

©1987 AT&T
AHRights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

DEC, PDp, VAX, and VT100 are trademarks of Digital Equipment Corporation.
DOCUMENTER'S WORKBENCH is a trademark of AT&T.
TELETYPE, UNIX and WRITER'S WORKBENCH are registered
trademarks of AT&T.

AT& T Products and Services
To order documents from the Customer Information Center:

• Within the continental United States, call 1-800-432-6600

• Outside the continental United States, call 1-317-352-8556

• Send mail orders to:

AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:

• Within the continental United States, call 1-800-221-1647

• Outside the continental United States, call 1-609-639-4458

To contact marketing representatives about AT&T computer hardware pro
ducts and UNIX software products:

• Within the continental United States, call 1-800-372-2447

• Outside the continental United States, call collect 1-215-266-2973 or
1-215-266-2975

iii

iv

To find out about UNIX system source licenses:

• Within the continental United States, except North Carolina, call 1-800-
828-UNIX

• In North Carolina and outside the continental United States, call
1-919-279-3666

• Or write to:

Software Licensing
Guilford Center
P.O. Box 25000
Greensboro, NC 27420

1

2

3

Table of Contents

Introduction
Introduction

Programming in A UNIX System
Environment: An Overview

xxiii

Introduction 1-1
UNIX System Tools and Where You Can Read About

Them 1-4
Three Programming Environments 1-7
Summary 1-9

Programming Basics
Introduction
Choosing a Programming Language
After Your Code Is Written
The Interface Between a Programming Language and

2-1
2-2
2-7

the UNIX System 2-11
Analysis/Debugging 2-43
Program Organizing Utilities 2-66

Application Programming
Introduction
Application Programming
Language Selection

TABLE OF CONTENTS

3-1
3-2
3-5

Table of Contents

4

5

6

Advanced Programming Tools
Programming Support Tools
Project Control Tools
liber, A Library System

awk
Introduction

3-13
3-21
3-34
3-38

4-1
Basic awk 4-2
Patterns 4-12
Actions 4-20
Output 4-38
Input 4-43
Using awk with Other Commands and the Shell 4-49
Example Applications 4-52
awk Summary 4-58

lex
An Overview of lex Programming
Writing lex Programs
Running lex under the UNIX System

yacc
Introduction
Basic Specifications
Parser Operation
Ambiguity and Conflicts
Precedence
Error Handling
The yace Environment
Hints for Preparing Specifications
Advanced Topics
Examples

5-1
5-3

5-18

6-1
6-4

6-13
6-18
6-24
6-28
6-32
6-34
6-38
6-45

ii PROGRAMMER'S GUIDE

7

8

9

10

Table of Contents

File and Record Locking
Introduction
Terminology
File Protection
Selecting Advisory or Mandatory Locking

Shared Libraries
Introduction
Using a Shared Library
Building a Shared Library
Summary

Interprocess Communication
Introduction
Messages
Semaphores
Shared Memory

Extended Terminal Interface
Overview
What is ETI?

7-1
7-2
7-4

7-18

8-1
8-2

8-16
8-60

9-1
9-2

9-38
9-75

10-1
10-5

Basic ETI Programming 10-9
Simple Input and Output 10-18
Windows 10-58
Panels 10-69
Compiling and Linking Panel Programs 10-70
Creating Panels 10-71
Elementary Panel Window Operations 10-72
Moving Panels to the Top or Bottom of the Deck 10-75
Updating Panels on the Screen 10-76
Making Panels Invisible 10-78

TABLE OF CONTENTS iii

Table of Contents

Fetching Panels Above or Below Given Panels
Setting and Fetching the Panel User Pointer
Deleting Panels
Menus
Compiling and Linking Menu Programs
Overview: Writing Menu Programs in ETI
Creating and Freeing Menu Items
Two Kinds of Menus: Single- and Multi-Valued
Manipulating Item Attributes
Setting the Item User Pointer
Creating and Freeing Menus
Manipulating Menu Attributes
Displaying Menus
Menu Driver Processing
Manipulating the Menu User Pointer
Setting and Fetching Menu Options
Forms
Compiling and Linking Form Programs
Overview: Writing Form Programs in ETI
Creating and Freeing Fields
Manipulating Field Attributes
Setting the Field Foreground, Background, and Pad

Character
Some Helpful Features of Fields
Manipulating Field Options
Creating and Freeing Forms
Manipulating Form Attributes
Displaying Forms
Form Driver Processing
Setting and Fetching the Form User Pointer
Setting and Fetching Form Options
Creating and Manipulating Programmer-Defined Field

Types
Other ETI Routines
Routines for Drawing Lines and Other Graphics
Routines for Using Soft Labels
Working with More than One Terminal
Working with terminfo Routines

iv PROGRAMMER'S GUIDE

10-80
10-82
10-85
10-86
10-87
10-88
10-92
10-95
10-97

10-102
10-105
10-107
10-111
10-129
10-152
10-155
10-159
10-160
10-161
10-168
10-172

10-184
10-186
10-194
10-198
10-202
10-205
10-213
10-240
10-242

10-245
10-258
10-259
10-261
10-263
10-265

11

12

13

14

Table of Contents

Working with the terminfo Database
TAM Transition library
Compiling and Running TAM Applications under ETI
Tips for Polishing TAM Application Programs

Running under ETI
How the TAM Transition library Works
Program Examples

Common Object File Format (coff)
The Common Object File Format (COFF)

The Link Editor
The link Editor
link Editor Command Language
Notes and Special Considerations
Syntax Diagram for Input Directives

make
Introduction

10-271
10-283
10-284

10-285
10-286
10-295

11-1

12-1
12-4

12-22
12-32

13-1
Basic Features 13-2
Description Files and Substitutions 13-7
Recursive Make£i1es 13-11
Source Code Control System File Names: the Tilde 13-17
Command Usage 13-21
Suggestions and Warnings 13-24
Internal Rules 13-25

Source Code Control System
(sees)

Introduction 14-1

TABLE OF CONTENTS v

Table of Contents

15

16

17

SCCS For Beginners
Delta Numbering
SCCS Command Conventions
SCCS Commands
SCCS Files

sdb-the Symbolic Debugger
Introduction
Using sdb

lint
Introduction
Usage
lint Message Types

C Language
Introduction
Lexical Conventions
Storage Class and Type
Operator Conversions
Expressions and Operators
Declarations
Statements
External Definitions
Scope Rules
Compiler Control Lines
Types Revisited
Constant Expressions
Portability Considerations
Syntax Summary

vi PROGRAMMER'S GUIDE

14-2
14-7

14-10
14-12
14-37

15-1
15-2

16-1
16-2
16-4

17-1
17-2
17-6
17-9

17-12
17-23
17-37
17-43
17-45
17-47
17-51
17-56
17-57
17-58

18

19

A

G

Table of Contents

C Programmer's Productivity
Tools

Introducing the C Programmer's Productivity Tools 18-1
cscope 18-4
lprof 18-30
Profiling Examples 18-48

Fmli
Introduction
The Forms and Menus Language Interpreter
The Forms and Menus Definition Language
FMLI and the UNIX Operating System
The Manual Pages

Index to Utilities
Appendix A: Index to Utilities

Glossary
Glossary

Index

19-1
19-2

19-21
19-56
19-59

A-1

G-1

TABLE OF CONTENTS vii

List of Figures

Figure 2-1: Using Command Line Arguments to Set Flags 2-13

Figure 2-2: Using argv[n] Pointers to Pass a File Name 2-14

Figure 2-3: C Language Standard I/O Subroutines 2-17

Figure 2-4: String Operations 2-18

Figure 2-5: Classifying ASCII Character-Coded Integer Values 2-19

Figure 2-6: Conversion Functions and Macros 2-20

Figure 2-7: Manual Page for gets(3S) 2-22

Figure 2-8: How gets Is Used in a Program 2-24

Figure 2-9: A Version of stdio.h (Sheet 1 of 2) 2-25

Figure 2-9: A Version of stdio.h (Sheet 2 of 2) 2-26

Figure 2-10: Environment and Status System Calls 2-33

Figure 2-11: Process Status 2-34

Figure 2-12: Example of fork 2-37

Figure 2-13: Example of a popen pipe 2-39

Figure 2-14: Signal Numbers Defined in
jusrjincludejsysjsignal.h 2-41

Figure 2-15: Source Code for Sample Program (Sheet 1 of 4) 2-44

Figure 2-15: Source Code for Sample Program (Sheet 2 of 4) 2-45

LIST OF FIGURES ix

List of Figures

Figure 2-15: Source Code for Sample Program (Sheet 3 of 4) 2-46

Figure 2-15: Source Code for Sample Program (Sheet 4 of 4) 2-47

Figure 2~16: cflow Output, No Options 2-48

F.gure 2-17: cflow Output, Using r Option 2-49

Figure 2-18: cflow Output, Using ix Option 2-50

Figure 2-19: cflow Output, Using rand ix Options 2-51

Figure 2-20: ctrace Output (Sheet 1 of 3) 2-53

Figure 2-20: ctrace Output (Sheet 2 of 3) 2-54

Figure 2-20: ctrace Output (Sheet 3 of 3) 2-55

Figure 2-21: cxref Output, Using c Option (Sheet 1 of 5) 2-56

Figure 2-21: cxref Output, Using c Option (Sheet 2 of 5) 2-57

Figure 2-21: cxref Output, Using c Option (Sheet 3 of 5) 2-58

Figure 2-21: cxref Output, Using c Option (Sheet 4 of 5) 2-59

Figure 2-21: cxref Output, Using c Option (Sheet 5 of 5) 2-60

Figure 2-22: lint Output 2-61

Figure 2-23: prof Output 2-64

Figure 2-24: make Description File 2-67

Figure 2-25: nm Output, with f Option (Sheet 1 of 5) 2-70

Figure 2-25: nm Output, with f Option (Sheet 2 of 5) 2-71

Figure 2-25: nm Output, with f Option (Sheet 3 of 5) 2-72

Figure 2-25: nm Output, with f Option (Sheet 4 of 5) 2-73

Figure 2-25: nm Output, with f Option (Sheet 5 of 5) 2-74

x PROGRAMMER'S GUIDE

List of Figures

Figure 3-1: The fcntl.h Header File 3-16

Figure 3-2: Object File Library Functions (Sheet 1 Of 2) 3-25

Figure 3-2: Object File Library Functions (Sheet 2 Of 2) 3-26

Figure 4-1: awk Program Structure and Example 4-2

Figure 4-2: The Sample Input File countries 4-4

Figure 4-3: awk Comparison Operators 4-14

Figure 4-4: awk Regular Expressions 4-18

Figure 4-5: awk Built-in Variables 4-20

Figure 4-6: awk Built-in Arithmetic Functions 4-23

Figure 4-7: awk Built-in String Functions 4-24

Figure 4-8: awk printf Conversion Characters 4-39

Figure 4-9: getline Function 4-47

Figure 5-1: Creation and Use of a Lexical Analyzer with lex 5-2

Figure 8-1: a.out Files Created Using an Archive Library and a
Shared Library 8-9

Figure 8-2: Processes Using an Archive and a Shared Library 8-10

Figure 8-3: A Branch Table in a Shared Library 8-13

Figure 8-4: Imported Symbols in a Shared Library 8-32

Figure 8-5: File log.c 8-51

Figure 8-6: File poly.c 8-52

Figure 8-7: File stats.c 8-53

Figure 8-8: Header File maux.h 8-54

Figure'8-9: Specification File 8-57

LIST OF FIGURES xi

List of Figures

Figure 9-1: ipc-perm Data Structure 9-5

Figure 9-2: Operation Permissions Codes 9-8

Figure 9-3: Control Commands (Flags) 9-9

Figure 9-4: msgget() System Call Example (Sheet 1 of 3) 9-13

Figure 9-4: msgget() System Call Example (Sheet 2 of 3) 9-14

Figure 9-4: msgget() System Call Example (Sheet 3 of 3) 9-15

Figure 9-5: msgctl() System Call Example (Sheet 1 of 4) 9-20

Figure 9-5: msgctl() System Call Example (Sheet 2 of 4) 9-21

Figure 9-5: msgctl() System Call Example (Sheet 3 of 4) 9-22

Figure 9-5: msgctlO System Call Example (Sheet 4 of 4) 9-23

Figure 9-6: msgopO System Call Example (Sheet 1 of 7) 9-31

Figure 9-6: msgopO System Call Example (Sheet 2 of 7) 9-32

Figure 9-6: msgopO System Call Example (Sheet 3 of 7) 9-33

Figure 9-6: msgop() System Call Example (Sheet 4 of 7) 9-34

Figure 9-6: msgopO System Call Example (Sheet 5 of 7) 9-35

Figure 9-6: msgop() System Call Example (Sheet 6 of 7) 9-36

Figure 9-6: msgop() System Call Example (Sheet 7 of 7) 9-37

Figure 9-7: Operation Permissions Codes 9-46

Figure 9-8: Control Commands (Flags) 9-46

Figure 9-9: semget() System Call Example (Sheet 1 of 3) 9-50

Figure 9-9: semget() System Call Example (Sheet 2 of 3) 9-51

Figure 9-9: semget() System Call Example (Sheet 3 of 3) 9-52

xii PROGRAMMER'S GUIDE

List of Figures

Figure 9-10: semctlO System Call Example (Sheet 1 of 7) 9-60

Figure 9-10: semctlO System Call Example (Sheet 2 of 7) 9-61

Figure 9-10: semctlO System Call Example (Sheet 3 of 7) 9-62

Figure 9-10: semctl() System Call Example (Sheet 4 of 7) 9-63

Figure 9-10: semctl() System Call Example (Sheet 5 of 7) 9-64

Figure 9-10: semctl() System Call Example (Sheet 6 of 7) 9-65

Figure 9-10: semctl() System Call Example (Sheet 7 of 7) 9-66

Figure 9-11: semop(2) System Call Example (Sheet 1 of 4) 9-71

Figure 9-11: semop(2) System Call Example (Sheet 2 of 4) 9-72

Figure 9-11: semop(2) System Call Example (Sheet 3 of 4) 9-73

Figure 9-11: semop(2) System Call Example (Sheet 4 of 4) 9-74

Figure 9-12: Shared Memory State Information 9-78

Figure 9-13: Operation Permissions Codes 9-82

Figure 9-14: Control Commands (Flags) 9-82

Figure 9-15: shmget(2) System Call Example (Sheet 1 of 3) 9-86

Figure 9-15: shmget(2) System Call Example (Sheet 2 of 3) 9-87

Figure 9-15: shmget(2) System Call Example (Sheet 3 of 3) 9-88

Figure 9-16: shmctl(2) System Call Example (Sheet 1 of 6) 9-93

Figure 9-16: shmctl(2) System Call Example (Sheet 2 of 6) 9-94

Figure 9-16: shmctl(2) System Call Example (Sheet 3 of 6) 9-95

Figure 9-16: shmct1(2) System Call Example (Sheet 4 of 6) 9-96

Figure 9-16: shmctl() System Call Example (Sheet 5 of 6) 9-97

LIST OF FIGURES xiii

List of Figures

Figure 9-16: shmctl(2) System Call Example (Sheet 6 of 6) 9-98

Figure 9-17: shmopO System Call Example (Sheet 1 of 4) 9-103

Figure 9-17: shmopO System Call Example (Sheet 2 of 4) 9-104

Figure 9-17: shmopO System Call Example (Sheet 3 of 4) 9-105

Figure 9-17: shmopO System Call Example (Sheet 4 of 4) 9-106

Figure 10-1: A Simple ETl Program 10-6

Figure 10-2: The Purposes of initscrO, refreshO, and endwinO
in a Program 1 0-11

Figure 10-3: The Relationship between stdscr and a Terminal
Screen 1 0-1 5

Figure 10-3: The Relationship Between stdscr and a Terminal
Screen (continued) 10-16

Figure 10-4: Multiple Windows and Pads Mapped to a Physical
Screen 1 0-17

Figure 10-5: Input Option Settings for ETl Programs 10-54

Figure 10-6: Using wnoutrefreshO and doupdateO 10-60

Figure 10-7: The Relationship Between a Window and a Termi-
nal Screen 10-61

Figure 10-7: The Relationship Between a Window and a Termi-
nal Screen (continued) 10-62

Figure 10-7: The Relationship Between a Window and a Termi-
nal Screen (continued) 10-63

Figure 10-8: Sample Routines for Low-Level ETl (curses) Inter-
face 10-67

Figure 10-9: Example Using Panel User Pointer 10-83

Figure 10-10: A Sample Menu 10-86

xiv PROGRAMMER'S GUIDE

List of Figures

Figure 10-11: Sample Menu Program to Create a Menu in ETI

Figure 10-12: Creating an Array of Items

Figure 10-13: Using itellLvalueO in Menu Processing

Figure 10-14: Using an Item User Pointer

Figure 10-15: Changing the Items Associated With a Menu

Figure 10-16: Examples of Menu Format (2,2)

Figure 10-17: Examples of Menu Format (3,2)

Figure 10-18: Examples of Menu Format (4, 3)

Figure 10-19: Menu Functions Write to Subwindow, Application
to Window

Figure 10-20: Creating a Menu with a Border

Figure 10-21: Sample Routines Displaying and Erasing Menus

Figure 10-22: Sample Routine that Translates Keys into Menu
Requests

Figure 10-23: Integer Ranges for ETI Key Values and MENU
Requests

Figure 10-24: Sample Menu Output (2)

Figure 10-25: Sample Program Calling the Menu Driver

Figure 10-26: Using an Initialization Routine to Generate Item
Prompts

Figure 10-27: Returning Cursor to its Correct Position for Menu
Driver Processing

Figure 10-28: Example Setting and Using A Menu User Pointer

Figure 10-29: Sample Form Display

10-90

10-93

10-96

10-103

10-108

10-114

10-114

10-115

10-120

10-121

10-127

10-131

10-135

10-136

10-139

10-144

10-149

10-153

10-159

LIST OF FIGURES xv

List of Figures

Figure 10-30: Code To Produce a Simple Form

Figure 10-31: Example Shifting All Form Fields a Given Number
of Rows

Figure 10-32: Setting a Field to TYPE-ENUM of Colors

Figure 10-33: Using the Field Status to Update a Database

Figure 10-34: Using the Field User Pointer to Match Items

Figure 10-35: Creating a Form

Figure 10-36: Form Functions Write to Subwindow, Application
to Window

Figure 10-37: Creating a Border Around a Form

Figure 10-38: Posting and Unposting a Form

Figure 10-39: A Sample Key Virtualization Routine

Figure 10-40: Sweepstakes Form Output

Figure 10-41: An Example of Form Driver Usage

Figure 10-42: Sample Termination Routine that Updates a
Column Total

Figure 10-43: Field Initialization and Termination to Highlight
Current Field

Figure 10-44: Example Manipulating the Current Field

Figure 10-45: Example Changing and Checking the Form Page
Number

Figure 10-46: Repositioning the Cursor After Printing Page
Number

Figure 10-47: Pattern Match Example Using form User Pointer

Figure 10-48: Creating a Programmer-Defined Field Type

xvi PROGRAMMER'S GUIDE

10-164

10-174

10-179

10-189

10-192

10-200

10-208

10-209

10-211

10-216

10-223

10-227

10-232

10-233

10-235

10-237

10-238

10-248

List of Figures

Figure 10-49: Creating TYPE_HEX with Padding and Range
Arguments 10-253

Figure 10-50: Creating a Next Choice Function for a Field Type 10-256

Figure 10-51: Sending a Message to Several Terminals 10-264

Figure 10-52: Typical Framework of a terminfo Program 10-266

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 1 of 4) 10-286

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 2 of 4) 10-287

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 3 of 4) 10-288

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 4 of 4) 10-289

Figure 10-54: TAM High-Level Functions 10-290

Figure 10-55: Translation Between TAM Escape Sequences and
Virtual Key Values 10-293

Figure 11-1: Object File Format 11-2

Figure 11-2: File Header Contents 11-4

Figure 11-3: File Header Flags 11-5

Figure 11-4: File Header Declaration 11-6

Figure 11-5: Optional Header Contents 11-7

Figure 11-6: UNIX System Magic Numbers 11-8

Figure 11-7: aouthdr Declaration 11-9

Figure 11-8: Section Header Contents 11-10

Figure 11-9: Section Header Flags 11-11

LIST OF FIGURES xvii

List of Figures

Figure 11-10: Section Header Declaration 11-12

Figure 11-11: Relocation Section Contents 11-13

Figure 11-12: Relocation Types 11-14

Figure 11-13: Relocation Entry Declaration 11-15

Figure 11-14: Line Number Grouping 11-16

Figure 11-15: Line Number Entry Declaration 11-17

Figure 11-16: COFF Symbol Table 11-18

Figure 11-17: Special Symbols in the Symbol Table 11-19

Figure 11-18: Special Symbols (.bb and .eb) 11-20

Figure 11-19: Nested blocks 11-21

Figure 11-20: Example of the Symbol Table 11-22

Figure 11-21: Symbols for Functions 11-22

Figure 11-22: Symbol Table Entry Format 11-23

Figure 11-23; Name Field 11-24

Figure 11-24: Storage Classes 11-25

Figure 11-25: Storage Class by Special Symbols 11-26

Figure 11-26: Restricted Storage Classes 11-27

Figure 11-27: Storage Class and Value 11-28

Figure 11-28: Section Number 11-29

Figure 11-29: Section Number and Storage Class 11-30

Figure 11-30: Fundamental Types 11-31

Figure 11-31: Derived Types 11-32

xviii PROGRAMMER'S GUIDE

List of Figures

Figure 11-32: Type Entries by Storage Class 11-33

Figure 11-33: Symbol Table Entry Declaration 11-35

Figure 11-34: Auxiliary Symbol Table Entries 11-36

Figure 11-35: Format for Auxiliary Table Entries for Sections 11-37

Figure 11-36: Tag Names Table Entries 11-38

Figure 11-37: Table Entries for End of Structures 11-38

Figure 11-38: Table Entries for Functions 11-39

Figure 11-39: Table Entries for Arrays 11-39

Figure 11-40: End of Block and Function Entries 11-40

Figure 11-41: Format for Beginning of Block and Function 11-40

Figure 11-42: Entries for Structures, Unions, and Enumerations 11-41

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 1 of 2) 11-42

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 2 of 2) 11-43

Figure 11-44: String Table 11-44

Figure 12-1: Operator Symbols 12-5

Figure 12-2: Syntax Diagram for Input Directives (Sheet 1 of 4) 12-32

Figure 12-2: Syntax Diagram for Input Directives (Sheet 2 of 4) 12-33

Figure 12-2: Syntax Diagram for Input Directives (Sheet 3 of 4) 12-34

Figure 12-2: Syntax Diagram for Input Directives (Sheet 4 of 4) 12-35

Figure 13-1: Summary of Default Transformation Path 13-13

Figure 13-2: make Internal Rules (Sheet 1 of 5) 13-25

Figure 13-2: make Internal Rules (Sheet 2 of 5) 13-26

LIST OF FIGURES xix

List of Figures

Figure 13-2: make Internal Rules (Sheet 3 of 5) 13-27

Figure 13-2: make Internal Rules (Sheet 4 of 5) 13-28

Figure 13-2: make Internal Rules (Sheet 5 of 5) 13-29

Figure 14-1: Evolution of an SCCS File 14-7

Figure 14-2: Tree Structure with Branch Deltas 14-8

Figure 14-3: Extended Branching Concept 14-9

Figure 14-4: Determination of New SID 14-20

Figure 15-1: Example of sdb Usage (Sheet 1 of 3) 15-13

Figure 15-1: Example of sdb Usage (Sheet 2 of 3) 15-14

Figure 15-1: Example of sdb Usage (Sheet 3 of 3) 15-15

Figure 17-1: Escape Sequences for Nongraphic Characters 17-4

Figure 17-2: Computer Hardware Characteristics 17-7

Figure 18-1: The cscope Menu of Tasks 18-7

Figure 18-2: Menu Manipulation Commands 18-8

Figure 18-3: Requesting a Search for a Text String 18-9

Figure 18-4: cscope Lists Lines Containing the Text String 18-10

Figure 18-5: Commands for Use After Initial Search 18-11

Figure 18-6: Examining a Line of Code Found by cscope 18-12

Figure 18-7: Requesting a List of Functions that Call allodest 18-13

Figure 18-8: cscope Lists Functions that Call allodest 18-14

Figure 18-9: cscope Lists Functions that Call mymalloc 18-15

Figure 18-10: Viewing dispinit in the Editor 18-16

xx PROGRAMMER'S GUIDE

List of Figures

Figure 18-11: Using cscope to Fix the Problem 18-17

Figure 18-12: Commands for Selecting Lines to be Changed 18-21

Figure 18-13: Changing a Text String 18-22

Figure 18-14: cscope Prompts for Lines to be Changed 18-23

Figure 18-15: Marking Lines to be Changed 18-24

Figure 18-16: cscope Displays Changed Lines of Text 18-25

Figure 18-17: Escaping from cscope to the Shell 18-26

Figure 18-18: Example of lprof Output 18-38

Figure 18-19: Example of Output Produced by the x Option 18-40

Figure 18-20: Example of lprof s Output 18-42

Figure 18-21: prof Output 18-49

Figure 18-22: lprof Output for the Function CAfind 18-51

Figure 18-23: lprof Output for New Version of Function CAfind 18-55

Figure 18-24: prof Output for New Version of lprof 18-57

Figure 18-25: lprof Summary Output for a Test Suite 18-58

Figure 18-26: Fragment of Output from lprof x 18-60

Figure 18-27: Output from lprof x for Function putdata 18-61

Figure 19-1: Alternate Keystrokes For Pseudo Keys 19-3

Figure 19-2: FMLI Objects 19-5

LIST OF FIGURES xxi

10 Extended Terminal Interface

Overview
How this Chapter is Organized
Conventions Used in this Chapter

What is ETI?
The ETI Libraries
The ETI/terminfo Connection

Basic ETI Programming
What Every ETI Program Needs

• The Header File <curses.h>
• The Routines initscrO, refreshO, endwinO

Compiling an ETI Program
• Using the TAM Transition Library

Running an ETI Program
More about initscrO and Lines and Columns
More about refreshO and Windows

• Pads

Simple Input and Output
output

• addchO
• addstrO
• printwO
• moveO
• dearO and eraseO

10-1
10-1
10-3

10-5
10-5
10-7

10-9
10-9
10-9

10-10
10-12
10-13
10-13
10-14
10-14
10-17

10-18
10-18
10-19
10-21
10-22
10-24
10-26

EXTENDED TERMINAL INTERFACE

Extended Terminal Interface

• c1rtoeolO and c1rtobotO 1 0-27
Input 10-30

• getchO 1 0-31
• getstrO 1 0-34
• scanwO 10-36

Output Attributes 10-38
• attronO, attrsetO, and attroffO 10-41
• standoutO and standendO 10-42
• Color Manipulation 1 0-43

Bells, Whistles, and Flashing Lights: beepO and
flashO 1 0-52

Input Options 10-53
• echoO and noechoO 10-56
• cbreakO and nocbreakO 10-57

Windows 10-58
Output and Input 10-58
The Routines wnoutrefreshO and doupdateO 10-59
New Windows 10-64

• newwinO 10-64
• subwinO 10-65

ETI Low-Level Interface (curses) to High-Level
Functions 10-66

Panels 10-69

Compiling and Linking Panel
Programs 10-70

Creating Panels 10-71

ii PROGRAMMER'S GUIDE

--------------- Extended Terminal Interface

Elementary Panel Window
Operations 10-72
Fetching Pointers to Panel Windows 10-72
Changing Panel Windows 10-72
Moving Panel Windows on the Screen 10-73

Moving Panels to the Top or
Bottom of the Deck 10-75

Updating Panels on the Screen 10-76

Making Panels Invisible 10-78
Hiding Panels 10-78

• Checking If Panels are Hidden 10-79
Reinstating Panels 10-79

Fetching Panels Above or Below
Given Panels 10-80

Setting and Fetching the Panel
User Pointer 10-82

Deleting Panels 10-85

Menus 10-86

EXTENDED TERMINAL INTERFACE iii

Extended Terminal Interface ----------------

Compiling and Linking Menu
Programs 10-87

Overview: Writing Menu Programs
in ETI 10-88
Some Important Menu Terminology 10-88
What a Menu Application Program Does 10-89
A Sample Menu Program 10-89

Creating and Freeing Menu Items 10-92

Two Kinds of Menus: Single- and
Multi-Valued 10-95
Manipulating an Item's Select Value in a Multi-

Valued Menu 10-95

Manipulating Item Attributes 10-97
Fetching Item Names and Descriptions 10-97
Setting Item Options 1 0-97
Checking an Item's Visibility 10-100
Changing the Current Default Values for Item

Attributes 10-100

Setting the Item User Pointer 10-102

Creating and Freeing Menus 10-105

iv PROGRAMMER'S GUIDE

Extended Terminal Interface

Manipulating Menu Attributes
Fetching and Changing Menu Items
Counting the Number of Menu Items
Changing the Current Default Values for Menu

Attributes

Displaying Menus
Determining the Dimensions of Menus

• Specifying the Menu Format
• Changing Your Menu's Mark String
• Querying the Menu Dimensions

Associating Windows and Subwindows with Menus
Fetching and Changing A Menu's Display

Attributes
Posting and Unposting Menus

Menu Driver Processing
Defining the Key Virtualization Correspondence
ETI Menu Requests

• Item Navigation Requests
• Directional Item Navigation Requests
• Menu Scrolling Requests
• Multi-Valued Menu Selection Request
• Pattern Buffer Requests

Application-Defined Commands
Calling the Menu Driver
Establishing Item and Menu Initialization and

Termination Routines
• Function set.Jnen11-initO
• Function seLiteDL-initO
• Function seLitellL.termO
• Function set.Jnen1L-termO

Fetching and Changing the Current Item

10-107
10-107
10-109

10-109

10-111
10-111
10-112
10-116
10-117
10-118

10-122
10-125

10-129
10-129
10-131
10-132
10-132
10-133
10-133
10-133
10-135
10-135

10-141
10-142
10-142
10-142
10-143
10-145

EXTENDED TERMINAL INTERFACE v

Extended Terminal Interface ----------------

Fetching and Changing the Top Row
Positioning the Menu Cursor
Changing and Fetching the Pattern Buffer

Manipulating the Menu User
Pointer

Setting and Fetching Menu
Options

Forms

Compiling and Linking Form
Programs

Overview: Writing Form Programs
in ETI
Some Important Form Terminology
What a Typical Form Application Program Does
A Sample Form Application Program

Creating and Freeing Fields

Manipulating Field Attributes
Obtaining Field Size and Location Information
Moving a Field
Changing the Current Default Values for Field

Attributes

vi PROGRAMMER'S GUIDE

10-147
10-148
10-149

10-152

10-155

10-159

10-160

10-161
10-161
10-162
10-162

10-168

10-172
10-172
10-173

10-174

---------------- Extended Terminal Interface

Setting the Field Type To Ensure Validation
• TYPE-ALPHA
• TYPE-ALNUM
• TYPE-ENUM
• TYPE-INTEGER
• TYPE-N"UMERIC
• TYPE-REGEXP

Justifying Data in a Field

Setting the Field Foreground,
Background, and Pad Character

Some Helpful Features of Fields
Setting and Reading Field Buffers
Setting and Reading the Field Status
Setting and Fetching the Field User Pointer

Manipulating Field Options

Creating and Freeing Forms

Manipulating Form AHributes
Changing and Fetching the Fields on an Existing

Form
Counting the Number of Fields
Changing ETI Form Default Attributes

Displaying Forms
Determining the Dimensions of Forms

10-175
10-177
10-177
10-178
10-179
10-180
10-181
10-182

10-184

10-186
10-185
10-188
10-190

10-194

10-198

10-202

10-202
10-203
10-204

10-205
10-205

EXTENDED TERMINAL INTERFACE vii

Extended Terminal Interface

• Scaling the Form
Associating Windows and Subwindows with a

Form
Posting and Unposting Forms

Form Driver Processing
Defining the Virtual Key Mapping
ETI Form Requests

• Page Navigation Requests
• Inter-Field Navigation Requests on the Current

Page
• Intra-Field Navigation Requests
• Field Editing Requests
• Scrolling Requests
• Field Validation Requests
• Choice Requests

Application-Defined Commands
Calling the Form Driver
Establishing Field and Form Initialization and

Termination Routines
• Function seLforItL-initO
• Function seLfiel<LinitO
• Function seLfielLtermO
• Function seLforDL-termO

Manipulating the Current Field
Changing the Form Page
Positioning the Form Cursor

Setting and Fetching the Form
User Pointer

10-205

10-206
10-210

10-213
10-213
10-217
10-217

10-217
10-218
10-220
10-221
10-221
10-222
10-222
10-223

10-229
10-230
10-230
10-230
10-230
10-234
10-236
10-237

10-240

Setting and Fetching Form Options 10-242

viii PROGRAMMER'S GUIDE

Extended Terminal Interface

Creating and Manipulating
Programmer-Defined Field Types
Building a Field Type from Two Other Field Types
Creating a Field Type with Validation Functions
Freeing Programmer-Defined Field Types
Supporting Programmer-Defined Field Types

• Argument Support for Field Types
• Supporting Next and Previous Choice Functions

Other ETI Routines

Routines for Drawing Lines and
Other Graphics

Routines for Using Soft Labels

Working with More than One
Terminal

Working with terminfo Routines
What Every terminfo Program Needs
Compiling and Running a terminfo Program
An Example terminfo Program

Working with the terminfo
Database
Writing Terminal Descriptions

10-245
10-245
10-246
10-249
10-250
10-250
10-254

10-258

10-259

10-261

10-263

10-265
10-265
10-267
10-267

10-271
10-271

EXTENDED TERMINAL INTERFACE ix

Extended Terminal Interface

• Name the Terminal
• Learn About the Capabilities
• Specify Capabilities
• Compile the Description
• Test the Description

Comparing or Printing terminfo Descriptions
Converting a termcap Description to a terminfo

Description

TAM Transition Library

Compiling and Running TAM
Applications under ETI

Tips for Polishing TAM Application
Programs Running under ETI

How the TAM Transition Library
Works
Translations from TAM Calls to ETI Calls
The TAM Transition Keyboard Subsystem

Program Examples
The editor Program
The highlight Program
The scatter Program
The show Program
The two Program
The window Program
The colors Program

x PROGRAMMER'S GUIDE

10-271
10-272
10-273
10-279
10-280
10-281

10-281

10-283

10-284

10-285

10-286
10-286
10-290

10-295
10-295
10-302
10-304
10-306
10-308
10-311
10-313

Overview

Screen management programs are a common component of many com
mercial computer applications. These programs handle input and output at a
video display terminal. A screen program might move a cursor, print a
display, divide a terminal screen into windows, or change the definition of
colors. Many screen management programs build end-user terminal interfaces
to help users enter and retrieve information from a data base - interfaces
such as forms, menus, and help and error message displays.

This chapter explains how to use the Extended Terminal Interface (ETI)
package to write screen management programs on a UNIX system. (It also
tells you what you need to know about the terminfo data base to use ETI.)
To start you writing screen management programs as soon as possible, the
information in this chapter does not cover every routine in the libraries.
Although it covers all routines in the high-level libraries (those that build
panels, menus, and forms), it covers only the most frequently used routines in
the low-level library (curses). For more information, this chapter points you
to the curses(3X), terminfo(4) and other manual pages in the UNIX System V
Programmer's Reference Manual. Keep this document close at hand; you'll find
it invaluable when you want to know more about these and other routines.

Because the routines are compiled C functions, you should be familiar
with the C programming language before using ETI. You should also be fami
liar with the UNIX systemiC language standard I/O package (see 11 System
Calls and Subroutines 11 and "Input/Output 11 in Chapter 2 of the Programmer's
Guide and the stdio(3S) manual page of the Programmer's Reference Manual).
With that knowledge and an appreciation for the UNIX philosophy of building
on the work of others, you can design screen management programs for many
purposes.

How this Chapter is Organized
This chapter contains eleven sections:

• Introduction to ETI

This is the present section. It briefly describes the ETI libraries and
how ETI works with the terminfo data base.

EXTENDED TERMINAL INTERFACE 10·1

Overview

• Basic ETI Programming

This section describes the routines and other components that every
ETI program needs to work properly, tells you how to compile and run
low-level ETI (curses) programs, and introduces important concepts
such as refreshing.

• Simple Input and Output

This section describes the routines in the low-level ETI (curses) library
for writing to, and reading from, a screen and manipulating colors. It
also covers the suite of video attributes and options which enable you
to enhance your displays with striking visual effects.

• Windows

This section explains the use of windows and subwindows. It delves
more deeply into the refresh operation and covers the functions
wnoutrefreshO and doupdateO.

• Panels

This section begins the treatment of the high-level ETI functions. It
describes the use of panels-windows with interrelationships of
depth-and covers the set of panel functions, which enable you to
create panels, move them, associate them with different windows, place
them on top of other panels, and so forth.

• Menus

This section explains the suite of menu functions. It explains how to
create menu items and menus, display them, change menu video attri
butes, have users interact with menus, and more.

• Forms

This section covers the wealth of form functions. It shows how to
create fields and forms, display them, change form video attributes,
have users interact with forms, and more.

• Other ETI Routines

This section covers routines for screen management programs that draw
line graphics, use a terminal's soft labels, and work with more than one
terminal at the same time.

10-2 PROGRAMMER'S GUIDE

Overview

• Working with terminfo Routines

This section describes a subset of routines in the curses library. These
routines access and manipulate data in the terminfo data base. They
are used to set up and handle special terminal capabilities such as pro
grammable function keys. This section also describes the terminfo data
base, related support tools, and their relationship to the curses library.

• Terminal Access Method (TAM) Transition Library

This section explains how to use the TAM transition library and how to
rewrite TAM application programs to run efficiently under ETI without
the TAM transtion library.

• Program Examples

This section includes programs that illustrate uses of low level ETI
curses routines.

Conventions Used in this Chapter
This section uses the following conventions to discuss ETI routines:

• In program text, the major ETI data types appear in uppercase. They
are:

o WINDOW a rectangular area of the screen treated as a unit

o PANEL a window with relations of depth to other windows so
that regions hidden behind other windows are invisible

o ITEM a character string consisting of a name and an optional
description

o MENU a screen display that presents a set of items from which
the user chooses one or more, depending on the type of menu

o FIELD an m x n block of character positions within a form that
ETI functions can manipulate as a unit

o FORM a collection of one or more pages of fields

o FIELDTYPE a field attribute that determines what kind of data may
occupy the field

EXTENDED TERMINAL INTERFACE 10-3

Overview

• Every ETI function is introduced with a SYNOPSIS that describes the
type of its arguments and return value, if any. The first line of the
SYNOPSIS proper describes the routine, while the following lines
describe its arguments. On each line, the type of the return value or
arguments precedes their names. As an example, consider

SYNOPSIS

int set_menu _win (menu, window)
MENU * menu;
WINIXM * window;

This says that the function seLmenll-winO returns a value of type int
and that it takes two arguments, menu and window. The argument menu is
of type MENU * (pointer to a menu), while the argument window is of type
WINDOW * (pointer to a window).

• The terms window, panel, menu, and form are often shorthand for the
phrases window pointer, panel pointer, menu pointer, and form pointer,
respectively. All ETI routines pass or return pointers to these objects,
not the objects themselves.

to·4 PROGRAMMER'S GUIDE

What is ETI?

ETI is a set of C library routines that promote the development of applica
tion programs that display and manipulate windows, panels, menus, and
forms and run under the UNIX system. The rest of this section explains the
nature of these libraries and the connection between ETI and the terminfo
library and data base.

The ETI Libraries
ETI consists of the following libraries.

• low-level (curses)

• panel

• menu

• form

• TAM Transition.

The routines are C functions and macros; many of them resemble routines in
the standard C library. For example, there's a routine printwO that behaves
much like printf(3S) and another routine getchO that behaves like getc(3S).
The automatic teller program at your bank might use printwO to print its
menus and getchO to accept your requests for withdrawals (or, better yet,
deposits). A visual screen editor like the UNIX system screen editor vi(l)
might also use these and other ETI routines.

A major feature of ETI is cursor optimization. Cursor optimization minim
izes the amount a cursor has to move around a screen to update it. For exam
ple, if you designed a screen editor program with ETI routines and edited the
sentence

ETI is a great package for creating forms and menus.

to read

ETI is the best package for creating forms and menus.

the program would change only the best in place of a great. The other
characters would be preserved. Because the amount of data transmitted-the
output-is minimized, cursor optimization is also referred to as output optimi
zation.

EXTENDED TERMINAL INTERFACE 10·5

What is ETI?

Cursor optimization takes care of updating the screen in a manner
appropriate for the terminal on which an ETI program is run. This means that
ETI can do whatever is required to update many different terminal types. It
searches the terminfo data base (described below) to find the correct descrip
tion for a terminal.

How does cursor optimization. help you and those who use your pro
grams? First, it saves you time in describing in a program how you want to
update screens. Second, it saves a user's time when the screen is updated.
Third, it reduces the load on your UNIX system's communication lines when
the updating takes place. Fourth, you don't have to worry about the myriad
of terminals on which your program might be run.

Here's a simple ETI program. It uses some of the basic ETI routines to
move a cursor to the middle of a terminal screen and print the character string
BullsEye. Each of these routines is described later in this section. For now,
just look at their names and you will get an idea of what each of them does:

#include <curses.~

main()

{

initscr() ;

lOClIIe (LINES/2 - 1, COLS/2 - 4);

addstr("Bulls");

refresh() ;

addstr("Eye") ;
refresh();

endwin() ;

Figure 10-1: A Simple ETI Program

10-6 PROGRAMMER'S GUIDE

What is ETI?

The ETI/terminfo Connection
lerminfo is both a set of routines that make use of the capabilities of a

wide range of terminals and a data base that contains descriptions of the ter
minals that can be used with ETI. Its use as a data base is our concern here.
See the section "Working with terminfo Routines" , for details on its use as a
set of routines.

A screen management program with ETI routines refers to the terminfo
data base at run time to obtain the information it needs about the terminal
being used-what we'll call the current terminal from here on.

Suppose, for instance, that you are using an AT&T Teletype 5425 terminal
to run the simple ETI program shown in Figure 10-1. To execute properly,
the program needs to know how many lines and columns 'the terminal screen
has to print the BullsEye in the middle of it. The description of the AT&T
Teletype 5425 in the terminfo data base has this information, as well as other
information about the terminal's capabilities and how it performs various
operations - for example, how its control characters are interpreted. All ETI
needs to know before it goes looking for the information is the name of your
terminal.

You tell the program the name by putting it in the environment variable
$TERM when you log in or by setting and exporting $TERM in your .profile
file (see profile(4)). Knowing $TERM, an ETI program run on the current ter
minal can search the lerminfo data base to find the correct terminal descrip
tion.

For example, assume that the following lines are in a .profile:

TERM=5425
export TERM
tput init

The first line names the terminal type, and the second line exports it. (See
profile(4) in the Programmer's Reference Manual.) The third line of the exam
ple tells the UNIX system to initialize the current terminal. That is, it makes
sure that the terminal is set up according to its description in the terminfo
data base. (The order of these lines is important. $TERM must be defined
and exported first, so that when tpul(l) is called the proper initialization for
the current terminal will take place.) If you had these lines in your .profile
and you ran an ETI program, the program would get the information that it

EXTENDED TERMINAL INTERFACE 10-7

What is ETI?

needs about your terminal from the file /usr/lib/terminfo/5/5425 in the data
base, which provides a match for $TERM. For more information about the
terminfo data base, see the section "Working with terminfo Routines".

1 0-8 PROGRAMMER'S GUIDE

Basic ETI Programming

This section describes the low-level routines and other components that
every ETI program needs to work properly. It tells you how to compile and
run ETI applications using the low-level libraries and introduces important
concepts (such as refreshing) that recur throughout this document.

What Every ETI Program Needs
All ETI programs need to include the header files <menu.h>, <form.h>,

and <panel.h> and call the routines initscrO, refreshO or similar routines,
and endwinO. Some of the other header files, however, include file curses.h.

The Header File <curses.h>

The header files <menu.h>, <form.h>, and <panel.h> define several
global variables and data structures.

To begin, let's consider the variables and data structures defined.
<curses.h> among other things, defines the integer variables LINES and
COLS; when an ETI program is run on a particular terminal, these variables
are assigned the vertical and horizontal dimensions of the terminal screen,
respectively, by the routine initscrO described below.

The integer variables COLORS and COLORJ AIRS are also defined in
<curses.h>. These will be assigned, respectively, the maximum number of
colors and color-pairs the terminal can support. These variables are initialized
by the starLcolorO routine. (See the section "Color Manipulation. ,,)

LINES and COLS are external (global) variables that represent the size
of a terminal screen. Two similar variables, $LINES and $COLUMNS,
may be set in a user's shell environment; an ETl program uses the
environment variables to determine the size of a screen. Whenever we
refer to the environment variables in this section, we will use the $ to
distinguish them from the C declarations in the <curses.h> header file.

For more information about these variables, see the following sections;
"The Routines initscrO, refreshO, and endwinO" and "More about
initscrO and Lines and Columns. "

The header files define the integer constants OK, E_OK, ERR, and others
listed in the following sections. ETI routines that return int values return
these constants under the following conditions:

EXTENDED TERMINAL INTERFACE 10-9

Basic ETI Programming

OK returned if a low-level or panel function completes prop
erly

returned if a menu or form function does so

returned if a low-level or panel function encounters an
error

The other error values returned by the high-level functions are described in
the appropriate sections below.

Now let's consider the macro definitions. <curses.h> defines many ETI
routines as macros that call other macros or ETI routines. For instance, the
simple routine refreshO is a macro. The line

#define refresh() wrefresh(stdscr)

shows that when refresh is called, it is expanded to call the ETI routine
wrefreshO. In turn, wrefreshO (although it is not a macro) calls the two ETI
routines wnoutrefreshO and doupdateO. Many other routines also group two
or three routines together to achieve a particular result. V Macro <xponsion m ETI ",oS'""" may <au" problems wHh <ettam

sophisticated C features, such as the use of automatic incrementing vari
ables.

One final point about <curses.h>: it automatically includes <stdio.h>
and the <termio.h> tty driver interface file. Including either file again in a
program is harmless but wasteful.

The Routines initscr(), refresh(), endwin()
The routines initscr(), refreshO, and endwinO initialize a terminal screen

to an "in ETI state," update the contents of the screen, and restore the termi
nal to an "out of ETI state," respectively. Consider the simple program intro
duced earlier and reproduced in Figure 10-2.

10-10 PROGRAMMER'S GUIDE

#include <curses.~

main()

{

Basic ETI Programming

initscr() ; 1* initialize terminal settings and <curses.~
data structures and variables *1

IlOVe(LINFS/2 - 1, COLS/2 - 4);
addstr("allIs") ;
refresh(); 1* send outplt to (update) terminal screen *1

addstr("Eye") ;

refresh(); 1* send nore outplt to terminal screen *1
endwin(); 1* restore all tenninal settings *1

Figure 10-2: The Purposes of initscrO, refreshO, and endwinO in a Program

An ETI program usually starts by calling initscrO; your program should
call initscrO only once. This routine uses the environment variable $TERM to
determine what terminal is being used. (See the Chapter 1 section, "The
ETI/terminfo Connection," for details.) It then initializes all the declared
data structures and other variables from <curses.h>. For example, initscrO
would initialize LINES and COLS for the sample program on whatever termi
nal it was run. If the TELETYPE 5425 terminal were used, this routine would
initialize LINES to 24 and COLS to 80. Finally, this routine writes error mes
sages to stderr and exits if errors occur.

During the execution of the program, output and input is handled by rou
tines like moveO and addstrO in the sample program. For example,

nove (LINES/2 - 1, OOLS/2 - 4);

says to move the cursor to the left of the middle of the screen. The line

addstr("Bulls") ;

says to write the character string Bulls. For example, if the TELETYPE 5425
terminal were used, these routines would position the cursor and write the

EXTENDED TERMINAL INTERFACE 10·11

Basic ETI Programming

character string at (11,36).

All ETI routines that move the cursor move it from its home position in the
upper left comer of a screen. The (LINES,COLS) coordinate at this position
is (0,0) not (1,1). Notice that the vertical coordinate is given first and the
horizontal second, which is the opposite of the common 'x,y' order of screen
(or graph) coordinates. The -1 in the sample program takes the (0,0) posi-
tion into account to place the cursor on the center line of the terminal
screen.

Routines like moveO and addstrO do not actually change a physical termi
nal screen when they are called. The screen is updated only when refreshO is
called after one or more windows (internal representations of the screen) are
updated. This is a very important concept, which we discuss below under
"More about refreshO and Windows."

Finally, an ETI program ends by calling endwinO. This routine restores
all terminal settings and positions the cursor at the lower left corner of the
screen.

Compiling an ETI Program
You compile programs that include ETI routines as C language programs.

This means that you use the cc(l) command (documented in the Programmer's
Reference Manual) to invoke the C compiler. (See Chapter 2 in the UNIX Sys
tem V Programmer's Guide for details).

The routines are usually stored in the library /usr/lib/libX.a, where X
signifies either curses, panel, menu, or form, depending on which library
your program needs. To direct the link editor to search this library, you must
use the -I option with the cc command.

The general command line for compiling an ETI program follows:

cc file.c [-IX] -lcurses -0 file

where X is either panel, menu, or form; file.c is the name of the source pro
gram; and file is the executable object module. See the appropriate section
below for more information.

10-12 PROGRAMMER'S GUIDE

Basic ETI Programming

Using the TAM Transition Library
Some users may have applications using the TAM library routines that

originally ran on the UNIX Pc. "The TAM Transition Library," Appendix B
of this document, explains how to compile and run these applications.

Running an ETI Program
ETI programs count on certain information being in a user's environment

to run properly. Specifically, users of a program should usually include the
following three lines in their .profile files:

TERM=current terminal type
export TERM
tput init

For an explanation of these lines, tum again to the section "The
ETI/terminfo Connection" in Chapter 1. Users of an ETI program could also
define the environment variables $LINES, $COLUMNS, and $TERMINFO in
their .profile files. However, unlike $TERM, these variables do not have to
be defined.

If an ETI program does not run as expected, you might want to debug it
with sdb(l), which is documented in the Programmer's Reference Manual).
When using sdb, you have to keep a few points in mind. First, an ETI pro
gram is interactive and always has knowledge of where the cursor is located.
An interactive debugger like sdb, however, may cause changes to the contents
of the screen of which the ETI program is not aware.

Second, an ETI program doesn't output to a window until refresh() or a
similar routine is called. Because output from the program may be delayed,
debugging the output for consistency may be difficult.

Third, setting break points on ETI routines that are macros, such as
refreshO, does not work. You have to use the routines defined for these mac
ros, instead; for example, you have to use wrefreshO instead of refresh(). See
the above section, "The Header File <curses.h>," for more information about
macros.

EXTENDED TERMINAL INTERFACE 10·13

Basic ETI Programming

More about initscr() and Lines and Columns
After determining a terminal's screen dimensions, initscrO sets the vari

ables LINES and COLS. These variables are set from the terminfo variables
lines and columns. These, in turn, are set from the values in the terminfo
data base, unless these values are overridden by the values of the environ
ment $LINES and $COLUMNS.

More about refresh() and Windows
As mentioned above, ETI routines do not update a terminal until refreshO

is called. Instead, they write to an internal representation of the screen called
a window. When refreshO is called, all the accumulated output is sent from
the window to the current terminal screen.

A window acts a lot like a buffer does when you use a UNIX system edi
tor. When you invoke vi(l), for instance, to edit a file, the changes you make
to the contents of the file are reflected in the buffer. The changes become part
of the permanent file only when you use the w or ZZ command. Similarly,
when you invoke a screen program made up of ETI routines, they change the
contents of a window. The changes become part of the current terminal
screen only when refreshO is called.

<curses.h> supplies a default window named stdscr (standard screen),
which is the size of the current terminal's screen, for all programs using ETI
routines. The header file defines stdscr to be of the type WINDOW*, a
pointer to a C structure which you might think of as a two-dimensional array
of characters representing a terminal screen. The program always keeps track
of what is on the physical screen, as well as what is in stdscr. When refreshO
is called, it compares the two screen images and sends a stream of characters
to the terminal that make the physical screen look like stdscr. An ETI pro
gram considers many different ways to do this, taking into account the various
capabilities of the terminal and similarities between what is on the screen and
what is on the window (stdscr). It optimizes output by printing as few char
acters as possible. Figure 10-3 illustrates what happens when you execute the
sample ETI program that prints BullsEye at the center of a terminal screen.
Notice in the figure that the terminal screen retains whatever garbage is on it
until the first refreshO is called. This refreshO clears the screen and updates
it with the current contents of stdscr.

10-14 PROGRAMMER'S GUIDE

initscrO

move(LINESj2-1,
COLSjl-4)

[2,3]

addstr (.. Bulls")

refreshO

D

stdscr

stdscr

o

stdscr

Bulls C

stdscr

Bulls c

Basic ETI Programming

physical screen

(garbage)

physical screen

(garbage)

physical screen

(garbage)

physical screen

Bulls 0

Figure 10-3: The Relationship between stdser and a Terminal Screen

EXTENDED TERMINAL INTERFACE 10-15

Basic ETI Programming

stdscr physical screen

addstr (" Eye")

BullsEye C Bulls [J

stdscr physical screen

refresh()

BullsEye C BullsEye [J

stdscr physical screen
endwinO

BullsEye [J BullsEye

[J

Figure 10-3: The Relationship Between stdser and a Terminal Screen (contin
ued)

You can create other windows and use them instead of stdser. Windows
are useful for maintaining several different screen images. For example, many
data entry and retrieval applications use two windows: one to control input
and output and one to print error messages that don't mess up the other win
dow. It's possible to subdivide a screen into many windows, refreshing each
one of them as desired. And it's possible to create a window within a win
dow; the smaller window is called a subwindow. See the section, "Win
dows," for more information.

10·16 PROGRAMMER'S GUIDE

Basic ETI Programming

Pads
Some ETI routines are designed to work with a special type of window

called a pad. A pad is a window whose size is not restricted by the size of a
screen or associated with a particular part of a screen. You can use a pad
when you have a particularly large window or only need part of the window
on the screen at anyone time. For example, you might use a pad for an
application with a spread sheet.

Figure 10-4 represents what a pad, a subwindow, and some other win
dows could look like in comparison to a physical screeh.

terminal screen

window window

- pad

y-
pad I ,u~.d I

~window

I window I

Figure 10-4: Multiple Windows and Pads Mapped to a Physical Screen

The later section "Windows" describes the routines you use to create and
use windows and pads. If you'd like to see an ETI program with windows
now, turn to the window program under the section "ETI Program Exam
pIes" in this chapter.

EXTENDED TERMINAL INTERFACE 10-17

Simple Input and Output

This section explains the numerous functions that enable you to do I/0
under the ETI environment. It also covers the set of video attributes and
options which can enhance ETI output with striking visual effects.

Output
The routines that low-level ETI provides for writing to stdscr are similar

to those provided by the stdio(3S) library for writing to a file. They let you

• write a character at a time - addchO

• write a string - addstrO

• format a string from a variety of input arguments - printwO

• move a cursor or move a cursor and print character(s) - moveO,
mvaddchO, mvaddstrO, mvprintwO

• clear a screen or a part of it - clearO, eraseO, clrtoeolO, clrtobotO

Following are descriptions and examples of these routines. V The ETI mmu1' I"ovid", it, own "" of input and output fundion'. You
should not use other I/O routines or system calls, like print(3s) and
scanf(3s), in an ETI program. They may cause undesirable results when
you run the program.

10·18 PROGRAMMER'S GUIDE

addch()

SYNOPSIS

#include <curses.h>

int addch(ch)
chtype ch;

NOTES

Simple Input and Output

• addch() writes a single character to stdscr and advances the cursor to
the next character position.

• The character is of the type chtype, which is defined in <curses.h>.
chtype contains data and attributes (see "Output Attributes" in this
chapter for information about attributes).

• When working with variables of this type, make sure you declare them
as chtype and not as the basic type (for example, unsigned long) that
chtype is declared to be in <curses.h>. This will ensure future compa
tibility.

• addch() does some translations. For example, it converts

o the <NL> character to a clear to end of line and a move to the
next line

o the tab character to an appropriate number of blanks

o other control characters to their X notation

• addch() normally returns OK. The only time addch() returns ERR is
after adding a character to the lower right-hand corner of a window
that does not scroll.

• addch() is a macro.

EXTENDED TERMINAL INTERFACE 10-19

Simple Input and Output

EXAMPLE

#include <curses.h>

main()
{

}

ini ts.cr () ;
addch('a');
refresh() ;
endwin() ;

The output from this program will appear as follows, with 'a' in position
0,0:

a

$0

See also the show program under II ETI Example Programs II in this
chapter.

10·20 PROGRAMMER'S GUIDE

addstr()

SYNOPSIS

#include <curses.h>

int addstr(str)
char *stri

NOTES

Simple Input and Output

• addstrO writes a string of characters to stdscr.

• addstrO calls addchO to write each character.

• addstrO follows the same translation rules as addchO.

• addstrO returns OK on success and ERR on error.

• addstrO is a macro.

EXAMPLE

Recall the sample program that prints the character string BullsEye. See
Figures 10-2, 10-3, and 10-4.

EXTENDED TERMINAL INTERFACE 10-21

Simple Input and Output

printw()

SYNOPSIS

#include <curses.h>

int printw(fmt [,arg ...])
char *fmt

NOTES

• printwO handles formatted printing on stdscr.

• Like printf, printwO takes a format string and a variable number of
arguments.

• Like addstrO, printwO calls addchO to write the string.

• printwO returns OK on success and ERR on error.

10-22 PROGRAMMER'S GUIDE

EXAMPLE

#include <curses.h>

maine)
{

char* title

int no = 0;
"Not specified";

1* Missing code. *1

initscr() ;

1* Missing code. *1

printw("roS is not in stock. \n", title);

Simple Input and Output

printw("Please ask the cashier to order red for you. \n", no);

}

refresh() ;
endwin() ;

The output from this program will appear as follows:

Not specified is not in stock.
Please ask the cashier to order 0 for you.

$0

EXTENDED TERMINAL INTERFACE 10-23

Simple Input and Output

moveO

SYNOPSIS

#include <curses.h>

int move(y, x);
int y, x;

NOTES

• moveO positions the cursor for stdscr at the given row y and the given
column x.

• Notice that moveO takes the y coordinate before the x coordinate.
The upper left-hand coordinates for stdscr are (0,0), the lower right
hand (LINES - I, COtS - 1). See the section "The Routines initscrO,
refreshO, and endwinO" for more information.

• moveO may be combined with the write functions to form

o mvaddch(y, x, ch), which moves to a given position and prints a
character

o mvaddstr(y, x, str), which moves to a given position and prints a
string of characters

o mvprintw(y, x, fmt [,arg ...]),
which moves to a given position and prints a formatted string.

• moveO returns OK on success and ERR on error. Trying to move to a
screen position of less than (0,0) or more than (LINES - I, COtS - 1)
causes an error.

• moveO is a macro.

10-24 PROGRAMMER'S GUIDE

EXAMPLE

#include <curses.h>

main()
{

initscr() ;

Simple Input and Output

addstr ("Cursor should be here --> if nove () works.");
printw("\n\n\nPress <(](> to end test.") ;
nove (0 ,25);
refresh() ;
getch() ; /* Gets <rn>; discussed below. * /
endwin() ;

}

Here's the output generated by running this program:

Press <CR> to end test.

After you press <CR>, the screen looks like this:

Cursor should be here --> if IIDVe(} ~ks.

See the scatter program under "ETI Program Examples" in this chapter for
another example using moveO.

EXTENDED TERMINAL INTERFACE 10-25

Simple Input and Output

clear(J and erase(J

SYNOPSIS

#include <eurses.h>

int clearO
int eras eO

NOTES

• Both routines change stdser to all blanks.

• clearO assumes that the screen may have garbage that it doesn't know
about; this routine first calls eraseO and then clearokO which clears the
physical screen completely on the next call to refreshO for stdser. See
the low-level ETI or eurses(3X) manual page for more information
about clearokO.

• initserO automatically calls clearO.

• clearO and eraseO always return OK.

• Both routines are macros.

10-26 PROGRAMMER'S GUIDE

clrtoeol() and clrtobot()

SYNOPSIS

#include <curses.h>

int clrtoeol()
int clrtobot()

NOTES

Simple Input and Output

• clrtoeol() changes the remainder of a line to all blanks.

• clrtobot() changes the remainder of a screen to all blanks.

• Both begin at the current cursor position inclusive.

• Neither returns any useful value.

EXTENDED TERMINAL INTERFACE 10·27

Simple Input and Output

EXAMPLE

The following sample program uses clrtobotO.

#include <curses.~

main()
{

}

initscr() ;
addstr("Press <CR> to delete fran here to the end of the line and on.")
addstr ("\nDelete this too. \nAnd this.") ;
nove(O,30);
refresh() ;
getch.() ;
clrtobot() ;
refresh() ;
endwin() ;

Here's the output generated by running this program:

Press <CR> to delete fran hereOto the end of the line and an.

Notice the two calls to refreshO: one to send the full screen of text to a
terminal, the other to clear from the position indicated to the bottom of a
screen.

Here's what the screen looks like when you press <CR>:

10-28 PROGRAMMER'S GUIDE

Simple Input and Output

Press <CR> to delete fran here

See the show and two programs under "ETI Example Programs" for
other uses of clrtoeolO.

EXTENDED TERMINAl-INTERFACE 10-29

Simple Input and Output

Input
Low-level routines for reading from the current terminal are similar to

those provided by the stdio(3S) library for reading from a file. They let you:

• Read one character at a time - getchO

• Read a <NL>-terminated string - getstrO

• Parse input, converting and assigning selected data to an argument list
- scanwO·

The primary routine is getchO, which processes a single input character
and then returns that character. This routine is like the C library routine
getcharO(3S) except that it makes several terminal- or system-dependent
options available that are not possible with getcharO. For example, you can
use getchO with the ETI routine keypadO, which allows a low-level ETI pro
gram to interpret extra keys on a user's terminal, such as arrow keys, function
keys, and other special keys that transmit escape sequences, and treat them as
just another key. See the descriptions of getchO and keypadO on the
curses(3X) manual page for more information about keypadO.

The following pages describe and give examples of the basic routines for
getting input in a screen program.

10-30 PROGRAMMER'S GUIDE

getch()
SYNOPSIS

#include <curses.h>

int getchO

NOTES

Simple Input and Output

• getchO reads a single character from the current terminal.

• getchO returns the value of the character or ERR on 'end of file:
receipt of signals, or nonblocking read with no input.

• getchO is a macro.

• See the discussions about echoO, noechoO, cbreakO, nocbreakO, rawO,
norawO, hal£delayO, nodelayO, and keypadO on the following pages
and in curses(3X).

EXTENDED TERMINAL INTERFACE 10-31

Simple Input and Output

EXAMPLE

#include <curses.~

maine)
{

}

int ch;

:in:Ltscr () ;
cbreak(); 1* Explained later in the section "Input Options" *1
addstr("Press any character: ");
refresh() ;
Ch = getch();
printw("\n\n\nThe character entered was a '%c'.\n", ch);
refresh() ;
endwln() ;

The output from this program follows. The first refreshO sends the
addstrO character string from stdscr to the terminal:

Now assume that a w is typed at the keyboard. getchO accepts the char
acter and assigns it to ch. Finally, the second refreshO is called and the
screen appears as follows:

10·32 PROGRAMMER'S GUIDE

Simple Input and Output

Press any character: w

The character entered was a ·w·.

$0

For another example of getchO, see the show program under "ETI Exam
ple Programs" in this chapter.

EXTENDED TERMINAL INTERFACE 10-33

Simple Input and Output

getstrIJ

SYNOPSIS

#include <curses.h>

int getstr(str)
char *stri

NOTES

• getstrO reads characters and stores them in a buffer until a <CR>,
<NL>, or <ENTER> is received from stdscr. getstrO does not check
for buffer overflow.

• The characters read and stored are in a character string.

• getstrO is a macro; it calls getchO to read each character.

• getstrO returns ERR if getchO returns ERR to it. Otherwise it returns
OK.

• See the discussions on echoO, noechoO, cbreakO, nocbreakO, rawO,
norawO, hal£delayO, nodelayO, and keypadO on the following pages
and in ETI curses(3X).

10-34 PROGRAMMER'S GUIDE

Simple Input and Output

EXAMPLE

#include <curses.~

maine)
{
char str [256] ;

}

initscr() ;
cbreak(); 1* EXplained later in the section "Inplt Options" *1
addstr("Enter a character string tenninated by <CR> :\n\n") ;
refresh()
getstr(str) ;
printw("\n\n\nThe string entered was \n '%8 '\n", str);
refresh() ;
endwin() ;

Assume you entered the string 'I enjoy learning about the UNIX system.'
The final screen (after entering <CR» would appear as follows:

Enter a character string tezminated by <CR>:

I enjoy learning about the UNlX system.

The string entered was
'I enjoy learning about the UNlX system. 1

$0

EXTENDED TERMINAL INTERFACE 10·35

Simple Input and Output

scanwO

SYNOPSIS

#include <curses.h>

int scanw(fmt [, arg ...])
char *fmt;

NOTES

• scanwO calls getstrO and parses an input line.

• Like scanf(3S), scanwO uses a format string to convert and assign to a
variable number of arguments.

• 0' scanwO returns the same values as scanfO.

• See scanf(3S) for more information.

10-36 PROGRAMMER'S GUIDE

Simple Input and Output

EXAMPLE

#include <curses.~

main()
{

}

char string[100J;
float number;

initscr() ;
dbreak(); 1* Explained later in the *1
echo{); 1* section "Inp.lt Options" *1
addstr("Enter a number and a string separated by a ccmna: ");
refresh() ;
scanw("%f ,%s" ,&nuniber ,string) ;
clear() ;
printw("The string was \."%s\." and the number was %f." ,string ,number);
refresh() ;
endwin() ;

Notice the two calls to refreshO. The first call updates the screen with the
character string passed to addstrO, the second with the string returned from
scanwO. Also notice the call to clearO. Assume you entered the following
when prompted: 2,twin. After running this program, your terminal screen
would appear, as follows:

The string was "twin" and the nmnber was 2.000000.

EXTENDED TERMINAL INTERFACE 10-37

Simple Input and Output

Output Attributes
When we talked about addchO, we said that it writes a single character of

the type chtype to stdscr. chtype has two parts: a part with information
about the character itself and another part with information about a set of
attributes associated with the character. The attributes allow a character to be
printed in reverse video, bold, a particular color, underlined, and so on.

stdscr always has a set of current attributes that it associates with each
character as it is written. However, using the routine attrsetO and related ETl
routines described below, you can change the current attributes. Below is a
list of the attributes and what they mean:

• LBLINK - blinking

• LBOLD - extra bright or bold

• LDIM - half bright

• LREVERSE - reverse video

• LSTANDOUT - a terminal's best highlighting mode

• LUNDERLINE - underlining

• A-ALTCHARSET - alternate character set (see the section "Drawing
Lines and Other Graphics" in this chapter)

• COLOLPAIR(n) - change foreground and background colors (see
the section on "Color Manipulation" in this section.

To use these attributes, you must pass them as arguments to attrsetO and
related routines; they can also be ORed with the bitwise OR (I) to addchO.

10·38

Not all terminals are capable of displaying all attributes. If a particular ter
minal cannot display a requested attribute, an ETI program attempts to find
a substitute attribute. If none is possible, the attribute is ignored.

PROGRAMMER'S GUIDE

Simple Input and Output

Let's consider a use of one of these attributes. To display a word in bold,
you would use the following code:

printw("A \\'Ord in ");
attrset(A __ BOLD);
printw("boldface") ;
attrset(0) ;
printw(" really stands out.\n");

refresh() ;

Attributes can be turned on singly, such as attrset(A-BOLD) in the exam
ple, or in combination. To tum on blinking bold text, for example, you would
use attrset(A-BLINK I A-BOLD). Individual attributes can be turned on and
off with the ETI routines attronO and attroffO without affecting other attri
butes. attrset(O) turns all attributes off, including changes you may have
made to foreground and background color.

Notice the attribute called A-STANDOUT. You might use it to make text
attract the attention of a user. The particular hardware attribute used for stan
dout is the most visually pleasing attribute a terminal has. Standout is typi
cally implemented as reverse video or bold. Many programs don't really need
a specific attribute, such as bold or reverse video, but instead just need to
highlight some text. For such applications, the A-STANDOUT attribute is
recommended. Two convenient functions, standoutO and standendO can be
used to tum on and off this attribute. standendO, in fact, turns off all attri
butes.

In addition to the attributes listed above, there are two bit masks called
A-CHARTEXT and A-ATTRIBUTES. You can use these bit masks with the
ETI function inchO and the C logical AND (&) operator to extract the char
acter or attributes of a position on a terminal screen. See the discussion of
inchO on the curses(3X) manual page. A third bit mask, A-COLOR, can be
used to extract information about the color-pair field of a position on a termi
nal screen.

EXTENDED TERMINAL INTERFACE 10-39

Simple Input and Output

Following are descriptions of attrsetO and the other ETI routines that you
can use to manipulate attributes.

10·40 PROGRAMMER'S GUIDE

Simple Input and Output

attron(), attrset(), and attroff()

SYNOPSIS

#include <curses.h>

int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

• attronO turns on the requested attribute attrs in addition to any that
are currently on. attrs is of the type chtype and is defined in
<curses.h> .

• attrsetO turns on the requested attributes attrs instead of any that are
currently turned on.

• attroffO turns off the requested attributes attrs if they are on.

• The attributes may be combined using the bitwise OR (I).

• All return OK.

EXAMPLE

See the highlight program under 11 ETI Example Programs 11 in this
chapter.

EXTENDED TERMINAL INTERFACE 10-41

Simple Input and Output -------------------

standout() and standend()

SYNOPSIS

#include <curses.h>

int standoutO
int standendO

NOTES

• standoutO turns on the preferred highlighting attribute,
A-STANDOUT, for the current terminal. This routine is equivalent to
attron(A-STANDOUT).

• standendO turns off all attributes. This routine is equivalent to
attrset(O), where attrsetO takes the argument O.

• Both always return OK.

EXAMPLE

Again, see the highlight program under "ETI Example Programs" in this
chapter.

10·42 PROGRAMMER'S GUIDE

Simple Input and Output

Color Manipulation
The ETI color manipulation routines allow you to use colors on an

alphanumeric terminal as you would use any other video attribute. You can
find out if the ETI library on your system supports the color routines by
checking the file /usr/include/curses.h to see if it defines the macro
COLORJ AIR(n).

This section begins with a description of the color feature at a general
level. Then, the use of color as an attribute is explained. Next, the ways to
define color-pairs and change the definitions of colors is explained. Finally,
there are guidelines for ensuring the portability of your program, and a section
describing the color manipulation routines and macros, with examples.

How the Color Feature Works
Colors are always used in pairs, consisting of a foreground color (used for

the character) and a background color (used for the field on which the charac
ter is displayed). ETI uses this concept of color-pairs to manipulate colors. In
order to use color in a ETI program, you must first define (initialize) the indi
vidual colors, then create color-pairs using those colors, and finally, use the
color-pairs as attributes.

Actually, the process is even simpler, since ETI maintains a table of initial
ized colors for you. This table has as many entries as the number of colors
your terminal can display at one time. Each entry in the table has three fields:
one each for the intensity of the red, green, and blue components in that
color.

ETI uses RGB (Red, Green, Blue) color notation. This notation allows
you to specify directly the intensity of red, green, and blue light to be
generated in an additive system. Some terminals use an alternative nota
tion, known as HSL (Hue, Saturation, Luminosity) color notation. Termi
nals that use HSL can be identified in the terminfo data base, and ETI
will make conversions to RGB notation automatically.

At the beginning of any ETI program that uses color, all entries in the colors
table are initialized with eight basic colors, as follows:

EXTENDED TERMINAL INTERFACE 10-43

Simple Input and Output

j'" black: 0 '" j
j'" blue: 1 '" j
j'" green: 2 '" j
/* cyan: 3 "'j
/* red: 4 "'j
/* magenta: 5 '" j
j'" yellow: 6 '" j
j'" white: 7 '" j

Intensity of Component
(R)ed (G)reen (B)lue

0 0 0
0 0 1000
0 1000 0
0 1000 1000

1000 0 0
1000 0 1000
1000 1000 0
1000 1000 1000

The Default Colors Table

Most color alphanumeric terminals can display eight colors at the same time,
but if your terminal can display more than eight, then the table will have
more than eight entries. The same eight colors will be used to initialize addi
tional entries. If your terminal can display only N colors, where N is less than
eight, then only the first N colors shown in the Colors Table will be used.

You can change these color definitions with the routine iniLcolorO, if
your terminal is capable of redefining colors. If your terminal is not able to
change the definition of a color, use of iniLcolor() returns ERR.

The following color macros are defined in curses.h and have numeric
values corresponding to their position in the Colors Table.

CDLOlLBLACK 0
CD:U::IL m.uE 1
CDIDlLGREEN 2
CD:U::IL CYAN 3
CD:U::IL RED 4
CDIDlLMAGENI'A 5
CDLOlL YEI.I.CM 6
CD:U::IL WHITE 7

10-44 PROGRAMMER'S GUIDE

Simple Input and Output

ETI also maintains a table of color-pairs, which has space allocated for as
many entries as the number of color-pairs that can be displayed on your ter
minal screen at the same time. Unlike the colors table, however, there are no
default entries in the pairs table: it is your responsibility to initialize any
color-pair you want to use with init_pairO, before you use it as an attribute.

Each entry in the pairs table has two fields: the foreground color, and the
background color. For each color-pair that you initialize, these two fields will
each contain a number representing a color in the colors table. (Note that
color-pairs can only be made from previously initialized colors.)

The following example pairs table shows that a programmer has used
iniLpairO to initialize color-pair 1 as a blue foreground (entry 1 in the
default color table) on yellow background (entry 6 in the default color table).
Similarly, the programmer has initialized color-pair 2 as a cyan foreground on
a magenta background. Not-initialized entries in the pairs table would actu
ally contain zeros, which corresponds to black on black.

Note that color-pair 0 is reserved for use by ETI and should not be
changed or used in application programs.

Color-Pair Number F
o
1
2

3
4

5

oregroun
0
1

3
0
0
0

d B k ac ~oun
0
6
5
0
0
0

Example of a Pairs Table

d

Two global variables used by the color routines are defined in
<curses.h>. They are COLORS, which contains the maximum number of
colors the terminal supports, and COLOR-PAIRS, which contains the max
imum number of color-pairs the terminal supports. Both are initialized by the
starLcolorO routine to values it gets from the terminfo data base.

EXTENDED TERMINAL INTERFACE 10-45

Simple Input and Output

Using the COLOlLP AIR(n) Attribute
If you choose to use the default color definitions, there are only two

things you need to do before you can use the attribute COLORJ AIR(n).
First, you must call the routine start_color(). Once you've done that, you can
initialize color-pairs with the routine init_pair(pair, I, b). The first argument,
pair, is the number of the color-pair to be initialized (or changed), and must
be between I and COLOR_PAIRS-I. The arguments f and b are the fore
ground color number and the background color number. The value of these
arguments must be between 0 and COLORS-I. For example, the two color
pairs in the pairs table described earlier can be initialized in the following
way:

initJlCiir (1, COLOR_BLUE, COLOR_YEI..LCM);

initJlCiir (2, COLOR_cYAN, COLOR_MAGENl'A);

Once you've initialized a color-pair, the attribute COLOLP AIR(n) can be
used as you would use any other attribute. COLOR_PAIR(n) is a macro,
defined in <curses.h>. The argument, n, is the number of a previously ini
tialized color-pair. For example, you can use the routine attron() to turn on a
color-pair in addition to any other attributes you may currently have turned
on:

attron (COLOR_PAIR(1»;

If you had initialized color-pair 1 in the way shown in the example pairs
table, then characters displayed after you turned on color-pair 1 with attron()
would be displayed as blue characters on a yellow background.

You can also combine COLOR_PAIR(n) with other attributes, for exam
ple:

attrset(A_BLINK I COLOR_PAIR(1»;

would turn on blinking and whatever you have initialized color-pair 1 to be.
(attronO and attrsetO are described in the "Controlling Input and Output"
section of this chapter, and also on the curses(3X) manual page in the
Programmer's Reference Manual.)

Changing the Definitions of Colors. If your terminal is capable of redefin
ing colors, you can change the predefined colors with the routine
iniLcolor(color, r, g, b). The first argument, color, is the numeric value of the
color you want to change, and the last three, r, g, and b, are the intensities of
the red, green, and blue components, respectively, that the new color will

10-46 PROGRAMMER'S GUIDE

Simple Input and Output

contain. Once you change the definition of a color, all occurrences of that
color on your screen change immediately.

So, for example, you could change the definition of color 1
(COLOILBLUE by default), to be light blue, in the following way.

init_color (OOIDR_BLUE, 0, 700, 1000);

Portability Guidelines
Like the rest of ETI the color manipulation routines have been designed to

be terminal independent. But it must be remembered that the capability of
terminals vary. For example, if you write a program for a terminal that can
support 64 color-pairs, that program would not be able to produce the same
color effects on a terminal that supports at most 8 color-pairs.

When you are writing a program that may be used on different terminals,
you should follow these guidelines:

Use at most seven color-pairs made from at most eight colors.

Programs that follow this guideline will run on most color terminals.
Only seven, not eight, color-pairs should be used, even though many ter
minals support eight color-pairs, because curses reserves color-pair 0 for
its own use.

Do not use color 0 as a background color.

This is recommended because on some terminals, no matter what color
you have defined it to be, color 0 will always be converted to black when
used for a background.

Combine color and other video attributes.

Programs that follow this guideline will provide some sort of highlighting,
even if the terminal is monochrome. On color terminals, as many of the
listed attributes as possible would be used. On monochrome terminals,
only the video attributes would be used, and the color attribute would be
ignored.

Use the global variables COLORS and COLOR-PAIRS rather than con
stants when deciding how many colors or color-pairs your program
should use.

EXTENDED TERMINAL INTERFACE 10-47

Simple Input and Output

Other Macros and Routines
There are two other macros defined in <curses.h> that you can use to

obtain information from the color-pair field in characters of type chtype.

• A-COLOR is a bit mask to extract color-pair information. It can be
used to clear the color-pair field, and to determine if any color-pair is
being used.

• PAIR-NUMBER(attrs) is the reverse of COLOR-P AIR(n). It returns
the color-pair number associated with the named attribute, attrs.

There are two color routines that give you information about the terminal
your program is running on. The routine has_colors() returns a Boolean
value: TRUE if the terminal supports colors, FALSE otherwise. The routine
ca11-change_colors() also returns a Boolean value: TRUE if the terminal sup
ports colors and can change their definitions, FALSE otherwise.

There are two color routines that give you information about the colors
and color-pairs that are currently defined on your terminal. The routine
color_content() gives you a way to find the intensity of the RGB components
in an initialized color. It returns ERR if the color does not exist or if the ter
minal cannot change color definitions, OK otherwise. The routine
pair_content() allows you to find out what colors a given color-pair consists
of. It returns ERR if the color-pair has not been initialized, OK otherwise.

These routines are explained in more detail on the curses(3X) manual
page in the Programmer's Reference Manual.

The routines starLcolorO, iniLcolorO, and iniLpairO are described on
the following pages, with examples of their use. You can also refer to the pro
gram colors in the section "ETI Program Examples," at the end of this
chapter, for an example of using the attribute of color in windows.

1 0·48 PROGRAMMER'S GUIDE

starLcolor()

SYNOPSIS

#include <curses.h>

int starLcolor()

NOTES

Simple Input and Output

• This routine must be called if you want to use colors, and before any
other color manipulation routine is called. It is good practice to call it
right after initscrO.

• It initializes eight default colors (black, blue, green, cyan, red, magenta,
yellow, and white), and the global variables COLORS and
COLORJ AIRS. If the value corresponding to COLORJ AIRS in the
terminfo database is greater than 64, COLORJ AIRS will be set to
64.

• It restores the terminal's colors to the values they had when the termi
nal was just turned on.

• It returns ERR if the terminal does not support colors, OK otherwise.

EXAMPLE

See the example under iniLpair().

EXTENDED TERMINAL INTERFACE 10-49

Simple Input and Output

iniLpair()

SYNOPSIS

#include <curses.h>

int iniLpair (pair, f, b)
short pair, f, bi

NOTES

• iniLpair() changes the definition of a color-pair.

• Color-pairs must be initialized with iniLpair() before they can be
used as the argument to the attribute macro COLOLP AIR(n).

• The value of the first argument, pair, is the number of a color-pair, and
must be between t and COLOLPAIRS-t.

• The value of the f (foreground) and b (background) arguments must be
between 0 and COLORS-t.

• If the color-pair was previously initialized, the screen will be refreshed
and all occurrences of that color-pair will change to the new definition.

• It returns OK if it was able to change the definition of the color-pair,
ERR otherwise.

EXAMPLE

#include <curses.h>

main()
{

inits= ();
if (start_color () == OK)

{

initJlCiir (1, CX)IaLRED, COLOIL GREEN) ;
attran (COraLPAIR (1»;
addstr ("Red an Green");
refresh();

erxiwin();

Also see the program colors in the section "curses Program Examples. "

1 0-50 PROGRAMMER'S GUIDE

SYNOPSIS

#include <curses.h>

int iniLcolor(color, r, g, b)
short color, r, g, bi

NOTES

Simple Input and Output

• iniLcolorO changes the definition of a color.

• The first argument, color, is the number of the color to be changed.
The value of color must be between 0 and COLORS-I.

• The last three arguments, r, g, and b, are the amounts of red, green,
and blue (RBG) components in the new color. The values of these
three arguments must be between 0 and 1000.

• When iniLcolor() is used to change the definition of an entry in the
colors table, all places where the old color was used on the screen
immediately change to the new color.

• It returns OK if it was able to change the definition of the color, ERR
otherwise.

EXAMPLE

#include <curses.~

main()
{

initscr();

if (start_color == OK)
{

initJBir (1, (x)LClLRED, COLOILGREEN);

attron (COl£lLPAIR (1»;
if (init_color (COIJJR_RED, 0, 0, 1000) == OK)

addstr ("BLUE CN GREEN") ;
else

addstr ("RED CN GREEN") ;
refresh ();

endwin();

EXTENDED TERMINAL INTERFACE 10-51

Simple Input and Output

Bells, Whistles, and Flashing Lights: beepO and
flashO

Occasionally, you may want to get a user's attention. Two low-level ETI
routines are designed to help you do this-they let you ring the terminal's
chimes and flash its screen.

flashO flashes the screen if possible, and otherwise rings the bell. Flash
ing the screen is intended as a bell replacement, and is particularly useful if
the bell bothers someone within ear shot of the user. The routine beepO can
be called when a real beep is desired. (If for some reason the terminal is
unable to beep, but able to flash, a call to beepO will flash the screen.)

SYNOPSIS

#include <curses.h>

int flashO
int beepO

NOTES

• flashO tries to flash the terminal screen, if possible, and, if not, tries to
ring the terminal bell.

• beepO tries to ring the terminal bell, if possible, and, if not, tries to
flash the terminal screen.

• beep will not work if you redefine TRUE to somehting other than 1.

• Neither returns any useful value.

10-52 PROGRAMMER'S GUIDE

Simple Input and Output

Input Options
The UNIX system does a considerable amount of processing on input

before an application ever sees a character. For example, it does the follow
ing:

• Echoes (prints back) characters to a terminal as they are typed

• Interprets an erase character (typically #) and a line kill character (typ-
ically @)

• Interprets a CTRL-D (control d) as end of file (EOF)

• Interprets interrupt and quit characters

• Strips the character's parity bit

• Translates <CR> to <NL>.

Because an ETI program maintains total control over the screen, low-level
ETI turns off echoing on the UNIX system and does echoing itself. At times,
you may not want the UNIX system to process other characters in the stan
dard way in an interactive screen management program. Some ETI routines,
noecho() and cbreak(), for example, have been designed so that you can
change the standard character processing. Using these routines in an applica
tion controls how input is interpreted. Figure 10-5 shows some of the major
routines for controlling input.

" Every low-level ETI program accepting input should set some input
options. This is because when the program starts running, the terminal on
which it runs may be in cbreak(), raw(), nocbreak(), or noraw() mode.
Although the low-level ETI program starts up in echoO mode, as Figure 10-5
shows, none of the other modes are guaranteed.

The combination of noechoO and cbreakO is most common in interactive
screen management programs. Suppose, for instance, that you don't want the
characters sent to your application program to be echoed wherever the cursor
currently happens to be; instead, you want them echoed at the bottom of the
screen. The ETI routine noecho() is designed for this purpose. However,
when noecho() turns off echoing, normal erase and kill processing is still on.
Using the routine cbreakO causes these characters to be uninterpreted.

EXTENDED TERMINAL INTERFACE 10-53
I

Simple Input and Output

Input Characters
Options Interpreted Uninterpreted

Normal interrupt, quit
'out of ETl stripping
state' <CR> to <NL>

echoing
erase, kill
EOF

Normal echoing All else
ETl 'start up (simulated) undefined.
state'

cbreakO interrupt, quit erase, kill
and echoO stripping EOF

echoing

cbreakO interrupt, quit echoing
and noechoO stripping erase, kill

EOF

nocbreakO break, quit echoing
and noechoO stripping

erase, kill
EOF

nocbreakO See caution below.
and echoO

nlO <CR> to <NL>

nonlO <CR> to <NL>

rawO break, quit
(instead of stripping
cbreak())

Figure 10-5: Input Option Settings for ETl Programs

10-54 PROGRAMMER'S GUIDE

Simple Input and Output

Do not use the combination nocbreakO and echoO. If you use it in a
program and also use getchO, the program will go in and out of
cbreakO mode to get each character. Depending on the state of the tty
driver when each character is typed, the program may produce undesir
able output.

In addition to the routines noted in Figure 10-5, you can use the ETI rou
tines norawO, halfdelay(), and nodelay() to control input. See the curses(3X)
manual page for discussions of these routines.

The next few pages describe noecho(), cbreak() and the related routines
echo() and nocbreak() in more detail.

EXTENDED TERMINAL INTERFACE 10-55

Simple Input and Output

echoU and noechoU

SYNOPSIS

#include <curses.h>

int echoO
int noechoO

NOTES

• echoO turns on echoing of characters by ETI as they are read in. This
is the initial setting.

• noechoO turns off the echoing.

• Neither returns any useful value.

• ETI programs may not run properly if you turn on echoing with noc
breakO. See Figure 10-5 and accompanying caution. After you turn
echoing off, you can still echo characters with addchO.

EXAMPLE

See the editor and show programs under "ETI Program Examples" in
this chapter.

1 0-56 PROGRAMMER'S GUIDE

cbreak(J and nocbreak(J

SYNOPSIS

#include < curses.h >
int cbreakO
int nocbreakO

NOTES

....... ----...... -.. ----~-

Simple Input and Output

• cbreakO turns on 'break for each character' processing. A program
gets each character as soon as it is typed, but the erase, line kill, and
CTRL-O characters are not interpreted.

• nocbreakO returns to normal 'line at a time' processing. This is typi
cally the initial setting.

• Neither returns any useful value.

• ETl programs may not run properly if cbreakO is turned on and off
within the same program or if the combination nocbreakO and echoO
is used.

• See Figure 10-5 and accompanying caution.

EXAMPLE

See the editor and show programs under 11 ETl Program Examples 11 in
this chapter.

EXTENDED TERMINAL INTERFACE 10-57

Windows
An earlier section in this chapter, "More about re&esh() and Windows"

explained what windows and pads are and why you might want to use them.
This section describes the ETI routines you use to manipulate and create win
dows and pads.

Output and Input
The routines that you use to send output to and get input from windows

and pads are similar to those you use with stdser. The only difference is that
you have to give the name of the window to receive the action. Generally,
these functions have names formed by putting the letter w at the beginning of
the name of a stdser routine and adding the window name as the first param
eter. For example, addeh('c') would become waddch(mywin, 'e') if you
wanted to write the character e to the window my win. Here's a list of the
window (or w) versions of the output routines discussed in "Simple Input and
Output."

• waddeh(win, ch)

• mvwaddeh(win, y, x, ch)

• waddstr(win, str)

• mvwaddstr(win, y, x, str)

• wprintw(win, fmt [, arg ... J)

• mvwprintw(win, y, x, fmt [, arg ... J)

• wmove(win, y, x)

• wclear(win) and werase(win)

• wclrtoeol(win) and wclrtobot(win)

• wrefresh(win)

You can see from their declarations that these routines differ from the ver
sions that manipulate stdser only in their names and the addition of a win
argument. Notice that the routines whose names begin with mvw take the
win argument before the y, x coordinates, which is contrary to what the names
imply. See eurses(3X) for more information about these routines or the ver
sions of the input routines geteh, getstr(), and so on that you should use with

10·58 PROGRAMMER'S GUIDE

Windows

windows.

All w routines can be used with pads except for wrefreshO and
wnoutrefreshO (see below). In place of these two routines, you have to use
prefreshO and pnoutrefreshO with pads.

The Routines wnoutrefreshO and doupdateO
If you recall from the earlier discussion about refreshO, we said that it

sends the output from stdscr to the terminal screen. We also said that it was
a macro that expands to wrefresh(stdscr) (see "What Every ETI Program
Needs" and "More about refreshO and Windows").

The wrefreshO routine is used to send the contents of a window (stdscr
or one that you create) to a screen; it calls the routines wnoutrefreshO and
doupdateO. Similarly, prefreshO sends the contents of a pad to a screen by
calling pnoutrefreshO and doupdateO.

Using wnoutrefreshO-or pnoutrefreshO (this discussion will be limited
to the former routine for simplicity)-and doupdateO, you can update termi
nal screens more efficiently than using wrefreshO by itself. wrefreshO works
by first calling wnoutrefreshO, which copies the named window to a data
structure referred to as the virtual screen. The virtual screen contains what a
program intends to display at a terminal. After calling wnoutrefreshO,
wrefreshO then calls doupdateO, which compares the virtual screen to the
physical screen and does the actual update. If you want to output several
windows at once, calling wrefreshO will result in alternating calls to
wnoutrefreshO and doupdateO, causing several bursts of output to a screen.
However, by calling wnoutrefreshO for each window and then doupdateO
only once, you can minimize the total number of characters transmitted and
the processor time used. Figure 10-6 shows a sample program that uses only
one doupdateO.

EXTENDED TERMINAL INTERFACE 10-59

Windows

#include <curses.h>

main()

{

WINIXM *w1, *\'12 ;

initscr() ;
w1 = newwin(2,6,O,3);
w2 = newwin(1,4,5,4);
waddstr(w1, "Bulls");
wnoutrefresh(w1) ;
waddstr(w2, "Eye");

wnoutrefresh(w2) ;
doupdate() ;

endwin();

Figure 10-6: Using wnoutrefreshO and doupdateO

Notice from the sample that you declare a new window at the beginning
of an ETI program. The lines

w1 = newwin(2,6,O,3);
w2 = newwin(1,4,5,4);

declare two windows named w1 and w2 with the routine newwinO according
to certain specifications. newwinO is discussed in more detail below.

Figure 10-7 illustrates the effect of wnoutrefreshO and doupdateO on
these two windows, the virtual screen, and the physical screen.

10-60 PROGRAMMER'S GUIDE

Windows

stdscr @ (0,0) virtual screen physical screen

initscrO

DD (garbage)

physical screen
wl=newwin

(2,6,0,3,)
(garbage)

wI @ (0,3)

D
stdscr @ (0,0) virtual screen physical screen

w2=newwin
(1,4,5,4) DD (garbage)

wI @ (0,3) w2 @ (5,4)

D D
Figure 10-7: The Relationship Between a Window and a Terminal Screen

EXTENDED TERMINAL INTERFACE 10·61

Windows

stdscr @ (0,0) virtual screen physical screen

waddstr (wl,Bulls)

DD (garbage)

wI @ (0,3) w2 @ (5,4)

I Bulls 0 I ~
stdscr @ (0,0) virtual screen physical screen

wnoutrefresh (wI) DDUl.lSC

(garbage)

wI @ (0,3) w2@ (5,4)

I Bulls 0 I ~
stdscr @ (0,0) virtual screen physical screen

waddstr (w2,Eye)

D~ LJ (",b'g')

wI @ (0,3) w2 @ (5,4)

I Bulls 0 I ~
Figure 10-7: The Relationship Between a Window and a Terminal Screen (con
tinued)

10-62 PROGRAMMER'S GUIDE

Windows

stdscr @ (0,0) virtual screen physical screen

wnoutrefresh(w2)

D
Bulls

(garbage)

EyeC

wI @ (0,3) w2 @ (5,4)

I BullsD I I EyeD I
stdscr @ (0,0) virtual screen physical screen

doupdateO

D
Bulls Bulls

EyeD Eye C

wI @ (0,3) w2 @ (5,4)

I BullsD I I Eyec I
stdscr @ (0,0) virtual screen physical screen

endwinO

D
Bulls Bulls

Eye C D
Eye

wI @ (0,3) w2 @ (5,4)

I Bulls D I ~
Figure 10-7: The Relationship Between a Window and a Terminal Screen (con
tinued)

EXTENDED TERMINAL INTERFACE 10-63

Windows

New Windows
Following are descriptions of the routines newwinO and subwinO, which

you use to create new windows. For information about creating new pads
with newpadO and subpadO, see the curses(3X) manual page.

newwinO

SYNOPSIS

#include <curses.h>

WINDOW *newwin(nlines, ncols, begin-y, begin-x)
int nlines, ncols, begin_y, begin-xi

NOTES

• newwinO returns a pointer to a new window with a new data area.

• The variables nlines and ncols give the size of the new window.

• begin-y and begin-x give the screen coordinates from (0,0) of the
upper left corner of the window as it is refreshed to the current screen.

EXAMPLE

Recall the sample program using two windows; see Figure 10-7. Also see
the window program under "ETI Program Examples" in this chapter.

1 0-64 PROGRAMMER'S GUIDE

subwinO

SYNOPSIS

#include <curses.h>

WINDOW *subwin(orig, nlines, ncols, begiILy, begin-x)
WINDOW *orig;
int nlines, ncols, begiILy, begin-X;

NOTES

Windows

• subwinO returns a new window that points to a section of another
window I orig.

• nlines and ncols give the size of the new window.

• begiILY and begin-X give the screen coordinates of the upper left
corner of the window as it is refreshed to the current screen.

• Subwindows and original windows can accidentally overwrite one
another. V SubMndOM< of ",bwindow, do not wo,k (" of the ,opyrlght date of

this Programmer's Guide).

EXTENDED TERMINAL INTERFACE 10-65

Windows

EXAMPLE

#include <curses.h>

maine)
{

}

WINIX:M *sub;

initscr() ;
box(stdscr, 'w', 'w'); /* See the curses(3X) manual page for box() */
mvwaddstr(stdscr,7,10,"------- this is 10,10");
~(stdscr,8,10,' I ');
~(stdscr,9, 10, 'v');
sub = subw±n(stdscr,10,20,10,10);
box(sub,'s','s');
wnoutrefresh(stdscr);
wrefresh(sub) ;
endwin() ;

This program prints a border of w's around stdscr (the sides of your ter
minal screen) and a border of s's around the subwindow sub when it is run.
For another example, see the window program under "ETI Program Exam
pies" in this chapter.

ETI Low-Level Interface (curses) to High-Level
Functions

In the following sections, we will consider the ETI high-level functions,
which create and manipulate panels, menus, and forms. All application pro
grams that use these high-level functions require a set of low-level ETI
(curses) calls that properly initialize and terminate the programs. For con
venience, you may want to isolate these calls in appropriate routines. Figure
10-8 shows one way you might do this. It lists routines to start low-level ETI,
terminate it, and handle fatal errors.

10-66 PROGRAMMER'S GUIDE

= (char *) 0; 1* program name *1 static char *
static int = FALSE; 1* is curses initialized ? *1

static void start_curses ()/* curses initialization *1
{

CURSES = 'lRIJE;
initscr 0;
nanl 0;
raw 0;
noecho ();
wclear (stdscr);

static void end_curses () 1* curses tenn:ination *1

if (CtlRSES)

CURSES '" FALSE;
endwin 0;

static void error (f, s) 1* fatal error handler *1

char * f;
char * s;

end_curses ();
printf ("%8: ", R;M);

printf (f, s);
printf ("0);
exit (1);

Figut:e 10-8: Sample Routines for Low-Level ETI (curses) Interface

Windows

These house-keeping routines use two global variables, PGM and CURSES.
PGM is initialized with the program's name, while the Boolean CURSES is
initialized with FALSE because curses itself has not yet been invoked.

EXTENDED TERMINAL INTERFACE 10-67

Windows

Function slarLcursesO calls the low-level routines previously mentioned
and sets CURSES to TRUE to indicate that it has initialized curses. Function
enLcursesO checks if curses is initialized and, if so, sets the variable
CURSES to FALSE and terminates curses. The check is necessary because
end winO returns an error if called when curses is not initialized.

Function error is a universal fatal error handler-called whether or not
curses is initialized. Function error first calls enLcursesO to terminate the
program if curses is on, and then prints the program's name (PGM) and and
the associated message. Finally, function error terminates the program itself
using exitO.

10-68 PROGRAMMER'S GUIDE

Panels
Recall that a window is a rectangular area of the terminal screen on which

you can write using the low-level ETI (curses) routines. You can create many
windows on a screen, but if they overlap, portions of some windows intended
to be hidden may nonetheless be visible when you use the low-level routines
alone. To solve this problem, ETI uses the notion of a panel-a rectangle of
text with depth.

Panels have depth only in relation to other panels and stdscr, which lies
beneath all panels. The set of currently visible panels comprises the deck of
panels.

EXTENDED TERMINAL INTERFACE 10-69

Compiling and Linking Panel Programs
To use the panel routines, specify

#include <pane1.h>

in your C program files and compile and link with the command line

cc [flags] files -lpanel -1 curses [libraries]

10·70 PROGRAMMER'S GUIDE

Creating Panels

This function creates a new panel on top of all existing panels in the deck.
Its argument is a pointer to a window.

SYIDPSIS

PANEL *new...."PaIlel (window)

WINIXM *wfudow'; 1* curses window' to be associated with
new panel *1

A pointer to the panel is returned if the panel is created; otherwise, the func
tion returns NULL. The new_panelO operation fails if there is insufficient
memory or if the window pointer argument is NULL. The window whose
address is passed as an argument becomes associated with the panel. The size
and location of the panel are the same as that of the low-level ETI (curses)
window.

To create a panet create a window, save the pointer to it, and use the
pointer as an argument to new_panel().

WINIXM *win;
PANEL *pptr;

win = newwin(2,6,O,3);
pptr = new...."PaIlel(win) ; 1* after execution, pptr stores pointer to

new panel *1

Note that the newly created panel does not automatically have any adorn
ments such as titles or borders. If you want your panel to have them, you
must call appropriate low-level ETI routines with the panel's window as the
argument.

When you create a new panet it is automatically placed on top of the
panel deck. Later, when you call doupdateO to adjust the visibility of all
panels, the top panel is completely visible. On lower levels, a portion of a
panel is visible only when no region of another panel is above it. Where two
panels overlap, the higher one hides the lower. (The higher one is the newer
one if neither has changed its position in the panel deck because of calls to
top_panel(t bottollLpanelO, or show_panelO described below.) If the
panels do not overlap, the new panel is still logically above the old one.
Their relative depth is not apparent until one of them is moved and overlaps
the other.

EXTENDED TERMINAL INTERFACE 10·71

Elementary Panel Window Operations

This section explains how you can fetch pointers to panel windows,
change the windows associated with panels, and move panel windows to new
locations on the screen.

Fetching Pointers to Panel Windows
Each panel has a low-level ETI window associated with it. To retrieve a

pointer to this window, use function paneLwindowO.

SYNOPSIS

w:INIXM *pane~w:i.ndow(panel)
PANEL *panel; /* Panel whose window pointer is retuzned

The function returns NULL if the panel pointer argument is NULL.

In general, you may use this returned pointer as an argument to any stan
dard low-level (curses) routine that takes a pointer to a window as an argu
ment. For example, you can insert a character c at a location y,x in a panel
window with the function mvwinsch(win,y,x,c), where win is the window
pointer returned by paneLwindowO.

w:INIXM *win;
PANEL *panel;
int y, X;
chtype C;

win = panel_window(panel);
mvwinsch(win,y,x,c) ;

Changing Panel Windows
To replace a panel's pointer to a window with a pointer to another win

dow, call function replace_paneIO. After the call, the panel remains at the
same level within the panel deck.

10-72 PROGRAMMER'S GUIDE

Elementary Panel Window Operations

SYIDPSIS

int replaceJXlllel (panel, window)

PANEL *panel; /* Panel with window to be replaced * /
/* New window pointer for panel * /

This function returns OK if the operation is successful. If not, it returns ERR
and leaves the original panel unchanged. Operation replace_panelO fails if
the window pointer is NULL or there is insufficient memory.

To associate a panel with window winl and later replace its window by
win2, you can write the following:

w:rNIX:M *win 1, win2 ;
PANEL *panel;

panel = newJXlllel(win1);

/* intervening processing with win 1 as panel window * /

replaceJXlllel(panel, win2); /* change window associated with
panel to win2 * /

Once you have created additional windows with the low-level function
newwinO, you in effect can reshape panel windows by using replace_panel().
To do so leaves the contents of the two windows unchanged.

Moving Panel Windows on the Screen
You should not move a panel's window by calling the low-level function

mvwinO directly. To update the screen correctly, the panels subsystem must
know the location of all panel windows, but function mvwinO does not
inform the panels subsystem of the window's new location. To move a
panel's window, you must call the function move_paneIO, which moves a
panel and its associated window and informs the panels subsystem of the
move.

EXTENDED TERMINAL INTERFACE 10·73

Elementary Panel Window Operations

SYNOPSIS

int IlOVe...,PIDel (panel, firstrow, firstcol)
PANEL *panel; /* Panel to be noved * /
int firstrow, firstcol; /* row/col of upper left corner of

new locaticm of window associated
with panel * /

Note that the screen coordinates you specify are those for the upper left
corner of the window in its new location. The panel may be moved to any
location that the low-level ETI routines deem legitimate. In particular, a panel
may be partly off the screen. The size, contents, and relative depth of the
panel remain unchanged by move_panelO.

Function move_panelO returns OK if the operation was successful, ERR
otherwise. The move_panelO operation fails if the low-level ETI functions
are unable to move the panel's window, or if there is insufficient memory to
satisfy the request. In these cases, the original panel remains unchanged.

To move the panel pointed to by panel such that its upper left corner is at
row 22, column 45, you can write

PANEL *panel;

IlOVe...,PIDel(panel, 22, 45);

10-74 PROGRAMMER'S GUIDE

Moving Panels to the Top or Bottom of
the Deck

The relative depth of a panel can be changed by either pulling the panel
to the top of the deck or by pushing it to the bottom. In either case, all other
panels remain at the same depth relative to each other.

SYNJPSIS

int topJl6IlE!l (panel)
PANEL *panel;

int bot"tanJl6IlE!l (panel)
PANEL *panel;

Function top_panelO moves the panel pointed to by its argument to the top
of the panel deck, while function bottolll-panelO moves the panel to the bot
tom of the deck.

Both functions leave the size of the given panel, the contents of its associ
ated window, and the relations of the other panels in the deck wholly intact.
Both return OK if the operation is successful, ERR if not. The functions fail if
the panel pointer argument is NULL or if the panel is hidden by a previous
call to function hide_panelO described below.

To move the panel pointed to by panell to the top of the deck of panels
and the panel pointed to by pane12 to the bottom of the deck, you can write
the following:

PANEL * pane11, * pane12;

topJ)Cmel(pane11) ;
bottanJl6IlE!l (pane12) ;

EXTENDED TERMINAL INTERFACE 10·75

Updating Panels on the Screen
Function update_panelsO makes all low-level curses calls (such as

touchwinO and wnoutrefreshO) to update all panels so as to maintain proper
depth relationships and to permit display only of the appropriate portions of
panels.

SYNJPSIS

void updateJl1Ulels();

The function does not, however, actually refresh your terminal screen. To do
that, you must make a call to doupdateO whenever you want to display your
latest changes.

To avoid displaying text on hidden panels, you should not use the low
level routines wnoutrefreshO and wrefreshO when working with panels.

In general, do not use the low-level routines wnoutrefreshO or wrefreshO
to display a window associated with a panel. Instead, use function
update_panelsO and function doupdateO to display the entire deck of
panels.

If you use the low-level routines wnoutrefreshO or wrefreshO for a window
associated with a panel, it will not be displayed properly unless it happens to
be associated with the top panel in the deck or is not hidden at all by other
panel windows.

Recall that panels are always above stdscr, the standard ETI window.
When a panel is moved or deleted, stdscr is updated along with the visible
panels to ensure that it appears beneath all panels. Although stdscr has
depth relative to other panels, it is not a panel because panel operations like
top_panel() and bottom-panelO do not apply. However, because stdscr rests
beneath the deck of panels, you should always call update_panelsO when
you work with panels and change stdscr, even if you do not change any
panels.

10-76 PROGRAMMER'S GUIDE

Updating Panels on the Screen

Function wgetchO automatically calls wrefreshO. Hence, if echo mode is
active, when you request input from a window associated with a panel, be
sure that the window is totally unobscured.

In summary, to update all panels and display them with their proper
depth relationship, write:

WINOCM *w:i.n;

update~els{);

doupdate () ;

Finally, note that there is no way to display the updates to an obscured
panel without displaying the changes to all panels.

EXTENDED TERMINAL INTERFACE 10·77

Making Panels Invisible

ETI allows you to hide panels from the de.ck and later return them to it.

Hiding Panels
Panels may be temporarily hidden. This means that they are removed

from the panel deck, but the memory allocated to them is not released.

SYN)PSIS

int hide...JJaIlel (p:mel)
PANEL *panel; /* Pointer to panel to be hidden * /

Hidden panels are not refreshed to the screen, but you may nonetheless apply
nearly all panel operations to them.

Only the operations top_panelO, bottoDLpanelO, and hide_panelO may
not be applied to hidden panels because their panel arguments must belong
to the deck of panels.

When you want to return a hidden panel to the deck of panels, use the
function show_panel() described in the next section. When the panel is
returned, it is placed on top of the deck.

To hide the panel pointed to by panel2 above, write

PANEL *pane12;

hide...JJaIlel (pane12) ;

Function hide_panelO returns OK if the operation is successful and ERR if
its panel pointer argument is NULL.

If you use function hide_panelO wisely, your program's performance can
increase. You can hide a panel temporarily if no portion of it is to be
displayed for awhile. An example is the hiding of a pop-up message. Interim
calls to function update_panelsO will then execute faster. More importantly,
you do not incur the overhead of creating the pop-up message.

10-78 PROGRAMMER'S GUIDE

Making Panels Invisible

Checking If Panels are Hidden
To enable you to check if a given panel is hidden, ETI provides the fol

lowing function.

SYIDPSIS

int panel_hidden (panel)
PANEL * panel;

Function paneLhiddenO returns a Boolean value (TRUE or FALSE) indicating
whether or not its panel argument is hidden.

You might want to use this function before calling functions top_panelO
or bottoIIL-panelO, which do not operate on hidden panels. For example, to
minimize the risk of having the error value ERR returned when moving a
panel to the top of the deck, you can write

PANEL * panel;

if (! panel_hidden (panel))
topJlCUlel (panel);

/* panel in deCk? */
/* m:we panel to top of deck * /

Reinstating Panels
This function is the opposite of function hide_panel(). It returns the hid

den panel referenced in its argument to the top of the panel deck.

SYIDPSIS

int showJlaIlel (panel)
PANEL *panel; /* Panel to return to top of deck * /

Note that the panel must have been hidden by a previous hide_panelO call.
The function returns OK if the operation is successful, and ERR if the panel
pointer is NULL, if there is insufficient memory, or if the panel is not hidden.

For example, to return pane12 to the deck, write

PANEL * pane12;

show JlaIlel (pane12) ;

EXTENDED TERMINAL INTERFACE 10-79

Fetching Panels Above or Below Given
Panels

The following functions return a pointer to the panel immediately above
or below the given panel. They are helpful in walking the panel deck from
top to bottom or vice versa.

SYIDPSIS

PANEL *panel; 1* Get panel above this one *1

PANEL *panel_below (panel)
PANEL *panel; 1* Get panel below this one *1

Because hidden panels have no depth, they are excluded from these traversals.

Function paneLabove() returns the panel immediately above the given
panel. If its argument is NULL, it returns the bottommost panel. The func
tion returns NULL if the given panel is on top or hidden, or if there are no
visible panels.

Function paneLbelow() returns the panel immediately below the given
panel. If its argument is NULL, it returns the topmost panel. The function
returns NULL if the given panel is on the bottom of the deck of panels or hid
den, or if there are no visible panels at all. There may be no visible panels at
all if:

• They have been hidden using hide_panel()

• All panels have been deleted

• No panels have been created.

If you want to do something to all panels or to search all of them for one
with a particular attribute, you can place one of these functions in a loop. For
example, to hide all panels (perhaps to display stdscr alone), you can write

10-80 PROGRAMMER'S GUIDE

{

}

Fetching Panels Above or Below Given Panels

PANEL *panel, *pnl;

for (panel = panel_above (NULL); panel; panel = panel_above(pnl»
{

pn1 = panel;
hide...JJaIlel(panel) ;

}

EXTENDED TERMINAL INTERFACE 10-81

Setting and Fetching the Panel User
Pointer

To enable your application program to associate arbitrary data with a
given panel, the ETI panel subsystem automatically allocates a pointer associ
ated with each newly created panel. Initially, the value of this user pointer is
NULL. You can set its value to whatever you want or not use it at all.

SYNOPSIS

int *setJll3IlE!l_userptr (panel, ptr)
PANEL *panel; /* Panel whose user pointer to set * /
char *ptr; /* user-defined pointer */

char *panel_userptr (panel)
PANEL *panel; /* Panel whose user pointer to fetch * /
char *ptr; /* user-defined pointer */

The user pointer has no meaning to the panels subsystem. Once the panel is
created, the user pointer is neither changed nor accessed by the subsystem.

Function seLpaneLuserptrO sets the user pointer of a given panel to the
value of your choice. The function returns OK if the operation is successful,
and ERR if the panel pointer is NULL.

Function panel_userptrO returns the user pointer for a given panel. If the
panel pointer is NULL, the function returns NULL.

You can use these routines to store and retrieve a pointer to an arbitrary
structure that holds information for your application. For example, you might
use them to store a title or, as in Figure 10-9, create a hidden panel for pop-up
messages.

10-82 PROGRAMMER'S GUIDE

Setting and Fetching the Panel User Pointer

PANEL *nlsgJ)ane1;

char *message = "Pop-up Message Here"; /* initialize message */

int display_deck (sha"Lit)
int srol'Lit;
{

main()
{

WINIlCM *w;
int rows, ools;

if (sOOlrLit)
{ showJlClIlel (111S9Jl'IIIS1); /* reinstate panel */

w = panel_window (111S9Jl'IIIS1); /* fetch associated window */

getmaxyx (w, rows, ools); /* fetel'l window size */

/* center cursor */

WI!DVe (w, (rows-1) , «001s-1) - str1en(message»/2;

/* fetch and write pop-up message */
waddstr (w, pane1_userptr (msqJlaIlEl1»;

update.JlaIlf!ls(); /* display deck with message, if called for */
doupdate() ;
if (show_it)

hideJlClIle1 (msgJlClIle1); /* hide panel again, if necessary */

~l = DeWJlClIle1 (~ (10, 10, 5, 60»;
set.JlaIlf!l_userptr (111S9Jl'IIIS1, message); /*associate message with panel *
hideJlClIle1 (111S9Jl'IIIS1); /* rE!l1lJ\le fran visible deck */

/* if oonditian to display pop-up
message is satisfied, set show_mess to TRUE *

Figure 10-9: Example Using Panel User Pointer

EXTENDED TERMINAL INTERFACE 10-83

Setting and Fetching the Panel User Pointer

After creating a window and its associated panel, mainO calls
seLpaneLuserptrO to set the panel user pointer to point to the panel's pop
up message string. Function hide_panelO hides the panel from the deck so
that it is not normally displayed. Later, the application-defined routine
display_deckO checks if the message is to be displayed. If so, it calls
show_panelO which returns the panel to the deck and enables the panel to
become visible on the next update and refresh. The message string returned
by paneLuserptrO is then written to the panel window. Finally,
update_panelsO adjusts the relative visibility of all panels in the deck and
doupdateO refreshes the screen. If called for, the pop-up message will now be
visible.

10-84 PROGRAMMER'S GUIDE

Deleting Panels

The following function deletes a panel, but not its associated window. If
you want to delete the window, you should use the low-level function
delwinO.

SYIDPSIS

int del JlCUlEll (panel)
PANEL *panel; /* Panel to be deleted * /

The ETl panels subsystem assumes that the window associated with each
panel always exists.

If you want to delete a panel and its associated window, make sure that
you delete the panel first, not the window. Your call to deLpanelO
should precede your call to del winO.

However, it is not necessary to delete a window after its associated panel is
deleted: if you like, you may associate the window with another panel.

Function deLpanelO returns OK if the operation was successful, ERR oth
erwise. The deLpanelO operation fails if the panel pointer is NULL.

To delete the panel referenced by panel and its associated window refer
enced by win, you can write

PANEL * panel;
WINDCM * win = panel_window'(panel);

delJlCUlEll(panel) ;
delwin(win) ;

EXTENDED TERMINAL INTERFACE 10-85

Menus
A menu is a screen display that presents a set of items from which the

user selects one or more, depending on the type of menu. Once the user
makes a selection, your application program responds accordingly. This
response may be to generate a message, display another menu, or take some
other action. Figure 10-10 displays a sample menu.

-Black

Charcoal

Light Gray
Brown

Camel
Navy
Light Blue
Hunter Green
Gold
Burgundy

Rust

White

Figure 10-10: A Sample Menu

10·86 PROGRAMMER'S GUIDE

Compiling and Linking Menu Programs

To use the menu routines, specify

#include <menu.h>

in your C program files and compile and link with the command line

cc [flags] files -lmenu -lcurses [libraries]

If you use the panel routines as well, specify -lpanel before -lcurses on the
command line.

EXTENDED TERMINAL INTERFACE 10-87

Overview: Writing Menu Programs in ETI

This section introduces basic ETI menu terminology, lists the steps in a
typical menu application program, and reviews the code in a simple example.

Some Important Menu Terminology
The following terms will be helpful:

item

menu

connecting items to a menu

menu subwindow

menu window

posting a menu

unposting a menu

pattern matching

freeing a menu

freeing an item

10·88 PROGRAMMER'S GUIDE

a character string consisting of a
name and an optional description

a screen display that presents a set of
items from which the user selects one
or more, depending on the type of
menu

associating an array of item pointers
with a menu

a subwindow on which an associated
menu is written

a window on which an associated
menu subwindow and titles and
borders, if any, are displayed

writing a menu on its associated
subwindow

erasing a menu from its associated
subwindow

checking whether characters entered
by the user match an item name of
the menu

deallocating the space for a menu
and, as a byproduct, disconnecting an
associated array of item pointers from
a menu

deallocating the space for an item

Overview: Writing Menu Programs in ETI

NULL generic term for a null pointer cast to
the type of the particular object -
item, menu, field, form, and so on

What a Menu Application Program Does
In general, a menu application program will:

• Initialize low-level ETI (curses)

• Create the items for the menu

• Create the menu

• Post the menu

• Refresh the screen

• Process end user menu requests

• Unpost the menu

• Free the menu

• Free items

• Terminate low-level ETI (curses).

A Sample Menu Program
Figure 10-11 shows the ETI code necessary for generating the menu of

colors in Figure 10-10.

#inc1ude <merm..h>

char * 001ors[13] =
{

"Black", "Charcoal" , "Light Gray",
":Brown11 , "Caxnel" , IlNavy" ,

"Light Blue", "Hunter Green", "Gold",
"Burgurrly'" , "Rust", "White",
(char *) 0

} ;

EXTENDED TERMINAL INTERFACE 10-89

Overview: Writing Menu Programs in ETI

ITEM * items[13];

main ()

MENU *
ITEM **
char *

m;
i = iteD1S;
C = colors;

/* low--level ETI (curses) initialization */

initscr ();
nanl ();
raw ();
noecho ();
wclear (stdscr);

/* create items */

while (*c)
*i++ = new_itan (*c++, 1111);

*i = (ITEM *) 0;

/* create and display menu * /

m = new_menu (i = iteD1S);
post_menu (m);

refresh;
sleep (5);

/* erase menu and free both menu and items */

unpost_menu (m);

refresh;
free_menu (m);

while (*i)
free_itan (*i++)j

/* low--level ETI (curses) tenni.nation * /
endwin ()j

exit (0);

Figure 10-11: Sample Menu Program to Create a Menu in ETI

10·90 PROGRAMMER'S GUIDE

continued

Overview: Writing Menu Programs in ETI

To get an overview of ETI menu routines, we will now briefly walk through
this menu program. In later sections, we discuss these and remaining ETI
routines in detail.

Every menu program should have the line

#include <menu.h>

to instruct the C preprocessor to make the file of ETI menu declarations avail
able. The initial low-level ETI routines establish the best terminal characteris
tics for working with the ETI menu routines.

The while loop creates each item for the menu using the ETI function
new_itemO. This function takes as its name argument a color from array
eolors[]. The optional description argument is here the null string. The new
item pointers are assigned to a NULL-terminated array.

Next, the menu is created and the item pointer array is connected to the
menu using function new-1llenuO. The menu is then posted to stdser and
the screen is refreshed to display the menu. The sleepO command makes the
menu visible for 5 seconds.

To erase the menu, unpost it and refresh the screen. Function free-1llenu
disconnects the menu from its item pointer array and de allocates the space for
the menu. The last while loop uses function free_itemO to free the space
allocated for each item.

Finally, functions endwinO and exitO terminate low-level ETI and the
program.

The following sections explain how to use all ETI menu routines. Pro
gram fragments illustrating the menu routines occur throughout this chapter.
Many of these fragments are portions of a larger program example. The
current example and others are included in the set of high-level ETI demons
tration programs delivered with the ETI product. Low-level ETI demonstra
tion programs are reproduced in the last section of this guide.

Like all form routines that return an int value, all menu routines that do
so return the value E_OK when they execute successfully.

EXTENDED TERMINAL INTERFACE 10-91

Creating and Freeing Menu Items

Normally, to create a menu, you must first create the items comprising it.
To create a menu item, use function new-item().

SYNOPSIS

ITEM * new_item (name, description)
char * name;
char * description;

Function new-itemO creates a new item by allocating space for the new item
and initializing it. ETI displays the string name when the menu is later
posted, but calling new-item() does not alone connect the item to a menu.
The item name is also used in pattern-matching operations. If name is NULL
or the null string, then new-itemO returns NULL to indicate an error.

The argument description is a descriptive string associated with the item.
It mayor may not be displayed depending on the O_SHOWDESC option,
which you can tum on or off with the set-IllenlL.optsO and related functions
described below. If description is NULL or the null string, no description is
associated with the menu item.

If successful, new-itemO returns a pointer to the new item. This pointer
is the key to working with all item routines. When you pass it to them, it
enables the menu subsystem to change, record, and examine the item's attri
butes.

If there is insufficient memory for the item, or name is NULL or the null
string, then new-item() returns NULL.

In general, use an array to store the item pointers returned by
new-itemO. Figure 10-12 shows how you might create an item array of the
planets of our solar system.

10-92 PROGRAMMER'S GUIDE

Creating and Freeing Menu Items

ITEM * planets[10];

planets[O] = new_item ("Mercury", "'!he first planet");
planets[1] = new_item ("Venus", "The secxmd planet");

planets[2] = new_item ("Fartil", "The third planet");
planets[3] = new_item ("Mars", "The forth planet");
planets[4] = new_item ("Jupiter", "'!he fifth planet");
planets[5] = new_item ("SabJrn", "The sixth planet");
planets [6] = new_item ("Uranus", "The seventh planet") ;
planets[7] = new_item ("Neptune", "The eighth planet") ;
planets[8] = new_item ("Pluto", "'!he ninth planet");
planets[9] = (ITEM *) 0;

Figure 10-12: Creating an Array of Items

Function new_itemO does not copy the name or description strings, but
saves the pointers to them. So once you call new_itemO, you should not
change the strings until you call free-itemO.

SYN:)PSIS

free_item(item) ;
ITEM * item;

Function free-itemO frees an item. It does not, however, deallocate the space
for the item's name or description.

The argument to free-itemO is a pointer previously obtained from
new-itemO.

To free an item, you must have already created it with new-itemO and
it must not be connected to a menu. If these conditions are not met,
free-itemO returns one of the error values listed below.

Once an item is freed, you must not use it again. If a freed item's pointer is

EXTENDED TERMINAL INTERFACE 10-93

Creating and Freeing Menu Items

passed to an ETI routine, undefined results will occur.

If successful, free--itemO returns E_OK. If it encounters an error, it
returns one of the following:

- system error
- null item
- item is connected to a menu

10-94 PROGRAMMER'S GUIDE

Two Kinds of Menus: Single- and Multi
Valued

Menus are of two kinds:

Single-valued menus

Multi-valued menus

from which the user may select only
one item

from which the user may select one
or more items

By default, every menu is single-valued. To create a multi-valued menu, you
tum off menu option O_ONEV ALUE using function set_menu_optsO or
men1I-opts_offO. These functions are treated in the section , .. Setting Item
Options."

Menus of both types always have a current item. With single-valued
menus, you determine the item selected by noting the current item. With
multi-valued menus, you determine all items selected by applying function
ite11L-valueO to each menu item and noting the value returned. Most menu
functions pertain to menus whether they are single- or multi-valued. Function
seUte11L-valueO, however, may be used only with multi-valued menus.

Manipulating an Item's Select Value in a
Multi-Valued Menu

Select values of an item are either TRUE (selected) or FALSE (not
selected). Function seUte11L-valueO sets the select value of an item, while
ite11L-valueO returns it.

SYIDPSIS

int setjtem_value (item, value)
ITEM * item;
int value;

int item_value (item)
ITEM * item;

Function seUtellLvalueO fails if given an item that is not selectable (the
O_SELECT ABLE option was previously turned off) or the item is connected to
a single-valued menu (connecting items to menus is described in the section,

EXTENDED TERMINAL INTERFACE 10-95

Two Kinds of Menus: Single- and Multi-Valued

"Creating and Freeing Menus"). If successful, seUteDL-valueO returns
E_OK. Otherwise, one of the following is returned.

- system error
- item not selectable or single value menu

If the argument to iteDL-valueO is an item pointer connected to a single
valued menu, iteDL-valueO returns FALSE.

You might want to place the code in Figure 10-13 after your user responds
to a menu. Function process-1llenuO determines which items have been
selected, processes them appropriately, and marks them as unselected to
prepare for further user response.

void process_menu (m) 1* process multi-valued menu *1
MENU * m;

ITEM ** i = menu_items (m);

while (*i) {
{

if (item_value (*i»
{

1* take action appropriate for selection of this item *1

++i;

Figure 10-13: Using iteDL-valueO in Menu Processing

10-96 PROGRAMMER'S GUIDE

Manipulating Item Attributes

An attribute is any feature whose value can be set or read by an appropri
ate ETI function. An item attribute is any item feature whose value can be set
or read by an appropriate ETI function. Item names, descriptions, options,
and visibility are examples of item attributes.

Fetching Item Names and Descriptions
The routines itelll-name() and itelll-description() take an item pointer as

their argument. Function itelll-name() returns the item's name, while func
tion itelll-description() returns its description.

SYroPSIS

char * item_name (item)
ITEM * item;

char * item_description (item)
ITEM * item;

Both functions return NULL if given a NULL item pointer.

Setting Item Options
An option is an attribute whose value may be either on or off. The

current release of ETI provides the item option a_SELECTABLE. (In the
future, ETI may provide additional options.) Setting the a_SELECTABLE
option lets your user select the item. By default, a_SELECTABLE is set for
every item. Function seLitelll-optsO lets you turn on or turn off this and
any future options for an item, while itelll-optsO lets you examine the
option(s) set for a given item.

EXTENDED TERMINAL INTERFACE 10-97

Manipulating Item Attributes

SYNOPSIS

int set_item_opts (item, opts)
ITEM * item;
OPI'IONS opts;

OPI'IONS item_opts (item)
ITEM * item;

In addition to turning on the named item options, function seLite1tL-optsO
turns off any other item options.

If successful, seLitem_optsO returns E_OK. Otherwise, it returns the
following:

- system error

If function seLite1tL-optsO is passed a NULL item pointer, like other func
tions it sets the new current default. If function ite1tL-optsO is passed a
NULL pointer, it returns the current default.

If you turn off option a_SELECT ABLE, the item cannot be selected. You
might want to make an item unselectable to emphasize certain things your
application program is doing. Unselectable items are displayed using the grey
display attribute, described below in the section "Setting Menu Display Attri
butes. "

Because options are Boolean values (they are either on or off), you must
use C Boolean operators with ite1tL-optsO to turn them on and off. Conse
quently, to turn off option a_SELECTABLE for item iO and turn on the same
option for item il, write:

ITEM * iO, * i1;

set_item_opts (iO, item_opts (iO) &. -O_SELEX:TABLE); 1* turn optioo off *1

set_item_opts (i1, item_opts (i1) I O_SELEX:TABLE); 1* turn optioo 00 *1

10-98 PROGRAMMER'S GUIDE

Manipulating Item Attributes

ETI also enables you to turn on and off specific item options without
affecting others, if any. The following functions change only the options
specified.

SYN:>PSIS

int item_opts_an (item, opts)
ITEM * item;
OPl'ICH) opts;

int item_opts_off (item, opts)
ITEM * item;
OPl'ICH) opts;

These functions return the same error conditions as seUtelll-optsO.

For example, the following code turns option O_SELECT ABLE off for
item iO and on for item it.

ITEM * iO, * i1;

To change the current default to not O_SELECTABLE, you can write
either

1* set current defaults for all new items *1

or

EXTENDED TERMINAL INTERFACE 10-99

Manipulating Item Attributes

Checking an Item's Visibility
A menu item is visible if it appears in the subwindow of the posted menu

to which it is connected. (Connecting and Posting Menus is described below.)
Function iteDL-visibleO enables your application program to determine if an
item is visible.

SYNJPSIS

int item_visible (item)
ITEM * item;

If the item is connected to a posted menu and it appears in the menu subwin
dow, item_visibleO returns TRUE. Otherwise, it returns FALSE.

To check if the first menu item is currently visible on the display, write

int aLtop (m) /* check visibility of first menu item * /
MENU * m;
{

}

ITEM ** i = mentLitems (m);
ITEM * firstitem = i[O];

return iteID-visible (firstitem);

For another example, see the section, "Counting the Number of Menu
Items. "

Changing the Current Default Values for Item
Attributes

ETI establishes initial current default values for item attributes. During
item initialization, each item attribute is assigned the current default value of
the attribute. You can change or retrieve the current default attribute values
by calling the appropriate function with a NULL item pointer. After the
current default value changes, all subsequent items created with new-itemO
will have the new default value.

10-100 PROGRAMMER'S GUIDE

Manipulating Item Attributes

Items created before changing the current default value retain their previ
ously assigned values.

The following sections offer many examples of how to change item attributes.

EXTENDED TERMINAL INTERFACE 10-101

Setting the Item User Pointer

For each item created, ETI automatically allocates a special user pointer
that enables you to associate arbitrary data with the item. By default, the user
pointer's value is NULL. You may set its value to whatever you want or not
use it at all.

SYIDPSIS

int set_item_userptr (item, userptr)
ITEM * item;
char * userptr;

char * item_use:r:ptr (item)
ITEM * item;

These two functions are helpful for creating item data such as title strings,
help messages, and the like.

Any defined structure can be connected to an item using the item's user
pointer. The pointer must be cast to (char *) and then later recast back to
(defined-struct *). Figure 10-14 shows how to use an item's user pointer with
a struct ITEM-ID, which stores biological information.

10·102 PROGRAMMER'S GUIDE

Setting the Item User Pointer

typedef struct
{

int id;

char * name;
char * type;

ITEM_ID ids[7] =
{

1, "apple", IIfruit1l ,

2, "ant", "insect",
3, "CX1itI" , "maurna.l. II ,

4, "lizard", IIreptile" ,
5, IIp:>tato'', "vegetable II ,

6, llzebra" , ''maInnal'' ,
0, 1111 , 1111 ,

} ;

ITEM * items[7];

for (i = 0; ids[i]; ++i)

/* create item fran each ids.name */

items[i] = new_item (ids[i].name, "");

/* set user pointer to point to start of each struct in ids [] * /

set_item_userptr (items[i], (char *) &ids[i]);

items[i] = (ITEM *) 0;

Figure 10-14: Using an Item User Pointer

Note that the pointer to each entry in array ids is cast to char *, which
set_userptrO requires. You might then write a function that uses function
itelll-userptrO to return the information. The following function returns the

EXTENDED TERMINAL INTERFACE 10-103

Setting the Item User Pointer

item type.

char * get_type (i)
ITEM * i;
{

ITEM_ID * id = (ITEJLID *) item_userptr (i);
return id -> type;

}

Here, the value returned by ite1IL-userptrO is recast to ITEM-ID * so the
item's type may be found.

Finally, you might call geLtypeO to write the type, th~s:

~*win;

waddstr (win,get_type(i»;

If successful, seUte1IL-userptrO returns E_OK. Otherwise, it returns the
following:

- system error

If function seLite1IL-userptrO is passed a NULL item pointer, the argu
ment userptr becomes the new default user pointer for all subsequently
created items. For example, the following sets the new default user pointer to
point to the string "You are Here":

set_item_userptr((ITEM *) 0, "You are Here");

10·104& PROGRAMMER'S (tjUIDE

Creating and Freeing Menus

Once you create the items for your menu, you can create the menu. To
create and initialize a menu, use function new-1I1.enuO.

SYIDPSIS

MEN(] * new_menu (items)
ITEM ** items;

The argument to new-1I1.enuO is a NULL terminated, ordered array of ITEM
pointers. These pointers define the items on the menu. Their order deter
mines the order in which the items are visited during menu driver processing,
described below.

Function new-1I1.enuO does not copy the array of item pointers. Instead,
it saves the pointer to the array for future use.

Once your application program has called new-DlenuO, it should not
change the array of item pointers until the menu is freed by free-DlenuO
or the item array is replaced by seLmen1L-itemsO, described below.

Items passed to new-1I1.enuO are connected to the menu created. They
cannot be simultaneously connected to another menu. To disconnect the
items from a menu, you can use function free-1I1.enuO or function
seLmenU-itemsO, which changes the items connected to a menu from one
set to another. See the section "Changing Menu Items" .

If successful, new-1I1.enuO returns a pointer to the new menu. The fol
lowing error conditions hold:

• If there is insufficient memory for the menu or it detects an item con
nected to another menu, new-1I1.enu() returns NULL.

• If the array of item pointers is not NULL-terminated, undefined results
occur.

In addition, if new-1I1.enuO's argument items is NULL, as in

EXTENDED TERMINAL INTERFACE 10·105

Creating and Freeing Menus

MENU * m;

m = new_menu «MENU *) 0);

it creates the menu with no items connected to it and assigns the menu
pointer to m.

The menu pointer returned by new-IllenuO is the key to working with all
menu routines. Pass it to the appropriate menu routine to do such tasks as
post menus, call the menu driver, set the current item, and record or examine
menu attributes.

Turn again to Figure 10-11 for an example of how to create a menu. In
general, you want to use a while loop as illustrated to create the menu items
and assign the item pointers to the item pointer array. Note the NULL termi
nator assigned to the item pointer array before the menu is created with
new-IllenuO.

When you no longer need a menu, you should free the space allocated for
it. To do this, use function free_menuO.

SYIDPSIS

int free_menu (menu)
MENU * menu;

Function free_menuO takes as its argument a menu pointer previously
obtained from new-IllenuO. It disconnects all items from the menu and frees
the space allocated for the menu. The items associated with the menu are not
freed, however, because you may want to connect them to another menu. If
not, you can free them by calling free_itemO.

Remember that once a menu is freed, you must not pass its menu pointer
to another routine. If you do, undefined results occur.

If successful, calls to free-IllenuO return E_OK. If free-IllenuO
encounters an error, it returns one of the following:

- NULL menu pointer
- menu is posted
- system error

For EJOSTED, see the section, "Posting and Unposting Menus."

10·106 PROGRAMMER'S GUIDE

Manipulating Menu Attributes

Recall that an attribute is any feature whose value can be set or read by
an appropriate ETI function. A menu attribute is any menu feature whose
value can be set or read by an appropriate ETI function. The set of items con
nected to a menu and the number of items in the menu are examples of menu
attributes.

Fetching and Changing Menu Items
During processing, you may sometimes want to change the set of items

connected to a menu. Function seLmenU-itemsO enables you to do this.

~PSIS

int set_menu_items (menu, items)
MENU * menu;
ITEM ** items;

ITEM ** menu_items (menu)
MENU * menu;

Like the argument to new_menuO, the second argument to
seLmenU-itemsO is a NULL-terminated, ordered array of ITEM pointers that
defines the items on the menu. Like new-IllenuO, function
set-lllenu-itemsO does not copy the array of item pointers. Instead, it saves
the pointer to the array for future use.

The items previously connected to the given menu when
seLmenU-itemsO is called are disconnected from the menu (but not freed)
before the new items are connected. The new items cannot be given to other
menus unless first disconnected by free-lllenuO or another
set-lllenU-itemsO call.

If items is NULL, the items associated with the given menu are discon
nected from it, but no new items are connected.

If function set-lllenU-itemsO is successful, it returns E_OK. If it
encounters an error, it returns one of the following:

EXTENDED TERMINAL INTERFACE 10-107

Manipulating Menu Attributes

E_SYS'I'EM_ERRCR
E_BAD _ ARGUMENT
E_POSTED
E_ CXRm::TED

- system error
- NULL menu pointer or NULL associated item at
- menu is posted
- connected item

Function menU-itemsO returns the array of item pointers associated with
its menu argument. In the next section, the application-defined function
at_bottomO illustrates its use.

If no items are connected to the menu or the menu pointer argument is
NULL, menU-itemsO returns NULL.

As an example of seL-menU-itemsO, consider Figure 10-15, whose code
changes the items associated with a previously created menu.

MmU *In;

ITEMS ** olditems, ** newitems;
1* create items *1

m = new_menu(olditems); 1* =eate menu m *1

1* process menu with olditems *1

set_menu_items (m,newitems); 1* change items associated with menu m *1

Figure 10-15: Changing the Items Associated With a Menu

10·108 PROGRAMMER'S GUIDE

Manipulating Menu Attributes

Counting the Number of Menu Items
Occasionally, you may want to do different processing, depending on the

number of items connected to your current menu. Function itellL-countO
returns the number of items connected to a menu.

SYN:)PSIS

int item_count (menu)
MENU * menu;

If menu is NULL, function itellL-countO returns -1.

As an example of the use of this function, consider the following routine.
Because the index to the last menu item is one less than the number of items,
this routine determines whether the last item is displayed.

int at_bottan (m) 1* check visibility of last menu item *1
MENU * m;
{

ITEM ** i = menu_items (m);
ITEM * lastitem = i[item_caunt(m)-1];

retunl item_visible (lastitem);
}

Changing the Current Default Values for Menu
Attributes

As it does with the attributes of other objects, ETI establishes initial
current default values for menu attributes. During menu creation, each menu
attribute is assigned the current default value of the attribute. You can change
or retrieve the current default attribute values by calling the appropriate func
tion with a NULL menu pointer. After the current default value changes, all
subsequent menus created with new-InenuO will have the new default value.

EXTENDED TERMINAL INTERFACE 10·109

Manipulating Menu Attributes

Menus created before changing the current default value retain their previ
ously assigned values.

The following sections offer many examples of how to change menu attri
butes.

10·110 PROGRAMMER'S GUIDE

Displaying Menus

In general, to display a menu, determine the menu's dimensions, option
ally associate a window and subwindow with the menu, optionally set the
menu's display attributes, post the menu, and refresh the screen.

Determining the Dimensions of Menus
The simplest way to display a menu is to use stdscr as your default win

dow and subwindow. Any titles, borders, or other decorative matter are
displayed in the menu window; the menu proper is displayed in the menu
subwindow. If you want to specify a menu window or subwindow, use the
functions set-Inenll-winO or set-Inenu-subO. (These routines are treated in
the section, "Associating Windows and Subwindows with Menus".) Whether
or not you choose a menu window, ETI calculates the minimum window (or
subwindow) size for your menu.

To determine the minimum window size for a menu, ETI considers five
factors:

• The size and number of items in a menu

• Whether option O_ROWMAJOR is on

• Whether option O_SHOWDESC is on

• The format, or maximum number of rows and columns on a displayed
page of the menu

• The mark string for menu items.

ETI knows the size and number of items in a menu as soon as you call
new-IIlenuO, discussed above. By default, options O_ROWMAJOR and
O_SHOWDESC are on. Option O-ROW-MAJOR ensures that the items are
displayed in row major order - fanning out left to right, then top to bottom.
H.,ow to change this and other menu options is discussed in the section,
"Changing Menu Options." Option O_SHOWDESC ensures that an item's
description, if any, is displayed with the item's name.

This section first describes the menu's format and mark string. It then
describes the routine scale-IIlenuO, which uses the above information to set
the window size for the menu.

EXTENDED TERMINAL INTERFACE 10·111

Displaying Menus

The five factors that determine the minimum window size have default
values. You need not worry about them until you want to customize your
menus.

Specifying the Menu Format
In general, the items comprising a menu do not fill a single screen. Some

times they occupy considerably less space, sometimes considerably more. The
following functions enable you to set the maximum number of rows and
columns of menu items to be displayed at anyone time.

SYtl)PSIS

int set_menu_format (menu, maxrows, maxools)
MENU * menu;
int maxrows, maxools;

void menu_format (menu, maxrows, maxools)
MENU * menu;
int * maxrows, * maxools;

A menu page is the collection of currently visible items. Function
seLmenU-format() establishes the maximum number of rows and columns of
items that may be displayed on a menu page.

The actual number of rows and columns displayed may be less than max
rows or maxcols depending on the number of items and whether the
O-ROWMAJOR option is on. (Menu options are described in the section,
"Setting Menu Options".) Function menU-format() returns the maximum
number of rows and columns of items that you set for the given menu.

The default number of item rows is 16, while the default number of item
columns is 1. If either maxrows or maxcols equals 0 in the call to
seLmenU-format(), the current value is not changed. An error occurs, how
ever, if the value of either of these arguments is less than O.

10-112 PROGRAMMER'S GUIDE

Displaying Menus

ETI calculates the total number of rows and columns in a row major menu
as follows.

#define m:i.n:i.Imnn(a,b) «a) < (b) ? (a) : (b))

total_rows = (number_of_items - 1) / maxcols + 1;
total_cols = m:i.n:i.Imnn (number_of_items, maxcols);

ETI calculates the total number of rows and columns in a column major
menu as follows:

total rows = (number_of_items - 1) /maxcols + 1;
total_cols (number_of_items - 1) / total_rows + 1;

Whether or not the O_ROW~AJOR option is on, the number of rows
and columns of items that are displayed at one time on a menu page is

displayed_rows = l1\l.IlJ.llRlIt (total_rows, maxrows);
displayed_ cols = m:i.n:i.Imnn (total_cols, maxcols);

If totaLJows is greater than maxrows, the menu is scrollable - your
end-user can scroll up or down through the menu by making the appropriate
menu driver request. See the section, "Menu Driver Requests" .

As an example, consider the displays in Figures 10-16 and 10-17. They
portray menus consisting of 5 items. The numbers 0 through 4 signify menu
items in the order in which they live in the item pointer array. Figure 10-16
shows the menu displayed with a format of maximum number of rows 2,
maximum number of columns 2. To stipulate this format for menu m, write

set_menu_f~t(m,2,2);

Using the formulas above, we see that totauows is 3 and totaLcols is 2 in
all four cases displayed in the two figures. The first display in each figure
shows the menu in row-major format (O-ROW_MAJOR on), the second in
column-major format. The displayed number of rows and columns in Figure
10-16 is 2. To see the last row of items, your user can make the
REQ_SCLDLINE request to scroll down. If, instead, you set the format of
this menu to 3 rows, 2 columns, you get 1 of the 2 displays in Figure 10-17.
The enclosing block in each case indicates the items displayed at one time.

EXTENDED TERMINAL INTERFACE 10-113

Displaying Menus

~
~

4

Row Major
Maximum Rows 2

o
1

2

3

4

Column Major

Figure 10-16: Examples of Menu Format (2, 2)

D 0 3

2 3 1 4

4 2

Row Major Column Major
Maximum Rows 3

Figure 10-17: Examples of Menu Format (3, 2)

For a larger example, consider Figure 10-18. Here the number of items is
18 and the format in both cases is four rows, three columns. In both cases,
the total number of rows comes to 6, the total number of columns to 3, and
the displayed number of rows to 4. Calculation shows that changing the
number of items in this example to 19 changes the number of rows to 7.

10·114 PROGRAMMER'S GUIDE

Displaying Menus

0 1 2 0 6 12

3 4 5 1 7 13

6 7 8 2 8 14

9 10 11 3 9 15

12 13 14 4 10 16

15 16 17 5 11 17

Row Major Column Major

Figure 10-18: Examples of Menu Format (4, 3)

The column major examples emphasize that when the total number of
rows is greater than the maximum number of rows, the items displayed do
not exactly follow the order of the items in the array of item pointers. The
items are arranged in column-major format throughout the entire menu, not
within each displayed page. This conception agrees with your user's ability to
scroll through the menu.

If successful, function set-11lenll-formatO returns E_OK. If an error
occurs, it returns one of the following:

- system error
- rows < 0 or cols < 0
- menu is posted

If function set-11lenll-formatO is passed a NULL menu pointer, it sets a
new system default. Suppose, for instance, that you want to change the
default maximum number of rows of items displayed to 10, and the default
maximum number of columns displayed to 3. You can write

set_menll_farmat«MENO *)0,10,3);

EXTENDED TERMINAL INTERFACE 10-115

Displaying Menus

The function set-Ulenu-formatO resets the value of top-I'owO to O. See
the section, "Setting the Menu's Top Row," for details.

Finally, if function menu-formatO receives a NULL menu pointer, it
returns the current default format.

Changing Your Menu's Mark String
The qlark string distinguishes

• selected items in a multi-valued menu

• the current item in a single-valued menu.

The mark string appears just to the left of the item name.

SYIDPSIS

int set_menu_mark (menu, mark)
MENU * menu;
char * mark;

Function set--BlenU--UlarkO sets the mark string, while menU--UlarkO returns
the string. The initial default mark string is a minus sign (" - "). The mark
string may be as long as you want, provided each item fits on one line of the
menu's subwindow.

Do not change the mark string area as long as you want that mark because
ETI does not copy it.

If mark is NULL, no mark string appears.

You can call set-UlenU--UlarkO either before or after the menu is posted.
(See the section, "Posting and Unposting Menus. ,,) However, there is a res
triction to calling it afterwards.

10-116

If you call set-Illen\L.Jl1arkO with a posted menu, the length of the mark
string must stay the same.

PROGRAMMER'S GUIDE

Displaying Menus

If the menu is posted and the length of the mark string changes, the function
returns E_BAD-ARGUMENT and leaves the mark unchanged.

To change the mark string for menu m to "--->", you can write

MENU * m;

set_menu_mark (m, "--->"); /* change mark string for menu m */

If successful, function seL.men1l-.lllarkO returns E_OK. If an error
occurs, function seL.men1l-.lllarkO returns one of the following:

- system error
- menu is posted: change
in string length impossible

Note that you can change the current default mark string for all subse
quently created menus in your program by passing seL.men1l-.lllarkO a
NULL menu pointer. To change the current default mark string to "--->",
write

seLmentLmark «MENU "') 0, "---> ,,); /* change default mark string'" /

All subsequently created menus will have "--->" as their mark string. To
return the current default mark string, call men1l-.lllarkO with NULL:

char * mark = menu_mark «MENU *) 0); /* default mark string */

Querying the Menu Dimensions
Remember that the size of menu items, the O_ROWMAJOR menu option,

the menu format, and the menu mark determine the smallest window size for
a menu. Function scale--D1enuO returns this smallest window size in terms of
the number of character rows and columns.

SYIDPSIS

int scale_menu (menu, rows, oo1s)
MENU * menu;
int * rows, * oo1s;

Because function scale--D1enuO must return more than one value (namely, the
minimum number of rows and columns for the menu) and C passes

EXTENDED TERMINAL INTERFACE 10-117

Displaying Menus

parameters "by value" only, the arguments of scale-IltenuO are pointers.
The pointer arguments rows and cols point to locations used to return the
minimum number of rows and columns for displaying the menu.

You should call scale-n1enuO only after the menu's items have been con
nected to the menu using new-n1enuO or set-menU-itemsO.

The following code places the minimal number of rows and columns
necessary for menu m in rows and cols:

MENU *m;
int rows, ools;

scale_menu (m, &rows, &'ools); /* return dimensions of menu m */

You use the values returned from scale-IltenuO to create menu windows and
subwindows. In the next section, we will see how to do this.

If successful, scale-IltenuO returns E_OK. If an error occurs, the function
returns one of the following:

- system error
- null menu pointer
- no connected items

Associating Windows and Subwindows with
Menus

Two windows are associated with each menu - the menu window and
the menu subwindow. The following functions assign windows and subwin
dows to menus and fetch those previously assigned to them.

10·118 PROGRAMMER'S GUIDE

-----~~.~--.---~----

SYIDPSIS

int set_menu_win (menu, window)

MENU * menu;
WINOCM * window;

WINOCM * menu_win (menu)
MENU * menu;

int set_menu_sub (menu, window)
MENU * menu;
WINOCM * window;

WINOCM * menu_sub (menu)
MENU * menu;

Displaying Menus

To place a border around your menu or give it a title, call seLmenu_winO
and write to the associated window.

By default, (1) the menu window is NULL, which by convention means
that ETI uses stdser as the menu window; and (2) the menu subwindow
is NULL, which means that ETI uses the menu window as the menu
subwindow.

If you do not want to use the system defaults, you may create a window and
a subwindow for every menu. ETI automatically writes all output of the
menu proper on the menu's subwindow. You may write additional output
(such as borders, titles, and the like) on the menu's window. The relationship
between ETI menu routines, your application program, a menu window, and a
menu subwindow is illustrated in Figure 10-19.

EXTENDED TERMINAL INTERFACE 10-119

Displaying Menus

window

C Application sub
window

Program

ETI

Menu

Functions

Figure 10-19: Menu Functions Write to Subwindow, Application to Window

You should apply all output and refresh operations to the menu window,
not its subwindow.

Figure 10-20 shows how you can create and display a menu with a border
of the default characters, ACS_ VLINE and ACS-HLINE. (See the entry on
the box command in the curses(3X) manual page.)

10·120 PROGRAMMER'S GUIDE

MENU * m;
~*w;

int rows, cols;

scale_menu (m, &rows, &'ools); /* get dimensions of menu */

Displaying Menus

/* create window 2 characters larger than menu dimensions
with top left corner at (0, 0). subwi.ndow' is positioned
at (1, 1) relative to menu window origin with dimensions
equal to the menu dimensions. */

if (w = newwin (rows+2, 001s+2, 0, 0»
{

set_menu_win (m, w);
set_menu_sub (m, deI:win (w, rows, ools, 1, 1»;

box (w, 0, 0); /* draw border in w */

Figure 10-20: Creating a Menu with a Border

Variables rows and eols provide the menu dimensions without the border.
The dimensions of the menu subwindow are set to these values. In general, if
you want a simple border, you should set the number of rows and columns in
the menu's window to be two more than the numbers in its subwindow, as in
the example.

Remember that the initial default menu window and subwindow are
NULL. (By convention, this means that stdser is used as the menu window
and the menu window is used as the menu subwindow.) If you want to
change the current default menu window or subwindow, you can pass func
tions seLmen11-winO and seLmen11-SubO a NULL menu pointer. Thus,
the code

EXTENDED TERMINAL INTERFACE 10·121

Displaying Menus

~* dftwin;

set_menu_w:i.n «MENU *) D, dftwin); 1* sets default menu window to dftwin. *1

changes the current' default window to dftwin.

If successful, functions set-Iltenll-winO and set-Iltenll-subO return
E_OK. If not, they return one of the following:

- system error
- menu is posted

Fetching and Changing A Menu's Display
Attributes

Menu display attributes are visible menu characteristics that distinguish
classes of menu items from each other. Low-level ETI (curses) color and
video attributes are used to differentiate the menu display attributes. These
menu display attributes include

Foreground attribute

Background attribute

Grey attribute

Pad character

distinguishes the current item, if selectable, on all
menus and selected items on multi-valued menus

distinguishes selectable, but unselected, items on
all menus

distinguishes unselectable items on multi-valued
menus

the character that fills (pads) the space between a
menu item's name and description

The following functions enable you to set and read these attributes.

10·122 PROGRAMMER'S GUIDE

SYIDPSIS

int set_mernl_fore (mernl, attr)
MENU * menu;
chtype attr;

chtype menuJore (menu)
MENU * mernl;

int set_mernl_back (mernl, attr)
MENU * mernl;
chtype attr;

int set_mernl..,grey (menu, attr)
MENU * menu;
chtype attr;

chtype menu..,grey (menu)
MENU * menu;

int set_mernlJBd (mernl, pad)

MENU * mernl;
int pad;

int mernl JBd (mernl)
MENU * mernl;

Displaying Menus

In general, to establish uniformity throughout your program, you should set
the menu display attributes with these functions at the start of the program.

Function set-tnen11-fore() sets the curses foreground attribute. The
default is A-STANDOUT.

EXTENDED TERMINAL INTERFACE 10-123

Displaying Menus

Function seLmen11-backO sets the curses background attribute. The
default is A-NORMAL.

Function seLmen11-greyO sets the curses attribute used to display non
selectable items. The default is A-UNDERLINE.

To set the foreground attribute of menu m to A-BOLD and its back
ground attribute to A-DIM, you write

MENU *m;

set_menll_fare(m,A_BDLO);
set_menll_back(m,A_DIM) ;

All these functions can change or fetch the current default if passed a
NULL menu pointer. For example, to set the default grey attribute to
A-NORMAL, write

set_menll-9Z"ey((MENU *)0, A_~);

If functions seLmenuJoreO, seLmen11-backO, and seLmen11-greyO
encounter an error, they return one of the following:

- system error
- bad curses attribute

Function set-lllen11-padO sets the pad character for a menu. The initial
default pad character is a blank. The pad character must be a printable ASCII
character.

To change the pad character for menu m to a dot ('.'), write

MENU * m;

If function seLmen11-padO encounters an error, it returns one of the fol
lowing:

- system error
- nonprintable pad character

10-124 PROGRAMMER'S GUIDE

Displaying Menus

Posting and Unposting Menus
To post a menu is to write it on the menu's subwindow. To unpost a

menu is to erase it from the menu's subwindow, but not destroy its internal
data structure. ETI provides two routines for these actions.

SYl<[)PSIS

int post_menu (menu)
MENU * menu;

Note that neither of these functions actually change what is displayed on
the terminal. After posting or unposting a menu, you must call wrefreshO (or
its equivalents, wnoutrefreshO and doupdateO) to do so.

H function posLmenuO encounters an error, it returns one of the follow
ing:

E_SYS'I'EM_ERROR
E_BAD _ARGUMENl'
E_rosTED
E_oor_~

E_lIIU~:Ql

- system error
- null menu pointer
- menu is already posted
- no connected items
- menu does not fit in subwindow

Regarding E-NO-ROOM, recall from the section, "Querying the Menu
Dimensions," that function scale-1IlenuO returns the number of rows and
columns necessary to display the menu. It does not, however, know the size
of the subwindow you are associating with the menu. Only when the menu
is posted is this point checked. Any failure of the menu to fit in the subwin
dow is then detected.

H function unposLmenuO executes successfully, it returns E_OK. In the
following situations, it fails and returns the indicated values:

E_SYSTEJLERROR
E_ BAD_ARGUMENl'
E_Wl'_rosTED
E_BAD_STATE

- system error
- null menu pointer
- menu is not posted
- called from init or term

EXTENDED TERMINAL INTERFACE 10-125

Displaying Menus

You might, for instance, receive E-NOT_POSTED if you forgot to post the
menu in the first place or you mistakenly tried to unpost it twice.

Figure 10-21 illustrates two routines you might write to post and unpost
menus. Function displaY-IllenuO creates the window and subwindow for the
menu and posts it. Most of its code we saw previously in Figure 10-20. Func
tion erase_menuO unposts the menu and erases its associated window and
subwindow.

10·126 PROGRAMMER'S GUIDE

Displaying Menus

static void display_menu (m)

MENU * m;

WINIlCM * w;
int
int

rows" ,
cols;

/* create menu windows and post * /

scale_menu (m, &rows, &cols); /* get dimensions of menu */

/* create menu window, subwindow, and border */

if (w = neww:in (rows+2, cols+2, 0, 0» {

set_menu_win (m, w);

set_menu_sub (m, derwin (w, rows, cols, 1, 1»;
box (w, 0, 0); /* create harder of O's */

keypad (w, 1); /* set for each data entry window */

else
e= ("e= return fran neww:in", NULL);

/* post menu */

if (post_menu (m) 1= E_OK)
e= ("e= return fran post_menu", NULL);

else
wrefresh (w);

static void erase_menu (m)
MENU * m;

/* unpost and delete menu windows */

WINIlCM * w = lllernL win (m);
WINIlCM * s = menu_sub (m);

unpost_menu (m);
werase (w);

wrefresh (w);

delwin (s);
delwin (w);

/* unpost menu */

/* erase menu window * /

/* refresh screen */

/* delete menu windows */

Figure 10-21: Sample Routines Displaying and Erasing Menus

EXTENDED TERMINAL INTERFACE 10-127

Displaying Menus

Function keypadO is called with a second argument of 1 to enable virtual keys
KEY_LL, KEY_LEFT, and others to be properly interpreted in the routine
geLJ'equestO described in, "Menu Driver Processing." See the discussion of
keypadO in the curses(3X) manual page for details. Finally, note the place
ment of checks for error returns in this example.

10·128 PROGRAMMER'S GUIDE

Menu Driver Processing

The men11-driverO is the workhorse of the menu system. Once the
menu is posted, the men11-driverO handles all interaction with the end user.
It responds to:

• Item navigation requests

• Menu scrolling requests

• Item selection requests

• Pattern buffer requests.

SYIDPSIS

int menu driver (menu, c)
MENU * menu;
int c;

Your application program passes a character to the menu driver for processing
and evaluates the results.

To enable your application program to fetch the character for the menu
driver, write a routine that defines the input key virtualization. This is the
correspondence between specific input keys, control characters, or escape
sequences on the one hand and menu driver requests on the other. The virtu
alization routine returns a specific menu request or application command that
the menu driver can process. Upon return from the menu driver, your appli
cation can check if the input was processed appropriately. If not, your appli
cation specifies the action to be taken. These actions may include terminating
interaction with the menu, responding to help requests, generating an error
message, and so forth.

Defining the Key Virtualization
Correspondence

To illustrate a key virtualization routine, consider Figure 10-22, which
shows the key virtualization routine geLJequestO. Nearly all the values it
returns are the ETI menu requests to be discussed in the following sections.

EXTENDED TERMINAL INTERFACE 10-129

Menu Driver Processing

/* define application ocmnands */

#define OOIT (MAX _C<JotWID + 1)

/* N:>te that AX represents the character oant:rol-X.

lnne key
heme down

left arrow
right arrow
down arrow
up arrow

- end me!Jll processin:1

- I!DVe to next item
- I!DVe to previous item
- I!DVe to first item
- I!DVe to last item

- I!DVe left to item
- I!DVe right to item
- I!DVe down to item
- I!DVe up to item

- scroll up a line
- scroll down a line
- scroll up a page
- scroll down a page

- clear pattern buffer
- delete character fran pattern buffer
- request next pattern match
- request previous pattern match

- toggle item */

static int get_request (w)

~*w;

/* virtual key mappin:1 */

10-130

int c = wgetch (w);

switch (c)
{

case Ox11:

/* read a character */

1* AQ */return anT;

case OxOe: /* AN */return REI=! .. }IElel'_ITEM;
case Ox10: /* Ap */return RRL!:'lUN_ITEM;
case KEY_IDlE: return REILFIRST _ITEM;
case KEY_ LL:

PROGRAMMER'S GUIDE

Menu Driver Processing

continued

case KEY_RIGHT: return RErLRIGHT_lTEM;
case KEY_UP: return REX;LUP_lTEM;
case KEY_IJCMN: return RRLIJCMN_lTEM;

case Ox15: /* AU */retu:rn RRLSClUJLINE;
case OX04: /* AD */retu:rn RErLSCILDLINE;
case Ox06: /* AF */retu:rn RRLSCR_DP.AGE;
case OX02: /* AB */retu:rn RRLSCR_UP.AGE ;

case Ox18: /* AX */return RErL CLEAR]ATl'ERN;
case OX08: /* AH */return REX;LBACK _PATl'ERN;

case OX01: /* AA */retu:rn REX;UilEXT_MA'lOI;

case Ox1a: /* AZ */retu:rn REXLPREV_MAroI;

case Ox14: /* AT * /retu:rn RErL'lOOGLE_lTEM;

return C;

Figure 10-22: Sample Routine that Translates Keys into Menu Requests

Note that because wgetchO here automatically does a refresh before reading a
character, you can omit explicit calls to wrefreshO in applications that do
character input.

ETI Menu Requests
ETI menu requests are made by calling function men1L.driverO with an

int value that signifies the request. To appreciate the effects of some requests,
bear in mind what a menu page is.

A menu page is the collection of currently visible menu items,
i.e., those displayed in the menu subwindow.

A menu page is distinct from a form page, which is a logical portion of a

EXTENDED TERMINAL INTERFACE 10-131

Menu Driver Processing

form. Form pages are treated in the upcoming chapter, "Forms."

Item Navigation Requests
These requests enable your end user to navigate from item to item

whether or not the items are displayed at the moment.

REX;LNElcr' _ITEM
RRL PRE.V _ITEM

RRLFIRST _ITEM

REQ_J.AST _ITEM

- move to next item
- move to previous item
- move to first item
- move to last item

The order of the items in the array originally passed to neW-DlenuO or
seL-mentL-itemsO determines the order in which items are visited in
response to these requests.

A REQ_NEXT_ITEM request from the last item or a REQ_PREV _ITEM
request from the first item returns the value E_REQUEST_DENIED.

Often, a scrolling operation not explicitly requested by the user may
nonetheless take place in response to these requests. For example, the
REQ_FIRST_ITEM request on a menu that is not currently displaying the first
item may scroll to display the menu's first item at the top of the screen.

Directional Item Navigation Requests
These requests enable your end user to navigate from item to item in dif

ferent directions.

REX;LLEFT _ITEM
REX;L RIGHT_ITEM

RID_UP_ITEM

RID_IXMI:LITEM

- move left to item
- move right to item
- move up to item
- move down to item

Directional item navigation requests are not cyclic. If there is no item on the
current page to the left or right of the current item, the menu driver returns
EJEQUEST_DENIED in response to the corresponding request.

On the other hand, if the menu is scrollable and there are more items
above or below the current menu page, the corresponding requests
REQ_UP -.-ITEM and REQ_DOWN_ITEM generate an automatic scrolling
operation. If not, the menu driver returns E_REQUEST_DENIED.

10·132 PROGRAMMER'S GUIDE

Menu Driver Processing

Menu Scrolling Requests
These requests enable your users to scroll easily through menus that span

more than one menu page.

REXLSCILDLINE
Rm_SCR_ULINE

Rm_SCR-PPAGE

REXLSCR_UPAGE

- scroll menu down a line
- scroll menu up a line
- scroll menu down a page
- scroll menu up a page

The current and top items are adjusted by these operations.

Menu scrolling requests are also not cyclic. Attempts to scroll up from the
first menu page, or scroll down from the last, return from the menu driver the
value E_REQUEST_DENIED.

Multi-Valued Menu Selection Request
This request enables your end user to select or deselect an item in a

multi-valued menu.

- select/deselect item

If the item is currently selected, this request deselects it, and vice versa.

To use this request, the O_ONEV ALUE option must be off. (See "Setting
Menu Options. ,,) If the option is on, you have a single-valued menu. In that
case, this request fails and E-REQUEST_DENIED is returned from the menu
driver.

Pattern Buffer Requests
The pattern buffer is an area automatically allocated for your menu appli

cation programs. It is used to position the current menu item at an item name
that matches the pattern. You can modify the pattern buffer by:

• By calling seLmenu-pattern() (described below)

• By passing the menu driver printable ASCII characters one at a time.

Each non printable ASCII character that is received by the menu driver is
assumed to be a menu request. On the other hand, each printable ASCII
character that is received by the menu driver is entered into the pattern buffer.
At the same time, the current item advances to the first matching item. If no
matching item is found, the current item remains unchanged, the character is
deleted from the pattern buffer, and the menu driver returns E_NO_MATCH.

EXTENDED TERMINAL INTERFACE 10-133

Menu Driver Processing

The following requests enable you to change and read the pattern buffer.

REJ:L CLEAILPATl'ERN
REJ:L BAQ(_PATl'ERN

REJ:LNEXT_MATCH
RID_ PRE.V _ MATCH

- clear pattern buffer
- delete last character from pattern buffer
- move to next pattern match
- move to previous pattern match

Request REQ_CLEAR-PATTERN clears the pattern buffer entirely.

Without request REQ_CLEAR-PATTERN, the pattern buffer is automati
cally cleared after each successful scrolling or item navigation operation. In
other words, anytime the top item or current item changes, the pattern
buffer is cleared automatically.

REQ_BACKJATTERN deletes the last character from the pattern buffer.
This request can be used to support a backspace operation on the pattern
buffer.

Sometimes more than one menu item will match the character(s) entered
by the user. REQ-NEXT-MATCH moves the user forward on the displayed
menu to the next array item that matches the data in the pattern buffer.
REQ_PREV -MATCH, on the other hand, moves the user backward on the
displayed menu to the previous array item that matches the pattern buffer. In
both cases, if no additional match is found, the current item remains
unchanged and E_NO_MATCH is returned from the menu driver.

Requests REQ_NEXT-MATCH and REQ_PREV_MATCH are cyclic
through all menu items. In addition, these requests generate automatic scrol
ling requests if the menu is scroll able and the next or previous matching item
is not visible.

An empty pattern buffer matches all items.

10·134 PROGRAMMER'S GUIDE

Menu Driver Processing

Application-Defined Commands
ETI menu requests are implemented as integers above the curses max

imum key value KEY-MAX. A symbolic constant MAX-COMMAND is pro
vided to enable your applications to implement their own requests (com
mands) without conflicting with the ETI form and menu system. All menu
requests are greater than KEY_MAX and less than or equal to
MAX-COMMAND. Your application-defined requests should be greater than
MAX-COMMAND. Two illustrations are given in the following example.
Figure 10-23 diagrams this relationship between ETI key values, ETI menu
requests, and your application program's menu requests .

..... ETI Key Values .-__ .I:l""TI MENU Requests---.t~-Application-Defined Requests

KEY-MAX

Figure 10-23: Integer Ranges for ETI Key Values and MENU Requests

Calling the Menu Driver
The menu driver checks whether the virtualized character passed to it is

an ETI menu request. If so, it performs the request and reports the results. If
the character is not a menu request, the menu driver checks if the character is
dafa, i.e., a printable ASCII character. If so, it enters the character in the pat
tern buffer and looks for the first match among the item names. If no match
is found, the menu driver deletes the character from the pattern buffer and
returns E-NO_MATCH. If the character is not recognized as a menu request
or data, the menu driver assumes the character is an application-defined com
mand and returns E_UNKNOWN_COMMAND.

EXTENDED TERMINAL INTERFACE 10-135

Menu Driver Processing

To illustrate a sample design for calling the menu driver, we will consider
a program that permits interaction with a menu of astrological signs. Figure
10-24 displays the menu.

+-----------------------------+
Aries The Ram

Taurus The Bull

Gemini The 'lWins
Cancer The Crab

Leo The Lion
Virgo The Virgin
Libra The Balance
Scorpio The Scorpion

Sagittarius The Archer
Capricorn The Goat

Aquarius The water Bearer I
Pisces The Fishes I

+-----------------------------+

Figure 10-24: Sample Menu Output (2)

You have already seen much of the astrological sign program in previous
examples. Its function geLrequeslO, for instance, appeared in Figure 10-22.
Figure 10-25 shows its remaining routines.

1* This program displays a sample menu.

Qnitted here are the key mappiD;J defined by get_request()

in Figure 10-22; application-defined routines display_menu()

and erase_menu() in Figure 10-21; and the curses initialization
routine start_curses in section, nET! IDw-Level Interface to
High-Level Fllncti.ansn *1

#include <striD;J .h>
#include <menu.h>

10-136 PROGRAMMER'S GUIDE

Menu Driver Processing

static char * (char *) 0; /* program name * /

static int ll!Y_driver (m, c)
MEHJ * m;

/* handle application ccmnands * /

int c;

switch (c)

{

case QUIT:

}

return TRIJE;

break;

beep (); /* signal error */

retmn FAISE;

main (argc, argv)
int argc;
char * argv[];
{

WINIXW * w;
MEHJ *
ITEM **
ITEM **
void
int

roM = argv[O];
start_=ses ();

m;
i;
make_items ();
free_items ();
c, dane = FAISE;

if (J (m = new_menu (make_items (»»
error ("error retmn fran new_menu", NULL);

display_menu (m);

/* interact with user */

while (J dane)

continued

EXTENDED TERMINAL INTERFACE 10-137

Menu Driver Processing

case E_a<:
break;

case E _UNKN:li'IN_ CXJ.lMAND:

dane = 1t!Y_driver (m, c);
break;

default:

erase_menu (m);
end_curses ();
i = menu_items (m);

free_menu (m);

free_items (i);
exit (0);

beep ();I* signal error *1
break;

typedef struct

{

char *
char *

name;
desc;

1* item definitions *1

static ITEM_REXnIID signs [1 =
{

10·138

"Aries",
"Taurus",
"Gemin:i. It ,
"cancer",
nLeo",

''Virgo'',
"Libra",
"Scorpio",
"Sagittarius" ,
"Caprioom" ,
"Aquarius" ,
IIpisces",

"'!he Ram",
"'!be Bull",
"'!he Twins",
"The Crab",
"'!he Lion",
"'!he Vil:gin",
"'!be Balance",
"'!be Scorpion",

"The Archer",
"'!be Goat",
"'!be Water Bearer",
liThe Fishes",

PROGRAMMER'S GUIDE

continued

Menu Driver Processing

continued

(char *) 0, (char *) 0,
};

#define MAX_ITEM 512

static ITEM * items [MAX_ITEM + 1]; 1* item buffer *1

static ITEM ** !lake_items () 1* =eate the items *1

int i;

for (i = 0; i < MAX_ITEM && signs[i].name; ++i)
items[i] = new_item (signs[i].name, signs[i].desc);

items[i] = (ITEM *) 0;
return items;

static void free_items (i) 1* free the items *1
ITEM ** i;

while (*i)
free_item (*i++);

Figure 10-25: Sample Program Calling the Menu Driver

Function mainO first calls the application-defined routine make-itemsO to
create the items from the array signs. The value returned is passed to
new-DlenuO to create the menu. Function mainO then initializes curses
using starLcursesO and displays the menu using displaY-DlenuO.

EXTENDED TERMINAL INTERFACE 10·139

Menu Driver Processing

In its while loop, mainO repeatedly calls men1L.driverO with the charac
ter returned by get-requestO. If the menu driver does not recognize the char
acter as a request or data, it returns E_UNKNOWN_COMMAND, whereupon
the application-defined routine my_driverO is called with the same character.
Routine my_driverO processes the application-defined commands. In this
example, there is only one, QUIT. If the character passed does not signify
QUIT, my_driverO signals an error and returns FALSE-the signal prompts
the user to re-enter the character. If the character passed is the QUIT charac
ter, my_driverO returns TRUE. In tum, this sets done to TRUE, and the
while loop is exited.

Finally, mainO erases the menu, terminates low-level ETI (curses), frees
the menu and its items, and exits the program.

This example shows a typical design for calling the menu driver, but it is
only one of several ways you can structure a menu application. For another
example, see the demonstration program menu2.c delivered with the ETI pro
duct.

If the men1L.driverO recognizes and processes the input character argu
ment, it returns E_OK. In the following error situations, the men1L.driverO
returns the indicated value:

10·140

E_SY'STEM_ERROR
E _BAD_ARGtNENI'
E_BAD_STATE
E_NOT_roSTED

E _UNI<NCNJ_CCM-fAND
E_~LMA'IOI

E_RmUEST....pENIED

- system error
- null menu
- called from init/term routines
- menu is not posted
- unknown command
- item match failed
- recognized request failed

Because the menu driver calls the initialization and termination routines
described in the next section, it may not be called from within them. Any
attempt to do so returns E_BAD_STATE.

PROGRAMMER'S GUIDE

Menu Driver Processing

Establishing Item and Menu Initialization and
Termination Routines

Sometimes, you may want the menu driver to execute a specific routine
during the change of an item or menu. The following functions let you do
this easily.

SYN)PSIS

typedef void (*Pl'F_void) ();

int set_menu_init (menu, func)
MENU * menu;
Pl'F _void func;

Pl'F_ void menu_init (menu)
MENU * menu;

int set _menu_ tenn (menu, :func)
MENU * menu;
Pl'F_void fun.c;

Pl'F_void menu_tenn (menu)
MENU * menu;

int setjtem_ init (menu, func)
MENU * menu;
Pl'F_ void func;

Pl'F_void item_init (menu)
MENU * menu;

int set_item_tenn (menu, func)
MENU * menu;
Pl'F_ void func;

Pl'F_void i tem_ tenn (menu)
MENU * menu;

EXTENDED TERMINAL INTERFACE 10-141

Menu Driver Processing

The argument func is a pointer to the specific function you want executed by
the menu driver. This application-defined function takes a menu pointer as
an argument.

If you want your application to execute an application-defined function at
one of the initialization or termination points listed below, you should call the
appropriate set_ routine at the start of your program. If you do not want a
specific function executed in these cases, you may refrain from calling these
routines altogether.

The following paragraphs summarize when each initialization and termi
nation routine is executed.

Function set-IllenU-initO
The argument func to this function is automatically called by the menu

system:

• Just before the menu is posted

• Just after each menu scrolling operation, i.e., every time the top row
changes on a posted menu, whether by the menu driver in response to
a request or by a program's call to seLcurrenLitemO or top_rowO

Function seLitellLinitO
The argument func is automatically called by the menu system:

• Just before the menu is posted

• Just after the current item on a posted menu is changed, whether by
the menu driver's response to a request or by a program's call to
seLcurrenLitemO or topJ'owO

Function seLitellLtermO
The argument func is automatically called by the menu system:

• Just before the current item changes on a posted menu

• Just before the menu is unposted

10·142 PROGRAMMER'S GUIDE

Menu Driver Processing

Function set-1Denu_termO
The argument func is automatically called by the menu system:

• Just before a scrolling operation on a posted menu

• Just before the menu is unposted

If functions set-ttlenu.JnitO, set-ttlen11-termO, seUtem.JnitO, or
seUteDL-termO encounter an error, they return

- system error

Figure 10-26 shows how you can use function seUtem.JnitO to imple
ment a menu prompting feature as your end user moves from item to item.

EXTENDED TERMINAL INTERFACE 10·143

Menu Driver Processing

void displayJlrCll¢ (s)

char * s;

werase (w);

Ii\IOOI/e (w, 0, 0);
waddstr (w, s);
wrefresh (w);

void generateJlrCXllPt (m)

MEHJ * m;

/* !lOVe to window origin */

/* write proopt in window * /
/* display proopt */

/* display the proopt string associated with the current item *1

char * s = item_userptr (current_item (m»;
displayJlrCll¢ (s);

ITEM * items [NlI..tBE1LOF _I'l'Em + 1];

main ()

{

MENU * m;

for (i = 0; i < NUMBElLOF_ITEMS; ++i)

/* read in name and pranpt strings here * /

items[i] = new_item (name, nn);

set_item _userptr (items [i], proopt);

items[i] = (ITEM *) 0;

m = new_menu (items);
set_item_init (m, generateJlrCll¢); /* set initialization routine */

Figure 10-26: Using an Initialization Routine to Generate Item Prompts

Function seLiteIIL.initO arranges to call generate_promptO whenever the

10·144 PROGRAMMER'S GUIDE

Menu Driver Processing

menu item changes. Function generate_promptO fetches the item user
pointer associated with the current item and calls display_promptO, which
displays the item prompt. Function display_promptO is a separate function
to enable you to use it for other prompts as well.

Fetching and Changing the Current Item
The current item is the item where your end user is positioned on the

screen. Unless it is invisible, this item is highlighted and the cursor rests on
the item. To have your application program set or determine the current item,
use the following functions.

SYIDPSIS

int set_current_item (menu, item)
MENU * menu;
ITEM * item;

ITEM * current_item (menu)
MENU * menu;

int item_index (item)
ITEM * item;

Function seLcurrenLJ.temO enables you to set the current item by passing an
item pointer, while function currenUtemO returns the pointer to the current
item.

The function iteJILJ.ndexO takes an item pointer argument and returns the
index to that item in the item pointer array. The value of this index ranges
from 0 through N-l, where N is the total number of items connected to the
menu.

Because the menu driver satisfies ETI-defined item navigation requests
automatically, your application program need not call seLcurrenUtemO,
unless you want to implement additional item navigation requests for your
application. You may, for instance, want a request to jump to a particular
item or an item, say, two items down from the current one on the menu page.

EXTENDED TERMINAL INTERFACE 10-145

Menu Driver Processing

When a menu is created by new--l11enuO or the items associated with a
menu are changed by seL-menlLitems, the current item is set to the first
item of the menu.

As an example of seLcurrenUtemO, the following function sets the
current item of menu m to the first item of the menu:

int set_first_item (m) 1* set current item to first item *1
MENU * m;
{

ITEM ** i = menu_items (m);
return set_current_item (m, i[O]);

}

As an example of currenUtemO, the following routine checks if the first
menu item is the current one:

int first_item (m) 1* check if current item is first item *1
MENU * m;
{

}

ITEM * i = current_item (m);
return item_index (i) == 0;

If successful, function set_currenUtemO returns E_OK. If an error
occurs, function set_currenUtemO returns one of the following:

E_SYS'l'EM_ERROR
E_BAD _ ARGtNENI'
E_BAD_STATE

- system error
- null menu pointer or item not connected to menu
- called from initialization or termination routines

Function currenUtemO returns (ITEM *) 0 if given a NULL menu pointer or
there are no items connected to the menu.

Function item-indexO returns -1 if the item pointer is NULL or the item
is not connected to a menu.

10-146 PROGRAMMER'S GUIDE

Menu Driver Processing

Fetching and Changing the Top Row
Function top-I'owO returns the number of the menu row currently

displayed at the top of your end user's menu. Function set_top_rowO sets
the top of the menu to the named row, unless the row does not start a com
plete page of items. In this case, it returns E_BAD-ARGUMENT.

int set_top_row(menu, row)
MENU * menu;
int row;

int top_row(menu)

MENU * menu;

Function seLtop-I'owO sets the current item to the leftmost item in the new
top row. Variable row must be in the range of 0 through TR-VR, where TR is
the total number of rows as determined by the menu format and VR is the
number of visible rows. If the value of row is greater, the row does not start
a complete page of items. See "Setting the Menu Format" for details on
menu display.

When a menu is created by new--Il1.enu() or the items associated with the
menu are changed by set--Il1.entL-items, the top row is set to O.

If the menu format or the O_ROWMAJOR option is changed, the top
row is automatically set to O. See "Setting the Menu Format" and "Set
ting Menu Options" for details on changing these menu attributes.

In addition, if the current item is changed by seLcurrenUtem() or
seLmenu-patternO to an item that is not currently visible, the top row is
generally set to the row that contains the new current item. The sole excep
tion occurs when, as noted above, the top row does not start a complete page
of items.

If successful, function set_top-I'OwO returns E_OK. If an error occurs,
seLtop-itemO returns one of the following error messages:

EXTENDED TERMINAL INTERFACE 10-147

Menu Driver Processing

E_SYS'I'EM_ERROR
E_BAD_ARGUMENI'

E_BAD_STATE

E _OOI'_ cx:um::TED

- system error
- NULL menu pointer or index out of range
- called from init/term routines
- no connected items

Function top_rowO returns -1 if given a NULL menu pointer or no items are
connected to the menu.

Positioning the Menu Cursor
Some applications may need to move the menu's window cursor from the

position required for continued processing by the ETI menu driver. To move
the cursor back to where it belongs, you use function pos~en1L-cursorO.

SYIDPSIS

int pos_menu_cursor (menu)

MENU * menu;

If your application does not change the cursor position in the menu window,
it will not be necessary to call this function.

Your application might change the cursor position automatically because
of prior calls to menu driver initialization routines such as seLitem-initO.
Or it might do so because of explicit calls to application routines such as writ
ing a prompt. Figure 10-27 illustrates this usage.

10·148 PROGRAMMER'S GUIDE

void generate.JlrOll¢ (m)
MENU * m;

Menu Driver Processing

1* display the prarpt string associated with the current item *1

w:INIXW * w = meIlU_wUl (m);

char * s = item_userptr (current_item (m»;
box (w, 0, 0);
1I\1lDVE! (w, 0, 0);
waddstr (w, s);
pclS_meIlU_cursor (m);

Figure 10-27: Returning Cursor to its Correct Position for Menu Driver Pro
cessing

If function pos.Jnen11-cursorO is successful, it returns E_OK. In the fol
lowing error situations, it fails and returns the indicated value:

- system error
- null menu pointer
- menu is not posted

Changing and Fetching the Pattern Buffer
Remember that the pattern buffer is used to make the first item that

matches the pattern the current item. In general, to match the current menu
item, your application program inserts characters into the pattern buffer that
have been passed to the menu driver from the user's data entry. As an alter
native, you can insert characters into the pattern buffer with the function
seLmen11-patternO.

EXTENDED TERMINAL INTERFACE 10-149

Menu Driver Processing

SYliDPSIS

int set_menu...,Patte:m (menu, patte:m)
MENU * menu;
char * patte:m;

char * menu...,Patte:m (menu)
MENU * menu;

Function seLmentL-patternO first clears the pattern buffer and then adds
the characters in pattern to the buffer until pattern is exhausted. The func
tion next tries to find the first item that matches the pattern. If it does not
find a complete match, the pattern buffer is cleared and the current item does
not change. If pattern is the null string (" "), the pattern buffer is simply
cleared. The pattern buffer is automatically cleared whenever

• Each successful scrolling or item navigation operation is completed (in
other words, whenever the top or current item changes)

• A menu is created by new-ffi.enuO

• The items associated with a menu are changed by set-ffi.en11-items

If successful, function seLmentL-patternO returns E_OK. If an error
occurs, function seLmentL-patternO returns one of the following:

- system error
- NULL menu pointer or NULL pattern pointer
- complete match failed

Function mentL-patternO returns the value of the string in the pattern
buffer. If the pattern buffer is empty (the null string II "), it returns the null
string (" "). If the menu pointer argument is NULL, it returns NULL, i.e.,
(char *) O.

To determine if your user has entered data that matches an item, you
might write a routine that uses set-ffi.enu_palternO, as follows.

10-150 PROGRAMMER'S GUIDE

Menu Driver Processing

int find_match (m, newpattern) /* returns TRUE or FALSE */

MEN(] * m;
char * newpattern;
{

}

If the newpattern matches a menu item, function seLmenu-patternO returns
E_OK and hence finLmatchO returns TRUE. In addition, finLmatchO
advances the current item to the matching item.

EXTENDED TERMINAL INTERFACE 10-151

Manipulating the Menu User Pointer

As it does for panels and forms, ETI provides user pointers for each menu.
You can use these pointers to reference menu messages, titles, and the like.

SYIDPSIS

int set_menu_userptr (menu, userptr)
MENU * menu;
char * userptr;

char * menu_ userptr (menu)
MENU * menu;

By default, the menu user pointer (what menu-userptrO returns) is NULL.

If successful, seLmenu-userptrO returns E_OK. If an error occurs, it
returns the following:

- system error

The code in Figure 10-28 illustrates how you can use these two functions
to display a title for your menu. Function mainO sets the menu user pointer
to point to the title of the menu. Later, function displaY-1I1enuO initializes
the title with the value returned by menu-userptrO. We have previously
seen a version of displaY-1I1enuO in Figure 10-25.

10·152 PROGRAMMER'S GUIDE

Manipulating the Menu User Pointer

static void display_menu (m)
MENU * m;

1* create menu w:i.:ndows and post *1

main ()

char * title = menu_userptr (m); 1* fetch menu title *1

w:rNI:a'l * w;
int rows;

ools; int

scale_menu (m, &rows, &0015); 1* get d:iJnensians of menu *1

1* create menu window and subwindow *1

if (w = newwin (rows+2, 001s+2, 0, 0»
{

else

set_menu_win (m, w);
set_menu_sub (m, derwin (w, rows, ools, 1, 1»;
box: (w, 0, 0);
keypad (w, 1);

e= ("error retuzn fran newwin", NULL);

if (post_menu (m) 1= E_OK)

e= ("e= retuzn fran post_menu", NULL);

if (title) 1* if title set *1

MENU * m;

size = strlen ~title);
wm:we (w, 0, (001s-size)/2+1); 1* position cursor *1
waddstr (w, title); 1* write title *1

char * menutitle; 1* initialize menutitle to desired string *1

set_menu_userptr (m, menutitle); 1* set user pointer to point to title *
disp1ay_~ (m);

Figure 10-28: Example Setting and Using A Menu User Pointer

EXTENDED TERMINAL INTERFACE 10-153

Manipulating the Menu User Pointer

If function set-Inen1L-userptrO is passed a NULL menu pointer, like all
ETI functions, it assigns a new current default menu user pointer. In the fol
lowing, the new default is the string "Default Menu Title"

MENU * m;

char * userprt:r = "Default Menu Title";

10-154 PROGRAMMER'S GUIDE

1* sets new default
userptr *1

Setting and Fetching Menu Options

ETI provides several menu options, some of which we have already dis
cussed. Two functions manipulate options: one sets them, the other returns
their settings.

SYlIl)PSIS

int set_menu_opts (menu, opts)

MENU * menu;
OPI'IONS opts;

OPI'IONS menu_opts (~)
MENU * menu;

options:
O_OOEVALUE

O_SlDIDESC

O_RCDfAJOR

O_IGNJREX:ASE
O_SHCHofATCH
O_NCN:YCLIC

Besides turning the named options on, function seLmen1L.opts() turns off all
other menu options. By default, all menu options are on.

The menu options and their effects are as follows:

O_ONEVALUE determines whether the menu is a single-valued or
multi-valued. In general, menus are single-valued
and this option is on. Recall that upon exit from
single-valued menus, your application queries the
current item to ascertain the item selected. Turning
off this option signifies a multi-valued menu. One
way to select several items is to use the
REQ_ TOGGLE_ITEM request, another is to call
seUteID-value(). (See the previous sections,
"Multi-Valued Menu Selection Request" and "Mani
pulating an Item's Select Value in a Multi-Valued
Menu. ,,) Recall that your application must examine
each item's select value to determine whether it has
been selected. When this option is on, all item select

EXTENDED TERMINAL INTERFACE 10·155

Setting and Fetching Menu Options

values are FALSE.

O_SHOWDESC determines whether or not the description of an item
is displayed. By default, this option is on and both
the item name and description are displayed. If this
option is off, only the name is displayed.

O-ROWMAJOR determines how the menu items are presented on the
screen - in row-major or column-major order. In
row-major order, menu items are first displayed left to
right, then top to bottom. In column-major order,
they are displayed first top to bottom, then left to
right. By default, this option is on, so menu items are
displayed in row-major order. If the option is off, the
items are displayed in column-major order. See "Set
ting the Menu Format" , for more details on how
menus are displayed.

O-IGNORECASE instructs the menu driver to ignore upper- and lower
case during the item match operation. If this option is
off, character case is not ignored and the match must
be exact.

O_SHOWMATCH determines whether visual feedback is provided as
each item's data entry is processed. Ordinarily, as
soon as a match occurs, the cursor is advanced
through the item to reflect the contents of the pattern
buffer. If this option is off, however, the cursor
remains to the left of the current item.

O~ONCYCLIC determines how REQ~EXT_ITEM and
REQ_PREV _ITEM behave when the current item is
the last or first item. Default is to not allow cycling
from first to last item or from last to first item. If
O~ONCYCLIC is turned off, REQ_NEXT-ITEM
from the last item causes the first item to become the
current. If O_NONCYCLIC is turned off,
REQ_PREV _ITEM from the first item causes the last
item to become current.

10·156 PROGRAMMER'S GUIDE

Setting and Fetching Menu Options

Like all ETI options, menu OPTIONS are Boolean values, so you use
Boolean operators to turn them on or off with functions set_mentL-optsO and
mentL-optsO. For example, to turn off option O_SHOWDESC for menu mO
and turn on the same option for menu ml, you can write:

MENU * mO, * m1;

set_menu_opts (mO, menu_opts (mO) & -O_SHCMDESC); 1* tmn option off *1

set_menu_opts (m1, menu_opts (m1) I O_SHCMDESC); 1* tmn option on *1

ETI provides two alternative functions for turning options on and off for a
given menu.

SYIDPSIS

int menu_opts_on (menu, opts)

MENU * menu;
OPl'IOOS opts;

int menu_opts_off (menu, opts)

MENU * menu;
OPl'IOOS opts;

Unlike function set-IItentL-optsO, these functions do not affect options that
are unmentioned in their second argument. In addition, if you want to
change one option, you need not apply Boolean operators or use
mentL-optsO.

For example, the following code turns option O_SHOWDESC off for
menu mO and on for menu ml:

MENU * mO, * m1;

menu_opts_off (mO, O_SHCMDESC); 1* turn option off *1
menu_opts_on (m1, O_SHCMDESC); 1* turn option on *1

As usual, you can change the current default for each option by passing a
NULL menu pointer. For instance, to turn the default option O_SHOWDESC
off, you write

EXTENDED TERMINAL INTERFACE 10·157

Setting and Fetching Menu Options

In general, functions set-Dlen11-oplsO, men11-opls_onO, and
men11-opls_offO return E_OK. If an error occurs, they return one of the fol
lowing:

- system error
- menu is posted

10-158 PROGRAMMER'S GUIDE

Forms

A form is a collection of one or more pages of fields. The fields may be
used for titles, labels to guide the user, or for data entry. Figure 10-29
displays a simple form with five fields including two for data entry.

Sample Fcmn

Figure 10-29: Sample Form Display

EXTENDED TERMINAL INTERFACE 10·159

Compiling and Linking Form Programs

To use the form routines, you specify

#include <fODm.~

in your C program files and compile and link with the command line

cc [flags] files -lform -Icurses [libraries]

If you want to use the menu or panel routines as well, place the appropriate -I
option before the option -Icurses.

10·160 PROGRAMMER'S GUIDE

Overview: Writing Form Programs in ETI

This section introduces the basic ETI form terminology, lists the steps in a
typical form application, and reviews the sample program that produced the
output of Figure 10-29.

Some Important Form Terminology
The following terms are helpful in working with ETI form functions:

field an m x n block of character positions
within a form that ETI functions can
manipulate as a unit

active field

inactive field

form

connecting fields to a form

page

posting a form

unposting a form

freeing a form

freeing a field

a field that is visited during form pro
cessing for data entry, change, selec
tion, and so forth

a field that is completely ignored dur
ing form processing, such as a title,
field marker or other label

a collection of one or more pages of
fields

associating an array of field pointers
with a form

a logical subdivision of a form usu
ally occupying one screen

writing a form on its associated
subwindow

erasing a form from its associated
subwindow

deallocating the memory for a form
and, as a by-product, disconnecting
the previously associated array of
field pointers from the form

deallocating the memory for a field

EXTENDED TERMINAL INTERFACE 10·161

Overview: Writing Form Programs in ETI

NULL generic term for a null pointer cast to
the type of the particular object -
field, form, and so on

What a Typical Form Application Program
Does

In general, a form application program will

• initialize low-level ETI (curses)

• create the fields for the form

• create the form

• post the form

• refresh the screen

• process end user form requests

• unpost the form

• free the form

• free the fields

• terminate low-level ETI (curses)

A Sample Form Application Program
Figure 10-30 shows the ETI program necessary for producing the form in

Figure 10-29.

#include <fODm.h>
#include <string.h>

FIELD * lIak~Llabel (frow, feol, label)
int frow;
int feol;
char * label;

/* first row
/* first eolumn
/* label

10-162 PROGRAMMER'S GUIDE

*/
*/
*/

Overview: Writing Form Programs in ETI

continued

FIELD * f = new_field (1, strlen (label), frow, fool, 0, 0);

if (f)

set_field_hlffer (f, 0, label);
set_field_opts (f, field_opts(f) &. -O_ACTIVE);

return f;

FIELD * make_field (frow, fool, ools)
int frow;/* first row */
int fcol;/* first oolumn */
int cols; /* mJIIIber of oolumns * /
{

main 0

/*

*/

/*

*/

FIELD * f = new_field (1, ools, frow, fool, 0, 0);

if (f)

retu:r:n f;

RI!M *
FIELD *
int

farm;
f[6];
i = 0;

ETI initialization

inits= ();
nanl 0;
raw 0;
r.oecho ();
wclear (stdscr);

create fields

flO] = make_label (0, 7, "Sanple Fonn");
f[1] = make_label (2, 0, "Field 1:");
f[2] = make_field (2, 9, 16);
f[3] = make_label (3, 0, "Field 2:");

EXTENDED TERMINAL INTERFACE 10-163

Overview: Writing Form Programs in ETI

/*

*/

/*

*/

/*

*/

f[4] = make ___ field (3, 9, 16);

f[5] = (FIELD *) 0;

create and display form

form = new ___ form (f);
post ___ form (form);

wrefresh (stdscr);
sleep (5);

erase form and free both form and fields

unpost ___ form (form);

wrefresh (stdscr);
free ___ form (form);

while (f[i])
free ___ field (f[i++]);

ETl tennination

endwin ();
exit (0);

Figure 10-30: Code To Produce a Simple Form

continued

In this example, all text within the form is associated with a field. Fields
may be active or inactive: active fields are affected by form processing, inac
tive fields are not. The underlined fields are active, whereas the label fields,
"Sample Form", "Field 1:", and "Field 2:", are inactive.

10-164 PROGRAMMER'S GUIDE

Overview: Writing Form Programs in ETI

Turn now to the program itself. This example starts with two #include
files. Every form program must include the header file form.h, which con
tains important definitions of form objects. This particular program uses the C
string library function strlenO, so it includes the header file string.h, whose
definitions the string library function needs. See string(3C) in the UNIX Sys
tem V Programmer's Reference Manual for details.

N ext, there are two programmer-defined functions make-IabelO and
make-iieldO, which we will discuss in a moment. Consider procedure
mainO. It declares three objects:

• form, a pointer to a form

• f[6], an array of field pointers

• i, an index variable, initialized to 0

The first five functions initialize low-level ETI (curses) for high-level ETI form
functions. Function initscrO initializes the screen, nonlO ensures that a car
riage return on using wgetchO will not automatically generate a newline,
rawO passes input characters uninterpreted to your program, noechoO disables
echoing of your user's input (the form functions provide echoing where
appropriate), and wclear(stdscr) clears the standard screen.

The statements that create the form's fields and labels in this example
make calls to the programmer-defined functions make-IabelO and
makeJieldO. You can do without these programmer-defined functions, but
you may find them convenient. Both of them use the ETI function
new-iieldO. They take three arguments, which correspond to three of the six
arguments of new-iieldO.

The first argument of new-iieldO is the number of rows of the field. In
this example, it is always one. The last two arguments are often 0 as they are
here; they will be explained in the next section. The second argument of
new-iieldO is the number of columns in the field. This number is deter
mined from the third parameter in mainO's calls to make-IabelO and
make-iieldO. For the label fields, the calls to make-IabelO pass the string
that is to constitute the field so that strlenO can be used to count the length or
number of columns of the string. For the fields to be edited by the end-user
(had this example permitted entering data into the fields), calls to
makeJieldO simply pass the number of columns directly.

EXTENDED TERMINAL INTERFACE 10·165

Overview: Writing Form Programs in ETI

The third and fourth arguments to new--BeldO correspond to the first and
second arguments to make-IabelO and make-fieldO. They are the starting
position (firstrow, firsteol) of the label or field in the form subwindow. (In
this example, the default subwindow stdser is used.) The last assignment to
f[5] terminates the array with the NULL field pointer.

Once the function make-IabelO creates the field for the label, it places
the label in the field using function seUielLbufferO. The second argument
to this function is 0 because the value of a field is stored in buffer o. Finally,
function make-IabelO calls seUielLoptsO, which turns off the O-ACTIVE
option for the field. This means that the field is ignored during form driver
processing.

On the other hand, once the function make_fieldO creates the field
proper, it sets the field's background attribute to A-UNDERLINE. This has
the effect of underlining the field so that it is visible.

After you create the fields for a form, you create the form itself using
new-formO. This function takes the pointer to the array of field pointers and
connects the fields to the form. The pointer returned is stored in variable
form - it will be passed to subsequent form manipulation routines. To
display the form, function posUormO posts it on the default subwindow
stdser, while wrefresh(stdser) actually displays this subwindow on the termi
nal screen. The display remains for 5 seconds, as determined by sleepO.

At this point, most forms would accept and process user input. To illus
trate a very simple form, this program does not accept user input.

To erase the form, you first unpost it using unpost-formO. This erases it
from the form subwindow. The call to wrefreshO actually erases the form
from the display screen. Function free-formO disconnects the form from its
array of field pointers f.

The whileO loop, starting with the first field in the field pointer array,
frees each field referenced in the array. The effect is to deallocate the space
for each field.

We have met the last two lines of the program before. Function endwinO
terminates low-level ETI, while exit(O) terminates the program.

There are many ETI form routines not listed in Figure 10-30. These
enable you to tailor your form programs to suit local needs and preferences.
The following sections explain how to use all ETI form routines. Each routine
is illustrated with one or more code fragments. Many of these are drawn from
two larger form application programs listed at the end of the chapter. By

10·166 PROGRAMMER'S GUIDE

Overview: Writing Form Programs in ETI

reviewing the code fragments, you will come to understand the larger pro
grams.

EXTENDED TERMINAL INTERFACE 10·167

Creating and Freeing Fields
To create a form, you must first create its fields. The following functions

enable you to create fields and later free them.

SYIDPSIS

FIELD * new_field (rows, ools, firstrow', firstcol, nrow, nbuf)
:int rows, ools, firstrow', firstcol, nrow, nbuf;

FIEID * dup_field (field, firstrow', firstool)
FIELD * field;
:int firstrow', firstcol;

FIEID * link_field (field, firstrow', firstcol)
FIELD * field;
:int firstrow', firstcol;

:int free_field (field)
FIEID * field;

Unlike menu items which always occupy one row, the fields on a form
may contain one or more rows. Function newJieldO creates and initializes a
new field that is rows by cols large and starts at point (firstrow, firstcol) rela
tive to the origin of the form subwindow. All current system defaults are
assigned to the new field when it is created using newJield().

Variable nrow is the number of offscreen rows allocated for this field.
Offscreen rows enable your program to display only part of a field at a given
moment and let the user scroll through the rest. A zero value means that the
entire field is always displayed, while a nonzero value means that the field is
scrollable.

Variable nbuf is the number of additional buffers allocated for this field.
You can use them to support default field values, undo operations, or other
similar operations requiring one or more auxiliary field buffers.

Variables rows and cols must be greater than zero, while firstrow, fir
steol, nrow, and nbuf must be greater than or equal to zero.

10·168 PROGRAMMER'S GUIDE

Creating and Freeing Fields

Each field buffer is «rows + nrow) * cols + 1) characters large. (The
extra character position holds the NULL terminator.) All fields have one
buffer (namely, field buffer 0) that maintains the field's value. This buffer
reflects any changes your end-user may make to the field. See the section,
"Setting and Fetching Field Buffers," for more details.

To create a form field occupation one row high and 32 columns wide,
starting at position 2,15 in the form subwindow, with no offscreen rows and
no additional buffers, you can write:

FIELD * occupation;

occupation = new_field (1, 32, 2, 15, 0, 0); /* create field */

Generally you create all the fields for a form at the same point in your pro
gram, as Figure 10-30 demonstrated.

The function dup-H.eldO duplicates an existing field at the new location
firstrow, firstcol. During initialization, dupJieldO copies nearly all the attri
butes of its field argument as well as its size and buffering information. How
ever, certain attributes, such as being the first field on a page or having the
field status set, are not duplicated in the newly created field. See the sections
below, "Creating and Freeing Forms," and "Setting and Reading the Field
Status," for details on these attributes.

Like dupJieldO, function linLfieldO duplicates an existing field at a
new location on the same form or another one. Unlike dup_fieldO, however,
linLfieldO arranges that the two fields share the space allocated for the field
buffers. All changes to the buffers of one field appear also in the buffers of
the other. Besides enabling your user to enter data into two or more fields at
once, this function is useful for propagating field values to later pages where
only the first field is active (currently open to form processing). In this case,
the inactive fields in effect become dynamic labels. See the section below,
"Setting and Reading Field Options" .

linked fields share only the space allocated for the field buffers-the attri
bute values of either field may be changed without affecting the other.

EXTENDED TERMINAL INTERFACE 10-169

Creating and Freeing Fields

Consider field occupation in the previous example. To duplicate it at
location 3,15 and link it at location 4,15, you write:

FIELD * dup_occ, * link_occ;

dup_occ = dup_field (occupation, 3, 15);
link_cx::c = l~field (occupation, 4, 15);

Functions new.JieldO, dup-fieldO, and linlLfieldO return a NULL
pointer, if there is no available memory for the FIELD structure or if they
detect an invalid parameter.

Function free.JieldO frees all space allocated for the given field. Its argu
ment is a pointer previously obtained from new-fieldO, dup-fieldO or
linLfieldO.

To free a field, be sure that the field is not connected to a form.

As described in the section below, "Creating and Freeing a Form," you can
disconnect fields from forms by using functions free-formO or
seL-iorm.JieldsO.

To free a form and all its fields, you write:

FCRM * fcmn;

1* get pointer to fcmn's field pointer array using fcmn_fields() described in

section belCllll7, "Changing the Fields an an Existing Fcmn" *1

FIELD ** f = form_fields (fcmn);

1* free fcmn *1

while (*f)

free_field (*f++); 1* free each field and increment pointer *1

Notice that you free the form before its fields.

10·170 PROGRAMMER'S GUIDE

Creating and Freeing Fields

If successful, function free--BeldO returns E_OK. If not, it returns one of
the following:

- system error
- null field pointer
- connected field

Remember that the field pointer returned by new-fieldO, dup--BeldO or
linLfieldO is passed to all field routines that record or examine the field's
attributes. As with menu items, once a form field is freed, it must not be used
again. Because the freed field pointer does not point to a genuine field, unde
fined results occur.

EXTENDED TERMINAL INTERFACE 10-171

Manipulating Field Attributes

Recall that an attribute is any feature whose value can be set or read by
an appropriate ETl function. A field attribute is a feature of a field whose
value can be set or read by an appropriate ETl function. Field attributes
include the field size and location.

Obtaining Field Si'ze and Location Information
This function enables you to determine the defining characteristics of a

field - its size, position, number of offscreen rows, and number of associated
buffers.

SYIDPSIS

:int field_info (field, rows, oo1s, firstrow, firstool, nrc:JIo7, nbuf)
FIELD * field;
:int * rows, * oo1s, * firstrow', * firstoo1, * nrc:JIo7, * nbuf;

Because function fielLinfoO must return more than a single value and C
passes arguments to functions by "call by value" only, fielLinfoO uses the
pointer arguments rows, cols, firstrow, firstcol, nrow, and nbuf. These argu
ments are pointers to the locations used to return the requested information:
the number of rows and columns comprising the field, the field starting loca
tion relative to the origin of its form subwindow, the number of offscreen
rows, and the number of additional buffers.

As an example, consider how you might use fielLinfoO to determine a
field's buffer size. You fetch the field's number of onscreen and offscreen
rows and number of columns, and do the arithmetic, thus:

10-172 PROGRAMMER'S GUIDE

int bufsize (f)

FIELD * f;

Manipulating Field Attributes

int rows, co1s, firstrow, firstco1, offrow, nDlf;

field_info (f, &rows, &co1s, &firstrow, &firstco1, &Offrow', &nbuf);

1* add up size of field and its terminator *1

return (rows + offrow) * co1s + 1;

Note the use of the address operator & to pass field-infoO the requisite
pointers to the locations used to return the requested field information.

If successful, function field-infoO returns E_OK. If not, it returns one of
the following:

- system error
- null field pointer

Moving a Field
ETI provides the following function to move an existing disconnected field

to a new location.

SYIDPSIS

int nove_field (field, firstrow, firstcol)
FIELD * field;
int firstrow;
int firstcol;

Figure 10-31 shows one way you might use function move_fieldO. Func
tion shifLJieldsO receives the int value updown, which it uses to change the
row number of each field in a given field pointer array. You could, of course,
shift the columns in like fashion.

EXTENDED TERMINAL INTERFACE 10-173

Manipulating Field Attributes

void shift_fields (f, updown)

FIELD ** f;
int updown; 1* signed number of rows to shift *1
{

int rows, eols, frow, feol, nrow, nbuf;

while (*f)
{

1* field_infoC) fetches the values of the field parameters *1

field_info (*f, &rows, &eols, &trow, &tool, &nrow, &nbuf);

nove_field (*f, frow + updown, feol);
++f;

Figure 10-31: Example Shifting All Form Fields a Given Number of Rows

See the previous section, "Obtaining Field Size and Placement Information" ,
for more on fielLinfoO used in this example.

If successful, function moveJieldO returns E_OK. If not, it returns one
of the following:

- system error
- null field or firstrow /firstcol < 0
- connected field

Changing the Current Default Values for Field
Attributes

ETI establishes initial current default values for field attributes. During
field initialization, every field attribute is assigned the current default value for
the attribute. As you can with menu functions, you can change or retrieve the
current default attribute values by calling the appropriate function with a

to-174 PROGRAMMER'S GUIDE

Manipulating Field AHributes

NULL field pointer. After the current default changes, every field created
using new-.fieldO will have the new default value.

Fields previously created do not have their attributes changed by chang
ing the current system default.

Several of the following sections show how to change the default values for
various field attributes.

Setting the Field Type To Ensure Validation
Every field is created with the current default field type. The initial ETI

default field type is a no_validation field. Any data may occupy it. (This
default can be changed as described below.) To change a field's type from the
default, ETI provides the following functions for manipulating a field's (data)
type.

SYIDPSIS

int set_field_type (field, type, [arg_1, arg_2, ... J)
FIELD * field;
FIELU1'YPE * type;

FIELDTYPE * field_type (field)
FIELD * field;

char * field_arg (field)
FIELD * field;

The function seLfielc:L.typeO takes a FIELDTYPE pointer and a variable
number of arguments depending on the field type. The field type ensures that
the field is validated as your end-user enters characters into the field or
attempts to leave it.

The form driver (described later in the section, "Form Printer Process
ing") validates the data in a field only when data is entered by your end-user.
Validation does NOT occur when

EXTENDED TERMINAL INTERFACE 10-175

Manipulating Field Attributes

• the application program changes the field value by calling
seLfielLbufferO

• linked field values are changed indirectly - by changing the field to
which they are linked

In all cases, validation occurs only if data is changed by passing data or mak
ing requests to the form driver. To make requests, your user enters characters
or escape sequences mapped to commands that the form driver recognizes.
See the section below, "Form Driver Processing".

If successful, seLfielLtypeO returns E_OK. If not, it returns the follow-
ing:

- system error

Function fielLtypeO returns the field type of the field, while function
fielLargO returns the field argument pointer. For more on the field argu
ment pointer in programmer-defined field types, see the section below, "Sup
porting Programmer-Defined Field Types."

If the function seLfielLtypeO is applied to a NULL field, the field type
becomes the new current default.

Remember that the initial ETI default is not to validate the field at all; any
kind of data may be entered into the field.

You can change the ETI default by giving function seLfielLtypeO a
NULL field pointer. Suppose, for instance, that you want to change the sys
tem default field type to a minimum lO-character field of type
TYPE-ALNUM. As described below, this field type accepts alphanumeric
data - every entered character must be a digit or an alphabetic (not a special)
character. You can write

ETI provides several generic field types besides TYPE-ALNUM. More
over, you can define your own field types, as described later in the section,
"Creating and Manipulating Programmer-Defined Field Types." The follow
ing sections describe all ETI generic field types.

10-176 PROGRAMMER'S GUIDE

Manipulating Field Attributes

TYPE-ALPHA
The form driver restricts a field of this type to alphabetic data.

SYIDPSIS

set_field_type (field, TYPE_ALPHA, width);
int width; 1* minimum token width *1

TYPE-ALPHA takes one additional argument, the minimum width specifica
tion of the field. Note that when you previously create a field with function
new-EieldO, your cols argument is the maximum width specification of the
field. With TYPE-ALPHA (and TYPE-ALNUM as well), your specification
width must be less than or equal to cols. If not, the form driver cannot vali
date the field.

TYPLALPHA does not allow blanks or other special characters.

To set a middlename field, for instance, to TYPE-ALPHA with a
minimum of 0 characters (in effect, to make the end-user's completing the
field optional), you can write

FIELD * middlename;

TYPE-ALNUM
This type restricts the set field to alphanumeric data, alphabetic characters

(upper- or lower-case) and digits.

SYIDPSIS

set_field_type (field, TYPE_ALNOM, width);
int width 1* minim..nn token width *1

Like TYPE-ALPHA, TYPE-ALNUM takes one additional argument, the
field's minimum width specification.

EXTENDED TERMINAL INTERFACE 10-177

Manipulating Field Attributes

Like TYPE-ALPHA, TYPE-ALNUM does not allow blanks or other special
characters.

To set a field, say partnumber, to receive alphanumeric data at least 8
characters wide, you write

FIELD * partnumber;

TYPE_ENUM
This field type enables you to restrict the valid data for a field to a set of

enumerated values. The type takes three arguments beyond the minimum
two that seLfielcLtypeO requires.

SYIDPSIS

set_field_type (field, TYPE_mtII1, keyt-lo:rd._list, checkcase, checkunique);

char ** keyt-lo:rd. _list; /* list of acceptable values * /

int ch.eckcase;

int check:unique;

/* check character case
/* check for unique match

*/

*/

The argument keyworcLIist is a NULL-terminated array of pointers to char
acter strings that are the acceptable enumeration values. Argument checkcase
is a Boolean flag that indicates whether upper- or lower-case is significant dur
ing match operations. Finally, checkunique is a Boolean flag indicating
whether a unique match is required. If it is off and your end-user enters only
part of an acceptable value, the validation procedure completes the field value
automatically with the first matching value in the type. If it is on, the valida
tion procedure completes the field value automatically only when enough
characters have been entered to make a unique match.

To create a field, say response, with valid responses of "yes" ("y") or
"no" (" n ,,) in upper- or lower-case, you write:

10-178 PROGRAMMER'S GUIDE

Manipulating Field Attributes

char * yesno[] = { "yes", "no", (char *)0 };
FIELD * response;

For an example that sets the last field (checkunique) to TRUE, see Fig
ure 10-32, which sets the TYPE.-ENUM of field color to a list of colors.

char * =lors[13] =
{

"Blackll , IICharcoal" , "Light Gray",
uBrownu, "Camel" , IlNavy" ,

llLight Blue", "Hunter Green", "Q:)ld",
"BurgtnJdy", "Rust", "Whiten,
(char *) 0

};

FIEID * =lor;

Figure 10-32: Setting a Field to TYPE_ENUM of Colors

Setting the field to TRUE requires the user to enter the seventh character of
the color name in certain cases (" Light Blue" and "Light Gray") before a
unique match is made.

TYPE_INTEGER
This type enables you to restrict the data in a field to integers.

SYN)PSIS

set_field_type (field, TYPE_INTEX:;ER, prec~s~an, vmin, vmax);
int precisian; 1* width for left padding with O's *1
lang vmin; 1* minimum acceptable value *1
lang vmax; 1* maximum acceptable value *1

EXTENDED TERMINAL INTERFACE 10-179

Manipulating Field Attributes

TYPE_INTEGER takes three additional arguments: a precision specification, a
minimum acceptable value, and a maximum acceptable value.

As your end-user enters characters, they are checked for validity. A
TYPE-INTEGER value is valid if it consists of an optional minus sign fol
lowed by some number of digits. As the end-user tries to leave the field, the
range check is applied.

If, contrary to possibility, the maximum value vmax is less than or equal to
the minimum value vmin, the range check is ignored - any integer that fits
in the field is valid.

If the range check is passed, the integer is padded on the left with zeros to
the precision specification. For instance, if the current value were 18, a preci
sion of 3 would display

018

whereas a precision of 4 would display

0018

For more on ETI's handling of precision, see the manual page printf(3S) in
the UNIX System Programmer's Reference Manual.

As an example of how to use seLfielcLtypeO with TYPE-INTEGER, the
following might represent a month, padded to 2 digits:

FIELD * m::mth;

set_field_type (m::mth, TYPE_IN1'EGER, 2, 1L, 12L);
/* displays single digit m::mths with leading 0 */

Note the requirement that the minimum and maximum values be converted to
type long with the L.

TYPE_NUMERIC
This type restricts the data for the set field to decimal numbers.

10·180 PROGRAMMER'S GUIDE

Manipulating Field AHributes

SYN)PSIS

set_field_type (field, TYPE_NUMERIC, precl.sl.on, vmin, vmax);
int precision; 1* digits to right of the decllnal point *1
double vmin; 1* min:imum acceptable value *1
double vmax; 1* maximum acceptable value *1

TYPE-NUMERIC takes three additional arguments: a precision specification,
a minimum acceptable value, and a maximum acceptable value.

As your end-user enters characters, they are checked for validity as
decimal numbers. A TYPE-NUMERIC value is valid if it consists of an
optional minus sign, some number of digits, a decimal point, and some addi
tional digits.

The precision is not used in validation; it is used only in determining the
output format. See printf(3S) in the UNIX System V Programmer's Reference
Manual for mqre on precision. As the end-user tries to leave the field, the
range check is applied.

As with TYPE_INTEGER, if the maximum value is less than or equal to
the minimum value, the range check is ignored.

For instance, To set a maximum value of $100.00 for a monetary field
amount, you write:

FIELD * anount;

set_field_type (amount, TYPE_NUMERIC, 2, 0.00, 100.00);

TYPE_REGEXP
This type enables you to determine whether the data entered into a field

matches a specific regular expression.

SYN)PSIS

set_Held_type (field, TYPE_REGEXP, expression);
char * expression; 1* regular expression *1

TYPE-REGEXP takes one additional argument, the regular expression. See

EXTENDED TERMINAL INTERFACE 10·181

Manipulating Field Attributes

regcmp(3X) or the Chapter, "lex," in this Guide for regular expression details.

Consider, for example, how you might create a field that represents a part
number with an upper- or lower-case letter followed by exactly 4 digits:

FIELD * part:number;

set_field_type (partnumber, TYPE_REGEXP, 11I'[A-Za-z][O-9]{4}$");

Note that this example assumes the field is 5 characters wide. If not, you may
want to change the pattern to accept blanks on either side, thus:

FIELD * partnumber;

Justifying Data in a Field
Unlike menu items, which always occupy one line, form fields may

occupy one or more lines (rows). Fields that occupy one line may be justified
left, right, center, or not at all.

SYIDPSIS

int set_field~ust (field, justification)
FIELD * field;
int justification;

int field~ust (field)
FIELD * field;

Fields that occupy more than one line are not justified because the data
entered typically extends into subsequent lines.

Setting the number of field columns (cols) and the minimum width or
precision does not always determine where the data fits in the field - there
may be excess character space before or after the data. Function
seLfielLjustO lets you justify data in one of the following ways:

10-182 PROGRAMMER'S GUIDE

N:LJUSTIFICATIOO'
JUSTIFY_LEFT
JUSTIFY_RIGHI'
JUSTIFY_CENTER

Manipulating Field Attributes

- no justification processing (default)
- left justify value in field
- right justify value in field
- center value in the field

No matter what the justification, fields are automatically left justified as your
end-user enters data and edits the field. Once field validation occurs upon the
user's request to leave the field, ETI justifies the field as specified.

By default, fields are not justified.

For instance, to left justify a name field and right justify an amount field,
you can write:

FIELD * name, * anount;

set_field~ust (name, JUSTIFY_LEFT); /* left justify a field */

set_field~ust (anount, JUSTIFY_RIGHT); /* right justify
a field */

If successful, set-fielLjustO returns E_OK. If not, it returns one of the
following:

- system error
- bad justification

As with most other ETI functions, if one of these functions is passed a
NULL field pointer, it assigns or fetches the system default. For instance, to
change the system default from no justification to centering the value in its
field, you write

set_field~ust((FIELD *) 0, JUSTIFY_CENTER); /* set new default */

EXTENDED TERMINAL INTERFACE 10-183

Setting the Field Foreground, Back·
ground, and Pad Character

The following functions enable you to set and read the pad character and
the low-level ETI (curses) attributes associated with your field's foreground
and background. The foreground attribute applies only to those field charac
ters that represent data proper, while the background attribute applies to the
entire field.

SYIDPSIS

int set_field_fore (field, attr)
FIELD * field;
chtype attr;

chtype field_fore (field)
FIELD * field;

int set_field_back (field, attr)
FIELD * field;
chtype attr;

chtype field_back (field)
FIELD * field;

int set_field-P8d (field, pad)

FIELD * field;
int pad;

int field-P8d (field)
FIELD * field;

The initial default for both the foreground and background are A-NORMAL.
(See the section on attribute descriptions earlier in this guide or curses(3X) in
the UNIX System V Programmer's Reference Manual for more on screen attri
butes.) The pad character is the character displayed wherever a blank occurs
in the field value stored in field buffer o.

10-184 PROGRAMMER'S GUIDE

Setting the Field Foreground, Background, and Pad Character

As an example, to change the background of a field total to
A-UNDERLINE and A-STANDOUT, you write:

FIELD * total;

If function seLJielLforeO or set--HelLbackO encounter an error, they
return one of the following:

E_SYS'l'EM_ERBOR - system error
E_BAD_ARGUMENl' - bad curses attribute

The function seLJielLpadO sets the field's pad character. The default
pad character is a blank. During form processing, pad characters in the field
are translated to blanks in the field's value.

Because ETI does not distinguish between system-generated pad charac
ters and those entered as data, be sure to choose your pad character so
as not to conflict with valid data.

To set the pad character for field total to an asterisk (*), you write:

FIELD * total;

set_field-P6d (total, '*');

If successful, function seLJielLpadO returns E_OK. If not, it returns
one of the following:

- system error
- non printable pad character

As usual, you can change or access the ETI defaults. To change the
default background to A-UNDERLINE, you write:

set_field_back ((FIELD *) 0, A_UNDERLINE);

EXTENDED TERMINAL INTERFACE 10-185

Some Helpful Features of Fields

ETI provides special features that promote development of a wide range of
form applications. These include field buffers, field status flags, and field user
pointers.

Setting and Reading Field Buffers
Recall that you set the number of additional buffers associated with a field

upon its creation with new-fieldO. Buffer 0 holds the value of the field. The
following functions let you store values in the buffers and later read them.

SYNOPSIS

:int set_field_buffer (field, buffer, value)
FIELD * field;
:int buffer;
char * value;

char * field_buffer (field, buffer)
FIELD * field;
:int buffer

The parameter buffer should range from 0 through nbuf, where nbuf is the
number of additional buffers in the new-fieldO call. All buffers besides 0
may be used to suit your application.

As an example, suppose your application kept a field's default value in
field buffer 1. It could use the following code to reset the current field to its
default value.

10·186 PROGRAMMER'S GUIDE

Some Helpful Features of Fields

#define VAL_BUF
#define DFL_ BUF

o
1

void reset_current (form)
FORM * form;
{

/* set f to current field, described in
section below, "Setting the Current Field" */

FIELD * f = current_field (form);

/* set field f to default value */

}

If successful, set-iielLbufferO returns E_OK. If not, it returns one of
the following:

- system error
- null field pointer, null value, or

buffer out of range

Function fielLbufferO, however, returns NULL if its field pointer is NULL
or buffer is out of range.

The function fielLbufferO always returns the correct value if the field is
not current. However, if the field is current, the function is sometimes inaccu
rate because data is not moved to field buffer 0 immediately upon entry. You
may rest assured that fielLbufferO is accurate on the current field if

• it is called from the field check validation routine, if any

• it is called from the form or field initialization or termination routines,
if any

• it is called just after a REQ_ VALIDATION request to the form driver

See the sections below, "Creating a Field Type with Validation Functions" ,
"Establishing Form Initialization and Termination Routines," and "Field Vali
dation Requests," for details on these routines.

EXTENDED TERMINAL INTERFACE 10-187

Some Helpful Features of Fields

Setting and Reading the Field Status
Every field has an associated status flag that is set whenever the field's

value (field buffer 0) changes. The following functions enable you to set and
access this flag.

SYIDPSIS

int set_field_status (field, status)
FIELD * field;
int status;

int field_status (field)
FIELD * field;

The field status is TRUE if set or FALSE if cleared. By default, the field status
is FALSE when the field is created.

These routines promote increased efficiency where processing need occur
only if a field has been changed since some previous state. Two examples are
undo operations and data base updates. Function updateO in Figure 10-33,
for instance, loops through your field pointer array to save the data in each
field if it has been changed (if its fielLstatusO is TRUE).

10-188 PROGRAMMER'S GUIDE

void update (fcmn)

FORM * fcmn;
void save_field_data (f)
FIEI:D * f;

Some Helpful Features of Fields

char * data = field_buffer (f, 0); 1* fetch data in field *1

1* save data *1

FIEID ** f = fcmn_fields (fcmn); 1* fetch pointer to field pointer
array *1

while (*f)
{

if (field_status (*f»
{

1* field data changed ? *1

save_field_data (*f); 1* yes, save new data *1
set_field_status (*f, FALSE); 1* set field status

back *1

++f;

Figure 10-33: Using the Field Status to Update a Database

If successful, seLfielLstatusO returns E_OK. If not, it returns the fol
lowing:

- system error

EXTENDED TERMINAL INTERFACE 10·189

Some Helpful Features of Fields

The initial ETI default field status is clear. As always, you can change the
default by passing seLfield-statusO a NULL field pointer.

Like the function fielLbufferO, function fielLstatusO always returns
the correct value if the field is not current. However, if the field is current,
the function is sometimes inaccurate because the status flag is not set immedi
ately. You may rest assured that field-statusO is accurate on the current field
if

• it is called from the field check validation routine, if any

• it is called from the form or field initialization or termination routines,
if any

• it is called just after a REQ_VALIDATION request to the form driver

See the sections below, "Creating a Field Type with Validation Functions" ,
"Establishing Form Initialization and Termination Routines," and "Field Vali
dation Requests," for details on these routines.

Setting and Fetching the Field User Pointer
As it does with panels and menus, ETI provides functions to manipulate

an arbitrary pointer convenient for field data such as title strings, help mes
sages, and the like.

SYIDPSIS

int set_field_userptr (field, userptr)
FIEID * field;
char * userptr;

char * field_userptr (field)
FIEID * field;

You can connect an application-defined structure to the field using this
pointer. By default, the field user pointer is NULL.

Figure 10-34, for example, shows three routines that use these field func
tions:

10-190 PROGRAMMER'S GUIDE

seLfielcLidO

free-fielcLidO

finc:LmatchO

#define match(a,b) (stranp (a, b) == 0)

typedef struct
{

int type;
char * name;

Some Helpful Features of Fields

allocates space for a struct ID to be
associated with a field and calls
seLfielLuserptrO to establish the
field's pointer to it

frees the space for the associated ID

searches the names associated with all
fields on the form to determine
whether any of them match an arbi
trary name passed to it

ID; /* to be bxiked onto field userptr */

void set_field_id (f, type, name) /* associate type and name with field f */

FIELD * f;
int type;

char * name;

ID * id = (10 *) malloc (sizeof (ID»; /* allocate space,
see malloc(3X) */

if (id)
{

/* if space allocated */

id -> type = type;
id -> name = name;

/* assign type and name */

set_field_userptr (f, (char *) id); /* point to id */

void free_field_id (f) /* free id cannected to field */

FIELD * f;
{

x = (ID *) field_userptr (*f); /* fetch field user pointer */

if (x)

free (x);

EXTENDED TERMINAL INTERFACE 10-191

Some Helpful Features of Fields

FIELD * find_field (f, name) 1* find field an form with name *1
FORM * form;

char * name;

continued

FIELD ** f = form_fields (form); 1* fetch pointer to form's
field array *1

ID * X;

while (*f)

{

I * for each field in the fOIlll *1

x = (ID *) field_userptr (*f);
1* fetch ID associated with field *1

if (x && x -> name && natch (name, x -> name»

1* does its :name natch ? *1
break· ,

++f;

retuzn *f; 1* retuzn field pointer of natch or NULL *1

Figure 10-34: Using the Field User Pointer to Match Items

Note that if a match is not found, find-fieldO returns a NULL field pointer.
See the previous sections on panel and menu user pointers for more examples.

If successful, set-fielLuserptrO returns E_OK. If not, it returns the fol
lowing:

- system error

10·192 PROGRAMMER'S GUIDE

Some Helpful Features of Fields

To change the system default user pointer from NULL to one of your
choice, you need only pass seLfielLuserptrO a NULL field pointer. Passing
a NULL field pointer to fielLuserptrO returns the current default user
pointer.

EXTENDED TERMINAL INTERFACE 10-193

Manipulating Field Options

ETI provides several field options for controlling how data is entered and
displayed in a field. The following functions let you set or clear these options
or read their settings.

SYIDPSIS

int set_field_opts (field, opts)
FIELD * field;
OPTIONS opts;

OPTIONS field_opts (field)
FIELD * field;

options:
O_VISIBLE
O_ACl'IVE

O_PUBLIC

O_EDIT
O_WRAP
O_BLANK
O_AUroSKIP
O_NULIa<
O_PASSOK

Function seLfielLoptsO turns off all options that do not appear in its second
argument. By default, all options are on.

The field options and their effects are as follows:

O-ACTIVE

determines field visibility. If this option is on, the
field is displayed. If this option is off, it is erased.
This option is useful for supporting pop-up fields,
fields visible or not depending on another field's
value.

determines if a field is visited during form processing.
If inactivated, the field is ignored during form process
ing. Inactive fields enable you to create field labels
and other static form symbols or changeable symbols
that are not affected during form processing.

10-194 PROGRAMMER'S GUIDE

O-EDIT

O-.AUTOSKIP

Manipulating Field Options

Examples of fields that change value but are not
affected during form processing are row and column
totals, as in a spreadsheet program. You can change
field values using calls to seLfielcLbufferO.

determines how feedback is presented to the user as
data is entered. The data in public fields is displayed
as entered, while the data in non-public fields is not
displayed at all. Further, in non-public fields, the cur
sor does not actually move across the field, but the
forms subsystem internally maintains the cursor posi
tion relative to the field data. You can use non-pUblic
fields to implement password fields.

determines if field editing is permitted. By default,
this option is on and a field may be edited. If the
O_EDIT option is off, the field may be visited but not
changed. Editing requests or attempts to enter data
will fail. (REQ-PREV _CHOICE and
REQ_NEXT_CHOICE requests, however, are
honored, if they are defined for the field's type.) This
is useful for creating fields for browsing such as scroll
able help messages.

determines if word wrapping occurs at the end of each
line of the field. If any character of the word does not
fit on the line as it is entered, the entire word is
automatically moved to the beginning of the next line,
if there is one. If the O_WRAP option is off, the
word is split between the two lines.

determines if the whole field is automatically erased
when the end-user types a character in the first char
acter position of the field before any character position
has been changed. If the O_BLANK option is off, this
does not occur.

determines how the field responds when it becomes
full. Ordinarily, when a field is full, an automatic
request to move to the next field on the form is gen
erated. If, however, the O-.AUTOSKIP option is off,
your end-user remains at the end of the field.

EXTENDED TERMINAL INTERFACE 10·195

Manipulating Field Options

O--NULLOK

OJA550K

determines how the field responds when your end
user tries to leave a blank field. By default, this
option is on - when a field is blank, a request to
leave the field is honored without validating the field.
if, on the other hand, the O--NULLOK option is off,
the validation procedure is applied to the blank field.

When this option is on, the field is checked for vali
dity only if your end-user entered data into the field
or edited it. If it is off, the validity check occurs
whenever your user leaves the field, whether or not
the field was changed. This is useful for fields whose
validation function may change dynamically.

Remember that options are Boolean values. 50 to tum off option
O-ACTIVE for field fO and to tum it on for field f1, you use the Boolean
operators and write:

FIELD * fO, * f1;

set_field_opts (fO, field_opts (fO) &. -O_ACTIVE); 1* turn optian off *1

set_field_opts (f1, field_opts (f1) 10_ACTIVE); /* turn optian an */

Although you can change field option settings on posted forms, you cannot
change option settings for the current field.

ETI also provides the following two functions which let you tum a field
option on or off without using function fielLoptsO.

10·196 PROGRAMMER'S GUIDE

SYWPSIS

int field_opts_an (field, opts)
FIELD * field;
OPI'ICHi opts;

int field_opts_off (field, opts)
FIELD * field;
OPI'ICHi opts;

Manipulating Field Options

Unlike function seUielLoptsO, these functions leave unnamed option set
tings intact.

As an example, the following code turns options O_BLANK and
O-AUTOSKIP off for field fO and on for field £1:

FIELD * fO, * f1;

If successful, functions seLfielLoptsO, fieILopts-onO, and
fielLopts_offO return E_OK. If not, they return the following:

- system error
- cannot change current field options

As usual, you can change the ETI default option settings by passing func
tion seUielLoptionsO, fieILopts_onO, or fielLopts_offO a NULL field
pointer. Calling fielLoptsO with a NULL field pointer returns the system
default.

EXTENDED TERMINAL INTERFACE 10·197

Creating and Freeing Forms
Once you have established a set of fields and their attributes, you are

ready to create a form to contain them.

SYIDPSIS

FORM * new_fonn (fields)
FIELD ** fieldsj

int freeJonn (fonn)

FORM * fonnj

The function new_form() takes as an argument a NULL-terminated, ordered
array of FIELD pointers that define the fields on the form. The order of the
field pointers determines the order in which the fields are visited during form
driver processing discussed below.

As with the comparable ETI menu function new--Il\enu(), function
new_form() does not copy the array of field pointers. Instead, it saves the
pointer to the array. Be sure not to change the array of field pointers once it
has been passed to new.-form(), until the form is freed by free.-form() or the
field array replaced by seUorm.-fields() described in the next section.

Fields passed to new"""£orm() are connected to the resulting form.

Fields may be connected to only one form at a time.

To connect fields to another form, you must first disconnect them using
free......£orm() or seUorm......£ields(). If fields is NULL, the form is created but
no fields are connected to it.

Unlike menus, ETI forms are logically divided into pages. Two functions
enable you to mark a field that is to start a new page and to return a Boolean
value indicating whether a given field does so.

10·198 PROGRAMMER'S GUIDE

Creating and Freeing Forms

SYlIDPSIS

int set_newJl2lge(field, bcx::>l)
FIELD * field;
int Bool;

int newJl2lge(field)
FIELD * field;

/* TRUE or FALSE * /

The initial system default value of new_pageO is FALSE. This means that,
unless specified with seLnew_pageO, each field is assumed to continue the
current page.

In general, you should make the size of each form page smaller than the
form's window size.

If function seLnew_pageO executes successfully, it returns E_OK. If not,
it returns one of the following:

-system error
-field connected to form

Figure 10-35 shows how to create a simple two-page form.

EXTENDED TERMINAL INTERFACE 10-199

Creating and Freeing Forms

FIELD * f[7];
FC:Rot * farm;

1* create fields as des=ibed in section above, "Creating and Freeing Fields" *1

frO] = new_field (•••); 1* 1st field on page 1 *1
f[1] = new_field (•••); 1* 2IXl. field en page 1 *1
f[2] = new_field (•.•); 1* 3rd field en page 1 *1
f[3] = new_field (•.•); 1* 4th field on page 1 *1

f[4] = new_field (•••); 1* 1st field on page 2 *1
f[5] = new_field (..•); 1* 2IXl. field on page 2 *1

f[6] = (FIELD *) 0; 1* signal end of farm *1

set_new.JBge (f[4], 'lRUE); 1* start new page with fifth field f[4] *1

farm = new_farm (f); 1* create the farm *1

Figure 10-35: Creating a Form

If successful, new-formO returns a pointer to the new form. If there is no
memory available for the form or one of the given fields is connected to
another form, llew-formO returns NULL. Undefined results occur if the array
of field pointers is not NULL-terminated.

The function free-formO disconnects all fields and frees any space allo
cateq for the form. Its argulTIent is a form pointer previously obtained from
new-formO. The fields themselves are not automatically freed.

10·200

You should free the fields comprising a form using heeJieldO only after
you free their form using hee-formO.

PROGRAMMER'S GUIDE

Creating and Freeing Forms

If successful, free-formO returns E_OK. If not, it returns one of the fol
lowing:

- system error
- null form pointer
- form is posted

Posting forms is described below.

As with panel, item, menu, and field pointers, form pointers should not be
used once they are freed. If they are, undefined results occur.

EXTENDED TERMINAL INTERFACE 10-201

Manipulating Form Attributes
Recall that an attribute is any feature whose value can be set or read by

an appropriate ETI function. A form attribute is any form feature whose value
can be set or read by an appropriate ETI function. The set of fields connected
to a form and the number of fields connected to it are examples of form attri
butes.

Changing and Fetching the Fields on an
Existing Form

Once you create a form with one set of fields using newJormO, you can
change the fields connected to it.

SYNOPSIS

int set_form_fields (form, fields)

FORM * form;
FIELD ** fields;

FIELD ** form_fields (form)
FORM * form;

Like newJormO, function seUorll1-fieldsO takes as an argument a NULL
terminated, ordered array of FIELD pointers that define the fields on the form
and determine the order in which the fields are visited during form driver pro
cessing.

When seLform-fieldsO is called, the fields previously connected to the
form are disconnected from it (but not freed) before the new fields are con
nected.

Like any set of fields connected to a form, the new fields cannot be passed
to other forms while they are connected to the given form. You must first
disconnect them by calling free_formO or again calling seUorll1-fieldsO.

There are two ways to disconnect the fields associated with a form
without connecting another set of fields to the form:

10·202 PROGRAMMER'S GUIDE

Manipulating Form Attributes

• you can call free-formO

• you can call seLform-fieldsO with fields set to NULL

The first method frees the space allocated for the form, whereas the second
does not.

To change the fields associated with form to those referenced in array
pointer newfields, you can write:

RlRM * fonn;

FIELD ** newfields;

set_fonn_fields (fonn, newfields); 1* associate new set of fields with fonn *1

If function seLform-fieldsO encounters an error, it returns one of the fol
lowing:

E_SYSTEM_ERROR

E_BAD_ARGUMENl'

E_rosTED
E_ OJNNECTED

- system error
- null form pointer
- form is posted
- connected field

Posting forms is discussed in the section below, "Posting and Unposting
Forms".

The function form-fieldsO returns the array of field pointers defining the
form's fields. The function returns NULL if no fields are connected to the
form or the form pointer is NULL.

Counting the Number of Fields
The following function returns the number of fields connected to the

given form.

SYIDPSIS

int field_count (form)

FORM * form;

If form is NULL, fielLcountO returns -1.

EXTENDED TERMINAL INTERFACE 10·203

Manipulating Form Attributes

As an example, consider the following routine, which determines whether
your user is on the last field of the form as numbered in the field pointer
array:

:int an_last_field (form)
FORM * form;
{

/* fetch number of last field */

:int lastindex = field_count (form) - 1;

/* detenn:ine whether number of current field is the same *1

return field_index (currentJield (form» == lastindex;
}

Note the use of functions fielcL.indexO and currenLfieldO, described below
in the section, "Setting the Current Field. "

Changing ETI Form Default Attributes
During form initialization using newJormO, all form attributes are

assigned default values. As you can with menu attributes, you can change
these default attribute values by calling the appropriate function with a NULL
form pointer as its first argument. All subsequent forms created using
newJormO will then have the new default attribute value. However, forms
created before the change to the current default value will retain the initial
values of their attributes. Several examples of changing default values occur
throughout the rest of this chapter.

10·204 PROGRAMMER'S GUIDE

Displaying Forms

In general, to display a form, you determine the form dimensions, option
ally associate a window and subwindow with the form, post the form, and
refresh the screen.

Determining the Dimensions of Forms
Every form is associated with a window and subwindow.

By default, (1) the form window is NULL, which by convention means
that ETI uses stdscr as the form window; and (2) the form subwindow is
NULL, which means that ETI uses the form window as the form subwin
dow.

Windows are used to create borders, titles, and the like. Before ETI posts a
form, it must determine the sizes of its window and subwindow.

To determine the minimum window or subwindow size for a form, ETI
considers the following:

• the number of rows and columns for each field

• the starting position (upper left comer) of each field within the form
subwindow

By automatically fetching this information previously established by calls to
new-iieldO, function scale-iormO saves you the effort of calculating the size
of your form subwindow.

Scaling the Form
Considering the above information, this function returns the minimum

window size necessary for containing the form.

SYNJPSIS

int sca1e_fonn (farm, rows, ools)
FORM * fonn;
int * rows;
int * ools;

EXTENDED TERMINAL INTERFACE 10-205

Displaying Forms

Because function scale-formO must return more than one value (namely, the
minimum number of rows and columns for the form) and C passes parameters
"by value" only, the arguments of scaleJormO are pointers. The pointer
arguments rows and cols point to locations used to return the minimum
number of rows and columns for the form.

You should call scale-DlenuO only after the form's fields have been con
nected to the form using new-formO or set.Jorm-1ields().

As an example, to return the minimum (sub)window size for form f in
variables rows and cols, you can write:

FURM * form;
int rows, co1s;

1* create fields
create form *1

1* determine minimum raw and column size *1
scale_form (fonn, &rows, &'co1s);

1* create form subwindow, as described in next section *1

If function scaleJormO encounters an error, it returns one of the follow
ing:

E_SYSTEM_ERROR

E_BAD_ARGUMEN'I'

E_OOI'_ OONNEX:TED

- system error
- null form pointer
- no fields connected to the form

Associating Windows and Subwindows with a
Form

Remember that two windows are associated with every form - the form
window and the form subwindow. The following functions assign windows
and subwindows to forms and fetch those previously assigned to them.

10-206 PROGRAMMER'S GUIDE

SYOOPSIS

int set_fontl_win (fonn, window)
EURM * fontl;
WINIX:M * window;

WINIX:M * fontl_win (fontl)
EURM * fontl;

int set_fontl_sub (fonn, window)
EURM * fontl;
WINIX:M * window;

WINIX:M * fontl_sub (fonn)
EURM * fontl;

Displaying Forms

These functions enable you to place stylistic borders, titles, and other decora
tion around a form.

Remember that if the form window is NULL (the default), ETI uses
stdser. If the form subwindow is NULL (the default), ETI uses the form
window so you need not use functions seLiorDL-winO or
seLiorDL-SubO at all.

If you do not want to use stdscr, you should create a window and a
subwindow for every form. ETI automatically writes all low-level ETI (curses)
output of the form proper on the form subwindow. If you want further out
put (such as borders, titles, or static messages), you should write it on the
form window. However, you need not write any further output at all.

Be sure to apply all low-level ETI (eurses(3X») command output and
refresh operations to your form's window, not its subwindow.

Figure 10-36 diagrams the relationship between ETI Form functions, your
application program, and its form window and subwindow.

EXTENDED TERMINAL INTERFACE 10·207

Displaying Forms

window

C Application sub
window Program

ETI

Form

Functions

Figure 10-36: Form Functions Write to Subwindow, Application to Window

Figure 10-37 shows how to create a form with a border of the terminal's
default vertical and horizontal characters.

10·208 PROGRAMMER'S GUIDE

Displaying Forms

/* create window 4 characters larger than fonn dimensions
with top left corner at (0, 0). subwindow is positioned
at (2, 2) relative to the fcmn window =ig:in with dimensions
equal to the fonn dimensions. * /

FORM * f;
WINDOW * W;
:int rows, =ls;

scale_fonn (f, &rows, &.=ls); /* get dimensions of fcmn */

if (w = newwin (rows+4, =ls+4, 0, 0»
{

set_fcmn_wln (f, w); /* associate window and subwindow with fonn */

set_fonn_sub (f, derwin (w, rows, =ls, 2, 2»;

baK (w, 0, 0); /* create border * /

Figure 10-37: Creating a Border Around a Form

Function scale-1ormO sets the values of the variables rows and cols, which
provide the form dimensions without the border. Adding four to the dimen
sions of the form window clearly sets off the form border from the fields of
the form (the form proper).

If functions seLforIIL-winO or seLforIIL-subO encounter an error, they
return one of the following:

- system error
- form is posted

As usual, you can change the default form window or subwindow. For
instance, you can change the default form window from stdscr to a window w
by passing a NULL form pointer, as follows:

EXTENDED TERMINAL INTERFACE 10·209

Displaying Forms

mt rows, ools, firstrow, firstco1;

/* create form window * /

WINIX:M' * w = newwin (rows, ools, firstrcM, firstco1);

setJorm_win((FtEM *)0, w); /* change default form window to w */

Note that if you later change a posted form by writing directly to its win
dow, before continuing you must reposition the form window cursor using
pos-forlll-cursorO. See the section below, "Positioning the Form Cursor."

Posting and Unposting Forms
When you have created a form and its window and subwindow, you are

ready to post it. To post a form is to display it on the form's subwindow; to
unpost a form is to erase it from the form's subwindow.

SYNJPSIS

mt post_form (form)
FtEM * form;

mt unpost_form (form)
FORM * form;

Unposting a form does not remove its data structure from memory.

To post a form, be sure that you have connected fields to it first.

Figure 10-38 uses two application routines, display-formO and
erase-formO, to show how you might post and later unpost a form. The
code builds on that used previously in Figure 10-37 to create the form's win
dow and subwindow.

10·210 PROGRAMMER'S GUIDE

Displaying Forms

static void display_form (f)
EORM * f;

/* create form windows and post * /

{

WINIX:W * w;
int rows;

ools; int

scale_form (f, &rows, &ools); /* get dimensions of form */

/* create form window as in Figure 10-37 */

if (w = newwin (rows+4, 001s+4, 0, 0»
{

else

set_form_win (f, w);
set_form_sub (f, derwin (w, rows, ools, 2, 2»;
box (w, 0, 0);
keypad (w, 1);

/* error routine in previous section "Iow-Level Interface to
* High-Level Functions" */
error ("error retunl fran newwin", NULL);

/* post faco */

error ("error retunl fran post_form", NULL);
else

refresh (w);

static void eraseJorm (f)
FORM * f;

/* \Blpost and delete form windows * /

{

WINIX:W * w = form_win (f);
WINIX:W * s = form_sub (f);

unpost_form (f);
werase (w);
wrefresh (w);
delwin (s);
delwin (w);

/* \Blpost form */
/* erase form window * /
/* refresh screen * /
/* delete faco windows * /

Figure 10-39: Posting and Unposting a Form

EXTENDED TERMINAL INTERFACE 10-211

Displaying Forms

If successful, function posUormO returns E_OK. If not, it returns one of
the following:

E_SYS'I'EM_ERROR

E_BAD_ARGMNl'

E~:rosTED

E_roI'_CXHm:'TED

E_~'X:LR<XM

- system error
- null form pointer
- form is already posted
- no connected fields
- form does not fit in subwindow

If successful, the function unposUormO returns E_OK. If not, it returns
one of the following:

E_SYS'I'EM_ERROR

E_BAD _ARGllMEN1'
E_roI'_rosTED

E_BAD_STATE

- system error
- null form pointer
- form is not posted
- called from init/term function

The initialization and termination routines are discussed in the next section.

10-212 PROGRAMMER'S GUIDE

Form Driver Processing
Like the function men11-driverO for the menu subsystem, function

forlll-driverO is the workhorse of the form system. Once the form is posted,
the form driver handles all interaction with your end-user. The form driver
responds to

• field navigation requests

• page navigation requests

• field editing requests

• data entry

• field validation requests

Your application passes a character to the form driver for processing and
evaluates the results.

SYIDPSIS

:int fornukiver (fonn, c)
FORM * fonn;
:int c;

As with menu processing, to enable the form driver to process your end
users' requests, you must write an input key virtualization routine. This rou
tine defines a correspondence between input keys, control characters, and
escape sequences on the one hand and ETI form requests on the other. The
routine returns a specific form request or application command that the form
driver can process. Upon return from the form driver, your application can
check if the input was processed appropriately. If not, it can specify actions to
be taken. These may include terminating interaction with the form, respond
ing to help requests, generating an error message, and so on.

Defining the Virtual Key Mapping
For a sample virtual key mapping, consider Figure 10-39, which contains

the application-defined function geLrequeslO. Most of the values returned
by geLrequeslO are ETI form requests defined in header file form.h and
described in the next section. The other values returned (in this example, only
value QUIT) are defined by the application program treated in the later sec
tion, "Calling the Form Driver."

EXTENDED TERMINAL INTERFACE 10·213

Form Driver Processing

/* The follow±ng key mapping is defined by get_request().
Note that AX represents the character control-X.

AQ - end form processing

AF - IID\Ie to next page
AB - IID\Ie to previous page
AN - IID\Ie to next field
Ap - IID\Ie to previous field
lx:me key - IID\Ie to first field
lx:me down - IID\Ie to last field
AL - IID\Ie left to field
AR - IID\Ie right to field
AU - IID\Ie up to field
AD - IID\Ie down to field

AW - IID\Ie to next word
AT - IID\Ie to previous word

AS - IID\Ie to beginning of field data
AE - IID\Ie to end of field data
left arrow - IID\Ie left in field
right arrow - IID\Ie right in field
down arrow - IID\Ie down in field
up arrow - IID\Ie up in field

AM <CR> - enter new line
AI - insert blank character
AO - insert blank line
AV - delete character
AH <BS> - delete previous character
Ay - delete line
AG - delete word
AC - clear to end of line
AK - clear to end of field
AX - clear entire field
AA - request next field choice
AZ - request previous field choice
ESC - toggle between insert and overlay m:rle

define application ccmnands */

#define QUIT (MAX CCMWlD + 1)

static int get_request (w) /* virtual key mapping */

10·214 PROGRAMMER'S GUIDE

Form Driver Processing

continued

WINrX:lV * w;

static int
int

nr:xie = ~INS_M:DE;
c = wgetch (w) ;/* read a character */

switch (c)

case Ox11: /* 'Q * / return QUIT;

case OX06: /* 'F * / return RRUmlCl'_PJ\GE ;
case Ox02: /* 'B */ return REXLPREV_PAGE;

case OxOe: /* 'N */ return Rm_NEXT_FIELD;
case Ox10: /* 'P * / return Rm_FREV_FIELD;

case KEY _lKl'lE: ret:urnRm_ FIRST_FIELD;

case KEY_LL: ret:urnRm_LAS'l'_FIEW;
case OxOc: /* 'L * / return Rm_LEFl'_FIELD;

case Ox12: /* 'R */ return Rm_RIGIfI'_FIEW;

case OX1S: /* 'U */return Rm_UP_FIELD;

case OX04: /* 'D */return Rm_IXHl_FIELD;
case Ox17: /* 'W */ return Rm_NEXT_w:JIID;
case Ox14: /* 'T */ return Rm_ PREV_w:JIID;

case Ox13: /* 'S */ return Rm_BEG_FIEW;

case OXOS: /* 'E * / return Rm_END_FIEW;

case KEY_ LEFl': ret:urnRm_LEFl'_ OIAR;
case KEY_RIGHT: ret:urnRm_RIGIfI'_ OIAR;

case KEY_IXHl: retuznRRLIXHl_ OIAR;

case KEY_UP: retuZllRRLUP _CHAR;
case OxOd: /* 'M */ return Rm_NEW_LINE;

case Ox09: /* 'I * / return Rm_INS_CHAR;
case OxOf: /* '0 * / return Rm_INS_LINE;
case Ox16: /* 'V */ return Rm_DEL_CHAR;
case Ox08: /* 'H */ return Rm_DEL_PREV;
case Ox19: /* 'Y */ return Rm_DEL_LINE;

case OX07: /* 'G */return Rm_DEL_w:JIID ;

case OX03: /* 'e */ return Rm_CLR_EDL;

case OxOb: /* 'K */ return Rm_CLR_IDF;
case Ox18: /* 'X */ return Rm_CLR_FIELD;
case Ox01: /* 'A * / return Rm_NEXT_CIDICE;

case Ox1a: /* 'Z */ return Rm_FREV_CIDICE;
case Ox1b: /* ESC */

if (node == Rm_INS_MDE)

return nr:xie = RRLOVldl!)DE;

else

EXTENDED TERMINAL INTERFACE 10·215

Form Driver Processing

continued

return C;

Figure 10-39: A Sample Key Virtualization Routine

In geLrequestO, only a subset of the requests are defined so that the requests
your end-user can make are limited. If you like, you can also map two or
more keys onto one request. This is helpful where some terminals lack one of
the keys in question. In that case, the user can press the other key to the
same effect.

Function geLrequestO first sets the data entry mode for the end-user.
Here it is set initially to insert mode. The last case statement in the routine
enables your end-user to press the escape key ESC to switch to overlay mode.
Both modes are discussed in the "Field Editing Requests" section below.

Next, geLrequestO calls wgetchO to read a character entered by the user.
The switchO statement maps the character read onto a specific application
command or form request. The application cominand QUIT appears here as
the first case; the other cases map characters onto form requests. Any charac
ter that is not an application command or form request is simply returned
unchanged-it is treated as data being entered into the current field.

Note that this key mapping assumes your end-user will be using a termi
nal with arrow keys (KEY_LEFT, KEY-RIGHT, KEY_UP, KEY_DOWN), a
home key (KEYJiOME), and a home down key (KEY_LL).

10-216 PROGRAMMER'S GUIDE

Form Driver Processing

ETI Form Requests
The ETI form subsystem places the following requests at your application

program's disposal.

Page Navigation Requests
These requests enable your end-user to navigate or move from page to

page on a multi-page form.

REX;LNEXTYAGE

REXLPREVYAGE

REXLFIRSTYAGE
REXLLAST _PAGE

- move to next page
- move to previous page
- move to first page
- move to last page

Page navigation requests are cyclic so that

• the REQ-NEXTJAGE request from the last page moves to the first
page

• the REQJREV J AGE from the first page moves to the last.

Inter-Field Navigation Requests on the Current Page
These requests enable your end-user to move from field to field on the

current page of a single form.

RRLNEXT_FIELD

REXLPREV_ FIELD

RRLFIRST_FIELD
RRl_LAST_FIELD

REXLSNEXT _FIELD
RRLSPREV _ FIELD

RRLSFIRST _FIELD

RRLSLAST_FIELD

RRLLE~T _FIELD

RRL RIGHl'_FIELD
RRl_UP _ FIELD

RRUXMN_FIELD

- move to next field
- move to previous field
- move to first field
- move to last field
- move to sorted next field
- move to sorted previous field
- move to sorted first field
- move to sorted last field
- move left to field
- move right to field
- move up to field
- move down to field

All field navigation requests are cyclic on the current page so that

EXTENDED TERMINAL INTERFACE 10-217

Form Driver Processing

• the REQ~EXT_FIELD request from the last field on a page moves to
the first field on that page.

• the REQJREV -FIELD request from the first field on a page moves to
the last field on that page.

and so forth. The order of the fields in the field array passed to newJormO
determines the order in which the fields are visited using the
REQ_NEXT-FIELD, REQJREV-FIELD, REQ_FIRST-FIELD, and
REQ_LAST-FIELD requests.

Remember that the order of fields in the form array is simply the order in
which fields are processed during form processing. This order bears no
necessary relation to the order of the fields as they are displayed on the
form page.

Your end-user may also move from field to field on the form page in
row-major order - left to right, top to bottom. To do so, you use the
REQ_SNEXT_FIELD, REQ_SPREV _FIELD, REQ_SFIRST-FIELD, and
REQ_SLAST-FIELD requests.

Finally, your end-user can move about in different directions using the
REQ_LEFT-FIELD, REQ-RIGHT_FIELD, REQ_VP _FIELD, and
REQ_DOWN_FIELD requests. Note that the first character (top left corner)
of the field is used to determine where the field is located relative to other
fields. This means, for example, that a multi-line field whose first character is
on the second row of a form is not on the same row as a field whose first
character is on the third row of a form even though the multi-line field may
extend below the third row.

Intra-Field Navigation Requests
These requests let your end-user move about inside a field. They may

generate implicit scrolling operations on scrollable fields.

10-218 PROGRAMMER'S GUIDE

REXLNElCl'_CHAR
REXLPREV_CHAR
REX;LNElCl'_LINE
REX;LPREV_LINE
REQ....NElCl' _VDRD
RRLPREV_VDRD
REX;LBEXL FIELD
REXLEN[LFIELD
REQ....BEXLLINE
REX;LEN[LLINE
RID_LEET_CHAR
RID_RIGHT_CHAR
RID_UP_CHAR
RID_Dam_CHAR

Form Driver Processing

- move to next character in field
- move to previous character in field
- move to next line in field
- move to previous line in field
- move to next word in field
- move to previous word in field
- move to beginning of field
- move after last character in field
- move to beginning of line
- move after last character in line
- move left in field
- move right in field
- move up in field
- move down in field

The effect of these requests is as follows:

• The REQ_NEXT_CHAR and REQJREV_CHAR requests step for
ward and backward through the field.

• The REQ~EXT_LINE and REQJREV _LINE requests move the cur
sor to the beginning of the next and previous line.

• The REQ~EXT_WORD and REQ_PREV_WORD requests move the
cursor to the beginning of the next or previous word.

• The REQ_BEG-FIELD places the cursor at the first non-pad character
in the field. The REQ-END_FIELD request places the cursor after the
last non-pad character in the field. This lets the user easily add charac
ters to the field. If there is no room, it returns the cursor to the start of
the field.

• The REQ_BEG_LINE request places the cursor at the first non-pad
character in the current line of the field. The REQ_END_LINE request
places the cursor after the last non-pad character in the current line. If
there is no room, it returns the cursor to the start of the line.

• The REQ_LEFT_CHAR, REQ_RIGHT_CHAR, REQ_UP _CHAR, and
REQ_DOWN_CHAR requests move one character position in the
stated direction.

EXTENDED TERMINAL INTERFACE 10·219

Form Driver Processing

Field Editing Requests
These requests set the editing mode - insert or overlay.

- begin insert mode
- begin overlay mode

In insert "mode (the default), all text is inserted at the current cursor position,
while all existing text starting at the current cursor position is moved to the
right. In overlay mode, text entered by your end-user overlays (replaces)
existing text in the field. In both modes, the cursor is advanced one character
position as each character is entered.

The following requests provide a complete set of field editing requests.

Rm_ NEW_LINE

Rm_ INS_ CHAR

Rm_ INS_LINE

REXLDEL_CHAR

RRLDEL_PREV

Rm_DEL_LINE

REXLDEL_VOID
Rm_ CLR _ EDL

Rm_ CLR _ EDF

Rm_CLR_FIELD

- new line request
- insert blank character at cursor
- insert blank line at cursor
- delete character at cursor
- delete character before cursor
- delete line at cursor
- delete word at cursor
- clear to end of line
- clear to end of field
- clear entire field

The effects of REQ~EW _LINE and REQ_DELPREV requests depend
on several factors such as the current mode (insert or overlay) and the cursor
position within the field.

• The effects of REQ~EW _LINE are as follows:

D In insert mode - if the cursor is at the beginning of a field or on
the last line of a field, the REQ_NEW _LINE request acts like a
REQ_NEXT_FIELD request. Otherwise, the REQ~EW_LINE
request inserts a new line after the current line and moves the text
on the current line starting at the cursor position to the beginning
of the new line. The cursor is moved to the beginning of the new
line.

D In overlay mode - if the cursor is at the beginning of a field, the
REQ_NEW_LINE request acts like a REQ~EXT_FIELD request.
If the cursor is on the last line of a field, the REQ_NEW _LINE
request erases all data from the cursor position to the end of the

10·220 PROGRAMMER'S GUIDE

Form Driver Processing

line and satisfies a REQ~EXT_FIELD request. Otherwise, the
REQ~EW _LINE request erases all data from the cursor position
to the end of the line and moves the cursor to the beginning of the
next line.

• The effects of the REQ_DELPREV request is as follows:

o In insert mode - if the cursor is at the beginning of a field, the
REQ_DELPREV request behaves like a REQJREV -FIELD
request. If the cursor is at the beginning of a line other than the
first and the text on that line will fit at the end of the preceding
line, the text is moved and the current line is deleted. Otherwise,
the REQ_DELPREV request simply deletes the previous character.

o In overlay mode - if the cursor is positioned at the beginning of a
field, the REQ_DELPREV request behaves like a
REQJREV -FIELD request. Otherwise, the REQ_DELJREV
request simply deletes the previous character.

Because the requests REQ_NEW_LINE and REQ_DELPREV automatically
do a request REQ_NEXT-FIELD or REQJREV-FIELD as described, they are
said to be overloaded field editing requests. See the remarks on options
O_NLOVERLOAD and O_BS_OVERLOAD in the section below, "Setting
Form Options. "

Scrolling Requests
Remember that you specified the number of offscreen rows of a field, if

any, as an argument to new-iieldO when the field was created. The follow
ing requests enable your program to scroll through fields to display this offs
creen data.

RRLSCRJLINE
REXLSCR_BLINE
RRLSCR_FPAGE

REQ....SCRftAGE

- scroll field forward a line
- scroll field backward a line
- scroll field forward a page
- scroll field backward a page

In addition, intra-field navigation requests may generate implicit scrolling on
scrollable fields. See the section above, "Intra-Field Navigation Requests."

Field Validation Requests
This request supports field validation for those field types that have it.

REQ....VALIDATICN - validate current field

EXTENDED Ti!RMINAL INTERFACE 10-221

Form Driver Processing

In general, the ETI form driver automatically performs validation on a field
before the user leaves it. (If your user leaves a field, it is valid.) However,
before your user terminates interaction with the form, you should make the
REQ_VALIDATION request to validate the current field.

Recall that on current fields, the values returned by functions fielLbufferO
and fielLstatusO are sometimes inaccurate. (See the sections above, "Set
ting the Field Buffer" and "Setting the Field Status. ,,) If, however, you make
request REQ_ VALIDATION immediately before calling these functions, you
can be sure that the values they return are accurate-they agree with what
your end-user has entered and appears on the screen.

Choice Requests
The following requests enable your user to request the next or previous

value of a field type.

- display next field choice
- display previous field choice

TYPE_ENUM is the only generic field type that supports these choice
requests. In addition, programmer-defined field types may support these
requests. See the section above, "Setting Field Types," and and the section
below, "Creating and Manipulating Programmer-Defined Field Types," for
information on these field types.

Application-Defined Commands
Form requests are implemented as integers above the low-level ETI

(curses) maximum key value KEY~AX. A symbolic constant
MAX-COMMAND is provided so applications can implement their own com
mands without conflicting with the ETI form or menu subsystems. All ETI
system form requests are greater than KEY ~AX and less than or equal to
MAX-COMMAND. You should set your application-defined commands to an
integer greater than MAX-COMMAND.

10-222 PROGRAMMER'S GUIDE

Form Driver Processing

Calling the Form Driver
The ETI form driver works very much like the ETI menu driver. As soon

as the form driver receives a request, it checks if it is an ETI form request. If
so, it performs the request and reports the results. If the request is not an ETI
form request, the form driver checks if the character is data, i.e., a printable
ascii character. If it is, it enters the character at the current position in the
current field. If the character is not recognized as a form request or data, the
form driver assumes the character is an application-defined command and
returns E_UNKNOWN_COMMAND.

To illustrate a sample design for calling the form driver, we will consider a
program that permits interaction with a sweepstakes entry form reproduced in
Figure 10-40.

+--+

SWeepstakes Entry F'aml

Last Name First Middle

CantEnts

+--+

Figure 10-40: Sweepstakes Form Output

You have already seen much of the sweepstakes program in previous exam
ples. Figure 10-41 shows its remaining routines.

EXTENDED TERMINAL INTERFACE 10-223

Form Driver Processing

1* This program displays a sweepstakes entJ:y fcmn. *1

#include <string.h>

#include <fcmn.h>

static void start_curses ()

static void display_fcmn (f)

static void erase_fcmn (f)

1* see the section above, "El'I U:M_Level
Interface to High-Level Functions" *1

1* create fcmn windows and post *1
1* see Figure 10-38 for details *1

1* unpost and delete fcmn windows *1
1* see Figure 10-38 for details *1

1* define application ccmnands *1

#define OOIT (MAX _ CCfoIWID + 1)

static int get_request (w) 1* virtual key mapping see Figure 10-39 *1

static int Il!Y_driver (fcmn, c) 1* handle application ccmnands *1
FOOM * fcmn;
int c;

switch (c)

{

case QUIT:

1* validate current field *1

if (fcmn_driver (fcmn, RRLVALIIlATION) == E_OK)

retunl TRUE;
break;

beep (); 1* signal error *1
retunl FALSE;

main (argc, argv)

int argc;

char * argv[];
{

WINIXJW * w;

10·224 PROGRAMMER'S GUIDE

Form Driver Processing

fonn;

FIELD ** f;
FIELD ** make_fields ();
void free_fields ();
int c, dane = FALSE;

IQII = argv[0 1 ;

if (I (fonn = new_fonn (makeJields (»»
e=or ("error retmn fran new_fonn", NULL);

start_curses ();
display_fonn (fonn);

/* interact with user */

w = fonn_win (fonn);

while (I dale)

switch (fonn_driver (farm, c = get_request (w»)

case E_Cl<:

break;

case E_~_c:x:MIJAND:
dane = my_driver (fonn, c);
break;

default:
beep (); /* signal error * /
break;

/* t:enninate farm processing * /

erase_fonn (farm);
end_curses ();
f = farm_fields (fonn);
free_farm (fonn);
free_fields (f);
exit (0);

continued

EXTENDED TERMINAL INTERFACE 10·225

Form Driver Processing

typedef FIELD * (* PF_field) ();

typedef struct 1* define struct for creation *1
{

PFJield type; 1* field canstructor*l
int
int
int
int

char *

rows;
ools;
frow;
fool;
V;

1* number of rows*1
1* number of 0011llmS* 1
1* first :row*1
1* first oolumn*1
1* field value*1

static FIELD * LABEL (x) 1* create a LABEL field *1
FIELD _REOJRD * x;

continued

FIELD * f = new_field (1, strlen (x->V), x->frow, x->fool, 0, 0);

if (f)

{

return f;

setJield_buffer (f, 0, x->V);

field_opts_off (f, O_ACTIVE);

static FIELD * S'lRllG (x) 1* create a S'lRllG field *1

FIELD _REXDRD * x;

FIELD * f = new_field (x->rows, x->ools, x->frow, x->fool, 0, 0);

if (f)

return f;

1* field definitions *1

static FIELD_REOJRD F []

to·226

LABEL,

LABEL,
LABEL,

0,
0,
0,

0,
0,
0,

PROGRAMMER'S GUIDE

0, 11, "Sweepstakes Entry Fann",
2,0, "last Name",

2,20, "First",

Form Driver Processing

continued

} ;

LABEL,
LABEL,

S'lRDG,
S'lRDG,
S'lRDG,

S'lRDG,
(FF_field) 0,

#define MAX]IELD 512

0,
0,
1,
1,
1,
4,
0,

0, 2,34, "Middle" ,
0, 5,0, "Carments",
18, 3,0, (char *) 0,
12, 3,20, (char *) 0,
12, 3,34, (char *) 0,
46, 6,0, (char *) 0,
0, 0,0, (char *) 0,

static FIELD * fields [MAX_FIELD + 1] ;1* field buffer *1

static FIELD ** make_fields () 1* create the fields *1
{

FIELD ** f = fields;
int i;

for (i = 0; i < MAX_FIELD && F[i].type; ++i, ++f)
f = (F[i].type) (& F[i]);

*f = (FIELD *) 0;

return fields;

static void free_fields (f)
FIELD ** f;

While (*f)

1* free the fields *1

free-field (*f++);

Figure 10-41: An Example of Form Driver Usage

Function mainO first calls an application-defined routine make-fieldsO to
create the fields and new-formO to create the form. Routine make-fieldsO
offers a somewhat different way to create fields from that used in the example

EXTENDED TERMINAL INTERFACE 10·227

Form Driver Processing

in Figure 10-29. (Array F holds the string labels and field sizes; it can be
changed so that make-lieldsO can create any form.) Function mainO then
initializes curses using starLcursesO and displays the form using
display-IormO.

In its while loop, mainO repeatedly calls forIlL-driverO with the character
returned by geLrequestO. If the form driver does not recognize the character
as a request or data, it returns E_UNKNOWN_COMMAND, whereupon the
application-defined routine my_driverO is called with the same character.
Routine my_driverO processes the application-defined commands. In this
example, there is only one, QUIT. Note how this request automatically calls
the form driver again, now with the REQ_ VALIDATION request. Remember
that this request is necessary to ensure that current field validation occurs
before your end-user leaves the form. If validation is successful, my_driverO
returns TRUE. In turn, this sets done to TRUE, and the while loop is exited.

Finally, mainO erases the form, terminates low-level ETI (curses), frees
the form and its fields, and exits the program.

This example is typical, but it is only one of many ways you can structure
an application. ETI's flexibility lets you use it over a wide range of applica
tions.

Like other ETI routines that return an int, the form driver returns E_OK if
it recognizes and processes the input character argument. If it encounters an
error, it returns one of the following:

10-228

E_SYSTEM _ERROR
E_BAD_~

E_BAD_STATE
E_mI'_POSTED
E _UNI<NatJN_ C(M.WID

E_RmUEST...,pENIED

E_INVALID_FIELD

-system error
-null form pointer
-called from init/term routines
-form is not posted
-unknown command
-recognized request failed
-failed field validation

Like the menu driver, the form driver may not be called from any of the ini
tialization or termination routines described next. Any attempt to do so
returns E_BAD_STATE.

PROGRAMMER'S GUIDE

Form Driver Processing

Establishing Field and Form Initialization and
Termination Routines

As with the menu driver, you may sometimes want the form driver to
execute a specific routine whenever the current field or form changes. The
following routines let you do this.

SYNJPSIS

typedef void (* Pl'F_ void) ();

int set_form_init (form, func)

FORM * form;
Pl'F_void func

Pl'F_void form_init (form)

FORM * form;

int set_fonn_term (form, func)

FORM * form;
Pl'F _void func;

Pl'F_void fonn_term (form)

FORM * form;

int set_field_init (fonn, func)

FORM * form;
Pl'F _void func

Pl'F _void field_mit (form)

FORM * form;

int set_field_term (form, func)
FORM * form;
Pl'F _void func;

Pl'F_void field_tenn (fonn)

FORM * form;

EXTENDED TERMINAL INTERFACE 10·229

Form Driver Processing

The argument tune is a pointer to the specific function you want executed by
the form driver. This application-defined function itself takes a form pointer
as an argument.

As with menus, if you want your application to execute a routine at one of
the initialization or termination points listed below, you should call the
appropriate form initialization or termination routine at the start of your pro
gram. If you do not want a specific function called in these cases, you may
refrain from calling these routines altogether.

Function seLfor111-initO
The argument fune to this function is automatically called by the form

driver

• when the form is posted

• just after every form page operation, i.e., after the page changes on a
posted form

Function seLfielLinitO
The argument fune to this function is automatically called by the form

driver

• when the form is posted

• just after a field change operation, i.e., every time the current field
changes on a posted form.

Function seLfielLtermO
The argument fune to this function is automatically called by the form

driver

• just after the field is validated, i.e., just before the current field changes
on a posted form

• when the form is unposted

Function seLforI11-termO
The argument fune to this function is automatically called by the form

driver

10-230 PROGRAMMER'S GUIDE

Form Driver Processing

• just before every form page operation, i.e., just before the page
changes on a posted form

• when the form is unposted

To see more precisely when the initialization and termination routines
may be executed, note that your form page and current field can be changed
in the following circumstances:

• Both the form page and the current field may be changed automati
cally by the form driver in response to a user's request.

• The form page may be changed when the current field is changed
using seLcurrenLfieldO.

• The current field is changed when the page is changed using
seLforlILpageO.

All of these initialization and termination functions are NULL by default.
This means that no function need be called.

These functions promote common operations, such as row or column total
updates, display of previously invisible fields, activation of previously inactive
fields, and more. As an example, Figure 10-42 shows a field termination rou
tine update_totaIO, which dynamically adjusts a column total field whenever
a row field value changes. Function mainO calls set_fielLtermO to establish
update_totalO as the field termination routine.

EXTENDED TERMINAL INTERFACE 10-231

Form Driver Processing

void update_total (form)
FORM * form;

main ()
{

FIElD ** f = form_fields (form);
char buf[80];
double total, atof () ; 1* atof () converts string to float *1

switch (field_index (current_field (form»)
{

case RCW_1:
case RCW-.2:
case RCW_3:

1* field buffer() returns field's value as string,
which atof () converts to float *1

total = atof (field_buffer (f[RCW_1], 0» + I*calculate total*1
atof (field_buffer (f[RCW_2], 0» +
atof (field_buffer (f[RCW_3], 0»;

sprintf (buf, "%.2f", total);
set_field_buffer (f[TOrAL] , 0, buf);
break;

FORM * form;

set_field_teDII (form, update_total); 1* establish teDllinatian routine *1

Figure 10-42: Sample Termination Routine that Updates a Column Total

Function seLfielLbufferO sets the column total field to the value total
stored in buf. See the section above, "Setting Field Buffers", for details on
fielLbufferO and seLfielLbufferO.

10-232 PROGRAMMER'S GUIDE

--- ---...... -~-~-~.------

Form Driver Processing

For another example, consider Figure 10-43. It shows a common use for
field initialization and termination-highlighting a field when it becomes
current and removing the highlight when it is no longer current.

void bold_off (fonn)

:roRM * fonn;
{

/* renove highlight * /

setJiel~back (cu=entJield (fonn), A_UNDERLINE);

void bold_on (fonn)

:roRM * fonn;

main ()
{

/* highlight field */

:roRM * fonn;

/* establish initialization and tenn:ination routines * /

setJield_init (fonn, bold_on);
set_field_teDn (fonn, bold_off);

Figure 10-43: Field Initialization and Termination to Highlight Current Field

If functions seLforID-initO, seLforIIL-termO, seLfielcLinitO, or
seLfielLtermO encounter an error, they return the following:

- system error

EXTENDED TERMINAL INTERFACE 10·233

Form Driver Processing

As usual, if you want a specific default initialization or termination func
tion for all forms or all fields, you can pass the appropriate set function a
NULL form pointer. Passing a NULL form pointer to the access functions
returns the current ETI default.

Manipulating the Current Field
The current field is the field where your end-user is positioned on the

display screen. It changes as the end-user moves about the form entering or
changing data. The cursor rests on the current field. To have your applica
tion program set or determine the current field, you use the following func
tions.

SYIDPSIS

mt set_current_field (fonn, field)
FORM * fODn;
FIElD * field;

FIELD * current_field (fonn)
FORM * fonn;

mt field_index (field)
FIElD * field;

The function seLcurrenLfieldO enables you to set the current field, while
function currentJieldO returns the pointer to it. The value returned by
fielc:LindexO is the index to the given field in the field pointer array associ
ated with the connected form. This value is in the range of 0 through N-l,
where N is the total number of fields.

When a form is created by new-formO or the fields associated with the
form are changed by seUorm-fieldsO the current field is automatically set to
the first visible, active field on page O.

10-234

Your application program need not call seLcurrenLJieldO unless you want
to implement field navigation requests that are not supported by the form
driver and discussed in the earlier section, "ETI Form Requests" .

PROGRAMMER'S GUIDE

Form Driver Processing

Figure 10-44 illustrates the use of these functions. Function
setJirstJieldO uses set_currenLfieldO to set the current field to the first
field in the form's field pointer array. Function firstJieldO, on the other
hand, returns a Boolean value indicating whether the current field is the first
field.

int set_first_field (fonn) /* set current field to first field */

FORM * fonn;

FIELD ** f = fonn_fields (fonn);
return set_current_field (fonn, f[O]);

int first_field (fonn) /* check if current field is first field */

FORM * fonn;
{

FIELD * f = current_field (fonn);
return field_index (f) == 0;

Figure 10-44: Example Manipulating the Current Field

If function seLcurrenUieldO encounters an error, it returns one of the
following:

E_SY'STEM_ERROR
E_ BAD_ARGUMENl'

E_BAD_STATE
E_INVALID_FIELD

E_RmJEST_DENIED

- system error
- null form pointer or field not connected to form
- called from init/term routines
- current field is invalid on posted form
- field not active or not visible

The function currentJieldO returns (FIELD *) 0 if given a NULL form
pointer or there are no fields connected to the form.

EXTENDED TERMINAL INTERFACE 10-235

Form Driver Processing

The function fiel<LindexO returns -1 if its field pointer argument is NULL
or the field is not connected to a form.

Changing the Form Page
Two form functions enable your application program to change to another

page on the form or to determine the current page of the form.

SYroPSIS

int set_fann...,PClge (fann, page)
FORM * fann;
int page;

int fann ...,PClge (fann)
EORM * fontl;

Upon execution of seUorlILpageO, the current field is set to the first field on
the new page that is visible and active (visited during form driver processing).
Variable page must be in the range of 0 through N-l, where N is the total
number of pages. The function forlILpageO returns the page number of the
page currently visible on the screen.

When function new-formO creates a form or function seLform-fieldsO
changes the fields associated with a form, the form page is automatically set to
O.

Your application program need not call seLforI1L.page() unless you want to
implement page navigation requests that are not supported by the form
driver and discussed in the earlier section, "ETI Form Requests."

Figure 10-45 illustrates the use of these functions. Function
seUirsLpageO uses seUorlILpageO to change to the first page of the form,
while function firsLpageO uses forlILpageO to return a Boolean value i!di
eating whether the first page of the form is currently disp~ayed. Note thjt the
first page is numbered O.

10-236 PROGRAMMER'S GUIDE

Form Driver Processing

int set_firstJl2l9'e (farm) /* set to first farm page */

FORM * farm;
{

int first--IJage (farm) /* check if an the first farm page */

FORM * farm;

return farm~ (farm) == 0; /* return Boolean */

Figure 10-45: Example Changing and Checking the Form Page Number

If function seUor11L-pageO encounters an error, it returns one of the fol
lowing:

E_SYSTEM_ERROR
E_BAn_ARGUMENI'
E_BAD_STATE
E_INVALID_FIELD

- system error
- null form or page out of range
- called from init/term routines
- current field is invalid on posted form

The function for11L-pageO returns -1 if given a NULL form pointer or
there are no fields connected to the form.

Positioning the Form Cursor
As with menu processing, some processing of user form requests may

move the cursor from the location required for continued processing by the
form driver. This function moves the cursor back to where it belongs.

int posJOntLcursor (fOnt\)

:ro.RM * fOnt\;

You need call this function only if your application program changes the

EXTENDED TERMINAL INTERFACE 10·237

Form Driver Processing

cursor position of the form window.

Figure 10-46 illustrates one use of this function. Function printpageO
repositions the cursor after it prints the page number in the form window.

void printpage (farm)

FORM * farm;

main ()
{

int p = fonn.Jliige (farm) + 1;
WINIX:M * w = fonn_win (farm);
int rows, cols;
char but[80];

box (w, 0, 0); 1* pJ.t border around farm window *1
getmaxyx (w, rows, co1s); 1* fetch window size *1
sprintf (but, .. %d ", p); 1* store next page rrumber *1

~ (w, (rows-1) , «cols-1)-strlen(buf»/2); 1* position cursor *1
waddstr (w, but); 1* print page rrumber *1

1* position the farm cursor f= continued farm processing *1

FORM * farm;

Figure 10-46: Repositioning the Cursor After Printing Page Number

10·238 PROGRAMMER'S GUIDE

Form Driver Processing

If pos-forIIL-cursorO encounters an error, it returns one of the following:

- system error
- null form pointer
- form is not posted

EXTENDED TERMINAL INTERFACE 10·239

Setting and Fetching the Form User
Pointer

As it does for items, menus, and fields, ETI supplies a form user pointer
for data such as titles, help messages, and the like. These functions enable
you to set the pointer and return its referent.

SYIDPSIS

int set_fQnILuserptr (fonn, userptr)
FORM * fonn;
char * userptr;

char * fODn_userptr (fonn)
EORM * fonn;

You can define a structure to be connected to the form using this pointer. By
default, the form user pointer is NULL.

Figure 10-47 illustrates the use of these form user pointer functions to
determine whether a given name matches a pattern name. Function mainO
uses seLforlll-userptrO to establish the pattern name, while compareO uses
forlll-userptrO to fetch the pattern and do the comparison.

10-240 PROGRAMMER'S GUIDE

SeHing and Fetching the Form User Pointer

#define match(a,b) (straup (a, b) == 0)

int caopare (fonn, name)

FORM * fonn;
char * name;

char * s = fonn_userpt:r (fonn); 1* fetch pattern string *1

main ()

{

return match (name, s); 1* return Boolean indicating match or not *1

:roRM * fonn;
char * fonn_name; 1* initialize fonn_name to desired string *1

set_fonn_userptr (fonn, fonn_narDe);
I * set user pointer to point to string *1
}

Figure 10-47: Pattern Match Example Using form User Pointer

For more user pointer examples, see the previous sections on item, menu, and
field user pointers and the sample programs at the end of this guide.

If successful, setJorllL-userptrO returns E_OK. If not, it returns one of
the following:

- system error

As usual, you change the default by passing setJorllL-userptrO a NULL
form pointer. So to change the default user pointer to point to the string
II *** " , you write:

/* change default user pomter */
set_form_userptr((form *) 0, "***");

EXTENDED TERMINAL INTERFACE 10-241

Setting and Fetching Form Options
ETI provides form options regulating how specific user requests are han

dled. These functions enable you to set the options and read their settings.

SYOOPSIS

:int set_farnLopts (fcmn, opts)

:roRM * fcmn;
OPl'IONS opts;

OPTIONS fcmn_opts (fcmn)
:roRM * fcmn;

optio:ns:
O_NL_OVERIDAD

O_BS_OVERIDAD

Note that function set--forlll-optsO automatically turns off all form options
not referenced in its second argument. By default, all options are on.

The effects of the options are as follows:

O~L_OVERLOAD determines how a REQ_NEW_LINE request is pro
cessed. If O_NLOVERLOAD is on, the request is
overloaded. See the section above, "Field Editing
Requests", for a description of overloading. If
O_NLOVERLOAD is off, the REQ_NEW_LINE
request behavior depends on whether insert mode
is on.

In insert mode, the REQ_NEW _LINE request first
inserts a new line after the current line. It then
moves the text on the current line starting at the
cursor position to the beginning of the new line.
The cursor is repositioned to the beginning of the
new line.

In overlay mode, the REQ~EW _LINE request
erases all data from the cursor position to the end
of the line. It then repositions the cursor at the
beginning of the next line.

10-242 PROGRAMMER'S GUIDE

Setting and Fetching Form Options

O_BS_OVERLOAD determines how a REQ_DELPREV request is pro
cessed. If O_BS_OVERLOAD is on, the request is
overloaded. See again the section above, "Field
Editing Requests" , for information on overloading.
If O_BS_OVERLOAD is off, the REQ_DELPREV
request depends on whether insert mode is on.

In insert mode, if the cursor is at the beginning of
any line except the first and the text on the line
will fit at the end of the previous line, the text is
appended to the previous line and the current line
is deleted. If not, the REQ_DELPREV request
simply deletes the previous character, if there is
one. If the cursor is at the first character of the
field, the form driver simply returns
E_REQUEST_DENIED.

In overlay mode, the REQ_DEL-PREV request
simply deletes the previous character, if there is
one.

Options are Boolean values, so you use Boolean operators to turn them on
or off. For example, to turn off option O-NLOVERLOAD of form £0 and
turn on the same option of form £1, you write:

RJRM * fO, * f1;

set_fclDlLopts (fO, f=_opts (fO) So. -O_NL_OVERLOAD); /* turn option off */

set_f=_opts (f1, f=_opts (f1) I O_NL_OVERLOAD); /* turn option on */

ETI provides two more functions to turn options on and off.

int fonn_opts_an (fonn, opts)
FORM * fonn;
OPl'IONS opts;

int fonn_opts_off (fonn, opts)
FORM * fonn;
OPl'IONS opts;

EXTENDED TERMINAL INTERFACE 10·243

SeHing and Fetching Form Options

Unlike function seLfor111-optsO, these functions do not affect options
unreferenced in their second argument.

Another way to tum off option O-NLOVERLOAD on form fO and tum
it on on form f1 is to write

FORM * fa, * f1;

fODn_optS_Off (fa, O_NL_OVERIDAD); /* tum option off */
fODn_optS_on (f1, O_NL_OVERIDAD); /* turn option on */

If functions seLfor111-optsO, for111-opts_offO, or for111-opts_onO
encounter an error, they return the following:

-system error

To change the current system default from, say, O_NLOVERLOAD to
not-O-NLOVERLOAD without affecting the O_BS_OVERLOAD option,
you write:

fODn_optS_off((FORM *) 0, O_NL_OVERUlAD);

10-244 PROGRAMMER'S GUIDE

Creating and Manipulating Programmer
Defined Field Types

In addition to the wealth of field types that ETI automatically provides,
ETI lets you create new field types from old ones. For most applications, you
may not need them, but when you do, you will have them.

Building a Field Type from Two Other Field
Types

One way to define a new field type is to create one from two existing field
types. The function linLfieldtypeO lets you do this.

SYIDPSIS

FIELIJ'I'YPE * link Jieldtype (type 1 , type2)
FIELIJ'I'YPE * type 1 ;
FIELIJ'I'YPE * type2;

The constituent types may be system-defined or programmer-defined types.
They may require additional arguments for the later call to seLfielLtypeO
and may be associated with validation functions or choice functions. Valida
tion functions validate the value in the field, while choice functions enable the
user to choose the next or previous value of the field type. See the sections
below, "Creating a Field Type with Validation Functions" and "Supporting
Next and Previous Choice Functions."

If additional arguments are required for the later call to seUielLtype,
those of typel should precede those of type2. If there are validation or choice
functions associated with the constituent types, the new type first executes the
function associated with typel. If it is successful, it returns TRUE. If not, the
new type executes the function associated with type2. Whatever it returns is
the value returned by the new type.

As an example, the following code creates a new field type that accepts
either a color keyword or an integer between 0 and 255, inclusive:

EXTENDED TERMINAL INTERFACE 10·245

Creating and Manipulating Programmer-Defined Field Types

FIELD *f1;

extern char ** colors;

ENUlLOR_lN'l' = 1inkjie1dtype (TYPE_ENllM, TYPE_IN'l'ECER);

1* Constituent types are System types

described in section "Setting Field type" *1

set_fie1d_type (f1, ENIJLOILlN'l', colors, FALSE, FALSE, 0, OL, 255L);

1* create field of field type ENllM_OR_lN'l' *1

Once you have created the new field type, you can create fields of that type.
The last statement here creates field £1, which accepts only values of type
ENUM-OlLINT.

If an error occurs, linLfieldtypeO returns the following:

NULL -noavailableI1\e!lOZY

Creating a Field Type with Validation
Functions

Another way to create a new field type is by specifying

• a function that validates each character as it is entered into the field

• a function that validates the entire value entered into the field

or both. Function new-HeldtypeO returns your new field type given pointers
to these validation functions.

SYIDPSIS

typedef int (* Pl'F _int) ();

FIELDl'YPE * new_fieldtype (f_check, c_check)
Pl'F_int f_check;
Pl'F _int c_check;

10-246 PROGRAMMER'S GUIDE

Creating and Manipulating Programmer-Defined Field Types

The form driver automatically calls the named validation functions during
form driver processing.

To create a new field type, you must write at least one of the two valida
tion functions. Function f_check is a pointer to a function that takes two
arguments: a field pointer and an argument pointer. The argument pointer is
treated in the next section. f_check is called whenever the end-user tries to
leave the field. It should check the field value stored in field buffer 0 and
return TRUE if the field is valid or FALSE if not. If the validation function
fails, your end-user remains on the offending field.

Function c-check is also a pointer to a function that takes two arguments:
an integer that represents an ASCII character and an argument pointer. Func
tion c-check is called as each character is entered by your end-user. It should
check the character for validity and return TRUE if it is and FALSE if not.

Function new-fieldtypeO is useful for creating field types for specialized
applications. For example, Figure 10-48 defines a new field type TYPE_HEX
as a hex number between OxOOOO and Oxff££.

#include <ctype.h>

#include <form.h>

exteI:n long strtol ();

#define isblank(e) «c) ")

static int padding = 4; 1* pad on left to 4 digits *1
static long vmin = OxOOOOL; 1* mi:n:inrum acceptable value *1
static long vmax = OxffffL; 1* maximum acceptable value *1

static int fcheck_hex (f, arg)

FIELD * f;
char * arg; 1* urmeces~ here, discussed in the next section *1
{

char buf[80];

char * x = field_buffer (f, 0);
while (*x &&. isblank (*x» ++x;

if (*x)

{

char * t = x;
while (*x &&. isxrligit (*x» ++x;
while (*x &&. isblank (*x» ++x;

EXTENDED TERMINAL INTERFACE 10-247

Creating and Manipulating Programmer·Defined Field Types

if (I *x)

{

lang v = strtol (t, (char **) 0, 16);

if (v >= vmin && v <= vmax)

return FAlSE;

sprintf (buf, ,,%. *lx", padding, v);

set_field_buffer (f, 0, buf);
return TRUE;

static int ccheck_hex (c, arg)
int c;

continued

char * arg; /*urmecessaxy in this example, discussed in the next sectian*/

{

return isxdigit (c);

FIEIDl'YPE * 'l'YPEUIEX = ne\oLfieldtype (fcheck_hex, ccheck_hex);
/* create new field type */

Figure 10-48: Creating a Programmer-Defined Field Type

Later, you assign fields with the field type TYPE_HEX as you do with any
field type and field:

FIELD * field;

10·248 PROGRAMMER'S GUIDE

Creating and Manipulating Programmer-Defined Field Types

Function ccheck-hexO checks that the input character is a valid hexade
cimal digit, while function fcheck-hexO examines the field value for valid
characters and checks the range. If successful, fcheck-hexO pads the field to
four digits and returns TRUE. If not, it returns FALSE.

The argument arg to functions f_check and Lcheck is not used in this
version of the TYPE-HEX example because the new type does not
require additional arguments to the seUielLtypeO routine.

If successful, new-fieldtypeO returns a pointer to the new field type. If
either argument to newJieldtypeO is a NULL pointer, the corresponding
validation is not performed. If no memory is available or both function
pointers are NULL, new-fieldtypeO returns NULL.

Freeing Programmer-Defined Field Types
This function frees any space allocated for a field type created with

newJieldtypeO or linkJieldtypeO. Its argument is a field type pointer pre
viously obtained from one of these functions.

SYIDPSIS

int free_fieldtype (fieldtype)
FIELDTYPE * fieldtype;

You may want to free the field type TYPE_HEX from the previous exam
ple once fields of that type have been processed. To do so, you write

/* create field type TYPE_HEX * /
create fields of this type
free fields of this type */

free_fieldtype(TYPE_HEX); /* free programner-defined type */

EXTENDED TERMINAL INTERFACE 10-249

Creating and Manipulating Programmer·Defined Field Types

If successful, function free-fieldtypeO returns E_OK. If an error occurs,
it returns one of the following:

- system error
- null field type
- type is connected to one or more fields

Once a field type is freed, you must not use it again. If you do, the effect is
undefined.

Supporting Programmer-Defined Field Types
You may want to support some programmer-defined field types with addi

tional arguments or with previous and next choice functions. This section
explains how to do so.

Argument Support for Field Types
Some field types may require additional arguments to the

seUielLtypeO routine, which sets the field type of a field. Function
set-fieldtype_argO takes as arguments pointers to functions that manage
storage for the additional arguments.

SYIDPSIS

typedef char * (* PTF_charP) ();
typedef void (* PTF _void) ();

int set_fieldtype_arg (fieldtype, make_arg, copy_arg, free_arg)
FIELDTYPE * fieldtype;
PTF _ charP make_arg;
PTF_charP coPY'_arg;
PTF_void free_arg;

You must write the functions referenced by pointers make_arg, copy_arg,
and free_argo These functions should do the following:

allocate a structure for the field specific parameters to
set_field_type() and return a pointer to the saved
data

10·250 PROGRAMMER'S GUIDE

Creating and Manipulating Programmer-Defined Field Types

duplicate the structure created by make_arg

free any storage allocated by make_arg or copy_arg

Function make_arg is called automatically when your application program
calls seLfielLtypeO. It takes one argument, a vuist *. (See
VARARGS(5) for details.) Function make-<lrg in tum should call vlLargO
for each additional argument to seLfielLtypeO associated with the field
type. Note that function vlLStartO is called by seLfielLtypeO before
make_arg gains control, while function vlLendO is called by
seLfielLtypeO after make_arg returns.

Function make_arg must allocate space for the information associated
with the additional arguments, save the information, and return the pointer to
the information cast to a character pointer. It is this character pointer that is
the argument arg to the other functions associated with the field type, namely
copy_arg, free_arg, Lcheck, c_check, nexLchoice, and prey_choice.

Function copy_arg takes as its sole argument a pointer to existing argu
ment information. It returns a pointer to a copy of this information. Function
free_argO takes as its sole argument a pointer to existing argument informa
tion. It should free any space allocated by make_argo

Figure 10-49 illustrates how you can add padding and range arguments to
our TYPE-HEX defined above.

/* Tn'E_HEX
set_field_type (f, Tn'E_HEK, padding, vmin, vmax);

int padding;
lang vmin;
lang vmax;

#include <form.~
#include <ctype.~

#include <varargs. ~
extern long strtol ();

far padding with leading zeros
m:in:inDJm acceptable value

max:imwn acceptable value * /

#define isblank(c) «c) == , ')

typedef struct {
int padding;

long vmin, vmax;

EXTENDED TERMINAL INTERFACE 10-251

Creating and Manipulating Programmer-Defined Field Types

10-252

} HEX;

static char * make_hex (ap)
va_list * ap;

HEX * n = (HEX *) malloc (sizeof (HEX»;

if (n)

n -> padding = va_arg (*ap, int);
n -> vmin = va_arg (*ap, lCID]);

n -> vmax = va_arg (*ap, lCID]);

return (char *) n;

static char * ropy_hex (arg)

char * arg;

HEX * n = (HEX *) malloc (sizeof (HEX»;
if (n) *n = *((HEX *) arg);

return (char *) n;

static void free_hex (arg)

char * arg;
{

free (arg);

static int fcheck_hex (f, arg)

FIELD * f;
char * arg;

HEX * n = (HEX *) arg;

int padding = n -> padding;

lCID] vmin = n -> vmin;
lCID] vmax = n -> vmax;

char buf[80];
char * x = field_buffer (f, 0);

while (*x So&. isblank (*x» ++x;

if (*x)

PROGRAMMER'S GUIDE

continued

Creating and Manipulating Programmer-Defined Field Types

char * t = x;

while (*x && isxdigit (*xl) ++x;
while (*x &&. isblank (*x» ++x;

if (I *x)

{

lang v = strtol (t, (char **) 0, 16);

if (v >= vmin &&. v <= vmax)

{

continued

sprintf (J:iuf, "%. *lx", padding, v);
set_field_buffer (f, 0, buf);

return TRlJE;

return FAISE;

static int ccheck_hex (c, arg)

int c;
char * arg;
{

return isxdigit (c);

Fl:EwrYPE * T!PEUIEK = new_field.type (fcheclLhex, ccheck_hex);
set_fieldtype_arg (T!PELHEX, make_hex, copy_hex, free_hex);

Figure 10-49: Creating TYPE.JiEX with Padding and Range Arguments

Later, to create a field that stores a hex number between OxOOOO and Oxffff, we
have:

EXTENDED TERMINAL INTERFACE 10-253

Creating and Manipulating Programmer·Defined Field Types

set_field_type (field, TYPE_HEX, 4, OxOOOOL, OxffffL);

From this example, note that

• Your function make_arg (here, make-ItexO) picks off the additional
arguments to seLfielc:LtypeO using v3-argO.

• Function make-ItexO allocates a HEX structure, saves the information
provided by the additional arguments, and returns a pointer to the
saved information.

• Function copy-ItexO allocates and copies a HEX structure.

• Function free_hexO frees a HEX structure.

• Functions make-ItexO and copy-ItexO return NULL if the memory
allocation fails.

• Function check--ItexO uses the argument information to do the neces
sary padding and range check and returns TRUE if successful.

• ETI's internal caller to make-ItexO and copy-ItexO automatically
checks that the values (arg) returned from the functions are not NULL.
So there is no need for functions (such as fcheck--ItexO) that use these
values to check that they are not NULL.

If successful, function seL..fieldtype_argO returns E_OK. If an error
occurs, it returns one of the following:

- system error
- field type, make_arg

copy_arg, or free_arg is NULL

Supporting Next and Previous Choice Functions
Some field types comprise a set of values from which your user chooses

(enters) one. The following functions support those types that have a set of
choices.

10·254 PROGRAMMER'S GUIDE

Creating and Manipulating Programmer-Defined Field Types

SYIDPSIS

typedef char * (* PTF_charP) ();

type;
next_choice;
prev _choice;

int next_choice(f,arg};
FIELD * f;
char * arg;

int prev_choice(f ,arg) ;
FIELD * f;
char * arg;

These functions enable the ETI form driver to support the
REQ~EXT_CHOICE and REQ_PREV_CHOICE requests mentioned in the
earlier section, "Form Driver Processing" .

To support these requests, your application-defined functions next_choice
and prev_choice must

• take two arguments: a pointer to the current field and a pointer to the
value arg that the make_arg function (such as make.-hexO above)
returned

• use function fielLbufferO to read the current value

• call function set-fielLbufferO with buffer argument 0 to set the next
or previous value

• return success or failure if there is no logically next or previous value

Both functions can be quite similar.

Figure 10-50 shows an implementation of function nexLchoiceO for the
field type TYPE-HEX as defined above, such that REQ~EXT_CHOICE
increments the current value and REGJREV _CHOICE decrements the
current value.

EXTENDED TERMINAL INTERFACE 10-255

Creating and Manipulating Programmer-Defined Field Types

static int next_hex (f, arg)
FIELD * f;
char * arg;
{

}

HEX * n = (HEX *) arg;
long v = n -> vmin;
char buf[80];
char * x = field_buffer (f, 0);

while (*x && isblank (*x)) ++x;

if (*x)
{

v = strtol (x, (char **) 0, 16);
if (v >= n -> vmin && v < n -> vmax)

++v;

sprintf (buf, n%. *lxn , n -> padding, v);
set_field_buffer (f, 0, buf);
retuzn '!RUE;

static int prev_hex (f, arg)
FIELD * f;
char * arg;
{

HEX * n = (HEX *) arg;
long v = n -> vmax;
char buf[80];
char * x = field_buffer (f, 0);

while (*x && isblank (*x)) ++x;

if (*x)
{

v = strtol (x, (char **) 0, 16);
if (v > n -> vmin && v <= n -> vmax)

--V;
}
sprintf (buf, n%.*lxn, v -> padding, v);
set_field_buffer (f, 0, buf);
retuzn '!RUE;

/* associate previous and next choice functions * /
set_fieldtype_choice (TYPE_HEX, next_hex, prev_hex);

Figure 10-50: Creating a Next Choice Function for a Field Type

10-256 PROGRAMMER'S GUIDE

Creating and Manipulating Programmer-Defined Field Types

If given a blank field, your functions nexLchoice and prev_choice
should, of course, do something reasonable, such as setting the field to the
first or last value of the type.

If function set-Eieldtype_choiceO encounters an error, it returns one of
the following:

- system error
- either field type, nexLchoice or prey_choice is null

EXTENDED TERMINAL INTERFACE 10-257

Other ETI Routines
Knowing how to use the basic ETI routines to get output and input and to

work with windows, panels, menus, and forms, you can design screen
management programs that meet the needs of many users. The ETI library,
however, has routines that let you do still more in your program. The follow
ing few pages briefly describe some of these routines and what they can help
you do-namely, draw simple graphics, use a terminal's soft labels, and work
with more than one terminal in a single ETI program.

You should be comfortable using the routines previously discussed and
the other routines for I/O and window manipulation discussed on the
curses(3X)' manual page before you try to use the following ETI features.

10-258

The routines described under "Routines for Drawing Lines and Other
Graphics" and "Routines for Using Soft Labels" are features that are new
for UNIX System V Release 3.0. If a program uses any of these routines,
it may not run on earlier releases of the UNIX system. You must use the
Release 3.0 version of the low-level ETI library on UNIX System V
Release 3.0 to work with these routines.

PROGRAMMER'S GUIDE

Routines for Drawing Lines and Other
Graphics

Many terminals have an alternate character set for drawing simple graph
ics (or glyphs or graphic symbols). You can use this character set in ETI pro
grams. ETI uses the same names for glyphs as the VT100 line drawing char
acter set.

To use the alternate character set in an ETI program, you pass a set of
variables whose names begin with ACS_ to the ETI routine waddch() or a
related routine. For example, ACS_ULCORNER is the variable for the upper
left comer glyph. If a terminal has a line drawing character for this glyph,
ACS_ULCORNER's value is the terminal's character for that glyph OR'd (I)
with the bit-mask A-AL TCHARSET. If no line drawing character is available
for that glyph, a standard ASCII character that approximates the glyph is
stored in its place. For example, the default character for ACS-HLINE, a hor
izontal line, is a - (minus sign). When a close approximation is not available,
a + (plus sign) is used. All the standard ACS_ names and their defaults are
listed on the curses(3X) manual page.

Part of an example program that uses line drawing characters follows.
The example uses the ETI routine boxO to draw a box around a menu on a
screen. box() uses the line drawing characters by default or when I (the pipe)
and - are chosen. (See curses(3X).) Up and down more indicators are drawn
on the box border (using ACS_UARROW and ACS_DARROW) if the menu
contained within the box continues above or below the screen:

EXTENDED TERMINAL INTERFACE 10·259

Routines for Drawing Lines and Other Graphics

/* output the up/down arrows */
W!IDVe (menuw.i.n, waxy, ma:xx - 5);

/* output up arrow or horizontal line */
if (mreabove)

waddch(menuw.i.n, ACfUJARRCM);

else
addch(menuwin, ACS_ HLINE) ;

/*output down arrow or horizontal line * /
if (mrebelow)

waddch(menuw.i.n, ACS_DARRa-l);

else
waddch(menuwin, ACfUILINE);

Here's another example. Because a default down arrow (like the lower
case letter v) isn't very discernible on a screen with many lowercase characters
on it, you' can change it to an uppercase V.

if (! (ACS_DARRa-l & 'LAL'lOIARSEl'»

ACS_DARRa-l = 'v';

For more information, see curses(3X) in the Programmer's Reference
Manual.

10·260 PROGRAMMER'S GUIDE

Routines for Using Soft Labels

Another feature available on most terminals is a set of soft labels across
the bottom of their screens. A terminal's soft labels are usually matched with
a set of hard function keys on the keyboard. There are usually eight of these
labels, each of which is usually eight characters wide and one or two lines
high.

The ETI library has routines that provide a uniform model of eight soft
labels on the screen. If a terminal does not have soft labels, the bottom line
of its screen is converted into a soft label area. It is not necessary for the key
board to have hard function keys to match the soft labels for an ETI program
to make use of them.

Let's briefly discuss most of the ETI routines needed to use soft labels:
slLinitO, sHe--SetO, sllL.refreshO and sILnoutrefresh(), sHe_clear,
sllL.restore, slLattronO, slLattrsetO, and slLattroffO.

When you use soft labels in an ETI program, you have to call the routine
slLintO before initscr(). This sets an internal flag for initscr() to look at that
says to use the soft labels. If initscr() discovers that there are fewer than
eight soft labels on the screen, that they are smaller than eight characters in
size, or that there is no way to program them, then it will remove a line from
the bottom of stdscr to use for the soft labels. The size of stdscr and the
LINES variable will be reduced by 1 to reflect this change. A properly written
program, one that is written to use the LINES and COLS variables, will con
tinue to run as if the line had never existed on the screen.

slLinit() takes a single argument. It determines how the labels are
grouped on the screen should a line get removed from stdscr. The choices are
between a 3-2-3 arrangement as appears on AT&T terminals, or a 4-4 arrange
ment as appears on Hewlett-Packard terminals. The ETI routines adjust the
width and placement of the labels to maintain the pattern. The widest label
generated is eight characters.

The routine slLset() takes three arguments, the label number (1-8), the
string to go on the label (up to eight characters), and the justification within
the label (0 = left justified, 1 = centered, and 2 = right justified).

The routine slLnoutrefresh() is comparable to wnoutrefresh() in that it
copies the label information onto the internal screen image, but it does not
cause the screen to be updated. Since a wrefresh() commonly follows,
slLnoutrefresh() is the function that is most commonly used to output the
labels.

EXTENDED TERMINAL INTERFACE 10-261

Routines for Using Soft Labels

Just as wrefreshO is equivalent to a wnoutrefreshO followed by a doup
dateO, so too the function slLrefreshO is equivalent to a slLnoutrefreshO
followed by a doupdateO.

If initscr() removes the bottom line of stdscr to simulate soft labels, the
routines slLattronO, slLattrsetO, and slLattroffO can be used to manipu
late the appearance of the simulated soft labels. Note that these routines will
have no effect on soft function key labels supplied by the terminal. These
routines are similar to attronO, attrsetO, and attroffO (see the section 11 Con
trolling Output and Input 11 in this chapter).

To prevent the soft labels from getting in the way of a shell escape,
slLclearO may be called before doing the endwinO. This clears the soft
labels off the screen and does a doupdateO. The function slLrestoreO may
be used to restore them to the screen. See the curses(3X) manual page for
more information about the routines for using soft labels.

10·262 PROGRAMMER'S GUIDE

Working with More than One Terminal

An ETI program can produce output on more than one terminal at the
same time. This is useful for single process programs that access a common
data base, such as multi-player games.

Writing programs that output to multiple terminals is a difficult business,
and the ETI library does not solve all the problems you might encounter. For
instance, the programs-not the library routines-must determine the file
name of each terminal line, and what kind of terminal is on each of those
lines. The standard method, checking $TERM in the environment, does not
work, because each process can only examine its own environment.

Another problem you might face is that of multiple programs reading
from one line. This situation produces a race condition and should be
avoided. However, a program trying to take over another terminal cannot just
shut off whatever program is currently running on that line. (Usually, security
reasons would also make this inappropriate. But, for some applications, such
as an inter-terminal communication program, or a program that takes over
unused terminal lines, it would be appropriate.) A typical solution to this
problem requires each user logged in on a line to run a program that notifies a
master program that the user is interested in joining the master program and
tells it the notification program's process ID, the name of the tty line, and the
type of terminal being used. Then the program goes to sleep until the master
program finishes. When done, the master program wakes up the notification
program and all programs exit.

An ETI program handles multiple terminals by always having a current
terminal. All function calls always affect the current terminal. The master
program should set up each terminal, saving a reference to the terminals in its
own variables. When it wishes to affect a terminal, it should set the current
terminal as desired, and then call ordinary ETI routines.

References to terminals in an ETI program have the type SCREEN*. A
new terminal is initialized by calling newterm(type, outfd, infd). newterm
returns a screen reference to the terminal being set up. type is a character
string, naming the kind of terminal being used. outfd is a stdio(3S) file
pointer (FILE*) used for output to the terminal and infd a file pointer for input
from the terminal. This call replaces the normal call to initscrO, which calls
newterm(getenv("TERM"), stdout, stdin).

EXTENDED TERMINAL INTERFACE 10-263

Working with More than One Terminal

To change the current terminal, call seLterm(sp) where sp is the screen
reference to be made current: seLtermO returns a reference to the previous
terminal.

It is important to realize that each terminal has its own set of windows
and options. Each terminal must be initialized separately with newtermO.
Options such as cbreakO and noecho() must be set separately for each termi
nal. The functions endwinO and refreshO must be called separately for each
terminal. Figure 10-51 shows a typical scenario to output a message to several
terminals.

for: (i=O; i<ntenn; i++)
{

set_tenn(tenns[i]) ;
mVaddstr(0, 0, "Important message");
refresh();

Figure 10-51: Sending a Message to Several Terminals

to·264 PROGRAMMER'S GUIDE

Working with terminfo Routines

Some programs need to use lower level routines (i.e., primitives) than
those offered by the curses routines. For such programs, the terminfo rou
tines are offered. They do not manage your terminal screen, but rather give
you access to strings and capabilities which you can use yourself to manipu
late the terminal.

There are three circumstances when it is proper to use terminfo routines.
The first is when you need only some screen management capabilities, for
example, making text standout on a screen. The second is when writing a
filter. A typical filter does one transformation on an input stream without
clearing the screen or addressing the cursor. If this transformation is terminal
dependent and clearing the screen is inappropriate, use of the terminfo rou
tines is worthwhile. The third is when you are writing a special purpose tool
that sends a special purpose string to the terminal, such as programming a
function key, setting tab stops, sending output to a printer port, or dealing
with the status line. Otherwise, you are discouraged from using these rou
tines: the higher level curses routines make your program more portable to
other UNIX systems and to a wider class of terminals.

You are discouraged from using terminfo routines except for the pur
poses noted, because curses routines take care of all the glitches present
in physical terminals. When you use the terminfo routines, you must
deal with the glitches yourself. Also, these routines may change and be
incompatible with previous releases.

What Every terminfo Program Needs
A terminfo program typically includes the header files and routines

shown in Figure 10-52.

EXTENDED TERMINAL INTERFACE 10·265

Working with terminfo Routines

#include <curses.h>
#include <tenn.h>

setuptenn((char*) 0, 1, (int*) 0);

reset_shell_l!Dde();
exit(O);

Figure 10-52: Typical Framework of a terminfo Program

The header files <curses.h> and <term.h> are required because they
contain the definitions of the strings, numbers, and flags used by the terminfo
routines. setupterm() takes care of initialization. Passing this routine the
values (char*)O, 1, and (int*)O invokes reasonable defaults. If setupterm()
can't figure out what kind of terminal you are on, it prints an error message
and exits. reseLshelLmode() performs functions similar to endwin() and
should be called before a terminfo program exits.

A global variable like dear-screen is defined by the call to setupterm().
It can be output using the terminfo routines putp() or tputs(), which gives a
user more control. This string should not be directly output to the terminal
using the C library routine printf(3S), because it contains padding informa
tion. A program that directly outputs strings will fail on terminals that require
padding or that use the xon/xoff flow control protocol.

At the terminfo level, the higher level routines like addch() and getch()
are not available. It is up to you to output whatever is needed. For a list of
capabilities and a description of what they do, see terminfo(4); see curses(3X)
for a list of all the terminfo routines.

10-266 PROGRAMMER'S GUIDE

Working with terminfo Routines

Compiling and Running a terminfo Program

The general command line for compiling and the guidelines for running a
program with terminfo routines are the same as those for compiling any other
curses program. See the sections "Compiling a curses Program" and "Run
ning a curses Program" in this chapter for more information.

An Example terminfo Program
The example program termhl shows a simple use of terminfo routines. It

is a version of the highlight program (see "curses Program Examples") that
does not use the higher level curses routines. termhl can be used as a filter.
It includes the strings to enter bold and underline mode and to tum off all
attributes.

1*
* A tel:minfo level version of the highlight program.

*1

#include <curses.h>

#include <tezm.h>

int u1mode = 0;

main(argc, argv)
int argc;

char **argv;

FILE *fd;
int c, c2;
int outch();

if (argc > 2)

{

1* Currently underli.nin] *1

fprintf(stderr, "Usage: tennhl [file]\n");

exit(1) ;

if (argc == 2)

EXTENDED TERMINAL INTERFACE 10·267

Working with terminfo Routines

10-268

fd = fopen(argv[1], "r");

if (fd = NULL)

{

else

perror(argv[1]) ;
exit(2) ;

fd = stdin;

setuptenn«cbar*)O, 1, (int*)O);

for (;;)
{

c = getc(fd);
if (c == EDF)

break;

if (c == '\')
{

c2 = getc(fd);

switch (c2)

{

case IB':

tputs (enter _bold_node, 1, ClUtch);

continue ;
case 'U':
tpzts(enter_underline_node, 1, ClUtch);
u1node = 1;
continue ;
case IN':

tplts(exit_attribute_node, 1, outch);

u1node = 0;
continue;

putch(c);
putch(c2);

else
putch(c);

PROGRAMMER'S GUIDE

continued

Working with terminfo Routines

1*

fclose(fd) ;
fflush(stdout) ;

resettenn();
exiteD);

* 'Ibis functicm is like putchar, but it checks for underli.ninq.

*1
putch(c)

1*

int c;

outch(c);

if (ulncde && underline_char)
{

outch('\h');
tputs (underline_char, 1, outch);

* rutchar is a functicm versicm of putchar that can be passed to
* tputs as a routine to call.
*1

outch(c)
int c;

putchar(c) ;

continued

Let's discuss the use of the function tputs(cap, af/cnt, outc) in this program
to gain some insight into the terminfo routines. tputs() applies padding
information. Some terminals have the capability to delay output. Their termi
nal descriptions in the terminfo data base probably contain strings like
$<20>, which means to pad for 20 milliseconds (see the following section
II Specify Capabilities II in this chapter). tputs generates enough pad charac
ters to delay for the appropriate time.

EXTENDED TERMINAL INTERFACE 10·269

Working with terminfo Routines

tput() has three parameters. The first parameter is the string capability to
be output. The second is the number of lines affected by the capability.
(Some capabilities may require padding that depends on the number of lines
affected. For example, inserLline may have to copy all lines below the
current line, and may require time proportional to the number of lines copied.
By convention affcnt is 1 if no lines are affected. The value 1 is used, rather
than 0, for safety, since affcnt is multiplied by the amount of time per item,
and anything multiplied by 0 is 0.) The third parameter is a routine to be
called with each character.

For many simple programs, affcnt is always 1 and outc always calls
putchar. For these programs, the routine putp(cap) is a convenient abbrevia
tion. termhl could be simplified by using putp().

Now to understand why you should use the curses level routines instead
of terminfo level routines whenever possible, note the special check for the
underline_char capability in this sample program. Some terminals, rather
than having a code to start underlining and a code to stop underlining, have a
code to underline the current character. termhl keeps track of the current
mode, and if the current character is supposed to be underlined, outputs
underline_char, if necessary. Low level details such as this are precisely why
the curses level is recommended over the terminfo level. curses takes care of
terminals with different methods of underlining and other terminal functions.
Programs at the terminfo level must handle such details themselves.

termhl was written to illustrate a typical use of the terminfo routines. It
is more complex than it need be in order to illustrate some properties of ter
minfo programs. The routine vidattr (see curses(3X» could have been used
instead of directly outputting enter_bolc:Lmode, enter_underline-mode,
and exit_attribute-mode. In fact, the program would be more robust if it
did, since there are several ways to change video attribute modes.

10-270 PROGRAMMER'S GUIDE

Working with the terminfo Database

The terminfo data base describes the many terminals with which curses
programs, as well as some UNIX system tools, like vi(l), can be used. Each
terminal description is a compiled file containing the names that the terminal
is known by and a group of comma-separated fields describing the actions and
capabilities of the terminal. This section describes the terminfo data base,
related support tools, and their relationship to the curses library.

Writing Terminal Descriptions
Descriptions of many popular terminals are already described in the ter

minfo data base. However, it is possible that you'll want to run a curses pro
gram on a terminal for which there is not currently a description. In that case,
you'll have to build the description.

The general procedure for building a terminal description is as follows:

1. Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly-created description entry.

4. Test the entry for correct operation.

S. Go back to step 2, add more capabilities, and repeat, as necessary.

Building a terminal description is sometimes easier when you build small
parts of the description and test them as you go along. These tests can expose
deficiencies in the ability to describe the terminal. Also, modifying an existing
description of a similar terminal can make the building task easier. (Lest we
forget the UNIX motto: Build on the work of others.)

In the next few pages, we follow each step required to build a terminal
description for the fictitious terminal named "my term. "

Name the Terminal
The name of a terminal is the first information given in a terminfo termi

nal description. This string of names, assuming there is more than one name,
is separated by pipe symbols (:). The first name given should be the most
common abbreviation for the terminal. The last name given should be a long
name that fully identifies the terminal. The long name is usually the

EXTENDED TERMINAL INTERFACE 10·271

Working with the terminfo Database

manufacturer's formal name for the terminal. All names between the first and
last entries should be known synonyms for the terminal name. All names but
the formal name should be typed in lowercase letters and contain no blanks.
Naturally, the formal name is entered as closely as possible to the
manufacturer's name.

Here is the name string from the description of the AT&T Teletype 5420
Buffered Display Terminal:

5420Iatt5420IAT&T Teletype 5420,

Notice that the first name is the most commonly used abbreviation and the
last is the long name. Also notice the comma at the end of the name string.

Here's the name string for our fictitious terminal, my term:

It\Y"term I mytm I mine I fancy I terminal I My FAt:¥::Y Terminal,

Terminal names should follow common naming conventions. These con
ventions start with a root name, like 5425 or my term, for example. The root
name should not contain odd characters, like hyphens, that may not be recog
nized as a synonym for the terminal name. Possible hardware modes or user
preferences should be shown by adding a hyphen and a 'mode indicator' at
the end of the name. For example, the 'wide mode' (which is shown by a -w)
version of our fictitious terminal would be described as myterm-w. term(5)
describes mode indicators in greater detail.

Learn About the Capabilities
After you complete the string of terminal names for your description, you

have to learn about the terminal's capabilities so that you can properly
describe them. To learn about the capabilities your terminal has, you should
do the following:

• See the owner's manual for your terminal. It should have information
about the capabilities available and the character strings that make up
the sequence transmitted from the keyboard for each capability.

• Test the keys on your terminal to see what they transmit, if this infor
mation is not available in the manual. You can test the keys in one of
the following ways - type:

stty -echo; cat -vu
Type in the keys you want to test;
for example, see what right arrow (-) transmits.
<CR>

10-272 PROGRAMMER'S GUIDE

or

<CTRL-D>
sttyecho

cat >dev /null

Working with the terminfo Database

Type in the escape sequences you want to test;
for example, see what \E [H transmits.
<CTRL-D>

• The first line in each of these testing methods sets up the terminal to
carry out the tests. The <CTRL-D> helps return the terminal to its
normal settings.

• See the terminfo(4) manual page. It lists all the capability names you
have to use in a terminal description.

The following section, "Specify Capabilities," gives details.

Specify Capabilities
Once you know the capabilities of your terminal, you have to describe

them in your terminal description. You describe them with a string of
comma-separated fields that contain the abbreviated terminfo name and, in
some cases, the terminal's value for each capability. For example, bel is the
abbreviated name for the beeping or ringing capability. On most terminals, a
CTRL-G is the instruction that produces a beeping sound. Therefore, the
beeping capability would be shown in the terminal description as bel = A G,.

The list of capabilities may continue onto multiple lines as long as white
space (that is, tabs and spaces) begins every line but the first of the descrip
tion. Comments can be included in the description by putting a # at the
beginning of the line.

The terminfo(4) manual page has a complete list of the capabilities you
can use in a terminal description. This list contains the name of the capabil
ity, the abbreviated name used in the data base, the two-letter code that
corresponds to the old termcap data base name, and a short description of the
capability. The abbreviated name that you will use in your data base descrip
tions is shown in the column titled "Capname."

EXTENDED TERMINAL INTERFACE 10-273

Working with the terminfo Database

For a curses program to run on any given terminal, its description in the
terminfo data base must include, at least, the capabilities to move a cursor
in all four directions and to clear the screen.

A terminal's character sequence (value) for a capability can be a keyed
operation (like CTRL-G), a numeric value, or a parameter string containing the
sequence of operations required to achieve the particular capability. In a ter
minal description, certain characters are used after the capability name to
show what type of character sequence is required. Explanations of these char
acters follow:

This shows a numeric value is to follow. This character follows a
capability that needs a number as a value. For example, the number
of columns is defined as (0Is#80,.

This shows that the capability value is the character string that fol
lows. This string instructs the terminal how to act and may actually
be a sequence of commands. There are certain characters used in the
instruction strings that have special meanings. These special charac
ters follow:

This shows a control character is to be used. For example,
the beeping sound is produced by a CTRL-G. This would
be shown as A G.

\E or \e These characters followed by another character show an
escape instruction. An entry of \EC would transmit to the
terminal as ESCAPE-C.

\n These characters provide a <NL> character sequence.

\1 These characters provide a linefeed character sequence.

\r These characters provide a return character sequence.

\t These characters provide a tab character sequence.

\b These characters provide a backspace character sequence.

\f These characters provide a formfeed character sequence.

10-274 PROGRAMMER'S GUIDE

\s

\nnn

$< >

Working with the terminfo Database

These characters provide a space character sequence.

This is a character whose three-digit octal is nnn, where nnn
can be one to three digits.

These symbols are used to show a delay in milliseconds.
The desired length of delay is enclosed inside the "less
than/greater than" symbols « ». The amount of delay
may be a whole number, a numeric value to one decimal
place (tenths), or either form followed by an asterisk (*).
The ... shows that the delay will be proportional to the
number of lines affected by the operation. For example, a
20-millisecond delay per line would appear as $<20*>. See
the terminfo(4) manual page for more information about
delays and padding.

Sometimes, it may be necessary to comment out a capability so that the
terminal ignores this particular field. This is done by placing a period (.) in
front of the abbreviated name for the capability. For example, if you would
like to comment out the beeping capability, the description entry would
appear as

.bel=AG,

With this background information about specifying capabilities, let's add
the capability string to our description of my term. We'll consider basic,
screen-oriented, keyboard-entered, and parameter string capabilities.

Basic Capabilities
Some capabilities common to most terminals are bells, columns, lines on

the screen, and overstriking of characters, if necessary. Suppose our fictitious
terminal has these and a few other capabilities, as listed below. Note that the
list gives the abbreviated terminfo name for each capability in the parentheses
following the capability description:

• An automatic wrap around to the beginning of the next line whenever
the cursor reaches the right-hand margin (am).

• The ability to produce a beeping sound. The instruction required to
produce the beeping sound is AC (bel).

• An SO-column wide screen (cols).

EXTENDED TERMINAL INTERFACE 10-275

Working with the terminfo Database

• A 30-line long screen (lines).

• Use of xon/xoff protocol (xon).

By combining the name string (see the section "Name the Terminal") and
the capability descriptions that we now have, we get the following general
terminfo data base entry:

Il!Ytenn Imytm I mine I fancy I tenn:ina11 My FANCY tenn:ina1,
am, bel="G, 0018180, 1ines#30, xon,

Screen-Oriented Capabilities
Screen-oriented capabilities manipulate the contents of a screen. Our

example terminal my term has the following screen-oriented capabilities.
Again, the abbreviated command associated with the given capability is
shown in pa~entheses.

• A <CR> is a CTRL-M (cr).

• A cursor up one line motion is a CTRL-K (cuu1).

• A cursor down one line motion is a CTRL-J (cud1).

• Moving the cursor to the left one space is a CTRL-H (cub1).

• Moving the cursor to the right one space is a CTRL-L (cufl).

• Entering reverse video mode is an ESCAPE-D (smso).

• Exiting reverse video mode is an ESCAPE-Z (rmso).

• A clear to the end of a line sequence is an ESCAPE-K and should have
a 3-millisecond delay (el).

• A terminal scrolls when receiving a <NL> at the bottom of a page
(ind).

The revised terminal description for my term including these screen
oriented capabilities follows:

10-276 PROGRAMMER'S GUIDE

Working with the terminfo Database

lIl)Ttennlfi!Ybn1 mine I fancy I terminal I My FANCY Tenninal,
am, be1=AG, 001S#80, 1ineS#30, xon,
cr=AM, CUU1=AK, cud1=AJ, cub1=AH, cuf1=AL,
smso=\ED, nnso='-EZ, e1=\EK$<3>, ind=\n,

Keyboard-Entered Capabilities
Keyboard-entered capabilities are sequences generated when a key is

typed on a terminal keyboard. Most terminals have, at least, a few special
keys on their keyboard, such as arrow keys and the backspace key. Our
example terminal has several of these keys whose sequences are, as follows:

• The backspace key generates a CTRL-H (kbs).

• The up arrow key generates an ESCAPE-[A (kcuul).

• The down arrow key generates an ESCAPE-[B (kcudl).

• The right arrow key generates an ESCAPE-[C (kcufl).

• The left arrow key generates an ESCAPE-[D (kcubl).

• The home key generates an ESCAPE-[H (khome).

Adding this new information to our data base entry for my term produces:

1Il)Ttenn1fi!Ybn1 mine I fancy I terminal I My FANCY Tenninal,
am, be1=AG, 001S#80, 1ineS#30, xon,
cr=AM, CUU1=AK, cud1=AJ, cub1=AH, cuf1=AL,
smso=\ED, :r;mso=\EZ, e1=\EK$<3>, ind=O
kbs=AH, kcuu1=\E[A, kcud1=\E[B, kcuf1=\E[C,
kcub1=\E[D, khane=\E[H,

EXTENDED TERMINAL INTERFACE 10-277

Working with the terminfo Database

Parameter String Capabilities
Parameter string capabilities are capabilities that can take parameters -

for example, those used to position a cursor on a screen or turn on a combina
tion of video modes. To address a cursor, the cup capability is used and is
passed two parameters: the row and column to address. String capabilities,
such as cup and set attributes (sgr) capabilities, are passed arguments in a ter
minfo program by the tparm() routine.

The arguments to string capabilities are manipulated with special '%'
sequences similar to those found in a printf(3S) statement. In addition, many
of the features found on a simple stack-based RPN calculator are available.
cup, as noted above, takes two arguments: the row and column. sgr, takes
nine arguments, one for each of the nine video attributes. See terminfo(4) for
the list and order of the attributes and further examples of sgr.

Our fancy terminal's cursor position sequence requires a row and column
to be output as numbers separated by a semicolon, preceded by ESCAPE-[
and followed with H. The coordinate numbers are I-based rather than 0-
based. Thus, to move to row 5, column 18, from (0,0), the sequence

Integer arguments are pushed onto the stack with a '%p' sequence fol
lowed by the argument number, such as '%p2' to push the second argument.
A shorthand sequence to increment the first two arguments is '%i'. To output
the top number on the stack as a decimal, a '%d' sequence is used, exactly as
in printf. Our terminal's cup sequence is built up as follows:

or

eu =
\E[
%i

%p1
%d

%p2
%d
H

Meanin
output ESCAPE-[
increment the two arguments
push the 1st argument (the row) onto the stack
output the row as a decimal
output a semi-colon
push the 2nd argument (the column) onto the stack
output the column as a decimal
output the trailing letter

cup=\E[roi%p1rcd;%p~.

10-278 PROGRAMMER'S GUIDE

Working with the terminfo Database

Adding this new information to our data base entry for my term produces:

~lmytmlminelfancyltermina1lMy FANCY Terminal,
am, be1=AG, 0015#80, 1ine5#30, xon,
cr=AM, CUU1=AK, cud1=AJ, cub1=AH, cuf1=AL,

smso=\ED, nnso=\EZ, e1=\EK$<3>, ind=O
kbs=AH, kcuu1=\E[A, kcud1=\E[B, kcuf1=\E[C,

kcub1=\E[D, khane=\E[H,

cup=\E[%i%p1%d; ~2'(dH,

See terminfo(4) for more information about parameter string capabilities.

Compile the Description
The terminfo data base entries are compiled using the tic compiler. This

compiler translates terminfo data base entries from the source format into the
compiled format.

The source file for the description is usually in a file suffixed with .ti. For
example, the description of my term would be in a source file named
myterm.ti. The compiled description of my term would usually be placed in
/usr/lib/terminfo/m/myterm, since the first letter in the description entry is
m. Links would also be made to synonyms of my term, for example, to
If/fancy. If the environment variable $TERMINFO were set to a directory
and exported before the entry was compiled, the compiled entry would be
placed in the $TERMINFO directory. All programs using the entry would
then look in the new directory for the description file if $TERMINFO were
set, before looking in the default /usr/lib/terminfo. The general format for
the tic compiler is as follows:

tic [-v] [-c] file

The -v option causes the compiler to trace its actions and output informa
tion about its progress. The -c option causes a check for errors; it may be
combined with the -v option. file shows what file is to be compiled. If you
want to compile more than one file at the same time, you have to first

EXTENDED TERMINAL INTERFACE 10-279

Working with the lerminfo Database

use cat(l) to join them together. The following command line shows how to
compile the terminfo source file for our fictitious terminal:

tic -v myterm.tkCR>
(The trace information appears as the compilation
proceeds.)

Refer to the tic(lM) manual page in the System Administrator's Reference
Manual for more information about the compiler.

Test the Description
Let's consider three ways to test a terminal description. First, you can test

it by setting the environment variable $TERMINFO to the path name of the
directory containing the description. If programs run the same on the new
terminal as they did on the older known terminals, then the new description
is functional.

Second, you can test for correct insert line padding by commenting out
xon in the description and then editing (using vi(l» a large file (over 100
lines) at 9600 baud (if possible), and deleting about 15 lines from the middle
of the screen. Type u (undo) several times quickly. If the terminal messes up,
then more padding is usually required. A similar test can be used for insert
ing a character.

Third, you can use the tput(l) command. This command outputs a string
or an integer according to the type of capability being described. If the capa
bility is a Boolean expression, then tput sets the exit code (0 for TRUE, 1 for
FALSE) and produces no output. The general format for the tput command is
as follows:

tput [-Ttype] capname

The type of terminal you are requesting information about is identified with
the -Ttype option. Usually, this option is not necessary because the default
terminal name is taken from the environment variable $TERM. The capname
field is used to show what capability to output from the terminfo data base.

The following command line shows how to output the "clear screen"
character sequence for the terminal being used:

tput clear
(The screen is cleared.)

10·280 PROGRAMMER'S GUIDE

Working with the terminfo Database

The following command line shows how to output the number of columns
for the terminal being used:

tput cols
(The number of columns used by the terminal appears here.)

The tput(l) manual page found in the User's Reference Manual contains
more information on the usage and possible messages associated with this
command.

Comparing or Printing terminfo Descriptions
Sometime you may want to compare two terminal descriptions or quickly

look at a description without going to the terminfo source directory. The
infocmp(lM) command was designed to help you with both of these tasks.
Compare two descriptions of the same terminal; for example,

mkdir /tmp/old /tmp/new
TERMINFO=/tmp/old tic old5420.ti
TERMINFO=/tmp/new tic new5420.ti
infocmp -A /tmp/old -B /tmp/new -d 5420 5420

compares the old and new 5420 entries.

To print out the terminfo source for the 5420, type

infocmp -I 5420

Converting a termcap Description to a terminfo
Description

The terminfo data base is designed to take the place of the termcap
data base. Because of the many programs and processes that have
been written with and for the termcap data base, it is not feasible to do
a complete cutover at one time. Any conversion from termcap to ter
minfo requires some experience with both data bases. All entries into
the data bases should be handled with extreme caution. These files are
important to the operation of your terminal.

EXTENDED TERMINAL INTERFACE 10-281

Working with the terminfo Database

The captoinfo(lM) command converts termcap(4) descriptions to ter
minfo(4) descriptions. When a file is passed to captoinfo, it looks for
termcap descriptions and writes the equivalent terminfo descriptions on the
standard output. For example,

captoinfo /etc/termcap

converts the file /etc/termcap to terminfo source, preserving comments and
other extraneous information within the file. The command line

captoinfo

looks up the current terminal in the termcap data base, as specified by the
$TERM and $TERMCAP environment variables and converts it to terminfo.

If you must have both termcap and terminfo terminal descriptions, keep
the terminfo description only and use infocmp -C to get the termcap descrip
tions.

If you have been using cursor optimization programs with the -ltermcap
or -ltermlib option in the cc command line, those programs will still be func
tional. However, these options should be replaced with the -lcurses option.

10-282 PROGRAMMER'S GUIDE

TAM Transition Library
Character mode applications that run under the Terminal Access Method

(TAM) on the UNIX PC can now run under ETI with a wide range of termi
nals. This section explains how to use the TAM transition library, the source
of this portability. In addition, it explains how you can eventually rewrite
your TAM application programs to run more efficiently under ETI without the
TAM transition library.

EXTENDED TERMINAL INTERFACE 10-283

Compiling and Running TAM Applica
tions under ETI

The TAM transition library consists of a header file tam.h and a set of
library routines. The file tam.h translates between TAM routines and
equivalent sets of low-level ETI routines. For example, the TAM function
wcreateO is mapped to the conversion library function T AMwcreateO, which
consists of a series of low-level ETI calls, such as newwinO and subwinO.

To use the TAM transition library, be sure to include the standard TAM
header file tam.h in your application program. So at the beginning of your
TAM applicq.tion program, you should already have

#include <tam.h> 1* as usual, for TAM calls *1

Next, you recompile and link your application program, say tamprog.c, to
form an executable, as follows:

cc -I /usr/add-cm/include tanprog.c -ltam -lcurses -0 executable_name

Note the use of the -I option, which tells the compiler where to find the TAM
header files. The two uses of the -1 option link the requisite library subrou
tines, the TAM transition library and the low-level ETI library.

Alternatively, you might separately compile one or more TAM application
files (say, taml.c, tam2.c, and main. c) and later link them to form an execut
able program.

cc -c -I /usr/add-an/include tam1.c /* compile files individually */

cc -c -I /usr/add-an/include tam2.c

cc -c -I /usr/add-an/include main.c

/* link objects to fonn executable * /
cc -0 executable_name tam1.0 tam2.0 main.o -ltam -lcurses

Note that the -I option is required for the compilation of any file that uses the
TAM library.

10·284 PROGRAMMER'S GUIDE

Tips for Polishing TAM Application Pro
grams Running under ETI

To enable the code in your TAM application program to run smoothly
under ETl, you should do the following:

• remove code that would be executed if a low-level iswindO function
call returned a non-zero value, i.e., true. Under the TAM transition
library, iswindO always returns false.

• remove all TAM calls to mouse management routines and the calls
wiconO, wicoffO, and wrastopO, because they will translate to null
operations.

• remove all machine-specific code, because the TAM transition library
does not translate system calls specifically tailored to the UNIX PC or
calls (such as ioctl(2» that have no meaning under ETI. These calls fail
under the TAM transition library on all machines except the UNIX Pc.

• note that all calls to track(3T) map to the low-level function wgetcO.

• remove all references to TAM calls that bear the same name as ETl
calls because calls that have the same names in both systems have dif
ferent effects.

• remove all arbitrary ANSI escape sequences for display output. For
example, the TAM transition library does not recognize the escape
sequence used on the UNIX PC in the command echo "\033[1", which
clears the screen. Instead, you should use equivalent ETl routines
(here, clearO).

Eliminating the superfluous code in the first three cases reduces your
program's size and execution time.

EXTENDED TERMINAL INTERFACE 10-285

How the TAM Transition Library Works

The TAM Transition Library translates between TAM function calls and
low-level ETI function calls. It also ensures that escape and control sequences
entered at a terminal's keyboard are properly interpreted.

Translations from TAM Calls to ETI Calls
The table in Figure 10-53 summarizes the translation of TAM to low-level

ETI (curses) functions. Eventually, if you want to rewrite your TAM applica
tions to make ETI calls directly and to run more efficiently, you can use this
table as a guide.

T AM Function

winitO
wexitO
iswindO
wcreateO
wdeleteO
wselectO

wgetselO
wgetstatO
wsetstatO
wputcO
wputsO
wprintfO
wslkO

wcmdO

Low-Level ETI (curses(3X» Equivalent

Call initscrO.
Call endwinO and exitO.
Return FALSE.
Call newwinO or new_panelO.
Call del winO or deLpanelO.
Call touch winO and wrefreshO, then update the list of
windows to indicate the new ordering.
Call top_panelO or botto1ll-panelO with NULL pointer.
Call getyxO, getmaxyxO, or getbegyxO.
Call deLpanelO, then new_panelO.
Call waddchO.
Call waddstrO.
Call wprintwO.
Create small window at bottom and use curses routines
with wprintwO.
The character string passed by wcmdO is copied to the bot
tom of the screen.

Figure 10-53: Translations from TAM to ETI Function Calls (Sheet 1 of 4)

10·286 PROGRAMMER'S GUIDE

TAM Function

wpromptO

wlabelO

wrefreshO

wuserO

wgotoO
wgetposO
wgetcO

kcodemapO

keypadO
wsetmouseO
wgetmouseO
wreadmouseO
wprexecO
wpostwaitO
wnl()

wiconO
wicoffO
wrastopO
trackO
initscrO
nlO

nonlO

How the TAM Transition Library Works

Low-Level ETI (curses(3X» Equivalent

The character string passed by wpromptO is copied to the
bottom of the screen.
The character string is printed in the upper left corner of
the specified window.
Call wrefreshO. If the window index is -1, all windows
should be refreshed in the appropriate order.
This functionality is not necessary. Remove this from your
code.
Call wmoveO.
Call getyxO.
Call wgetchO. Character translation from ETI to ANSI may
be required, depending on the current keypad mode.
This functionality is not necessary. Remove this from your
code.
Call keypadO.
This is a null operation.
This is a null operation.
This is a null operation.
Call eraseO and refreshO.
Call wrefreshO for each window in the window list.
The functionality of this routine is not supported by curses.
See ETI Release Notes 1.0 for a workaround.
This is a null operation.
This is a null operation.
This is a null operation.
Call wgetchO.
Call initscrO.
The functionality of this routine is not supported by curses.
See ETI Release Notes 1.0 for a workaround.
The functionality of this routine is not supported by curses.
See ETI Release Notes 1.0 for a workaround.

Figure 10-53: Translations from TAM to ETI Function Calls (Sheet 2 of 4)

EXTENDED TERMINAL INTERFACE 10·287

How the TAM Transition Library Works

TAM Function

cbreakO
nocbreakO
echoO
noechoO
inschO
getchO
flushinpO
attronO
attro££O
savettyO
resettyO
addchO
addstrO
beepO
clearO
clearokO
clrtobotO
clrtoeolO
delchO
deletelnO
eraseO
flashO
getyxO
insertlnO
leaveokO
moveO
mvaddchO
mvaddstrO
mvinchO

Low-Level ETI (curses(3X» Equivalent

Call cbreakO.
Call nocbreakO.
Call echoO.
Call noechoO.
Call inschO.
Call getchO;
Call flushinpO.
Call attronO.
Call attro££O.
Call savettyO.
Call resettyO.
Call addchO.
Call addstrO.
Call beepO.
Call clearO.
This is a null operation.
Call clrtobotO.
Call clrtoeolO.
Call delchO.
Call deletelnO.
Call eraseO.
Call flashO.
Call wgetyxO.
Call insertlnO.
This is a null operation.
Call moveO.
Call moveO and addchO.
Call moveO and addstrO.
Call moveO and inchO.

Figure 10-53: Translations from TAM to ETI Function Calls (Sheet 3 of 4)

10-288 PROGRAMMER'S GUIDE

T AM Function

nodelayO
wndelayO
refreshO
resettermO
baudrateO
endwinO
fixtermO
printw()

How the TAM Transition Library Works

Low-Level ETI (curses(3X» Equivalent

Call nodelayO.
Call nodelayO.
Call refreshO
Call resettermO.
Call baudrateO.
Call endwinO.
Call fixtermO.
Call printw().

Figure 10-53: Translations from TAM to ETI Function Calls (Sheet 4 of 4)

Because the high-level TAM functions in the table in Figure 10-54 make
calls only to the low-level functions in the previous table, you can continue to
use those high-level TAM functions in your application programs as well.
However, with ETI, you cannot use other TAM high-level functions such as
wtargetonO.

EXTENDED TERMINAL INTERFACE 10·289

How the TAM Transition Library Works

Usable TAM High Level Functions

formO
pb_emptyO
pb_openO
pbJ1ameO
pb-SbufO
windO

menuO
pb_getsO
pb_checkO
pb_putsO
adLgtwrdO
exhelpO

Figure 10-54: TAM High-Level Functions

messageO
adLgttokO
pb_seekO
pb_weof()
adf-StxcdO

The TAM Transition Keyboard Subsystem
Both TAM and ETI use a set of virtual function keys that translate

between an escape character sequence entered at the keyboard and a bit pat
tern inside the machine. Under the TAM transition library, the TAM virtual
key values are translated into ETI virtual key values.

The table in Figure 10-55 lists these equivalent virtual key values. Enter
ing the escape sequence listed in the left column will generate the correspond
ing TAM virtual function key value given in the middle column. The right
column lists the ETI equivalent of the TAM virtual key and is for reference
only.

TAM Escape Virtual Key Value

Sequence TAM ETI

ESC-! s_Fl KELF(8)

ESC-@ s-F2 KEYJ(9)

ESC-# sJ3 KEYJ(lO)

ESC-$ s_F4 KEYJ(11)

ESC-% sJ5 KEYJ(12) .
ESC- s_F6 KEYJ(13)

ESC-& sJ7 KELF(14)

ESC-* s-F8 KEYJ(15)

ESC-fl PFl KELF(16)

ESC-f2 PF2 KEY_F(17)

ESC-f3 PF3 KEYJ(18)

10·290 PROGRAMMER'S GUIDE

How the TAM Transition Library Works

TAM Escape Virtual Key Value

Sequence TAM ETl

ESC-f4 PF4 KEY_F(19)

ESC-fS PFS KEYJ(20)

ESC-f6 PF6 KEYJ(21)

ESC-f7 PF7 KELF(22)

ESC-fS PFS KEYJ(23)

ESC-f9 PF9 KEYJ(24)

ESC-fO PFIO KEYJ(2S)

ESC-f- PFll KELF(26)

ESC-f= PF12 KEY_F(27)

ESC-l Fl KELF(O)

ESC-2 F2 KEY_F(l)

ESC-3 F3 KEYJ(2)

ESC-4 F4 KEYJ(3)

ESC-S FS KEYJ(4)

ESC-6 F6 KEYJ(S)

ESC-7 F7 KEYJ(6)

ESC-S FS KEYJ(7)

ESC-bg Beg KEY_BEG

ESC-BG s_Beg KEY_SBEG

ESC-br Break KEY_BREAK

ESC-bw Back KEY_LEFT

ESC-BW s_Back KEY_SLEFT

ESC-ce Clear KEY_CLEAR

ESC-CE Clear KEY_CLEAR

ESC-ci ClearLine KEY_EOL

ESC-CI !LClearLine KEY_SEOL

ESC-cl Close KEY_CLOSE

ESC-CL Close KEY_CLOSE

ESC-em Cmd KEY_COMMAND

ESC-CM s_Cmd KEY_SCOMMAND

ESC-en Cand KEY_CANCEL

ESC-CN !LCand KEY_SCANCEL

ESC-cp Copy KEY_COPY

ESC-CP s-Copy KEY_SCOPY

ESC-cr Creat KEY_CREATE

ESC-CR s_Creat KEY_SCREATE

ESC-de DleteChar KEY_DC

EXTENDED TERMINAL INTERFACE 10-291

How the TAM Transition Library Works

TAM Escape Virtual Key Value

Sequence TAM ETI

ESC-Del DleteChar KEY_DC

ESC-DC s_DleteChar KEY_SDC

ESC-dl Dlete KEY_DL

ESC-DL !LDlete KEY_SDL

ESC-dn Down KEY_DOWN

ESC-DN RoIIDn KEY_SF

ESC-en End KEY_END

ESC-EN s-End KEY_SEND

ESC-ESC Esc none

ESC-ex Exit KEY-EXIT

ESC-EX s-Exit KEY_SEXIT

ESC-fi Find KEYJ'IND

ESC-FI s_Find KEY_SFIND

ESC-fw Forward KEYJIGHT

ESC-FW sJ'orward KEY_SRIGHT

ESC-hI Help KEY_HELP

ESC-? Help KEY_HELP

ESC-HL s-Help KEY_SHELP

ESC-hm Home KEY-HOME

ESC-HM s-Home KEY_SHOME

ESC-im InputMode KEY-IC

ESC-NJ !LInputMode KEY_SIC

ESC-mk Mark KEY-MARK

ESC-MK Sleet KEY_SELECT

ESC-ms Msg KEY-MESSAGE

ESC-MS s-Msg KEY3MESSAGE

ESC-mv Move KEY-MOVE

ESC-MV s-Move KEY3MOVE

ESC-nx Next KEYJJEXT

ESC-NX sJJext KEY3NEXT

ESC-op Open KEY_OPEN

ESC-OP Close KEY_CLOSE

ESC-ot Opts KEY_OPTIONS

ESC-OT s_Opts KEY30PTIONS

ESC-pg Page KEY_NPAGE

ESC-PG &-Page KEY_PPAGE

ESC-pr Print KEY_PRINT

10·292 PROGRAMMER'S GUIDE

TAM Escape

Sequence

ESC-PR

ESC-pv

ESC-PV

ESC-rd

ESC-RD

ESC-re

ESC-RE

ESC-rf

ESC-RF

ESC-rm

ESC-RM

ESC-ro

ESC-RO

ESC-rp

ESC-RP

ESC-rs

ESC-RS

ESC-ru

ESC-RU

ESC-51

ESC-SL

ESC-ss

ESC-55

ESC-sv

ESC-SV

ESC-ud

ESC-UD

ESC-up

ESC-UP

How the TAM Transition Library Works

sJrint

Prey

s-Prev

RollDn

RollDn

Ref

TAM

Rstrt

Rfrsh

Clear

Rsume

S-Rsume

Redo

s-Redo

Rplac

S-Rplac

Rstrt

Rstrt

RollUp

RollUp

Sleet

Slect

Suspd

s-Suspd

Save

s_Save

Undo

s_Undo

Up

RollUp

Virtual Key Value

ETI

KEY_SPRINT

KEYJREVIOUS

KEY_SPREVIOUS

KEY_SF

KEY_SF

KEY_REFERENCE

KEY-RESTART

KEY-REFRESH

KEY_CLEAR

KEY_RESUME

KEY_SRSUME

KEY-REDO

KEY_SREDO

KEY-REPLACE

KEY_SREPLACE

KEY-REFERENCE

KEY-RESTART

KEY-SR

KEY_SR

KEY_SELECT

KEY_SELECT

KEY_SUSPEND

KEY_SSUSPEND

KEY_SAVE

KEY_SSAVE

KEY_UNDO

KEY_SUNDO

KEY_UP

KEY_SR

Figure 10-55: Translation Between TAM Escape Sequences and Virtual Key
Values

Some keyboards have one or more keys that emit escape sequences that
are identical to the UNIX PC keyboard sequences but do not match in terms

EXTENDED TERMINAL INTERFACE 10-293

How the TAM Transition Library Works

of functionality. The function of an operationally incompatible key will
always map to its terminfo specification. The TAM specific function implied
by the same escape sequence will be accessible through the technique describe
above. Mechanisms in curses(3X) automatically handle timing conflicts
between actual keyboard function keys and UNIX PC keyboard escape
sequences.

10·294 PROGRAMMER'S GUIDE

Program Examples

The following programs demonstrate uses of low-level ETI (curses) func
tions. See the demonstration programs delivered on the ETI product diskettes
for programs that use the high-level ETI functions.

The editor Program
This program illustrates how to use curses routines to write a screen edi

tor. For simplicity, editor keeps the buffer in stdscr; obviously, a real screen
editor would have a separate data structure for the buffer. This program has
many other simplifications: no provision is made for files of any length other
than the size of the screen, for lines longer than the width of the screen, or for
control characters in the file.

Several points about this program are worth making. First, it uses the
move(), mvaddstr(), fiash(), wnoutrefresh() and drtoeolO routines. These
routines are all discussed in this chapter under "Working with curses Rou
tines. "

Second, it also uses some curses routines that we have not discussed. For
example, the function to write out a file uses the mvinchO routine, which
returns a character in a window at a given position. The data structure used
to write out a file does not keep track of the number of characters in a line or
the number of lines in the file, so trailing blanks are eliminated when the file
is written. The program also uses the inschO, delchO, insertlnO, and
deletelnO routines. These functions insert and delete a character or line. See
curses(3X) for more information about these routines.

Third, the editor command interpreter accepts special keys, as well as
ASCII characters. On one hand, new users find an editor that handles special
keys easier to learn about. For example, it's easier for new users to use the
arrow keys to move a cursor than it is to memorize that the letter h means
left, j means down, k means up, and I means right. On the other hand,
experienced users usually like having the ASCII characters to avoid moving
their hands from the home row position to use special keys.

Because not all terminals have arrow keys, your curses programs will
work on more terminals if there is an ASCII character associated with
each special key.

EXTENDED TERMINAL INTERFACE 10·295

Examples

Fourth, the CTRL-L command illustrates a feature most programs using
curses routines should have. Often some program beyond the control of the
routines writes something to the screen (for instance, a broadcast message) or
some line noise affects the screen so much that the routines cannot keep track
of it. A user invoking editor can type CTRL-L, causing the screen to be
cleared and redrawn with a call to wrefresh(curscr).

Finally, another important point is that the input command is terminated
by CTRL-D, not the escape key. It is very tempting to use escape as a com
mand, since escape is one of the few special keys available on every keyboard.
(Return and break are the only others.) However, using escape as a separate
key introduces an ambiguity. Most terminals use sequences of characters
beginning with escape (i.e., escape sequences) to control the terminal and
have special keys that send escape sequences to the computer. If a computer
receives an escape from a terminal, it cannot tell whether the user depressed
the escape key or whether a special key was pressed.

editor and other curses programs handle the ambiguity by setting a timer.
If another character is received during this time, and if that character might be
the beginning of a special key, the program reads more input until either a full
special key is read, the time out is reached, or a character is received that
could not have been generated by a special key. While this strategy works
most of the time, it is not foolproof. It is possible for the user to press escape,
then to type another key quickly, which causes the curses program to think a
special key has been pressed. Also, a pause occurs until the escape can be
passed to the user program, resulting in a slower response to the escape key.

Many existing programs use escape as a fundamental command, which
cannot be changed without infuriating a large class of users. These programs
cannot make use of special keys without dealing with this ambiguity, and at
best must resort to a time-out solution. The moral is clear: when designing
your curses programs, avoid the escape key.

/* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr to simplify
* the program.
*/

#include <stdio.h>
#include <curses.h>

10·296 PROGRAMMER'S GUIDE

#define CTRL(e) «e) & 037)

main(arge, argv)
int arge;

char **argv;

extezn void perr=(), exit();

int i, n, 1;
int e;
int line = 0;

FILE *fd;

if (arge != 2)

{

fprintf(stderr, "Usage: %s file\n", argv[O]);
exit(1);

fd = fopen(argv[1], "r");

if (fd == NULL)
{

perr=(argv[1]) ;
exit(2) ;

inits=();
cbreak() ;

nonl();

noecho();

idlak(stds=, TRUE);

keypad(stds=, TRUE);

/* Read in the file */
while «e = getc(fd» != EDF)

if (e == '\n')
line++;

if (line> LINES - 2)

break;
addch(e);

felose(fd) ;

Examples

continued

EXTENDED TERMINAL INTERFACE 10-297

Examples

1lIJVe(0,0) ;
refresh();
edit();

1* Write out the file *1
fd = fopen(argv[1], "w");
far (1 = 0; 1 < LINES - 1; 1++)

n = len(l);
far (i = 0; i < n; i++)

pltc(nwinch(l, i) &. A_CHARl'Elel', fd);
pltc('\n', fd);

fclose(fd) ;
endwin() ;

exit(O);

lent lineno)
int lineno;
{

int linelen = COLS - 1;

while (linelen >= 0 &&. nwinch(lineno, linelen) ")
linelen--;

return linelen + 1;

1* Global value of current cursor position *1
int reM, col;

edit()

{

int c;

far (;;)

10·298 PROGRAMMER'S GUIDE

continued

nove (row, col);
refresh();

e '= getch();

1* Eklit= cx:mnands *1
switch (e)

{

1* hjk1 and arrow keys: nove cursor

* in direction indicated *1
case 'h':
case KEY_LEFl':

case 'j':

if (col> 0)
col--;

else
flash();

break;

case KEY_ IJC:Hq:

if (row < LINES - 1)
row++;

else
flash();

break;

case 'k':
case KEY_UP:

case 111:

if (row> 0)
r<J'tfl--;

else
flash();

break" ,

case KEY_RIGHT:
if (col < CX>LS - 1)

col++;
else

flash();

break" ,

Examples

continued

EXTENDED TERMINAL INTERFACE 10-299

Examples

/* i: enter input IlIClde * /
case KEY_Ie:

case 'i':
input();

break;

/* x: delete current character */
case KEY_DC:

case 'x':
delch();

break;

continued

/* 0: open up a new line and enter input IlIClde */
case KEY_n.:

case '0':
1ID\Ie(++row, 001 = 0);
insertln() ;
input();

break;

/* d: delete current line */
case KEY_DL:

case 'd':
deleteln() ;
break;

/* AL: redraw screen */

case KEY_CLEAR:

case C'mL('L'):

w.refresh(curscr) ;
break;

/* w: write and quit */
case 'Wi:

return-,

10-300 PROGRAMMER'S GUIDE

1*

1* q: quit without writing *1
case 'q':

default:

eIXiwin() ;

exit(2) ;

flash() ;

break;

* Insert mode: accept characters and insert them.
* End with AD or EIC

*1
inplt()

{

int e;

standout () ;
mvaddstr(LINES - 1, COLS - 20, "INPUl' KDE") ;

standend() ;

lIDVe(row, 0(1);

refresh() ;
for (;;)

e = getch();
if (e == C'lRL('D') II e == KElCEIC)

break;
insch(e) ;
IIDVe (row, ++0(1);

refresh();

IIDVe(LINES - 1, OOLS - 20);

elrt:oeo1 () ;
lIDVe(row, 0(1);

refresh();

Examples

continued

EXTENDED TERMINAL INTERFACE 10·301

Examples

The highlight Program
This program illustrates a use of the routine attrsetO. highlight reads a

text file and uses embedded escape sequences to control attributes. \U turns
on underlining, \B turns on bold, and \N restores the default output attri
butes.

Note the first call to scrollokO, a routine that we have not previously dis
cussed (see curses(3X». This routine allows the terminal to scroll if the file is
longer than one screen. When an attempt is made to draw past the bottom of
the screen, scrollokO automatically scrolls the terminal up a line and calls
refreshO·

1*
* highlight: a program to tum. \U, \B, and

* \N sequences into highlighted

* output, allowing lIIOrds to be

* displayed urxierlined or in bold.

*1

#include <stdio.h>

#include <curses.h>

main (arge, argv)

int arge;
char **argv;

FILE *fd;
int c, c2;
void exit() , perror();

if (arge != 2)

{

fprlntf(stderr, "usage: highlight file\n");

exit(1);

fd = fopen(argv[1], "r");

if (fd == NULL)

10-302 PROGRAMMER'S GUIDE

perror(argv[1]) ;
exit(2) ;

initscr() ;
scrollak(stdscr, TRUE);

nonl{);

while «c = getc(fd» != IDF)

if (c == "")

else

fclose(fd) ;

refresh() ;

endwin();

exit(O);

c2 = getc(fd);
switch (c2)

{

case 'B':
attrset(A __ BDLO);

oontinue;

case lU':

attrset(A __ UNDERLINE) ;

oontinue;

case IN':

attrset(O) ;

oontinue;

addch(c) ;

addch(c2) ;

addch(c) ;

Examples

continued

EXTENDED TERMINAL INTERFACE 10·303

Examples

The scatter Program
This program takes the first LINES - 1 lines of characters from the stan

dard input and displays the characters on a terminal screen in a random order.
For this program to work properly, the input file should not contain tabs or
non-printing characters.

1*
* The scatter program.
*1

#inc1ude <curses.h>
#inc1ude <sys/types.h>

#define MAXLINES 120

#define MAXCOLS 160

char s[MAXLINES] [MAXCOLS] ;

int T[MAXLINES] [MAXCOLS];

maine)
{

1* Screen Array *1
1* Tag Array - Keeps track of *
* the number of characters *
* printed and their positions. *1

register int raw = 0,001 = 0;
register int c;
int char_count = 0;
time_t t;
void exit(), srand();

initsc:r() ;
for(raw = O;raw < MAXLINES;row-++)

for(ool = 0;001 < MAX<XlLS;00l++)
s[raw][ool]=' ';

001 = raw = 0;
1* Read screen in *1
while « c=getchar (» 1 = IDF && raw < LINES)

if(c 1= '\n')

10·304 PROGRAMMER'S GUIDE

else

/* Place char in screen array * /
s[~][ool++] = c;

if(c 1= ' ')

001 = 0;
row++;

char_=t++;

time(&t) ;/* Seed the randan IlIlIIIber generator */
srand((unsigned)t);

endwin() ;

exit(O);

~ = rand() % LINES;
001 = (rand() » 2) % CX>LS;
if (T[row][col] 1= 1 &&. s[row][ool] 1= , ')

nove (row, col);
addch(s [row] [001]) ;
T[row][ool] = 1;
char_oount--;
refresh();

Examples

continued

EXTENDED TERMINAL INTERFACE 10-305

Examples

The show Program
show pages through a file, showing one screen of its contents each time

you depress the space bar. The program calls cbreakO so that you can
depress the space bar without having to hit return; it calls noechoO to prevent
the space from echoing on the screen. The nonlO routine, which we have not
previously discussed, is called to enable more cursor optimization. The
idlokO routine, which we also have not discussed, is called to allow insert and
delete line. (See curses(3X) for more information about these routines). Also
notice that clrtoeolO and clrtobotO are called.

By creating an input file for show made up of screen-sized (about 24
lines) pages, each varying slightly from the previous page, nearly any exercise
for a cursesO program can be created. This type of input file is called a show
script.

#:include <curses.h>
#include <signal.h>

main(arge, argv)

int argc;
char *argv[];

{

FILE *fd;
char linebuf[BUFSIZ];
int line;
void dane(), perror(), exit();

if (arge 1= 2)
{

fprintf(stderr, "usage: %s file\n", argv[O]);
exit(1);

if «fd=fopen(argv[1], "r"» == NULL)
{

perror(argv[1]);

exit(2) ;

10·306 PROGRAMMER'S GUIDE

Examples

continued

signal (SIGINT, dane);

initscr() ;
noecho();

cbreak();

nanl();

idlok(stdscr, TRllE);

while(1)

{

1IOVe(0,0);
far (line = 0; line < LINES; line++)

void dane()

{

if (I fgets (linebuf, sizeof linebuf, fd»

clrtabot () ;

dane();

lIOVe(line, 0);
printw("%8", linebuf);

refresh() ;

if (getch() == 'q')

dane();

IIOVe(LINES - 1, 0);

c1rtoeo1 () ;
refresh() ;

endwin();

exit(O);

EXTENDED TERMINAL INTERFACE 10·307

Examples

The two Program
This program pages through a file, writing one page to the terminal from

which" the program is invoked and the next page to the terminal named on the
command line. It then waits for a space to be typed on either terminal and
writes the next page to the terminal at which the space is typed.

two is just a simple example of a two-terminal curses program. It does
not handle notification; instead, it requires the name and type of the second
terminal on the command line. As written, the command "sleep 100000"
must be typed at the second terminal to put it to sleep while the program
runs, and the user of the first terminal must have both read and write permis
sion on the second terminal.

#include <curses.h>

#include <signal.h>

SCREEN *me, *you;
SCREEN *set_tezm();

FILE *fd, *fdyou;
char linehuf[512];

main (argo, argv)
int argc;
char **argv;

void done(), exit();

unsigned sleep();
char *getenv();

int c;

if (argo 1= 4)

{

fprintf(stderr, "Usage: tw::> othertty othert:t:ytype inrutfile\n");
exit(1);

10-308 PROGRAMMER'S GUIDE

fd = fopen(argv[3], "r");
fdyou = fopen(argv[1], "W+");

signal (SIGINT, done); /* die gracefully */

Examples

continued

me = newtenn(getenv('''l'ERM''), stdout, stdin); /* initialize Il'!Y tty */
you = newtenn(argv[2], fdyou, fdyou) ;/* Initialize the other te:r:m:inal */

set_tenn(me) ; /* Set rrodes far Il'!Y te:r:m:inal */
roecho() ;/* turn off tty echo */
cbreak() ;/* enter cbreak rrode */
nonl(); /* Allow linefeed */

nodelay(stdscr, 'lRTJE); /* No hang an input */

set_tenn(you) ;
roecho();

/* Set rrodes far other tenninal * /

cbreak();

nonl() ;
nodelay(stdscr , 'lRTJE) ;

/* Dump first screen full an Il'!Y te:r:m:inal */

dump.Jl!ige (me) ;

/* Dump seooOO. screen full an the other tenninal * /
dump.Jl!ige (you) ;

far (;;) /* far each screen full * /

set_tenn(me) ;
e = getch();

if (e == 'q')/* wait far user to read it */
done();
if (e == , ')

dumpJl1l.ge(me) ;

set_tenn(you) ;
e = getch();

if (e == 'q')/* wait far user to read it */
dane();

if (e==' ')
dump.Jl!ige(you) ;
sleep(1);

EXTENDED TERMINAL INTERFACE 10·309

Examples

d\mpJl1ige (tenn)
SCREEN *1:enn;

/*

int line;

set_tenn(tenn) ;
nove(O, 0);
for (line = 0; line < LINES - 1; line++) {

if (fgets(linebuf, sizeof l:inebuf, fd) == NULL) {

clrtabot() ;

done();

}

IIlIIaddstr(line, 0, linebuf);

stamout();
mvprintw(LINES - 1,0, "--MJre--");
standend() ;

refresh() ; /* sync screen */

* Clean up and exit.
*/

void done()

{

10-310

/* Clean up first tenninal */
set_ tenn(you) ;
nove(LINES - 1,0) ;/* to lower left COIner */

clrtoeol () ;
refresh() ;

/* clear bottan line * /
/* flush out ~ */

endwin() ;/* curses cleanup */

/* Clean up second tenn:inal * /
set_tenn(me) ;
nove (LINES - 1,0); /* to lower left COIner * /
clrtoeol(); /* clear bottan line */
refresh(); /* flush out ~ */

endwin() ;/* curses cleanup */
exit(O) ;

PROGRAMMER'S GUIDE

continued

Examples

The window Program
This example program demonstrates the use of multiple windows. The

main display is kept in stdscr. When you want to put something other than
what is in stdscr on the physical terminal screen temporarily, a new window
is created covering part of the screen. A call to wrefresh() for that window
causes it to be written over the stdscr image on the terminal screen. Calling
refreshO on stdscr results in the original window being redrawn on the
screen. Note the calls to the touchwin() routine (which we have not dis
cussed - see curses(3X» that occur before writing out a window over an
existing window on the terminal screen. This routine prevents screen optimi
zation in a curses program. If you have trouble refreshing a new window that
overlaps an old window, it may be necessary to call touch winO for the new
window to get it completely written out.

#include <curses.~

WINIXM *cm'iwin;

maine)

int i, c;
char buf[120];
void exit();

initscr() ;
nonl();

noecho() ;

cbreak() ;

CIrlwin = newwin(3, OOIS, 0, 0) ;/* top 3 lines */
f= (i = 0; i < LINFS; i++)

mvprintw(i, 0, '''Ihis is line %d of stdscr", i);

EXTENDED TERMINAL INTERFACE 10-311

Examples

for (;;)

refresh();

e = qetch();
switch (e)

case 'e': /* Enter cx:mnand fran keyboard * /
werase(atrlw:in) ;

case 'q':

wprintw(atrlw:in, "Enter cx:mnand:");

wmove(atrlw:in, 2, 0);
for (i = 0; i < ooLS; i++)

wclddch(atrlw:in, '-');
wmove(atrlw:in, 1, 0);
touchwin(atrlw:in) ;
wrefresh(atrlw:in) ;

wqetstr(CIIdwin, Wi);
touchwin(stdscr) ;

/*

* The cx:mnand is rr1W in Wi.
* It should be processed here.

*/

endwin();

exit(O);

10-312 PROGRAMMER'S GUIDE

continued

Examples

The colors Program
This program creates two windows. All characters displayed in the first

window will be in red, on a blue background. All characters displayed in the
second window will be in yellow, on a magenta background.

EXTENDED TERMINAL INTERFACE 10-313

Examples

#include <curses.h>

#define PAIR1
#define PAIR2 2

maine)
{

WINIJCM *win 1, *win2;

ints=();
if « start _ oolor(» == aq

/* =eate win'Iows * /

win1 = newwi.n (5, 40, 0, 0);
win2 = newwi.n (5, 40, 15, 40);

/* =eate two oolor pairs * /

init---P6ir (PAIR1, COLCILRID, COLOR_BLUE);
init---P6ir (PAIR2, COLOR _ YELICM, COLOR _MAGENl'A) ;

/* turn an oolor attr:il::utes for each window * /

wattran (win1, COLOR_PAIR (PAIR1»;
wattran (win2, COLOR_PAIR (PAIR2»;

/* print sane text in each window and exit */

waddst:r (win 1, "'!his should be red an blue");
waddst:r (win2, "'!his should be yellow an magenta");
wrefresh (win1);
wrefresh (win2);

/* wait for any key before teno:i.nating * /

wgetch (win2);

endwin();

10-314 PROGRAMMER'S GUIDE

\

\
;'

11 Common Object File Format
(COFF)

The Common Object File Format
(COFF)
Definitions and Conventions

• Sections
• Physical and Virtual Addresses
• Target Machine

File Header
• Magic Numbers

• Flags
• File Header Declaration

Optional Header Information
• Standard UNIX System a.out Header
• Optional Header Declaration

Section Headers

• Flags
• Section Header Declaration
• .bss Section Header

Sections
Relocation Information

• Relocation Entry Declaration
Line Numbers

• Line Number Declaration
Symbol Table

• Special Symbols
• Inner Blocks
• Symbols and Functions
• Symbol Table Entries
• Auxiliary Table Entries

String Table
Access Routines

11-1
11-3
11-3
11-3
11-3
11-4
11-4
11-4
11-5
11-6
11-7
11-8
11-9

11-10
11-11
11-12
11-13
11-13
11-14
11-15
11-16
11-17
11-18
11-20
11-22
11-23
11-36
11-44
11-44

COMMON OBJECT FILE FORMAT (COFF)

The Common Object File Format (COFF)

This section describes the Common Object File Format (COFF) used on
your computer with the UNIX operating system. COFF is the format of the
output file produced by the assembler, as, and the link editor, ld.

Some key features of COFF are:

• applications can add system-dependent information to the object file
without causing access utilities to become obsolete.

• space is provided for symbolic information used by debuggers and
other applications.

• programmers can modify the way the object file is constructed by pro
viding directives at compile time.

The object file supports user-defined sections and contains extensive infor
mation for symbolic software testing. An object file contains

• a file header

• optional header information

• a table of section headers

• data corresponding to the section headers

• relocation information

• line numbers

• a symbol table

• a string table

Figure 11-1 shows the overall structure.

COMMON OBJECT FILE FORMAT (COFF) 11-1

The Common Object File Format (COFF)

FILE HEADER
Optional Information

Section 1 Header

...
Section n Header

Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Sect. 1

...
Relocation Info for Sect. n
Line Numbers for Sect. 1

...
Line Numbers for Sect. n

SYMBOL TABLE
STRING TABLE

Figure 11-1: Object File Format

The last four sections (relocation, line numbers, symbol table, and the string
table) may be missing if the program is linked with the -s option of the ld
command, or if the line number information, symbol table, and string table
are removed by the strip command. The line number information does not
appear unless the program is compiled with the -g option of the cc command.
Also, if there are no unresolved external references after linking, the relocation
information is no longer needed and is absent. The string table is also absent
if the source file does not contain any symbols with names longer than eight
characters.

An object file that contains no errors or unresolved references is con
sidered executable.

11-2 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Definitions and Conventions
Before proceeding further, you should become familiar with the following

terms and conventions.

Sections
A section is the smallest portion of an object file that is relocated and

treated as one separate and distinct entity. In the most common case, there
are three sections named .text, .data, and .bss. Additional sections accommo
date comments, multiple text or data segments, shared data segments, or
user-specified sections. However, the UNIX operating system loads only .text,
.data, and .bss into memory when the file is executed.

It a mistake to assume that every COFF file will have a certain number
of sections, or to assume characteristics of sections such as their order,
their location in the object file, or the address at which they are to be
loaded. This information is available only after the object file has been
created. Programs manipulating COFF files should obtain it from file
and section headers in the file.

Physical and Virtual Addresses
The physical address of a section or symbol is the offset of that section or

symbol from address zero of the address space. The term physical address as
used in COFF does not correspond to general usage. The physical address of
an object is not necessarily the address at which the object is placed when the
process is executed. For example, on a system with paging, the address is
located with respect to address zero of virtual memory and the system per
forms another address translation. The section header contains two address
fields, a physical address, and a virtual address; but in all versions of COFF on
UNIX systems, the physical address is equivalent to the virtual address.

Target Machine
Compilers and link editors produce executable object files that are

intended to be run on a particular computer. In the case of cross-compilers,
the compilation and link editing are done on one computer with the intent of
creating an object file that can be executed on another computer. The term
target machine refers to the computer on which the object file is destined to
run. In the majority of cases, the target machine is the exact same computer
on which the object file is being created.

COMMON OB.JECT FILE FORMAT (COFF) 11-3

The Common Object File Format (COFF)

File Header
The file header contains the 20 bytes of information shown in Figure 11-2.

The last 2 bytes are flags that are used by ld and object file utilities.

Bytes Declaration Name Description

0-1 unsi~ed short Lmajpc Magic number
2-3 unsigned short f-1lscns Number of sections
4-7 long int t_timdat Time and date stamp indicating

when the file was created,
expressed as the number of
elapsed seconds since 00:00:00
GMT, January 1, 1970

8-11 long int Lsymptr File pointer containing the
starting address of the symbol
table

12-15 long int f-1lsyms Number of entries in the sym-
bol table

16-17 unsigned short Lopthdr Number of bytes in the
optional header

18-19 unsigned short f-flags Flags (see Figure 11-3)

Figure 11-2: File Header Contents

Magic Numbers
The magic number specifies the target machine on which the object file is

executable.

Flags
The last 2 bytes of the file header are flags that describe the type of the

object file. Currently defined flags are found in the header file filehdr.h and
are shown in Figure 11-3.

11·4 PROGRAMMER'S GUIDE

------------ The Common Object File Format (COFF)

Mnemonic Flag Meaning

F_RELFLG 00001 Relocation information stripped
from the file

F-EXEC 00002 File is executable (i.e., no
unresolved external references)

F_LNNO 00004 Line numbers stripped from the
file

F_LSYMS 00010 Local symbols stripped from
the file

F-AR16WR 0000200 16-bit byte reversed word
F-AR32WR 0000400 32-bit byte reversed word

Figure 11-3: File Header Flags

File Header Declaration
The C structure declaration for the file header is given in Figure 11-4.

This declaration may be found in the header file filehdr.h.

COMMON OBJECT FILE FORMAT (COFF) 11·5

The Common Object File Format (COFF)

stzuct filehdr

} ;

unsigned short f_magic; /* magic number */

unsigned short f_nscns; /* number of section */

lang f_tindat; /* time a:rxl date stamp */

long f_symptr; /* file ptr to symbol table */

long f_nsytnS; /* number entries in the symbol table */

unsigned short f_opthdr; /* size of optional header */

unsigned short f_flags; /* flags */

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

Figure 11-4: File Header Declaration

Optional Header Information
The template for optional information varies among different systems that

use COFF. Applications place all system-dependent information into this
record. This allows different operating systems access to information that only
that operating system uses without forcing all COFF files to save space for
that information. General utility programs (for example, the symbol table
access library functions, the disassembler, etc.) are made to work properly on
any common object file. This is done by seeking past this record using the
size of optional header information in the file header field Lopthdr.

11-6 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Standard UNIX System a.out Header
By default, files produced by the link editor for a UNIX system always

have a standard UNIX system a.out header in the optional header field. The
UNIX system a.out header is 28 bytes. The fields of the optional header are
described in Figure 11-5.

Bytes Declaration Name Description

0-1 short magic Magic number
2-3 short vstamp Version stamp
4-7 lolYt int tsize Size of text in bytes

8-11 long int dsize Size of initialized data in bytes
12-15 long int bsize Size of uninitialized data in

bytes
16-19 long int entry. Entry point

20-23 long int texLstart Base address of text
24-27 Ion g int datCLStart Base address of data

Figure 11-5: Optional Header Contents

Whereas, the magic number in the file header specifies the machine on
which the object file runs, the magic number in the optional header supplies
information telling the operating system on that machine how that file should
be executed. The magic numbers recognized by the System V /286 and
System V /386 UNIX operating system are given in Figure 11-6.

COMMON OBJECT FILE FORMAT (COFF) 11-7

The Common Object File Format (COFF)

Value Meaning

0407 Text segment is not write-protected or sharable;
data segment is contiguous with the text seg
ment.

0410 Data segment starts at the next segment follow
ing the text segment and the text segment is
write-protected.

0413 Text and data segments are aligned within
a.out so it can be directly paged.

0443 Defines a.out to be a target shared library.

Figure 11-6: UNIX System Magic Numbers

Optional Header Declaration
The C language structure declaration currently used for the UNIX system

a.out file header is given in Figure 11-7. This declaration may be found in the
header file aouthdr.h.

11-8 PROGRAMMER'S GUIDE

typedef struct aouthdr
{

short magic;
short vstamp;
lang tsize;

The Common Object File Format (COFF)

1* magic number *1
1* versicm stamp *1
1* text size in bytes, padded *1

1* to full \\Ord boundary *1

lang dsize; 1* initialized data size *1

lang bsize; 1* uninitialized data size *1

lang entry; 1* entry point *1

lang text_start; 1* base of text for this file *1

lang data_start 1* base of data for this file *1

} PalTHDR;

Figure 11-7: aouthdr Declaration

Section Headers
Every object file has a table of section headers to specify the layout of

data within the file. The section header table consists of one entry for every
section in the file. The information in the section header is described in Fig
ure 11-8.

COMMON OBJECT FILE FORMAT (COFF) 11-9

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-7 char S-Ilame 8-character null padded section
name

8-11 long int s_~addr Physical address of section
12-15 long int s_vaddr Virtual address of section
16-19 long int s_size Section size in bytes
20-23 long int s_scnptr File pointer to raw data
24-27 long int s-I'elptr File pointer to relocation entries

28-31 long int s-Innoptr File pointer to line number
entries

32-33 unsigned s-Ilreloc Number of relocation entries
short

34-35 unsigned s-Illnno Number of line number entries
short

36-39 long int s_flags Flags (see Figure 11-9)

Figure 11-8: Section Header Contents

The size of a section is padded to a multiple of 4 bytes. File pointers are
byte offsets that can be used to locate the start of data, relocation, or line
number entries for the section. They can be readily used with the UNIX sys
tem function fseek(3S).

Flags
The lower 2 bytes of the flag field indicate a section type. The flags are

described in Figure 11-9.

11-10 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Mnemonic Flag Meaning

STYPJEG OxOO Regular section (allocated, relocated,
loaded)

STYP_DSECT Ox01 Dummy section (not allocated, relo-
cated, not loaded)

STYP~OLOAD Ox02 Noload section (allocated, relocated, not
loaded)

STYP_GROUP Ox04 Grouped section (formed from input
sectionsl

STYP_PAD Ox08 Padding section (not allocated, not relo-
cated, loaded)

STYP_COPY Ox10 Copy section (for a decision function
used in updating fields; not allocated,
not relocated, loaded, relocation and
line number entries processed normally)

STYP_TEXT Ox20 Section contains executable text
STYP_DATA Ox40 Section contains initialized data
STYP_BSS Ox8O Section contains only uninitialized data
STYP_INFO Ox200 Comment section (not allocated, not

relocated, not loaded)
STYP_OVER Ox400 Overlay section (relocated, not allo-

cated, not loaded)
STYP_LIB Ox8OO For .lib section (treated like

STYP_INFO)

Figure 11-9: Section Header Flags

Section Header Declaration
The C structure declaration for the section headers is described in Figure

11-10. This declaration may be found in the header file scnhdr.h.

COMMON OBJECT FILE FORMAT (COFF) 11·11

The Common Object File Format (COFF,

struct sc:nbdr
{

s_name[8];
sJl!l.ddr;
s_vaddr;
s_size;
s_sc:npt:r ;

1* section name *1
1* physical address *1
1* virtual address *1
1* section size *1
1* file ptr to section raw data *1

1* file ptr to relocation *1

1* file ptr to line mmiler *1

unsigned short s_nreloc; 1* number of relocation entries *1

} ;

#define SOIHIR struct sc:nbdr
#define samsz sizeof(SOIHIR)

1* number of line number entries *1

1* flags *1

Figure 11-10: Section Header Declaration

.bss Section Header
The one deviation from the normal rule in the section header table is the

entry for uninitialized data in a .bss section. A .bss section has a size and
symbols that refer to it, and symbols that are defined in it. At the same time,
a .bss section has no relocation entries, no line number entries, and no data.
Therefore, a .bss section has an entry in the section header table but occupies
no space elsewhere in the file. In this case, the number of relocation and line
number entries, as well as all file pointers in a .bss section header, are O. The
same is true of the STYP -NOLOAD and STYP _DSEeT sections.

11·12 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Sections
Figure 11-1 shows that section headers are followed by the appropriate

number of bytes of text or data. The raw data for each section begins on a 4-
byte boundary in the file.

Link editor SECTIONS directives (see Chapter 12) allow users to, among
other things:

• describe how input sections are to be combined

• direct the placement of output sections

• rename output sections.

If no SECTIONS directives are given, each input section appears in an
output section of the same name. For example, if a number of object files,
each with a .text section, are linked together, the output object file contains a
single .text section made up of the combined input .text sections.

Relocation Information
Object files have one relocation entry for each relocatable reference in the

text or data. The relocation information consists of entries with the format
described in Figure 11-11.

Bytes Declaration Name Description

0-3 long int r_vaddr (Virtual) address of reference
4-7 long int r_symndx Symbol table index
8-9 unsi ned short g r_t yp e Relocation t yp e

Figure 11-11: Relocation Section Contents

The first 4 bytes of the entry are the virtual address of the text or data to
which this entry applies. The next field is the index, counted from 0, of the
symbol table entry that is being referenced. The type field indicates the type
of relocation to be applied.

COMMON OBJECT FILE FORMAT (COFF) 11·13

The Common Object File Format (COFF)

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the input
section are treated. The currently recognized relocation types are given in
Figure 11-12.

Mnemonic Flag

lLABS

LDIR16 *

LREL16 *

LDIR32

LSEG12 *

LPCRLONG t

* 80286 Computer only.
t 80386 Computer only.

0

01

02

06

011

024

Figure 11-12: Relocation Types

Meaning

Reference is absolute; no relocation is
necessary. The entry will be ignored.
Direct, 16-bit reference to a symbol's
virtual address.
"PC-relative", 16-bit reference to a
symbol's virtual address. Relative
references occur in instructions such as
jumps and calls.
Direct 32-bit reference to the symbol's
virtual address.
Direct, 16-bit reference to the segment-
selector bits of a 32-bit virtual address.
"PC-I'elative", 32-bit reference to a
symbol's virtual address.

Relocation Entry Declaration
The structure declaration for relocation entries is given in Figure 11-13.

This declaration may be found in the header file reloc.h.

11·14 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

struct reloc

lang r_vaddr; 1* virtual address of reference *1

lang r_symndx; 1* index into symbol table *1

unsigned short r_type; 1* relocation type *1
} ;

#define RELOC struct reloc

#define RELSZ 10

Figure 11-13: Relocation Entry Declaration

Line Numbers
When invoked with the -g option, the cc and £77 commands cause an

entry in the object file for every source line where a breakpoint can be
inserted. You can then reference line numbers when using a software
debugger like sdb. All line numbers in a section are grouped by function as
shown in Figure 11-14.

COMMON OBJECT FILE FORMAT (COFF) 11·15

The Common Object File Format (COFF)

symbol index o
physical address line number
physical address line number

symbol index o
physical address line number

physical address line number

Figure 11-14: Line Number Grouping

The first entry in a function grouping has line number 0 and has, in place
of the physical address, an index into the symbol table for the entry contain
ing the function name. Subsequent entries have actual line numbers and
addresses of the text corresponding to the line numbers. The line number
entries are relative to the beginning of the function and appear in increasing
order of address.

Line Number Declaration
The structure declaration currently used for line number entries is given in

Figure 11-15.

11-16 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

struct lineno

union

long l_symndx; /* symtbl iIxiex of func name */

long lJl1iddr; /* paddr of line rrumber */

} l_addr;
unsigned short l_lnnD; /* line rrumber */

} ;

#define LINEN)

#define LINESZ

struct lineno

6

Figure 11-15: Line Number Entry Declaration

Symbol Table
Because of symbolic debugging requirements, the order of symbols in the

symbol table is very important. Symbols appear in the sequence shown in
Figure 11-16.

COMMON OBJECT FILE FORMAT (COFF) 11-17

The Common Object File Format (COFF)

filename 1

function 1

local symbols
for function 1

function 2

local symbols
for function 2

· ..
statics

· ..
filename 2

function 1

local symbols
for function 1

· ..
statics

· ..
defined global

symbols

undefined global
symbols

Figure 11-16: COFF Symbol Table

The word statics in Figure 11-16 means symbols defined with the C
language storage class static outside any function. The symbol table consists
of at least one fixed-length entry per symbol with some symbols followed by
auxiliary entries of the same size. The entry for each symbol is a structure
that holds the value, the type, and other information.

Special Symbols
The symbol table contains some special symbols that are generated by as

and other tools. These symbols are given in Figure 11-17.

11-18 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Symbol Meaning

.file filename

.text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

.target pointer to the structure or union
returned by a function

.xfake dummy tag name for structure, union,
or enumeration

.eos end of members of structure, union, or
enumeration

etext next available address after the end of
the output section .text

edata next available address after the end of
the output section .data

end next available address after the end of
the out ut section .bss p

Figure 11-17: Special Symbols in the Symbol Table

Six of these special symbols occur in pairs. The .bb and .eb symbols indi
cate the boundaries of inner blocks; a .bf and .ef pair brackets each function.
An .xfake and .eos pair names and defines the limit of structures, unions, and
enumerations that were not named. The .eos symbol also appears after
named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler
invents a name to be used in the symbol table. The name chosen for the
symbol table is .xfake, where x is an integer. If there are three unnamed
structures, unions, or enumerations in the source, their tag names are .Ofake,
.Hake, and .2fake. Each of the special symbols has different information
stored in the symbol table entry as well as the auxiliary entries.

COMMON OBJECT FILE FORMAT (COFF) 11·19

The Common Object File Format (COFF)

Inner Blocks
The C language defines a block as a compound statement that begins and

ends with braces, { and }. An inner block is a block that occurs within a
function (which is also a block).

For each inner block that has local symbols defined, a special symbol .bb
is put in the symbol table immediately before the first local symbol of that
block. Also a special symbol .eb is put in the symbol table immediately after
the last local symbol of that block. The sequence is shown in Figure 11-18 .

. bb
local symbols
for that block
.eb

Figure 11-18: Special Symbols (.bb and ;eb)

Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested (see Figure 11-19).

11·20 PROGRAMMER'S GUIDE

------------ The Common Object File Format (COFF)

int i;
char C;

1* block 1 *1

1* block 2 *1
long a;

1* block 3 *1
int x;

1* block 3 *1

1* block 2 *1

1* block 4 *1
long i;

1* block 4 *1
1* block 1 *1

Figure 11-19: Nested blocks

The symbol table would look like Figure 11-20.

COMMON O ECT FILE FORMAT (COFF) 11·21

The Common Object File Format (COFF)

.bb for block 1
i
c

.bb for block 2
a

.bb for block 3
x

.eb for block 3

.eb for block 2

.bb for block 4
i

.eb for block 4

.eb for block 1

Figure 11-20: Example of the Symbol Table

Symbols and Functions
For each function, a special symbol .bf is put between the function name

and the first local symbol of the function in the symbol table. Also, a special
symbol .ef is put immediately after the last local symbol of the function in the
symbol table. The sequence is shown in Figure 11-21.

function name
.bf

local symbol
.ef

Figure 11-21: Symbols for Functions

11-22 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Symbol Table Entries
All symbols, regardless of storage class and type, have the same format

for their entries in the symbol table. The symbol table entries each contain 18
bytes of information. The meaning of each of the fields in the symbol table
entry is described in Figure 11-22. It should be noted that indices for symbol
table entries begin at 0 and count upward. Each auxiliary entry also counts as
one symbol.

Bytes Declaration Name Description

0-7 (see text below) -R These 8 bytes contain either a
symbol name or an index to a
symbol

8-11 long int D-value Symbol value; storage class
dependent

12-13 short D-scnum Section number of symbol
14-15 unsigned short D-type Basic and derived type specifi-

cation

16 char IL-Sclass Storage class of symbol
17 char n-Rumaux Number of auxiliary entries

Figure 11-22: Symbol Table Entry Format

Symbol Names
The first 8 bytes in the symbol table entry are a union of a character array

and two longs. If the symbol name is eight characters or less, the (null
padded) symbol name is stored there. If the symbol name is longer than eight
characters, then the entire symbol name is stored in the string table. In this
case, the 8 bytes contain two long integers, the first is zero, and the second is
the offset (relative to the beginning of the string table) of the name in the
string table. Since there can be no symbols with a null name, the zeroes on
the first 4 bytes serve to distinguish a symbol table entry with an offset from
one with a name in the first 8 bytes as shown in Figure 11-23.

COMMON OBJECT FILE FORMAT (COFF) 11-23

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-7 char lL.llame 8-character null-padded symbol
name

0-3 long "-Zeroes Zero in this field indicates the
name is in the string table

4-7 long 11-offset Offset of the name in the string
table

Figure 11-23 : Name Field

Special symbols generated by the C Compilation System are discussed
above in "Special Symbols. "

Storage Classes
The storage class field has one of the values described in Figure 11-24.

These #define's may be found in the header file storclass.h.

11-24 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Mnemonic Value Storage Class

C-EFCN -1 physical end of a function

C_NULL 0 -
C-AUTO 1 automatic variable
C_EXT 2 external symbol

C_STAT 3 static

CJEG 4 register variable

C_EXTDEF 5 external definition
C_LABEL 6 label

C_ULABEL 7 undefined label

C.-MOS 8 member of structure

C-ARG 9 function argument
C_STRTAG 10 structure tag

C_MOU 11 member of union

C_UNTAG 12 union tag

C_TPDEF 13 type definition

C_USTATIC 14 uninitialized static
C_ENTAG 15 enumeration tag

C.-MOE 16 member of enumeration

C-REGPARM 17 register parameter
CJIELD 18 bit field

C_BLOCK 100 beginning and end of block

CJCN 101 beginning and end of function

C-EOS 102 end of structure

CJILE 103 file name
C_LINE 104 used only by utility programs

C-ALIAS 105 duplicated tag

CJfIDDEN 106 like static,
used to avoid name conflicts

Figure 11-24: Storage Classes

COMMON OB.JECT FILE FORMAT (COFF) 11-25

The Common Object File Format (COFF)

All of these storage classes except for C-ALIAS and C_HIDDEN are gen
erated by the cc or as commands. The compress utility, cprs, generates the
C-ALIAS mnemonic. This utility (described in the User's Reference Manual)
removes duplicated structure, union, and enumeration definitions and puts
alias entries in their places. The storage class C_HIDDEN is not used by any
UNIX system tools.

Some of these storage classes are used only internally by the C Compila
tion Systems. These storage classes are C-EFCN, C_EXTDEF, C_ULABEL,
C_USTATIC, and C_LINE.

Storage Classes for Special Symbols
Some special symbols are restricted to certain storage classes. They are

given in Figure 11-25.

Special Symbol Storage Class

.file CJILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

.target C-AUTO

.xfake C_STRTAG,C_UNTAG,C_ENTAG

.eos C_EOS

.text C_STAT

.data C_STAT

.bss C_STAT

Figure 11-25: Storage Class by Special Symbols

11·26 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Also some storage classes are used only for certain special symbols. They
are summarized in Figure 11-26.

Storage Class Special Symbol

C_BLOCK .bb, .eb
C_FCN .bf, .ef

CJILE .file

Figure 11-26: Restricted Storage Classes

COMMON OBJECT FILE FORMAT (COFF) 11·27

The Common Object File Format (COFF)

Symbol Value Field
The meaning of the value of a symbol depends on its storage class. This

relationship is summarized in Figure 11-27.

Storage Class Meaning of Value

C-AUTO stack offset in bytes
C-EXT relocatable address
C_STAT relocatable address
C-REG register number
C_LABEL relocatable address
C_MOS offset in bytes
C-ARG stack offset in bytes
C_STRTAG 0
C-MOU 0
C_UNTAG 0
C_TPDEF 0
C-ENTAG 0
C-MOE enumeration value
C-REGPARM register number
C-FIELD bit displacement
C_BLOCK relocatable address
C_FCN lielocatable address
C_EOS ~ize

C-FILE (see text below)
C-ALIAS tag index
CJfIDDEN relocatable address

Figure 11-27: Storage Class and Value

If a symbol has storage class C_FILE, the value of that symbol equals the
symbol table entry index of the next .file symbol. That is, the .file entries
form a one-way linked list in the symbol table. If there are no more .file
entries in the symbol table, the value of the symbol is the index of the first
global symbol.

11·28 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Relocatable symbols have a value equal to the virtual address of that sym
bol. When the section is relocated by the link editor, the value of these sym
bols changes.

Section Number Field
Section numbers are listed in Figure 11-28.

Mnemonic Section Number Meaning

N_DEBUG -2 Special symbolic debugging
symbol

N-.ABS -1 Absolute symbol
N_UNDEF 0 Undefined external symbol
N_SCNUM 1-077777 Section number where symbol

is defined

Figure 11-28: Section Number

A special section number (-2) marks symbolic debugging symbols, includ
ing structure/union/enumeration tag names, typedefs, and the name of the
file. A section number of -1 indicates that the symbol has a value but is not
relocatable. Examples of absolute-valued symbols include automatic and
register variables, function arguments, and .eos symbols.

With one exception, a section number of 0 indicates a relocatable external
symbol that is not defined in the current file. The one exception is a multiply
defined external symbol (i.e., FORTRAN common or an uninitialized variable
defined external to a function in C). In the symbol table of each file where
the symbol is defined, the section number of the symbol is 0, and the value of
the symbol is a positive number giving the size of the symbol. When the files
are combined to form an executable object file, the link editor combines all the
input symbols of the same name into one symbol with the section number of
the .bss section. The maximum size of all the input symbols with the same
name is used to allocate space for the symbol and the value becomes the
address of the symbol. This is the only case where a symbol has a section
number of 0 and a non-zero value.

COMMON OBJECT FILE FORMAT (COFF) 11-29

The Common Object File Format (COFF)

Section Numbers and Storage Classes
Symbols having certain storage classes are also restricted to certain section

numbers. They are summarized in Figure 11-29.

Storage Class Section Number

C-AUTO N-ABS
C-EXT N-ABS, N_UNDEF, N_SCNUM
C_STAT N_SCNUM
C_REG N-ABS
C_LABEL N_UNDEF, N_SCNUM
C_MOS N-ABS
C-ARG N-ABS
C_STRTAG N_DEBUG

C~OU N-ABS
C_UNTAG N_DEBUG
C_TPDEF N_DEBUG

C-ENTAG N_DEBUG
C_MOE N-ABS
C_REGPARM N-ABS

CJIELD N-ABS
C_BLOCK N_SCNUM

CJCN N_SCNUM
C_EOS N-ABS
C_FILE N_DEBUG

C-ALIAS N_DEBUG

Figure 11-29: Section Number and Storage Class

Type Entry
The type field in the symbol table entry contains information about the

basic and derived type for the symbol. This information is generated by the C
Compilation System only if the -g option is used. Each symbol has exactly
one basic or fundamental type but can have more than one derived type. The
format of the 16-bit type entry is

11-30 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

I d61 dS I d41 d31 d21 dl I ~ I

Bits 0 through 3, called typ, indicate one of the fundamental types given
in Figure 11-30.

Mnemonic Value Type

T_NULL 0 type not assigned

T-ARG 1 Function argument
(used only by compiler)

T_CHAR 2 character
T_SHORT 3 short integer
T-INT 4 integer
T_LONG 5 long integer
T_FLOAT 6 floating point
T_DOUBLE 7 double word
T_STRUCT 8 structure
T_UNION 9 union
T-ENUM 10 enumeration
T_MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T_USHORT 13 unsigned short
T_UINT 14 unsigned integer
T_ULONG 15 unsigned long

Figure 11-30: Fundamental Types

Bits 4 through 15 are arranged as six 2-bit fields marked dl through d6.
These d fields represent levels of the derived types given in Figure 11-31.

COMMON OBJECT FILE FORMAT (COFF) 11-31

The Common Object File Format (COFF)

Mnemonic Value Type

DT~ON 0 no derived type
DT_PTR 1 pointer

DTJ'CN 2 function
DT-ARY 3 array

Figure 11-31: Derived Types

The following examples demonstrate the interpretation of the symbol table
entry representing type.

char *func{);

Here func is the name of a function that returns a pointer to a character.
The fundamental type of func is 2 (character), the dl field is 2 (function), and
the d2 field is 1 (pointer). Therefore, the type word in the symbol table for
func contains the hexadecimal number Ox62, which is interpreted to mean a
function that returns a pointer to a character.

Short *tabptr[10][25][3];

Here tabptr is a three-dimensional array of pointers to short integers. The
fundamental type of tabptr is 3 (short integer); the dl, d2, and d3 fields each
contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type entry
in the symbol table contains the hexadecimal number Ox7f3 indicating a
three-dimensional array of pointers to short integers.

Type Entries and Storage Classes
Figure 11-32 shows the type entries that are legal for each storage class.

11·32 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

d Entry
Storage typ Entry
Class Function? Array? Pointer? Basic Type

<=-AUTO no yes yes Any except T_MOE
C_EXT yes yes yes Any except T_MOE
C_STAT yes yes yes Any except T_MOE

C-REG no no yes Any except T_MOE
C_LABEL no no no T-NULL
C_MOS no .y_es yes Any except T_MOE

C-ARG yes no yes Any except T_MOE
C_STRTAG no no no T_STRUCT
C_MOU no yes yes Any except T_MOE
C_UNTAG no no no T_UNION
C_TPDEF no yes yes Any except T-MOE

C-ENTAG no no no T_ENUM

C-MOE no no no T_MOE
C_REGPARM no no yes Any except T_MOE
C_FIELD no no no T_ENUM,

T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

C_BLOCK no no no T_NULL

C-FCN no no no T_NULL
C_EOS no no no T_NULL
C_FILE no no no T-NULL
C-ALIAS no no no T_STRUCT,

T_UNION,
T_ENUM

Figure 11-32: Type Entries by Storage Class

COMMON OBJECT FILE FORMAT (COFF) 11-33

The Common Object File Format (COFF)

Conditions for the d entries apply to dl through d6, except that it is
impossible to have two consecutive derived types of function.

Although function arguments can be declared as arrays, they are changed
to pointers by default. Therefore, no function argument can have array as its
first derived type.

Structure for Symbol Table Entries
The C language structure declaration for the symbol table entry is given in

Figure 11-33. This declaration may be found in the header file syms.h.

11-34 PROGRAMMER'S GUIDE

struct syment
{

union

char

struct

} .Jl;
unsigned long

short

unsigned short

char

char

} ;

#define n_name

#define n_zeroes
#define n_offset
#define n_nptr

#define SYMNMLEN

#define SYMESZ

long

long

8
18

The Common Object File Format (COFF)

1* symbol name*1

_n_offset; 1* location in string table *1

_n_nptr[2]; 1 allows overlaying *1

_n._n_name

_n._n_n._n_zeroes
_n._n_n._n_offset
_n._n_nptr[1]

1* value of symbol *1

1* section IlI.lIllber *1

1* type and derived *1

1* storage class *1

1* number of aux entries *1

1* size of a symbol table entry *1

Figure 11-33: Symbol Table Entry Declaration

COMMON OBJECT FILE FORMAT (COFF) 11-35

The Common Object File Format (COFF)

Auxiliary Table Entries
An auxiliary table entry of a symbol contains the same number of bytes as

the symbol table entry. However, unlike symbol table entries, the format of
an auxiliary table entry of a symbol depends on its type and storage class.
They are summarized in Figure 11-34.

Type Entry
Storage Auxiliary

Name Class dl typ Entry Format

.file C_FILE DT_NON T~ULL file name

.text,.data, C_STAT DT~ON T~ULL section

.bss
tagname C_STRTAG DT~ON T_NULL tag name

C_UNTAG
C_ENTAG

.eos C_EOS DT~ON T_NULL end of structure
fcname C_EXT DTJCN (Note 1) function

C_STAT

arrname (Note 2) DT--ARY (Note 1) array
.bb,.eb C_BLOCK DT~ON T_NULL beginning and

end of block
.bf,.ef C_FCN DT_NON T_NULL beginning and

end of function

name related (Note 2) DT_PTR, T_STRUCT, name related to
to structure, DT--ARR, T_UNION, structure,
union, DT_NON T_ENUM union,
enumeration enumeration

Figure 11-34: Auxiliary Symbol Table Entries

Notes to Figure 11-34:
1. Any except T_MOE.
2. C--AUTO, C_STAT, C_MOS, C-.MOU, C_TPDEF.

11-36 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

In Figure 11-34, tagname means any symbol name including the special
symbol .xfake, and {cname and arrname represent any symbol name for a func
tion or an array respectively. Any symbol that satisfies more than one condi
tion in Figure 11-34 should have a union format in its auxiliary entry.

It is a mistake to assume how many auxiliary entries are associated with
any given symbol table entry. This information is available and should
be obtained from the 11-l1umaux field in the symbol table.

File Names
Each of the auxiliary table entries for a file name contains a 14-character

file name in bytes 0 through 13. The remaining bytes are O.

Sections
The auxiliary table entries for sections have the format as shown in Figure

11-35.

Bytes Declaration Name Description

0-3 long int x-scnlen section length
4-5 unsigned short X-nreloc number of relocation entries
6-7 unsigned short x-nlinno number of line numbers
8-17 - - unused (filled with zeroes)

Figure 11-35: Format for Auxiliary Table Entries for Sections

Tag Names
The auxiliary table entries for tag names have the format shown in Figure

11-36.

COMMON OBJECT FILE FORMAT (COFF) 11-37

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-5 - - unused (filled with zeroes)

6-7 unsigned short x-size size of structure, union, and
enumeration

8-11 - - unused (filled with zeroes)
12-15 long int x-endndx index of next entry beyond this

structure, union, or enumera-
tion

16-17 - - unused (filled with zeroes)

Figure 11-36: Tag Names Table Entries

End of Structures
The auxiliary table entries for the end of structures have the format shown

in Figure 11-37:

Bytes Declaration Name Description

0-3 long int x-tagndx tag index
4-5 - - unused (filled with zeroes)

6-7 unsigned short xJize size of structure, union, or
enumeration

8-17 - - unused (filled with zeroes)

Figure 11-37: Table Entries for End of Structures

Functions
The auxiliary table entries for functions have the format shown in Figure

11-38:

11·38 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-3 long int x_tagndx tag index
4-7 long int X-fsize size of function (in bytes)

8-11 long int x.Jnnoptr file pointer to line number
12-15 long int x_endndx index of next entry beyond this

point

16-17 unsigned short x_tvndx index of function's address in
the transfer vector table (not
used in the UNIX system)

Figure 11-38: Table Entries for Functions

Arrays
The auxiliary table entries for arrays have the format shown in Figure 11-

39. Defining arrays having more than four dimensions produces a warning
message.

Bytes Declaration Name Description

0-3 long int x_tagndx tag index
4-5 unsigned short x_Inno line number of declaration
6-7 unsigned short x-size size of array
8-9 unsigned short x-dimen[O] first dimension

10-11 unsigned short x-dimen[1] second dimension

12-13 unsigned short x-dimen[2] third dimension

14-15 unsigned short x-dimen[3] fourth dimension

16-17 - - unused (filled with zeroes)

Figure 11-39: Table Entries for Arrays

COMMON OBJECT FILE FORMAT (COFF) 11-39

The Common Object File Format (COFF)

End of Blocks and Functions
The auxiliary table entries for the end of blocks and functions have the

format shown in Figure 11-40:

Bytes Declaration Name Description

0-3 - - unused (filled with zeroes)
4-5 unsigned short unno C-source line number
6-17 - - unused (filled with zeroes)

Figure 11-40: End of Block and Function Entries

Beginning of Blocks and Functions
The auxiliary table entries for the beginning of blocks and functions have

the format shown in Figure 11-41:

Bytes Declaration Name Description

0-3 - - unused (filled with zeroes)
4-5 unsigned short unno C-source line number

6-11 - - unused (filled with zeroes)
12-15 long int x-endndx index of next entry past this

block
16-17 - - unused (filled with zeroes)

Figure 11-41: Format for Beginning of Block and Function

Names Related to Structures, Unions, and Enumerations
The auxiliary table entries for structure, union, and enumeration symbols

have the format shown in Figure 11-42:

t t ·40 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Bytes Declaration Name Description

0-3 long int x-tagndx tag index
4-5 - - unused (filled with zeroes)
6-7 unsigned short x-size size of the structure, union, or

enumeration
8-17 - - unused (filled with zeroes)

Figure 11-42: Entries for Structures, Unions, and Enumerations

Aggregates defined by typedef mayor may not have auxiliary table
entries. For example,

typedef struct people S'IUDENl';

struct people
{

char name [20] ;

lang id;
} ;

typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol table
but symbol STUDENT will not because it is a forward reference to a structure.

Auxiliary Entry Declaration
The C language structure declaration for an auxiliary symbol table entry is

given in Figure 11-43. This declaration may be found in the header file
syms.h.

COMMON OBJECT FILE FORMAT (COFF) 11-41

The Common Object File Format (COFF)

union auxent

struct

struct

unsigned short x_1nno;
unsigned short x_size;

} x_lnsz;
lang x_fsize;

union

struct

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 1 of 2)

11-42 PROGRAMMER'S GUIDE

The Common Object File Format (COFFJ

lang x _lnnoptr;
lang x_end:ndx;

} x_fCll;
struct

unsigned short ~dimen[DIMNUM];

} x_aIY;
} xJcnazy;
unsigned short ~tvOOx;

} x_sym;
struct
{

char x Jname [F'IJ:D.1LEN] ;

} x_file;
struct

{

lang x_scn1en;

unsigned short x_nreloc;
unsigned short x_nlinno;

} X_ScIl;

struct

lang x_tvfill;

unsigned short
unsigned short

} ~tv;

#define F:IUH.EN 14
#define DIMNUM 4

x_tvlen;
x_tvran[2] ;

#define AIlXENl' union auxent
#define AIJXFSZ 18

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 2 of 2)

COMMON OBJECT FILE FORMAT (COFFJ 11·43

The Common Object File Format (COFF)

String Table
Symbol table names longer than eight characters are stored contiguously

in the string table with each symbol name delimited by a null byte. The first
four bytes of the string table are the size of the string table in bytes; offsets
into the string table, therefore, are greater than or equal to 4. For example,
given a file containing two symbols (with names longer then eight characters,
lon~name_l and another_one) the string table has the format as shown in
Figure 11-44:

'1' '0' 'n' 'g'

, , 'n' 'a' 'm' -

'e' , ,
'1' '\0' -

'a' 'n' '0' 't'

'h' 'e' 'r' , ,
-

'0' 'n' 'e' '\0'

Figure 11-44: String Table

The index of long-name_l in the string table is 4 and the index of
another_one is 16.

Access Routines
UNIX system releases contain a set of access routines that are used for

reading the various parts of a common object file. Although the calling pro
gram must know the detailed structure of the parts of the object file it
processes, the routines effectively insulate the calling program from the

11·44 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

knowledge of the overall structure of the object file.

The access routines can be divided into four categories:

1. functions that open or close an object file

2. functions that read header or symbol table information

3. functions that position an object file at the start of a particular section
of the object file

4. a function that returns the symbol table index for a particular symbol

These routines can be found in the library libld.a and are listed in Section
3 of the Programmer's Reference Manual. A summary of what is available can
be found in the Programmer's Reference Manual under Idfcn(4).

COMMON OBJECT FILE FORMAT (COFF) 11-45

12 The Link Editor

The Link Editor
Memory Configuration
Sections
Addresses
Binding
Object File

Link Editor Command Language
Expressions
Assignment Statements
Specifying a Memory Configuration
Section Definition Directives

• File Specifications
• Load a Section at a Specified Address
• Aligning an Output Section
• Grouping Sections Together
• Creating Holes Within Output Sections
• Creating and Defining Symbols at Link-Edit Time
• Allocating a Section Into Named Memory
• Initialized Section Holes or .bss Sections

Notes and Special Considerations
Changing the Entry Point
Use of Archive Libraries
Dealing With Holes in Physical Memory
Allocation Algorithm
Incremental Link Editing
DSECT, COPY, NOLO AD, INFO, and OVERLAY

Sections

12-1
12-1
12-2
12-2
12-2
12-3

12-4
12-4
12-5
12-7
12-8
12-9

12-11
12-12
12-12
12-15
12-17
12-19
12-19

12-22
12-22
12-22
12-24
12-26
12-26

12-28

THE LINK EDITOR

The Link Editor

Output File Blocking
Nonrelocatable Input Files

Syntax Diagram for Input
Directives

ii PROGRAMMER'S GUIDE

12-30
12-30

12-32

The Link Editor

In Chapter 2 there was a discussion of link editor command line options
[some of which may also be provided on the cc(l) command line]. This
chapter contains information on the Link Editor Command Language. The
command language enables you to

• specify the memory configuration of the target machine

• combine the sections of an object file in arrangements other than the
default

• bind sections to specific addresses or within specific portions of
memory

• define or redefine global symbols.

Under most normal circumstances there is no compelling need to have
such tight control over object files and where they are located in memory.
When you do need to be very precise in controlling the link editor output, you
do it by means of the command language.

Link editor command language directives are passed in a file named on
the ld(l) command line. Any file named on the command line that is not
identifiable as an object module or an archive library is assumed to contain
directives. The following paragraphs define terms and describe conditions
with which you need to be familiar before you begin to use the command
language.

Memory Configuration
The virtual memory of the target machine is, for purposes of allocation,

partitioned into configured and unconfigured memory. The default condition
is to treat all memory as configured. It is common with microprocessor appli
cations, however, to have different types of memory at different addresses.
For example, an application might have 3K of PROM (Programmable Read
Only Memory) beginning at address 0, and 8K of ROM (Read-Only Memory)
starting at 20K. Addresses in the range 3K to 20K-l are then not configured.
Unconfigured memory is treated as reserved or unusable by ld(l). Nothing
can ever be linked into unconfigured memory. Thus, specifying a certain
memory range to be unconfigured is one way of marking the addresses (in
that range) illegal or nonexistent with respect to the linking process. Memory
configurations other than the default must be explicitly specified by you (the

THE LINK EDITOR 12-1

The Link Editor

user).

Unless otherwise specified, all discussion in this document of memory,
addresses, etc., are with respect to the configured sections of the address
space.

Sections
A section of an object file is the smallest unit of relocation and must be a

contiguous block of memory. A section is identified by a starting address and
a size. Information describing all the sections in a file is stored in section
headers at the start of the file. Sections from input files are combined to form
output sections that contain executable text, data, or a mixture of both.
Although there may be holes or gaps between input sections and between
output sections, storage is allocated contiguously within each output section
and may not overlap a hole in memory.

Addresses
The physical address of a section or symbol is the relative offset from

address zero of the address space. The physical address of an object is not
necessarily the location at which it is placed when the process is executed.
For example, on a system with paging, the address is with respect to address
zero of the virtual space, and the system performs another address translation.

Binding
It is often necessary to have a section begin at a specific, predefined

address in the address space. The process of specifying this starting address is
called binding, and the section in question is said to be bound to or bound at
the required address. While binding is most commonly relevant to output sec
tions, it is also possible to bind special absolute global symbols with an
assignment statement in the Id(l) command language.

12-2 PROGRAMMER'S GUIDE

The Link Editor

Object File
Object files are produced both by the assembler (typically as a result of

calling the compiler) and by ld(l). ld(l) accepts relocatable object files as
input and produces an output object file that mayor may not be relocatable.
Under certain special circumstances, the input object files given to ld(l) can
also be absolute files.

Files produced from the compilation system may contain, among others,
sections called .text and .data. The .text section contains the instruction text
(executable instructions); .data contains initialized data variables. For exam
ple, if a C program contained the global (i.e., not inside a function) declaration

int i = 100;

and the assignment

i = 0;

then compiled code from the C assignment is stored in .text, and the variable
i is located in .data.

THE LINK EDITOR 12·3

Link Editor Command Language

Expre.ssions
Expressions may contain global symbols, constants, and most of the basic

C language operators. (See Figure 12-2, "Syntax Diagram for Input Direc
tives. ,,) Constants are as in C with a number recognized as decimal unless
preceded with 0 for octal or Ox for hexadecimal. All numbers are treated as
long integers's. Symbol names may contain uppercase or lowercase letters,
digits, and the underscore, _. Symbols within an expression have the value of
the address of the symbol only. Id(1) does not do symbol table lookup to find
the contents of a symbol, the dimensionality of an array, structure elements
declared in a C program, etc.

Id(1) uses a lex-generated input scanner to identify symbols, numbers,
operators, etc. The current scanner design makes the following names
reserved and unavailable as symbol names or section names:

ADDR BLOCK GROUP NEXT RANGE SPARE
ALIGN COMMON INFO NOLOAD REGIONS PHY
ASSIGN COpy LENGTH ORIGIN SECTIONS TV
BIND DSECT MEMORY OVERLAY SIZEOF

addr block length origin sizeo£
align group next phy spare
assign I 0 range
bind len org s

The operators that are supported, in order of precedence from high to low,
are shown in Figure 12-1:

12-4 PROGRAMMER'S GUIDE

Link Editor Command Language

symbol

! - - (UNARY Minus)

* / %
+ - (BINARY Minus)
» «

!= > < <= >=
&

&&

= += *= /=

Figure 12-1: Operator Symbols

The above operators have the same meaning as in the C language. Operators
on the same line have the same precedence.

Assignment Statements
External symbols may be defined and assigned addresses via the assign

ment statement. The syntax of the assignment statement is

symbol = expression;

or

symbol op= expression;

where op is one of the operators +, -, *, or /. Assignment statements must
be terminated by a semicolon.

All assignment statements (with the exception of the one case described in
the following paragraph) are evaluated after allocation has been performed.
This occurs after all input-file-defined symbols are appropriately relocated but
before the actual relocation of the text and data itself. Therefore, if an assign
ment statement expression contains any symbol name, the address used for
that symbol in the evaluation of the expression reflects the symbol address in
the output object file. References within text and data (to symbols given a
value through an assignment statement) access this latest assigned value.

THE LINK EDITOR 12·5

Link Editor Command Language

Assignment statements are processed in the same order in which they are
input to Id(1).

Assignment statements are normally placed outside the scope of section
definition directives (see "Section Definition Directives" under "Link Editor
Command Language"). However, there exists a special symbol, called dot, (.),
that can occur only within a section definition directive. This symbol refers to
the current address of Id(l)'s location counter. Thus, assignment expressions
involving. are evaluated during the allocation phase of Id(l). Assigning a
value to the. symbol within a section definition directive can increment (but
not decrement) Id(l)'s location counter and can create holes within the sec
tion, as described in "Section Definition Directives." Assigning the value of
the. symbol to a conventional symbol permits the final allocated address (of a
particular point within the link edit run) to be saved.

align is provided as a shorthand notation to allow alignment of a symbol
to an n-byte boundary within an output section, where n is a power of 2. For
example, the expression

align(n)

is equivalent to

(. + n - 1) & - (n - 1)

SIZEOF and ADDR are pseudo-functions that, given the name of a sec
tion, return the size or address of the section respectively. They may be used
in symbol definitions outside of section directives.

Link editor expressions may have either an absolute or a relocatable value.
When Id(l) creates a symbol through an assignment statement, the symbol's
value takes on that type of expression. That type depends on the following
rules:

• An expression with a single relocatable symbol (and zero or more con
stants or absolute symbols) is relocatable.

• The difference of two relocatable symbols from the same section is
absolute.

• All other expressions are combinations of the above.

12-6 PROGRAMMER'S GUIDE

Link Editor Command Language

Specifying a Memory Configuration
MEMORY directives are used to specify

• The total size of the virtual space of the target machine.

• The configured and un configured areas of the virtual space.

If no directives are supplied, ld(l) assumes that all memory is configured.
The size of the default memory is dependent upon the target machine.

By means of MEMORY directives, an arbitrary name of up to eight charac
ters is assigned to a virtual address range. Output sections can then be forced
to be bound to virtual addresses within specifically named memory areas.
Memory names may contain uppercase or lowercase letters, digits, and the
special characters $, ., or _. Names of memory ranges are used by ld(l) only
and are not carried in the output file symbol table or headers.

When MEMORY directives are used, all virtual memory not described in a
MEMORY directive is considered to be unconfigured. Unconfigured memory
is not used in ld(l)'s allocation process; hence nothing except OSECT sections
can be link edited or bound to an address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated with
a named memory area. In future releases this may be used to provide error
checking. Currently, error checking of this type is not implemented.

The attributes currently accepted are

• R: readable memory

• W: writable memory

• X: executable, i.e., instructions may reside in this memory

• I: initializable, i.e., stack areas are typically not initialized

Other attributes may be added in the future if necessary. If no attributes are
specified on a MEMORY directive or if no MEMORY directives are supplied,
memory areas assume the attributes of R, W, X, and I.

The syntax of the MEMORY directive is:

THE LINK EDITOR 12·7

Link Editor Command Language

MEKRY

{

name1 (attr)
name2 (attrJ
etc.

origin = n 1, length = n2
origin = n3, length = n4

The keyword origin (or org or 0) must precede the origin of a memory
range, and length (or len or 1) must precede the length as shown in the above
prototype. The origin operand refers to the virtual address of the memory
range. origin and length are entered as long integer constants in either
decimal, octal, or hexadecimal (standard C syntax). origin and length specifi
cations, as well as individual MEMORY directives, may be separated by white
space or a comma.

By specifying MEMORY directives, Id(l) can be told that memory is con
figured in some manher other than the default. For example, if it is necessary
to prevent anything from being linked to the first Ox10000 words of memory,
a MEMORY directive can accomplish this.

Section Definition Directives
The purpose of the SECTIONS directive is to describe how input sections

are to be combined, to direct where to place output sections (both in relation
to each other and to the entire virtual memory space), and to permit the
renaming of output sections.

In the default case where no SECTIONS directives are given, all input sec
tions of the same name appear in an output section of that name. If two
object files are linked, one containing sections sl and s2 and the other con
taining sections s3 and s4, the output object file contains the four sections sl,
s2, s3, and s4. The order of these sections would depend on the order in
which the link editor sees the input files.

12·8 PROGRAMMER'S GUIDE

Link Editor Command Language

The basic syntax of the SECTIONS directive is

etc.
}

secnarne1

file_specifications,
assigrment_statements

secnarne2 :

file_specifications,
assigrment_statements

The various types of section definition directives are discussed in the
remainder of this section.

File Specifications
Within a section definition, the files and sections of files to be included in

the output section are listed in the order in which they are to appear in the
output section. Sections from an input file are specified by

filename (secname)

or

filename (secnam1 secnam2 , . .)

Sections of an input file are separated either by white space or commas as are
the file specifications themselves.

filename [cn~')

may be used in the same way to refer to all the uninitialized, unallocated glo
bal symbols in a file.

THE LINK EDITOR 12-9

Link Editor Command Language

If a file name appears with no sections listed, then all sections from the
file (but not the uninitialized, unallocated globals) are linked into the current
output section. For example,

SECrICNS

{

outsec1:

file1.o (sec1)
file2.o
file3.o (sec1, sec2)

According to this directive, the order in which the input sections appear in the
ouipui 1jediull ouisec1 wouid be

• section secl from file filel.o

• all sections from file2.o, in the order they appear in the file

• section secl from file file3.o, and then section sec2 from file file3.o

If there are any additional input files that contain input sections also named
outsec1, these sections are linked following the last section named in the
definition of outsecl. If there are any other input sections in filel.o or file3.o,
they will be placed in output sections with the same names as the input sec
tions unless they are included in other file specifications.

The code

*(secname)

may be used to indicate all previously unallocated input sections of the given
name, regardless of what input file they are contained in.

12·10 PROGRAMMER'S GUIDE

Link Editor Command Language

Load a Section at a Specified Address
Bonding of an output section to a specific virtual address is accomplished

by an ld(l) option as shown in the following SECTIONS directive example:

SECl'IONS

{

outsec addr:

etc.

The addr is the bonding address expressed as a C constant. If outsec does not
fit at addr (perhaps because of holes in the memory configuration or because
outsec is too large to fit without overlapping some other output section), ld(l)
issues an appropriate error message. addr may also be the word BIND, fol
lowed by a parenthesized expression. The expression may use the pseudo
functions SIZE OF, AD DR, or NEXT. NEXT accepts a constant and returns the
first multiple of that value that falls into configured unallocated memory;
SIZE OF and ADDR accept previously defined sections.

As long as output sections do not overlap and there is enough space, they
can be bound anywhere in configured memory. The SECTIONS directives
defining output sections need not be given to ld(l) in any particular order,
unless SIZE OF or ADDR is used.

The ld(l) does not ensure that the size of each section consists of an even
number of bytes or that each section starts on an even byte boundry. The
assembler ensures that the size (in bytes) of a section is evenly divisible by 4.

The ld(l) directives can be used to force a section to start on an odd byte
boundary although this is not recommended. If a section starts on an odd
byte boundary, the section's contents are either accessed incorrectly or are not
executed properly. When a user specifies an odd byte boundary, ld(l) issues a
warning message.

THE LINK EDITOR 12-11

Link Editor Command Language

Aligning an Output Section
It is possible to request that an output section be bound to a virtual

address that falls on an n-byte boundary, where n is a power of 2. The
ALIGN option of the SECTIONS directive performs this function, so that the
option

ALIGN(n)

is equivalent to specifying a bonding address of

(• + n - 1) & - (n - 1)

For example

SECTIOOS

{

outsec ALIGN(0x20000)

etc.

The output section outsec is not bound to any given address but is placed at
some virtual address that is a multiple of Ox20000 (e.g., at address OxO,
Ox20000, Ox40000, Ox60000, etc.).

Grouping Sections Together
The default allocation algorithm for Id(l)

• Links all input .init sections together, followed by .text sections, into
one output section. This output section is called .text and is bound to
an address of OxO plus the size of all headers in the output file.

• Links all input .data sections together into one output section. This
output section is called .data and, in paging systems, is bound to an
address aligned to a machine-dependent constant plus a number
dependent on the size of headers and text.

12-12 PROGRAMMER'S GUIDE

Link Editor Command Language

• Links all input .bss sections together with all uninitialized, unallocated
global symbols, into one output section. This output section is called
.bss and is allocated so as to immediately follow the output section
.data.

Specifying any SECTIONS directives results in this default allocation not
being performed. Rather than relying on the Id(l) default algorithm, if you
are manipulating COFF files, the one certain way of determining address and
order information is to take it from the file and section headers. The default
allocation of Id(l) is equivalent to supplying the following directive:

.text sizeof_headers : { *(.init) *(.text) *(.fini)}
GRJ(JP BIND(NElcr'(align_value) +

«SIZEOF(. text) + AJDR(. text» % 0x2000»

.data { }

.bss { }

where align_value is a machine-dependent constant. The GROUP command
ensures that the two output sections, .data and .bss, are allocated (e.g.,
grouped) together. Bonding or alignment information is supplied only for the
group and not for the output sections contained within the group. The sec
tions making up the group are allocated in the order listed in the directive.

For compatibility with UNIX System V Release 2, these addresses cannot
change. Unfortunately, .init sections in the algorithm above will interfere
with the placement of the signal recovery routines. Hence the .text sections
are linked into the a.out .text section first. The .init sections (for shared
libraries) and the .fini sections follow all of the .text sections. Routines in
crtl.O branch to the .init sections before calling the main() function of the
program.

THE LINK EDITOR 12-13

Link Editor Command Language

If .text, .data, and .bss are to be placed in the same segment, the follow
ing SECTIONS directive is used:

GROUP

{

. text { }

. data { }

.bss { }

Note that there are still three output sections (.text, .data, and .bss), but now
they are allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting address
or aligned simply by adding a field to the GROUP directive. To bind to
OxCOOOO, use

GROUP OxCOOOO {

To align to OxlOOOO, use

GROUP ALIGN(Ox10000) : {

With this addition, first the output section .text is bound at OxCOOOO (or is
aligned to OxlOOOO); then the remaining members of the group are allocated in
order of their appearance into the next available memory locations.

When the GROUP directive is not used, each output section is treated as
an independent entity:

12·14 PROGRAMMER'S GUIDE

Link Editor Command Language

.text : { }

.data ALIGN(Ox400000) {}

.bss : { }

The .text section starts at virtual address OxO (if it is in configured memory)
and the .data section at a virtual address aligned to Ox400000. The .bss sec
tion follows immediately after the .text section if there is enough space. If
there is not, it follows the .data section. The order in which output sections
are defined to ld(l) cannot be used to force a certain allocation order in the
output file.

Creating Holes Within Output Sections
The special symbol dot, (.), appears only within section definitions and

assignment statements. When it appears on the left side of an assignment
statement, . causes ld(l)'s location counter to be incremented or reset and a
hole left in the output section. Holes built into output sections in this manner
take up physical space in the output file and are initialized using a fill charac
ter [either the default fill character (OxOO) or a supplied fill character]. See the
definition of the -£ option in "Using the Link Editor" and the discussion of
filling holes in "Initialized Section Holes" or ".bss Sections." in this chapter.

Consider the following section definition:

THE LINK EDITOR 12-15

Link Editor Command Language

outsec:

• += Ox1000;
f1.0 (. text)

• += Ox100;
f2.0 (.text)

· = align (4);

f3.0 (.text)

The effect of this command is as follows:

• A OxlOOO byte hole, filled with the default fill character, is left at the
beginning of the section. Input section £1.0 (.text) is linked after this
hole.

• The .text section of input file £2.0 begins at OxlOO bytes following the
end of £1.0 (.text).

• The .text section of £3.0 is linked to start at the next full word boun
dary following the .text section of £2.0 with respect to the beginning of
outsec.

For the purposes of allocating and aligning addresses within an output
section, ld(l) treats the output section as if it began at address zero. As a
result, if, in the above example, outsec ultimately is linked to start at an odd
address, then the part of outsec built from £3.0 (.text) also starts at an odd
address-even though £3.0 (.text) is aligned to a full word boundary. This is
prevented by specifying an alignment factor for the entire output section.

outsec ALIGN (4) : {

Expressions that decrement. are illegal. For example, subtracting a value
from the location counter is not allowed since overwrites are not allowed.
The most common operators in expressions that assign a value to . are +=
and align.

12·16 PROGRAMMER'S GUIDE

Link Editor Command Language

Creating and Defining Symbols at Link-Edit Time
The assignment instruction of Id(l) can be used to give symbols a value

that is link-edit dependent. Typically, there are three types of assignments:

1. Use of. to adjust Id(l)'s location counter during allocation.

2. Use of . to assign an allocation-dependent value to a symbol.

3. Assigning an allocation-independent value to a symbol.

Case 1 has already been discussed in the previous section.

Case 2 provides a means to assign addresses (known only after allocation) to
symbols. For example,

SOCTIONS
{

outsc1: { .•• }

outsc2:

file1.o (s1)
s2_start = .
file2.o (s2)
s2_end = . - 1;

The symbol s2_start is defined to be the address of file2.o(s2), and s2_end is
the address of the last byte of file2.o(s2).

THE LINK EDITOR 12-17

Link Editor Command Language

Consider the following example:

SECl'ICNS

{

outsc1:

file1.o (.data)

mark = .;
• += 4;
file2.o (.data)

In this example, the symbol mark is created and is equal to the address of
the iirst byte beyond the end of fiiel.o's .data section. four bytes are
reserved for a future run-time initialization of the symbol mark. The type of
the symbol is a long integer (32 bits).

Assignment instructions involving. must appear within SECTIONS defini
tions since they are evaluated during allocation. Assignment instructions that
do not involve. can appear within SECTIONS definitions but typically do
not. Such instructions are evaluated after allocation is complete. Reassign
ment of a defined symbol to a different address is dangerous. For example, if
a symbol within .data is defined, initialized, and referenced within a set of
object files being link-edited, the symbol table entry for that symbol is
changed to reflect the new, reassigned physical address. However, the associ
ated initialized data is not moved to the new address, and there may be refer
ences to the old address. The ld(l) issues warning messages for each defined
symbol that is being redefined within an ifile. However, assignments of abso
lute values to new symbols are safe because there are no references or initial
ized data associated with the symbol.

12·18 PROGRAMMER'S GUIDE

Link Editor Command Language

Allocating a Section Into Named Memory
It is possible to specify that a section be linked (somewhere) within a

specific named memory (as previously specified on a MEMORY directive).
(The > notation is borrowed from the UNIX system concept of redirected out
put.) For example,

MEMJRY
{

mem1:
mem2 (RW):

rnem3 (RW):

mem1:

o=OxOOOOOO 1=Ox10000
o=Ox020000 1=Ox40000
o=Ox070000 1=Ox40000
o=Ox120000 1=OX04000

outsec1: { f1.o(.data) } > mem1
outsec2: { f2.o(.data) } > mem3

This directs ld(l) to place outsec1 anywhere within the memory area named
meml (Le., somewhere within the address range OxO-OxFFFF or Ox120000-
Ox123FFF). The outsec2 is to be placed somewhere in the address range
Ox70000-0xAFFFF.

Initialized Section Holes or .bss Sections
When holes are created within a section (as in the example in "Creating

Holes within Output Sections"), ld(l) normally puts out bytes of zero as fill.
By default, .bss sections are not initialized at all; that is, no initialized data is
generated for any .bss section by the assembler nor supplied by the link edi
tor, not even zeros.

THE LINK EDITOR 12·19

Link Editor Command Language

Initialization options can be used in a SECTIONS directive to set such
holes or output .bss sections to an arbitrary 2-byte pattern. Such initialization
options apply only to .bss sections or holes. As an example, an application
might want an uninitialized data table to be initialized to a constant value
without .recompiling the .0 file or a hole in the text area to be filled with a
transfer to an error routine.

Either specific areas within an output section or the entire output section
may be specified as being initialized. However, since no text is generated for
an uninitialized .bss section, if part of such a section is initialized, then the
entire section is initialized. In other words, if a .bss section is to be combined
with a .text or .data section (both of which are initialized) or if part of an out
put .bss section is to be initialized, then one of the following will apply:

• Explicit initialization options must be used to initialize all .bss sections
in the output section.

• Id(l) will use the default fill value to initialize all .bss sections in the
output section.

Consider the following ld(l) ifile:

12·20 PROGRAMMER'S GUIDE

SEX:'TIONS
{

sec1:

f1.0
• =+ 0x200;
f2.0 (.text)

} = OxDFFF
sec2:

f1.0 (.bss)

Link Editor Command Language

f2.0 (.bss) = Ox1234

sec3:

f3.0 (.bss)

} = 0xFFFF

sec4: { f4.0 (.bss)

In the example above, the Ox200 byte hole in section sec1 is filled with
the value OxDFFF. In section sec2, fl.o(.bss) is initialized to the default fill
value of OxOO, and f2.o(.bss) is initialized to Ox1234. All .bss sections within
sec3 as well as all holes are initialized to OxFFFF. Section sec4 is not initial
ized; that is, no data is written to the object file for this section.

THE LINK EDITOR 12·21

Notes and Special Considerations

Changing the Entry Point
The UNIX system a.out optional header contains a field for the (primary)

entry point of the file. This field is set using one of the following rules (listed
in the order they are applied):

The value of the symbol specified
with the -e option, if present, is used.

1. The value of the symbol _start, if present, is used.

2. The value of the symbol main, if present, is used.

3. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field through
the -e option or by using an assignment instruction in an ifile of the form

expression;

If Id(l) is called through cc(l), a startup routine is automatically linked in.
Then, when the program is executed, the routine exit(l) is called after the
main routine finishes to close file descriptors and do other cleanup. The user
must therefore be careful when calling Id(l) directly or when changing the
entry point. The user must supply the start-up routine or make sure that the
program always calls exit rather than falling through the end. Otherwise, the
program will dump core.

Use of Archive Libraries
Each member of an archive library (e.g., libc.a) is a complete object file.

Archive libraries are created with the ar(l) command from object files gen
erated by cc or as. An archive library is always processed using selective
inclusion: only those members that resolve existing undefined-symbol refer
ences are taken from the library for link editing. Libraries can be placed both
inside and outside section definitions. In both cases, a member of a library is
included for linking whenever

12·22 PROGRAMMER'S GUIDE

Notes and Special Considerations

• There exists a reference to a symbol defined in that member.

• The reference is found by Id(l) prior to the actual scanning of the
library.

When a library member is included by searching the library inside a SEC
TIONS directive, all input sections from the library member are included in
the output section being defined. When a library member is included by
searching the library outside of a SECTIONS directive, all input sections from
the library member are included into the output section with the same name.
If necessary, new output sections are defined to provide a place to put the
input sections. Note, however, that

• Specific members of a library cannot be referenced explicitly in an ifile.

• The default rules for the placement of members and sections cannot be
overridden when they apply to archive library members.

The -I option is a shorthand notation for specifying an input file coming
from a predefined set of directories and having a predefined name. By con
vention, such files are archive libraries. However, they need not be so.
Furthermore, archive libraries can be specified without using the -1 option by
simply giving the (full or relative) UNIX system file path.

The ordering of archive libraries is important since for a member to be
extracted from the library it must satisfy a reference that is known to be
unresolved at the time the library is searched. Archive libraries can be speci
fied more than once. They are searched every time they are encountered.
Archive files have a symbol table at the beginning of the archive. Id(l) will
cycle through this symbol table until it has determined that it cannot resolve
any more references from that library.

Consider the following example:

• The input files file1.o and file2.o each contain a reference to the exter-
nal function FCN.

• Input filel.o contains a reference to symbol ABC.

• Input file2.o contains a reference to symbol XYZ.

• Library liba.a, member 0, contains a definition of XYZ.

THE LINK EDITOR 12-23

Notes and Special Considerations

• Library libe.a, member 0, contains a definition of ABC.

• Both libraries have a member 1 that defines FCN.

If the Id(1) command were entered as

Id fiIel.o -Ia file2.o -Ie

then the FCN references are satisfied by liba.a, member 1; ABC is obtained
from libe.a, member 0; and XYZ remains undefined (because the library liba.a
is searched before fiIe2.o is specified). If the Id(1) command were entered as

Id file1.o fiIe2.o -Ia -Ie

then the FCN references are satisfied by liba.a, member 1; ABC is obtained
from libe.a, member 0; and XYZ is obtained from liba.a, member O. If the
Id(1) command were entered as

Id fiIel.o file2.o -Ie -Ia

then the FCN references are satisfied by libc.a, member 1; ABC is obtained
from libe.a, member 0; and XYZ is obtained from liba.a, member O.

The -u option is used to force the linking of library members when the
link edit run does not contain an actual external reterence to the members.
For example,

Id -u routl -Ia

creates an undefined symbol called routl in Id(1)'s global symbol table. If
any member of library liba.a defines this symbol, it (and perhaps other
members as well) is extracted. Without the -u option, there would have been
no unresolved references or undefined symbols to cause Id(1) to search the
archive library.

Dealing With Holes in Physical Memory
When memory configurations are defined such that unconfigured areas

exist in the virtual memory, each application or user must assume the respon
sibility of forming output sections that will fit into memory. For example,
assume that memory is configured as follows:

12·24 PROGRAMMER'S GUIDE

MEMJRY
{

mem1:
mem2:
mem3:

o = OxOOOOO
o = Ox40000
0= 0x20000

Notes and Special Considerations

1 = 0x02000
1 = OXOSOOO
1 = Ox10000

Let the files f1.0, f2.0, ... fn.o each contain three sections .text, .data, and
.bss, and suppose the combined .text section is Ox12000 bytes. There is no
configured area of memory in which this section can be placed. Appropriate
directives must be supplied to break up the .text output section so ld(l) may
do allocation. For example,

SOCTIONS
{

txt1:
{

txt2:
{

etc.

f1.o (. text)

f2.o (.text)

f3.o (.text)

f4.o (.text)

fS.o (.text)

f6.o (.text)

THE LINK EDITOR 12-25

Notes and Special Considerations

Allocation Algorithm
An output section is formed either as a result of a SECTIONS directive, by

combining input sections of the same name, or by combining .text and .init
into .text. An output section can have zero or more input sections comprising
it. After the composition of an output section is determined, it must then be
allocated into configured virtual memory. Id(l) uses an algorithm that
attempts to minimize fragmentation of memory, and hence increases the pos
sibility that a link edit run will be able to allocate all output sections within
the specified virtual memory configuration. The algorithm proceeds as fol
lows:

1. Any output sections for which explicit bonding addresses were speci
fied are allocated.

2. Any output sections to be included in a specific named memory are
allocated. In both this and the succeeding step, each output section is
placed into the first available space within the (named) memory with
any alignment taken into consideration.

3. Output sections not handled by one of the above steps are allocated.

If all memory is contiguous and configured (the default case), and no
SECTIONS directives are given, then output sections are allocated in the order
they appear to Id(I). Otherwise, output sections are allocated in the order
they were defined or made known to Id(l) into the first available space they
fit.

Incremental Link Editing
As previously mentioned, the output of Id(l) can be used as an input file

to subsequent Id(l) runs providing that the relocation information is retained
(-r option). Large applications may find it desirable to partition their C pro
grams into subsystems, link each subsystem independently, and then link edit
the entire application. For example,

12·26 PROGRAMMER'S GUIDE

Step 1:

Step 2:

ld -r -0 outfilel ifilel infilel.o

/* ifile1 */

SECl'IOOS

{

ss1 :

f1.0
f2.0

fn.o

ld -r -0 outfile2 ifile2 infile2.0

/* ifile2 */

SECl'IOOS

{

ss2:

g1.0
g2.0

gn.o

Notes and Special Considerations

THE LINK EDITOR 12·27

Notes and Special Considerations

Step 3:

ld -a -0 fina1.out outfilel outfile2

By judil;iously forming subsystems, applications may achieve a form of incre
mental link editing whereby it is necessary to relink only a portion of the total
link edit when a few files are recompiled.

To apply this technique, there are two simple rules:

• Intermediate link edits should contain only SECTIONS declarations
and be concerned only with the formation of output sections from input
files and input sections. No binding of output sections should be done
in these runs.

• All allocation and memory directives, as well as any assignment state
ments, are included only in the finalld(l) call.

DSECT, COPY, NOLOAD, INFO, and OVERLAY

Sections may be given a type in a section definition as shown in the fol
lowing example:

SEXm:OOS
{

name1 Ox200000 (DSEX::T)

name2 Ox400000 (COPY)

name3 Ox600000 (00UlAD)

name4 (INro)

nameS Ox900000 (OVERLAY)

12-28 PROGRAMMER'S GUIDE

{ file1.o }
{ file2.o }
{ file3.o }
{ file4.o }
{ fileS.o }

Notes and Special Considerations

The OSECT option creates what is called a dummy section. A dummy
section has the following properties:

• It does not participate in the memory allocation for output sections.
As a result, it takes up no memory and does not show up in the
memory map generated by Id(l).

• It may overlay other output sections and even unconfigured memory.
OSECTs may overlay other OSECTs.

• The global symbols defined within the dummy section are relocated
normally. That is, they appear in the output file's symbol table with
the same value they would have had if the OSECT were actually
loaded at its virtual address. OSECT -defined symbols may be refer
enced by other input sections. Undefined external symbols found
within a OSECT cause specified archive libraries to be searched and
any members which define such symbols are link edited normally (Le.,
not as a OSECT).

• None of the section contents, relocation information, or line number
information associated with the section is written to the output file.

In the above example, none of the sections from filel.o are allocated, but all
symbols are relocated as though the sections were link edited at the specified
address. Other sections could refer to any of the global symbols and they are
resolved correctly.

A copy section created by the COPY option is similar to a dummy section.
The only difference between a copy section and a dummy section is that the
contents of a copy section and all associated information is written to the out
put file.

An INFO section is the same as a COPY section but its purpose is to carry
information about the object file, whereas the COPY section may contain valid
text and data. INFO sections are usually used to contain file version identifi
cation information.

A section with the type of NOLOAO differs in only one respect from a
normal output section: its text and/or data is not written to the output file. A
NOLOAO section is allocated virtual space, appears in the memory map, etc.

An OVERLAY section is relocated and written to the output file. It is dif
ferent from a normal section in that it is not allocated and may overlay other
sections or unconfigured memory.

THE LINK EDITOR 12·29

Notes and Special Considerations

Output File Blocking
The BLOCK option (applied to any output section or GROUP directive) is

used to direct ld(l) to align a section at a specified byte offset in the output
file. It has no effect on the address at which the section is allocated nor on
any part of the link edit process. It is used purely to adjust the physical posi
tion of the section in the output file.

SECl'ICNS

{

. text BUJCK(Ox200) : { }

.data ALIGN(0x20000) BUJCK(0x200) {}

With this SECTIONS directive, ld(l) assures that each section, .text and .data,
is physically written at a file offset, which is a multiple of Ox200 (e.g., at an
offset of 0, Ox200, Ox400, and so forth, in the file).

Nonrelocatable Input Files
If a file produced by ld(l) is intended to be used in a subsequent ld(l)

run, the first ld(l) run should have the -r option set. This preserves reloca
tion information and permits the sections of the file to be relocated by the
subsequent run.

If an input file to ld(l) does not have relocation or symbol table informa
tion [perhaps from the action of a strip(l) command, or from being link edited
without a -r option, or with a -s option], the link edit run continues using the
nonrelocatable input file.

12-30 PROGRAMMER'S GUIDE

Notes and Special Considerations

For such a link edit to be successful (Le., to actually and correctly link edit
all input files, relocate all symbols, resolve unresolved references, etc.), two
conditions on the nonrelocatable input files must be met.

• Each input file must have no unresolved external references.

• Each input file must be bound to the exact same virtual address as it
was bound to in the ld(l) run that created it.

If these two conditions are not met for all nonrelocatable input files, no
error messages are issued. Because of this fact, extreme care must be
taken when supplying such input files to Id(l).

THE LINK EDITOR 12-31

Syntax Diagram for Input Directives

Directives

<ifile>

<cmd>

<memory>

<memory_spec>

<attributes>
<origin-spec>
<length-Bpec>
<origin>
<iength>

Expanded Directives

{<cmd> }

<memory>
<sections>
<assignment>
<filename>
<flags>
MEMORY { <memory-spec>
{ [,] <memory_spec> } }

<name> [<attributes>] :

<origiILspec> [,] <length-Bpec>
({ RIWIXII})
<origin> = <long>
<length> = <long>
ORIGIN I 0 I org I origin
LENGTH iii i~Il ; it=11bti1

Figure 12-2: Syntax Diagram for Input Directives (Sheet 1 of 4)

Two punctuation symbols, brackets and braces, do double duty in this
diagram.

Where the actual symbols, U and {} are used, they are part of the syntax
and must be present when the directive is specified.

Where you see the symbols [and.] (larger and in bold), it means the
material enclosed is optionaL

Where you see the symbols { and } (larger and in bold), it means mul
tiple occurrences of the material encfosed are permitted.

12·32 PROGRAMMER'S GUIDE

Directives

<sections>
<sec_or_group>
<group>

<sectiotLJ.ist>

<section>

<group_options>

<sec_options>

<addr>
<align option>
<align>
<blocLoption>
<block>
<type_option>

<fill>
<me11L-Spec>

<statement>

Syntax Diagram for Input Directives

Expanded Directives

SECTIONS { {<sec_of-group>} }

<section> I <group> I <library>
GROUP <group_options> : {

<section-list> } [<me11L-Spec>]

<section> { [,] <section> }
<name> <sec-options> :

{ <statement> }

[<fill>] [<me11L-Spec>]

[<addr>] I [<alig11-option>] [<blocLoption>]

[<addr>] I [<align_option>]

[<blocLoption>] [<type_option>]
<long> I <bind>{ <expr>)
<align> (<expr>)
ALIGN I align
<block> (<long>)
BLOCK I block
(DSECT) I (NOLOAD) I (COPY)
I (INFO) I (OVERLAY)
= <long>
> <name>
> <attributes>
<filename>
<filename> «name-list» I [COMMON]
* (<name-list>) I [COMMON]
<assignment>
<library>
null

Figure 12-2: Syntax Diagram for Input Directives (Sheet 2 of 4)

THE LINK EDITOR 12-33

Syntax Diagram for Input Directives

Directives

<name--1ist>
<library>
<bind>
<assignment>
<lside>
<assign_op>
<end>
<expr>

<term>

<unary_op>
<phy>
<sizeof>

Expanded Directives

<section-Ilame> [,] { <sectiorL.name> }
-I <name>
BIND 1 bind
<lside> <assign_op> <expr> <end>
<name> I.
= 1 += 1 -= 1 *= If = ..
, "
<expr> <binary_op> <expr>
<term>
*1/1%
+1-
»1«
== 1 != 1 > 1 < 1 <= 1 >=
&

&&
II
<long>
<name>
<align> (<term>)
(<expr»
<unary_op> <term>
<phy> «lside»
<sizeof>(<sectionname»
<next>(<long»
<addr>(<sectionname>)
!I-
PHYI phy
SIZE OF I sizeof

Figure 12-2: Syntax Diagram for Input Directives (Sheet 3 of 4)

12-34 PROGRAMMER'S GUIDE

Directives

<next>
<addr>
<flags>

<name>
<long>
<whLspace>
<filename>

<sectionname>

Syntax Diagram for Input Directives

Expanded Directives

NEXT: next
ADDR: addr
-e<whLspace><name>
-f<whLspace> <long>
-h<whLspace><long>
-l<name>
-m
-o<whLspace><filename>
-r

-s
-t

-u<whLspace> <name>
-z
-H
-L<path_name>
-M
-N
-S
-V
- VS<whLspace> <long>
-a
-x
Any valid symbol name
Any valid long integer constant
Blanks, tabs, and newlines
Any valid UNIX operating system
file name. This may include a full
or partial path name.
Any valid section name, up to 8
characters
Any valid UNIX operating system
path name (full or partial)

Figure 12-2: Syntax Diagram for Input Directives (Sheet 4 of 4)

THE LINK EDITOR 12-35

13 make

Introduction 13-1

Basic Features 13-2

Description Files and
Substitutions 13-7
Comments 13-7
Continuation Lines 13-7
Macro Definitions 13-7
General Form 13-8
Dependency Information 13-8
Executable Commands 13-8
Extensions of $*, $@, and $< 13-9
Output Translations 13-10

Recursive Makefiles 13-11
Suffixes and Transformation Rules 13-11
Implicit Rules 13-12
Archive Libraries 13-14

Source Code Control System File
Names: the Tilde 13-17
The Null Suffix 13-18
include Files 13-19
SCCS Makefiles 13-19

make

make

Dynamic Dependency Parameters

Command Usage
The make Command
Environment Variables

Suggestions and Warnings

Internal Rules

ii PROGRAMMER'S GUIDE

13-19

13-21
13-21
13-22

13-24

13-25

Introduction

The trend toward increased modularity of programs means that a project
may have to cope with a large assortment of individual files. There may also
be a wide range of generation procedures needed to turn the assortment of
individual files into the final executable product.

make(l) provides a method for maintaining up-to-date versions of pro
grams that consist of a number of files that may be generated in a variety of
ways.

An individual programmer can easily forget

• file-to-file dependencies

• files that were modified and the impact that has on other files

• the exact sequence of operations needed to generate a new version of
the program

In a description file, make keeps track of the commands that create files
and the relationship between files. Whenever a change is made in any of the
files that make up a program, the make command creates the finished pro
gram by recompiling only those portions directly or indirectly affected by the
change.

The basic operation of make is to

• find the target in the description file

• ensure that all the files on which the target depends, the files needed
to generate the target, exist and are up-to-date

• create the target file if any of the generators have been modified more
recently than the target.

The description file that holds the information on interfile dependencies
and command sequences is conventionally called makefile, Makefile, or
s.[mM]akefile. If this naming convention is followed, the simple command
make is usually sufficient to regenerate the target regardless of the number
files edited since the last make. In most cases, the description file is not diffi
cult to write and changes infrequently. Even if only a single file has been
edited, rather than typing all the commands to regenerate the target, typing
the make command ensures the regeneration is done in the prescribed way.

make 13·1

Basic Features

The basic operation of make is to update a target file by ensuring that all
of the files on which the target file depends exist and are up-to-date. The tar
get file is regenerated if it has not been modified since the dependents were
modified .. The make program searches the graph of dependencies. The
operation of make depends on its ability to find the date and time that a file
was last modified.

The make program operates using three sources of information:

• a user-supplied description file

• file names and last-modified times from the file system

• built-in rules to bridge some of the gaps

To illustrate, consider a simple example in which a program named prog
is made by compiling and loading three C language files x.c, y.c, and z.c with
the math library. By convention, the output of the C language compilations
will be found in files named x.o, y.o, and z.o. Assume that the files x.c and
y.c share some declarations in a file named defs.h, but that z.c does not. That
is, x.c and y.c have the line

#include "defs .h"

The following specification describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -1m -0 prog

x.o y.o: defs.h

If this information were stored in a file named makefile, the command

make

would perform the operations needed to regenerate prog after any changes
had been made to any of the four source files x.c, y.c, z.c, or defs.h. In the
example above, the first line states that prog depends on three .0 files. Once
these object files are current, the second line describes how to load them to
create prog. The third line states that x.o and y.o depend on the file defs.h.
From the file system, make discovers that there are three .c files correspond
ing to the needed .0 files and uses built-in rules on how to generate an object
from a C source file (Le., issue a cc -c command).

13·2 PROGRAMMER'S GUIDE

Basic Features

If make did not have the ability to determine automatically what needs to
be done, the following longer description file would be necessary:

prog : x.o y.o z.o
cc x.o y.o z.o -1m --0 prog

x.o x.c defs.h
cc -c x.c

y.o y.c defs.h
cc -C y.c

z.o z.c
cc -c z.c

If none of the source or object files have changed since the last time prog
was made, and all of the files are current, the command make announces this
fact and stops. If, however, the de£s.h file has been edited, x.c and y.c (but
not z.c) are recompiled; and then prog is created from the new x.o and y.o
files, and the existing z.o file. If only the file y.c had changed, only it is
recompiled; but it is still necessary to reload prog. If no target name is given
on the make command line, the first target mentioned in the description is
created; otherwise, the specified targets are made. The command

make x.o

would regenerate x.o if x.c or de£s.h had changed.

A method often useful to programmers is to include rules with mnemonic
names and commands that do not actually produce a file with that name.
These entries can take advantage of make's ability to generate files and substi
tute macros (for information about macros, see "Description Files and Substi
tutions" further along in this chapter.) Thus, an entry "save" might be
included to copy a certain set of files, or an entry "clean" might be used to
throwaway unneeded intermediate files.

If a file exists after such commands are executed, the file's time of last
modification is used in further decisions. If the file does not exist after the
commands are executed, the current time is used in making further decisions.

You can maintain a zero-length file purely to keep track of the time at
which certain actions were performed. This technique is useful for maintain
ing remote archives and listings.

make 13-3

Basic Features

A simple macro mechanism for substitution in dependency lines and com
mand strings is used by make. Macros can either be defined by command
line arguments or included in the description file. In either case, a macro con
sists of a name followed by an equals sign followed by what the macro stands
for. A macro is invoked by preceding the name by a dollar sign. Macro
names longer than one character must be parenthesized. The following are
valid macro invocations:

$ (CFLAGS)

$2
$(xy)

$Z

$(Z)

The last two are equivalent.

$*, $@, $?, and $< are four special macros that change values during the
execution of the command. (These four macros are described later in this
chapter under "Description Files and Substitutions. ,,) The following fragment
shows assignment and use of some macros:

OBJECTS = x.o y.o Z.O

LIBES = -lm

prog: $ (OB.JEVI'S)

cc $ (OBJlr.['S) $ (LIBES) -0 prog

The command

make LIBES=" -11 -1m"

loads the three objects with both the lex (-11) and the math (-1m) libraries,
because macro definitions on the command line override definitions in the
description file. (In UNIX system commands, arguments with embedded
blanks must be quoted.)

As an example of the use of make, a description file that might be used to
maintain the make command itself is given. The code for make is spread
over a number of C language source files and has a yacc grammar. An exam
ple of the description file follows:

13·4 PROGRAMMER'S GUIDE

Description file for the make ccmnand

FILES = Makefile defs.h main.c doname.c misc.c
files.c dosys.c gram.y

OBJECTS = main.o doname.o misc.o files.o
dosys.o gram.o

LIBES= -lld

LIN!' = lint --p

CFLAGS =--0

LP = /usr/bin/lp

make: $ (OBJECTS)

$ (CC) $ (CFLAGS) $ (OBJECTS) $ (LIBES) --0 make

@Size make

$ (OBJ]X;TS) : defs.h

cleanup:
--nn *.0 gram.c
-du

install:
@size make /usr/bin/nake

cp make /usr/bin/nake && = make

lint dosys.c doname.c files.c main.c misc.c gram.c
$ (LIN!') dosys.c doname.c files.c main.c misc.c \.
gram.c

print: $ (FILES)

print files that are out-of-date
with respect to "print" file.

pr $? I $(LP)

touch print

The make program prints out each command before issuing it.

Basic Features

make 13·5

Basic Features

The following output results from typing the command make in a direc
tory containing only the source and description files:

cc -{) -c main. c
cc -{) -c doname. c
cc -{) -c mise. c
cc -{) -c files.c
cc -{) -c dosys. c
yacc gram.y
mv y.tab.c gram.c
cc -{) -c gram.c
cc main.o doname.o misc.o files.o dosys.o

gram.o -lId -0 make
13188 + 3348 + 3044 = 19580

The string of digits results from the size make command. The printing of the
command line itself was suppressed by an at sign, @' in the description file.

13-6 PROGRAMMER'S GUIDE

Description Files and Substitutions

The following section will explain the customary elements of the descrip
tion file.

Comments
The comment convention is that a sharp, #, and all characters on the

same line after a sharp are ignored. Blank lines and lines beginning with a
sharp are totally ignored.

Continuation Lines
If a noncomment line is too long, the line can be continued by using a

backslash. If the last character of a line is a backslash, then the backslash, the
new line, and all following blanks and tabs are replaced by a single blank.

Macro Definitions
A macro definition is an identifier followed by an equal sign. The identif

ier must not be preceded by a colon or a tab. The name (string of letters and
digits) to the left of the equal sign (trailing blanks and tabs are stripped) is
assigned the string of characters following the equal sign (leading blanks and
tabs are stripped). The following are valid macro definitions:

2 = xyz
abc = -11 -ly -1m
LIBES =

The last definition assigns UBES the null string. A macro that is never expli
citly defined has the null string as its value. Remember, however, that some
macros are explicitly defined in make's own rules. (See Figure 13-2 at the
end of the chapter.)

make 13-7

Description Files and Substitutions

General Form
The general form of an entry in a description file is

target1 [target2 ...] : [:] [dependent1 ...] [; ccmrends] [# •••]

['\t ccmnands] [# •..]

Items inside brackets may be omitted and targets and dependents are
strings of letters, digits, periods, and slashes. Shell metacharacters such as *
and? are expanded when the line is evaluated. Commands may appear either
after a semicolon on a dependency line or on lines beginning with a tab
immediately following a dependency line. A command is any string of char
acters not including a sharp, #, except when the sharp is in quotes.

Dependency Information
A dependency line may have either a single or a double colon. A target

name may appear on more than one dependency line, but all of those lines
must be of the same (single or double colon) type. For the more common
single-colon case, a command sequence may be associated with at most one
dependency line. If the target is out-of-date with any of the dependents on
any of the lines and a command sequence is specified (even a null one follow
ing a semicolon or tab), it is executed; otherwise, a default rule may be
invoked. In the double-colon case, a command sequence may be associated
with more than one dependency line. If the target is out-of-date with any of
the files on a particular line, the associated commands are executed. A built
in rule may also be executed. The double colon form is particularly useful in
updating archive-type files, where the target is the archive library itself. (An
example is included in the" Archive Libraries" section later in this chapter.)

Executable Commands
If a target must be created, the sequence of commands is executed. Nor

mally, each command line is printed and then passed to a separate invocation
of the shell after substituting for macros. The printing is suppressed in the
silent mode (-s option of the make command) or if the command line in the
description file begins with an @ sign. make normally stops if any command

13-8 PROGRAMMER'S GUIDE

Description Files and Substitutions

signals an error by returning a nonzero error code. Errors are ignored if the -i
flag has been specified on the make command line, if the fake target name
.IGNORE appears in the description file, or if the command string in the
description file begins with a hyphen. If a program is known to return a
meaningless status, a hyphen in front of the command that invokes it is
appropriate. Because each command line is passed to a separate invocation of
the shell, care must be taken with certain commands (e.g., cd and shell control
commands) that have meaning only within a single shell process. These
results are forgotten before the next line is executed.

Before issuing any command, certain internally maintained macros are set.
The $@ macro is set to the full target name of the current target. The $@
macro is evaluated only for explicitly named dependencies. The $? macro is
set to the string of names that were found to be younger than the target. The
$? macro is evaluated when explicit rules from the makefile are evaluated. If
the command was generated by an implicit rule, the $< macro is the name of
the related file that caused the action; and the $* macro is the prefix shared by
the current and the dependent file names. If a file must be made but there are
no explicit commands or relevant built-in rules, the commands associated with
the name DEFAULT are used. If there is no such name, make prints a mes
sage and stops.

In addition, a description file may also use the following related macros:
$(@D), $(@F), $(*D), $(*F), $«D), and $«F) (see below).

Extensions of $*, $@, and $<
The internally generated macros $*, $@, and $< are useful generic terms

for current targets and out-of-date relatives. To this list has been added the
following related macros: $(@D), $(@F), $(*D), $(*F), $«D), and $«F). The
D refers to the directory part of the single character macro. The F refers to
the file name part of the single character macro. These additions are useful
when building hierarchical makefiles. They allow access to directory names
for purposes of using the cd command of the shell. Thus, a command can be

cd $«D)i $(MAKE) $«F)

make 13·9

Description Files and Substitutions

Output Translations
Macros in shell commands are translated when evaluated. The form is as

follows:

$ (macro:string1=string2)

The meaning of $(macro) is evaluated. For each appearance of stringl in the
evaluated macro, string2 is substituted. The meaning of finding stringl in
$(macro) is that the evaluated $(macro) is considered as a series of strings,
each delimited by white space (blanks or tabs). Thus, the occurrence of
stringl in $(macro) means that a regular expression of the following form has
been found:

. *<string1> [TAB I BLANK]

This particular form was chosen because make usually concerns itself with
suffixes. The usefulness of this type of translation occurs when maintaining
archive libraries. Now, all that is necessary is to accumulate the out-of-date
members and write a shell script, which can handle all the C language pro
grams (i.e., those files ending in .c). Thus, the following fragment optimizes
the executions of make for maintaining an archive library:

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $ (LIB) (c.o)
$(CC) -c $(CFIJIGS) $(?: .o=.c)
$(AR) $(ARFLAGS) $(LIB) $?
:en $?

A dependency of the preceding form is necessary for each of the different
types of source files (suffixes) that define the archive library. These transla
tions are added in an effort to make more general use of the wealth of infor
mation that make generates.

13-10 PROGRAMMER'S GUIDE

Recursive Makefiles

Another feature of make concerns the environment and recursive invoca
tions. If the sequence $(MAKE) appears anywhere in a shell command line,
the line is executed even if the -n flag is set. Since the -n flag is exported
across invocations of make (through the MAKEFLAGS variable), the only
thing that is executed is the make command itself. This feature is useful
when a hierarchy of makefile(s) describes a set of software subsystems. For
testing purposes, make -n ... can be executed and everything that would have
been done will be printed, including output from lower level invocations of
make.

Suffixes and Transformation Rules
make uses an internal table of rules to learn how to transform a file with

one suffix into a file with another suffix. If the -r flag is used on the make
command line, the internal table is not used.

The list of suffixes is actually the dependency list for the name .sUFFIXES.
make searches for a file with any of the suffixes on the list. If it finds one,
make transforms it into a file with another suffix. The transformation rule
names are the concatenation of the before and after suffixes. The name of the
rule to transform a .l file to a .0 file is thus .1.0. If the rule is present and no
explicit command sequence has been given in the user's description files, the
command sequence fOI the rule .1.0 is used. If a command is generated by
using one of these suffixing rules, the macro $* is given the value of the stem
(everything but the suffix) of the name of the file to be made; and the macro
$< is the full name of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left
to right. The first name formed that has both a file and a rule associated with
it is used. If new names are to be appended, the user can add an entry for
.sUFFIXES in the description file. The dependents are added to the usual list.
A .sUFFIXES line without any dependents deletes the current list. It is neces
sary to clear the current list if the order of names is to be changed.

make 13·11

Recursive Makefiles

Implicit Rules
make uses a table of suffixes and a set of transformation rules to supply

default dependency information and implied commands. The default suffix
list is as follows:

.0 Object file

.c e source file

.c~ sees e source file

.f FORTRAN source file

.f~ sees FORTRAN source file

.S Assembler source file

.s~ sees Assembler source file

.y yacc source grammar

·r sees yacc source grammar

.1 lex source grammar

.l~ sees ex source grammar

.h Header file

.h~ sees header file

.sh Shell file

.sh~ sees shell file

Figure 13-1 summarizes the default transformation paths. If there are two
paths connecting a pair of suffixes, the longer one is used only if the inter
mediate file exists or is named in the description.

13-12 PROGRAMMER'S GUIDE

Recursive Makefiles

.0

/1C .f .s .y .1

.y .1

Figure 13-1: Summary of Default Transformation Path

If the file x.o is needed and an x.c is found in the description or directory,
the x.o file would be compiled. If there is also an x.l, that source file would
be run through lex before compiling the result. However, if there is no x.c
but there is an x.l, make would discard the intermediate C language file and
use the direct link as shown in Figure 13-l.

It is possible to change the names of some of the compilers used in the
default or the flag arguments with which they are invoked by knowing the
macro names used. The compiler names are the macros AS, CC, F77, YACC,
and LEX. The command

make CC=newcc

will cause the newcc command to be used instead of the usual C language
compiler. The macros ASFLAGS, CFLAGS, F77FLAGS, YFLAGS, and
LFLAGS may be set to cause these commands to be issued with optional flags.
Thus

make "CFLAGS=-g"

causes the cc command to include debugging information.

make 13·13

Recursive Makefiles

Archive Libraries
The make program has an interface to archive libraries. A user may name

a member of a library in the following manner:

~jlib(dbject.o)

or

projlib((entrypt»

where the second method actually refers to an entry point of an object file
within the library. (make looks through the library, locates the entry point,
and translates it to the correct object file name.)

To use this procedure to maintain an archive library, the following type of
makefile is required:

~jlib:: projlib(pfile1.0)
$(CC) -c -0 pfile1.c
$(AR) $(ARFIJIGS) ~jlib pfile1.o
:on pfile1.o

~jlib:: projlib(pfile2.o)
$(CC) -c -0 pfile2.c
$(AR) $ (ARFLAGS) projlib pfile2.o
:on pfile2.o

and so on for each object.

This is tedious and error-prone. Obviously, the command sequences for
adding a C language file to a library are the same for each invocation; the file
name being the only difference each time. (This is true in most cases.)

The make command also gives the user access to a rule for building
libraries. The handle for the rule is the .a suffix. Thus, a .c.a rule is the rule
for compiling a C language source file, adding it to the library, and removing
the .0 cadaver. Similarly, the .y.a, the .s.a, and the .l.a rules rebuild yacc,
assembler, and lex files, respectively. The archive rules defined internally are
.c.a, .c-.a, .f.a, .f-.a, and .s-.a. (The tilde, -, syntax will be described shortly.)
The user may define other needed rules in the description file.

13-14 PROGRAMMER'S GUIDE

Recursive Makefiles

The two-member library mentioned earlier is then maintained with the
following shorter makefile:

projlib: projlib(pfile1.0) projlib(pfile2.0)
@echo projlib up-to-date.

The internal rules are already defined to complete the preceding library
maintenance. The actual .c.a rule is as follows:

.c.a:
$(CC) -c $(CFLAGS) $<

$(AR) $(ARFIJIGS) $@ $*.0

nn -f $*.0

Thus, the $@ macro is the .a target (projlib); the $< and $* macros are set to
the out-of-date C language file; and the file name minus the suffix, respec
tively (pfilel.c and pfilel). The $< macro (in the preceding rule) could have
been changed to $*.c.

It might be useful to go into some detail about exactly what make does
when it sees the construction

projlib: projlib(pfile1.0)
@echo projlib up-to-date

Assume the object in the library is out-of-date with respect to pfile1.c. Also,
there is no pfilel.o file.

1. make projlib.

2. Before makeing projlib, check each dependent of projlib.

3. projlib(pfilel.o) is a dependent of projlib and needs to be generated.

4. Before generating projlib(pfilel.o), check each dependent of
projlib(pfile1.o). (There are none.)

5. Use internal rules to try to create projlib(pfile1.o). (There is no expli
cit rule.) Note that projlib(pfilel.o) has a parenthesis in the name to
identify the target suffix as .a. This is the key. There is no explicit .a
at the end of the projlib library name. The parenthesis implies the .a
suffix. In this sense, the .a is hard-wired into make.

6. Break the name projlib(pfilel.o) up into projlib and pfilel.o. Define
two macros, $@ (=projlib) and $* (=pfilel).

make 13-15

Recursive Makefiles

7. Look for a rule .X.a and a file $*.X. The first .X (in the .sUFFIXES list)
which fulfills these conditions is .c so the rule is .c.a, and the file is
pfilel.c. Set $< to be pfilel.c and execute the rule. In fact, make
must then·compile pfile1.c.

8. The library has been updated. Execute the command associated with
the projlib: dependency; namely

@echo projlib up-to-date

It should be noted that to let pfilel.o have dependencies, the following
syntax is required:

~jlib(pfile1.o): $(INCDIR)/stdio.h pfile1.c

There is also a macro for referencing the archive member name when this
form is used. The $% macro is evaluated each time $@ is evaluated. If there
is no curnmt archive member, $% is null. If an archive member exists, then
$% evaluates to the expression between the parenthesis.

13-16 PROGRAMMER'S GUIDE

Source Code Control System File
Names: the Tilde

The syntax of make does not directly permit referencing of prefixes. For
most types of files on UNIX operating system machines, this is acceptable
since nearly everyone uses a suffix to distinguish different types of files. The
sees files are the exception. Here, s. precedes the file name part of the com
plete path name.

To allow make easy access to the prefix s. the tilde, -, is used as an iden
tifier of sees files. Hence, .c-.o refers to the rule which transforms an sees
e language source file into an object file. Specifically, the internal rule is

.c .0:
$(GET) $ (GFLAGS) $<
$(CC) $(CFLAGS) --c $*.c

--rm --f $*.c

Thus, the tilde appended to any suffix transforms the file search into an
sees file name search with the actual suffix named by the dot and all charac
ters up to (but not including) the tilde.

The following sees suffixes are internally defined:

.c-

.f

.y

.1-

.s-

.sh

.h-

The following rules involving sees transformations are internally defined:

make 13-17

sees Filenames

c-·
f-·
.sh-:
.c-.a:
·.C-.C:

.c-.o:

.f-.a:

.f-.f:

.f-.o:

.s-.a:

.S-.S:

.S-.o:

.y-.c:

.y-.o:

.1-.1:

.1-.0:

.h-.h:

Obviously, the user can define other rules and suffixes, which may prove use
ful. The tilde provides a handle on the sees file name format so that this is
possible.

The Null Suffix
There are many programs that consist of a single source file. make han

dles this case by the null suffix rule. Thus, to maintain the UNIX system pro
gram cat, a rule in the makefile of the following form is needed:

.c:
$(CC) $(CFLAGS) $< -0 $@

In fact, this .c: rule is internally defined so no makefile is necessary at all.
The user only needs to type

make cat dd echo date

(these are all UNIX system single-file programs) and all four e language
source files are passed through the above shell command line associated with
the .c: rule. The internally defined single suffix rules are

13·18 PROGRAMMER'S GUIDE

.c:
c-·

.f:
f-·
.sh:
.sh-:

Others may be added in the makefile by the user.

include Files

sees Filenames

The make program has a capability similar to the #include directive of
the e preprocessor. If the string include appears as the first seven letters of a
line in a makefile and is followed by a blank or a tab, the rest of the line is
assumed to be a file name, which the current invocation of make will read.
Macros may be used in file names. The file descriptors are stacked for reading
include files so that no more than 16 levels of nested includes are supported.

sees Makefiles
Makefiles under sees control are accessible to make. That is, if make is

typed and only a file named s.makefile or s.Makefile exists, make will do a
get on the file, then read and remove the file.

Dynamic Dependency Parameters
The parameter has meaning only on the dependency line in a makefile.

The $$@ refers to the current "thing" to the left of the colon (which is $@).
Also the form $$(@F) exists, which allows access to the file part of $@. Thus,
in the following:

cat: $$@.c

the dependency is translated at execution time to the string cat.c. This is use
ful for building a large number of executable files, each of which has only one
source file. For instance, the UNIX software command directory could have a
makefile like:

make 13·19

sees Filenames

OIDS = cat dd echo date c:mp ccmn chown

$(OIDS): $$@.c

$(CC) -0 $? -0 $@

Obviously, this is a subset of all the single file programs. For multiple file
programs, a directory is usually allocated and a separate makefile is made.
For any particular file that has a peculiar compilation procedure, a specific
entry must be made in the makefile.

The second useful form of the dependency parameter is $$(@F). It
represents the file name part of $$@. Again, it is evaluated at execution time.
Its usefulness becomes evident when trying to maintain the /usr /include
directory from a makefile in the /usr/src/head directory. Thus, the
/usr/src/head/makefile would look like

IKl>IR = /usr/include

llCLUDES = '\
$(INCDIR)/stdio.h '\
$(INCDIR)/pwd.h '\
$(INCDIR)/dir.h '\
$(INCDIR)/a.out.h

$(INCI..UDES): $$(@F)

cp $? $@

chncd 0444 $@

This would completely maintain the /usr/include directory whenever one
of the above files in /usr/src/head was updated.

13·20 PROGRAMMER'S GUIDE

Command Usage
The make command description is found under make(l) in the

Programmer's Reference Manual.

The make Command
The make command takes macro definitions, options, description file

names, and target file names as arguments in the form:

make [options] [macro definitions] [targets]

The following summary of command operations explains how these argu
ments are interpreted.

First, all macro definition arguments (arguments with embedded equal
signs) are analyzed and the assignments made. Command-line macros over
ride corresponding definitions found in the description files. Next, the option
arguments are examined. The permissible options are as follows:

-i Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the description
file.

-8 Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name .SILENT appears in the
description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even
lines beginning with an @ sign are printed.

-t Touch the target files (causing them to be up-to-date) rather than issue
the usual commands.

-q Question. The make command returns a zero or nonzero status code
depending on whether the target file is or is not up-to-date.

-p Print out the complete set of macro definitions and target descriptions.

-k Abandon work on the current entry if something goes wrong, but con-
tinue on other branches that do not depend on the current entry.

make 13-J1

Command Usage

-e Environment variables override assignments within makefiles.

-f Description file name. The next argument is assumed to be the name
of a description file. A file name of - denotes the standard input. If
there are no -f arguments, the file named makefile or Makefile or
s.[mM]akefile in the current directory is read. The contents of the
description files override the built-in rules if they are present.

The following two arguments are evaluated in the same manner as flags:

.DEFAULT If a file must be made but there are no explicit commands
or relevant built-in rules, the commands associated with
the name .DEFAULT are used if it exists .

. PRECIOUS Dependents on this target are not removed when quit or
interrupt is pressed.

Finally, the remaining arguments are assumed to be the names of targets
to be made and the arguments are done in left-to-right order. If there are no
such arguments, the first name in the description file that does not begin with
a period is made.

Environment Variables
Environment variables are read and added to the macro definitions each

time make executes. Precedence is a prime consideration in doing this prop
erly. The following describes make's interaction with the environment. A
macro, MAKEFLAGS, is maintained by make. The macro is defined as the
collection of all input flag arguments into a string (without minus signs). The
macro is exported and thus accessible to further invocations of make. Com
mand line flags and assignments in the makefile update MAKEFLAGS. Thus,
to describe how the environment interacts with make, the MAKEFLAGS
macro (environment variable) must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or
null, the internal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input flag
argument and is processed as such. (The only exceptions are the -f,
-p, and -r flags.)

13-22 PROGRAMMER'S GUIDE

Command Usage

2. Read the internal list of macro definitions.

3. Read the environment. The environment variables are treated as
macro definitions and marked as exported (in the shell sense).

4. Read the makefile(s). The assignments in the makefile(s) overrides
the environment. This order is chosen so that when a makefile is
read and executed, you know what to expect. That is, you get what is
seen unless the -e flag is used. The -e is the line flag, which tells
make to have the environment override the makefile assignments.
Thus, if make -e ... is typed, the variables in the environment over
ride the definitions in the makefile. Also MAKE FLAGS override the
environment if assigned. This is useful for further invocations of
make from the current makefile.

It may be clearer to list the precedence of assignments. Thus, in order
from least binding to most binding, the precedence of assignments is as fol
lows:

1. internal definitions

2. environment

3. makefile(s)

4. command line

The -e flag has the effect of rearranging the order to:

1. internal definitions

2. makefile(s)

3. environment

4. command line

This order is general enough to allow a programmer to define a makefile or
set of makefiles whose parameters are dynamically definable.

make 13-23

Suggestions and Warnings
The most common difficulties arise from make's specific meaning of

dependency. If file x.c has a

#include "defs.h"

line, then the object file x.o depends on de£s.h; the source file x.c does not. If
de£s.h is changed, nothing is done to the file x.c while file x.o must be
recreated.

To discover what make would do, the -n option is very useful. The com
mand

make -n

orders make to print out the commands that make would issue without actu
ally taking the time to execute them. If a change to a file is absolutely certain
to be mild in character (e.g., adding a comment to an include file), the -t
(touch) option can save a lot of time. Instead of issuing a large number of
superfluous recompilations, make updates the modification times on the
affected file. Thus, the command

make -ts

(touch silently) causes the relevant files to appear up-to-date. Obvious care is
necessary because this mode of operation subverts the intention of make and
destroys all memory of the previous relationships.

13·24 PROGRAMMER'S GUIDE

Internal Rules

The standard set of internal rules used by make are reproduced below.

SUFFIXES REOlGNIZED BY MAKE

• SUFFIXES: .0 .C.C .y.y - .1 .1- .S.s .h.h - .sh .sh - .f .f-

MAKE=make

AR=ar

IIRFLAGS=-rv

AS=as

ASFLAGS=

CC=cc
CFLI!GS=-o
F77=f77
F77FLJGS=

GEl'--<Jet

GFIJ\GS=

LEX=1ex
LFLAGS=

LD=1d
LDFLAGS=

YN:r.=yacc
YFLAGS=

PREDEFINED MACROS

Figure 13-2: make Internal Rules (Sheet 1 of 5)

make 13·25

Internal Rules

.c:

.c :

.f:

.sh:

.sh-:

SIOOLE SUFFIX RULES

$(CC) $(CFLAGS) $ (IDFLAGS) $< -0 $@

$(GET) $(GFLAGS) $<

$(CC) $(CFLAGS) $(IDFLAGS) $*.c -0 $*

-nn -f $*.c

$(E77) $(E77FLAGS) $(IDFLAGS) $< -0 $@

$ (GET) $(GFLAGS) $<

$(F77) $(E77FLAGS) $(IDFLAGS) $< -0 $*

-nn -f $*.f

cp $< $@; chnDd 0777 $@

$(GET) $(GFLAGS) $<

cp $*. sh $*; chnDd 0777 $@

-nn -f $*.sh

Figure 13-2: make Internal Rules (Sheet 2 of 5)

13·26 PROGRAMMER'S GUIDE

.c.c .f-.f .s-.s .sh-.sh .y-.y .1-.1 .h-.h:

$(GET) $ (GFLAGS) $<

.c.a:

.c .a:

.c.o:

.c .0:

.f.a:

$(OC) -c $(CFLAGS) $<

$(AR) $(ARFLAGS) $@ $*.0

nn -f $*.0

$(GET) $ (GFLAGS) $<

$(OC) -c $(CFLAGS) $*.c

$(AR) $(ARFLAGS) $@ $*.0

nn -f $*. [co]

$(OC) $(CFLAGS) -c $<

$ (GET) $ (GFLAGS) $<

$(OC) $(CFLAGS) -c $*.c

-nn -f $*.c

$(F77) $ (F77FLAGS) $(LDFLAGS) -c $*.f

$(AR) $(ARFLAGS) $@ $*.0

-nn -f $*.0

$ (GET) $ (GFLAGS) $<

$(F77) $ (F77FLAGS) $(LDFLAGS) -c $*.f

$(AR) $(ARFLAGS) $@ $*.0

-nn -f $*. [fo]

Figure 13-2: make Internal Rules (Sheet 3 of 5)

Internal Rules

make 13·27

Internal Rules

.f.o:

.5 .a:

.5.0:

.5 .0:

.1.e :

.1- .e:

$(F77) $ (F77FLAGS) $(LDFLIlGS) -e $*.f

$(GE:l') $(GFLAGS) $<

$(F77) $ (F77FLAGS) $(LDFLIlGS) -e $*.f

-rm -f $*.f

$ (GE:l') $(GFLAGS) $<

$(AS) $(ASFLAGS) -0 $*.0 $*.5

$(AR) $ (ARFLtGS) $@ $*.0

-rm -f $*. [so]

$(AS) $(ASFLAGS) -0 $@ $<

$(GE:1') $(GFLAGS) $<

$(AS) $(ASFLAGS) -0 $*.0 $*.5

-rm -f $*.5

$(LEK) $(LFLAGS) $<
I1IV lex.yy.e $@

$(GE:1') $(GFLAGS) $<

$(LEK) $(LFLAGS) $*.1

I1IV lex.yy.e $@

Figure 13-2: make Internal Rules (Sheet 4 of 5)

13-28 PROGRAMMER'S GUIDE

.1.0:

.1- .0:

.y.e

.y .e

.y.o:

.y .0:

$(LEX) $(LFLAGS) $<

$(CC) $(CFLAGS) -e 1ex.yy.e

no 1ex.yy.e

IlIV 1ex.yy.o $@

-no -f $*.1

$ (GET) $ (GFLAGS) $<

$ (LEX) $(LFLAGS) $*.1

$(CC) $(CFLAGS) -e 1ex.yy.e

no -f 1ex.yy.e $*.1

IlIV 1ex.yy.o $*.0

$(YAOC) $(YFLAGS) $<

IlIV y.tab.e $@

$ (GET) $ (GFLAGS) $<

$(YAOC) $(YFLAGS) $*.y

IlIV y.tab.e $*.e

-no -f $*.y

$ (YACC) $(YFLAGS) $<

$(CC) $(CFLAGS) -e y.tab.e

no y.tab.e

IlIV y.tab.o $@

$ (GET) $ (GFLAGS) $<

$(YAOC) $(YFLAGS) $*.y

$(CC) $(CFLAGS) -e y.tab.e

no -f y.tab.e $*.y

IlIV y. tab.o $*.0

Figure 13-2: make Internal Rules (Sheet 5 of 5)

Internal Rules

make 1.3-29

\
\

)

14 Source Code Control System
(SCCS)

Introduction

SCCS For Beginners
Terminology
Creating an SCCS File via admin
Retrieving a File via get
Recording Changes via delta
Additional Information about get
The help Command

Delta Numbering

SCCS Command Conventions
x.files and z.files
Error Messages

SCCS Commands
The get Command

• ID Keywords
• Retrieval of Different Versions
• Retrieval With Intent to Make a Delta
• Undoing a get e
• Additional get Options
• Concurrent Edits of Different SID
• Concurrent Edits of Same SID

14-1

14-2
14-2
14-2
14-3
14-4
14-5
14-6

14-7

14-10
14-11
14-11

14-12
14-13
14-14
14-14
14-16
14-17
14-17
14-18
14-21

SOURCE CODE CONTROL SYSTEM (SCCS)

Source Code Control System (SCCS)

• Key Letters That Affect Output
The delta Command
The admin Command
Creation of SCCS Files

• Inserting Commentary for the Initial Delta
• Initialization and Modification of SCCS File

Parameters
The prs Command
The sael Command
The help Command
The rmdel Command
The cdc Command
The what Command
The sccsdiff Command
The comb Command
The val Command
The vc Command

sees Files
Protection
Formatting
Auditing

ii PROGRAMMER'S GUIDE

14-22
14-23
14-26
14-26
14-27

14-28
14-29
14-31
14-31
14-32
14-33
14-34
14-34
14-35
14-36
14-36

14-37
14-37
14-38
14-39

Introduction

The Source Code Control System (SCCS) is a maintenance and enhance
ment tracking tool that runs under the UNIX system. SCCS takes custody of
a file and, when changes are made, identifies and stores them in the file with
the original source code and/or documentation. As other changes are made,
they too are identified and retained in the file.

Retrieval of the original or any set of changes is possible. Any version of
the file as it develops can be reconstructed for inspection or additional modifi
cation. History data can be stored with each version: why the changes were
made, who made them, and when they were made.

This guide covers the following:

• SCCS for Beginners: how to make, retrieve, and update an SCCS file

• Delta Numbering: how versions of an SCCS file are named

• SCCS Command Conventions: what rules apply to SCCS commands

• SCCS Commands: the fourteen SCCS commands and their more use
ful arguments

• SCCS Files: protection, format, and auditing of SCCS files

Neither the implementation of SCCS nor the installation procedure for
SCCS is described in this guide.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-1

sees For Beginners

Several terminal session fragments are presented in this section. Try them
all. The best way to learn sees is to use it.

Terminology
A delta is a set of changes made to a file under sees custody. To iden

tify and keep track of a delta, it is assigned an SID (SeeS IDentification)
number. The SID for any original file turned over to sees is composed of
release number 1 and level number 1, stated as 1.1. The SID for the first set
of changes made to that file, that is, its first delta, is release 1 version 2, or
1.2. The next delta would be 1.3, the next 1.4, and so on. More on delta
numbering later. At this point, it is enough to know that by default sees
assigns SIDs automatically.

Creating an SCCS File via admin
Suppose, for example, you have a file called lang that is simply a list of

five programming language names. Use a text editor to create file lang con
taining the following list.

e
PL/l
FORTRAN
COBOL
ALGOL

Custody of your lang file can be given to sees using the admin com
mand (Le., administer sees file). The following creates an sees file from
the lang file:

admin -Hang s.lang

All sees files must have names that begin with s., hence s.lang. The -i key
letter, together with its value lang, means admin is to create an sees file and
initialize it with the contents of the file lang.

14-2 PROGRAMMER'S GUIDE

SCCS For Beginners

The admin command replies

No id keywords (cr.n7)

This is a warning message that may also be issued by other sees commands.
Ignore it for now. Its significance is described later with the get command
under "sees Commands." In the following examples, this warning message
is not shown although it may be issued.

Remove the lang file. It is no longer needed because it exists now under
sees as s.lang.

rm lang

Retrieving a File via get
Use the get command as follows:

get s.lang

This retrieves s.lang and prints

1.1
5 lines

This tells you that get retrieved version 1.1 of the file, which is made up of
five lines of text.

The retrieved text has been placed in a new file known as a "g.file."
sees forms the g.file name by deleting the prefix s. from the name of the
sees file. Thus, the original lang file has been recreated.

If you list, Is(1), the contents of your directory, you will see both lang and
s.lang. sees retains s.lang for use by other users.

The get s.lang command creates lang as read-only and keeps no informa
tion regarding its creation. Because you are going to make changes to it, get
must be informed of your intention to do so. This is done as follows:

get -e s.lang

get -e causes sees to create lang for both reading and writing (editing).
It also places certain information about lang in another new file, called the
"p.file" (p.lang in this case), which is needed later by the delta command.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-3

sees For Beginners

get -e prints the same messages as get, except that now the SID for the
first delta you will create is issued:

1.1
new delta 1.2
5 lines

Change lang by adding two more programming languages:

SNOBOL
ADA

Recording Changes via delta
Next, use the delta command as follows:

delta s.lang

delta then prompts with

ccmnents?

Your response should be an explanation of why the changes were made. For
example,

added more languages

delta now reads the p.file, p.lang, and determines what changes you
made to lang. It does this by doing its own get to retrieve the original version
and applying the diff(l) command to the original version and the edited ver
sion. Next, delta stores the changes in s.lang and destroys the no longer
needed p.lang and lang files.

When this process is complete, delta outputs

1.2
2 inserted
o deleted
5 unchanged

14-4 PROGRAMMER'S GUIDE

SCCS For Beginners

The number 1.2 is the SID of the delta you just created, and the next
three lines summarize what was done to s.lang.

Additional Information about get
The command,

get s.lang

retrieves the latest version of the file s.lang, now 1.2. sees does this by
starting with the original version of the file and applying the delta you made.
If you use the get command now, any of the following will retrieve version
1.2.

get s.lang
get -rl s.lang
get -rl.2 s.lang

The numbers following -r are SIDs. When you omit the level number of
the SID (as in get -rl s.lang), the default is the highest level number that
exists within the specified release. Thus, the second command requests the
retrieval of the latest version in release I, namely 1.2. The third command
specifically requests the retrieval of a particular version, in this case also 1.2.

Whenever a major change is made to a file, you may want to signify it by
changing the release number, the first number of the SID. This, too, is done
with the get command.

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before
release 2. get also interprets this as a request to change the release number of
the new delta to 2, thereby naming it 2.1 rather than 1.3. The output is

1.2
new delta 2.1
7 lines

which means version 1.2 has been retrieved, and 2.1 is the version delta will
create. If the file is now edited, for example, by deleting COBOL from the list
of languages, and delta is executed

delta s.lang
ccmnents? deleted cobol from list of languages

SOURCE CODE CONTROL SYSTEM (SCCS) 14-5

sees For Beginners

you will see by delta's output that version 2.1 is indeed created.

2.1
o inserted
1 deleted
6 unchanged

Deltas can now be created in release 2 (deltas 2.2, 2.3, etc.), or another
new release can be created in a similar manner.

The help Command
If the command

get lang

is now executed, the following message will be output:

ERROR [lang]: not an sees file (001)

The code col can be used with help to print a fuller explanation of the mes
sage.

help col

This gives the following explanation of why get lang produced an error mes
sage:

001:

"not an sees file"
A file that you think is an sees file
does not begin with the characters "s.".

help is useful whenever there is doubt about the meaning of almost any
sees message.

14-6 PROGRAMMER'S GUIDE

Delta Numbering

Think of deltas as the nodes of a tree in which the root node is the origi
nal version of the file. The root is normally named 1.1 and deltas (nodes) are
named 1.2, 1.3, etc. The components of these SIDs are called release and
level numbers, respectively. Thus, normal naming of new deltas proceeds by
incrementing the level number. This is done automatically by sees when
ever a delta is made.

Because the user may change the release number to indicate a major
change, the release number then applies to all new deltas unless specifically
changed again. Thus, the evolution of a particular file could be represented
by Figure 14-1.

Figure 14-1: Evolution of an sees File

This is the normal sequential development of an sees file, with each delta
dependent on the preceding deltas. Such a structure is called the trunk of an
sees tree.

There are situations that require branching an sees tree. That is, changes
are planned to a given delta,that will not be dependent on all previous deltas.
For example, consider a program in production use at version 1.3 and for
which development work on release 2 is already in progress. Release 2 may
already have a delta in progress as shown in Figure 14-1. Assume that a pro
duction user reports a problem in version 1.3 that cannot wait to be repaired
in release 2. The changes necessary to repair the trouble will be applied as a
delta to version 1.3 (the version in production use). This creates a new ver
sion that will then be released to the user but will not affect the changes being
applied for release 2 (Le., deltas 1.4, 2.1, 2.2, etc.). This new delta is the first
node of a new branch of the tree.

Branch delta names always have four SID components: the same release
number and level number as the trunk delta, plus a branch number and
sequence number. The format is as follows:

release.level.branch.sequence

SOURCE CODE CONTROL SYSTEM (SCCS) 14-7

Delta Numbering

The branch number of the first delta branching off any trunk delta is
always 1, and its sequence number is also 1. For example, the full SID for a
delta branching off trunk delta 1.3 will be 1.3.1.1. As other deltas on that
same branch are created, only the sequence number changes: 1.3.1.2, 1.3.1.3,
etc. This is shown in Figure 14-2.

Figure 14-2: Tree Structure with Branch Deltas

The branch number is incremented only when a delta is created that starts
a new branch off an existing branch, as shown in Figure 14-3. As this secon
dary branch develops, the sequence numbers of its deltas are incremented
(1.3.2.1, 1.3.2.2, etc.), but the secondary branch number remains the same.

14-8 PROGRAMMER'S GUIDE

Delta Numbering

Figure 14-3: Extended Branching Concept

The concept of branching may be extended to any delta in the tree, and
the numbering of the resulting deltas proceeds as shown above. SCCS allows
the generation of complex tree structures. Although this capability has been
provided for certain specialized uses, the SCCS tree should be kept as simple
as possible. Comprehension of its structure becomes difficult as the tree
becomes complex.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-9

SCCS Command Conventions

sees commands accept two types of arguments:

• key letters

• file names

Key letters are options that begin with a minus sign, -, followed by a
lowercase letter and, in some cases, a value.

File and/or directory names specify the file(s) the command is to process.
Naming a directory is equivalent to naming all the sees files within the
directory. Non-SeeS files and unreadable files [because of permission modes
via chmod(l)] in the named directories are silently ignored.

In general, file name arguments may not begin with a minus sign. If a file
name of - (a lone minus sign) is specified, the command will read the stan
dard input (usually your terminal) for lines and take each line as the name of
an sees file to be processed. The standard input is read until end-of-file.
This feature is often used in pipelines with, for example, the commands
find(l) or Is(l).

Key letters are processed before file names. Therefore, the placement of
key letters is arbitrary-that is, they may be interspersed with file names. File
names, however, are processed left to right. Somewhat different conventions
apply to help(l), what(l), sccsdiff(l), and val(l), detailed later under "sees
Commands."

Certain actions of various sees commands are controlled by flags appear
ing in sees files. Some of these flags will be discussed, but for a complete
description see admin(l) in the Programmer's Reference Manual.

The distinction between real user [see passwd(l)] and effective user will
be of concern in discussing various actions of sees commands. For now,
assume that the real and effective users are the same-the person logged into
the UNIX system.

14-10 PROGRAMMER'S GUIDE

SCCS Command Conventions

x. files and z. files
All sees commands that modify an sees file do so by writing a copy

called the "x.file." This is done to ensure that the sees file is not damaged
if processing terminates abnormally. sees names the x.file by replacing the
s. of the sees file name with x.. The x.file is created in the same directory
as the sees file, given the same mode [see chmod(l)], and is owned by the
effective user. When processing is complete, the old sees file is destroyed
and the modified x.file is renamed (x. is relaced by s.) and becomes the new
sees file.

To prevent simultaneous updates to an sees file, the same modifying
commands also create a lock-file called the "z.file." sees forms its name by
replacing the s. of the sees file name with a z. prefix. The z.file contains the
process number of the command that creates it, and its existence prevents
other commands from processing the sees file. The z.file is created with
access permission mode 444 (read only) in the same directory as the sees file
and is owned by the effective user. It exists only for the duration of the exe
cution of the command that creates it.

In general, users can ignore x.files and z.files. They are useful only in the
event of system crashes or similar situations.

Error Messages
sees commands produce error messages on the diagnostic output in this

format:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses can be used as an argument to the help command to
obtain a further explanation of the message. Detection of a fatal error during
the processing of a file causes the sees command to stop processing that file
and proceed with the next file specified.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-11

SCCS Commands
This section describes the major features of the fourteen sees commands

and their most common arguments. Full descriptions with details of all argu
ments are in the Programmer's Reference Manual.

Here is a quick-reference overview of the commands:

get

unget

delta

admin

prs

sad

help

rmdel

cdc

what

sccsdiff

comb

val

vc

retrieves versions of sees files

undoes the effect of a get -e prior to the file being deltaed

applies deltas (changes) to sees files and creates new ver
sions

initializes sees files, manipulates their descriptive text, and
controls delta creation rights

prints portions of an sees file in user-specified format

prints information about files that are currently out for edit

gives explanations of error messages

removes a delta from an sees file; allows removal of deltas
created by mistake

changes the commentary associated with a delta

searches any UNIX system file(s) for all occurrences of a spe
cial pattern and prints out what follows it; useful in finding
identifying information inserted by the get command

shows differences between any two versions of an sees file

combines consecutive deltas into one to reduce the size of an
sees file

validates an sees file

a filter that may be used for version control

14·12 PROGRAMMER'S GUIDE

SCCS Commands

The get Command
The get(l) command creates a file that contains a specified version of an

sees file. The version is retrieved by beginning with the initial version and
then applying deltas, in order, until the desired version is obtained. The
resulting file is called the 11 g.file. 11 It is created in the current directory and is
owned by the real user. The mode assigned to the g.file depends on how the
get command is used.

The most common use of get is

get s.abc

which normally retrieves the latest version of file abc from the sees file tree
trunk and produces (for example) on the standard output

1.3
67 lines
No id keywords (c:m.7)

meaning version 1.3 of file s.abc was retrieved (assuming 1.3 is the latest
trunk delta), it has 67 lines of text, and no ID keywords were substituted in
the file.

The generated g.file (file abc) is given access permission mode 444 (read
only). This particular way of using get is intended to produce g.files only for
inspection, compilation, etc. It is not intended for editing (making deltas).

When several files are specified, the same information is output for each
one. For example,

get s.abc s.xyz

produces

s.abc:
1.3
67 lines
No id keywords (c:m.7)

s.xyz:
1.7
85 lines
No id keywords (c:m.7)

SOURCE CODE CONTROL SYSTEM (SCCS) 14·13

SCCS Commands

ID Keywords
In generating a g.file for compilation, it is useful to record the date and

time of creation, the version retrieved, the module's name, etc., within the
g.file. This information appears in a load module when one is eventually
created. SCCS provides a convenient mechanism for doing this automatically.
Identification (ID) key words appearing anywhere in the generated file are
replaced by appropriate values according to the definitions of those ID key
words. The format of an ID keyword is an uppercase letter enclosed by per
cent signs, %. For example,

%1%

is the ID key word replaced by the SID of the retrieved version of a file.
Similarly, %H% and %M% are the names of the g.file. Thus, executing get on
an SCCS file that contains the PL/I declaration,

DCL ID CHAR(100) V AR INIT('%M% %1% %H%');

gives (for example) the following:

DCL ID CHAR(100) VAR INIT('MODNAME 2.3 07/18/85');

When no ID key words are substituted by get, the following message is
issued:

No id keywords (an7)

This message is normally treated as a warning by get although the pres
ence of the i flag in the SCCS file causes it to be treated as an error. For a
complete list of the approximately twenty ID key words provided, see get(l)
in the Programmer's Reference Manual.

Retrieval of Different Versions
The version of an SCCS file get retrieves is the most recently created delta

of the highest numbered trunk release. However, any other version can be
retrieved with get -r by specifying the version's SID. Thus,

get -rl.3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on the standard
output

1.3
64 lines

14-14 PROGRAMMER'S GUIDE

A branch delta may be retrieved similarly,

get -rl.S.2.3 s.abc

which produces (for example) on the standard output

1.5.2.3
234 lines

SCCS Commands

When a SID is specified and the particular version does not exist in the sees
file, an error message results.

Omitting the level number, as in

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the
given release. Thus, the above command might output,

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the
highest level number within the highest-numbered existing release that is
lower than the given release. For example, assume release 9 does not exist in
file s.abc and release 7 is the highest-numbered release below 9. Executing

get -r9 s.abc

might produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file s.abc below
release 9. Similarly, omitting the sequence number, as in

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number
on the given branch. (If the given branch does not exist, an error message
results.) This might result in the following output:

4.3.2.8
89 lines

SOURCE CODE CONTROL SYSTEM (SCCS) 14·15

SCCS Commands

get -t will retrieve the latest (top) version of a particular release when no
-r is used or when its value is simply a release number. The latest version is
the delta produced most recently, independent of its location on the SCCS file
tree. Thus, if the most recent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta
3.5), the same command might produce

3.2.1.5
46 lines

Retrieval With Intent to Make a Delta
The get -e command indicates an intent to make a delta. First, get checks

the following conditions:

1. If the login name or group 10 of the person executing get is present in
the user list. The login name or group 10 must be present for the user
to be allowed to make deltas. (See "The admin Command" for a
discussion of making user lists.)

2. If the release number (R) of the version being retrieved satisfies the
relation

floor is less than or equal to R,
which is less than or equal to ceiling.

This check determines if the release being accessed is a protected
release. The floor and ceiling are flags in the SCCS file representing
start and end of range.

3. If the R is not locked against editing. The lock is a flag in the sees
file.

4. If multiple concurrent edits are allowed for the secs file by the j flag
in the sees file.

14·16 PROGRAMMER'S GUIDE

SCCS Commands

A failure of any of the first three conditions causes the processing of the
corresponding sees file to terminate.

If the above checks succeed, get -e causes the creation of a g.file in the
current directory with mode 644 (readable by everyone, writable only by the
owner) owned by the real user. If a writable g.file already exists, get ter
minates with an error. This is to prevent inadvertent destruction of a g.file
being edited for the purpose of making a delta.

Any ID keywords appearing in the g.file are not substituted by get -e
because the generated g.file is subsequently used to create another delta.
Replacement of ID keywords causes them to be permanently changed in the
sees file. Because of this, get does not need to check for their presence in
the g.file. Thus, the message

No id keywords (an7)

is never output when get -e is used.

In addition, get -e causes the creation (or updating) of a p.file that is used
to pass information to the delta command.

The following

get -e s.abc

produces (for example) on the standard output

1.3
new delta 1.4
67 lines

Undoing a get -e
There may be times when a file is retrieved for editing in error; there is

really no editing that needs to be done at this time. In such cases, the unget
command can be used to cancel the delta reservation that was set up.

Additional get Options
If get -r and/or -t are used together with -e, the version retrieved for

editing is the one specified with -r and/or -to

SOURCE CODE CONTROL SYSTEM (SCCS) 14·17

SCCS Commands

get -i and -x are used to specify a list [see get(l) in the Programmer's
Reference Manual for the syntax of such a list] of deltas to be included and
excluded, respectively. Including a delta means forcing its changes to be
included in the retrieved version. This is useful in applying the same changes
to more than one version of the sees file. Excluding a delta means forcing it
not to be ·applied. This may be used to undo the effects of a previous delta in
the version to be created.

Whenever deltas are included or excluded, get checks for possible interfer
ence with other deltas. Two deltas can interfere, for example, when each one
changes the same line of the retrieved g.file. A warning shows the range of
lines within the retrieved g.file where the problem may exist. The user should
examine the g.file to determine what the problem is and take appropriate
corrective steps (e.g., edit the file). y get -i and get -x "'ould be u,.d with extreme """

get -k is used either to regenerate a g.file that may have been accidentally
removed or ruined after get -e, or simply to generate a g.file in which the
replacement of ID keywords has been suppressed. A g.file generated by get
-k is identical to one produced by get -e, but no processing related to the
p.file takes place.

Concurrent Edits of Different SID
The ability to retrieve different versions of an sees file allows several

deltas to be in progress at any given time. This means that several get -e
commands may be executed on the same file as long as no two executions
retrieve the same version (unless multiple concurrent edits are allowed).

The p.file created by get -e is named by automatic replacement of the
sees file name's prefix s. with p .. It is created in the same directory as the
sees file, given mode 644 (readable by everyone, writable only by the
owner), and owned by the effective user. The p.file contains the following
information for each delta that is still in progress:

• the SID of the retrieved version

14-18 PROGRAMMER'S GUIDE

SCCS Commands

• the SID given to the new delta when it is created

• the login name of the real user executing get

The first execution of get -e causes the creation of a pJile for the
corresponding sees file. Subsequent executions only update the p.file with a
line containing the above information. Before updating, however, get checks
to assure that no entry already in the p.file specifies that the SID of the ver
sion to be retrieved is already retrieved (unless multiple concurrent edits are
allowed). If the check succeeds, the user is informed that other deltas are in
progress and processing continues. If the check fails, an error message results.

It should be noted that concurrent executions of get must be carried out
from different directories. Subsequent executions from the same directory will
attempt to overwrite the gJile, which is an sees error condition. In practice,
this problem does not arise since each user normally has a different working
directory. See "Protection" under "sees Files" for a discussion of how dif
ferent users are permitted to use sees commands on the same files.

Figure 14-4 shows the possible SID components a user can specify with
get (left-most column), the version that will then be retrieved by get, and the
resulting SID for the delta, which delta will create (right-most column).

SOURCE CODE CONTROL SYSTEM (SCCS) 14·19

SCCS Commands

SID -b Key- SID SID of Delta
Specified Letter Other Retrieved To be Created

in get* Usedt Conditions by get by delta

nonet no R defaults to mR mRmL mR(mL+1)

nonet yes R defaults to mR mRmL mRmL.(mB+1)

R no R>mR mRmL R1§

R no R=mR mRmL mR(mL+1)

R yes R>mR mRmL mRmL.(mB+1).1

R yes R=mR mRmL mRmL.(mB+1).1

R - R< mR and R hRmL** hRmL.(mB+ 1).1
does not exist

R - Trunk successor RmL RmL.(mB+1).1
number in
release> R
and R exists

RL. no No trunk RL R(L+1)
successor

RL. yes No trunk RL RL.(mB+1).1
successor

RL - Trunk successor RL RL.(mS+1).1
in release ;::: R

RL.B no No branch RL.B.mS RL.B.(mS+ 1)
successor

RL.B yes No branch RL.B.mS RL.(mB+1).1
successor

RL.B.S no No branch RL.B.S RL.B.(S+l)
successor

RL.B.5 yes No branch RL.B.S RL.(mB+1).1
successor

RL.B.S - Branch successor RL.B.S RL.(mB+ 1).1
Footnotes *, t, :j:, §, and ** on next page.

Figure 14-4: Determination of New SID

14-20 PROGRAMMER'S GUIDE

SCCS Commands

Footnotes to Figure 14-4:

* R, L, B, and S mean release, level, branch, and sequence numbers in
the SID, and m means maximum. Thus, for example, R.mL means the
maximum level number within release R. R.L.(mB+1).1 means the
first sequence number on the new branch (i.e., maximum branch
number plus 1) of level L within release R. Note that if the SID speci
fied is R.L, R.L.B, or R.L.B.S, each of these specified SID numbers
must exist.

t The -b key letter is effective only if the b flag [see admin(1)] is
present in the file. An entry of - means irrelevant.

:t: This case applies if the d (default SID) flag is not present. If the d
flag is present in the file, the SID is interpreted as if specified on the
command line. Thus, one of the other cases in this figure applies.

§ This is used to force the creation of the first delta in a new release.

** hR is the highest existing release that is lower than the specified,
nonexistent release R.

Concurrent Edits of Same SID
Under normal conditions, more than one get -e for the same SID is not

permitted. That is, delta must be executed before a subsequent get -e is exe
cuted on the same SID.

Multiple concurrent edits are allowed if the j flag is set in the sees file.
Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by

get -e s.abc
1.1
new delta 1.1.1.1
5 lines

without an intervening delta. In this case, a delta after the first get will pro
duce delta 1.2 (assuming 1.1 is the most recent trunk delta), and a delta after
the second get will produce delta 1.1.1.1.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-21

SCCS Commands

Key Letters That Affect Output
get -p causes the retrieved text to be written to the standard output rather

than to a g.file. In addition, all output normally directed to the standard out
put (such .as the SID of the version retrieved and the number of lines
retrieved) is directed instead to the diagnostic output. get -p is used, for
example, to create a g.file with an arbitrary name, as in

get -p s.abc > arbitrary-file-name

get -s suppresses output normally directed to the standard output, such as
the SID of the retrieved version and the number of lines retrieved, but it does
not affect messages normally directed to the diagnostic output. get -s is used
to prevent nondiagnostic messages from appearing on the user's terminal and
is often used with -p to pipe the output, as in

get -p -s s.abc I pg

get -g suppresses the retrieval of the text of an sees file. This is useful
in several ways. For example, to verify a particular SID in an sees file

get -g -r4.3 s.abc

outputs the SID 4.3 if it exists in the sees file s.abc or an error message if it
does not. Another use of get -g is in regenerating a p.file that may have been
accidentally destroyed, as in

get -e -g s.abc

get -1 causes sees to create an "l.file." It is named by replacing the s. of
the sees file name with I., created in the current directory with mode 444
(read only) and owned by the real user. The l.file contains a table [whose for
mat is described under get(l) in the Programmer's Reference Manual] showing
the deltas used in constructing a particular version of the sees file. For
example

get -r2.3 -1 s.abc

generates an l.file showing the deltas applied to retrieve version 2.3 of file
s.abc. Specifying p with -I, as in

get -Ip -r2.3 s.abc

causes the output to be written to the standard output rather than to the l.file.
get -g can be used with -1 to suppress the retrieval of the text.

14·22 PROGRAM illER'S GUIDE

SCCS Commands

get -m identifies the changes applied to an sees file. Each line of the
g.file is preceded by the SID of the delta that caused the line to be inserted.
The SID is separated from the text of the line by a tab character.

get -n causes each line of a g.file to be preceded by the value of the ID
keyword and a tab character. This is most often used in a pipeline with
grep(l). For example, to find all lines that match a given pattern in the latest
version of each sees file in a directory, the following may be executed:

get -p -n -s directory I grep pattern

If both -m and -n are specified, each line of the generated g.file is pre
ceded by the value of the chap3.13 ID keyword and a tab (this is the effect of
-n) and is followed by the line in the format produced by -m. Because use of
-m and/or -n causes the contents of the g.file to be modified, such a g.file
must not be used for creating a delta. Therefore, neither -m nor -n may be
specified together with get -e.

See get(l) in the Programmer's Reference Manual for a full description of
additional key letters.

The delta Command
The delta(l) command is used to incorporate changes made to a g.file into

the corresponding sees file-that is, to create a delta and, therefore, a new
version of the file.

The delta command requires the existence of a p.file (created via get -e).
It examines the p.file to verify the presence of an entry containing the user's
login name. If none is found, an error message results.

The delta command performs the same permission checks that get -e per
forms. If all checks are successful, delta determines what has been changed
in the g.file by comparing it via diff(l) with its own temporary copy of the
g.file as it was before editing. This temporary copy of the g.file is called the
d.file and is obtained by performing an internal get on the SID specified in the
p.file entry.

SOURCE CODE CONTROL SYSTEM (SCCS) 14·23

SCCS Commands

The required p.file entry is the one containing the login name of the user
executing delta, because the user who retrieved the g.file must be the one
who creates the delta. However, if the login name of the user appears in
more than one entry, the same user has executed get -e more than once on
the same sees file. Then, delta -r must be used to specify the SID that
uniquely identifies the p.file entry. This entry is then the one used to obtain
the SID of the delta to be created.

In practice, the most common use of delta is

delta s.abc

which prompts

cx:mnents?

to which the user replies with a description of why the delta is being made,
ending the reply with a new-line character. The user's response may be up to
512 characters long with new-lines (not intended to terminate the response)
escaped by backslashes, \.

If the sees file has a v flag, delta first prompts with

MRs?

(Modification Requests), on the standard output. The standard input is then
read for MR numbers, separated by blanks and/or tabs, ended with a new
line character. A Modification Request is a formal way of asking for a correc
tion or enhancement to the file. In some controlled environments where
changes to source files are tracked, deltas are permitted only when initiated by
a trouble report, change request, trouble ticket, etc., collectively called MRs.
Recording MR numbers within deltas is a way of enforcing the rules of the
change management process.

delta -y and/or -m can be used to enter comments and MR numbers on
the command line rather than through the standard input, as in

delta -y II descriptive comment II -m II mrnuml mrnum2 II s.abc

In this case, the prompts for comments and MRs are not printed, and the
standard input is not read. These two key letters are useful when delta is
executed from within a shell procedure [see sh(l) in the Programmer's Refer
ence Manual].

14·24 PROGRAMMER'S GUIDE

SCCS Commands

delta -m is allowed only if the sees file has a v flag.

No matter how comments and MR numbers are entered with delta, they
are recorded as part of the entry for the delta being created. Also, they apply
to all sees files specified with the delta.

If delta is used with more than one file argument and the first file named
has a v flag, all files named must have this flag. Similarly, if the first file
named does not have the flag, none of the files named may have it.

When delta processing is complete, the standard output displays the SID
of the new delta (from the p.file) and the number of lines inserted, deleted,
and left unchanged. For example:

1.4
14 inserted
7 deleted
345 unchanged

If line counts do not agree with the user's perception of the changes made
to a g.file, it may be because there are various ways to describe a set of
changes, especially if lines are moved around in the g.file. However, the total
number of lines of the new delta (the number inserted plus the number left
unchanged) should always agree with the number of lines in the edited g.file.

If you are in the process of making a delta, the delta command finds no
ID keywords in the edited g.file, the message

No id keywords (em7)

is issued after the prompts for commentary but before any other output. This
means that any ID keywords that may have existed in the sees file have
been replaced by their values or deleted during the editing process. This
could be caused by making a delta from a g.file that was created by a get
without -e (ID keywords are replaced by get in such a case). It could also be
caused by accidentally deleting or changing ID keywords while editing the
g.file. Or, it is possible that the file had no ID keywords. In any case, the
delta will be created unless there is an i flag in the sees file (meaning the
error should be treated as fatal), in which case the delta will not be created.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-25

SCCS Commands

After the processing of an sees file is complete, the corresponding p.file
entry is removed from the p.file. All updates to the p.file are made to a tem
porary copy, the "q.file," whose use is similar to the use of the x.file
described earlier under "sees Command Conventions." If there is only one
entry in the p.file, then the p.file itself is removed.

In addition, delta removes the edited g.file unless -n is specified. For
example

delta -n s.abc

will keep the g.file after processing.

delta -s suppresses all output normally directed to the standard output,
other than cx:mnents? and MRs? Thus, use of -s with -y (and/or -m) causes
delta to neither read the standard input nor write the standard output.

The differences between the g.file and the d.file constitute the delta and
may be printed on the standard output by using delta -po The format of this
output is similar to that produced by diff(l).

The admin Command
The admin(l) command is used to administer sees files-that is, to

create new sees files and change the parameters of existing ones. When an
sees file is created, its parameters are initialized by use of key letters with
admin or are assigned default values if no key letters are supplied. The same
key letters are used to change the parameters of existing sees files.

Two key letters are used in detecting and correcting corrupted sees files
(see "Auditing" under "sees Files").

Newly created sees files are given access permission mode 444 (read
only) and are owned by the effective user. Only a user with write permission
in the directory containing the sees file may use the admin command on
that file.

Creation of SCCS Files
An sees file can be created by executing the command

admin -ifirst s.abc

in which the value first with -i is the name of a file from which the text of

t4-26 PROGRAMMER'S GUIDE

SCCS Commands

the initial delta of the sees file s.abc is to be taken. Omission of a value
with -i means admin is to read the standard input for the text of the initial
delta.

The command

admin -i s.abc < first

is equivalent to the previous example.

If the text of the initial delta does not contain ID keywords, the message

No id keywords (em7)

is issued by admin as a warning. However, if the command also sets the i
flag (not to be confused with the -i key letter), the message is treated as an
error and the sees file is not created. Only one sees file may be created at
a time using admin -i.

admin -r is used to specify a release number for the first delta. Thus:

admin -ifirst -r3 s.abc

means the first delta should be named 3.1 rather than the normal 1.1.
Because -r has meaning only when creating the first delta, its use is permitted
only with -i.

Inserting Commentary for the Initial Delta
When an sees file is created, the user may want to record why this was

done. Comments (admin -y) and/or MR numbers (-m) can be entered in
exactly the same way as a delta.

If -y is omitted, a comment line of the form

date and time created YY /MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (admin -m), the v flag must be set
via -f. The v flag simply determines whether MR numbers must be supplied
when using any sees command that modifies a delta commentary [see
sccsfile(4} in the Programmer's Reference Manual] in the sees file. Thus:

admin -ifirst -mmrnuml -fv s.abc

Note that -y and -m are effective only if a new sees file is being created.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-27

SCCS Commands

Initialization and Modification of sees File Parameters
Part of an sees file is reserved for descriptive text, usually a summary of

the file's contents and purpose. It can be initialized or changed by using
admin -to

When an sees file is first being created and -t is used, it must be fol
lowed by the name of a file from which the descriptive text is to be taken.
For example, the command

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file desc.

When processing an existing sees file, -t specifies that the descriptive
text (if any) currently in the file is to be replaced with the text in the named
file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the sees file is to be replaced by the con
tents of desc. Omission of the file name after the -t key letter as in

admin -t s.abc

causes the removal of the descriptive text from the sees file.

The flags of an sees file may be initialized or changed by admin -f or
deleted via -d.

sees file flags are used to direct certain actions of the various commands.
[See admin(l) in the Programmer's Reference Manual for a description of all the
flags.] For example, the i flag specifies that a warning message (stating that
there are no 10 keywords contained in the sees file) should be treated as an
error. The d (default SID) flag specifies the default version of the sees file to
be retrieved by the get command.

admin -f is used to set flags and, if desired, their values. For example

admin -ifirst -fi -fmmodname s.abc

sets the i and m (module name) flags. The value modname specified for the m
flag is the value that the get command will use to replace the %M% 10 key
word. (In the absence of the m flag, the name of the g.file is used as the
replacement for the %M% ID keyword.) Several -f key letters may be sup
plied on a single admin, and they may be used whether the command is
creating a new sees file or processing an existing one.

14-28 PROGRAMMER'S GUIDE

SCCS Commands

admin -d is used to delete a flag from an existing sees file. As an exam
ple, the command

admin -dm s.abc

removes the m flag from the sees file. Several -d key letters may be used
with one admin and may be intermixed with -f.

sees files contain a list of login names and/or group IDs of users who
are allowed to create deltas. This list is empty by default, allowing anyone to
create deltas. To create a user list (or add to an existing one), admin -a is
used. For example,

admin -axyz -awqI -a1234 s.abc

adds the login names xyz and wqI and the group ID 1234 to the list.
admin -a may be used whether creating a new sees file or processing an
existing one.

admin -e (erase) is used to remove login names or group IDs from the
list.

The prs Command
The prs(l) command is used to print all or part of an sees file on the

standard output. If prs -d is used, the output will be in a format called data
specification. Data specification is a string of sees file data key words (not to
be confused with get ID keywords) interspersed with optional user text.

Data key words are replaced by appropriate values according to their
definitions. For example,

:1:

is defined as the data key word replaced by the SID of a specified delta. Simi
larly, :F: is the data key word for the sees file name currently being pro
cessed, and :e: is the comment line associated with a specified delta. All parts
of an sees file have an associated data key word. For a complete list, see
prs(l) in the Programmer's Reference Manual.

There is no limit to the number of times a data key word may appear in a
data specification. Thus, for example,

prs -d" :1: this is the top delta for :F: :1:" s.abc

may produce on the standard output

SOURCE CODE CONTROL SYSTEM (SCCS) 14-29

SCCS Commands

2.1 this is the top delta far s.abc 2.1

Information may be obtained from a single delta by specifying its SID
using prs -r. For example,

prs -d" :F:: :1: comment line is: :C:" -rl.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If -r is not specified, the value of the SID defaults to the most recently
created delta.

In addition, information from a range of deltas may be obtained with -lor
-e. The use of prs -e substitutes data keywords for the SID designated via -r
and all deltas created earlier, while prs -1 substitutes data keywords for the
SID designated via -r and all deltas created later. Thus, the command

prs -d:l: -r1.4 -e s.abc

may output

1.4
1.3
1.2.1.1
1.2
1.1

and the command

prs -d:l: -rl.4 -1 s.abc

may produce

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

14-30 PROGRAM.MER'S GUIDE

SCCS Commands

Substitution of data keywords for all deltas of the sees file may be
obtained by specifying both -e and -1.

The sad Command
sact(l) is like a special form of the prs command that produces a report

about files that are out for edit. The command takes only one type of argu
ment: a list of file or directory names. The report shows the SID of any file
in the list that is out for edit, the SID of the impending delta, the login of the
user who executed the get -e command, and the date and time the get -e was
executed. It is a useful command for an administrator.

The help Command
The help(l) command prints the syntax of sees commands and of mes

sages that may appear on the user's terminal. Arguments to help are simply
sees commands or the code numbers that appear in parentheses after sees
messages. (If no argument is given, help prompts for one.) Explanatory
information is printed on the standard output. If no information is found, an
error message is printed. When more than one argument is used, each is pro
cessed independently, and an error resulting from one will not stop the pro
cessing of the others.

There is no conflict between the help(l) command of sees and the
UNIX system help(l) utilities. The installation procedure for each pack
age checks for the prior existence of the other.

Explanatory information related to a command is a synopsis of the com
mand. For example,

help ge5 rmdel

produces

SOURCE CODE CONTROL SYSTEM (SCCS) 14-31

SCCS Commands

geS:
"nonexistent sid"
The specified sid does not exist :in the
given file.
Check for typos.

ntdel:
ntdel -rsm name

The rmdel Command
The rmdel(l) command allows removal of a delta from an sees file. Its

use should be reserved for deltas in which incorrect global changes were
made. The delta to be removed must be a leaf delta. That is, it must be the
most recently created delta on its branch or on the trunk of the sees file tree.
In Figure 14-3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed. Only
after they are removed can deltas 1.3.2.1 and 2.1 be removed.

To be allowed to remove a delta, the effective user must have write per
mission in the directory containing the sees file. In addition, the real user
must be either the one who created the delta being removed or the owner of
the sees file and its directory.

The -r key letter is mandatory with rmdel. It is used to specify the com
plete SID of the delta to be removed. Thus,

rmdel -r2.3 s.abc

specifies the removal of trunk delta 2.3.

Before removing the delta, rmdel checks that the release number (R) of
the given SID satisfies the relation:

floor less than or equal to R less than or equal to ceiling

The rmdel command also checks the SID to make sure it is not for a ver
sion on which a get for editing has been executed and whose associated delta
has not yet been made. In addition, the login name or group ID of the user
must appear in the file's user list (or the user list must be empty). Also, the
release specified cannot be locked against editing. That is, if the 1 flag is set
[see admin(l) in the Programmer's Reference Manual], the release must not be
contained in the list. If these conditions are not satisfied, processing is

14-32 PROGRAMMER'S GUIDE

SCCS Commands

terminated, and the delta is not removed.

Once a specified delta has been removed, its type indicator in the delta
table of the sees file is changed from D (delta) to R (removed).

The cdc Command
The cdc(l) command is used to change the commentary made when the

delta was created. It is similar to the rmdel command (e.g., -r and full SID
are necessary), although the delta need not be a leaf delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta 3.4 is to be changed. New commentary
is then prompted for as with delta.

The old commentary is kept, but it is preceded by a comment line indicat
ing that it has been superseded, and the new commentary is entered ahead of
the comment line. The inserted comment line records the login name of the
user executing cdc and the time of its execution.

The cdc command also allows for the insertion of new and deletion of old
("!" prefix) MR numbers. Thus,

cdc -r1.4 s.abc
MRs? mrnum3 !mrnuml

ccmnents?

(The MRs? prompt appears only if the v
flag has been set.)
deleted wrong MR number and
inserted correct MR number

inserts mrnum3 and deletes mrnuml for delta 1.4.

An MR (Modification Request) is described in "The delta Command"
section.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-33

SCCS Commands

The what Command
The what(l) command is used to find identifying information within any

UNIX file whose name is given as an argument. No key letters are accepted.
The what command searches the given file(s) for all occurrences of the string
@(#), which is the replacement for the %Z% ID keyword [see get(l)]. It
prints on the standard output whatever follows the string until the first double
quote, ", greater than, >, backslash, \, new-line, or nonprinting NUL charac
ter.

For example, if an sees file called s.prog.c (a e language program) con
tains the following line:

char id[]= II~II;

and the command

get -r3.4 s.prog.c

is used, the resulting g.file is compiled to produce prog.o and a.out. Then, the
command

what prog.c prog.o a.out

produces

prog.c:
prog.c: 3.4

prog.o:
prog.c: 3.4

a.out:
prog.c: 3.4

The string searched for by what need not be inserted via an ID keyword of
get; it may be inserted in any convenient manner.

The sccsdiff Command
The sccsdiff(l) command determines (and prints on the standard output)

the differences between any two versions of an sees file. The versions to be
compared are specified with sccsdiff -r in the same way as with get -r. SID
numbers must be specified as the first two arguments. Any following key
letters are interpreted as arguments to the pr(l) command (which prints the

14-34 PROGRAMMER'S GUIDE

SCCS Commands

differences) and must appear before any file names. The sees file(s) to be
processed are named last. Directory names and a name of - (a lone minus
sign) are not acceptable to sccsdiff.

The following is an example of the format of sccsdiff:

sccsdiff -r3.4 -r5.6 s.abc

The differences are printed the same way as by diff(l).

The comb Command
The comb(1) command lets the user try to reduce the size of an sees file.

It generates a shell procedure [see sh(l) in the Programmer's Reference Manual]
on the standard output, which reconstructs the file by discarding unwanted
deltas and combining other specified deltas. (It is not recommended that
comb be used as a matter of routine.)

In the absence of any key letters, comb preserves only leaf deltas and the
minimum number of ancestor deltas necessary to preserve the shape of an
sees tree. The effect of this is to eliminate middle deltas on the trunk and
on all branches of the tree. Thus, in Figure 14-3, deltas 1.2, 1.3.2.1, 1.4, and
2.1 would be eliminated.

Some of the key letters used with this command are:

comb -s This option generates a shell procedure that produces a report
of the percentage space (if any) the user will save. This is
often useful as an advance step.

comb -p This option is used to specify the oldest delta the user wants
preserved.

comb -c This option is used to specify a list [see get(l) in the
Programmer's Reference Manual for its syntax] of deltas the user
wants preserved. All other deltas will be discarded.

The shell procedure generated by comb is not guaranteed to save space. A
reconstructed file may even be larger than the original. Note, too, that the
shape of an sees file tree may be altered by the reconstruction process.

SOURCE CODE CONTROL SYSTEM (SCCS) 14-35

SCCS Commands

The val Command
The val(l) command is used to determine whether a file is an SCCS file

meeting the characteristics specified by certain key letters. It checks for the
existence of a particular delta when the SID for that delta is specified with -f.

The string following -y or -m is used to check the value set by the t or m
flag, respectively. See admin(l) in the Programmer's Reference Manual for
descriptions of these flags.

The val command treats the special argument - differently from other
SCCS commands. It allows val to read the argument list from the standard
input instead of from the command line, and the standard input is read until
an end-of-file (CTRL-D) is entered. This permits one val command with dif
ferent values for key letters and file arguments. For example,

val - -ye -mabe s.abc -mxyz -ypll s.xyz

first checks if file s.abe has a value e for its type flag and value abc for the
module name flag. Once this is done, val processes the remaining file, in this
case s.xyz.

The val command returns an 8-bit code. Each bit set shows a specific
error [see val(l) for a description of errors and codes]. In addition, an
appropriate diagnostic is printed unless suppressed by -so A return code of 0
means all files met the characteristics specified.

The vc Command
The ve(l) command is an awk-like tool used for version control of sets of

files. While it is distributed as part of the SCCS package, it does not require
the files it operates on to be under SCCS control. A complete description of
ve may be found in the Programmer's Reference Manual.

14-36 PROGRAMMER'S GUIDE

sees Files

This section covers protection mechanisms used by sees, the format of
sees files, and the recommended procedures for auditing sees files.

Protection
sees relies on the capabilities of the UNIX system for most of the protec

tion mechanisms required to prevent unauthorized changes to sees files
that is, changes by non-SeeS commands. Protection features provided
directly by sees are the release lock flag, the release floor and ceiling flags,
and the user list.

Files created by the admin command are given access permission
mode 444 (read only). This mode should remain unchanged because it
prevents modification of sees files by non-sees commands. Directories
containing sees files should be given mode 755, which allows only the
owner of the directory to modify it.

sees files should be kept in directories that contain only sees files and
any temporary files created by sees commands. This simplifies their protec
tion and auditing. The contents of directories should be logical groupings
subsystems of the same large project, for example.

sees files should have only one link (name) because commands that
modify them do so by creating a copy of the file (the x.file; see "sees Com
mand Conventions"). When processing is done, the old file is automatically
removed and the x.file renamed (s. prefix). If the old file had additional links,
this breaks them. Then, rather than process such files, sees commands will
produce an error message.

When only one person uses sees, the real and effective user IDs are the
same; and the user 10 owns the directories containing sees files. Therefore,
sees may be used directly without any preliminary preparation.

When several users with unique user IDs are assigned sees responsibili
ties (e.g., on large development projects), one user-that is, one user 10-
must be chosen as the owner of the sees files. This person will administer
the files (e.g., use the admin command) and will be sees administrator for
the project. Because other users do not have the same privileges and permis
sions as the sees administrator, they are not able to execute directly those

SOURCE CODE CONTROL SYSTEM (SCCS) 14-37

sees Files

commands that require write permission in the directory containing the sees
files. Therefore, a project-dependent program is required to provide an inter
face to the get, delta, and, if desired, rmdel and cdc commands.

The .interface program must be owned by the sees administrator and
must have the set user ID on execution bit on [see chmod(l) in the User's
Reference Manual]. This assures that the effective user ID is the user ID of the
sees administrator. With the privileges of the interface program during com
mand execution, the owner of an sees file can modify it at will. Other users
whose login names or group IDs are in the user list for that file (but are not
the owner) are given the necessary permissions only for the duration of the
execution of the interface program. Thus, they may modify sees only with
delta and, possibly, rmdel and cdc.

A project-dependent interface program, as its name implies, can be custom
built for each project. Its creation is discussed later under .. An sees Interface
Program."

Formatting
sees files are composed of lines of ASCII text arranged in six parts as fol

lows:

Checksum a line containing the logical sum of all the characters of
the file (not including the checksum itself)

Delta Table information about each delta, such as type, SID, date
and time of creation, and commentary

User Names list of login names and/or group IDs of users who are
allowed to modify the file by adding or removing deltas

Flags indicators that control certain actions of sees com
mands

Descriptive Text usually a summary of the contents and purpose of the
file

Body the text administered by sees, intermixed with internal
sees control lines

14-38 PROGRAMMER'S GUIDE

SCCS Files

Details on these file sections may be found in sccs£ile(4). The checksum
is discussed below under "Auditing."

Since sees files are ASeII files they can be processed by non-SeeS com
mands like ed(l), grep(l), and cat(l). This is convenient when an sees file
must be modified manually (e.g., a delta's time and date were recorded
incorrectly because the system clock was set incorrectly), or when a user
wants simply to look at the file. y Extreme ''''' ,hould be exe...;,ro when modifYing sees file. with

non-Sees commands.

Auditing
When a system or hardware malfunction destroys an sees file, any com

mand will issue an error message. Commands also use the checksum stored
in an sees file to determine whether the file has been corrupted since it was
last accessed [possibly by having lost one or more blocks or by having been
modified with ed(l)]. No sees command will process a corrupted sees file
except the admin command with -h or -z, as described below.

sees files should be audited for possible corruptions on a regular basis.
The simplest and fastest way to do an audit is to use admin -h and specify all
sees files:

admin -h s.filel s.file2 ...
or

admin -h directory 1 directory2

If the new checksum of any file is not equal to the checksum in the first
line of that file, the message

corrupted file (c06)

is produced for that file. The process continues until all specified files have
been examined. When examining directories (as in the second example
above), the checksum process will not detect missing files. A simple way to
learn whether files are missing from a directory is to execute the Is(l) com
mand periodically, and compare the outputs. Any file whose name appeared

SOURCE CODE CONTROL SYSTEM (SCeS) 14·39

sees FII ••

in a previous output but not in the current one no longer exists.

When a file has been corrupted, the way to restore it depends on the
extent of the corruption. If damage is extensive, the best solution is to contact
the local UNIX system operations group and request that the file be restored
from a backup copy. If the damage is minor, repair through editing may be
possible. After such a repair, the admin command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum and bring it into agreement
with the contents of the file. After this command is executed, any corruption
that existed in the file will no longer be detectable.

14-40 PROGRAMMER'S GUIDE

15 sdb-the Symbolic Debugger

Introduction

Using sdb
Printing a Stack Trace
Examining Variables
Source File Display and Manipulation

• Displaying the Source File
• Changing the Current Source File or Function
• Changing the Current Line in the Source File

A Controlled Environment for Program Testing
• Setting and Deleting Breakpoints
• Running the Program
• Calling Functions

Machine Language Debugging
• Displaying Machine Language Statements
• Manipulating Registers

Other Commands
Ah sdb Session

15-1

15-2
15-3
15-3
15-6
15-6
15-7
15-7
15-8
15-8
15-9

15-10
15-11
15-11
15-12
15-12
15-12

sdb-THE SYMBOLIC DEBUGGER

Introduction

This chapter describes the symbolic debugger, sdb(l), as implemented for
C language programs on the UNIX operating system. The sdb program is
useful both for examining core images of aborted programs and for providing
an environment in which execution of a program can be monitored and con
trolled.

The sdb program allows interaction with a debugged program at the
source language level. When debugging a core image from an aborted pro
gram, sdb reports which line in the source program caused the error and
allows all variables to be accessed symbolically and to be displayed in the
correct format.

When executing, breakpoints may be placed at selected statements or the
program may be single-stepped on a line-by-line basis. To facilitate specifica
tion of lines in the program without a source listing, sdb provides a mechan
ism for examining the source text. Procedures may be called directly from the
debugger. This feature is useful both for testing individual procedures and for
calling user-provided routines, which provide formatted printouts of structured
data.

sdb-THE SYMBOLIC DEBUGGER 15·1

Using sdb
In order to use sdb to its full capabilities, it is necessary to compile the

source program with the -g option. This causes the compiler to generate
additional information about the variables and statements of the compiled
program. When the -g option has been specified, sdb can be used to obtain a
trace of the called functions at the time of the abort and interactively display
the values of variables.

A typical sequence of shell commands for debugging a core image is

cc -g prgm.c -0 prgm
prgm
Bus error - core dlllIped
sdb prgm
main: 25: x[i] = 0;

*
The program prgm was compiled with the -g option and then executed.

An error occurred, which caused a core dump. The sdb program is then
invoked to examine the core dump to determine the cause of the error. It
reports that the bus error occurred in function main at line 25 (line numbers
are always relative to the beginning of the file) and outputs the source text of
the offending line. The sdb program then prompts the user with an *, which
shows that it is waiting for a command.

It is useful to know that sdb has a notion of current function and current
line. In this example, they are initially set to main and 25, respectively.

Here sdb was called with one argument, prgm. In general, it takes three
arguments on the command line:

1. the name of the executable file that is to be debugged. It defaults to
a.out when not specified.

2. the name of the core file, defaulting to core.

3. the list of the directories (separated by colons) containing the source
of the program being debugged. The default is the current working
directory.

In the example, the second and third arguments defaulted to the correct
values, so only the first was specified.

15-2 PROGRAMMER'S GUIDE

Using sdb

If the error occurred in a function that was not compiled with the -g
option, sdb prints the function name and the address at which the error
occurred. The current line and function are set to the first executable line in
main. If main was not compiled with the -g option, sdb will print an error
message, but debugging can continue for those routines that were compiled
with the -g option.

Figure 15-1 at the end of the chapter, shows a more extensive example of
sdb use.

Printing a Stack Trace
It is often useful to obtain a listing of the function calls that led to the

error. This is obtained with the t command. For example:

*t

sub(x=2,y=3} [prgm.c:25]
inter(i=16012} [prgm.c:96]
main(argc=1,argv=Ox7fffff54,envp=Ox7fffff5c} [prgm.c:15]

This indicates that the program was stopped within the function sub at line 25
in file prgm.c. The sub function was called with the arguments x=2 and y=3
from inter at line 96. The inter function was called from main at line 15.
The main function is always called by a startup routine with three arguments
often referred to as argc, argv, and envp. Note that argv and envp are
pointers, so their values are printed in hexadecimal.

Examining Variables
The sdb program can be used to display variables in the stopped program.

Variables are displayed by typing their name followed by a slash, so

*errflag/

causes sdb to display the value of variable errflag. Unless otherwise speci
fied, variables are assumed to be either local to or accessible from the current
function. To specify a different function, use the form

*sub:i/

to display variable i in function sub.

sdb-THE SYMBOLIC DEBUGGER 15-3

Using sdb

The sdb program supports a limited form of pattern matching for variable
and function names. The symbol * is used to match any sequence of charac
ters of a variable name and? to match any single character. Consider the fol
lowing commands

*x*1
*Sub:y?1
**1

The first prints the values of all variables beginning with x, the second prints
the values of all two-letter variables in function sub beginning with y, and the
last prints all variables. In the first and last examples, only variables accessi
ble from the current function are printed. The command

**:*1

displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format determined
by its type as declared in the source program. To request a different format, a
specifier is placed after the slash. The specifier consists of an optional length
specification followed by the format. The length specifiers are:

b one byte

h two bytes (half word)

1 four bytes (long word)

The length specifiers are. effective only with the formats d, 0, x, and u. If no
length is specified, the word length of the host machine is used. A number
can be used with the s or a formats to control the number of characters
printed. The s and a formats normally print characters until either a null is
reached or 128 characters have been printed. The number specifies exactly
how many characters should be printed.

There are a number of format specifiers available:

c character

d decimal

u decimal unsigned

o octal

15-4 PROGRAMMER'S GUIDE

x hexadecimal

f 32-bit single-precision floating point

g 64-bit double-precision floating point

Using sdb

s Assume variable is a string pointer and print characters starting at the
address pointed to by the variable until a null is reached.

a Print characters starting at the variable's address until a null is reached.

p Pointer to function.

i Interpret as a machine-language instruction.

For example, the variable i can be displayed with

*i/x

which prints out the value of i in hexadecimal.

sdb also knows about structures, arrays, and pointers so that all of the fol-
lowing commands work.

*array[2][3]/
*sym.id/
*psym->usage/
*xsym[20].p->usage/

The only restriction is that array subscripts must be numbers. Note that as a
special case:

*psym[0]

displays the structure pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute
addresses. The command

*1024/

displays location 1024 in decimal. As in C language, numbers may also be
specified in octal or hexadecimal so the above command is equivalent to both

*02000/

and

*Ox400/

sdb-THE SYMBOLIC DEBUGGER 15-5

Using sdb

It is possible to mix numbers and variables so that

*1000.x/

refers to an element of a structure starting at address 1000, and

*100Q->x/

refers to an element of a structure whose address is at 1000. For commands
of the type *lOOO.xj and *1000->xj, the sdb program uses the structure tem
plate of the last structure referenced.

The address of a variable is printed with =, so

*i=

displays the address of i. Another feature whose usefulness will become
apparent later is the command

*./

which redisplays the last variable typed.

Source File Display and Manipulation
The sdb program has been designed to make it easy to debug a program

without constant reference to a current source listing. Facilities are provided
that perform context searches within the source files of the program being
debugged and that display selected portions of the source files. The com
mands are similar to those of the UNIX system text editor ed(l). Like the edi
tor, sdb has a notion of current file and line within the current file. sdb also
knows how the lines of a file are partitioned into functions, so it also has a
notion of current function. As noted in other parts of this document, the
current function is used by a number of sdb commands.

Displaying the Source File
Four commands exist for displaying lines in the source file. They are use

ful for perusing the source program and for determining the context of the
current line. The commands are:

p Prints the current line.

w Window; prints a window of ten lines around the current line.

15-6 PROGRAMMER'S GUIDE

Using sdb

z Prints ten lines starting at the current line. Advances the
current line by ten.

control-d Scrolls; prints the next ten lines and advances the current line
by ten. This command is used to cleanly display long seg
ments of the program.

When a line from a file is printed, it is preceded by its line number. This
not only gives an indication of its relative position in the file, but it is also
used as input by some sdb commands.

Changing the Current Source File or Function

The e command is used to change the current source file. Either of the
forms

*e ftmCtion
*e file.c

may be used. The first causes the file containing the named function to
become the current file, and the current line becomes the first line of the func
tion. The other form causes the named file to become current. In this case,
the current line is set to the first line of the named file. Finally, an e com
mand with no argument causes the current function and file named to be
printed.

Changing the Current Line in the Source File
The z and control-d commands have a side effect of changing the current

line in the source file. The following paragraphs describe other commands
that change the current line.

There are two commands for searching for instances of regular expressions
in source files. They are

* /regular expression!
*?regular expression?

The first command searches forward through the file for a line containing a
string that matches the regular expression and the second searches backwards.
The trailing / and ? may be omitted from these commands. Regular expres
sion matching is identical to that of ed(l).

sdb-THE SYMBOLIC DEBUGGER 15·7

Using sdb

The + and - commands may be used to move the current line forward or
backward by a specified number of lines. Typing a new-line advances the
current line by one, and typing a number causes that line to become the
current line in the file.
These commands may be combined with the display commands so that

*+15z

advances the current line by 15 and then prints ten lines.

A Controlled Environment for Program Testing
One very useful feature of sdb is breakpoint debugging. After entering

sdb, breakpoints can be set at certain lines in the source program. The pro
gram is then started with an sdb command. Execution of the program
proceeds as normal until it is about to execute one of the lines at which a
breakpoint has been set. The program stops and sdb reports the breakpoint
where the program stopped. Now, sdb commands may be used to display the
trace of function calls and the values of variables. If the user is satisfied the
program is working correctly to this point, some breakpoints can be deleted
and others set; then program execution may be continued from the point
where it stopped.

A useful alternative to setting breakpoints is single-stepping. sdb can be
requested to execute the next line of the program and then stop. This feature
is especially useful for testing new programs, so they can be verified on a
statement-by-statement basis. If an attempt is made to single-step through a
function that has not been compiled with the -g option, execution proceeds
until a statement in a function compiled with the -g option is reached. It is
also possible to have the program execute one machine level instruction at a
time. This is particularly useful when the program has not been compiled
with the -g option.

Setting and Deleting Breakpoints
Breakpoints can be set at any line in a function compiled with the -g

option. The command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The line

15-8 PROGRAMMER'S GUIDE

Using sdb

numbers are relative to the beginning of the file as printed by the source file
display commands. The second form sets a breakpoint at line 12 of function
proc, and the third sets a breakpoint at the first line of proc. The last sets a
breakpoint at the current line.

Breakpoints are deleted similarly with the d command:

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted
interactively. Each breakpoint location is printed, and a line is read from the
user. If the line begins with a y or d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command,
and the 0 command deletes all breakpoints. It is sometimes desirable to have
sdb automatically perform a sequence of commands at a breakpoint and then
have execution continue. This is achieved with another form of the b com
mand.

*12b t;x/

causes both a trace back and the value of x to be printed each time execution
gets to line 12. The a command is a variation of the above command. There
are two forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time it is called, and
the second prints the source line each time it is about to be executed. For
both forms of the a command, execution continues after the function name or
source line is printed.

Running the Program
The r command is used to begin program execution. It restarts the pro

gram as if it were invoked from the shell. The command

*r args

runs the program with the given arguments as if they had been typed on the
shell command line. If no arguments are specified, then the arguments from
the last execution of the program within sdb are used. To run a program with
no arguments, use the R command.

sdb-THE SYMBOLIC DEBUGGER 15-9

U~ing sdb

After the program is started, execution continues until a breakpoint is
encountered, a signal such as lNTERRUPT or QUIT occurs, or the program ter
minates. In all caSeS after an appropriate message is printed, control returns
to the user.

The c command may be used to continue execution of a stopped program.
A line number may be specified, as in:

*proc: 12c

This places a temporary breakpoint at the named line. The breakpoint is
deleted when the c command finishes. There is also a C command that con
tinues but passes the signal that stopped the program back to the program.
This is useful for testing user-written signal handlers. Execution may be con
tinued at a specified line with the g command. For example:

*17 g

continues at line 17 of the current function. A use for this command is to
avoid executing a sectiQn of code that is known to be bad. The user should
not attempt to continue execution in a function different from that of the
breakpoint.

The s command is used to run the program for a single statement. It is
useful for slowly executing the program to examine its behavior in detail. An
important alternative is the S command. This command is like the s com
mand but does not stop within called functions. It is often used when one is
confident that the called function works correctly but is interested in testing
the calling routine.

The i command is used to run the program one machine level instruction
at a time while ignoring the signal that stopped the program. Its uses are
similar to the s command. There is also an I command that causes the pro
gram to execute one machine level instruction at a time, but also passes the
signal that stopped the program back to the program.

Calling Functions
It is possible tQ call any of the functions of the program from sdb. This

feature is useful both for testing individual functions with different arguments
and for calling a user-supplied function to print-structured data. There are
two ways to call a function:

*proc(arg1, arg2, •••)
*proc(arq1, arg2, ••.)/m

15·10 PROGRAMMER'S GUIDE

Using sdb

The first simply executes the function. The second is intended for calling
functions (it executes the function and prints the value that it returns). The
value is printed in decimal unless some other format is specified by m.
Arguments to functions may be integer, character or string constants, or vari
ables that are accessible from the current function.

An unfortunate bug in the current implementation is that if a function is
called when the program is not stopped at a breakpoint (such as when a core
image is being debugged) all variables are initialized before the function is
started. This makes it impossible to use a function that formats data from a
dump.

Machine Language Debugging
The sdb program has facilities for examining programs at the machine

language level. It is possible to print the machine language statements associ
ated with a line in the source and to place breakpoints at arbitrary addresses.
The sdb program can also be used to display or modify the contents of the
machine registers.

Displaying Machine Language Statements
To display the machine language statements associated with line 25 in

function main, use the command

*main:25?

The? command is identical to the / command except that it displays from text
space. The default format for printing text space is the i format, which inter
prets the machine language instruction. The control-d command may be used
to print the next ten instructions.

Absolute addresses may be specified instead of line numbers by append
ing a : to them so that

*Ox1024:?

displays the contents of address Oxl024 in text space. Note that the command

*Ox1024?

displays the instruction corresponding to line Oxl024 in the current function.
It is also possible to set or delete a breakpoint by specifying its absolute
address;

sdb-THE SYMBOLIC DEBUGGER 15-11

Using sdb

*Ox1024:b

sets a breakpoint at address Oxl024.

Manipulating Registers
The x command prints the values of all the registers. Also, individual

registers may be named by appending a % sign to their name so that on the
80286

*ax%

displays the value of register ax, and on the 80386

*eax%

displays the value of register eax.

Other Commands

To exit sdb, use the q command.

The! command (when used immediately after the * prompt) is identical to
that in ed(l) and is used to have the shell execute a command. The! can also
be used to change the values of variables or registers when the program is
stopped at a breakpoint.

*variable Ivalue
*eax!value

which sets the variable or the named register to the given value. The value
may be a number, character constant, register, or the name of another vari
able. If the variable is of type float or double, the value can also be a
floating-point constant (specified according to the standard C language for
mat).

An sdb Session
An example of a debugging session using sdb is shown in Figure IS-I.

Comments (preceded by a pound sign, #) have been added to help you see
what is happening.

15-12 PROGRAMMER'S GUIDE

sdh myoptim - .: • ./camr::m. # enter sdh CCIIlIaIld

Source path: .: .• /camr::m.
No core :image
*window:b # set a breakpoint at start of window
OxB0802462 (~:1459+2) b
*r < m.s > out.m.s # run the program
Breakpoint at
OxB0802462 in ~: 1459: wi.ndow(size, func) register int size;
boolean(*func)(); {
*t

wi.ndow(size=2, func=w2opt)

peep() [peep.c:34]

print stack trace
[optim.c: 1459]

pseudo(s=.ciefAImain; AI.va1AI. ;AI.sclAI-1; AI.endef) [1oca1.c:483]

yylex() [local.c:229]
main(argc=O,argv=Oxc00201bc,-1073610300) [optim.c:227]

Figure 15-1: Example of sdb Usage (Sheet 1 of 3)

Using sdb

sdb-THE SYMBOLIC DEBUGGER 15-13

Using sdb

*z # print 10 lines of source
1459: window(size, func) register int size; boolean (*func)();
1460:
1461: extern NDE *initw();
1462: register NDE *pI;

1463: register int i;
1464:
1465: 'mACE(window);
1466:
1467: /* find first window */
1468:
*s # step
window:1459: window(size, func) register int size; boolean (*func)(); {
*s # step
window: 1465: 'mACE(window);
*s # step
window: 1469:
*s
window: 1470:
*5
window: 1475:
*pI

OxB0886b38
*x

es/ OxSf

ax/ Ox1cea
di/ Oxfbd4

flgs/ Ox202

wsize = size;
step

if ((pI = initw(nO.forw» == NULL)

step through procedure call
for (opf = pf->back; ; opf = pf->back) {

srow variable pI

print the 80286 register contents

dx/ Ox67 ds/ OxSf

cd/ 0xS7
cs/ 0xS7
bp/ Ox1od6

ip/ Ox40
bx/ Oxce6
sp/ Ox1cce

si/ 0xSb50 ss/ OxSf
OXS70040 (main+4): lea -8(%bp),%d: [Ox7fffffff]

*x
eax/ 1
eox/ Ox17
esi/ Ox16

flag/ Ox13296
Ox16b (main+4): lea

print the 80386 register contents
ecx/ Ox402e2c edx/ Oxbffffca8
esp/ Oxbffffc54
edi/ Ox15

trap/ Oxe
-8(%ebp) ,%edi

edp/ Oxbffffc60
eip/ Ox16b
err/7

[Ox7fffffff]

Figure 15-1: Example of sdb Usage (Sheet 2 of 3)

15-14 PROGRAMMER'S GUIDE

*pl[Oj # dereference the pointer
pl[Oj.farw/ 0xS0886b6c

pl[0 j .back/ 0xS0886ac8
pl[Oj.ops[Oj/ puShw

pl[Oj.uniqid/ 0

pl[Oj.op/ 123
pl[Oj.nlive/ 3588
pl[Oj.ndeadV 4096
*p1->farw[Oj # dereference the pointer
pl->farw[Oj.farw/ 0xS0886ca0
pl->farw[Oj.back/ 0xS0886b38

pl->farw[Oj.ops[Oj/ call
pl->farw[Oj.uniqid/ 0
pl->farw[Oj.op/9

pl->farw[Oj.nlive/ 3584
pl->farw[Oj.ndead/ 4099

*Pl!pl->farw
*pI

0xS0886b6c

*c
Breakpoint at

replace pl with pl->farw

sllclw pI

continue

0xS0802462 in window: 1459: window(size, func) register int size;
boolean (*tunc) (); {

*s # step

window:1459: window(size, func) register int size; boolean (*func)();

*s
window: 1465:

*size

step
TRACE(window) ;

3
*D
All breakpoints deleted
*c
Process tenninated
*q
$

sllclw function argument size

delete all breakpoints

continue

quit sdb

Figure 15-1: Example of sdb Usage (Sheet 3 of 3)

Using sdb

sdb-THE SYMBOLIC DEBUGGER 15-15

16 lint

Introduction 16-1

Usage 16-2

lint Message Types 16-4
Unused Variables and Functions 16-4
Set/Used Information 16-5
Flow of Control 16-5
Function Values 16-6
Type Checking 16-7
Type Casts 16-8
Nonportable Character Use 16-9
Assignments of longs to ints 16-9
Strange Constructions 16-10
Old Syntax 16-11
Pointer Alignment 16-12
Multiple Uses and Side Effects 16-12

lint

Introduction

The lint program examines C language source programs detecting a
number of bugs and obscurities. It enforces the type rules of C language more
strictly than the C compiler. It may also be used to enforce a number of por
tability restrictions involved in moving programs between different machines
and/or operating systems. Another option detects a number of wasteful or
error-prone constructions, which nevertheless are legal. lint accepts multiple
input files and library specifications and checks them for consistency.

lint 16-1

Usage
The lint command has the form:

lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages; files
are the files to be checked which end with .c or .In; and library-descriptors are
the names of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a Suppresses messages about assignments of long values to vari
ables that are not long.

-b Suppresses messages about break statements that cannot be
reached.

-c Checks only for intra-file bugs; leave external information in
files suffixed with .In.

-h Does not apply heuristics (which attempt to detect bugs,
improve style, and reduce waste).

-n Does not check for compatibility with either the standard or the
portable lint library.

-0 name Creates a lint library from input files named llib-Iname.In.

-p Checks portability.

-u Suppresses messages about function and external variables used
and not defined or defined and not used.

-v Suppresses messages about unused arguments in functions.

-x Does not report variables referred to by external declarations
but never used.

When more than one option is used, they should be combined into a single
argument, such as -ab or -xha.

The names of files that contain C language programs should end with the
suffix .c, which is mandatory for lint and the C compiler.

16·2 PROGRAMMER'S GUIDE ,

The lint command accepts certain arguments, such as:

-1m

Usage

These arguments specify libraries that contain functions used in the C
language program. The source code is tested for compatibility with these
libraries. This is done by accessing library description files whose names are
constructed from the library arguments. These files all begin with the com
ment:

/* LINTLIBRARY * /

which is followed by a series of dummy function definitions. The critical
parts of these definitions are the declaration of the function return type,
whether the dummy function returns a value, and the number and types of
arguments to the function. The V ARARGS and ARGSUSED comments can be
used to specify features of the library functions. The next section, "lint Mes
sage Types," describes how it is done.

lint library files are processed almost exactly like ordinary source files.
The only difference is that functions which are defined in a library file but are
not used in a source file do not result in messages. lint does not simulate a
full library search algorithm and will print messages if the source files contain
a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library
file that contains descriptions of the programs that are normally loaded when
a C language program is run. When the -p option is used, another file is
checked containing descriptions of the standard library routines which are
expected to be portable across various machines. The -n option can be used
to suppress all library checking.

lint 16-3

lint Message Types

The following paragraphs describe the major categories of messages
printed by lint.

Unused Variables and Functions
As sets of programs evolve and develop, previously used variables and

arguments to functions may become unused. It is not uncommon for external
variables or even entire functions to become unnecessary and yet not be
removed from the source. These types of errors rarely cause working pro
grams to fait but are a source of inefficiency and make programs harder to
understand and change. Also, information about such unused variables and
functions can occasionally serve to discover bugs.

lint prints messages about variables and functions which are defined but
not otherwise mentioned, unless the message is suppressed by means of the
-u or -x option.

Certain styles of programming may permit a function to be written with
an interface where some of the function's arguments are optional. Such a
function can be designed to accomplish a variety of tasks depending on which
arguments are used. Normally lint prints messages about unused arguments;
however, the -v option is available to suppress the printing of these messages.
When -v is in effect, no messages are produced about unused arguments
except for those arguments which are unused and also declared as register
arguments. This can be considered an active (and preventable) waste of the
register resources of the machine.

Messages about unused arguments can be suppressed for one function by
adding the comment:

1* ARGSUSED *1

to the source code before the function. This has the effect of the -v option for
only one function. Also, the comment:

1* VARARGS *1

can be used to suppress messages about a variable number of arguments in
calls to a function. The comment should be added before the function defini
tion. In some cases, it is desirable to check the first several arguments and
leave the later arguments unchecked. This can be done with a digit giving the
number of arguments which should be checked. For example:

16-4 PROGRAMMER'S GUIDE

lint Message Types

1* VARARGS2 *1

will cause only the first two arguments to be checked.

When lint is applied to some but not all files out of a collection that are to
be loaded together, it issues complaints about unused or undefined variables.
This information is, of course, more distracting than helpful. Functions and
variables that are defined may not be used; conversely, functions and vari
ables defined elsewhere may be used. The -u option suppresses the spurious
messages.

Set/Used Information
lint attempts to detect cases where a variable is used before it is set. It

detects local variables (automatic and register storage classes) whose first use
appears physically earlier in the input file than the first assignment to the
variable. It assumes that taking the address of a variable constitutes a "use"
since the actual use may occur at any later time, in a data-dependent fashion.

The restriction to the physical appearance of variables in the file makes
the algorithm very simple and quick to implement since the true flow of con
trol need not be discovered. It does mean that lint can print error messages
about program fragments that are legal, but these programs would probably
be considered bad on stylistic grounds. Because static and external variables
are initialized to zero, no meaningful information can be discovered about
their uses. The lint program does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables
that are set and never used. These form a frequent source of inefficiencies
and may also be symptomatic of bugs.

Flow of Control
lint attempts to detect unreachable portions of a program. It will print

messages about unlabeled statements immediately following goto, break, con
tinue, or return statements. It attempts to detect loops that cannot be left at
the bottom and to recognize the special cases while(l) and for(;;) as infinite
loops. lint also prints messages about loops that cannot be entered at the top.
Valid programs may have such loops, but they are considered to be bad style.
If you do not want messages about unreached portions of the program, use
the -b option.

lint 16·5

lint Message Types

lint has no way of detecting functions that are called and never return.
Thus, a call to exit may cause unreachable code which lint does not detect.
The most serious effects of this are in the determination of returned function
values (see "Function Values"). If a particular place in the program is
thought to be unreachable in a way that is not apparent to lint, the comment

/* WI'REACHED * /

can be added to the source code at the appropriate place. This comment will
inform lint that a portion of the program cannot be reached, and lint will not
print a message about the unreachable portion.

Programs generated by yacc and especially lex may have hundreds of
unreachable break statements, but messages about them are of little impor
tance. There is typically nothing the user can do about them, and the result
ing messages would clutter up the lint output. The recommendation is to
invoke lint with the -b option when dealing with such input.

Function Values
Sometimes functions return values that are never used. Sometimes pro

grams incorrectly use function values that have never been returned. lint
addresses this problem in a number of ways.

and

Locally, within a function definition, the appearance of both

return (expr);

return ;

statements is cause for alarm; lint will give the message

function name has return (e) and return

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function. This can be seen
with a simple example:

f (a) {
if (a) return (3);
g ();
}

16·6 PROGRAMMER'S GUIDE

lint Message Types

Notice that, if a tests false, f will call g and then return with no defined return
value; this will trigger a message from lint. If g, like exit, never returns, the
message will still be produced, when in fact nothing is wrong. A comment

/*NJl'REAClfED* /

in the source code will cause the message to be suppressed. In practice, some
potentially serious bugs have been discovered by this feature.

On a global scale, lint detects cases where a function returns a value that
is sometimes or never used. When the value is never used, it may constitute
an inefficiency in the function definition that can be overcome by specifying
the function as being of type (void). For example:

(void) fprintf{stderr, "File busy. Try again later!\n");

When the value is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The opposite problem, using a function value when the function does not
return one, is also detected. This is a serious problem.

Type Checking
lint enforces the type checking rules of C language more strictly than the

compilers do. The additional checking is in four major areas:

• across certain binary operators and implied assignments

• at the structure selection operators

• between the definition and uses of functions

• in the use of enumerations

There are a number of operators which have an implied balancing
between types of the operands. The assignment, conditional (?:), and rela
tional operators have this property. The argument of a return statement and
expressions used in initialization suffer similar conversions. In these opera
tions, char, short, int, long, unsigned, float, and double types may be freely
intermixed. The types of pointers must agree exactly except that arrays of xs
can, of course, be intermixed with pointers to xs.

lint 16-7

lint Message Types

The type checking rules also require that, in structure references, the left
operand of the -> be a pointer to structure, the left operand of the. be a
structure, and the right operand of these operators be a member of the struc
ture implied by the left operand. Similar checking is done for references to
unions.

Strict rules apply to function argument and return value matching. The
types float and double may be freely matched, as may the types char, short,
int, and unsigned. Also, pointers can be matched with the associated arrays.
Aside from this, all actual arguments must agree in type with their declared
counterparts.

With enumerations, checks are made that enumeration variables or
members are not mixed with other types or other enumerations and that the
only operations applied are =, initialization, ==, !=, and function arguments
and return values.

If it is desired to tum off strict type checking for an expression, the com
ment

/* IDSTRIC1' * /

should be added to the source code immediately before the expression. This
comment will prevent strict type checking for only the next line in the pro
gram.

Type Casts
The type cast feature in C language was introduced largely as an aid to

producing more portable programs. Consider the assignment

p = 1 ;

where p is a character pointer. lint will print a message as a result of detect
ing this. Consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer.
The programmer obviously had a strong motivation for doing this and has
clearly signaled his intentions. Nevertheless, lint will continue to print mes
sages about this.

16-8 PROGRAMMER'S GUIDE

lint Message Types

Nonportable Character Use
On some systems, characters are signed quantities with a range from -128

to 127. On other C language implementations, characters take on only posi
tive values. Thus, lint will print messages about certain comparisons and
assignments as being illegal or nonportable. For example, the fragment

char C;

if((c = getcbar(» < 0) •••

will work on one machine but will fail on machines where characters always
take on positive values. The real solution is to declare c as an integer since
getchar is actually returning integer values. In any case, lint will print the
message

nonportable character canparison

A similar issue arises with bit fields. When assignments of constant
values are made to bit fields, the field may be too small to hold the value.
This is especially true because on some machines bit fields are considered as
signed quantities. While it may seem logical to consider that a two-bit field
declared of type int cannot hold the value 3, the problem disappears if the bit
field is declared to have type unsigned.

Assignments of longs to ints
Bugs may arise from the assignment of long to an int, which will truncate

the contents. This may happen in programs which have been incompletely
converted to use typedefs. When a typedef variable is changed from int to
long, the program can stop working because some intermediate results may be
assigned to ints, which are truncated. The -a option can be used to suppress
messages about the assignment of longs to ints.

lint 16·9

lint Message Types

Strange Constructions
Several perfectly legal, but somewhat strange, constructions are detected

by lint. The messages hopefully encourage better code quality, clearer style,
and may even point out bugs. The -h option is used to suppress these
checks. For example, in the statement

*p++ ;

the * does nothing. This provokes the message

null effect

from lint. The following program fragment:

unsigned x ;
if(x < 0) •••

results in a test that will never succeed. Similarly, the test

if(x > 0) ••.

is equivalent to

if(x 1= 0)

which may not be the intended action. lint will print the message

degenerate unsigned c:cnparison

in these cases. If a program contains something similar to

if(1 1= 0) •..

lint will print the message

oonstant :in conditional context

since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence. Bugs
which arise from misunderstandings about the precedence of operators can be
accentuated by spacing and formatting, making such bugs extremely hard to
find. For example, the statements

if(x&077 == 0) •••

and

16-10 PROGRAMMER'S GUIDE

lint Message Types

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize
such expressions, and lint encourages this by an appropriate message.

Old Syntax
Several forms of older syntax are now illegal. These fall into two classes:

assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...) could cause
ambiguous expressions, such as:

a =--1 ;

which could be taken as either

a=--1;

or

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer and preferred operators (e.g., +=,
-=, ...) have no such ambiguities. To encourage the abandonment of the
older forms, lint prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1 ;

to initialize x to 1. This also caused syntactic difficulties. For example, the
initializa tion

int x (-1) ;

looks somewhat like the beginning of a function definition:

intx(y){ ...

and the compiler must read past x in order to determine the correct meaning.
Again, the problem is even more perplexing when the initializer involves a
macro. The current syntax places an equals sign between the variable and the
initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

lint 16-11

lint Message Types

Pointer Alignment
Certain pointer assignments may be reasonable on some machines and

illegal on others due entirely to alignment restrictions. lint tries to detect
cases where pointers are assigned to other pointers and such alignment prob
lems might arise. The message

possible pointer alignment problem

results from this situation.

Multiple Uses and Side Effects
In complicated expressions, the best order in which to evaluate subexpres

sions may be highly machine-dependent. For example, on machines in which
the stack runs backwards, function arguments will probably be best evaluated
from right to left. On machines with a stack running forward, left to right
seems most attractive. Function calls embedded as arguments of other func
tions mayor may not be treated similarly to ordinary arguments. Similar
issues arise with other operators that have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C language on a particular machine not be
unduly compromised, the C language leaves the order of evaluation of com
plicated expressions up to the local compiler. In fact, the various C compilers
have considerable differences in the order in which they will evaluate compli
cated expressions. In particular, if any variable is changed by a side effect and
also used elsewhere in the same expression, the result is explicitly undefined.

lint checks for the important special case where a simple scalar variable is
affected. For example, the statement

a[i] = b[i++];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

16-12 PROGRAMMER'S GUIDE

17 C Language

Introduction 17-1

Lexical Conventions 17-2
Comments 17-2
Identifiers (Names) 17-2
Keywords 17-2
Constants 17-3

• Integer Constants 17-3

• Explicit Long Constants 17-3
• Character Constants 17-3
• Floating Constants 17-4
• Enumeration Constants 17-4

String Literals 17-5
Syntax Notation 17-5

Storage Class and Type 17-6
Storage Class 17-6
Type 17-6
Objects and lvalues 17-8

Operator Conversions 17-9
Characters and Integers 17-9
Float and Double 17-9
Floating and Integral 17-9
Pointers and Integers 17-10
Unsigned 17-10

C LANGUAGE

C Language

Arithmetic Conversions
Void

Expressions and Operators
Primary Expressions
Unary Operators
Multiplicative Operators
Additive Operators
Shift Operators
Relational Operators
Equality Operators
Bitwise AND Operator
Bitwise Exclusive OR Operator
Bitwise Inclusive OR Operator
Logical AND Operator
Logical OR Operator
Conditional Operator
Assignment Operators
Comma Operator

Declarations
Storage Class Specifiers
Type Specifiers
Declarators
Meaning of Declarators
Structure and Union Declarations
Enumeration Declarations
Initialization
Type Names
Implicit Declarations
typede£

Statements
Expression Statement

ii PROGRAMMER'S GUIDE

17-10
17-11

17-12
17-12
17-15
17-16
17-17
17-18
17-18
17-19
17-19
17-19
17-20
17-20
17-20
17-21
17-21
17-22

17-23
17-23
17-24
17-25
17-25
17-27
17-31
17-32
17-34
17-35
17-36

17-37
17-37

C Language

Compound Statement or Block 17-37
Conditional Statement 17-38
while Statement 17-38
do Statement 17-38
for Statement 17 -38
switch Statement 17-39
break Statement 17-40
continue Statement 17-41
return Statement 17-41
goto Statement 17 -42
Labeled Statement 17-42
Null Statement 17 -42

External Definitions 17-43
External Function Definitions 17-43
External Data Definitions 17-44

Scope Rules 17 -45
Lexical Scope 17 -45
Scope of Externals 17 -46

Compiler Control Lines 17-47
Token Replacement 17-47
File Inclusion 17-48
Conditional Compilation 17-49
Line Control 17 -50
Version Control 17-50

Types Revisited 17-51
Structures and Unions 17-51
Functions 17-52
Arrays, Pointers, and Subscripting 17-53

C LANGUAGE iii

CLanguage ---

Explicit Pointer Conversions

Constant Expressions

Portability Considerations

Syntax Summary
Expressions
Declarations
Statements
External Definitions
Preprocessor

iv PROGRAMMER'S GUIDE

17-54

17-56

17-57

17-58
17-58
17-60
17-63
17-64
17-65

Introduction

This chapter contains a summary of the grammar and syntax rules of the
C Programming Language. A consistent attempt is made to point out where
other implementations may differ.

C LANGUAGE 17-1

Lexical Conventions
There are six classes of tokens: identifiers, keywords, constants, string

literals, operators, and other separators. Blanks, tabs, new-lines, and com
ments·(collectively, "white space") as described below are ignored, except as
they serve to separate tokens. Some white space is required to separate other
wise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character,
the next token is taken to include the longest string of characters that could
possibly constitute a token.

Comments
The characters /* introduce a comment that terminates with the characters

*f. Comments do not nest.

Identifiers (Names)
An identifier is a sequence of letters and digits. The first character must

be a letter. The underscore (_) counts as a letter. Uppercase and lowercase
letters are different. There is no limit on the length of a name. Other imple
mentations may collapse case distinctions for external names, and may reduce
the number of significant characters for both external and non-external names.

Keywords
The following identifiers are reserved for use as keywords and may not be

used otherwise:

asm default float register switch
auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long struct while

Some implementations also reserve the word fortran.

17-2 PROGRAMMER'S GUIDE

Lexical Conventions

Constants
There are several kinds of constants. Each has a type; an introduction to

types is given in "Storage Class and Type."

Integer Constants
An integer constant consisting of a sequence of digits is taken to be octal if

it begins with 0 (digit zero). An octal constant consists of the digits 0 through
7 only. A sequence of digits preceded by Ox or OX (digit zero) is taken to be a
hexadecimal integer. The hexadecimal digits include a or A through f or F
with values 10 through 15. Otherwise, the integer constant is taken to be
decimal. A decimal constant whose value exceeds the largest signed machine
integer is taken to be long; an octal or hex constant that exceeds the largest
unsigned machine integer is likewise taken to be long. Otherwise, integer
constants are int.

Explicit Long Constants
A decimal, octal, or hexadecimal integer constant immediately followed by

I (letter ell) or L is a long constant. As discussed below, integer and long
values may be considered identical.

Character Constants
A character constant is a character enclosed in single quotes, as in 'x'.

The value of a character constant is the numerical value of the character in the
machine's character set. Certain nongraphic characters, the single quote (')
and the backslash (\), may be represented according to the table of escape
sequences shown in Figure 17-1:

C LANGUAGE 17-3

Lexical Conventions

new-line NL (LF) \n
horizontal tab liT '\t
vertical tab vr '\v

backspaceBS '\b
carriage retunl CR '\r

form feedFF '\f
backslash'\ "-
single quote V
bit pattern ddd \ddd

Figure 17-1: Escape Sequences for Nongraphic Characters

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal
digits that are taken to specify the value of the desired character. A special
case of this construction is \0 (not followed by a digit), which indicates the
ASCII character NUL. If the character following a backslash is not one of
those specified, the behavior is undefined. An explicit new-line character is
illegal in a character constant. The type of a character constant is int.

Floating Constants
A floating constant consists of an integer part, a decimal point, a fraction

part, an e or E, and an optionally signed integer exponent. The integer and
fraction parts both consist of a sequence of digits. Either the integer part or
the fraction part (not both) may be missing. Either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant has type
double.

Enumeration Constants
Names declared as enumerators (see "Structure, Union, and Enumeration

Declarations" under "Declarations") have type into

17-4 PROGRAMMER'S GUIDE

Lexical Conventions

String Literals
A string literal is a sequence of characters surrounded by double quotes, as

in " ... ". A string literal has type "array of char" and storage class static (see
"Storage Class and Type") and is initialized with the given characters. The
compiler places a null byte (\0) at the end of each string literal so that pro
grams that scan the string literal can find its end. In a string literal, the dou
ble quote character (,,) must be preceded by a \; in addition, the same escapes
as described for character constants may be used.

A \ and the immediately following new-line are ignored. All string
literals, even when written identically, are distinct.

Syntax Notation
Syntactic categories are indicated by italic type and literal words and char

acters by bold type. Alternative categories are listed on separate lines. An
optional entry is indicated by the subscript "opt," so that

{ expression opt }

indicates an optional expression enclosed in braces. The syntax is summarized
in "Syntax Summary" at the end of the chapter.

C LANGUAGE 17·5

Storage Class and Type
The C language bases the interpretation of an identifier upon two attri

butes of the identifier: its storage class and its type. The storage class deter
mines the location and lifetime of the storage associated with an identifier; the
type determines the meaning of the values found in the identifier's storage.

Storage Class
There are four declarable storage classes:

• automatic

• static

• external

• register

Automatic variables are local to each invocation of a block (see "Compound
Statement or Block" in "Statements") and are discarded upon exit from the
block. Static variables are local to a block but retain their values upon reentry
to a block even after control has left the block. External variables exist and
retain their values throughout the execution of the entire program and may be
used for communication between functions, even separately compiled func
tions. Register variables are (if possible) stored in the fast registers of the
machine; like automatic variables, they are local to each block and disappear
on exit from the block.

Type
The C language supports several fundamental types of objects. Objects

declared as characters (char) are large enough to store any member of the
implementation's character set. If a genuine character from that character set
is stored in a char variable, its value is equivalent to the integer code for that
character. Other quantities may be stored into character variables, but the
implementation is machine-dependent. In particular, char may be signed or
unsigned by default. In this implementation the default i~ signed.

17-6 PROGRAMMER'S GUIDE

Storage Class and Type

Up to three sizes of integer, declared short int, int, and long int, are
available. Longer integers provide no less storage than shorter ones, but the
implementation may make either short integers or long integers, or both,
equivalent to plain integers. Plain integers have the natural size suggested by
the host machine architecture. The other sizes are provided to meet special
needs. The sizes for the AT&T 3B, INTEL 80286, and INTEL 80386 Comput
ers are shown in Figure 17-2.

AT&T 3B 80286 80386
ASCII COMPUTER COMPUTER COMPUTER

bits bits bits

char 8 8 8
int 32 16 32
short 16 16 16
long 32 32 32
float 32 32 32
double 64 64 64
float range ± 1O±38 ± 1O±38 ± 10±38

double range ± 10±308 ± 10±308 ± 1O±308

Figure 17-2: Computer Hardware Characteristics

The properties of enum types (see "Structure, Union, and Enumeration
Declarations" under "Declarations") are identical to those of some integer
types. The implementation may use the range of values to determine how to
allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo
2n where n is the number of bits in the representation.

Single-precision floating point (float) and double precision floating point
(double) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as
numbers, they will be referred to as arithmetic types. Char, int of all sizes
whether unsigned or not, and enum will collectively be called integral types.
The float and double types will collectively be called floating types.

C LANGUAGE 17-7

Storage Class and Type

The void type specifies an empty set of values. It is used as the type
returned by functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite
class of derived types constructed from the fundamental types in the following
ways:

• arrays of objects of most types

• functions that return objects of a given type

• pointers to objects of a given type

• structures containing a sequence of objects of various types

• unions capable of containing anyone of several objects of various
types

In general these methods of constructing objects can be applied recursively.

Objects and Ivalues
An object is a manipulatable region of storage. An lvalue is an expression

referring to an object. An obvious example of an lvalue expression is an iden
tifier. There are operators that yield lvalues: for example, if E is an expres
sion of pointer type, then *E is an lvalue expression referring to the object to
which E points. The name "lvalue" comes from the assignment expression
E1 = E2 in which the left operand E1 must be an lvalue expression. In the
following text the discussion of each operator indicates whether it expects
lvalue operands and whether it yields an lvalue.

17·8 PROGRAMMER'S GUIDE

Operator Conversions

A number of operators may, depending on their operands, cause conver
sion of the value of an operand from one type to another. This part explains
the result to be expected from such conversions. The conversions demanded
by most ordinary operators are summarized under "Arithmetic Conversions. "
The summary will be supplemented as required by the discussion of each
operator.

Characters and Integers
A character or a short integer may be used wherever an integer may be

used. In all cases the value is converted to an integer. Conversion of a
shorter integer to a longer preserves sign. On your computer, sign extension
of char variables does occur. It is guaranteed that a member of the standard
character set is non-negative.

On machines that treat characters as signed, the characters of the ASCII
set are all non-negative. However, a character constant specified with an octal
escape suffers sign extension and may appear negative; for example, '\377'
has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is
truncated on the left. Excess bits are simply discarded.

Float and Double
All floating arithmetic in C is carried out in double precision. Whenever a

float appears in an expression, it is lengthened to double by zero padding its
fraction. When a double must be converted to float, for example by an
assignment, the double is rounded before truncation to float length. This
result is undefined if it cannot be represented as a float.

Floating and Integral
Conversions of floating values to integral type are rather machine

dependent. In particular, the direction of truncation of negative numbers
varies. The result is undefined if it will not fit in the space provided.

C LANGUAGE 17-9

Operator Conversions

Conversions of integral values to floating type behave well. Some loss of ,
accuracy occurs if the destination lacks sufficient bits.

Pointers and Integers
An expression of integral type may be added to or subtracted from a

pointer; in such a case, the first is converted as specified in the discussion of
the addition operator. Two pointers to objects of the same type may be sub
tracted; in this case, the result is converted to an integer as specified in the
discussion of the subtraction operator.

Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain

integer is converted to unsigned and the result is unsigned. The value is the
least unsigned integer congruent to the signed integer (modulo 2wordsize). In a
2's complement representation, this conversion is conceptual; and there is no
actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the
result is the same numerically as that of the unsigned integer. Thus, the
conversion amounts to padding with zeros on the left.

Arithmetic Conversions
A great many operators cause conversions and yield result types in a simi

lar way. This pattern will be called the "usual arithmetic conversions."

1. First, any operands of type char or short are converted to int, and any
operands of type unsigned char or unsigned short are converted to
unsigned into

2. Then, if either operand is double, the other is converted to double
and that is the type of the result.

3. Otherwise, if either operand is unsigned long, the other is converted
to unsigned long and that is the type of the result.

4. Otherwise, if one operand is long, and the other is unsigned int, they
are both converted to unsigned long and that is the type of the result.

17·10 PROGRAMMER'S GUIDE

Operator Conversions

5. Otherwise, if either operand is long, the other is converted to long
and that is the type of the result.

6. Otherwise, if either operand is unsigned, the other is converted to
unsigned and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the
result.

Void
The (nonexistent) value of a void object may not be used in any way, and

neither explicit nor implicit conversion may be applied. Because a void
expression denotes a nonexistent value, such an expression may be used only
as an expression statement (see "Expression Statement" under "Statements")
or as the left operand of a comma expression (see "Comma Operator" under
"Expressions").

An expression may be converted to type void by use of a cast. For exam
ple, this makes explicit the discarding of the value of a function call used as
an expression statement.

C LANGUAGE 17-11

Expressions and Operators

The precedence of expression operators is the same as the order of the
major subsections of this section, highest precedence first. Thus, for example,
the expressions referred to as the operands of + (see "Additive Operators")
are those expressions defined under "Primary Expressions", "Unary Opera
tors" , and "Multiplicative Operators". Within each subpart, the operators
have the same precedence. Left- or right-associativity is specified in each sub
section for the operators discussed therein. The precedence and associativity
of all the expression operators are summarized in the grammar of "Syntax
Summary".

Otherwise, the order of evaluation of expressions is undefined. In particu
lar, the compiler considers itself free to compute sub expressions in the order it
believes most efficient even if the subexpressions involve side effects. Expres
sions involving a commutative and associative operator (*, +, &, I, A) may be
rearranged arbitrarily even in the presence of parentheses; to force a particular
order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is
undefined. Most existing implementations of C ignore integer overflows;
treatment of division by 0 and all floating-point exceptions varies between
machines and is usually adjustable by a library function.

Primary Expressions
Primary expressions involving 0, ->, subscripting, and function calls group

left to right.

primary-expression:
identifier
constant
string literal
(expression)
primary-expression [expression]
primary-expression (expression-list t)
primary-expression. identifier op
primary-expression -> identifier

17-12 PROGRAMMER'S GUIDE

expression-list:
expression
expression-list, expression

Expressions and Operators

An identifier is a primary expression provided it has been suitably declared as
discussed below. Its type is specified by its declaration. If the type of the
identifier is "array of ... ", then the value of the identifier expression is a
pointer to the first object in the array; and the type of the expression is
"pointer to ... ". Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier that is declared "function returning ... " , when used
except in the function-name position of a call, is converted to "pointer to
function returning ... " .

A constant is a primary expression. Its type may be int, long, or double
depending on its form. Character constants have type int, and floating con
stants have type double.

A string literal is a primary expression. Its type is originally "array of
char", but following the same rule given above for identifiers, this is modified
to "pointer to char" and the result is a pointer to the first character in the
string literal. (There is an exception in certain initializers; see "Initialization"
under "Declarations.")

A parenthesized expression is a primary expression whose type and value
are identical to those of the unadorned expression. The presence of
parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a
primary expression. The intuitive meaning is that of a subscript. Usually, the
primary expression has type "pointer to ... ", the subscript expression is int,
and the type of the result is " ... ". The expression El [E2] is identical (by
definition) to *«El)+(E2». All the clues needed to understand this notation
are contained in this subpart together with the discussions in "Unary Opera
tors" and" Additive Operators" on identifiers, * and +, respectively. The
implications are summarized under "Arrays, Pointers, and Subscripting"
under "Types Revisited. "

C LANGUAGE 17·13

Expressions and Operators

A function call is a primary expression followed by parentheses containing
a possibly empty, comma-separated list of expressions that constitute the
actual arguments to the function. The primary expression must be of type
"function returning ... ", and the result of the function call is of type " ... ".
As indicated below, a hitherto unseen identifier followed immediately by a left
parenthesis is contextually declared to represent a function returning an
integer.

Any actual arguments of type float are converted to double before the
call. Any of type char or short are converted to into Array names are con
verted to pointers. No other conversions are performed automatically; in par
ticular, the compiler does not compare the types of actual arguments with
those of formal arguments. If conversion is needed, use a cast; see "Unary
Operators" and "Type Names" under "Declarations."

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A function
may change the values of its formal parameters, but these changes cannot
affect the values of the actual parameters. It is possible to pass a pointer on
the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. The order
of evaluation of arguments is undefined by the language; take note that the
various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an
expression. The first expression must be a structure or a union, and the iden
tifier must name a member of the structure or union. The value is the named
member of the structure or union, and it is an lvalue if the first expression is
an lvalue.

A primary expression followed by an arrow (built from - and » followed
by an identifier is an expression. The first expression must be a pointer to a
structure or a union, and the identifier must name a member of that structure
or union. The result is an lvalue referring to the named member of the struc
ture or union to which the pointer expression points. Thus the expression
El->MOS is the same as (*El).MOS. Structures and unions are discussed in
"Structure, Union, and Enumeration Declarations" under "Declarations."

17·14 PROGRAMMER'S GUIDE

Expressions and Operators

Unary Operators
Expressions with unary operators group right to left.

unary-expression:
* expression
& lvalue
- expression
! expression
- expression
++ lvalue
--lvalue
lvalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means "indirection"; the expression must be a pointer,
and the result is an lvalue referring to the object to which the expression
points. If the type of the expression is "pointer to ... ," the type of the result
lS " ... ".

The result of the unary & operator is a pointer to the object referred to by
the lvalue. If the type of the lvalue is " ... ", the type of the result is "pointer
to ... " .

The result of the unary - operator is the negative of its operand. The
usual arithmetic conversions are performed. The negative of an unsigned
quantity is computed by subtracting its value from 2n where n is the number
of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator! is one if the value of its
operand is zero, and zero if the value of its operand is nonzero. The type of
the result is into It is applicable to any arithmetic type or to pointers.

The - operator yields the one's complement of its operand. The usual
arithmetic conversions are performed. The type of the operand must be
integral.

C LANGUAGE 17·15

Expressions and Operators

The object referred to by the lvalue operand of prefix ++ is incremented.
The value is the new value of the operand but is not an lvalue. The expres
sion ++x is equivalent to x += 1. See the discussions "Additive Operators"
and "Assignment Operators" for information on conversions.

The lvalue operand of prefix -- is decremented analogously to the prefix
++ operator.

When postfix ++ is applied to an lvalue, the result is the value of the
object referred to by the lvalue. After the result is noted, the object is incre
mented in the same manner as for the prefix ++ operator. The type of the
result is the same as the type of the lvalue expression.

When postfix -- is applied to an lvalue, the result is the value of the
object referred toby the lvalue. After the result is noted, the object is decre
mented in the manner as for the prefix -- operator. The type of the result is
the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes
conversion of the value of the expression to the named type. This construc
tion is called a cast. Type names are described in "Type Names" under
" Declarations. "

The sizeof operator yields the size in bytes of its operand. (A byte is
undefined by the language except in terms of the value of sizeof. However,
in all existing implementations, a byte is the space required to hold a char.)
When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression.
This expression is semantically an unsigned constant and may be used any
where a constant is required. Its major use is in communication with routines
like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In
that case it yields the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type)-2 is the same as (sizeof(type »-2.

Multiplicative Operators

The multiplicative operators *, J, and % group left to right. The usual
arithmetic conversions are performed.

17·16 PROGRAMMER'S GUIDE

multiplicative expression:
expression * expression
expression / expression
expression % expression

Expressions and Operators

The binary * operator indicates multiplication. The * operator is associative,
and expressions with several multiplications at the same level may be rear
ranged by the compiler. The binary / operator indicates division.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of
truncation is machine-dependent if either operand is negative. On all
machines covered by this manual, the remainder has the same sign as the
dividend. It is always true that (a/b)*b + a%b is equal to a (if b is not 0).

Additive Operators
The additive operators + and - group left to right. The usual arithmetic

conversions are performed. There are some additional type possibilities for
each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The latter
is in all cases converted to an address offset by multiplying it by the length of
the object to which the pointer points. The result is a pointer of the same
type as the original pointer that points to another object in the same array,
appropriately offset from the original object. Thus if P is a pointer to an
object in an array, the expression P+l is a pointer to the next object in the
array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at
the same level may be rearranged by the compiler.

C LANGUAGE 17-17

Expressions and Operators

The result of the - operator is the difference of the operands. The usual
arithmetic conversions are performed. Additionally, a value of any integral
type may be subtracted from a pointer, and then the same conversions for
addition apply.

If two pointers to objects of the same type are subtracted, the result is
converted (by division by the length of the object) to an unsigned represent
ing the difference of the indices of the pointed-to objects in their array. This
conversion will in general give unexpected results unless the pointers point to
objects in the same array, since pointers, even to objects of the same type, do
not necessarily differ by a multiple of the object length.

Shift Operators
The shift operators « and » group left to right. Both perform the

usual arithmetic conversions on their operands, each of which must be
integral. Then the right operand is converted to int; the type of the result is
that of the left operand. The result is undefined if the right operand is nega
tive or greater than or equal to the length of the object in bits.

shift-expression:
expression «expression
expression > > expression

The value of El«E2 is El (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are 0 filled. The value of El»E2 is El right-shifted E2 bit posi
tions. The right shift is guaranteed to be logical (0 fill) if El is unsigned; oth
erwise, it may be arithmetic.

Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and
>= (greater than or equal to) all yield 0 if the specified relation is false and 1
if it is true. The type of the result is int. The usual arithmetic conversions are

17-18 PROGRAMMER'S GUIDE

Expressions and Operators

performed. Two pointers may be compared; the result depends on the rela
tive locations in the address space of the pointed-to objects. Pointer com
parison is portable only when the pointers point to objects in the same array.

Equality Operators

equality-expression:
expression == expression
expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to
the relational operators except for their lower precedence. (Thus a<b == c<d
is 1 whenever a<b and c<d have the same truth value.)

A pointer may be compared to an integer only if the integer is the con
stant O. A pointer to which 0 has been assigned is guaranteed not to point to
any object and will appear to be equal to O. In conventional usage, such a
pointer is considered to be null.

Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged.
The usual arithmetic conversions are performed. The result is the bitwise
AND function of the operands. The operator applies only to integral
operands.

Bitwise Exclusive OR Operator

exclusive-or-expression:
expression A expression

The A operator is associative, and expressions involving A may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise
exclusive OR function of the operands. The operator applies only to integral
operands.

C LANGUAGE 17-19

Expressions and Operators

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

The I operator is associative, and expressions involving I may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise
inclusive OR function of its operands. The operator applies only to integral
operands.

Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands evaluate
to nonzero, 0 otherwise. Unlike &, && guarantees left to right evaluation;
moreover, the second operand is not evaluated if the first operand evaluates to
O.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always into

Logical OR Operator

logical-or-expression:
expression II expression

The n operator groups left to right. It returns 1 if either of its operands evalu
ates to nonzero, 0 otherwis~. Unlike I, II guarantees left to right evaluation;
moreover, the second operand is not evaluated if the value of the first
operand evaluates to nonzero.

The operands need not have the same type, but each must have one of
the fundamental types or be a pointer. The result is always int.

17-20 PROGRAMMER'S GUIDE

Expressions and Operators

Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated;
and if it is nonzero, the result is the value of the second expression, otherwise
that of third expression. If possible, the usual arithmetic conversions are per
formed to bring the second and third expressions to a common type. If both
are structures or unions of the same type, the result has the type of the struc
ture or union. If both pointers are of the same type, the result has the com
mon type. Otherwise, one must be a pointer and the other the constant 0,
and the result has the type of the pointer. Only one of the second and third
expressions is evaluated.

Assignment Operators
There are a number of assignment operators, all of which group right to

left. All require an lvalue as their left operand, and the type of an assignment
expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment-expression:
lvalue = expression
lvalue += expression
lvalue -= expression
lvalue *= expression
lvalue /= expression
lvalue %= expression
lvalue »= expression
lvalue «= expression
lvalue &= expression
lvalue A = expression
lvalue 1= expression

C LANGUAGE 17·21

Expressions and Operators

In the simple assignment with =, the value of the expression replaces that
of the object referred to by the lvalue. If both operands have arithmetic type,
the right operand is converted to the type of the left preparatory to the assign
ment. Second, both operands may be structures or unions of the same type.
Finally, if the left operand is a pointer, the right operand must in general be a
pointer of the same type. However, the constant 0 may be assigned to a
pointer; it is guaranteed that this value will produce a null pointer distinguish
able from a pointer to any object.

The behavior of an expression of the form El op = E2 may be inferred by
taking it as equivalent to El = El op (E2); however, El is evaluated only
once. In += and -=, the left operand may be a pointer, in which case the
(integral) right operand is converted as explained in "Additive Operators. "
All right operands and all nonpointer left operands must have arithmetic type.

Comma Operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right, and the
value of the left expression is discarded. The type and value of the result are
the type and value of the right operand. This operator groups left to right. In
contexts where comma is given a special meaning, e.g., in lists of actual argu
ments to functions (see "Primary Expressions") and lists of initializers (see
"Initialization" under "Declarations"), the comma operator as described in
this subpart can only appear in parentheses. For example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

17·22 PROGRAMMER'S GUIDE

Declarations

Declarations are used to specify the interpretation that C gives to each
identifier; they do not necessarily reserve storage associated with the identif
ier. Declarations have the form

declaration:
decl-specifiers declarator-listopt;

The declarators in the declarator-list contain the identifiers being declared.
The decl-specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiersopt
sc-specifier decl-specifiersopt

The list must be self-consistent in a way described below.

Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a "storage class
specifier" only for syntactic convenience. See "typedef" for more informa
tion. The meanings of the various storage classes were discussed in
"Names."

The auto, static, and register declarations also serve as definitions in that
they cause an appropriate amount of storage to be reserved. In the extern
case, there must be an external definition (see "External Definitions") for the
given identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together
with a hint to the compiler that the variables declared will be heavily used.
Only the first few such declarations in each function are effective. Moreover,
only variables of certain types will be stored in registers. One other restriction
applies to variables declared using register storage class: the address of

C LANGUAGE 17-23

Declarations

operator, &, cannot be applied to them. Smaller, faster programs can be
expected if register declarations are used appropriately.

At most, one sc-specifier may be given in a declaration. If the sc-specifier
is missing from a declaration, it is taken to be auto inside a function, extern
outside. Exception: functions are never automatic.

Type Specifiers
The type-specifiers are

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

At most, one of the words long or short may be specified in conjunction with
int; the meaning is the same as if int were not mentioned. The word long
may be specified in conjunction with float; the meaning is the same as dou
ble. The word unsigned may be specified alone, or in conjunction with int or
any of its short or long varieties, or with char.

Otherwise, at most one type-specifier may be given in a declaration. In
particular, adjectival use of long, short, or unsigned is not permitted with
typede£ names. If the type-specifier is missing from a declaration, it is taken
to be int.

17·24 PROGRAMMER'S GUIDE

Declarations

Specifiers for structures, unions, and enumerations are discussed in
"Structure, Union, and Enumeration Declarations." Declarations with
typedef names are discussed in "typedef."

Declarators
The declarator-list appearing in a declaration is a comma-separated

sequence of declarators, each of which may have an initializer:

declarator-list:
init-declarator
in it-declarator , declarator-list

in it-declarator:
declarator initializeropt

Initializers are discussed in "Initialization." The specifiers in the declaration
indicate the type and storage class of the objects to which the declarators
refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionoptl

The grouping is the same as in expressions.

Meaning of Declarators
Each declarator is taken to be an assertion that when a construction of the

same form as the declarator appears in an expression, it yields an object of the
indicated type.

Each declarator contains exactly one identifier; it is this identifier that is
declared. If an unadorned identifier appears as a declarator, then it has the
type indicated by the specifier heading the declaration.

C LANGUAGE 17·25

Declarations

A declarator in parentheses is identical to the unadorned declarator, but
the binding of complex declarators may be altered by parentheses. See the
examples below.

Now imagine a declaration

T01

where T is a type-specifier (like int, etc.) and 01 is a declarator. Suppose this
declaration makes the identifier have type " ... T", where the " ... " is empty
if 01 is just a plain identifier (so that the type of x in "int X" is just int).
Then if 01 has the form

the type of the contained identifier is " ... pointer to T" .

If 01 has the form

00
then the contained identifier has the type" ... function returning T."

If 01 has the form

O[constant-expression]

or

O[]

then the contained identifier has type " . .. array of T". In the first case, the
constant expression is an expression whose value is determinable at compile
time, whose type is int, and whose value is positive. (Constant expressions
are defined precisely in "Constant Expressions.") When several "array of"
specifications are adjacent, a multi-dimensional array is created; the constant
expressions that specify the bounds of the arrays may be missing only for the
first member of the sequence. This elision is useful when the array is external
and the actual definition, which allocates storage, is given elsewhere. The
first constant expression may also be omitted when the declarator is followed
by initialization. In this case the size is calculated from the number of initial
elements supplied.

An array may be constructed from one of the basic types, from a pointer,
from a structure or union, or from another array (to generate a multi
dimensional array).

17-26 PROGRAMMER'S GUIDE

Declarations

Not all the possibilities allowed by the syntax above are actually permit
ted. The restrictions are as follows: functions may not return arrays or func
tions although they may return pointers; there are no arrays of functions
although there may be arrays of pointers to functions. Likewise, a structure or
union may not contain a function; but it may contain a pointer to a function.

As an example, the declaration

int i, *ip, f(), *fipO, (*pfi)Oi

declares an integer i, a pointer ip to an integer, a function f returning an
integer, a function fip returning a pointer to an integer, and a pointer pfi to a
function, which returns an integer. It is especially useful to compare the last
two. The binding of *fipO is *(fipO). The declaration suggests, and the same
construction in an expression requires, the calling of a function fip, and then
using indirection through the (pointer) result to yield an integer. In the
declarator (*pfi)O, the extra parentheses are necessary, as they are also in an
expression, to indicate that indirection through a pointer to a function yields a
function, which is then called; it returns an integer.

As another example,

float fa(17], *afp(17]i

declares an array of float numbers and an array of pointers to float numbers.
Finally,

static int x3d[3][5][7]i

declares a static 3-dimensional array of integers, with rank 3X5X7. In com
plete detail, x3d is an array of three items; each item is an array of five arrays;
each of the latter arrays is an array of seven integers. Any of the expressions
x3d, x3d[i], x3d[i][j], or x3d[i][j][k] may reasonably appear in an expres
sion. The first three have type "array of ... " and the last has type into

Structure and Union Declarations
A structure is an object consisting of a sequence of named members. Each

member may have any type. A union is an object that may, at a given time,
contain anyone of several members. Structure and union specifiers have the
same form.

C LANGUAGE 17·27

Declarations

struet-or-union-specifier:
struet-or-union { struet-decl-list }
struet-or-union identifier { struet-decl-list }
struet-or-union identifier

struet-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the struc
ture or union:

struet-decl-list:
struet-declaration
struet-declaration struct-decl-list

struet-declaration:
type-specifier struet-declarator-list ;

struet-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member may also consist of a specified
number of bits. Such a member is also called a field; its length, a non
negative constant expression, is set off from the field name by a colon.

struet-declarator:
declarator
declarator: constant-expression
: constant-expression

Within a structure, the objects declared have addresses that increase as the
declarations are read left to right. Each non-field member of a structure
begins on an addressing boundary appropriate to its type; therefore, there may
be unnamed holes in a structure. Field members are packed into machine
integers; they do not straddle words. A field that does not fit into the space
remaining in a word is put into the next word. No field may be wider than a
word. (See Figure 17-2 for sizes of basic types on your computer.)

17·28 PROGRAMMER'S GUIDE

Declarations

A struct-declarator with no declarator, only a colon and a width, indicates
an unnamed field useful for padding to conform to externally-imposed lay
outs. As a special case, a field with a width of 0 specifies alignment of the
next field at an implementation-dependent boundary.

The language does not restrict the types of things that are declared as
fields. Moreover, even int fields may be considered to be unsigned. For these
reasons, it is strongly recommended that fields be declared as unsigned where
that is the intent. There are no arrays of fields, and the address-of operator,
&, may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at
offset 0 and whose size is sufficient to contain any of its members. At most,
one of the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure
specified by the list. A subsequent declaration may then use the third form of
specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags
also permit the long part of the declaration to be given once and used several
times. It is illegal to declare a structure or union that contains an instance of
itself, but a structure or union may contain a pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a
declaration that gives the complete specification of the structure or union in
situations in which the size of the structure or union is unnecessary. The size
is unnecessary in two situations: when a pointer to a structure or union is
being declared, and when a typedef name is declared to be a synonym for a
structure or union. This, for example, allows the declaration of a pair of struc
tures that contain pointers to each other.

The names of members and tags do not conflict with each other or with
ordinary variables. A particular name may not be used twice in the same
structure, but the same name may be used in several different structures in the
same scope.

C LANGUAGE 17-29

Declarations

A simple but important example of a structure declaration is the following
binary tree structure:

struct tnode
{

} ;

char 'bolord[20] ;
int count;
struct tnode *left;
stJ:uct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to simi
lar structures. Once this declaration has been given, the declaration

struct tnode s, *SPi

declares s to be a structure of the given sort and sp to be a pointer to a struc
ture of the given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right->tword[O]

refers to the first character of the tword member of the right subtree of s.

17-30 PROGRAMMER'S GUIDE

Declarations

Enumeration Declarations
Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear
wherever constants are required. If no enumerators with = appear, then the
values of the corresponding constants begin at 0 and increase by 1 as the
declaration is read from left to right. An enumerator with = gives the associ
ated identifier the value indicated; subsequent identifiers continue the progres
sion from the assigned value.

The names of enumerators in the same scope must all be distinct from
each other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to
that of the structure tag in a struct-specifier; it names a particular enumeration.
For example,

C LANGUAGE 17·31

Declarations

ernnn oolor { chartreuse, burgundy, claret=20, winedark };

ernnn 001= *cp, 001;

001 = claret;
cp = &col;

if (*cp == burgundy)

makes color the enumeration-tag of a type describing various colors, and then
declares cp as a pointer to an object of that type and col as an object of that
type. The possible values are drawn from the set {O,1,20,21}.

Initialization
A declarator may specify an initial value for the identifier being declared.

The initializer is preceded by = and consists of an expression or a list of
values nested in braces.

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be
constant expressions, which are described in "Constant Expressions," or
expressions that reduce to the address of a previously declared variable, possi
bly offset by a constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants and previously declared
variables and functions.

17-32 PROGRAMMER'S GUIDE

Declarations

Static and external variables that are not initialized are guaranteed to start
off as zero. Automatic and register variables that are not initialized are
guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial value of
the object is taken from the expression; the same conversions as for assign
ment are performed.

When the declared variable is an aggregate (a structure or array), the ini
tializer consists of a brace-enclosed, comma-separated list of initializers for the
members of the aggregate written in increasing subscript or member order. If
the aggregate contains subaggregates, this rule applies recursively to the
members of the aggregate. If there are fewer initializers in the list than there
are members of the aggregate, then the aggregate is padded with zeros. It is
not permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a left
brace, then the succeeding comma-separated list of initializers initializes the
members of the aggregate; it is erroneous for there to be more initializers than
members. If, however, the initializer does not begin with a left brace, then
only enough elements from the list are taken to account for the members of
the aggregate. Any remaining members are left to initialize the next member
of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string literal.
In this case successive characters of the string literal initialize the members of
the array.

For example,

int x[] = { 1, 3, 5 }j

declares and initializes x as a one-dimensional array that has three members,
since no size was specified and there are three initializers.

float y[4][3] =
{

}j

{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of
the array y[O], namely y[O][O], y[O][I], and y[O][2]. Likewise, the next two
lines initialize y[1] and y[2]. The initializer ends early and therefore y[3] is

C LANGUAGE 17·33

Declarations

initialized with O. Precisely, the same effect could have been achieved by

float y[4][3] =
{

1, 3, 5, 2, 4, 6, 3, 5, 7
};

The initializer for y begins with a left brace but that for y[O] does not; there
fore, three elements from the list are used. Likewise, the next three are taken
successively for y(1] and y[2]. Also,

float y[4][3] =
{

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional array) and
leaves the rest O.

Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string literal.
The length of the string (or size of the array) includes the terminating NUL
character, \0.

Type Names
In two contexts (to specify type conversions explicitly by means of a cast

and as an argument of sizeof), it is desired to supply the name of a data type.
This is accomplished using a "type name", which in essence is a declaration
for an object of that type that omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator 0
abstract-declarator [constant-expressionoptl

t 7-34 PROGRAMMER'S GUIDE

Declarations

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is
possible to identify uniquely the location in the abstract-declarator where the
identifier would appear if the construction were a declarator in a declaration.
The named type is then the same as the type of the hypothetical identifier.
For example,

int

int *
int *[3]

int (*)[3]

int*()
int (*)()

int (*[3])(J

name respectively the types "integer," "pointer to integer," "array of three
pointers to integers," "pointer to an array of three integers," "function
returning pointer to integer," "pointer to function returning an integer," and
"array of three pointers to functions returning an integer."

Implicit Declarations
It is not always necessary to specify both the storage class and the type of

identifiers in a declaration. The storage class is supplied by the context in
external definitions and in declarations of formal parameters and structure
members. In a declaration inside a function, if a storage class but no type is
given, the identifier is assumed to be int; if a type but no storage class is indi
cated, the identifier is assumed to be auto. An exception to the latter rule is
made for functions because auto functions do not exist. If the type of an
identifier is "function returning ... ", it is implicitly declared to be extern.

C LANGUAGE 17-35

Declarations

In an expression, an identifier followed by (and not already declared is
contextually declared to be "function returning int" .

typede£
Declarations whose "storage class" is typede£ do not define storage but

instead define identifiers that can be used later as if they were type keywords
naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typede£, each identifier appearing
as part of any declarator therein becomes syntactically equivalent to the type
keyword naming the type associated with the identifier in the way described
in "Meaning of Declarators." For example, after

typede£ int MILES, *KLICKSP;
typede£ struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is
"pointer to int" , and that of z is the specified structure. The zp is a pointer
to such a structure.

The typede£ does not introduce brand-new types, only synonyms for
types that could be specified in another way. Thus in the example above dis
tance is considered to have exactly the same type as any other int object.

17·36 PROGRAMMER'S GUIDE

Statements

Except as indicated, statements are executed in sequence.

Expression Statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

Compound Statement or Block
So that several statements can be used where one is expected, the com

pound statement (also, and equivalently, called" block") is provided:

compound-statement:
{ declaration-listopt statement-listopt }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the
outer declaration is pushed down for the duration of the block, after which it
resumes its force.

Any initializations of auto or register variables are performed each time
the block is entered at the top. It is currently possible (but a bad practice) to
transfer into a block; in that case the initializations are not performed. Initiali
zations of static variables are performed only once when the program begins
execution. Inside a block, extern declarations do not reserve storage so initial
ization is not permitted.

C LANGUAGE 17·37

Statements

Conditional Statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; if it is nonzero, the first substate
ment is executed. In the second case, the second substatement is executed if
the expression is O. The else ambiguity is resolved by connecting an else with
the last encountered else-less if.

while Statement
The while statement has the form:

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression
remains nonzero. The test takes place before each execution of the statement.

do Statement
The do statement has the form:

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression
becomes O. The test takes place after each execution of the statement.

for Statement
The for statement has the form:

for (exp-1opt ; exp-2opt ; exp-3opt) statement

Except for the behavior of continue, this statement is equivalent to

17·38 PROGRAMMER'S GUIDE

exp-l ;
while (exp-2)
{

}

statement
exp-3 ;

Statements

Thus the first expression specifies initialization for the loop; the second speci
fies a test, made before each iteration, such that the loop is exited when the
expression becomes o. The third expression often specifies an incrementing
that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the
implied while clause equivalent to while(1); other missing expressions are
simply dropped from the expansion above.

switch Statement
The switch statement causes control to be transferred to one of several

statements depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result
must be int. The statement is typically compound. Any statement within the
statement may be labeled with one or more case prefixes as follows:

case constant-expression :

where the constant expression must be into No two of the case constants in
the same switch may have the same value. Constant expressions are precisely
defined in "Constant Expressions. "

There may also be at most one statement prefix of the form

default :

which properly goes at the end of the case constants.

When the switch statement is executed, its expression is evaluated and
compared in turn with each case constant. If one of the case constants is
equal to the value of the expression, control is passed to the statement follow
ing the matched case prefix. If no case constant matches the expression and if
there is a default prefix, control passes to the statement prefixed by default.

C LANGUAGE 17·39

Statements

If no case matches and if there is no default, then none of the statements in
the switch is executed.

The prefixes case and default do not alter the flow of control, which con
tinues unimpeded across such prefixes. That is, once a case constant is
matched, all case statements (and the default) from there to the end of the
switch are executed. To exit from a switch, see "break Statement."

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but initializations of
automatic or register variables are ineffective. A simple example of a complete
switch statement is:

switch (0) {

case '0':

oflag '" TRUE;
break;

case 'p':
pflag = TRUE;
break;

case 'r':
rflag = TRUE;
break;

default:
(void) fprintf (stderr • "Unknown optian\n");
exit(2) ;

break Statement
The statement break; causes termination of the smallest enclosing while,

do, for, or switch statement; control passes to the statement following the ter
minated statement.

17·40 PROGRAMMER'S GUIDE

Statements

continue Statement
The statement continue; causes control to pass to the loop-continuation

portion of the smallest enclosing while, do, or for statement; that is to the
end of the loop. More precisely, in each of the statements

while (•.•)
{

oantin:

do
{

cantin: ;
} while (..•);

for (•.•)
{

oantin:

a continue is equivalent to goto cantin. (Following the cantin: is a null
statement; see "Null Statement. ")

return Statement
A function returns to its caller by means of the return statement, which

has one of the forms

return;
return expression ;

In the first case, the returned value is undefined. In the second case, the
value of the expression is returned to the caller of the function. If required,
the expression is converted, as if by assignment, to the type of function in
which it appears. Flowing off the end of a function is equivalent to a return
with no returned value.

C LANGUAGE 17-41

Statements

goto Statement
Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see II Labeled Statement ") located in the
current function.

Labeled Statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a
target of a goto. The scope of a label is the current function, excluding any
subblocks in which the same identifier has been redeclared (see II Scope
Rules ").

Null Statement
The null statement has the form

A null statement is useful to carry a label just before the } of a compound
statement or to supply a null body to a looping statement such as while.

17-42 PROGRAMMER'S GUIDE

External Definitions

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default) or
perhaps static, and a specified type. The type-specifier (see "Type Specifiers"
in "Declarations") may also be empty, in which case the type is taken to be
int. The scope of external definitions persists to the end of the file in which
they are declared just as the effect of declarations persists to the end of a
block. The syntax of external definitions is the same as that of all declarations
except that only at this level may the code for functions be given.

External Function Definitions
Function definitions have the form

function-definition:
decl-specifiersopt function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static;
see "Scope of Externals" in "Scope Rules" for the distinction between them.
A function declarator is similar to a declarator for a "function returning ... "
except that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

function-body:
declaration-listopt compound-statement

The identifiers in the parameter list, and only those identifiers, may be
declared in the declaration list. Any identifiers whose type is not given are
taken to be int. The only storage class that may be specified is register; if it
is specified, the corresponding actual parameter will be copied, if possible, into
a register at the outset of the function.

C LANGUAGE 17-43

External Definitions

A simple example of a complete function definition is

int max(a, b, c)

int a, b, c;

int m;

m = (a > b) ? a : b;
return((m> c) ? m : c);

Here int is the type-specifier; max(a, b, c) is the function-declarator;
int a, b, c; is the declaration-list for the formal parameters; { .. , } is the block
giving the code for the statement.

The C program converts all float actual parameters to double, so formal
parameters declared float have their declaration adjusted to read double. All
char and short formal parameter declarations are similarly adjusted to read
int. Also, since a reference to an array in any context (in partiCular as an
actual parameter) is taken to mean a pointer to the first element of the array,
declarations of formal parameters declared "array of .,. " are adjusted to read
"pointer to ... ".

External Data Definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static,
but not auto or register.

17·44 PROGRAMMER'S GUIDE

Scope Rules

A C program need not all be compiled at the same time. The source text
of the program may be kept in several files, and precompiled routines may be
loaded from libraries. Communication among the functions of a program may
be carried out both through explicit calls and through manipulation of external
data.

Therefore, there are two kinds of scopes to consider: first, what may be
called the lexical scope of an identifier, which is essentially the region of a
program during which it may be used without drawing "undefined identifier"
diagnostics; and second, the scope associated with external identifiers, which
is characterized by the rule that references to the same external identifier are
references to the same object.

Lexical Scope
The lexical scope of identifiers declared in external definitions persists

from the definition through the end of the source file in which they appear.
The lexical scope of identifiers that are formal parameters persists through the
function with which they are associated. The lexical scope of identifiers
declared at the head of a block persists until the end of the block. The lexical
scope of labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a
block, including the block constituting a function, any declaration of that iden
tifier outside the block is suspended until the end of the block.

Remember also (see "Structure, Union, and Enumeration Declarations" in
"Declarations") that tags identifiers associated with ordinary variables, and
identities associated with structure and union members form three disjoint
classes which do not conflict. Members and tags follow the same scope rules
as other identifiers. The enum constants are in the same class as ordinary
variables and follow the same scope rules. The typedef names are in the
same class as ordinary identifiers. They may be redeclared in inner blocks,
but an explicit type must be given in the inner declaration:

C LANGUAGE 17·45

Scope Rules

int distance;

The int must be present in the second declaration, or it would be taken to be
a declaration with no declarators and type distance.

Scope of Externals
If a function refers to an identifier declared to be extern, then somewhere

among the files or libraries constituting the complete program there must be at
least one external definition for the identifier. All functions in a given pro
gram that refer to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition are compatible
with those specified by each function that references the data.

It is illegal to explicitly initialize any external identifier more than once in
the set of files and libraries comprising a multi-file program. It is legal to
have more than one data definition for any external non-function identifier;
explicit use of extern does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class takes on an
additional meaning. In these environments, the explicit appearance of the
extern keyword in external data declarations of identities without initialization
indicates that the storage for the identifiers is allocated elsewhere, either in
this file or another file. It is required that there be exactly one definition of
each external identifier (without extern) in the set of files and libraries
comprising a mult-file program.

Identifiers declared static at the top level in external definitions are not
visible in other files. Functions may be declared static.

17-46 PROGRAMMER'S GUIDE

Compiler Control Lines
The C compilation system contains a preprocessor capable of macro sub

stitution, conditional compilation, and inclusion of named files. Lines begin
ning with # communicate with this preprocessor. There may be any number
of blanks and horizontal tabs between the # and the directive, but no addi
tional material (such as comments) is permitted. These lines have syntax
independent of the rest of the language; they may appear anywhere and have
effect that lasts (independent of scope) until the end of the source program
file.

Token Replacement
A control line of the form

#define identifier token-stringopt

causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. Semicolons in or at the end of the token-string are
part of that string. A line of the form

#define identifierl(identifier, ...) token-stringopt

where there is no space between the first identifier and the (, is a macro defin
ition with arguments. There may be zero or more formal parameters. Subse
quent instances of the first identifier followed by a (, a sequence of tokens del
imited by commas, and a) are replaced by the token string in the definition.
Each occurrence of an identifier mentioned in the formal parameter list of the
definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however,
commas in quoted strings or protected by parentheses do not separate argu
ments. The number of formal and actual parameters must be the same.
Strings and character constants in the token-string are scanned for formal
parameters, but strings and character constants in the rest of the program are
not scanned for defined identifiers to replace.

In both forms the replacement string is rescanned for more defined iden
tifiers. In both forms a long definition may be continued on another line by
writing \ at the end of the line to be continued. This facility is most valuable
for definition of "manifest constants," as in

C LANGUAGE 17-47

Compiler Control Lines

int table[TABSlZE];

A control line of the form

#undef identifier

causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no
intervening #undef, then the two token-strings are compared textually. If the
two token-strings are not identical (all white space is considered as
equivalent), then the identifier is considered to be redefined.

File Inclusion
A control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename.
The named file is searched for first in the directory of the file containing the
#include, and then in a sequence of specified or standard places. Alterna
tively, a control line of the form

#include <filename>

searches only the specified or standard places and not the directory of the
#include. [How the places are specified is not part of the language. See
cpp(l) for a description of how to specify additional libraries.]

#includes may be nested.

17·48 PROGRAMMER'S GUIDE

Compiler Control Lines

Conditional Compilation
A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero. (Con
stant expressions are discussed in "Constant Expressions"; the following addi
tional restrictions apply here: the constant expression may not contain sizeof,
casts, or an enumeration constant.)

A restricted-constant expression may also contain the additional unary
expression

defined identifier

or

defined (identifier)

which evaluates to one if the identifier is currently defined in the preprocessor
and zero if it is not.

All currently defined identifiers in restricted-constant expressions are
replaced by their token-strings (except those identifiers modified by defined)
just as in normal text. The restricted-constant expression will be evaluated
only after all expressions have finished. During this evaluation, all undefined
(to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e.,
whether it has been the subject of a #define control line. It is equivalent to
#if defined (identifier).

A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is
equivalent to #if !defined (identifier).

C LANGUAGE 17·49

Compiler Control Lines

All three forms are followed by an arbitrary number of lines, possibly con
taining a control line

#else

and then by a control line

#endif

If the checked condition is true, then any lines between #else and #endif are
ignored. If the checked condition is false, then any lines between the test and
a #else or, lacking a #else, the #endif are ignored.

Another control directive is

#elif restricted-constant-expression

An arbitrary number of #elif directives can be included between #if, #ifdef,
or #ifndef and #else, or #endif directives. These constructions may be
nested.

Line Control
For the benefit of other preprocessors that generate C programs, a line of

the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line
number of the next source line is given by the constant, and the current input
file is named by "filename". If" filename" is absent, the remembered file
name does not change.

Version Control
This capability, known as S-lists, helps administer version control informa

tion. A line of the form

#ident "version"

puts any arbitrary string in the .comment section of the a.out file. It is usu
ally used for version control. It is worth remembering that .comment sections
are not loaded into memory when the a.out file is executed.

17·50 PROGRAMMER'S GUIDE

Types Revisited

This part summarizes the operations that can be performed on objects of
certain types.

Structures and Unions
Structures and unions may be assigned, passed as arguments to functions,

and returned by functions. Other plausible operators, such as equality com
parison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of
the -> or the. must specify a member of the aggregate named or pointed to
by the expression on the left. In general, a member of a union may not be
inspected unless the value of the union has been assigned using that same
member. However, one special guarantee is made by the language in order to
simplify the use of unions: if a union contains several structures that share a
common initial sequence and if the union currently contains one of these
structures, it is permitted to inspect the common initial part of any of the con
tained structures. For example, the following is a legal fragment:

C LANGUAGE 17·51

Types Revisited

union

struct

int
} n;
struct
{

int
int

} ni;
struct
{

int
float

} nf;
} u;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n. type == FLOAT)

type;

type;
int:node;

type;
float:node;

.•. sin(u.nf .float:node)

Functions
There are only two things that can be done with a function: call it or take

its address. If the name of a function appears in an expression not in the
function-name position of a call, a pointer to the function is generated. Thus,
to pass one function to another, one might say

17·52 PROGRAMMER'S GUIDE

Types Revisited

Then the definition of g might read

g(funcp)

int (*funcp)();

(*f1D1Cp) ();

Notice that £ must be declared explicitly in the calling routine, since its
appearance in g(f) was not followed by (.

Arrays, Pointers, and Subscripting
Every time an identifier of array type appears in an expression (except as

an operand of "sizeof"), it is converted into a pointer to the first member of
the array. Because of this conversion, arrays are not lvalues. By definition,
the subscript operator [] is interpreted in such a way that E1[E2] is identical
to *«E1)+(E2». Because of the conversion rules that apply to +, if E1 is an
array and E2 an integer, then E1[E2] refers to the E2 -th member of E1.
Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

C LANGUAGE 17·53

Types Revisited

A consistent rule is followed in the case of multidimensional arrays. If E
is an n-dimensional array of rank iXjX ... Xk, then E appearing in an expres
sion is converted to a pointer to an (n-l) dimensional array with rank jX ... xk.
If the * operator, either explicitly or implicitly as a result of subscripting, is
applied to this pointer, the result is the pointed-to (n-l) dimensional array,
which itself is immediately converted into a pointer.

For example, consider int x[3][5]; Here x is a 3X5 array of integers.
When x appears in an expression, it is converted to a pointer to (the first of
three) 5-membered arrays of integers. In the expression x[i], which is
equivalent to *(x+i), x is first converted to a pointer as described; then i is
converted to the type of x, which involves multiplying i by the length of the
object to which the pointer points, namely 5-integer objects. The results are
added and indirection applied to yield an array (of five integers) which in turn
is converted to a pointer to the first of the integers. If there is another sub
script, the same argument applies again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first
subscript in the declaration helps determine the amount of storage consumed
by an array. Arrays play no other part in subscript calculations.

Explicit Pointer Conversions
Certain conversions involving pointers are permitted but have

implementation-dependent aspects. They are all specified by means of an
explicit type-conversion operator, see "Unary Operators" under "Expres
sions" and "Type Names" under "Declarations."

A pointer may be converted to any of the integral types large enough to
hold it. Whether an int or long is required is machine-dependent. The map
ping function is also machine-dependent but is intended to be unsurprising to
those who know the addressing structure of the machine.

An object of integral type may be explicitly converted to a pointer. The
mapping always carries an integer converted from a pointer back to the same
pointer, but is otherwise machine-dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pointer may cause addressing exceptions upon use if the subject
pointer does not refer to an object suitably aligned in storage. It is guaranteed
that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

17·54 PROGRAMMER'S GUIDE

Types Revisited

For example, a storage-allocation routine might accept a size (in bytes) of
an object to allocate, and return a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double»;
*dp = 22.0 /7.0;

The alloc must ensure (in a machine-dependent way) that its return value is
suitable for conversion to a pointer to double; then the use of the function is
portable.

C LANGUAGE 17-55

Constant Expressions
In several places C requires expressions that evaluate to a constant: after

case, as array bounds, and in initializers. In the first two cases, the expression
can involve only integer constants, character constants, casts to integral types,
enumeration constants, and sizeof expressions, possibly connected by the
binary operators

+ - * / % & I «» == != < > <= >= && II

or by the unary operators

or by the ternary operator

7:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as
discussed above, one can also use floating constants and arbitrary casts and
can also apply the unary & operator to external or static objects and to exter
nal or static arrays subscripted with a constant expression. The unary & can
also be applied implicitly by appearance of unsubscripted arrays and func
tions. The basic rule is that initializers must evaluate either to a constant or to
the address of a previously declared external or static object plus or minus a
constant.

17·56 PROGRAMMER'S GUIDE

Portability Considerations
Certain parts of C are inherently machine-dependent. The following list

of potential trouble spots is not meant to be all-inclusive but to point out the
main ones.

Purely hardware issues like word size and the properties of floating point
arithmetic and integer division have proven in practice to be not much of a
problem. Other facets of the hardware are reflected in differing implementa
tions. Some of these, particularly sign extension (converting a negative char
acter into a negative integer) and the order in which bytes are placed in a
word, are nuisances that must be carefully watched. Most of the others are
only minor problems.

The number of register variables that can actually be placed in registers
varies from machine to machine as does the set of valid types. Nonetheless,
the compilers all do things properly for their own machine; excess or invalid
register declarations are ignored.

The order of evaluation of function arguments is not specified by the
language. The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter
character constants may be permitted. The specific implementation is very
machine-dependent because the order in which characters are assigned to a
word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on
some machines and left to right on other machines. These differences are
invisible to isolated programs that do not indulge in type punning (e.g., by
converting an int pointer to a char pointer and inspecting the pointed-to
storage) but must be accounted for when conforming to externally-imposed
storage layouts.

C LANGUAGE 17-57

Syntax Summary
This summary of C syntax is intended more for aiding comprehension

than as an exact statement of the language.

Expressions
The basic expressions are:

expression:
primary
* expression
& lvalue
- expression
! expression
- expression
++ lvalue
-- lvalue
lvalue ++
lvalue --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

primary:
identifier
constant
string literal
(expression)
primary (expression-listopt)

primary [expression]
primary . identifier
primary -> identifier

17-58 PROGRAMMER'S GUIDE

lvalue:
identifier
primary [expression]
lvalue . identifier
primary -> identifier
* expression
(lvalue)

The primary-expression operators

() [] . ->

Syntax Summary

have highest priority and group left to right. The unary operators

* & - ! - ++ -- sizeof (type-name)

have priority below the primary operators but higher than any binary operator
and group right to left. Binary operators group left to right; they have priority
decreasing as indicated below.

binop:
*
+
»
<

&

&&
II
II

/ %

«
> <= >=
!=

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

asgnop: A

= += -= *= /= 0/0= »= «= &= =:=

The comma operator has the lowest priority and groups left to right.

C LANGUAGE 17-59

Syntax Summary

Declarations

declaration:
decl-specifiers init-declarator-listopt ;

decl-specifiers:
type-specifier decl-specifiersopt
sc-specifier decl-specifiersopt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

17·60 PROGRAMMER'S GUIDE

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

in it-declarator:
declarator initializeropt

declarator:
identifier
(declarator)
* declarator
declarator 0
declarator [constant-expressionopt 1

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

Syntax Summary

C LANGUAGE 17·61

Syntax Summary

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator 0
abstract-declarator [constant-expressionopt]

typedef-name:
identifier

17-62 PROGRAMMER'S GUIDE

Statements

compound-statement:
{ declaration-listopt statement-listopt }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expopt ; expopt ; expopt) statement
switch (expression) statement
case constant-expression: statement
default : statement
break;
continue;
return;
return expression ;
goto identifier;
identifier: statement

Syntax Summary

C LANGUAGE 17·63

Syntax Summary

External Definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
decl-specifieroptfunction-declarator function-body

function-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier, parameter-list

function-body:
declaration-listopt compound-statement

data-definition:
extern declaration;
static declaration;

17·64 PROGRAMMER'S GUIDE

Preprocessor

#define identifier token-stringo t
#define identifier(identifier, ... J~ken-stringoPt
#undef identifier
#include "filename"
#include <filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef identifier
#elif restricted-constant-expression
#else
#endif
#line constant "filename"
#ident "version"

Syntax Summary

C LANGUAGE 17·65

18 C Programmer's Productivity
Tools

Introducing the C Programmer's
Productivity Tools 18-1
Notation Conventions Used in This Document 18-2

cscope 18-4
How cscope Works 18-4

• Step 1: Identify the Problem 18-4
• Step 2: Set Up the Environment 18-5
• Step 3: Invoke cscope 18-5
• Step 4: Locate the Source of the Error Message 18-8
• Other Command Line Options 18-18
• Optional Features 18-19
• Examples of Using cscope 18-20

Cautionary Notes on Using cscope 18-27

Iprof 18-30
Introduction 18-30
Creating a Profiled Version of a Program 18-31
Running the Profiled Program 18-32
The PROFOPTS Environment Variable 18-32
Examples of Using PROFOPTS 18-33

• Turning Off Profiling 18-33
• Merging Data Files 18-34
• Keeping Data Files in a Separate Directory 18-34
• Profiling within a Shell Script 18-35
• Profiling Programs that Fork 18-35

Interpreting Profiling Output 18-36
• Specifying a Program and Data File to lprof 18-36

C PROGRAMMER'S PRODUCTIVITY TOOLS

C Programmer's Productivity Tools

• Source Listing Option
Summary Option
Merging Option
Cautionary Notes on Using Iprof

• Trouble at Compile Time
• Non-Terminating Programs
• Failure of Data to Merge
• Specifying Program Names to lprof
• Trouble at the End of Execution
• No Data Are Collected
• Data File Cannot Be Found
• Using lprof with Shared Libraries

Profiling Examples
Improving Performance with prof and Iprof

• lprof on lprof
Improving Test Coverage with Iprof

• Example 1: Searching for Undocumented
Options

• Example 2: Functions That Are Never Called
• Example 3: Hard to Produce Error Conditions

ii PROGRAMMER'S GUIDE

18-37
18-41
18-42
18-43
18-43
18-44
18-44
18-44
18-46
18-46
18-46
18-47

18-48
18-48
18-49
18-57

18-59
18-61
18-61

Introducing the C Programmer's Produc
tivity Tools

This document will teach you how to use the C Programmer's Produc
tivity Tools (CPPT). First, step by step instructions are provided in the context
of basic examples so you can start using CPPT right away. Additional exam
ples demonstrate various options that allow you to make the best use of the
tools. To use CPPT you must know how to use the other tools in the C
Software Developement Set.

The CPPT package consists of two tools: esc ope and lprof. cscope is a
browser; lprof, a profiler.

The cscope browser is an interactive program that locates specified parts
of code in a set of C source files and gives you the option of editing those
files. It can significantly reduce the amount of time you must spend searching
for functions, function calls, macros, and variables in the code. Programmers
responsible for writing programs (especially large ones) or maintaining existing
programs will be able to edit their source code more efficiently with cscope. It
is especially helpful for a programmer working on someone else's code. The
section II cscope II is a tutorial on using this browser.

A profiler is a tool for analyzing a program's run-time behavior, a pro
cedure known as dynamic analysis. lprof allows a programmer or tester to
identify those parts of the source code that are most often executed and those
that are never executed when a program is run. lprof provides line by line
frequency profiling, reporting how many times each line of source code is exe
cuted. The -x option allows you to request test coverage analysis, so that
lprof reports only which lines of code are not actually executed at run time. It
can be used over a set of tests such as are included in a test suite. The section
II lprof II teaches you how to use this profiler to perform these types of
dynamic analysis.

The section II Profiling Examples II presents examples of how profiling
can be used to improve program performance. To enhance the effectiveness
of lprof, use of another profiler, prof, is recommended. prof reports the
amount of time spent in various portions of a program. Once this has been
determined, lprof can be used to obtain line specific information about the
heavily executed portions of code identified by prof. These lines can then be
rewritten to execute more efficiently.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·1

Introducing the C Programmer's Productivity Tools

prof is available in CPLU Issues 3 and 3.1, and C-FP+. For CPLU Issue 4
and subsequent issues, prof is included in the Advanced Programming Utili
ties (APU) package.

lprof performs the following functions:

• produces source listings

• produces summary reports of profile data

• merges profile data files

Notation Conventions Used in This Document
The following notation conventions are used throughout this document.

bold

italic

constant width

[]

command(number)

User input appears in bold. This includes com
mands, options and arguments to commands,
values of variables, and names of directories and
files.

Names of variables to which values must be
assigned (such as password) appear in italic.

UNIX system output, such as prompt signs and
responses to commands, appears in constant
width.

Command options and arguments that are
optional, such as [-msCj], are enclosed in square
brackets.

A number parentheses after the name of a com
mand refers to the part of a UNIX system refer
ence manual that documents that command.
(There are three reference manuals: the User's
Reference Manual, Programmer's Reference Manual,
and System Administrator's Reference Manual.)

18·2 PROGRAMMER'S GUIDE

$

Introducing the C Programmer's Productivity Tools

The $ sign is used in sample command lines in
this document to represent the shell command
prompt. Because different systems use different
symbols as prompts, this may not be the shell
command prompt used by your system. Keep in
mind that when a prompt is included at the
beginning of a sample command line, it is there to
show how the line will appear on your screen;
you are not meant to type it.

The # sign is used in sample command lines in
this document to represent the command prompt
for the root login. Because different systems use
different symbols as prompts, this may not be the
prompt for root used by your system. Keep in
mind that when a prompt is included at the
beginning of a sample command line, it is there to
show how the line will appear on your screen;
you are not meant to type it.

The text in this document was prepared with UNIX system text editors
and formatted with the DOCUMENTER'S WORKBENCH Software: the
troff, tbI, and mm macros.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·3

cscope

How cscope Works
Imagine you arrive at work one day and are asked to learn how a particu

lar program works. You are given a large stack of source code printouts and a
cross-reference table for them. How do you go about studying the code?
Until now, programmers have had to flip back and forth through pages of
printouts to find the functions, function calls, macros, and variables listed in
the cross-reference.

Now, however, you can use an interactive electronic tool to search
through the code for you. This tool is the eseope browser. escope builds a
cross-reference symbol table for the functions, function calls, macros, and vari
ables in the source files you specify. It then allows you to query that table
about the locations of symbols you specify. Specifically, escope presents a
menu and asks you to choose the type of search you would like to have per
formed. For example, you may want eseope to find all functions that call a
particular function.

When eseope has completed this search, it prints a list of the lines on
which it has found the item (such as the functions calling a function) that you
specified. It then waits for you to specify which of these lines you want to
examine. After you have requested a subset of the lines eseope waits for you
to edit a line (by using the default editor, vi, or an editor of your choice) or to
begin another search.

Throughout a eseope session, you have the option of returning to the
menu from the editor to request a new search. There are a variety of single
character commands available for manipulating the menu.

Because the procedure you follow will depend on the task you select,
there is no single set of instructions for using eseope. To learn how this
browser works, study the following example. It shows how you can locate a
bug in a program without learning all the code.

Step 1: Identify the Problem
Suppose you are responsible for maintaining eseope itself. You notice that

an error message, out of storage, sometimes appears when you run the pro
gram. How can you fix this? First, locate the parts of the code that are

18·4 PROGRAMMER'S GUIDE

cscope

generating the message. Use cscope to find these parts quickly.

Step 2: Set Up the Environment
cscope uses an editor as the medium through which you browse through

your files. Therefore, before installing CPPT, you must check your environ
ment to be sure an editor that can be used on your terminal is accessible.

Check the value of the TERM environment variable to make sure you
have set it for your terminal. The first time you logged in you should have
done this by assigning a value to TERM and exporting'TERM to the shell, as
follows:

$ TERM=term_name
$ export TERM

You may now want to assign a value to the EDITOR environment vari
able. By default, cscope invokes the vi editor. If you prefer not to use vi, set
the EDITOR environment variable to the editor of your choice and export
EDITOR. (See the "Command Line Syntax for Editors" section for details
and examples.)

If you want to use cscope only for browsing (without editing) you can set
the VIEWER environment variable to pg and export VIEWER. cscope will
then invoke pg instead of vi.

Using the ed or jim editor is possible but not recommended. (jim is an
editor that takes advantage of the multi-screen capability of the AT&T
5620 terminal. It cannot be used with any other type of terminal.) See
"Cautionary Notes on Using cscope" for suggested workarounds for
these editors.

Once you have set up your environment so that cscope will call the editor
of your choice, you are ready to use the browser.

Step 3: Invoke cscope
If all the source files for the program to be browsed (with the possible

exception of standard system header files) are in the current directory, invoke
cscope without any arguments:

$ cscope

By default, cscope builds its cross-reference table for all the C, lex, and yacc

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-5

cscope

source files in the current directory. Therefore, typing eseope without any
arguments is equivalent to the following command line:

$ eseope *.[ehly]

eseope will also search the standard directories for any header files that you
include with #indude.

For other ways to invoke cscope (including a way to invoke it if the source
files are in multiple directories) see "Command Line Options" later in this
section.

The Cross-Reference File
When eseope is first invoked, it builds a cross-reference symbol table to

which it refers during subsequent sessions. This table is created in the current
directory and is called eseope.out. The next time eseope is invoked, it checks
eseope.out for changes. eseope modifies the table if the list of source files has
been changed. Also, if the table has been modified, eseope rebuilds only
those portions of the table that have been modified. Because copying infor
mation is much faster than building it, subsequent calls to escope should
require much less start-up time than the initial call.

Running cscope
After eseope has been invoked and the cross-reference information pro

cessed, the eseope menu of tasks appears on the screen.

18-6 PROGRAMMER'S GUIDE

csoope Press the ? key f= help

List references to this C symbol:
Dlit this function = #define:
List functions called by this function:
List functions call:i:nq this function:
List lines containing this text str:i:nq:
~e this text str:i:nq:
List file names containing this text str:i:nq:

Figure 18-1: The cscope Menu of Tasks

cscope

Press the TAB or RETURN key to move the cursor down the screen (with
wraparound at the bottom of the display), and ~ p (control-p) to move the cur
sor up. Once the cursor is at the desired input field, enter the text to be
searched, and press the RETURN key.

The following single-key commands are available at any time during a
cscope session.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-7

cscope

The' (circumflex) represents the CONTROL key. Instructions to type con
trol characters (such as 'p in the previous paragraph) should be followed by
holding down the CONTROL key and pressing the letter shown after the
circumflex.

TAB move to next input field
RETURN move to next input field

A
m move to next input field
Ap move to previous input field

. search with the last text typed
A
r rebuild the cross-reference
! start an interactive shell

(type Ad to return to cscope)
Al redraw the screen

? display list of commands
Ad exit cscope

Figure 18-2: Menu Manipulation Commands

Step 4: Locate the Source of the Error Message
Now let's return to the task we undertook at the beginning of the section

cscope: to fix the problem that is causing the error message OI,lt of storage
to be printed. You have invoked cscope; the menu is on the screen. Start
your search for the problem by locating the section of code where the error
message is generated. Move the cursor to the fifth menu item (List lines
oontaining this text string) and enter the text out of storage.

18·8 PROGRAMMER'S GUIDE

cscope Press the ? key for help

List references to this C symbol:
Eklit this function or #def:ine:
List functions called by this function:
List functions calling this function:
List l:ines containing this text string: out of storage
~ this text string:
List file names containing this text string:

Figure 18-3: Requesting a Search for a Text String

cscope

Press the RETURN key. cscope searches for the specified text and finds one
line that contains it.

Follow the same procedure to perform any other task listed in the menu
except the sixth, Change this text string. Because this task is slightly
more complex than the others, there is a different procedure for perform
ing it. For a description and examples of changing a text string, see
"Examples of Using cscope" later in this section.

cscope reports its finding as follows:

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·9

cscope

TeKt string: out of st=age

File Line
1 alloc.c 56 (void) fprintf(stderr, "\n%s: out of st=age\n",
argvO) ;

List references to this C symbol:
Edit this function = #define:
List functions called by this function:
List functions calling this function:
List lines containing this text string:
Change this text string:
List file names containing this text string:

Figure 18-4: cscope Lists Lines Containing the Text String

After cscope shows you the results of a successful search in this way, you
have several options. For example, you may want to edit one of the lines
found. Or, if cscope has found so many lines that a list of them will not fit
on the screen at once, you may want to look at the next part of the list. The
following table shows the commands available after cscope has found the
specified text.

18-10 PROGRAMMER'S GUIDE

1-9 edit this line

space

+

e

>

(the number you type corresponds to an item
in the list of lines printed by escape)
display the lines after the current line
display the lines after the current line
display the lines before the current line
edit all lines
append the list of lines being displayed to a file

Figure 18-5: Commands for Use After Initial Search

cscope

If the first character of the text for which you are searching matches one of
these commands, be sure to precede it with a \ (backslash).

Now examine the code around the newly found line. Enter 1 (the number
of the line in the list). The editor will be invoked with the file alloc.c; the
cursor will be at the beginning of line 56 of the text file.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·11

cscope

return(alloctest(realloc(p, (unsigned) size)));

/* check for IIlE!lIoty allocation failure * /

static char *
alloctest(p)
char *p;

{

if (p == NULL)

(void) fprintf(stderr, "\n%s: out of storage\n",
argvO) ;
exit(1);

return(p);

"alloc.c" 60 lines, 1022 characters

Figure 18-6: Examining a Line of Code Found by cscope

By examining the code, you notice that the error message is generated
when the variable p is NULL. To determine how an argument passed to
allodest could have been NULL, you must first identify the functions that call
allodest.

Exit the editor by using normal write and quit conventions, and return to
the menu of tasks. Now type alloctest after the fourth item, List functions
calling this function.

18-12 PROGRAMMER'S GUIDE

Text string: out of storage

File Line
1 alloc.c 56 (void) fprintf(stderr, "\n%s: out of storage\n",
argvO);

List references to this C symbol:
Fdit this function or #define:
List functions called by this function:
List functions calling this function: alloctest
List lines oantaining this text string:
Change this text string:
List file names oantaining this text string:

Figure 18-7: Requesting a List of Functions that Call alloctest

cscope finds and lists three such functions.

C PROGRAMMER'S PRODUCTIVITY TOOLS

cscope

18-13

cscope

Functions calling this function:alloctest

File Function Line
1 alloc.c 1II}'IlBlloc 26 return(alloctest(malloc«unsigned) size»);
2 alloc.c 1I!Y=1loc 36 return(alloctest(calloc((unsigned) nelem,

(unsigned)
size»);

3 alloc.c ~ealloc 46 return(alloctest(realloc(p, (unsigned)
size») ;

List references to this C ~l:
mit this function = #define:
List functions called by this function:
List functions calling this function:
List lines containing this text string:
Change this text string:
List file names containing this text string:

Figure 18-8: cscope Lists Functions that Call alloctest

Now you want to know which functions call mymalloc. cscope finds ten
such functions. It lists seven of them on the screen and instructs you to press
the space bar to see the rest of the list.

18-14 PROGRAMMER'S GUIDE

Functions calling this function: mymalloc

File Function
1 alloc. c stra1loc

2 dir.c makesrcdirlist

3 dir.c makesrcdirlist

4 dir.c makefilelist

5 dir.c makefilelist

6 dir.c addinodir

7 display.c dispinit

Line
17 return(strcpy(mymalloc(strlen(s)
+ 1), s»;
70 srodirs = (char **)
mymalloc(nsrodirs * sizeof(char *»;
89 s = mymalloc(strlen(srodirs[i])
+ n);

115 srcfiles = (char **)
mymalloc(msrcfiles * sizeof(char *»;
116 srcnames = (char **)
mymalloc(msrcfiles * sizeof(char *»;
212 inodirs = (char **)
mymalloc (sizeof (char *»;
76 displine = (int *)
mymalloc(mdisprefs * sizeof(int»;

* 3 nore lines - press the space bar to display IlDre *
List references to this C symbol:
Fdit this function = #define:
List functions called by this function:
List functions calling this function:
List lines containing this text string:
Change this text string:
List file names containing this text string:

Figure 18-9: cscope Lists Functions that Call mymalloc

cscope

Because you know that the error message (out of storage) is generated at
the beginning of the program, you can guess that the problem may have
occurred in the function dispinit (display initialization). To view dispinit, the
seventh function on the list, type 7.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-15

cscope

void
dispinit()

{

1* calculate the maximum displayed reference lines *1
lastdispline = FLDLINE - 4;
ndisprefs = lastdispline - REFLINE + 1;
if (ndisprefs > 9) {

ndisprefs = 9;

1* allocate the displayed line array *1
displine = (int *) mymalloc(ndisprefs * sizeof(int»;

AL/* display a page of the references *1

void
display()
{

char
char
char
int
int

file[PATHLEN + 1];
function[PA'l'Lm + 1];

l:inenum[NtMLEN + 1];

screenline;
width;

register int i, j;
"display.e" 440 lines, 10198 characters

1* file name *1
1* function name *1
1* line number *1
1* screen line rrumber *1
1* source line display
width *1

Figure 18-10: Viewing dispinit in the Editor

mymalloc failed because it was called with either a very large number or
with a negative number. By examining the possible values of FLDLINE and
REFLINE, you can see that there are situations in which the value of the vari
able is negative, that is, in which you are trying to call mymalloc with a
negative number. The program needs a mechanism so that if the value of the
variable is negative, it will abort after printing a meaningful error message.

18·16 PROGRAMMER'S GUIDE

cscope

On an AT&T 5620 terminal you may have multiple windows of arbitrary
size. The error message might appear as a result of running cscope in a layer
that has too few lines. One solution to this problem is to have the program
print an error message stating that the screen is too small. Edit the function
dispinit as follows:

/* initialize display parameters */

void
dispinit()

{

/* calculate the maxinUlIn displayed reference lines * /
lastdispline = FIDLINE - 4;
mtisprefs = lastdispline - REFLINE + 1;
if (mtisprefs <= 0) {

(void) fprintf(stderr, "\n%s: screen too small\n",
argvO);
exit(1);

if (mtisprefs > 9)
mtisprefs = 9;

/* allocate the displayed line array * /
displine = (int *) Il!YlIBlloc(ndisprefs * sizeof(int»;

'L/* display a page of the references */

void
display()

Figure 18-11: Using cscope to Fix the Problem

You have now fixed the problem we began investigating at the beginning
of this section. If the screen is not large enough when you run your program
in the future, the program will not simply fail with the cryptic error message
out of storage. Instead, it will check the screen size and generate a more
meaningful error message before exiting.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·17

cscope

Other Command Line Options
cscope examines all the C, lex, and yacc source files in the current direc

tory by default. Thus

$ cscope

is equivalent to

$ cscope *.[chly]

The cscope command line provides several options that allow the pro
grammer greater flexibility in selecting source files to be included in the
cross-reference. To browse through specific files, invoke cscope fVith file
names as arguments on the command line:

$ cscope file1.c file2.c file3.h

To specify a file containing a list of all the files to be browsed, use the -i
option. If the source is in a directory tree, the following commands will allow
you to examine all the source files easily:

$ find. -name '*.[chly], -print I sort> filelist
$ cscope -i filelist

The -I option for cscope is similar to the -I option for cc. It directs
cscope to search specified directories for #include files.

$ cscope -I..Jhdr

cscope automatically searches for the #include files that it encounters in the
files it scans.

The programmer can specify a cross-reference file other than cscope.out
by using the -f option. This is useful for keeping separate symbol cross
reference files in the same directory. A programmer may want to do this if
two programs are in the same directory, but do not share all the same files.

$ cscope -f admin.ref admin.c common.c aux.c libs.c
$ cscope -f delta.ref delta.c common.c aux.c libs.c

18-18 PROGRAMMER'S GUIDE

cscope

In the preceding example, the source for two programs (admin and delta)
are in the same directory, but the programs comprise different files. Suppose
you are running cscope on admin. You may not want to see references to
symbols in delta.c. By specifying two reference files, the cross-reference infor
mation for the two programs can be kept separate.

As with cscope.oul, if the alternate file does not exist, cscope will build
the cross-reference and leave it in the file specified by the -£ option.

cscope offers an option, -d, that allows you to prevent updating of the
cross-reference table and thereby save time. It is permissible to use this
option if you are sure that your source files have not been changed. How
ever, because it is usually more important to safeguard against generating
erroneous data than to save time, avoid using the -d option unless absolutely
necessary. V u ... the -<I opO= with extr~e "ution. H you 'P"cify -<I with "rope

under the erroneous impression that your source files have not been
changed, cscope will give you data for an outdated program.

Optional Features
This section describes some of the more advanced capabilities of cscope.

Stacking cscope and Editor Calls
cscope and editor calls can be stacked. This means that when cscope puts

you in the editor to display one symbol reference and there is another symbol
of interest, you can call cscope again from within the editor without exiting
the current invocation of either cscope or the editor. You can then back up to
a previous invocation by exiting the appropriate cscope and editor calls.

Directories Searched by cscope
cscope searches for header files in the following directories in this order:

1. the current directory

2. directories specified by the -I option (if they exist)

3. the standard location for header files (usually usr/include).

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-19

cscope

escape searches for source files only in the current directory.

Using Viewpaths
The environment variable VP A TH replaces the current directory in the

order of directories searched by escape. This enables you to extend your
search for source files from a single directory to a set of directories.

You must specify your current directory in VPATH if you want it to be
searched. (The current directory can always be represented by the. sym
bol.)

To set VPATH, list the directories you want searched (by their path
names) in the order you want them searched. Separate each directory name
with colons.

For example, suppose you have a program that consists of three files, a.e,
b.e, and e.e. You have assigned the following directories to the VPATH vari
able:

$ VPATH= /fs2/mydirectory:/fsl/delivered:/fsl/proj/offidal

escape first searches for the file a.e in the directory /fsl/mydirectory. If the
file is not in that directory escape continues searching for it in the other direc
tories specified in VPATH until it finds the file. Similarly, escape searches the
directories in the specified order for b.e and e.c.

Examples of Using escape

This section presents examples of how escape can be used to perform
three tasks: change a constant to a preprocessor symbol, add an argument to
a function, and change the value of a variable.

Changing a Text String
The standard procedure for calling tasks listed on the escape menu of

tasks was described in "Running escape" early in this section. One task on
the menu differs slightly from the others and necessitates following a different
procedure.

If you select the sixth menu item, Change this text string, escape will
prompt you for new text and then display the lines containing the old text.
You can select the lines you want changed with any of the following single
key commands:

18-20 PROGRAMMER'S GUIDE

1-9 mark or unmark the line to be changed

* mark or unmark all displayed lines to be changed
space display next lines

+ display next lines
display previous lines

a mark all lines to be changed

change the marked lines and exit
ESC exit without changing the marked lines

Figure 18-12: Commands for Selecting Lines to be Changed

The rest of this section consists of more detailed examples.

Changing a Constant to a Preprocessor Symbol

cscope

Suppose you want to change a constant, 100, to a preprocessor symbol,
MAXSIZE. Select the sixth menu item (Change this text string) and enter
\100.

The 1 must be preceded with a \ (backslash) because it has a special
meaning (item 1 on the menu) to cscope.

Now press RETURN; cscope will prompt you for the new text string. Type
MAXSIZE.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-21

cscope

csoope Press the ? key for help

List references to this C symbol:
Edit this flmction or #define:
List functions called by this function:
List functions calling this flmction:
List lines containing this text string:
Change this text string: 100
List file names containing this text string:
To: MAXSIZE

Figure 18-13: Changing a Text String

cscope then displays the lines containing the specified text string, and waits
for you to specify the subset of these lines in which you want the text to be
changed.

18·22 PROGRAMMER'S GUIDE

Change "100" to "MAXSlZE"

File Line
1 init.c 4 char s[100];
2 init.c 26 for (i = 0; i < 100; i++)

3 find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; 1* get percentage *1

List references to this C symbol:

mit this flmCtian or #define:

List flmCtions called by this function:
List functions calling this function:
List lines containing this text string:

Change this text string:
List file names containing this text string:
Select lines to change (press the ? key for help):

Figure 18-14: cscope Prompts for Lines to be Changed

cscope

You know that occurrences of 100 in lines 1, 2, and 3 of the list (from lines 4,
26, and 8 of the program) are to be changed to MAXSIZE. However, the
occurrences of 100 in read.c and err.c (lines 4 and 5 of the list) are not
related; in these lines, 100 should not be changed. Enter 1, 2, and 3.

The numbers you type are not printed on the screen. Instead, cscope
prints a > (greater than) symbol after each number of the list that you type.
For example, after you type 1, a > symbol is printed after the number 1 (and
before the line init.c 4 char 8[100];) in the list, as shown in Figure 1-15.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-23

cscope

Change "100" to "MAXSIZE"

File Line
1>init.c 4 char s[100];
2>init.c 26 far (i = 0; i < 100; i++)
3>find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = totalI100.0; 1* get percentage *1

List references to this C symbol:
Edit this function ar #define:
List functions called by this function:
List functions calling this function:
List lines containing this text string:
Change this text string:
List file names containing this text string:
Select lines to change (press the ? key far help):

Figure 18-15: Marking Lines to be Changed

After selecting lines, type Ad to change them. cscope then displays the lines
that have been changed.

18-24 PROGRAMMER'S GUIDE

Changed lines:

char s[MAXSIZE];

for (i = 0; i < MAXSlZE; i++)
if (e < MAXSIZE) {

Type any character to continue:

Figure 18-16: cscope Displays Changed Lines of Text

cscope

When you type a character in response to this prompt, cscope will pause and
redraw the screen before allowing you to continue with the session, as shown
in Figure 1-17.

The next step is to add the #define for the new symbol MAXSIZE.
Escape to the shell by typing!. (The shell prompt will appear at the bottom
of the screen.) Then enter the editor and add the #define.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·25

cscope

Text string: 100

File Line
1 init.c 4 char s[100];
2 init.c 26 for (i = 0; i < 100; i++)
3 find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; /* get percentage */

List references to this C symbol:
Edit this function or #define:
List functions called by this function:
List functions calling this function:
List lines containing this text string:
Change this text string:

List file names containing this text. string:
$ vi defs.h

Figure 18-17: Escaping from cscope to the Shell

To resume the cscope session, quit the editor and type -d to exit the shell.

Adding an Argument to a Function
cscope makes it easy to add an argument to a function. Adding an argu

ment involves two steps: editing the function itself and adding the new argu
ment to each place where the function is called.

First, edit the function by using the second menu item, Edit this func
tion or #define. Next, find out where the function is called. By invoking
the fourth menu item, List functions calling this function, you can get a
list of all functions that call it. With this list, you can either invoke the editor
on each line found by entering the list number for each line individually, or

18-26 PROGRAMMER'S GUIDE

cscope

invoke the editor on all lines automatically by typing" e. Using cscope to
make this kind of change is especially useful because it guarantees that none
of the functions you need to edit will be overlooked.

Changing the Value of a Variable
The value of cscope as a browser becomes apparent when you want to see

how a proposed change will affect your code. Suppose you want to change
the value of a variable or preprocessor symbol. Before doing so, use the first
menu item (List references to this C symbol) to obtain a list of references
that will be affected. Then use the editor to examine each one. This will help
you predict the overall effects of your proposed change. Later, you can use
cscope in this manner again to verify that your changes have been made.

Cautionary Notes on Using cscope
This section describes solutions for several problems that may arise while

you are using cscope.

Unknown Terminal Type
You may see the following error message:

cscope: "term" is not in the terminal data base.

If this message appears, your terminal may not be listed in the terminal infor
mation (terminfo) database that is currently loaded. Try reloading the data
base from the Terminal Information Utilities.

You may also see

cscope: TERM variable is not set or is not exported in your .profile

If this message appears, set and export the TERM variable as described at the
beginning of this section (see "Step 1: Set Up the Environment").

Dumping Core
Your system may dump core if the following sequence of events occurs.

1. You make changes to your source code using cscope.

2. You rebuild the cross-reference table using the "R command. (R
rebuilds the table only if you have made changes.)

3. After the table has been rebuilt, the list of references previously
displayed becomes obsolete. The screen is cleared so it resembles the
initial screen shown by cscope (see Figure 1-1).

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-27

cscope

4. If you try to append the contents of this screen (nothing) to a file by
using the> command, cscope will dump core and leave your terminal
in an unusable state.

To avoid this situation, make sure you see lines of text displayed before
trying to append them to a file.

Command Line Syntax for Editors
By default, cscope invokes the vi editor. cscope expects vi and any other

editor it uses to have a standard command line syntax of the following form:

editor +linenum filename

If you want to use an editor that has this command line syntax, set the
EDITOR environment variable to the editor of your choice and export EDI
TOR. For example, if you want to use the emacs editor enter the following
commands:

$ EDITOR=emacs
$ export EDITOR

However, if the editor you want to use does not conform to this command
line syntax, you must write an interface between cscope and the editor.

For example, suppose you want to use ed. You have already set the EDI
TOR variable to ed and exported it. However, because the ed editor does not
allow specification of a line number on the command line, you will not be
able to edit or view any files while using cscope. To solve this problem, write
a shell script called myedit that contains the following line:

jbinjed $2

Then set the value of EDITOR to your shell script.

$ EDITOR=myedit

Now when cscope invokes the editor, it will call this shell script with the fol
lowing command line:

myedit +17 main.c

myedit will discard the line number ($1) and call ed correctly with the file
name ($2).

18-28 PROGRAMMER'S GUIDE

cscope

ed has one other drawback as a cscope editor that you should take into
consideration when selecting an editor: it cannot move you to specified
lines in the file. If you use the shell script shown in the previous exam
ple, you will have to move to specified lines manually.

Using jim
jim is an editor designed to be used exclusively with the AT&T Model

5620 terminal. The 5620 has a large screen (measuring 8-1/2 by 11 inches)
and can hold up to six windows simultaneously. The terminal contains its
own processor.

jim takes advantage of the 5620's multi-screening capability. It allows a
user to move text among screens, as well as among files, and to perform other
tasks not available with vi or other editors. However, because jim is built
around the 5620 software, it must be downloaded into the terminal every time
you use it. Because downloading is time consuming and cscope invokes the
editor frequently, using jim as a cscope editor is not recommended.

If you want to use jim with cscope, try loading it into one window of
your terminal and using pg as the cscope viewer in another window. This
will obviate the need to download jim every time you want to look at a sym
bol reference.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-29

Iprof

Introduction
As described in the "Preface," there are two profilers available for

dynamic analysis of C programs written in a UNIX system environment.

• prof performs time profiling; it reports how much time is spent execut
ing various portions of a program.

• lprof performs line by line frequency profiling; it reports how many
times each line of source code is executed.

The prof command is available with Issues 3 and 3.1 of CPLU, but not with
Issue 4 or later releases. For those using Issue 4 or a later release, prof is
available in APU. prof is also included with C-FP+.

To use either of these profilers, you must follow a three-step procedure.

Step 1:

Step 2:

Compile your program with a profiling option.

for prof: cc -qp (or -p)
for lprof: cc -ql

Run the profiled program so that run-time data can be
collected. At the end of execution the run-time data is
written to another file known as a data file. A data
file consists of a header section, followed by a section
for each function and an end of data marker at the
end of the file. The coverage data (execution count)
for each function is recorded alongside the function's
name.

Data files have the following default names:

for prof: mon.out
for lprof: prog.cnt

where prog is the name of the profiled program.

18-30 PROGRAMMER'S GUIDE

Iprof

Step 3: Examine the data by running a profiler with the prof
or lprof command.

Each of the following three sections explains one of these steps in detail.
Together, they provide an example of how to perform dynamic analysis of a
file called travel.c.

Creating a Profiled Version of a Program
What must you do to profile a file with lprof? Suppose you have a file

called travel.c. (This is a hypothetical example; CPPT does not include such a
file.) Start by creating an executable file (a.out) from the source file (travel.c).
Use the -ql option with the cc command so that line count data will be saved.

$ cc -ql travel.c

If you want to use a cc -c command line, you must specify -ql when you
link as well as when you compile.

$ cc -ql -c travel.c
$ cc -qI -c misc.e
$ ce -ql -0 travel travel.o mise.o

These sample command lines illustrate what you must do to profile an
entire program. However, you may be interested in profiling only a piece of a
large program. To profile an individual source file, create a profiled version in
the same way: specify the -ql option with the ce command both when you
compile and when you link the files.

For example, suppose you have a program composed of two source files:
travel.e and mise.c. By running prof on both files, you find out that 70% of
the total execution time can be accounted for by one function in travel.c. You
now want to examine that function with lprof to determine how you can
improve its performance. Run the cc command with the -ql option on the
travel.c file alone and again when you link travel.c and misc.c.

$ cc -ql -c travel.c
$ cc -c mise.c
$ cc -ql -0 travel travel.o misc.o

The final result will be a program called travel.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-31

Iprof

Running the Profiled Program
Now execute travel so that run-time data can be collected. This informa

tion is stored in a data file called travel.cnt in your current directory. When
the program ends, the following message is printed to stderr:

CNl'FILE 'travel. cnt' =eated

This is how lprof handles run-time data by default. However, if you
prefer, you can specify how you want this data to be handled by setting
options for an environment variable called PROFOPTS.

The PROFOPTS Environment Variable
The environment variable PROF OPTS provides run time control over pro

filing. When the profiled program is about to terminate, it examines the value
of PROFOPTS to determine how the profiling data is to be handled.

The PROFOPTS environment variable is a comma-separated list of
options interpreted by the program being profiled. If PROFOPTS is not
defined in the environment, then the default action is taken: the profiling
data is saved in a file (with the default name) in the current directory. If
PROFOPTS is set to the null string, no profiling data is produced.

The following options can be specified for PROFOPTS. They are
explained in more detail in the examples.

msg=[y I n] If msg=y is specified, print a message (to stderr) stat
ing that profile data is being created. If msg=n is
specified, print only profiling error messages. The
default is msg=y.

18·32 PROGRAMMER'S GUIDE

merge=[yln]

pid=[yln]

dir=dirname

file=filename

Iprof

If merge=n is specified, do not merge data files after
successive runs; the data file will be overwritten after
each execution. If merge=y is specified, the data will
be merged. The merge will fail if the program has
been recompiled; the data file will be stored in
TMPDIR. The default is merge=n.

If pid=y is specified, the name of the data file will
include the process ID of the profiled program. This
allows the creation of different data files for programs
calling fork(2). If pid=n is specified, the default
name is used. The default is pid=n.

Place the data file in the directory dirname if this
option is specified. Otherwise the data file is created
in the directory that is current at the end of execution.

Use filename as the name of the data file in dir created
by the profiled program if this option is specified.
Otherwise the default name is used. (See" Profiling
Programs that Fork" for an example.)

Examples of Using PROFOPTS
The following sections provide examples of how PROFOPTS might be

used, in typical profiling situations, to tailor the environment for specific tasks.

Turning Off Profiling
If you do not want to profile a particular run, you can set PROFOPTS to

the null string on the command line when you run a profiled version of a pro
gram.

$ PROFOPTS="" travel

However, this value will remain in effect for only one execution of one pro
gram.

If you want to turn off profiling for more than one program and/or run,
you must export the value of PROFOPTS.

$ PROFOPTS="" export PROF OPTS
$ travel

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-33

Iprof

Exporting the variable eliminates the need to specify it every time you run
travel. It also makes the value of PROFOPTS applicable to all runs of any
profiled programs, not just travel. Once you have exported PROFOPTS, it
keeps the value you have given it until you unset or redefine that variable.

Merging Data Files
Suppose you are not interested in the data from a single run; you want

the information collected from all runs. A data file containing information
from multiple executions is called a merged data file. When data files created
with the Iprof compiling option are merged, the execution counts for all files
are added together arithmetically.

The following screen shows how you must specify the environment if you
want your data files from successive runs to be merged.

$ PROFOPTS="merge=y"
$ export PROFOPTS
$ travel

$ travel

dumping profiling data fran process 'travel'
CNl'FILE 'travel. cnt' created

dumping profiling data fran process 'travel'
CNl'FILE 'travel. cnt' updated

Keeping Data Files in a Separate Directory
To avoid clutter in your current directory, you may want to create a direc

tory for data files. If you do, be sure to specify that directory on your com
mand line. For example:

18-34 PROGRAMMER'S GUIDE

Iprof

$ PROFOPTS=" dir=cntfiles" travel

All the data files will be created in the subdirectory cntfiles.

Profiling within a Shell Script
You may want to write a shell script that runs profiled programs automati

cally. This could be useful for specific tasks that you frequently perform, such
as determining coverage. For example:

• You might not want to receive notification (via a message sent to
stderr) that profiling data is being created.

• You might want to have data merged automatically.

• You might want to give the data files names that you can associate
with a specific test case run.

You can specify these conditions by using PROFOPTS as follows:

$ PROFOPTS=" msg=n, merge=y, file=testl.cnt" myprog < testl

Here, because all the data files in the directory are for the program myprog,
the file name testl.cnt conveys more information than myprog.cnt.

Profiling Programs that Fork
If a program uses the system call fork(2), the data files of both the parent

and child processes will have the same name by default. You can avoid this
by using the PROFOPTS option pid. By setting pid, you ensure that the data
file name will include the process ID of the program being profiled. As 'a
result, multiple data files will be created, each with a unique name.

What happens when you run a program that forks without using the pid
option? If you have set merge=y, the data will be merged; data from separate
processes will be indistinguishable. If you have set merge=n, the last process
to dump data will overwrite the data file.

The following screen shows how the pid option works. Notice the data
files that are created (as reported by the messages sent to stderr) by the com
mand line at the top of the screen.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·35

Iprof

$ PROFOPTS="pid=y" forkprog

dtm1p:ing profiling data fran process 'forkprog'
CNl'FILE '922. forkprog . cnt' created

dumping profiling data fran process 'forkprog'
CNl'FILE '923. forkprog. cnt' created

Interpreting Profiling Output
You can use lprof to:

• produce source listing reports of profile data

• produce summary reports of profile data

• merge profile data files

Specifying a Program and Data File to lprof
lprof interprets both a profiled program and the data file associated with

it to produce profiling information. By default, lprof expects the profiled pro
gram to be called a.out, and the data file, a.out.ent.

To run lprof on a program with a name other than a.out, specify the
name after the -0 option. For example, to run lprof on a program called sam
ple use the following command line:

$ lprof -0 sample

lprof will assume the data file is called sample.ent.

You can also specify a data file other than sample.ent by using the -e
option.

$ lprof -e newdata.ent

The name of the profiled program is stored, exactly as it appears on the com
mand line, in the data file. (Because the -0 option is not specified, the

18-36 PROGRAMMER'S GUIDE

Iprof

profiled program consults the data file to obtain the name of the program.}
Therefore the simplest way of invoking lprof is by specifying the name of the
data file and letting lprof determine the name of the program. Because the
name of the data file is not stored in the program itself, the reverse is not true:
you cannot specify the name of the program and expect lprof to determine the
name of the data file if it is not the default name.

Source Listing Option
Along with profiling information, lprof produces a source listing by

default. Once you have executed your profiled program and the data file has
been created, you can view the profile data by entering the following com
mand:

$ lprof

lprof output consists of a source listing with profiling information in the left
margin, as shown in the following example:

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-37

Iprof

#include <stdio.h>

nain()
1 [4] {

[11]

10 [12]

[14]

10 [17]

10 [19]

10 [21]

o [23]

10 [26]

10 [28]

o [31]

o [33]

10 [36]

10 [38]

/* note that declarations are not executable lines

and therefore have no line-number or execution

status associated with them */

int i;

for (i = 0; i < 10; i++)

sub1();

sub1()

{

/* but here, this declaration is an executable statement * /
int i = 0;

if (i > 0)
/* next line is an example of code never executed * /
sub2();

else {
sub3();

sub2()
{

/* do nothing * /

sub3()

{

/* do nothing * /

Figure 18-18: Example of lprof Output

18·38 PROGRAMMER'S GUIDE

Iprof

The square brackets enclose line numbers for the file. Each number to the
left of a line number shows how many times the corresponding source line
was executed.

If you use the -x option to Iprof, the output will highlight the lines that
have not been executed. Lines that have been executed will be marked only
by line numbers. Lines that have not been executed will be marked with a
line number preceded by a [U]. Figure 2-2 shows an example of output pro
duced by the -x option.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-39

Iprof

#include <stdio.h>

maine)
[4] {

/* note that declarations are not executable lines
and therefore have no line-number or execution
status associated with them */

int i;

[11] for (i = 0; i < 10; i++)

[12] sub1 () ;

[14]

sub1()

[17] {

[19]

[21]

/* but here, this declaration is an executable statement */

int i = 0;

if (i > 0)

[U] [23]
/* next line is an example of CXlde never executed * /
sub2();

[26]

[28]

[U] [31]

[U] [33]

[36]

[38]

else {
sub3();

sub2()
{

/* do nothing * /

sub3()
{

1* do nothing *1

Figure 18-19: Example of Output Produced by the -x Option

18·40 PROGRAMMER'S GUIDE

Iprof

In any lprof output, certain lines (such as declarations, comments, and
blank lines) do not have line numbers associated with them. This allows you
to distinguish between lines that were not executed during a particular run
from those that are not executable. In the previous example, neither line 22
nor line 23 in subl was executed, but line 23 is marked with a line number
while line 22 is not. This is because line 22 is not executable; line 23 is exe
cutable but was not executed in the run that produced this output.

Source Files in a Different Directory
lprof assumes, by default, that the source files for the program you specify

are in the current directory. If they are in another directory, you must specify
their location with the -I option and a path name. For example, to specify
source files in the /usr/src/cmd directory, use the following command line.

$ lprof -0 cat -c cat.cnt -I /usr/src/cmd

In this line lprof -I instructs lprof to search for the specified source file, cat.c,
in the specified directory. You can specify multiple -I arguments on one com
mand line.

Source Listing for a Subset of Files
If you want profiling output for a limited number of selected files, use the

-r option with lprof.

$ lprof -r file1.c -r file2.c

This command line will produce output only for filel.c and file2.c. This is
useful if you want to examine a few files rather than an entire program.

Summary Option
You can obtain a summary report of the profile data by specifying lprof

-so

$ lprof -s -c sample.cnt

Because a source listing is not produced with lprof -s, the -r and -I options
do not need to be specified. The following screen shows an example of out
put produced with the -s option.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-41

Iprof

Coverage Data Source: sanple.cnt
Date of Coverage Data Source: M:Jn Apr 7 17: 19:43 1986
Object: sample

percent lines total ftmctian
covered covered lines name

100.0 4 4 main
83.3 5 6 sub1

0.0 0 2 sub2
100.0 2 2 sub3

78.6 11 14 'roTAL

Figure 18-20: Example of lprof -s Output

Merging Option
As described in the section on the PROFOPTS environment variable, data

files can be merged automatically at run time. You can also merge existing
data files with the lprof command.

$ lprof -d destfile -m filel.cnt file2.cnt file3.cnt

The command line requires both -d and -m. The -m option takes the names
of two or more data files to be merged. The -d option specifies the destina
tion file (the new file) that will contain the merged data. The data files must
have been created by the same profiled program; if they have not, lprof will
issue an error message.

18-42 PROGRAMMER'S GUIDE

$ lprof -d merged.ent -m prog1.ent prog2.ent

ERRCR: 'prog1', 'prog2 '
Object file entry names &. timest:aIIps dan' t match.

*** no merged output ***

Iprof

However, you may have multiple data files, created by the same program,
that have different time stamps. This will happen, for example, if you recom
pile a program. If you want to merge data from runs of different versions of
the same program, you can override the time stamp check by specifying - T
(time stamp override).

You must be extremely cautious when using the -T option. If the con
trol flow of the recompiled program has changed, the new merged data
file is very likely to be erroneous; lprof will produce an incorrect report.

Cautionary Notes on Using lprof
This section describes solutions for several problems that may arise while

you are using lprof.

Trouble at Compile Time
On rare occasions, when compiling a file with the profiling option, you

may receive a warning that a particular function is not being profiled.

C PROGRAMMER'S PRODU~TIVITY TOOLS 18·43

Iprof

$ ee -e -qI -0 fi/e.e

»> BASICBLK WARNING - not profiling function fname: (trouble at line n]

The reason may be that you are using the optimizer together with the profil
ing option. This is usually a permissible combination of options; occasionally
the compiler does not accept it.

You may not need to have the function in question profiled. If not, ignore
this warning; data will be collected in the data file for all other functions. If
you do want data for the function in question, compile your program again
with the profiling option but without optimization. The warning should not
reappear.

Non-Terminating Programs
If the profiled program does not terminate, no profiling data will be saved.

The profiling data is saved at termination by the system call exit(2). If exit(2)
is never called, no profiling data is saved.

Failure of Data to Merge
If a program has been recompiled, a new data file will be created in a

temporary directory. The path name of the new file will be printed to stderr.

Specifying Program Names to lprof
When the profiled program is run, the name of that program is stored,

exactly as it appears on the command line, in the data file. The simplest way
of invoking lprof is by specifying the name of the data file and letting lprof
determine the name of the program. However, because the name of the data
file is not stored in the program itself, the reverse is not true: you cannot
specify the name of the program and expect lprof to determine the name of
the data file if that name is not the default name.

18-44 PROGRAMMER'S GUIDE

Iprof

lprof will not be able to display data if you do the following two steps in
the order shown:

1. use a relative path name on the command line when you run your
profiled program

2. run lprof from a different directory specifying only the name of the
data file (Le., without specifying the program name)

When you run lprof from a directory other than the one in which you
have executed your profiled program, and you have used a relative path name
when executing the profiled program, you must specify the -0 option with
either the profiled program's full path name or the program's path name rela
tive to your current directory.

An Example of Using a Relative Path Name
For example, say you are working in a directory called cur.dir. You have

compiled a program called newprog.c and gotten the profiled version,
newprog. Now you execute newprog. A data file called newprog.cnt is
created in your current directory (cur.dir). It includes the name of the profiled
version you executed, in the form you entered it on the command line:
newprog. After newprog has finished running, you change directory to
$HOME. Now you want to examine the results of the execution of newprog.
From $HOME you enter the following command line:

lprof -c cur.dir/newprog.cnt

Because the data file has stored the name of the profiled file as you entered it
on the command line (newprog), lprof now looks for (and fails to find)
newprog in the current directory ($HOME). You will receive an error mes
sage:

cannot access object file 'newprog'

The term object file refers to the profiled version of your file.

To make sure that lprof can access the profiled file, specify its relative path
(from $HOME) with the -0 option, as follows:

lprof -c cur.dir/newprog.cnt -0 cur.dir/newprog

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·45

Iprof

Trouble at the End of Execution
At the end of execution you may see the following error message:

dumping profiling data fran process 'a.out'
***unable to seek to symbol table

Usually this is caused by running a stripped version of a profiled program.
Never strip files to be profiled. If necessary, change makefiles so that they do
not produce stripped files.

No Data Are Collected
You may get no data after running a profiled program. The program ter

minates normally, and you receive neither a message about data being saved,
nor an error message. This may be caused by one of two problems:

• You may not have specified -qI at both compile time and link time. If
you forget to specify -qI when you link, the profiled program will run
but a data file will not be created.

• The profiled program may include a call to _exit that is causing the
program to quit without calling exit(2), the procedure that saves your
profiling data. Replace calls to _exit with calls to exit(2) in order to
save profiling data.

• The PROFOPTS variable may be set to NULL.

Data File Cannot Be Found
Occasionally, you may not be able to find the data file, despite the fact

that the profiled program has terminated normally and you have received a
message saying that the data file has been created.

18-46 PROGRAMMER'S GUIDE

Iprof

The profiled program creates the data file in the directory in which the
program is located when it terminates. If the program changes directories, the
data file may be created in a directory different from both the directory from
which you executed the program and the directory in which the shell is
located when the program terminates.

Use the dir option of PROFOPTS to specify exactly where the data file is
to be created so you will be able to find it.

Using lprof with Shared Libraries
It is recommended that when profiling with Iprof, you use archived ver

sions of libraries rather than shared versions. If you must profile with a
shared library (for example, if an archived version is unavailable), you must
specify all necessary options on the Id(l) command line at link time.

This is necessary only if you are using CPLU Issue 4.

After compiling as usual with the -ql option (as described earlier in this sec
tion), link by invoking Id(l) directly, as follows:

$ Id useLopts /lib/pertl.o files.o -lprof -lId -1m -Ie -lg /libfertn.o

user_opts are options, such as -0 prog, that you normally specify on the ee(l)
command line.

You must also check any makefiles to make sure the Id(l) command is
invoked (instead of the ee(l) command) and has the appropriate options, as
shown in the preceding example command line. See the Id(l) manual page
for details about options available with Id(l).

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·47

Profiling Examples

Improving Performance with prof and lprof
The problem of how to improve program efficiency is addressed by Jon

Bentley in Writing Efficient Programs (Englewood Cliffs: Prentice-Hall, 1982).
Bentley observes that

• a small part of the code usually accounts for a high percentage of the
run time

• programmers have difficulty identifying the most time consuming parts
of the code

To solve the second problem, he recommends the use of prof Hers. The prof
and lprof prof Hers can help a programmer locate the time consuming parts of
a C program.

The prof command is available with Issues 3 and 3.1 of CPLU, but not with
Issue 4 or later releases. For those using Issue 4 or a later release, prof is
available in APU. prof is also included with C-FP+.

Specifically, prof provides a time profile, that is, a list of the most time con
suming functions and the amount of time taken by each. lprof provides a list
of the lines that are being executed most frequently. Once these potential
problem areas have been identified, it is the programmer's job to rewrite those
parts of the code so that the program runs more efficiently.

Although either of these profilers can be used singly, they are most effi
cient if you use them together, as follows. First, profile your program with
prof to identify the most time consuming functions. Then profile only those
functions (rather than the entire program) with lprof to determine which lines
are being executed most frequently.

This two-step approach takes the guesswork out of determining which
lines of code are the most time consuming. Bentley notes that although pro
grammers want to save time by profiling only selected parts of their code
instead of whole programs, they seldom select the correct routines to monitor.

18-48 PROGRAMMER'S GUIDE

Profiling Examples

He also emphasizes the importance of profiling programs with data that
are typical of data the program will encounter in normal use. Most test cases
fail to provide profiling data that are representative of typical usage.

In the next section, an example will be described in detail to illustrate how
prof and lprof can be used to improve program performance.

Iprof on Iprof
During the development of lprof it was observed that the process of

merging profile data was slow. The profiling data being merged came from
two runs of the C compiler, which is a medium-sized program with 284 func
tions. It took forty cpu seconds (two minutes of real time) to merge the two
coverage files.

The first step was to produce a time profile of lprof to see which functions
were taking the most time. Here is part of the output from prof:

%Time Seocmds Cumsecs #Calls msec/call Name

34.8 13.52 13.52 226638 0.0597 fread
12.1 4.72 18.24 228254 0.0207 memcpy
9.5 3.69 21.93 40286 0.0918 CAjump

9.2 3.60 5.52 _m:::ount
7.7 2.99 28.51 284 10.53 CAfind
7.6 2.94 31.45 42472 0.0692 malloc:
6.3 2.45 33.90 1154 2.123 read
3.0 1.17 35.07 40475 0.0289 stranp
2.8 1.09 36.16 42471 0.0257 free
2.5 0.96 37.13 2 482. creat
1.4 0.55 37.68 550. fpltc
0.8 0.33 38.01 1431 0.231 lseek
0.4 0.16 38.17 1518 0.105 fWrite
0.3 0.11 38.28 569 0.19 CAread

Figure 18-21: prof Output

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·49

Profiling Examples

The two most time-consuming user functions were CAjump and CAfind. We
wondered why CAjump was called 40,286 times and why the average time
per call for CAfind was so high (10.53 milliseconds).

The next step was to run lprof on these two functions. Here are the
results of running lprof on the function CAfind:

18·50 PROGRAMMER'S GUIDE

284 [61]

284 [66]
284 [67]

40754 [69]

40470 [70]

40470 [72]

40470 [73]

40470 [75]
40470 [76]

284 [80]

284 [82]
284 [83]

40186 [87]

Profiling Examples

short
CAfind(filedata, searchfunc)
st:r:uct caFILEDATA *filedata;
char *searchfunc;

short ret_code,findflag;
unsigned char fname_size;
char *name;

CArewind(filedata); 1* rewind file pointers *1
findflag = 1;

while (findflag)
if «fread((char *) &fname_size, sizeof(unsigned char),

1, filedata->cov_dataytr» > 0) {
name = (char *) malloc(fname_size+1);
fread(name, (int)fname_size, 1, filedata->cov_dataytr);
1* make null-te:t:m:inated *1
name[fname_size] = "0';
if (stranp(name, searchfunc) == 0)
{/* this is the function, m:we

ptr back to beginning of
function name *1

fseek(filedata->cov _dataytr ,
-(lang) (fname_size+sizeof(unsigned char»,1);

ret_code = OK;
findflag = 0;

else 1* this is not it, m:we to next function *1
{

if (fname_size 1= EOD)

Figure 18-22: lprof Output for the Function CAfind

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-51

Profiling Examples

40186 [88]

o [90]

o [91]

40470 [94]

o [98]
o [99]

284 [101]
o [102]

continued

if (CAjU!lq:>(filedata->cov_dataJ>tr) == EOF]AIL)
{I* error - end of file fOllIld *1

free(name) ;

else

ret_code = FUC_FAIL;
findflag = 0;

1* end of file before function found *1
ret_code = FUOC]AIL;
findflag = 0;

CAfind searches the data file for data pertaining to a particular function.
A data file consists of a header section, followed by a section for each function
and an end of data marker at the end of the file. The coverage data (execu
tion count) for each function is recorded alongside the function's name.

Notice that the while loop (shown between lines 70 and 94) was executed
40,470 times; for 284 successful searches, there were 40,186 unsuccessful
searches. We were getting a low rate of return for computing resources spent.
A look at the while loop also shows why fread was executed so many times:
the loop contains two calls to £read (see lines 70 and 73 of the lprof output).
Finally, the prof output reports that CAjump was called 40,186 times; once
for each unsuccessful search.

Our goals were to minimize the number of unsuccessful searches and, if
possible, to decrease the number of calls to fread, because these are relatively
expensive.

18-52 PROGRAMMER'S GUIDE

Profiling Examples

The lprof algorithm for merging files consists of two steps: traversing the
functions in one of the files sequentially, and calling CAfind to locate the data
for a given function in the other coverage file.

The first thing that happens in CAfind is the resetting of the file pointers
so they point to the first function in the file (line 66). Then, because the given
function (which was passed to CAfind as an argument) has not been found,
the next function in the file is examined to see if it is the correct function. If it
is, we are finished. If not, we can skip over the data and try the next func
tion. If we have reached the end of the file, there will be no data for that
function in the coverage file and we will return with a failure. By itself,
CAfind looked fine and there didn't seem to be much we could do to improve
its performance.

However, by understanding the entire program, we were able to observe
that in almost all situations the order of the coverage data in the two files to
be merged was identical. This meant that on subsequent calls to CAfind, the
next function being sought was immediately after the one found on the last
call to CAfind. The original implementation did not take advantage of the
fact that the search was usually sequential. The file pointers were always
reset to the beginning of the file before the search began. Because the func
tions were in sequential order, this meant that each successive search took
progressively longer.

We changed the search strategy so that instead of starting at the beginning
of the file on each call to CAfind, we started at the place in the file where the
previous search had ended. This could have been anywhere in the file.
Because files being merged are usually identical, the function being sought is
almost always the function following the last one found.

The new search strategy required a slightly more complicated algorithm.
Whereas the original strategy demanded only that we check for the end of the
file, the new strategy required that we both check for the end of the file and
keep track of our current location. The need to do both arose from the
sequence of events involved in this type of searching.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-53

Profiling Examples

The new strategy dictated that each iteration of searching begin where the
last search ended. CAfind was to search until the function being sought was
found. If CAfind reached the end of the file before finding that function, it
had to continue the ~earch between the first line of the file and the place
where it had started the search. Thus CAfind had to keep track of when the
end of the file was reached. Because the goal of the new strategy was to start
each search iteration at the place where the last search had ended, it was
obviously necessary to keep track of our current location in the file.

The following screen shows the code for CAfind after we changed it to
accommodate our new strategy.

18·54 PROGRAMMER'S GUIDE

284 [61]

284 [67]
284 [68]
284 [69]

284 [71]

o [75]

o [77]
o [78]

284 [81]

284 [83]

o [85]

284 [89]

short
CAfind(filedata, searchfunc)
struct caFILEDATA *filedata;

char *searchfunc;

short ret_code;
unsigned char fname_size;

char *name;
lang init_loc;

init_loc = -1;
while (1) {

if (init_1oc == -1)
1* first time t:h:rough *1

Profiling Examples

init_loc = ftell(filedata->COI7_data---Pl:r);

else {

1* have we wrapped ~etely around? *1
if (ftell (filedata->COI7_data---Pl:r) == init_loc)

1* searched all functions *1
ret_code = FUtC_FAIL;

break;

if «fread((char *) &fnameLsize, sizeof(unsigned char),

1, filedata->oov_data---Pl:r» > 0) {
if (fname_size == EOD) {

1* wrap around to beginn:ing *1
CArewind(filedata);

1* go back to top of loop *1
oontinue;

name = (char *) ma110c (fnaIllfLsize+ 1) ;

Figure 18-23: lprof Output for New Version of Function CAfind

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·55

Profiling Examples

284 [90]

284 [92]
284 [93]

284 [97]

284 [99]

o [104]

o [106]

o [110]

o [114]

284 [119]
o [120]

fread(name, (int)fname_size, 1,
filedata->cov_dataytr) ;

/* make null-te:z:minated * /

name[fname_size] = -'0';
if (strcmp(name,searchfunc) == 0)
{/* this is the function, nove

ptr back to beginning of

function name * /
fseek(filedata->cov_dataytr,

-(lang) (fname_size+sizeof(unsigned

char»,1);
ret_code = OK;
break;

else /* this is not it, nove to next
function */

if (CAjump(filedata->cov_dataytr)

== EDF_FAIL)

{/* error - end of file found */

ret_code = FIllC_FAIL;

break;

free(name) ;

else

/* end of file bef=e function found */

ret_code = FIllC_FAIL;

break;

Note that not only did we greatly reduce the number of calls to fread, but in
typical situations we eliminated calls to CAjump entirely! Remember,

18·56 PROGRAMMER'S GUIDE

Profiling Examples

CAjump originally took 3.69 seconds (9.5% of the total execution time),
which was more than any other user function.

The prof output for the new version is shown in the following screen.

%Time Seoonds CUmsecs #Calls msec/ca11 Name

25.4 0.54 0.54 298 1.81 read
11.7 0.25 0.79 2002 0.125 malloc
10.6 0.22 1.01 2848 0.079 fread
8.9 0.19 1.20 579 0.33 Iseek
7.0 0.15 1.35 1518 0.099 fwrite
6.1 0.13 1.48 _moount
4.2 0.09 1.57 569 0.16 CAread
3.8 0.08 1.65 4369 0.018 IIIE!lCJlY
2.8 0.06 1.71 284 0.21 CI!or
2.8 0.06 1.77 2 30. creat
2.8 0.06 1.83 60. CAcov~oin
1.9 0.04 1.87 284 0.14 CAfind
1.9 0.04 1.91 284 0.14 CAdata_entry
1.9 0.04 1.95 1717 0.023 free
1.4 0.03 1.98 7 4. open

Figure 18-24: prof Output for New Version of lprof

The execution time for CAfind decreased from 2.99 seconds to 0.04 seconds,
and for CAjump from 3.69 seconds to 0 seconds. The overall performance for
the entire program decreased from forty cpu seconds (two minutes of real
time) to two cpu seconds (six seconds of real time).

Improving Test Coverage with lprof
It is difficult to write test suites that fully exercise (cover) programs if you

have no way of determining how much of the code is exercised. lprof
removes the guesswork by showing, on a line-by-line basis, which lines of
code are executed. This allows the tester to know exactly what has been
tested. It also makes it easier to refine and improve tests.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-57

Profiling Examples

Suppose we want to measure how well a given test suite tests a program.
First we compile the program with -ql so that profiling information will be
saved. Then we run the program with the tests to get the profiling data. By
looking at the summary output, we can see how much of the code is exer
cised.

Coverage Data Source: test. ant
Date of Coverage Data Source: Wed Mar 5 11:11:58 1986
Object: II!YPI=O'J

percent lines total function

covered covered lines name

91.5 97 106 ~ile
100.0 18 18 step

100.0 73 73 advance
100.0 4 4 getrnge

42.9 12 28 main
100.0 29 29 execute
100.0 19 19 succeed

42.9 3 7 pltdata
0.0 0 19 regerr

100.0 21 21 fgetl

85.2 276 324 'roTAL

Figure 18-25: lprof Summary Output for a Test Suite

18-58 PROGRAMMER'S GUIDE

Profiling Examples

More specifically, we can examine individual functions that do not have 100%
coverage to find ways of improving the tests.

The rest of this section consists of three examples that show why certain
functions may not have 100% coverage. The first example demonstrates how
to uncover an option that is usually missed because it is not documented.
Another example shows how to uncover a function that is never called. The
third example examines code that is never executed because of an error condi
tion that is difficult to produce. Each section also explains how to resolve the
problem of lack of coverage.

Example 1: Searching for Undocumented Options
First, examine the function main to see what parts of the code are not

executed.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18·59

Profiling Examples

while ((c=getopt (argc, argv, "blcnsvi")) 1= EOF)

[32] switch(c) {

case 'v':
[U] [34] vflag++;

break· ,
case Ie':

[37] cflag++;

break;
case In':

[40] nflag++;

break;
case 'b':

[43] bflag++;

break;

case '5':
[46] sflag++;

break;
case Ill:

[49] lflag++;

break;
case Ii':

[52] iflag++;
break· ,
case I?':

[U] [55] errflg++;

[56] }

Figure 18-26: Fragment of Output from lprof-x

The output shows that the -v option was not tested. By checking the
documentation you can confirm that -v is an undocumented option. To
correct this, create a test that exercises the -v option and add the -v option to
the manual page.

18-60 PROGRAMMER'S GUIDE

Profiling Examples

Example 2: Functions That Are Never Called
None of the lines in the function regerr are executed. To find out why,

invoke cscope and request a list of the functions that call it. cscope reports
that no function calls regerr. Because regerr will never be exercised, delete it
from the code.

Example 3: Hard to Produce Error Conditions
Look at the function putdata:

[9]

[11]

[U] [12]

[U] [13]

[U] [14]

[U] [15]

[17]

void
putdata(output, data)
char *data;
FILE *output;

/* check far file system out of space * /
if (fprintf (output , "%a", data) < 0) {

fprintf(stderr, "write ezror with file
'%s''', filename);
fclose(output) ;
unlink(newreffile);
exit(1);

Figure 18-27: Output from lprof -x for Function put data

Because this error is hard to reproduce, it usually does not get tested.
However, you can simulate this error by writing your own fprintf function
that returns a value less than O. This will cause the error recovery part of the
function to get exercised, allowing you to see the following error message:

write error with file '@1Yo#&HP'

Further inspection reveals that the variable filename was never initialized.
This oversight caused the error message to be garbled.

C PROGRAMMER'S PRODUCTIVITY TOOLS 18-61

19 FMLI

Introduction 19-1
What this Chapter Covers 19-1
Prerequisite Knowledge 19-1
How to Use this Document 19-1

The Forms and Menus Language
Interpreter 19-2
Pseudo Keys 19-2
What Does FMLI Do? 19-4

• Object Architecture 19-4
• Object Operation 19-5
• Keywords 19-5
• Built-in Functions 19-8
• Screen Layout 19-10

What is a Form? 19-11
• Multi-page Forms 19-12
• Navigation Keys 19-12
• Default SLKs 19-13

What is a Menu? 19-14
• Single and Multi Select Menus 19-15
• Navigation Keys 19-15
• Default SLKs 19-16

Additional Objects 19-17
• Text Objects 19-17
• Choices Menus 19-18
• Screen Labeled Keys 19-19
• Help 19-19

Frame to Frame Navigation 19-19

FMLI

FMLI

The Forms and Menus Definition
Language 19-21
The Initialization File 19-21

• The Introductory Object 19-22
• The Banner 19-23
• Color Attributes 19-25
• Screen Label Keys 19-26

Forms 19-28
Menus 19-36
Text Objects 19-43
Variables 19-48
Syntax 19-49

• Quoting Mechanisms 19-50
• Use of Backquoted Expressions 19-51
• File Redirection 19-51
• Co-processing 19-51

FMLI and the UNIX Operating
System 19-56
Invoking the Interpreter 19-56
Terminal Independence 19-56
Modifying Command Keywords 19-57
Adding Path Aliases 19-57
Changing the Time of Evaluation 19-58

The Manual Pages 19-59

ii PROGRAMMER'S GUIDE

Introduction

What this Chapter Covers
The purpose of this chapter is to explain:

• The capabilities of the Forms and Menus Language Interpreter (FMLI)

• The syntax of the Forms and Menus Language

• How the Interpreter interfaces with the UNIX system.

Prerequisite Knowledge

Before attempting to use FMLI, you should be familiar with the following:

• UNIX System V Operating System

• Shell scripts and programming

• UNIX system documentation conventions.

How to Use this Document

This chapter is written for the application developer who already knows
about the UNIX system and shell programming. Thus, its task is to familiarize
the developer with what the Interpreter is capable of from the user's point of
view, and then to explain the definition language and syntax necessary to
create various objects.

First we explain each type of object and the user's options when dealing
with that object. The user's options are given for two reasons; so the
developer can minimize the actions the user must take, and so that the
developed application can be documented.

The second part of the chapter explains the method of writing object descrip
tions, mostly by tables and examples, and covers topics related to the UNIX
system. At the end of the chapter are the built-in-function manual pages.

FMLI 19·1

The Forms and Menus Language Inter
preter

Pseudo Keys

This documentation assumes the existence of a pseudo keyboard with a
variety of special keys. It is unlikely that any terminal has all of the refer
enced keys. Figure 19-1 shows each of the keys discussed in thi~ chapter and
the alternate keystrokes that will produce the same result. The A, or caret,
symbol represents the CONTROL key.

19-2 PROGRAMMER'S GUIDE

---------- The Forms and Menus Language Interpreter

ALTERNATE KEYSTROKES FOR PSEUDO KEYS
Pseudo key Keystroke
SCREEN LABELED KEYS An ... Af8 A
COMMAND LINE z
DOWN-ARROW

A
d A

UP-ARROW u A
RIGHT-ARROW r A
LEFT-ARROW I A
TAB i A
BACKTAB t
HOME Afb

HOME-DOWN Afe

BEG Ab
A

END e A
PREVPAGE v A
NEXTPAGE w A
BACKSPACE h
SPACEBAR ~pace

DEL x A
DELETE-CHARACTER x
DELETE-LINE Ak

A
CLEAR Y A
CLEAR-LINE Y A
CLEAR-EOL fy
RESET

Afr
A

NEXT n A
PREY P A
PAGE-UP v A
PAGE-DOWN w A
SCROLL-UP fu
SCROLL-DOWN Afd

A
INSERT -CHAR a A
INSERT-LINE 0 A
MARK fm

Figure 19-1: Alternate Keystrokes For Pseudo Keys

FMLI 19·3

The Forms and Menus Language Interpreter

What Does FMLI Do?

The Forms and Menus Language Interpreter (FMLI) is a developer tool. It
is a language for defining forms, menus, and other types of frames, as well as
screen labeled keys (SLKs), a message line, a command line, and a banner.
The Interpreter handles the details of frame creation, placement, navigation
between frames, and processing the use of forms and menus.

Each form or menu description is stored in an ASCII file containing state
ments recognized by the Interpreter. Before the menu or form is displayed, the
Interpreter parses the definition file and generates the appropriate function
calls to initialize and manipulate the form or menu.

There are three things you will need to know to use this tool:

• Object Architecture: which is how FMLI views the UNIX System

• How the various objects work: navigation, commands, and messages

• How to define objects: the structure and syntax of the language

The rest of this section will deal with the first two items. The third item is
covered in the section titled "The Forms and Menus Definition Language."

Object Architecture

An object is defined as a UNIX system file, directory, or group of files or
directories, which should be treated as a unit. When you define a form or
menu, you are creating an object. The user, in such a system, needs no
knowledge of UNIX system files and directories, only of objects. It is the
FMLI developer's job to define objects, and operations that may be performed
on those objects.

FMLI understands various built-in object types. The developer uses inter
nal object names to identify the object to the Interpreter. The internal name is
usually given in capital letters to help avoid confusion, but the Interpreter is
not case sensitive. The name is similar to the object's true nature within the
UNIX system. On the display, for the user, a more descriptive name is used.
These names are shown in Figure 19-2.

19·4 PROGRAMMER'S GUIDE

The Forms and Menus Language Interpreter

FMLI OBJECTS
INTERNAL NAME DESCRIPTIVE NAME
MENU Menu
TEXT Text
FORM Form

Figure 19-2: FMLI Objects

Object Operation

An object operation is a function that can be performed on an object.
Object operations can be regular UNIX system commands, which the Inter
preter passes to the shell for execution, but more often are either function calls
built into the Interpreter, or keywords that the Interpreter handles.

The following example is a line of FMLI Definition Language code. It
contains both a built-in function call and a keyword. The action to take when
a selection is made from a menu is being described.

action=' set MYVAR="hello" 'OPEN MENU Mymenu

Keywords

In the above example, OPEN is recognized as a keyword, an Interpreter
command that forces an object operation to occur. The operation is OPEN
and the object to open is a MENU. Keywords must appear outside of
backquotes. The following list of keywords is broken into two groups. The
first group appears to the user in the command menu. The second group is
primarily for the developer, but can be executed by the user from the com
mand line (ctrl-z). Note that some of these commands map directly to default
SLKs.

cancel Cancels the current command or activity. Closes an object
without executing the "done" descriptor.

FMLI 19-5

The Forms and Menus Language Interpreter

cleanup

exit

goto

help

next-frm

prev-frm

refresh

unix

update

frm-mgmt

Closes all objects whose lifetime is shorter then per
manent

Closes all objects and exits the Interpreter.

Makes another object current.goto takes as its only argu
ment the number of a frame or the full path definition
displaying the object or the full pathname of the object's
definition file. Users should only be told about the frame
number argument.

This is context-specific, it invokes the help descriptor for
the current object. For more information on the help
facility see page 19-19.

Moves to the next frame.

Moves to the previous frame.

Redraws the terminal screen.

Brings up the UNIX shell in full screen mode.

Takes two arguments, the first of which is a frame number
or full pathname. The second argument is a Boolean
(TRUE or FALSE) that determines if the frame will be
made current once the update is done. If the second argu
ment is not given, FALSE is the default. Update causes
the object's definition file to be re-read, and the object
redrawn.

Takes a maximum of two arguments; a keyword opera
tion, and a frame number. If no arguments are given, the
frame-management menu appears, and the user can select
an operation and frame number.

The Boolean for fmli is special. It is II false II if either the string II false II or a
non-zero integar is returned. It is II true II if II 0 II or any other string is
returned.

That concludes the list from the end menu, now the rest of the keywords.

19·6 PROGRAMMER'S GUIDE

open

close

cmd-menu

nop

prevpage

nextpage

choices

checkworld

done

mark

The Forms and Menus Language Interpreter

Opens an object. open takes two arguments. The first
argument is used simply as a "cast," to indicate the type
of object that is to be opened. The second argument is
the full pathname of the object's definition file. For exam
ple:

OPEN :roRM $MYOB.1ECI'Slmyfonn

Additional arguments may be added to this command.
The Interpreter will pass these arguments to the opened
object as described in the section "Variables."

Closes all objects whose frame numbers appear as argu
ments (except those whose lifetime is immortal). The
maximum number of arguments is three.

Opens the command menu object.

Does nothing. This is useful for specifying no operation
for descriptors of type KEYWORD.

Pages backward one page in the active object, if that
object understands paging.

Pages forward one page in the active object, if that object
understands paging.

Causes the Interpreter to check for an rmenu or choicemsg
descriptor in the current field descriptor and execute it. If
none exists, a message to that effect is printed.

Alarms can be sent to checkworld by the supplied execut
able vsig, or from MAILCHECK. At that time, checkworld
evaluates the reread descriptor for all opened objects.
Checkworld causes all objects on screen to be re-read
based on the value of the re-read descriptor.

Causes the Interpreter to execute the done descriptor in an
object (if it exists) and then close it.

Marks and unmarks the current item in a multi-select
menu.

FMLI 19·7

The Forms and Menus Language Interpreter

reset

togslk

Resets the current field to its default value (its value when
the object was opened).

Causes the Interpreter to display the set of SLKs that is
not currently being displayed. It is a toggle between the
two sets.

Built-in Functions

In the example below the backquoted expression tells the Interpreter to set
the variable. For example:

action= 'set MYVAR="hello"'OPEN MENU Mymenu

MYV AR is set as the variable. Using the backquotes will allow FMLI to recog
nize built-in commands as part of an object definition or as part of an action
definition. Built-in functions are handled internally by the Interpreter and
invoke no process when executed.

If a backquoted expression produces output, this output would be con
sidered part of the descriptor. For instance if MYV AR is set to "hello," then:

action=' echo $MYVAR' OPEN MENU Mymen.u

~d be equivalent to:

action=helloOPEN Menu Mymenu

This would produce an illegal descriptor value since helloOPEN is not a known
keyword.

Below is a list of the FMLI built-in functions.

echo

indicator

message

Echo outputs its operands.

Indicator allows you to control the "working" indicator
and bell, and allows you to define your own indicators on
the banner line.

Message outputs its operands to the Interpreter message
line. Also controls the bell.

19·8 PROGRAMMER'S GUIDE

pathconv

longline

readfile

regex

run

set,unset

shell

getitems

reinit

setcolor

getfrm

The Forms and Menus Language Interpreter

Pathconv converts a file path to various formats (for
example, partial path to full path).

A call to longline after readfile will return the longest line
of the previously read file. Longline can also take a
filename argument.

Readfile reads the file passed as its argument and writes it
to standard output.

Regex performs regular expression matching on its string
input (utilizing regex(3X».

Run is used to invoke an executable in full screen mode.

These commands set and unset environment variables
either in the UNIX system environment or in files.

Shell is used to run a command using the UNIX shell.
This is useful for performing tasks that are not provided
by the language (for example, the UNIX system test (1)
command or sed(1».

Getitems takes as its only argument a delimiter string. The
delimiter string is used as a separator in the return list of
currently selected items.

Reinit takes as an argument the name of an initialization
file. It is used to make changes to the FMLI while staying
in the current application.

Setcolor allows you to redefine an existing color, or define
new colors if your terminal allows more than the 8 colors
already defined in FMLI.

Getfrm returns the current frame number. It takes no
arguments.

Five other built-ins allow an object or several objects (that is, form, menu,
or text) to communicate to an external process through a pipe. The Interpreter
would send strings to the external process and interpret the process's output
accordingly. This capability is referred to as "co-processing," and the built-in
functions are as follows:

FMLI 19-9

The Forms and Menus Language Interpreter

co create

cosend

cocheck

coreceive

codestroy

Initializes communication to a process using named-pipes.

Sends strings from the Interpreter to the process. The-n
option performs a "no wait" condition,i.e., sends text but
doesn't block for a response.

Checks the in-coming pipe for information. Returns
TRUE or FALSE.

Performs a "no wait" read on the pipe. Takes a process
ID as an argument.

Terminates this communication

For more about using these commands see the section "Syntax." For more
information about co-processing, see the section titled "Co-processing" or the
coproc manual page.

Screen Layout

FMLI will work on any asynchronous terminal that displays 80 characters
across and has at least 22 simultaneously visible lines. The screen is divided
into five regions which are:

Banner Line

Work Area

Displays a one line banner at the top line of the screen.
The banner line is specified in the initialization file. For
more information on the banner line, "working" indica
tor, and defining your own indicators, see "The Initializa
tion File," and the and indicator manual pages.

The work area is the section of the screen where the
frames are displayed. This area starts on line 2 of the
screen and stops on the line 3 from the bottom of the ter
minal. A frame is an independent work region of the
screen surrounded by a border. FMLI allows you to define
three types of frames; menus, forms, and text frames. The
frame specified when FMLI is invoked is opened first.
Several frames may be opened simultaneously on the
display. Only one frame is the "active frame." The active
frame is shown "on top" of any other frames, and its title
is highlighted. The active frame may cover parts of inac
tive frames.

19·10 PROGRAMMER'S GUIDE

Message Line

Command Line

The Forms and Menus Language Interpreter

The second line from the bottom of the terminal is the
message line. This line is for displaying messages to the
user. It is also used for one-line error and help messages.

The command line is one line from the bottom of the ter
minal. The user can access this line by typing ctrl-z, at
which time the --> prompt appears. The user can type
any command supported by the Interpreter or defined by
the application. If ctrl-z is typed while the user is in the
Commands Menu, the command that is currently
highlighted in that menu will appear on the command
line after the prompt.

Screen labeled keys (SLKs)
The bottom line of the display is reserved for the screen
labeled keys. Eight keys are displayed and associated
with the eight function keys on many keyboards. There
are keystrokes defined if the user's keyboard does not
have function keys. Each SLK has a default label and
function assigned to it, depending on what type of frame
is active at the moment. These can be re-defined. SLKs are
provided to allow the user to easily perform the functions
assigned to them.

What is a Form?

A form is a method for displaying and prompting for information in a
frame. The form is made up of fields which are a combination of a prompt
(the name of the field) and an area to enter the value of the field. A form has
a title that appears on the top border, and a number to the left of the title that
identifies the frame order. For example, if the first frame opened was a menu,
the second was a menu, and the third was a form, the form would have the
number 3 in the top left corner of the border. The numbers are for identifica
tion only and do not specify a sequence.

To the user, a form on the screen looks pretty much like a fill-in-the
blanks questionnaire. A form is a frame, and may be navigated from and to
with the standard frame to frame navigation keys defined in the section
"Frame to Frame Navigation. "

FMLI 19·11

The Forms and Menus Language Interpreter

Multi-page Forms

If the form is multi-page, the first page is the one that appears when the
form is initially opened. It is important to note that the user has no way of
knowing there are more pages unless your code defines a message saying so.

Navigation Keys

Within the form, the user has the use of the following navigation keys:

• DOWN-ARROW moves the cursor down to the next field. If you are
on the last field the cursor wraps around to the top field. If you are in a
multi-page form, the cursor goes to the top field on the next page of
the form, if there is one.

• UP-ARROW moves the cursor up to the previous field. If you are on
the top field the cursor wraps around to the bottom field. If you are on
a multi-page form, the cursor wraps to the bottom field of the previous
page of the form, if there is one.

• RIGHT-ARROW non-destructively moves the cursor right one charac
ter within a field. It does not wrap to the next field.

• LEFT-ARROW non-destructively moves the cursor left one character
within a field. It does not wrap to the previous field.

• TAB moves the cursor to the next field in the form. Wrap around func
tions as it does with DOWN-ARROW.

• BACKTAB moves the cursor to the previous field in the form. Wrap
around works as it does with UP-ARROW.

• HOME moves the cursor to the first character of the current field.

• HOME-DOWN moves the cursor to the last character of the current
field.

• BEG moves the cursor to the first character of the first field of the
current page of a form.

• END moves the cursor to the first character of the last field of the
current page of a form.

• PREVP AGE moves the cursor back one page on a multi page form if it
can. It then performs a BEG.

19-12 PROGRAMMER'S GUIDE

The Forms and Menus Language Interpreter

• NEXTP AGE moves the cursor forward one page on a multi page form
if it can. It then performs a BEG.

• BACKSPACE moves the cursor to the left and deletes the character.

• SPACEBAR replaces the current character with a space and moves the
cursor one character to the right.

• DEL,DELETE-CHARACTER deletes the character under the cursor and
closes the gap.

• DELETE-LINE deletes the current line of a field and closes the gap. In
a single line field, it performs the same as CLEAR-LINE.

• RESET resets a field to its default value.

• CLEAR-EOL clears the line from the current cursor position to the end
of the line.

• CLEAR, CLEAR-LINE clears the current line of the current field.

When the user is editing a form, they are in the "overtype" mode. When
the user begins typing at the first character of a field, the field is automatically
cleared. SPACEBAR, if it is the first character typed, thus appears to be clear
ing out the field. It is, in fact, making the space character the first character of
the field, which may lead to confusion if you fail to document it.

Default SLKs

Below is a list of the default SLK keys presented with a form.

Form Default SLKs
Key Command
F1 CANCEL
F2 CHOICES
F3 SAVE
F4 PREV-FRM
F5 NEXT-FRM
F6 HELP
F7 CMD-MENU
F8 blank

Function key 8 will default to CHG-KEYS if any of SLKs 9 to 16 are defined
For more details on SLKs, see the section titled Other Objects.

FMLI 19-13

The Forms and Menus Language Interpreter

What is a Menu?

A menu in FMLI is a method for displaying a list of selections in a frame,
determining the user's selection, and taking actions based on the selection.
The menu appears as a columnar list in a frame. The number of items in the
menu determines how many columns there are, and how many items high
each column is. If there are too many items, the menu will be scrollable,
which is indicated by a "AV " icon on the lower right border. Wrapping is
supported from the top to the bottom, and vice versa, in a single column
menu, and from the bottom of a column to the top of the next rolumn to the
right, and vice versa, in a multi column menu.

The top border of the frame has a programmer defined name for the
menu, and in the upper left is a frame number, assigned in the same manner,
and used for the same purpose, as the frame number in a form (see "What is
a Form?").

As the user navigates with-in the menu, a highlight bar shows the current
item. On the left side of the bar, a > mark is also provided, in case the termi
nal cannot do reverse video highlighting. Navigation between frames is
described in Frame to Frame Navigation.

The user has two options for moving the marker to an item in a menu.
They may use the navigation keys described below, or they may select an
item by typing its name. The user does not have to type the full name. Partial
matching is done dynamically. If the user types the letter "p", for example,
the marker will move to the first item in the list that starts with the letter
"p". If the user then types "r", the marker will move to the first item that
starts with "pr". If the user types a letter that cannot be matched, the termi
nal bell sounds, or the screen flashes and an error message appears, depend
ing on the terminal capability. Once the marker has moved to an item, it may
be selected in the same manner as an item navigated to. The selector bar will
wrap around when it reaches the end of the menu, regardless of whether the
user is going up or down. The partial matching in a list is not case sensitive.

19·14

If the user starts to type an item name, and the marker moves, and the user
then changes their mind about what they want to select, they must use one
of the navigation keys before they can try to use partial matching again.

PROGRAMMER'S GUIDE

The Forms and Menus Language Interpreter

Single and Multi Select Menus

For a single select menu, the user simply navigates the marker to the item
they want to select and types a carriage return (take care to specify how this
key is named in your user documentation). For a multi-select menu, the user
navigates to an item they want to select and presses the MARK SLK (function
key 2) or types the corresponding key sequence defined in the Pseudo Key
Table. Then, when the user navigates to other items, a ... marker will stay
beside the marked item. If the MARK SLK is pressed while on an item that is
already marked, that item becomes unmarked. Carriage-return then selects all
of the marked items.

In a multi-select menu, the carriage-return does not select the item the
marker is currently on, unless the user has marked it with the MARK
SLK. This is contradictory to the way a single-select menu works, and
the only way the user can tell he/she are in a multi-select menu is by
the appearance of the MARK SLK. Since many users might miss this sub-
tle difference, it might be wise to inform them with a message on-screen.

Navigation Keys

The following keys are used for navigation within a menu.

• DOWN-ARROW moves the marker down one item, wrapping to the
top of the next column when it reaches the bottom. If there is only one
column, or the user is on the last column, the wrap is to the top of the
first column.

• UP-ARROW moves the marker up one item, wrapping to the bottom
of the previous column when it reaches the top of the current one.
When the marker is on the first item in the menu, the wrap is to the
last item in the last column.

• RIGHT-ARROW moves the marker down one item on a single column
menu, right one item on a multi-column menu. RIGHT ARROW does
not wrap.

• LEFT-ARROW moves the marker up one item on a single column
menu, and left one item on a multi-column menu. LEFT-ARROW does
not wrap.

FMLI 19·15

The Forms and Menus Language Interpreter

• BACKSPACE is the same as LEFT-ARROW.

• SPACEBAR is the same as RIGHT-ARROW.

• NEXT is the same as RIGHT-ARROW, but will wrap around to the
first item in its row or column when it reaches the last item.

• PREY is the same as LEFT -ARROW, but will wrap to the last item in
its row or column when it reaches the first item.

• HOME moves the marker to the first item currently visible on the
menu.

• HOME-DOWN moves the marker to the last item currently visible on
the menu.

• PAGE-DOWN moves the marker to the first item on the next page full
of items and displays that page.

• PAGE-UP moves the marker to the first item in the previous page full
of items and displays that page.

• BEG moves the marker to the first item in the menu whether it is
currently visible or not, and displays the first page.

• END moves the marker to the last item in the menu whether it is
currently visible or not, and displays the last page.

• SCROLL-DOWN rolls the contents of the menu frame down one line.

• SCROLL-UP rolls the contents of the menu frame up one line.

Default SLKs

By default, the user sees the following SLKs displayed while in a menu.

19-16 PROGRAMMER'S GUIDE

The Forms and Menus Language Interpreter

MENU DEFAULT SLKs
Key Menu Multi-select

F1 CANCEL CANCEL
F2 blank MARK
F3 blank blank
F4 PREV-FRM PREV-FRM
FS NEXT-FRM NEXT-FRM
F6 HELP HELP
F7 CMD-MENU CMD-MENU
F8 blank blank

Function key 8 will default to CHG-KEYS if any of SLKs 9 to 16 are defined.
For more details on SLKs, see the section titled "Other Objects. "

Additional Objects

Text Objects

Text objects are primarily used to display information to the user. Typi
cally the help descriptor is defined as opening a text object. While the user is
in a text object, the following navigation keys are in effect.

• UP-ARROW - moves the cursor up one line.

• DOWN-ARROW - moves the cursor down one line.

• SCROLL-DOWN - rolls the text down one line.

• SCROLL-UP - rolls the text up one line.

• PAGE-DOWN - presents the next frame full of text preserving two
lines from the current frame.

• PAGE-UP - presents the previous frame full of text preserving two
lines from the current frame.

• BEG - presents the first frame full of text.

FMLI 19-17

The Forms and Menus Language Interpreter

• END - presents the last frame full of text.

The scrolling keys are valid if the scroll icon "A V" appears on the lower
left border of the object. The Interpreter turns this capability on automatically
if all of the text will not fit in the frame. In addition, any of the editing keys
that can be used in a form can be used in a text object if the "edit" descriptor
evaluates to TRUE.

The default SLKs presented to the user while in a text object are:

TEXT OBJECT DEFAULT SLKS
Key Command
F1 CANCEL
F2 PREVPAGE
F3 NEXTPAGE
F4 PREV-FRM
F5 NEXT-FRM
F6 HELP
F7 CMD-MENU
F8 blank

If any of SLKs 9-16 are defined, SLK 8 will be CHG-KEYS.

Though they don't appear to do anything special, text objects are still con
sidered to be frames, and can be navigated to and from as described in
"Frame to Frame Navigation. "

Choices Menus

The choices menu is created for the user with the rmenu descriptor in a
field. This menu is a standard menu if you define rmenu with an OPEN com
mand. If you define rmenu with a list of terms in braces, the Interpreter
makes a standard menu with a lifetime of "shortterm." In addition, only the
CANCEL and HELP SLKs appear.

The choice made by the user from a pop-up menu is automatically
entered into the field the pop-up menu applies to. Since pop-up menus are
standard menus, they can be navigated to and from, but users should be
warned that if they navigate from a menu that is "shortterm," it disappears
immediately.

19·18 PROGRAMMER'S GUIDE

The Forms and Menus Language Interpreter

Screen Labeled Keys

The screen labeled keys are provided to allow the user an easy means of
performing actions that are done often. The Interpreter will provide these keys
on the last line of the screen, with a label if the key has an action assigned to
it. The user may type a keystroke equivalent if the terminal has no function
keys. The SLKs all map to the keyword commands of the same name. The
user will see the same result from pressing one of these keys as they would by
selecting that command from the command menu (though not all SLK com
mands appear in the user's command menu), or typing ctrl-z and the com
mand keyword.

The CHG-KEYS SLK will appear in positions 8 and 16 (function key 16 is
key 8 on the second set of SLKs) if the developer has defined any of the keys
9-15. This SLK is effectively a toggle between the two sets of SLKs.

Help

The user is presented with a SLK named HELP while in forms, menus,
and text objects. Selecting HELP will bring up a frame defined by the
developer. The user mayor may not be able to navigate in the help frame,
depending on the description set for it by the developer. Typically the help
frame is a normal text object. If help has not been defined, the message No

help available is printed on the message line.

Help can also be provided to the user through the use of the CHOICES
SLK when the user is in a form. When the user selects this SLK, or types the
command, if the rmenu descriptor is in that field the Interpreter supplies a
pop-up menu. Either with the pop-up or separately, the choicemsg descriptor
can supply information on the message line. If the developer has not defined
either, the message No choices available is printed on the message line.

Frame to Frame Navigation

Navigation between frames is comprised of simple moves and command
actions that change the active frame. The following list defines the ways that a
user can move between frames. Navigation to the UNIX system is also dis
cussed.

FMLI 19-19

The Forms and Menus Language Interpreter

• The PREV-FRM and NEXT-FRM SLKs will cause the cursor to jump
from frame to frame (see "What is a Form?").

• Selecting FRM-MGMT from the command menu will bring up a pop
up menu that includes the action LIST. Selecting LIST will pop-up
another menu listing all opened objects. Using standard menu naviga
tion keys, select an object and press the carriage-return. The pop-up
menus disappear and the selected object becomes current. CANCEL
will remove the pop-up menus and leave the user where they started.

• The CLEANUP command will close all frames not defined as "immor
tal." The last object opened with a definition of "immortal" will
become the current object.

• TAB and BACKTAB will work just like NEXT-FRM and PREV-FRM,
respectively, unless you are in a form, in which case these keys apply
to fields (see "What is a Form?").

• The goto command may be executed with a frame number as an argu
ment. That frame becomes current, with the cursor on the item it was
on when that frame was last active. The user may only type a frame
number, even though this command will also take a full path name
argument when a developer is using it in an object file.

• The user may type ctrl-z followed by a frame number. The action is
the same as the goto command from the user's point of view.

• Opening an object will always cause navigation to that object.

• Closing an object will cause navigation to the frame that was active
before the frame being closed was opened.

The user can invoke the UNIX system from the command menu or the
command line. The FMLI screen will clear, and the user is in a full screen
UNIX shell. When exiting the UNIX system, a prompt message appears
requesting that the user press carriage return to continue. The FMLI screen
returns in the same condition it was in before the command was issued.

We have now covered the features of FMLI from the user's point of view.
The next section will describe the language used by the Interpreter to define
these objects and their options.

19·20 PROGRAMMER'S GUIDE

The Forms and Menus Definition
Language

To use the definition language, you need to be familiar with the follow
ing:

• Definition of terms, such as the concept of a menu or a form

• Environment variables

• UNIX system quoting mechanisms

• Command functions.

The menus, forms, and other objects are generated through the use of a
definition language. This language determines how a particular object should
appear and how it should be manipulated. The definition file, containing the
descriptors, should be a simple ASCII file for each object you want to display.
For each of the objects, you will find a summary of the descriptors following a
table that indicates the default value for the descriptors and the time at which
the descriptor defaults are evaluated. Examples of descriptions for each type
of object are included.

The Initialization File

One of the arguments you may give when invoking fmli is the name of
an initialization file. In the initialization file, an application developer is able
to specify the following:

• A short term introductory object displaying the application name

• A banner, its position, and other objects on the banner line

• Color attributes for all objects

• Screen labeled keys (SLKs).

Each is described in detail below.

FMLI 19·21

The Forms and Menus Definition Language

The Introductory Object

This object is displayed briefly when the application starts, and is then
cleared from the screen and replaced by the frame(s) you specify as the initial
object. This object is specified by using four of the descriptors normally used
to define a text object. Those descriptors are shown in the table below. Note
that when not used in the initialization file, these descriptors have no default
values. If these descriptors are missing from the initialization file, no intro
ductory object is displayed.

INTRODUCTORY TEXT OBJECT DESCRIPTORS

DEFAULT VALUE
DESCRIPTORS IF DESCRIPTOR DEFAULT EVALUATION TIME

NOT PRESENT

title NONE At initialization
text NONE At initialization
rows 10 At initialization
columns 50 At initialization

These descriptors are ignored in a "reint" command. This is a subset of the
complete list of descriptors for text objects, and more about each of these
descriptors can be found in the section "Text Objects." Please note, however,
that the defaults for "rows" and "columns" shown above only apply in the
initialization file.

The syntax for this object is simple and can be seen in the following
example:

19-22 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

ti tie= ''WEJ:lnIIE '10"
text="My Application
Copyright (e) 1987
My Software. Inc.
All rights reserved."
rows=5
collllll!lS=25

Backquoted expressions, containing calls to functions built-in to the Inter
preter, may also be used, as in this line:

text=" 'readfile It1Yintrotext'"

which will cause the text file myintrotext to be read and passed to the text
descriptor as the argument. More about quoted and backquoted expressions is
explained in the section titled "Syntax."

The Banner

The application can display a banner on the banner line if you include at
least the first of the following descriptors.

BANNER DESCRIPTORS
DEFAULT VALUE

DESCRIPTOR IF DESCRIPTOR TIME DEFAULT EVALUATED
NOT PRESENT

banner NONE When init file is read
bancol "center" When init file is read
working "WORKING" When init file is read

See the description of "begrow" in "Forms" for an explanation of the default
for "banco!." As shown below, "bancol" also takes integer arguments.

FMLI 19·23

The Forms and Menus Definition Language

The following lines, in an initialization file, would give you a banner with
the program name and the date on the banner (top) line of the screen starting
in the 30th column.

banner="MYPRCGRAM - 'date'"
bancol=30

The "working" indicator will always appear in the last 10 columns. Tak
ing care that other items on the banner do not run into this area is the respon
sibility of the developer. If you want to change the working indicator mes
sage to BUSY, for example, you would add this line to your initialization file:

working="BUSY"

You may also put an application specific indicator on the banner line by using
the built-in function indicator, which is documented in the built-in manual
pages.

The color for everything on the banner line is controlled by the descriptor
banner_text. If this descriptor is not set, the default is monochrome: white text
on a black background. In this mode, the background for the banner line will
stay black, even if the background for the rest of the screen is set to some
thing else. The line

banner_ text=yellow

would make all text on the banner line yellow, and the background would be
whatever you set it to for the rest of the screen. The defined color descriptors
for both text and background are:

• black

• blue

• green

• cyan

• red

• magenta

• yellow

• white

19-24 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

You may redefine these descriptors, or add new ones, with the setcolor built-in
function, which is documented in the manual pages.

Color Attributes

The following language descriptors are used to specify color attributes for
various screen entities. If the terminal does not support color, these descrip
tors are ignored.

screen Color of the screen (screen background)

Color of the text in a frame (text foreground). The
text background color will be the screen back-
ground color (see" screen" descriptor).

Color of the frame borders when a frame is
current (border foreground). This will enforce the
"solid line" look of the borders. The border back
ground color will be the screen background color.

inactive_border Color of the frame borders when a frame is non
current (border foreground). Once again the border
background color will be the screen background
color.

active_title_text Color of the title text when a frame is current (title
foreground).

active_title_bar The title background color when a frame is current
(title background).

inactive_title_text Color of the title text when a frame is non-current
(title foreground).

inactive_title_bar The title background color when a frame is non-
current (title background).

highlighLbar Color of the menu selector bar (bar background).

highlighLbar_text Color of the bar text (bar foreground).

slLtext Color of the text.

FMLI 19·25

The Forms and Menus Definition Language

slLbar Color of the background.

All of these descriptors are of type STRING and accept the color values given
in the discussion of the banner line.

Due to the nature of curses(3X), colors must be set in pairs. This means
you must set the foreground and background for an area of the screen, other
wise it will default to monochrome. If you set the foreground and back
ground to the same color the text could not be seen therefore the FMLI
defaults to monochrome. The built-in function setcolor allows you to define
your own colors, if the terminal is capable of it. If you want to write machine
independent code that uses the setcolor capability, use the "or" operator in
your backquoted expression. For example:

screen='setoolor blue 100 24 300 I I echo blue'

will set the screen to the default blue if the new one can't be defined. If the
foreground and background are set to the same color, the screen becomes
monocrome for that identity. Of course, if this terminal can't display color the
Interpreter automatically defaults to monochrome. The color descriptors are
allowed only in the initialization file. They will be ignored in other files.

Screen Label Keys

Screen Label Keys (SLKs) appear at the bottom of the Interpreter screen
and provide easy access to a number of widely used functions. They are
analogous to a set of menu items that are always displayed and can be
selected at any time. There are 8 SLKS that map directly to the 8 function
keys that appear on a majority of terminals (alternative escape sequences are
listed in the Pseudo Keys Table.)

By default, the Interpreter provides 2 levels of SLKS. There are 8 SLKS
that appear at the first level and an alternate set of 8 SLKS that appear at the
second level. The Interpreter has only defined the first set for each object
type. These defaults were given in the first part of this chapter. If you define
SLKs 9-15 in the second set, the eighth and sixteenth SLKs default to CHG
KEYS which serves simply as a toggle to flip-flop between levels.

19-26 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

SLKs 1-7 in the first set can be disabled, but not redefined. The second set
of SLKs may be redefined. Redefining the SLKs can be done in the initializa
tion file, in which case they become the defaults. They may also be defined in
form, menu, and text files, in which case they override the defaults while that
object is active.

The developer can define which set of SLKs first appears when the object
is opened by setting the single instance descriptor altslks. If this descriptor
evaluates to TRUE, SLKs 9-16 will be displayed when the object is first
opened. altslks can appear in form, menu, and text descriptions.

The following is a list of multi-instance descriptors that can be used to
redefine the Screen Label Keys (SLKS).

name

action

button

show

slLlayout

Name that is displayed on the SLK.

Operation to perform when the particular SLK is selected.

The value of this descriptor is the number of the function
key (1-16) to which the SLK refers.

If its value expands to FALSE, then the SLK will not
appear.

Two screen layouts are available, "4-4" and "3-2-3."
The default sreeen layout is "3-2-3."

The following is an example of how an application developer could use an
initialization file to disable F7 (CMD-MENU) and define F9 (the first SLK in
set 2) as the EXIT key:

NAME=""
BUl'l'ON=7

SIm=TRIJE (this line is optional)
NAME="EKit"
BUl'l'ON=9

ACTI<N=EXIT

SHGl=TRIJE (this line is optional)

FMLI 19-27

The Forms and Menus Definition Language

SLKs must be the last thing defined in any descriptor file.

Forms

A form object is described by a series of descriptors. The first group per
tains to the whole object. The second group pertains to one field of the object.
This group may be repeated for additional fields. A third, optional, group that
may also be repeated is the SLK definitions. These were presented in the sec
tion on the initialization file, and they are used in forms precisely the same
way. A form object generally looks like this:

Descriptors that pertain to whole object (title, positioning, etc.)

Descriptors that pertain to the fields of the form object (name, default
value, positioning, etc.)

Descriptors disabling or redefining SLKs

The programmer can define:

• the title of the form

• the screen position of the form

• the number of fields on the form

• the name of each field

• whether or not the field contains an initial value to display

• the starting position and length of each field

• what type of data is valid for each field

19-28 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

• whether the form is multi-page or not

• new labels and functions for the SLKs.

The two tables that follow are a list of the descriptors, their default values,
and at what time the default values are evaluated. The first group pertains to
the entire form, and thus may only appear once in a form definition file. The
second group may be reused as necessary to create additional fields.

FORM DESCRIPTORS

DEFAULT VALUE
DESCRIPTORS IF DESCRIPTOR DEFAULT EVALUATION TIME

NOT PRESENT

form "Form" When form object is opened

help NONE When user asks for help

lifetime "longterm" When form object is opened

done NONE When user selects SA VE

init TRUE When form object is opened

begrow "any" When form object is opened

begcol "any" When form object is opened

close NONE When form object is opened

reread TRUE When alarm is received

altslks FALSE When form object is opened

Next are the descriptors that can occur multiple times in a form object.

FMLI 19-29

The Forms and Menus Definition Language

DEFAULT VALUE
DESCRIPTORS IF DESCRIPTOR DEFAULT EVALUATION TIME

NOT PRESENT

name NONE When form object is opened

fro\v ~1· l,AJhen form object is opened

fcol -1* When form object is opened

nrow -1* When form object is opened

ncol -1* When form object is opened

rows -1* When form object is opened

page 1 When form object is opened

columns -1* When form object is opened

fieldmsg NONE When you navigate to a field

value NONE When another value is changed

rmenu NONE When form object is opened

valid TRUE When value is changed

invalidmsg "Input is not valid" When value is changed

no echo FALSE When form object is opened

menuonly FALSE When form object is opened

show TRUE When form object is opened

scroll FALSE When form object is opened

wrap FALSE When form object is opened

choicemsg NONE When choices command is run

inactive FALSE When form object is opened

* A negative value will cause the component that uses this value not to
appear.

19·30 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

If the integer value given for a component, e.g., a field, would put it off
the screen, the entire object, e.g., the form the field is in, will not be
posted.

Following is a brief description of each descriptor and how it is used.

form This is the title of the form object. It will be truncated to
45 characters.

help

lifetime

If the user asks for help while in this form, this command
will be run.

This determines when this form will be removed from the
screen. Acceptable values and when they allow an object
to close are:

- shortterm
-longterm
- permanent
- immortal

when another object becomes current
when CLOSE or CLEANUP is issued
when a CLOSE is issued

cannot be closed

done When the user selects the SAVE SLK this descriptor's
value is executed. If this descriptor is not defined, the
form is simply closed.

init If it's value evaluates to FALSE then the form will not be
posted.

begrow, begcol These descriptors determine the offset of the top left
comer of the object (begrow=O, begcol=O is the upper left
comer of the FMLI Work Area). In addition to integral
values, the following are acceptable:

center will be centered
current will overlap current frame
distinct will not overlap current

object (if possible)
any positioned with least amount of total overlap

The values presented above can be assigned to begrow or
begcol independently to force a restriction on the row or

FMLI 19-31

The Forms and Menus Definition Language

close

reread

altslks

column only. If integral values are supplied and either
begrow or begcol are outside the screen boundary, a default
value of "any" will be given to the erroneous descriptor.

This is expanded and executed if the user selects CAN
cEL.

If the item's expanded value is not FALSE, the form will
be updated by rereading it's description file. This descrip
tor is checked whenever an alarm occurs (see the section
Variabies). Update ignores the re-read descriptor and will
always update the object.

If the item's expanded value is TRUE, SLKs 9-16 are
displayed when the object is initially opened. The default
is FALSE, which displays SLKs 1-8.

Here are the descriptors that can occur once for each field in a form
object.

name This is what is used to prompt the user for information
pertaining to a certain field. This keyword begins descrip
tion of a new field in the form object.

nrow, ncol These position the name in the frame. If either value is
negative, the name is not displayed.

value This is the default value for the input field.

frow, feol These position the input field in the frame. If either value
is negative, then the input field will not be displayed.

rows, columns The maximum size of the input field. Generally, they
describe the length and width of the region in which the
users can type.

page Denotes which page of a multi-page form this field will be
on. The description may evaluate to an integer, or the
strings "*,, or "all", which place the field on all pages of
the form.

choicemsg Defines a message to be put on the message line when the
user selects CHOICES.

19·32 PROGRAMMER'S GUIDE

rmenu

valid

fieldmsg

invalidmsg

noecho

menuonly

show

scroll

wrap

inactive

The Forms and Menus Definition Language

This is used to specify a list of choices, delimited by
spaces, for a particular input field. There are two formats
that are acceptable. The first is a list of choices enclosed
in braces ({}). The second is a command. The environ
ment variable ForIILChoice will contain the selection
made from the rmenu by the user. It is primarily useful if
the command option is used.

If this is FALSE, the current input of the user is invalid.
This usually involves calculating the validity of the field.
Checking the validity of the field is often done by evaluat
ing a backquoted expression. The built-in function regex
is often useful for validation.

Defines a message to be put on the message line when the
cursor moves to the associated field.

This STRING is printed on the message line when the
input for this field is invalid.

If this is not FALSE, then when the user types in this
field, what they type will not be echoed on the input
field. (Often used for passwords.)

If this descriptor is set to TRUE, then the only acceptable
input for this field is one of the choices in rmenu.

If this is FALSE, then the field will not be shown. Note
that if the field is not shown, it still counts as a field for
the purpose of expanding the variable $Fn.

If this is not set to FALSE, then the input field can be
scrolled. This means that the input field can be as long as
the entry the user types.

If this is FALSE, then the cursor will not automatically
wrap when the user is typing an entry in this input field.

If this descriptor evaluates to TRUE, the item is displayed
in the form, but cannot be navigated to. The default is
TRUE if the descriptor is there but not defined. If the
descriptor is not there, the field will be active. This is pri
marily used during co-processing.

FMLI 19-33

The Forms and Menus Definition Language

fieldmsg This string will appear on the message line when this field
is navigated to.

Below is an example of a simple form. If we call it Form.simp, the user
could open this form by any action that evaluates into OPEN FORM
Form. simp. The system reads the ASCII file, constructs an internal represen
tation of how the form will appear to the user, expands the value descriptors
for each field, and displays the resulting form. Here is what it would look
like.

2 A S:iltlple Fonn Object
Name ____________________________ __
Address~ __________________________ _

City _____________ state ___ Zip __ _

This is the Description Language code used to generate this form, fol
lowed by an explanation of what the user could and could not do in this form.

fonn=A Simple Form Ci:>ject
dane='set NAME="$F1" AIIlR="$F2" CI'lY="$F3" STATE="$F4" ZIP="$F5'"

name=Name

nrow=1

ncol=1
frow=1
fcol=6
rows=1
colU1l1l'lS=9
valid='regex -v "$F1" "[A-Za-z,]+"

value=$NAME

name=i\ddress

nrow=2

ncol=1
frow=2
fcol=9
rows=1

colU1l1l'lS=28
value=$AIDR

19-34 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

name=City

nrow=3

=1=1
frow=3
fco1=6
rows=1
co1umns=14
va1ue=$CI'lY

nnenu=OPEN MENU $MYPA'1HIMenu.city "$STATE"

name=state

nrow=3
=1=21
frow=3
fco1=27
rows=1
co1umns=2
va1ue=$STATE
nnenu={NY NT CT CA IL ME TX}

menuanly=true

name=Zip

nrow=3
nco1=31
frow=3
fco1=35
rows=1
co1umns=5
va1ue=$ZIP
va1id= 'regex -v "$F5" '[0-9] {5}' ,

continued

Form gives the form a name other than the default "Form." Done tells
the Interpreter what to do when the user selects SAVE SLK; it sets the local
environment variable NAME to the current value of field 1, set ADDR to the
value of field 2, etc. These values would then appear in the form by default
the next time this form is opened.

FMLI 19-35

The Forms and Menus Definition Language

Next, the descriptors that can be used repeatedly define five fields where
data will be input. The first field here puts up the string II Name II in row 1,
column 1 of the form, with an input field starting on the same row at column
6. The input field is 1 row high and 9 columns long. It has a default value of
whatever is stored in the environment variable $NAME. This field uses the
built-in function regex to check the input. The expression makes sure that the
name is all letters, spaces and commas.

The other fields; Address, City, State, and Zip, are all defined in the same
manner, but of these, only Zip has a validation description. The validation for
zip code makes sure that the user enters exactly five digits.

The City field gives an example of a command style rmenu. Menu.city
could list possible city choices pertaining to the current state. Menu.city would
also make use of the argument $STATE which is passed to it. The action
descriptor for each choice would set FOI"IlL-Choice and close the menu. (See
descriptor for rmenu.)

The state field gives another example of the rmenu. In this case, if the
user asks for CHOICES, a pop-up menu will display which will give the avail
able 2-letter state codes. Because the II menuonly II descriptor is given, only
these choices are legal. At this point, the user may edit the form using vari
ous editing keys described in the first part of this chapter.

Suppose the user changes the value of the NAME field. When the user
presses RETURN or TAB to exit the NAME field, the valid descriptor is
expanded. In order to expand this, the system runs the internal command
II regex II and attempts to match the value of the NAME field against the pat
tern II ~[A-Za-z,]+ II -- in other words, one or more letters, commas, or spaces.
(See the regex built-in function manual page.)

Assuming the user has entered valid information in all the fields, he/she
may select the SA VE SLK. At this point, the II done II description is encoun
tered and again a backquoted expression is encountered, consisting of the
internal command SET. This command sets 5 variables in the user's environ
ment to the values of each of the 5 fields. It then closes the form.

Menus

A menu object has a series of descriptors that pertain to the whole object
followed by a series of descriptors that will pertain to each line of the menu
object or each Screen Label Key. A menu object looks like this.

19-36 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

Descriptors that pertain to whole object (title, positioning, etc.)

Descriptors that pertain to menu object lines (name, description, action, etc.)

Descriptors that pertain to Screen Label Keys (name, button number, action,
etc.)

The programmer has control of the following options in a menu:

• single or multi selection menu

• opening the menu with specific items already selected

• placement of the menu on the screen

• the lifetime of the menu

• whether or not to show a specific choice

• the action to take for each choice

• the action to take when the menu is closed.

The following table shows the descriptors used to describe a menu.

FMLI 19·37

The Forms and Menus Definition Language

MENU DESCRIPTORS

DEFAULT VALUE
DESCRIPTORS IF DESCRIPTOR DEFAULT EVALUATION TIME

NOT PRESENT

menu "Menu" When menu object is opened

multiselect FALSE When menu object is opened

help NONE When user asks for help

lifetime "longterm" When menu object is opened

init TRUE When menu object is opened

begrow "any" When menu object is opened

begcol "any" When menu object is opened

close NONE When menu object is closed for any reason

reread TRUE When timer goes off

done NONE After RETURN in a multiselect menu.

altslks FALSE When object is opened

Next are the fields that can occur once for each item in a menu.

The set of descriptors for an item must start with the "name" descriptor.

19·38 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

DEFAULT VALUE
DESCRIPTORS IF DESCRIPTOR DEFAULT EVALUATION TIME

NOT PRESENT

name NONE When menu object is opened

description NONE When menu object is opened

action NONE When this line or button is selected

lininfo NONE When this line is selected

itemmsg NONE When you navigate to an item.

show TRUE When menu object is opened

selected FALSE When menu is opened.

Following is a brief description of each descriptor and how it is used.

menu

multiselect

help

lifetime

This is the title of the menu object. It will be truncated to
45 characters.

Tells the Interpreter that this is a multi-select menu. SLK 2
will map to the MARK command, and the "action"
descriptor is ignored for all selections.

If the user asks for help within this menu object, this com
mand will be run (see Definitions).

This determines when this menu object will be removed.
The acceptable values are:

shortterm - closes whenever another object becomes the
current object

longterm - closes when the user issues a CLEANUP or
CLOSE command

FMLI 19·39

The Forms and Menus Definition Language

init

permanent - closes whenever the user issues a CLOSE
command

immortal - cannot be closed

If this expands to FALSE the menu object will not be
opened; otherwise it will.

begrow, begcol These descriptors describe the position of the menu
object's top left corner. Values can be one of the follow-

close

reread

done

altslks

ing:

center
current

distinct

any
number

menu will be centered
as close to the current frame's position

as possible
as far from the current frame's position

as possible
system chooses a position to minimize overlap

an absolute position. Causes frame to appear
in same position.

If begrow and begcol force the menu to display off the
screen, then FMLI will place the menu as closely as possi
ble to what was intended.

This is expanded when the user closes or cancels the
menu.

When an alarm goes off, the reread description is
expanded. If it does not expand to FALSE, the menu will
be reread.

Evaluated when the user presses carriage-return in a multi
select menu. Ignored in a single select menu.

If the item's expanded value is not FALSE, SLKs 9-16 are
displayed when the object is initially opened. The default,
if the descriptor is not used, is FALSE, which displays
SLKs 1-8.

19-40 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

Here are the descriptors that can occur once for each item in a menu
object.

name

description

action

lininfo

show

selected

itemmsg

This is how the item will appear in the menu.

This will be the part of the line displayed but not
highlighted when the user is on this line.

This is a string which is any command that the user could
type at the command prompt. Note that this string can be
the result of a backquoted expression. Also, this descrip
tor is ignored if the menu is multi-select. This descriptor
can contain multiple backquoted expressions, but only one
keyword expression.

When the user selects this menu item, this descriptor's
string value will be put into the local environment vari
able LININFO. If it is not defined, LININFO will be null.
Also, when the getitems function is executed, if this string
is defined, its value will be substituted for the item's
"name" string.

This determines whether this menu item should be
displayed. It will not be displayed if the value is FALSE.

This descriptor determines whether a menu item should
default to selected (TRUE) or non-selected (FALSE) when
the menu is opened. The default is FALSE.

This string is displayed on the message line when the
item is navigated to.

In addition, SLKs may be defined in a menu description file.

A menu object usually starts with the line "menu=title". The default
value for title is "Menu". In order to create a menu, you would use a series
of descriptors, which are the building blocks of the definition language. Each
descriptor defines a particular alternative or function of the menu. Descriptors

'are in the format "descriptor = value". When grouped together, these
descriptors determine how the object will appear to the user and how it can
be manipulated. Here is a simple menu description file:

FMLI 19·41

The Forms and Menus Definition Language

menu=Office of $I.(X;NAME

name=other_users
actian=OPEN MENU $MYOBJlOC:TS/Menu. users

name=services

actian=<>PEN MENU $MYOIlJEX:TS/Menu. serve

Here is how this would be displayed to the user.

1 Office of joe

> other_users
services
UNIX ~em

When the user selects one of these items, the corresponding action is exe
cuted. In this example menu, you would use three types of descriptors to
generate the title, menu item names, and the action to take when an item is
selected. Single-instance descriptions within a menu definition are used to
generate attributes that refer to the entire menu, in this case the title of the
menu is defined with:

menu = "Office of $u:GNAME"

Note that the environment variable LOGNAME is expanded by the Interpreter
and included as part of the definition string.

Multi-instance descriptors are used to generate attributes for each item on
a menu; in this case "name" and "action" describing each of three items in
the menu.

19-42 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

Text Objects

A text object has a series of descriptors that pertain to the whole object
followed by a series of descriptors that will pertain to the Screen Labeled
Keys. A text object generally looks like this:

Descriptors that pertain to whole object (title, text, positioning, etc.)

Descriptors that pertain to Screen Label Keys (name, button number,
action, etc.)

A text object usually starts with the line "title=title." The default value
for title is "Text object." Following is a table of descriptors, default values,
and default evaluation times.

FMLI 19-43

The Forms and Menus Definition Language

TEXT OBJECT DESCRIPTORS

DEFAULT VALUE
DESCRIPTORS IF DESCRIPTOR DEFAULT EVALUATION TIME

NOT PRESENT

title "Text" When text object is opened

text NULL STRING When text object is opened

edit FALSE When text object is opened

wrap FALSE When text object is opened

rows 10 When text object is opened

columns 30 When text object is opened

help NONE When user asks for help

lifetime "longterm" When text object is opened

done NONE When the object is closed

init TRUE When text object is opened

begrow "any" When text object is opened

begcol "any" When text object is opened

close NONE When text object is opened

reread TRUE When text object is opened

altslks FALSE When text object is opened

Following is a brief description of each descriptor and how it is used.

title This is the title of the text object. It will be truncated to
45 characters.

help If the user asks for help on this text object, this command
will be run.

19-44 PROGRAMMER'S GUIDE

lifetime

The Forms and Menus Definition Language

This determines when this object will be removed from
the screen. Acceptable values and when they allow an
object to close are:

- shortterm when another object becomes current
- longterm when CLOSE or CLEANUP is issued
- permanent when a CLOSE is issued
- immortal cannot be closed

done When the user selects CANCEL, this descriptor is
evaluated. If it expands to FALSE, the text object stays
open; otherwise the object is closed.

init If it's value evaluates to FALSE then the object will not be
posted.

begrow, begcol These descriptors determine the offset of the top left
comer of the object (begrow=O, begcol=O is the upper left
comer of the FMLI Work Area). In addition to integral
values, the following are acceptable:

close

reread

altslks

center
current
distinct
any

will be centered
will overlap current frame

will not overlap current object (if possible)
positioned with least amount of total overlap

The values presented above can be assigned to begrow or
begcol independently to force a restriction on the row or
column only. If integral values are supplied and either
begrow or begcol are outside the screen boundary, a default
value of "any" will be given to the erroneous descriptor.

This is expanded and executed if the user selects CLOSE
or CANCEL.

When an alarm goes off, if this descriptor does not evalu
ate to FALSE, the text object will be reread and redrawn.

If the item's expanded value is TRUE, SLKs 9-16 are
displayed when the object is initially opened. The default
is FALSE, which displays SLKs 1-8.

FMLI 19-45

The Forms and Menus Definition Language

rows, columns These should be set to the number of rows high and
columns wide you want the frame to be.

text This descriptor should evaluate to the text you want to
display.

edit If this descriptor evaluates to TRUE, then the user can
modify the text. Otherwise, the text is read only.

wrap If this descriptor is set to anything except FALSE, the text
will be wrapped to fit the available space when it is read
in.

In addition, the descriptors for SLKs may be included in the text object
description. They do not vary from their use in other objects.

Here is a simple description file for a text object:

title="This is very simple"
columns=40
lifetime=1ongtenn

text=''We the people, in order to fam a nore perfect union, establish
justice, insure danestic tran;pillit;y, provide for the 0CIIIII:lIl defense,
prarote the general welfare and secure the blessings of liberty, to
ourselves and our posterit;y,
Do ordain and establish this constitution for
the United States of America."

The object would look like this:

19-46 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

1 This is very s:imple

We the people, in order to fonn a nore
perfect union, establish justice, insure
danestic tranquillity, provide for the
camon defense, prarote the general
welfare and secure the bless:ings of
liberty, to ourselves and our p:>Sterity,
Do ordain and establish this constitution
for the United States of America.

A more interesting way to do this would be

Titie="This is less simple"
lifetime=lar¢enn

(Note the use of backquotes.)

This example illustrates the use of arguments that may be passed to menu,
text, or form objects. You don't have to write a separate text object for each
file that is to be displayed. Instead you pass $ARGI to the object when you
open it. For example, if this object were opened by a line in a menu that
looked like this:

action=OPEN TEXT $MYORJ]X:TS/Text.standard help1

$ARGI would expand to "helpl", that file would be read by the built-in
function read/ile, and all of the text would become the value of the "text"
descriptor, which would then be displayed in a text frame as wide as the long
est line of text in the file helpl. For more on how this happens, see the section
Variables and the read/ile manual page.

FMLI 19·47

The Forms and Menus Definition Language

Variables

Within a menu, text, or form object, certain characters have special mean
ings. These meanings are consistent with the special characters in the UNIX
system shell with some additional functionality. If you are familiar with the
UNIX system shell, then you know there is an "environment" which holds
variables and their values. FMLI has two environments that are used for dif
ferent purposes and have different capabilities.

The set command can set variables in a file using the -f option. References
to these variables follow this syntax:

${(filename)VARIABLE}

where filename is a full pathname and VARIABLE is the file variable name.

When a variable is expanded that does not specifically reference a file, two
environments are searched. The environments are as follows.

local environment

UNIX system environment

This environment is specific to the current
FMLI process. This is similar to an unex
ported shell variable.

The UNIX system environment is the stan
dard UNIX environment.

Whenever "environment" is referred to in this text, these environments are
searched in the order listed.

Variables are denoted by a dollar sign ($) followed by a string. The string
must be in one of the following formats:

$variable

$ {variable:-default}

${ (filename)variable}

Look for variable in the environment and
expand to the value of that variable.

Look for variable in the environment and if
it is found expand to its value. If it is not
found, expand to "default."

Look for a line of the format
"variable=value" in the file "filename". If
such a line is found, expand to "value."

19·48 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

$ {(filename)variable:-default} Same as above, except if variable is not
found anywhere, expand to "default."

Note that filename and default may themselves be variables, such as

${($HOMEI.variables)NAME:-$LOGNAME}.

Menu, text, and form objects may reference certain variables that have
special meaning to the definition language. These variables should only be
referenced, not set, within an object definition. The special variables are as
follows:

$ARGn

$NR

$TEXT

$Fn

$ForrrL-Choice

$SELECTED

$LININFO

$MAILCHECK

$RET

Syntax

This variable expands to the nth argument passed to the
corresponding form, menu, or text object.

This variable expands to the number of items in the menu
object.

This variable expands to value of the text descriptor
within a text object.

This variable expands to the current value of the nth field.

This variable expands to the last choice made from a
pop-up menu.

This variable expands to TRUE if the current item in a
multi-select menu has been marked.

This variable expands to null if the current menu item
doesn't have a lin info descriptor defined. Otherwise it
expands to the value of the lin info descriptor.

Determines the amount of time before a CHECKWORLD
command occurs. Defaults to 300 seconds.

This variable expands to the exit value of the last execut
able run by the Interpreter.

Anything the Interpreter doesn't understand is ignored. This is wide
encompassing. For example, a line of garbage will be ignored but so will the
"selected" descriptor if a menu is single select (because "selected" has no

FMLI 19·49

The Forms and Menus Definition Language

meaning in that context). The convention of starting a comment line with the
character "#" will therefore work with FMLI, except when it is nested in
quotes or backquotes.

Quoting Mechanisms

If you want the special meanings of characters disabled in a string, FMLI
supports a quoting mechanism similar to the UNIX system shell. Each quot
ing mechanism has different functions, as defined below.

• Backslash (\): A backslash causes the next single character to be taken
literally.

• Single-quotes (' '): Any string inside of single quotes is taken literally
and as a unit. All special meanings are turned off within the quotes.

• Double-quotes (" "): Double-quotes group the text between them as a
unit, but still allow variable expansion and the use of backquotes.

• Backquotes (' '): Any command or series of commands may be
enclosed in backquotes with the result that the backquoted expression
expands to the output of the commands. The only character with spe
cial meanings in the output of the commands is NEWLINE. Com
mands may be UNIX system executables or FMLI built-in functions.

Backquotes cannot be nested, except as allowed by regex, but several com
mands may appear inside a single backquoted expression, separated by one of
the following delimiters:

• semi-colon (;) - Commands separated by a semi- colon are executed
sequentially.

• pipe (I) - When commands are separated by a pipe symbol, the out
put of the first command becomes the input to the second.

• AND (&&) - The meaning of command 1 && command2 is run com
mandl and if it succeeds, then run command2.

• OR (II) - The meaning of command 1 II command2 is run command 1
and if it fails, run command2.

19-50 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

Use of Backquoted Expressions

In addition to placing backquoted expressions on descriptor lines, you can
use backquoted expressions anywhere in a menu, text or form object. If a
backquoted expression starts a line, it is expanded when the object is read. In
this way, you can generate an entire object dynamically at run time.

File Redirection

The input of a command may be redirected from a file by using" < file."
Similarly, the output of a command may be sent to a file by using " > file",
as in shell programming. The Interpreter does not support the shell constructs
» and 2>, which append text to a file and redirect stderr, respectively.

Co-processing

In addition to the built-in commands the Interpreter can execute UNIX
system programs and UNIX system shell commands via constructs in the Form
and Menu Definition Language. Both built-ins and UNIX system commands
are specified using the backquoting mechanism described earlier in this sec
tion. If a command is recognized as a built-in command it is executed by the
Interpreter (i.e, no process invocation is necessary) otherwise it is passed to
the shell for execution.

The restriction here is that these commands do not require any "interac
tion" with the user. In other words, these commands run to completion
without user confirmation, or prompting. If an application wishes to execute a
UNIX system program that requires some sort of interaction during its execu
tion, the Interpreter provides two mechanisms:

• The Interpreter could "suspend" the frames that are displayed and
execute the process in full screen. The built-in function run supports
this capability. For example, the expression 'run my_wor<L.processor'
would instruct the Interpreter to clear the screen and execute the word
processing application in full screen. Once the user exits from the word
processor, the Interpreter will resume where it left off, restoring the
screen to its pre-suspended state.

• The second alternative is a more "integrated" one. It allows a process
to communicate with the user via an object (menu, text, form). To sup
port this capability the Interpreter provides a feature called co
processing. The co-process does not have direct access to the terminal

FMLI 19·51

The Forms and Menus Definition Language

screen but communicates to the user through the Interpreter. This
feature does not provide a hardware window interface.

The co-processing feature is made up of five built-in commands: cocreate,
cosend, cocheck, coreceive, and codestroy, which support inter-process com
munication.

cocreate is responsible for initializing the process and setting up pipes
between the Interpreter and the co-process. codestroy is responsible for
cleaning-up when the communication has been completed. The built-in
cosend is used to send information to the co-process via the pipe and block for
some response by the co-process. The -n option to cos end performs a "no
wait" condition. This means that cosend will send information to the co
process but will not block for a response. Cocheck will check the "in-coming"
pipe for information. Coreceive will perform a "no-wait" read on the pipe.
The purpose of these built-in functions is to provide a flexible means of
"interaction" between the Interpreter and a co-process; to be responsive to
asynchronous activity.

It is important to note that information passed to the Interpreter from a
co-process is treated as text only. Commands (for example, OPEN, CLOSE,
UPDATE) will not be recognized by the Interpreter.

To illustrate the use of enhanced co-processing, consider a UNIX program
that wishes to "talk" to the user as it executes (interactive program). The fol
lowing is a sample menu which displays the item "talk". When selected, the
operation specified by the "action" descriptor will initiate the co-process. The
Interpreter will also bring up an "interactive" frame as defined by Form.talk.

actian='=eate -i MYPROC $MYS'roFF1b:inltalk'OPEN FORM Farm.talk

19·52 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

In the object "Form.talk" shown below:

• The close descriptor will be responsible for destroying the communica
tion.

• The reread descriptor will check the pipe and "reread" the object
definition if there is information pending.

• Field 1 will be an "inactive field" used simply to display text received
from the co-process.

• Field 2 will be an "active" field which will get information from the
user and send it to the coprocess (cosend). This is done via the
"valid" descriptor which is evaluated when a field value changes.

• A SLK is defined to "abort" the co-process at any time. This is done
by forcing a "close" operation (as usual, the descriptor "close" is
evaluated once an object is closed).

FMLI 19-53

The Forms and Menus Definition Language

fonn="Talkillq ••• II
close=' codestroy mPROC'
reread= 'cocheck mPROC'

name=""
frow=O
fcol=O
rows=5
columns=20
inactive
value= 'oareceive mPROC'

naIDe="1I

frow=5
fcol=O
rows=1
columns=20
valid=' cosend -n mPROC $F2' 'mIlE

name=abart

buttan=4
action= 'message "Ccmmmication stopped ••• II 'close

The following code segment illustrates how an interactive co-process (in
this case "talk") may be structured:

19·54 PROGRAMMER'S GUIDE

The Forms and Menus Definition Language

while :
do

echo "Tell me sane IIOr:e ••• "

vsig
read response
if [$response -eq "goodbye"

then

fi
done

break

echo "goodbye"
vsig

The supplied executable vsig is used to send a signal to the Interpreter
that information is pending. This interrupt causes reread to execute. vsig is
documented in the coproc manual page.

FMLI 19·55

FMLI and the UNIX Operating System

Invoking the Interpreter

The executable file fmli requires at least one argument; the initial object to
open. Subsequent interactions are driven by this initial object. Optionally, you
may provide the name of an initialization file. This file provides specific global
instructions that allow for customization of the application, such as screen
colors and default SLKs. You may also provide the name of a commands file
with commands specific to that application. Details on this file are in "Modi
fying Command Keywords. "

The generalized command for invoking the Interpreter is:

fmli [-a <alias file>] [-i <initialization file>] [-c <commands file>]
<file> [<file> ...]

where <file> is a fully qualified pathname of the file describing the initial
object(s) to be opened, <initialization file> is the name of the file containing
initialization descriptors, <commands file> is the file containing descriptions
of application -specific commands, and <alias file> is the file containing alias
definitions. The lifetime descriptor will be ignored for all frames opened by
arguments to fmli. The lifetime for the frames is "immortal."

Terminal Independence

FMLI uses the UNIX system terminfo data base to determine the
terminal's capabilities. New terminals not described in this data base can be
added to the terminfo under the proper sub-directory named by the first char
acter in the terminal's name. For example, the 5425 terminal description
would be in $TERMINFO/5/5425.

19·56 PROGRAMMER'S GUIDE

FMLI and the UNIX Operating System

Modifying Command Keywords

Keywords can be added to the command menu or disabled. This is done
by creating a command file and supplying it as an argument when fmli is
invoked. There is an absolute maximum of 64 command keywords. The for
mat for adding or disabling is as follows:

name=<cm:1 name>
action=<action to take>
help=<keyword operation>

To add a new command, for example,

name="date"
action=' date I message' N:>P

help=OPEN '1'EX.'I' ~JText.datehelp

will allow a user to have a "date" command that puts the date on the mes
sage line.

To disable an existing command, for example frm-mgmt,

name="frm ngmt"
action=NJP

The contents of the command file will be reflected in the Command Menu.
Keywords should not be a partial match of another keyword such as "cr"
which is a partial match of "create".

Adding Path Aliases

The developer can define a path alias to simplify references to objects or
devices with lengthy pathnames. Whenever a pathname is referenced that
does not begin with a "/" or a "$" the Interpreter will check the alias file.
For example,

MYFILES=$lDofE/II!Yfiles

would allow the developer to refer to a text file in the directory
$HOME/myfiles as MYFILES/Text.file. In addition, more than one possible
path my be assigned to a single alias by separating each path with a colon (:).
For example,

FMLI 19-57

FMLI and the UNIX Operating System

MYFILES=$lDom/myfiles: /usr/sp:x>l/uucppublic

would search $HOMEjmyfiles first, and if the file is not found search
jusrjspooljuucppublic whenever the alias MYFILES is used. This is similar
to the way $P A TH is searched in UNIX. The alias file is specified to the Inter
preter with the -a option during invocation.

Changing the Time of Evaluation

A feature of the Interpreter is the ability to expand the value of any
descriptor. Typically, the name descriptor in a form object would be a literal
string. However, you can let the NAME field be a calculated value. For
example, suppose you want the name of a field to be the value of an environ
ment variable called $MYNAME. It is legal to say name=$MYNAME. When
the form object is read, the label of that field will be the expansion of the vari
able MYNAME. In fact, each time any value of a field changes in a form, this
variable will be re-expanded.

In some cases, this approach may cause inefficiency. Consequently, two
"casts" are provided to control this: CaNST and VARY. If these directives
are used, they must appear after the equal sign (=) on the descriptor line. For
example,

name~ $MYNAME

would define "name" as whatever the variable MYNAME expanded to when
the object is opened. The value will never be expanded again as long as the
object remains opened, even if a reread or update is issued.

If the directive CaNST appears, the field will only be expanded once. If
the directive VARY appears, then the descriptor will be re-evaluated each time
the object changes.

The use of CaNST can make a form, menu, or text operation more effi
cient, especially when the value of a descriptor is a backquoted expression
which calls UNIX system commands.

The CaNST keyword should be used with' caution because the assump
tion here is that this descriptor value is always constant and never needs to be
re-evaluated.

19-58 PROGRAMMER'S GUIDE

The Manual Pages

The following manual pages are for the FMLI built-in functions. The func
tions included are:

• coproc

• echo

• indicator

• message

• pathconv

• readfile, longline

• regex

• reset

• run

• set, unset

• shell

• getitems

• reinit

• setcolor

• getwdw

FMLI 19-59

Appendix A: Index to Utilities
Throughout the text of this guide, commands are discussed without identi

fying the package to which the command belongs. The assumption has been
that all command packages are present on the machine on which you are
working.

If some commands seem to produce only a not fOUIXi message on your
computer, it may be that the package to which the command belongs has not
been installed. If that happens, check with the administrator of your system .

• AT&T Windowing Utilities
ismpx ... ismpx(l)
jterm .. jterm(l)
jwin .. jwin(l)
layers ... layers(l)
relogin .. relogin(lM)
xtt ... xtt(lM)
xtd ... xtd(lM)
xts .. xts(lM)

• Basic Networking Utilities
ct ... ct(lC)
cu ... cu(lC)
Uutry .. Uutry(lM)
uucheck .. uucheck(lM)
uucico .. uucico(lM)
uucleanup ... uucleanup(lM)
uucp .. uucp(lC)
uugetty .. uugetty(lM)
uulog ... uucp(lC)
uuname ... uucp(lC)
uupick .. uuto(lC)
uusched .. uusched(lM)
uustat .. uustat(lC)
uuto ... uuto(lC)
uux .. uux(lC)
uuxqt ... uuxqt(lM)

INDEX TO UTILITIES A-1

Appendix A: Index to Utilities

• BASIC Programming Language Utilities
basic ... basic (1)

• C Programming Language Utilities
cc .. cc(1)
cpp ... cpp(1)
list ... list(1)

• Advanced C Utilities
cb ... cb(1)
cflow ... cflow (1)
ctrace .. ctrace(1)
ctc .. ctc(1)
ctcr ... ctcr(1)
cxref ... cxref(1)
lint .. lint(1)
regcmp ... regcmp(1)

• Cartridge Tape Utilities
cmpress ... cmpress(1M)
ctccpio ... ctccpio(1M)
ctcfmt ... ctcfmt(1M)
ctcinfo .. ctcinfo (1 M)
finc ... finc(1M)
frec frec (1 M)
tar .. tar(1)

• Directory and File Management Utilities
ar ... ar(1)
awk ... awk(1)
bdiff ... bdiff(1)
bfs ... bfs(1)
col ... col(1)
comm ... comm(1)
csplit .. csplit(1)
cut ... cut(1)
diff3 .. diff3 (1)
dircmp .. dircmp(1)
egrep ... egrep (1)
fgrep .. fgrep(1)
find .. find(1)

A·2 PROGRAMMER'S GUIDE

---------------- Appendix A: Index to Utilities

join .. join(l)
newform ... newform(l)
nl .. nl(l)
od .. od(l)
pack .. pack(l)
paste .. paste(l)
pcat .. pack(l)
pg ... pg(l)
sdiff .. sdiff(l)
split ... split(l)
sum ... sum(l)
tail ... tail(l)
touch .. touch(l)
tr .. tr(l)
uniq .. uniq(l)
unpack ... pack(l)

• Editing Utilities
edit .. edit(l)
ex .. ex(l)
vi ... vi(l)

• Essential Utilities
brc ... brc(lM)
cat .. cat(l)
cd ... cd(l)
checkall .. fsck(lM)
checkfsys .. checkfsys(lM)
chgrp .. chown(l)
chmod .. chmod(l)
chown ... chown(l)
ckauto .. ckauto(lM)
ckbupscd ... ckbupscd(lM)
clri ... clri (1 M)
cmp ... cmp(l)
cp ... cp(l)
cpio ... cpio(l)
cron ... cron(lM)
date ... date(l)
dd ... dd(lM)
devinfo .. devinfo(lM)

INDEX TO UTILITIES A-3

Appendix A: Index to Utilities

devnm ... devnm(lM)
df ... df(lM)
diff .. diff(l)
disks ... disks(lM)
drvinstall .. drvinstall(lM)
du ... du(lM)
echo ... echo(l)
ed ... ed(l)
editsa .. editsa(lM)
edittbl .. edittbl(lM)
errdump ... errdump(lM)
expr ... expr(l)
false ... true(l)
file ... file(l)
fmtflop ... fmtflop(lM)
fmthard ... fmthard(lM)
fsck ... fsck(lM)
fsstat .. fsstat(lM)
fstyp ... fstyp(lM)
getmajor .. getmajor(lM)
getopt .. getopt(l)
getoptcvt getoptcvt (1)
getopts ... getopts(l)
getty ... getty(lM)
grep .. grep(l)
hdeadd ... hdeadd(lM)
hdefix ... hdefix(lM)
hdelogger ... hdelogger (1 M)
i286 .. machid(l)
i386 .. machid(l)
id ... id(lM)
init ... init(lM)
kill .. kill(l)
killall ... killall(lM)
labelit ... labelit(lM)
led ... led(lM)
In .. cp(l)
login .. login(l)
Is .. ls(l)
machid ... machid(l)
mail .. mail(l)

A-4 PROGRAMMER'S GUIDE

---------------- Appendix A: Index to Utilities

mailx ... mailx (1)
mesg .. mesg(l)
mkdir ... mkdir(l)
makefsys ... makefsys(lM)
makehdfsys .. makehdfsys(lM)
mkboot .. mkboot(lM)
mkfs ... mkfs(lM)
mkmenus .. mkmenus(l)
mknod .. mknod(lM)
mkunix ... mkunix(lM)
mount .. mount(lM)
mountall .. mountall(lM)
mounfsys ... mounfsys(lM)
mv .. cp(l)
newboot ... newboot(lM)
newgrp .. newgrp(lM)
news .. news(l)
passwd .. passwd(l)
pdpll .. machid(l)
powerdown .. powerdown(lM)
pr .. pr(l)
prtvtoc .. prtvtoc(lM)
ps ... ps(l)
pump .. pump(lM)
pwd .. pwd(l)
reO ... rcO(lM)
re2 ... rc2(lM)
red .. ed(l)
restart ... restart(lM)
rm .. rm(l)
rmail ... mail(l)
rmdir ... rm(l)
rsh .. sh(l)
sanityek .. sanityck(lM)
sed .. sed(l)
setclk ... setclk(lM)
setmnt ... setmnt(lM)
setup ... setup(l)
sh ... sh(l)
shutdown .. shutdown(lM)
sleep .. sleep (1)

INDEX TO UTILITIES A-5

Appendix A: Index to Utilities

sort ... sort(l)
stty ... stty(l)
su .. su(lM)
sync ... sync(lM)
sysadm .. sysadm (1)
tee ... tee(l)
test ... test(l)
touch .. touch(l)
true .. true(l)
u3b2 ... machid(l)
umask ... umask(l)
umount .. mount(lM)
umountall .. mountall(lM)
uname .. uname(l)
wait ... wait(l)
wall ... wall(l)
wc .. wc(l)
who .. who(l)
write .. write(l)

• Graphics Utilities
abs ... stat(lG)
af ... stat(lG)
bar ... stat(lG)
bel .. gutil(lG)
bucket ... stat(lG)
ceil ... stat(lG)
cor ... stat(lG)
cusum .. stat(lG)
cvrtopt ... gutil(lG)
dtoc .. toc(lG)
erase .. gdev(l G)
exp .. stat(lG)
floor .. stat(lG)
gamma .. stat(lG)
gas ... stat(lG)
gd .. gutil(lG)
ged .. ged(lG)
graph ... graph(lG)
graphics .. graphics(lG)
gtop ... gutil(lG)

A·6 PROGRAMMER'S GUIDE

---------------- Appendix A: Index to Utilities

hardcopy ... gdev(lG)
hilo .. stat(lG)
hist .. stat(lG)
hpd ... gdev(lG)
label .. stat(lG)
list ... stat(lG)
log ... stat(lG)
lreg .. stat(lG)
mean ... stat(lG)
mod ... stat(lG)
pair .. stat(lG)
pd .. gutil(lG)
pie ... stat(lG)
plot .. stat(lG)
point .. stat(lG)
power ... stat(lG)
prime ... stat(lG)
prod .. stat(lG)
ptog ... gutil(lG)
qsort .. stat(lG)
quit .. gutil(lG)
rand .. stat(lG)
rank ... stat(lG)
remcom ... gutil(lG)
root .. stat(lG)
round .. stat(lG) .
siline ... stat(lG)
sin ... stat(lG)
spline .. spline(lG)
subset .. stat(lG)
td ... gdev(lG)
tekset .. gdev(lG)
title .. stat(lG)
total ... stat(lG)
tplot ... tplot(lG)
ttoc ... toc(lG)
var ... stat(lG)
vtoc .. toc(lG)
whatis .. gutil(lG)
yoo .. gutil(lG)

INDEX TO UTILITIES A·7

Appendix A: Index to Utilities

• Help Utilities
glossary .. glossary(l)
help .. help(l)
helpadm .. helpadm(l)
helpadm .. helpadm(lM)
locate .. locate(l)
starter .. starter(l)
usage .. usage(l)

• Inter-Process Communications Utilities
ipcrm .. ipcrm(l)
ipcs .. ipcs(l)

• Line Printer Spooling Utilities
accept ... accept(lM)
cancel ... lp(l)
disable .. enable(l)
enable ... enable(l)
lp .. Ip(l)
Ipadmin .. Ipadmin(lM)
lpsched .. Ipsched(lM)
lpstat ... lpstat(l)
reject .. accept(lM)

• Networking Support Utilities
nlsadmin ... nlsadmin(lM)
strace ... strace(lM)
strclean .. strclean(lM)
strerr .. strerr(lM)

• Performance Measurement Utilities
pro filer ... pro filer (1 M)
sadp .. sadp(lM)
sag ... sag(lG)
sar ... sar(l)
sar .. sar(lM)
timex ... timex(l)

A-a PROGRAMMER'S GUIDE

----------------- Appendix A: Index to Utilities

• Remote File Sharing Utilities
adv ... adv(lM)
dname ... dname(lM)
fumount ... fumount(lM)
fusage .. fusage(lM)
idload ... idload(lM)
nsquery ... nsquery(lM)
rfadmin ... rfadlnin(lM)
rfpasswd .. rfpasswd(lM)
rfstart .. rfstart(lM)
rfstop .. rfstop(lM)
rfuadmin ... rfuadmin(lM)
rfudaemon ... rfudaemon(lM)
rmntstat .. rmntstat(lM)
rmount ... rmount(lM)
rmountall ... rmountall(lM)
unadv ... unadv(lM)

• Security Administration Utilities
crypt .. crypt(l)
makekey ... makekey(l)

• Software Generation Utilities
ar .. ar(l)
as .. as(l)
conv ... conv(l)
convert .. convert(l)
cprs ... cprs(l)
dis ... dis (1)
dump .. dump(l)
Id .. Id(l)
lorder ... lorder(l)
m4 .. m4(1)
mkshlib .. mkshlib(l)
nm .. nm(l)
size .. size(l)
strip .. strip(l)
tsort .. tsort(l)

INDEX TO UTILITIES A-9

Appendix A: Index to Utilities ----------------

• Extended Software Generation Utilities
lex ... lex(1)
install '"'''''' ""'''''''''''''' .. install (1M)
make ... make(l)
mcs .. mcs(l)
prof ... prof (1)
sdb ... sdb(l)
yacc ... yacc(l)

• Source Code Control System Utilities
admin .. admin(l)
cdc .. cdc(l)
comb ... comb(l)
delta ... delta(l)
get ... get(l)
help .. help (1)
prs ... prs (1)
rmdel .. rmdel(l)
sact .. sact(l)
sccsdiff ... sccsdiff(l)
unget .. unget(l)
val ... val (1)
vc .. vc(l)
what .. what(l)

• Spell Utilities
deroff ... deroff (1)
hashcheck .. spell (1)
hashmake .. spell(l)
spell .. spell(l)
spellin .. spell(l)

• System Administration Utilities
chroot .. chroot(lM)
crash .. crash(lM)
dcopy ... dcopy(lM)
ff ... ff(lM)
fltboot .. fltboot(lM)
fsdb ... fsdb(lM)
fuser ... fuser (1 M)
ldsysdump ... Idsysdump(lM)

A·10 PROGRAMMER'S GUIDE

Appendix A: Index to Utilities

link ... link (1 M)
mvdir .. mvdir(lM)
ncheck .. ncheck(lM)
prtconf .. prtconf (1 M)
pwck .. pwck(lM)
swap .. swap(lM)
sysdef ... sysdef(lM)
uadmin .. uadmin(lM)
volcopy ... volcopy(lM)
whodo ... whodo(lM)

• Terminal Filters Utilities
300 ... 300(1)
300s ... 300(1)
4014 ... 4014(1)
450 ... 450(1)
greek ... greek(l)
hp .. hp(l)
hpio .. hpio(l)

• Terminal Information Utilities
captoinfo ... captoinfo(lM)
infocmp .. infocmp(lM)
tic .. tic(lM)
tput .. tput(l)

• User Environment Utilities
at ... at(l)
banner .. banner(l)
basename .. basename(l)
batch ... at(l)
bc ... bc(l)
cal .. cal(l)
calendar ... calendar(l)
crontab ... ; crontab(l)
dc ... dc(l)
dirname ... basename(l)
env ... env(l)
factor .. factor(l)
i286 .. machid(l)
i386 .. machid(l)

INDEX TO UTILITIES A·11

Appendix AI Index to Utllitie. ---------------

line ... line(l)
logname ... logname(l)
nice .. nice(l)
nohup ... nohup(l)
shl ... shl(l)
tabs .. tabs(l)
time .. time(l)
tty .. tty(l)
u3b ... machid(l)
u3b5 ... machid(l)
units ... units(l)
vax ... machid(l)
xargs .. xargs(l)

A·12 PROGRAMMER'S GUIDE

Glossary
Ada

ANSI standard

a.out file

application program

archive

Named after the Countess of Lovelace, the nineteenth
century mathematician and computer pioneer, Ada is
a high-level general-purpose programming language
developed under the sponsorship of the U.S. Depart
ment of Defense. Ada was developed to provide con
sistency among programs originating in different
branches of the military. Ada features include pack
ages that make data objects visible only to the
modules that need them, task objects that facilitate
parallel processing, and an exception-handling
mechanism that encourages well-structured error pro
cessing.

ANSI is the acronym for the American National
Standards Institute. ANSI establishes guidelines in
the computing industry, from the definition of ASCII
to the determination of overall datacom system perfor
mance. ANSI standards have been established for
both the Ada and FORTRAN programming languages,
and a standard for C has been proposed.

a.out is the default file name used by the link editor
when it outputs a successfully compiled, executable
file. a.out contains object files that are combined to
create a complete working program. Object file for
mat is described in Chapter 11, "The Common Object
File Format," and in a.out(4) in the Programmer's
Reference Manual.

An application program is a working program in a
system. Such programs are usually unique to one
type of users' work, although some application pro
grams can be used in a variety of business situations.
An accounting application, for example, may well be
applicable to many different businesses.

An archive file or archive library is a collection of data
gathered from several files. Each of the files within
an archive is called a member. The command ar(l)
collects data for use as a library.

GLOSSARY G·1

Glossary

argument An argument is additional information that is passed
to a command or a function. On a command line, an
argument is a character string or number that follows
the command name and is separated from it by a
space. There are two types of command-line argu
ments: options and operands. Options are immedi
ately preceded by a minus sign (-) and change the
execution or output of the command. Some options
can themselves take arguments. Operands are pre
ceded by a space and specify files or directories that
will be operated on by the command. For example, in
the command

pr -t -h Heading file

all elements after the pr are arguments. -t and -h are
options, Heading is an argument to the -h option,
and file is an operand.

For a function, arguments are enclosed within a pair
of parentheses immediately following the function
name. The number of arguments can be zero or
more; if more than two are present, they are separated
by commas and the whole list enclosed by the
parentheses. The formal definition of a function, such
as might be found on a page in Section 3 of the
Programmer's Reference Manual, describes the number
and data type of argument(s) expected by the func
tion.

ASCII ASCII is an acronym for American Standard Code for
Information Interchange, a standard for data represen
tation that is followed in the UNIX system. ASCII
code represents alphanumeric characters as binary
numbers. The code includes 128 upper- and lower
case letters, numerals, and special characters. Each
alphanumeric and special character has an ASCII code
(binary) equivalent that is one byte long.

G·2 PROGRAMMER'S GUIDE

assembler

assembly language

BASIC

branch table

buffer

byte

Glossary

The assembler is a translating program that accepts
instructions written in the assembly language of the
computer and translates them into the binary
representation of machine instructions. In many
cases, the assembly language instructions map 1 to 1
with the binary machine instructions.

A programming language that uses the instruction set
that applies to a particular computer.

BASIC is a high-level conversational programming
language that allows a computer to be used much like
a complex electronic calculating machine. The name
is an acronym for Beginner's All-purpose Symbolic
Instruction Code.

A branch table is an implementation technique for fix
ing the addresses of text symbols, without forfeiting
the ability to update code. Instead of being directly
associated with function code, text symbols label jump
instructions that transfer control to the real code.
Branch table addresses do not change, even when one
changes the code of a routine. Jump table is another
name for branch table.

A buffer is a storage space in computer memory
where data are stored temporarily into convenient
units for system operations. Buffers are often used by
programs, such as editors, that access and alter text or
data frequently. When you edit a file, a copy of its
contents are read into a buffer where you make
changes to the text. For the changes to become part
of the permanent file, you must write the buffer con
tents back into the permanent file. This replaces the
contents of the file with the contents of the buffer.
When you quit the editor, the contents of the buffer
are flushed.

A byte is a unit of storage in the computer. On many
UNIX systems, a byte is eight bits (binary digits), the
equivalent of one character of text.

GLOSSARY G·3

Glossary

byte order

C

C compiler

C preprocessor

CCS

Byte order refers to the order in which data are stored
in computer memory.

The C programming language is a general-purpose
programming language that features economy of
expression, control flow, data structures, and a variety
of operators. It can be used to perform both high
level and low-level tasks. Although it has been called
a system programming language, because it is useful
for writing operating systems, it has been used equally
effectively to write major numerical, text-processing,
and data base programs. The C programming
language was designed for and implemented on the
UNIX system; however, the language is not limited to
anyone operating system or machine.

The C compiler converts C programs into assembly
language programs that are eventually translated into
object files by the assembler.

The C preprocessor is a component of the C Compila
tion System. In C source code, statements preceded
with a pound sign (#) are directives to the preproces
sor. Command line options of the cc(l) command
may also be used to control the actions of the prepro
cessor. The main work of the preprocessor is to per
form file inclusions and macro substitution.

CCS is an abbreviation (ititialization) for C Compila
tion System, which is a set of programming language
utilities used to produce object code from C source
code. The major components of a C Compilation Sys
tem are a C preprocessor, C compiler, assembler, and
link editor. The C preprocessor accepts C source code
as input, performs any preprocessing required, and
passes the processed code to the C compiler. The C
compiler produces assembly language code that it
passes to the assembler. The assembler, in tum, pro
duces object code that can be linked to other object
files by the link editor. The object files produced are
in the Common Object File Format (COFF). Other
components of CCS include a symbolic debugger, an

G·4 PROGRAMMER'S GUIDE

COBOL

COFF

command

Glossary

optimizer that makes the code produced as efficient as
possible, productivity tools that are used to read and
manipulate object files, and libraries that provide run
time support, access to system calls, input/output,
string manipulation, mathematical functions, and
other code-processing functions.

COBOL is an acronym for COmmon Business
Oriented Language. COBOL is a high-level program
ming language designed for business and commercial
applications. The English-language statements of
COBOL provide a relatively machine-independent
method of expressing a business-oriented problem to
the computer.

COFF is an acronym for Common Object File Format.
COFF refers to the format of the output file produced
on some UNIX systems by the assembler and the link
editor. This format is also used by other operating
systems. The following are some of its key features:

D Applications may add system-dependent informa
tion to the object file without causing access utili
ties to become obsolete.

D Space is provided for symbolic information used
by debuggers and other applications.

D Users may make some modifications in the object
file construction at compile time.

A command is the term commonly used to refer to an
instruction that a user types at a computer terminal
keyboard. It can be the name of a file that contains
an executable program or a shell script that can be
processed or executed by the computer on request. A
command is composed of a word or string of letters
and/or special characters that can continue for several
(terminal) lines, up to 256 characters. A command
name is sometimes used interchangeably with a pro
gram name.

GLOSSARY G-5

Glossary

command line

compiler

core

core file

core image

curses

A command line is composed of the command name
followed by any argument(s) required by the com
mand or optionally included by the user. The manual
page for a command includes a command line
synopsis in a notation designed to show the correct
way to type in a command, with or without options
and arguments.

A compiler transforms the high-level language instruc
tions in a program (the source code) into object code
or assembly language. Assembly language code may
then be passed to the assembler for further translation
into machine instructions.

Core is a (mostly archaic) synonym for primary
memory.

A core file is an image of a terminated process saved
for debugging. A core file is created under the name
"core" in the current directory of the process when
an abnormal event occurs resulting in the process' ter
mination. A list of these events is found in the sig
nal(2) manual page in section 2 of the Programmer's
Reference Manual.

Core image is a copy of all the segments of a running
or terminated program. The copy may exist in main
storage, in the swap area, or in a core file.

curses(3X) is a library of C routines that are designed
to handle input, output, and other operations in
screen management programs. The name curses
comes from the cursor optimization that the routines
provide. When a screen management program is run,
cursor optimization minimizes the amount of time a
cursor has to move about a screen to update its con
tents. The program refers to the terminfo(4) data
base at run time to obtain the information that it
needs about the screen (terminal) being used. See ter
minfo(4) in the Programmer's Reference Manual.

G·6 PROGRAMMER'S GUIDE

data symbol

data base

debug

default

delimiter

directory

Glossary

A data symbol names a variable that mayor may not
be initialized. Normally, these variables reside in
read/write memory during execution. See text sym
bol.

A data base is a bank of information on a particular
subject or subjects. On-line data bases are designed
so that by using subject headings, key words, or key
phrases you can search for, analyze, update, and print
out data.

Debugging is the process of locating and correcting
errors in computer programs.

A default is the way a computer will perform a task in
the absence of other instructions.

A delimiter is an initial character that identifies the
next character or character string as a particular kind
of argument. Delimiters are typically used for option
names on a command line; they identify the associ
ated word as an option (or as a string of several
options if the options are bundled). In the UNIX sys
tem command syntax, a minus sign (-) is most often
the delimiter for option names, for example, -8 or -D,

although some commands also use a plus sign (+).

A directory is a type of file used to group and organ
ize other files or directories. A directory consists of
entries that specify further files (including directories)
and constitutes a node of the file system. A subdirec
tory is a directory that is pointed to by a directory one
level above it in the file system organization.

The 18(1) command is used to list the contents of a
directory. When you first log onto the system, you
are in your home directory ($HOME). You can move
to another directory by using the cd(l) command and
you can print the name of the current directory by
using the pwd(1) command. You can also create new
directories with the mkdir(1) command and remove
empty directories with rmdir(1).

GLOSSARY G-7

Glossary

dynamic linking

environment

A directory name is a string of characters that identi
fies a directory. It can be a simple directory name, the
relative path name or the full path name of a direc
tory.

Dynamic linking refers to the ability to resolve sym
bolic references at run time. Systems that use
dynamic linking can execute processes without resolv
ing unused references. See static linking.

An environment is a collection of resources used to
support a function. In the UNIX system, the shell
environment is composed of variables whose values
define the way you interact with the system. For
example, your environment includes your shell
prompt string, specifics for backspace and erase char
acters, and commands for sending output from your
terminal to the computer.

An environment variable is a shell variable such as
$HOME (which stands for your login directory) or
$PATH (which is a list of directories the shell will
search through for executable commands) that is part
of your environment. When you log in, the system
executes programs that create most of the environ
mental variables that you need for the commands to
work. These variables come from fete/profile, a file
that defines a general working environment for all
users when they log onto a system. In addition, you
can define and set variables in your personal .profile
file, which you create in your login directory to tailor
your own working environment. You can also tem
porarily set variables at the shell level.

G·8 PROGRAMMER'S GUIDE

executable file

exit

Glossary

An executable file is a file that can be processed or
executed by the computer without any further transla
tion. That is, when you type in the file name, the
commands in the file are executed. An object file that
is ready to run (ready to be copied into the address
space of a process to run as the code of that process)
is an executable file. Files containing shell commands
are also executable. A file may be given execute per
mission by using the chmod(l) command. In addition
to being ready to run, a file in the UNIX system needs
to have execute permission.

A specific system call that causes the termination of a
process. The exit(2) call will close any open files and
clean up most other information and memory which
was used by the process.

exit status: return code

exported symbol

expression

file

An exit status or return code is a code number
returned to the shell when a command is terminated
that indicates the cause of termination.

A symbol that a shared library defines and makes
available outside the library. See imported symbol.

An expression is a mathematical or logical symbol or
meaningful combination of symbols. See regular
expression.

A file is an identifiable collection of information that,
in the UNIX system, is a member of a file system. A
file is known to the UNIX system as an inode plus the
information the inode contains that tells whether the
file is a plain file, a special file, or a directory. A plain
file may contain text, data, programs, or other infor
mation that forms a coherent unit. A special file is a
hardware device or portion thereof, such as a disk
partition. A directory is a type of file that contains the
names and inode addresses of other plain, special, or
directory files.

GLOSSARY G·g

Glossary

file and record locking

file descriptor

file system

filter

The phrase "file and record locking" refers to
software that protects records in a data file against the
possibility of being changed by two users at the same
time. Records (or the entire file) may be locked by
one authorized user while changes are made. Other
users are thus prevented from working with the same
record until the changes are completed.

A file descriptor is a number assigned by the operat
ing system to a file when the file is opened by a pro
cess. File descriptors 0, I, and 2 are reserved; 0 is
reserved for standard input (stdin), 1 is reserved for
standard output (stdout), and 2 is reserved for stand
ard error output (stderr).

A UNIX file system is a hierarchical collection of
directories and other files that are organized in a tree
structure. The base of the structure is the root (/)
directory; other directories, all subordinate to the root,
are branches. The collection of files can be mounted
on a block special file. Each file of a file system
appears exactly once in the inode list of the file sys
tem and is accessible via a single, unique path from
the root directory of the file system.

A filter is a program that reads information from
standard input, acts on it in some way, and sends its
results to standard output. It is called a filter because
it can be used as a data transformer in a pipeline.
Filters are different from editors and other commands
because filters do not change the contents of a file.
Examples of filters are grep(l) and tail(I), which
select and output part of the input; sort(1), which
sorts the input; and wc(I), which counts the number
of words, characters, and lines in the input. sed(l)
and awk(l) are also filters but they are called pro
grammable filters or data transformers because, in
addition to the data to be transformed, a program
must be supplied as input.

~·1 0 PROGRAMMER'S GUIDE

flag

fork

FORTRAN

function

header file

GI088ary

A flag or option is used on a command line to signal a
specific condition to a command or to request particu
lar processing. UNIX system flags are usually indi
cated by a leading hyphen (-). The word option is
sometimes used interchangeably with flag. Flag is
also used as a verb to mean "to point out" or "to
draw attention to". See option.

fork(2) is a system call that divides a new process into
two processes, the parent process and the child
processes, with separate, but initially identical, text,
data, and stack segments. After duplication, the child
(created) process is given a return code of 0 and the
parent process is given the process id of the newly
created child as the return code.

FORTRAN is an acronym for FORmula TRANslator.
It is a high-level programming language originally
designed for scientific and engineering calculations,
but is now widely adapted for many business uses
also.

A function is a task done by a computer. In most
modem programming languages, programs are made
up of functions and procedures which perform small
parts of the total job to be done.

A header file is used in programming and in docu
ment formatting. In a programming context, a header
file is a file that usually contains shared data declara
tions that are to be copied into source programs as
they are compiled. A header file includes symbolic
names for constants, macro definitions, external vari
able references and inclusion of other header files.
The name of a header file customarily ends with '.h'
(dot-h). Similarly, in a document formatting context,
header files contain general formatting macros that
describe a common document type and can be used
with many different document bodies.

GLOSSARY G·11

Glossary

high-level language

host machine

A high-level language is a computer programming
language such as C, FORTRAN, COBOL, or PASCAL
that uses symbols and command statements represent
ing actions the computer is to perform, the exact steps
for a machine to follow. A high-level language must
be translated into machine language by a compilation
system before a computer can execute it. A charac
teristic of a high-level language is that each statement
usually translates into a series of machine language
instructions. Low-level details of the computer's inter
nal organization are left to the compilation system.

A host machine is the machine on which an a.out file
is built.

imported symbol A symbol used but not defined by a shared library.
See exported symbol.

interpreted language An interpreted language is a high-level language that
is not translated by a compilation system and stored
in an executable object file. The statements of a pro
gram in an interpreted language are translated each
time the program is executed.

Interprocess Communication

interrupt

Interprocess Communication describes software that
enables independent processes running at the same
time to exchange information through messages,
semaphores, or shared memory.

An interrupt is a break in the normal flow of a system
or program. Interrupts are initiated by signals that are
generated by a hardware condition or a peripheral
device indicating that a certain event has happened.
When the interrupt is recognized by the hardware, an
interrupt handling routine is executed. An interrupt
character is a character (normally ASCII) that, when
typed on a terminal, causes an interrupt. You can
usually interrupt UNIX programs by pressing the
delete or break keys, by typing Control-d, or by using
the kill(l) command.

G·12 PROGRAMMER'S GUIDE

I/0 (Input/Output)

kernel

lexical analysis

library

Glossary

I/0 is the process by which information enters (input)
and leaves (output) the computer system.

The kernel (comprising 5 to 10 percent of the operat
ing system software) is the basic resident software on
which the UNIX system relies. It is responsible for
most operating system functions. It schedules and
manages work done by the computer and maintains
the file system. The kernel has its own text, data, and
stack areas.

Lexical analysis is the process by which a stream of
characters (often comprising a source program) is sub
divided into its elementary words and symbols (called
tokens). The tokens include the reserved words of the
language, its identifiers and constants, and special
symbols such as =, :=, and;. Lexical analysis enables
you to recognize, for example, that the stream of char
acters 'print(" hello, universe"), is to be analyzed into
a series of tokens beginning with the word 'print' [not
with the string 'print(" h.']. In compilers, a lexical
analyzer is often called by the compiler's syntactic
analyzer or parser, which determines the statements
of the program (that is, the proper arrangements of its
tokens).

A library is an archive file that contains object code
and/or files for programs that perform common tasks.
The library provides a common source for object code,
thus saving space by providing one copy of the code
instead of requiring every program that wants to
incorporate the functions in the code to have its own
copy. The link editor may select functions and data
as needed.

GLOSSARY G-13

Glossary

link editor

magic number

make file

manual page

null pointer

object code

optimizer

A link editor, or loader, collects and merges separately
compiled object files by linking together object files
and the libraries that are referenced into executable
load modules. The result is an a.out file. Link editing
may be done automatically when you use the compi
lation system to process your programs on the UNIX
system. You can also link edit previously compiled
files by using the ld(l) command.

The magic number is contained in the header of an
a.out file. It indicates what the type of the file is,
whether shared or non-shared text, and on which pro
cessor the file is executable.

A makefile is a file that lists dependencies among the
source code files of a software product and methods
for updating them, usually by recompilation. The
make(l) command uses the makefile to maintain self
consistent software.

A manual page, or "man page" in UNIX system jar
gon, is the repository for the detailed description of a
command, a system call, a subroutine, or some other
UNIX system component.

A null pointer is a C pointer with a value of O.

Object code is executable machine-language code pro
duced from source code or from other object files by
an assembler or a compilation system. An object file
is a file of object code and associated data. An object
file that is ready to run is an executable file.

An optimizer, an optional step in the compilation pro
cess, improves the efficiency of the assembly language
code. The optimizer reduces the space used by, and
speeds the execution time of, the code.

G-14 PROGRAMMER'S GUIDE

option

parent process

parse

PASCAL

path name

Glossary

An option is an argument used in a command line to
modify program output by modifying the execution of
a command. It is usually one character preceded by a
hyphen (-). When you do not specify any options, the
command will execute according to its default options.
For example, in the command line

Is -a -1 directory

-a and -1 are the options that modify the Is(l) com
mand to list all directory entries, including entries
whose names begin with a period (.), in the long for
mat (including permissions, size, and date).

A parent process occurs when a process is split into
two, a parent process and a child process, with
separate, but initially identical text, data, and stack
segments.

To parse is to analyze a sentence in order to identify
its components and to determine their grammatical
relationship. In computer terminology the word has a
similar meaning, but instead of sentences, program
statements or commands are analyzed.

PASCAL is a multipurpose high-level programming
language often used to teach programming. It is
based on the ALGOL programming language and
emphasizes structured programming.

A path name is a way of designating the exact loca
tion of a file in a file system. It is made up of a series
of directory names that proceed down the hierarchical
path of the file system. The directory names are
separated by a slash character (j). The last name in
the path is either a file or another directory. If the
path name begins with a slash, it is called a full path
name; the initial slash means that the path begins at
the root directory.

GLOSSARY G·15

Glossary

permissions

pipe

A path name that does not begin with a slash is
known as a relative path name, meaning relative to
the present working directory. A relative path name
may begin either with a directory name or with two
dots followed by a slash (.. f). One that begins with a
directory name indicates that the ultimate file or direc
tory is below the present working directory in the
hierarchy. One that begins with .. f indicates that the
path first proceeds up the hierarchy; .. f is the parent
of the present working directory.

Permissions are a means of defining a right to access a
file or directory in the UNIX file system. They are
granted separately to you, the owner of the file or
directory, your group, and all others. There are three
basic permissions:

D Read permission (r) includes permission to cat,
pg, lp, and cp a file.

D Write permission (w) is the permission to change
a file.

D Execute permission (x) is the permission to run an
executable file.

Permissions can be changed with the UNIX system
ehmod(l) command.

A pipe causes the output of one command to be used
as the input for the next command so that the two run
in sequence. You can do this by preceding each com
mand after the first command with the pipe symbol
(I), which indicates that the output from the process
on the left should be routed to the process on the
right. For example, in the command

who I we-l

the output from the who(l) command, which lists the
users who are logged on to the system, is used as
input for the word-count command, we(l), with the 1
option. The result of this pipeline (succession of com
mands connected by pipes) is the number of people
who are currently logged on to the system.

G·16 PROGRAMMER'S GUIDE

portable

preprocessor

process

program

regular expression

Glossary

Portability describes the degree of ease with which a
program or a library can be moved or ported from one
system to another. Portability is desirable because
once a program is developed it is used on many sys
tems. If the program writer must change the program
in many different ways before it can be distributed to
the other systems, time is wasted, and each modifica
tion increases the chances for an error.

Preprocessor is a generic name for a program that
prepares an input file for another program. For exam
ple, neqn(l) and tbl(l) are preprocessors for nroff(l).
grap(l) is a preprocessor for pic(l). cpp(l) is a
preprocessor for the C compiler.

A process is a program that is at some stage of execu
tion. In the UNIX system, it also refers to the execu
tion of a computer environment, including contents of
memory, register values, name of the current working
directory, status of files, information recorded at login
time, etc. Every time you type the name of a file that
contains an executable program, you initiate a new
process. Shell programs can cause the initiation of
many processes because they can contain many com
mand lines.

The process id is a unique system-wide identification
number that identifies an active process. The process
status command, ps(l), prints the process ids of the
processes that belong to you.

A program is a sequence of instructions or commands
that cause the computer to perform a specific task, for
example, changing text, making a calculation, or
reporting system status. A subprogram is part of a
larger program and can be compiled independently.

A regular expression is a string of alphanumeric char
acters and special characters that describe a character
string. It is a shorthand way of describing a pattern to
be searched for in a file. The pattern-matching func
tions of ed(l) and grep(l), for example, use regular
expressions.

GLOSSARY G-17

Glossary

routine

semaphore

shared library

shared memory

shell

signal: signal number

A routine is a discrete section of a program to accom
plish a set of related tasks

In the UNIX system, a semaphore is a sharable short
unsigned integer maintained through a family of sys
tem calls which include calls for increasing the value
of the semaphore, setting its value, and for blocking
waiting for its value to reach some value. Sema
phores are part of the UNIX system IPC facility.

Shared libraries include object modules that may be
shared among several processes at execution time.

Shared memory is an IPC (interprocess communica
tion) facility in which two or more processes can share
the same data space.

The shell is the UNIX system program-sh(l)
responsible for handling all interaction between you
and the system. It is a command language interpreter
that understands your commands and causes the com
puter to act on them. The shell also establishes the
environment at your terminal. A shell normally is
started for you as part of the login process. Three
shells, the Bourne shell, the Korn shell, and the C
shell, are popular. The shell can also be used as a
programming language to write procedures for a
variety of tasks.

A signal is a message that you send to processes or
processes send to one another. The most common
signals you might send to a process are ones that
would cause the process to stop: for example, inter
rupt, quit, or kill. A signal sent by a running process
is usually a sign of an exceptional occurrence that has
caused the process to terminate or divert from the
normal flow of control.

G·18 PROGRAMMER'S GUIDE

source code

standard error

standard input

standard output

Glossary

Source code is the programming-language version of a
program. Before the computer can execute the pro
gram, the source code must be translated to machine
language by a compilation system or an interpreter.

Standard error is an output stream from a program. It
is normally used to convey error messages. In the
UNIX system, the default case is to associate standard
error with the user's terminal.

Standard input is an input stream to a program. In
the UNIX system, the default case is to associate
standard input with the user's terminal.

Standard output is an output stream from a program.
In the UNIX system, the default case is to associate
standard output with the user's terminal.

stdio: standard input-output
stdio(3S) is a collection of functions for formatted and
character-by-character input/output at a higher level
than the basic read, write, and open operations.

static linking Static linking refers to the requirement that symbolic
references be resolved before run time. See dynamic
linking.

stream

string

strip

D A stream is an open file with buffering provided
by the stdio package.

D A stream is a full duplex, processing and data
transfer path in the kernel. It implements a con
nection between a driver in kernel space and a
process in user space, providing a general charac
ter input/output interface for user processes.

A string is a contiguous sequence of characters treated
as a unit. Strings are normally bounded by white
space(s), tab(s), or a character designated as a separa
tor. A string value is a specified group of characters
symbolized to the shell by a variable.

strip(l) is a command that removes the symbol table
and relocation bits from an executable file.

GLOSSARY G·19

Glossary

subroutine

symbol table

symbol value

syntax

system call

A subroutine is a program that defines desired opera
tions and may be used in another program to produce
the desired operations. A subroutine can be arranged
so that control may be transferred to it from a master
routine and so that, at the conclusion of the subrou
tine, control reverts to the master routine. Such a
subroutine is usually called a closed subroutine. A
single routine may be simultaneously a subroutine
with respect to another routine and a master routine
with respect to a third.

A symbol table describes information in an object file
about the names and functions in that file. The sym
bol table and relocation bits are used by the link edi
tor and by the debuggers.

The value of a symbol, typically its virtual address,
used to resolve references.

o Command syntax is the order in which command
names, options, option arguments, and operands
are put together to form a command line. The
command name is first, followed by options and
operands. The order of the options and the
operands varies from command to command.

o Language syntax is the set of rules that describe
how the elements of a programming language
may legally be used.

A system call is a request by an active process for a
service performed by the UNIX system kernel, such as
I/O, process creation, etc. All system operations are
allocated, initiated, monitored, manipulated, and ter
minated through system calls. System calls allow you
to request the operating system to do some work that
the program would not normally be able to do. For
example, the getuid(2) system call allows you to
inspect information that is not normally available
since it resides in the operating system's address
space.

G·20 PROGRAMMER'S GUIDE

target machine

Glossary

A target machine is the machine on which an a.out
file is run. While it may be the same machine on
which the a.out file was produced, the term implies
that it may be a different machine.

TCP lIP (Transmission Control Protocol/Internetwork Protocol)

terminal definition

terminfo

text symbol

tool

TCP lIP is a connection-oriented, end-to-end reliable
protocol designed to fit into a layered hierarchy of
protocols that support multi-network applications. It
is the Department of Defense standard in packet net
works.

A terminal definition is an entry in the terminfo(4)
data base that describes the characteristics of a termi
nal. See terminfo(4) and curses(3X) in the
Programmer's Reference Manual.

o a group of routines within the curses library that
handle certain terminal capabilities. For example,
if your terminal has programmable function keys,
you can use these routines to program the keys.

o a data base containing the compiled descriptions
of many terminals that can be used with
curses(3X) screen management programs. These
descriptions specify the capabilities of a terminal
and how it performs various operations (- for
example), how many lines and columns it has,
and how its control characters are interpreted. A
curses(3X) program refers to the data base at run
time to obtain information it needs about the ter
minal being used.

See curses(3X) in the Programmer's Reference Manual.
terminfo(4) routines can be used in shell programs, as
well as C programs.

A text symbol is a symbol, usually a function name,
that is defined in the .text portion of an a.out file.

A tool is a program, or package of programs, that per
forms a given task.

GLOSSARY G-21

Glossary

trap

UNIX operating system

A trap is a condition caused by an error where a pro
cess state transition occurs and a signal is sent to the
currently running process.

The UNIX operating system is a general-purpose, mul
tiuser, interactive, time-sharing operating system
developed by AT&T. An operating system is the
software on the computer under which all other
software runs. The UNIX operating system has two
basic parts:

o The kernel is the program that is responsible for
most operating system functions. It schedules
and manages all the work done by the computer
and maintains the file system. It is always run
ning and is invisible to users.

o The shell is the program responsible for handling
all interaction between users and the computer.
It includes a powerful command language called
shell language.

The utility programs or UNIX system commands are
executed using the shell, and allow users to communi
cate with each other, edit and manipulate files, and
write and execute programs in several programming
languages.

userid A userid is an integer value, usually associated with a
login name, used by the system to identify owners of
files and directories. The userid of a process becomes
the owner of files created by the process and descen
dent (forked) processes.

utility A utility is a standard, permanently available program
used to perform routine functions or to assist a pro
grammer in the diagnosis of hardware and software
errors, for example, a loader, editor, debugging, or
diagnostics package.

G·22 PROGRAMMER'S GUIDE

variable

white space

window

word

Glossary

D A variable in a computer program is an object
whose value may change during the execution of
the program, or from one execution to the next.

D A variable in the shell is a name representing a
string of characters (a string value).

D A variable normally set only on a command line
is called a parameter (positional parameter and
keyword parameter).

D A variable may be simply a name to which the
user (user-defined variable) or the shell itself may
assign string values.

White space is one or more spaces, tabs, or newline
characters. White space is normally used to separate
strings of characters, and is required to separate the
command from its arguments on a command line.

A window is a screen within your terminal screen that
is set off from the rest of the screen. If you have two
windows on your screen, they are independent of
each other and the rest of the screen.

The most common way to create windows on a UNIX
system is by using the layers capability of the
TELETYPE 5620 Dot-Mapped Display. Each window
you create with this program has a separate shell run
ning it. Each one of these shells is called a layer.

If you do not have this facility, the shl(l) command,
which stands for shell layer, offers a function similar
to the layers program. You cannot create windows
using shl(l), but you can start different shells that are
independent of each other. Each of the shells you
create with shl(l) is called a layer.

A word is a unit of storage in a computer that is com
posed of bytes of information. The number of bytes
in a word depends on the computer you are using.
The 80286 Computer has 16 bits or 2 bytes per word.
The 80386 Computer has 32 bits or 4 bytes per word,
and 16 bits or 2 bytes per half word.

GLOSSARY G-23

Index

Access Routines ... 11: 44
Accessing Values in Enclosing Rules

... 6: 38
Accumulation ... 4: 55
addchO ... 10: 19
Adding Path Aliases ... 19: 57
Additional Examples ... 4: 54
Additional get Options ... 14: 17
Additional Information about get ...

14: 5
Additional Objects ... 19: 17
Additive Operators ... 17: 17
Addresses ... 12: 2
addstrO ... 10: 21
admin Command ... 14: 26
Advanced lex Usage ... 5: 7
Advanced Programming Tools ... 3:

13
Advanced Topics ... 6: 38
After Your Code Is Written ... 2: 7
Aligning an Output Section ... 12: 12
Allocating a Section Into Named

Memory ... 12: 19
Allocation Algorithm ... 12: 26
Ambiguity and Conflicts ... 6: 18
Analysis/Debugging ... 2: 43
Appendix A: Index to Utilities ... A:

1
Application Programming ... 1: 8, 3:

2
Application-Defined Commands ...

10: 135, 10: 222
Archive ... 2: 68
Archive Libraries ... 13: 14
Argument Support for Field Types

... 10: 250
Arithmetic ... 4: 20
Arithmetic Conversions ... 17: 10
Arithmetic Functions ... 4: 60

Arrays ... 4: 33
Arrays, Pointers, and Subscripting ...

17: 53
Assembly Language ... 2: 4
Assignment Operators ... 17: 21
Assignment Statements ... 12: 5
Assignments of longs to ints ... 16: 9
Associating Windows and Subwin-

dows with a Form ... 10: 206
Associating Windows and Subwin

dows with Menus ... 10: 118
attronO, attrsetO, and attroffO ... 10:

41
Audience and Prerequisite

Knowledge ... xxi
Auditing ... 14: 39
Auxiliary Table Entries ... 11: 36
awk ... 2: 4, 3: 6
awk Summary ... 4: 58
awk with Other Commands and the

Shell ... 4: 49
Banner ... 19: 23
Basic awk ... 4: 2
Basic ETI Programming ... 10: 9
Basic Features ... 13: 2
Basic Specifications ... 6: 4
bc and dc ... 2: 6
BEGIN and END '" 4: 12
Bells, Whistles, and Flashing Lights:

beepO and flashO ... 10: 52
Binding ... 12: 2
Bitwise Exclusive OR Operator ... 17:

19
Bitwise Inclusive OR Operator ... 17:

20
Bitwise AND Operator ... 17: 19
break Statement ... 17: 40
.bss Section Header ... 11: 12
Building a Field Type from Two

INDEX 1-1

Index

Other Field Types ... 10: 245
Building a Shared Library ... 8: 16
Building an a.out File .,. 8: 4
Building Process ... 8: 16
Building the Shared Library ... 8: 58
Built-in Functions ... 19: 8
Built-in Variables .,. 4: 20, 4: 62, 4: 8
C Connection ... xxi
C Language ... 2: 3
Calling Functions ... 15: 10
Calling the Form Driver ... 10: 223
Calling the Menu Driver ... 10: 135
Categories of System Calls and Sub-

routines ... 2: 15
Cautionary Notes on Using cscope

... 18: 27
Cautionary Notes on Using lprof ...

18: 43
Caveat Emptor-Mandatory Locking

... 7: 19
cbreakO and nocbreakO ... 10: 57
cdc Command ... 14: 33
cflow ... 2: 48
Changing and Fetching the Fields

on an Existing Form '" 10: 202
Changing and Fetching the Pattern

Buffer ... 10: 149
Changing ETI Form Default Attri

butes .. , 10: 204
Changing Existing Code for the

Shared Library ... 8: 27
Changing Panel Windows ... 10: 72
Changing the Current Default

Values for Field Attributes ... 10:
174

Changing the Current Default
Values for Item Attributes ... 10:
100

Changing the Current Default
Values for Menu Attributes ...
10: 109

1-2 PROGRAMMER'S GUIDE

Changing the Current Line in the
Source File ... 15: 7

Changing the Current Source File or
Function ... 15: 7

Changing the Entry Point ... 12: 22
Changing the Form Page ... 10: 236
Changing the Time of Evaluation ...

19:58
Changing Your Menu's Mark String

... 10: 116
Character Constants ... 17: 3
Characters and Integers ... 17: 9
Checking an Item's Visibility ... 10:

100
Checking for Compatibility ... 8: 44
Checking If Panels are Hidden ... 10:

79
Checking Versions of Shared

Libraries Using chkshlib(l) ... 8:
44

Choice Requests ... 10: 222
Choosing a Programming Language

... 2: 2
Choosing Library Members ... 8: 25
Choosing Region Addresses ... 8: 16
Choosing Region Addresses and the

Target Pathname ... 8: 54
Choosing the Target Library Path-

name ... 8: 18
clearO and eraseO ... 10: 26
clrtoeolO and clrtobotO ... 10: 27
Co-processing ... 19: 51
Coding an Application ... 8: 5
Color Attributes ... 19: 25
Color Manipulation ... 10: 43
colors Program ... 10: 313
comb Command ... 14: 35
Combinations of Patterns ... 4: 18
Comma Operator .. , 17: 22
Command Line ... 4: 58
Command References '" xxiii

Command Usage ... 13: 21
Command-line Arguments ... 4: 47
Comments ... 13: 7, 17: 2
Common Object File Format (COFF)

... 3: 22, 11: 1
Common Object File Interface Mac

ros (ldfcn.h) ... 3: 27
Comparing or Printing terminfo

Descriptions ... 10: 281
Compile the Description ... 10: 279
Compiler Control Lines ... 17: 47
Compiler Diagnostic Messages ... 2:

9
Compiling an ETI Program ... 10: 12
Compiling and Link Editing ... 2: 8
Compiling and Linking Form Pro-

grams ... 10: 160
Compiling and Linking Menu Pro

grams ... 10: 87
Compiling and Linking Panel Pro

grams ... 10: 70
Compiling and Running a terminfo

Program ... 10: 267
Compiling and Running TAM

Applications under ETI ... 10:
284

Compiling C Programs ... 2: 8
Compound Statement or Block ... 17:

37
Concurrent Edits of Different SID ...

14: 18
Concurrent Edits of Same SID ... 14:

21
Conditional Compilation ... 17: 49
Conditional Operator ... 17: 21
Conditional Statement ... 17: 38
Constant Expressions ... 17: 56
Constants ... 17: 3
Continuation Lines ... 13: 7
continue Statement ... 17: 41
Control Flow Statements ... 4: 30, 4:

Index

58
Controlled Environment for Pro-

gram Testing ... 15: 8
Controlling Message Queues ... 9: 15
Controlling Semaphores ... 9: 52
Controlling Shared Memory ... 9: 88
Conventions Used in this Chapter ...

10: 3
Converting a termcap Description to

a terminfo Description ... 10:
281

Cooperation with the Shell ... 4: 49
Counting the Number of Fields ...

10: 203
Counting the Number of Menu

Items ... 10: 109
Creating a Field Type with Valida

tion Functions ... 10: 246
Creating a Profiled Version of a Pro

gram ... 18: 31
Creating an SCCS File via admin ...

14: 2
Creating and Defining Symbols at

Link-Edit Time ... 12: 17
Creating and Freeing Fields ... 10:

168
Creating and Freeing Forms ... 10:

198
Creating and Freeing Menu Items ...

10: 92
Creating and Freeing Menus ... 10:

105
Creating and Manipulating

Programmer-Defined Field
Types ... 10: 245

Creating Holes Within Output Sec-
tions ... 12: 15

Creating Panels ... 10: 71
Creation of SCCS Files ... 14: 26
cscope ... 18: 4
ctrace ... 2: 51

INDEX 1-3

Index

curses ... 2: 6, 3: 20
cxref ... 2: 55
Data File Cannot Be Found ... 18: 46
Deadlock Handling ... 7: 17
Dealing With Holes in Physical

Memory ... 12: 24
Debugging a.out Files that Use

Shared Libraries ... 8: 14
Deciding Whether to Use a Shared

Library ... 8: 5
Declarations ... 17: 23, 17: 60
Declarators ... 17: 25
Default SLKs ... 19: 13, 19: 16
Defining the Key Virtualization

Correspondence ... 10: 129
Defining the Virtual Key Mapping ...

10: 213
Definitions ... 5: 12
Definitions and Conventions ... 11: 3
Deleting Panels ... 10: 85
delta Command ... 14: 23
Delta Numbering ... 14: 7
Dependency Information ... 13: 8
Description Files and Substitutions

... 13: 7
Determining the Dimensions of

Forms ... 10: 205
Determining the Dimensions of

Menus ... 10: 111
Directional Item Navigation

Requests ... 10: 132
Displaying Forms ... 10: 205
Displaying Machine Language State-

ments ... 15: 11
Displaying Menus ... 10: 111
Displaying the Source File ... 15: 6
do Statement ... 17: 38
Documentation ... 3: 3
DSECT, COPY, NOLOAD, INFO,

and OVERLAY Sections ... 12:
28

1-4 PROGRAMMER'S GUIDE

Dynamic Dependency Parameters ...
13: 19

Early Days ... 1: 1
echoO and noechoO ... 10: 56
editor Program ... 10: 295
Elementary Panel Window Opera-

tions ... 10: 72
Enumeration Constants ... 17: 4
Enumeration Declarations ... 17: 31
Environment Variables ... 13: 22
Equality Operators ... 17: 19
Error Handling ... 2: 40, 6: 28
Error Messages ... 4: 11,14: 11
Establishing Field and Form Initiali-

zation and Termination Rou
tines ... 10: 229

Establishing Item and Menu Initiali
zation and Termination Rou
tines ... 10: 141

ETI Form Requests ... 10: 217
ETI Libraries ... 10: 5
ETI Low-Level Interface (curses) to

High-Level Functions ... 10: 66
ETI Menu Requests ... 10: 131
ETI/terminfo Connection ... 10: 7
Examining Variables ... 15: 3
Example 1: Searching for Undocu-

mented Options ... 18: 59
Example 2: Functions That Are

Never Called ... 18: 61
Example 3: Hard to Produce Error

Conditions ... 18: 61
Example Applications ... 4: 52
Example Program ... 9: 11, 9: 17, 9:

26, 9: 48, 9: 55, 9: 69, 9: 84, 9:
90,9: 101

Example terminfo Program ... 10:
267

Examples of Using cscope ... 18: 20
Examples of Using PROFOPTS ...

18: 33

exec(2) ... 2: 35
Executable Commands ... 13: 8
Explicit Long Constants ... 17: 3
Explicit Pointer Conversions ... 17:

54
Expression Statement ... 17: 37
Expressions ... 12: 4, 17: 58
Expressions and Operators ... 17: 12
Extensions of $*, $@, and $< ... 13:

9
External Data Definitions ... 17: 44
External Definitions ... 17: 43, 17: 64
External Function Definitions ... 17:

43
Failure of Data to Merge ... 18: 44
Fetching and Changing A Menu's

Display Attributes ... 10: 122
Fetching and Changing Menu Items

... 10: 107
Fetching and Changing the Current

Item ... 10: 145
Fetching and Changing the Top

Row ... 10: 147
Fetching Item Names and Descrip

tions ... 10: 97
Fetching Panels Above or Below

Given Panels ... 10: 80
Fetching Pointers to Panel Windows

... 10: 72
Field Editing Requests ... 10: 220
Field Validation Requests ... 10: 221
Field Variables ... 4: 28
Fields ... 4: 4
File and Record Locking ... 3: 14
File Header ... 11: 4
File Header Declaration ... 11: 5
File Inclusion ... 17: 48
File Protection ... 7: 4
File Redirection ... 19: 51
File Specifications ... 12: 9
Files and Pipes ... 4: 43

Files You Always Have ... 2: 29
Flags ... 11: 4, 11: 10
Float and Double ... 17: 9
Floating and Integral ... 17: 9
Floating Constants ... 17: 4
Flow of Control ... 16: 5
FMLI ... 19: 4

Index

FMLI and the UNIX Operating Sys-
tem ... 19: 56

for Statement ... 17: 38
fork(2) ... 2: 36
Form Driver Processing ... 10: 213
Form-letter Generation ... 4: 57
Formatted Printing ... 4: 6
Formatting ... 14: 38
Forms ... 10: 159, 19: 28
Forms and Menus Definition

Language ... 19: 21
Forms and Menus Language Inter

preter ... 19: 2
Frame to Frame Navigation ... 19: 19
Freeing Programmer-Defined Field

Types ... 10: 249
Function seLfiel<LinitO ... 10: 230
Function seLfiel<:LtermO ... 10: 230
Function seLfortILinitO ... 10: 230
Function seLforIILtermO ... 10: 230
Function seLiteIl'LinitO ... 10: 142
Function seLiteIILtermO ... 10: 142
Function seLmenlLinitO ... 10: 142
Function seLmenlLtermO ... 10:

143
Function Values ... 16: 6
Functions ... 4: 9, 4: 59, 17: 52
Fundamentals of lex Rules ... 5: 3
General Form ... 13: 8
Generating Reports ... 4: 52
get Command ... 14: 13
getchO ... 10: 31
getline Function ... 4: 44
getstrO ... 10: 34

INDEX 1-5

Index

Getting Lock Information ... 7: 14
Getting Message Queues ... 9: 7
Getting Semaphores ... 9: 44
Getting Shared Memory Segments

... 9: 80
Glossary ... G-l
goto Statement ... 17: 42
Grouping Sections Together ... 12:

12
Guidelines for Writing Shared

Library Code ... 8: 24
Handful of Useful One-liners ... 4:

10
Hardware/Software Dependencies

... xxii
Header File <curses.h> ... 10: 9
Header Files and Libraries ... 2: 27
Help ... 19: 19
help Command ... 14: 6, 14: 31
Hiding Panels ... 10: 78
highlight Program ... 10: 302
Hints for Preparing Specifications ...

6:34
How Arguments Are Passed to a

Program ... 2: 12
How awk Is Used ... 3: 7
How cscope Works ... 18: 4
How File and Record Locking

Works ... 3: 15
How lex Is Used ... 3: 8
How Shared Libraries Are Imple

mented ... 8: 10
How Shared Libraries Might

Increase Space Usage ... 8: 13
How Shared Libraries Save Space ...

8: 7
How System Calls and Subroutines

Are Used in C Programs ... 2:
21

How the TAM Transition Library
Works ... 10: 286

1-6 PROGRAMMER'S GUIDE

How this Chapter is Organized ...
10: 1

How to Use this Document ... 19: 1
How yacc Is Used ... 3: 10
ID Keywords ... 14: 14
Identifiers (Names) ... 17: 2
Identify the Problem ... 18: 4
Identifying a.out Files that Use

Shared Libraries ... 8: 14
Implicit Declarations ... 17: 35
Implicit Rules ... 13: 12
Importing Symbols ... 8: 31
Improving Performance with prof

and lprof ... 18: 48
Improving Test Coverage with lprof

... 18: 57
include Files ... 13: 19
Incremental Link Editing ... 12: 26
Influences ... 3: 5
Information in the Examples ... xxiii
Initialization ... 17: 32
Initialization and Modification of

SCCS File Parameters ... 14: 28
Initialization File ... 19: 21
Initialization, Comparison, and Type

Coercion ... 4: 63
Initialized Section Holes or . bss Sec-

tions ... 12: 19
Inner Blocks ... 11: 20
Input ... 4: 43, 10: 30
Input Options ... 10: 53
Input Separators ... 4: 43
Input Style ... 6: 34
Input-output ... 4: 59
Input/Output ... 2: 29
Inserting Commentary for the Initial

Delta ... 14: 27
Integer Constants ... 17: 3
Inter-Field Navigation Requests on

the Current Page ... 10: 217
Interface Between a Programming

Language and the UNIX System
... 2: 11

Internal Rules ... 13: 25
Interpreting Profiling Output ... 18:

36
Interprocess Communications ... 3:

17
Intra-Field Navigation Requests ...

10:218
Introducing the C Programmer's

Productivity Tools ... 18: 1
Introductory Object ... 19: 22
Invoke cscope ... 18: 5
Invoking the Interpreter ... 19: 56
IPC ctl Calls ... 3: 19
IPC get Calls ... 3: 18
IPC op Calls ... 3: 19
Item Navigation Requests ... 10: 132
Justifying Data in a Field ... 10: 182
Keeping Data Files in a Separate

Directory ... 18: 34
Key Letters That Affect Output ...

14:22
Keywords ... 17: 2, 19: 5
Labeled Statement ... 17: 42
Language Selection ... 3: 5
Learn About the Capabilities ... 10:

272
Left Recursion .. , 6: 34
lex ... 2: 5
lex with yacc ... 5: 15
Lexical Analysis ... 6: 10
Lexical Conventions ... 17: 2
Lexical Scope ... 17: 45
Lexical Tie-Ins ... 6: 36
liber, A Library System ... 3: 38
Libraries ... 3: 23
Limits ... 4: 62
Line Control ... 17: 50
Line Number Declaration ... 11: 16
Line Numbers ... 11: 15

Index

Link Editing ... 2: 9
Link Editor ... 12: 1
Link Editor Command Language ...

3: 21, 12: 4
lint ... 2: 61
lint as a Portability Tool ... 3: 32
lint Message Types ... 16: 4
Load a Section at a Specified

Address ... 12: 11
Locate the Source of the Error Mes-

sage .. , 18: 8
lockf ... 3: 17
Logical AND Operator ... 17: 20
Logical OR Operator ... 17: 20
Low-LevelljO and Why You

Should Not Use It ... 2: 32
lprof ... 18: 30
lprof on lprof ... 18: 49
lprof with Shared Libraries ... 18: 47
M4 ... 2: 5
Machine Language Debugging ... 15:

11
Macro Definitions ... 13: 7
Magic Numbers ... 11: 4
make ... 3: 34
make Command ... 2: 66, 13: 21
Making Panels Invisible ... 10: 78
Manipulating an Item's Select Value

in a Multi-Valued Menu ... 10:
95

Manipulating Field Attributes ... 10:
172

Manipulating Field Options ... 10:
194

Manipulating Form Attributes ... 10:
202

Manipulating Item Attributes ... 10:
97

Manipulating Menu Attributes ... 10:
107

Manipulating Registers ... 15: 12

INDEX 1-7

Index --

Manipulating the Current Field ...
10: 234

Manipulating the Menu User
Pointer ... 10: 152

Manual Pages ... 19: 59
Math Library ... 3: 27
Meaning of Declarators '" 17: 25
Memory Configuration '" 12: 1
Memory Management ... 3: 13
Menu Application Program ... 10: 89
Menu Driver Processing ... 10: 129
Menu Scrolling Requests ... 10: 133
Menus ... 10: 86, 19: 36
Merging Data Files ... 18: 34
Merging Option ... 18: 42
Messages ... 9: 2
Modifying Command Keywords ...

19: 57
More about initscrO and Lines and

Columns ... 10: 14
More about refreshO and Windows

... 10: 14
More About Saving Space ... 8: 6
moveO ... 10: 24
Moving a Field ... 10: 173
Moving Panel Windows on the

Screen ... 10: 73
Moving Panels to the Top or Bottom

of the Deck ... 10: 75
msgctl ... 9: 15
msgget ... 9: 7
msgop ... 9: 24
Multi-line Records ... 4: 44
Multi-page Forms .. , 19: 12
Multi-Valued Menu Selection

Request ... 10: 133
Multiple Uses and Side Effects ... 16:

12
Multiplicative Operators ... 17: 16
Name the Terminal ... 10: 271
Named Files ... 2: 30

1-8 PROGRAMMER'S GUIDE

Navigation Keys ... 19: 12, 19: 15
New Windows ... 10: 64
newwinO ... 10: 64
No Data Are Collected ... 18: 46
Non-Terminating Programs ... 18: 44
Nonportable Character Use ... 16: 9
Nonrelocatable Input Files ... 12: 30
Notation Conventions Used in This

Document '" 18: 2
Notation Conventions ... xxii
Notes and Special Considerations ...

12: 22
Null Statement ... 17: 42
Null Suffix ... 13: 18
Number or String? '" 4: 29
Numbers ... 3: 2
Object Architecture ... 19: 4
Object File .. , 12: 3
Object File Libraries ... 2: 28, 3: 23
Object Operation ... 19: 5
Objects and lvalues ... 17: 8
Obtaining Field Size and Location

Information ... 10: 172
Old Syntax ... 16: 11
Opening a File for Record Locking

... 7: 4
Operations for Messages ... 9: 24
Operations for Shared Memory ... 9:

99
Operations on Semaphores ... 9: 67
Operator Conversions ... 17: 9
Operators (Increasing Precedence) ...

4: 61
Optional Features ... 18: 19
Optional Header Declaration '" 11: 8
Optional Header Information ... 11:

6
Original Source ... 8: 49
Other Command Line Options ... 18:

18
Other Commands ... 15: 12

Other ETI Routines ... 10: 258
Output ... 4: 38, 10: 18
Output and Input ... 10: 58
Output Attributes ... 10: 38
Output File Blocking ... 12: 30
Output into Files ... 4: 40
Output into Pipes ... 4: 41
Output Separators ... 4: 38
Output Translations ... 13: 10
Overview of lex Programming ... 5:

1
Overview: Writing Form Programs

in ETI ... 10: 161
Overview: Writing Menu Programs

in ETI ... 10: 88
Pads ... 10: 17
Page Navigation Requests ... 10: 217
Panels ... 10: 69
Parser Operation ... 6: 13
Pattern Buffer Requests ... 10: 133
Pattern Ranges ... 4: 19
Patterns ... 4: 12, 4: 58
Physical and Virtual Addresses ...

11: 3
Pipes ... 2: 38
Pointer Alignment ... 16: 12
Pointers and Integers ... 17: 10
Choices Menus ... 19: 18
Portability ... 3: 2
Portability Considerations ... 17: 57
Positioning the Form Cursor ... 10:

237
Positioning the Menu Cursor ... 10:

148
Posting and Unposting Forms ... 10:

210
Posting and Unposting Menus ... 10:

125
Precedence ... 6: 24
Preprocessor ... 17: 65
Prerequisite Knowledge ... 19: 1

Index

Primary Expressions ... 17: 12
print Statement ... 4: 38
printf Statement ... 4: 39
Printing ... 4: 5
Printing a Stack Trace ... 15: 3
printwO ... 10: 22
Processes ... 2: 33
prof ... 2: 62
Profiling Examples ... 18: 48
Profiling Programs that Fork ... 18:

35
Profiling within a Shell Script ... 18:

35
PROFOPTS Environment Variable

... 18: 32
Program Examples ... 10: 295
Program Organizing Utilities ... 2: 66
Program Structure ... 4: 2
Programming Environments ... 1: 7
Programming Support Tools ... 3: 21
Programming Terminal Screens ... 3:

19
Project Control Tools ... 3: 34
Project Management ... 3: 4
Protection ... 14: 37
Providing Archive Library Compati-

bility ... 8: 40
prs Command ... 14: 29
Pseudo Keys ... 19: 2
Purpose ... xxi
Querying the Menu Dimensions ...

10: 117
Quoting Mechanisms ... 19: 50
Random Choice ... 4: 55
Record Locking and Future Releases

of the UNIX System ... 7: 20
Recording Changes via delta ... 14: 4
Recursive Makefiles ... 13: 11
Referencing Symbols in a Shared

Library from Another Shared
Library ... 8: 38

INDEX 1-9

Index

Regular Expressions (Increasing Pre-
cedence) ... 4: 61

Regular Expressions ... 4: 15
Reinstating Panels .,. 10: 79
Relational Expressions ... 4: 13
Relational Operators ... 17: 18
Relocation Entry Declaration .. , 11:

14
Relocation Information ... 11: 13
Reserved Words ... 6: 37
Retrieval of Different Versions ... 14:

14
Retrieval With Intent to Make a

Delta ... 14: 16
Retrieving a File via get ... 14: 3
return Statement ... 17: 41
Rewriting Existing Code ... 8: 55
Rewriting Existing Library Code ...

8: 19
rmdel Command ... 14: 32
Routines for Drawing Lines and

Other Graphics ... 10: 259
Routines for Using Soft Labels ... 10:

261
Routines initscrO, refreshO, endwinO

... 10: 10
Routines wnoutrefreshO and doup

dateO ... 10: 59
Running an ETI Program ... 10: 13
Running lex under the UNIX System

... 5: 18
Running the Profiled Program ... 18:

32
Running the Program ... 15: 9
sact Command ... 14: 31
Sample Form Application Program

... 10: 162
Sample Menu Program ... 10: 89
Scaling the Form ... 10: 205
scanwO .,. 10: 36
scatter Program ... 10: 304

1-10 PROGRAMMER'S GUIDE

SCCS ... 3: 35 '
SCCS Command Conventions .. , 14:

10
SCCS Commands ... 14: 12
SCCS Files ... 14: 37
SCCS For Beginners ... 14: 2
SCCS Makefiles ... 13: 19
sccsdiff Command ... 14: 34
Scope of Externals ... 17: 46
Scope Rules ... 17: 45
Screen Label Keys ... 19: 26
Screen Labeled Keys .,. 19: 19
Screen Layout ... 19: 10
Scrolling Requests ... 10: 221
sdb ... 2: 64, 15: 2
sdb Session ... 15: 12
Section Definition Directives ... 12: 8
Section Header Declaration ... 11: 11
Section Headers ... 11: 9
Sections ... 11: 3, 11: 13, 12: 2
Selecting Advisory or Mandatory

Locking ... 7: 18
Selecting Library Contents ... 8: 19
Selecting Library Contents ... 8: 54
Semaphores ... 9: 38, 9: 40
semctl ... 9: 53
semget ... 9: 44
semop ... 9: 67
Set Up the Environment ... 18: 5
Set/Used Information ... 16: 5
Setting a File Lock ... 7: 6
Setting and Deleting Breakpoints ...

15: 8
Setting and Fetching Form Options

... 10: 242
Setting and Fetching Menu Options

... 10: 155
Setting and Fetching the Field User

Pointer ... 10: 190
Setting and Fetching the Form User

Pointer ... 10: 240

Setting and Fetching the Panel User
Pointer ... 10: 82

Setting and Reading Field Buffers ...
10: 186

Setting and Reading the Field Status
... 10: 188

Setting and Removing Record Locks
... 7: 10

Setting Item Options ... 10: 97
Setting the Field Foreground, Back

ground, and Pad Character ...
10: 184

Setting the Field Type To Ensure
Validation ... 10: 175

Setting the Item User Pointer ... 10:
102

Shared Libraries ... 3: 30, 8: 2, 8: 58
Shared Memory ... 9: 75, 9: 76
Shell as a Prototyping Tool ... 1: 5
Shell Facility ... 4: 56
Shift Operators '" 17: 18
shmctl ... 9: 89
shmget ... 9: 80
shmop ... 9: 99
show Program ... 10: 306
Signals and Interrupts '" 2: 40
Simple Actions ... 4: 8
Simple Input and Output ... 10: 18
Simple Patterns ... 4: 7
Simulating error and accept in

Actions ... 6: 38
Single and Multi Select Menus ... 19:

15
Single-User Programmer .. , 1: 7
size '" 2: 64
Some Helpful Features of Fields ...

10: 186
Some Important Form Terminology

... 10: 161
Some Important Menu Terminology

... 10: 88

Index

Some Lexical Conventions ... 4: 37
Some Special Features ... 5: 8
Source Code Control System File

Names: the Tilde ... 13: 17
Source File Display and Manipula

tion ... 15: 6
Source Listing Option ... 18: 37
Special Purpose Languages ... 2: 4,

3: 6
Special Symbols ... 11: 18
Specification File for Compatibility

... 8: 30
Specifications ... 5: 3
Specify Capabilities ... 10: 273
Specifying a Memory Configuration

... 12: 7
Specifying a Program and Data File

to lprof ... 18: 36
Specifying Program Names to lprof

... 18: 44
Specifying the Menu Format ... 10:

112
Standard UNIX System a.out

Header ... 11: 7
standoutO and standendO ... 10: 42
Statements ... 17: 37, 17: 63
Storage Class and Type '" 17: 6
Storage Class Specifiers ... 17: 23
Strange Constructions ... 16: 10
String Functions ... 4: 60
String Literals ... 17: 5
String Table '" 11: 44
Strings and String Functions ... 4: 23
strip ... 2: 64
Structure and Union Declarations ...

17: 27
Structures and Unions .,. 17: 51
Subroutines ... 5: 13
subwin() ... 10: 65
Suffixes and Transformation Rules

... 13: 11

INDEX 1-11

Index

Suggestions and Warnings ... 13: 24
Summary Option ... 18: 41
Support for Arbitrary Value Types

... 6: 40
Supported Languages in a UNIX

System Environment ... 2: 2
Supporting Next and Previous

Choice Functions ... 10: 254
Supporting Programmer-Defined

Field Types ... 10: 250
switch Statement ... 17: 39
Symbol Table ... 11: 17
Symbol Table Entries ... 11: 23
Symbolic Debugger ... 3: 31
Symbols and Functions ... 11: 22
Syntax ... 19: 49
Syntax Diagram for Input Directives

... 12: 32
Syntax Notation ... 17: 5
Syntax Summary ... 17: 58
System Calls and Subroutines ... 2:

15
System Calls for Environment or

Status Information ... 2: 32
system Function ... 4: 49
system(3S) ... 2: 35
Systems Programmers ... 1: 8
TAM Transition Keyboard Subsys-

tem ... 10: 290
TAM Transition Library ... 10: 13
TAM Transition Library ... 10: 283
Target Machine ... 11: 3
Terminal Independence ... 19: 56
Terminology ... 7: 2, 14: 2
Test the Description ... 10: 280
Text Objects ... 19: 17,19: 43
Tips for Polishing TAM Application

Programs Running under ETI ...
10: 285

Token Replacement ... 17: 47
Tools Covered and Not Covered in

1-12 PROGRAMMER'S GUIDE

this Guide ... 1: 4
Translations from TAM Calls to ETI

Calls ... 10: 286
Trouble at Compile Time ... 18: 43
Trouble at the End of Execution ...

18:46
Tuning the Shared Library Code ...

8: 41
Turning Off Profiling ... 18: 33
Two Kinds of Menus: Single- and

Multi-Valued ... 10: 95
two Program ... 10: 308
Type ... 17: 6
Type Casts ... 16: 8
Type Checking ... 16: 7
Type Names ... 17: 34
Type Specifiers ... 17: 24
typedef ... 17: 36
Types Revisited ... 17: 51
TYPE-ALNUM ... 10: 177
TYPE-ALPHA ... 10: 177
TYPE--ENUM ... 10: 178
TYPE-INTEGER ... 10: 179
TYPE-NUMERIC ... 10: 180
TYPE-REGEXP ... 10: 181
Unary Operators ... 17: 15
Undoing a get e ... 14: 17
UNIX System Philosophy Simply

Stated ... 1: 3
UNIX System Shared Libraries ... 8:

3
UNIX System Tools and Where You

Can Read About Them ... 1: 4
Unsigned ... 17: 10
Unused Variables and Functions ...

16: 4
Updating Panels on the Screen ...

10: 76
Usage ... 4: 3, 16: 2
Use of Archive Libraries ... 12: 22
Use of Backquoted Expressions ...

19: 51
Use of SCCS by Single-User Pro-

grammers ... 2: 74
User-Defined Functions ... 4: 36
User-defined Variables ... 4: 9
Using mkshlib to Build the Host and

Target ... 8: 22
val Command ... 14: 36
Variables ... 19: 48
vc Command ... 14: 36
Version Control ... 17: 50
Void '" 17: 11
What a Typical Form Application

Program Does ... 10: 162
what Command ... 14: 34
What Every ETI Program Needs ...

10: 9
What Every terminfo Program

Needs ... 10: 265
What is a Form? ... 19: 11
What is a Menu? ... 19: 14
What is a Shared Library? ... 8: 2
What is ETI? ... 10: 5
What lex and yacc Are Like ... 3: 7
What this Chapter Covers ... 19: 1
Where the Manual Pages Can Be

Found ... 2: 21
while Statement ... 17: 38
Why C Is Used to Illustrate the

Interface ... 2: 11
window Program ... 10: 311
Windows ... 10: 58
Word Frequencies ... 4: 54
Working with More than One Ter-

minal ... 10: 263
Working with terminfo Routines ...

10:265
Working with the terminfo Database

... 10: 271
Writing lex Programs ... 5: 3
Writing Terminal Descriptions ... 10:

Index

271
Writing the Library Specification File

... 8: 19
Writing the Specification File ... 8:

56
x.files and z.files ... 14: 11
yacc ... 2: 5
yacc Environment ... 6: 32
yacc Input Syntax ... 6: 42

INDEX 1-13

NOTES

NOTES

