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Introduction to this Guide 

This document provides information to developers on the use of the 
STREAMS mechanism at user and kernel levels. 

STREAMS was incorporated in UNIX System V Release 3.1 to augment 
the existing character input/output (I/O) mechanism and to support develop
ment of communication services. The STREAMS Programmer's Guide includes 
detailed information, with various examples, on the development methods 
and design philosophy of all aspects of STREAMS. 

This guide is organized into two parts. Part 1: Applications Program
ming, describes the development of user level applications. Part 2: Module 
and Driver Programming, describes the STREAMS kernel facilities for 
development of modules and drivers. Although chapter numbers are consecu
tive, the two parts are independent. Working knowledge of the STREAMS Pri-
mer is assumed. ' 
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STREAMS Overview 

This section reviews the STREAMS mechanism. STREAMS is a general, 
flexible facility and a set of tools for development of UNIX system communi
cation services. It supports the implementation of services ranging from com
plete networking protocol suites to individual device drivers. STREAMS 
defines standard interfaces for character input/output within the kernel, and 
between the kernel and the rest of the UNIX system. The associated mechan
ism is simple and open-ended. It consists of a set of system calls, kernel 
resources, and kernel routines. 

The standard interface and mechanism enable modular, portable develop
ment and easy integration of higher performance network services and their 
components. STREAMS provides a framework; it does not impose any 
specific network architecture. The STREAMS user interface is upwardly com
patible with the character I/O user interface, and both user interfaces are 
available in UNIX System V Release 3.1 and subsequent releases. 

A Stream is a full-duplex processing and data transfer path between a 
STREAMS driver in kernel space and a process in user space (see Figure 1). 
In the kernel, a Stream is constructed by linking a stream head, a driver and 
zero or more modules between the stream head and driver. The Stream head 
is the end of the Stream closest to the user process. Throughout this guide, 
the word "STREAMS" will refer to the mechanism and the word "Stream" 
will refer to the path between a user and a driver. 

A STREAMS driver may be a device driver that provides the services of 
an external I/0 device, or a software driver, commonly referred to as a 
pseudo-device driver, that performs functions internal to a Stream. The 
Stream head provides the interface between the Stream and user processes. 
Its principal function is to process STREAMS-related user system calls. 

Data are passed between a driver and the Stream head in messages. Mes
sages that are passed from the. Stream head toward the driver are said to 
travel downstream. Similarly, messages passed in the other direction travel 
upstream. The Stream head transfers data between the data space of a user 
process and STREAMS kernel data space. Data to be sent to a driver from a 
user process are packaged into STREAMS messages and passed downstream. 
When a message containing data arrives at the Stream head from downstream, 
the message is processed by the Stream head, which copies the data into user 
buffers. 
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Within a Stream, messages are distinguished by a type indicator. Certain 
message types sent upstream may cause the Stream head to perform specific 
actions, such as sending a signal to a user process. Other message types are 
intended to carry information within a Stream and are not directly seen by a 
user process. 
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STREAMS Overview 

One or more kernel-resident modules may be inserted into a Stream 
between the Stream head and driver to perform intermediate processing of 
data as it passes between the Stream head and driver. STREAMS modules are 
dynamically interconnected in a Stream by a user process. No kernel pro
gramming, assembly, or link editing is required to create the interconnection. 
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Development Facilities 

General and STREAMS-specific system calls provide the user level facili
ties required to implement application programs. This system call interface is 
upwardly compatible with the character I/O facilities. The open(2) system 
call will recognize a STREAMS file and create a Stream to the specified driver. 
A user process can receive and send data on STREAMS files using read(2) and 
write(2) in the same manner as with character files. The ioctl(2) system call 
enables users to perform functions specific to a particular device and a set of 
generic STREAMS ioctl commands [see streamio(7)] support a variety of func
tions for accessing and controlling Streams. A close(2) will dismantle a 
Stream. 

In addition to the generic ioctl commands, there are STREAMS-specific 
system calls to support unique STREAMS facilities. The poll(2) system call 
enables a user to poll multiple Streams for various events. The putmsg(2) and 
getmsg(2) system calls enable users to send and receive STREAMS messages, 
and are suitable for interacting with STREAMS modules and drivers through a 
service interface. 

STREAMS provides kernel facilities and utilities to support development 
of modules and drivers. The Stream head handles most system calls so that 
the related processing does not have to be incorporated in a module and 
driver. The configuration mechanism allows modules and drivers to be incor
porated into the system. 

Examples are used throughout both parts of this document to highlight 
the most important and common capabilities of STREAMS. The descriptions 
are not meant to be exhaustive. For simplicity, the examples reference fic
tional drivers and modules. 

Appendix C provides the reference for STREAMS kernel utilities. 
STREAMS system calls are specified in Section 2 of the Programmer's Reference 
Manual. STREAMS utilities are specified in Section 1M of the System 
Administrator's Reference Manual. STREAMS-specific ioctl calls are specified 
in streamio(7) of the System Administrator's Reference Manual. The modules 
and drivers available with UNIX System V Release 3.1 are described in Sec
tion 7 of the System Administrator's Reference Manual. 
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Introduction to Part 1 

Part 1 of the guide, Application Programming, provides detailed informa
tion, with various examples, on the user interface to STREAMS facilities. It is 
intended for application programmers writing to the STREAMS system call 
interface. Working knowledge of UNIX system user programming, data com
munication facilities, and the STREAMS Primer it> assumed. The organization 
of Part 1 is as follows: 

• Chapter 1, Basic Operations, describes the basic operations available for 
constructing, using, and dismantling Str~ams. These operations are 
performed using open(2), close(2), re;td(2), write(2), and ioctl(2). 

• Chapter 2, Advanced Operations, presents advanced facilities provided 
by STREAMS, including: poll(2), a user level I/O polling facility; asyn
chronous I/O processing support; and a new facility for sampling 
drivers for available resources. 

• Chapter 3, Multiplexed Streams, describes the construction of sophisti
cated, multiplexed Stream configurations. 

• Chapter 4, Message Handling, describes how users can process 
STREAMS messages using putmsg(2) and getmsg(2) in the context of a 
service interface example. 
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A Simple Stream 

This chapter describes the basic set of operations for manipulating 
STREAMS entities. 

A STREAMS driver is similar to a character I/O driver in that it has one 
or more nodes associated with it in the file system, and it is accessed using the 
open system call. Typically, each file system node corresponds to a separate 
minor device for that driver. Opening different minor devices of a driver will 
cause separate Streams to be connected between a user process and the driver. 
The file descriptor returned by the open call is used for further access to the 
Stream. If the same minor device is opened more than once, only one Stream 
will be created; the first open call will create the Stream, and subsequent open 
calls will return a file descriptor that references that Stream. Each process that 
opens the same minor device will share the same Stream to the device driver. 

Once a device is opened, a user process can send data to the device using 
the write system call and receive data from the device using the read system 
call. Access to STREAMS drivers using read and write is compatible with the 
character I/O mechanism. 

The close system call will close a device and dismantle the associated 
Stream. 

The following example shows how a simple Stream is used. In the exam
ple, the user program interacts with a generic communications device that pro
vides point-to-point data transfer between two computers. Data written to the 
device is transmitted over the communications line, and data arriving on the 
line can be retrieved by reading it from the device. 
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A Simple Stream 

#:include <fc:ntl.h> 

maine ) 
{ 

char blf[ 1024]; 
int fd, count; 

if «fd = open("/dev/oc:mn01", O_RDWR» < 0) 
perror("open failed"); 
exit(1); 

while «count = read(fd, blf, 1024» > 0) 
if (write(fd, blf, count) 1= count) { 

perror( "write failed"); 
break; 

exit(O); 

In the example, /dev /commOl identifies a minor device of the communi
cations device driver. When this file is opened, the system recognizes the 
device as a STREAMS device and connects a Stream to the driver. Figure 1-1 
shows the state of the Stream following the call to open. 
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This example illustrates a user reading data from the communications dev
ice and then writing the input back out to the same device. In short, this pro
gram echoes all input back over the communications line: The example 
assumes that a User is sending data from the other side of the communications 
line. The program reads up to 1024 bytes at a time, and then writes the 
number of bytes just read. 

The read call returns the available data, which may contain fewer than 
1024 bytes. If no data are currently available at the Stream head, the read 
call blocks until data arrive. 

Similarly, the write call attempts to send count bytes to /dev /commOl. 
However, STREAMS irpplements a flow control mechanism that prevents a 
user from flooding a device driver with data, thereby exhausting systetn 
resources. If the Stream exerts flow control on the user, the write call blocks 
until the flow control has been relaxed; The call will not return until it has 
sent count bytes to the device. exit(2) is called to terminate the user process. 
This system call also closes all open files, thereby dismantling the Stream in 
this example. 
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Inserting Modules 

An advantage of STREAMS over the existing character I/O mechanism 
stems from the ability to insert various modules into a Stream to process and 
manipulate data that passes between a user process and the driver. The fol
lowing example extends the previous communications device echoing example 
by inserting a module in the Stream to change the case of certain alphabetic 
characters. The case converter module is passed an input string and an output 
string by the user. Any incoming data (from the driver) is inspected for 
instances of characters in the module's input string and the alphabetic case of 
all matching characters is changed. Similar actions are taken for outgoing data 
using the output string. The necessary declarations for this program are 
shown below: 

#:include <str:ing.h> 
#:include <fcntl. h> 

#:include <stropts.h> 

1* 
* These defines 1iiOUld typically be 

* found in a header file for the !IDdule 

*1 
#define OOTPUT_S'llUm 1 
#define INPU'l'_S'l.'RIro 2 

main( ) 

{ 

char blf[ 1024]; 
int fd, count; 
st:ruct strioctl strioctl; 

The first step is to establish a Stream to the communications driver and 
insert the case converter module. The following sequence of system calls 
accomplishes this: 
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if «fd = open( "/dev/ocmn01", O_RIMR)) < 0) 
perror( "open failed"); 
exit(1); 

if (ioctl(fd, I_PUSH, "case_converter") < 0) 

perror( "ioctl I_PUSH failed"); 
exit(2) ; 

Inserting Modules 

The LPUSH ioctl call directs the Stream head to insert the case converter 
module between the driver and the Stream head, creating the Stream shown 
in Figure 1-2. As with any driver, this module resides in the kernel and must 
have been configured into the system before it was booted. LPUSH is one of 
several generic STREAMS ioctl commands that enable a user to access and 
control individual Streams [see streamio(7)]. 
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Inserting Modules 
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An important difference between STREAMS drivers and modules is illus
trated here. Drivers are accessed through a node or nodes in the file system 
and may be opened just like any other device. Modules, on the other hand, 
do not occupy a file system node. Instead, they are identified through a 
separate naming convention, and are inserted into a Stream using LPUSH. 
The name of a module is defined by the module developer and is typically 
included on the manual page describing the module. (Manual pages describ
ing STREAMS drivers and modules are found in section 7 of the System 
Administrator's Reference Manual.) 

Modules ~re pushed onto a Stream and removed from a Stream in Last
In-Ftrst-Out (UFO) order. Therefore, if a second module was pushed onto 
this Stream, it would be inserted between the Stream head and the case con
verter module. 
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Module and Driver Control 

The next step in this example is to pass the input string and output string 
to the case converter module. This can be accomplished by issuing ioctl calls 
to the case converter module as follows: 

/* set inplt camrersial string * / 
strioctl.ic_cmi = INIUl'_~; /* ocmaand type *1 
strioctl. ic_ tinrAlt = 0; /* default timeCAl.t (15 sec) * / 
strioctl. ic_dp = "ABC:DI!:FGILJ"; 
strioctl.ic_len = strlen(strioctl.ic_dp); 

if (ioctl(fd, I_STR, &strioctl) < 0) 
perror( "ioctl I_STR failed"); 
exit(3) ; 

/* set output oanversial striIq * / 
strioctl.ic_cmi = CX1l'PtlT_~;/* ocmaand type */ 
strioctl.ic_dp = "abcx2efghij"; 
strioctl.ic_len = strlen(strioctl.ic_dp); 

if (ioctl(fd, I_STR, &8trioctl) < 0) 
perror( "ioctl I_STR failed"); 
exit(4) ; 

ioctl requests are issued to STREAMS drivers and modules indirectly, 
using the LSTR ioctl call [see streamio(7»). The argument to LSTR must be 
a pointer to a strioctl structure, which specifies the request to be made to a 
module or driver. This structure is defined in <stropts.h> and has the fol
lowing format: 
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Module and Driver Control 

struct strioctl { 
int ic_Old; 
int ic_tinDut; 
int ic_len; 
char *ic_dp; 

} 

/* ioctl request * / 
/* N:K/NAK timeout * / 
/* length of data argument * / 
/* ptr to data argument * / 

where ic_cmd identifies the command intended for a module or driver, 
ic_timout specifies the number of seconds an LSTR request should wait for 
an acknowledgment before timing out, ic_len is the number of bytes of data 
to accompany the request, and iCJp points to that data. 

LSTR is intercepted by the Stream head, which packages it into a mes
sage, using information contained in the strioctl structure, and sends the mes
sage downstream. The request will be processed by the module or driver 
closest to the Stream head that understands the command specified by 
ic_cmd. The ioctI call will block up to ic_timout seconds, waiting for the tar
get module or driver to respond with either a positive or negative ack
nowledgment message. If an acknowledgment is not received in ic_timout 
seconds, the ioctl call will fail. 

LSTR is actually a nested request; the Stream head intercepts LSTR and 
then sends the driver or module request (as specified in the strioctl structure) 
downstream. Any module that does not understand the command in ic_cmd 
will pass the message further downstream. Eventually, the request will reach 
the target module or driver, where it is processed and acknowledged. If no 
module or driver understands the command, a negative acknowledgment will 
be generated, and the ioctl call will fail. 

In the example, two separate commands are sent to the case converter 
module. The first contains the conversion string for input data, and the 
second contains the conversion string for output data. The ic_cmd field is set 
to indicate whether the command is setting the input or output conversion 
string. For each command, the value of ic_timout is set to zero, which speci
fies the system default timeout value of 15 seconds. Also, a data argument 
that contains the conversion string accompanies each command. The ic_dp 
field points to the beginning of each string, and ic_len is set to the length of 
the string. 
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Module and Driver Control 

Only one I_STR request can be active on a STREAM at one time. Further 
requests will block until the active LSTR request is acknowledged and the 
system call completes. 

The strioctl structure is also used to retrieve the results, if any, of an 
LSTR request. If data is returned by the target module or driver, ic_dp must 
point to a buffer large enough to hold that data, and ic_Ien will be set on 
return to indicate the amount of data returned. 

The remainder of this example is identical to the previous example: 

while «CXlIlIlt = read(fd, buf, 1024» > 0) 
if ( write (fd, bJf, CXlIlIlt) I = CXlUIlt) { 

perrar( ''write failed"); 

break; 

exit(O); 

The case converter module will convert the specified input characters to 
lower case, and the corresponding output characters to upper case. Notice 
that the case conversion processing was realized with no change to the com
munications driver. 

As with the previous example, the exit system call will dismantle the 
Stream before terminating the process. The case converter module will be 
removed from the Stream automatically when it is dosed. Alternatively, 
modules may be removed from a Stream using the LPOP ioctl call described 
in streamio(7). This call removes the topmost module on the Stream and 
enables a user process to alter the configuration of a Stream dynamically, by 
pushing and popping modules as needed. 
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Module and Driver Control 

A few of the important ioctl requests supported by STREAMS have been 
discussed. Several other requests are available to support operations such as 
determining if a given module exists on the Stream, or flushing the data on a 
Stream. These requests are described fully in streamio(7}. 
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Advanced Input/Output Facilities 

The traditional input/output facilities-open, close, read, write, and 
ioctl-have been discussed, but STREAMS supports new user capabilities that 
will be described in the remaining chapters of this guide. This chapter 
describes a facility that enables a user process to poll multiple Streams simul
taneously for various events. Also discussed is a signaling feature that sup
ports asynchronous IjO processing. Finally, this chapter presents a new 
mechanism for finding available minor devices, called clone open. 
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Input/Output Polling 

The poll(2) system call provides users with a mechanism for monitoring 
input and output on a set of file descriptors that reference open Streams. It 
identifies those Streams over which a user can send or receive data. For each 
Stream of interest users can specify one or more events about which they 
should be notified. These events include the following: 

POLLIN Input data is available on the Stream associated with the given 
file descriptor. 

POLLPRI A priority message is available on the Stream associated with 
the given file descriptor. Priority messages are described in 
the section of Chapter 4 entitled "Accessing the Datagram 
Provider. " 

POLLOUT The Stream associated with the given file is writable. That is, 
the Stream has relieved the flow control that would prevent a 
user from sending data over that Stream. 

poll will examine each file descriptor for the requested events and, on 
return, will indicate which events have occurred for each file descriptor. If no 
event has occurred on any polled file descriptor, poll blocks until a requested 
event or timeout occurs. The specific arguments to poll are the following: 

• an array of file descriptors and events to be polled 

• the number of file descriptors to be polled 

• the number of milliseconds poll should wait for an event if no events 
are pending (-1 specifies wait forever) 

The following example shows the use of poll. Two separate minor dev
ices of the communications driver presented earlier are opened, thereby estab
lishing two separate Streams to the driver. Each Stream is polled for incom
ing data. If data arrives on either Stream, it is read and then written back to 
the other Stream. This program extends the previous echoing example by 
sending echoed data over a separate communications line (minor device). The 
steps needed to establish each Stream are as follows: 
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#include <fc:ntl.h> 
#include <poll.h> 

Input/Output Polling 

#define NroLL 2 /* number of file descriptors to poll */ 

maine ) 
{ 

struct pollfd pollfds[NroLL]; 
char buf[1024]; 
int cmmt, i; 

if «pollfds[O].fd = open( "/dev/cx:mn01", O_RnIlRI O_NDELAY) ) < 0) { 

perr=("open failed for /dev/conm01"); 
exit(1); 

if «pollfds[1].fd = open("/dev/cx:mn02", O_RnIlRIO_NDELAY» < 0) { 

perr=( "open failed for /dev/conm02"); 
exit(2) ; 

The variable pollfds is declared as an array of pollfd structures, where 
this structure is defined in <poll.h> and has the following format: 

st.:ruct p:::>llfd { 

} 

int fd; 
short events; 
short revents; 

/* file descriptor .*/ 

/* requested events * / 
/* returned events */ 

For each entry in the array, fd specifies the file descriptor to be polled and 
events is a bitmask that contains the bitwise inclusive OR of events to be 
polled on that file descriptor. On return, the revents bitmask will indicate 
which of the requested events has occurred. 
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Input/Output Polling 

The example opens two separate minor devices of the communications 
driver and initializes the pollfds entry for each. The remainder of the example 
uses poll to process incoming data as follows: 

/* set events to poll for inoaning data * / 
pollfds[O].events = roLLIN; 
pollfds[1].events = roLLIN; 

while (1) { 
/* poll and use -1 timeout (infinite) */ 

if (poll (pollfds , NPOLL, -1) < 0) { 

perror( "poll failed"); 

exit(3) ; 

for (i = 0; i < NPOLL; i++) { 

switch (pollfds[i].revents) 

default: 
perror( "error event"); 
exit(4) ; 

case 0: 

break; 

case roLLIN: 

/* default error case */ 

/* no events */ 

/* echo inoaning data an "other" Stream */ 
while «count = read(pollfds[i].fd, buf, 1024)) > 0) 

/* 

* the write loses data if flow control 

* prevents the transmit at this time. 

*/ 
if (write ( (i==O? pollfds[ l].fd: pollfds[O].fd), 

buf, count) I = count) 

fprintf (stderr ,"writer lost data \n" ) ; 

break; 

2-4 STREAMS PROGRAMMER'S GUIDE 



Input/Output Polling 

The user specifies the polled events by setting the events field of the 
pollfd structure to POLLIN. This requested event directs poll to notify the 
user of any incoming data on each Stream. The bulk of the example is an 
infinite loop, where each iteration will poll both Streams for incoming data. 

The second argument to poll specifies the number of entries in the pollfds 
array (2 in this example). The third argument is a timeout value indicating 
the number of milliseconds poll should wait for an event if none has 
occurred. On a system where mUlisecond accuracy is not available, timeout is 
rounded up to the nearest legal value available on that system. Here, the 
value of timeout is -I, specifying that poll should block indefinitely until a 
requested event occurs or until the call is interrupted. 

If poll succeeds, the program looks at each entry in pollfds. If revents is 
set to 0, no event has occurred on that file descriptor. If revents is set to POL
LIN, incoming data is available. In this case, all available data is read from 
the polled minor device and written to the other minor device. 

If revents is set to a value other than 0 or POLLIN, an error event must 
have occurred on that Stream, because the only requested event was POLLIN. 
The following error events are defined for poll. These events may not be 
polled for by the user, but will be reported in revents whenever they occur. 
As such, they are only valid in the revents bitmask: 

POLLERR A fatal error has occurred in some module or driver on the 
Stream associated with the specified file descriptor. Further 
system calls will fail. 

POLLHUP A hangup condition exists on the Stream associated with the 
specified file descriptor. 

POLLNV AL The specified file descriptor is not associated with an open 
Stream. 

The example attempts to process incoming data as quickly as possible. 
However, when writing data to a Stream, the write call may block if the 
Stream is exerting f!.ow control. To prevent the process frqm blocking, the 
minor devices of the communications driver were opened with the 
O_NDELAY flag set. If flow control is exerted and O_NDELA Y is set, write 
will not be able to send all the data. This can occur if the communications 
driver is unable to keep up with the user's rate of data transmission. If the 
Stream becomes full, the number of bytes write sends will be less than the 
requested count. For simplicity, the example ignores the data if the Stream 
becomes full, and a warning is printed to stderr. 
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This program will continue until an error occurs on a Stream, or until the 
process is interrupted. 

2-6 STREAMS PROGRAMMER'S GUIDE 



Asynchronous Input/Output 

The poll system call described above enables a user to monitor multiple 
Streams in a synchronous fashion. The poll call normally blocks until an 
event occurs on any of the polled file descriptors. In some applications, how
ever, it is desirable to process incoming data asynchronously. For example, an 
application may wish to do some local processing and be interrupted when a 
pending event occurs. Some time-critical applications cannot afford to block, 
but must have immediate indication of success or failure. 

A new facility is available for use with STREAMS that enables a user pro
cess to request a signal when a given event occurs on a Stream. When used 
with poll, this facility enables applications to asynchronously monitor a set of 
file descriptors for events. 

The LSETSIG ioctl call [see streamio(7)] is used to request that a SIG
POLL signal be sent to a user process when a specific event occurs. Listed 
below are the events for which an application may be signaled: 

S-INPUT Data has arrived at the Stream head, and no data existed at 
the Stream head when it arrived. 

S-HIPRI A priority STREAMS message has arrived at the Stream 
head. 

S_OUTPUT The Stream is no longer full and can accept output. That 
is, the Stream has relieved the flow control that would 
prevent a user from sending data over that Stream. 

S_MSG A special STREAMS signal message that contains a SIG
POLL signal has reached the front of the Stream head 
input queue. This message may be sent by modules or 
drivers to generate immediate notification of data or events 
to follow. 

The polling example could be written to process input from each com
munications driver minor device by issuing LSETSIG to request a signal for 
the S_INPUT event on each Stream. The signal catching routine could then 
call poll to determine on which Stream the event occurred. The default action 
for SIGPOLL is to terminate the process. Therefore, the user process must 
catch the signal using signal(2). SIGPOLL will only be sent to processes that 
request the signal using LSETSIG. 
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Clone Open 

In the earlier examples, each user process connected a Stream to a driver 
by opening a particular minor device of that driver. Often, however, a user 
process wants to connect a new Stream to a driver regardless of which minor 
device is used to access the driver. 

In the past, this typically forced the user process to poll the various minor 
device nodes of the driver for an available minor device. To alleviate this 
task, a facility called done open is supported for STREAMS drivers. If a 
STREAMS driver is implemented as a cloneable device, a single node in the 
file system may be opened to access any unused minor device. This special 
node guarantees that the user will be allocated a separate Stream to the driver 
on every open call. Each Stream will be associated with an unused minor 
device, so the total number of Streams that may be connected to a cloneable 
driver is limited by the number of minor devices configured for that driver. 

The clone device may be useful, for example, in a networking environ
ment where a protocol pseudo-device driver requires each user to open a 
separate Stream over which it will establish communication. Typically, the 
users would not care which minor device they used to establish a Stream to 
the driver. Instead, the clone device can find an available minor device for 
each user and establish a unique Stream to the driver. Chapter 3 describes 
this type of transport protocol driver. 

2-8 

A user program has no control over whether a given driver supports the 
done open. The decision to implement a STREAMS driver as a cloneable 
device is made by the designers of the device driver. 
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Multiplexer Configurations 

In the earlier chapters, Streams were described as linear connections of 
modules, where each invocation of a module is connected to at most one 
upstream module and one downstream module. While this configuration is 
suitable for many applications, others require the ability to multiplex Streams 
in a variety of configurations. Typical examples are terminal window facili
ties, and internetworking protocols (which might route data over several sub
networks). 

An example of a multiplexer is one that multiplexes data from several 
upper Streams over a single lower Stream, as shown in Figure 3-1. An upper 
Stream is one that is upstream from a multiplexer, and a lower Stream is one 
that is downstream from a multiplexer. A terminal windowing facility might 
be implemented in this fashion, where each upper Stream is associated with a 
separate window. 

MUX 

Figure 3-1: Many-to-One Multiplexer 

A second type of multiplexer might route data from a single upper Stream 
to one of several lower Streams, as shown in Figure 3-2. An internetworking 
protocol could take this form, where each lower Stream links the protocol to a 
different physical network. 
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MUX 

Figure 3-2: One-to-Many Multiplexer 

A third type of multiplexer might route data from one of many upper 
Streams to one of many lower Streams, as shown in Figure 3-3. 

MUX 

Figure 3-3: Many-to-Many Multiplexer 
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A STREAMS mechanism is available that supports the multiplexing of 
Streams through special pseudo-device drivers. Using a linking facility, users 
can dynamically build, maintain, and dismantle each of the above multiplexed 
Stream configurations. In fact, these configurations can be further combined 
to form complex, multilevel, multiplexed Stream configurations. 

The remainder of this chapter describes multiplexed Stream configurations 
in the context of an example (see Figure 3-4). In this example, an internet
working protocol pseudo-device driver (IP) is used to route data from a single 
upper Stream to one of two lower Streams. This driver supports two 
STREAMS connections beneath it to two distinct sub-networks. One sub
network supports the IEEE 802.3 standard for the CSMAjCD medium access 
method. The second sub-network supports the IEEE 802.4 standard for the 
token-passing bus medium access method. 

The example also presents a transport protocol pseudo-device driver (TP) 
that multiplexes multiple virtual circuits (upper Streams) over a single Stream 
to the IP pseudo-device driver. 
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Figure 3-4 shows the multiplexing configuration to be created. This confi
guration will enable users to access the services of the transport protocol. To 
free users from the need to know about the underlying protocol structure, a 
user-level daemon process will build and maintain the multiplexing configura
tion. Users can then access the transport protocol directly by opening the TP 
driver device node. 

~ee 
____ ___ 1 ___ ___ 1 _______ t __ __ ll~e! ~Eace 

802.4 
Driver 

Figure 3-4: Protocol Multiplexer 

TP 
Driver 

IP 
Driver 
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Building a Multiplexer 

The following example shows how this daemon process sets up the proto
col multiplexer. The necessary declarations and initialization for the daemon 
program are as follows: 

#include <fcntl.h> 
#include <stropts .h> 

main( ) 

{ 

int fd_B02_4, 
fd_B02_3, 

fd_ip, 

fd_tp; 

/* 
* daem:m-ize this process 

*/ 

switch (f=k( » 
case 0: 

break; 
case -1: 

perr=("f=k failed"); 
exit(2) ; 

default: 
exit(O) ; 

setpgrp( ); 

This multilevel, multiplexed Stream configuration will be built from the 
bottom up. Therefore, the example begins by constructing the IP multiplexer. 
This multiplexing pseudo-device driver is treated like any other software 
driver. It owns a node in the UNIX file system and is opened just like any 
other STREAMS device driver. 

The first step is to open the multiplexing driver and the 802.4 driver, 
creating separate Streams above each driver as shown in Figure 3-5. The 
Stream to the 802.4 driver may now be connected below the multiplexing IP 
driver using the LLINK ioctl call. 
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802.4 
Driver 

Figure 3-5: Before Link 

IP 
Driver 

The sequence of instructions to this point is: 

____ ll~e! §Eace 

Kernel Space 

if «fd_B023 = open("/dev/8023", O_RIMR» < 0) { 
perr=("open of ldev/802_4 failed"); 
exit(1); 

if «fd_ip = open( "/dev/ip", O_RIMR» < 0) { 
perr=("open of ldev/ip failed"); 
exit(2) ; 

1* now link B02. 4 to underside of IP *1 

if (ioctl(fd_ip, I_LINK, fd_B023) < 0) { 
perr=( "I_LINK ioctl failed"); 
exit(3); 
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LLINK takes two file descriptors as arguments. The first file descriptor, 
fd_ip, must reference the Stream connected to the multiplexing driver, and the 
second file descriptor, fd_B02_4, must reference the Stream to be connected 
below the multiplexer. Figure 3-6 shows the state of these Streams following 
the I_LINK call. The complete Stream to the 802.4 driver has been connected 
below the IP driver, including the Stream head. The Stream head of the 802.4 
driver will be used by the IP driver to manage the multiplexer. 

___________ ~i~ ________ 12!."! §eace 

IP 
Driver 

802.4 
Driver 

Figure 3-6: IP Multiplexer After First Link 

Kernel Space 

LLINK will return an integer value, called a mux id, which is used by the 
multiplexing driver to identify the Stream just connected below it. This mux 
10 is ignored in the example, but may be useful for dismantling a multiplexer 
or routing data through the multiplexer. Its significance is discussed later. 

The following sequence of system calls is used to continue building the 
internetworking multiplexer (IP): 
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if «fd_802_3 = open( "/dev/802_3", O_RI:MR» < 0) { 

perror( "open of /dev/802_3 failed"); 
exit(4); 

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) 

perror( "I_LINK ioctl failed"); 
exit(S); 

All links below the IP driver have now been established, giving the confi
guration in Figure 3-7. 

ControllinJ 
Stream 

Figure 3-7: IP Multiplexer 

802.4 
Driver 

IP 
Driver 
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The Stream above the multiplexing driver used to establish the lower con
nections is the controlling Stream and has special significance when disman
tling the multiplexing configuration, as will be illustrated later in this chapter. 
The Stream referenced by fd_ip is the controlling Stream for the IP multi
plexer. 

The order in which the Streams in the multiplexing configuration are opened 
is unimportant. If, however, it is necessary to have intermediate modules in 
the Stream between the IP driver and media drivers, these modules must be 
added to the Streams associated with the media drivers (using LPUSH) 
before the media drivers are attached below the multiplexer. 

The number of Streams that can be linked to a multiplexer is restricted by 
the design of the particular multiplexer. The manual page describing each 
driver (typically found in section 7 of the System Administrator's Reference 
Manual) should describe such restrictions. However, only one LLINK opera
tion is allowed for each lower Stream; a single Stream cannot be linked below 
two multiplexers simultaneously. 

Continuing with the example, the IP driver will now be linked below the 
transport protocol (TP) multiplexing driver. As seen earlier in Figure 3-4, only 
one link will be supported below the transport driver. This link is formed by 
the following sequence of system calls: 

if «fd_tp = open("/dev/tp", O_RmR» < 0) { 
perror( "open of /dev/tp failed"); 
exit(6) ; 

if (ioctl(fd_tp, I_LINK, fd_ip) < 0) 

perror( "I_LINK ioctl failed"); 
exit(7) ; 
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The multilevel multiplexing configuration shown in Figure 3-8 has now 
been created. 

___________ ~i~ ________ T,J~e! !?eace 

- Kernel Space 

ControllinJ 
.. 

Stream 
TP 

Driver 

L-J 
IP 

Driver 

L-J L-J 
802.4 802.3 
Driver Driver 

Figure 3-8: TP Multiplexer 

Because the controlling Stream of the IP multiplexer has been linked 
below the TP multiplexer, the controlling Stream for the new multilevel multi
plexer configuration is the Stream above the TP multiplexer. 

At this point the file descriptors associated with the lower drivers can be 
closed without affecting the operation of the multiplexer. Closing these file 
descriptors may be necessary when building large multiplexers, so that many 
devices can be linked together without exceeding the UNIX system limit on 
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the number of simultaneously open files per process. If these file descriptors 
are not closed, all subsequent read, write, ioctl, poll, getmsg, and putmsg 
system calls issued to them will fail. That is because LLINK associates the 
Stream head of each linked Stream with the multiplexer, so the user may not 
access that Stream directly for the duration of the link. 

The following sequence of system calls will complete the multiplexing 
daemon example: 

close(fd_802_4); 
close(fd_802_3); 
close (fd_ip) ; 

/* Hold IIIlltiplexer open f=ever */ 

pause() ; 

Figure 3-4 shows the complete picture of the multilevel protocol multi
plexer. The transport driver is designed to support several, simultaneous vir
tual circuits, where these virtual circuits map one-to-one to Streams opened to 
the transport driver. These Streams will be multiplexed over the single 
Stream connected to the IP multiplexer. The mechanism for establishing mul
tiple Streams above the transport multiplexer is actually a by-product of the 
way in which Streams are created between a user process and a driver. By 
opening different minor devices of a STREAMS driver, separate Streams will 
be connected to that driver. Of course, the driver must be designed with the 
intelligence to route data from the single lower Stream to the appropriate 
upper Stream. 

Notice in Figure 3-4 that the daemon process maintains the multiplexed 
Stream configuration through an open Stream (the controlling Stream) to the 
transport driver. Meanwhile, other users can access the services of the tran
sport protocol by opening new Streams to the transport driver; they are freed 
from the need for any unnecessary knowledge of the underlying protocol con
figurations and sub-networks that support the transport service. 
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Multilevel, multiplexing configurations, such as the one presented in the 
above example, should be assembled from the bottom up. That is because 
STREAMS does not allow ioctl requests (including LLINK) to be passed 
through higher multiplexing drivers to reach the desired multiplexer; they 
must be sent directly to the intended driver. For example, once the IP driver 
is linked under the TP driver, ioctl requests cannot be sent to the IP driver 
through the TP driver. 

3-12 STREAMS PROGRAMMER'S GUIDE 



Dismantling a Multiplexer 

Streams connected to a multiplexing driver from above with open, can be 
dismantled by closing each Stream with close. In the protocol multiplexer, 
these Streams correspond to the virtual circuit Streams above the TP multi
plexer. The mechanism for dismantling Streams that have been linked below 
a multiplexing driver is less obvious and is described below in detail. 

The LUNLINK ioctl call is used to disconnect each multiplexer link 
below a multiplexing driver individually. This command takes the following 
form: 

ioctl(fd, I_UNLINK, InUX_id); 

where fd is a file descriptor associated with a Stream connected to the multi
plexing driver from above, and mux_id is the identifier that was returned by 
LLINK when a driver was linked below the multiplexer. Each lower driver 
may be disconnected individually in this way, or a special mux_id value of -1 
may be used to disconnect all drivers from the multiplexer simultaneously. 

In the multiplexing daemon program presented earlier, the multiplexer is 
never explicitly dismantled. That is because all links associated with a multi
plexing driver are automatically dismantled when the controlling Stream asso
ciated with that multiplexer is closed. Because the controlling Stream is open 
to a driver, only the final call of close for that Stream will close it. In this 
case, the daemon is the only process that has opened the controlling Stream, 
so the multiplexing configuration will be dismantled when the daemon exits. 

For the automatic dismantling mechanism to work in the multilevel, mul
tiplexed Stream configuration, the controlling Stream for each multiplexer at 
each level must be linked under the next higher level multiplexer. In the 
example, the controlling Stream for the IP driver was linked under the TP 
driver. This resulted in a single controlling Stream for the full, multilevel con
figuration. Because the multiplexing program relied on closing the controlling 
Stream to dismantle the multiplexed Stream configuration instead of using 
explicit LUNLINK calls, the mux ID values returned by LLINK could be 
ignored. 

An important side effect of automatic dismantling on close is that it is not 
possible for a process to build a multiplexing configuration and then exit. 
That is because exit(2) will close all files associated with the process, including 
the controlling Stream. To keep the configuration intact, the process must 
exist for the life of that multiplexer. That is the motivation for implementing 
the example as a daemon process. 
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Routing Data Through a Multiplexer 

As demonstrated, STREAMS has provided a mechanism for building mul
tiplexed Stream configurations. However, the criteria on which a multiplexer 
routes data is driver-dependent. For example, the protocol multiplexer shown 
in the last example might use address information found in a protocol header 
to determine over which sub-network a given packet should be routed. It is 
the multiplexing driver's responsibility to define its routing criteria. 

One routing option available to the multiplexer is to use the mux 10 value 
to determine to which Stream data should be routed (remember that each 
multiplexer link is associated with a mux 10). LLINK passes the mux 10 
value to the driver and returns this value to the user. The driver can therefore 
specify that the mux 10 value must accompany data routed through it. For 
example, if a multiplexer routed data from a single upper Stream to one of 
several lower Streams (as did the IP driver), the multiplexer could require the 
user to insert the mux 10 of the desired lower Stream into the first four bytes 
of each message passed to it. The driver could then match the mux 10 in 
each message with the mux 10 of each lower Stream and route the data 
accordingly. 
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Service Interface Messages 

A STREAMS message format has been defined to simplify the design of 
service interfaces. Also, two new system calls, getmsg(2) and putmsg(2), are 
available for sending these messages downstream and receiving messages that 
are available at the Stream head. This chapter describes these system calls in 
the context of a service interface example. First, a brief overview of 
STREAMS service interfaces is presented. 

Service Interfaces 
A principal advantage of the STREAMS mechanism is its modularity. 

From user level, kernel-resident modules can be dynamically interconnected to 
implement any reasonable processing sequence. This modularity reflects the 
layering characteristics of contemporary network architectures. 

One benefit of modularity is the ability to interchange modules of like 
function. For example, two distinct transport protocols, implemented as 
STREAMS modules, may provide a common set of services. An application or 
higher layer protocol that requires those services can use either module. This 
ability to substitute modules enables user programs and higher-level protocols 
to be independent of the underlying protocols and physical communication 
media. 

Each STREAMS module provides a set of processing functions, or services, 
and an interface to those services. The service interface of a module defines 
the interaction between that module and any neighboring modules, and there
fore is a necessary component for providing module substitution. By creating 
a well-defined service interface, applications and STREAMS modules can 
interact with any module that supports that interface. Figure 4-1 demonstrates 
this. 
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Application Application 
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----- ---- ----- -----
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Suite A Suite B 

Figure 4-1: Protocol Substitution 

_y~er Space 

Kernel Space 

By defining a service interface through which applications interact with a 
transport protocol, it is possible to substitute a different protocol below that 
service interface in a manner completely transparent to the application. In 
this example, the same application cari. run over the Transmission Control Pro
tocol (Tep) and the ISO transport protocol. Of course, the service interface 
must define a set of services common to both protocols. 

The three components of any service interface are the service user, the 
service provider, and the service interface itself, as seen in Figure 4-2; 
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Typically, a user makes a request of a service provider using some well
defined service primitive. Responses and event indications are also passed 
from the provider to the user using service primitives. The service interface is 
defined as the set of primitives that define a service and the allowable state 
transitions that result as these primitives are passed between the user and pro
vider. 
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The Message Interface 

A message format has been defined to simplify the design of service inter
faces using STREAMS. Each service interface primitive is a distinct STREAMS 
message that has two parts: a control part and a data part. The control part 
contains information that identifies the primitive and includes all necessary 
parameters. The data part contains user data associated with that primitive. 

An example of a service interface primitive is a transport protocol connect 
request. This primitive requests the transport protocol service provider to 
establish a connection with another transport user. The parameters associated 
with this primitive may include a destination protocol address and specific 
protocol options to be associated with that connection. Some transport proto
cols also allow a user to send data with the connect request. A STREAMS 
message would be used to define this primitive. The control part would iden
tify the primitive as a connect request and would include the protocol address 
and options. The data part would contain the associated user data. 

STREAMS enables modules to create these messages and pass them to 
neighbor modules. However, the read and write system calls are not suffi
cient to enable a user process to generate and receive such messages. First, 
read and write are byte-stream oriented, with no concept of message boun
daries. To support service interfaces, the message boundary of each service 
primitive must be preserved so that the beginning and end of each primitive 
can be located. Also, read and write offer only one buffer to the user for 
transmitting and receiving STREAMS messages. If control information and 
data were placed in a single buffer, the user would have to parse the contents 
of the buffer to separate the data from the control information. 

Two new STREAMS system calls are available that enable user processes 
to create STREAMS messages and send them to neighboring kernel modules 
and drivers or receive the contents of such messages from kernel modules and 
drivers. These system calls preserve message boundaries and provide separate 
buffers for the control and data parts of a message. 

The putmsg system call enables a user to create STREAMS messages and 
send them downstream. The user supplies the contents of the control and 
data parts of the message in two separate buffers. Likewise, the getmsg sys
tem call retrieves such messages from a Stream and places the contents into 
two user buffers. 
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The syntax of putmsg is as follows: 

int putmsg (fd, ctIptr, dataptr, flags) 
int fd; 
struct strbuf *ctlptr; 
struct strbuf *dataptr; 
int flags; 

The Message Interface 

td identifies the Stream to which the message will be passed, ctlptr and 
dataptr identify the control and data parts of the message, and flags may be 
used to specify that a priority message should be sent. 

The strbuf structure is used to describe the control and data parts of a 
message and has the following format: 

struct strbuf { 
int 
int 
char 

maxlen; 
len; 
*buf; 

/* max:innJm buffer length */ 
/* length of data * / 
/* pointer to buffer * / 

} 

but points to a buffer containing the data and len specifies the number of 
bytes of data in the buffer. maxlen specifies the maximum number of bytes 
the given buffer can hold and is only meaningful when retrieving information 
into the buffer using getmsg. 

The getmsg system call retrieves messages available at the Stream head 
and has the following syntax: 

int getmsg (fd, ctIptr, dataptr, flags) 
int fd; 
struct strbuf *ct1ptr; 
struct strbuf *dataptr; 
int *flags; 

The arguments to getmsg are the same as those for putmsg. 

The remainder of this chapter presents an example that demonstrates how 
putmsg and getmsg may be used to interact with the service interface of a 
simple datagram protocol provider. A potential provider of such a service 
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The example 
implements a user level library that would free the user from knowledge of 
the underlying STREAMS system calls. The Transport Interface of the 
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Network Services Library in UNIX System Release 3.1 provides a similar func
tion for transport layer services. The example here illustrates how a service 
interface might be defined, and is not an example of a complete IEEE 802.2 
service interface. 
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Datagram Service Interface Example 

The example datagram service interface library presented below includes 
four functions that enable a user to do the following: 

• establish a Stream to the service provider and bind a protocol address 
to the Stream 

• send a datagram to a remote user 

• receive a datagram from a remote user 

• close the Stream connected to the provider 

First, the structure and constant definitions required by the library are 
shown. These typically will reside in a header file associated with the service 
interface. 

1* 
* Primitives initiated by the service user. 

*1 
#define BIND_Rm 1* bird request *1 
#define UNITDATA_Rm 2 1* unitdata request *1 

1* 
* Primitives initiated by the service provider. 

*1 
#define CKJCK 3 1* bird acknowledgment *1 
#define ERRCR-'II::X 4 1* error acknowledgment *1 
#define UNITDATA_IND 5 1* unitdata irdicatian *1 

1* 
* The following structure definitiClQS define the fonnat of the 

* oontrol part of the service interface message of the above 

* primitives. 
*1 

struct bird_req { 
lang PRIM_type; 
lang BIND _addr; 

} ; 

1* bird request *1 
1* always BIND_Rm *1 

1* addr to pind * / 
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st:ruct mritdata_req { 
lang PRIM_type; 
lang DEST3ddr; 

} ; 

struct ok _ ack { 
lang PRIM_type; 

} ; 

struct error _ ack { 
lang PRIM_type; 
lang UNlX _error; 

} ; 

struct mritdata_ind { 
lang PRIM_type; 
lang SRC _addr; 

} ; 

1* unitdata request *1 
1* always UNITDATA_REtl *1 
1* destination addr *1 

1* positive ackncMledgment *1 
1* always OK_ACK *1 

1* err= ackncMledgment *1 
1* always ERROILACK *1 
1* UNlX error code *1 

1* unitdata indication *1 
1* always UNITDATA_IND *1 
1* source addr *1 

1* mrion of all primitives *1 
mrion primitives { 

lang type; 

} ; 

st:ruct bind Jeq 
struct mritdata_req 
st:ruct ok_ ack 
st:ruct error_ack 
st:ruct mritdata_ind 

bind_req; 
unitdata_req; 
ok_ack; 
err=_ack; 
unitdata _ ind; 

1* header files needed by library *1 
#include <stropts.h> 
#include <stdio.h> 

#include <errno. h> 

continued 

Five primitives have been defined. The first two represent requests from 
the service user to the service provider. These are: 

BIND-REQ This request asks the provider to bind a specified protocol 
address. It requires an acknowledgment from the pro
vider to verify that the contents of the request were syn
tactically correct. 
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UNITDATAJEQ 
This request asks the provider to send a datagram to the 
specified destination address. It does not require an ack
nowledgment from the provider. 

The three other primitives represent acknowledgments of requests, or indi
cations of incoming events, and are passed from the service provider to the 
service user. These are: 

OK-ACK This primitive informs the user that a previous bind 
request was received successfully by the service provider. 

ERROLACK This primitive informs the user that a non-fatal error was 
found in the previous bind request. It indicates that no 
action was taken with the primitive that caused the error. 

UNITDATA-IND 
This primitive indicates that a datagram destined for the 
user has arrived. 

The structures defined above describe the contents of the control part of 
each service interface message passed between the service user and service 
provider. The first field of each control part defines the type of primitive 
being passed. 

Accessing the Datagram Provider 
The first routine presented below, inter_open, opens the protocol driver 

device file specified by path and binds the protocol address contained in addr 
so that it may receive datagrams. On success, the routine returns the file 
descriptor associated with the open Stream; on failure, it returns -1 and sets 
errno to indicate the appropriate UNIX system error value. 
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inter_open(path, oflags, addr) 
char *path; 
{ 

int fd; 
struct biIXLreq bind_req; 
struct strbuf ctlbuf; 
union primitives rcvI:uf; 
struct err=_ack *error_ack; 
int flags; 

if «fd = open(path, of lags» < 0) 

retw::n(-1) ; 

1* send bind request msg down stream *1 

bind_req.PRIM_type = BIND_REX;}; 
bind _ req.BIND _ addr = addr; 

ctlbuf.len = sizeof(struct bind_req); 
ctlbuf.buf = (char * ) &bind Jeq; 

if (putmsg(fd, &ctlbuf, NULL, 0) < 0) 
close(fd) ; 
retw::n( -1 ) ; 

After opening the protocol driver, inter_open packages a bind request 
message to send downstream. putmsg is called to send the request to the ser
vice provider. The bind request message contains a control part that holds a 
bind_req structure, but it has no data part. ctlbuf is a structure of type strbuf, 
and it is initialized with the primitive type and address. Notice that the max
len field of ctlbuf is not set before calling putmsg. That is because putmsg 
ignores this field. The dataptr argument to putmsg is set to NULL to indicate 
that the message contains no data part. Also, the flags argument is 0, which 
specifies that the message is not a priority message. 

After inter_open sends the bind request, it must wait for an acknowledg
ment from the service provider, as follows: 
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/* wait f= ack of request */ 

ctlbuf .maxlen = sizeof(union primitives); 
ctlbuf . len = 0; 
ctlbuf . buf = (char * )&rcvbuf; 
flags = RS_HIPRI; 

if (getmsg(fd, &.ctlbuf, NULL, &flags) < 0) { 

close(fd) ; 
retuxn( -1 ) ; 

/* did we get enough to detenn:ine type * / 
if (ctlbuf • len < sizeof (long)) { 

close(fd); 

errno = EPRO'lU; 
return(-1); 

/* switch on type (first long in rcvbuf) */ 
switch ( rcvbuf . type) { 

default: 
errno = EPRO'lU; 
close(fd) ; 
return(-1); 

case ($;. _ICK: 

retuxn(fd) ; 

case ERRClLICK: 
if ,(ctlbuf.len < sizeof(struct e=_ack)) 

errno = EPRaIO; 
close(fd) ; 
retuxn(-1) ; 

err=_ack = (struct er=r_ack *)&rcvbuf; 
errno = error_ack->UNIX_err=; 
close(fd) ; 
l!'etuxn(-1); 
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getmsg is called to retrieve the acknowledgment of the bind request. The 
acknowledgment message consists of a control part that contains either an 
ok_ack or error _ack structure, and no data part. 

The acknowledgment primitives are defined as priority messages. Two 
classes of messages can arrive at the Stream head: priority and normal. Nor
mal messages are queued in a first-in-first-out manner at the Stream head, 
while priority messages are placed at the front of the Stream head queue. The 
STREAMS mechanism allows only one priority message per Stream at the 
Stream head at one time; any further priority messages are discarded until the 
first message is processed. Priority messages are particularly suitable for ack
nowledging service requests when the acknowledgment should be placed 
ahead of any other messages at the Stream head. 

These messages are not intended to support the expedited data capabilities of 
many communication protocols, as evidenced by the one-at-a-time restriction 
just described. 

Before calling getmsg, this routine must initialize the strbuf structure for 
the control part. but should point to a buffer large enough to hold the 
expected control part, and maxlen must be set to indicate the maximum 
number of bytes this buffer can hold. 

Because neither acknowledgment primitive contains a data part, the 
dataptr argument to getmsg is set to NULL. The flags argument points to an 
integer containing the value RS-HIPRI. This flag indicates that getmsg 
should wait for a STREAMS priority message before returning and is set 
because the acknowledgment primitives are priority messages. Even if a nor
mal message is available, getmsg will block until a priority message arrives. 

On return from getmsg, the len field is checked to ensure that the control 
part of the retrieved message is an appropriate size. The example then checks 
the primitive type and takes appropriate actions. An OK-ACK indicates a 
successful bind operation, and inter_open returns the file descriptor of the 
open Stream. An ERROLACK indicates a bind failure, and errno is set to 
identify the problem with the request. 
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Closing the Service 
The next routine in the datagram service library is inter_close, which 

doses the Stream to the service provider. 

close (fd) ; 

The routine simply doses the given file descriptor. This will cause the 
protocol driver to free any resources associated with that Stream. For exam
ple, the driver may unbind the protocol address that had previously been 
bound to that Stream, thereby freeing that address for use by some other ser
vice user. 

Sending a Datagram 
The third routine, inter -snd, passes a datagram to the service provider for 

transmission to the user at the address specified in addr. The data to be 
transmitted is contained in the buffer pointed to by but and contains len bytes. 
On successful completion, this routine returns the number of bytes of data 
passed to the service provider; on failure, it returns -1 and sets errno to an 
appropriate UNIX system error value. 
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inter_snd(fd, !:uf, len, addr) 

char *bu£; 
lang addr; 
{ 

struct str!:uf ctlJ:uf; 

struct str!:uf databuf; 
struct unitdata_req unitdata_req; 

unitdata_req.PRIM_type = UNITDATA_Rm; 
unitdata_req.DEST_addr = addr; 
ctlbu£ • len = sizeof(struct unitdata_req); 

ctlbu£.!:uf = (char *)&unitdata_req; 
databuf . len = len; 

databuf.!:uf = !:uf; 

if (pltmsg( fd, &ctlJ:uf, &databuf, 0) < 0) 
return(-1); 

return(len) ; 

In this example, the datagram request primitive is packaged with both a 
control part and a data part. The control part contains a unitdata_req structure 
that identifies the primitive type and the destination address of the datagram. 
The data to be transmitted is placed in the data part of the request message. 

Unlike the bind request, the datagram request primitive requires no ack
nowledgment from the service provider. In the example, this choice was 
made to minimize the overhead during data transfer. Since datagram services 
are inherently unreliable, this is a valid design choice. If the putmsg call 
succeeds, this routine assumes all is well and returns the number of bytes 
passed to the service provider. 
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Receiving a Datagram 
The final routine in this example, inter_rev, retr-ieves the next available 

datagram. but points to a buffer where the data should be stored, len indicates 
the size of that buffer, and addr points to a long integer where the source 
address of the datagram will be placed. On successful completion, inter_rev 
returns the number of bytes in the retrieved datagram; on failure, it returns -1 
and sets the appropriate UNIX system error value. 

inter_rcv(fd, but, len, addr) 
char *but; 
lOB] *addr; 
{ 

struct strbut ctlbuf; 
struct strbut databuf; 
struct unitdata_ind unitdata_ind; 
int retva1; 
int flags; 

ctlbuf.maxlen = sizeof(struct unitdata_ind); 
ctlbuf . len = 0; 
ctlbuf.but = (char *)&unitdata_ind; 
databuf .maxlen = len; 
databuf • len = 0; 
databuf.but = but; 
flags = 0; 

if « retval = gebDsg( fd, &.ctlbuf, &databuf, &flags» < 0) 

retnrn( -1) ; 

if (unitdata_ind.PRIM_type 1= UNI'IDATA_IND) { 

errno = EPROro; 
retnrn( -1 ) ; 

if (retval) { 
errno = EIO; 
retnrn(-1); 

*addr = unitdata_ind.SRC_addr; 
retnrn(databuf . len) ; 
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getmsg is called to retrieve the datagram indication primitive, where that 
primitive contains both a control and data part. The control part consists of a 
unitdata_ind structure that identifies the primitive type and the source address 
of the datagram sender. The data part contains the data itself. 

In ctlbuf, buf must point to a buffer where the control information will be 
stored, and maxlen must be set to indicate the maximum size of that buffer. 
Similar initialization is done for databuf. 

The flags argument to getmsg is set to zero, indicating that the next mes
sage should be retrieved from the Stream head, regardless of its priority. 
Datagrams will arrive in normal priority messages. If no message currently 
exists at the Stream head, getmsg will block until a message arrives. 

The user's control and data buffers should be large enough to hold any 
incoming datagram. If both buffers are large enough, getmsg will process the 
datagram indication and return 0, indicating that a full message was retrieved 
successfully. However, if either buffer is not large enough, getmsg will only 
retrieve the part of the message that fits into each user buffer. The remainder 
of the message is saved for subsequent retrieval, and a positive, non-zero 
value is returned to the user. A return value of MORECTL indicates that 
more control information is waiting for retrieval. A return value of MORE
DATA indicates that more data is waiting for retrieval. A return value of 
MORECTUMOREDATA indicates that data from both parts of the message 
remain. In the example, if the user buffers are not large enough (that is, 
getmsg returns a positive, non-zero value), the function will set errno to EIO 
and fail. 

The type of the primitive returned by getmsg is checked to make sure it is 
a datagram indication. The source address is then set and the number of 
bytes of data in the datagram is returned. 

The above example preroented a simplified service interface. The state 
transition rules for such an interface were not presented for the sake of brev
ity. The intent was to show typical uses of the putmsg and getmsg system 
calls. See putmsg(2) and getmsg(2) for further details. 
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Part 2 of this guide, Module and Driver Programming, describes the use of 
STREAMS kernel facilities for developing and installing modules and drivers. 
It is intended for system programmers with knowledge of UNIX system kernel 
programming, device driver development, and networking and other data 
communication facilities. Knowledge of the STREAMS Primer and the Driver 
Design Guide is assumed. 

STREAMS provides module and driver developers with integral functions, 
a set of utility routines, and facilities that expedite design and implementation. 
The principle development facilities are listed below: 

• Message storage management-to maintain STREAMS' own memory 
resources for message storage 

• Flow control-to conserve STREAMS memory and processing resources 

• Scheduling-to control the execution of service procedures 

• Multiplexing-to switch data among multiple Streams 

• Error and trace loggers-for debugging and administrative use 

Part 2 is organized as follows: 

• Chapter 5, Streams Mechanism, reviews the operation of STREAMS 
and describes how a Stream is constructed and dismantled. 

• Chapter 6, Modules, describes the basic STREAMS data structures and 
the organization of a module. 

• Chapter 7, Messages, introduces message blocks, read and write system 
calls, and the message storage pool. 

• Chapter 8, Message Queues and Service Procedures, discusses put and 
service procedures, message queueing, and basic flow control. 

• Chapter 9, Drivers, describes STREAMS driver organization and 
discusses typical driver processing. 

• Chapter 10, Complete Driver, provides a full implementation of a driver 
and describes the clone mechanism. 

• Chapter II, Multiplexing, describes the multiplexing facility. 
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• Chapter 12, Service Interface, discusses service interfaces within a 
Stream and at the Stream/user boundary. 

• Chapter 13, Advanced Topics, contains advanced topics including sig
nals and Stream head options. 

• Appendix A, Kernel Structures, summarizes kernel structures used by 
modules and drivers. 

• Appendix B, Message Types, describes STREAMS message types. 

• Appendix C, Utilities, specifies the STREAMS kernel utility routines. 

• Appendix D, Design Guidelines, summarizes module and driver design 
guidelines. 

• Appendix E, Configuring, describes how modules and drivers are con
figured into the UNIX system, tunable parameters and STREAMS sys
tem error messages. 

• The Glossary defines terms unique to STREAMS. 
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Overview 

A Stream implements a connection within the kernel between a driver in 
kernel space and a process in user space. It provides a general character 
input/output (I/O) interface for user processes which is upwardly compatible 
with the interface of the preexisting character I/O facilities. A Stream is 
analogous to a shell pipeline except that data flow and processing are bidirec
tional to support concurrent input and output. 

The components that form a Stream are the Stream head, driver, and 
optional modules (see Figure 1 in the Preface). A Stream is initially con
structed as the result of a user process open(2) system call referencing a 
STREAMS file. The call causes a kernel resident driver to be connected with a 
Stream head to form a Stream. Subsequent ioctl(2) calls select kernel resident 
modules and cause them to be inserted in the Stream. A module represents 
intermediate processing on messages flowing between the Stream head and 
driver. A module can function as, for example, a communication protocol, 
line discipline or data filter. STREAMS allows a user to connect a module 
with any other module. The user determines the module connection 
sequences that result in useful configurations. 

A process can send and receive characters on a Stream using write(2) and 
read(2), as on character files. When user data enters the Stream head or 
external data enters the driver, the data is placed into messages for transmis
sion on the Stream. All data passed on a Stream is carried in messages, each 
having a defined message type identifying the message contents. Internal 
control and status information is transmitted among modules or between the 
Stream and user process as messages of certain types interleaved on the 
Stream. Modules and drivers can send certain message types to the Stream 
head to cause the generation of signals or errors to be received by the user 
process. 

A module is comprised of two identical sets of data structures called 
QUEUEs. One QUEUE is for upstream processing and the other is for down
stream processing. The processing performed by the two QUEUEs is gen
erally independent so that a Stream operates in a full-duplex manner. The 
interface between modules is uniform and simple. Messages flow from 
module to module. A message from one module is passed to the single entry 
point of its neighboring module. 
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The last dose(2) system call dismantles the Stream and closes the file, 
semantically identical to character I/O drivers. 

STREAMS supports implementation of user-level applications with exten
sions to the above general system calis and STREAMS specific system calls: 
puhnsg(2), getmsg(2), poll(2), and a set of STREAMS generic ioct1(2) func
tions. 
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STREAMS constructs a Stream as a linked list of kernel resident data 
structures. In a STREAMS file, the inode points to the Stream header struc
ture. The header is used by STREAMS kernel routines to perform operations 
on this Stream generally related to system calls. Figure 5-1 depicts the down
stream (write) portion of a Stream (see Chapter 3 of the Primer) connected to 
the header. There is one header per Stream. From the header onward, a 
Stream is constructed of QUEUEs. The upstream (read) portion of the Stream 
(not shown in Figure 5-1) parallels the downstream portion in the opposite 
direction and terminates at the Stream header structure. 

inode 
Stream 
header 

QUEUE 

H 
QUEUE 

PI 
QUEUE 

P2 
QUEUE 

D 

Figure 5-1: Downstream Stream Construction 

At the same relative location in each QUEUE is the address of the entry 
point, a procedure to be executed on any message received by that QUEUE. 
The procedure for QUEUE H, at one end of the Stream, is the STREAMS
provided Stream head routine. QUEUE H is the downstream half of the 
Stream head. The procedure for QUEUE D, at the other end, is the driver 
routine. QUEUE D is the downstream half of the Stream end. PI and P2 are 
pushable modules, each containing their own unique procedures. That is, all 
STREAMS components are of similar organization. 

This similarity results in the uniform manner of navigating in either direc
tion on a Stream: messages move from one end to the other, from QUEUE to 
the next linked QUEUE, executing the procedure specified in the QUEUE. 

Figure 5-2 shows the data structures forming each QUEUE: queue_t, 
qinit, module-i.nfo and module_stat. queue_t contains various modifiable 
values for this QUEUE, generally used by STREAMS. qinit contains a pointer 
to the processing procedures, module-i.nfo contains limit values and 
module_stat is used for statistics. The two QUEUEs in a module will gen
erally each contain a different set of these structures. The contents of these 
structures are described in following chapters. 
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Figure 5-2: QUEUE Data Structures 

Figure 5-1 shows QUEUE linkage in one direction while Figure 5-2 shows 
two neighboring modules with links (solid vertical arrows) in both directions. 
When a module is pushed onto a Stream, STREAMS creates two QUEUEs and 
links each QUEUE in the module to its neighboring QUEUE in the upstream 
and downstream direction. The linkage allows each QUEUE to locate its next 
neighbor. The next relation is implemented between queue_ts in adjacent 
modules by the q_next pointer. Within a module, each queue_t locates its 
mate (see dotted arrows in Figure 5-2) by use of STREAMS macros, since 
there is no pointer between the two queue_ts. The existence of the Stream 
head and driver is known to the QUEUE procedures only as destinations 
towards which messages are sent. 
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When a file is opened [see open(2)], a STREAMS file is recognized by a 
non-null value in the d-str field of the associated cdevsw entry. d-str points 
to a streamtab structure: 

struct. streamtab { 

struct. qinit 
struct. qinit 
struct. qini t 
struct. qini t 

} ; 

*st_rdinit; 1* defines read QUEUE *1 
*st_wrinit; 1* defines write QUEUE *1 
*st_lIIIXrinit; 1* for mlltiplexiD;J drivers only *1 
*st_nuxwinit; 1* for mlltiplexiD;J drivers only *1 

streamtab defines a module or driver and points to the read and write 
qinit structures for the driver. 

If this open call is the initial file open, a Stream is created. First, the sin
gle header structure and the Stream head (see Figure 5-1) queue_t structure 
pair are allocated. Their contents are initialized with predetermined values 
including, as noted above (see QUEUE H), the Stream head processing rou
tines. 

Then, a queue_t structure pair is allocated for the driver. The queue_t 
contents are zero unless specifically initialized (see Chapter 8). A single, com
mon qinit structure pair is shared among all the Streams opened from the 
same cdevsw entry, as is the associated module-info and module_stat struc
tures (see Figure 5-2). 

Next, the q_next values are set so that the Stream head write queue_t 
points to the driver write queue_t, and the driver read queue_t points to the 
Stream head read queue_to The q_next values at the ends of the Stream are 
set to NULL. Finally, the driver open procedure (located via qinit) is called. 

If this open is not the initial open of this Stream, the only actions per
formed are to call the @river open and the open procedures of all pushable 
modules on the Stream. 
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As part of constructing a Stream, a module can be added with an ioctl 
LPUSH [see streamio(7)] system call (push). The push inserts a module 
beneath the Stream head. Because of the similarity of STREAMS components, 
the push operation is similar to the driver open. First, the address of the qinit 
structure for the module is obtained via an fmodsw entry. 

fmodsw is an array, analogous to cdevsw. Each fmodsw entry 
corresponds to a unique module and contains the name of the module (used 
by LPUSH and certain other STREAMS ioctls) and a pointer to the module's 
streamtab. Next, STREAMS allocates queue_t structures and initializes their 
,contents as in the driver open, above. As with the driver, the read and write 
qinit structures are shared among all the modules opened from this fmodsw 
entry (see Figure 5-2). 

Then, q_next values are set and modified so that the module is interposed 
between the Stream head and the driver or module previously connected to 
the head. Finally, the module open procedure (located via qinit) is called. 
Unlike open, no other module or driver open procedure is called. 

Each push of a module is independent, even in the same Stream. If the 
same module is pushed more than once onto a Stream, there will be multiple 
occurrences of that module in the Stream. The total number of pushable 
modules that may be contained on anyone Stream is limited by the kernel 
parameter NSTRPUSH (see Appendix E). 

An ioctl LPOP [see streamio(7)] system call (pop) removes the module 
immediately below the Stream head. The pop calls the module close pro
cedure. On return from the module close, any messages left on the module's 
message queues are freed (deallocated). Then, STREAMS connects the Stream 
head to the component previously below the popped module and deallocates 
the module's two queue_t structures. LPOP enables a user process to 
dynamically alter the configuration of a Stream by pushing and popping 
modules as required. For example, a module may be removed or a new one 
inserted below a module. In the latter case, the original module is popped 
and pushed back after the new module has been pushed. 

An LPOP cannot be used on a driver. 
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The last close system call to a STREAMS file dismantles the Stream. Dis
mantling consists of popping any modules on the Stream, closing the driver 
and closing the file. Before a module is popped by close, it may delay to 
allow any messages on the write message queue of the module to be drained 
by module processing. If O~DELAY [see open(2)] is clear, close will wait 
up to 15 seconds for each module to drain. If O~DELAY is set, the pop is 
performed immediately. close will also wait for the driver's write queue to 
drain. Messages can remain queued, for example, if flow control (see Chapter 
6 in the Primer) is inhibiting execution of the write QUEUE. When all 
modules are popped and any wait for the driver to drain is completed, the 
driver close routine is called. On return from the driver close, any messages 
left on the driver's message queues are freed, and the queue_t and header 
structures are deallocated. 

STREAMS frees only the messages contained on a message queue. Any mes
sages used internally by the driver or module must be freed by the driver or 
module close procedure. 

Finally, the file is closed. 
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Module Declarations 

A module and driver will contain, as a minimum, declarations of the fol
lowing form: 

#include "sys/t:ypes.h" 
#include "sys/stream.h" 
#include "sys/param.h" 

1* required in all m:xiules and drivers *1 
1* required in all m:xiules and drivers *1 

static struct m:xiule_info:oninfo = { 0, "Irod", 0, INFPSZ, 0, 0 }; 
static struct m:xiule_info l!Illi.nfo = { 0, "Irod", 0, INFPSZ, 0, 0 }; 
static int IOOdopen( ), IICdrplt( ), nodwpJ.t( ), m:xiclose( ); 

static struct qinit rinit = { 
ncdrput, NULL, !IDdopen, m:xic1ose, NULL, &nninfo, NULL 
}; 

static struct qinit winit = { 
nodwpJ.t, NULL, NULL, NULL, NULL, &l!Illi.nfo, NULL 
} ; 
struct streamtab Irodinfo = { &rinit, &winit, NULL, NULL }; 

The contents of these declarations are constructed for the null module 
example in this section. This module performs no processing; its only purpose 
is to show linkage of a module into the system. The descriptions in this sec
tion are general to all STREAMS modules and drivers unless they specifically 
reference the example. 

The declarations shown are: the header set; the read and write QUEUE 
(rminfo and wminfo) modulunfo structures (see Figure 5-2); the module 
open, read-put, write-put and close procedures; the read and write (rinit and 
winit) qinit structures; and the streamtab structure. 

The minimum header set for modules and drivers is types.h and 
stream.h. param.h contains definitions for NULL and other values for 
STREAMS modules and drivers as shown in the section titled "Accessible 
Symbols and Functions" in Appendix D. 
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Configuring a STREAMS module or driver (see Appendix E) does not require 
any procedures to be externally accessible, only streamtab. The streamtab 
structure name must be the prefix used in configuring, appended with "info". 

As described in the previous chapter, streamtab contains qinit values for the 
read and write QUEUEs, pointing to a module-info and an optional 
module_stat structure. The two required structures, shown in Figure 5-2, are 
these: 

st:ruct: qini t { 

}; 

int (*qi-putp)( ); 
int (*qi_srvp)( ); 
int (*qi_qopen) ( ); 
int (*qi_qclose)( ); 
int (*qi_qadmin)( ); 
st:ruct: m:xiule_info *qi_minfo; 
st:ruct: m:xiule_stat *qi_mstat; 

1* put procedure *1 
1* service procedure *1 
1* called an each open or a p.1Sh *1 
1* called an last close or a pop *1 
1* reserved for future use *1 

1* infc:xrnatian st:ru.cture *1 
1* statistics structure - optional *1 

st:ruct: m:xiule_info { 

}; 

ushort m:i._idnum; 1* m:xiule m IlIlIIIber *1 
char *m:i._idname; 1* m:xiule name *1 
short 

short 

short 

ushort 

m:i._m:i.npsz ; 
m:i. _IDaXpSz; 
m:i._hiwat; 
m:i._lowat; 

1* min packet size accepted, for developer use *1 
1* max packet size accepted, for developer use *1 
1* hi -water mark, for flow control *1 
1* lo-water mark, for flow control *1 

qinit contains the QUEUE procedures. All modules and drivers with the 
same streamtab (Le., the same fmodsw or cdevsw entry) point to the same 
upstream and downstream qinit structure(s). The structure is meant to be 
software read-only, as any changes to it affect all instantiations of that module 
in all Streams. Pointers to the open and close procedures must be contained 
in the read qinit. These fields are ignored in the write side. The example has 
no service procedure on the read or write side. 

module-info contains identification and limit values. All modules and 
drivers with the same stream tab point to the same upstream and downstream 
module-info structure(s). As with qinit, this structure is intended to be 
software read-only. However, the four limit values are copied to queue_t 
(see Chapter 8) where they are modifiable. In the example, the flow control 
high-and low-water marks (see Chapter 9) are zero, since there are no service 
procedures, and messages are not queued in the module. 
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Three names are associated with a module: the character string in 
fmodsw, obtained from the name of the /etc/conf/modules directory used to 
configure the module (see Appendix E); the prefix for streamtab, used in con
figuring the module; and the module name field in tile module-info struc
ture. This field is a hook for future expansion and is not currently used. 
However, it is recommended that it be the same as the module name. The 
module name value used in the LPUSH or other STREAMS ioctl commands 
is contained in fmodsw. Each module 10 and module name should be unique 
in the system. The module ID is currently used only in logging and tracing 
(see Chapter 6 in the Primer). For the example in this chapter, the module ID 
is zero. 

Minimum and maximum packet size are intended to limit the total 
number of characters contained in all (if any) of the M-DATA blocks in each 
message passed to this QUEUE. These limits are advisory except for the 
Stream head. For certain system calls that write to a Stream, the Stream head 
will C)bserve the packet sizes set in the write QUEUE of the module immedi
ately below it. Otherwise, the use of packet size is developer-dependent. In 
the example, INFPSZ indicates unlimited size on the read (input) side. 

module_stat is optional, intended for future use. Currently, there is no 
STREAMS support for statistical information gathering. The structure is 
described in Appendix A. ' . 
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The null module procedures are as follows: 

static int lIDdopen(q, dev, flag, sflag) 
queue_t *q; /* pointer to read queue */ 
dev_t dev; /* major/minor device number -- zero for l!Ddules */ 
int flag; /* file open flags -- zero for l!Ddules */ 
int sflag; /* stream open flags */ 

/* return success * / 
return 0; 

static int IlDdwput(q, lli»/* write put procedure */ 
queue_t *q; /* pointer to the write queue */ 
mblk_t *I!i>; /* message pointer */ 

pu'blext(q, lli»; /* pass message 1:hrouqh */ 

static int m:xirput(q, lli»/* read put procedure */ 
queue_t *q; /* pointer to the read queue */ 

/* message pointer * / 

putnext(q, lli»; /* pass message through */ 

static int m::rlclose(q, flag) 
queue_t *q; /* pointer to the read queue */ 
int flag; /* file open flags - zero for l!Ddules */ 

The form and arguments of these four procedures are the same in all 
modules and all drivers. Modules and drivers can be used in multiple Streams 
and their procedures must be reentrant. 
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modopen illustrates the open call arguments and return value. The argu
ments are the read queue pointer (q), the major/minor device number (dev, in 
drivers only), the file open flags (flag, defined in sys/file.h), and the Stream 
open flag (sflag). For a module, the value of flag and dev are always zero. 
The Stream open flag can take on the following values: 

MODOPEN 

o 
normal module open 

normal driver open (see Chapter 9) 

CLONEOPEN clone driver open (see Chapter 10) 

The return value from open is >"'" 0 for success and OPENFAIL for error. 
The open procedure is called on the first LPUSH and on all subsequent open 
calls to the same Stream. During a push, a return value of OPENFAIL causes 
the LPUSH to fail and the module to be removed from the Stream. If 
OPENFAIL is returned by a module during an open call, the open fails, but 
the Stream remains intact. For example, it can be returned by a 
module/driver that only wishes to be opened by a super-user: 

if (!suser( » return OPENFAIL; 

In the example, modopen simply returns successfully. modrput and modwput 
illustrate the common interface to put procedures. The arguments are the read 
or write queue_t pointer, as appropriate, and the message pointer. The put 
procedure in the appropriate side of the QUEUE is called when a message is 
passed from upstream or downstream. The put procedure has no return 
value. In the example, no message processing is performed. All messages are 
forwarded using the putnext macro (see Appendix C). putnext calls the put 
procedure of the next QUEUE in the proper direction. 

The close procedure is only called on an LPOP or on the last dose call of 
the Stream (see the last two sections of Chapter 5). The arguments are the 
read queue_t pointer and the file open flags as in modopen. For a module, 
the value of flag is always zero. There is no return value. In the example, 
modclose does nothing. 
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Module and Driver Environment 

As discussed in Chapter 7 of the Primer, user context is not generally 
available to STREAMS module procedures and drivers. The exception is dur
ing execution of the open and close routines. Driver and module open and 
close routines have user context and may access the 1L-area structure (defined 
in user.h, see "Accessible Symbols and Functions" in Appendix D). These 
routines are allowed to sleep, but must always return to the caller. That is, if 
they sleep, it must be at priority <= PZERO, or with PCATCH set in the sleep 
priority. [A process which is sleeping at priority> PZERO and is sent a signal 
via "ki11(2), never returns from the sleep call. Instead, the system call is 
aborted.] V STREAMS driv~ ond module put proeedu,., ond "'Mre proredu ... have no 

user context. They cannot access the 1L.area structure of a process and must 
not sleep. 
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Message Format 

Messages are the means of communication within a Stream. A message 
contains data or information identified by one of 18 message types (see 
Appendix B). Messages may be generated by a driver, a module, or the 
Stream head. The contents of certain message types can be transferred 
between a process and a Stream by use of system calls. STREAMS maintains 
its own pools for allocation of message storage. 

All messages are composed of one or more message blocks. A message 
block is a linked triplet, two structures and a variable length buffer block. The 
structures are msgb (mbILt), the message block, and datab (dbILt), the data 
block: 

st:ruct msgb { 

struct 

st:ruct 
st:ruct 
unsigned 

unsigned 

st:ruct 

st:ruct datab { 
struct 
unsigned 

unsigned 
unsigned 
unsigned 

unsigned 

msgb 

msgb 

msgb 

char 
char 
datab 

datab 

char 

char 
char 
char 

char 

*b_next;/* next message an queue */ 
*b.Jlrev;/* previous message an queue */ 
*b_oant;/* next message block of message */ 

*b_rptr;/* first unread byte in tuffer */ 
*b_wpt:r;/* first unwritten byte in tuffer */ 

*b_datap;/* data block */ 

*db_freep;/* used inteznally */ 
*db_base;/* first byte of tuffer * */ 
*db_l:im;/* last byte+1 of tuffer */ 
db_ref;/* oount of messages pointing to this block */ 
db_type;/* message type */ 

db_class;/* used internally */ 

mblLt is used to link messages on a message queue, link the blocks in a 
message and manage the reading and writing of the associated buffer, b_rptr 
and b_wptr are used to locate the data currently contained in the buffer. As 
shown in Figure 7-1, mblLt points to the data block of the triplet. The data 
block contains the message type, buffer limits and control variables. 
STREAMS allocates message buffer blocks of varying sizes (see below). 
db_base and db_lim are the fixed beginning and end (+1) ef the buffer. 
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A message consists of one or more linked message blocks. Multiple mes
sage blocks in a message can occur, for example, because of buffer size limita
tions, or as the result of processing that expands the message. When a mes
sage is composed of multiple message blocks, the type associated with the first 
message block determines the message type, regardless of the types of the 
attached message blocks. 

Message 
1 

Message 
2 

I 
I 
I 
I 
I 
I 

queue I 
<----

header 
r---1;:===:;b-Il:::=ex:t====!!:r---l ____ ..b~e2'~ __ __ > 

b_prev mblLt - - - - b:'pre;- - - - - -mblLt 

mblLt 

mblLt 
, 

L.... ...... _ ..... , 

I 

t 
, 
\ 

data 
block 
(type) 

data 
block 

Figure 7-1: Message Form and Linkage 
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Message Format 

A message may occur singly, as when it is processed by a put procedure, 
or it may be linked on the message queue in a QUEUE, generally waiting to 
be processed by the service procedure. Message I, as shown in Figure 7-1, 
links to message 2. In the first message on a queue, b_prev points back to the 
header in the QUEUE. The last b_next points to the tail. 

Note that a data block in message 1 is shared between message 1 and 
another message. Multiple message blocks can point to the same data block 
to conserve storage and to avoid copying overhead. For example, the same 
data block, with associated buffer, may be referenced in two messages, from 
separate modules that implement separate protocol levels. (Figure 7-1 illus
trates the concept, but data blocks would not typically be shared by messages 
on the same queue.) The buffer can be retransmitted, if required by errors or 
timeouts, from either protocol level without replicating the data. Data block 
sharing is accomplished by means of a utility routine (see dupmsg in Appen
dix C). STREAMS maintains a count of the message blocks sharing a data 
block in the db_ref field. 

STREAMS provides utility routines and macros, specified in Appendix C, 
to assist in managing messages and message queues, and to assist in other 
areas of module and driver development. A utility should always be used 
when operating on a message queue or accessing the message storage pool. 

Message Generation and Reception 
As discussed in the "Message Types" section in Chapter 4 of the Primer, 

most message types can be generated by modules and drivers. A few are 
reserved for the Stream head. The most commonly used types are M-DATA, 
M-PROTO, and M_PCPROTO. These, and certain other message types, can 
also be passed between a process and the topmost module in a Stream, with 
the same message boundary alignment maintained on both sides of the kernel. 
This allows a user process to function, to some degree, as a module above the 
Stream and maintain a service interface (see Chapter 12). M-PROTO and 
M-PCPROTO messages are intended to carry service interface information 
among modules, drivers, and user processes. Some message types can only be 
used within a Stream and cannot be sent or received from user level. 

As discussed previously, modules and drivers do not interact directly with 
any system calls except open and close. The Stream head handles all mes
sage translation and passing. Message transfer between process and Stream 
head can occur in different forms. For example, M-DATA, M-PROTO, or 
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M-PCPROTO messages can be transferred in their direct form by getmsg(2) 
and putmsg(2) system calls (see Chapter 12). Alternatively, a write causes 
one or more M-DATA messages to pe created from the data buffer supplied 
in the call. M_DATA messages received from downstream at the Stream 
head will be consumed by read(2) and copied into the user buffer. As another 
example, M-SIG causes the Stream head to send a signal to a process (see 
Chapter 13). 

Any mpdule or driver can send any message type in either direction on a 
Stream. However, based on their intended use in STREAMS and their treat
ment by the Stream head, certain message types can be categorized as 
upstream, downstream or bidirectional.M-DATA, M-PROTO, or 
M-PCPROTO messages, for example, can be sent in both directions. Other 
message types are intended to be sent upstream to be processed only by the 
Stream head. Downstream messages are silently discarded if re~eived by the 
Stream head. 
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Filter Module Declarations 

The module shown below, crmod, is an asymmetric filter. On the write 
side, newline is converted to carriage return followed by newline. On the 
read side, no conversion is done. The declarations are essentially the same as 
the null module of the preceding chapter: 

/* Simple filter - carwerts newline -> carriage return, newline */ 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/stream.h" 

static struct 1IOdule_info minfo = { 0, "cnIOd", 0, INFPSZ, 0, ° }; 
static int m:ldopen(), m::rlrp.l.t(), I!Ddwput(), 1IDdc1ose(); 

static struct qinit rinit = { 
m::rlrp.l.t, NULL, 1IOdopen, 1IDdc1ose, NULL, &minfo, NULL 

}; 

static struct qinit wjnit = { 

I!Ddwput, NULL, NULL, NULL, NULL, &minfo, NULL 

} ; 
struct streamtab cmrlinfo = { &rinit, &wjnit, NULL, NULL }; 

Note that, in contrast to the null module example, a single module_info 
structure is shared by the read and write sides. A config file to configure 
crmod is shown in Appendix E. 

modopen, modrput, and modclose, are the same as in the null module of the 
preceding chapter. 
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bappend Subroutine 
The module makes use of a subroutine, bappend, which appends a charac

ter to a message block: 

/* 
* Append a character to a message block. 
* If (*bpp) is rmll, it will allocate a new block 
* Retw:ns 0 when the message block is full, 1 otherwise 
*1 

#define K>DBLKSZ 128 1* size of message blocks *1 

static bappend(bpp, ch) 

mblk_t **bw; 
int ch; 
{ 

if (bp = *bpp) 

if (bp->b~wptr >= bp->b_datap->db_lim) 
return 0; 

} else if «*bw = bp = allocb(M:DBLKSZ, BPRI_Ml!D» == NOLL) 
return 1; 

*bp->b_wptr++ = ch; 

return 1; 

The bappend subroutine receives a pointer to a message block pointer and 
a character as arguments. If a message block is supplied (*bpp 1 = NULL), 
bappend checks if there is room for more data in the block. If not, it fails. If 
there is no message block, a block of at least MODBLKSZ is allocated through 
allocb, described below. 
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If the allocb fails, bappend returns success, silently discarding the charac
ter. This mayor may not be acceptable. For TTY-type devices, it is generally 
accepted. If the original message block is not full or the allocb is successful, 
bappend stores the character in the block. 
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The allocb utility (see Appendix C) is used to allocate message storage 
from the STREAMS pool. Its declaration is: 

mblk_t *allocb(buffersize, priority). 

allocb will return a message block containing a buffer of at least the size 
requested, providing there is a buffer available at the message pool priority 
specified, or it will return NULL on failure. Three levels of message pool 
priority can be specified (see Appendix C). Priority generally does not affect 
allocb until the pool approaches depletion. In this case, for the same internal 
level of pool resources, allocb will fail low priority requests while granting 
higher priority requests. This allows module and driver developers to use 
STREAMS memory resources to their best advantage and for the common 
good of the system. Message pool priority does not affect subsequent han
dling of the message by STREAMS. BPRLHI is intended for special situa
tions. This transmission of urgent messages relates to time-sensitive events, 
conditions that could result in loss of state, loss of data, or inability to recover. 
BPRLMED might be used, for example, when requesting an M-DATA buffer 
for holding input, and BPRLLO might be used for an output buffer (presum
ing the output data can wait in user space). The Stream head uses BPRI_LO 
to allocate messages to contain output from a process (e.g., by write or 
putmsg). Note that allocb will always return a message of type M_DATA. 
The type may then be changed if required. b_rptr and b_wptr are set to 
db_base (see mblLt and dblLt). 

allocb may return a buffer larger than the size requested. In bappend, if 
the message block contents were intended to be limited to MODBLKSZ, a 
check would have to be inserted. 

If allocb indicates buffers are not available, the bufcall utility can be used 
to defer processing in the module or the driver until a buffer becomes avail
able (bufcall is described in Chapter 13). 
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Put Procedure 

The modwput function processes all the message blocks in any down
stream data (type M-DATA) messages. 

/* Write side p.1t procedure */ 
static m;xiWplt(q, mp) 

queue_t *q; 

mblk_t *mp; 

{ 

switch (mp->b_datap->db_type) 

default: 
p.1t:neKt(q, mp); /* Ikm't do these, pass them along */ 

break; 

case M_DATA: { 

register ni:>lk_t *bp; 

struct I1Dlk _ t *mp = NULL, *nbp = NULL; 

f= (bp = Inp; bp != NULL; bp = bp->b_oOnt) 

while (bp->b_rptr < bp->b_wptr) { 

if (*bp->b_rptr == "\n') 

if (Ibappend(&nbp, '\r'» 
goto newblk; 

if (Ibappend(&nbp, *bp->b_rptr) l 
goto newblk; 

newblk: 
if (nmp == NULL) 

nmp = nbp; 

else linkb(nmp, nbp); /* link message block to tail of nmp */ 

nbp = NULL; 

if (nmp == NULL) 
nmp = nbp; 

else linkb(nmp, nbp); 

freemsg(mp); /* de-allocate mesSage */ 
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if (IlIDp) 

} 

} 

} 

break; 

plt:next( q, IlIDp); 

continued 

Data messages are scanned and filtered. modwput copies the original mes
sage into a new block(s), modifying as it copies. nbp points to the current 
new message block. nmp points to the new message being formed as multiple 
M-DATA message blocks. The outer forO loop goes through each message 
block of the original message. The inner whileO loop goes through each byte. 
bappend is used to add characters to the current or new block. If bappend fails, 
the current new block is full. If nmp is NULL, nmp is pointed at the new 
block. If nmp is non-NULL, the new block is linked to the end of nmp by use 
of the linkb utility. 

At the end of the loops, the final new block is linked to nmp. The original 
message (all message blocks) is returned to the pool by freemsg. If a new 
message exists, it is sent downstream. 
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The queue_t Structure 

Service procedures, message queues and priority, and basic flow control 
are all intertwined in STREAMS. A QUEUE will generally not use its message 
queue if there is no service procedure in the QUEUE. The function of a ser
vice procedure is to process messages on its queue. Message priority and flow 
control are associated with message queues. 

The operation of a QUEUE revolves around the queue_t structure: 

st:ruct queue { 

} ; 

struct qinit *~qinfo; 
st:ruct msgb *~first; 

st:ruct msgb *~last; 

st:ruct queue *~next; 
st:ruct queue *~link; 
caddr _ t qJ)t:r; 

ushort ~OOIlIlt; 

ushort ~flag; 

1* procedures and limits for queue *1 
/* head of message queue for this GXJEUE *1 
1* tail of message queue for this GXJEUE *1 
1* next QUEUE in Stream*1 
1* link to next QUEUE an S'mEAMS scheduling queue *1 
1* to private data structure *1 
1* weighted count of characters an message queue *1 
1* GXJEUE state *1 

short 

short 

ushort 
ushort 

~minpsz; 1* min packet size accepted by this QUElJE *1 
~maxpsz; 1* max packet size accepted by this QUElJE *1 
~hiwat; 1* message queue high-water nark, for flow can:b:ol *1 
~lowat; 1* message queue loW'-water nark, for flow control *1 

typedef struct queue queue_t; 

As described previously, two of these structures form a module. When a 
queue_t pair is allocated, their contents are zero unless specifically initialized. 
The following fields are initialized by STREAMS: 

• q_qinfo - from stream tab 

• q_minpsz, q_maxpsz, q.Jziwat, q_lowat - from module-info 

Copying values from module-info allows them to be changed in the 
queue_t without modifying the template (Le., streamtab and module-info) 
values. 

q_count is used in flow control calculations and is the weighted sum of 
the sizes of the buffer blocks currently on the message queue. The actual 
number of bytes in the buffer is not used. This is done to encourage the use 
of the smallest buffer that will hold the data intended to be placed in the 
buffer. 
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Service Procedures 

Put procedures are generally required in pushable modules. Service pro
cedures are optional. The general processing flow when both procedures are 
present is as follows: A message is received by the put procedure in a 
QUEUE, where some processing may be performed on the message. The put 
procedure transfers the message to the service procedure by use of the putq 
utility. putq places the message on the tail (see q_last in queue_t) of the 
message queue. Then, putq will generally schedule (using q_link in queue_t) 
the QUEUE for execution by the STREAMS scheduler following all other 
QUEUEs currently scheduled. After some indeterminate delay (intended to be 
short), the scheduler calls the service procedure. The service procedure gets 
the first message (q_first) from the message queue with the getq utility. The 
service procedure processes the message and passes it to the put procedure of 
the next QUEUE with putnext. The service procedure gets the next message 
and processes it. This FIFO processing continues until the queue is empty or 
flow control blocks further processing. The service procedure returns to caller. '7 A ""'"" routine must nev", ,leep ,nd it h~ no m", context. It must ,[w'Y' 

return to its caller. 

If no processing is required in the put procedure, the procedure does not 
have to be explicitly declared. Rather, putq can be placed in the qinit struc
ture declaration for the appropriate QUEUE side, to queue the message for the 
service procedure, e.g.: 

static struct qinit winit = { putq, modwsrv, ..•..• }; 

More typically, put procedures will, as a minimum, process priority messages 
(see below) to avoid queueing them. 

The key attribute of a service procedure in the STREAMS architecture is 
delayed processing. When a service procedure is used in a module, the 
module developer is implying that there are other, more time-sensitive activi
ties to be performed elsewhere in this Stream, in other Streams, or in the sys
tem in general. The presence of a service procedure is mandatory if the flow 
control mechanism is to be utilized by the QUEUE. 
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Service Procedures 

The delay for STREAMS to call a service procedure will vary with imple
mentation and system activity. However, once the service procedure is 
scheduled, it is guaranteed to be called before user level activity is resumed. 

See also the section titled "Put and Service Procedures" in Chapter 5 of 
the Primer. 
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Message Queues and Message Priority 

Figure 8-1 depicts a message queue linked by b_next and b_prev pointers. 
As discussed in the Primer, message queues grow when the STREAMS 
scheduler is delayed from calling a service procedure because of system 
activity, or when the procedure is blocked by flow control. When it is called 
by the scheduler, the service procedure processes enqueued messages in FIFO 
order. However, certain conditions require that the associated message (e.g., 
an M-ERROR) reach its Stream destination as rapidly as possible. STREAMS 
does this by assigning all message types to one of the two levels of message 
queueing priority-priority and ordinary. As shown in Figure 8-1, when a 
message is queued, the putq utility will place priority messages at the head of 
the message queue, FIFO within their order of queueing. 

QUEUE 

queue 
header ............. 

Message queue 

..... i I I I I I I I I I I I 1 
I P" I 0 d' I I nonty I r mary I . . . ~ 
I Messages I Messages I 
I I I 

Head Tail 

Figure 8-1: Message Queue Priority 

Priority messages are not subject to flow control. When they are queued 
by putq, the associated QUEUE is always scheduled (in the same manner as 
any QUEUE; following all other QUEUEs currently scheduled). When the ser
vice procedure is called by the scheduler, the procedure uses getq to retrieve 
the first message on queue, which will be a priority message, if present. Ser
vice procedures must be implemented to act on priority messages immediately 
(see next section). The above mechanisms-priority message queueing, 
absence of flow control and immediate processing by a procedure-result in 
rapid transport of priority messages between the originating and destination 
components in the Stream. 
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The priority level for each message type is shown in Appendix B. Mes
sage queue management utilities are provided for use in service procedures 
(see Appendix C). 
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Flow Control 

The elements of flow control are discussed in Chapter 6 of the Primer. 
Flow control is only used in a service procedure. Module and driver coding 
should observe the following guidelines for message priority. Priority mes
sages, determined by the type of the first block in the message, 

(bp->b_datap->db_type > QPCTL), 

are not subject to flow control. They should be processed immediately and 
forwarded, as appropriate. 

For ordinary messages, flow control must be tested before any processing 
is performed. The canput utility determines if the forward path from the 
QUEUE is blocked by flow control. The manner in which STREAMS deter
mines flow control status for modules and drivers is described under "Driver 
Flow Control" in Chapter 9. 

This is the general processing for flow control: Retrieve the message at 
the head of the queue with getq. Determine if the type is priority and not to 
be processed here. If both are true, pass the message to the put procedure of 
the following QUEUE with putnext. If the type is ordinary, use canput to 
determine if messages can be sent onward. If canput indicates messages 
should not be forwarded, put the message back on the queue with putbq and 
return from the procedure. In all other cases, process the message. 

The canonical representation of this processing within a service procedure 
is as follows: 

while (getq I = NULL) 

if (priority message II canput) 
process message 

putnext 
else 

puthq 
return 
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Flow Control 

A service procedure must process all messages on its queue unless flow con
trol prevents this. 

When an ordinary message is enqueued by putq, putq will cause the ser
vice procedure to be scheduled only if the queue was previously empty. If 
there are messages on the queue, putq presumes the service procedure is 
blocked by flow control and the procedure will be automatically rescheduled 
by STREAMS when the block is removed. If the service procedure cannot 
complete processing as a result of conditions other than flow control (e.g., no 
buffers), it must assure it will return later (e.g., by use of bufcall, see Chapter 
13) or it must discard all messages on queue. If this is not done, STREAMS 
will never schedule the service procedure to be run unless the QUEUE's put 
procedure queues a priority message with putq. 

putbq replaces messages at the beginning of the appropriate section of the 
message queue in accordance with their message type priority (see Figure 8-1). 
This might not be the same position at which the message was retrieved by 
the preceding getq. A subsequent getq might return a different message. 
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Example 

The filter module example of Chapter 7 is modified to have a service pro
cedure, as shown below. The declarations from the example in Chapter 7 are 
unchanged except for the following lines (changes are shown in bold): 

#include "sys/stropts.h" 

static struct I1Ddule_info minfo = { 
0, "ps_crmod", 0, INFPSZ, 512,128 

} ; 
static int IIDdopen( ), Il1Cldrplt( ), IOOdwpJ.t( ), modwsrvO, m:xiclose( ); 

static struct qinit winit = { 
IOOdwpJ.t, modwsrv, NULL, NULL, NULL, &minfo, NULL 

} ; 

stropts.h is generally intended for user level. However, it includes defini
tions of flush message options common to user level, modules and drivers. 
module-info now includes the flow control high- and low-water marks (512 
and 128) for the write QUEUE (even though the same module-info is used 
on the read QUEUE side, the read side has no service procedure so flow con
trol is not used). qinit now contains the service procedure pointer. modopen, 
modclose, and modrput (read side put procedure) are unchanged from Chapters 
6 and 7. The bappend subroutine is also unchanged from Chapter 7. 

Procedures 

The write side put procedures and the beginning of the service procedure 
are shown next: 
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static int m:xiwpIt(q, lIP) 

queue_t *q; 

register ni:>llLt *up; 

{ 

if (mp->b_datap->db_t:ype > QPCTL &Ii.. IIP->b_datap->db_t:ype 1= M_FLUSH) 

putnext( q, lIP); 

else 

putq(q, lIP); 1* Put it an the queue *1 

static int m:xiwsrv(q) queue_t *q; 

mblk_t *up; 

while «lIP = getq(q) 1= NULL) { 

switch (mp->b_datap->db_t:ype) 

default: 
/* always putnext pri=ity lIEssages */ 

if (mp->b_datap->db_t:ype > QPCTL II c:anp1t(q-><Lnext» 

putnext (q, lIP); 

continue; 

else { 

puthq(q, lIP); 
return; 

case M_FLUSH: 

if (*rIp->b_rptr &. FLUSHW) 

fluslq(q, FLUSlIDATA); 

putnext(q, lIP); 
continue; 

Example 

ps_crmod performs a similar function to crmod of the previous chapter, but 
it uses a service routine. 
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Example 

modwput, the write put procedure, switches on the message type. Priority 
messages that are not type M-FLUSH are putnext to avoid scheduling. The 
others are queued for the service procedure. An M-FLUSH message is a 
request to remove all messages on one or both QUEUEs. It can be processed 
in the put or service procedure. 

modwsrv is the write service procedure. It takes a single argument, a 
pointer to the write queue_t. modwsrv processes only one priority message, 
M-FLUSH. All other priority messages are passed through. Actually, no 
other priority messages should reach modwsrv. The check is included to show 
the canonical form when priority messages are queued by the put procedure. 

For an M-FLUSH message, modwsrv checks the first data byte. If 
FLUSHW (defined in stropts.h) is set in the byte, the write queue is flushed 
by use of flushq. flushq takes two arguments, the queue pointer and a flag. 
The flag indicates what should be flushed, data messages (FLUSHDATA) or 
everything (FLUSHALL). In this case, data includes M_DATA, MJROTO, 
and MJCPROTO messages. The choice of what types of messages to flush 
is module-specific. As a general rule, FLUSHDATA should be used. 

Ordinary messages will be returned to the queue if 

canput(q->~next) 

returns false, indicating the downstream path is blocked. 

In the remaining part of modwsrv, M_DATA messages are processed simi
larly to the previous example: 
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case M _DATA: { 

mblk _ t *nbp = NULL; 

mblk _ t *next; 

if (!canplt(q->cLnext» 

putbq(q, mp); 

retw:n; 

1* Filter data, appending to queue *1 
f= (; mp != NULL; mp = next) { 

while (mp->b_rptr < mp->b_wptr) 

if (*mp->b_rptr == '\n') 

if (!bappend( &nbp, '\r'» 
goto p.1Sh; 

if (!bappend(&nbp, *mp->b_rptr» 

goto p.1Sh; 

mp->b_rptr++ ; 

cxmtinue; 

push: 

putnext( q, nbp); 

nbp = NULL; 

if (lcanput(q->cLnext» 
if (mp->b_rptr >= mp->b_wptr) 

next = mp->b_cxmt; 

freeb(mp); 

mp--next; 

if (mp) 

putbq(q, mp); 
return; 

next = mp->b_cxmt; 

freeb(mp); 

if (nbp) 

putnext (q, nbp); 

Example 
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Example 

The differences in M-DATA processing between this and the previous 
example relate to the manner in which the new messages are forwarded and 
flow control. For the purpose of demonstrating alternative means of process
ing messages, this version creates individual new messages rather than a sin
gle message containing multiple message blocks. When a new message block 
is full, it is immediately forwarded with putnext rather than being linked into 
a single, large message (as was done in the previous example). This alterna
tive may not be desirable because message boundaries will be altered and 
because of the additional overhead of handling and scheduling multiple mes
sages. 

When the filter processing is performed (following push), flow control is 
checked (canput) after, rather than before, each new message is forwarded. 
This is done because there is no provision to hold the new message until the 
QUEUE becomes unblocked. If the downstream path is blocked, the remain
ing part of the original message is returned to the queue. Otherwise, process
ing continues. 

Another difference between the two examples is that each message block 
of the original message is returned to the pool with freeb when its processing 
is completed. 
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Overview of Drivers 

This chapter describes the organization of a STREAMS driver and 
discusses some of the processing typically required in drivers. Certain ele
ments of driver flow control are discussed. Procedures for handling user 
ioctls, common to modules and drivers, are described. 

As discussed under "Stream Construction" in Chapter 5, driver and 
module organization are very similar. The call interfaces to all the driver pro
cedures are identical to module interfaces and driver procedures must be reen
trant. As described under "Environment" in Chapter 6, the driver put and 
service procedures have no user environment and cannot sleep. Other than 
with open and close, a driver interfaces with a user process by messages, and 
indirectly, through flow control. 

There are two significant differences between modules and drivers. First, 
a device driver must also be accessible from an interrupt as well as from the 
Stream, and second, a driver can have multiple Streams connected to it. Mul
tiple connections occur when more than one minor device uses the same 
driver and in the case of multiplexers (see Chapter 11). However, these par
ticular differences are not recognized by the STREAMS mechanism: They are 
handled by developer-provided code included in the driver procedures. 

Figure 9-1 shows multiple Streams (corresponding to minor devices), to a 
common driver. This depiction of two Streams connected to a single driver 
(also used in the Primer) is somewhat misleading. These are really two dis
tinct Streams opened from the same cdevsw (Le., same major device). Conse
quently, they have the same streamtab and the same driver procedures. 
Modules opened from the same fmodsw might be depicted similarly if they 
had any reason to be cognizant, as do drivers, of common resources or alter
nate instantiations. 

Multiple instantiations (minor devices) of the same driver are handled dur
ing the initial open for each device. Typically, the queue_t address is stored 
in a driver-private structure indexed by the minor device number. The struc
ture is typically pointed at by q_ptr (see Chapter 8). When the messages are 
received by the QUEUE, the calls to the driver put and service procedures 
pass the address of the queue_t, allowing the procedures fa determine the 
associated device. 
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Overview of Drivers 

In addition to these differences, a driver is always at the end of a Stream. 
As a result, drivers must include standard processing for certain message types 
that a module might simply be able to pass to the next component. 

Module(s) 

Port 
o 

Driver Procedures 
and 

Interrupt Code 

Figure 9-1: Device Driver Streams 

9-2 STREAMS PROGRAMMER'S GUIDE 

Module(s) 

Port 
1 



Driver Flow Control 

The same utilities (described in Chapter 8) and mechanisms used for 
module flow control are used by drivers. However, they are typically used in 
a different manner in drivers, because a driver generally does not have a ser
vice procedure. The developer sets flow control values (mLhiwat and 
mLlowat) in the write side module--info structure, which STREAMS will 
copy into q_hiwat and q_lowat in the queue_t structure of the QUEUE. A 
device driver typically has no write service procedure, but does maintain a 
write message queue. When a message is passed to the driver write side put 
procedure, the procedure will determine if device output is in progress. In the 
event output is busy, the put procedure cannot immediately send the message 
and calls the putq utility (see Appendix C) to queue the message. (Note that 
the driver might have elected to queue the message in all cases.) putq recog
nizes the absence of a service procedure and does not schedule the QUEUE. 

When the message is queued, putq increments the value of q_count 
(approximately the enqueued character count, see the beginning of Chapter 8) 
by the size of the message and compares the result against the driver's write 
high-water limit (q~hiwat) value. If the count exceeds q_hiwat, putq will set 
the internal FULL (see the section titled "Flow Control" in Chapter 6 of the 
Primer) indicator for the driver write QUEUE. This will cause messages from 
upstream to be halted (canput returns FALSE) until the write queue count 
reaches q_lowat. The driver messages waiting to be output are dequeued by 
the driver output interrupt routine with getq, which decrements the count. If 
the resulting count is below q_Iowat, getq will back-enable any upstream 
QUEUE that had been blocked. The above STREAMS processing also applies 
to modules on both write and read sides of the Stream. 

Device drivers typically discard input when unable to send it to a user 
process. However, STREAMS allows flow control to be used on the driver 
read side, possibly to handle temporary upstream blocks. This is described in 
Chapter 13 in the section titled "Advanced Flow Control" . 

To some extent, a driver or module can control when its upstream 
transmission will become blocked. Control is available through the 
M-SETOPTS message (see Chapter 13 and Appendix B) to modify the Stream 
head read side flow control limits. 
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Driver Programming 

The example below shows how a simple interrupt-per-character line 
printer driver could be written. The driver is unidirectional and has no read 
side processing. It demonstrates some differences between module and driver 
programming, including the following: 

Open handling A driver is passed a minor device number or is asked to 
select one (see next chapter). 

Flush handling A driver must loop MJLUSH messages back upstream. 

loctl handling A driver must nak ioctl messages it does not understand. 
This is discussed under "Driver and Module loctls" , 
below. 

Write side flow control is also illustrated as described above. 

Driver Declarations 

The driver declarations are as follows: 

1* Simple line printer driver. *1 

#include "sys/types .h" 
#include "sys/param.h" 
#include "sys/sysmacros .h" 
#ifdef u3b2 
#include "sys/psw.h" 
#include "sys/pc:b.h" 
#endif 
#include "sys/stream.h" 
#include "sys/stropts.h" 
#include "sys/dir .h" 
#include "sys/signal.h" 
#include "sys/user.h" 
#include "sys/errno.h" 

1* required f= user.h *1 
1* required for user.h *1 

1* required for user.h *1 
1* required for user.h *1 

static struct ncdule_info minto = { 
0, "lp", 0, INFPSZ, 150, 50 

} ; 
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Driver Programming 

continued 

static int lpopen( ), Ipclose( ), Ipwput( ); 

static struct qinit rinit = { 
NULL, NULL, lpopen, Ipclose, NULL, &min:fo, NULL 

} ; 
static struc:t qinit winit = { 

Ipwput, NULL, NULL, NULL, NULL, &min:fo, NULL 
} ; 
struct streamtab lpinfo = { &rinit, &'winit, NULL, NULL }; 

#define SEl'_OPl'ICNS «'1'«8)11)/* really must be in a .h file */ 
/* 
* This is a private data structure, one per m:irx:lr device nmnber. 
*/ 

struc:t Ip { 
short flags; /* flags -- see below * / 

mblk_t *msg; /* current message beiD1 output */ 

queue_t *qptr; /* back pointer to write queue */ 
} ; 
/* Flags bits */ 

#define BUSY 1 * device is running and interrupt is pending */ 

extern struc:t Ip Ip_lp[]; /* per device Ip structure array */ 

/* m.unber of valid minor devices * / 

As noted for modules in Chapter 6, configuring a STREAMS driver does 
not require the driver procedures to be externally accessible; only streamtab 
must be. All STREAMS driver procedures would typically be declared 
static. 

streamtab must be defined as "prefixinfo", where prefix is the value of 
the prefix specified in the config file for this driver. The values in name and 
ID fields in the module-info should be unique in the system. The name field 
is a hook for future expansion and is not currently used. The ID is currently 
used only in logging and tracing (see Chapter 6 in the Primer). For the exam
ple in this chapter, the ID is zero. 
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Driver Programming 

There is no read side put or service procedure. The flow control limits for 
use on the write side are 50 and 150 characters. The private lp structure is 
indexed by the minor device number and contains these elements: 

flags A set of flags. Only one bit is used: BUSY indicates that output is 
active and a device interrupt is pending. 

msg A pointer to the current message being output. 

qptr A back pointer to the write queue. This is needed to find the write 
queue during interrupt processing. 

Driver Open 

The driver open, lpopen, has the same interface as the module open: 

static int lpopen(q, dev, flag, sflag) 

queue_t *q 1* read queue *1 
{ 

st:ruct lp *lp; 

1* Check if nan-driver open *1 
if (sflag) 

return OPENFAIL; 

1* Dev is maj=1minor *1 
dev = m:inor(dev); 
if (dev >= lp_cnt) 

return OPENFAIL; 

1* Check if open already. q.Ptr is assigned below *1 
if (q->q.Ptr) { 

u.u_err= = E8USY; 1* only 1 user of the printer at a time *1 
return OPENFAIL; 

lp = &lp_lp[dev]; 

lp->qptr = WR(q); 

q->q.Ptr = (char *) lp; 
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WR(q)->qJJtr = (char *) Ip; 
return dev; 

Driver Programming 

continued 

The Stream flag, sflag, must have the value 0, indicating a normal driver 
open. dev holds both the major and minor device numbers for this port. 
After checking sflag, the open flag, lpopen extracts the minor device from de v, 
using the minor() macro defined in sysmacros.h. 

The use of major devices, minor devices, and the minor() macro may be 
machine dependent. 

The minor device number selects a printer and must be less than lp_cnt. 

The next check, if (q->qptr) ••• , determines if this printer is already 
open. In this case, EBUSY is returned to avoid merging printouts from multi
ple users. q_ptr is a driver/module private data pointer. It can be used by 
the driver for any purpose and is initialized to zero by STREAMS. In this 
example, the driver sets the value of q_ptr, in both the read and write 
queue_t structures, to point to a private data structure for the minor device, 
Ip_Ip[dev). 

WR is one of three QUEUE pointer macros. As discussed in the section 
titled" Stream Construction," in Chapter 5, there are no physical pointers 
between QUEUEs, and these macros (see Appendix C) generate the pointer. 
WR(q) generates the write pointer from the read pointer, RD(q) generates the 
read pointer from the write painter and OTHER(q) generates the mate pointer 
from either. 
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Driver Processing Procedures 

This example only has a write put procedure: 

static int lpwput(q, mp) 

queue_t *q; /* write queue */ 
register mblk_t *nip; /* message pointer */ 

{ 

register struct lp *lp; 
int s; 

lp = (struct lp *)q-~; 

switch (mp->b_datap->db_type) 
default: 

freemsg(mp) ; 

break; 
case M_FLUSH: 

/* Canonical flush hanU:ing * / 
if (*mp->b_rptr &. FLUSIIW) { 

flushq(q, FLUSHDATA); 
s = spI5(); 
/* also flush lp->msg since it is logically 
* at the head of the write queue */ 

if (lp->msg) { 
freemsg(lp->msg) ; 
lp->msg = NULL; 

splx(s) ; 

if (*mp->b_ rptr &. FLUSHR) 

flushq(RD(q), FWSHDATA); 

*mp->b_rptr &.= -FLUSIIW; 

qrep1y(q, mp); 

} else 
freemsg(mp) ; 

break; 

case !LIOCTL: 
case M_IlATA: 

pItq(q, mp); 

s = sp15(); 
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if (I (lp->flags &. BUSY» 
lpout(lp); 

sp1x(s) ; 

Driver Flush Handling 

Driver Processing Procedures 

continued 

The write put procedure, lpwput, illustrates driver M_FLUSH handling; 
note that all drivers are expected to incorporate this flush handling. If 
FLUSHW is set, the write message queue is flushed, and also (for this exam
ple) the leading message (lp->msg). sp15 is used to protect the critical code, 
assuming the device interrupts at level 5. If FLUSHR is set, the read queue is 
flushed, the FLUSHW bit is cleared, and the message is sent upstream using 
qreply. If FLUSHR is not set, the message is discarded. 

The Stream head always performs the following actions on flush requests 
received on the read side from downstream. If FLUSHR is set, messages wait
ing to be sent to user space are flushed. If FLUSHW is set, the Stream head 
clears the FLUSHR bit and sends the M-FLUSH message downstream. In 
this manner, a single M-FLUSH message sent from the driver can reach all 
QUEUEs in a Stream. A module must send two M-FLUSH messages to have 
the same affect. 

lpwput enqueues M-DATA and M-IOCTL (see the section titled "Driver 
and Module loctls", in later text) messages and, if the device is not busy, 
starts output by calling lpout. Messages types that are not recognized are dis
carded. 
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Driver Processing Procedures 

Driver Interrupt 

lpintr is the driver interrupt routine: 

1* Device inten:upt routine. *1 

Ipintr(dev) 
int devj /* minor device :number of Ip *1 

register struct Ip *Ipj 

Ip = &lp_Ip[dev] j 
if (I (Ip->flags & BUSY» 

printf( nIp: unexpected inten:upto) j 
returnj 

Ip->flags &= -BUSYj 

Ipout(lp)j 

1* start output to device - used by put procedure and driver *1 

Ipout(lp) 
register struct Ip *Ipj 
{ 

register mblk_t *bpj 
queue_t *qj 

q = Ip->qptrj 

loop: 
if «bp = Ip->msg) == NULL) { 

if «bp = getq(q» == NULL) 

returnj 

if (bp->b_datap->db_type == MJOCTL) 
Ipdoioctl(lp, bp) j 
goto loopj 

Ip->m>g = bpj 
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if (bp->b_rptr >= bp->b_wptr) 

bp = lp->msg-->b_COIlt; 
lp->msg->b_COIlt = NULL; 
freeb(lp->msg) ; 

lp->msg = bp; 
goto loop; 

lpoutchar(lp, *bp->b_rptr++); 

lp->flags I = BUSY; 

Driver Processing Procedures 

continued 

lpout simply takes a character from the queue and sends it to the printer. 
The processing is logically similar to the service procedure in Chapter 8. For 
convenience, the message currently being output is stored in Ip->msg. 

Two mythical routines need to be supplied: 

lpoutchar send a character to the printer and interrupt when complete 

lpsetopt set the printer interface options 
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Driver and Module loctls 

Drivers and modules interface with ioctl(2) system calls through mes
sages. Almost all STREAMS generic ioells [see streamio(7)] go no further 
than the Stream head. The capability to send an ioell downstream, similar to 
the ioell of character device drivers, is provided by the LSTR ioell. The 
Stream head processes an LSTR by constructing an M-IOCTL message (see 
Appendix B) from data provided in the call and sends that message down
stream. 

The user process that issued the LSTR is blocked until a module or driver 
responds with either an M--IOCACK (ack) or M-IOCNAK (nak) message, or 
until the request "times out" after a user-specified interval. The STREAMS 
module or driver that generates an ack can also return information to the pro
cess. If the Stream head does not receive one of these messages in the speci
fied time, the ioctl call fails. 

A module that receives an unrecognized M-IOCTL message should pass 
it on unchanged. A driver that receives an unrecognized M-IOCTL should 
nak it. 

Ipout traps M-IOCTL messages and calls Ipdoioctl to process them: 

Ipdoioctl(lp, mp) 

stzuct: Ip *lp; 
mblk_t *nip; 

{ 

struct iocblk *iocp; 

q = Ip->qptr; 

1* 1st block oantains iocblk structure *1 
iocp = (struct iocblk *)mp->b_rptr; 

switch (iocp->ioc_cnd) { 

case SEl'':''OPl'IOOS: 

1* OJunt slxlIlld be exactly one short's worth */ 

if (iocp->ioc_COllIlt 1= sizeof(short» 
goto iocnak; 
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1* Actual data is in 2nd I1Essage block *1 
lpsetopt(lp, *(short *)mp->b_OOl'lt->b_rptr); 

1* JlCl( the ioctl *1 
mp->b_datap->db_type = M_IOCACl<; 

iocp->ioc_oount = 0; 

qreply(q, mp); 

break; 

Driver and Module loctls 

continued 

default: 
iocnak: 

1* NAK the ioctl *1 
mp->b_datap->db_type = M_IOCNAK; 

qreply(q, mp); 

lpdoioctl illustrates M-IOCTL processing: The first part also applies to 
modules. An M-IOCTL message contains a struct iocblk in its first block. The 
first block is followed by zero or more M-DATA blocks. The optional 
M-DATA blocks typically contain any user-supplied data. 

The form of an iocblk is as follows: 

struct iocblk { 

} ; 

int 
ushort 

ushort 
uint 
uint 
int 
int 

icc_end; 
icc_uid; 
icc...9id; 
iccjd; 
icc_count; 
icc_error; 
icc_rval; 

/* ioctl ccmnar.d type * / 
/* effective uid of user * / 
/* effective gid of user */ 
/* ioctl id */ 
/* count of bytes in data field * / 
/* error code */ 
/* return value */ 
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Driver and Module loctls 

ioc_cmd contains the command supplied by the user. In this example, 
only one command is recognized, SET_OPTIONS. ioc_count contains the 
number of user-supplied data bytes. For this example, it must equal the size 
of a short (2 bytes). The user data is sent directly to the printer interface 
using lpsetopt. Next, the M-IOCTL message is changed to type M_IOCACK 
and the ioc_count field is set to zero to indicate that no data is to be returned 
to the user. Finally, the message is sent upstream using qreply. If ioc_count 
was left non-zero, the Stream head would copy that many bytes from the 2nd 
- Nth message blocks into the user buffer. 

If the M-IOCTL message is not understood or in error for any reason, the 
driver must set the type to M-IOCNAK and send the message upstream. No 
data can be sent to a user in this case. The Stream head will cause the ioctl 
call to fail with the error number EINV AL. The driver has the option of set
ting ioc_error to an alternate error number if desired. 

9-14 

iDe_error can be set to a non-zero value by both M-IOCACK and 
M-IOCNAK. This will cause that value to be returned as an error number to 
the process that sent the LSTR ioctl. 
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Driver Close 

The driver close clears any message being output. Any messages left on 
the message queue will be automatically removed by STREAMS. 

static int lpclose(q) 
/* read queue */ 

struct lp *lp; 
int s; 

lp = (struct lp *) q->qJ>tr; 
/* Free message, queue is autanatically flushed by STREAMS */ 
s = sp15( ); 
if (lp->msg) { 

freemsg(lp->msg) ; 
lp->msg = NULL; 

} 

splx(s) ; 
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Cloning 

The clone mechanism has been developed as a convenience. It allows a 
user to open a driver without specifying the minor device. When a Stream is 
opened, a flag indicating a clone open is tested by the driver open routine. If 
the flag is set, the driver returns an unused minor device number. The clone 
driver [see clone(7)] is a system-dependent STREAMS pseudo driver. 

Knowledge of clone driver implementation is not required to use it. A 
description is presented here for completeness and to assist developers who 
must implement their own clone driver. A clone-able device has a device 
number in which the major number corresponds to the clone driver and the 
minor number corresponds to the target driver. When an open(2) system call 
is made to the associated (STREAMS) file, open causes a new Stream to be 
opened to the clone driver and the open procedure in clone to be called with 
dev set to clone/target. The clone open procedure uses minor(dev) to locate 
the cdevsw entry of the target driver. Then, clone modifies the contents of 
the newly instantiated Stream queue_ts to those of the target driver and calls 
the target driver open procedure with the Stream flag set to CLONE OPEN. 
The target driver open responds to the CLONE OPEN by returning an unused 
minor device number. When the done open receives the returned target 
driver minor device number, it allocates a new inode (which has no name in 
the file system) and associates the minor device number with the inode. 
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The ioop-around driver is a pseudo-driver that loops data from one open 
Stream to another open Stream. the user processes see the associated files as 
a full duplex pipe. The Streams are not physically linked. The driver is a 
simple multiplexer (see next chapter), which passes messages from one 
Stream's write QUEUE to the other Stream's read QUEUE. 

To create a pipe, a process opens two Streams, obtains the minor device 
number associated with one of the returned file descriptors, and sends the 
device number in an LSTR ioctl(2) to the other Stream. For each open, the 
driver open places the passed queue_t pointer in a driver interconnection 
table, indexed by the device number. When the driver later receives the 
LSTR as an M~OCTL message, it uses the device number to locate the other 
Stream's interconnection table entry and stores the appropriate queue_t 
pointers in both of the Streams' interconnection table eritries. 

Subsequently, when messages other than M-IOCTL or MJLUSH are 
received by the driver on either Stream's write side, the messages are switched 
to the read QUEUE following the driver on the other Stream's read side. The 
resultant logical connection is shown in Figure 10-1. Flow control between 
the two Streams must be handled by special code since STREAMS will not 
automatically propagate flow control information between two Streams that 
are not physically interconnected. 
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Figure 10-1: Loop Around Streams 

The declarations for the driver are: 

/* 

* Uoop around driver 

*/ 

#include "sys/types.h" 

#include "sys/param.h" 
#include "sys/sysnacros .h" 
#ifdef u3b2 
#include "sys/psw.h" 
#include "sys/pcb.h" 

#endif 

#include "sys/stream.h" 

Loop-Around Driver 

Module(s) 
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#include "sys/stropts.h" 

#include "sys/dir.h" 
#include "sys/signal.h" 

#include "sys/user.h" 

#include "sys/exzno.h" 

static struct lIDdule_info minfo = { 
0, "loop", 0, INFPSZ, 512, 128 

} ; 

continued 

static int loopopen( ), loopclose( ), lC>OpW}::Ut( ), loopwsrv( ), looprsrv( ); 

static struct qinit rinit = { 
NULL, looprsrv, loopopen, loopclose, NULL, &minfo, NULL 

} ; 

static st:ruct qinit winit = { 
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL 

}; 

st:ruct streamtab loopinfo = { &rinit, &'winit, NULL, NULL }; 

st:ruct loop { 

queue_t *qptr; /* back pointer to write queue */ 
queue_t *oqptr; /* pointer to cannected read queue */ 

} ; 

#define IOOP_SEl' ( ( '1' «8) 11) 

exte:rn struct loop loop_loop[ ]; 
exte:rn int loop_cnt; 

/* should be in a .h file */ 

A config file to configure the loop driver is shown in Appendix E. The 
loop structure contains the interconnection information for a pair of Streams. 
loop_loop is indexed by the minor device number. When a Stream is opened 
to the driver, the address of the corresponding loop_loop element is placed in 
q_ptr (private data structure pointer) of the read and write side queue_ts. 
Since STREAMS clears q_ptr when the queue_t is allocated, a NULL value of 
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q_ptr indicates an initial open. loop_loop is used to verify that this Stream is 
connected to another open Stream. 

The open procedure includes canonical clone processing which enables a 
single file system node to yield a new minor devicejinode each time the 
driver is opened: 

static int loopopen(q, dev, flag, sflag) 

queue_t *q; 
{ 

struct loop *loop; 

/* 

* If c:ra.JEDFEN, pick a minor device IlllIIiler to use. 

* otherwise, check the minor device range. 
*/ 

if (sflag == cram>PEN) { 

for (dev = 0; dev < loop_CIlt; dev++) 
if (loop_loop[dev].qptr == NULL) 

break; 

else 
dev = minor ( dev) ; 

if (dev >= loop_CIlt) 

return OPENFAIL; /* default = ENXIO */ 

/* Setup data structures * / 

if (q-><LPtr) /* already open */ 

return dev; 

loop = &loop_loop[dev]; 
WR(q)-><LPtr = (char *) loop; 

q-><LPtr = (char *) loop; 
loop->qptr = WR( q) ; 

/* 
* 'll1e return value is the minor device. 
* Fbr cram>PEN case, this will be used for 
* newly allocated :inode 
*/ 

return dev; 
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In loopopen, sflag can be CLONE OPEN, indicating that the driver should 
pick a minor device (Le., the user does not care which minor'device is used). 
In this case, the driver scans its private loop_loop data structure to find an 
unused minor device number. If sflag has not been set to CLONE OPEN, the 
passed-in minor device is used. 

The return value is the minor device number. In the CLONEOPEN case, 
this value will be used by the clone driver for the newly allocated inode and 
will then be passed to the user. 

Write Put Procedure 

Since the messages are switched to the read QUEUE following the other 
Stream's read side, the driver needs a put procedure only on its write side: 

static int loopwplt(q, mp) 

queu.e_ t *q; 

mb:I:IL t *nip; 

{ 

register struct loop *loop; 

loop = (struct loop *)q->CL.Ptr; 

struct iocblk *iocp; 
int error; 

iocp = (struct iocblk *)mp->b_rptr; 

switch (iocp->ioc_cmi) { 
case IOOP _SET: { 

int to; /* ot:hI;lr minor device */ 

/* 
* Sanity check. ioc_count contains the am:nmt of 
* user supplied data which must equal the size of an int. 
*/ 

if (iocp->ioc_COIll1t 1= sizeof(int» 
error = EINVAL; 
goto iocnak; 
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continued 

/* fetch other dev fran 2nd message block * / 

/* 
* M:lre sanity checks. '!he minor nust be in range, open already. 
* Also, this device and the other one IIllSt be discarmected. 
*/ 

if (to >= loop_cnt II to < 0 II 1l00p_l00p[to] .qptr) { 

err= = ENXIO; 

goto iocnak; 

if (loop->oqptr II loop_loop[to] .oqptr) { 

err= = EBUSY; 

goto iocnak; 

/* 
* Cross oarmect streams via the loop structures 
*/ 

loop->oqptr = RD(loop_loop[to] .qptr); 
loop_loop[to].oqptr = RD(q); 

/* 

* Retuzn successful ioctl. Set ioc_count 

* to zero, since there is retuzn ro data. 

*/ 

mp->b_datap->db_type = M_IOCACK; 
iocp->ioc_count = p; 
qreply(q, lIP); 
break; 

default: 

err= = EINVAL; 

iocnak: 
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1* 
* Bad ioctl. Setting ioc_error causes the 
* ioctl call to retmn that particular ermo. 
* By default, ioctl will ret:mn EINVAL on failure 

*1 
mp->b_datap->db_type = M_IOCNAK; 
iocp->ioc_error = error; 1* set ret:mned ernJO *1 
qreply(q, mp); 

break; 

continued 

loopwput shows another use of an I-ISTR ioctl call (see the section titled 
"Driver and Module Ioctls" in Chapter 9). The driver supports a LOOP_SET 
value of ioc_cmd in the iocblk of the M-IOCTL message. LOOP_SET 
instructs the driver to connect the current open Stream to the Stream indicated 
in the message. The second block of the IM_IOCTL message holds an 
integer that specifies the minor device number of the Stream to connect to. 

The driver performs several sanity checks: Does the second block have 
the proper amount of data? Is the "to" device in range? Is the "to" device 
open? Is the current Stream disconnected? Is the "to" Stream disconnected? 

If everything checks out, the read queue_t pointers for the two Streams 
are stored in the respective oqptr fields. This cross-connects the two Streams 
indirectly, via loop_loop. 

Canonical flush handling is incorporated in the put procedure: 
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case M_FLUSH: 
if (*Irp->b_rptr & FLUSHW) 

flushq(q, 0); 

if (*Irp->b_rptr & FLUSHR) 

flushq(RD(q), 0); 

*Irp->b_rptr &= -FLUSHW; 

qreply(q, mp); 

} else 
freemsg(mp) ; 

break; 

defauJ.t: 
/* 

Loop-Around Driver 

* If this stream isn't cannected, send an M_ERROR upstream. 
*/ 

if (loop->cqptr == NULL) { 
putctl1 (RD(q)->~next, M_ERROR, mxrO); 

freemsg(mp) ; 

break; 

putq(q, mp); 

Finally, loopwput enqueues all other messages (e.g., ~DATA or ~PROTO) 
for processing by its service procedure. A check is made to see if the Stream 
is connected. If not, an M_ERROR is sent upstream to the Stream head (see 
below). 

putct11 and putctl (see below) are utilities that allocate a non-data (Le., 
not M_DATA, ~ROTO, or MJCPROTO) type message; place one byte in 
the message (for putctll) and call the put procedure of the specified QUEUE 
(see Appendix C). 
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Stream Head Messages 

Certain message types (see Appendix B) can be sent upstream by drivers 
and modules to the Stri:!am head where they are translated into actions detect
~ble by user process(es). The messages may also modify the state of the 
Stream head: 

MJ:RROR 

MJfANGUP 

Causes the Stream head to lock up .. Message transmis
sion between Stream and user processes is terminated. 
All subsequent system calls except close(2) and pol1(2) 
will fail. Also causes an M-FLUSH clearing all mes
sage queues to be sent downstream by the Stream head. 

Terminates input from a user process to the Stream. All 
subsequent system calls that would send messages 
downstream will fail. Once the Stream head read mes
sage queue is empty, EOF is returned on reads. Can 
also result in SIGHUP signal to the process group. 

M_SIG/M_PCSIGCauses a spec::ified signal to be sent to a process (see 
Chapter 13). 

Service Procedures 

Service procedures are required on both thi:! write and read sides for pur
poses of flow control: 
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static int loopwsrv(q) 
register queue _ t *q; 

mblk _ t "nl:>; 
register struct loop *loop; 

loop = (struct loop *)q->qytr; 

while ((mp = getq(q)) != NULL) { 

/* 

* Check if we can put the message up the other stream read queue 

*/ 

if (mp->b_datap->db_type <= QPCTL && !canput(loop->oqptr-><Lnext)) 

putbq(q, mp); /* read side is blocked */ 
break; 

/* send message */ 

putnext(loop->oqptr, mp); /* To queue following other stream read queue * 

static int looprsrv(q) 
queue_t *q; 

/* Enter only when "back enabled" by flow control */ 

struct loop *loop; 

loop = (struct loop *)q-><LPU; 
if (loop->oqptr == NULL) 

return; 

/* manually enable write service procedure */ 

qenable(WR(loop->oqptr)); 
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The write service procedure, loopwsrv, takes on the canonical form (see 
Chapter 8) with a difference. The QUEUE being written to is not down
stream, but upstream (found via oqptr) on the other Stream. 

In this case, there is no read side put procedure so the read service pro
cedure, looprsrv, is not scheduled by an associated put procedure, as has been 
done previously. looprsrv is scheduled only by being back-enabled when its 
upstream becomes unstuck from flow control blockage. The purpose of the 
procedure is to re-enable the writer (loopwsrv) by using oqptr to find the 
related queue_to loopwsrv cannot be directly back-enabled by STREAMS 
because there is no direct queue_t linkage between the two Streams. Note 
that no message ever gets queued to the read service procedure. Messages are 
kept on the write side so that flow control can propagate up to the Stream 
head. There is a defensive check to see if the cross-connect has broken. qen
able schedules the write side of the other Stream. 
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Close 
loopclose breaks the connection between the Streams. 

static int loopclose(q) 
queue_t *q; 

{ 

register struct loop *loop; 

loop = (struct loop *)q->qJJtr; 

loop->qptr = NULL; 

/* 
* If we are oannected to another stream, break the 

* linkage, and send a hangup message. 
* '!he hangup message causes the stream head to fail writes, 
* allow the queued data to be read cx:mpletely, and then 

* retunJ. IDF an subsequent reads. 
*/ 

if (loop->oqptr) { 

«struct loop *)loop->oqptr->qJJtr)->qptr = NULL; 

«struct loop *)loop->oqptr->qJJtr)->oqptr = NULL; 

putctl (loop->oqptr-><L next, !L H.AlGJP) ; 

loop->oqptr = NULL; 

loopclose sends an M-HANGUP message (see above) up the connected 
Stream to the Stream head. 

This driver can be implemented much more cleanly by actually linking the 
q_next pointers of the queue_t pairs of the two Streams. 
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Multiplexing Configurations 

This chapter describes how STREAMS multiplexing configurations are 
created and discusses multiplexing drivers. A STREAMS multiplexer is a 
pseudo-driver with multiple Streams connected to it. The primary function of 
the driver is to switch messages among the connected Streams. Multiplexer 
configurations are created from user level by system calls. Chapter 6 of the 
Primer contains the required introduction to STREAMS multiplexing. 

STREAMS related system calls are used to set up the "plumbing," or 
Stream interconnections, for multiplexing pseudo-drivers. The subset of these 
calls that allows a user to connect (and disconnect) Streams below a pseudo
driver is referred to as the multiplexing facility. This type of connection will 
be referred to as a 1-to-M, or lower, multiplexer configuration (see Figure 6-2 
in the Primer). This configuration must always contain a multiplexing 
pseudo-driver, which is recognized by STREAMS as having special charac
teristics. 

Multiple Streams can be connected above a driver by use of open(2) calls. 
This was done for the loop-around driver of the previous chapter and for the 
driver-handling, multiple minor devices in Chapter 9. There is no difference 
between the connections to these drivers, only the functions performed by the 
driver are different. In the multiplexing case, the driver routes data between 
multiple Streams. In the device driver case, the driver routes data between 
user processes and associated physical ports. Multiplexing with Streams con
nected above will be referred to as an N-to-1, or upper, multiplexer (see Fig
ure 6-1 in the Primer). STREAMS does not provide any facilities beyond open 
and close(2) to connect or disconnect upper Streams for multiplexing pur
poses. 

From the driver's perspective, upper and lower configurations differ only 
in the way they are initially connected to the driver. The implementation 
requirements are the same: route the data and handle flow control. All multi
plexer drivers require special developer-provided software to perform the mul
tiplexing data routing and to handle flow control. STREAMS does not directly 
support flow control among multiple Streams. 

M-to-N multiplexing configurations are implemented by using both of the 
above mechanisms in a driver. Complex multiplexing trees can be created by 
cascading multiplexing Streams below one another. 
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As discussed in Chapter 9, the multiple Streams that represent minor dev
ices are actually distinct Streams in which the driver keeps track of each 
Stream attached to it. The Streams are not really connected to their common 
driver. The same is true for STREAMS multiplexers of any configuration. 
The multiplexed Streams are distinct and the driver must be implemented to 
do most of the work. As stated above, the only difference between configura
tions is the manner of connecting and disconnecting. Only lower connections 
have use of the multiplexing facility. 

Connecting Lower Streams 
A lower multiplexer is connected as follows: The initial open to a multi

plexing driver creates a Stream, as in any other driver. As usuat open uses 
the first two streamtab structure entries (see the section titled" Opening a 
Stream," in Chapter 5) to create the driver QUEUEs. At this point, the only 
distinguishing characteristic of this Stream are non-NULL entries in the 
streamtab sLmux[rw]init (mux) fields: 

stxuct streamtab { 
stxuct qinit *st_rdinit; /* defines read QUEUE */ 
stxuct qinit *st_wrinit; /* defines write QUEUE */ 
stxuct qinit *st_nruxrinit; /* f= rm.lltiplexing drivers only */ 
stxuct qinit *st_muxwinit; /* f= rm.lltiplexing drivers only */ 

} ; 

These fields are ignored by the open (see the rightmost Stream in Figure 
11-1). Any other Stream subsequently opened to this driver will have the 
same streamtab and thereby the same mux fields. 

Next, another file is opened to create a (soon to be) lower Stream. The 
driver for the lower Stream is typically a device driver (see the leftmost 
Stream in Figure 11-1). This Stream has no distinguishing characteristics. It 
can include any driver compatible with the multiplexer. Any modules 
required on the lower Stream must be pushed onto it now. 

Next, this lower Stream is connected below the multiplexing driver with 
an LLINK ioctl call [see streamio(7)). As shown in Figure 5-1, all Stream 
components are constructed in a similar manner. The Stream head points to 
the stream-head-routines as its procedures (known via its queue_t). An 
LLINK to the upper Stream, referencing the lower Stream, causes STREAMS 
to modify the contents of the Stream head in the lower Stream. The pointers 
to the stream-he ad-routines, and other values, in the Stream head .are replaced 
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with those contained in the mux fields of the multiplexing driver's streamtab. 
Changing the stream-head-routines on the lower Stream means that all subse
quent messages sent upstream by the lower Stream's driver will, ultimately, be 
passed to the put procedure designated in sLmuxrinit, the multiplexing driver. 
The LLINK also establishes this upper Stream as the control Stream for this 
lower Stream. STREAMS remembers the relationship between these two 
Streams until the upper Stream is closed, or the lower Stream is unlinked. 

Finally, the Stream head sends to the multiplexing driver an M-IOCTL 
message with ioc_cmd set to LLINK (see discussions of the iocblk structure 
in Chapter 9 and Appendix A). The M_DATA part of the M-IOCTL contains 
a linkblk structure: 

struct linkblk { 

int 
} ; 

*l_qtop; 
*l_qbot; 
I_index; 

/* lowest level write queue of upper stream */ 

/* highest level write queue of lc:Mer stream */ 

/* system-unique :index f= lc:Mer stream. */ 

The multiplexing driver stores information from the linkblk in private storage 
and returns an M-IOCACK message (ack). Lindex is returned to the process 
requesting the LLINK. This value can be used later by the process to discon
nect this Stream, as described below. linkblk contents are further discussed 
below. 

An I_LINK is required for each lower Stream connected to the driver. 
Additional upper Streams can be connected to the multiplexing driver by open 
calls. Any message type can be sent from a lower Stream to user process(es) 
along any of the upper Streams. The upper Stream(s) provides the only inter
face between the user process(es) and the multiplexer. 

Note that no direct data structure linkage is established for the linked 
Streams. The q_next pointers of the lower Stream still appear to connect with 
a Stream head. Messages flowing upstream from a lower driver (a device 
driver or another multiplexer) will enter the multiplexing driver (Le., Stream 
head) put procedure with Lqbot as the queue_t value. The multiplexing 
driver has to route the messages to the appropriate upper (or lower) Stream. 
Similarly, a message coming downstream from user space on the control, or 
any other, upper Stream has to be processed and routed, if required, by the 
driver. 
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Also note that the lower Stream (see the headers and file descriptors in 
Figure 11-2) is no longer accessible from user space. This causes all system 
calls to the lower Stream to return EINV AL, with the exception of close. This 
is why all modules have to be in place before the lower Stream is linked to 
the multiplexing driver. As a general rule, the lower Stream file should be 
closed after it is linked (see following section). This does not disturb the mul
tiplexing configuration. 

Finally, note that the absence of direct linkage between the upper and 
lower Streams means that STREAMS flow control has to be handled by spe
cial code in the multiplexing driver. The flow control mechanism cannot see 
across the driver. 

In general, multiplexing drivers should be implemented so that new 
Streams can be dynamically connected to, and existing Streams disconnected 
from, the driver without interfering with its ongoing operation. The number 
of Streams that can be connected to a multiplexer is developer-dependent. 
However, there is a system limit, NMUXLINK (see Appendix E), to the 
number of Streams that can be linked in the system. 

Disconnecting Lower Streams 

Dismantling a lower multiplexer is accomplished by disconnecting (unlink
ing) the lower Streams. Unlinking can be initiated in three ways: an 
LUNLINK ioctl referencing a specific Stream, an LUNLINK indicating all 
lower Streams, or the last close (i.e., causes the associated file to be closed) of 
the control Stream. As in the link, an unlink sends a linkblk structure to the 
driver in an M-IOCTL message. The LUNLINK call, which unlinks a single 
Stream, uses the Lindex value returned in the LLINK to specify the lower 
Stream to be unlinked. The latter two calls must designate a file correspond
ing to a control Stream which causes all the lower Streams that were previ
ously linked by this control Stream to be unlinked. However, the driver sees 
a series of individual unlinks. 

If the file descriptor for a lower Stream was previously closed, a subse
quent unlink will automatically close the Stream. Otherwise, the lower 
Stream must be closed by close following the unlink. STREAMS will 
automatically dismantle all cascaded multiplexers (below other multiplexing 
Streams) if their controlling Stream is closed. An I_UNLINK will leave lower, 
cascaded multiplexing Streams intact unless the Stream file descriptor was 
previously closed. 
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This section describes an example of multiplexer construction and usage. 
A multiplexing configuration similar to the Internet of Figure 6-2 in the Primer 
is discussed. Figure 11-1 shows the Streams before their connection to create 
the multiplexing configuration of Figure 11-2. Multiple upper and lower 
Streams interface to the multiplexer driver. The user processes of Figure 11-2 
are not shown in Figure 11-1. 

r-----------------------------~---------------------, 
, Setup and Supervisory Process , , , 
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802.2 
Driver 

Figure 11-1: Internet Multiplexer Before Connecting 
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The Ethernet, LAPB, and IEEE 802.2 device drivers terminate links to other 
nodes. IP (Internet Protocol) is a multiplexer driver. IP switches datagrams 
among the various nodes or sends them upstream to a user(s) in the system. 
The Net modules would typically provide a convergence function which 
matches the IP and device driver interface. 
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Figure 11-1 depicts only a portion of the full, larger Stream. As shown in 
the dotted rectangle above the IP multiplexer, there generally would be an 
upper TCP multiplexer, additional modules and, possibly, additional multi
plexers in the Stream. Multiplexers could also be cascaded below the IP 
driver if the device drivers were replaced by multiplexer drivers. 

r---------------------------, U 
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Process I rocesses _______________ 1 _____ 6 __________ _ 

QUEU~ Pair 

........ ~ ....... . 
fds 

..... '1\ 1\ '1\' ..... 
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. Upper 
: Multiplexer or 
: Module 

Internet Protocol 
Multiplexer Driver 

Figure 11-2: Internet Multiplexer After Connecting 
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Streams A, B, and C are opened by the process, and modules are pushed 
as needed. Two upper Streams are opened to the IP multiplexer. The right
most Stream represents multiple Streams, each connected to a process using 
the network. The Stream second from the right provides a direct path to the 
multiplexer for supervisory functions. It is the control Stream, leading to a 
process which sets up and supervises this configuration. It is always directly 
connected to the IP driver. Although not shown, modules can be pushed on 
the control Stream. 

After the Streams are opened, the supervisory process typically transfers 
routing information to the IP drivers (and any other multiplexers above the 
IP), and initializes the links. As each link becomes operational, its Stream is 
connected below the IP driver. If a more complex multiplexing configuration 
is required, the IP multiplexer Stream with all its connected links can be con
nected below another multiplexer driver. 

As shown in Figure 11-2, the file descriptors for the lower device driver 
Streams are left dangling. The primary purpose in creating these Streams was 
to provide parts for the multiplexer. Those not used for control and not 
required for error recovery (by reconnecting them through an LUNLINK 
ioctl) have no further function. As stated above, these lower Streams can be 
closed to free the file descriptor without any effect on the multiplexer. A 
setup process installing a configuration containing a large number of drivers 
should do this to avoid running out of file descriptors. 
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This section contains an example of a multiplexing driver that implements 
an N-to-l configuration, similar to that of Figure 6-3 in the Primer. This con
figuration might be used for terminal windows, where each transmission to or 
from the terminal identifies the window. This resembles a typical device 
driver, with two differences: the device handling functions are performed by 
a separate driver, connected as a lower Stream, and the device information 
(Le., relevant user process) is contained in the input data rather than in an 
interrupt call. 

Each upper Stream is connected by an open(2), identical to the driver of 
Chapter 9. A single lower Stream is opened and then it is linked by use of 
the multiplexing facility. This lower Stream might connect to the tty driver. 
The implementation of this example is a foundation for an M to N multi
plexer. 

As in the loop-around driver, flow control requires the use of standard 
and special code, since physical corinectivity among the Streams is broken at 
the driver. Different approaches are used for flow control on the lower 
Stream, for messages coming upstream from the device driver, and on the 
upper Streams, for messages coming downstream from the user processes. 

The multiplexer declarations are: 
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#include "sys/types.h" 
#include "sys/param.h" 

#include "sys/sysmac:ros. h" 

#include "sys/stream.h" 
#include "sys/stropts.h" 
#include "sys/errno.h" 

static int InUXOpE!Il{ ), ImlXClose{ ), IIIIlXUWplt{ ), llIlXlws:tV{ ), IIIlX1xput( ); 

static struct m:rlule _ info info = 
0, "IlI\lX", 0, INFPSZ, 512, 128 

} ; 
static struct qinit urinit = 1* upper read *1 

NOLL, NOLL, mJXOpeIl, IlIlXClose, NOLL, &info, NOLL 

} ; 
static struct qinit uwinit = { 1* upper write *1 

IIIIlXUWplt, NOLL, NOLL, NOLL, NOLL, &info, NOLL 

} ; 
static struct qinit lrinit = { 1* lower read *1 

nuxlrpIt, NOLL, NOLL, NOLL, NOLL, &info, NOLL 

} ; 
static struct qinit lwinit = { 1* lower write *1 

NOLL, llIlXlws:rv, NOLL, NOLL, NOLL, &info, NOLL 

} ; 

struct streamtab IlIIlXinfo = { &urinit, &uwinit, &lrinit, &lwinit }; 

struct IlI\lX { 

queue_t *qptr; 1* back pointer to read queue *1 
} ; 

extern struct mux IlI\lX _ IlI\lX[ l; 
extern int IIIDU::rlt; 

1* linked lower queue *1 
1* set if error of hangup an lower stream *1 
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The four stream tab entries correspond to the upper read, upper write, 
lower read, and lower write qinit structures. The multiplexing qinit struc
tures replace those in each (in this case there is only one) lower Stream head 
after the LLINK has completed successfully. In a multiplexing configuration, 
the processing performed by the multiplexing driver can be partitioned 
between the upper and lower QUEUEs. There must be an upper Stream 
write, and lower Stream read, put procedures. In general, only upper write 
side and lower read side procedures are used. Application specific flow con
trol requirements might modify this. If the QUEUE procedures of the opposite 
upper/lower QUEUE are not needed, the QUEUE can be skipped over, and 
the message put to the following QUEUE. 

In the example, the upper read side procedures are not used. The lower 
Stream read QUEUE put procedure transfers the message directly to the read 
QUEUE upstream from the multiplexer. There is no lower write put pro
cedure because the upper write put procedure directly feeds the lower write 
service procedure, as described below. 

The driver uses a private data structure, mux. mux-mux[dev] points back 
to the opened upper read QUEUE. This is used to route messages coming 
upstream from the driver to the appropriate upper QUEUE. It is also used to 
find a free minor device for a CLONE OPEN driver open case. 

The upper QUEUE open contains the canonical driver open code: 
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static int nmcope:n(q, dev, flag, sflag) 
queue_t *q; 
{ 

struct IIDlX *twx; 

if (sflag == CLaiEOPEN) 

else 

f= (dev = 0; dev < lIDlX_cnt; dev++) 
if (1IILlX_IIDlX[dev].qptr == 0) 

break; 

dev = minor ( dev) ; 

if (dev >= Il11lX_cnt) 

return OPENFAIL; 

nux = &mux_nux[dev]; 
nux->qptr = q; 
q->ct..Ptr = (char *) nux; 
WR(q)->qJrt:r = (char *) 1IILlX; 

return dev; 

Multiplexing Driver 

muxopen checks for a clone or ordinary open call. It loads q_ptr to point 
at the mux_mux[] structure. 

The core multiplexer processing is the following: downstream data writ
ten to an upper Stream is queued on the corresponding upper write message 
queue. This allows flow control to propagate towards the Stream head for 
each upper Stream. However, there is no service procedure on the upper 
write side. All M-DATA messages from all the upper message queues are 
ultimately dequeued by the service procedure on the lower (linked) write side. 
The upper write Streams are serviced in a round-robin fashion by the lower 
write service procedure. A lower write service procedure, rather than a write 
put procedure, is used so that flow control, coming up from the driver below, 
may be handled. 
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On the lower read side, data coming up the lower Stream is passed to the 
lower read put procedure. The procedure routes the data to an upper Stream 
based on the first byte of the message. This byte holds the minor device 
number of an upper Stream. The put procedure handles flow control by test
ing the upper Stream at the first upper read QUEUE beyond the driver. That 
is, the put procedure treats the Stream component above the driver as the next 
QUEUE. 

Multiplexer Routines 

Figure 11-3: Example Multiplexer Configuration 

This is shown (sort of) in Figure 11-3. Multiplexer Routines are all the above 
procedures. Ul and U2 are queue_t pairs, each including a write queue_t 
pointed at by an Lqtop in a linkblk (see beginning of this chapter). L is the 
queue_t pair which contains the write queue_t pointed at by Lqbot. Nt and 
N2 are the modules (or Stream head or another multiplexing driver) seen by L 
when read side messages (He sent upstream. 

Upper Write Put Procedure 
The upper QUEUE write put procedure, muxuwput, traps ioctls, in particu

lar LLINK and LUNLINK: 
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static int IIIlXIlWplt(q, mp) 

queue_t *q; 

mblk_t *mp; 

int s; 
struct IIUlX *mwt; 

IIIlX = (St:ruct: IlI.lX *)q->qytr; 
switch (np->b_datap->db_type) 

case M_IOCTL: { 
st:ruct: iocblk *iocp; 
st:ruct: linkblk *linkp; 

/* 

* Ioctl. O:lly channel 0 can do ioctls. Two 

* calls are recognized: LINK, and UNLINK 

*/ 

if (1lI.lX ! = IlI.lX _1IUlX) 

goto iocnak; 

iocp = (struct iocblk *) np->bJptr; 
switch (iocp->iOC_cml) { 

case I_LINK: 

/* 

* Link. The data ciontains a linkblk structure 
* Remeltiler the bottan queue in IIIIlXbot. 

*/ 

if (IlIlXbot != NULL) 

g6t:o iocnak; 
linkp = (struct linkblk *) np->b_oont->b_i:ptr; 

IIIIlXbot = linkp->l_qbot; 

IIIlXE!rr = 0; 
np->b_datap->db_type = M_IOCACK; 
iocp->iOc_oount = 0; 

qreply(q, mp); 

break; 
case I_UNLINK: 

Multiplexing Driver 

MULTIPLEXING 11-13 



Multiplexing Driver 

1* 
* Unlink. The data contains a linkblk structure. 
* Should not fail an unlink. Null out muxbot. 

*1 

linkp = (struct linkblk *) ~>b_cont->b_rptr; 

IIIlXbot = NULL; 
~>b_datap->db_type = M_IOCACK; 
iocp->ioc_COUIlt = 0; 
qreply(q, mp); 
break; 

default: 
iocnak: 

1* fail ioctl *1 

~>b_datap->db_type = M_IOCNAK; 
qreply(q, mp); 

break; 

continued 

First, there is a check to enforce that the Stream associated with minor 
device 0 will be the single, controlling Stream. loctls are only accepted on this 
Stream. As described previously, a controlling Stream is the one that issues 
the LLINK. Having a single control Stream is a recommended practice. 
LLINK and LUNLINK include a linkblk structure, described previously, 
containing: 

Lqtop The upper write QUEUE from which the ioctl is coming. It 
should always equal q. 
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Lqbot The new lower write QUEUE. It is the former Stream head write 
QUEUE. It is of most interest since that is where the multiplexer 
gets and puts its data. 

Lindex A unique (system wide) identifier for the link. It can be used for 
routing, or during selective unlinks, as described above. Since 
the example only supports a single link, Lindex is not used. 

For LLINK, Lqbot is saved in muxbot and an ack is generated. From this 
point on, until an LUNLINK occurs, data from upper queues will be routed 
through muxbot. Note that when an LLINK, is received, the lower Stream 
has already been connected. This allows the driver to send messages down
stream to perform any initialization functions. Returning an ~IOCNAK 
message (nak) in response to an I_LINK will cause the lower Stream to be 
disconnected. 

The LUNLINK handling code nulls out muxbot and generates an ack. A 
nak should not be returned to an LUNLINK. The Stream head assures that 
the lower Stream is connected to a multiplexer before sending an LUNLINK 
~IOCTL. 

muxuwput handles MJLUSH messages as a normal driver would: 

case M_FLUSH: 

if ("mp->b]ptr &. FLUSHW) 

flushq(q, FLUSlIDATA); 

if (*np->b]ptr &. FLUSHR) 

flushq(RD(q), FLUSlIDATA); 

"mp->b_rptr &.= -FLUSHW; 

qreply(q, mp); 
} else 

freemsg(mp) ; 

break; 

/* 
* Data. If we have no bottan queue --> fail 

* Otherwise, queue the data, and invoke the lower 

* service procedure. 
*/ 

if (IllIlXerr II III.lXbot == NULL) 
goto bad; 
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continued 

putq(q, ~); /* place message on upper write message queue */ 

qenable(lIIIlXbot) ; /* lower sezvice write procedure */ 
break; 

default: 
bad: 

/* 

* Send an error message upstream. 
*/ 

mp->b_datap->db_type = M_ERROR; 

mp->b_rptr = mp->b_wptr = mp->b_datap->~se; 
*mp->b_wp"tr++ = EINVAL; 

qreply(q, ~); 

M_DATA messages are not placed on the lower write message queue. 
They are queued on the upper write message queue. putq recognizes the 
absence of the upper service procedure and does not schedule the QUEUE. 
Then, the lower service procedure, muxlwsrv is scheduled with qenable (see 
Appendix C) to start output. This is similar to starting output on a device 
driver. Note that muxuwput cannot access muxlwsrv (the lower QUEUE write 
service procedure, contained in muxbot) by the conventional STREAMS calls, 
putq or putnext (to a muxlwput). Both calls require that a message be passed, 
but the messages remain on the upper Stream. 

Lower QUEUE Write Service Procedure 

The lower (linked) queue write service procedure muxlwsrv, is scheduled 
directly from the upper service procedures. It is also scheduled from the 
lower Stream, by being back-enabled when the lower Stream becomes 
unblocked from downstream flow control. 

11-16 STREAMS PROGRAMMER'S GUIDE 



Multiplexing Driver 

static int muxlwsrv(q) 
register queue _ t *q; 
{ 

register mblk_t *nq:l, *bp; 

register queue_ t *nq; 

1* 
* While lower stream is not blocked, find an upper queue to 
* service (get_next_q) and send one message fran it downstream. 

*1 
while (canput(q->~next» 

nq = get_next_q( ); 

if (nq == NULL) 

break; 
rrp = getq(nq); 

1* 
* Prepend the outgoing message with a single byte header 

* that indicates the minor device rnmtler it came fran. 
*1 

if ((bp = allocb( 1, BPRI_MED» == NULL) { 
printf("mllx: allocb failed (size 1)'\n"); 
freemsg(rrp) ; 
continue; 

*bp->b_wptr++ = (struct mux *)rq->qJrt:r - mux_m.lX; 

bp->b_cont = rrp; 
put:next( q, bp); 

muxlwsrv takes data from the upper queues and puts it out through mux
bot. The algorithm used is simple round robin. While we can put to 
muxbot->~next, we select an upper QUEUE (via geLnexLq) and move a 
message from it to muxbot. Each message is prepended by a one-byte header 
that indicates which upper Stream it came from. 
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Finding messages on upper write queues is handled by geLnexLq: 

/* 

* Round-robin scheduling. 
* Return next upper queue that needs servicing. 

* Returns NULL when no nore IIIOrk needs to be done. 
*/ 

static queue_t * 
get_next_q( ) 

{ 

static int next; 

int i, start; 
register queue_ t *q; 

start = next; 
for (i = next; i < IIIlX_cnt; i++) 

if (q = It\IllUlUlX[iJ .qptr) 
q = WR(q); 

if (q->Cl...Jirst) 
next = i+1; 

retunl q; 

for (i = 0; i < start; i++) 

if (q = mux_muK[iJ.qptr) 
q=WR(q); 

if (q->qJirst) 
next = i+1; 
retunl q; 

return NULL; 
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geLnexL.q searches the upper queues in a round-robin fashion looking for 
the first one containing a message. It returns the queue_t pointer or NULL if 
there is no work to do. 

Lower Read Put Procedure 

The lower (linked) queue read put procedure is: 

static int IIIlX1rput(q, mp) 
queue_t *q; 

IIi:llk_t *mp; 

{ 

queue _t *uq; 

nt>lk_t *b_cant; 
int dev; 

switch(mp->b_datap->db_ type) 

case M_FLUSH: 

1* 
* Flush queues. N)TE: sense of tests is reversed 
* since we are acting like a "stream head" 
*1 

if (*mp->b_rptr &. FLUSHR) 

flushq(q, 0); 

if (*mp->b_ rptr &. FLUSHW) 

*mp->b_rptr &.= -FLUSHR; 

qreply(q, mp); 

} else 

freemsg(mp) ; 

break; 

case M_ERROR: 

case M_HAN;UP: 

IlIlDCerr = 1; 
freemsg(mp) ; 

break; 

MULTIPLEXING 11-19 



Multiplexing Driver 

11-20 

/* 
* Ralte message. First byte indicates 

* device to send to. No flow oontrol. 

* 

continued 

* Extract and delete device IlllIIIber. If the leading block is 

* rOt1 e:rpt;y and more blocks follow, strip the leading block. 
* The stream head interprets a leading zero length block 
* as an EOF regardless of what follows (sigh). 

*1 

dev = *mp->b_rptr++; 

if (np->b_rptr == np->b_wptr && (b_oont = np->b_oont» 

freeb(np); 

np = b_oant; 

/* Sanity check. Device IllllSt be in range */ 

if (dev < 0 II dev >= lIlDU::nt) 

freemsg(np) ; 

break; 

1* 
* If upper stream is open and n:>t backed up, 
* send the message there, otherwise discard it. 
*/ 

uq = IIIIDLlIIlX[ dev] .qptr; 
if (uq 1= NULL && canput(uq-><Lnext» 

putnext(uq, np); 

else 
freemsg(np) ; 

break; 
default: 

freemsg(np) ; 
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muxlrput receives messages from the linked Stream. In this case, it is act
ing as a Stream head. It handles M-FLUSH messages. Note the code is 
reversed from that of a driver, handling M-FLUSH messages from upstream. 

muxlrput also handles M_ERROR and M-HANGUP messages. If one is 
received, it locks up the upper Streams. 

M-DATA messages are routed by looking at the first data byte of the 
message. This byte contains the minor device of the upper Stream. If remov
ing this byte causes the leading block to be empty, and more blocks follow, 
the block is discarded. This is done because the Stream head interprets a 
leading zero length block as an EOF [see read(2)]. Several sanity checks are 
made: Does the message have at least one byte? Is the device in range? Is 
the upper Stream open? Is the upper Stream not full? 

This mux does not do end-to-end flow control. It is merely a router (like 
the Department of Defense's IP protocol). If everything checks out, the mes
sage is put to the proper upper QUEUE. Otherwise, the message is silently 
discarded. 

The upper Stream close routine simply clears the mux entry so this queue 
will no longer be found by geLnexLqueue: 

/* 

* Upper queue close 

*/ 
static int IIIllXclose(q) 

queue_t *q; 
{ 

«struct IIIllX *)q->q....Ptr)->qptr = NULL; 
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Definition 

STREAMS provides the means to implement a service interface between 
any two components in a Stream, and between a user process and the top
most module in the Stream. A service interface is defined at the boundary 
between a service user and a service provider (see Figure 4-2). A service 
interface is a set of primitives and the rules for the allowable sequences of 
primitives across the boundary. These rules are typically represented by a 
state machine. In STREAMS, the service user and provider are implemented 
in a module, driver, or user process. The primitives are carried bidirectionally 
between a service user and provider in MJROTO and MJCPROTO (gener
ically, PROTO) messages. MJCPROTO is the priority version of 
MJROTO. 

Message Usage 

As described in Appendix B, PROTO messages can be multiblock, with 
the second through last blocks of type M-DATA. The first block in a PROTO 
message contains the control part of the primitive in a form agreed upon by 
the user and provider and the block is not intended to carry protocol headers. 
(Although its use is not recommended, upstream PROTO messages can have 
multiple PROTO blocks at the start of the message. getmsg will compact the 
blocks into a single control part when sending to a user process.) The 
M-DATA block(s) contains any data part associated with the primitive. The 
data part may be processed in a module that receives it, or it may be sent to 
the next Stream component, along with any data generated by the module. 
The contents of PROTO messages and their allowable sequences are deter
mined by the service interface specification. 

PROTO messages can be sent bidirectionally (up and downstream) on a 
Stream and bidirectionally between a Stream and a user process. putmsg(2) 
and getmsg(2) system calls are analogous, respectively, to write(2) and 
read(2) except that the former allow both data and control parts to be 
(separately) passed, and they observe message boundary alignment across the 
user-Stream boundary. putmsg andgetmsg separately copy the control part 
(MJROTO or M-PCPROTO block) and data part (M-DATA blocks) 
between the Stream and user process. 
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An ~CPROTO message is normally used to acknowledge M-PROTO 
messages and not to carry protocol expedited data. M-PCPROTO insures 
that the acknowledgment reaches the service user before any other message. 
If the service user is a user process, the Stream head will only store a single 
M-PCPROTO message, and discard subsequent ~CPROTO messages until 
the first one is read with getmsg(2). 

The following rules pertain to service interfaces: 

• Modules and drivers that support a service interface must act upon all 
PROTO messages and not pass them through. 

• Modules may be inserted between a service user and a service provider 
to manipulate the data part as it passes between them. However, these 
modules may not alter the contents of the control part (PROTO block, 
first message block) nor alter the boundaries of the control or data 
parts. That is, the message blocks comprising the data part may be 
changed, but the message may not be split into separate messages nor 
combined with other messages. 

In addition, modules and drivers must observe the rule that priority messages 
are not subject to flow control and forward them accordingly (e.g., see the 
beginning of modwsrv in Chapter 8). Priority messages also bypass flow con
trol at the user-Stream boundary [see putmsg(2)]. 
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Example 

The example below is part of a module which illustrates the concept of a 
service interface. The module implements a simple datagram interface and 
mirrors the example in Chapter 4. 

Declarations 

The service interface primitives are defined in the declarations: 

#include "sys/types.h" 
#include "sys/param.h" 

#include "sys/stream.h" 
#include "sys/errno.h" 

/* 
* Pr:iroitives initiated by the service user: 
*/ 

#define BIND_RID 1 /* bind request */ 
#define llNI'lDATA_RID 2 /* unitdata request */ 

/* 

* Pr:iroitives initiated by the service provider: 
*/ 

#define a<_i'D.< 

#define ERROILi'D.< 

3 /* bind acknowledgment * / 
4 /* error acknowledgment */ 

#define llNI'lDATA_IND 5 /* unitdata indication */ 

/* 
* The following structures define the fonnat of the 

* stream message block of the above pr:iroitives. 
*/ 

struct bind_req { /* bind request */ 

long PRIM_type; /* always BIND_RID */ 

long BIND _addr; /* addr to bind * / 
} ; 
struct unitdata_req { /* unitdata request */ 

long PRIM_type; /* always llNI'lDATA_REtl */ 

long llEST_addr; /* dest addr */ 

} ; 
struct ok_ack { /* ok acknowledgment */ 

long PRIM_type; /* always a<_i'D.< */ 

} ; 
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struct error_ack { 1* error acknowledgment *1 
lCO] PRIM_type; 1* always EIUOLACK *1 

lCO] UNlX_error; 1* UNlX error code *1 

} ; 
struct unitdata_ind { 1* unitdata indication *1 

lCO] PRIM_type; 1* always UNITDATA_IND *1 

lCO] SRC_addr; 1* SOIlrce addr *1 
} ; 
union primitives { 

lCO] type; 
struct bind_req 

1* union of all primitives *1 

bind_req; 
struct unitdata_req unitdata_req; 
struct ok_ack ok_ack; 
struct error_ack error_ack; 
struct unitdata_ind unitdata_ind; 

} ; 
struct dgproto { 

short: state; 
lCO] addr; 

} ; 

1* structure per minor device *1 
1* =ent provider state *1 

1* net address *1 

1* Provider states *1 

#define IDLE 0 

#define OOUND 

continued 

In general, the MJROTO or M-PCPROTO block is described by a data 
structure containing the service interface information. In this example, union 
primitives is that structure. 

Two commands are recognized by the module: 

BIND-REQ Give this Stream a protocol address, that is, give it a 
name on the network. After a BIND-REQ is com
pleted, datagrams from other senders will find their 
way through the network to this particular Stream. 
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UNITDATA-REQ Send a datagram to the specified address. 

Three messages are generated: 

OLACK 

ERROILACK 

A positive acknowledgment (ack) of BIND_REQ. 

A negative acknowledgment of BIND_REQ. 

UNITDATA-IND A datagram from the network has been received (this 
code is not shown). 

The ack of a BIND_REQ informs the user that the request was syntacti
cally correct (or incorrect if ERROILACK). The receipt of a BIND_REQ is 
acknowledged with an M-PCPROTO to insure that the acknowledgment 
reaches the user before any other message. For example, a UNITDATA-IND 
coulq come through before the bind has completed, and the user would get 
confused. 

The driver uses a per-minor device data structure, dgproto, which contains 
the following: 

state current state of the Stream (endpoint) IDLE or BOUND 

addr network address that has been bound to this Stream 

It is assumed (though not shown) that the module open proc.edure sets the 
write queue q_ptr to point at one of these structures. 

Service Interface Procedure 
The write put procedure is: 

static int protowput(q, mp) 

queue_t *q; 
mblk_t *mp; 

{ 

union priroi tives *proto; 

struct dgproto *dgproto; 
int err; 

dgproto = (struct dgproto *) q->qJJtr; 
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switch (mp->b_datap->db_type) { 

default: 
/* dan't 1.D'lderstand it */ 
mp->b_datap->db_type = M_ERHOR; 

mp->b_rptr = mp->b_wptr = mp->b_datap->db_base; 

*mp->b_wptr++ = EPROl'O; 
qrep1y(q, mp); 

break; 
case ~FLUSH: 

/* standard flush handling goes here .•• * / 
break; 

case M _PRO'lO: 

/* Protocol message -> user request */ 

proto = (union primitives *) mp->b_rptr; 

switch (p:roto->type) { 

default: 

mp->b_datap->db_type = M_ERRDR; 
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base; 

*mp->b_wptr++ = EPROro; 
qreply(q, mp); 

return; 

case BINILRID: 
if (dgproto->state 1= IDLE) 

err = EINVAL; 

goto errar_ack; 

continued 

if (mp->b_wptr - mp->b_rptr != sizeof(struct billlLreq» { 

err = EINVAL; 

goto errar_ack; 

if (err = chkaddr(p:roto->bindJeq.BIND_addr» 

goto errar_ack; 

dgproto->state = OCUND; 

dgproto->addr = p:roto->bind_req.BIND_addr; 

mp->b_datap->db_type = M_PCPROro; 

proto->type = CK_ACI<; 

mp->b_wptr = mp->b_rptr + sizeof(struct ok_ack); 
qrep1y(q, mp); 

break; 
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continued 

error_ack: 

mp->b_datap->db_type = M_PCPROro; 

prote->type = ERROILACK; 

proto->error_ack.tlNlX_error = err; 
mp->b_wptr = mp->b_rptr + sizeof(struct error_ack); 

qreply(q, nq:»; 
break; 

case UNI'lDATA _RID: 

bad: 

if (dgproto->state 1= 1DlND) 

gote bad; 

if (mp->b_wptr - mp->b_rptr 1= sizeof(struct unitdata_req» 

goto bad; 
if (err = chkaddr(proto->unitdata_req.DFST3ddr» 

gote bad; 
if (mp->b_ClOIlt) { 

putq(q, mp->b_ClOIlt); 

1* start device or mux output .•• *1 

break· , 

freemsg (nq:» ; 

break; 

The write put procedure switches on the message type. The only types 
accepted are M-FLUSH and M-PROTO. For M-FLUSH messages, the driver 
will perform the canonical flush handling (not shown). For MJROTO mes
sages, the driver assumes the message block contains a union primitive and 
switches on the type field. Two types are understood: BIND-REQ and 
UNITDATA-REQ. 
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For a BIND-REQ, the current state is checked; it must be IDLE. Next, the 
message size is checked. If it is the correct size, the passed-in address is veri
fied for legc;l.lity by calling chkaddr. If everything checks, the incoming mes
sage is converted into an OLACK and sent upstream. If there was any error, 
the incoming message is converted into an ERROLACK and sent upstream. 

For UNITDATA-REQ, the state is also checked; it must be BOUND. As 
above, the message size and destination address are checked. If there is any 
error, the message is simply discarded. (This action may seem rash, but it is 
in accordance with the interface specification, which is not shown. Another 
specification might call for the generation of a UNITDATA-ERROR indica
tion.) If all is well, the data part of the message, if it exists, is put on the 
queue, and the lower half of the driver is started. 

If the write put procedure receives a message type that it does not under
stand, either a bad b_datap->db_type or bad proto->type, the message is 
converted into an M-ERROR message and sent upstream. 

Another piece of code not shown is the generation of UNITDATA-.lND 
messages. This would normally occur in the device interrupt if this is a 
hardware driver (like STARLAN) or in the lower read put procedure if this is 
a multiplexer. The algorithm is simple: The data part of the message is 
prepended by an M-PROTO message block that contains a unitdata_ind 
structure and sent upstream. 
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Recovering From No Buffers 

The bufcall utility (see Appendix C) is used to recover from an allocb 
failure. The call syntax is as follows: 

bufcall (size, pri, func, arg); 
int size, pri, (*func)(); 
lang arg; 

bufcall will call (*tunc)(arg) when a buffer of size bytes at pri priority is 
available. When tunc is called, it has no user context and must return without 
sleeping. Also, because of interrupt processing, there is no guarantee that 
when tunc is called, a buffer will actually be available (someone else may steal 
it). bufcall returns 1 on success, indicating that the request has been success
fully recorded, or 0 on failure. On a failure return, the requested function will 
never be called. 

~ Care must be taken to avoid deadlock when holding resources while waiting y 'm buf,alI to mil (°func)( • .-g). buf"n ,hould be u.ed ,poringly. 

Two examples are provided. Example one is a device receive interrupt 
handler: 

#include "sys/types.h" 
#include "sys/param.h" 
#include "sys/stream.h" 

dev_r:i.ntr( dev) 

{ 

/* 

/* process incaning message ... */ 

/* allocate new buffer far device * / 
dev_re_load(dev) ; 

* Reload device with a new receive buffer 
*/ 
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if «bp = allocb(DEVBLKSZ, BPRI_MED» == NULL) 
pdntf(Udev: allocb failure (size %d)\nu, DEVBLKSZ); 

/* 

* Allocation failed. Use bufcall to 
* schedule a call to ourself. 
*/ 

(void) bufcall (DEVBLKSZ , BPRI_MED, dev_re_load, dev); 

retw:n; 

/* pass buffer to device ••• */ 

continued 

dev_rintr is called when the device has posted a receive interrupt. The 
code retrieves the data from the device (not shown). dev_rintr must then give 
the device another buffer to fill by a call to dev_re_load, which calls allocb 
with the appropriate buffer size (DEVBLKSZ, definition not shown) and prior
ity. If allocb fails, dev_re_load uses bufcall to call itself when STREAMS 
determines a buffer of the appropriate size and priority is available. 

Since bufcall may fail, there is still a chance that the device may hang. A 
better strategy, in the event bufcall fails, would be to discard the current 
input message and resubmit that buffer to the device. Losing input data is 
generally better than hanging. 

The second example is a write service procedure, mod_wsrv, which needs 
to prepend each output message with a header (similar to the multiplexer 
example of Chapter 11). mod_wsrv illustrates a case for potential deadlock: 
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static int m:rl_wsrv(q) 
queue_t *q; 
{ 

int qenable () ; 
mblk_t *rIi>, *bp; 

while (mp = getq(q» 

1* check f= pri=ity messages and canput ... *1 

1* 
* Allocate a header to prepend to the message. If 
* the allcx:b fails, use bu£call to reschedule ourself. 
*1 
if «bp = allcx:b(HDRSZ, BPRI_MED» == NULL) { 

if (!bu£call(HDRSZ, BPRI_MED, qenable, q» 

1* 

1* 
* The bu£call request has failed. Discard 
* the message and keep running to avoid hanging. 

*1 
freemsg(mp) ; 
continue; 

* Put the message back and exit, _ will be re-enabled later 

*1 
plt:bq(q, mp); 
return; 

1* process message .... *1 

However, if allocb fails, mod_wsrv wants to recover without loss of data 
ands calls bufcall. In this case, the routine passed to bufcall is qenable (see 
below and Appendix C). When a buffer is available (of size HDRSZ, defini
tion not shown), the service procedure will be automatically re-enabled. 
Before exiting, the current message is put back on the queue. This example 
deals with bufcall failure by discarding the current message and continuing in 
the service procedure loop. 
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Streams provides mechanisms to alter the normal queue scheduling pro
cess. putq will not schedule a QUEUE if noenable(q) had been previously 
called for this QUEUE. noenable instructs putq to queue the message when 
called by this QUEUE, but not to schedule the service procedure. no enable 
does not prevent the QUEUE from being scheduled by a flow control back
enable. The inverse of noenable is enableok( q). 

An example of this is driver upstream flow control. Although device 
drivers typically discard input when unable to send it to a user process, 
STREAMS allows driver read side flow control, possibly for handling fem
porary upstream blocks. This is done through a driver read service procedure 
which is disabled during the driver open with noenable. If the driver input 
interrupt routine determines messages can be sent upstream (from canput), it 
sends the message with putnext. Otherwise, it calls putq to queue the mes
sage. The message waits on the message queue (possibly with queue length 
checked when new messages are enqueued by the interrupt routine) until the 
upstream QUEUE becomes unblocked. When the blockage abates, STREAMS 
back-enables the driver read service procedure. The service procedure sends 
the messages upstream using getq and callput, as in Chapter 8. This is simi
lar to looprsrv in Chapter 10 where the service procedure is present only for 
flow control. 

qenable, another flow control utility, allows a module or driver to cause 
one of its QUEUEs, or another module's QUEUEs, to be scheduled. In addi
tion to the usage shown in Chapters 10 and 11, qenable might be used when 
a module or driver wants to delay message processing for some reason. An 
example of this is a buffer module that gathers messages in its message queue 
and forwards them as a single, larger message. This module uses noenable to 
inhibit its service procedure and queues messages with its put procedure until 
a certain byte count or II in queue II time has been reached. When either of 
these conditions is met, the put procedure calls qenable to cause its service 
procedure to run. 

Another example is a communication line discipline module that imple
ments end-to-end (Le., to a remote system) flow control. Outbound data is 
held on the write side message queue until the read side receives a transmit 
window from the remote end of the network. Then, the read side schedules 
the write side service procedure to run. 
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STREAMS allows modules and drivers to cause a signal to be sent to user 

process(es) through an M_SIG or MJCSIG message (see Appendix B) sent 
upstream. M-PCSIG is a priority version of M-SIG. For both messages, the 
first byte of the message specifies the signal for the Stream head to generate. 
If the signal is not SIGPOLL [see signal(2) and sigset(2)], then the signal is 
sent to the process group associated with the Stream (see below). If the signal 
is SIGPOLL, the signal is only sent to processes that have registered for the 
signal by using the LSETSIG ioctl(2) [also see streamio(7)] call. 

A process group is associated with a Stream during the open of the driver 
or module. If u.u_ttyp is NULL prior to the driver or module open call, the 
Stream head checks u.u_ttyp after the driver or module open call returns. If 
u.u_ttyp is non-zero, it is assumed to point to a short that holds the process 
group ID for signaling. The process group and indirect TTY U dev ftty) inode 
are recorded in the Stream head. 

If the driver or module wants to have a process group associated with the 
Stream, it should include code of the following form in its open procedure: 

pp = u.UJJrOCP; 
pdp = ... 

/* pointer to process structure * / 
/* private data pointer */ 

if (pp->p-pid == pp->pJl9rP /* process group leader */ 

Ii.&. u.u_ttyp == NULL /* with no oontrollinq tty */ 

Ii.&. pdp->pg:rp == 0) { /* and this stream is unassigned */ 

/* assign oontrollinq tty * / 

u.u_ttyp = &pdp->pg:rp; 
pdp->pg:rp = pp->pJl9rP; 
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A private data structure containing a short pgrp element is required. 

M-SIG can be used by modules or drivers that wish to insert an explicit 
inband signal into a message stream. For example, an M_SIG message can be 
sent to the user process immediately before a particular service interface mes
sage to gain the immediate attention of the user process. When the M_SIG 
reaches the head of the Stream head read message queue, a signal will be 
generated and the M-SIG message will be removed. This leaves the service 
interface message as the next message to be processed by the user. Use of 
M-SIG would typically be defined as part of the service interface of the driver 
or module. 
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The M_SETOPTS message (see Appendix B) allows a driver or module to 
exercise control over certain Stream head processing. An ~SETOPTS can be 
sent upstream at any time. The Stream head responds to the message by 
altering the processing associated with certain system calls. The options to be 
modified are specified by the contents of the stroptions structure (see Appen
dix B) contained in the message. 

Six Stream head characteristics can be modified. As described in Appen
dix B, four correspond to fields contained in queue_t (min/max packet sizes 
and high-flow-water marks). The other two are discussed here. 

Read Options 

The value for read options (so_readopt) corresponds to the three modes a 
user can set via the LSRDOPT ioctl (see streamio) call: 

byte-stream (RNORM) 
The read(2) call completes when the byte count is satisfied, 
the Stream head read queue becomes empty, or a zero length 
message is encountered. In the last case, the zero length mes
sage is put back on the queue. A subsequent read will return 
o bytes. 

message non-discard (RMSGN) 
The read call completes when the byte count is satisfied or at 
a message boundary, whichever comes first. Any data 
remaining in the message is put back on the Stream head read 
queue. 

message discard (RMSGD) 
The read call completes when the byte count is satisfied or at 
a message boundary. Any data remaining in the message is 
discarded. 

Byte-stream mode approximately models pipe data transfer. Message 
non-discard mode approximately models a TTY in canonical mode. 
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Write Offset 

The value for write offset (so_wroff) is a hook to allow more efficient data 
handling. It works as follows: In every data message generated by a write(2) 
system call and in the first M-DATA block of the data portion of every mes
sage generated by a putmsg(2) call, the Stream head will leave so_wrott bytes 
of space at the beginning of the message block. Expressed as a C language 
construct: 

bp->b_rptr = bp->b_datap->db_base +write offset. 

The write offset value must be smaller than the maximum STREAMS message 
size, STRMSGSZ (see the section titled n Tunable Parameters n in Appendix E). 
In certain cases (e.g., if a buffer large enough to hold the offset+data is not 
currently available), the write offset might not be included in the block. To be 
general, modules and drivers should not assume that the offset exists in a 
message, but should always check the message. 

The intended use of write offset is to leave room for a module or a driver 
to place a protocol header before user data in the message rather than by allo
cating and prepending a separate message. This feature is not general, and its 
use is discouraged. A more general technique is to put protocol header infor
mation in a separate message block and link the user data to it. 
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Appendix A: Kernel Structures 

This appendix summarizes previously described kernel structures com
monly encountered in STREAMS module and driver development. 

STREAMS kernel structures are contained in <sys/stream.h> and 
<sys /strstat.h>. 

These and other STREAMS structures (shown in bold.) contained in both parts 
of this guide will remain fixed in subsequent releases of UI\UX System V, sub
ject to the following: The offset of all defmed elements in each structure will 
not change. However, the size of the structure may be increased to add new 
elements. 

streamtab 
As discussed in Chapter 5, this structure defil1es a module or driver: 

struct streamtab { 

} ; 

struct qinit *st_rdinit; 
struct qinit *st_Wrinit; 
Struct qinit *st_muxrinit; 
struct qinit *st_lllU¥Winit; 

/* defines read QUEUE */ 
/* defines write QUEUE */ 

/* for nuUtiplexing drivers only */ 
/* for nuUtiplexing d+ivers only */ 
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QUEUE Structures 
Two sets of QUEUE structures form a module. The structures, discussed 

in Chapters 5 and 8, are queue_t, qinit, module-info and, optionally, 
module-stat: 

struct queue { 

}; 

struct qinit *CLqinfo; /* procedures and limits for queue */ 
struct msgb *CLfirst; /* head of message queue for this QUEUE */ 
struct msgb *CL1ast; /* tail of message queue for this QUEUE */ 
struct queue *CLnext; /* next QUEUE in stream*/ 
struct queue *CLlink; /* link to next QUEUE on STREAMS scheduling queue */ 
caddr_t <LJ)tr; /* to private data structure */ 
ushort CLcount; /* weighted count of characters on message queue */ 
ushort CLflag; /* QUE(JE state */ 
short CLminpsz; /* min packet size accepted by this QUEUE */ 
short CLmaxpBz; /* max packet size accepted by this QUE(JE */ 
ushort CLhiwat; /* message queue high water mark, for flow control */ 
ushort CL1owat; /* message queue low water mark, for flow control */ 

typedef struct queue queue_t; 

When a queue_t pair is allocated, their contents are zero unless specifi-
cally initialized. The following fields are initialized: 

• q_qinfo - from streamtab.sL[rd/wr]init (or sLmux[rw]init) 

• q_minpsz, q-Illaxpsz, q-hiwat, q-Iowat - from module-info 

• q_ptr - optionally, by the driver/module open routine 

struct qinit { 
int (*qiJlUtp) (); /* put procedure */ 
int (*qi_srvp) (); /* service procedure */ 
int (*qi_qopen) (); /* called on each open or a push */ 
int (*qi_qc1ose)(); /* called on last close or a pop */ 
int (*qi_qadmin)(); /* reserved for future use */ 
struct module_info *qi_minfo; /* information structure */ 
struct module_stat *qi_lIIStat; /* statistics structure - optional */ 

} ; 
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struct m:xlule_info { 
ushort mi_idnum; 1* m:xlule 1D number *1 
char *mi_idname; 1* m:xlule name *1 
short mi_minpsz; 
short mi_maxpsz; 
short mi_hiwat; 
ushort mi_lowat; 

} ; 

ST..xuct m:xlule_stat { 
long IDSJlCllt; 
long IDS_sent; 
long IDS_ocnt; 
long 
long 
char 
short 

} ; 

IDS_cent; 
IDS_aent; 

*ms_xptr; 
IDS_xsize; 

1* min packet size accepted, for developer use *1 
1* max packet size accepted, for developer use *1 
1* hi-water mark, for flow control *1 
1* lo-water mark, for flow control *1 

1* count of calls to put proc *1 
1* count of calls to service proc *1 
1* count of calls to open proc *1 
1* count of calls to close proc *1 
1* count of calls to admin proc *1 
1* pointer to private statistics *1 
1* length of private statistics buffer *1 

Note that in the event these counts are calculated by modules or drivers, 
the counts will be cumulative over all instantiations of modules with the same 
fmodsw entry and drivers with the same cdevsw entry. 
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Message Str~ctures 
As described in Chapter 7, a message is composed of a linked list of tri

ples, consistin~ of two structures and a data buffer: 

struct msgb 

} ; 

struct msgb 
struct msgb 
~truct msgb 
unsigned char 
unsigned char 

struct datab 

*b_next; 
*bJlrev; 
*b_cont; 
*b_rptr; 
*b_wptr; 
*b_datap; 

/* next message an queue */ 
/* previous message an queue */ 
/* next message bloCk of message */ 
/* first unread data byte in buffer */ 
/* first unwritten data byte in buffer */ 
/* data bloCk * / 

typedef struct msgb mblk _ t; 

struct datab { 

} ; 

struct datab *db_freep; /* used internally */ 
unsigned char *db_base; /* first byte of buffer * */ 
unsigned char *db_liln; /* last byte+1 of buffer */ 
unsigned char db_ref; /* count of messages pointing to this bloCk */ 
unsigned char db_type; /* message type */ 
unsigned char db_class; 1* used internally */ 

typedef struct datab dblk_t; 

iocblk 
As described in Chapter 9 and Appendix B, this is contained in an 

M-IOCTL message block: 

struct iocblk { 
int ioc_cmd; /* ioctl CCIIIlIlaJld type * / 
ushort ioc_uid; 1* effective uid of user */ 
ushort ioc--.9id; /* effective gid of user */ 
uint ioc_id; /* ioctl id */ 
uint ioc_count; /* count of bytes in data field */ 
int ioc_e=or; /* e=or code */ 
int ioc_rval; /* return value */ 

} ; 
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linkblk 
As described in Chapter 11, this is used in lower multiplexer drivers: 

struct linkblk { 

} ; 

queue_t *l_qtop; 1* lowest level write queue of upper stream *1 
queue_t *l_qbot; 1* highest level write queue of lower stream *1 
int I_index; 1* system-unique index for lower stream. *1 
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Appendix B: Message Types 

Eighteen STREAMS message types are defined. The message types differ 
in their intended purposes, their treatment at the Stream head, and in their 
message queueing priority (see Chapter 8). 

STREAMS does not prevent a module or driver from generating any mes
sage type and sending it in any direction on the Stream. However, esta
blished processing and direction rules should be observed. Stream head pro
cessing according to message type is fixed, al~ough certain parameters can be 
altered. 

The message types are described below, classified according to their mes
sage queueing priority. Ordinary messages are described first, with priority 
messages following. In certain cases, two message types may perform similar 
functions, differing in priority. Message construction is described in Chapter 
7. The use of the word module will generapy imply "module or driver." 
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These message types are subject to flow control. These are referred to as 
non-priority messages when received at user level. 

M-DA T A Intended to contain ordinary data. Messages allocated by 
the allocb routine (see Appendix B) are type M-DATA by 
default. M-DATA messages are generally sent bidirection
ally on a Stream and their contents can be passed between 
a process and the Stream head. In the getmsg(2) and 
putmsg(2) system calls, the contents of M-DAT A message 
blocks are referred to as the data part. Messages composed 
of multiple message blocks will typically have M-DAT A as 
the message type for all message blocks following the first. 

MJROTO Intended to contain internal control information and associ
ated data. The message format is one M-PROTO message 
block followed by zero or more M-DATA message blocks 
as shown below: The semantics of the M_DAT A and 
M-PROTO message block are determined by the 
STREAMS module that receives the message. 

The MJROTO message block will typically contain 
implementation -dependent control information. 
MJROTO messages are generally sent bidirectionally on a 
Stream, and their contents can be passed between a process 
and the Stream head. The contents of the first message 
block of an M-PROTO message is generally referred to as 
the control part, and the contents of any following 
M-DATA message blocks are referred to as the data part. 
In the getmsg(2) and putmsg(2) system calls, the control 
and data parts are passed separately. These calls refer to 
M-PROTO messages as non-priority messages. 

Note that, although its use is not recommended, the format 
of MJROTO and MJCPROTO (generically PROTO) 
messages sent upstream to the Stream head allows multiple 
PROTO blocks at the beginning of the message. getmsg 
will compact the blocks into a single control part when 
passing them to the user process. 
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M-PROTO 

or 
M_PCPROTO ---- ...... 

~ 
control 
info. 

M-DATA 

~ ~ 
M-DATA t- --r:m I 

Figure B-1: MJROTO and MJCPROTO Message Structure 

M-IOCTL Generated by the Stream head in response to an LSTR 
and certain other ioctl(2) system calls [see streamio(7)]. 
When one of these ioctls is received from a user process, 
the Stream head uses values from the process and supplied 
in the call to create an M-IOCTL message containing 
them, and sends the message downstream. M-IOCTL 
messages are intended to perform the general ioctl func
tions of character device drivers. 

The user values are supplied in a structure of the following 
form, provided as an argument to the ioctl call (see LSTR 
in streamio): 

struct strioctl 
{ 

} ; 

int ic_OId; 
int ic_ t:im:nIt; 
int ic_len; 
char *ic_dp; 

/* downstream request * / 
/* ACKINAK timeout */ 
/* length of data arg * / 
/* ptr to data arg * / 

where ic_cmd is the request (or command) defined by a 
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downstream module or driver, ic_timout is the time the 
Stream head will wait for acknowledgment to the 
M-IOCTL message before timing out, ic_dp is a pointer to 
an optional data argument. On input, ic_Ien contains the 
length of the data argument passed in and, on return from 
the call, it contains the length of the data, if any, being 
returned to the user. 

The form of an M-IOCTL message is one M_IOCTL mes
sage block linked to zero or more M-DATA message 
blocks. STREAMS constructs an M-IOCTL message block 
by placing an iocblk structure in its data buffer: 

struct iocblk 

{ 

}; 

int icc3110; 
~ icc_uid; 
ushort icc...¢d; 
uint ioc_idi 
uint ioc_=t; 
int ioc_e=; 
int icc _rval; 

1* ioctl ocmnand type *1 
1* effective user id llIlII1ber *1 
1* effective 9rouP id Il1lIIIber *1 
1* ioctl identifier *1 
1* byte =t for ioctl data *1 
1* e= code *1 
1* return value *1 

The iocblk structure is defined in <sys/stream.h>. 
ioc_cmd corresponds to ic_cmd. ioc_uid and ioc_gid are 
the effective user and group IDs for the user sending the 
ioctl and can be tested to determine if the user issuing the 
ioctl call is authorized to do so. ioc_count is the number of 
data bytes, if any, contained in the message and 
corresponds to ic_Ien. 

ioc_id is an identifier generated internally and is used to 
match each M-IOCTL message sent downstream with a 
response which must be sent upstream to the Stream head. 
The response is contained in an M-IOCACK (positive ack
nowledgment) or an M-IOCNAK (negative acknowledg
ment) messages. Both these message types have the same 
format as an M-IOCTL message and contain an iocblk 
structure in the first block with optional data blocks follow
ing. If one of these messages reaches the Stream head 
with an identifier which does not match that of the 
currently-outstanding M-IOCTL message, the response 
message is discarded. A common means of assuring that 
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the correct identifier is returned is for the replying module 
to convert the M_IOCTL message type into the appropri
ate response type and set ioc_count to 0 if no data is 
returned. Then, the qreply utility (see Appendix C) is 
used to send the response to the Stream head. 

ioc_error holds any return error condition set by a down
stream module. If this value is non-zero, it is returned to 
the user in errno. Note that both an M_IOCNAK and an 
~IOCACK may return an error. ioc_rval holds any 
~IOCACK return value set by a responding module. 

If a user supplies data to be sent downstream, the Stream 
head copies the data, pointed to by ic_dp in the strioctl 
structure, into ~DA T A message blocks and links the 
blocks to the initial M_IOCTL message block. ioc_count is 
copied from ic_Ien. If there is no data, ioc_count is zero. 

If a module wants to send data to a user process as part of 
its response, it must construct an M_IOCACK message 
that contains the data. The first message block of this 
message contains the iocblk data structure, with any data 
stored in one or more M_DATA message blocks linked to 
the first message block. The module must set ioc_count to 
the number of data bytes sent. On completion of the call, 
this number is passed to the user in ic_Ien. Data associ
ated with an M-IOCNAK message is not returned to the 
user process and is discarded by the Stream head. 

The first module or a driver that understands the request 
contained in the M_IOCTL acts on it and generally returns 
an M_IOCACK message. Intermediate modules that do 
not recognize a particular request must pass it on. If a 
driver does not recognize the request, or the receiving 
module can not acknowledge it, an M_IOCNAK message 
must be returned. 

The Stream head waits for the response message and 
returns any information contained in an M_IOCACK to 
the user. The Stream head will "time out" if no response 
is received in ic_timeout interval. 
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M-CTL 

M-BREAK 

Generated by modules that wish to send information to a 
particular module or type of module. M_CTL messages 
are typically used for inter-module communication, as 
when adjacent STREAMS protocol modules negotiate the 
terms of their interface. An M-CTL message cannot be 
generated by a user-level process and is always discarded 
if passed to the Stream head. 

Sent to a driver to request that BREAK be transmitted on 
whatever media the driver is controlling. 

The message format is not defined by STREAMS and its 
use is developer-dependent. This message may be con
sidered a special case of an M-CTL message. An 
M-BREAK message cannot be generated by a user-level 
process and is always discarded if passed to the Stream 
head. 

M-DELA Y Sent to a media driver to request a real-time delay on out
put. The data buffer associated with this message type is 
expected to contain an integer to indicate the number of 
machine ticks of delay desired. M-DELA Y messages are 
typically used to prevent transmitted data from exceeding 
the buffering capacity of slower terminals. 

The message format is not defined by STREAMS and its 
use is developer-dependent. Not all media drivers may 
understand this message. This message may be considered 
a special case of an M-CTL message. An M-DELAY mes
sage cannot be generated by a user-level process and is 
always discarded if passed to the Stream head. 

M-P ASSFP This is used by STREAMS to pass a file pointer from the 
Stream head at one end of a Stream pipe to the Stream 
head at the other end of the same Stream pipe. (A Stream 
pipe is a Stream that is terminated at both ends by a 
Stream head; one end of the Stream can always find the 
other by following the q_next pointers in the Stream. The 
means by which such a structure is created is not described 
in this document.) 

The message is generated as a result of an LSENDFD ioctl 
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[see streamio(7)] issued by a process to the sending Stream 
head. STREAMS places the M-P ASSFP message directly 
on the destination Stream head's read queue to be 
retrieved by an LRECVFD ioctl [see streamio(7)]. The 
message is placed without passing it through the Stream 
(i.e., it is not seen by any modules or drivers in the 
Stream). This message type should never be present on 
any queue except the read queue of a Stream head. Con
sequently, modules and drivers do not need to recognize 
this message type, and it can be ignored by module and 
driver developers. 

M-SETOPTS Alters some characteristics of the Stream head. It is gen
erated by any downstream module and is interpreted by 
the Stream head. The data buffer of the message has the 
following structure: 

struct stroptians 

{ 

short so_flags; 1* options to set *1 
short so_readopt; 1* read option *1 
ushort: so_wroff; 1* write offset *1 
short so_minpsz; 1* minimum read packet size *1 
short so_maxpsz; 1* maximum read packet size *1 
ushort: so_hiwat; 1* read queue high-water mark *1 
ushort: so_lcMat; 1* read queue low-water mark *1 

} ; 

where so_flags specifies which options are to be altered, 
and can be any combination of the following: 

o SO-ALL - Update all options according to the 
values specified in the remaining fields of the strop
tions structure. 

o SOJEADOPT - Set the read mode [see read(2)] to 
RNORM (byte stream), RMSGD (message discard), 
or RMSGN (message non-discard) as specified by 
the value of so_readopt. 

o SO_WROFF - Direct the Stream head to insert an 
offset specified by so_wrott into the first message 
block of all M_DATA messages created as a result 
of a write system call. The same offset is inserted 
into the first M-DATA message block, if any, of all 
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messages created by a putmsg system call. The 
default offset is zero. 

The offset must be less than the maximum message 
buffer size (system-dependent). Under certain cir
cumstances, a write offset may not be inserted. A 
module or driver must test that b_rptr in the 
mblLt structure is greater than db_base in the 
dblLt structure to determine that an offset has 
been inserted in the first message block. 

o SO~INPSZ-Change the minimum packet size 
value associated with the Stream head read queue to 
so_minpsz (see q_minpsz in the queue_t structure, in 
Appendix A). This value is advisory for the module 
immediately below the Stream head. It is intended 
to limit the size of M-DATA messages that the 
module should put to the Stream head. There is no 
intended minimum size for other message types. 
The default value in the Stream head is O. 

o SO~AXPSZ-Change the maximum packet size 
value associated with the Stream head read queue to 
so_maxpsz (see q_maxpsz in the queue_t structure, in 
Appendix A). This value is advisory for the module 
immediately below the Stream head. It is intended 
to limit the size of M-DATA messages that the 
module should put to the Stream head. There is no 
intended maximum size for other message types. 
The default value in the Stream head is INFPSZ, the 
maximum STREAMS allows. 

o SO_HIWAT - Change the flow control high-water 
mark on the Stream head read queue to the value 
specified in so_hiwat. 

o SO_LOWAT- Change the flow control low-water 
mark (see q_minpsz in the queue_t structure, 
Appendix A) on the Stream head read queue to the 
value specified in so_lowat. 
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Ordinary Messages 

Sent upstream by modules or drivers to post a signal to a 
process. When the message reaches the Stream head, the 
first data byte of the message is transformed into a signal, 
as defined in <sysjsignal.h>, to the process(es) according 
to the following. 

If the signal is not SIGPOLL and the Stream containing the 
sending module or driver is a controlling TTY, the signal is 
sent to the associated process group. A Stream becomes 
the controlling TTY for its process group if, on open(2), a 
module or driver sets u.u_ttyp to point to a (short) "pro
cess group value." 

If the signal is SIGPOLL, it will be sent only to those 
processes that have explicitly registered to receive the sig
nal [see LSETSIG in streamio(7)]. 
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Priority messages are not subject to flow control. 

MJCPROTO This message type has the same format and characteristics 
as the MJROTO message type, except for priority and 
the following additional attributes. 

When an MJCPROTO message is placed on a queue, its 
service procedure is always enabled. The Stream head will 
allow only one MJCPROTO message to be placed in its 
read queue at a time. If an M-PCPROTO message is 
already in the queue when another arrives, the second 
message is silently discarded and its message blocks freed. 

This message type is intended to allow data and control 
information to be sent outside the normal flow control con
straints. 

The getmsg(2) and putmsg(2) system calls refer to 
MJCPROTO messages as priority messages. 

M-ERROR This message type is sent upstream by modules or drivers 
to report some downstream error condition. When the 
message reaches the Stream head, the Stream is marked so 
that all subsequent system calls issued to the Stream, 
excluding close(2) and poll(2), will fail with errno set to 
the first data byte of the message. POLLERR is set if the 
Stream is being polled [see poll(2)]. All processes sleeping 
on a system call to the Stream are awakened. An 
MJLUSH message with an FLUSHRW argument is sent 
downstream. 

M-HANGUP This message type is sent upstream by a driver to report 
that it can no longer send data upstream. As example, this 
might be due to an error, or to a remote line connection 
being dropped. When the message reaches the Stream 
head, the Stream is marked so that all subsequent write(2) 
and putmsg(2) system calls issued to the Stream will fail 
and return an ENXIO error. Those ioctls that cause mes
sages to be sent downstream are also failed. POLLHUP is 
set if the Stream is being polled [see poll(2)]. 
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However, subsequent read(2) or getmsg(2) calls to the 
Stream will not generate an error. These calls will return 
any messages (according to their function) that were on, or 
in transit to, the Stream head read queue before the 
M-HANGUP message was received. When all such mes
sages have been read, read will return 0, and getmsg will 
set each of its two length fields to o. 

This message also causes a SIGHUP signal to be sent to 
the process group, if the device is a controlling TTY (see 
M-SIG). 

M-IOCACK This message type signals the positive acknowledgment of 
a previous M-IOCTL message. The message may contain 
information sent by the receiving module or driver. The 
Stream head returns the information to the user if there is 
a corresponding outstanding M-IOCTL request. The for
mat and use of this message type is described further 
under M-IOCTL. 

M-IOCNAK This message type signals the negative acknowledgment 
(failure) of a previous M-IOCTL message. When the 
Stream head receives an M-IOCNAK, the outstanding 
ioctl request, if any, will fail. The format and usage of this 
message type is described further under M-IOCTL. 

MJLUSH This message type requests all modules and drivers that 
receive it to flush their message queues (discard all mes
sages in those queues) as indicated in the message. An 
M-FLUSH can originate at the Stream head, or in any 
module or driver. The first byte of the message contains 
flags that specify one of the following actions: 

D FLUSHR: Flush the read queue of the module. 

D FLUSHW: Flush the write queue of the module. 

D FLUSHRW: Flush both the read and the write queue 
of the module. 

Each module passes this message to its neighbor after 
flushing its appropriate queue(s) until the message reaches 
one of the ends of the Stream. 
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M-PCSIG 

Drivers are expected to include the following processing for 
~LUSH messages. When an ~LUSH message is 
sent downstream through the write queues in a Stream, the 
driver at the Stream end discards it if the message action 
indicates that the read queues in the Stream are not to be 
flushed (only FLUSHW set). If the message indicates that 
the read queues are to be flushed, the driver sets the 
MJLUSH message flag to FLUSHR, and sends the mes
sage up the Stream's read queues. When a flush message 
is sent up a Stream's read side, the Stream head checks to 
see if the write side of the Stream is to be flushed. If only 
FLUSHR is set, the Stream head discards the message. 
However, if the write side of the Stream is to be flushed, 
the Stream head sets the M-FLUSH flag to FLUSHW and 
sends the message down the Stream's write side. All 
modules that enqueue messages must identify and process this 
message type. 

This message type has the same format and characteristics 
as the M-SIG message type except for priority. 

M-START and M-STOP 
These messages request devices to start or stop their out
put. They are intended to produce momentary pauses in a 
device's output, not to turn devices on or off. 

The message format is not defined by STREAMS and its 
use is developer-dependent. These messages may be con
sidered special cases of an M-CTL message. These mes
sages cannot be generated by a user-level process and each 
is always discarded if passed to the Stream head. 
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This appendix specifies the set of utilities that STREAMS provides to assist 
development of modules and drivers. There are over 30 utility routines and 
macros. 

The general purpose of the utilities is to perform functions that are com
monly used in modules and drivers. However, some utilities also provide the 
required interrupt environment. A utility must always be used when operat
ing on a message queue and when accessing the buffer pool. 

The utilities are contained in either the system source file iofstream.c or, 
if they are macros, in <sysfstream.h>. 

The utilities contained in this appendix represent an interface that will be 
maintained in subsequent versions of UNIX System V. Other than these utili
ties (also see the section titled "Accessible Symbols and Functions" in 
Appendix D), functions contained in the STREAMS kernel code may change 
between versions. 

All structure definitions are contained in Appendix A unless otherwise indi
cated. All routine references are found in this appendix unless otherwise indi
cated. The following definitions are used. 

Blocked 

Enable 

Free 

A queue that cannot be enabled due to flow control (see 
the section titled "Flow Control" in Chapter 6 of the Pri
mer). 

To schedule a queue. 

De-allocate a STREAMS storage. 

Message block (bp) 
A triplet consisting of an mblLt structure, a dblLt 
structure, and a data buffer. It is referenced by its 
mblLt structure (see Chapter 7). 

Message (mp) One or more linked message blocks. A message is refer
enced by its first message block. 

Message queue Zero or more linked messages associated with a queue 
(queue_t structure). 
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Queue (q) 

Schedule 

A queue_t structure. This is generally the same as 
QUEUE in the rest of this document (e.g., see the defini
tions for enable and schedule). When it appears with 
"message" in certain utility description lines, it means 
"message queue" . 

Place a queue on the internal linked list of queues which 
will subsequently have their service procedure called by 
the STREAMS scheduler. 

The word module will generally mean "module and/or driver". The phrase 
"next/following module" will generally refer to a module, driver, or Stream 
head. Message queueing priority (see Chapter 8 and Appendix B) can be ordi
nary or Priority (to avoid "priority priority"). 
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The utilities are described below. A summary table is contained at the 
end of this appendix. 

adjmsg - trim bytes in a message 

int adjmsg(inp, len) 
mblLt *mp; 
int ien; 

adjmsg trims bytes from either the head or tail of the message specified by 
mp. If len is greater than zero, it removes len bytes from the beginning of mp. 
If len is less than zero, it removes (-)len bytes from the end of mp. If len is 
zero, adjmsg does nothing. adjmsg only trims bytes across message blocks of 
the same type. It will fail if mp pOints to a message containing fewer than len 
bytes of similar type at the message position indicated. adjmsg returns 1 on 
success and 0 on failure. 

allocb - allocate a message block 

mbiLt *allocb(size, pri) 
int size, pri; 

allocb returns a pointer to a message block of type M-DATA, in which the 
data buffer contains at least size bytes. pri indicates the priority of the alloca
tion request and can have the values BPRLLO, BPRLMEDi or BPRLHI (see 
the section titled "Buffer Allocation Priority" in this appendix). If a block can 
not be allocated as requested, allocb returns a NULL pointer. 

backq - get pointer to the queue behind a given queue 

queue_t *backq(q) 
queue_t *q; 

backq returns a pointer to the queue behind a given queue. That is, it returns 
a pointer to the queue whose q_next (see queue_t structure) pointer is q. If 
no such queue exists (as when q is at a Stream end), backq returns NULL. 
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bufcall - recover from failure of allocb 

int bufcall(size, pri, func, arg) 
int (*func)(); 
int size, pri; 
long arg; 

bufcall is provided to assist in the event of a block allocation failure. If allocb 
returns NULL, indicating a message block is not currently available, bufcall 
may be invoked. 

bufcall arranges for (*tunc)(arg) to be called when a buffer of size bytes at pri 
priority (see the section titled "Buffer Allocation Priority") is available. When 
tunc is called, it has no user context. It cannot reference the u_area and must 
return without sleeping. bufcall does not guarantee that the desired buffer 
will be available when tunc is called since interrupt processing may acquire it. 

bufcall returns 1 on success, indicating that the request has been successfully 
recorded, or 0 on failure. On a failure return, tunc will never be called. A 
failure indicates a (temporary) inability to allocate required internal data struc
tures. 

canput - test for room in a queue 

int canput(q) 
queue_t *q; 

canput determines if there is room left in a message queue. If q does not 
have a service procedure, canput will search further in the same direction in 
the Stream until it finds a queue containing a service procedure (this is the 
first queue on which the passed message can actually be enqueued). If such a 
queue cannot be found, the search terminates on the queue at the end of the 
Stream. canput tests the queue found by the search. If the message queue in 
this queue is not full (see the' section titled "Flow Control" in Chapter 6 of 
the Primer), canput returns 1. This return indicates that a message can be put 
to queue q. If the message queue is full, canput returns O. In this case, the 
caller is generally referred to as blocked. 
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copyb - copy a message block 

mblLt *copyb(bp) 
mblLt *bPi 

Utility Descriptions 

copyb copies the contents of the message block pointed to by bp into a newly 
allocated message block of at least the same size. copyb allocates a new block 
by calling allocb with pri set to BPRLMED (see the section titled "Buffer 
Allocation Priority"). All data between the b_rptr and b_wptr pointers of a 
message block are copied to the new block, and these pointers in the new 
block are given the same offset values they had in the original message block. 
On successful completion, copyb returns a pointer to the new message block 
containing the copied data. Otherwise, it returns a NULL pointer. 

copymsg - copy a message 

mblLt *copymsg(mp) 
mblLt *mpi 

copymsg uses copyb to copy the message blocks contained in the message 
pointed to by mp to newly allocated message blocks, and links the new mes
sage blocks to form the new message. On successful completion, copymsg 
returns a pointer to the new message. Otherwise, it returns a NULL pointer. 

datamsg - test whether message is a data message 

#define datamsg(mp) ... 

The datamsg macro returns TRUE if mp (declared as mblk_t *mp) points to a 
data type message. In this case, types M-DATA, MJROTO, or 
MJCPROTO (see Appendix B). If mp points to any other message type, 
datamsg returns FALSE. 

dupb - duplicate a message block descriptor 

mblLt *dupb(bp) 
mblLt *bPi 

dupb duplicates the message block descriptor (mblLt structure) pointed to 
by bp by copying it into a newly allocated message block descriptor. A 
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message block is formed with the new message block descriptor pointing to 
the same data block as the original descriptor. The reference count in the data 
block descriptor (dblLt structure) is incremented. dupb does not copy the 
data buffer, only the message block descriptor. 

On successful completion, dupb. returns a pointer to the new message block. 
If dupb cannot allocate a new message block descriptor, it returns NULL. 

This routine allows. message blocks that exist on different queues to reference 
the same data block. in general, if the contents of a message block with a 
reference count greater than 1 are to be modified, l:opyb should be used to 
create a new message block and only the new message block should be modi
fied. This insures that other references to the original message block are not 
invalidated by unwanted changes. 

dupmsg - duplicate a message 

mblLt *dupmsg(mp) 
mblLi *mpi 

dupmsg calls dupb to duplicate the message pointed to by mp, by copying all 
individual message block descriptors, and then linking the new message 
blocks to form the new message. dupmsg does not copy data buffers, only 
message block descriptors. On successful completion, dupmsg returns a 
pointer to the new message. Otherwise, it returns NULL. 

enableok - re-allow a queue to be scheduled for service 

#define enableok(q) ... 

The enableok macro cancels the effect of an earlier noenable on the same 
queue q (declared as queue_t *q). It allows a queue to be scheduled for ser
vice that had previously been excluded from queue service by a call to noen
able. 

flushq - flush a queue 

int flushq(q, flag) 
queue_t *q; 
int flag; 

flushq removes messages from the message queue in queue q and frees them, 
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using freemsg. If flag is set to FLUSHDATA, then flushq discards all 
M-DATA, M-PROTO, and M-PCPROTO messages (see datamsg), but 
leaves all other messages on the queue. If flag is set to FLUSHALL, all mes
sages are removed from the message queue and freed. FLUSHALL and 
FLUSHDATA are defined in <sys/stream.h>. 

If a queue behind q is blocked, flushq may enable the blocked queue, as 
described in putq. 

freeb - free a message block 

int freeb(bp) 
mblLt *bPi 

freeb will free (de-allocate) the message block descriptor pointed to by bp, and 
will free the corresponding data block if the reference count (see dupb) in the 
data block descriptor (dblLt structure) is equal to 1. If the reference count is 
greater than I, freeb will not free the data block, but will decrement the refer
ence count. 

freemsg - free all message blocks in a message 

int freemsg(mp) 
mblLt *mpi 

freemsg uses freeb to free all message blocks and their corresponding data 
blocks for the message pointed to by mp. 

getq - get a message from a queue 

mblLt *getq(q) 
queue_t *qi 

getq gets the next available message from the queue pointed to by q. getq 
returns a pointer to the message and removes that message from the queue. If 
no message is queued, getq returns NULL. 

getq and certain other utility routines affect flow control in the Stream as fol
lows: If getq returns NULL, the queue is internally marked so that the next 
time a message is placed on it, it will be scheduled for service (enabled, see 
qenable). Also, if the data in the enqueued messages in the queue drops 
below the low-water mark, q_lowat, and a queue behind the current queue 
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had previously attempted to place a message in the queue and failed (Le., was 
blocked, see canput), then the queue behind the current queue is scheduled 
for service (see the section titled "Flow Control" in Chapter 6 of the Primer). 

insq - put a message at a specific place in a queue 

int insq(q, emp, nmp) 
queue_t *q; 
mblLt *emp, *nmp; 

insq places the message pointed to by nmp in the message queue contained in 
the queue pointed to by q immediately before the already-enqueued message 
pointed to by emp. If emp is NULL, the message is placed at the end of the 
queue. If emp is non-NULL, it must point to a message that exists on the 
queue q, or a system panic could result. 

Note that the message is placed where indicated, without consideration of 
message queueing priority. The queue will be scheduled in accordance with 
the rules described in putq for ordinary priority messages. 

linkb - concatenate two messages into one 

int linkb(mpl, mp2) 
mblLt *mpl; 
mblLt *mp2; 

linkb puts the message pointed to by mp2 at the tail of the message pointed 
to by mpl. 

msgdsize - get the number of data bytes in a message 

int msgdsize(mp) 
mblLt *mp; 

msgdsize returns the number of bytes of data in the message pointed to by 
mp. Only bytes included in data blocks of type M_DATA are included in the 
total. 
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#define noenable(q) .... 

Utility Descriptions 

The noenable macro prevents the queue q (declared as queue_t *q) from 
being scheduled for service by putq or putbq when these routines enqueue an 
ordinary priority message, or by insq when it enqueues any message. no en
able does not prevent the scheduling of queues when a Priority message is 
enqueued, unless it is enqueued by insq. 

OTHERQ - get pointer to the mate queue 

#define OTHERQ(q) ... 

The OTHERQ macro returns a pointer to the mate queue of q (declared as 
queue_t *q). If q is the read queue for the module, it returns a pointer to the 
module's write queue. If q is the write queue for the module, it returns a 
pointer to the read queue. 

pullupmsg - concatenate bytes in a message 

int *pullupmsg(mp, len) 
mblLt *mpi 
int leni 

pullupmsg concatenates and aligns the first len data bytes of the passed mes
sage into a single, contiguous message block. Proper alignment is hardware
dependent. To perform its function, pullupmsg allocates a new message 
block by calling allocb with pri set to BPRLMED (see the section titled 
"Buffer Allocation Priority,,). pullupmsg only concatenates across message 
blocks of similar type. Itwill fail if mp points to a message of less than len 
bytes of similar type. A len value of -1 requests a pull-up of all the like-type 
blocks in the beginning of the message pointed to by mp. 

At completion of concatenation, pullupmsg replaces mp with a pointer to the 
new message block, so that mp still points to the same message block at the 
end of the operation. However, the contents of the message block may have 
been altered. On success, pullupmsg returns 1. On failure, it returns O. 
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putbq - return a message to the beginning of a queue 

int putbq(q, bp) 
queue_t *q; 
mblLt *bp 

putbq puts the message pointed to by bp at the beginning of the queue 
pointed to by q, in a position in accordance with the message's type. Priority 
messages are placed at the head of the queue, and ordinary messages are 
placed after all Priority messages, but before all other ordinary messages. The 
queue will be scheduled in accordance with the same rules described in putq. 
This utility is typically used to replace a message on a queue from which it 
was just removed. 

putctl - put a control message 

int putctl(q, type) 
queue_t *q; 
int type; 

putctl creates a control (not data, see datamsg above) message of type type, 
and calls the put procedure in the queue pointed to by q, with a pointer to the 
created message as an argument. putctl allocates new blocks by calling allocb 
with pri set to BPRLHI (see the section titled "Buffer Allocation Priority"). 
On successful completion, putctl returns 1. It returns 0 if it cannot allocate a 
message block, or if type M_DATA, M-PROTO, or M-PCPROTO was speci
fied. 

putctll - put a control message with a one-byte parameter 

int putctll(q, type, p) 
queue_t *q; 
int type; 
int p; 

putctll creates a control (not data, see datamsg) message of type type with a 
one-byte parameter p, and calls the put procedure in the queue pointed to by 
q, with a pointer to the created message as an argument. putctll allocates 
new blocks by calling allocb with pri set to BPRLHI (see the section titled 
"Buffer Allocation Priority"). On successful completion, putctll returns 1. It 
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returns 0 if it cannot allocate a message block, or if type M-DATA, 
M-PROTO, or MJCPROTO was specified. 

putnext - put a message to the next queue 

#define putnext(q, mp) ... 

The putnext macro calls the put procedure of the next queue in a Stream, and 
passes it a message pointer as an argument. The parameters must be declared 
as qu.eue_t *q and mblk_t *mp. q is the calling queue (not the next queue) 
and mp is the message to be passed. putnext is the typical means of passing 
messages to the next queue in a Stream. 

putq - put a message on a queue 

int putq(q, bp) 
queue_t *q; 
mblLt *bPi 

putq puts the message pointed to by bp on the message queue contained in 
the queue pointed to by q and enables that queue. putq queues messages 
appropriately by type (i.e., message queueing priority, see Chapter 8). 

putq will always enable the queue when a Priority message is queued. putq 
will enable the queue when an ordinary message is queued if the following 
condition is set, Clnd enabling is not inhibited by noenable: The condition is 
set if the module has just been pushed [see LPUSH in streamio(7»), or if no 
message was queued on the last getq call, and no message has been queued 
since. 

putq is intended to be used from the put procedure in the same quelle in 
which the message will be queued. A module should not call putq directly to 
pass messages to a neighboring ptodule. putq may be used as the qLputpO 
put procedure value in either or both of a module's qinit structures. This 
effectively bypasses any put procedure processing and uses only the module's 
service procedure(s). 
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qenable - enable a queue 
int qenable(q) queue_t *q; 

int putq(q, bp) 
queue_t *q; 
mblLt *bp; 

qenable places the queue pointed to by q on the linked list of queues that are 
ready to be called by the STREAMS scheduler (see the definition for 
" Schedule" above, and the section titled "Put and Service Procedures" in 
Chapter 5 of the Primer). 

qreply - send a message on a stream in the reverse direction 

int qreply(q, bp) 
queue_t *q; 
mblLt *bp; 

qreply sends the message pointed to by bp up (or down) the Stream in the 
reverse direction from the queue pointed to by q. This is done by locating the 
partner of q (see OTHERQ) and then calling the put procedure of that queue's 
neighbor (as in putnext). qreply is typically used to send back a response 
(M--IOCACK or M--IOCNAK message) to an M--IOCTL message (see Appen
dix B). 

qsize - find the number of messages on a queue 

int qsize(q) 
queue_t *q; 

qsize returns the number of messages present in queue q. If there are no 
messages on the queue, qsize returns O. 

RD - get pointer to the read queue 

#define RD(q) '" 

The RD macro accepts a write queue pointer, q (declared as queue_t *q), as 
an argument and returns a pointer to the read queue for the same module. 
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rmvb - remove a message block from a message 

mblLt *rmvb(mp, bp) 
mblLt *mpi 
mblLt *bPi 

rmvb removes the message block pointed to by bp from the message pointed 
to by mp and then restores the linkage of the message blocks remaining in the 
message. rmvb does not free the removed message block. rmvb returns a 
pointer to the head of the resulting message. If bp is not contained in mp, 
rmvb returns a -1. If there are no message blocks in the resulting message, 
rmvb returns a NULL pointer. 

rmvq - remove a message from a queue 

int rmvq(q, mp) 
queue_t *q; 
mblLt *mpi 

rmvq removes the message pointed to by mp from the message queue in the 
queue pointed to by q and then restores the linkage of the messages remaining 
on the queue. If mp does not point to a message that is present on the queue 
q, a system panic could result. 

splstr - set processor level 

int splstrO 

splstr increases the system processor level to block interrupts at a level 
appropriate for STREAMS modules when those modules are executing critical 
portions of their code. splstr returns the processor level at the time of its 
invocation. Module developers are expected to use the standard kernel func
tion splx(s), where 5 is the integer value returned by splstr, to restore the pro
cessor level to its previous value after the critical portions of code are passed. 
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strlog - submit messages for logging 

int strlog(mid, sid, level, flags, £mt, argl, ... ) 
short mid, sid; 
char level; 
ushort flags; 
char *£mt; 
unsigned argl; 

strlog submits Il1essages containing specified information to the log(7) driver. 
Required definitions are containeq in <sysjstrlog.h> and <sysjlog.h>. mid 
is the STREAMS module ID number for the module or driver submitting the 
log message. sid is an internal sub-ID number usually used to identify a par
ticular minor device of a driver. level is a tracing level that allows selective 
screening of messages froIl1 the tracer. flags are any combination of 
SLERROR (the message is for the error logger), SLTRACE (the message is 
for the tracer), SLFATAL (advisory notification of a fatal error), and 
SLNOTIFY (request that a copy of the message be mailed to the system 
administrator)~ fmt is a printf(3S) style format string, except that %s, %e, %E, 
%g, and %G conversion specifications are not handled. Up to NLOGARGS 
numeric or character arguments can be provided. [See Chapter 6 of the Primer 
and log(7).] 

testb - check for an available buffer 

int testb(size, pri) 
int size, pri; 

testb checks for the availability of a message buffer of size size at priority pri 
(see the section titled "Buffer Allocation Priority") without actually retrieving 
the buffer. testb returns 1 if the buffer is available and 0 if no buffer is avail
able. A successful return value from testb does not guarantee that a subse
quent allocb call will succeed (e.g., in the case of an interrupt routine taking 
buffers). . 
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unlinkb - remove a message block from the head of a message 

mblLt *unlinkb(mp) 
mblLt *mp; 

unlinkb removes the first message block pointed to by mp and returns a 
pointer to the head of the resulting message. unlinkb returns a NULL pointer 
if there are no more message blocks in the message. 

WR - get pointer to the write queue 

#define WR(q) ... 

The WR macro accepts a read queue pointer, q (declared as qu.eue_t *q), as an 
argument and returns a pointer to the write queue for the same module. 
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Buffer Allocation Priority 

STREAMS buffers are normally allocated with allocb, described above. 
An associated set of allocation priorities has been established, which are also 
used in other utility routines: 

BPRLLO Low priority. At this priority, allocb may fail even though the 
requested buffer size is available. This priority is used by the 
Stream head write routine to hold data associated with user 
calls. 

BPRLMED Medium priority. This priority is typically used for normal 
data and control block allocation. As above, allocb may fail at 
this priority even though a buffer of the requested size is avail
able. However, for a given block size, an BPRLLO allocb call 
will fail before a BPRLMED allocb call. 

BPRLHI High priority. This priority is typically used only for critical 
control message allocations. Calls to allocb will succeed if a 
buffer of the appropriate size is available. Developers should 
exercise restraint in use of BPRLHI allocation requests. 

The values BPRLLO, BPRLMED, and BPRLHI are defined in 
<sysjstream.h> . 

STREAMS does not guarantee successful buffer allocation-any set of 
resources can be exhausted under the right conditions. The bufcall function 
will help modules recover from buffer allocation failures, but it does not 
guarantee that the resources will ever be available. Developers should be 
aware of this when implementing modules. 
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Utility Routine Summary 

ROUTINE 

adjmsg 
alloeb 
baekq 
bufeall 
eanput 
eopyb 
eopymsg 
datamsg 
dupb 
dupmsg 
enableok 
flushq 
heeb 
heemsg 
getq 
insq 
linkb 
msgdsize 
noenable 
OTHERQ 
pullupmsg 
putbq 
putctl 
putet11 
putnext 
putq 
qenable 
qreply 
qsize 
RD 
rmvb 
rmvq 
splstr 
strlog 
testb 
unlinkb 
WR 

DESCRIPTION 

trim bytes in a message 
allocate a message block 
get pointer to the queue behind a given queue 
recover from failure of alloeb 
test for room in a queue 
copy a message block 
copy a message 
test whether message is a data message 
duplicate a message block descriptor 
duplicate a message 
re-allow a queue to be scheduled for service 
flush a queue 
free a message block 
free all message blocks in a message 
get a message from a queue 
put a message at a specific place in a queue 
concatenate two messages into one 
get the number of data bytes in a message 
prevent a queue from being scheduled 
get pointer to the mate queue 
concatenate bytes in a message 
return a message to the beginning of a queue 
put a control message 
put a control message with a one-byte parameter 
put a message to the next queue 
put a message on a queue 
enable a queue 
send a message on a stream in the reverse direction 
find the number of messages on a queue 
get pointer to the read queue 
remove a message block from a message 
remove a message from a queue 
set processor level 
submit messages for logging 
check for an available buffer 
remove a message block from the head of a message 
get pointer to the write queue 
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Appendix D: Design Guidelines 

This appendix summarizes STREAMS module and driver design guide
lines and rules presented in previous chapters. Additional rules that develop
ers must observe are included. Where appropriate, the section of this docu
ment containing detailed information is named. The end of the appendix 
contains a brief description of error and trace logging facilities. 

Unless otherwise noted, "module" implies "modules and drivers" . 

General Rules 
The following are general rules that developers should follow when writ

ing modules. 

1. Modules cannot access information in the 1L-area of a process. 
Modules are not associated with any process, and therefore, have no 
concept of process or user context. 

The capability to pass 1L-area information upstream using messages 
has been provided where required. This can be done in M-IOCTL 
handling (see Chapter 9 and Appendix B). A module can send error 
codes upstream in an M-IOCACK or M-IOCNAK message, where 
they will be placed in u_error by the Stream head. Return values may 
also be sent upstream in a M-IOCACK message and will be placed in 
u_rval1. Information can also be passed to the 1L-area via a 
~RROR message (see Chapter 10 and Appendix B). The Stream 
head will recognize this message type and inform the next system call 
that an error has occurred downstream by setting u_error. Note that 
in both instances, the downstream module cannot access the u_area, 
but it informs the Stream head to do so. 

2. In general, modules should not require the data in an M_DATA mes
sage to follow a particular format, such as a specific alignment. This 
makes it easier to arbitrarily push modules on top of each other in a 
sensible fashion. Not following this rule may limit module re
usability (the ability to use the module in multiple ;;tpplications). 

3. Every module must process an MJLUSH message according to the 
value of the argument passed in the message. (See Chapters 8 and 9, 
and Appendix B.) 
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4. A module should not change tpe contents of a data block whose refer
ence count is greater than 1 (see dup~sg in Appendix C) because 
other modules that have references to the blo<;:k may not want the 
datil changed. To avoid problems, it is recommended that the module 
copy the data to a new block and then change the new one, . , 

5. Modules should only manipulate tnessage queues and manage buffers 
with the routines provided for those purpose (see Appendix C). 

6. Filter modules pusheQ between a service user and a service provider 
(see Chapter 12) may not alter the contents of the ~ROTO or 
MJCPROTO block tn messages. The contents of the data blocks 
may be manipulated, but the message boundaries must be preserved. 

System Calls 
These rules pertain to module and drivers as noted. 

1. open and close routines may sleep, but the sleep must return to the 
routine in the event of a signal. That is, if they sleep, they must be at 
priority <= PZERO or with PCATCH set in the sleep priority. 

2. The open routine must return >= zero on success or OPENFAIL if it 
fails. This ensures that a failure will be reported to the user process. 
errno may be set on failure. However, if the open routine returns 
OP~NFAIL and errno is not set, STREAMS will automatically set errno 
toENXIO. . 

3. If a module or driver recognizes and acts on an M-IOCTL message, it 
must reply by sending a M-IOCACK message upstream. A unique ID 
is associated with each M-IOCTL, anq the M-IOCACK or 
M-IOCNAK message must contain the ID of the M-IOCTL it is ack
nowledging. 

4. A module (not a driver) must pass on any M-IOCTL message it does 
not recognize (see Appendix B). If an unrecognized M-IOCTL 
reaches a driver, the driver must reply by sending a M-IOCNAK mes
sage upstream. 
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Data Structures 
Only the contents of q_ptr, q_minpsz, q_maxpsz, q_hiwat, and q_lowat in 

a queue_t structure may be altered. The latter four quantities are set when 
the module or driver is opened, but may be modified subsequently. 

As described in Appendix E, every module and driver is configured with 
the address of a streamtab structure (see Chapter 5). For a driver, a pointer to 
its streamtab is included in cdevsw. For a module, a pointer to its streamtab 
is included in fmodsw. 

Header Files 
The following header files are generally required in modules and drivers: 

types.h 

stream.h 

stropts.h 

contains type definitions used in the STREAMS header files 

contains required structure and constant definitions 

primarily for users, but contains definitions of the arguments 
to the M-FLUSH message type also required by modules. 

One or more of the header files described below may also be included 
(also see the following section). No standard UNIX system header files should 
be included except as described in the following section. The intent is to 
prevent attempts to access data that cannot or should not be accessed. 

errno.h defines various system error conditions and is needed if 
errors are to be returned upstream to the user 

sysmacros.h contains miscellaneous system macro definitions 

param.h 

signal.h 

file.h 

defines various system parameters, particularly the value of 
the PCA TCH sleep flag 

defines the system signal values and should be used if sig
nals are to be processed or sent upstream 

defines the file open flags and is needed if O_NDELA Y is 
interpreted. 

APPENDIX D: DESIGN GUIDELINES D-3 



Appendix D: Design Guidelines 

Accessible Symbols and Functions 

The following lists the only symbols and functions that modules or drivers 
may refer to (in addition to those defined by STREAMS), if hardware and 
UNIX system release independence is to be maintained. Use of symbols not 
listed here is unsupported. 

• user.h (from open/close procedures only) 

struct proc *1L-procp process structure pointer 
short *1L-ttyp tty group ID pointer 
char 1L-error system call error number 
ushort u_uid effective user 10 
ushort 1L-gid effective group ID 
ushort U-1"uid real user 10 
ushort U-1"gid real group ID 

• proc.h (from open/close procedures only) 

short p_pid process ID 
short p_pgrp process group 10 

• functions accessible from open/close procedures only 
fig = sleep(chan, pri) sleep until wakeup 
delay(ticks) delay for a specified time 

• universally accessible functions 
bcopy(from, to, nbytes) 
bzero(buffer, nbytes) 
t = max(a, b) 
t = min(a, b) 
mem=malloc(mp, size) 
mfree(mp, size, i) 
mapinit(mp, mapsize) 
addr = vtop(vaddr, NULL) 
printf(format, ... ) 
cmIL-err(level, ... ) 
s = spInO 
id = timeout(func, arg, ticks) 
untimeout(id) 
wakeup(chan) 

copy data quickly 
zero data quickly 
return max of args 
return min of args 
allocate memory space 
de-allocate memory space 
initialize map structure 
translate from virtual to physical address 
print message 
print message and optional panic 
set priority level 
schedule event 
cancel event 
wake up sleeper 
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• sysmacros.h 

t = major(dev) return major device 
t = minor(dev) return minor device 

• systm.h 
time_t lbolt clock ticks since boot in HZ 
time_t time seconds since epoch 

• param.h 

PZERO zero sleep priority 
PCATCH catch signal sleep flag 
HZ clock ticks per second 
NULL 0 

• types.h 
dev_t combined major/minor device 
time_t time counter 

All data elements are software read-only except: 

u_error - may be set on a failure return of open 
1L.ttyp - may be set in open to create a controlling tty 

Rules for Put and Service Procedures 
To ensure proper data flow between modules, the following rules should 

be observed in put and service procedures. The following rules pertain to put 
procedures. 

1. A put procedure must not sleep. 

2. Each QUEUE must define a put procedure in its qinit (see Appendix 
A) structure for passing messages between modules. 

3. A put procedure must use the putq (see Appendix C) utility to 
enqueue a message on its own message queue. This is necessary to 
ensure that the various fields of the queue_t structure are maintained 
consistently. 

4. When passing messages to a neighbor module, a module may not call 
putq directly, but must call its neighbor's put procedure (see putnext 
in Appendix C). Note that this rule is distinct from the one above it. 
The previous rule states that a module must call putq to place 
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messages on its own message queue, whereas this rule states that a 
module must not call putq directly to place messages on a neighbor's 
queue. 

However, the q_qinfo structure that points to a module's put pro
cedure may point to putq (i.e. putq is used as the put procedure for 
that module). When a module calls a neighbor's put procedure that is 
defined in this manner, it will be calling putq indirectly. If any 
module uses putq as its put procedure in this manner, the module 
must define a service procedure. Otherwise, no messages will ever be 
sent to the next module. Also, because putq does not process 
MJLUSH messages, any module that uses putq as its put procedure 
must define a service procedure to process MJLUSH messages. 

5. The put procedure of a QUEUE with no service procedure must call 
the put procedure of the next QUEUE directly if a message is to be 
passed to that QUEUE. If flow control is desired, a service procedure 
must be provided. 

Service procedures must observe the following rules: 

1. A service procedure must not sleep. 

2. The service procedure must use getq to remove a message from its 
message queue, so that the flow control mechanism is maintained. 

3. The service procedure should process all messages on its message 
queue. The only exception is if the Stream ahead is blocked (i.e., can
put fails, see Appendix C). Adherence to this rule is the only guaran
tee that STREAMS will enable (schedule for execution) the service 
procedure when necessary, and that the flow control mechanism will 
not fail. 

If a service procedure exits for any other reason (e.g., buffer allocation 
failure), it must take f?xplicit steps to assure it will be re-enabled. 

4. The service procedure must follow the steps below for each message 
that it processes. STREAMS flow control relies on strict adherence to 
these steps. 

Step 1: Remove the next message from the message queue using getq. 
It is possible that the service procedure could be called when 
no messages exist on the queue, so the service procedure 
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should never assume that there is a message on its message 
queue. If there is no message, return. 

If all the following conditions are met: 

o canput fails and 

o the message type is not a priority type (see Appendix B) 
and 

o the message is to be put on the next QUEUE. 

then, continue at Step 3. Otherwise, continue at Step 4. 

The message must be replaced on the head of the message 
queue from which it was removed using putbq (see Appendix 
C). Following this, the service procedure is exited. The ser
vice procedure should not be re-enabled at this point. It will 
be automatically back-enabled by flow control. 

If all the conditions of Step 2 are not met, the message should 
not be returned to the queue. It should be processed as 
necessary. Then, return to Step 1. 

Error and Trace Logging 
STREAMS error and trace loggers are provided for debugging and for 

administering modules and driver. Chapter 6 of the STREAMS Primer contains 
a description of this facility which consists of log(7), strace(lM), strclean(lM), 
strerr(lM), and the strlog function described in Appendix C. 

APPENDIX 0: DESIGN GUIDELINES 0·7 





Appendix E: Configuring 

Configuring STREAMS Modules and Drivers 

Configuration Mechanism 
Configuration Examples 

Tunable Parameters 

System Error Messages 

TABLE OF CONTENTS 

E-l 

E-2 

E-3 

E-4 

E-6 





Appendix E: Configuring 

This appendix contains information about configuring STREAMS modules 
and drivers into UNIX System V Release 3.1 on your computer. The informa
tion is incremental and presumes the reader is familiar with the configuration 
mechanism, which may vary on different processors. An example of how to 
configure a driver and a module is included. 

This appendix also includes a list of STREAMS system tunable parameters 
and system error messages. 

Configuring STREAMS Modules and Drivers 
Each character device that is configured into a UNIX system results in an 

entry being placed in the kernel cdevsw table. Entries for STREAMS drivers 
are also placed in this table. However, because system calls to STREAMS 
drivers must be processed by the STREAMS routines, the configuration 
mechanism distinguishes between STREAMS drivers and character device 
drivers in their associated cdevsw entries. 

The distinction is contained in the d.......str field which was added to the 
cdevsw structure for this purpose. d.......str provides the appropriate single entry 
point for all system calls on STREAMS files, as shown below: 

extern struct cdevsw { 

struct streamtab *d_str; 
} cdevsw[ ]; 

The configuration mechanism forms the d.......str entry name by appending the 
string "info" to the STREAMS driver prefix. The "info" entry is a pointer to 
a streamtab structure (see Appendix A) that contains pointers to the qinit 
structures for the read and write QUEUEs of the driver. The driver must con
tain the external definition: 

struct streamtab prefixinfo = { ••• 

If the d.......str entry contains a non-NULL pointer, the operating system will 
recognize the device as a STREAMS driver and will call the appropriate 
STREAMS routine. If the entry is NULL, a character I/O device cdevsw 
interface is used. Note that only streamtab must be externally defined in 
STREAMS drivers and modules. streamtab is used to identify the appropriate 
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open, close, put, service, and administration routines. These driver/module 
routines should generally be declared static. 

The configuration mechanism supports various combinations of block, 
character, STREAMS devices, and STREAMS modules (see below). For exam
ple, it is possible to identify a device as a block and STREAMS device, and 
entries will be inserted in the appropriate system switch tables. A device can
not be both a character and STREAMS device. 

When a STREAMS module is configured, an fmodsw table entry is gen
erated by the configuration mechanism. fmodsw contains the following: 

#define EMNAMESZ 8 

extern struct fm:ldsw { 

char Cname[FlIJNAM&SZ+1]; 

struct streamtab *f_str; 
} fm:ldsw[ ]; 

f_name is the name of the module used in STREAMS-related ioctl calls. 
f-str is similar to the d-str entry in the cdevsw table. It is a pointer to a 
streamtab structure which contains pointers to the qinit structures for the 
read and write QUEUEs of this STREAMS module (as in STREAMS drivers). 
The module must contain the external definition: 

struct streamtab prefixlllfo = { ••• 

Configuration Mechanism 

STREAMS modules and drivers are configured into the system by the fol
lowing: 

1. Creating a directory under /etc/conf/modules and installing the 
object file there; 

2. writing a config file and installing it there; 

3. writing a space.c file and installing it there, if required; 

4. adding the module or driver name to the system file. 

The special file (node) that identifies the STREAMS driver must be a char
acter special file, as is the file for a character device driver, because the system 
call entry point for STREAMS drivers is also the cdevsw table. 
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Any combination of block, STREAMS drivers, and STREAMS module may be 
specified. However, it is illegal to specify a STREAMS device or module with 
a character device. 

Configuration Examples 
This section contains examples of configuring the following STREAMS 

driver and module: 

loop the STREAMS loop-around software driver of Chapter 10 

crmod the conversion module of Chapter 7 

To configure the STREAMS software (pseudo-device) driver and loop, the 
following must appear in the /etc/conf/modules/loop/config file: 

*IOOP - STREAMS loop around software driver 

streand (20) 

prefix = loop 

The "20" is the major device number, and must not conflict with any 
other character or STREAMS drivers' major number. The prefix "loop" 
requires that the streamtab structure for the driver be defined as loopinfo. 

In addition, the following must appear in the 
/ etc/ conf/modules /loop /space.c file: 

#def:ine NLP 2 
#include "oanfig .h" 
int loop_loop[NLP]; 
int loop_cnt = NLP; 

Including config.h after the definition of NLP assures that NLP may be 
overridden in the system file, since donfig.h is generated from the system file 
by config(lM) each time mkunix(lM) generates a kernel. 

To configure the STREAMS module crmod, the following must appear in 
the /etc/conf/modules/crmod/config file: 
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* CRM:>D stream conversion IOOdule 

stream 

prefix = cnrod 

The prefix "crmod" requires that the streamtab structure for the module 
be defined as crmodinfo. The config(lM) command uses the name of the 
/etc/conf/modules directory (crmod, in this case), to create the module name 
field (f_name) of the associated fmodsw entry. The prefix and module name 
can be different. 

To configure crmod and loop into a new kernel, add their names to the 
module list in /etc/conf/systems/system.std (or to whatever system file you 
choose to use [see system(4)]), and run mkunix(lM). 

Tunable Parameters 
Certain system parameters referenced by STREAMS are configurable 

when building a new operating system (see the System Administrator's Guide 
for further details). This can be done by including the appropriate entry in 
the kernel master file. "queues" refers to queue_t structures. These parame
ters are: 

NQUEUE 

NSTREAM 

NBLK4096 

NBLK2048 

... 
Total number of queues that may be allocated at one time 
by the system. Queues are allocated in pairs. Each 
STREAMS driver, Stream head, and pushable module 
requires a pair of queues. A minimal Stream contains 4 
queues (two for the Stream head, two for the driver). 

Total number of Streams that may be open at one time in a 
system. 

Total number of 4096-byte data blocks available for 
STREAMS operations. The pool of data blocks is a 
system-wide resource, so enough blocks must be config
ured to satisfy all Streams. 

Total number of 2048-byte data blocks available for 
STREAMS operations. 
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NBLKI024 Total number of 1024-byte data blocks available for 
STREAMS operations. 

NBLK512 Total number of 512-byte data blocks available for 
STREAMS operations. 

NBLK256 Total number of 256-byte data blocks available for 
STREAMS operations. 

NBLK128 Total number of 128-byte data blocks available for 
STREAMS operations. 

NBLK64 Total number cjf 64-byte data blocks available for 
STREAMS operations. 

NBLK16 Total number of 16-byte data blocks available for 
STREAMS operations. 

NBLK4 Total nuinber of 4-byte data blocks available for STREAMS 
operations. 

NMUXLINK Total nuinber of Streams in the system that can be linked 
as lower Streams to multiplexer drivers [by an LLINK 
ioctl(2), see streamio(7»). 

NSTREVENT Initial number of internal event cells available in the sys
tem to support bufcall (see Appendix C) and poll(2) calls. 

MAXSEPGCNT The number of additional pages of memory that can be 
dynamically allocated for event cells. If this value is 0, 
only the allocation defined by NSTREVENT is available for 
use. If the value is not 0 and if the kernel runs out of 
event cells, it will under some circumstances attempt to 
allocate an extra page of memory from which new event 
cells can be created. MAXSEPGCNT places a limit on the 
number of pages that can be allocated for this purpose. 
Once a page has been allocated for event cells, however, it 
cannot be recovered later for use elsewhere. 

NSTRPUSH 

STRMSGSZ 

Maximum number of modules that may be pushed onto a 
single Stream. 

Maximum bytes of information that a single system call 
can pass to a Stream to be placed into the data part of a 
message (in M-DATA blocks). Any write(2) exceeding 
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STRCTLSZ 

STRLOFRAC 

STRMEDFRAC 

this size will be broken into multiple messages. A 
putmsg(2) with a data part exceeding this size will fail. 

Maximum bytes of information that a single system call 
can pass to a Stream to be placed into the control part of a 
message (in an M-PROTO or M-PCPROTO block). A 
putmsg(2) with a control part exceeding this size will fail. 

The percentage of data blocks of a given class at which low 
priority block allocation requests are automatically failed. 
For example, if STRLOFRAC is 80 and there are 48 256-
byte blocks, a low priority allocation request will fail when 
more than 38 256-byte blocks are already allocated. This 
value is used to prevent deadlock situations in which a low 
priority activity might starve out more important functions. 
For example, if STRLOFRAC is 80 and there are 100 blocks 
of 256 bytes, then when more than 80 of such blocks are 
allocated, any low priority allocation request will fail. This 
value must be in the range 
o <= STRLOFRAC <= STRMEDFRAC. 

The percentage of data blocks of a given class at which 
medium priority block allocation requests are automatically 
failed. 

System Error Messages 
Messages are reported to the console as a result of various error conditions 

detected by STREAMS. These messages and the action to be taken on their 
occurrence are described below. In certain cases, a tunable parameter (see 
previous section) may have to be changed. 

strop en: out of streams 
A Stream head data structure could not be allocated during the open 
of a STREAMS device. If this occurs repeatedly, increase 
NSTREAM. 

stropen: out of queues 
A pair of queues could not be allocated for the Stream head during 
the open of a driver. If this occurs repeatedly, increase NQUEUE. 
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KERNEL: allocq: out of queues 
A pair of queues could not be allocated for a pushable module 
(LPUSH ioctl) or driver (open). If this occurs repeatedly, increase 
NQUEUE. 

strinit: can not allocate stream data blocks 
During system initialization, the system was unable to allocate 
enough memory for the STREAMS data blocks. The system must be 
rebuilt with fewer data blocks specified. 

KERNEL: strinit: odd value configured for v.v-Ilqueue 
KERNEL: strinit: was qcnt, set to nqcnt 

During system initialization, the total number of queues allocated, 
qcnt, was not a multiple of 2. The system resets this to an appropri
ate value, nqcnt. 

WARNING: bufcall: could not allocate stream event 
A call to bufcall has failed because all Stream event cells have been 
allocated. If this occurs repeatedly, increase NSTREVENT. 

KERNEL: sealloc: not enough memory for page allocation 
An attempt to dynamically allocate a page of Stream event cells 
failed. If this occurs repeatedly, decrease MAXSEPGCNT. 

KERNEL: munlink: could not perform ioctl, closing anyway 
A linked multiplexer could not be unlinked when the controlling 
Stream for that link was closed. The linked Stream will.be unlinked 
and the controlling Stream will be closed anyway. 
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Back enable 

Blocked 

Clone device 

To enable (by STREAMS) a preceding blocked QUEUE 
when STREAMS determines that a succeeding 
QUEUE has reached its low-water mark. 

A QUEUE that cannot be enabled due to flow control. 

A STREAMS device that returns an unused minor 
device when initially opened, rather than requiring 
the minor device to be specified in the open(2) call. 

Close procedure The module routine that is called when a module is 
popped from a Stream and the driver routine that is 
called when a driver is closed. 

Control stream In a multiplexer, the upper Stream on which a previous 
LLINK ioctl [to the associated file, see streamio(7)] 
caused a lower Stream to be connected to the multi
plexer driver at the end of the upper Stream. 

Downstream The direction from Stream head towards driver. 

Device driver The end of the Stream closest to an external interface. 
The principle functions of a device driver are handling 
an associated physical device and transforming data 
and information between the external interface and 
Stream. 

Driver A module that forms the Stream end. It can be a dev
ice driver or a pseudo-device driver. In STREAMS, a 
driver is physically identical to a module (i.e., com
posed of two QUEUEs), but has additional attributes 
in a Stream and in the UNIX system. 

Enable Schedule a QUEUE. 

Flow control The STREAMS mechanism that regulates the flow of 
messages within a Stream and the flow from user 
space into a Stream. 

Lower Stream A Stream connected below a multiplexer pseudo-device 
driver, by means of an LLINK ioctl. The far end of a 
lower Stream terminates at a device driver or another 
multiplexer driver. 
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Message 

Message block 

Message queue 

Message type 

Module 

Multiplexer 

Open procedure 

Pop 

One or more linked message blocks. A message is 
referenced by its first message block and its type is 
defined by the message type of that block. 

Carries data or information, as identified by its mes
sage type, in a Stream. A message block is a triplet 
consisting of a data buffer and associated control 
structures, an mblLt structure, and a dblLt struc
ture. 

A linked list of zero or more messages connected to a 
QUEUE. 

A defined set of values identifying the contents of a 
message block and message. 

A pair of QUEUEs. In general, module implies a 
pushable module. 

A STREAMS mechanism that allows messages to be 
routed among multiple Streams in the kernel. A mul
tiplexer includes at least one multiplexing pseudo
device driver connected to one or more upper Streams 
and one or more lower Streams. 

The routine in each STREAMS driver and module 
called by STREAMS on each open(2) system call 
made on the Stream. A module's open procedure is 
also called when the module is pushed. 

A STREAMS ioctl [see streamio(7)] that causes the 
pushable module immediately below the Stream head to 
be removed (popped) from a Stream [modules can 
also be popped as the result of a close(2)]. 

Pseudo-device driver 

Push 

A software driver, not directly associated with a physi
cal device, that performs functions internal to a Stream 
such as a multiplexer or log driver. 

A STREAMS ioctl [see streamio(7)] that causes a 
pushable module to be inserted (pushed) in a Stream 
immediately below the Stream head. 
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Pushable module A module interposed (pushed) between the Stream 
head and driver. Pushable modules perform inter
mediate transformations on messages flowing between 
the Stream head and driver. A driver is a non
pushable module and a Stream head includes a non
pushable module. 

Put procedure 

QUEUE 

The routine in a QUEUE which receives messages 
from the preceding QUEUE. It is the single entry 
point ~nto a QUEUE from a preceding QUEUE. The 
procedure may perform processing on the message 
and will then generally either queue the message for 
subsequent processing by this QUEUE's service pro
cedure; or will pass the message to the put procedure 
of the following QUEUE. 

A STREAMS defined set of C-Ianguage structures. A 
module is composed of a read (upstream) QUEUE and 
a write (downstream) QUEUE. A QUEUE will typi
cally contain a put and service procedure, a message 
queue, and private data. The read QUEUE (d. read 
queue) in a module will also contain the open pro
cedure and close procedure for the module. 

The primary structure is the queue_t structure, occa
sionally used as a synonym for a QUEUE. 

Read queue The message queue in a module or driver containing 
messages moving upstream. Associated with a read(2) 
system call and input from a driver. 

Schedule Place a QUEUE on the internal list of QUEUEs which 
wm subsequently have their service procedure called 
by the STREAMS scheduler. 

Service interface ,fI. set of primitives that define a service at the boun
dary between a service user and a service provider and 
the rules (typically represented by a state machine) for 
allowable sequences of the primitives across the boun
dary. At a Stream/user boundary, the primitives are 
typically contained in the control part of a message; 
within a Stream, in MJROTO or ~PCPROTO 
message blocl<s. 
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Service procedure The routine in a QUEUE which receives messages 
queued for it by the put procedure of the QUEUE. The 
procedure is called by the STREAMS scheduler. It 
may perform processing on the message and will gen
erally pass the message to the put procedure of the fol
lowing QUEUE. 

Service provider In a service interface, the entity (typically a module or 
driver) that responds to request primitives from the 
service user with response and event primitives. 

Service user In a service interface, the entity that generates request 
primitives for the service provider and consumes 
response and event primitives. 

Stream The kernel aggregate created by connecting STREAMS 
components, resulting from an application of the 
STREAMS mechanism. The primary components are 
the Stream head, the driver, and zero or more pushable 
modules between the Stream head and driver. 

Stream end The end of the Stream furthest from the user process, 
containing a driver. 

Stream head The end of the Stream closest to the user process. It 
provides the interface between the Stream and the 
user process. 

STREAMS 

Upper stream 

Upstream 

A kernel mechanism that supports development of 
network services and data communication drivers. It 
defines interface standards for character input/output 
within the kernel, and between the kernel and user 
level. The STREAMS mechanism comprises integral 
functions, utility routines, kernel facilities, and a set of 
structures. 

A Stream terminating above a multiplexer pseudo
device driver. The far end of an upper Stream ori
ginates at the Stream head or another multiplexer 
driver. 

The direction from driver towards Stream head. 
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Water marks 

Write queue 

Glossary 

Limit values used in flow control. Each QUEUE has a 
high-water mark and a low-water mark. The high
water mark value indicates the upper limit related to 
the number of characters contained on the message 
queue of a QUEUE. When the enqueued characters in 
a QUEUE reach its high-water mark, STREAMS 
causes another QUEUE that attempts to send a mes
sage to this QUEUE to become blocked. When the 
characters in this QUEUE are reduced to the low
water mark value, the other QUEUE will be 
unblocked by STREAMS. 

The message queue in a module or driver containing 
messages moving downstream; associated with a 
write(2) system call and output from a user process. 
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