

©1987 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

ETHERNET is a registered trademark of Digital Research and Rank Xerox Corp.
UNIX is a registered trademark of AT&T.

AT&T Products and Services
To order documents from the Customer Information Center:

• Within the continental United States, call 1-800-432-6600

• Outside the continental United States, call 1-317-352-8556

• Send mail orders to:

AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:

• Within the continental United States, call 1-800-221-1647

• Outside the continental United States, call 1-609-639-4458

To contact marketing representatives about AT&T computer hardware pro
ducts and UNIX software products:

• Within the continental United States, call 1-800-372-2447

• Outside the continental United States, call collect 1-215-266-2973 or
1-215-266-2975

iii

iv

To find out about UNIX system source licenses:

• Within the continental United States, except North Carolina, call 1-800-
828-UNIX

• In North Carolina and outside the continental United States, call
1-919-279-3666

• Or write to:

Software Licensing
Guilford Center
P.O. Box 25000
Greensboro, NC 27420

Table of Contents

Part 1: Application Programming

Chapter 1: Basic Operations 1-1

A Simple Stream 1-1

Inserting Modules 1-4

Module and Driver Control 1-7

Chapter 2: Advanced Operations 2-1

Advanced Input/Output Facilities 2-1

Input/Output Polling 2-2

Asynchronous Input/Output 2-7

Clone Open 2-8

Chapter 3: Multiplexed Streams 3-1

Multiplexer Configurations 3-1

Building a Multiplexer 3-4

Dismantling a Multiplexer 3-13

Routing Data Through a Multiplexer 3-14

TABLE OF CONTENTS v

Table of Contents -----------------

Chapter 4: Message Handling

Service Interface Messages

The Message Interface

Datagram Service Interface Example

Part 2: Module and Driver Programming

Chapter 5: Streams Mechanism

Overview

Stream Construction

Opening a Stream

Adding and Removing Modules

Closing

Chapter 6: Modules

Module Declarations

Module Procedures

Module and Driver Environment

vi STREAMS PROGRAMMER'S GUIDE

4-1

4-1

4-4

4-7

5-1

5-1

5-3

5-5

5-6

5-7

6-1

6-1

6-4

6-6

------------------ Table of Contents

Chapter 7: Messages 7-1

Message Format 7-1

Filter Module Declarations 7-5

Message Allocation 7-8

Put Procedure 7-9

Chapter 8: Message Queues and Service
Procedures 8-1

The queue_t Structure 8-1

Service Procedures 8-2

Message Queues and Message Priority 8-4

Flow Control 8-6

Example 8-8

Chapter 9: Drivers 9-1

Overview of Drivers 9-1

Driver Flow Control 9-3

Driver Programming 9-4

Driver Processing Procedures 9-8

Driver and Module loctls 9-12

Driver Close 9-15

TABLE OF CONTENTS vii

Table of Contents ----'----------'----------

Chapter 10: Complete Driver

Cloning

Loop-Around Driver

Chapter 11: Multiplexing

Multiplexing Configurations

Multiplexer Construction Example

Multiplexing Driver

Chapter 12: Service Interface

Definition

Example

Chapter 13: Advanced Topics

Recovering From No Buffers

Advanced Flow Control

Signals

Control of Stream Head Processing

Appendix A: Kernel Structures

Appendix B: Message Types

viii STREAMS PROGRAMMER'S GUIDE

10-1

10-1

10-2

11-1

11-1

11-5

11-8

12-1

12-1

12-3

13-1

13-1

13-4

13-5

13-7

A-I

B-1

---------------- Table of Contents

Appendix C: Utilities

Appendix D: Design Guidelines

Appendix E: Configuring

Glossary

Index

C-l

0-1

E-1

G-1

1-1

TABLE OF CONTENTS ix

List of Figures

Figure 1-1: Stream to Communications Driver
Figure 1-2: Case Converter Module

Figure 3-1: Many-to-One Multiplexer
Figure 3-2: One-to-Many Multiplexer
Figure 3-3: Many-to-Many Multiplexer
Figure 3-4: Protocol Multiplexer
Figure 3-5: Before Link
Figure 3-6: IP Multiplexer After First Link
Figure 3-7: IP Multiplexer
Figure 3-8: TP Multiplexer

Figure 4-1: Protocol Substitution
Figure 4-2: Service Interface

Figure 5-1: Downstream Stream Construction
Figure 5-2: QUEUE Data Structures

Figure 7-1: Message Form and Linkage

Figure 8-1: Message Queue Priority

Figure 9-1: Device Driver Streams

Figure 10-1: Loop Around Streams

Figure 11-1: Internet Multiplexer Before Connecting
Figure 11-2: Internet Multiplexer After Connecting
Figure 11-3: Example Multiplexer Configuration

1-3
1-6

3-1
3-2
3-2
3-4
3-6
3-7
3-8

3-10

4-2
4-3

5-3
5-4

7-2

8-4

9-2

10-3

11-5
11-6

11-12

Figure B-1: MJROTO and M-PCPROTO Message Structure B-3

LIST OF FIGURES xi

Introduction to this Guide

This document provides information to developers on the use of the
STREAMS mechanism at user and kernel levels.

STREAMS was incorporated in UNIX System V Release 3.1 to augment
the existing character input/output (I/O) mechanism and to support develop
ment of communication services. The STREAMS Programmer's Guide includes
detailed information, with various examples, on the development methods
and design philosophy of all aspects of STREAMS.

This guide is organized into two parts. Part 1: Applications Program
ming, describes the development of user level applications. Part 2: Module
and Driver Programming, describes the STREAMS kernel facilities for
development of modules and drivers. Although chapter numbers are consecu
tive, the two parts are independent. Working knowledge of the STREAMS Pri-
mer is assumed. '

PREFACE xiii

STREAMS Overview

This section reviews the STREAMS mechanism. STREAMS is a general,
flexible facility and a set of tools for development of UNIX system communi
cation services. It supports the implementation of services ranging from com
plete networking protocol suites to individual device drivers. STREAMS
defines standard interfaces for character input/output within the kernel, and
between the kernel and the rest of the UNIX system. The associated mechan
ism is simple and open-ended. It consists of a set of system calls, kernel
resources, and kernel routines.

The standard interface and mechanism enable modular, portable develop
ment and easy integration of higher performance network services and their
components. STREAMS provides a framework; it does not impose any
specific network architecture. The STREAMS user interface is upwardly com
patible with the character I/O user interface, and both user interfaces are
available in UNIX System V Release 3.1 and subsequent releases.

A Stream is a full-duplex processing and data transfer path between a
STREAMS driver in kernel space and a process in user space (see Figure 1).
In the kernel, a Stream is constructed by linking a stream head, a driver and
zero or more modules between the stream head and driver. The Stream head
is the end of the Stream closest to the user process. Throughout this guide,
the word "STREAMS" will refer to the mechanism and the word "Stream"
will refer to the path between a user and a driver.

A STREAMS driver may be a device driver that provides the services of
an external I/0 device, or a software driver, commonly referred to as a
pseudo-device driver, that performs functions internal to a Stream. The
Stream head provides the interface between the Stream and user processes.
Its principal function is to process STREAMS-related user system calls.

Data are passed between a driver and the Stream head in messages. Mes
sages that are passed from the. Stream head toward the driver are said to
travel downstream. Similarly, messages passed in the other direction travel
upstream. The Stream head transfers data between the data space of a user
process and STREAMS kernel data space. Data to be sent to a driver from a
user process are packaged into STREAMS messages and passed downstream.
When a message containing data arrives at the Stream head from downstream,
the message is processed by the Stream head, which copies the data into user
buffers.

xiv STREAMS PROGRAMMER'S GUIDE

Stream
Head

Module

Driver

Figure 1: Basic Stream

User
Process

----- 1....----

External
Interface

STREAMS Overview

! downstream

(optional)

1 upstream

Within a Stream, messages are distinguished by a type indicator. Certain
message types sent upstream may cause the Stream head to perform specific
actions, such as sending a signal to a user process. Other message types are
intended to carry information within a Stream and are not directly seen by a
user process.

PREFACE xv

STREAMS Overview

One or more kernel-resident modules may be inserted into a Stream
between the Stream head and driver to perform intermediate processing of
data as it passes between the Stream head and driver. STREAMS modules are
dynamically interconnected in a Stream by a user process. No kernel pro
gramming, assembly, or link editing is required to create the interconnection.

xvi STREAMS PROGRAMMER'S GUIDE

Development Facilities

General and STREAMS-specific system calls provide the user level facili
ties required to implement application programs. This system call interface is
upwardly compatible with the character I/O facilities. The open(2) system
call will recognize a STREAMS file and create a Stream to the specified driver.
A user process can receive and send data on STREAMS files using read(2) and
write(2) in the same manner as with character files. The ioctl(2) system call
enables users to perform functions specific to a particular device and a set of
generic STREAMS ioctl commands [see streamio(7)] support a variety of func
tions for accessing and controlling Streams. A close(2) will dismantle a
Stream.

In addition to the generic ioctl commands, there are STREAMS-specific
system calls to support unique STREAMS facilities. The poll(2) system call
enables a user to poll multiple Streams for various events. The putmsg(2) and
getmsg(2) system calls enable users to send and receive STREAMS messages,
and are suitable for interacting with STREAMS modules and drivers through a
service interface.

STREAMS provides kernel facilities and utilities to support development
of modules and drivers. The Stream head handles most system calls so that
the related processing does not have to be incorporated in a module and
driver. The configuration mechanism allows modules and drivers to be incor
porated into the system.

Examples are used throughout both parts of this document to highlight
the most important and common capabilities of STREAMS. The descriptions
are not meant to be exhaustive. For simplicity, the examples reference fic
tional drivers and modules.

Appendix C provides the reference for STREAMS kernel utilities.
STREAMS system calls are specified in Section 2 of the Programmer's Reference
Manual. STREAMS utilities are specified in Section 1M of the System
Administrator's Reference Manual. STREAMS-specific ioctl calls are specified
in streamio(7) of the System Administrator's Reference Manual. The modules
and drivers available with UNIX System V Release 3.1 are described in Sec
tion 7 of the System Administrator's Reference Manual.

PREFACE xvii

Introduction to Part 1

Part 1 of the guide, Application Programming, provides detailed informa
tion, with various examples, on the user interface to STREAMS facilities. It is
intended for application programmers writing to the STREAMS system call
interface. Working knowledge of UNIX system user programming, data com
munication facilities, and the STREAMS Primer it> assumed. The organization
of Part 1 is as follows:

• Chapter 1, Basic Operations, describes the basic operations available for
constructing, using, and dismantling Str~ams. These operations are
performed using open(2), close(2), re;td(2), write(2), and ioctl(2).

• Chapter 2, Advanced Operations, presents advanced facilities provided
by STREAMS, including: poll(2), a user level I/O polling facility; asyn
chronous I/O processing support; and a new facility for sampling
drivers for available resources.

• Chapter 3, Multiplexed Streams, describes the construction of sophisti
cated, multiplexed Stream configurations.

• Chapter 4, Message Handling, describes how users can process
STREAMS messages using putmsg(2) and getmsg(2) in the context of a
service interface example.

APPLICATION PROGRAMMING

Chapter 1: Basic Operations

A Simple Stream

Inserting Modules

Module and Driver Control

1-1

1-4

1-7

TABLE OF CONTENTS I

A Simple Stream

This chapter describes the basic set of operations for manipulating
STREAMS entities.

A STREAMS driver is similar to a character I/O driver in that it has one
or more nodes associated with it in the file system, and it is accessed using the
open system call. Typically, each file system node corresponds to a separate
minor device for that driver. Opening different minor devices of a driver will
cause separate Streams to be connected between a user process and the driver.
The file descriptor returned by the open call is used for further access to the
Stream. If the same minor device is opened more than once, only one Stream
will be created; the first open call will create the Stream, and subsequent open
calls will return a file descriptor that references that Stream. Each process that
opens the same minor device will share the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using
the write system call and receive data from the device using the read system
call. Access to STREAMS drivers using read and write is compatible with the
character I/O mechanism.

The close system call will close a device and dismantle the associated
Stream.

The following example shows how a simple Stream is used. In the exam
ple, the user program interacts with a generic communications device that pro
vides point-to-point data transfer between two computers. Data written to the
device is transmitted over the communications line, and data arriving on the
line can be retrieved by reading it from the device.

BASIC OPERATIONS 1-1

A Simple Stream

#:include <fc:ntl.h>

maine)
{

char blf[1024];
int fd, count;

if «fd = open("/dev/oc:mn01", O_RDWR» < 0)
perror("open failed");
exit(1);

while «count = read(fd, blf, 1024» > 0)
if (write(fd, blf, count) 1= count) {

perror("write failed");
break;

exit(O);

In the example, /dev /commOl identifies a minor device of the communi
cations device driver. When this file is opened, the system recognizes the
device as a STREAMS device and connects a Stream to the driver. Figure 1-1
shows the state of the Stream following the call to open.

1-2 STREAMS PROGRAMMER'S GUIDE

Stream
Head

Communications
Driver

Figure 1-1: Stream to Communications Driver

A Simple Stream

____ ~s!!:. ~pace

Kernel Space

This example illustrates a user reading data from the communications dev
ice and then writing the input back out to the same device. In short, this pro
gram echoes all input back over the communications line: The example
assumes that a User is sending data from the other side of the communications
line. The program reads up to 1024 bytes at a time, and then writes the
number of bytes just read.

The read call returns the available data, which may contain fewer than
1024 bytes. If no data are currently available at the Stream head, the read
call blocks until data arrive.

Similarly, the write call attempts to send count bytes to /dev /commOl.
However, STREAMS irpplements a flow control mechanism that prevents a
user from flooding a device driver with data, thereby exhausting systetn
resources. If the Stream exerts flow control on the user, the write call blocks
until the flow control has been relaxed; The call will not return until it has
sent count bytes to the device. exit(2) is called to terminate the user process.
This system call also closes all open files, thereby dismantling the Stream in
this example.

BASIC OPERATIONS 1-3

Inserting Modules

An advantage of STREAMS over the existing character I/O mechanism
stems from the ability to insert various modules into a Stream to process and
manipulate data that passes between a user process and the driver. The fol
lowing example extends the previous communications device echoing example
by inserting a module in the Stream to change the case of certain alphabetic
characters. The case converter module is passed an input string and an output
string by the user. Any incoming data (from the driver) is inspected for
instances of characters in the module's input string and the alphabetic case of
all matching characters is changed. Similar actions are taken for outgoing data
using the output string. The necessary declarations for this program are
shown below:

#:include <str:ing.h>
#:include <fcntl. h>

#:include <stropts.h>

1*
* These defines 1iiOUld typically be

* found in a header file for the !IDdule

*1
#define OOTPUT_S'llUm 1
#define INPU'l'_S'l.'RIro 2

main()

{

char blf[1024];
int fd, count;
st:ruct strioctl strioctl;

The first step is to establish a Stream to the communications driver and
insert the case converter module. The following sequence of system calls
accomplishes this:

1-4 STREAMS PROGRAMMER'S GUIDE

if «fd = open("/dev/ocmn01", O_RIMR)) < 0)
perror("open failed");
exit(1);

if (ioctl(fd, I_PUSH, "case_converter") < 0)

perror("ioctl I_PUSH failed");
exit(2) ;

Inserting Modules

The LPUSH ioctl call directs the Stream head to insert the case converter
module between the driver and the Stream head, creating the Stream shown
in Figure 1-2. As with any driver, this module resides in the kernel and must
have been configured into the system before it was booted. LPUSH is one of
several generic STREAMS ioctl commands that enable a user to access and
control individual Streams [see streamio(7)].

BASIC OPERATIONS 1-5

Inserting Modules

- ---- ----
Stream

Head

Case
Converter

Communications
Driver

Figure 1-2: Case Converter Module

___ }:!s!!.. ~pace

Kernel Space

An important difference between STREAMS drivers and modules is illus
trated here. Drivers are accessed through a node or nodes in the file system
and may be opened just like any other device. Modules, on the other hand,
do not occupy a file system node. Instead, they are identified through a
separate naming convention, and are inserted into a Stream using LPUSH.
The name of a module is defined by the module developer and is typically
included on the manual page describing the module. (Manual pages describ
ing STREAMS drivers and modules are found in section 7 of the System
Administrator's Reference Manual.)

Modules ~re pushed onto a Stream and removed from a Stream in Last
In-Ftrst-Out (UFO) order. Therefore, if a second module was pushed onto
this Stream, it would be inserted between the Stream head and the case con
verter module.

1-6 STREAMS PROGRAMMER'S GUIDE

Module and Driver Control

The next step in this example is to pass the input string and output string
to the case converter module. This can be accomplished by issuing ioctl calls
to the case converter module as follows:

/* set inplt camrersial string * /
strioctl.ic_cmi = INIUl'_~; /* ocmaand type *1
strioctl. ic_ tinrAlt = 0; /* default timeCAl.t (15 sec) * /
strioctl. ic_dp = "ABC:DI!:FGILJ";
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0)
perror("ioctl I_STR failed");
exit(3) ;

/* set output oanversial striIq * /
strioctl.ic_cmi = CX1l'PtlT_~;/* ocmaand type */
strioctl.ic_dp = "abcx2efghij";
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &8trioctl) < 0)
perror("ioctl I_STR failed");
exit(4) ;

ioctl requests are issued to STREAMS drivers and modules indirectly,
using the LSTR ioctl call [see streamio(7»). The argument to LSTR must be
a pointer to a strioctl structure, which specifies the request to be made to a
module or driver. This structure is defined in <stropts.h> and has the fol
lowing format:

BASIC OPERATIONS 1-7

Module and Driver Control

struct strioctl {
int ic_Old;
int ic_tinDut;
int ic_len;
char *ic_dp;

}

/* ioctl request * /
/* N:K/NAK timeout * /
/* length of data argument * /
/* ptr to data argument * /

where ic_cmd identifies the command intended for a module or driver,
ic_timout specifies the number of seconds an LSTR request should wait for
an acknowledgment before timing out, ic_len is the number of bytes of data
to accompany the request, and iCJp points to that data.

LSTR is intercepted by the Stream head, which packages it into a mes
sage, using information contained in the strioctl structure, and sends the mes
sage downstream. The request will be processed by the module or driver
closest to the Stream head that understands the command specified by
ic_cmd. The ioctI call will block up to ic_timout seconds, waiting for the tar
get module or driver to respond with either a positive or negative ack
nowledgment message. If an acknowledgment is not received in ic_timout
seconds, the ioctl call will fail.

LSTR is actually a nested request; the Stream head intercepts LSTR and
then sends the driver or module request (as specified in the strioctl structure)
downstream. Any module that does not understand the command in ic_cmd
will pass the message further downstream. Eventually, the request will reach
the target module or driver, where it is processed and acknowledged. If no
module or driver understands the command, a negative acknowledgment will
be generated, and the ioctl call will fail.

In the example, two separate commands are sent to the case converter
module. The first contains the conversion string for input data, and the
second contains the conversion string for output data. The ic_cmd field is set
to indicate whether the command is setting the input or output conversion
string. For each command, the value of ic_timout is set to zero, which speci
fies the system default timeout value of 15 seconds. Also, a data argument
that contains the conversion string accompanies each command. The ic_dp
field points to the beginning of each string, and ic_len is set to the length of
the string.

1-8 STREAMS PROGRAMMER'S GUIDE

Module and Driver Control

Only one I_STR request can be active on a STREAM at one time. Further
requests will block until the active LSTR request is acknowledged and the
system call completes.

The strioctl structure is also used to retrieve the results, if any, of an
LSTR request. If data is returned by the target module or driver, ic_dp must
point to a buffer large enough to hold that data, and ic_Ien will be set on
return to indicate the amount of data returned.

The remainder of this example is identical to the previous example:

while «CXlIlIlt = read(fd, buf, 1024» > 0)
if (write (fd, bJf, CXlIlIlt) I = CXlUIlt) {

perrar(''write failed");

break;

exit(O);

The case converter module will convert the specified input characters to
lower case, and the corresponding output characters to upper case. Notice
that the case conversion processing was realized with no change to the com
munications driver.

As with the previous example, the exit system call will dismantle the
Stream before terminating the process. The case converter module will be
removed from the Stream automatically when it is dosed. Alternatively,
modules may be removed from a Stream using the LPOP ioctl call described
in streamio(7). This call removes the topmost module on the Stream and
enables a user process to alter the configuration of a Stream dynamically, by
pushing and popping modules as needed.

BASIC OPERATIONS 1-9

Module and Driver Control

A few of the important ioctl requests supported by STREAMS have been
discussed. Several other requests are available to support operations such as
determining if a given module exists on the Stream, or flushing the data on a
Stream. These requests are described fully in streamio(7}.

1-10 STREAMS PROGRAMMER'S GUIDE

Chapter 2: Advanced Operations

Advanced Input/Output Facilities

Input/Output Polling

Asynchronous Input/Output

Clone Open

TABLE OF CONTENTS

2-1

2-2

2-7

2-8

Advanced Input/Output Facilities

The traditional input/output facilities-open, close, read, write, and
ioctl-have been discussed, but STREAMS supports new user capabilities that
will be described in the remaining chapters of this guide. This chapter
describes a facility that enables a user process to poll multiple Streams simul
taneously for various events. Also discussed is a signaling feature that sup
ports asynchronous IjO processing. Finally, this chapter presents a new
mechanism for finding available minor devices, called clone open.

ADVANCED OPERATIONS 2-1

Input/Output Polling

The poll(2) system call provides users with a mechanism for monitoring
input and output on a set of file descriptors that reference open Streams. It
identifies those Streams over which a user can send or receive data. For each
Stream of interest users can specify one or more events about which they
should be notified. These events include the following:

POLLIN Input data is available on the Stream associated with the given
file descriptor.

POLLPRI A priority message is available on the Stream associated with
the given file descriptor. Priority messages are described in
the section of Chapter 4 entitled "Accessing the Datagram
Provider. "

POLLOUT The Stream associated with the given file is writable. That is,
the Stream has relieved the flow control that would prevent a
user from sending data over that Stream.

poll will examine each file descriptor for the requested events and, on
return, will indicate which events have occurred for each file descriptor. If no
event has occurred on any polled file descriptor, poll blocks until a requested
event or timeout occurs. The specific arguments to poll are the following:

• an array of file descriptors and events to be polled

• the number of file descriptors to be polled

• the number of milliseconds poll should wait for an event if no events
are pending (-1 specifies wait forever)

The following example shows the use of poll. Two separate minor dev
ices of the communications driver presented earlier are opened, thereby estab
lishing two separate Streams to the driver. Each Stream is polled for incom
ing data. If data arrives on either Stream, it is read and then written back to
the other Stream. This program extends the previous echoing example by
sending echoed data over a separate communications line (minor device). The
steps needed to establish each Stream are as follows:

2-2 STREAMS PROGRAMMER'S GUIDE

#include <fc:ntl.h>
#include <poll.h>

Input/Output Polling

#define NroLL 2 /* number of file descriptors to poll */

maine)
{

struct pollfd pollfds[NroLL];
char buf[1024];
int cmmt, i;

if «pollfds[O].fd = open("/dev/cx:mn01", O_RnIlRI O_NDELAY)) < 0) {

perr=("open failed for /dev/conm01");
exit(1);

if «pollfds[1].fd = open("/dev/cx:mn02", O_RnIlRIO_NDELAY» < 0) {

perr=("open failed for /dev/conm02");
exit(2) ;

The variable pollfds is declared as an array of pollfd structures, where
this structure is defined in <poll.h> and has the following format:

st.:ruct p:::>llfd {

}

int fd;
short events;
short revents;

/* file descriptor .*/

/* requested events * /
/* returned events */

For each entry in the array, fd specifies the file descriptor to be polled and
events is a bitmask that contains the bitwise inclusive OR of events to be
polled on that file descriptor. On return, the revents bitmask will indicate
which of the requested events has occurred.

ADVANCED OPERATIONS 2-3

Input/Output Polling

The example opens two separate minor devices of the communications
driver and initializes the pollfds entry for each. The remainder of the example
uses poll to process incoming data as follows:

/* set events to poll for inoaning data * /
pollfds[O].events = roLLIN;
pollfds[1].events = roLLIN;

while (1) {
/* poll and use -1 timeout (infinite) */

if (poll (pollfds , NPOLL, -1) < 0) {

perror("poll failed");

exit(3) ;

for (i = 0; i < NPOLL; i++) {

switch (pollfds[i].revents)

default:
perror("error event");
exit(4) ;

case 0:

break;

case roLLIN:

/* default error case */

/* no events */

/* echo inoaning data an "other" Stream */
while «count = read(pollfds[i].fd, buf, 1024)) > 0)

/*

* the write loses data if flow control

* prevents the transmit at this time.

*/
if (write ((i==O? pollfds[l].fd: pollfds[O].fd),

buf, count) I = count)

fprintf (stderr ,"writer lost data \n") ;

break;

2-4 STREAMS PROGRAMMER'S GUIDE

Input/Output Polling

The user specifies the polled events by setting the events field of the
pollfd structure to POLLIN. This requested event directs poll to notify the
user of any incoming data on each Stream. The bulk of the example is an
infinite loop, where each iteration will poll both Streams for incoming data.

The second argument to poll specifies the number of entries in the pollfds
array (2 in this example). The third argument is a timeout value indicating
the number of milliseconds poll should wait for an event if none has
occurred. On a system where mUlisecond accuracy is not available, timeout is
rounded up to the nearest legal value available on that system. Here, the
value of timeout is -I, specifying that poll should block indefinitely until a
requested event occurs or until the call is interrupted.

If poll succeeds, the program looks at each entry in pollfds. If revents is
set to 0, no event has occurred on that file descriptor. If revents is set to POL
LIN, incoming data is available. In this case, all available data is read from
the polled minor device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must
have occurred on that Stream, because the only requested event was POLLIN.
The following error events are defined for poll. These events may not be
polled for by the user, but will be reported in revents whenever they occur.
As such, they are only valid in the revents bitmask:

POLLERR A fatal error has occurred in some module or driver on the
Stream associated with the specified file descriptor. Further
system calls will fail.

POLLHUP A hangup condition exists on the Stream associated with the
specified file descriptor.

POLLNV AL The specified file descriptor is not associated with an open
Stream.

The example attempts to process incoming data as quickly as possible.
However, when writing data to a Stream, the write call may block if the
Stream is exerting f!.ow control. To prevent the process frqm blocking, the
minor devices of the communications driver were opened with the
O_NDELAY flag set. If flow control is exerted and O_NDELA Y is set, write
will not be able to send all the data. This can occur if the communications
driver is unable to keep up with the user's rate of data transmission. If the
Stream becomes full, the number of bytes write sends will be less than the
requested count. For simplicity, the example ignores the data if the Stream
becomes full, and a warning is printed to stderr.

ADVANCED OPERATIONS 2-5

Input/Output Polling

This program will continue until an error occurs on a Stream, or until the
process is interrupted.

2-6 STREAMS PROGRAMMER'S GUIDE

Asynchronous Input/Output

The poll system call described above enables a user to monitor multiple
Streams in a synchronous fashion. The poll call normally blocks until an
event occurs on any of the polled file descriptors. In some applications, how
ever, it is desirable to process incoming data asynchronously. For example, an
application may wish to do some local processing and be interrupted when a
pending event occurs. Some time-critical applications cannot afford to block,
but must have immediate indication of success or failure.

A new facility is available for use with STREAMS that enables a user pro
cess to request a signal when a given event occurs on a Stream. When used
with poll, this facility enables applications to asynchronously monitor a set of
file descriptors for events.

The LSETSIG ioctl call [see streamio(7)] is used to request that a SIG
POLL signal be sent to a user process when a specific event occurs. Listed
below are the events for which an application may be signaled:

S-INPUT Data has arrived at the Stream head, and no data existed at
the Stream head when it arrived.

S-HIPRI A priority STREAMS message has arrived at the Stream
head.

S_OUTPUT The Stream is no longer full and can accept output. That
is, the Stream has relieved the flow control that would
prevent a user from sending data over that Stream.

S_MSG A special STREAMS signal message that contains a SIG
POLL signal has reached the front of the Stream head
input queue. This message may be sent by modules or
drivers to generate immediate notification of data or events
to follow.

The polling example could be written to process input from each com
munications driver minor device by issuing LSETSIG to request a signal for
the S_INPUT event on each Stream. The signal catching routine could then
call poll to determine on which Stream the event occurred. The default action
for SIGPOLL is to terminate the process. Therefore, the user process must
catch the signal using signal(2). SIGPOLL will only be sent to processes that
request the signal using LSETSIG.

ADVANCED OPERATIONS 2-7

Clone Open

In the earlier examples, each user process connected a Stream to a driver
by opening a particular minor device of that driver. Often, however, a user
process wants to connect a new Stream to a driver regardless of which minor
device is used to access the driver.

In the past, this typically forced the user process to poll the various minor
device nodes of the driver for an available minor device. To alleviate this
task, a facility called done open is supported for STREAMS drivers. If a
STREAMS driver is implemented as a cloneable device, a single node in the
file system may be opened to access any unused minor device. This special
node guarantees that the user will be allocated a separate Stream to the driver
on every open call. Each Stream will be associated with an unused minor
device, so the total number of Streams that may be connected to a cloneable
driver is limited by the number of minor devices configured for that driver.

The clone device may be useful, for example, in a networking environ
ment where a protocol pseudo-device driver requires each user to open a
separate Stream over which it will establish communication. Typically, the
users would not care which minor device they used to establish a Stream to
the driver. Instead, the clone device can find an available minor device for
each user and establish a unique Stream to the driver. Chapter 3 describes
this type of transport protocol driver.

2-8

A user program has no control over whether a given driver supports the
done open. The decision to implement a STREAMS driver as a cloneable
device is made by the designers of the device driver.

STREAMS PROGRAMMER'S GUIDE

Chapter 3: Multiplexed Streams

Multiplexer Configurations

Building a Multiplexer

Dismantling a Multiplexer

Routing Data Through a Multiplexer

3-1

3-4

3-13

3-14

TABLE OF CONTENTS

Multiplexer Configurations

In the earlier chapters, Streams were described as linear connections of
modules, where each invocation of a module is connected to at most one
upstream module and one downstream module. While this configuration is
suitable for many applications, others require the ability to multiplex Streams
in a variety of configurations. Typical examples are terminal window facili
ties, and internetworking protocols (which might route data over several sub
networks).

An example of a multiplexer is one that multiplexes data from several
upper Streams over a single lower Stream, as shown in Figure 3-1. An upper
Stream is one that is upstream from a multiplexer, and a lower Stream is one
that is downstream from a multiplexer. A terminal windowing facility might
be implemented in this fashion, where each upper Stream is associated with a
separate window.

MUX

Figure 3-1: Many-to-One Multiplexer

A second type of multiplexer might route data from a single upper Stream
to one of several lower Streams, as shown in Figure 3-2. An internetworking
protocol could take this form, where each lower Stream links the protocol to a
different physical network.

MULTIPLEXED STREAMS 3-1

Multiplexer Configurations

MUX

Figure 3-2: One-to-Many Multiplexer

A third type of multiplexer might route data from one of many upper
Streams to one of many lower Streams, as shown in Figure 3-3.

MUX

Figure 3-3: Many-to-Many Multiplexer

3-2 STREAMS PROGRAMMER'S GUIDE

Multiplexer Configurations

A STREAMS mechanism is available that supports the multiplexing of
Streams through special pseudo-device drivers. Using a linking facility, users
can dynamically build, maintain, and dismantle each of the above multiplexed
Stream configurations. In fact, these configurations can be further combined
to form complex, multilevel, multiplexed Stream configurations.

The remainder of this chapter describes multiplexed Stream configurations
in the context of an example (see Figure 3-4). In this example, an internet
working protocol pseudo-device driver (IP) is used to route data from a single
upper Stream to one of two lower Streams. This driver supports two
STREAMS connections beneath it to two distinct sub-networks. One sub
network supports the IEEE 802.3 standard for the CSMAjCD medium access
method. The second sub-network supports the IEEE 802.4 standard for the
token-passing bus medium access method.

The example also presents a transport protocol pseudo-device driver (TP)
that multiplexes multiple virtual circuits (upper Streams) over a single Stream
to the IP pseudo-device driver.

MULTIPLEXED STREAMS 3-3

Building a Multiplexer

Figure 3-4 shows the multiplexing configuration to be created. This confi
guration will enable users to access the services of the transport protocol. To
free users from the need to know about the underlying protocol structure, a
user-level daemon process will build and maintain the multiplexing configura
tion. Users can then access the transport protocol directly by opening the TP
driver device node.

~ee
____ ___ 1 ___ ___ 1 _______ t __ __ ll~e! ~Eace

802.4
Driver

Figure 3-4: Protocol Multiplexer

TP
Driver

IP
Driver

3-4 STREAMS PROGRAMMER'S GUIDE

802.3
Driver

Kernel Space

Building a Multiplexer

The following example shows how this daemon process sets up the proto
col multiplexer. The necessary declarations and initialization for the daemon
program are as follows:

#include <fcntl.h>
#include <stropts .h>

main()

{

int fd_B02_4,
fd_B02_3,

fd_ip,

fd_tp;

/*
* daem:m-ize this process

*/

switch (f=k(»
case 0:

break;
case -1:

perr=("f=k failed");
exit(2) ;

default:
exit(O) ;

setpgrp();

This multilevel, multiplexed Stream configuration will be built from the
bottom up. Therefore, the example begins by constructing the IP multiplexer.
This multiplexing pseudo-device driver is treated like any other software
driver. It owns a node in the UNIX file system and is opened just like any
other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver,
creating separate Streams above each driver as shown in Figure 3-5. The
Stream to the 802.4 driver may now be connected below the multiplexing IP
driver using the LLINK ioctl call.

MULTIPLEXED STREAMS 3-5

Building a Multiplexer ----------------------

802.4
Driver

Figure 3-5: Before Link

IP
Driver

The sequence of instructions to this point is:

____ ll~e! §Eace

Kernel Space

if «fd_B023 = open("/dev/8023", O_RIMR» < 0) {
perr=("open of ldev/802_4 failed");
exit(1);

if «fd_ip = open("/dev/ip", O_RIMR» < 0) {
perr=("open of ldev/ip failed");
exit(2) ;

1* now link B02. 4 to underside of IP *1

if (ioctl(fd_ip, I_LINK, fd_B023) < 0) {
perr=("I_LINK ioctl failed");
exit(3);

3-6 STREAMS PROGRAMMER'S GUIDE

Building a Multiplexer

LLINK takes two file descriptors as arguments. The first file descriptor,
fd_ip, must reference the Stream connected to the multiplexing driver, and the
second file descriptor, fd_B02_4, must reference the Stream to be connected
below the multiplexer. Figure 3-6 shows the state of these Streams following
the I_LINK call. The complete Stream to the 802.4 driver has been connected
below the IP driver, including the Stream head. The Stream head of the 802.4
driver will be used by the IP driver to manage the multiplexer.

___________ ~i~ ________ 12!."! §eace

IP
Driver

802.4
Driver

Figure 3-6: IP Multiplexer After First Link

Kernel Space

LLINK will return an integer value, called a mux id, which is used by the
multiplexing driver to identify the Stream just connected below it. This mux
10 is ignored in the example, but may be useful for dismantling a multiplexer
or routing data through the multiplexer. Its significance is discussed later.

The following sequence of system calls is used to continue building the
internetworking multiplexer (IP):

MULTIPLEXED STREAMS 3-7

Building a Multiplexer

if «fd_802_3 = open("/dev/802_3", O_RI:MR» < 0) {

perror("open of /dev/802_3 failed");
exit(4);

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0)

perror("I_LINK ioctl failed");
exit(S);

All links below the IP driver have now been established, giving the confi
guration in Figure 3-7.

ControllinJ
Stream

Figure 3-7: IP Multiplexer

802.4
Driver

IP
Driver

3-8 STREAMS PROGRAMMER'S GUIDE

802.3
Driver

Building a Multiplexer

The Stream above the multiplexing driver used to establish the lower con
nections is the controlling Stream and has special significance when disman
tling the multiplexing configuration, as will be illustrated later in this chapter.
The Stream referenced by fd_ip is the controlling Stream for the IP multi
plexer.

The order in which the Streams in the multiplexing configuration are opened
is unimportant. If, however, it is necessary to have intermediate modules in
the Stream between the IP driver and media drivers, these modules must be
added to the Streams associated with the media drivers (using LPUSH)
before the media drivers are attached below the multiplexer.

The number of Streams that can be linked to a multiplexer is restricted by
the design of the particular multiplexer. The manual page describing each
driver (typically found in section 7 of the System Administrator's Reference
Manual) should describe such restrictions. However, only one LLINK opera
tion is allowed for each lower Stream; a single Stream cannot be linked below
two multiplexers simultaneously.

Continuing with the example, the IP driver will now be linked below the
transport protocol (TP) multiplexing driver. As seen earlier in Figure 3-4, only
one link will be supported below the transport driver. This link is formed by
the following sequence of system calls:

if «fd_tp = open("/dev/tp", O_RmR» < 0) {
perror("open of /dev/tp failed");
exit(6) ;

if (ioctl(fd_tp, I_LINK, fd_ip) < 0)

perror("I_LINK ioctl failed");
exit(7) ;

MULTIPLEXED STREAMS 3-9

Building a Multiplexer

The multilevel multiplexing configuration shown in Figure 3-8 has now
been created.

___________ ~i~ ________ T,J~e! !?eace

- Kernel Space

ControllinJ
..

Stream
TP

Driver

L-J
IP

Driver

L-J L-J
802.4 802.3
Driver Driver

Figure 3-8: TP Multiplexer

Because the controlling Stream of the IP multiplexer has been linked
below the TP multiplexer, the controlling Stream for the new multilevel multi
plexer configuration is the Stream above the TP multiplexer.

At this point the file descriptors associated with the lower drivers can be
closed without affecting the operation of the multiplexer. Closing these file
descriptors may be necessary when building large multiplexers, so that many
devices can be linked together without exceeding the UNIX system limit on

3-10 STREAMS PROGRAMMER'S GUIDE

Building a Multiplexer

the number of simultaneously open files per process. If these file descriptors
are not closed, all subsequent read, write, ioctl, poll, getmsg, and putmsg
system calls issued to them will fail. That is because LLINK associates the
Stream head of each linked Stream with the multiplexer, so the user may not
access that Stream directly for the duration of the link.

The following sequence of system calls will complete the multiplexing
daemon example:

close(fd_802_4);
close(fd_802_3);
close (fd_ip) ;

/* Hold IIIlltiplexer open f=ever */

pause() ;

Figure 3-4 shows the complete picture of the multilevel protocol multi
plexer. The transport driver is designed to support several, simultaneous vir
tual circuits, where these virtual circuits map one-to-one to Streams opened to
the transport driver. These Streams will be multiplexed over the single
Stream connected to the IP multiplexer. The mechanism for establishing mul
tiple Streams above the transport multiplexer is actually a by-product of the
way in which Streams are created between a user process and a driver. By
opening different minor devices of a STREAMS driver, separate Streams will
be connected to that driver. Of course, the driver must be designed with the
intelligence to route data from the single lower Stream to the appropriate
upper Stream.

Notice in Figure 3-4 that the daemon process maintains the multiplexed
Stream configuration through an open Stream (the controlling Stream) to the
transport driver. Meanwhile, other users can access the services of the tran
sport protocol by opening new Streams to the transport driver; they are freed
from the need for any unnecessary knowledge of the underlying protocol con
figurations and sub-networks that support the transport service.

MULTIPLEXED STREAMS 3-11

Building a Multiplexer ----------------------

Multilevel, multiplexing configurations, such as the one presented in the
above example, should be assembled from the bottom up. That is because
STREAMS does not allow ioctl requests (including LLINK) to be passed
through higher multiplexing drivers to reach the desired multiplexer; they
must be sent directly to the intended driver. For example, once the IP driver
is linked under the TP driver, ioctl requests cannot be sent to the IP driver
through the TP driver.

3-12 STREAMS PROGRAMMER'S GUIDE

Dismantling a Multiplexer

Streams connected to a multiplexing driver from above with open, can be
dismantled by closing each Stream with close. In the protocol multiplexer,
these Streams correspond to the virtual circuit Streams above the TP multi
plexer. The mechanism for dismantling Streams that have been linked below
a multiplexing driver is less obvious and is described below in detail.

The LUNLINK ioctl call is used to disconnect each multiplexer link
below a multiplexing driver individually. This command takes the following
form:

ioctl(fd, I_UNLINK, InUX_id);

where fd is a file descriptor associated with a Stream connected to the multi
plexing driver from above, and mux_id is the identifier that was returned by
LLINK when a driver was linked below the multiplexer. Each lower driver
may be disconnected individually in this way, or a special mux_id value of -1
may be used to disconnect all drivers from the multiplexer simultaneously.

In the multiplexing daemon program presented earlier, the multiplexer is
never explicitly dismantled. That is because all links associated with a multi
plexing driver are automatically dismantled when the controlling Stream asso
ciated with that multiplexer is closed. Because the controlling Stream is open
to a driver, only the final call of close for that Stream will close it. In this
case, the daemon is the only process that has opened the controlling Stream,
so the multiplexing configuration will be dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multilevel, mul
tiplexed Stream configuration, the controlling Stream for each multiplexer at
each level must be linked under the next higher level multiplexer. In the
example, the controlling Stream for the IP driver was linked under the TP
driver. This resulted in a single controlling Stream for the full, multilevel con
figuration. Because the multiplexing program relied on closing the controlling
Stream to dismantle the multiplexed Stream configuration instead of using
explicit LUNLINK calls, the mux ID values returned by LLINK could be
ignored.

An important side effect of automatic dismantling on close is that it is not
possible for a process to build a multiplexing configuration and then exit.
That is because exit(2) will close all files associated with the process, including
the controlling Stream. To keep the configuration intact, the process must
exist for the life of that multiplexer. That is the motivation for implementing
the example as a daemon process.

MULTIPLEXED STREAMS 3-13

Routing Data Through a Multiplexer

As demonstrated, STREAMS has provided a mechanism for building mul
tiplexed Stream configurations. However, the criteria on which a multiplexer
routes data is driver-dependent. For example, the protocol multiplexer shown
in the last example might use address information found in a protocol header
to determine over which sub-network a given packet should be routed. It is
the multiplexing driver's responsibility to define its routing criteria.

One routing option available to the multiplexer is to use the mux 10 value
to determine to which Stream data should be routed (remember that each
multiplexer link is associated with a mux 10). LLINK passes the mux 10
value to the driver and returns this value to the user. The driver can therefore
specify that the mux 10 value must accompany data routed through it. For
example, if a multiplexer routed data from a single upper Stream to one of
several lower Streams (as did the IP driver), the multiplexer could require the
user to insert the mux 10 of the desired lower Stream into the first four bytes
of each message passed to it. The driver could then match the mux 10 in
each message with the mux 10 of each lower Stream and route the data
accordingly.

3-14 STREAMS PROGRAMMER'S GUIDE

Chapter 4: Message Handling

Service Interface Messages
Service Interfaces

The Message Interface

Datagram Service Interface Example
Accessing the Datagram Provider

Closing the Service

Sending a Datagram

Receiving a Datagram

4-1

4-1

4-4

4-7

4-9

4-13

4-13

4-15

TABLE OF CONTENTS

Service Interface Messages

A STREAMS message format has been defined to simplify the design of
service interfaces. Also, two new system calls, getmsg(2) and putmsg(2), are
available for sending these messages downstream and receiving messages that
are available at the Stream head. This chapter describes these system calls in
the context of a service interface example. First, a brief overview of
STREAMS service interfaces is presented.

Service Interfaces
A principal advantage of the STREAMS mechanism is its modularity.

From user level, kernel-resident modules can be dynamically interconnected to
implement any reasonable processing sequence. This modularity reflects the
layering characteristics of contemporary network architectures.

One benefit of modularity is the ability to interchange modules of like
function. For example, two distinct transport protocols, implemented as
STREAMS modules, may provide a common set of services. An application or
higher layer protocol that requires those services can use either module. This
ability to substitute modules enables user programs and higher-level protocols
to be independent of the underlying protocols and physical communication
media.

Each STREAMS module provides a set of processing functions, or services,
and an interface to those services. The service interface of a module defines
the interaction between that module and any neighboring modules, and there
fore is a necessary component for providing module substitution. By creating
a well-defined service interface, applications and STREAMS modules can
interact with any module that supports that interface. Figure 4-1 demonstrates
this.

MESSAGE HANDLING 4-1

Service Interface Messages

"

Application Application
A A

----- ---- ----- -----

SerVice Interface

TCP ISO
Transport Transport

Protocol Protocol

Lower Layer Lower Layer
Protocol Protocol
Suite A Suite B

Figure 4-1: Protocol Substitution

_y~er Space

Kernel Space

By defining a service interface through which applications interact with a
transport protocol, it is possible to substitute a different protocol below that
service interface in a manner completely transparent to the application. In
this example, the same application cari. run over the Transmission Control Pro
tocol (Tep) and the ISO transport protocol. Of course, the service interface
must define a set of services common to both protocols.

The three components of any service interface are the service user, the
service provider, and the service interface itself, as seen in Figure 4-2;

4-2 STREAMS PROGRAMMER'S GUIDE

Request
Primitiv

~
es

......

Figure 4-2: Service Interface

Service Interface Messages

Service
User

Service Interface

t
R esponse and
E vent Primitives

Service
Provider

Typically, a user makes a request of a service provider using some well
defined service primitive. Responses and event indications are also passed
from the provider to the user using service primitives. The service interface is
defined as the set of primitives that define a service and the allowable state
transitions that result as these primitives are passed between the user and pro
vider.

MESSAGE HANDLING 4-3

The Message Interface

A message format has been defined to simplify the design of service inter
faces using STREAMS. Each service interface primitive is a distinct STREAMS
message that has two parts: a control part and a data part. The control part
contains information that identifies the primitive and includes all necessary
parameters. The data part contains user data associated with that primitive.

An example of a service interface primitive is a transport protocol connect
request. This primitive requests the transport protocol service provider to
establish a connection with another transport user. The parameters associated
with this primitive may include a destination protocol address and specific
protocol options to be associated with that connection. Some transport proto
cols also allow a user to send data with the connect request. A STREAMS
message would be used to define this primitive. The control part would iden
tify the primitive as a connect request and would include the protocol address
and options. The data part would contain the associated user data.

STREAMS enables modules to create these messages and pass them to
neighbor modules. However, the read and write system calls are not suffi
cient to enable a user process to generate and receive such messages. First,
read and write are byte-stream oriented, with no concept of message boun
daries. To support service interfaces, the message boundary of each service
primitive must be preserved so that the beginning and end of each primitive
can be located. Also, read and write offer only one buffer to the user for
transmitting and receiving STREAMS messages. If control information and
data were placed in a single buffer, the user would have to parse the contents
of the buffer to separate the data from the control information.

Two new STREAMS system calls are available that enable user processes
to create STREAMS messages and send them to neighboring kernel modules
and drivers or receive the contents of such messages from kernel modules and
drivers. These system calls preserve message boundaries and provide separate
buffers for the control and data parts of a message.

The putmsg system call enables a user to create STREAMS messages and
send them downstream. The user supplies the contents of the control and
data parts of the message in two separate buffers. Likewise, the getmsg sys
tem call retrieves such messages from a Stream and places the contents into
two user buffers.

4-4 STREAMS PROGRAMMER'S GUIDE

The syntax of putmsg is as follows:

int putmsg (fd, ctIptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

The Message Interface

td identifies the Stream to which the message will be passed, ctlptr and
dataptr identify the control and data parts of the message, and flags may be
used to specify that a priority message should be sent.

The strbuf structure is used to describe the control and data parts of a
message and has the following format:

struct strbuf {
int
int
char

maxlen;
len;
*buf;

/* max:innJm buffer length */
/* length of data * /
/* pointer to buffer * /

}

but points to a buffer containing the data and len specifies the number of
bytes of data in the buffer. maxlen specifies the maximum number of bytes
the given buffer can hold and is only meaningful when retrieving information
into the buffer using getmsg.

The getmsg system call retrieves messages available at the Stream head
and has the following syntax:

int getmsg (fd, ctIptr, dataptr, flags)
int fd;
struct strbuf *ct1ptr;
struct strbuf *dataptr;
int *flags;

The arguments to getmsg are the same as those for putmsg.

The remainder of this chapter presents an example that demonstrates how
putmsg and getmsg may be used to interact with the service interface of a
simple datagram protocol provider. A potential provider of such a service
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The example
implements a user level library that would free the user from knowledge of
the underlying STREAMS system calls. The Transport Interface of the

MESSAGE HANDLING 4-5

The Message Interface

Network Services Library in UNIX System Release 3.1 provides a similar func
tion for transport layer services. The example here illustrates how a service
interface might be defined, and is not an example of a complete IEEE 802.2
service interface.

4-6 STREAMS PROGRAMMER'S GUIDE

Datagram Service Interface Example

The example datagram service interface library presented below includes
four functions that enable a user to do the following:

• establish a Stream to the service provider and bind a protocol address
to the Stream

• send a datagram to a remote user

• receive a datagram from a remote user

• close the Stream connected to the provider

First, the structure and constant definitions required by the library are
shown. These typically will reside in a header file associated with the service
interface.

1*
* Primitives initiated by the service user.

*1
#define BIND_Rm 1* bird request *1
#define UNITDATA_Rm 2 1* unitdata request *1

1*
* Primitives initiated by the service provider.

*1
#define CKJCK 3 1* bird acknowledgment *1
#define ERRCR-'II::X 4 1* error acknowledgment *1
#define UNITDATA_IND 5 1* unitdata irdicatian *1

1*
* The following structure definitiClQS define the fonnat of the

* oontrol part of the service interface message of the above

* primitives.
*1

struct bird_req {
lang PRIM_type;
lang BIND _addr;

} ;

1* bird request *1
1* always BIND_Rm *1

1* addr to pind * /

MESSAGE HANDLING 4-7

Datagram Service Interface Example

st:ruct mritdata_req {
lang PRIM_type;
lang DEST3ddr;

} ;

struct ok _ ack {
lang PRIM_type;

} ;

struct error _ ack {
lang PRIM_type;
lang UNlX _error;

} ;

struct mritdata_ind {
lang PRIM_type;
lang SRC _addr;

} ;

1* unitdata request *1
1* always UNITDATA_REtl *1
1* destination addr *1

1* positive ackncMledgment *1
1* always OK_ACK *1

1* err= ackncMledgment *1
1* always ERROILACK *1
1* UNlX error code *1

1* unitdata indication *1
1* always UNITDATA_IND *1
1* source addr *1

1* mrion of all primitives *1
mrion primitives {

lang type;

} ;

st:ruct bind Jeq
struct mritdata_req
st:ruct ok_ ack
st:ruct error_ack
st:ruct mritdata_ind

bind_req;
unitdata_req;
ok_ack;
err=_ack;
unitdata _ ind;

1* header files needed by library *1
#include <stropts.h>
#include <stdio.h>

#include <errno. h>

continued

Five primitives have been defined. The first two represent requests from
the service user to the service provider. These are:

BIND-REQ This request asks the provider to bind a specified protocol
address. It requires an acknowledgment from the pro
vider to verify that the contents of the request were syn
tactically correct.

4-8 STREAMS PROGRAMMER'S GUIDE

Datagram Service Interface Example

UNITDATAJEQ
This request asks the provider to send a datagram to the
specified destination address. It does not require an ack
nowledgment from the provider.

The three other primitives represent acknowledgments of requests, or indi
cations of incoming events, and are passed from the service provider to the
service user. These are:

OK-ACK This primitive informs the user that a previous bind
request was received successfully by the service provider.

ERROLACK This primitive informs the user that a non-fatal error was
found in the previous bind request. It indicates that no
action was taken with the primitive that caused the error.

UNITDATA-IND
This primitive indicates that a datagram destined for the
user has arrived.

The structures defined above describe the contents of the control part of
each service interface message passed between the service user and service
provider. The first field of each control part defines the type of primitive
being passed.

Accessing the Datagram Provider
The first routine presented below, inter_open, opens the protocol driver

device file specified by path and binds the protocol address contained in addr
so that it may receive datagrams. On success, the routine returns the file
descriptor associated with the open Stream; on failure, it returns -1 and sets
errno to indicate the appropriate UNIX system error value.

MESSAGE HANDLING 4-9

Datagram Service Interface Example

inter_open(path, oflags, addr)
char *path;
{

int fd;
struct biIXLreq bind_req;
struct strbuf ctlbuf;
union primitives rcvI:uf;
struct err=_ack *error_ack;
int flags;

if «fd = open(path, of lags» < 0)

retw::n(-1) ;

1* send bind request msg down stream *1

bind_req.PRIM_type = BIND_REX;};
bind _ req.BIND _ addr = addr;

ctlbuf.len = sizeof(struct bind_req);
ctlbuf.buf = (char *) &bind Jeq;

if (putmsg(fd, &ctlbuf, NULL, 0) < 0)
close(fd) ;
retw::n(-1) ;

After opening the protocol driver, inter_open packages a bind request
message to send downstream. putmsg is called to send the request to the ser
vice provider. The bind request message contains a control part that holds a
bind_req structure, but it has no data part. ctlbuf is a structure of type strbuf,
and it is initialized with the primitive type and address. Notice that the max
len field of ctlbuf is not set before calling putmsg. That is because putmsg
ignores this field. The dataptr argument to putmsg is set to NULL to indicate
that the message contains no data part. Also, the flags argument is 0, which
specifies that the message is not a priority message.

After inter_open sends the bind request, it must wait for an acknowledg
ment from the service provider, as follows:

4-10 STREAMS PROGRAMMER'S GUIDE

Datagram Service Interface Example

/* wait f= ack of request */

ctlbuf .maxlen = sizeof(union primitives);
ctlbuf . len = 0;
ctlbuf . buf = (char *)&rcvbuf;
flags = RS_HIPRI;

if (getmsg(fd, &.ctlbuf, NULL, &flags) < 0) {

close(fd) ;
retuxn(-1) ;

/* did we get enough to detenn:ine type * /
if (ctlbuf • len < sizeof (long)) {

close(fd);

errno = EPRO'lU;
return(-1);

/* switch on type (first long in rcvbuf) */
switch (rcvbuf . type) {

default:
errno = EPRO'lU;
close(fd) ;
return(-1);

case ($;. _ICK:

retuxn(fd) ;

case ERRClLICK:
if ,(ctlbuf.len < sizeof(struct e=_ack))

errno = EPRaIO;
close(fd) ;
retuxn(-1) ;

err=_ack = (struct er=r_ack *)&rcvbuf;
errno = error_ack->UNIX_err=;
close(fd) ;
l!'etuxn(-1);

MESSAGE HANDLING 4-11

Datagram Service Interface Example

getmsg is called to retrieve the acknowledgment of the bind request. The
acknowledgment message consists of a control part that contains either an
ok_ack or error _ack structure, and no data part.

The acknowledgment primitives are defined as priority messages. Two
classes of messages can arrive at the Stream head: priority and normal. Nor
mal messages are queued in a first-in-first-out manner at the Stream head,
while priority messages are placed at the front of the Stream head queue. The
STREAMS mechanism allows only one priority message per Stream at the
Stream head at one time; any further priority messages are discarded until the
first message is processed. Priority messages are particularly suitable for ack
nowledging service requests when the acknowledgment should be placed
ahead of any other messages at the Stream head.

These messages are not intended to support the expedited data capabilities of
many communication protocols, as evidenced by the one-at-a-time restriction
just described.

Before calling getmsg, this routine must initialize the strbuf structure for
the control part. but should point to a buffer large enough to hold the
expected control part, and maxlen must be set to indicate the maximum
number of bytes this buffer can hold.

Because neither acknowledgment primitive contains a data part, the
dataptr argument to getmsg is set to NULL. The flags argument points to an
integer containing the value RS-HIPRI. This flag indicates that getmsg
should wait for a STREAMS priority message before returning and is set
because the acknowledgment primitives are priority messages. Even if a nor
mal message is available, getmsg will block until a priority message arrives.

On return from getmsg, the len field is checked to ensure that the control
part of the retrieved message is an appropriate size. The example then checks
the primitive type and takes appropriate actions. An OK-ACK indicates a
successful bind operation, and inter_open returns the file descriptor of the
open Stream. An ERROLACK indicates a bind failure, and errno is set to
identify the problem with the request.

4-12 STREAMS PROGRAMMER'S GUIDE

Datagram SeNice Interface Example

Closing the Service
The next routine in the datagram service library is inter_close, which

doses the Stream to the service provider.

close (fd) ;

The routine simply doses the given file descriptor. This will cause the
protocol driver to free any resources associated with that Stream. For exam
ple, the driver may unbind the protocol address that had previously been
bound to that Stream, thereby freeing that address for use by some other ser
vice user.

Sending a Datagram
The third routine, inter -snd, passes a datagram to the service provider for

transmission to the user at the address specified in addr. The data to be
transmitted is contained in the buffer pointed to by but and contains len bytes.
On successful completion, this routine returns the number of bytes of data
passed to the service provider; on failure, it returns -1 and sets errno to an
appropriate UNIX system error value.

MESSAGE HANDLING 4-13

Datagram Service Interface Example

inter_snd(fd, !:uf, len, addr)

char *bu£;
lang addr;
{

struct str!:uf ctlJ:uf;

struct str!:uf databuf;
struct unitdata_req unitdata_req;

unitdata_req.PRIM_type = UNITDATA_Rm;
unitdata_req.DEST_addr = addr;
ctlbu£ • len = sizeof(struct unitdata_req);

ctlbu£.!:uf = (char *)&unitdata_req;
databuf . len = len;

databuf.!:uf = !:uf;

if (pltmsg(fd, &ctlJ:uf, &databuf, 0) < 0)
return(-1);

return(len) ;

In this example, the datagram request primitive is packaged with both a
control part and a data part. The control part contains a unitdata_req structure
that identifies the primitive type and the destination address of the datagram.
The data to be transmitted is placed in the data part of the request message.

Unlike the bind request, the datagram request primitive requires no ack
nowledgment from the service provider. In the example, this choice was
made to minimize the overhead during data transfer. Since datagram services
are inherently unreliable, this is a valid design choice. If the putmsg call
succeeds, this routine assumes all is well and returns the number of bytes
passed to the service provider.

4-14 STREAMS PROGRAMMER'S GUIDE

Datagram Service Interface Example

Receiving a Datagram
The final routine in this example, inter_rev, retr-ieves the next available

datagram. but points to a buffer where the data should be stored, len indicates
the size of that buffer, and addr points to a long integer where the source
address of the datagram will be placed. On successful completion, inter_rev
returns the number of bytes in the retrieved datagram; on failure, it returns -1
and sets the appropriate UNIX system error value.

inter_rcv(fd, but, len, addr)
char *but;
lOB] *addr;
{

struct strbut ctlbuf;
struct strbut databuf;
struct unitdata_ind unitdata_ind;
int retva1;
int flags;

ctlbuf.maxlen = sizeof(struct unitdata_ind);
ctlbuf . len = 0;
ctlbuf.but = (char *)&unitdata_ind;
databuf .maxlen = len;
databuf • len = 0;
databuf.but = but;
flags = 0;

if « retval = gebDsg(fd, &.ctlbuf, &databuf, &flags» < 0)

retnrn(-1) ;

if (unitdata_ind.PRIM_type 1= UNI'IDATA_IND) {

errno = EPROro;
retnrn(-1) ;

if (retval) {
errno = EIO;
retnrn(-1);

*addr = unitdata_ind.SRC_addr;
retnrn(databuf . len) ;

MESSAGE HANDLING 4-15

Datagram Service Interface Example

getmsg is called to retrieve the datagram indication primitive, where that
primitive contains both a control and data part. The control part consists of a
unitdata_ind structure that identifies the primitive type and the source address
of the datagram sender. The data part contains the data itself.

In ctlbuf, buf must point to a buffer where the control information will be
stored, and maxlen must be set to indicate the maximum size of that buffer.
Similar initialization is done for databuf.

The flags argument to getmsg is set to zero, indicating that the next mes
sage should be retrieved from the Stream head, regardless of its priority.
Datagrams will arrive in normal priority messages. If no message currently
exists at the Stream head, getmsg will block until a message arrives.

The user's control and data buffers should be large enough to hold any
incoming datagram. If both buffers are large enough, getmsg will process the
datagram indication and return 0, indicating that a full message was retrieved
successfully. However, if either buffer is not large enough, getmsg will only
retrieve the part of the message that fits into each user buffer. The remainder
of the message is saved for subsequent retrieval, and a positive, non-zero
value is returned to the user. A return value of MORECTL indicates that
more control information is waiting for retrieval. A return value of MORE
DATA indicates that more data is waiting for retrieval. A return value of
MORECTUMOREDATA indicates that data from both parts of the message
remain. In the example, if the user buffers are not large enough (that is,
getmsg returns a positive, non-zero value), the function will set errno to EIO
and fail.

The type of the primitive returned by getmsg is checked to make sure it is
a datagram indication. The source address is then set and the number of
bytes of data in the datagram is returned.

The above example preroented a simplified service interface. The state
transition rules for such an interface were not presented for the sake of brev
ity. The intent was to show typical uses of the putmsg and getmsg system
calls. See putmsg(2) and getmsg(2) for further details.

4-16 STREAMS PROGRAMMER'S GUIDE

Introduction to Part 2

Part 2 of this guide, Module and Driver Programming, describes the use of
STREAMS kernel facilities for developing and installing modules and drivers.
It is intended for system programmers with knowledge of UNIX system kernel
programming, device driver development, and networking and other data
communication facilities. Knowledge of the STREAMS Primer and the Driver
Design Guide is assumed.

STREAMS provides module and driver developers with integral functions,
a set of utility routines, and facilities that expedite design and implementation.
The principle development facilities are listed below:

• Message storage management-to maintain STREAMS' own memory
resources for message storage

• Flow control-to conserve STREAMS memory and processing resources

• Scheduling-to control the execution of service procedures

• Multiplexing-to switch data among multiple Streams

• Error and trace loggers-for debugging and administrative use

Part 2 is organized as follows:

• Chapter 5, Streams Mechanism, reviews the operation of STREAMS
and describes how a Stream is constructed and dismantled.

• Chapter 6, Modules, describes the basic STREAMS data structures and
the organization of a module.

• Chapter 7, Messages, introduces message blocks, read and write system
calls, and the message storage pool.

• Chapter 8, Message Queues and Service Procedures, discusses put and
service procedures, message queueing, and basic flow control.

• Chapter 9, Drivers, describes STREAMS driver organization and
discusses typical driver processing.

• Chapter 10, Complete Driver, provides a full implementation of a driver
and describes the clone mechanism.

• Chapter II, Multiplexing, describes the multiplexing facility.

MODULE and DRIVER PROGRAMMING

Introduction to Part 2

• Chapter 12, Service Interface, discusses service interfaces within a
Stream and at the Stream/user boundary.

• Chapter 13, Advanced Topics, contains advanced topics including sig
nals and Stream head options.

• Appendix A, Kernel Structures, summarizes kernel structures used by
modules and drivers.

• Appendix B, Message Types, describes STREAMS message types.

• Appendix C, Utilities, specifies the STREAMS kernel utility routines.

• Appendix D, Design Guidelines, summarizes module and driver design
guidelines.

• Appendix E, Configuring, describes how modules and drivers are con
figured into the UNIX system, tunable parameters and STREAMS sys
tem error messages.

• The Glossary defines terms unique to STREAMS.

ii STREAMS PROGRAMMER'S GUIDE

Chapter 5: Streams Mechanism

Overview

Stream Construction

Opening a Stream

Adding and Removing Modules

Closing

5-1

5-3

5-5

5-6

5-7

TABLE OF CONTENTS

Overview

A Stream implements a connection within the kernel between a driver in
kernel space and a process in user space. It provides a general character
input/output (I/O) interface for user processes which is upwardly compatible
with the interface of the preexisting character I/O facilities. A Stream is
analogous to a shell pipeline except that data flow and processing are bidirec
tional to support concurrent input and output.

The components that form a Stream are the Stream head, driver, and
optional modules (see Figure 1 in the Preface). A Stream is initially con
structed as the result of a user process open(2) system call referencing a
STREAMS file. The call causes a kernel resident driver to be connected with a
Stream head to form a Stream. Subsequent ioctl(2) calls select kernel resident
modules and cause them to be inserted in the Stream. A module represents
intermediate processing on messages flowing between the Stream head and
driver. A module can function as, for example, a communication protocol,
line discipline or data filter. STREAMS allows a user to connect a module
with any other module. The user determines the module connection
sequences that result in useful configurations.

A process can send and receive characters on a Stream using write(2) and
read(2), as on character files. When user data enters the Stream head or
external data enters the driver, the data is placed into messages for transmis
sion on the Stream. All data passed on a Stream is carried in messages, each
having a defined message type identifying the message contents. Internal
control and status information is transmitted among modules or between the
Stream and user process as messages of certain types interleaved on the
Stream. Modules and drivers can send certain message types to the Stream
head to cause the generation of signals or errors to be received by the user
process.

A module is comprised of two identical sets of data structures called
QUEUEs. One QUEUE is for upstream processing and the other is for down
stream processing. The processing performed by the two QUEUEs is gen
erally independent so that a Stream operates in a full-duplex manner. The
interface between modules is uniform and simple. Messages flow from
module to module. A message from one module is passed to the single entry
point of its neighboring module.

STREAMS MECHA",ISM 5-1

Overview

The last dose(2) system call dismantles the Stream and closes the file,
semantically identical to character I/O drivers.

STREAMS supports implementation of user-level applications with exten
sions to the above general system calis and STREAMS specific system calls:
puhnsg(2), getmsg(2), poll(2), and a set of STREAMS generic ioct1(2) func
tions.

5-2 STREAMS PROGRAMMER'S GUIDE

Stream Construction

STREAMS constructs a Stream as a linked list of kernel resident data
structures. In a STREAMS file, the inode points to the Stream header struc
ture. The header is used by STREAMS kernel routines to perform operations
on this Stream generally related to system calls. Figure 5-1 depicts the down
stream (write) portion of a Stream (see Chapter 3 of the Primer) connected to
the header. There is one header per Stream. From the header onward, a
Stream is constructed of QUEUEs. The upstream (read) portion of the Stream
(not shown in Figure 5-1) parallels the downstream portion in the opposite
direction and terminates at the Stream header structure.

inode
Stream
header

QUEUE

H
QUEUE

PI
QUEUE

P2
QUEUE

D

Figure 5-1: Downstream Stream Construction

At the same relative location in each QUEUE is the address of the entry
point, a procedure to be executed on any message received by that QUEUE.
The procedure for QUEUE H, at one end of the Stream, is the STREAMS
provided Stream head routine. QUEUE H is the downstream half of the
Stream head. The procedure for QUEUE D, at the other end, is the driver
routine. QUEUE D is the downstream half of the Stream end. PI and P2 are
pushable modules, each containing their own unique procedures. That is, all
STREAMS components are of similar organization.

This similarity results in the uniform manner of navigating in either direc
tion on a Stream: messages move from one end to the other, from QUEUE to
the next linked QUEUE, executing the procedure specified in the QUEUE.

Figure 5-2 shows the data structures forming each QUEUE: queue_t,
qinit, module-i.nfo and module_stat. queue_t contains various modifiable
values for this QUEUE, generally used by STREAMS. qinit contains a pointer
to the processing procedures, module-i.nfo contains limit values and
module_stat is used for statistics. The two QUEUEs in a module will gen
erally each contain a different set of these structures. The contents of these
structures are described in following chapters.

STREAMS MECHANISM 5-3

Stream Construction

module
....stat

earn upstr downstream

q-'linfo <----
read

c·

V
q-qinfo

qinit
write

J:I ~
queue_t queu~t

module
-info

q_next

xt q_ne

read

q_qinfo

write
r-----> q-'linfo <----

~. J:I

queue_t queue_t

earn upstr downstream

Figure 5-2: QUEUE Data Structures

Figure 5-1 shows QUEUE linkage in one direction while Figure 5-2 shows
two neighboring modules with links (solid vertical arrows) in both directions.
When a module is pushed onto a Stream, STREAMS creates two QUEUEs and
links each QUEUE in the module to its neighboring QUEUE in the upstream
and downstream direction. The linkage allows each QUEUE to locate its next
neighbor. The next relation is implemented between queue_ts in adjacent
modules by the q_next pointer. Within a module, each queue_t locates its
mate (see dotted arrows in Figure 5-2) by use of STREAMS macros, since
there is no pointer between the two queue_ts. The existence of the Stream
head and driver is known to the QUEUE procedures only as destinations
towards which messages are sent.

5-4 STREAMS PROGRAMMER'S GUIDE

Opening a Stream

When a file is opened [see open(2)], a STREAMS file is recognized by a
non-null value in the d-str field of the associated cdevsw entry. d-str points
to a streamtab structure:

struct. streamtab {

struct. qinit
struct. qinit
struct. qini t
struct. qini t

} ;

st_rdinit; 1 defines read QUEUE *1
st_wrinit; 1 defines write QUEUE *1
st_lIIIXrinit; 1 for mlltiplexiD;J drivers only *1
st_nuxwinit; 1 for mlltiplexiD;J drivers only *1

streamtab defines a module or driver and points to the read and write
qinit structures for the driver.

If this open call is the initial file open, a Stream is created. First, the sin
gle header structure and the Stream head (see Figure 5-1) queue_t structure
pair are allocated. Their contents are initialized with predetermined values
including, as noted above (see QUEUE H), the Stream head processing rou
tines.

Then, a queue_t structure pair is allocated for the driver. The queue_t
contents are zero unless specifically initialized (see Chapter 8). A single, com
mon qinit structure pair is shared among all the Streams opened from the
same cdevsw entry, as is the associated module-info and module_stat struc
tures (see Figure 5-2).

Next, the q_next values are set so that the Stream head write queue_t
points to the driver write queue_t, and the driver read queue_t points to the
Stream head read queue_to The q_next values at the ends of the Stream are
set to NULL. Finally, the driver open procedure (located via qinit) is called.

If this open is not the initial open of this Stream, the only actions per
formed are to call the @river open and the open procedures of all pushable
modules on the Stream.

STREAMS MECHANISM 5-5

Adding and Removing Modules

As part of constructing a Stream, a module can be added with an ioctl
LPUSH [see streamio(7)] system call (push). The push inserts a module
beneath the Stream head. Because of the similarity of STREAMS components,
the push operation is similar to the driver open. First, the address of the qinit
structure for the module is obtained via an fmodsw entry.

fmodsw is an array, analogous to cdevsw. Each fmodsw entry
corresponds to a unique module and contains the name of the module (used
by LPUSH and certain other STREAMS ioctls) and a pointer to the module's
streamtab. Next, STREAMS allocates queue_t structures and initializes their
,contents as in the driver open, above. As with the driver, the read and write
qinit structures are shared among all the modules opened from this fmodsw
entry (see Figure 5-2).

Then, q_next values are set and modified so that the module is interposed
between the Stream head and the driver or module previously connected to
the head. Finally, the module open procedure (located via qinit) is called.
Unlike open, no other module or driver open procedure is called.

Each push of a module is independent, even in the same Stream. If the
same module is pushed more than once onto a Stream, there will be multiple
occurrences of that module in the Stream. The total number of pushable
modules that may be contained on anyone Stream is limited by the kernel
parameter NSTRPUSH (see Appendix E).

An ioctl LPOP [see streamio(7)] system call (pop) removes the module
immediately below the Stream head. The pop calls the module close pro
cedure. On return from the module close, any messages left on the module's
message queues are freed (deallocated). Then, STREAMS connects the Stream
head to the component previously below the popped module and deallocates
the module's two queue_t structures. LPOP enables a user process to
dynamically alter the configuration of a Stream by pushing and popping
modules as required. For example, a module may be removed or a new one
inserted below a module. In the latter case, the original module is popped
and pushed back after the new module has been pushed.

An LPOP cannot be used on a driver.

5-6 STREAMS PROGRAMMER'S GUIDE

Closing

The last close system call to a STREAMS file dismantles the Stream. Dis
mantling consists of popping any modules on the Stream, closing the driver
and closing the file. Before a module is popped by close, it may delay to
allow any messages on the write message queue of the module to be drained
by module processing. If O~DELAY [see open(2)] is clear, close will wait
up to 15 seconds for each module to drain. If O~DELAY is set, the pop is
performed immediately. close will also wait for the driver's write queue to
drain. Messages can remain queued, for example, if flow control (see Chapter
6 in the Primer) is inhibiting execution of the write QUEUE. When all
modules are popped and any wait for the driver to drain is completed, the
driver close routine is called. On return from the driver close, any messages
left on the driver's message queues are freed, and the queue_t and header
structures are deallocated.

STREAMS frees only the messages contained on a message queue. Any mes
sages used internally by the driver or module must be freed by the driver or
module close procedure.

Finally, the file is closed.

STREAMS MECHANISM 5-7

Chapter 6: Modules

Module Declarations

Module Procedures

Module and Driver Environment

6-1

6-4

6-6

TABLE OF CONTENTS

Module Declarations

A module and driver will contain, as a minimum, declarations of the fol
lowing form:

#include "sys/t:ypes.h"
#include "sys/stream.h"
#include "sys/param.h"

1* required in all m:xiules and drivers *1
1* required in all m:xiules and drivers *1

static struct m:xiule_info:oninfo = { 0, "Irod", 0, INFPSZ, 0, 0 };
static struct m:xiule_info l!Illi.nfo = { 0, "Irod", 0, INFPSZ, 0, 0 };
static int IOOdopen(), IICdrplt(), nodwpJ.t(), m:xiclose();

static struct qinit rinit = {
ncdrput, NULL, !IDdopen, m:xic1ose, NULL, &nninfo, NULL
};

static struct qinit winit = {
nodwpJ.t, NULL, NULL, NULL, NULL, &l!Illi.nfo, NULL
} ;
struct streamtab Irodinfo = { &rinit, &winit, NULL, NULL };

The contents of these declarations are constructed for the null module
example in this section. This module performs no processing; its only purpose
is to show linkage of a module into the system. The descriptions in this sec
tion are general to all STREAMS modules and drivers unless they specifically
reference the example.

The declarations shown are: the header set; the read and write QUEUE
(rminfo and wminfo) modulunfo structures (see Figure 5-2); the module
open, read-put, write-put and close procedures; the read and write (rinit and
winit) qinit structures; and the streamtab structure.

The minimum header set for modules and drivers is types.h and
stream.h. param.h contains definitions for NULL and other values for
STREAMS modules and drivers as shown in the section titled "Accessible
Symbols and Functions" in Appendix D.

MODULES 6-1

Module Declarations

Configuring a STREAMS module or driver (see Appendix E) does not require
any procedures to be externally accessible, only streamtab. The streamtab
structure name must be the prefix used in configuring, appended with "info".

As described in the previous chapter, streamtab contains qinit values for the
read and write QUEUEs, pointing to a module-info and an optional
module_stat structure. The two required structures, shown in Figure 5-2, are
these:

st:ruct: qini t {

};

int (*qi-putp)();
int (*qi_srvp)();
int (*qi_qopen) ();
int (*qi_qclose)();
int (*qi_qadmin)();
st:ruct: m:xiule_info *qi_minfo;
st:ruct: m:xiule_stat *qi_mstat;

1* put procedure *1
1* service procedure *1
1* called an each open or a p.1Sh *1
1* called an last close or a pop *1
1* reserved for future use *1

1* infc:xrnatian st:ru.cture *1
1* statistics structure - optional *1

st:ruct: m:xiule_info {

};

ushort m:i._idnum; 1* m:xiule m IlIlIIIber *1
char *m:i._idname; 1* m:xiule name *1
short

short

short

ushort

m:i._m:i.npsz ;
m:i. _IDaXpSz;
m:i._hiwat;
m:i._lowat;

1* min packet size accepted, for developer use *1
1* max packet size accepted, for developer use *1
1* hi -water mark, for flow control *1
1* lo-water mark, for flow control *1

qinit contains the QUEUE procedures. All modules and drivers with the
same streamtab (Le., the same fmodsw or cdevsw entry) point to the same
upstream and downstream qinit structure(s). The structure is meant to be
software read-only, as any changes to it affect all instantiations of that module
in all Streams. Pointers to the open and close procedures must be contained
in the read qinit. These fields are ignored in the write side. The example has
no service procedure on the read or write side.

module-info contains identification and limit values. All modules and
drivers with the same stream tab point to the same upstream and downstream
module-info structure(s). As with qinit, this structure is intended to be
software read-only. However, the four limit values are copied to queue_t
(see Chapter 8) where they are modifiable. In the example, the flow control
high-and low-water marks (see Chapter 9) are zero, since there are no service
procedures, and messages are not queued in the module.

6-2 STREAMS PROGRAMMER'S GUIDE

Module Declarations

Three names are associated with a module: the character string in
fmodsw, obtained from the name of the /etc/conf/modules directory used to
configure the module (see Appendix E); the prefix for streamtab, used in con
figuring the module; and the module name field in tile module-info struc
ture. This field is a hook for future expansion and is not currently used.
However, it is recommended that it be the same as the module name. The
module name value used in the LPUSH or other STREAMS ioctl commands
is contained in fmodsw. Each module 10 and module name should be unique
in the system. The module ID is currently used only in logging and tracing
(see Chapter 6 in the Primer). For the example in this chapter, the module ID
is zero.

Minimum and maximum packet size are intended to limit the total
number of characters contained in all (if any) of the M-DATA blocks in each
message passed to this QUEUE. These limits are advisory except for the
Stream head. For certain system calls that write to a Stream, the Stream head
will C)bserve the packet sizes set in the write QUEUE of the module immedi
ately below it. Otherwise, the use of packet size is developer-dependent. In
the example, INFPSZ indicates unlimited size on the read (input) side.

module_stat is optional, intended for future use. Currently, there is no
STREAMS support for statistical information gathering. The structure is
described in Appendix A. ' .

MODULES 6-3

Module Procedures

The null module procedures are as follows:

static int lIDdopen(q, dev, flag, sflag)
queue_t *q; /* pointer to read queue */
dev_t dev; /* major/minor device number -- zero for l!Ddules */
int flag; /* file open flags -- zero for l!Ddules */
int sflag; /* stream open flags */

/* return success * /
return 0;

static int IlDdwput(q, lli»/* write put procedure */
queue_t *q; /* pointer to the write queue */
mblk_t *I!i>; /* message pointer */

pu'blext(q, lli»; /* pass message 1:hrouqh */

static int m:xirput(q, lli»/* read put procedure */
queue_t *q; /* pointer to the read queue */

/* message pointer * /

putnext(q, lli»; /* pass message through */

static int m::rlclose(q, flag)
queue_t *q; /* pointer to the read queue */
int flag; /* file open flags - zero for l!Ddules */

The form and arguments of these four procedures are the same in all
modules and all drivers. Modules and drivers can be used in multiple Streams
and their procedures must be reentrant.

6-4 STREAMS PROGRAMMER'S GUIDE

Module Procedures

modopen illustrates the open call arguments and return value. The argu
ments are the read queue pointer (q), the major/minor device number (dev, in
drivers only), the file open flags (flag, defined in sys/file.h), and the Stream
open flag (sflag). For a module, the value of flag and dev are always zero.
The Stream open flag can take on the following values:

MODOPEN

o
normal module open

normal driver open (see Chapter 9)

CLONEOPEN clone driver open (see Chapter 10)

The return value from open is >"'" 0 for success and OPENFAIL for error.
The open procedure is called on the first LPUSH and on all subsequent open
calls to the same Stream. During a push, a return value of OPENFAIL causes
the LPUSH to fail and the module to be removed from the Stream. If
OPENFAIL is returned by a module during an open call, the open fails, but
the Stream remains intact. For example, it can be returned by a
module/driver that only wishes to be opened by a super-user:

if (!suser(» return OPENFAIL;

In the example, modopen simply returns successfully. modrput and modwput
illustrate the common interface to put procedures. The arguments are the read
or write queue_t pointer, as appropriate, and the message pointer. The put
procedure in the appropriate side of the QUEUE is called when a message is
passed from upstream or downstream. The put procedure has no return
value. In the example, no message processing is performed. All messages are
forwarded using the putnext macro (see Appendix C). putnext calls the put
procedure of the next QUEUE in the proper direction.

The close procedure is only called on an LPOP or on the last dose call of
the Stream (see the last two sections of Chapter 5). The arguments are the
read queue_t pointer and the file open flags as in modopen. For a module,
the value of flag is always zero. There is no return value. In the example,
modclose does nothing.

MODULES 6-5

Module and Driver Environment

As discussed in Chapter 7 of the Primer, user context is not generally
available to STREAMS module procedures and drivers. The exception is dur
ing execution of the open and close routines. Driver and module open and
close routines have user context and may access the 1L-area structure (defined
in user.h, see "Accessible Symbols and Functions" in Appendix D). These
routines are allowed to sleep, but must always return to the caller. That is, if
they sleep, it must be at priority <= PZERO, or with PCATCH set in the sleep
priority. [A process which is sleeping at priority> PZERO and is sent a signal
via "ki11(2), never returns from the sleep call. Instead, the system call is
aborted.] V STREAMS driv~ ond module put proeedu,., ond "'Mre proredu ... have no

user context. They cannot access the 1L.area structure of a process and must
not sleep.

6~6 STREAMS PROGRAMMER'S GUIDE

Chapter 7: Messages

~essage Fornnat
Message Generation and Reception

Filter ~odule Declarations
bappend Subroutine

~essage Allocation

Put Procedure

TABLE OF CONTENTS

7-1

7-3

7-5

7-6

7-8

7-9

Message Format

Messages are the means of communication within a Stream. A message
contains data or information identified by one of 18 message types (see
Appendix B). Messages may be generated by a driver, a module, or the
Stream head. The contents of certain message types can be transferred
between a process and a Stream by use of system calls. STREAMS maintains
its own pools for allocation of message storage.

All messages are composed of one or more message blocks. A message
block is a linked triplet, two structures and a variable length buffer block. The
structures are msgb (mbILt), the message block, and datab (dbILt), the data
block:

st:ruct msgb {

struct

st:ruct
st:ruct
unsigned

unsigned

st:ruct

st:ruct datab {
struct
unsigned

unsigned
unsigned
unsigned

unsigned

msgb

msgb

msgb

char
char
datab

datab

char

char
char
char

char

b_next;/ next message an queue */
b.Jlrev;/ previous message an queue */
b_oant;/ next message block of message */

b_rptr;/ first unread byte in tuffer */
b_wpt:r;/ first unwritten byte in tuffer */

b_datap;/ data block */

db_freep;/ used inteznally */
db_base;/ first byte of tuffer * */
db_l:im;/ last byte+1 of tuffer */
db_ref;/* oount of messages pointing to this block */
db_type;/* message type */

db_class;/* used internally */

mblLt is used to link messages on a message queue, link the blocks in a
message and manage the reading and writing of the associated buffer, b_rptr
and b_wptr are used to locate the data currently contained in the buffer. As
shown in Figure 7-1, mblLt points to the data block of the triplet. The data
block contains the message type, buffer limits and control variables.
STREAMS allocates message buffer blocks of varying sizes (see below).
db_base and db_lim are the fixed beginning and end (+1) ef the buffer.

MESSAGES 7-1

Message Format

A message consists of one or more linked message blocks. Multiple mes
sage blocks in a message can occur, for example, because of buffer size limita
tions, or as the result of processing that expands the message. When a mes
sage is composed of multiple message blocks, the type associated with the first
message block determines the message type, regardless of the types of the
attached message blocks.

Message
1

Message
2

I
I
I
I
I
I

queue I
<----

header
r---1;:===:;b-Il:::=ex:t====!!:r---l ____ ..b~e2'~ __ __ >

b_prev mblLt - - - - b:'pre;- - - - - -mblLt

mblLt

mblLt
,

L.... _ ,

I

t
,
\

data
block
(type)

data
block

Figure 7-1: Message Form and Linkage

7-2 STREAMS PROGRAMMER'S GUIDE

mblLt

mblLt
,

L.... _ ,

I

t
\

\

~

data
block
(type)

Message Format

A message may occur singly, as when it is processed by a put procedure,
or it may be linked on the message queue in a QUEUE, generally waiting to
be processed by the service procedure. Message I, as shown in Figure 7-1,
links to message 2. In the first message on a queue, b_prev points back to the
header in the QUEUE. The last b_next points to the tail.

Note that a data block in message 1 is shared between message 1 and
another message. Multiple message blocks can point to the same data block
to conserve storage and to avoid copying overhead. For example, the same
data block, with associated buffer, may be referenced in two messages, from
separate modules that implement separate protocol levels. (Figure 7-1 illus
trates the concept, but data blocks would not typically be shared by messages
on the same queue.) The buffer can be retransmitted, if required by errors or
timeouts, from either protocol level without replicating the data. Data block
sharing is accomplished by means of a utility routine (see dupmsg in Appen
dix C). STREAMS maintains a count of the message blocks sharing a data
block in the db_ref field.

STREAMS provides utility routines and macros, specified in Appendix C,
to assist in managing messages and message queues, and to assist in other
areas of module and driver development. A utility should always be used
when operating on a message queue or accessing the message storage pool.

Message Generation and Reception
As discussed in the "Message Types" section in Chapter 4 of the Primer,

most message types can be generated by modules and drivers. A few are
reserved for the Stream head. The most commonly used types are M-DATA,
M-PROTO, and M_PCPROTO. These, and certain other message types, can
also be passed between a process and the topmost module in a Stream, with
the same message boundary alignment maintained on both sides of the kernel.
This allows a user process to function, to some degree, as a module above the
Stream and maintain a service interface (see Chapter 12). M-PROTO and
M-PCPROTO messages are intended to carry service interface information
among modules, drivers, and user processes. Some message types can only be
used within a Stream and cannot be sent or received from user level.

As discussed previously, modules and drivers do not interact directly with
any system calls except open and close. The Stream head handles all mes
sage translation and passing. Message transfer between process and Stream
head can occur in different forms. For example, M-DATA, M-PROTO, or

MESSAGES 7-3

Message Format

M-PCPROTO messages can be transferred in their direct form by getmsg(2)
and putmsg(2) system calls (see Chapter 12). Alternatively, a write causes
one or more M-DATA messages to pe created from the data buffer supplied
in the call. M_DATA messages received from downstream at the Stream
head will be consumed by read(2) and copied into the user buffer. As another
example, M-SIG causes the Stream head to send a signal to a process (see
Chapter 13).

Any mpdule or driver can send any message type in either direction on a
Stream. However, based on their intended use in STREAMS and their treat
ment by the Stream head, certain message types can be categorized as
upstream, downstream or bidirectional.M-DATA, M-PROTO, or
M-PCPROTO messages, for example, can be sent in both directions. Other
message types are intended to be sent upstream to be processed only by the
Stream head. Downstream messages are silently discarded if re~eived by the
Stream head.

7-4 STREAM$ PROGRAMMER'S GUIDE

Filter Module Declarations

The module shown below, crmod, is an asymmetric filter. On the write
side, newline is converted to carriage return followed by newline. On the
read side, no conversion is done. The declarations are essentially the same as
the null module of the preceding chapter:

/* Simple filter - carwerts newline -> carriage return, newline */

#include "sys/types.h"
#include "sys/param.h"
#include "sys/stream.h"

static struct 1IOdule_info minfo = { 0, "cnIOd", 0, INFPSZ, 0, ° };
static int m:ldopen(), m::rlrp.l.t(), I!Ddwput(), 1IDdc1ose();

static struct qinit rinit = {
m::rlrp.l.t, NULL, 1IOdopen, 1IDdc1ose, NULL, &minfo, NULL

};

static struct qinit wjnit = {

I!Ddwput, NULL, NULL, NULL, NULL, &minfo, NULL

} ;
struct streamtab cmrlinfo = { &rinit, &wjnit, NULL, NULL };

Note that, in contrast to the null module example, a single module_info
structure is shared by the read and write sides. A config file to configure
crmod is shown in Appendix E.

modopen, modrput, and modclose, are the same as in the null module of the
preceding chapter.

MESSAGES 7-5

Filter Module Declarations

bappend Subroutine
The module makes use of a subroutine, bappend, which appends a charac

ter to a message block:

/*
* Append a character to a message block.
* If (*bpp) is rmll, it will allocate a new block
* Retw:ns 0 when the message block is full, 1 otherwise
*1

#define K>DBLKSZ 128 1* size of message blocks *1

static bappend(bpp, ch)

mblk_t **bw;
int ch;
{

if (bp = *bpp)

if (bp->b~wptr >= bp->b_datap->db_lim)
return 0;

} else if «*bw = bp = allocb(M:DBLKSZ, BPRI_Ml!D» == NOLL)
return 1;

*bp->b_wptr++ = ch;

return 1;

The bappend subroutine receives a pointer to a message block pointer and
a character as arguments. If a message block is supplied (*bpp 1 = NULL),
bappend checks if there is room for more data in the block. If not, it fails. If
there is no message block, a block of at least MODBLKSZ is allocated through
allocb, described below.

7-6 STREAMS PROGRAMMER'S GUIDE

Filter Module Declarations

If the allocb fails, bappend returns success, silently discarding the charac
ter. This mayor may not be acceptable. For TTY-type devices, it is generally
accepted. If the original message block is not full or the allocb is successful,
bappend stores the character in the block.

MESSAGES 7-7

Message Allocation

The allocb utility (see Appendix C) is used to allocate message storage
from the STREAMS pool. Its declaration is:

mblk_t *allocb(buffersize, priority).

allocb will return a message block containing a buffer of at least the size
requested, providing there is a buffer available at the message pool priority
specified, or it will return NULL on failure. Three levels of message pool
priority can be specified (see Appendix C). Priority generally does not affect
allocb until the pool approaches depletion. In this case, for the same internal
level of pool resources, allocb will fail low priority requests while granting
higher priority requests. This allows module and driver developers to use
STREAMS memory resources to their best advantage and for the common
good of the system. Message pool priority does not affect subsequent han
dling of the message by STREAMS. BPRLHI is intended for special situa
tions. This transmission of urgent messages relates to time-sensitive events,
conditions that could result in loss of state, loss of data, or inability to recover.
BPRLMED might be used, for example, when requesting an M-DATA buffer
for holding input, and BPRLLO might be used for an output buffer (presum
ing the output data can wait in user space). The Stream head uses BPRI_LO
to allocate messages to contain output from a process (e.g., by write or
putmsg). Note that allocb will always return a message of type M_DATA.
The type may then be changed if required. b_rptr and b_wptr are set to
db_base (see mblLt and dblLt).

allocb may return a buffer larger than the size requested. In bappend, if
the message block contents were intended to be limited to MODBLKSZ, a
check would have to be inserted.

If allocb indicates buffers are not available, the bufcall utility can be used
to defer processing in the module or the driver until a buffer becomes avail
able (bufcall is described in Chapter 13).

7-8 STREAMS PROGRAMMER'S GUIDE

Put Procedure

The modwput function processes all the message blocks in any down
stream data (type M-DATA) messages.

/* Write side p.1t procedure */
static m;xiWplt(q, mp)

queue_t *q;

mblk_t *mp;

{

switch (mp->b_datap->db_type)

default:
p.1t:neKt(q, mp); /* Ikm't do these, pass them along */

break;

case M_DATA: {

register ni:>lk_t *bp;

struct I1Dlk _ t *mp = NULL, *nbp = NULL;

f= (bp = Inp; bp != NULL; bp = bp->b_oOnt)

while (bp->b_rptr < bp->b_wptr) {

if (*bp->b_rptr == "\n')

if (Ibappend(&nbp, '\r'»
goto newblk;

if (Ibappend(&nbp, *bp->b_rptr) l
goto newblk;

newblk:
if (nmp == NULL)

nmp = nbp;

else linkb(nmp, nbp); /* link message block to tail of nmp */

nbp = NULL;

if (nmp == NULL)
nmp = nbp;

else linkb(nmp, nbp);

freemsg(mp); /* de-allocate mesSage */

MESSAGES 7-9

Put Procedure

if (IlIDp)

}

}

}

break;

plt:next(q, IlIDp);

continued

Data messages are scanned and filtered. modwput copies the original mes
sage into a new block(s), modifying as it copies. nbp points to the current
new message block. nmp points to the new message being formed as multiple
M-DATA message blocks. The outer forO loop goes through each message
block of the original message. The inner whileO loop goes through each byte.
bappend is used to add characters to the current or new block. If bappend fails,
the current new block is full. If nmp is NULL, nmp is pointed at the new
block. If nmp is non-NULL, the new block is linked to the end of nmp by use
of the linkb utility.

At the end of the loops, the final new block is linked to nmp. The original
message (all message blocks) is returned to the pool by freemsg. If a new
message exists, it is sent downstream.

7-10 STREAMS PROGRAMMER'S GUIDE

Chapter 8: Message Queues and Service
Procedures

The queue_t Structure

Service Procedures

Message Queues and Message Priority

Flow Control

Example
Procedures

TABLE OF CONTENTS

8-1

8-2

8-4

8-6

8-8

8-8

The queue_t Structure

Service procedures, message queues and priority, and basic flow control
are all intertwined in STREAMS. A QUEUE will generally not use its message
queue if there is no service procedure in the QUEUE. The function of a ser
vice procedure is to process messages on its queue. Message priority and flow
control are associated with message queues.

The operation of a QUEUE revolves around the queue_t structure:

st:ruct queue {

} ;

struct qinit *~qinfo;
st:ruct msgb *~first;

st:ruct msgb *~last;

st:ruct queue *~next;
st:ruct queue *~link;
caddr _ t qJ)t:r;

ushort ~OOIlIlt;

ushort ~flag;

1* procedures and limits for queue *1
/* head of message queue for this GXJEUE *1
1* tail of message queue for this GXJEUE *1
1* next QUEUE in Stream*1
1* link to next QUEUE an S'mEAMS scheduling queue *1
1* to private data structure *1
1* weighted count of characters an message queue *1
1* GXJEUE state *1

short

short

ushort
ushort

~minpsz; 1* min packet size accepted by this QUElJE *1
~maxpsz; 1* max packet size accepted by this QUElJE *1
~hiwat; 1* message queue high-water nark, for flow can:b:ol *1
~lowat; 1* message queue loW'-water nark, for flow control *1

typedef struct queue queue_t;

As described previously, two of these structures form a module. When a
queue_t pair is allocated, their contents are zero unless specifically initialized.
The following fields are initialized by STREAMS:

• q_qinfo - from stream tab

• q_minpsz, q_maxpsz, q.Jziwat, q_lowat - from module-info

Copying values from module-info allows them to be changed in the
queue_t without modifying the template (Le., streamtab and module-info)
values.

q_count is used in flow control calculations and is the weighted sum of
the sizes of the buffer blocks currently on the message queue. The actual
number of bytes in the buffer is not used. This is done to encourage the use
of the smallest buffer that will hold the data intended to be placed in the
buffer.

MESSAGE QUEUES and SERVICE PROCEDURES 8-1

Service Procedures

Put procedures are generally required in pushable modules. Service pro
cedures are optional. The general processing flow when both procedures are
present is as follows: A message is received by the put procedure in a
QUEUE, where some processing may be performed on the message. The put
procedure transfers the message to the service procedure by use of the putq
utility. putq places the message on the tail (see q_last in queue_t) of the
message queue. Then, putq will generally schedule (using q_link in queue_t)
the QUEUE for execution by the STREAMS scheduler following all other
QUEUEs currently scheduled. After some indeterminate delay (intended to be
short), the scheduler calls the service procedure. The service procedure gets
the first message (q_first) from the message queue with the getq utility. The
service procedure processes the message and passes it to the put procedure of
the next QUEUE with putnext. The service procedure gets the next message
and processes it. This FIFO processing continues until the queue is empty or
flow control blocks further processing. The service procedure returns to caller. '7 A ""'"" routine must nev", ,leep ,nd it h~ no m", context. It must ,[w'Y'

return to its caller.

If no processing is required in the put procedure, the procedure does not
have to be explicitly declared. Rather, putq can be placed in the qinit struc
ture declaration for the appropriate QUEUE side, to queue the message for the
service procedure, e.g.:

static struct qinit winit = { putq, modwsrv, ..•..• };

More typically, put procedures will, as a minimum, process priority messages
(see below) to avoid queueing them.

The key attribute of a service procedure in the STREAMS architecture is
delayed processing. When a service procedure is used in a module, the
module developer is implying that there are other, more time-sensitive activi
ties to be performed elsewhere in this Stream, in other Streams, or in the sys
tem in general. The presence of a service procedure is mandatory if the flow
control mechanism is to be utilized by the QUEUE.

8-2 STREAMS PROGRAMMER'S GUIDE

Service Procedures

The delay for STREAMS to call a service procedure will vary with imple
mentation and system activity. However, once the service procedure is
scheduled, it is guaranteed to be called before user level activity is resumed.

See also the section titled "Put and Service Procedures" in Chapter 5 of
the Primer.

MESSAGE QUEUES and SERVICE PROCEDURES 8-3

Message Queues and Message Priority

Figure 8-1 depicts a message queue linked by b_next and b_prev pointers.
As discussed in the Primer, message queues grow when the STREAMS
scheduler is delayed from calling a service procedure because of system
activity, or when the procedure is blocked by flow control. When it is called
by the scheduler, the service procedure processes enqueued messages in FIFO
order. However, certain conditions require that the associated message (e.g.,
an M-ERROR) reach its Stream destination as rapidly as possible. STREAMS
does this by assigning all message types to one of the two levels of message
queueing priority-priority and ordinary. As shown in Figure 8-1, when a
message is queued, the putq utility will place priority messages at the head of
the message queue, FIFO within their order of queueing.

QUEUE

queue
header

Message queue

..... i I I I I I I I I I I I 1
I P" I 0 d' I I nonty I r mary I . . . ~
I Messages I Messages I
I I I

Head Tail

Figure 8-1: Message Queue Priority

Priority messages are not subject to flow control. When they are queued
by putq, the associated QUEUE is always scheduled (in the same manner as
any QUEUE; following all other QUEUEs currently scheduled). When the ser
vice procedure is called by the scheduler, the procedure uses getq to retrieve
the first message on queue, which will be a priority message, if present. Ser
vice procedures must be implemented to act on priority messages immediately
(see next section). The above mechanisms-priority message queueing,
absence of flow control and immediate processing by a procedure-result in
rapid transport of priority messages between the originating and destination
components in the Stream.

8-4 STREAMS PROGRAMMER'S GUIDE

Message Queues and Message Priority

The priority level for each message type is shown in Appendix B. Mes
sage queue management utilities are provided for use in service procedures
(see Appendix C).

MESSAGE QUEUES and SERVICE PROCEDURES 8-5

Flow Control

The elements of flow control are discussed in Chapter 6 of the Primer.
Flow control is only used in a service procedure. Module and driver coding
should observe the following guidelines for message priority. Priority mes
sages, determined by the type of the first block in the message,

(bp->b_datap->db_type > QPCTL),

are not subject to flow control. They should be processed immediately and
forwarded, as appropriate.

For ordinary messages, flow control must be tested before any processing
is performed. The canput utility determines if the forward path from the
QUEUE is blocked by flow control. The manner in which STREAMS deter
mines flow control status for modules and drivers is described under "Driver
Flow Control" in Chapter 9.

This is the general processing for flow control: Retrieve the message at
the head of the queue with getq. Determine if the type is priority and not to
be processed here. If both are true, pass the message to the put procedure of
the following QUEUE with putnext. If the type is ordinary, use canput to
determine if messages can be sent onward. If canput indicates messages
should not be forwarded, put the message back on the queue with putbq and
return from the procedure. In all other cases, process the message.

The canonical representation of this processing within a service procedure
is as follows:

while (getq I = NULL)

if (priority message II canput)
process message

putnext
else

puthq
return

8-6 STREAMS PROGRAMMER'S GUIDE

Flow Control

A service procedure must process all messages on its queue unless flow con
trol prevents this.

When an ordinary message is enqueued by putq, putq will cause the ser
vice procedure to be scheduled only if the queue was previously empty. If
there are messages on the queue, putq presumes the service procedure is
blocked by flow control and the procedure will be automatically rescheduled
by STREAMS when the block is removed. If the service procedure cannot
complete processing as a result of conditions other than flow control (e.g., no
buffers), it must assure it will return later (e.g., by use of bufcall, see Chapter
13) or it must discard all messages on queue. If this is not done, STREAMS
will never schedule the service procedure to be run unless the QUEUE's put
procedure queues a priority message with putq.

putbq replaces messages at the beginning of the appropriate section of the
message queue in accordance with their message type priority (see Figure 8-1).
This might not be the same position at which the message was retrieved by
the preceding getq. A subsequent getq might return a different message.

MESSAGE QUEUES and SERVICE PROCEDURES 8-7

Example

The filter module example of Chapter 7 is modified to have a service pro
cedure, as shown below. The declarations from the example in Chapter 7 are
unchanged except for the following lines (changes are shown in bold):

#include "sys/stropts.h"

static struct I1Ddule_info minfo = {
0, "ps_crmod", 0, INFPSZ, 512,128

} ;
static int IIDdopen(), Il1Cldrplt(), IOOdwpJ.t(), modwsrvO, m:xiclose();

static struct qinit winit = {
IOOdwpJ.t, modwsrv, NULL, NULL, NULL, &minfo, NULL

} ;

stropts.h is generally intended for user level. However, it includes defini
tions of flush message options common to user level, modules and drivers.
module-info now includes the flow control high- and low-water marks (512
and 128) for the write QUEUE (even though the same module-info is used
on the read QUEUE side, the read side has no service procedure so flow con
trol is not used). qinit now contains the service procedure pointer. modopen,
modclose, and modrput (read side put procedure) are unchanged from Chapters
6 and 7. The bappend subroutine is also unchanged from Chapter 7.

Procedures

The write side put procedures and the beginning of the service procedure
are shown next:

8-8 STREAMS PROGRAMMER'S GUIDE

static int m:xiwpIt(q, lIP)

queue_t *q;

register ni:>llLt *up;

{

if (mp->b_datap->db_t:ype > QPCTL &Ii.. IIP->b_datap->db_t:ype 1= M_FLUSH)

putnext(q, lIP);

else

putq(q, lIP); 1* Put it an the queue *1

static int m:xiwsrv(q) queue_t *q;

mblk_t *up;

while «lIP = getq(q) 1= NULL) {

switch (mp->b_datap->db_t:ype)

default:
/* always putnext pri=ity lIEssages */

if (mp->b_datap->db_t:ype > QPCTL II c:anp1t(q-><Lnext»

putnext (q, lIP);

continue;

else {

puthq(q, lIP);
return;

case M_FLUSH:

if (*rIp->b_rptr &. FLUSHW)

fluslq(q, FLUSlIDATA);

putnext(q, lIP);
continue;

Example

ps_crmod performs a similar function to crmod of the previous chapter, but
it uses a service routine.

MESSAGE QUEUES and SERVICE PROCEDURES 8-9

Example

modwput, the write put procedure, switches on the message type. Priority
messages that are not type M-FLUSH are putnext to avoid scheduling. The
others are queued for the service procedure. An M-FLUSH message is a
request to remove all messages on one or both QUEUEs. It can be processed
in the put or service procedure.

modwsrv is the write service procedure. It takes a single argument, a
pointer to the write queue_t. modwsrv processes only one priority message,
M-FLUSH. All other priority messages are passed through. Actually, no
other priority messages should reach modwsrv. The check is included to show
the canonical form when priority messages are queued by the put procedure.

For an M-FLUSH message, modwsrv checks the first data byte. If
FLUSHW (defined in stropts.h) is set in the byte, the write queue is flushed
by use of flushq. flushq takes two arguments, the queue pointer and a flag.
The flag indicates what should be flushed, data messages (FLUSHDATA) or
everything (FLUSHALL). In this case, data includes M_DATA, MJROTO,
and MJCPROTO messages. The choice of what types of messages to flush
is module-specific. As a general rule, FLUSHDATA should be used.

Ordinary messages will be returned to the queue if

canput(q->~next)

returns false, indicating the downstream path is blocked.

In the remaining part of modwsrv, M_DATA messages are processed simi
larly to the previous example:

8-10 STREAMS PROGRAMMER'S GUIDE

case M _DATA: {

mblk _ t *nbp = NULL;

mblk _ t *next;

if (!canplt(q->cLnext»

putbq(q, mp);

retw:n;

1* Filter data, appending to queue *1
f= (; mp != NULL; mp = next) {

while (mp->b_rptr < mp->b_wptr)

if (*mp->b_rptr == '\n')

if (!bappend(&nbp, '\r'»
goto p.1Sh;

if (!bappend(&nbp, *mp->b_rptr»

goto p.1Sh;

mp->b_rptr++ ;

cxmtinue;

push:

putnext(q, nbp);

nbp = NULL;

if (lcanput(q->cLnext»
if (mp->b_rptr >= mp->b_wptr)

next = mp->b_cxmt;

freeb(mp);

mp--next;

if (mp)

putbq(q, mp);
return;

next = mp->b_cxmt;

freeb(mp);

if (nbp)

putnext (q, nbp);

Example

MESSAGE QUEUES and SERVICE PROCEDURES 8-11

Example

The differences in M-DATA processing between this and the previous
example relate to the manner in which the new messages are forwarded and
flow control. For the purpose of demonstrating alternative means of process
ing messages, this version creates individual new messages rather than a sin
gle message containing multiple message blocks. When a new message block
is full, it is immediately forwarded with putnext rather than being linked into
a single, large message (as was done in the previous example). This alterna
tive may not be desirable because message boundaries will be altered and
because of the additional overhead of handling and scheduling multiple mes
sages.

When the filter processing is performed (following push), flow control is
checked (canput) after, rather than before, each new message is forwarded.
This is done because there is no provision to hold the new message until the
QUEUE becomes unblocked. If the downstream path is blocked, the remain
ing part of the original message is returned to the queue. Otherwise, process
ing continues.

Another difference between the two examples is that each message block
of the original message is returned to the pool with freeb when its processing
is completed.

8-12 STREAMS PROGRAMMER'S GUIDE

Chapter 9: Drivers

Overview of Drivers 9-1

Driver Flow Control 9-3

Driver Programming 9-4
Driver Declarations 9-4
Driver Open 9-6

Driver Processing Procedures 9-8
Driver Flush Handling 9-9
Driver Interrupt 9-10

Driver and Module loctls 9-12

Driver Close 9-15

TABLE OF CONTENTS

Overview of Drivers

This chapter describes the organization of a STREAMS driver and
discusses some of the processing typically required in drivers. Certain ele
ments of driver flow control are discussed. Procedures for handling user
ioctls, common to modules and drivers, are described.

As discussed under "Stream Construction" in Chapter 5, driver and
module organization are very similar. The call interfaces to all the driver pro
cedures are identical to module interfaces and driver procedures must be reen
trant. As described under "Environment" in Chapter 6, the driver put and
service procedures have no user environment and cannot sleep. Other than
with open and close, a driver interfaces with a user process by messages, and
indirectly, through flow control.

There are two significant differences between modules and drivers. First,
a device driver must also be accessible from an interrupt as well as from the
Stream, and second, a driver can have multiple Streams connected to it. Mul
tiple connections occur when more than one minor device uses the same
driver and in the case of multiplexers (see Chapter 11). However, these par
ticular differences are not recognized by the STREAMS mechanism: They are
handled by developer-provided code included in the driver procedures.

Figure 9-1 shows multiple Streams (corresponding to minor devices), to a
common driver. This depiction of two Streams connected to a single driver
(also used in the Primer) is somewhat misleading. These are really two dis
tinct Streams opened from the same cdevsw (Le., same major device). Conse
quently, they have the same streamtab and the same driver procedures.
Modules opened from the same fmodsw might be depicted similarly if they
had any reason to be cognizant, as do drivers, of common resources or alter
nate instantiations.

Multiple instantiations (minor devices) of the same driver are handled dur
ing the initial open for each device. Typically, the queue_t address is stored
in a driver-private structure indexed by the minor device number. The struc
ture is typically pointed at by q_ptr (see Chapter 8). When the messages are
received by the QUEUE, the calls to the driver put and service procedures
pass the address of the queue_t, allowing the procedures fa determine the
associated device.

DRIVERS 9-1

Overview of Drivers

In addition to these differences, a driver is always at the end of a Stream.
As a result, drivers must include standard processing for certain message types
that a module might simply be able to pass to the next component.

Module(s)

Port
o

Driver Procedures
and

Interrupt Code

Figure 9-1: Device Driver Streams

9-2 STREAMS PROGRAMMER'S GUIDE

Module(s)

Port
1

Driver Flow Control

The same utilities (described in Chapter 8) and mechanisms used for
module flow control are used by drivers. However, they are typically used in
a different manner in drivers, because a driver generally does not have a ser
vice procedure. The developer sets flow control values (mLhiwat and
mLlowat) in the write side module--info structure, which STREAMS will
copy into q_hiwat and q_lowat in the queue_t structure of the QUEUE. A
device driver typically has no write service procedure, but does maintain a
write message queue. When a message is passed to the driver write side put
procedure, the procedure will determine if device output is in progress. In the
event output is busy, the put procedure cannot immediately send the message
and calls the putq utility (see Appendix C) to queue the message. (Note that
the driver might have elected to queue the message in all cases.) putq recog
nizes the absence of a service procedure and does not schedule the QUEUE.

When the message is queued, putq increments the value of q_count
(approximately the enqueued character count, see the beginning of Chapter 8)
by the size of the message and compares the result against the driver's write
high-water limit (q~hiwat) value. If the count exceeds q_hiwat, putq will set
the internal FULL (see the section titled "Flow Control" in Chapter 6 of the
Primer) indicator for the driver write QUEUE. This will cause messages from
upstream to be halted (canput returns FALSE) until the write queue count
reaches q_lowat. The driver messages waiting to be output are dequeued by
the driver output interrupt routine with getq, which decrements the count. If
the resulting count is below q_Iowat, getq will back-enable any upstream
QUEUE that had been blocked. The above STREAMS processing also applies
to modules on both write and read sides of the Stream.

Device drivers typically discard input when unable to send it to a user
process. However, STREAMS allows flow control to be used on the driver
read side, possibly to handle temporary upstream blocks. This is described in
Chapter 13 in the section titled "Advanced Flow Control" .

To some extent, a driver or module can control when its upstream
transmission will become blocked. Control is available through the
M-SETOPTS message (see Chapter 13 and Appendix B) to modify the Stream
head read side flow control limits.

DRIVERS 9-3

Driver Programming

The example below shows how a simple interrupt-per-character line
printer driver could be written. The driver is unidirectional and has no read
side processing. It demonstrates some differences between module and driver
programming, including the following:

Open handling A driver is passed a minor device number or is asked to
select one (see next chapter).

Flush handling A driver must loop MJLUSH messages back upstream.

loctl handling A driver must nak ioctl messages it does not understand.
This is discussed under "Driver and Module loctls" ,
below.

Write side flow control is also illustrated as described above.

Driver Declarations

The driver declarations are as follows:

1* Simple line printer driver. *1

#include "sys/types .h"
#include "sys/param.h"
#include "sys/sysmacros .h"
#ifdef u3b2
#include "sys/psw.h"
#include "sys/pc:b.h"
#endif
#include "sys/stream.h"
#include "sys/stropts.h"
#include "sys/dir .h"
#include "sys/signal.h"
#include "sys/user.h"
#include "sys/errno.h"

1* required f= user.h *1
1* required for user.h *1

1* required for user.h *1
1* required for user.h *1

static struct ncdule_info minto = {
0, "lp", 0, INFPSZ, 150, 50

} ;

9-4 STREAMS PROGRAMMER'S GUIDE

Driver Programming

continued

static int lpopen(), Ipclose(), Ipwput();

static struct qinit rinit = {
NULL, NULL, lpopen, Ipclose, NULL, &min:fo, NULL

} ;
static struc:t qinit winit = {

Ipwput, NULL, NULL, NULL, NULL, &min:fo, NULL
} ;
struct streamtab lpinfo = { &rinit, &'winit, NULL, NULL };

#define SEl'_OPl'ICNS «'1'«8)11)/* really must be in a .h file */
/*
* This is a private data structure, one per m:irx:lr device nmnber.
*/

struc:t Ip {
short flags; /* flags -- see below * /

mblk_t *msg; /* current message beiD1 output */

queue_t *qptr; /* back pointer to write queue */
} ;
/* Flags bits */

#define BUSY 1 * device is running and interrupt is pending */

extern struc:t Ip Ip_lp[]; /* per device Ip structure array */

/* m.unber of valid minor devices * /

As noted for modules in Chapter 6, configuring a STREAMS driver does
not require the driver procedures to be externally accessible; only streamtab
must be. All STREAMS driver procedures would typically be declared
static.

streamtab must be defined as "prefixinfo", where prefix is the value of
the prefix specified in the config file for this driver. The values in name and
ID fields in the module-info should be unique in the system. The name field
is a hook for future expansion and is not currently used. The ID is currently
used only in logging and tracing (see Chapter 6 in the Primer). For the exam
ple in this chapter, the ID is zero.

DRIVERS 9-5

Driver Programming

There is no read side put or service procedure. The flow control limits for
use on the write side are 50 and 150 characters. The private lp structure is
indexed by the minor device number and contains these elements:

flags A set of flags. Only one bit is used: BUSY indicates that output is
active and a device interrupt is pending.

msg A pointer to the current message being output.

qptr A back pointer to the write queue. This is needed to find the write
queue during interrupt processing.

Driver Open

The driver open, lpopen, has the same interface as the module open:

static int lpopen(q, dev, flag, sflag)

queue_t *q 1* read queue *1
{

st:ruct lp *lp;

1* Check if nan-driver open *1
if (sflag)

return OPENFAIL;

1* Dev is maj=1minor *1
dev = m:inor(dev);
if (dev >= lp_cnt)

return OPENFAIL;

1* Check if open already. q.Ptr is assigned below *1
if (q->q.Ptr) {

u.u_err= = E8USY; 1* only 1 user of the printer at a time *1
return OPENFAIL;

lp = &lp_lp[dev];

lp->qptr = WR(q);

q->q.Ptr = (char *) lp;

9-6 STREAMS PROGRAMMER'S GUIDE

WR(q)->qJJtr = (char *) Ip;
return dev;

Driver Programming

continued

The Stream flag, sflag, must have the value 0, indicating a normal driver
open. dev holds both the major and minor device numbers for this port.
After checking sflag, the open flag, lpopen extracts the minor device from de v,
using the minor() macro defined in sysmacros.h.

The use of major devices, minor devices, and the minor() macro may be
machine dependent.

The minor device number selects a printer and must be less than lp_cnt.

The next check, if (q->qptr) ••• , determines if this printer is already
open. In this case, EBUSY is returned to avoid merging printouts from multi
ple users. q_ptr is a driver/module private data pointer. It can be used by
the driver for any purpose and is initialized to zero by STREAMS. In this
example, the driver sets the value of q_ptr, in both the read and write
queue_t structures, to point to a private data structure for the minor device,
Ip_Ip[dev).

WR is one of three QUEUE pointer macros. As discussed in the section
titled" Stream Construction," in Chapter 5, there are no physical pointers
between QUEUEs, and these macros (see Appendix C) generate the pointer.
WR(q) generates the write pointer from the read pointer, RD(q) generates the
read pointer from the write painter and OTHER(q) generates the mate pointer
from either.

DRIVERS 9-7

Driver Processing Procedures

This example only has a write put procedure:

static int lpwput(q, mp)

queue_t *q; /* write queue */
register mblk_t *nip; /* message pointer */

{

register struct lp *lp;
int s;

lp = (struct lp *)q-~;

switch (mp->b_datap->db_type)
default:

freemsg(mp) ;

break;
case M_FLUSH:

/* Canonical flush hanU:ing * /
if (*mp->b_rptr &. FLUSIIW) {

flushq(q, FLUSHDATA);
s = spI5();
/* also flush lp->msg since it is logically
* at the head of the write queue */

if (lp->msg) {
freemsg(lp->msg) ;
lp->msg = NULL;

splx(s) ;

if (*mp->b_ rptr &. FLUSHR)

flushq(RD(q), FWSHDATA);

*mp->b_rptr &.= -FLUSIIW;

qrep1y(q, mp);

} else
freemsg(mp) ;

break;

case !LIOCTL:
case M_IlATA:

pItq(q, mp);

s = sp15();

9-8 STREAMS PROGRAMMER'S GUIDE

if (I (lp->flags &. BUSY»
lpout(lp);

sp1x(s) ;

Driver Flush Handling

Driver Processing Procedures

continued

The write put procedure, lpwput, illustrates driver M_FLUSH handling;
note that all drivers are expected to incorporate this flush handling. If
FLUSHW is set, the write message queue is flushed, and also (for this exam
ple) the leading message (lp->msg). sp15 is used to protect the critical code,
assuming the device interrupts at level 5. If FLUSHR is set, the read queue is
flushed, the FLUSHW bit is cleared, and the message is sent upstream using
qreply. If FLUSHR is not set, the message is discarded.

The Stream head always performs the following actions on flush requests
received on the read side from downstream. If FLUSHR is set, messages wait
ing to be sent to user space are flushed. If FLUSHW is set, the Stream head
clears the FLUSHR bit and sends the M-FLUSH message downstream. In
this manner, a single M-FLUSH message sent from the driver can reach all
QUEUEs in a Stream. A module must send two M-FLUSH messages to have
the same affect.

lpwput enqueues M-DATA and M-IOCTL (see the section titled "Driver
and Module loctls", in later text) messages and, if the device is not busy,
starts output by calling lpout. Messages types that are not recognized are dis
carded.

DRIVERS 9-9

Driver Processing Procedures

Driver Interrupt

lpintr is the driver interrupt routine:

1* Device inten:upt routine. *1

Ipintr(dev)
int devj /* minor device :number of Ip *1

register struct Ip *Ipj

Ip = &lp_Ip[dev] j
if (I (Ip->flags & BUSY»

printf(nIp: unexpected inten:upto) j
returnj

Ip->flags &= -BUSYj

Ipout(lp)j

1* start output to device - used by put procedure and driver *1

Ipout(lp)
register struct Ip *Ipj
{

register mblk_t *bpj
queue_t *qj

q = Ip->qptrj

loop:
if «bp = Ip->msg) == NULL) {

if «bp = getq(q» == NULL)

returnj

if (bp->b_datap->db_type == MJOCTL)
Ipdoioctl(lp, bp) j
goto loopj

Ip->m>g = bpj

9-10 STREAMS PROGRAMMER'S GUIDE

if (bp->b_rptr >= bp->b_wptr)

bp = lp->msg-->b_COIlt;
lp->msg->b_COIlt = NULL;
freeb(lp->msg) ;

lp->msg = bp;
goto loop;

lpoutchar(lp, *bp->b_rptr++);

lp->flags I = BUSY;

Driver Processing Procedures

continued

lpout simply takes a character from the queue and sends it to the printer.
The processing is logically similar to the service procedure in Chapter 8. For
convenience, the message currently being output is stored in Ip->msg.

Two mythical routines need to be supplied:

lpoutchar send a character to the printer and interrupt when complete

lpsetopt set the printer interface options

DRIVERS 9-11

Driver and Module loctls

Drivers and modules interface with ioctl(2) system calls through mes
sages. Almost all STREAMS generic ioells [see streamio(7)] go no further
than the Stream head. The capability to send an ioell downstream, similar to
the ioell of character device drivers, is provided by the LSTR ioell. The
Stream head processes an LSTR by constructing an M-IOCTL message (see
Appendix B) from data provided in the call and sends that message down
stream.

The user process that issued the LSTR is blocked until a module or driver
responds with either an M--IOCACK (ack) or M-IOCNAK (nak) message, or
until the request "times out" after a user-specified interval. The STREAMS
module or driver that generates an ack can also return information to the pro
cess. If the Stream head does not receive one of these messages in the speci
fied time, the ioctl call fails.

A module that receives an unrecognized M-IOCTL message should pass
it on unchanged. A driver that receives an unrecognized M-IOCTL should
nak it.

Ipout traps M-IOCTL messages and calls Ipdoioctl to process them:

Ipdoioctl(lp, mp)

stzuct: Ip *lp;
mblk_t *nip;

{

struct iocblk *iocp;

q = Ip->qptr;

1* 1st block oantains iocblk structure *1
iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cnd) {

case SEl'':''OPl'IOOS:

1* OJunt slxlIlld be exactly one short's worth */

if (iocp->ioc_COllIlt 1= sizeof(short»
goto iocnak;

9-12 STREAMS PROGRAMMER'S GUIDE

1* Actual data is in 2nd I1Essage block *1
lpsetopt(lp, *(short *)mp->b_OOl'lt->b_rptr);

1* JlCl(the ioctl *1
mp->b_datap->db_type = M_IOCACl<;

iocp->ioc_oount = 0;

qreply(q, mp);

break;

Driver and Module loctls

continued

default:
iocnak:

1* NAK the ioctl *1
mp->b_datap->db_type = M_IOCNAK;

qreply(q, mp);

lpdoioctl illustrates M-IOCTL processing: The first part also applies to
modules. An M-IOCTL message contains a struct iocblk in its first block. The
first block is followed by zero or more M-DATA blocks. The optional
M-DATA blocks typically contain any user-supplied data.

The form of an iocblk is as follows:

struct iocblk {

} ;

int
ushort

ushort
uint
uint
int
int

icc_end;
icc_uid;
icc...9id;
iccjd;
icc_count;
icc_error;
icc_rval;

/* ioctl ccmnar.d type * /
/* effective uid of user * /
/* effective gid of user */
/* ioctl id */
/* count of bytes in data field * /
/* error code */
/* return value */

DRIVERS 9-13

Driver and Module loctls

ioc_cmd contains the command supplied by the user. In this example,
only one command is recognized, SET_OPTIONS. ioc_count contains the
number of user-supplied data bytes. For this example, it must equal the size
of a short (2 bytes). The user data is sent directly to the printer interface
using lpsetopt. Next, the M-IOCTL message is changed to type M_IOCACK
and the ioc_count field is set to zero to indicate that no data is to be returned
to the user. Finally, the message is sent upstream using qreply. If ioc_count
was left non-zero, the Stream head would copy that many bytes from the 2nd
- Nth message blocks into the user buffer.

If the M-IOCTL message is not understood or in error for any reason, the
driver must set the type to M-IOCNAK and send the message upstream. No
data can be sent to a user in this case. The Stream head will cause the ioctl
call to fail with the error number EINV AL. The driver has the option of set
ting ioc_error to an alternate error number if desired.

9-14

iDe_error can be set to a non-zero value by both M-IOCACK and
M-IOCNAK. This will cause that value to be returned as an error number to
the process that sent the LSTR ioctl.

STREAMS PROGRAMMER'S GUIDE

Driver Close

The driver close clears any message being output. Any messages left on
the message queue will be automatically removed by STREAMS.

static int lpclose(q)
/* read queue */

struct lp *lp;
int s;

lp = (struct lp *) q->qJ>tr;
/* Free message, queue is autanatically flushed by STREAMS */
s = sp15();
if (lp->msg) {

freemsg(lp->msg) ;
lp->msg = NULL;

}

splx(s) ;

DRIVERS 9-15

Chapter 10: Complete Driver

Cloning 10-1

Loop-Around Driver 10-2

Write Put Procedure 10-6

Stream Head Messages 10-10

Service Procedures 10-10

Close 10-13

TABLE OF CONTENTS

Cloning

The clone mechanism has been developed as a convenience. It allows a
user to open a driver without specifying the minor device. When a Stream is
opened, a flag indicating a clone open is tested by the driver open routine. If
the flag is set, the driver returns an unused minor device number. The clone
driver [see clone(7)] is a system-dependent STREAMS pseudo driver.

Knowledge of clone driver implementation is not required to use it. A
description is presented here for completeness and to assist developers who
must implement their own clone driver. A clone-able device has a device
number in which the major number corresponds to the clone driver and the
minor number corresponds to the target driver. When an open(2) system call
is made to the associated (STREAMS) file, open causes a new Stream to be
opened to the clone driver and the open procedure in clone to be called with
dev set to clone/target. The clone open procedure uses minor(dev) to locate
the cdevsw entry of the target driver. Then, clone modifies the contents of
the newly instantiated Stream queue_ts to those of the target driver and calls
the target driver open procedure with the Stream flag set to CLONE OPEN.
The target driver open responds to the CLONE OPEN by returning an unused
minor device number. When the done open receives the returned target
driver minor device number, it allocates a new inode (which has no name in
the file system) and associates the minor device number with the inode.

COMPLETE DRIVER 10-1

Loop-Around Driver

The ioop-around driver is a pseudo-driver that loops data from one open
Stream to another open Stream. the user processes see the associated files as
a full duplex pipe. The Streams are not physically linked. The driver is a
simple multiplexer (see next chapter), which passes messages from one
Stream's write QUEUE to the other Stream's read QUEUE.

To create a pipe, a process opens two Streams, obtains the minor device
number associated with one of the returned file descriptors, and sends the
device number in an LSTR ioctl(2) to the other Stream. For each open, the
driver open places the passed queue_t pointer in a driver interconnection
table, indexed by the device number. When the driver later receives the
LSTR as an M~OCTL message, it uses the device number to locate the other
Stream's interconnection table entry and stores the appropriate queue_t
pointers in both of the Streams' interconnection table eritries.

Subsequently, when messages other than M-IOCTL or MJLUSH are
received by the driver on either Stream's write side, the messages are switched
to the read QUEUE following the driver on the other Stream's read side. The
resultant logical connection is shown in Figure 10-1. Flow control between
the two Streams must be handled by special code since STREAMS will not
automatically propagate flow control information between two Streams that
are not physically interconnected.

10-2 STREAMS PROGRAMMER'S GUIDE

Module(s) .

Figure 10-1: Loop Around Streams

The declarations for the driver are:

/*

* Uoop around driver

*/

#include "sys/types.h"

#include "sys/param.h"
#include "sys/sysnacros .h"
#ifdef u3b2
#include "sys/psw.h"
#include "sys/pcb.h"

#endif

#include "sys/stream.h"

Loop-Around Driver

Module(s)

COMPLETE DRIVER 10-3

Loop-Around Driver

#include "sys/stropts.h"

#include "sys/dir.h"
#include "sys/signal.h"

#include "sys/user.h"

#include "sys/exzno.h"

static struct lIDdule_info minfo = {
0, "loop", 0, INFPSZ, 512, 128

} ;

continued

static int loopopen(), loopclose(), lC>OpW}::Ut(), loopwsrv(), looprsrv();

static struct qinit rinit = {
NULL, looprsrv, loopopen, loopclose, NULL, &minfo, NULL

} ;

static st:ruct qinit winit = {
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL

};

st:ruct streamtab loopinfo = { &rinit, &'winit, NULL, NULL };

st:ruct loop {

queue_t *qptr; /* back pointer to write queue */
queue_t *oqptr; /* pointer to cannected read queue */

} ;

#define IOOP_SEl' (('1' «8) 11)

exte:rn struct loop loop_loop[];
exte:rn int loop_cnt;

/* should be in a .h file */

A config file to configure the loop driver is shown in Appendix E. The
loop structure contains the interconnection information for a pair of Streams.
loop_loop is indexed by the minor device number. When a Stream is opened
to the driver, the address of the corresponding loop_loop element is placed in
q_ptr (private data structure pointer) of the read and write side queue_ts.
Since STREAMS clears q_ptr when the queue_t is allocated, a NULL value of

10-4 STREAMS PROGRAMMER'S GUIDE

Loop-Around Driver

q_ptr indicates an initial open. loop_loop is used to verify that this Stream is
connected to another open Stream.

The open procedure includes canonical clone processing which enables a
single file system node to yield a new minor devicejinode each time the
driver is opened:

static int loopopen(q, dev, flag, sflag)

queue_t *q;
{

struct loop *loop;

/*

* If c:ra.JEDFEN, pick a minor device IlllIIiler to use.

* otherwise, check the minor device range.
*/

if (sflag == cram>PEN) {

for (dev = 0; dev < loop_CIlt; dev++)
if (loop_loop[dev].qptr == NULL)

break;

else
dev = minor (dev) ;

if (dev >= loop_CIlt)

return OPENFAIL; /* default = ENXIO */

/* Setup data structures * /

if (q-><LPtr) /* already open */

return dev;

loop = &loop_loop[dev];
WR(q)-><LPtr = (char *) loop;

q-><LPtr = (char *) loop;
loop->qptr = WR(q) ;

/*
* 'll1e return value is the minor device.
* Fbr cram>PEN case, this will be used for
* newly allocated :inode
*/

return dev;

COMPLETE DRIVER 10-5

Loop-Around Driver

In loopopen, sflag can be CLONE OPEN, indicating that the driver should
pick a minor device (Le., the user does not care which minor'device is used).
In this case, the driver scans its private loop_loop data structure to find an
unused minor device number. If sflag has not been set to CLONE OPEN, the
passed-in minor device is used.

The return value is the minor device number. In the CLONEOPEN case,
this value will be used by the clone driver for the newly allocated inode and
will then be passed to the user.

Write Put Procedure

Since the messages are switched to the read QUEUE following the other
Stream's read side, the driver needs a put procedure only on its write side:

static int loopwplt(q, mp)

queu.e_ t *q;

mb:I:IL t *nip;

{

register struct loop *loop;

loop = (struct loop *)q->CL.Ptr;

struct iocblk *iocp;
int error;

iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cmi) {
case IOOP _SET: {

int to; /* ot:hI;lr minor device */

/*
* Sanity check. ioc_count contains the am:nmt of
* user supplied data which must equal the size of an int.
*/

if (iocp->ioc_COIll1t 1= sizeof(int»
error = EINVAL;
goto iocnak;

10-6 STREAMS PROGRAMMER'S GUIDE

Loop-Around Driver

continued

/* fetch other dev fran 2nd message block * /

/*
* M:lre sanity checks. '!he minor nust be in range, open already.
* Also, this device and the other one IIllSt be discarmected.
*/

if (to >= loop_cnt II to < 0 II 1l00p_l00p[to] .qptr) {

err= = ENXIO;

goto iocnak;

if (loop->oqptr II loop_loop[to] .oqptr) {

err= = EBUSY;

goto iocnak;

/*
* Cross oarmect streams via the loop structures
*/

loop->oqptr = RD(loop_loop[to] .qptr);
loop_loop[to].oqptr = RD(q);

/*

* Retuzn successful ioctl. Set ioc_count

* to zero, since there is retuzn ro data.

*/

mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = p;
qreply(q, lIP);
break;

default:

err= = EINVAL;

iocnak:

COMPLETE DRIVER 10-7

Loop-Around Driver

1*
* Bad ioctl. Setting ioc_error causes the
* ioctl call to retmn that particular ermo.
* By default, ioctl will ret:mn EINVAL on failure

*1
mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_error = error; 1* set ret:mned ernJO *1
qreply(q, mp);

break;

continued

loopwput shows another use of an I-ISTR ioctl call (see the section titled
"Driver and Module Ioctls" in Chapter 9). The driver supports a LOOP_SET
value of ioc_cmd in the iocblk of the M-IOCTL message. LOOP_SET
instructs the driver to connect the current open Stream to the Stream indicated
in the message. The second block of the IM_IOCTL message holds an
integer that specifies the minor device number of the Stream to connect to.

The driver performs several sanity checks: Does the second block have
the proper amount of data? Is the "to" device in range? Is the "to" device
open? Is the current Stream disconnected? Is the "to" Stream disconnected?

If everything checks out, the read queue_t pointers for the two Streams
are stored in the respective oqptr fields. This cross-connects the two Streams
indirectly, via loop_loop.

Canonical flush handling is incorporated in the put procedure:

10-8 STREAMS PROGRAMMER'S GUIDE

case M_FLUSH:
if (*Irp->b_rptr & FLUSHW)

flushq(q, 0);

if (*Irp->b_rptr & FLUSHR)

flushq(RD(q), 0);

*Irp->b_rptr &= -FLUSHW;

qreply(q, mp);

} else
freemsg(mp) ;

break;

defauJ.t:
/*

Loop-Around Driver

* If this stream isn't cannected, send an M_ERROR upstream.
*/

if (loop->cqptr == NULL) {
putctl1 (RD(q)->~next, M_ERROR, mxrO);

freemsg(mp) ;

break;

putq(q, mp);

Finally, loopwput enqueues all other messages (e.g., ~DATA or ~PROTO)
for processing by its service procedure. A check is made to see if the Stream
is connected. If not, an M_ERROR is sent upstream to the Stream head (see
below).

putct11 and putctl (see below) are utilities that allocate a non-data (Le.,
not M_DATA, ~ROTO, or MJCPROTO) type message; place one byte in
the message (for putctll) and call the put procedure of the specified QUEUE
(see Appendix C).

COMPLETE DRIVER 10-9

Loop-Around Driver

Stream Head Messages

Certain message types (see Appendix B) can be sent upstream by drivers
and modules to the Stri:!am head where they are translated into actions detect
~ble by user process(es). The messages may also modify the state of the
Stream head:

MJ:RROR

MJfANGUP

Causes the Stream head to lock up .. Message transmis
sion between Stream and user processes is terminated.
All subsequent system calls except close(2) and pol1(2)
will fail. Also causes an M-FLUSH clearing all mes
sage queues to be sent downstream by the Stream head.

Terminates input from a user process to the Stream. All
subsequent system calls that would send messages
downstream will fail. Once the Stream head read mes
sage queue is empty, EOF is returned on reads. Can
also result in SIGHUP signal to the process group.

M_SIG/M_PCSIGCauses a spec::ified signal to be sent to a process (see
Chapter 13).

Service Procedures

Service procedures are required on both thi:! write and read sides for pur
poses of flow control:

10-10 STREAMS PROGRAMMER'S GUIDE

Loop-Around Driver

static int loopwsrv(q)
register queue _ t *q;

mblk _ t "nl:>;
register struct loop *loop;

loop = (struct loop *)q->qytr;

while ((mp = getq(q)) != NULL) {

/*

* Check if we can put the message up the other stream read queue

*/

if (mp->b_datap->db_type <= QPCTL && !canput(loop->oqptr-><Lnext))

putbq(q, mp); /* read side is blocked */
break;

/* send message */

putnext(loop->oqptr, mp); /* To queue following other stream read queue *

static int looprsrv(q)
queue_t *q;

/* Enter only when "back enabled" by flow control */

struct loop *loop;

loop = (struct loop *)q-><LPU;
if (loop->oqptr == NULL)

return;

/* manually enable write service procedure */

qenable(WR(loop->oqptr));

COMPLETE DRIVER 10-11

Loop-Around Driver

The write service procedure, loopwsrv, takes on the canonical form (see
Chapter 8) with a difference. The QUEUE being written to is not down
stream, but upstream (found via oqptr) on the other Stream.

In this case, there is no read side put procedure so the read service pro
cedure, looprsrv, is not scheduled by an associated put procedure, as has been
done previously. looprsrv is scheduled only by being back-enabled when its
upstream becomes unstuck from flow control blockage. The purpose of the
procedure is to re-enable the writer (loopwsrv) by using oqptr to find the
related queue_to loopwsrv cannot be directly back-enabled by STREAMS
because there is no direct queue_t linkage between the two Streams. Note
that no message ever gets queued to the read service procedure. Messages are
kept on the write side so that flow control can propagate up to the Stream
head. There is a defensive check to see if the cross-connect has broken. qen
able schedules the write side of the other Stream.

10-12 STREAMS PROGRAMMER'S GUIDE

Loop-Around Driver

Close
loopclose breaks the connection between the Streams.

static int loopclose(q)
queue_t *q;

{

register struct loop *loop;

loop = (struct loop *)q->qJJtr;

loop->qptr = NULL;

/*
* If we are oannected to another stream, break the

* linkage, and send a hangup message.
* '!he hangup message causes the stream head to fail writes,
* allow the queued data to be read cx:mpletely, and then

* retunJ. IDF an subsequent reads.
*/

if (loop->oqptr) {

«struct loop *)loop->oqptr->qJJtr)->qptr = NULL;

«struct loop *)loop->oqptr->qJJtr)->oqptr = NULL;

putctl (loop->oqptr-><L next, !L H.AlGJP) ;

loop->oqptr = NULL;

loopclose sends an M-HANGUP message (see above) up the connected
Stream to the Stream head.

This driver can be implemented much more cleanly by actually linking the
q_next pointers of the queue_t pairs of the two Streams.

COMPLETE DRIVER 10-13

Chapter 11: Multiplexing

Multiplexing Configurations
Connecting Lower Streams

Disconnecting Lower Streams

Multiplexer Construction Example

Multiplexing Driver
Upper Write Put Procedure

Lower QUEUE Write Service Procedure

Lower Read Put Procedure

11-1

11-2
11-4

11-5

11-8
11-12
11-16
11-19

TABLE OF CONTENTS

Multiplexing Configurations

This chapter describes how STREAMS multiplexing configurations are
created and discusses multiplexing drivers. A STREAMS multiplexer is a
pseudo-driver with multiple Streams connected to it. The primary function of
the driver is to switch messages among the connected Streams. Multiplexer
configurations are created from user level by system calls. Chapter 6 of the
Primer contains the required introduction to STREAMS multiplexing.

STREAMS related system calls are used to set up the "plumbing," or
Stream interconnections, for multiplexing pseudo-drivers. The subset of these
calls that allows a user to connect (and disconnect) Streams below a pseudo
driver is referred to as the multiplexing facility. This type of connection will
be referred to as a 1-to-M, or lower, multiplexer configuration (see Figure 6-2
in the Primer). This configuration must always contain a multiplexing
pseudo-driver, which is recognized by STREAMS as having special charac
teristics.

Multiple Streams can be connected above a driver by use of open(2) calls.
This was done for the loop-around driver of the previous chapter and for the
driver-handling, multiple minor devices in Chapter 9. There is no difference
between the connections to these drivers, only the functions performed by the
driver are different. In the multiplexing case, the driver routes data between
multiple Streams. In the device driver case, the driver routes data between
user processes and associated physical ports. Multiplexing with Streams con
nected above will be referred to as an N-to-1, or upper, multiplexer (see Fig
ure 6-1 in the Primer). STREAMS does not provide any facilities beyond open
and close(2) to connect or disconnect upper Streams for multiplexing pur
poses.

From the driver's perspective, upper and lower configurations differ only
in the way they are initially connected to the driver. The implementation
requirements are the same: route the data and handle flow control. All multi
plexer drivers require special developer-provided software to perform the mul
tiplexing data routing and to handle flow control. STREAMS does not directly
support flow control among multiple Streams.

M-to-N multiplexing configurations are implemented by using both of the
above mechanisms in a driver. Complex multiplexing trees can be created by
cascading multiplexing Streams below one another.

MULTIPLEXING 11-1

Multiplexing Configurations

As discussed in Chapter 9, the multiple Streams that represent minor dev
ices are actually distinct Streams in which the driver keeps track of each
Stream attached to it. The Streams are not really connected to their common
driver. The same is true for STREAMS multiplexers of any configuration.
The multiplexed Streams are distinct and the driver must be implemented to
do most of the work. As stated above, the only difference between configura
tions is the manner of connecting and disconnecting. Only lower connections
have use of the multiplexing facility.

Connecting Lower Streams
A lower multiplexer is connected as follows: The initial open to a multi

plexing driver creates a Stream, as in any other driver. As usuat open uses
the first two streamtab structure entries (see the section titled" Opening a
Stream," in Chapter 5) to create the driver QUEUEs. At this point, the only
distinguishing characteristic of this Stream are non-NULL entries in the
streamtab sLmux[rw]init (mux) fields:

stxuct streamtab {
stxuct qinit *st_rdinit; /* defines read QUEUE */
stxuct qinit *st_wrinit; /* defines write QUEUE */
stxuct qinit *st_nruxrinit; /* f= rm.lltiplexing drivers only */
stxuct qinit *st_muxwinit; /* f= rm.lltiplexing drivers only */

} ;

These fields are ignored by the open (see the rightmost Stream in Figure
11-1). Any other Stream subsequently opened to this driver will have the
same streamtab and thereby the same mux fields.

Next, another file is opened to create a (soon to be) lower Stream. The
driver for the lower Stream is typically a device driver (see the leftmost
Stream in Figure 11-1). This Stream has no distinguishing characteristics. It
can include any driver compatible with the multiplexer. Any modules
required on the lower Stream must be pushed onto it now.

Next, this lower Stream is connected below the multiplexing driver with
an LLINK ioctl call [see streamio(7)). As shown in Figure 5-1, all Stream
components are constructed in a similar manner. The Stream head points to
the stream-head-routines as its procedures (known via its queue_t). An
LLINK to the upper Stream, referencing the lower Stream, causes STREAMS
to modify the contents of the Stream head in the lower Stream. The pointers
to the stream-he ad-routines, and other values, in the Stream head .are replaced

11-2 STREAMS PROGRAMMER'S GUIDE

Multiplexing Configurations

with those contained in the mux fields of the multiplexing driver's streamtab.
Changing the stream-head-routines on the lower Stream means that all subse
quent messages sent upstream by the lower Stream's driver will, ultimately, be
passed to the put procedure designated in sLmuxrinit, the multiplexing driver.
The LLINK also establishes this upper Stream as the control Stream for this
lower Stream. STREAMS remembers the relationship between these two
Streams until the upper Stream is closed, or the lower Stream is unlinked.

Finally, the Stream head sends to the multiplexing driver an M-IOCTL
message with ioc_cmd set to LLINK (see discussions of the iocblk structure
in Chapter 9 and Appendix A). The M_DATA part of the M-IOCTL contains
a linkblk structure:

struct linkblk {

int
} ;

*l_qtop;
*l_qbot;
I_index;

/* lowest level write queue of upper stream */

/* highest level write queue of lc:Mer stream */

/* system-unique :index f= lc:Mer stream. */

The multiplexing driver stores information from the linkblk in private storage
and returns an M-IOCACK message (ack). Lindex is returned to the process
requesting the LLINK. This value can be used later by the process to discon
nect this Stream, as described below. linkblk contents are further discussed
below.

An I_LINK is required for each lower Stream connected to the driver.
Additional upper Streams can be connected to the multiplexing driver by open
calls. Any message type can be sent from a lower Stream to user process(es)
along any of the upper Streams. The upper Stream(s) provides the only inter
face between the user process(es) and the multiplexer.

Note that no direct data structure linkage is established for the linked
Streams. The q_next pointers of the lower Stream still appear to connect with
a Stream head. Messages flowing upstream from a lower driver (a device
driver or another multiplexer) will enter the multiplexing driver (Le., Stream
head) put procedure with Lqbot as the queue_t value. The multiplexing
driver has to route the messages to the appropriate upper (or lower) Stream.
Similarly, a message coming downstream from user space on the control, or
any other, upper Stream has to be processed and routed, if required, by the
driver.

MULTIPLEXING 11-3

Multiplexing Configurations

Also note that the lower Stream (see the headers and file descriptors in
Figure 11-2) is no longer accessible from user space. This causes all system
calls to the lower Stream to return EINV AL, with the exception of close. This
is why all modules have to be in place before the lower Stream is linked to
the multiplexing driver. As a general rule, the lower Stream file should be
closed after it is linked (see following section). This does not disturb the mul
tiplexing configuration.

Finally, note that the absence of direct linkage between the upper and
lower Streams means that STREAMS flow control has to be handled by spe
cial code in the multiplexing driver. The flow control mechanism cannot see
across the driver.

In general, multiplexing drivers should be implemented so that new
Streams can be dynamically connected to, and existing Streams disconnected
from, the driver without interfering with its ongoing operation. The number
of Streams that can be connected to a multiplexer is developer-dependent.
However, there is a system limit, NMUXLINK (see Appendix E), to the
number of Streams that can be linked in the system.

Disconnecting Lower Streams

Dismantling a lower multiplexer is accomplished by disconnecting (unlink
ing) the lower Streams. Unlinking can be initiated in three ways: an
LUNLINK ioctl referencing a specific Stream, an LUNLINK indicating all
lower Streams, or the last close (i.e., causes the associated file to be closed) of
the control Stream. As in the link, an unlink sends a linkblk structure to the
driver in an M-IOCTL message. The LUNLINK call, which unlinks a single
Stream, uses the Lindex value returned in the LLINK to specify the lower
Stream to be unlinked. The latter two calls must designate a file correspond
ing to a control Stream which causes all the lower Streams that were previ
ously linked by this control Stream to be unlinked. However, the driver sees
a series of individual unlinks.

If the file descriptor for a lower Stream was previously closed, a subse
quent unlink will automatically close the Stream. Otherwise, the lower
Stream must be closed by close following the unlink. STREAMS will
automatically dismantle all cascaded multiplexers (below other multiplexing
Streams) if their controlling Stream is closed. An I_UNLINK will leave lower,
cascaded multiplexing Streams intact unless the Stream file descriptor was
previously closed.

11-4 STREAMS PROGRAMMER'S GUIDE

Multiplexer Construction Example

This section describes an example of multiplexer construction and usage.
A multiplexing configuration similar to the Internet of Figure 6-2 in the Primer
is discussed. Figure 11-1 shows the Streams before their connection to create
the multiplexing configuration of Figure 11-2. Multiple upper and lower
Streams interface to the multiplexer driver. The user processes of Figure 11-2
are not shown in Figure 11-1.

r-----------------------------~---------------------,
, Setup and Supervisory Process , , ,

L I ~e -d~~ ~ -1- --~: de,: ~ ---- ~~ -d"~-: ~ -,-~e!~~ -'-1--~:~~ -, J

Stream Head

QUEU~Pr. A

Net 1
Module

Ethernet
Driver

Stream Head

QUEU~ Pro B

Net 2
Module

LAPB
Driver

U
Stream Head

QUEU~ Pro C

I
802.2
Driver

Figure 11-1: Internet Multiplexer Before Connecting

Stream Head

QUEU~ Pair

Stream Head

QUEU~ Pair

The Ethernet, LAPB, and IEEE 802.2 device drivers terminate links to other
nodes. IP (Internet Protocol) is a multiplexer driver. IP switches datagrams
among the various nodes or sends them upstream to a user(s) in the system.
The Net modules would typically provide a convergence function which
matches the IP and device driver interface.

MULTIPLEXING 11-5

Multiplexer Construction Example

Figure 11-1 depicts only a portion of the full, larger Stream. As shown in
the dotted rectangle above the IP multiplexer, there generally would be an
upper TCP multiplexer, additional modules and, possibly, additional multi
plexers in the Stream. Multiplexers could also be cascaded below the IP
driver if the device drivers were replaced by multiplexer drivers.

r---------------------------, U
Setup and Supervisory I P ser

Process I rocesses _______________ 1 _____ 6 __________ _

QUEU~ Pair

........ ~
fds

..... '1\ 1\ '1\'

....... Jl~.V

. Upper
: Multiplexer or
: Module

Internet Protocol
Multiplexer Driver

Figure 11-2: Internet Multiplexer After Connecting

11-6 STREAMS PROGRAMMER'S GUIDE

Multiplexer Construction Example

Streams A, B, and C are opened by the process, and modules are pushed
as needed. Two upper Streams are opened to the IP multiplexer. The right
most Stream represents multiple Streams, each connected to a process using
the network. The Stream second from the right provides a direct path to the
multiplexer for supervisory functions. It is the control Stream, leading to a
process which sets up and supervises this configuration. It is always directly
connected to the IP driver. Although not shown, modules can be pushed on
the control Stream.

After the Streams are opened, the supervisory process typically transfers
routing information to the IP drivers (and any other multiplexers above the
IP), and initializes the links. As each link becomes operational, its Stream is
connected below the IP driver. If a more complex multiplexing configuration
is required, the IP multiplexer Stream with all its connected links can be con
nected below another multiplexer driver.

As shown in Figure 11-2, the file descriptors for the lower device driver
Streams are left dangling. The primary purpose in creating these Streams was
to provide parts for the multiplexer. Those not used for control and not
required for error recovery (by reconnecting them through an LUNLINK
ioctl) have no further function. As stated above, these lower Streams can be
closed to free the file descriptor without any effect on the multiplexer. A
setup process installing a configuration containing a large number of drivers
should do this to avoid running out of file descriptors.

MULTIPLEXING 11-7

Multiplexing Driver

This section contains an example of a multiplexing driver that implements
an N-to-l configuration, similar to that of Figure 6-3 in the Primer. This con
figuration might be used for terminal windows, where each transmission to or
from the terminal identifies the window. This resembles a typical device
driver, with two differences: the device handling functions are performed by
a separate driver, connected as a lower Stream, and the device information
(Le., relevant user process) is contained in the input data rather than in an
interrupt call.

Each upper Stream is connected by an open(2), identical to the driver of
Chapter 9. A single lower Stream is opened and then it is linked by use of
the multiplexing facility. This lower Stream might connect to the tty driver.
The implementation of this example is a foundation for an M to N multi
plexer.

As in the loop-around driver, flow control requires the use of standard
and special code, since physical corinectivity among the Streams is broken at
the driver. Different approaches are used for flow control on the lower
Stream, for messages coming upstream from the device driver, and on the
upper Streams, for messages coming downstream from the user processes.

The multiplexer declarations are:

11-8 STREAMS PROGRAMMER'S GUIDE

Multiplexing Driver

#include "sys/types.h"
#include "sys/param.h"

#include "sys/sysmac:ros. h"

#include "sys/stream.h"
#include "sys/stropts.h"
#include "sys/errno.h"

static int InUXOpE!Il{), ImlXClose{), IIIIlXUWplt{), llIlXlws:tV{), IIIlX1xput();

static struct m:rlule _ info info =
0, "IlI\lX", 0, INFPSZ, 512, 128

} ;
static struct qinit urinit = 1* upper read *1

NOLL, NOLL, mJXOpeIl, IlIlXClose, NOLL, &info, NOLL

} ;
static struct qinit uwinit = { 1* upper write *1

IIIIlXUWplt, NOLL, NOLL, NOLL, NOLL, &info, NOLL

} ;
static struct qinit lrinit = { 1* lower read *1

nuxlrpIt, NOLL, NOLL, NOLL, NOLL, &info, NOLL

} ;
static struct qinit lwinit = { 1* lower write *1

NOLL, llIlXlws:rv, NOLL, NOLL, NOLL, &info, NOLL

} ;

struct streamtab IlIIlXinfo = { &urinit, &uwinit, &lrinit, &lwinit };

struct IlI\lX {

queue_t *qptr; 1* back pointer to read queue *1
} ;

extern struct mux IlI\lX _ IlI\lX[l;
extern int IIIDU::rlt;

1* linked lower queue *1
1* set if error of hangup an lower stream *1

MULTIPLEXING 11-9

Multiplexing Driver

The four stream tab entries correspond to the upper read, upper write,
lower read, and lower write qinit structures. The multiplexing qinit struc
tures replace those in each (in this case there is only one) lower Stream head
after the LLINK has completed successfully. In a multiplexing configuration,
the processing performed by the multiplexing driver can be partitioned
between the upper and lower QUEUEs. There must be an upper Stream
write, and lower Stream read, put procedures. In general, only upper write
side and lower read side procedures are used. Application specific flow con
trol requirements might modify this. If the QUEUE procedures of the opposite
upper/lower QUEUE are not needed, the QUEUE can be skipped over, and
the message put to the following QUEUE.

In the example, the upper read side procedures are not used. The lower
Stream read QUEUE put procedure transfers the message directly to the read
QUEUE upstream from the multiplexer. There is no lower write put pro
cedure because the upper write put procedure directly feeds the lower write
service procedure, as described below.

The driver uses a private data structure, mux. mux-mux[dev] points back
to the opened upper read QUEUE. This is used to route messages coming
upstream from the driver to the appropriate upper QUEUE. It is also used to
find a free minor device for a CLONE OPEN driver open case.

The upper QUEUE open contains the canonical driver open code:

11-10 STREAMS PROGRAMMER'S GUIDE

static int nmcope:n(q, dev, flag, sflag)
queue_t *q;
{

struct IIDlX *twx;

if (sflag == CLaiEOPEN)

else

f= (dev = 0; dev < lIDlX_cnt; dev++)
if (1IILlX_IIDlX[dev].qptr == 0)

break;

dev = minor (dev) ;

if (dev >= Il11lX_cnt)

return OPENFAIL;

nux = &mux_nux[dev];
nux->qptr = q;
q->ct..Ptr = (char *) nux;
WR(q)->qJrt:r = (char *) 1IILlX;

return dev;

Multiplexing Driver

muxopen checks for a clone or ordinary open call. It loads q_ptr to point
at the mux_mux[] structure.

The core multiplexer processing is the following: downstream data writ
ten to an upper Stream is queued on the corresponding upper write message
queue. This allows flow control to propagate towards the Stream head for
each upper Stream. However, there is no service procedure on the upper
write side. All M-DATA messages from all the upper message queues are
ultimately dequeued by the service procedure on the lower (linked) write side.
The upper write Streams are serviced in a round-robin fashion by the lower
write service procedure. A lower write service procedure, rather than a write
put procedure, is used so that flow control, coming up from the driver below,
may be handled.

MULTIPLEXING 11-11

Multiplexing Driver

On the lower read side, data coming up the lower Stream is passed to the
lower read put procedure. The procedure routes the data to an upper Stream
based on the first byte of the message. This byte holds the minor device
number of an upper Stream. The put procedure handles flow control by test
ing the upper Stream at the first upper read QUEUE beyond the driver. That
is, the put procedure treats the Stream component above the driver as the next
QUEUE.

Multiplexer Routines

Figure 11-3: Example Multiplexer Configuration

This is shown (sort of) in Figure 11-3. Multiplexer Routines are all the above
procedures. Ul and U2 are queue_t pairs, each including a write queue_t
pointed at by an Lqtop in a linkblk (see beginning of this chapter). L is the
queue_t pair which contains the write queue_t pointed at by Lqbot. Nt and
N2 are the modules (or Stream head or another multiplexing driver) seen by L
when read side messages (He sent upstream.

Upper Write Put Procedure
The upper QUEUE write put procedure, muxuwput, traps ioctls, in particu

lar LLINK and LUNLINK:

11-12 STREAMS PROGRAMMER'S GUIDE

static int IIIlXIlWplt(q, mp)

queue_t *q;

mblk_t *mp;

int s;
struct IIUlX *mwt;

IIIlX = (St:ruct: IlI.lX *)q->qytr;
switch (np->b_datap->db_type)

case M_IOCTL: {
st:ruct: iocblk *iocp;
st:ruct: linkblk *linkp;

/*

* Ioctl. O:lly channel 0 can do ioctls. Two

* calls are recognized: LINK, and UNLINK

*/

if (1lI.lX ! = IlI.lX _1IUlX)

goto iocnak;

iocp = (struct iocblk *) np->bJptr;
switch (iocp->iOC_cml) {

case I_LINK:

/*

* Link. The data ciontains a linkblk structure
* Remeltiler the bottan queue in IIIIlXbot.

*/

if (IlIlXbot != NULL)

g6t:o iocnak;
linkp = (struct linkblk *) np->b_oont->b_i:ptr;

IIIIlXbot = linkp->l_qbot;

IIIlXE!rr = 0;
np->b_datap->db_type = M_IOCACK;
iocp->iOc_oount = 0;

qreply(q, mp);

break;
case I_UNLINK:

Multiplexing Driver

MULTIPLEXING 11-13

Multiplexing Driver

1*
* Unlink. The data contains a linkblk structure.
* Should not fail an unlink. Null out muxbot.

*1

linkp = (struct linkblk *) ~>b_cont->b_rptr;

IIIlXbot = NULL;
~>b_datap->db_type = M_IOCACK;
iocp->ioc_COUIlt = 0;
qreply(q, mp);
break;

default:
iocnak:

1* fail ioctl *1

~>b_datap->db_type = M_IOCNAK;
qreply(q, mp);

break;

continued

First, there is a check to enforce that the Stream associated with minor
device 0 will be the single, controlling Stream. loctls are only accepted on this
Stream. As described previously, a controlling Stream is the one that issues
the LLINK. Having a single control Stream is a recommended practice.
LLINK and LUNLINK include a linkblk structure, described previously,
containing:

Lqtop The upper write QUEUE from which the ioctl is coming. It
should always equal q.

11-14 STREAMS PROGRAMMER'S GUIDE

Multiplexing Driver

Lqbot The new lower write QUEUE. It is the former Stream head write
QUEUE. It is of most interest since that is where the multiplexer
gets and puts its data.

Lindex A unique (system wide) identifier for the link. It can be used for
routing, or during selective unlinks, as described above. Since
the example only supports a single link, Lindex is not used.

For LLINK, Lqbot is saved in muxbot and an ack is generated. From this
point on, until an LUNLINK occurs, data from upper queues will be routed
through muxbot. Note that when an LLINK, is received, the lower Stream
has already been connected. This allows the driver to send messages down
stream to perform any initialization functions. Returning an ~IOCNAK
message (nak) in response to an I_LINK will cause the lower Stream to be
disconnected.

The LUNLINK handling code nulls out muxbot and generates an ack. A
nak should not be returned to an LUNLINK. The Stream head assures that
the lower Stream is connected to a multiplexer before sending an LUNLINK
~IOCTL.

muxuwput handles MJLUSH messages as a normal driver would:

case M_FLUSH:

if ("mp->b]ptr &. FLUSHW)

flushq(q, FLUSlIDATA);

if (*np->b]ptr &. FLUSHR)

flushq(RD(q), FLUSlIDATA);

"mp->b_rptr &.= -FLUSHW;

qreply(q, mp);
} else

freemsg(mp) ;

break;

/*
* Data. If we have no bottan queue --> fail

* Otherwise, queue the data, and invoke the lower

* service procedure.
*/

if (IllIlXerr II III.lXbot == NULL)
goto bad;

MULTIPLEXING 11-15

Multiplexing Driver

continued

putq(q, ~); /* place message on upper write message queue */

qenable(lIIIlXbot) ; /* lower sezvice write procedure */
break;

default:
bad:

/*

* Send an error message upstream.
*/

mp->b_datap->db_type = M_ERROR;

mp->b_rptr = mp->b_wptr = mp->b_datap->~se;
*mp->b_wp"tr++ = EINVAL;

qreply(q, ~);

M_DATA messages are not placed on the lower write message queue.
They are queued on the upper write message queue. putq recognizes the
absence of the upper service procedure and does not schedule the QUEUE.
Then, the lower service procedure, muxlwsrv is scheduled with qenable (see
Appendix C) to start output. This is similar to starting output on a device
driver. Note that muxuwput cannot access muxlwsrv (the lower QUEUE write
service procedure, contained in muxbot) by the conventional STREAMS calls,
putq or putnext (to a muxlwput). Both calls require that a message be passed,
but the messages remain on the upper Stream.

Lower QUEUE Write Service Procedure

The lower (linked) queue write service procedure muxlwsrv, is scheduled
directly from the upper service procedures. It is also scheduled from the
lower Stream, by being back-enabled when the lower Stream becomes
unblocked from downstream flow control.

11-16 STREAMS PROGRAMMER'S GUIDE

Multiplexing Driver

static int muxlwsrv(q)
register queue _ t *q;
{

register mblk_t *nq:l, *bp;

register queue_ t *nq;

1*
* While lower stream is not blocked, find an upper queue to
* service (get_next_q) and send one message fran it downstream.

*1
while (canput(q->~next»

nq = get_next_q();

if (nq == NULL)

break;
rrp = getq(nq);

1*
* Prepend the outgoing message with a single byte header

* that indicates the minor device rnmtler it came fran.
*1

if ((bp = allocb(1, BPRI_MED» == NULL) {
printf("mllx: allocb failed (size 1)'\n");
freemsg(rrp) ;
continue;

*bp->b_wptr++ = (struct mux *)rq->qJrt:r - mux_m.lX;

bp->b_cont = rrp;
put:next(q, bp);

muxlwsrv takes data from the upper queues and puts it out through mux
bot. The algorithm used is simple round robin. While we can put to
muxbot->~next, we select an upper QUEUE (via geLnexLq) and move a
message from it to muxbot. Each message is prepended by a one-byte header
that indicates which upper Stream it came from.

MULTIPLEXING 11-17

Multiplexing Driver

Finding messages on upper write queues is handled by geLnexLq:

/*

* Round-robin scheduling.
* Return next upper queue that needs servicing.

* Returns NULL when no nore IIIOrk needs to be done.
*/

static queue_t *
get_next_q()

{

static int next;

int i, start;
register queue_ t *q;

start = next;
for (i = next; i < IIIlX_cnt; i++)

if (q = It\IllUlUlX[iJ .qptr)
q = WR(q);

if (q->Cl...Jirst)
next = i+1;

retunl q;

for (i = 0; i < start; i++)

if (q = mux_muK[iJ.qptr)
q=WR(q);

if (q->qJirst)
next = i+1;
retunl q;

return NULL;

11-18 STREAMS PROGRAMMER'S GUIDE

Multiplexing Driver

geLnexL.q searches the upper queues in a round-robin fashion looking for
the first one containing a message. It returns the queue_t pointer or NULL if
there is no work to do.

Lower Read Put Procedure

The lower (linked) queue read put procedure is:

static int IIIlX1rput(q, mp)
queue_t *q;

IIi:llk_t *mp;

{

queue _t *uq;

nt>lk_t *b_cant;
int dev;

switch(mp->b_datap->db_ type)

case M_FLUSH:

1*
* Flush queues. N)TE: sense of tests is reversed
* since we are acting like a "stream head"
*1

if (*mp->b_rptr &. FLUSHR)

flushq(q, 0);

if (*mp->b_ rptr &. FLUSHW)

*mp->b_rptr &.= -FLUSHR;

qreply(q, mp);

} else

freemsg(mp) ;

break;

case M_ERROR:

case M_HAN;UP:

IlIlDCerr = 1;
freemsg(mp) ;

break;

MULTIPLEXING 11-19

Multiplexing Driver

11-20

/*
* Ralte message. First byte indicates

* device to send to. No flow oontrol.

*

continued

* Extract and delete device IlllIIIber. If the leading block is

* rOt1 e:rpt;y and more blocks follow, strip the leading block.
* The stream head interprets a leading zero length block
* as an EOF regardless of what follows (sigh).

*1

dev = *mp->b_rptr++;

if (np->b_rptr == np->b_wptr && (b_oont = np->b_oont»

freeb(np);

np = b_oant;

/* Sanity check. Device IllllSt be in range */

if (dev < 0 II dev >= lIlDU::nt)

freemsg(np) ;

break;

1*
* If upper stream is open and n:>t backed up,
* send the message there, otherwise discard it.
*/

uq = IIIIDLlIIlX[dev] .qptr;
if (uq 1= NULL && canput(uq-><Lnext»

putnext(uq, np);

else
freemsg(np) ;

break;
default:

freemsg(np) ;

STREAMS PROGRAMMER'S GUIDE

Multiplexing Driver

muxlrput receives messages from the linked Stream. In this case, it is act
ing as a Stream head. It handles M-FLUSH messages. Note the code is
reversed from that of a driver, handling M-FLUSH messages from upstream.

muxlrput also handles M_ERROR and M-HANGUP messages. If one is
received, it locks up the upper Streams.

M-DATA messages are routed by looking at the first data byte of the
message. This byte contains the minor device of the upper Stream. If remov
ing this byte causes the leading block to be empty, and more blocks follow,
the block is discarded. This is done because the Stream head interprets a
leading zero length block as an EOF [see read(2)]. Several sanity checks are
made: Does the message have at least one byte? Is the device in range? Is
the upper Stream open? Is the upper Stream not full?

This mux does not do end-to-end flow control. It is merely a router (like
the Department of Defense's IP protocol). If everything checks out, the mes
sage is put to the proper upper QUEUE. Otherwise, the message is silently
discarded.

The upper Stream close routine simply clears the mux entry so this queue
will no longer be found by geLnexLqueue:

/*

* Upper queue close

*/
static int IIIllXclose(q)

queue_t *q;
{

«struct IIIllX *)q->q....Ptr)->qptr = NULL;

MULTIPLEXING 11-21

Chapter 12: Service Interface

Definition
Message Usage

Example
Declarations

Service Interface Procedure

12-1

12-1

12-3

12-3

12-5

TABLE OF CONTENTS

Definition

STREAMS provides the means to implement a service interface between
any two components in a Stream, and between a user process and the top
most module in the Stream. A service interface is defined at the boundary
between a service user and a service provider (see Figure 4-2). A service
interface is a set of primitives and the rules for the allowable sequences of
primitives across the boundary. These rules are typically represented by a
state machine. In STREAMS, the service user and provider are implemented
in a module, driver, or user process. The primitives are carried bidirectionally
between a service user and provider in MJROTO and MJCPROTO (gener
ically, PROTO) messages. MJCPROTO is the priority version of
MJROTO.

Message Usage

As described in Appendix B, PROTO messages can be multiblock, with
the second through last blocks of type M-DATA. The first block in a PROTO
message contains the control part of the primitive in a form agreed upon by
the user and provider and the block is not intended to carry protocol headers.
(Although its use is not recommended, upstream PROTO messages can have
multiple PROTO blocks at the start of the message. getmsg will compact the
blocks into a single control part when sending to a user process.) The
M-DATA block(s) contains any data part associated with the primitive. The
data part may be processed in a module that receives it, or it may be sent to
the next Stream component, along with any data generated by the module.
The contents of PROTO messages and their allowable sequences are deter
mined by the service interface specification.

PROTO messages can be sent bidirectionally (up and downstream) on a
Stream and bidirectionally between a Stream and a user process. putmsg(2)
and getmsg(2) system calls are analogous, respectively, to write(2) and
read(2) except that the former allow both data and control parts to be
(separately) passed, and they observe message boundary alignment across the
user-Stream boundary. putmsg andgetmsg separately copy the control part
(MJROTO or M-PCPROTO block) and data part (M-DATA blocks)
between the Stream and user process.

SERVICE INTERFACE 12-1

Definition

An ~CPROTO message is normally used to acknowledge M-PROTO
messages and not to carry protocol expedited data. M-PCPROTO insures
that the acknowledgment reaches the service user before any other message.
If the service user is a user process, the Stream head will only store a single
M-PCPROTO message, and discard subsequent ~CPROTO messages until
the first one is read with getmsg(2).

The following rules pertain to service interfaces:

• Modules and drivers that support a service interface must act upon all
PROTO messages and not pass them through.

• Modules may be inserted between a service user and a service provider
to manipulate the data part as it passes between them. However, these
modules may not alter the contents of the control part (PROTO block,
first message block) nor alter the boundaries of the control or data
parts. That is, the message blocks comprising the data part may be
changed, but the message may not be split into separate messages nor
combined with other messages.

In addition, modules and drivers must observe the rule that priority messages
are not subject to flow control and forward them accordingly (e.g., see the
beginning of modwsrv in Chapter 8). Priority messages also bypass flow con
trol at the user-Stream boundary [see putmsg(2)].

12-2 STREAMS PROGRAMMER'S GUIDE

Example

The example below is part of a module which illustrates the concept of a
service interface. The module implements a simple datagram interface and
mirrors the example in Chapter 4.

Declarations

The service interface primitives are defined in the declarations:

#include "sys/types.h"
#include "sys/param.h"

#include "sys/stream.h"
#include "sys/errno.h"

/*
* Pr:iroitives initiated by the service user:
*/

#define BIND_RID 1 /* bind request */
#define llNI'lDATA_RID 2 /* unitdata request */

/*

* Pr:iroitives initiated by the service provider:
*/

#define a<_i'D.<

#define ERROILi'D.<

3 /* bind acknowledgment * /
4 /* error acknowledgment */

#define llNI'lDATA_IND 5 /* unitdata indication */

/*
* The following structures define the fonnat of the

* stream message block of the above pr:iroitives.
*/

struct bind_req { /* bind request */

long PRIM_type; /* always BIND_RID */

long BIND _addr; /* addr to bind * /
} ;
struct unitdata_req { /* unitdata request */

long PRIM_type; /* always llNI'lDATA_REtl */

long llEST_addr; /* dest addr */

} ;
struct ok_ack { /* ok acknowledgment */

long PRIM_type; /* always a<_i'D.< */

} ;

SERVICE INTERFACE 12-3

Example

struct error_ack { 1* error acknowledgment *1
lCO] PRIM_type; 1* always EIUOLACK *1

lCO] UNlX_error; 1* UNlX error code *1

} ;
struct unitdata_ind { 1* unitdata indication *1

lCO] PRIM_type; 1* always UNITDATA_IND *1

lCO] SRC_addr; 1* SOIlrce addr *1
} ;
union primitives {

lCO] type;
struct bind_req

1* union of all primitives *1

bind_req;
struct unitdata_req unitdata_req;
struct ok_ack ok_ack;
struct error_ack error_ack;
struct unitdata_ind unitdata_ind;

} ;
struct dgproto {

short: state;
lCO] addr;

} ;

1* structure per minor device *1
1* =ent provider state *1

1* net address *1

1* Provider states *1

#define IDLE 0

#define OOUND

continued

In general, the MJROTO or M-PCPROTO block is described by a data
structure containing the service interface information. In this example, union
primitives is that structure.

Two commands are recognized by the module:

BIND-REQ Give this Stream a protocol address, that is, give it a
name on the network. After a BIND-REQ is com
pleted, datagrams from other senders will find their
way through the network to this particular Stream.

12-4 STREAMS PROGRAMMER'S GUIDE

Example

UNITDATA-REQ Send a datagram to the specified address.

Three messages are generated:

OLACK

ERROILACK

A positive acknowledgment (ack) of BIND_REQ.

A negative acknowledgment of BIND_REQ.

UNITDATA-IND A datagram from the network has been received (this
code is not shown).

The ack of a BIND_REQ informs the user that the request was syntacti
cally correct (or incorrect if ERROILACK). The receipt of a BIND_REQ is
acknowledged with an M-PCPROTO to insure that the acknowledgment
reaches the user before any other message. For example, a UNITDATA-IND
coulq come through before the bind has completed, and the user would get
confused.

The driver uses a per-minor device data structure, dgproto, which contains
the following:

state current state of the Stream (endpoint) IDLE or BOUND

addr network address that has been bound to this Stream

It is assumed (though not shown) that the module open proc.edure sets the
write queue q_ptr to point at one of these structures.

Service Interface Procedure
The write put procedure is:

static int protowput(q, mp)

queue_t *q;
mblk_t *mp;

{

union priroi tives *proto;

struct dgproto *dgproto;
int err;

dgproto = (struct dgproto *) q->qJJtr;

SERVICE INTERFACE 12-5

Example

switch (mp->b_datap->db_type) {

default:
/* dan't 1.D'lderstand it */
mp->b_datap->db_type = M_ERHOR;

mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;

*mp->b_wptr++ = EPROl'O;
qrep1y(q, mp);

break;
case ~FLUSH:

/* standard flush handling goes here .•• * /
break;

case M _PRO'lO:

/* Protocol message -> user request */

proto = (union primitives *) mp->b_rptr;

switch (p:roto->type) {

default:

mp->b_datap->db_type = M_ERRDR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;

*mp->b_wptr++ = EPROro;
qreply(q, mp);

return;

case BINILRID:
if (dgproto->state 1= IDLE)

err = EINVAL;

goto errar_ack;

continued

if (mp->b_wptr - mp->b_rptr != sizeof(struct billlLreq» {

err = EINVAL;

goto errar_ack;

if (err = chkaddr(p:roto->bindJeq.BIND_addr»

goto errar_ack;

dgproto->state = OCUND;

dgproto->addr = p:roto->bind_req.BIND_addr;

mp->b_datap->db_type = M_PCPROro;

proto->type = CK_ACI<;

mp->b_wptr = mp->b_rptr + sizeof(struct ok_ack);
qrep1y(q, mp);

break;

12-6 STREAMS PROGRAMMER'S GUIDE

Example

continued

error_ack:

mp->b_datap->db_type = M_PCPROro;

prote->type = ERROILACK;

proto->error_ack.tlNlX_error = err;
mp->b_wptr = mp->b_rptr + sizeof(struct error_ack);

qreply(q, nq:»;
break;

case UNI'lDATA _RID:

bad:

if (dgproto->state 1= 1DlND)

gote bad;

if (mp->b_wptr - mp->b_rptr 1= sizeof(struct unitdata_req»

goto bad;
if (err = chkaddr(proto->unitdata_req.DFST3ddr»

gote bad;
if (mp->b_ClOIlt) {

putq(q, mp->b_ClOIlt);

1* start device or mux output .•• *1

break· ,

freemsg (nq:» ;

break;

The write put procedure switches on the message type. The only types
accepted are M-FLUSH and M-PROTO. For M-FLUSH messages, the driver
will perform the canonical flush handling (not shown). For MJROTO mes
sages, the driver assumes the message block contains a union primitive and
switches on the type field. Two types are understood: BIND-REQ and
UNITDATA-REQ.

SERVICE INTERFACE 12-7

Example

For a BIND-REQ, the current state is checked; it must be IDLE. Next, the
message size is checked. If it is the correct size, the passed-in address is veri
fied for legc;l.lity by calling chkaddr. If everything checks, the incoming mes
sage is converted into an OLACK and sent upstream. If there was any error,
the incoming message is converted into an ERROLACK and sent upstream.

For UNITDATA-REQ, the state is also checked; it must be BOUND. As
above, the message size and destination address are checked. If there is any
error, the message is simply discarded. (This action may seem rash, but it is
in accordance with the interface specification, which is not shown. Another
specification might call for the generation of a UNITDATA-ERROR indica
tion.) If all is well, the data part of the message, if it exists, is put on the
queue, and the lower half of the driver is started.

If the write put procedure receives a message type that it does not under
stand, either a bad b_datap->db_type or bad proto->type, the message is
converted into an M-ERROR message and sent upstream.

Another piece of code not shown is the generation of UNITDATA-.lND
messages. This would normally occur in the device interrupt if this is a
hardware driver (like STARLAN) or in the lower read put procedure if this is
a multiplexer. The algorithm is simple: The data part of the message is
prepended by an M-PROTO message block that contains a unitdata_ind
structure and sent upstream.

12-8 STREAMS PROGRAMMER'S GUIDE

Chapter 13: Advanced Topics

Recovering From No Buffers

Advanced Flow Control

Signals

Control of Stream Head Processing
Read Options

Write Offset

13-1

13-4

13-5

13-7

13-7

13-8

TABLE OF CONTENTS

Recovering From No Buffers

The bufcall utility (see Appendix C) is used to recover from an allocb
failure. The call syntax is as follows:

bufcall (size, pri, func, arg);
int size, pri, (*func)();
lang arg;

bufcall will call (*tunc)(arg) when a buffer of size bytes at pri priority is
available. When tunc is called, it has no user context and must return without
sleeping. Also, because of interrupt processing, there is no guarantee that
when tunc is called, a buffer will actually be available (someone else may steal
it). bufcall returns 1 on success, indicating that the request has been success
fully recorded, or 0 on failure. On a failure return, the requested function will
never be called.

~ Care must be taken to avoid deadlock when holding resources while waiting y 'm buf,alI to mil (°func)(• .-g). buf"n ,hould be u.ed ,poringly.

Two examples are provided. Example one is a device receive interrupt
handler:

#include "sys/types.h"
#include "sys/param.h"
#include "sys/stream.h"

dev_r:i.ntr(dev)

{

/*

/* process incaning message ... */

/* allocate new buffer far device * /
dev_re_load(dev) ;

* Reload device with a new receive buffer
*/

ADVANCED TOPICS 13-1

Recovering From No Buffers

if «bp = allocb(DEVBLKSZ, BPRI_MED» == NULL)
pdntf(Udev: allocb failure (size %d)\nu, DEVBLKSZ);

/*

* Allocation failed. Use bufcall to
* schedule a call to ourself.
*/

(void) bufcall (DEVBLKSZ , BPRI_MED, dev_re_load, dev);

retw:n;

/* pass buffer to device ••• */

continued

dev_rintr is called when the device has posted a receive interrupt. The
code retrieves the data from the device (not shown). dev_rintr must then give
the device another buffer to fill by a call to dev_re_load, which calls allocb
with the appropriate buffer size (DEVBLKSZ, definition not shown) and prior
ity. If allocb fails, dev_re_load uses bufcall to call itself when STREAMS
determines a buffer of the appropriate size and priority is available.

Since bufcall may fail, there is still a chance that the device may hang. A
better strategy, in the event bufcall fails, would be to discard the current
input message and resubmit that buffer to the device. Losing input data is
generally better than hanging.

The second example is a write service procedure, mod_wsrv, which needs
to prepend each output message with a header (similar to the multiplexer
example of Chapter 11). mod_wsrv illustrates a case for potential deadlock:

13-2 STREAMS PROGRAMMER'S GUiDE

Recovering From No Buffers

static int m:rl_wsrv(q)
queue_t *q;
{

int qenable () ;
mblk_t *rIi>, *bp;

while (mp = getq(q»

1* check f= pri=ity messages and canput ... *1

1*
* Allocate a header to prepend to the message. If
* the allcx:b fails, use bu£call to reschedule ourself.
*1
if «bp = allcx:b(HDRSZ, BPRI_MED» == NULL) {

if (!bu£call(HDRSZ, BPRI_MED, qenable, q»

1*

1*
* The bu£call request has failed. Discard
* the message and keep running to avoid hanging.

*1
freemsg(mp) ;
continue;

* Put the message back and exit, _ will be re-enabled later

*1
plt:bq(q, mp);
return;

1* process message *1

However, if allocb fails, mod_wsrv wants to recover without loss of data
ands calls bufcall. In this case, the routine passed to bufcall is qenable (see
below and Appendix C). When a buffer is available (of size HDRSZ, defini
tion not shown), the service procedure will be automatically re-enabled.
Before exiting, the current message is put back on the queue. This example
deals with bufcall failure by discarding the current message and continuing in
the service procedure loop.

ADVANCED TOPICS 13-3

Advanced Flow Control

Streams provides mechanisms to alter the normal queue scheduling pro
cess. putq will not schedule a QUEUE if noenable(q) had been previously
called for this QUEUE. noenable instructs putq to queue the message when
called by this QUEUE, but not to schedule the service procedure. no enable
does not prevent the QUEUE from being scheduled by a flow control back
enable. The inverse of noenable is enableok(q).

An example of this is driver upstream flow control. Although device
drivers typically discard input when unable to send it to a user process,
STREAMS allows driver read side flow control, possibly for handling fem
porary upstream blocks. This is done through a driver read service procedure
which is disabled during the driver open with noenable. If the driver input
interrupt routine determines messages can be sent upstream (from canput), it
sends the message with putnext. Otherwise, it calls putq to queue the mes
sage. The message waits on the message queue (possibly with queue length
checked when new messages are enqueued by the interrupt routine) until the
upstream QUEUE becomes unblocked. When the blockage abates, STREAMS
back-enables the driver read service procedure. The service procedure sends
the messages upstream using getq and callput, as in Chapter 8. This is simi
lar to looprsrv in Chapter 10 where the service procedure is present only for
flow control.

qenable, another flow control utility, allows a module or driver to cause
one of its QUEUEs, or another module's QUEUEs, to be scheduled. In addi
tion to the usage shown in Chapters 10 and 11, qenable might be used when
a module or driver wants to delay message processing for some reason. An
example of this is a buffer module that gathers messages in its message queue
and forwards them as a single, larger message. This module uses noenable to
inhibit its service procedure and queues messages with its put procedure until
a certain byte count or II in queue II time has been reached. When either of
these conditions is met, the put procedure calls qenable to cause its service
procedure to run.

Another example is a communication line discipline module that imple
ments end-to-end (Le., to a remote system) flow control. Outbound data is
held on the write side message queue until the read side receives a transmit
window from the remote end of the network. Then, the read side schedules
the write side service procedure to run.

13-4 STREAMS PROGRAMMER'S GUIDE

Signa,ls
STREAMS allows modules and drivers to cause a signal to be sent to user

process(es) through an M_SIG or MJCSIG message (see Appendix B) sent
upstream. M-PCSIG is a priority version of M-SIG. For both messages, the
first byte of the message specifies the signal for the Stream head to generate.
If the signal is not SIGPOLL [see signal(2) and sigset(2)], then the signal is
sent to the process group associated with the Stream (see below). If the signal
is SIGPOLL, the signal is only sent to processes that have registered for the
signal by using the LSETSIG ioctl(2) [also see streamio(7)] call.

A process group is associated with a Stream during the open of the driver
or module. If u.u_ttyp is NULL prior to the driver or module open call, the
Stream head checks u.u_ttyp after the driver or module open call returns. If
u.u_ttyp is non-zero, it is assumed to point to a short that holds the process
group ID for signaling. The process group and indirect TTY U dev ftty) inode
are recorded in the Stream head.

If the driver or module wants to have a process group associated with the
Stream, it should include code of the following form in its open procedure:

pp = u.UJJrOCP;
pdp = ...

/* pointer to process structure * /
/* private data pointer */

if (pp->p-pid == pp->pJl9rP /* process group leader */

Ii.&. u.u_ttyp == NULL /* with no oontrollinq tty */

Ii.&. pdp->pg:rp == 0) { /* and this stream is unassigned */

/* assign oontrollinq tty * /

u.u_ttyp = &pdp->pg:rp;
pdp->pg:rp = pp->pJl9rP;

ADVANCED TOPICS 13-5

Signals

A private data structure containing a short pgrp element is required.

M-SIG can be used by modules or drivers that wish to insert an explicit
inband signal into a message stream. For example, an M_SIG message can be
sent to the user process immediately before a particular service interface mes
sage to gain the immediate attention of the user process. When the M_SIG
reaches the head of the Stream head read message queue, a signal will be
generated and the M-SIG message will be removed. This leaves the service
interface message as the next message to be processed by the user. Use of
M-SIG would typically be defined as part of the service interface of the driver
or module.

13-6 STREAMS PROGRAMMER'S GUIDE

Control of Stream Head Processing

The M_SETOPTS message (see Appendix B) allows a driver or module to
exercise control over certain Stream head processing. An ~SETOPTS can be
sent upstream at any time. The Stream head responds to the message by
altering the processing associated with certain system calls. The options to be
modified are specified by the contents of the stroptions structure (see Appen
dix B) contained in the message.

Six Stream head characteristics can be modified. As described in Appen
dix B, four correspond to fields contained in queue_t (min/max packet sizes
and high-flow-water marks). The other two are discussed here.

Read Options

The value for read options (so_readopt) corresponds to the three modes a
user can set via the LSRDOPT ioctl (see streamio) call:

byte-stream (RNORM)
The read(2) call completes when the byte count is satisfied,
the Stream head read queue becomes empty, or a zero length
message is encountered. In the last case, the zero length mes
sage is put back on the queue. A subsequent read will return
o bytes.

message non-discard (RMSGN)
The read call completes when the byte count is satisfied or at
a message boundary, whichever comes first. Any data
remaining in the message is put back on the Stream head read
queue.

message discard (RMSGD)
The read call completes when the byte count is satisfied or at
a message boundary. Any data remaining in the message is
discarded.

Byte-stream mode approximately models pipe data transfer. Message
non-discard mode approximately models a TTY in canonical mode.

ADVANCED TOPICS 13-7

Control of Stream Head Processing

Write Offset

The value for write offset (so_wroff) is a hook to allow more efficient data
handling. It works as follows: In every data message generated by a write(2)
system call and in the first M-DATA block of the data portion of every mes
sage generated by a putmsg(2) call, the Stream head will leave so_wrott bytes
of space at the beginning of the message block. Expressed as a C language
construct:

bp->b_rptr = bp->b_datap->db_base +write offset.

The write offset value must be smaller than the maximum STREAMS message
size, STRMSGSZ (see the section titled n Tunable Parameters n in Appendix E).
In certain cases (e.g., if a buffer large enough to hold the offset+data is not
currently available), the write offset might not be included in the block. To be
general, modules and drivers should not assume that the offset exists in a
message, but should always check the message.

The intended use of write offset is to leave room for a module or a driver
to place a protocol header before user data in the message rather than by allo
cating and prepending a separate message. This feature is not general, and its
use is discouraged. A more general technique is to put protocol header infor
mation in a separate message block and link the user data to it.

13-8 STREAMS PROGRAMMER'S GUIDE

Appendix A: Kernel Structures

streamtab

QUEUE Structures
~essage Structures
iocblk
linkblk

TABLE OF CONTENTS

A-I

A-2

A-4

A-4

A-5

Appendix A: Kernel Structures

This appendix summarizes previously described kernel structures com
monly encountered in STREAMS module and driver development.

STREAMS kernel structures are contained in <sys/stream.h> and
<sys /strstat.h>.

These and other STREAMS structures (shown in bold.) contained in both parts
of this guide will remain fixed in subsequent releases of UI\UX System V, sub
ject to the following: The offset of all defmed elements in each structure will
not change. However, the size of the structure may be increased to add new
elements.

streamtab
As discussed in Chapter 5, this structure defil1es a module or driver:

struct streamtab {

} ;

struct qinit *st_rdinit;
struct qinit *st_Wrinit;
Struct qinit *st_muxrinit;
struct qinit *st_lllU¥Winit;

/* defines read QUEUE */
/* defines write QUEUE */

/* for nuUtiplexing drivers only */
/* for nuUtiplexing d+ivers only */

APPENDIX A: KERNEL STRUCTURES A-1

Appendix A: Kernel Structures

QUEUE Structures
Two sets of QUEUE structures form a module. The structures, discussed

in Chapters 5 and 8, are queue_t, qinit, module-info and, optionally,
module-stat:

struct queue {

};

struct qinit *CLqinfo; /* procedures and limits for queue */
struct msgb *CLfirst; /* head of message queue for this QUEUE */
struct msgb *CL1ast; /* tail of message queue for this QUEUE */
struct queue *CLnext; /* next QUEUE in stream*/
struct queue *CLlink; /* link to next QUEUE on STREAMS scheduling queue */
caddr_t <LJ)tr; /* to private data structure */
ushort CLcount; /* weighted count of characters on message queue */
ushort CLflag; /* QUE(JE state */
short CLminpsz; /* min packet size accepted by this QUEUE */
short CLmaxpBz; /* max packet size accepted by this QUE(JE */
ushort CLhiwat; /* message queue high water mark, for flow control */
ushort CL1owat; /* message queue low water mark, for flow control */

typedef struct queue queue_t;

When a queue_t pair is allocated, their contents are zero unless specifi-
cally initialized. The following fields are initialized:

• q_qinfo - from streamtab.sL[rd/wr]init (or sLmux[rw]init)

• q_minpsz, q-Illaxpsz, q-hiwat, q-Iowat - from module-info

• q_ptr - optionally, by the driver/module open routine

struct qinit {
int (*qiJlUtp) (); /* put procedure */
int (*qi_srvp) (); /* service procedure */
int (*qi_qopen) (); /* called on each open or a push */
int (*qi_qc1ose)(); /* called on last close or a pop */
int (*qi_qadmin)(); /* reserved for future use */
struct module_info *qi_minfo; /* information structure */
struct module_stat *qi_lIIStat; /* statistics structure - optional */

} ;

A·2 STREAMS PROGRAMMER'S GUIDE

Appendix A: Kernel Structures

struct m:xlule_info {
ushort mi_idnum; 1* m:xlule 1D number *1
char *mi_idname; 1* m:xlule name *1
short mi_minpsz;
short mi_maxpsz;
short mi_hiwat;
ushort mi_lowat;

} ;

ST..xuct m:xlule_stat {
long IDSJlCllt;
long IDS_sent;
long IDS_ocnt;
long
long
char
short

} ;

IDS_cent;
IDS_aent;

*ms_xptr;
IDS_xsize;

1* min packet size accepted, for developer use *1
1* max packet size accepted, for developer use *1
1* hi-water mark, for flow control *1
1* lo-water mark, for flow control *1

1* count of calls to put proc *1
1* count of calls to service proc *1
1* count of calls to open proc *1
1* count of calls to close proc *1
1* count of calls to admin proc *1
1* pointer to private statistics *1
1* length of private statistics buffer *1

Note that in the event these counts are calculated by modules or drivers,
the counts will be cumulative over all instantiations of modules with the same
fmodsw entry and drivers with the same cdevsw entry.

APPENDIX A: KERNEL STRUCTURES A-3

Appendix A: Kernel Structures

Message Str~ctures
As described in Chapter 7, a message is composed of a linked list of tri

ples, consistin~ of two structures and a data buffer:

struct msgb

} ;

struct msgb
struct msgb
~truct msgb
unsigned char
unsigned char

struct datab

*b_next;
*bJlrev;
*b_cont;
*b_rptr;
*b_wptr;
*b_datap;

/* next message an queue */
/* previous message an queue */
/* next message bloCk of message */
/* first unread data byte in buffer */
/* first unwritten data byte in buffer */
/* data bloCk * /

typedef struct msgb mblk _ t;

struct datab {

} ;

struct datab *db_freep; /* used internally */
unsigned char *db_base; /* first byte of buffer * */
unsigned char *db_liln; /* last byte+1 of buffer */
unsigned char db_ref; /* count of messages pointing to this bloCk */
unsigned char db_type; /* message type */
unsigned char db_class; 1* used internally */

typedef struct datab dblk_t;

iocblk
As described in Chapter 9 and Appendix B, this is contained in an

M-IOCTL message block:

struct iocblk {
int ioc_cmd; /* ioctl CCIIIlIlaJld type * /
ushort ioc_uid; 1* effective uid of user */
ushort ioc--.9id; /* effective gid of user */
uint ioc_id; /* ioctl id */
uint ioc_count; /* count of bytes in data field */
int ioc_e=or; /* e=or code */
int ioc_rval; /* return value */

} ;

A-4 STREAMS PROGRAI\IIMER'S GUIDE

Appendix A: Kernel Structures

linkblk
As described in Chapter 11, this is used in lower multiplexer drivers:

struct linkblk {

} ;

queue_t *l_qtop; 1* lowest level write queue of upper stream *1
queue_t *l_qbot; 1* highest level write queue of lower stream *1
int I_index; 1* system-unique index for lower stream. *1

APPENDIX A: KERNEL STRUCTURES A-5

Appendix B: Message Types

Ordinary Messages

Priority Messages

B-2

8-10

TABLE OF CONTENTS

Appendix B: Message Types

Eighteen STREAMS message types are defined. The message types differ
in their intended purposes, their treatment at the Stream head, and in their
message queueing priority (see Chapter 8).

STREAMS does not prevent a module or driver from generating any mes
sage type and sending it in any direction on the Stream. However, esta
blished processing and direction rules should be observed. Stream head pro
cessing according to message type is fixed, al~ough certain parameters can be
altered.

The message types are described below, classified according to their mes
sage queueing priority. Ordinary messages are described first, with priority
messages following. In certain cases, two message types may perform similar
functions, differing in priority. Message construction is described in Chapter
7. The use of the word module will generapy imply "module or driver."

APPENDIX B: MESSAGE TYPES B-1

Ordinary Messages

These message types are subject to flow control. These are referred to as
non-priority messages when received at user level.

M-DA T A Intended to contain ordinary data. Messages allocated by
the allocb routine (see Appendix B) are type M-DATA by
default. M-DATA messages are generally sent bidirection
ally on a Stream and their contents can be passed between
a process and the Stream head. In the getmsg(2) and
putmsg(2) system calls, the contents of M-DAT A message
blocks are referred to as the data part. Messages composed
of multiple message blocks will typically have M-DAT A as
the message type for all message blocks following the first.

MJROTO Intended to contain internal control information and associ
ated data. The message format is one M-PROTO message
block followed by zero or more M-DATA message blocks
as shown below: The semantics of the M_DAT A and
M-PROTO message block are determined by the
STREAMS module that receives the message.

The MJROTO message block will typically contain
implementation -dependent control information.
MJROTO messages are generally sent bidirectionally on a
Stream, and their contents can be passed between a process
and the Stream head. The contents of the first message
block of an M-PROTO message is generally referred to as
the control part, and the contents of any following
M-DATA message blocks are referred to as the data part.
In the getmsg(2) and putmsg(2) system calls, the control
and data parts are passed separately. These calls refer to
M-PROTO messages as non-priority messages.

Note that, although its use is not recommended, the format
of MJROTO and MJCPROTO (generically PROTO)
messages sent upstream to the Stream head allows multiple
PROTO blocks at the beginning of the message. getmsg
will compact the blocks into a single control part when
passing them to the user process.

B-2 STREAMS PROGRAMMER'S GUIDE

Ordinary Messages

M-PROTO

or
M_PCPROTO ----

~
control
info.

M-DATA

~ ~
M-DATA t- --r:m I

Figure B-1: MJROTO and MJCPROTO Message Structure

M-IOCTL Generated by the Stream head in response to an LSTR
and certain other ioctl(2) system calls [see streamio(7)].
When one of these ioctls is received from a user process,
the Stream head uses values from the process and supplied
in the call to create an M-IOCTL message containing
them, and sends the message downstream. M-IOCTL
messages are intended to perform the general ioctl func
tions of character device drivers.

The user values are supplied in a structure of the following
form, provided as an argument to the ioctl call (see LSTR
in streamio):

struct strioctl
{

} ;

int ic_OId;
int ic_ t:im:nIt;
int ic_len;
char *ic_dp;

/* downstream request * /
/* ACKINAK timeout */
/* length of data arg * /
/* ptr to data arg * /

where ic_cmd is the request (or command) defined by a

APPENDIX B: MESSAGE TYPES B-3

Ordinary Messages

downstream module or driver, ic_timout is the time the
Stream head will wait for acknowledgment to the
M-IOCTL message before timing out, ic_dp is a pointer to
an optional data argument. On input, ic_Ien contains the
length of the data argument passed in and, on return from
the call, it contains the length of the data, if any, being
returned to the user.

The form of an M-IOCTL message is one M_IOCTL mes
sage block linked to zero or more M-DATA message
blocks. STREAMS constructs an M-IOCTL message block
by placing an iocblk structure in its data buffer:

struct iocblk

{

};

int icc3110;
~ icc_uid;
ushort icc...¢d;
uint ioc_idi
uint ioc_=t;
int ioc_e=;
int icc _rval;

1* ioctl ocmnand type *1
1* effective user id llIlII1ber *1
1* effective 9rouP id Il1lIIIber *1
1* ioctl identifier *1
1* byte =t for ioctl data *1
1* e= code *1
1* return value *1

The iocblk structure is defined in <sys/stream.h>.
ioc_cmd corresponds to ic_cmd. ioc_uid and ioc_gid are
the effective user and group IDs for the user sending the
ioctl and can be tested to determine if the user issuing the
ioctl call is authorized to do so. ioc_count is the number of
data bytes, if any, contained in the message and
corresponds to ic_Ien.

ioc_id is an identifier generated internally and is used to
match each M-IOCTL message sent downstream with a
response which must be sent upstream to the Stream head.
The response is contained in an M-IOCACK (positive ack
nowledgment) or an M-IOCNAK (negative acknowledg
ment) messages. Both these message types have the same
format as an M-IOCTL message and contain an iocblk
structure in the first block with optional data blocks follow
ing. If one of these messages reaches the Stream head
with an identifier which does not match that of the
currently-outstanding M-IOCTL message, the response
message is discarded. A common means of assuring that

8-4 STREAMS PROGRAMMER'S GUlpE

Ordinary Messages

the correct identifier is returned is for the replying module
to convert the M_IOCTL message type into the appropri
ate response type and set ioc_count to 0 if no data is
returned. Then, the qreply utility (see Appendix C) is
used to send the response to the Stream head.

ioc_error holds any return error condition set by a down
stream module. If this value is non-zero, it is returned to
the user in errno. Note that both an M_IOCNAK and an
~IOCACK may return an error. ioc_rval holds any
~IOCACK return value set by a responding module.

If a user supplies data to be sent downstream, the Stream
head copies the data, pointed to by ic_dp in the strioctl
structure, into ~DA T A message blocks and links the
blocks to the initial M_IOCTL message block. ioc_count is
copied from ic_Ien. If there is no data, ioc_count is zero.

If a module wants to send data to a user process as part of
its response, it must construct an M_IOCACK message
that contains the data. The first message block of this
message contains the iocblk data structure, with any data
stored in one or more M_DATA message blocks linked to
the first message block. The module must set ioc_count to
the number of data bytes sent. On completion of the call,
this number is passed to the user in ic_Ien. Data associ
ated with an M-IOCNAK message is not returned to the
user process and is discarded by the Stream head.

The first module or a driver that understands the request
contained in the M_IOCTL acts on it and generally returns
an M_IOCACK message. Intermediate modules that do
not recognize a particular request must pass it on. If a
driver does not recognize the request, or the receiving
module can not acknowledge it, an M_IOCNAK message
must be returned.

The Stream head waits for the response message and
returns any information contained in an M_IOCACK to
the user. The Stream head will "time out" if no response
is received in ic_timeout interval.

APPENDIX B: MESSAGE TYPES B-5

Ordinary Messages

M-CTL

M-BREAK

Generated by modules that wish to send information to a
particular module or type of module. M_CTL messages
are typically used for inter-module communication, as
when adjacent STREAMS protocol modules negotiate the
terms of their interface. An M-CTL message cannot be
generated by a user-level process and is always discarded
if passed to the Stream head.

Sent to a driver to request that BREAK be transmitted on
whatever media the driver is controlling.

The message format is not defined by STREAMS and its
use is developer-dependent. This message may be con
sidered a special case of an M-CTL message. An
M-BREAK message cannot be generated by a user-level
process and is always discarded if passed to the Stream
head.

M-DELA Y Sent to a media driver to request a real-time delay on out
put. The data buffer associated with this message type is
expected to contain an integer to indicate the number of
machine ticks of delay desired. M-DELA Y messages are
typically used to prevent transmitted data from exceeding
the buffering capacity of slower terminals.

The message format is not defined by STREAMS and its
use is developer-dependent. Not all media drivers may
understand this message. This message may be considered
a special case of an M-CTL message. An M-DELAY mes
sage cannot be generated by a user-level process and is
always discarded if passed to the Stream head.

M-P ASSFP This is used by STREAMS to pass a file pointer from the
Stream head at one end of a Stream pipe to the Stream
head at the other end of the same Stream pipe. (A Stream
pipe is a Stream that is terminated at both ends by a
Stream head; one end of the Stream can always find the
other by following the q_next pointers in the Stream. The
means by which such a structure is created is not described
in this document.)

The message is generated as a result of an LSENDFD ioctl

8-6 STREAMS PROGRAMMER'S GUIDE

Ordinary Messages

[see streamio(7)] issued by a process to the sending Stream
head. STREAMS places the M-P ASSFP message directly
on the destination Stream head's read queue to be
retrieved by an LRECVFD ioctl [see streamio(7)]. The
message is placed without passing it through the Stream
(i.e., it is not seen by any modules or drivers in the
Stream). This message type should never be present on
any queue except the read queue of a Stream head. Con
sequently, modules and drivers do not need to recognize
this message type, and it can be ignored by module and
driver developers.

M-SETOPTS Alters some characteristics of the Stream head. It is gen
erated by any downstream module and is interpreted by
the Stream head. The data buffer of the message has the
following structure:

struct stroptians

{

short so_flags; 1* options to set *1
short so_readopt; 1* read option *1
ushort: so_wroff; 1* write offset *1
short so_minpsz; 1* minimum read packet size *1
short so_maxpsz; 1* maximum read packet size *1
ushort: so_hiwat; 1* read queue high-water mark *1
ushort: so_lcMat; 1* read queue low-water mark *1

} ;

where so_flags specifies which options are to be altered,
and can be any combination of the following:

o SO-ALL - Update all options according to the
values specified in the remaining fields of the strop
tions structure.

o SOJEADOPT - Set the read mode [see read(2)] to
RNORM (byte stream), RMSGD (message discard),
or RMSGN (message non-discard) as specified by
the value of so_readopt.

o SO_WROFF - Direct the Stream head to insert an
offset specified by so_wrott into the first message
block of all M_DATA messages created as a result
of a write system call. The same offset is inserted
into the first M-DATA message block, if any, of all

APPENDIX B: MESSAGE TYPES B-7

Ordinary Messages

messages created by a putmsg system call. The
default offset is zero.

The offset must be less than the maximum message
buffer size (system-dependent). Under certain cir
cumstances, a write offset may not be inserted. A
module or driver must test that b_rptr in the
mblLt structure is greater than db_base in the
dblLt structure to determine that an offset has
been inserted in the first message block.

o SO~INPSZ-Change the minimum packet size
value associated with the Stream head read queue to
so_minpsz (see q_minpsz in the queue_t structure, in
Appendix A). This value is advisory for the module
immediately below the Stream head. It is intended
to limit the size of M-DATA messages that the
module should put to the Stream head. There is no
intended minimum size for other message types.
The default value in the Stream head is O.

o SO~AXPSZ-Change the maximum packet size
value associated with the Stream head read queue to
so_maxpsz (see q_maxpsz in the queue_t structure, in
Appendix A). This value is advisory for the module
immediately below the Stream head. It is intended
to limit the size of M-DATA messages that the
module should put to the Stream head. There is no
intended maximum size for other message types.
The default value in the Stream head is INFPSZ, the
maximum STREAMS allows.

o SO_HIWAT - Change the flow control high-water
mark on the Stream head read queue to the value
specified in so_hiwat.

o SO_LOWAT- Change the flow control low-water
mark (see q_minpsz in the queue_t structure,
Appendix A) on the Stream head read queue to the
value specified in so_lowat.

B-8 STREAMS PROGRAMMER'S GUIDE

M-SIG

Ordinary Messages

Sent upstream by modules or drivers to post a signal to a
process. When the message reaches the Stream head, the
first data byte of the message is transformed into a signal,
as defined in <sysjsignal.h>, to the process(es) according
to the following.

If the signal is not SIGPOLL and the Stream containing the
sending module or driver is a controlling TTY, the signal is
sent to the associated process group. A Stream becomes
the controlling TTY for its process group if, on open(2), a
module or driver sets u.u_ttyp to point to a (short) "pro
cess group value."

If the signal is SIGPOLL, it will be sent only to those
processes that have explicitly registered to receive the sig
nal [see LSETSIG in streamio(7)].

APPENDIX B: MESSAGE TYPES B-9

Priority Messages

Priority messages are not subject to flow control.

MJCPROTO This message type has the same format and characteristics
as the MJROTO message type, except for priority and
the following additional attributes.

When an MJCPROTO message is placed on a queue, its
service procedure is always enabled. The Stream head will
allow only one MJCPROTO message to be placed in its
read queue at a time. If an M-PCPROTO message is
already in the queue when another arrives, the second
message is silently discarded and its message blocks freed.

This message type is intended to allow data and control
information to be sent outside the normal flow control con
straints.

The getmsg(2) and putmsg(2) system calls refer to
MJCPROTO messages as priority messages.

M-ERROR This message type is sent upstream by modules or drivers
to report some downstream error condition. When the
message reaches the Stream head, the Stream is marked so
that all subsequent system calls issued to the Stream,
excluding close(2) and poll(2), will fail with errno set to
the first data byte of the message. POLLERR is set if the
Stream is being polled [see poll(2)]. All processes sleeping
on a system call to the Stream are awakened. An
MJLUSH message with an FLUSHRW argument is sent
downstream.

M-HANGUP This message type is sent upstream by a driver to report
that it can no longer send data upstream. As example, this
might be due to an error, or to a remote line connection
being dropped. When the message reaches the Stream
head, the Stream is marked so that all subsequent write(2)
and putmsg(2) system calls issued to the Stream will fail
and return an ENXIO error. Those ioctls that cause mes
sages to be sent downstream are also failed. POLLHUP is
set if the Stream is being polled [see poll(2)].

8-10 STREAMS PROGRAMMER'S GUIDE

Priority Messages

However, subsequent read(2) or getmsg(2) calls to the
Stream will not generate an error. These calls will return
any messages (according to their function) that were on, or
in transit to, the Stream head read queue before the
M-HANGUP message was received. When all such mes
sages have been read, read will return 0, and getmsg will
set each of its two length fields to o.

This message also causes a SIGHUP signal to be sent to
the process group, if the device is a controlling TTY (see
M-SIG).

M-IOCACK This message type signals the positive acknowledgment of
a previous M-IOCTL message. The message may contain
information sent by the receiving module or driver. The
Stream head returns the information to the user if there is
a corresponding outstanding M-IOCTL request. The for
mat and use of this message type is described further
under M-IOCTL.

M-IOCNAK This message type signals the negative acknowledgment
(failure) of a previous M-IOCTL message. When the
Stream head receives an M-IOCNAK, the outstanding
ioctl request, if any, will fail. The format and usage of this
message type is described further under M-IOCTL.

MJLUSH This message type requests all modules and drivers that
receive it to flush their message queues (discard all mes
sages in those queues) as indicated in the message. An
M-FLUSH can originate at the Stream head, or in any
module or driver. The first byte of the message contains
flags that specify one of the following actions:

D FLUSHR: Flush the read queue of the module.

D FLUSHW: Flush the write queue of the module.

D FLUSHRW: Flush both the read and the write queue
of the module.

Each module passes this message to its neighbor after
flushing its appropriate queue(s) until the message reaches
one of the ends of the Stream.

APPENDIX B: MESSAGE TYPES B-11

Priority Messages

M-PCSIG

Drivers are expected to include the following processing for
~LUSH messages. When an ~LUSH message is
sent downstream through the write queues in a Stream, the
driver at the Stream end discards it if the message action
indicates that the read queues in the Stream are not to be
flushed (only FLUSHW set). If the message indicates that
the read queues are to be flushed, the driver sets the
MJLUSH message flag to FLUSHR, and sends the mes
sage up the Stream's read queues. When a flush message
is sent up a Stream's read side, the Stream head checks to
see if the write side of the Stream is to be flushed. If only
FLUSHR is set, the Stream head discards the message.
However, if the write side of the Stream is to be flushed,
the Stream head sets the M-FLUSH flag to FLUSHW and
sends the message down the Stream's write side. All
modules that enqueue messages must identify and process this
message type.

This message type has the same format and characteristics
as the M-SIG message type except for priority.

M-START and M-STOP
These messages request devices to start or stop their out
put. They are intended to produce momentary pauses in a
device's output, not to turn devices on or off.

The message format is not defined by STREAMS and its
use is developer-dependent. These messages may be con
sidered special cases of an M-CTL message. These mes
sages cannot be generated by a user-level process and each
is always discarded if passed to the Stream head.

8-12 STREAMS PROGRAMMER'S GUIDE

Appendix C: Utilities

Utility Descriptions C-3

adjmsg trim bytes in a message C-3

allocb allocate a message block C-3

backq get pointer to the queue behind a given queue C-3

bufcall recover from failure of allocb C-4

canput test for room in a queue C-4

copyb copy a message block C-5

copymsg copy a message C-5

datamsg test whether message is a data message C-5

dupb duplicate a message block descriptor C-5

dupmsg duplicate a message C-6

enableok re-allow a queue to be scheduled for service C-6

flushq flush a queue C-6

freeb free a message block C-7

freemsg free all message blocks in a message C-7

getq get a message from a queue C-7

insq put a message at a specific place in a queue C-8

linkb concatenate two messages into one C-8

msgdsize get the number of data bytes in a message C-8

noenable prevent a queue from being scheduled C-9

OTHERQ get pointer to the mate queue C-9

pullupmsg concatenate bytes in a message C-9

putbq return a message to the beginning of a queue C-IO

putdl put a control message C-IO

putctl! put a control message with a one-byte parameter C-IO

putnext put a message to the next queue C-ll

putq put a message on a queue C-ll

qenable enable a queue C-12

qreply send a message on a stream in the reverse direction C-12

qsize find the number of messages on a queue C-12

RD get pointer to the read queue C-12

TABLE OF CONTENTS

Table of Contents

rmvb remove a message block from a message C-13
rmvq remove a message from a queue C-13

splstr set processor level C-13

strlog submit messages for logging C-14
testb check for an available buffer C-14

unlinkb remove a message block from the head of a message C-15

WR get pointer to the write queue C-15

Buffer Allocation Priority C-16

Utility Routine Summary C-17

ii STREAMS PROGRAMMER'S GUIDE

Appendix C: Utilities

This appendix specifies the set of utilities that STREAMS provides to assist
development of modules and drivers. There are over 30 utility routines and
macros.

The general purpose of the utilities is to perform functions that are com
monly used in modules and drivers. However, some utilities also provide the
required interrupt environment. A utility must always be used when operat
ing on a message queue and when accessing the buffer pool.

The utilities are contained in either the system source file iofstream.c or,
if they are macros, in <sysfstream.h>.

The utilities contained in this appendix represent an interface that will be
maintained in subsequent versions of UNIX System V. Other than these utili
ties (also see the section titled "Accessible Symbols and Functions" in
Appendix D), functions contained in the STREAMS kernel code may change
between versions.

All structure definitions are contained in Appendix A unless otherwise indi
cated. All routine references are found in this appendix unless otherwise indi
cated. The following definitions are used.

Blocked

Enable

Free

A queue that cannot be enabled due to flow control (see
the section titled "Flow Control" in Chapter 6 of the Pri
mer).

To schedule a queue.

De-allocate a STREAMS storage.

Message block (bp)
A triplet consisting of an mblLt structure, a dblLt
structure, and a data buffer. It is referenced by its
mblLt structure (see Chapter 7).

Message (mp) One or more linked message blocks. A message is refer
enced by its first message block.

Message queue Zero or more linked messages associated with a queue
(queue_t structure).

APPENDIX C: UTILITIES C-1

Appendix C: Utilities

Queue (q)

Schedule

A queue_t structure. This is generally the same as
QUEUE in the rest of this document (e.g., see the defini
tions for enable and schedule). When it appears with
"message" in certain utility description lines, it means
"message queue" .

Place a queue on the internal linked list of queues which
will subsequently have their service procedure called by
the STREAMS scheduler.

The word module will generally mean "module and/or driver". The phrase
"next/following module" will generally refer to a module, driver, or Stream
head. Message queueing priority (see Chapter 8 and Appendix B) can be ordi
nary or Priority (to avoid "priority priority").

C-2 STREAMS PROGRAMMER'S GUIDE

Utility Descriptions

The utilities are described below. A summary table is contained at the
end of this appendix.

adjmsg - trim bytes in a message

int adjmsg(inp, len)
mblLt *mp;
int ien;

adjmsg trims bytes from either the head or tail of the message specified by
mp. If len is greater than zero, it removes len bytes from the beginning of mp.
If len is less than zero, it removes (-)len bytes from the end of mp. If len is
zero, adjmsg does nothing. adjmsg only trims bytes across message blocks of
the same type. It will fail if mp pOints to a message containing fewer than len
bytes of similar type at the message position indicated. adjmsg returns 1 on
success and 0 on failure.

allocb - allocate a message block

mbiLt *allocb(size, pri)
int size, pri;

allocb returns a pointer to a message block of type M-DATA, in which the
data buffer contains at least size bytes. pri indicates the priority of the alloca
tion request and can have the values BPRLLO, BPRLMEDi or BPRLHI (see
the section titled "Buffer Allocation Priority" in this appendix). If a block can
not be allocated as requested, allocb returns a NULL pointer.

backq - get pointer to the queue behind a given queue

queue_t *backq(q)
queue_t *q;

backq returns a pointer to the queue behind a given queue. That is, it returns
a pointer to the queue whose q_next (see queue_t structure) pointer is q. If
no such queue exists (as when q is at a Stream end), backq returns NULL.

APPENDIX C: UTILITIES C-3

Utility Descriptions

bufcall - recover from failure of allocb

int bufcall(size, pri, func, arg)
int (*func)();
int size, pri;
long arg;

bufcall is provided to assist in the event of a block allocation failure. If allocb
returns NULL, indicating a message block is not currently available, bufcall
may be invoked.

bufcall arranges for (*tunc)(arg) to be called when a buffer of size bytes at pri
priority (see the section titled "Buffer Allocation Priority") is available. When
tunc is called, it has no user context. It cannot reference the u_area and must
return without sleeping. bufcall does not guarantee that the desired buffer
will be available when tunc is called since interrupt processing may acquire it.

bufcall returns 1 on success, indicating that the request has been successfully
recorded, or 0 on failure. On a failure return, tunc will never be called. A
failure indicates a (temporary) inability to allocate required internal data struc
tures.

canput - test for room in a queue

int canput(q)
queue_t *q;

canput determines if there is room left in a message queue. If q does not
have a service procedure, canput will search further in the same direction in
the Stream until it finds a queue containing a service procedure (this is the
first queue on which the passed message can actually be enqueued). If such a
queue cannot be found, the search terminates on the queue at the end of the
Stream. canput tests the queue found by the search. If the message queue in
this queue is not full (see the' section titled "Flow Control" in Chapter 6 of
the Primer), canput returns 1. This return indicates that a message can be put
to queue q. If the message queue is full, canput returns O. In this case, the
caller is generally referred to as blocked.

C-4 STREAMS PROGRAMMER'S GUIDE

copyb - copy a message block

mblLt *copyb(bp)
mblLt *bPi

Utility Descriptions

copyb copies the contents of the message block pointed to by bp into a newly
allocated message block of at least the same size. copyb allocates a new block
by calling allocb with pri set to BPRLMED (see the section titled "Buffer
Allocation Priority"). All data between the b_rptr and b_wptr pointers of a
message block are copied to the new block, and these pointers in the new
block are given the same offset values they had in the original message block.
On successful completion, copyb returns a pointer to the new message block
containing the copied data. Otherwise, it returns a NULL pointer.

copymsg - copy a message

mblLt *copymsg(mp)
mblLt *mpi

copymsg uses copyb to copy the message blocks contained in the message
pointed to by mp to newly allocated message blocks, and links the new mes
sage blocks to form the new message. On successful completion, copymsg
returns a pointer to the new message. Otherwise, it returns a NULL pointer.

datamsg - test whether message is a data message

#define datamsg(mp) ...

The datamsg macro returns TRUE if mp (declared as mblk_t *mp) points to a
data type message. In this case, types M-DATA, MJROTO, or
MJCPROTO (see Appendix B). If mp points to any other message type,
datamsg returns FALSE.

dupb - duplicate a message block descriptor

mblLt *dupb(bp)
mblLt *bPi

dupb duplicates the message block descriptor (mblLt structure) pointed to
by bp by copying it into a newly allocated message block descriptor. A

APPENDIX C: UTILITIES C-5

Utility Descriptions

message block is formed with the new message block descriptor pointing to
the same data block as the original descriptor. The reference count in the data
block descriptor (dblLt structure) is incremented. dupb does not copy the
data buffer, only the message block descriptor.

On successful completion, dupb. returns a pointer to the new message block.
If dupb cannot allocate a new message block descriptor, it returns NULL.

This routine allows. message blocks that exist on different queues to reference
the same data block. in general, if the contents of a message block with a
reference count greater than 1 are to be modified, l:opyb should be used to
create a new message block and only the new message block should be modi
fied. This insures that other references to the original message block are not
invalidated by unwanted changes.

dupmsg - duplicate a message

mblLt *dupmsg(mp)
mblLi *mpi

dupmsg calls dupb to duplicate the message pointed to by mp, by copying all
individual message block descriptors, and then linking the new message
blocks to form the new message. dupmsg does not copy data buffers, only
message block descriptors. On successful completion, dupmsg returns a
pointer to the new message. Otherwise, it returns NULL.

enableok - re-allow a queue to be scheduled for service

#define enableok(q) ...

The enableok macro cancels the effect of an earlier noenable on the same
queue q (declared as queue_t *q). It allows a queue to be scheduled for ser
vice that had previously been excluded from queue service by a call to noen
able.

flushq - flush a queue

int flushq(q, flag)
queue_t *q;
int flag;

flushq removes messages from the message queue in queue q and frees them,

C-6 STREAMS PROGRAMMER'S GUIDE

Utility Descriptions

using freemsg. If flag is set to FLUSHDATA, then flushq discards all
M-DATA, M-PROTO, and M-PCPROTO messages (see datamsg), but
leaves all other messages on the queue. If flag is set to FLUSHALL, all mes
sages are removed from the message queue and freed. FLUSHALL and
FLUSHDATA are defined in <sys/stream.h>.

If a queue behind q is blocked, flushq may enable the blocked queue, as
described in putq.

freeb - free a message block

int freeb(bp)
mblLt *bPi

freeb will free (de-allocate) the message block descriptor pointed to by bp, and
will free the corresponding data block if the reference count (see dupb) in the
data block descriptor (dblLt structure) is equal to 1. If the reference count is
greater than I, freeb will not free the data block, but will decrement the refer
ence count.

freemsg - free all message blocks in a message

int freemsg(mp)
mblLt *mpi

freemsg uses freeb to free all message blocks and their corresponding data
blocks for the message pointed to by mp.

getq - get a message from a queue

mblLt *getq(q)
queue_t *qi

getq gets the next available message from the queue pointed to by q. getq
returns a pointer to the message and removes that message from the queue. If
no message is queued, getq returns NULL.

getq and certain other utility routines affect flow control in the Stream as fol
lows: If getq returns NULL, the queue is internally marked so that the next
time a message is placed on it, it will be scheduled for service (enabled, see
qenable). Also, if the data in the enqueued messages in the queue drops
below the low-water mark, q_lowat, and a queue behind the current queue

APPENDIX C: UTILITIES C-7

Utility Descriptions

had previously attempted to place a message in the queue and failed (Le., was
blocked, see canput), then the queue behind the current queue is scheduled
for service (see the section titled "Flow Control" in Chapter 6 of the Primer).

insq - put a message at a specific place in a queue

int insq(q, emp, nmp)
queue_t *q;
mblLt *emp, *nmp;

insq places the message pointed to by nmp in the message queue contained in
the queue pointed to by q immediately before the already-enqueued message
pointed to by emp. If emp is NULL, the message is placed at the end of the
queue. If emp is non-NULL, it must point to a message that exists on the
queue q, or a system panic could result.

Note that the message is placed where indicated, without consideration of
message queueing priority. The queue will be scheduled in accordance with
the rules described in putq for ordinary priority messages.

linkb - concatenate two messages into one

int linkb(mpl, mp2)
mblLt *mpl;
mblLt *mp2;

linkb puts the message pointed to by mp2 at the tail of the message pointed
to by mpl.

msgdsize - get the number of data bytes in a message

int msgdsize(mp)
mblLt *mp;

msgdsize returns the number of bytes of data in the message pointed to by
mp. Only bytes included in data blocks of type M_DATA are included in the
total.

C-8 STREAMS PROGRAMMER'S GUIDE

noenable - prevent a queue from being scheduled

#define noenable(q)

Utility Descriptions

The noenable macro prevents the queue q (declared as queue_t *q) from
being scheduled for service by putq or putbq when these routines enqueue an
ordinary priority message, or by insq when it enqueues any message. no en
able does not prevent the scheduling of queues when a Priority message is
enqueued, unless it is enqueued by insq.

OTHERQ - get pointer to the mate queue

#define OTHERQ(q) ...

The OTHERQ macro returns a pointer to the mate queue of q (declared as
queue_t *q). If q is the read queue for the module, it returns a pointer to the
module's write queue. If q is the write queue for the module, it returns a
pointer to the read queue.

pullupmsg - concatenate bytes in a message

int *pullupmsg(mp, len)
mblLt *mpi
int leni

pullupmsg concatenates and aligns the first len data bytes of the passed mes
sage into a single, contiguous message block. Proper alignment is hardware
dependent. To perform its function, pullupmsg allocates a new message
block by calling allocb with pri set to BPRLMED (see the section titled
"Buffer Allocation Priority,,). pullupmsg only concatenates across message
blocks of similar type. Itwill fail if mp points to a message of less than len
bytes of similar type. A len value of -1 requests a pull-up of all the like-type
blocks in the beginning of the message pointed to by mp.

At completion of concatenation, pullupmsg replaces mp with a pointer to the
new message block, so that mp still points to the same message block at the
end of the operation. However, the contents of the message block may have
been altered. On success, pullupmsg returns 1. On failure, it returns O.

APPENDIX C: UTILITIES C-9

Utility Descriptions

putbq - return a message to the beginning of a queue

int putbq(q, bp)
queue_t *q;
mblLt *bp

putbq puts the message pointed to by bp at the beginning of the queue
pointed to by q, in a position in accordance with the message's type. Priority
messages are placed at the head of the queue, and ordinary messages are
placed after all Priority messages, but before all other ordinary messages. The
queue will be scheduled in accordance with the same rules described in putq.
This utility is typically used to replace a message on a queue from which it
was just removed.

putctl - put a control message

int putctl(q, type)
queue_t *q;
int type;

putctl creates a control (not data, see datamsg above) message of type type,
and calls the put procedure in the queue pointed to by q, with a pointer to the
created message as an argument. putctl allocates new blocks by calling allocb
with pri set to BPRLHI (see the section titled "Buffer Allocation Priority").
On successful completion, putctl returns 1. It returns 0 if it cannot allocate a
message block, or if type M_DATA, M-PROTO, or M-PCPROTO was speci
fied.

putctll - put a control message with a one-byte parameter

int putctll(q, type, p)
queue_t *q;
int type;
int p;

putctll creates a control (not data, see datamsg) message of type type with a
one-byte parameter p, and calls the put procedure in the queue pointed to by
q, with a pointer to the created message as an argument. putctll allocates
new blocks by calling allocb with pri set to BPRLHI (see the section titled
"Buffer Allocation Priority"). On successful completion, putctll returns 1. It

C-10 STREAMS PROGRAMMER'S GUIDE

Utility Descriptions

returns 0 if it cannot allocate a message block, or if type M-DATA,
M-PROTO, or MJCPROTO was specified.

putnext - put a message to the next queue

#define putnext(q, mp) ...

The putnext macro calls the put procedure of the next queue in a Stream, and
passes it a message pointer as an argument. The parameters must be declared
as qu.eue_t *q and mblk_t *mp. q is the calling queue (not the next queue)
and mp is the message to be passed. putnext is the typical means of passing
messages to the next queue in a Stream.

putq - put a message on a queue

int putq(q, bp)
queue_t *q;
mblLt *bPi

putq puts the message pointed to by bp on the message queue contained in
the queue pointed to by q and enables that queue. putq queues messages
appropriately by type (i.e., message queueing priority, see Chapter 8).

putq will always enable the queue when a Priority message is queued. putq
will enable the queue when an ordinary message is queued if the following
condition is set, Clnd enabling is not inhibited by noenable: The condition is
set if the module has just been pushed [see LPUSH in streamio(7»), or if no
message was queued on the last getq call, and no message has been queued
since.

putq is intended to be used from the put procedure in the same quelle in
which the message will be queued. A module should not call putq directly to
pass messages to a neighboring ptodule. putq may be used as the qLputpO
put procedure value in either or both of a module's qinit structures. This
effectively bypasses any put procedure processing and uses only the module's
service procedure(s).

APPENDIX C: UTILITIES C-11

Utility Descriptions

qenable - enable a queue
int qenable(q) queue_t *q;

int putq(q, bp)
queue_t *q;
mblLt *bp;

qenable places the queue pointed to by q on the linked list of queues that are
ready to be called by the STREAMS scheduler (see the definition for
" Schedule" above, and the section titled "Put and Service Procedures" in
Chapter 5 of the Primer).

qreply - send a message on a stream in the reverse direction

int qreply(q, bp)
queue_t *q;
mblLt *bp;

qreply sends the message pointed to by bp up (or down) the Stream in the
reverse direction from the queue pointed to by q. This is done by locating the
partner of q (see OTHERQ) and then calling the put procedure of that queue's
neighbor (as in putnext). qreply is typically used to send back a response
(M--IOCACK or M--IOCNAK message) to an M--IOCTL message (see Appen
dix B).

qsize - find the number of messages on a queue

int qsize(q)
queue_t *q;

qsize returns the number of messages present in queue q. If there are no
messages on the queue, qsize returns O.

RD - get pointer to the read queue

#define RD(q) '"

The RD macro accepts a write queue pointer, q (declared as queue_t *q), as
an argument and returns a pointer to the read queue for the same module.

C-12 STREAMS PROGRAMMER'S GUIDE

Utility Descriptions

rmvb - remove a message block from a message

mblLt *rmvb(mp, bp)
mblLt *mpi
mblLt *bPi

rmvb removes the message block pointed to by bp from the message pointed
to by mp and then restores the linkage of the message blocks remaining in the
message. rmvb does not free the removed message block. rmvb returns a
pointer to the head of the resulting message. If bp is not contained in mp,
rmvb returns a -1. If there are no message blocks in the resulting message,
rmvb returns a NULL pointer.

rmvq - remove a message from a queue

int rmvq(q, mp)
queue_t *q;
mblLt *mpi

rmvq removes the message pointed to by mp from the message queue in the
queue pointed to by q and then restores the linkage of the messages remaining
on the queue. If mp does not point to a message that is present on the queue
q, a system panic could result.

splstr - set processor level

int splstrO

splstr increases the system processor level to block interrupts at a level
appropriate for STREAMS modules when those modules are executing critical
portions of their code. splstr returns the processor level at the time of its
invocation. Module developers are expected to use the standard kernel func
tion splx(s), where 5 is the integer value returned by splstr, to restore the pro
cessor level to its previous value after the critical portions of code are passed.

APPENDIX C: UTILITIES C-13

Utility Descriptions

strlog - submit messages for logging

int strlog(mid, sid, level, flags, £mt, argl, ...)
short mid, sid;
char level;
ushort flags;
char *£mt;
unsigned argl;

strlog submits Il1essages containing specified information to the log(7) driver.
Required definitions are containeq in <sysjstrlog.h> and <sysjlog.h>. mid
is the STREAMS module ID number for the module or driver submitting the
log message. sid is an internal sub-ID number usually used to identify a par
ticular minor device of a driver. level is a tracing level that allows selective
screening of messages froIl1 the tracer. flags are any combination of
SLERROR (the message is for the error logger), SLTRACE (the message is
for the tracer), SLFATAL (advisory notification of a fatal error), and
SLNOTIFY (request that a copy of the message be mailed to the system
administrator)~ fmt is a printf(3S) style format string, except that %s, %e, %E,
%g, and %G conversion specifications are not handled. Up to NLOGARGS
numeric or character arguments can be provided. [See Chapter 6 of the Primer
and log(7).]

testb - check for an available buffer

int testb(size, pri)
int size, pri;

testb checks for the availability of a message buffer of size size at priority pri
(see the section titled "Buffer Allocation Priority") without actually retrieving
the buffer. testb returns 1 if the buffer is available and 0 if no buffer is avail
able. A successful return value from testb does not guarantee that a subse
quent allocb call will succeed (e.g., in the case of an interrupt routine taking
buffers). .

C-14 STREAMS PROGRAMMER'S GUID~

Utility Descriptions

unlinkb - remove a message block from the head of a message

mblLt *unlinkb(mp)
mblLt *mp;

unlinkb removes the first message block pointed to by mp and returns a
pointer to the head of the resulting message. unlinkb returns a NULL pointer
if there are no more message blocks in the message.

WR - get pointer to the write queue

#define WR(q) ...

The WR macro accepts a read queue pointer, q (declared as qu.eue_t *q), as an
argument and returns a pointer to the write queue for the same module.

APPENDIX C: UTILITIES C-15

Buffer Allocation Priority

STREAMS buffers are normally allocated with allocb, described above.
An associated set of allocation priorities has been established, which are also
used in other utility routines:

BPRLLO Low priority. At this priority, allocb may fail even though the
requested buffer size is available. This priority is used by the
Stream head write routine to hold data associated with user
calls.

BPRLMED Medium priority. This priority is typically used for normal
data and control block allocation. As above, allocb may fail at
this priority even though a buffer of the requested size is avail
able. However, for a given block size, an BPRLLO allocb call
will fail before a BPRLMED allocb call.

BPRLHI High priority. This priority is typically used only for critical
control message allocations. Calls to allocb will succeed if a
buffer of the appropriate size is available. Developers should
exercise restraint in use of BPRLHI allocation requests.

The values BPRLLO, BPRLMED, and BPRLHI are defined in
<sysjstream.h> .

STREAMS does not guarantee successful buffer allocation-any set of
resources can be exhausted under the right conditions. The bufcall function
will help modules recover from buffer allocation failures, but it does not
guarantee that the resources will ever be available. Developers should be
aware of this when implementing modules.

C-16 STREAMS PROGRAMMER'S GUIDE

Utility Routine Summary

ROUTINE

adjmsg
alloeb
baekq
bufeall
eanput
eopyb
eopymsg
datamsg
dupb
dupmsg
enableok
flushq
heeb
heemsg
getq
insq
linkb
msgdsize
noenable
OTHERQ
pullupmsg
putbq
putctl
putet11
putnext
putq
qenable
qreply
qsize
RD
rmvb
rmvq
splstr
strlog
testb
unlinkb
WR

DESCRIPTION

trim bytes in a message
allocate a message block
get pointer to the queue behind a given queue
recover from failure of alloeb
test for room in a queue
copy a message block
copy a message
test whether message is a data message
duplicate a message block descriptor
duplicate a message
re-allow a queue to be scheduled for service
flush a queue
free a message block
free all message blocks in a message
get a message from a queue
put a message at a specific place in a queue
concatenate two messages into one
get the number of data bytes in a message
prevent a queue from being scheduled
get pointer to the mate queue
concatenate bytes in a message
return a message to the beginning of a queue
put a control message
put a control message with a one-byte parameter
put a message to the next queue
put a message on a queue
enable a queue
send a message on a stream in the reverse direction
find the number of messages on a queue
get pointer to the read queue
remove a message block from a message
remove a message from a queue
set processor level
submit messages for logging
check for an available buffer
remove a message block from the head of a message
get pointer to the write queue

APPENDIX C: UTILITIES C-17

Appendix D: Design Guidelines

General Rules

System Calls

Oata Structures

Header Files

Accessible Symbols and Functions

Rules for Put and Service Procedures

Error and Trace Logging

TABLE OF CONTENTS

0-1

0-2

0-3

0-3

0-4

0-5
0-7

Appendix D: Design Guidelines

This appendix summarizes STREAMS module and driver design guide
lines and rules presented in previous chapters. Additional rules that develop
ers must observe are included. Where appropriate, the section of this docu
ment containing detailed information is named. The end of the appendix
contains a brief description of error and trace logging facilities.

Unless otherwise noted, "module" implies "modules and drivers" .

General Rules
The following are general rules that developers should follow when writ

ing modules.

1. Modules cannot access information in the 1L-area of a process.
Modules are not associated with any process, and therefore, have no
concept of process or user context.

The capability to pass 1L-area information upstream using messages
has been provided where required. This can be done in M-IOCTL
handling (see Chapter 9 and Appendix B). A module can send error
codes upstream in an M-IOCACK or M-IOCNAK message, where
they will be placed in u_error by the Stream head. Return values may
also be sent upstream in a M-IOCACK message and will be placed in
u_rval1. Information can also be passed to the 1L-area via a
~RROR message (see Chapter 10 and Appendix B). The Stream
head will recognize this message type and inform the next system call
that an error has occurred downstream by setting u_error. Note that
in both instances, the downstream module cannot access the u_area,
but it informs the Stream head to do so.

2. In general, modules should not require the data in an M_DATA mes
sage to follow a particular format, such as a specific alignment. This
makes it easier to arbitrarily push modules on top of each other in a
sensible fashion. Not following this rule may limit module re
usability (the ability to use the module in multiple ;;tpplications).

3. Every module must process an MJLUSH message according to the
value of the argument passed in the message. (See Chapters 8 and 9,
and Appendix B.)

APPENDIX D: DESIGN GUIDELINES D-1

Appendix D: Design Guidelines

4. A module should not change tpe contents of a data block whose refer
ence count is greater than 1 (see dup~sg in Appendix C) because
other modules that have references to the blo<;:k may not want the
datil changed. To avoid problems, it is recommended that the module
copy the data to a new block and then change the new one, . ,

5. Modules should only manipulate tnessage queues and manage buffers
with the routines provided for those purpose (see Appendix C).

6. Filter modules pusheQ between a service user and a service provider
(see Chapter 12) may not alter the contents of the ~ROTO or
MJCPROTO block tn messages. The contents of the data blocks
may be manipulated, but the message boundaries must be preserved.

System Calls
These rules pertain to module and drivers as noted.

1. open and close routines may sleep, but the sleep must return to the
routine in the event of a signal. That is, if they sleep, they must be at
priority <= PZERO or with PCATCH set in the sleep priority.

2. The open routine must return >= zero on success or OPENFAIL if it
fails. This ensures that a failure will be reported to the user process.
errno may be set on failure. However, if the open routine returns
OP~NFAIL and errno is not set, STREAMS will automatically set errno
toENXIO. .

3. If a module or driver recognizes and acts on an M-IOCTL message, it
must reply by sending a M-IOCACK message upstream. A unique ID
is associated with each M-IOCTL, anq the M-IOCACK or
M-IOCNAK message must contain the ID of the M-IOCTL it is ack
nowledging.

4. A module (not a driver) must pass on any M-IOCTL message it does
not recognize (see Appendix B). If an unrecognized M-IOCTL
reaches a driver, the driver must reply by sending a M-IOCNAK mes
sage upstream.

P-2 STREAMS PROGRAMMER'S GUIDE

Appendix D: Design Guidelines

Data Structures
Only the contents of q_ptr, q_minpsz, q_maxpsz, q_hiwat, and q_lowat in

a queue_t structure may be altered. The latter four quantities are set when
the module or driver is opened, but may be modified subsequently.

As described in Appendix E, every module and driver is configured with
the address of a streamtab structure (see Chapter 5). For a driver, a pointer to
its streamtab is included in cdevsw. For a module, a pointer to its streamtab
is included in fmodsw.

Header Files
The following header files are generally required in modules and drivers:

types.h

stream.h

stropts.h

contains type definitions used in the STREAMS header files

contains required structure and constant definitions

primarily for users, but contains definitions of the arguments
to the M-FLUSH message type also required by modules.

One or more of the header files described below may also be included
(also see the following section). No standard UNIX system header files should
be included except as described in the following section. The intent is to
prevent attempts to access data that cannot or should not be accessed.

errno.h defines various system error conditions and is needed if
errors are to be returned upstream to the user

sysmacros.h contains miscellaneous system macro definitions

param.h

signal.h

file.h

defines various system parameters, particularly the value of
the PCA TCH sleep flag

defines the system signal values and should be used if sig
nals are to be processed or sent upstream

defines the file open flags and is needed if O_NDELA Y is
interpreted.

APPENDIX D: DESIGN GUIDELINES D-3

Appendix D: Design Guidelines

Accessible Symbols and Functions

The following lists the only symbols and functions that modules or drivers
may refer to (in addition to those defined by STREAMS), if hardware and
UNIX system release independence is to be maintained. Use of symbols not
listed here is unsupported.

• user.h (from open/close procedures only)

struct proc *1L-procp process structure pointer
short *1L-ttyp tty group ID pointer
char 1L-error system call error number
ushort u_uid effective user 10
ushort 1L-gid effective group ID
ushort U-1"uid real user 10
ushort U-1"gid real group ID

• proc.h (from open/close procedures only)

short p_pid process ID
short p_pgrp process group 10

• functions accessible from open/close procedures only
fig = sleep(chan, pri) sleep until wakeup
delay(ticks) delay for a specified time

• universally accessible functions
bcopy(from, to, nbytes)
bzero(buffer, nbytes)
t = max(a, b)
t = min(a, b)
mem=malloc(mp, size)
mfree(mp, size, i)
mapinit(mp, mapsize)
addr = vtop(vaddr, NULL)
printf(format, ...)
cmIL-err(level, ...)
s = spInO
id = timeout(func, arg, ticks)
untimeout(id)
wakeup(chan)

copy data quickly
zero data quickly
return max of args
return min of args
allocate memory space
de-allocate memory space
initialize map structure
translate from virtual to physical address
print message
print message and optional panic
set priority level
schedule event
cancel event
wake up sleeper

D-4 STREAMS PROGRAMMER'S GUIDE

Appendix 0: Design Guidelines

• sysmacros.h

t = major(dev) return major device
t = minor(dev) return minor device

• systm.h
time_t lbolt clock ticks since boot in HZ
time_t time seconds since epoch

• param.h

PZERO zero sleep priority
PCATCH catch signal sleep flag
HZ clock ticks per second
NULL 0

• types.h
dev_t combined major/minor device
time_t time counter

All data elements are software read-only except:

u_error - may be set on a failure return of open
1L.ttyp - may be set in open to create a controlling tty

Rules for Put and Service Procedures
To ensure proper data flow between modules, the following rules should

be observed in put and service procedures. The following rules pertain to put
procedures.

1. A put procedure must not sleep.

2. Each QUEUE must define a put procedure in its qinit (see Appendix
A) structure for passing messages between modules.

3. A put procedure must use the putq (see Appendix C) utility to
enqueue a message on its own message queue. This is necessary to
ensure that the various fields of the queue_t structure are maintained
consistently.

4. When passing messages to a neighbor module, a module may not call
putq directly, but must call its neighbor's put procedure (see putnext
in Appendix C). Note that this rule is distinct from the one above it.
The previous rule states that a module must call putq to place

APPENDIX 0: DESIGN GUIDELINES 0-5

Appendix D: Design Guidelines

messages on its own message queue, whereas this rule states that a
module must not call putq directly to place messages on a neighbor's
queue.

However, the q_qinfo structure that points to a module's put pro
cedure may point to putq (i.e. putq is used as the put procedure for
that module). When a module calls a neighbor's put procedure that is
defined in this manner, it will be calling putq indirectly. If any
module uses putq as its put procedure in this manner, the module
must define a service procedure. Otherwise, no messages will ever be
sent to the next module. Also, because putq does not process
MJLUSH messages, any module that uses putq as its put procedure
must define a service procedure to process MJLUSH messages.

5. The put procedure of a QUEUE with no service procedure must call
the put procedure of the next QUEUE directly if a message is to be
passed to that QUEUE. If flow control is desired, a service procedure
must be provided.

Service procedures must observe the following rules:

1. A service procedure must not sleep.

2. The service procedure must use getq to remove a message from its
message queue, so that the flow control mechanism is maintained.

3. The service procedure should process all messages on its message
queue. The only exception is if the Stream ahead is blocked (i.e., can
put fails, see Appendix C). Adherence to this rule is the only guaran
tee that STREAMS will enable (schedule for execution) the service
procedure when necessary, and that the flow control mechanism will
not fail.

If a service procedure exits for any other reason (e.g., buffer allocation
failure), it must take f?xplicit steps to assure it will be re-enabled.

4. The service procedure must follow the steps below for each message
that it processes. STREAMS flow control relies on strict adherence to
these steps.

Step 1: Remove the next message from the message queue using getq.
It is possible that the service procedure could be called when
no messages exist on the queue, so the service procedure

D-6 STREAMS PROGRAMMER'S GUIDE

Step 2:

Step 3:

Step 4:

Appendix 0: Design Guidelines

should never assume that there is a message on its message
queue. If there is no message, return.

If all the following conditions are met:

o canput fails and

o the message type is not a priority type (see Appendix B)
and

o the message is to be put on the next QUEUE.

then, continue at Step 3. Otherwise, continue at Step 4.

The message must be replaced on the head of the message
queue from which it was removed using putbq (see Appendix
C). Following this, the service procedure is exited. The ser
vice procedure should not be re-enabled at this point. It will
be automatically back-enabled by flow control.

If all the conditions of Step 2 are not met, the message should
not be returned to the queue. It should be processed as
necessary. Then, return to Step 1.

Error and Trace Logging
STREAMS error and trace loggers are provided for debugging and for

administering modules and driver. Chapter 6 of the STREAMS Primer contains
a description of this facility which consists of log(7), strace(lM), strclean(lM),
strerr(lM), and the strlog function described in Appendix C.

APPENDIX 0: DESIGN GUIDELINES 0·7

Appendix E: Configuring

Configuring STREAMS Modules and Drivers

Configuration Mechanism
Configuration Examples

Tunable Parameters

System Error Messages

TABLE OF CONTENTS

E-l

E-2

E-3

E-4

E-6

Appendix E: Configuring

This appendix contains information about configuring STREAMS modules
and drivers into UNIX System V Release 3.1 on your computer. The informa
tion is incremental and presumes the reader is familiar with the configuration
mechanism, which may vary on different processors. An example of how to
configure a driver and a module is included.

This appendix also includes a list of STREAMS system tunable parameters
and system error messages.

Configuring STREAMS Modules and Drivers
Each character device that is configured into a UNIX system results in an

entry being placed in the kernel cdevsw table. Entries for STREAMS drivers
are also placed in this table. However, because system calls to STREAMS
drivers must be processed by the STREAMS routines, the configuration
mechanism distinguishes between STREAMS drivers and character device
drivers in their associated cdevsw entries.

The distinction is contained in the d.......str field which was added to the
cdevsw structure for this purpose. d.......str provides the appropriate single entry
point for all system calls on STREAMS files, as shown below:

extern struct cdevsw {

struct streamtab *d_str;
} cdevsw[];

The configuration mechanism forms the d.......str entry name by appending the
string "info" to the STREAMS driver prefix. The "info" entry is a pointer to
a streamtab structure (see Appendix A) that contains pointers to the qinit
structures for the read and write QUEUEs of the driver. The driver must con
tain the external definition:

struct streamtab prefixinfo = { •••

If the d.......str entry contains a non-NULL pointer, the operating system will
recognize the device as a STREAMS driver and will call the appropriate
STREAMS routine. If the entry is NULL, a character I/O device cdevsw
interface is used. Note that only streamtab must be externally defined in
STREAMS drivers and modules. streamtab is used to identify the appropriate

APPENDIX E: CONFIGURING E-1

Appendix E: Configuring

open, close, put, service, and administration routines. These driver/module
routines should generally be declared static.

The configuration mechanism supports various combinations of block,
character, STREAMS devices, and STREAMS modules (see below). For exam
ple, it is possible to identify a device as a block and STREAMS device, and
entries will be inserted in the appropriate system switch tables. A device can
not be both a character and STREAMS device.

When a STREAMS module is configured, an fmodsw table entry is gen
erated by the configuration mechanism. fmodsw contains the following:

#define EMNAMESZ 8

extern struct fm:ldsw {

char Cname[FlIJNAM&SZ+1];

struct streamtab *f_str;
} fm:ldsw[];

f_name is the name of the module used in STREAMS-related ioctl calls.
f-str is similar to the d-str entry in the cdevsw table. It is a pointer to a
streamtab structure which contains pointers to the qinit structures for the
read and write QUEUEs of this STREAMS module (as in STREAMS drivers).
The module must contain the external definition:

struct streamtab prefixlllfo = { •••

Configuration Mechanism

STREAMS modules and drivers are configured into the system by the fol
lowing:

1. Creating a directory under /etc/conf/modules and installing the
object file there;

2. writing a config file and installing it there;

3. writing a space.c file and installing it there, if required;

4. adding the module or driver name to the system file.

The special file (node) that identifies the STREAMS driver must be a char
acter special file, as is the file for a character device driver, because the system
call entry point for STREAMS drivers is also the cdevsw table.

E-2 STREAMS PROGRAMMER'S GUIDE

Appendix E: Configuring

Any combination of block, STREAMS drivers, and STREAMS module may be
specified. However, it is illegal to specify a STREAMS device or module with
a character device.

Configuration Examples
This section contains examples of configuring the following STREAMS

driver and module:

loop the STREAMS loop-around software driver of Chapter 10

crmod the conversion module of Chapter 7

To configure the STREAMS software (pseudo-device) driver and loop, the
following must appear in the /etc/conf/modules/loop/config file:

*IOOP - STREAMS loop around software driver

streand (20)

prefix = loop

The "20" is the major device number, and must not conflict with any
other character or STREAMS drivers' major number. The prefix "loop"
requires that the streamtab structure for the driver be defined as loopinfo.

In addition, the following must appear in the
/ etc/ conf/modules /loop /space.c file:

#def:ine NLP 2
#include "oanfig .h"
int loop_loop[NLP];
int loop_cnt = NLP;

Including config.h after the definition of NLP assures that NLP may be
overridden in the system file, since donfig.h is generated from the system file
by config(lM) each time mkunix(lM) generates a kernel.

To configure the STREAMS module crmod, the following must appear in
the /etc/conf/modules/crmod/config file:

APPENDIX E: CONFIGURING E-3

Appendix E: Configuring

* CRM:>D stream conversion IOOdule

stream

prefix = cnrod

The prefix "crmod" requires that the streamtab structure for the module
be defined as crmodinfo. The config(lM) command uses the name of the
/etc/conf/modules directory (crmod, in this case), to create the module name
field (f_name) of the associated fmodsw entry. The prefix and module name
can be different.

To configure crmod and loop into a new kernel, add their names to the
module list in /etc/conf/systems/system.std (or to whatever system file you
choose to use [see system(4)]), and run mkunix(lM).

Tunable Parameters
Certain system parameters referenced by STREAMS are configurable

when building a new operating system (see the System Administrator's Guide
for further details). This can be done by including the appropriate entry in
the kernel master file. "queues" refers to queue_t structures. These parame
ters are:

NQUEUE

NSTREAM

NBLK4096

NBLK2048

...
Total number of queues that may be allocated at one time
by the system. Queues are allocated in pairs. Each
STREAMS driver, Stream head, and pushable module
requires a pair of queues. A minimal Stream contains 4
queues (two for the Stream head, two for the driver).

Total number of Streams that may be open at one time in a
system.

Total number of 4096-byte data blocks available for
STREAMS operations. The pool of data blocks is a
system-wide resource, so enough blocks must be config
ured to satisfy all Streams.

Total number of 2048-byte data blocks available for
STREAMS operations.

E-4 STREAMS PROGRAMMER'S GUIDE

Appendix E: Configuring

NBLKI024 Total number of 1024-byte data blocks available for
STREAMS operations.

NBLK512 Total number of 512-byte data blocks available for
STREAMS operations.

NBLK256 Total number of 256-byte data blocks available for
STREAMS operations.

NBLK128 Total number of 128-byte data blocks available for
STREAMS operations.

NBLK64 Total number cjf 64-byte data blocks available for
STREAMS operations.

NBLK16 Total number of 16-byte data blocks available for
STREAMS operations.

NBLK4 Total nuinber of 4-byte data blocks available for STREAMS
operations.

NMUXLINK Total nuinber of Streams in the system that can be linked
as lower Streams to multiplexer drivers [by an LLINK
ioctl(2), see streamio(7»).

NSTREVENT Initial number of internal event cells available in the sys
tem to support bufcall (see Appendix C) and poll(2) calls.

MAXSEPGCNT The number of additional pages of memory that can be
dynamically allocated for event cells. If this value is 0,
only the allocation defined by NSTREVENT is available for
use. If the value is not 0 and if the kernel runs out of
event cells, it will under some circumstances attempt to
allocate an extra page of memory from which new event
cells can be created. MAXSEPGCNT places a limit on the
number of pages that can be allocated for this purpose.
Once a page has been allocated for event cells, however, it
cannot be recovered later for use elsewhere.

NSTRPUSH

STRMSGSZ

Maximum number of modules that may be pushed onto a
single Stream.

Maximum bytes of information that a single system call
can pass to a Stream to be placed into the data part of a
message (in M-DATA blocks). Any write(2) exceeding

APPENDIX E: CONFIGURING E-5

Appendix E: Configuring

STRCTLSZ

STRLOFRAC

STRMEDFRAC

this size will be broken into multiple messages. A
putmsg(2) with a data part exceeding this size will fail.

Maximum bytes of information that a single system call
can pass to a Stream to be placed into the control part of a
message (in an M-PROTO or M-PCPROTO block). A
putmsg(2) with a control part exceeding this size will fail.

The percentage of data blocks of a given class at which low
priority block allocation requests are automatically failed.
For example, if STRLOFRAC is 80 and there are 48 256-
byte blocks, a low priority allocation request will fail when
more than 38 256-byte blocks are already allocated. This
value is used to prevent deadlock situations in which a low
priority activity might starve out more important functions.
For example, if STRLOFRAC is 80 and there are 100 blocks
of 256 bytes, then when more than 80 of such blocks are
allocated, any low priority allocation request will fail. This
value must be in the range
o <= STRLOFRAC <= STRMEDFRAC.

The percentage of data blocks of a given class at which
medium priority block allocation requests are automatically
failed.

System Error Messages
Messages are reported to the console as a result of various error conditions

detected by STREAMS. These messages and the action to be taken on their
occurrence are described below. In certain cases, a tunable parameter (see
previous section) may have to be changed.

strop en: out of streams
A Stream head data structure could not be allocated during the open
of a STREAMS device. If this occurs repeatedly, increase
NSTREAM.

stropen: out of queues
A pair of queues could not be allocated for the Stream head during
the open of a driver. If this occurs repeatedly, increase NQUEUE.

E-6 STREAMS PROGRAMMER'S GUIDE

Appendix E: Configuring

KERNEL: allocq: out of queues
A pair of queues could not be allocated for a pushable module
(LPUSH ioctl) or driver (open). If this occurs repeatedly, increase
NQUEUE.

strinit: can not allocate stream data blocks
During system initialization, the system was unable to allocate
enough memory for the STREAMS data blocks. The system must be
rebuilt with fewer data blocks specified.

KERNEL: strinit: odd value configured for v.v-Ilqueue
KERNEL: strinit: was qcnt, set to nqcnt

During system initialization, the total number of queues allocated,
qcnt, was not a multiple of 2. The system resets this to an appropri
ate value, nqcnt.

WARNING: bufcall: could not allocate stream event
A call to bufcall has failed because all Stream event cells have been
allocated. If this occurs repeatedly, increase NSTREVENT.

KERNEL: sealloc: not enough memory for page allocation
An attempt to dynamically allocate a page of Stream event cells
failed. If this occurs repeatedly, decrease MAXSEPGCNT.

KERNEL: munlink: could not perform ioctl, closing anyway
A linked multiplexer could not be unlinked when the controlling
Stream for that link was closed. The linked Stream will.be unlinked
and the controlling Stream will be closed anyway.

APPENDIX E: CONFIGURING E-7

Glossary

Back enable

Blocked

Clone device

To enable (by STREAMS) a preceding blocked QUEUE
when STREAMS determines that a succeeding
QUEUE has reached its low-water mark.

A QUEUE that cannot be enabled due to flow control.

A STREAMS device that returns an unused minor
device when initially opened, rather than requiring
the minor device to be specified in the open(2) call.

Close procedure The module routine that is called when a module is
popped from a Stream and the driver routine that is
called when a driver is closed.

Control stream In a multiplexer, the upper Stream on which a previous
LLINK ioctl [to the associated file, see streamio(7)]
caused a lower Stream to be connected to the multi
plexer driver at the end of the upper Stream.

Downstream The direction from Stream head towards driver.

Device driver The end of the Stream closest to an external interface.
The principle functions of a device driver are handling
an associated physical device and transforming data
and information between the external interface and
Stream.

Driver A module that forms the Stream end. It can be a dev
ice driver or a pseudo-device driver. In STREAMS, a
driver is physically identical to a module (i.e., com
posed of two QUEUEs), but has additional attributes
in a Stream and in the UNIX system.

Enable Schedule a QUEUE.

Flow control The STREAMS mechanism that regulates the flow of
messages within a Stream and the flow from user
space into a Stream.

Lower Stream A Stream connected below a multiplexer pseudo-device
driver, by means of an LLINK ioctl. The far end of a
lower Stream terminates at a device driver or another
multiplexer driver.

GLOSSARY G-1

Glossary

Message

Message block

Message queue

Message type

Module

Multiplexer

Open procedure

Pop

One or more linked message blocks. A message is
referenced by its first message block and its type is
defined by the message type of that block.

Carries data or information, as identified by its mes
sage type, in a Stream. A message block is a triplet
consisting of a data buffer and associated control
structures, an mblLt structure, and a dblLt struc
ture.

A linked list of zero or more messages connected to a
QUEUE.

A defined set of values identifying the contents of a
message block and message.

A pair of QUEUEs. In general, module implies a
pushable module.

A STREAMS mechanism that allows messages to be
routed among multiple Streams in the kernel. A mul
tiplexer includes at least one multiplexing pseudo
device driver connected to one or more upper Streams
and one or more lower Streams.

The routine in each STREAMS driver and module
called by STREAMS on each open(2) system call
made on the Stream. A module's open procedure is
also called when the module is pushed.

A STREAMS ioctl [see streamio(7)] that causes the
pushable module immediately below the Stream head to
be removed (popped) from a Stream [modules can
also be popped as the result of a close(2)].

Pseudo-device driver

Push

A software driver, not directly associated with a physi
cal device, that performs functions internal to a Stream
such as a multiplexer or log driver.

A STREAMS ioctl [see streamio(7)] that causes a
pushable module to be inserted (pushed) in a Stream
immediately below the Stream head.

G-2 STREAMS PROGRAMMER'S GUIDE

Glossary

Pushable module A module interposed (pushed) between the Stream
head and driver. Pushable modules perform inter
mediate transformations on messages flowing between
the Stream head and driver. A driver is a non
pushable module and a Stream head includes a non
pushable module.

Put procedure

QUEUE

The routine in a QUEUE which receives messages
from the preceding QUEUE. It is the single entry
point ~nto a QUEUE from a preceding QUEUE. The
procedure may perform processing on the message
and will then generally either queue the message for
subsequent processing by this QUEUE's service pro
cedure; or will pass the message to the put procedure
of the following QUEUE.

A STREAMS defined set of C-Ianguage structures. A
module is composed of a read (upstream) QUEUE and
a write (downstream) QUEUE. A QUEUE will typi
cally contain a put and service procedure, a message
queue, and private data. The read QUEUE (d. read
queue) in a module will also contain the open pro
cedure and close procedure for the module.

The primary structure is the queue_t structure, occa
sionally used as a synonym for a QUEUE.

Read queue The message queue in a module or driver containing
messages moving upstream. Associated with a read(2)
system call and input from a driver.

Schedule Place a QUEUE on the internal list of QUEUEs which
wm subsequently have their service procedure called
by the STREAMS scheduler.

Service interface ,fI. set of primitives that define a service at the boun
dary between a service user and a service provider and
the rules (typically represented by a state machine) for
allowable sequences of the primitives across the boun
dary. At a Stream/user boundary, the primitives are
typically contained in the control part of a message;
within a Stream, in MJROTO or ~PCPROTO
message blocl<s.

GLOSSARY G-3

Glossary

Service procedure The routine in a QUEUE which receives messages
queued for it by the put procedure of the QUEUE. The
procedure is called by the STREAMS scheduler. It
may perform processing on the message and will gen
erally pass the message to the put procedure of the fol
lowing QUEUE.

Service provider In a service interface, the entity (typically a module or
driver) that responds to request primitives from the
service user with response and event primitives.

Service user In a service interface, the entity that generates request
primitives for the service provider and consumes
response and event primitives.

Stream The kernel aggregate created by connecting STREAMS
components, resulting from an application of the
STREAMS mechanism. The primary components are
the Stream head, the driver, and zero or more pushable
modules between the Stream head and driver.

Stream end The end of the Stream furthest from the user process,
containing a driver.

Stream head The end of the Stream closest to the user process. It
provides the interface between the Stream and the
user process.

STREAMS

Upper stream

Upstream

A kernel mechanism that supports development of
network services and data communication drivers. It
defines interface standards for character input/output
within the kernel, and between the kernel and user
level. The STREAMS mechanism comprises integral
functions, utility routines, kernel facilities, and a set of
structures.

A Stream terminating above a multiplexer pseudo
device driver. The far end of an upper Stream ori
ginates at the Stream head or another multiplexer
driver.

The direction from driver towards Stream head.

G-4 STREAMS PROGRAMMER'S GUIDE

Water marks

Write queue

Glossary

Limit values used in flow control. Each QUEUE has a
high-water mark and a low-water mark. The high
water mark value indicates the upper limit related to
the number of characters contained on the message
queue of a QUEUE. When the enqueued characters in
a QUEUE reach its high-water mark, STREAMS
causes another QUEUE that attempts to send a mes
sage to this QUEUE to become blocked. When the
characters in this QUEUE are reduced to the low
water mark value, the other QUEUE will be
unblocked by STREAMS.

The message queue in a module or driver containing
messages moving downstream; associated with a
write(2) system call and output from a user process.

GLOSSARY G-5

Index

adjmsg ... C3, C17
allocb ... 7:6-8, 11:17, 13:1-3, B2,

C3-5, C9-10, C14, C16-17
backq ... C3, C17
bufcall ... 7:8, 8:7, 13:1-3, C4, C16-

17, E5, E7,
buffer ... 1:9, 4:4-5, 4:12-13, 4:15-16,

7:1-4, 7:8, 8:1, 9:14, 13:1-4, 13:8,
A4, B4, B7-8, C1, C3-4, C6,
C14, C16-17, 06

canput ... 8:6, 8:9, 8:10, 8:12, 9:3,
10:11, 11:17, 11:20, 13:4, C4,
C8, C17, 06-7

cdevsw ... 5:5-6, 6:2, 9:1, 10:1, A3,
03, El-2

clone ... 2:1, 2:8, 6:5, 10:1, 10:5-6,
11:11

clone open ... 2:1, 2:8, 6:5, 10:1, 10:5,
11:11

close call ... 1:1, 3:13, 5:2,
close procedure ... 5:6-7, 6:2, 6:5, A2
close routines ... 6:6, 02, E2
configuring ... 6:2, 9:5, E1, E3
control message ... 4:4-5, 4:7, 4:9-10,

4:12,4:14,4:16, 5:1, 7:1, 8:1-2,
8:4, 8:6-8, 8:12, 9:3, 10:10, 11:3-
4,11:10-11,11:19-21,12:1-2,
13:4, 13:7, A2, B2, B10, C4, C8,
C10, C16-17, 06, E6

control part ... 4:4,4:7,4:9-10,4:12,
4:14,4:16, 12:1-2, B2, E6

controlling Stream ... 3:9-11, 3:13,
11:4, 11:14, B9, E7

copyb ... C5-6, C17
copymsg ... C5, C17
data block ... 2:5, 7:1, 7:3, 7:6, 9:12-

13, 10:6, 10:8, 12:1-2, 12:4, 12:8,
13:8, A4, B2, B4-5, B7, C3, C5-
7, C9-11, C16-17, 02

data buffer ... 1:9, 4:4-5, 4:13, 4:15,
7:1, 7:3-4, 7:8, 8:1, 13:2, 13:8,
A4, B4, B7, C1, C3, C6, C10,
C16-17

data part ... 4:4, 4:10, 4:12, 4:14,
4:16, 8:10, 12:1-2, 12:8, B2, B5,
E5-6

datamsg ... C5, C7, ClO, C17
driver close ... 3:13, 5:7, 6:6, 9:1,

9:15,11:4
driver declarations ... 6:1, 9:4, 10:3
driver flow control ... 1:3, 2:5, 5:7,

9:1, 9:3, 11:4, 11:8, 11:11-12,
13:4

driver open ... 1:1, 2:8, 3:5, 3:13, 4:9,
5:1, 5:5-6, 6:5-6, 9:1, 9:6-7,
10:1-2, 10:5, 10:8, 11:1-3, 11:10,
13:4-5, B9, E6-7

driver procedures ... 5:4-5, 6:2, 6:6,
9:1, 9:5, 11:10

dupb ... C5-7, C17
dupmsg ... 7:3, C6, C17, 02
enableok ... 13:4, C6, C17
environment ... 2:8, 9:1, C1
flow control ... 1:3,2:2, 2:4-5, 2:7,

5:7, 6:2,8:1-2, 8:4, 8:6-8, 8:12,
9:1, 9:3-4, 9:6, 10:2, 10:10, 10:12,
11:1,11:4,11:8,11:10-12,11:16,
11:19, 11:21, 12:2, 13:4, A2, B2,
B8, B10, C1, C7, 06-7

flush handling ... 9:8, 10:8, 11:21,
12:7,

flushq ... 8:10, 9:8, C6-7, C17
fmodsw ... 5:6, 6:2-3, 9:1, A3, 03,

E2,E4
freeb ... 8:11, 8:12, 9:10-11, 11:19-20,

C7, C17

INDEX 1-1

Index ------------------------

freemsg ... 7:9-10, 9:8, 9:15, 11:15-
16, 11:19, 12:5, 13:3, C7, C17

getmsg ... 3:11, 4:1, 4:4-5, 4:11, 4:12,
4:15-16,5:2,7:4,12:1-2, B2,
B10-11,

getq ... 8:2, 8:4, 8:6-7, 9:3, 9:10,
10:11,11:17, 13:3, 13:4, C7,
C11, C17, 06

header files ... 4:7, 03
initial open ... 5:5, 9:1, 10:5, 11:2
insq ... C8-9, C17
interrupt ... 9:1, 9:3-4, 9:6, 9:10-11,

11:8,12:8,13:1-2, 13:4, C1, C4,
C14

iocblk ... 9:12-13, 10:6, 10:8, 11:3,
11:13, A4, B4-5

ioctl call ... 1:5, 1:7-9, 2:7, 3:5, 3:13,
5:6, 9:12, 9:14, 10:6, 10:8, 11:2,
13:5, 13:7, B3-4

ioctl commands ... 1:5, 6:3
ioctl processing ... 5: 1
ioctl requests ... 1:10, 3:12
link ... 3:6, 3:9, 3:11, 3:13-14, 7:1,

8:1-2, 11:4, 11:15, 13:8, A2
linkb ... 7:9-10, C8, C17
linkblk ... 11:3-4, 11:12-14, A5
log ... C14
lower Stream ... 3:1, 3:3, 3:9, 3:11,

3:13-14, 11:2-4, 11:8, 11:10,
11:12,11:15-16

mate queue ... 5:4, C9, C17
message allocation ... 7:1, C3-5, C9-

10, C14
message block ... 1:8, 4:12, 4;16,

7:1-3,7:6-10,8:6,8:12,9:12-13,
10:6-8,10:8,11:19,11:21,12:1,
12:3, 12:7-8, 13:8, A4, B2, B4-5,
B7-8, BID, C1, C3-7, C9-11,
C13, C15, C17, E6

1-2 STREAMS PROGRAMMER'S GUIDE

message priority ... 2:7, 4:5, 4:10,
4:12,4:16, 7:8, 8:1, 8:4-7, 13:5,
05,07

message queue ... 2:7, 5:6-7, 6:3-5,
7:1, 7:3, 8:1-2, 8:4-8, 8:10, 8:12,
9:3, 9:8-9, 9:15, 10:2, 10:6, 10:9-
10, 11:15-16, 11:21, 12:5, 12:8,
13:3-4, 13:6-7, A2, A4, B7, B1O-
11, Cl-2, C4, C7-8, C1O-11,
C13, C17, 05-7

message storage ... 7:1,7:3,7:8,11:3
message type ... 4:10, 4:12, 4:14,

7:1-2, 7:8-9, 8:5-7, 9:12, 9:14,
10:6,10:9-10,11:3,11:15,12:5,
12:8, Bl-2, B4-5, B7, B10-12,
C3, C5, C8-11, 01, 03, 07

minor device ... 1:1-2, 2:2, 2:5, 2:7-8,
9:1,9:4,9:6-7,9:10,10:1-2,
10:4-6, 10:8, 11:10, 11:12, 11:14,
11:17,11:21,12:4, C14, 05

module declarations ... 6:1, 6:2, 7:5,
8:2,8:8,9:3,13:4, A2

module id ... 6:2-3, 9:5, 13:5 A2,
C14,02,

module name ... 5:6, 6:2-3, 9:5, A2,
E2,E4

module open ... 5:6-7, 6:1-2, 6:5-6,
9:6, 12:5, 13:5, A2, B9, E7

msgdsize ... C8, C17
multiplex ... 3:1
noenable ... 13:4, C6, C9, C11, C17
open call ... 1:1-3, 2:1, 2:8, 3:5, 5:1,

5:5, 6:5, 10:1, 11:10-11, 13:5
open procedure ... 5:5-6,6:2,6:5,

10:1, 10:5, 12:5, 13:4-5, A2
OTHERQ ... C9, C12, C17
packet size ... 6:2-3, 8:1, A2, B7-8,
poll ... 2:1-5, 2:2-7, 3:11, 5:2, 10:10,

BID, E5

pollfd ... 2:3
pop ... 5:6-7,6:2, A2
priority ... 2:2, 2:7, 4:5, 4:10, 4:12,

4:16, 6:6, 7:8, 8:1-2, 8:4-10,
12:1-2, 13:1-2, 13:5, B1, B10,
B12, C2-4, C8-11, C14, C16,
02, OS, 07, E6

procedures ... 5:3-5, 6:1-2, 6:4-6,
8:1-2, 8:5, 8:8, 9:1, 9:5, 10:10,
11:2,11:10-12, A2, 04-6

pullupmsg ... C9, C17
push ... 5:6, 6:2, 6:5, 8:11-12, A2, 02
pushable modules ... 5:3, 5:5-6 8:2,
put procedure ... 6:2, 6:4-5, 7:3, 7:9,

8:2, 8:6-8, 8:10, 9:3, 9:6, 9:8-10,
10:6, 10:8-9, 10:12, 11:3, 11:10-
12, 11:19, 12:5, 12:7-8, 13:3-4,
A2, C10-12, 05-6

putbq ... 8:6-8, 8:11, 10:11, 13:3,
C9-10, C17, 07

putctl ... 10:13, ClO, C17
putctll ... 10:9, ClO
putmsg ... 3:11, 4:1, 4:4-5, 4:10, 4:9-

14,4:16, 5:2, 7:4, 7:8, 12:1-2,
13:8, B2, B8, BI0, E6

putnext ... 6:4-5, 7:9, 8:2, 8:6,8:9-12,
10:11, 11:16, 11:20, 13:4, Cll-
12, C17, 05

putq ... 8:2, 8:4, 8:7, 8:9, 9:3, 9:8,
10:9,11:15-16,13:4, C7-11, C17,
05-6

qenable ... 10:11-12, 11:15-16, 13:3-
4, C7, C12, C17

qreply ... 9:8-9, 9:12~14, 10:7-8,
11:13,11:15,11:19,12:5, B5,
C12, C17

qsize ... C12, C17
RO ... 10:7, 10:9, C12, C17
read ... 1:1, 1:3, 1:9, 2:1-2, 2:4-5,

3:11,4:4, 5:1-2, 5:5, 6:1-5, 7:4-5,
8:8, 9:3-4, 9:6-7, 9:15, 10:2-4,

Index

10:6, 10:8, 10:10, 10:12-13 11:2,
11:9-12,11:19,11:2112:1,12:8,
13:4, 13:6-7, AI, B7-8, BlO-12,
C9, C12, CIS, C17, El-2

read call .. , 1:3, 13:7
read options ... 13:7, B7
rmvb ... C13, C17
l'Illvq ... C13, C17
s~hedule ... 8:2, 8:7, 13:2, Cl-2, 04
scheduler ... 8:2, 8:4, C12
service interface ... 4:1-7, 4:9,4:16,

7:3, 12:1-4, 13:6
service procedure ... 6:2, 7:3, 8:1-8,

8:10, 9:3, 9:6, 9:11, 10:9-13,
11:10-11, 11:15-16, 13:2-4, A2,
B10, C2, C4, C11, 06-7

service provider ... 4:2-5, 4:7-1Q,
4:13-14, i2:1-3, 02

service user ... 4:2-5, 4:7-9, 4:13, 8:8,
12:1-3, 13:6, 02

signal ... 2:7, 6:6, 7:4, 10:10, 13:5-6,
B9, B11, 02-3, 05

splstr ... C13, C17
strbuf ... 4:5, 4:10, 4:12, 4:15
Stream head ... 1:3, 1:5-6, 1:8, 2:7,

3:7, 3:11, 4:1, 4:5, 4:12, 4:16, 5:1,
5:3-6, 6:3, 7:1, 7:3-4, 7:8, 9:3,
9:9, 9:12, 9:14, 10:9-10, 10:12-
13, 11:2-3, 11:10-12, 11:15,
11:21, 1~:2, 13:5-8, Bl-12, C2,
C1~01,E~E6 .

streamtab .. , 5:5-6, 6:1-3, 7:5, 8:1,
9:1, 9:4-5, 10:3-4, 11:2-3, 11:9-
10, A1-A2, 03, El-4

strioctl .. , 1:4, 1:7-9, B3, B5
strlog ... C14, C17
testb ... C14
Tunable Parameters ... 13:8, E4
unlirtkb ... CIS, C17

INDEX 1-3

Index ---------------------------

upper Stream ... 3:1-3, 3:11, 3:14,
11:2-3,11:7-8,11:10-12,11:16-
17,11:21

user context ... 6:6, 8:2, 13:1, C4, D1
user interface ... 4:2-5, 4:7, 4:9, 5:1,

7:3, 9:14, 11:3, 11:5, 12:1, 13:6
write ... 1:1, 1:3, 1:9, 2:1, 2:4-5, 3:11,

4:4, 5:1, 5:3, 5:5-7, 6:1-5, 7:4-5,
7:8, 8:8, 8:10, 9:3-4, 9:6-9, 10:2-
4, 10:6, 10:10-12, 11:2-3, 11:9-
12,11:14-16,11:18,12:1,12:5,
12:7-8, 13:2, 13:4, 13:8, AI, AS,
B7-8, B1O-l2, C9, C12, C15-17,
E1-2, E5

write call ... 1:1, 1:3, 2:5, 7:4, 13:8,
B7,E5

1-4 STREAMS PROGRAMMER'S GUIDE

NOTES

NOTES

