then either
-rPn + 1 must be included as a command line option or .or P 0 must be
included in the document file. For example, if the Table of Contents is four
pages then use -rP5 on the command line or .or P 4 in the document file.

- 1 -

MOSD(S) MOSD(S)

FILES

The OSDD Standards require that certain information such as the document
rating appear on the Document Index or on the Table of Contents page if there
is no index. By default, it is assumed that an index has been prepared
separately. If there is no index, the following must be included in the docu
ment file:

.nr Di 0
This will ensure that the necessary information is included on the Table of
Contents page.

The OSDD Standards require that all numbered figures be placed at the end of
the document. The .Fg macro is used to produce full page figures. This macro
produces a blank page with the appropriate header, footer, and figure caption.
Insertion of the actual figure on the page is a manual operation. The macro
usage is

.Fg page-count "figure caption"
where page-count is the number of pages required for a multi-page figure
(default 1 page).

Figure captions are produced by the .Fg macro using the .BS/.BE macros. Thus
the .BS/.BE macros are also not available for users. The .Fg macro cannot be
used within the document unless the final .Fg in a series of figures is followed
by a .SK macro to force out the last figure page.

The Table of Contents for OSDD documents (see Figure 4 in Section 4.1 of the
OSDD Standards) is produced with:

.Tc
System Type
System Name
Document Type
.Td

The .Tc/.Td macros are used instead of the .TC macro from MM.

By default, the adapter package causes the NOTICE disclosure statement to be
printed. The .PM macro may be used to suppress the NOTICE or to replace it
with the PRIVATE disclosure statement as follows:

.PM

.PM P

.PMN

none printed
PRIVATE printed
NOTICE printed (default)

The .P macro is used for paragraphs. The Np register is set automatically to
indicate the paragraph numbering style. It is very important that the .P macro
be used correctly. All paragraphs (including those immediately following a .H
macro) must use a .P macro. Unless there is a .P macro, there will not be a
number generated for the paragraph. Similarly, the .P macro should not be
used for text which is not a paragraph. The .SP macro may be appropriate for
these cases, e.g., for "paragraphs" within a list item.

The page header format is produced automatically in accordance with the
OSDD Standards. The OSDD Adapter macro package uses the .TP macro for
this purpose. Therefore the .TP macro normally available in MM is not avail
able for users.

/usr/lib/tmac/tmac.osd

SEE ALSO
mm(1), mmt(1), nroff(O, troff(1), mm(5).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Operations Systems Deliverable Documentation Standards, June 1980.

- 2 -

MPTX(S) MPTX(S)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS
nroff - mptx [options] [files]

troff - mptx [options] [files]

DESCRIPTION

FILES

This package provides a definition for the .xx macro used for formatting a per
muted index as produced by ptx(I). This package does not provide any other
formatting capabilities such as headers and footers. If these or other capabili
ties are required, the mptx macro package may be used in conjuction with the
MM macro package. In this case, the -mptx option must be invoked after the
-mm call. For example:

nroff -cm -mptx file
or

mm -mptx file

lusrllib/tmacltmac.ptx pointer to the non-compacted version of the package
lusrllib/macros/ptx non-compacted version of the package

SEE ALSO
mm (1), nroff(1), ptx (I), troff(1), mm (5).

- 1 -

MV(5) MV(5)

NAME
mv - a troff macro package for typesetting vi~w graphs and slides

SYNOPSIS
mvt [-a] [options] [files]

troff [-a] [-rXl] -mv [options] [files]

DESCRIPTION
This package makes it easy to typeset view graphs and projection slides in a
variety of sizes. A few macros (briefly described below) accomplish most of the
formatting tasks needed in making transparencies. All of the facilities of
troff(l), cw(1), eqn(I), and tbt(1) are available for more difficult tasks.

The output can be previewed on most terminals, and, in particular, on the Tek
tronix 4014, as well as on the Versatec printer. For these two devices, specify
the -rXl option (this option is automatically specified by the mvt
command-q.v.-when that command is invoked with the -T4014 or -Tvp
options). To preview output on other terminals, specify the -a option.

The available macros are:

.vs [n] [i] [d]

.Vw [n] [I] [d]
• Vh [n] [i] [d]
• VW [n] [I] [d]
. VH [n] [i] [d]
• Sw [n] [I] [d]
• Sh [n] [i] [d]
• SW [n] [i] [d]
. SH [n] [I] [d]
• A [x]

.B [m [s]]

.c [m [s]]

Foil-start macro; foil size is to be 7" x7"; n is the foil
number, i is the foil identification, d is the date; the foil
start macro resets all parameters (indent, point size, etc.)
to initial default values, except for the values of i and d
arguments inherited from a previous foil-start macro; it also
invokes the .A macro (see below).

The naming convention for this and the following eight
macros is that the first character of the name (V or S) dis
tinguishes between view graphs and slides, respectively,
while the second character indicates whether the foil is
square (S), small wide (w), small high (h), big wide (W),
or big high (H). Slides are "skinnier" than the correspond
ing view graphs: the ratio of the longer dimension to the
shorter one is larger for slides than for view graphs. As a
result, slide foils can be used for view graphs, but not vice
versa; on the other hand, view graphs can accommodate a
bit more text.

Same as .VS, except that foil size is 7" wide x 5" high .
Same as .VS, except that foil size is 5"x7" .
Same as .VS, except that foil size is 7"xS.4" .
Same as .VS, except that foil size is 7"x9" .
Same as .VS, except that foil size is 7"x5" .
Same as .VS, except that foil size is 5" x7" .
Same as .VS, except that foil size is 7"x5.4" .
Same as .VS, except that foil size is 7"x9" .
Place text that follows at the first indentation level (left
margin); the presence of x suppresses the V2 line spacing
from the preceding text.
Place text that follows at the second indentation level; text'
is preceded by a mark; m is the mark (default is a large
bullet); s is the increment or decrement to the point size of
the mark with respect to the prevailing point size (default
is 0); if s is 100, it causes the point size of the mark to be
the same as that of the default mark.
Same as .B, but for the third indentation level; default
mark is a dash.

- 1 -

MV(5)

FILES

MV(5)

.D [m [s]] Same as .B, but for the fourth indentation level; default
mark is a small bullet .

. T string String is printed as an over-size, centered title .
• 1 [in] [a [x]] Change the current text indent (does not affect titles); in is

the indent (in inches unless dimensioned, default is 0); if in
is signed, it is an increment or decrement; the presence of a
invokes the .A macro (see below) and passes x (if any) to
it.

.S [p] [l] Set the point size and line length; p is the point size
(default is "previous"); if p is 100, the point size reverts to
the initial default for the current foil-start macro; if p is
signed, it is an increment or decrement (default is 18 for
.VS, .VH, and .SH, and 14 for the other foil-start macros);
I is the line length (in inches unless dimensioned; default is
4.2" for .Vb, 3.8" for .Sb, 5" for .SH, and 6" for the other
foil-start macros) .

• DF n f [n f .. .1 Define font positions; may not appear within a foil's input
text (i.e., it may only appear after all the input text for a
foil, but before the next foil-start macro); n is the position
of font f; up to four "n 1" pairs may be specified; the first
font named becomes the prevailing font; the initial setting
is (H is a synonym for G):

.DF 1 H 2 I 3 B 4 S
.DV [a] [b] [c] [d] Alter the vertical spacing between indentation levels; a is

the spacing for .A, b is for .B, c is for .C, and d is for .D;
all non-null arguments must be dimensioned; null argu
ments leave the corresponding spacing unaffected; initial
setting is:

.DV .5v .5v .5v Ov
.U strl [str2] Underline strl and concatenate str2 (if any) to it.

The last four macros in the above list do not cause a break; the .1 macro causes
a break only if it is invoked with more than one argument; all the other macros
cause a break.

The macro package also recognizes the following upper-case synonyms for the
corresponding lower-case troff requests:

.AD .BR .CE .FI .HY .NA .NF .NH .NX .SO .SP .TA .TI

The Tm string produces the trademark symbol.

The input tilde (-) character is translated into a blank on output.

See the user's manual cited below for further details.

lusr/lib/tmacltmac.v
lusr Ilibl macros/vmca

SEE ALSO

BUGS

cw(1), eqn(1), mmt(1), tbI(I), troff(1).
A Macro Package for View Graphs and Slides by T. A. Dolotta and
D. W. Smith.

The .VW and .SW foils are meant to be 9" wide by 7" high, but because the
typesetter paper is generally only 8" wide, they are printed 7" wide by 5.4" high
and have to be enlarged by a factor of 9/7 before use as view graphs; this
makes them less than totally useful.

- 2 -

REGEXP(S) REGEXP(S)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT < declara tions >
#define GETCO <getc code>
#define PEEKCO <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(vaI) <error code>

#include < regexp.h >

char .compileCinstring, expbuf, endbuf, eof)
char .instring, .expbuf, .endbuf;

int step(string, expbuf)
char .string, .expbuf;

DESCRIPTION
This page describes general purpose regular expression matching routines in the
form of ed (1) , defined in lusr linclude/regexp.h. Programs such as ed (1) ,
sed(I), grep(I), bs(I), expr(I), etc., which perform regular expression match
ing use this source file. In this way, only this file need be changed to maintain
regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this
file must have the following five macros declared before the
"#include < regexp.h > "statement. These macros are used by the compile
routine.

GETCO

PEEKCO

UNGETC(c)

RETURN (pointer)

ERROR (vaJ)

Return the value of the next character in the regular
expression pattern. Successive calls to GETCO should
return successive characters of the regular expression.

Return the next character in the regular expression.
Successive calls to PEEKCO should return the same
character (which should also be the next character
returned by G ETC ()) .

Cause the argument c to be returned by the next call to
GETCO (and PEEKCO). No more that one character
of push back is ever needed and this character is
guaranteed to be the last character read by GETCO.
The value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile rou
tine. The value of the argument pointer is a pointer to
the character after the last character of the compiled
regular expression. This is useful to programs which
have memory allocation to manage.

This is the abnormal return from the compile routine.
The argument val is an error number (see table below
for meanings). This call should never return.

- 1 -

REGEXP(5) REGEXP(5)

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \ (\) imbalance.
43 Too many \ (.
44 More than 2 numbers given in \ { \l.
45 } expected after \.
46 First number exceeds second in \ { \l.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compileGnstring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine but
is useful for programs that pass down different pointers to input characters. It
is sometimes used in the INIT declaration (see below). Programs which call
functions to input characters or have characters in an external array can pass
down a value of «char .) 0) for this parameter.

The next parameter expbuJ is a character pointer. It points to the place where
the compiled regular expression will be placed.

The parameter endbuJ is one more than the highest address where the compiled
regular expression may be placed. If the compiled expression cannot fit in
(endbuj-expbuj) bytes, a call to ERROR(50) is made.

The parameter eoj is the character which marks the end of the regular expres
sion. For example, in ed(I), this character is usually a I.

Each program that includes this file must have a #define statement for IN IT.
This definition will be placed right after the declaration for the function com
pile and the opening curly brace ((). It is used for dependent declarations and
initializations. Most often it is used to set a register variable to point the
beginning of the regular expression so that this register variable can be used in
the declarations for GETCO, PEEKCO and UNGETCO. Otherwise it can be
used to declare external variables that might be used by GETCO, PEEKCO and
UNGETCO. See the example below of the declarations taken from grep(I).

There are other functions in this file which perform actual regular expression
matching, one of which is the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked
for a match. This string should be null terminated.

The second parameter expbuJ is the compiled regular expression which was
obtained by a call of the function compile.

The function step returns one, if the given string matches the regular expres
sion, and zero if the expressions do not match. If there is a match, two exter
nal character pointers are set as a side effect to the call to step. The variable
set in step is locI. This is a pointer to the first character that matched the reg
ular expression. The variable loc2, which is set by the function advance, points
the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire line, locI will point to the
first character of string and loc2 will point to the null at the end of string.

- 2 -

REGEXP(5) REGEXP(5)

Step uses the external variable eirc! which is set by compile if the regular
expression begins with A. If this is set then step will only try to match the reg
ular expression to the beginning of the string. If more than one regular expres
sion is to be compiled before the first is executed the value of eirc! should be
saved for each compiled expression and eirc! should be set to that saved value
before each call to step.

The function advance is called from step with the same arguments as step.
The purpose of step is to step through the string argument and call advance
until advance returns a one indicating a match or until the end of string is
reached. If one wants to constrain string to the beginning of the line in all
cases, step need not be called, simply call advance.

When advance encounters a • or \{ \J sequence in the regular expression it will
advance its pointer to the string to be matched as far as possible and will recur
sively call itself trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, advance will back up along the string
until it finds a match or reaches the point in the string that initially matched
the • or \(\J. It is sometimes desirable to stop this backing up before the ini
tial point in the string is reached. If the external character pointer loes is
equal to the point in the string at sometime during the backing up process,
advance will break out of the loop that backs up and will return zero. This is
used be ed (1) and sed (1) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions like s/y.//g do not
loop forever.

The routines ecmp and getrange are trivial and are called by the routines previ
ously mentioned.

EXAMPLES

FILES

The following is an example of how the regular expression macros and calls
look from grep (1) :

#define INIT
#define GETC()
#define PEEKCO
#define UNGETC(c)
#define RETURN(c)
#define ERROR (c)

#inc1ude <regexp.h>

register char *sp = instring;
(*sp++)
(*sp)
(--sp)
return;
regerr()

compile(*argv, expbuf, &expbuf(ESIZE1, \0');

if(stepOinebuf, expbuO)
succeed();

lusr/inc1ude/regexp.h

SEE ALSO

BUGS

ed(I), grep(1), sed(1).

The handling of eirc! is kludgy.
The routine ecmp is equivalent to the Standard 110 routine strncmp and should
be replaced by that routine.
The actual code is probably easier to understand than this manual page.

STAT(S)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

STAT(S)

The system calls stat and Jstat return data whose structure is defined by this
include file. The encoding of the field st _mode is defined in this file also.

FILES

/*
* Structure of the result of stat
*/

struct stat
{

dev_t st_dev;
ino_t stjno;
ushort st_mode;
short st nlink;
ushort st=uid;
ushort st~id;
dey t stJdev;
off t st_size;
time t st_atime;
time t st_mtime;
time t st_ctime;

} ;

#define S_IFMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S IFREG 0100000 /* regular */
#define S_IFIFO 0010000 /* fifo */
#define S_ISUID 04000 /* set user id on execution */
#define S_ISGID 02000 /* set group id on execution */
#define S ISVTX 01000 /* save swapped text even after use */
#define S_IREAD 00400 /* read permission, owner */
#define S_IWRITE 00200 /* write permission, owner */
#define S_IEXEC 00100 /* execute/search permission, owner */

/usr/inc1ude/sys/types.h
/usrlinc1ude/sys/stat.h

SEE ALSO
stat(2), types(S).

- 1 -

TERM(5) TERM (5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., nroff, mm (1) , man (1) ,
tabs (1» and are maintained as part of the shell environment (see sh (1),
profile (4), and environ (5» in the variable $TERM:

1520 Datamedia 1520
1620 Diablo 1620 and others using the HyType II printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASIIDTC/GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode
300s DASIIDTC/GSI 300s
382 DTC 382
300s-12 same, in 12-pitch mode
3045 Datamedia 3045
33 TELETYPE@ Terminal Model 33 KSR
37 TELETYPE Terminal Model 37 KSR
40-2 TELETYPE Terminal Model 40/2
40-4 TELETYPE Terminal Model 40/4
4540 TELETYPE Terminal Model 4540
3270 IBM Model 3270
4000a Trendata 4000a
40 14 Tektronix 4014
43 TELETYPE Model 43 KSR
450 DASI 450 (same as Diablo 1620)
450-12 same, in 12-pitch mode
735 Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb

sync

hp
lp
tn1200
tn300

generic name for terminals that lack reverse
line-feed and other special escape sequences
generic name for synchronous TELETYPE
4540-compatible terminals
Hewlett-Packard (same as 2645)
generic name for a line printer
General Electric TermiNet 1200
General Electric TermiNet 300

Up to 8 characters, chosen from [-a-zO-9], make up a basic terminal name.
Terminal sub-models and operational modes are distinguished by suffixes begin
ning with a -. Names should generally be based on original vendors, rather
than local distributors. A terminal acquired from one vendor should not have
more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept argu
ments of the form -Tterm where term is one of the names given above; if no
such argument is present, such commands should obtain the terminal type from
the environment variable $TERM, which, in turn, should contain term.

SEE ALSO
mm(1), nroif(O, tplot(1G), sh(1), stty(O, tabs(1), profile(4), environ(5).

- 1 -

I -

TERM(S) TERM(S)

BUGS
This is a small candle trying to illuminate a large, dark problem. Programs
that ought to adhere to this nomenclature do so somewhat fitfully.

.. 2 -

TYPES(5) TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include < sys/types.h >

DESCRIPTION
The data types defined in the include file are used in UNIX System code; some
data of these types are accessible to user code:

typedef struct { int rll]; } • physadr;
typedef long daddr t;
typedef char • caddr=t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int label_d 10];
typedef short dev_t;
typedef long off_t;
typedef long paddr_t;
typedef long key_t;

The form daddr J is used for disk addresses except in an i-node on disk, see
/s(4). Times are encoded in seconds since 00:00:00 GMT, January 1, 1970.
The major and minor parts of a device code specify kind and unit number of a
device and are installation-dependent. Offsets are measured in bytes from the
beginning of a file. The label_t variables are used to save the processor state
while another process is running.

SEE ALSO
fs(4).

- 1 -

INTRO(6) INTRO (6)

NAME
intro - introduction to games

DESCRIPTION
This section describes the recreational and educational programs found in the
directory lusr/games. The availability of these programs may vary from sys
tem to system.

- 1 -

I

ARITHMETIC (6) ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
lusr/games/arithmetic [+ -xl] [range

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to be
typed in. If the answer is correct, it types back "Right!", and a new problem.
If the answer is wrong, it replies "What?", and waits for another answer.
Every twenty problems, it publishes statistics on correctness and the time
required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind. of problem to be generated; +,
-, x, and I respectively cause addition, subtraction, multiplication, and division
problems to be generated. One or more characters can be given; if more than
one is given, the different types of problems will be mixed in random order;
default is + -.
Range is a decimal number; all addends, subtrahends, differences, multipli
cands, divisors, and quotients will be less than or equal to the value of range.
Default range is 10.

At the start, all numbers less than or equal to range are equally likely to
appear. If the respondent makes a mistake, the numbers in the problem which
was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct
answers, since the learner should, in principle, be able to calculate them. Thus
the program is intended to provide drill for someone just past the first learning
stage, not to teach number facts de novo. For almost all users, the relevant
statistic should be time per problem, not percent correct.

- 1 -

BACK(6) BACK(6)

NAME
back - the game of backgammon

SYNOPSIS
/usr/garnes/back

DESCRIPTION

FILES

BUGS

Back is a program which provides a partner for the game of backgammon. It
is designed to play at three different levels of skill, one of which you must
select. In addition to selecting the opponent's level, you may also indicate that
you would like to roll your own dice during your turns (for the superstitious
players). You will also be given the opportunity to move first. The practice of
each player rolling one die for the first move is not incorporated.

The points are numbered 1-24, with 1 being white's extreme inner table, 24
being brown's inner table, 0 being the bar for removed white pieces and 25 the
bar for brown. For details on how moves are expressed, type y when back asks
"Instructions?" at the beginning of the game. When back first asks "Move?",
type ? to see a list of move options other than entering your numerical move.

When the game is finished, back will ask you if you want the log. If you
respond with y, back will attempt to append to or create a file back. log in the
current directory.

lusr I games/lib/backrules
Itmp/b*
back. log

rules file
log temp file
log file

The only level really worth playing is "expert", and it only plays the forward
game.
Back will complain loudly if you attempt to make too many moves in a turn,
but will become very silent if you make too few.
Doubling is not implemented.

- 1 -

I

BJ(6) BJ(6)

NAME
bj - the game of black jack

SYNOPSIS
/usr / games/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or
twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2.
Both dealer and player naturals is a "push" (no money exchange).

If the dealer has an ace up, the player is allowed to make an "insurance"
bet against the chance of a dealer natural. If this bet is not taken, play
resumes as normal. If the bet is taken, it is a side bet where the player
wins $2 if the dealer has a natural and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is allowed to "dou
ble". He is allowed to play two hands, each with one of these cards.
(The bet is doubled also; $2 on each hand.}

If a dealt hand has a total of ten or eleven, the player may "double
down". He may double the bet ($2 to $4) and receive exactly one more
card on that hand.

Under normal play, the player may "hit" (draw a card) as long as his
total is not over twenty-one. If the player "busts" (goes over twenty-one),
the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer hits until he
attains a total of seventeen or more. If the dealer busts, the player wins
the bet.

If both player and dealer stand, the one with the largest total wins. A tie
is a push.

The machine deals and keeps score. The following questions will be asked at
appropriate times. Each question is answered by y followed by a new-line for
"yes", or just new-line for "no".

? (means, "do you want a hit?")
Insurance?
Double down?

Every time the deck is shuffled, the dea\er so states and the "action" (total bet)
and "standing" (total won or lost) is printed. To exit, hit the interrupt key
(DEL) and the action and standing will be printed.

- 1 -

CHESS(6) (PDP-ll only) CHESS(6)

NAME
chess - the game of chess

SYNOPSIS
lusr/gaDles/chess

DESCRIPTION
Chess is a computer program that plays class D chess. Moves may be given
either in standard (descriptive) notation or in algebraic notation. The symbol
+ must be placed at the end of a line when the move on that line places the
opponent's king in check. 0-0 and 0-0-0 specify castling, king side or queen
side, respectively.

The user is prompted for a move or command by a •. To play black, type first
at the onset of the game. To print a copy of the board in play, type a carriage
return only. Each move is echoed in the appropriate notation, followed by the
program's reply. Near the middle and end games, the program can take con
siderable time in computing its moves.

A ? or help may be typed to get a help message that briefly describes the possi
ble commands.

DIAGNOSTICS

BUGS

The most cryptic diagnostic is "eh?" which means that the input was syntacti
cally incorrect.

Pawns may be promoted only to queens.

- 1 -

I

CRAPS (6) CRAPS (6)

NAME
craps - the game of craps

SYNOPSIS
/usr/games/craps

DESCRIPTION
Craps is a form of the game of craps that is played in Las Vegas. The pro
gram simulates the roller, while the user (the player) places bets. The player
may choose, at any time, to bet with the roller or with the House. A bet of a
negative amount is taken as a bet with the House, any other bet is a bet with
the roller.

The player starts off with a "bankroll" of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over the total ban
kroll is rejected and the program prompts with bet? until a proper bet is made.

Once the bet is accepted, the roller throws the dice. The following rules apply
(the player wins or loses depending on whether the bet is placed with the roller
or with the House; the odds are even). The first roll is the roll immediately
following a bet:

1. On the first roll:

7 or 11 wins for the roller;
2, 3, or 12 wins for the House;
any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:
point roller wins;
7 House wins;
any other number roll again.

If a player loses the entire bankroll, the House will offer to lend the player an
additional $2,000. The program will prompt:

marker?

A yes (or y) consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a bet
is placed, how many markers are outstanding.

If, at any time, the bankroll of a player who has outstanding markers exceeds
$2,000, the House asks:

Repay marker?

A reply of yes (or y) indicates the player's willingness to repay the loan. If
only 1 marker is outstanding, it is immediately repaid. However, if more than
1 marker are outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is entered (or
just a carriage return), an appropriate message is printed and the program will
prompt with How many? until a valid number is entered.

If a player accumulates 10 markers (a total of $20,000 borrowed from the
House), the program informs the player of the situation and exits.

Should the bankroll of a player who has outstanding markers exceed $50,000,
the total amount of money borrowed will be automatically repaid to the
House.

- 1 -

CRAPS (6) CRAPS (6)

Any player who accumulates $100,000 or more breaks the bank. The program
then prompts:

New game?

to give the House a chance to win back its money.

Any reply other than yes is considered to be a no (except in the case of bet? or
How many?). To exit, send an interrupt (break), DEL, or control-D. The pro
gram will indicate whether the player won, lost, or broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the seconds from the
time of day. Depending on system usage, these numbers, ·at times, may seem
strange but occurrences of this type in a real dice situation are not uncommon.

- 2 -

I

HANGMAN (6)

NAME
hangman - guess the word

SYNOPSIS
lusr/games/hangman [arg

DESCRIPTION

HANGMAN (6)

Hangman chooses a word at least seven letters long from a dictionary. The
user is to guess letters one at a time.

The optional argument arg names an alternate dictionary.

FILES
lusr/lib/w2006

BUGS
Hyphenated compounds are run together.

- 1 -

JOTTO(6) JOTTO(6)

NAME
jotto - secret word game

SYNOPSIS
/usr/games/jotto [-p]

DESCRIPTION

BUGS

lotto is a word guessing game. You try to guess the computer's secret word
before it guesses yours. Clues are obtained by entering probe words. For
example, if the computer's secret word is "brown" and you probe with "stare",
it will reply "1" indicating that there is one letter in common between your
probe and the secret word. Double letters count only once unless they appear
in both words. For example, if the hidden word is "igloo" and you probe with
"broke", the computer will reply "I". But if you probe with "gloom", the com
puter will respond "4". All secret words and probe words should be non-proper
English five-letter words. If the computer guesses your word exactly, please
respond with "y". It will then tell you what its secret word was. The -p flag
instructs the computer to report its progress in guessing your word.

The dictionary contains some unusual words and lacks some common ones.

- 1 -

MAZE(6)

NAME
maze - generate a maze

SYNOPSIS
/usr / games/maze

DESCRIPTION

(PDP-ll only)

Maze asks a few questions and then prints a maze.

BUGS
Some mazes (especi~lly small ones) have no solutions.

- 1 -

MAZE(6)

MOO(6) MOO(6)

NAME
moo - guessing game

SYNOPSIS
/usr/gaDles/Dloo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. The player guesses four dis
tinct digits being scored on each guess. A "cow" is a correct digit in an
incorrect position. A "bull" is a correct digit in a correct position. The game
continues until the player guesses the number (a score of four bulls).

- 1 -

I

QUIZ(6) QUIZ(6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t] [categoryl category2]

DESCRIPTION

FILES

BUGS

QUiz gives associative knowledge tests on various subjects. It asks items chosen
from category 1 and expects answers from category 2, or vice versa. If no
categories are specified, quiz gives instructions and lists the available categories.

QUiz tells a correct answer whenever you type a bare new-line. At the end of
input, upon interrupt, or when questions run out, quiz reports a score and ter
minates.

The -t flag specifies "tutorial" mode, where missed questions are repeated
later, and material is gradually introduced as you learn.

The -i flag causes the named file to be substituted for the default index file.
The lines of these files have the syntax:

line
category
alternate
primary
option

= category new-line I category: line
= alternate I category I alternate
= empty I alternate primary
= character I [category] I option
= { category}

The first category on each line of an index file names an information file. The
remaining categories specify the order and contents of the data in each line of
the information file. Information files have the same syntax. Backslash \ is
used as with sh (0 to quote syntactically significant characters or to insert tran
sparent new-lines into a line. When either a question or its answer is empty,
quiz will refrain from asking it.

/usr / gamesllib/ quiz/index
/usr / games/lib/ quiz/ *

The construct "a I ab" doesn't work in an information file. Use "a {b}".

- 1 -

REVERSI(6) (PDP-ll only) REVERSI(6)

NAME
reversi - a game of dramatic reversals

SYNOPSIS
/usr/games/reversi [[-r] file]

DESCRIPTION
Reversi (also knpwn as "friends", "Chinese friends" and "Othello") is played
on an 8 by 8 board using two-sided tokens. Each player takes his turn by plac
ing a token with his side up in an empty square. During the first four turns,
players may only place tokens in the four central squares of the board. Subse
quently, with each turn, a player must capture one or more of his opponent's
tokens. He does this by placing one of his tokens such that it and another of
his tokens embrace a solid line of his opponent's horizontally, vertically or diag
onally. Captured tokens are flipped over and thus can be re-captured. If a
player cannot outflank his opponent he forfeits his turn. The play continues
until the board is filled or until no more outflanking is possible.

In this game, your tokens are asterisks (.) and the machine's are at-signs (@).
You move by typing in the row and column at which you want to place your
token as two digits (I -8), optionally separated by blanks or tabs. You can also
type in:

c to continue the game after hitting break (this is only necessary
if you interrupt the machine while it is deliberating),

g n to start reversi playing against itself for the next n moves (or
until the break key is hit),

n to stop printing the board after each move,
o to start it up again,
p to print the board regardless,
q to quit (without dishonor),
s to print the score, and, as always,

to escape to the shell. Control-d gets you back.

Reversi also recognizes several commands which are valid only at the start of
the game, before any moves have been made. They are:

f to let the machine go first.
b n to ask for a handicap of from one to four corner squares. If

you're really good, you can give the machine a handicap by
typing a negative number.

I n to set the amount of look-ahead used by the machine in
searching for moves. Zero means none at all. Four is the
default. Greater than six means you may fall asleep waiting
for the machine to move.

t n to tell reversi that you will only need n seconds to consider
each move. If you fail to respond in the allotted time, you for
feit your turn.

If reversi is given a file name as an argument, it will checkpoint the game,
move by move, by dumping the board onto file. The -r option will cause
reversi to restart the game from file and continue logging.

DIAGNOSTICS
"Illegal!" for an illegal move, and "Huh?" for a move that even the machine
cannot understand. .

- 1 -

SKY(6) (PDP-ll only) SKY(6)

NAME
sky - obtain ephemerides

SYNOPSIS
/usr/games/sky [-I]

DESCRIPTION
Sky predicts the apparent locations of the Sun, the Moon, the planets out to
Saturn, stars of magnitude at least 2.5, and certain other celestial objects. Sky
reads the standard input to obtain a GMT time typed on one line with blanks
separating year, month number, day, hour, and minute; if the year is missing
the current year is used. If a blank line is typed the current time is used. The
program prints the azimuth, elevation, and magnitude of objects which are
above the horizon at the ephemeris location of Murray Hill at the indicated
time. The -I flag causes it to ask for another location.

Placing a "1" input after the minute entry causes the program to print out the
Greenwich Sidereal Time at the indicated moment and to print for each body
its topographic right ascension and declination as well as its azimuth and eleva
tion. Also, instead of the magnitude, the semidiameter of the body, in seconds
of arc, is reported.

A "2" after the minute entry makes the coordinate system geocentric.

The effects of atmospheric extinction on magnitudes are not included; the
brightest magnitudes of variable stars are marked with *.

For all bodies, the program takes into account precession and nutation of the
equinox, annual (but not diurnal) aberration, diurnal parallax, and the proper
motion of stars. In no case is refraction included.

The program takes into account perturbations of the Earth due to the Moon,
Venus, Mars, and Jupiter. The expected accuracies are: for the Sun and other
stellar bodies a few tenths of seconds of arc; for the Moon (on which particular
care is lavished) likewise a few tenths of seconds. For the Sun, Moon and stars
the accuracy is sufficient to predict the circumstances of eclipses and occulta
tions to within a few seconds of time. The planets may be off by several
minutes of arc.

There are lots of special options not described here, which do things like substi
tuting named star catalogs, smoothing nutation and aberration to aid generation
of mean places of stars, and making conventional adjustments to the Moon to
improve eclipse predictions.

For the most accurate use of the program it is necessary to know that it actu
ally runs in Ephemeris time.

SEE ALSO
American Ephemeris and Nautical Almanac, for the appropriate years; also,
the Explanatory Supplement to the American Ephemeris and Nautical
Almanac.

- 1 -

TTT(6)

NAME
.-ttt, cubic - tic-tac-toe

SYNOPSIS
/usr/games/ttt
/usr/games/cubic

DESCRIPTION

FILES

BUGS

Ttt is the X and 0 game popular in the first grade. This is a learning program
that never makes the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to completely
know the game.

Cubic plays three-dimensional tic-tac-toe on a 4x4x4 board. Moves are
specified as a sequence of three coordinate numbers in the range 1-4.

lusr I games/ttt.klearning file

Cubic does not yet work on V AX.

- 1 -

WUMP(6) WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
lusr Igames/wump

DESCRIPTION

BUGS

Wump plays the game of "Hunt the Wumpus." A Wumpus is a creature that
lives in a cave with several rooms connected by tunnels. You wander among
the rooms, trying to shoot the Wumpus with an arrow, meanwhile avoiding
being eaten by the Wumpus and falling into Bottomless Pits. There are also
Super Bats which are likely to pick you up and drop you in some random room.

The program asks various questions which you answer one per line; it will give
a more detailed description if you want.

This program is based on one described in People's Computer Company, 2, 2
(November 1973).

It will never replace Adventure.

- 1 -

	00_00-00
	00_00-01
	00_00-02
	00_00-03
	00_00-04
	00_00-05
	00_00-06
	00_00-07
	00_00-08
	00_01-01
	00_01-02
	00_01-03
	00_01-04
	00_01-05
	00_01-06
	00_01-07
	00_01-08
	00_01-09
	00_02-01
	00_02-02
	00_02-03
	00_02-04
	00_02-05
	00_02-06
	00_02-07
	00_02-08
	00_02-09
	00_02-10
	00_02-11
	00_02-12
	00_02-13
	00_02-14
	00_02-15
	00_02-16
	00_02-17
	00_02-18
	00_02-19
	00_02-20
	00_02-21
	00_02-22
	00_02-23
	00_02-24
	00_02-25
	00_02-26
	00_02-27
	00_02-28
	00_02-29
	00_02-30
	00_02-31
	00_02-32
	00_02-33
	00_02-34
	00_02-35
	00_02-36
	00_02-37
	01_001-01_intro
	01_002-01_300
	01_002-02
	01_003-01_4014
	01_004-01_450
	01_005-01_acctom
	01_005-02
	01_006-01_adb
	01_006-02
	01_006-03
	01_006-04
	01_006-05
	01_006-06
	01_007-01_admin
	01_007-02
	01_007-03
	01_007-04
	01_008-01_ar
	01_008-02
	01_009-01_ar
	01_009-02
	01_010-01_arcv
	01_011-01_as
	01_012-01_as
	01_013-01_asa
	01_014-01_awk
	01_014-02
	01_014-03
	01_015-01_banner
	01_016-01_basename
	01_017-01_bc
	01_017-02
	01_018-01_bdiff
	01_019-01_bfs
	01_019-02
	01_019-03
	01_020-01_bs
	01_020-02
	01_020-03
	01_020-04
	01_020-05
	01_020-06
	01_020-07
	01_020-08
	01_020-09
	01_021-01_cal
	01_022-01_calendar
	01_023-01_cat
	01_024-01_cb
	01_025-01_cc
	01_025-02
	01_026-01_cd
	01_027-01_cdc
	01_027-02
	01_028-01_cflow
	01_028-02
	01_029-01_chmod
	01_030-01_chown
	01_031-01_cmp
	01_032-01_col
	01_033-01_comb
	01_034-01_comm
	01_035-01_convert
	01_036-01_cp
	01_037-01_cpio
	01_037-02
	01_038-01_cpp
	01_038-02
	01_038-03
	01_039-01_cprs
	01_040-01_crypt
	01_041-01_csplit
	01_041-02
	01_042-01_ct
	01_043-01_cu
	01_043-02
	01_044-01_cut
	01_045-01_cw
	01_045-02
	01_045-03
	01_045-04
	01_046-01_cxref
	01_047-01_date
	01_048-01_dc
	01_048-02
	01_049-01_dd
	01_049-02
	01_050-01_delta
	01_050-02
	01_051-01_deroff
	01_052-01_diff
	01_053-01_diff3
	01_054-01_diffmk
	01_055-01_dircmp
	01_056-01_dis
	01_057-01_dpd
	01_057-02
	01_058-01_dpr
	01_059-01_du
	01_060-01_dump
	01_060-02
	01_061-01_echo
	01_062-01_ed
	01_062-02
	01_062-03
	01_062-04
	01_062-05
	01_062-06
	01_062-07
	01_062-08
	01_063-01_efl
	01_063-02
	01_064-01_enable
	01_065-01_env
	01_066-01_eqn
	01_066-02
	01_067-01_expr
	01_067-02
	01_068-01_f77
	01_068-02
	01_069-01_factor
	01_070-01_fget
	01_070-02
	01_071-01_file
	01_072-01_find
	01_072-02
	01_073-01_fsend
	01_073-02
	01_074-01_fsplit
	01_075-01_gcat
	01_075-02
	01_076-01_gcosmail
	01_077-01_gdev
	01_078-01_ged
	01_078-02
	01_078-03
	01_078-04
	01_078-05
	01_078-06
	01_079-01_get
	01_079-02
	01_079-03
	01_079-04
	01_079-05
	01_080-01_getopt
	01_081-01_graph
	01_082-01_graphics
	01_083-01_greek
	01_084-01_grep
	01_084-02
	01_085-01_gutil
	01_085-02
	01_086-01_help
	01_087-01_hp
	01_088-01_hpio
	01_088-02
	01_088-03
	01_089-01_hyphen
	01_090-01_id
	01_091-01_ipcrm
	01_092-01_ipcs
	01_092-02
	01_092-03
	01_093-01_join
	01_094-01_kasb
	01_095-01_kill
	01_096-01_ld
	01_096-02
	01_097-01_ld
	01_097-02
	01_098-01_lex
	01_098-02
	01_099-01_line
	01_100-01_lint
	01_100-02
	01_101-01_list
	01_102-01_login
	01_102-02
	01_103-01_logname
	01_104-01_lorder
	01_105-01_lp
	01_105-02
	01_106-01_lpr
	01_107-01_lpstat
	01_108-01_ls
	01_108-02
	01_109-01_m4
	01_109-02
	01_109-03
	01_110-01_machid
	01_111-01_mail
	01_111-02
	01_112-01_make
	01_112-02
	01_112-03
	01_112-04
	01_112-05
	01_113-01_makekey
	01_114-01_man
	01_114-02
	01_115-01_mesg
	01_116-01_mkdir
	01_117-01_mm
	01_117-02
	01_118-01_mmt
	01_119-01_net
	01_119-02
	01_120-01_newform
	01_120-02
	01_121-01_newgrp
	01_122-01_news
	01_123-01_nice
	01_124-01_nl
	01_124-02
	01_125-01_nm
	01_125-02
	01_126-01_nm
	01_127-01_nohup
	01_128-01_nroff
	01_128-02
	01_129-01_nscstat
	01_130-01_nsctorje
	01_131-01_nusend
	01_131-02
	01_132-01_od
	01_133-01_pack
	01_133-02
	01_134-01_passwd
	01_135-01_paste
	01_136-01_pr
	01_136-02
	01_137-01_prof
	01_137-02
	01_138-01_prs
	01_138-02
	01_138-03
	01_139-01_ps
	01_139-02
	01_140-01_ptx
	01_141-01_pwd
	01_142-01_ratfor
	01_143-01_regcmp
	01_144-01_rjestat
	01_145-01_rm
	01_146-01_rmdel
	01_147-01_sact
	01_148-01_sadp
	01_149-01_sag
	01_150-01_sar
	01_150-02
	01_151-01_scat
	01_152-01_scc
	01_153-01_sccsdiff
	01_154-01_sdb
	01_154-02
	01_154-03
	01_154-04
	01_154-05
	01_154-06
	01_154-07
	01_155-01_sdiff
	01_156-01_se
	01_156-02
	01_156-03
	01_156-04
	01_156-05
	01_156-06
	01_157-01_sed
	01_157-02
	01_157-03
	01_158-01_send
	01_158-02
	01_158-03
	01_158-04
	01_158-05
	01_159-01_sh
	01_159-02
	01_159-03
	01_159-04
	01_159-05
	01_159-06
	01_159-07
	01_159-08
	01_160-01_size
	01_161-01_size
	01_162-01_sleep
	01_163-01_sno
	01_164-01_sort
	01_164-02
	01_165-01_spell
	01_165-02
	01_166-01_spline
	01_167-01_split
	01_168-01_stat
	01_168-02
	01_168-03
	01_169-01_stlogin
	01_170-01_strip
	01_171-01_strip
	01_172-01_ststat
	01_173-01_stty
	01_173-02
	01_173-03
	01_174-01_su
	01_175-01_sum
	01_176-01_sync
	01_177-01_tabs
	01_177-02
	01_178-01_tail
	01_179-01_tar
	01_179-02
	01_180-01_tbl
	01_180-02
	01_181-01_tc
	01_182-01_tee
	01_183-01_test
	01_183-02
	01_184-01_time
	01_185-01_timex
	01_186-01_toc
	01_186-02
	01_187-01_touch
	01_188-01_tplot
	01_189-01_tr
	01_190-01_troff
	01_190-02
	01_191-01_trouble
	01_192-01_true
	01_193-01_tsort
	01_194-01_tty
	01_195-01_umask
	01_196-01_uname
	01_197-01_unget
	01_198-01_uniq
	01_199-01_units
	01_200-01_uucp
	01_200-02
	01_201-01_uustat
	01_201-02
	01_202-01_uuto
	01_203-01_uux
	01_203-02
	01_204-01_val
	01_204-02
	01_205-01_vc
	01_205-02
	01_205-03
	01_206-01_vpr
	01_207-01_wait
	01_208-01_wc
	01_209-01_what
	01_210-01_who
	01_210-02
	01_211-01_write
	01_212-01_xargs
	01_212-02
	01_213-01_yacc
	02_001-01_intro
	02_001-02
	02_001-03
	02_001-04
	02_001-05
	02_001-06
	02_001-07
	02_001-08
	02_002-01_access
	02_003-01_acct
	02_004-01_alarm
	02_005-01_brk
	02_006-01_chdir
	02_007-01_chmod
	02_008-01_chown
	02_009-01_chroot
	02_010-01_close
	02_011-01_creat
	02_012-01_dup
	02_013-01_exec
	02_013-02
	02_013-03
	02_014-01_exit
	02_015-01_fcntl
	02_016-01_fork
	02_017-01_getpid
	02_018-01_getuid
	02_019-01_ioctl
	02_020-01_kill
	02_021-01_link
	02_022-01_lseek
	02_023-01_maus
	02_023-02
	02_024-01_mknod
	02_025-01_mount
	02_026-01_msgctl
	02_027-01_msgget
	02_028-01_msgop
	02_028-02
	02_028-03
	02_029-01_nice
	02_030-01_open
	02_030-02
	02_031-01_pause
	02_032-01_pipe
	02_033-01_plock
	02_034-01_profil
	02_035-01_ptrace
	02_035-02
	02_036-01_read
	02_037-01_semctl
	02_037-02
	02_038-01_semget
	02_038-02
	02_039-01_semop
	02_039-02
	02_039-03
	02_040-01_setpgrp
	02_041-01_setuid
	02_042-01_shmctl
	02_043-01_shmget
	02_043-02
	02_044-01_shmop
	02_044-02
	02_045-01_signal
	02_045-02
	02_045-03
	02_046-01_stat
	02_046-02
	02_047-01_stime
	02_048-01_sync
	02_049-01_sys3b
	02_050-01_time
	02_051-01_times
	02_052-01_ulimit
	02_053-01_umask
	02_054-01_umount
	02_055-01_uname
	02_056-01_unlink
	02_057-01_ustat
	02_058-01_utime
	02_059-01_wait
	02_060-01_write
	03_001-01_intro
	03_001-02
	03_002-01_a64l
	03_003-01_abort_3C
	03_004-02_abort_3F
	03_005-01_abs_3C
	03_006-01_abs_3F
	03_007-01_acos_3F
	03_008-01_aimag_3F
	03_009-01_aint_3F
	03_010-01_asin_3F
	03_011-01_assert_3X
	03_012-01_atan_3F
	03_013-01_atan2_3F
	03_014-01_atof_3C
	03_015-01_bessel_3M
	03_016-01_bool_3F
	03_017-01_bsearch_3C
	03_018-01_clock_3C
	03_019-01_conjg_3F
	03_020-01_conv_3C
	03_021-01_cos_3F
	03_022-01_cosh_3F
	03_023-01_crypt_3C
	03_024-01_ctermid_3S
	03_025-01_ctime_3C
	03_025-02
	03_026-01_ctype_3C
	03_027-01_cuserid_3S
	03_028-01_dial_3C
	03_028-02
	03_029-01_drand48_3C
	03_029-02
	03_030-01_ecvt_3C
	03_031-01_end_3C
	03_032-01_erf_3M
	03_033-01_exp_3F
	03_034-01_exp_3M
	03_035-01_fclose_3S
	03_036-01_ferror_3S
	03_037-01_floor_3M
	03_038-01_fopen_3S
	03_038-02
	03_039-01_fread_3S
	03_040-01_frexp_3C
	03_041-01_fseek_3S
	03_042-01_ftw_3C
	03_043-01_ftype_3F
	03_043-02
	03_044-01_gamma_3M
	03_045-01_getarg_3F
	03_046-01_getc_3S
	03_047-01_getcwd_3C
	03_048-01_getenv_3C
	03_049-01_getenv_3F
	03_050-01_getgrent_3C
	03_051-01_getlogin_3C
	03_052-01_getopt_3C
	03_052-02
	03_053-01_getpass_3C
	03_054-01_getpw_3C
	03_055-01_getpwent_3C
	03_055-02
	03_056-01_gets_3S
	03_057-01_getut_3C
	03_057-02
	03_058-01_hsearch_3C
	03_058-02
	03_059-01_hypot_3M
	03_060-01_index_3F
	03_061-01_l3tol_3C
	03_062-01_ldahread_3X
	03_063-01_ldclose_3X
	03_064-01_ldfhread_3X
	03_065-01_ldlread_3X
	03_066-01_ldlseek_3X
	03_067-01_ldohseek_3X
	03_068-01_ldopen_3X
	03_069-01_ldrseek_3X
	03_070-01_ldshread_3X
	03_071-01_ldsseek_3X
	03_072-01_ldtbindex_3X
	03_073-01_ldtbread_3X
	03_074-01_ldtbseek_3X
	03_075-01_len_3F
	03_076-01_log_3F
	03_077-01_log10_3F
	03_078-01_logname_3X
	03_079-01_lsearch_3C
	03_080-01_malloc_3C
	03_081-01_matherr_3M
	03_081-02
	03_082-01_max_3F
	03_083-01_mclock_3F
	03_084-01_memory_3C
	03_085-01_min_3F
	03_086-01_mktemp_3C
	03_087-01_mod_3F
	03_088-01_monitor_3C
	03_089-01_nlist_3C
	03_090-01_perror_3C
	03_091-01_plot_3X
	03_091-02
	03_092-01_popen_3S
	03_093-01_printf_3S
	03_093-02
	03_093-03
	03_094-01_putc_3S
	03_095-01_putpwent_3C
	03_096-01_puts_3S
	03_097-01_qsort_3C
	03_098-01_rand_3C
	03_099-01_rand_3F
	03_100-01_regcmp_3X
	03_100-02
	03_101-01_round_3F
	03_102-01_scanf_3S
	03_102-02
	03_102-03
	03_103-01_setbuf_3S
	03_104-01_setjmp_3C
	03_105-01_sign_3F
	03_106-01_signal_3F
	03_107-01_sin_3F
	03_108-01_sinh_3F
	03_109-01_sinh_3M
	03_110-01_sleep_3C
	03_111-01_sputl_3X
	03_112-01_sqrt_3F
	03_113-01_ssignal_3C
	03_114-01_stdio_3S
	03_115-01_stdipc_3C
	03_116-01_string_3C
	03_116-02
	03_117-01_strtol_3C
	03_118-01_swab_3C
	03_119-01_system_3F
	03_120-01_system_3S
	03_121-01_tan_3F
	03_122-01_tanh_3F
	03_123-01_tmpfile_3S
	03_124-01_tmpnam_3S
	03_125-01_trig_3M
	03_126-01_tsearch_3C
	03_126-02
	03_127-01_ttyname_3C
	03_128-01_ttyslot_3C
	03_129-01_ungetc_3S
	03_130-01_x25alnk_3C
	03_130-02
	03_131-01_x25clnk_3C
	03_132-01_x25hlnk_3C
	03_133-01_x25ipvc_3C
	04_001-01_intro
	04_002-01_a.out
	04_002-02
	04_002-03
	04_002-04
	04_003-01_a.out
	04_003-02
	04_003-03
	04_004-01_acct
	04_004-02
	04_005-01_ar
	04_005-02
	04_006-01_ar
	04_007-01_checklist
	04_008-01_core
	04_009-01_cpio
	04_010-01_dir
	04_011-01_errfile
	04_011-02
	04_011-03
	04_011-04
	04_012-01_filehdr
	04_013-01_fs
	04_013-02
	04_014-01_fspec
	04_015-01_gettydefs
	04_015-02
	04_016-01_gps
	04_016-02
	04_017-01_group
	04_018-01_inittab
	04_018-02
	04_018-03
	04_019-01_inode
	04_020-01_issue
	04_021-01_ldfcn
	04_021-02
	04_022-01_linenum
	04_023-01_master
	04_023-02
	04_023-03
	04_023-04
	04_024-01_mnttab
	04_025-01_passwd
	04_026-01_plot
	04_027-01_pnch
	04_028-01_profile
	04_029-01_reloc
	04_029-02
	04_030-01_sccsfile
	04_030-02
	04_030-03
	04_031-01_scnhdr
	04_032-01_syms
	04_032-02
	04_033-01_system
	04_033-02
	04_034-01_utmp
	05_001-01_intro
	05_002-01_ascii
	05_003-01_environ
	05_004-01_eqnchar
	05_005-01_fcntl
	05_006-01_greek
	05_007-01_man
	05_007-02
	05_008-01_mm
	05_009-01_mosd
	05_009-02
	05_010-01_mptx
	05_011-01_mv
	05_011-02
	05_012-01_regexp
	05_012-02
	05_012-03
	05_013-01_stat
	05_014-01_term
	05_015-02
	05_016-01_types
	06_001-01_intro
	06_002-01_arithmetic
	06_003-01_back
	06_004-01_bj
	06_005-01_chess
	06_006-01_craps
	06_006-02
	06_007-01_hangman
	06_008-01_jotto
	06_009-01_maze
	06_010-01_moo
	06_011-01_quiz
	06_012-01_reversi
	06_013-01_sky
	06_014-01_ttt
	06_015-01_wump
	xBack

