

©1987 AT&T
All Rights Reserved
Printed in USA

NOTICE
The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

UNIX is a registered trademark of AT&T.

AT&T Products and Services
To order documents from the Customer Information Center:

• Within the continental United States, call 1-800-432-6600

• Outside the continental United States, call 1-317-352-8556

• Send mail orders to:

AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:

• Within the continental United States, call 1-800-221-1647

• Outside the continental United States, call 1-609-639-4458

To contact marketing representatives about AT&T computer hardware pro
ducts and UNIX software products:

• Within the continental United States, call 1-800-372-2447

• Outside the continental United States, call collect 1-215-266-2973 or
1-215-266-2975

iii

Iv

To find out about UNIX system source licenses:

• Within the continental United States, except North Carolina, call 1-800-
828-UNIX

• In North Carolina and outside the continental United States, call
1-919-279-3666

• Or write to:
Software Licensing
Guilford Center
P.O. Box 25000
Greensboro, NC 27420

Table of Contents

Chapter 1: Introduction to the Guide

Chapter 2: Overview of the Transport
Interface

Introduction

Modes of Service

State Transitions

Chapter 3: Connection-Mode Service
Introduction

Local Management

Connection Establishment

Data Transfer

Connection Release

Chapter 4: Connectionless-Mode Service
Introduction

Local Management

Data Transfer

Datagram Errors

1-1

2-1

2-3

2-11

3-1

3-2

3-10

3-18

3-23

4-1

4-2

4-5

4-8

TABLE OF CONTENTS v

Table of Contents -----------------

Chapter 5: A Read/Write Interface
Introduction

write

read

Close

Chapter 6: Advanced Topics
Introduction

Asynchronous Execution Mode

Advanced Programming Example

Appendix A: State Transitions

Appendix B: Guidelines for Protocol
Independence

Appendix C: Examples

Glossary

Index

vi NETWORK PROGRAMMER'S GUIDE

5-1

5-3

5-4

5-5

6-1

6-2

6-3

A-I

B-1

C-l

G-l

I-I

List of Figures

Figure 1-1: OSI Reference Model 1-1

Figure 2-1: Transport Interface 2-1

Figure 2-2: Channel Between User and Provider 2-4

Figure 2-3: Local Management Routines 2-5

Figure 2-4: Transport Connection 2-6

Figure 2-5: Connection Establishment Routines 2-7

Figure 2-6: Connection Mode Data Transfer Routines 2-8

Figure 2-7: Connection Release Routines 2-9

Figure 2-8: Connectionless-mode Data Transfer Routines 2-10

Figure 3-1: Listening and Responding Transport Endpoints 3-17

Figure A-I: Transport Interface States A-I

Figure A-2: Transport Interface Outgoing Events A-3

Figure A-3: Transport Interface Incoming Events A-4

Figure A-4: Common Local Management State Table A-6

Figure A-5: Connectionless-Mode State Table A-7

Figure A-6: Connection-Mode State Table A-8

LIST OF FIGURES vii

Chapter 1: Introduction to the Guide

Background
Document Organization

TABLE OF CONTENTS

1-1

1-3

Introduction to the Guide

This document provides detailed information, with various examples, on
the UNIX system Transport Interface. This guide is intended for programmers
who require the services defined by this interface. Working knowledge of
UNIX system programming and data communication concepts is assumed. In
particular, working knowledge of the Reference Model of Open Systems Inter
connection (051) is required.

Background
To place the Transport Interface in perspective, a discussion of the 051

Reference Model is first presented. The Reference Model partitions network
ing functions into seven layers, as depicted in Figure 1-1.

Layer 7 application

Layer 6 presentation

Layer 5 session

Layer 4 transport

Layer 3 network

Layer 2 data link

Layer 1 physical

Figure 1-1: 051 Reference Model

Layer 1 The physical layer is responsible for the transmission of raw data
over a communication medium.

Layer 2 The data link layer provides the exchange of data between net
work layer entities. It detects and corrects any errors that may
occur in the physical layer transmission.

INTRODUCTION TO THE GUIDE 1-1

Introduction to the Guide

Layer 3 The network layer manages the operation of the network. In par
ticular, it is responsible for the routing and management of data
exchange between transport layer entities within the network.

Layer 4 The transport layer provides transparent data transfer services
between session layer entities by relieving them from concerns of
how reliable and cost-effective transfer of data is achieved.

Layer 5 The session layer provides the services needed by presentation
layer entities that enable them to organize and synchronize their
dialogue and manage their data exchange.

Layer 6 The presentation layer manages the representation of information
that application layer entities either communicate or reference in
their communication.

Layer 7 The application layer serves as the window between correspond
ing application processes that are exchanging information.

A basic principle of the Reference Model is that each layer provides ser
vices needed by the next higher layer in a way that frees the upper layer from
concern about how these services are provided. This approach simplifies the
design of each particular layer.

Industry standards either have been or are being defined at each layer of
the Reference Model. Two standards are defined at each layer: one that speci
fies an interface to the services of the layer, and one that defines the protocol
by which services are provided. A service interface standard at any layer frees
users of the service from details of how that layer's protocol is implemented,
or even which protocol is used to provide the service.

The transport layer is important because it is the lowest layer in the Refer
ence Model that provides the basic service of reliable, end-to-end data transfer
needed by applications and higher layer protocols. In doing so, this layer
hides the topology and characteristics of the underlying network from its
users. More important, however, the transport layer defines a set of services
common to layers of many contemporary protocol suites, including the Inter
national Standards Organization (ISO) protocols, the Transmission Control
Protocol and Internet Protocol (TCP lIP) of the ARPANET, Xerox Network
Systems (XNS), and the Systems Network Architecture (SNA).

1-2 NETWORK PROGRAMMER'S GUIDE

Introduction to the Guide

A transport service interface, then, could enable applications and higher
layer protocols to be implemented without knowledge of the underlying pro
tocol suite. That is a principle goal of the UNIX system Transport Interface.
Also, because an inherent characteristic of the transport layer is that it hides
details of the physical medium being used, the Transport Interface offers both
protocol and medium independence to networking applications and higher
layer protocols.

The UNIX system Transport Interface was modeled after the industry
standard ISO Transport Service Definition (ISO 8072). As such, it is intended
for those applications and protocols that require transport services. It is not
intended to provide a generic networking interface for all UNIX system appli
cations, but is a first step in providing networking services with UNIX System
V. Because the Transport Interface provides reliable data transfer, and
because its services are common to several protocol suites, many networking
applications will find these services useful.

The Transport Interface is implemented as a user library using the
STREAMS input/output mechanism. Therefore, many services available to
STREAMS applications are also available to users of the Transport Interface.
These services will be highlighted throughout this guide. The STREAMS Pri
mer and STREAMS Programmer's Guide contain more detailed information on
STREAMS for the interested reader.

Document Organization
This guide is organized as follows:

• Chapter 2, "Overview of the Transport Interface", summarizes the
basic set of services available to Transport Interface users and presents
the background information needed for the remainder of the guide.

• Chapter 3, "Connection-Mode Service", describes the services associ
ated with connection-based (or virtual circuit) communication.

• Chapter 4, "Connectionless-Mode Service", describes the services asso
ciated with connectionless (or datagram) communication.

• Chapter 5, "A Read/Write Interface", describes how users can use the
services of read(2) and write(2) to communicate over a transport con
nection.

INTRODUCTION TO THE GUIDE 1-3

Introduction to the Guide

• Chapter 6, "Advanced Topics", discusses important concepts that were
not covered in earlier chapters. These include asynchronous event han
dling and processing of multiple, simultaneous connect requests.

• Appendix A, "State Transitions", defines the allowable state transitions
associated with the Transport Interface.

• Appendix B, "Guidelines for Protocol Independence", establishes
necessary guidelines for developing software that may run without
change over any transport protocol developed for the Transport Inter
face.

• Appendix C, "Examples", presents the full listing of each programming
example used throughout the guide.

• The Glossary defines Transport Interface terms and acronyms used in
this guide.

This guide describes the more important and common facilities of the
Transport Interface, and is not meant to be exhaustive. Section 3N of the
Programmer's Reference Manual contains a complete description of each Tran
sport Interface routine.

1-4 NETWORK PROGRAMMER'S GUIDE

Chapter 2: Overview of the Transport Inter
face

Introduction

Modes of Service
Connection-Mode Service

Local Management

Connection Establishment
Data Transfer

Connection Release
Connectionless-Mode Service

State Transitions

2-1

2-3
2-3
2-3
2-6
2-8
2-9

2-10

2-11

TABLE OF CONTENTS

Introduction
This chapter presents a high-level overview of the services of the Tran

sport Interface, which supports the transfer of data between two user
processes. Figure 2-1 illustrates the Transport Interface.

transport
user

ice serv
req uests

t ·······l Transport Interface

servic
and i

e events
ndications

transport
provider

Figure 2-1: Transport Interface

The transport provider is the entity that provides the services of the Tran
sport Interface, and the transport user is the entity that requires these services.
An example of a transport provider is the ISO transport protocol, while a tran
sport user may be a networking application or session layer protocol.

The transport user accesses the services of the transport provider by issu
ing the appropriate service requests. One example is a request to transfer data
over a connection. Similarly, the transport provider notifies the user of vari
ous events, such as the arrival of data on a connection.

OVERVIEW OF THE TRANSPORT INTERFACE 2-1

Introduction

The Network Services Library of UNIX System V includes a set of func
tions that support the services of the Transport Interface for user processes
[see intro(3)]. These functions enable a user to initiate requests to the pro
vider and process incoming events. Programs using the Transport Interface
can link the appropriate routines as follows:

cc prog.c -lnsu

2-2 NETWORK PROGRAMMER'S GUIDE

Modes of Service

Two modes of service, connection-mode and connectionless-mode, are
provided by the Transport Interface. Connection-mode is circuit-oriented and
enables data to be transmitted over an established connection in a reliable,
sequenced manner. It also provides an identification mechanism that avoids
the overhead of address resolution and transmission during the data transfer
phase. This service is attractive for applications that require relatively long
lived, data stream-oriented interactions.

Connectionless-mode, in contrast, is message-oriented and supports data
transfer in self-contained units with no logical relationship required among
multiple units. This service requires only a preexisting association between
the peer users involved, which determines the characteristics of the data to be
transmitted. All the information required to deliver a unit of data (for exam
ple, the destination address) is presented to the transport provider, together
with the data to be transmitted, in one service access (which need not relate to
any other service access). Each unit of data transmitted is entirely self
contained. Connectionless-mode service is attractive for applications that:

• involve short-term request/response interactions

• exhibit a high level of redundancy

• are dynamically reconfigurable

• do not require guaranteed, in-sequence delivery of data

Connection-Mode Service
The connection-mode transport service is characterized by four phases:

local management, connection establishment, data transfer, and connection
release.

Local Management
The local management phase defines local operations between a transport

user and a transport provider. For example, a user must establish a channel of
communication with the transport proyider, as illustrated in Figure 2-2. Each
channel between a transport user and transport provider is a unique endpoint
of communication, and will be called the transport endpoint. The t_open(3N)
routine enables a user to choose a particular transport provider that will sup
ply the connection-mode services, and establishes the transport endpoint.

OVERVIEW OF THE TRANSPORT INTERFACE 2-3

Modes of Service

transport
user

~ transport endpoint

........... Transport Interface

transport
provider

Figure 2-2: Channel Between User and Provider

Another necessary local function for each user is to establish an identity
with the transport provider. Each user is identified by a transport address.
More accurately, a transport address is associated with each transport end
point, and one user process may manage several transport endpoints. In
connection-mode service, one user requests a connection to another user by
specifying that user's address. The structure of a transport address is defined
by the address space of the transport provider. An address may be as simple
as a random character string (for example, "file_server"), or as complex as an
encoded bit pattern that specifies all information needed to route data through
a network. Each transport provider defines its own mechanism for identifying
users. Addresses may be assigned to each transport endpoint by Lbind(3N).

2-4 NETWORK PROGRAMMER'S GUIDE

Modes of Service

Command Description

Lalloc Allocates Transport Interface data structures.

Lbind Binds a transport address to a transport endpoint.

Lclose Closes a transport endpoint.

Lerror Prints a Transport Interface error message.

Lfree Frees structures allocated using Lalloc.

Lgetinfo Returns a set of parameters associated with a particular
transport provider.

Lgetstate Returns the state of a transport endpoint.

Llook Returns the current event on a transport endpoint.

Lopen Establishes a transport endpoint connected to a chosen
transport provider.

Loptrngmt Negotiates protocol-specific options with the transport
provider.

LSync Synchronizes a transport endpoint with the transport
provider.

Lunbind Unbinds a transport address from a transport endpoint.

Figure 2-3: Local Management Routines

OVERVIEW OF THE TRANSPORT INTERFACE 2-5

Modes of Service

In addition to Lopen and Lbind, several routines are available to sup
port local operations. Figure 2-3 summarizes all local management routines of
the Transport Interface.

Connection Establishment
The connection establishment phase enables two users to create a connec

tion, or virtual circuit, between them, as demonstrated in Figure 2-4.

user 1 user 2

......... T ransport Interface

r Tra nsport Connection

t
... _--------------

transport provider

Figure 2-4: Transport Connection

This phase is illustrated by a client-server relationship between two tran
sport users. One user, the server, typically advertises some service to a group
of users, and then listens for requests from those users. As each client
requires the service, it attempts to connect itself to the server using the
server's advertised transport address. The Lconnect(3N) routine initiates the
connect request. One argument to Lconnect, the transport address, identifies
the server the client wishes to access. The server is notified of each incoming
request using Llisten(3N), and may call Laccept(3N) to accept the client's
request for access to the service. If the request is accepted, the transport con
nection is established.

2-6 NETWORK PROGRAMMER'S GUIDE

Modes of Service

Figure 2-5 summarizes all routines available for establishing a transport
connection.

Command Description

Laccept Accepts a request for a transport connection.

Lconnect Establishes a connection with the transport user at a
specified destination.

Llisten Retrieves an indication of a connect request from
another transport user.

Lrcvconnect Completes connection establishment if Lconnect was
called in asynchronous mode (see Chapter 6).

Figure 2-5: Connection Establishment Routines

OVERVIEW OF THE TRANSPORT INTERFACE 2-7

Modes of Service

Data Transfer
The data transfer phase enables users to transfer data in both directions

over an established connection. Two routines, Lsnd(3N) and Lrcv(3N),
send and receive data over this connection. All data sent by a user is
guaranteed to be delivered to the user on the other end of the connection in
the order in which it was sent. Figure 2-6 summarizes the connection mode
data transfer routines.

Command Description

Lrcv Retrieves data that has arrived over a transport connec-
tion.

Lsnd Sends data over an established transport connection.

Figure 2-6: Connection Mode Data Transfer Routines

2-8 NETWORK PROGRAMMER'S GUIDE

Modes of Service

Connection Release
The connection release phase provides a mechanism for breaking an esta

blished connection. When you decide that the conversation should terminate,
you can request that the provider release the transport connection. Two types
of connection release are supported by the Transport Interface. The first is an
abortive release, which directs the transport provider to release the connection
immediately. Any previously sent data that has not yet reached the other
transport user may be discarded by the transport provider. The Lsnddis(3N)
routine initiates this abortive disconnect, and Lrcvdis(3N) processes the
incoming indication of an abortive disconnect.

All transport providers must support the abortive release procedure. In
addition, some transport providers may also support an orderly release facility
that enables users to terminate commuriication gracefully with no data loss.
The functions Lsndrel(3N) and Lrcvrel(3N) support this capability. Figure
2-7 summarizes the connection release routines.

Command Description

Lrcvdis Returns an indication of an aborted connection, includ-
ing a reason code and user data.

Lrcvrel Returns an indication that the remote user has
requested an orderly release of a corinection.

Lsnddis Aborts a connection or rejects a connect request.

Lsndrel Requests the orderly release of a connection.

Figure 2-7: Connection Release Routines

OVERVIEW OF THE TRANSPORT INTERFACE 2-9

Modes of Service

Connection less-Mode Service
The connectionless-mode transport service is characterized by two phases:

local management and data transfer. The local management phase defines the
same local operations described above for the connection-mode service.

The data transfer phase enables a user to transfer data units (sometimes
called datagrams) to the specified peer user. Each data unit must be accom
panied by the transport address of the destination user. Two routines,
Lsndudata(3N) and Lrcvudata(3N) support this message-based data transfer
facility. Figure 2-8 summarizes all routines associated with connectionless
mode data transfer.

Command Description

Lrcvudata Retrieves a message sent by another transport user.

Lrcvuderr Retrieves error information associated with a previously
sent message.

Lsndudata Sends a message to the specified destination user.

Figure 2-8: Connectionless-Mode Data Transfer Routines

2-10 NETWORK PROGRAMMER'S GUIDE

State Transitions

The Transport Interface has two components:

• the library routines that provide the transport services to users

• the state transition rules that define the sequence in which the transport
routines may be invoked

The state transition rules are presented in Appendix A of this guide in the
form of state tables. The state tables define the legal sequence of library calls
based on state information and the handling of events. These events include
user-generated library calls, as well as provider-generated event indications.

Any user of the Transport Interface must completely understand all possible
state transitions before writing software using the interface.

OVERVIEW OF THE TRANSPORT INTERFACE 2-11

Chapter 3: Connection-Mode Service

Introduction 3-1

Local Management 3-2

The Client 3-3

The Server 3-6

Connection Establishment 3-10

The Client 3-10

Event Handling 3-12

The Server 3-13

Data Transfer 3-18

The Client 3-19

The Server 3-20

Connection Release 3-23

The Server 3-24

The Client 3-25

TABLE OF CONTENTS

Introduction

This chapter describes the connection-mode service of the Transport Inter
face. As discussed in the previous chapter, the connection-mode service can
be illustrated using a client-server paradigm. The important concepts of
connection-mode service will be presented using two programming examples.
The examples are related in that the first illustrates how a client establishes a
connection to a server and then communicates with the server. The second
example shows the server's side of the interaction. All examples discussed in
this guide are presented in their entirety in Appendix C.

In the examples, the client establishes a connection with a server process.
The server then transfers a file to the client. The client, in tum, receives the
data from the server and writes it to its standard output file.

CONNECTION-MODE SERVICE 3-1

Local Management

Before the client and server can establish a transport connection, each
must first establish a local channel (the transport endpoint) to the transport
provider using Lopen, and establish its identity (or address) using Lbind.

The set of services supported by the Transport Interface may not be
implemented by all transport protocols. Each transport provider has a set of
characteristics associated with it that determine the services it offers and the
limits associated with those services. This information is returned to the user
by Lopen, and consists of the following:

addr

options

tsdu

etsdu

connect

discon

servtype

maximum size of a transport address

maximum bytes of protocol-specific options that may be
passed between the transport user and transport provider

maximum message size that may be transmitted in either
connection-mode or connectionless-mode

maximum expedited data message size that may be sent
over a transport connection

maximum number of bytes of user data that may be
passed between users during connection establishment

maximum bytes of user data that may be passed between
users during the abortive release of a connection

the type of service supported by the transport provider

The three service types defined by the Transport Interface are:

The transport provider supports connection-mode service
but does not provide the optional orderly release facility.

T_COTS_ORD The transport provider supports connection-mode service
with the optional orderly release facility.

The transport provider supports connectionless-mode ser
vice.

Only one such service can be associated with the transport provider identified
by Lopen.

3-2 NETWORK PROGRAMMER'S GUIDE

Local Management

Lopen returns the default provider characteristics associated with a transport
endpoint. However, some characteristics may change after an endpOint has
been opened. This will occur if the characteristics are associated with nego
tiated options (option negotiation is described later in this chapter). For exam-
ple, if the support of expedited data transfer is a negotiated option, the value
of this characteristic may change. Lgetinfo may be called to retrieve the
current characteristics of a transport endpoint.

Once a user establishes a transport endpoint with the chosen transport
provider, it must establish its identity. As mentioned earlier, t_bind accom
plishes this by binding a transport address to the transport endpoint. In addi
tion, for servers, this routine informs the transport provider that the endpoint
will be used to listen for incoming connect requests, also called connect indi
cations.

An optional facility, Loptmgmt(3N), is also available during the local
management phase. It enables a user to negotiate the values of protocol
options with the transport provider. Each transport protocol is expected to
define its own set of negotiable protocol options, which may include such
information as Quality-of-Service parameters. Because of the protocol-specific
nature of options, only applications written for a particular protocol environ
ment are expected to use this facility.

The Client
The local management requirements of the example client and server are

used to discuss details of these facilities. The following are the definitions
needed by the client program, followed by its necessary local management
steps.

CONNECTION-MODE SERVICE 3-3

Local Management

#include <stdio.h>
#include <tiuser.h>
#include <fcntl.h>

#define SRV_ADDR

maine)

/* server's well known address */

{

int fd;
int nbytE!s;
int flags = 0;
char Wf[1024];

struct t_call *sndcall;
extenl int t_e:rrno;

if «fd = t_ope!l("/dev/tivc", O_RIHl., NULL» < 0)
t_error("t_ope!l failed");
exit(1);

if (t_bind(fd, NULL, NULL) < 0)
t_error("t_bind failed");
exit(2) ;

The first argument to Lopen is the path name of a file system node that
identifies the transport protocol that will supply the transport service. In this
example, /dev /tivc is a STREAMS done device node that identifies a generic,
connection-based transport protocol [see done(7)]. The done device finds an
available minor device of the transport provider for the user. It is opened for
both reading and writing, as specified by the O-RDWR open flag. The third
argument may be used to return the service characteristics of the transport
provider to the user. This information is useful when writing protocol
independent software (discussed in Appendix B). For simplicity, the client and
server in this example ignore this information and assume the transport pro-
vider has the following characteristics: '

3-4 NETWORK PROGRAMMER'S GUIDE

Local Management

• The transport address is an integer value that uniquely identifies each
user.

• The transport provider supports the T_COTS_ORD service type, and
the example will use the orderly release facility to release the connec
tion.

• User data may not be passed between users during either connection
establishment or abortive release.

• The transport provider does not support protocol-specific options.

Because these characteristics are not needed by the user, NULL is specified in
the third argument to Lopen. If the user needed a service other than
T_COTS_ORD, another transport provider would be opened. An example of
the T_CLTS service invocation is presented in Chapter 4.

The return value of Lopen is an identifier for the transport endpoint that
will be used by all subsequent Transport Interface function calls. This identif
ier is actually a file descriptor obtained by opening the transport protocol file
[see open(2)]. The significance of this fact is highlighted in Chapter 5.

After the transport endpoint is created, the client calls t_bind to assign an
address to the endpoint. The first argument identifies the transport endpoint.
The second argument describes the address the user would like to bind to the
endpoint, and the third argument is set on return from Lbind to specify the
address that the provider bound.

The address associated with a server's transport endpoint is important,
because that is the address used by all clients to access the server. However,
the typical client does not care what its own address is, because no other pro
cess will try to access it. That is the case in this example, where the second
and third arguments to Lbind are set to NULL. A NULL second argument
will direct the transport provider to choose an address for the user. A NULL
third argument indicates that the user does not care what address was
assigned to the endpoint.

If either Lopen or Lbind fail, the program will call Lerror(3N) to print
an appropriate error message to stderr. If any Transport Interface routine
fails, the global integer Lerrno will be assigned an appropriate transport error
value. A set of such error values has been defined (in <tiuser.h» for the
Transport Interface, and Lerror will print an error message corresponding to
the value in Lerrno. This routine is analogous to perror(3C), which prints an
error message based on the value of errno. If the error associated with a tran
sport function is a system error, Lerrno will be set to TSYSERR, and errno
will be set to the appropriate value.

CONNECTION-MODE SERVICE 3-5

Local Management

The Server
The server in this example must take similar local management steps

before communication can begin. The server must establish a transport end
point through which it will listen for connect indications. The necessary
definitions and local management steps are shown below:

#include <tiuser.h>
#include <stropts.h>
#include <fcntl.h>

#include <stdio.h>
#include <signal.h>

#define DI~-1
#define SRV_AOOR

int =_fd;
extern int t_errIlO;

main()

{

/* server's well known address */

/* oarmectian established here * /

int liste!Lfd; /* listening transport endpoint */

st:ruct t_bind *bind;
st:ruct t_call *call;

if «liste!Lfd = t_open("/dev/tivc", O_RrMR, NULL» < 0) {

t_e=("t_open failed f= liste!Lfd");
exit(1);

/*
* By assuming tlJat the address is an integer value,

* this program may not run over another protocol.
*/

3·6 NETWORK PROGRAMMER'S GUIDE

Local Management

continued

if ((bind = (struct t_bind *)t_alloc(listerLfd, T_BIND, T_ALL» == NULL) {
t_errm"("t_alloc of t_bind structure failed");
exit(2) ;

bind->qlen = 1;
bind->addr.len = sizeof(int);

*(int *)bind->addr.buf = SRV_ADDR;

if (t_bind(listen_fd, bind, bind) < 0)
t_errm"("t_bind failed for listen_fd");
exit(3) ;

1*
* was the cnrrect address I:lolm:i?

*1
if (*(int *)bind->addr.buf 1= SRV_ADDR)

fprintf (stderr, "t_bind bound wrong addressO) ;
exit(4) ;

As with the client, the first step is to call Lopen to establish a transport
endpoint with the desired transport provider. This endpoint, listen_fd, will be
used to listen for connect indications. Next, the server must bind its well
known address to the endpoint. This address is used by each client to access
the server. The second argument to Lbind requests that a particular address
be bound to the transport endpoint. This argument points to a Lbind struc
ture with the following format:

CONNECTION-MODE SERVICE 3-7

Local Management

struct t_bind {

}

struct netbuf addr;
unsigned qlen;

where addr describes the address to be bound, and qlen indicates the max
imum outstanding connect indications that may arrive at this endpoint. All
Transport Interface structure and constant definitions are found in <tiuser.h>.

The address is specified using a netbuf structure that contains the follow
ing members:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

}

where but points to a buffer containing the data, len specifies the bytes of data
in the buffer, and maxlen indicates the maximum bytes the buffer can hold
(and need only be set when data is returned to the user by a Transport Inter
face routine). For the t_bind structure, the data pointed to by but identifies a
transport address. It is expected that the structure of addresses will vary
among each protocol implementation under the Transport Interface. The net
buf structure is intended to support any such structure.

If the value of q/en is greater than 0, the transport endpoint may be used
to listen for connect indications. In such cases, t_bind directs the transport
provider to immediately begin queueing connect indications destined for the
bound address. Furthermore, the value of qlen indicates the maximum out
standing connect indications the server wishes to process. The server must
respond to each connect indication, either accepting or rejecting the request
for connection. An outstanding connect indication is one to which the server
has not yet responded. Often, a server will fully process a single connect indi
cation and respond to it before receiving the next indication. In this case, a
value of 1 is appropriate for qlen. However, some servers may wish to
retrieve several connect indications before responding to any of them. In such
cases, qlen indicates the maximum number of such outstanding indications the
server will process. An example of a server that manages multiple outstand
ing connect indications is presented in Chapter 6.

3-8 NETWORK PROGRAMMER'S GUIDE

Local Management

Lalloe(3N) is called to allocate the Lbind structure needed by Lbind.
Lalloe takes three arguments. The first is a file descriptor that references a
transport endpoint. This is used to access the characteristics of the transport
provider [see Lopen(3N)]. The second argument identifies the appropriate
Transport Interface structure to be allocated. The third argument specifies
which, if any, netbuf buffers should be allocated for that structure. T-ALL
specifies that all netbuf buffers associated with the structure should be allo
cated, and will cause the addr buffer to be allocated in this example. The size
of this buffer is determined from the transport provider characteristic that
defines the maximum address size. The maxlen field of this netbuf structure
will be set to the size of the newly allocated buffer by Lalloe. The use of
Lalloe will help ensure the compatibility of user programs with future
releases of the Transport Interface.

The server in this example will process connect indications one at a time,
so qlen is set to 1. The address information is then assigned to the newly allo
cated Lbind structure. This Lbind structure will be used to pass informa
tion to Lbind in the second argument, and also will be used to return infor
mation to the user in the third argument.

On return, the Lbind structure will contain the address that was bound
to the transport endpoint. If the provider could not bind the requested
address (perhaps because it had been bound to another transport endpoint), it
will choose another appropriate address.

Each transport provider will manage its address space differently. Some tran
sport providers may allow a single transport address to be bound to several
transport endpoints, while others may require a unique address per endpoint.
The Transport Interface supports either choice. Based on its address manage-
ment rules, a provider will determine if it can bind the requested address. If
not, it will choose another valid address from its address space and bind it to
the transport endpoint.

The server must check the bound address to ensure that it is the one previ
ously advertised to clients. Otherwise, the clients will be unable to reach the
server.

If Lbind succeeds, the provider will begin queueing connect indications.
The next phase of communication, connection establishment, is entered.

CONNECTION-MODE SERVICE 3-9

Connection Establishment

The connection establishment procedures highlight the distinction
between clients and servers. The Transport Interface imposes a different set of
procedures in this phase for each type of transport user. The client initiates
the connection establishment procedure by requesting a connection to a partic
ular server using Lconnect(3N). The server is then notified of the client's
request by calling Llisten(3N). The server may either accept or reject the
client's request. It will call Laccept(3N) to establish the connection, or call
Lsnddis(3N) to reject the request. The client will be notified of the server's
decision when Lconnect completes.

The Transport Interface supports two facilities during connection establish
ment that may not be supported by all transport providers. The first is the
ability to transfer data between the client and server when establishing the
connection. The client may send data to the server when it requests a connec
tion. This data will be passed to the server by Llisten. Similarly, the server
can send data to the client when it accepts or rejects the connection. The con
nect characteristic returned by Lopen determines how much data, if any, two
users may transfer during connect establishment.

The second optional service supported by the Transport Interface during
connection establishment is the negotiation of protocol options. The client
may specify protocol options that it would like the remote user and/or tran
sport provider to use. The Transport Interface supports both local and remote
option negotiation. As discussed earlier, option negotiation is inherently a
protocol-specific function. Use of this facility is discouraged if protocol
independent software is a goal (see Appendix B).

The Client
Continuing with the client/server example, the steps needed by the client

to establish a connection are shown next.

3-10 NETWORK PROGRAMMER'S GUIDE

Connection Establishment

1*
* By assuming that the address is an integer value,

* this program may not run over another protocol.
*1
if ((sndcall = (struct t_call *)t311oc(fd, T_CALL, T_ADJ:R» == NULL) {

t_err=("t_alloc failed");
exit(3) ;

sndcall->addr.len = sizeof(int);
*(int *)sndcall->addr.buf = SRV_AIDR;

if (t_oonnect(fd, sndcall, NULL) < 0)

t_err=("t_oonnect failed for fd");
exit(4) ;

The Leonnect call establishes the connection with the server. The first argu
ment to Leonnect identifies the transport endpoint through which the con
nection is established, and the second argument identifies the destination
server. This argument is a pointer to a t_eall structure, which has the follow
ing format:

struct t_ call {

}

struct net:buf addr;
struct netbuf opt;
struct netlluf udata;
int sequence;

addr identifies the address of the server, opt may be used to specify protocol
specific options that the client would like to associate with the connection, and
udata identifies user data that may be sent with the connect request to the
server. The sequence field has no meaning for Leonnect.

Lanoe is called above to allocate the Lean structure dynamically. Once
allocated, the appropriate values are assigned. In this example, no options or
user data are associated with the Leonnect call, but the server's address must
be set. The third argument to Lanoe is set to T-ADDR to indicate that an

CONNECTION-MODE SERVICE 3-11

Connection Establishment

appropriate netbuf buffer should be allocated for the address. The server's
address is then assigned to but, and len is set accordingly.

The third argument to Leanned can be used to return information about
the newly established connection to the user, and may retrieve any user data
sent by the server in its response to the connect request. It is set to NULL by
the client here to indicate that this information is not needed. The connection
will be established on successful return of Leanned. If the server rejects the
connect request, Leanned will fail and set Lerrna to TLOOK.

Event Handling
The TLOOK error has special significance in the Transport Interface.

Some Transport Interface routines may be interrupted by an unexpected asyn
chronous transport event on the given transport endpoint, and TLOOK noti
fies the user that an event has occurred. As such, TLOOK does not indicate
an error with a Transport Interface routine, but the normal processing of that
routine will not be performed because of the pending event. The events
defined by the Transport Interface are listed here:

T_LISTEN A request for a connection, called a connect indication,
has arrived at the transport endpoint.

T_CONNECT The confirmation of a previously sent connect request,
called a connect confirmation, has arrived at the tran
sport endpoint. The confirmation is generated when a
server accepts a connect request.

T_DATA User data has arrived at the transport endpoint.

T-EXDATA Expedited user data has arrived at the transport end
point. Expedited data will be discussed later in this
chapter.

T_DISCONNECT A notification that the connection was aborted or that
the server rejected a connect request, called a discon
nect indication, has arrived at the transport endpoint.

A request for the orderly release of a connection,
called an orderly release indication, has arrived at the
transport endpoint.

3-12 NETWORK PROGRAMMER'S GUIDE

Connection Establishment

The notification of an error in a previously sent
datagram, called a unitdata error indication, has
arrived at the transport endpoint (see Chapter 4).

As described in the state tables of Appendix A, it is possible in some
states to receive one of several asynchronous events. The Uook(3N) routine
enables a user to determine what event has occurred if a TLOOK error is
returned. The user can then process that event accordingly. In the example,
if a connect request is rejected, the event passed to the client will be a discon
nect indication. The client will exit if its request is rejected.

The Server
Returning to the example, when the client calls Lconnect, a connect indi

cation will be generated on the server's listening transport endpoint. The
steps required by the server to process the event are presented below. For
each client, the server accepts the connect request and spawns a server process
to manage the connection.

if «call = (st:r:uct: t_call *)t_alloc(listerLfd, T_CALL, T_ALL» == NULL)
t_erro:r(nt_alloc of t_call structure failed");
exit(S);

while (1) {
if (t_Iisten(listen_fd, call) < 0)

t_erro:r(nt_listen failed far listen_fd");
exit(6) ;

if «Clam_fd = accept_call(listen_fd, call» 1= DIscx:am::T)
rulLserver(listen_fd);

The server will loop forever, processing each connect indication. First, the
server calls Uisten to retrieve the next connect indication. When one arrives,

CONNECTION-MODE SERVICE 3~13

Connection Establishment

the server calls accepLcall to accept the connect request. accepLcall accepts
the connection on an alternate transport endpoint (as discussed below) and
returns the value of that endpoint. conn-fd is a global variable that identifies
the transport endpoint where the connection is established. Because the con
nection is accepted on an alternate endpoint, the server may continue listening
for connect indications on the endpoint that was bound for listening. If the
call is accepted without error, rUIL-server will spawn a process to manage the
connection.

The server allocates a Lcall structure to be used by Uisten. The third
argument to Lalloc, T-ALL, specifies that all necessary buffers should be
allocated for retrieving the caller's address, options, and user data. As men
tioned earlier, the transport provider in this example does not support the
transfer of user data during connection establishment, and also does not sup
port any protocol options. Therefore, Lalloc will not allocate buffers for the
user data and options. It must, however, allocate a buffer large enough to
store the address of the caller. Lalloc determines the buffer size from the
addr characteristic returned by t_open. The max len field of each netbuf struc
ture will be set to the size of the newly allocated buffer by Lalloc (maxlen is
o for the user data and options buffers).

Using the Lcall structure, the server calls Uisten to retrieve the next
connect indication. If one is currently available, it is returned to the server
immediately. Otherwise, Uisten will block until a connect indication arrives.

The Transport Interface supports an asynchronous mode for such routines
that will prevent a process from blocking. This feature is discussed in
Chapter 6.

When a connect indication arrives, the server calls accepLcall to accept
the client's request, as follows:

3-14 NETWORK PROGRAMMER'S GUIDE

Connection Establishment

accept_call (listen_fd, call)
int listen_fd;
struct t_call *call;
{

int resfd;

if «resfd = t_open("/dev/tivc", O_RmR, NULL» < 0) {

t_err=("t_open f= responding fd failed");
exit(7) ;

if (t_bind(resfd, NULL, NULL) < 0) {

t_err=("t_bind f= responding fd failed");
exit(a) ;

if (t_accept(listen_fd, resfd, call) < 0) {

if (t_errno == TIDOK) { /* lIDlSt be a discxmnect */
if (t_rcvdis(listen_fd, NULL) < 0) {

t_err=("t_rcvdis failed f= listen_fd");
exit(9) ;

if (t_close(resfd) < 0) {
t_err=("t_close failed f= responding fd");
exit(10) ;

/* go back up and listen f= other calls * /
retur.n (DISCONNOC'l') ;

t_err=("t_accept failed");
exit(11);

return(resfd) ;

accepLcall takes two arguments. listen_fd identifies the transport endpoint
where the connect indication arrived, and call is a pointer to a Lcall structure
that contains all information associated with the connect indication. The
server will first establish another transport endpoint by opening the clone dev
ice node of the transport provider and binding an address. As with the client,

CONNECTION-MODE SERVICE 3-15

Connection Establishment

a NULL value is passed to Lbind to specify that the user does not care what
address is bound by the provider. The newly established transport endpoint,
resld, is used to accept the client's connect request.

The first two arguments of Laeeept specify the listening transport end
point and the endpoint where the connection will be accepted respectively. A
connection may be accepted on the listening endpoint. However, this would
prevent other clients from accessing the server for the duration of that connec
tion.

The third argument of Laeeept points to the LeaH structure associated
with the connect indication. This structure should contain the address of the
calling user and the sequence number returned by Uisten. The value of
sequence has particular significance if the server manages multiple outstanding
connect indications. Chapter 6 presents such an example. Also, the LeaH
structure should identify protocol options the user would like to specify and
user data that may be passed to the client. Because the transport provider in
this example does not support protocol options or the transfer of user data
during connection establishment, the LeaH structure returned by Uisten
may be passed without change to Laeeept.

For simplicity in the example, the server will exit if either the Lopen or
Lbind call fails. exit(2) will close the transport endpoint associated with
listen_Id, causing the transport provider to pass a disconnect indication to the
client that requested the connection. This disconnect indication notifies the
client that the connection was not established; Leonned will fail, setting
Lermo to TLOOK.

Laeeept may fail if an asynchronous event has occurred on the listening
transport endpoint before the connection is accepted, and Lerrno will be set
to TLOOK. The'state transition table in Appendix A shows that the only
event that may occur in this state with only one outstanding connect indica
tion is a disconnect indication. This event may occur if the client decides to
undo the connect request it had previously initiated. If a disconnect indication
arrives, the server must retrieve the disconnect indication using Lrevdis.
This routine takes a pointer to a Ldiseon structure as an argument, which is
used to retrieve information associated with a disconnect indication. In this
example, however, the server does not care to retrieve this information, so it
sets the argument to NULL. After receiving the disconnect indication,
aeeepLeall closes the responding transport endpoint and returns DISCON
NECT, which informs the server that the connection was disconnected by the
client. The server then listens for further connect indications.

3-16 NETWORK PROGRAMMER'S GUIDE

Connection Establishment

Figure 3-1 illustrates how the server establishes connections.

client

responding ..
endpoint

..........

server

..
............ Tr

listening
endpoint

ansport Interface

transport
connection

transport provider

Figure 3-1: Listening and Responding Transport Endpoints

The transport connection is established on the newly created responding end
point, and the listening endpoint is freed to retrieve further connect indica
tions.

CONNECTION-MODE SERVICE 3-17

Data Transfer

Once the connection has been established, both the client and server may
begin transferring data over the connection using L-snd and Lrcv. In fact,
the Transport Interface does not differentiate the client from the server from
this point on. Either user may send and receive data, or release the connec
tion. The Transport Interface guarantees reliable, sequenced delivery of data
over an existing connection.

Two classes of data may be transferred over a transport connection: nor
mal and expedited. Expedited data is typically associated with information of
an urgent nature. The exact semantics of expedited data are subject to the
interpretations of the transport provider. Furthermore, all transport protocols
do not support the notion of an expedited data class [see Lopen(3N)].

All transport protocols support the transfer of data in byte stream mode,
where "byte stream" implies no concept of message boundaries on data that
is transferred over a connection. However, some transport protocols support
the preservation of message boundaries over a transport connection. This ser
vice is supported by the Transport Interface, but protocol-independent
software must not rely on its existence.

The message interface for data transfer is supported by a special flag of
L-snd and Lrcv called T_MORE. The messages, called Transport Service
Data Units (TSDU), may be transferred between two transport users as distinct
units. The maximum size of a TSDU is a characteristic of the underlying tran
sport protocol. This information is available to the user from Lopen and
Lgetinfo. Because the maximum TSDU size can be large (possibly unlim
ited), the Transport Interface enables a user to transmit a message in multiple
units.

To send a message in multiple units over a transport connection, the user
must set the T-MORE flag on every L-snd call except the last. This flag indi
cates that the user will send more data associated with the message in a sub
sequent call to Lsnd. The last message unit should be transmitted with
T-MORE turned off to indicate that this is the end of the TSDU.

Similarly, a TSDU may be passed to the user on the receiving side in mul
tiple units. Again, if Lrcv returns with the T-MORE flag set, the user should
continue calling Lrcv to retrieve the remainder of the message. The last unit
in the message will be indicated by a call to Lrcv that does not set T-MORE.

3-18 NETWORK PROGRAMMER'S GUIDE

Data Transfer

\! The T_MORE flag implies nothing about how the data may be packaged
below the Transport Interface. Furthermore, it implies nothing about how
the data may be delivered to the remote user. Each transport protocol, and
each implementation of that protocol, may package and deliver the data dif
ferently.

For example, if a user sends a complete message in a single call to
Lsnd, there is no guarantee that the transport provider will deliver the data
in a single unit to the remote transport user. Similarly, a TSDU transmitted
in two message units may be delivered in a single unit to the remote tran
sport user. The message boundaries may only be preserved by noting the
value of the T_MORE flag on Lsnd and LrCV. This will guarantee that the
receiving user will see a message with the same contents and message boun
daries as was sent by the remote user.

The Client
Continuing with the client/server example, the server will transfer a log

file to the client over the transport connection. The client receives this data
and writes it to its standard output file. A byte stream interface is used by the
client and server, where message boundaries (that is, the T-MORE flag) are
ignored. The client receives data using the following instructions:

while «nbytes = tJcv(fd, blf, 1024, &flags» 1= -1) {
if (fwrite(blf, 1, nbytes, stdout) < 0) {

fprintf(stderr, "fwrite failedo);
exit(S) ;

The client continuously calls Lrcv to process incoming data. If no data is
currently available, Lrcv blocks until data arrives. t-I'CV will retrieve the
available data up to 1024 bytes, which is the size of the client's input buffer,
and will return the number of bytes that were received. The client then writes
this data to standard output and continues. The data transfer phase will com
plete when Lrcv fails. Lrcv will fail if an orderly release indication or

CONNECTION-MODE SERVICE 3-19

Data Transfer

disconnect indication arrives, as will be discussed later in this chapter. If the
fwrite(3S) caJI fails for any reason, the client will exit, thereby closing the
tr",nsport endpoint. If the transport endpoint is closed (either by exit or
Ldose) when it is in the data transfer phase, the connection will be aborted
and the remote user will receive a disconnect indication.

The Server
Looking now at the other side of the connection, the server manages its

data transfer by spawning a child process to send the data to the client. The
parent process then loops back to listen for further connect indications.
rUlLServer is called by the server to spawn this child process as follows:

=release()
{

1* canrLfd is global because needed here *1
if (t_look(oomLfd) == T_DISCXltiI1X:T) {

fprintf (stderr. "oannectian allartedo);
exit(12);

1* else orderly release indication - normal exit *1
exit(O) ;

rulLserver(listerLfd)
int listsLfd;
{

int nbytes;
FILE *logfp;
char blf[1024];

switch (fork(»
case -1:

1* file pointer to log file *1

per.ror("fork failed");
exit(20) ;

default: 1* parent *1

1* close CXIIlILfd and then go up and listen again *1
if (t_close(OOIlIl-td) < 0) {

t_error("t_close failed for OOIlIl_fd");
exit(21);

return;

3-20 NETWORK PROGRAMMER'S GUIDE

case 0: 1* child *1

1* close listetLfd and do service *1
if (t ___ close(listen ___ fd) < 0) {

t ___ e=("t ___ close failed far listet'Lfd");
exit(22) ;

if ((logfp = fopen("logfile", "r"» == NULL) {

pe=("cannot open logfile");
exit(23);

signal (SIGroLL, cannrelease);
if (ioctl(oann ___ fd, I ___ SETSIG, S ___ INPUT) < 0) {

pe=("ioctl I ___ SETSIG failed");
exit(24);

Data Transfer

continued

if (t ___ look(oann ___ fd) 1= 0) { 1* was discannect already there? *1
fprintf(stderr, "t ___ look returned unexpected evento);

exit(25);

While ((nbytes = fread(hut, 1, 1024, logfp» > 0)
if (t ___ and(oann ___ fd, hut, nbytes, 0) < 0) {

t ___ e=("t ___ and failed");

exit(26) ;

After the fork, the parent process will return to the main processing loop and
listen for further connect indications. Meanwhile, the child process will
manage the newly established transport connection. If the fork call fails, exit
will close the transport endpoint associated with listen_fd. This action will
cause a disconnect indication to be passed to the client, and the client's
Lconnect call will fail.

CONNECTION-MODE SERVICE 3-21

Data Transfer

The server process reads 1024 bytes of the log file at a time and sends
that data to the client using Lsnd. buf points to the start of the data buffer,
and nbytes specifies the number of bytes to be transmitted. The fourth argu
ment is used to specify optional flags. Two flags are currently supported:
T_EXPEDITED may be set to indicate that the data is expedited, and
T_MORE may be set to define message boundaries when transmitting mes
sages over a connection. Neither flag is set by the server in this example.

If the user begins to flood the transport provider with data, the provider
may exert back pressure to provide flow control. In such cases, Lsnd will
block until the flow control is relieved, and will then resume its operation.
Lsnd will not complete until nbyte bytes have been passed to the transport
provider.

The Lsnd routine does not look for a disconnect indication (signifying
that the connection was broken) before passing data to the provider. Also,
because the data traffic is flowing in one direction, the user will never look for
incoming events. If, for some reason, the connection is aborted, the user
should be notified because data may be lost. One option available to the user
is to use Llook to check for incoming events before each Lsnd call. A more
efficient solution is the one presented in the example. The STREAMS
LSETSIG ioctl enables a user to request a signal when a given event occurs
[see streamio(7) and signal(2)]. The STREAMS event of concern here is
S-INPUT, which will cause a signal to be sent to the user if any input arrives
on the Stream referenced by conn_fd. If a disconnect indication arrives, the
signal catching routine (connrelease) will print an appropriate error message
and then exit.

If the data traffic flowed in both directions in this example, the user would
not have to monitor the connection for disconnects. If the client alternated
Lsnd and Lrcv calls, it could rely on Lrcv to recognize an incoming discon
nect indication.

3-22 NETWORK PROGRAMMER'S GUIDE

Connection Release

At any point during data transfer, either user may release the transport
connection and end the conversation. As mentioned earlier, two forms of
connection release are supported by the Transport Interface. The first, abor
tive release, breaks a connection immediately and may result in the loss of
any data that has not yet reached the destination user. Lsnddis may be
called by either user to generate an abortive release. Also, the transport pro
vider may abort a connection if a problem occurs below the Transport Inter
face. t_snddis enables a user to send data to the remote user when aborting
a connection. Although the abortive release is supported by all transport pro
viders, the ability to send data when aborting a connection is not.

When the remote user is notified of the aborted connection, Lrcvdis must
be called to retrieve the disconnect indication. This call will return a reason
code that indicates why the connection was aborted, and will return any user
data that may have accompanied the disconnect indication (if the abortive
release was initiated by the remote user). This reason code is specific to the
underlying transport protocol, and should not be interpreted by protocol
independent software.

The second form of connection release is orderly release, which gracefully
terminates a connection and guarantees that no data will be lost. All transport
providers must support the abortive release procedure, but orderly release is
an optional facility that is not supported by all transport protocols.

CONNECTION-MODE SERVICE 3-23

Connection Release

The Server
The client-server example in this chapter assumes that the transport pro

vider does support the orderly release of a connection. When all the data has
been transferred by the server, the connection may be released as follows:

if (t_sOOrel(OOIlILfd) < 0) {
t_errar("t_sOOrel failed");
exit(27) ;

pause(); 1* until orderly release indication arrives *1

The orderly release procedure consists of two steps by each user. The first
user to complete data transfer may initiate a release using Lsndrel, as illus:
trated in the example. This routine informs the client that no more data will
be sent by the server. When the client receives such an indication, itmay
continue sending data back to the server if desired. When all data has been
transferred, however, the client must also call Lsndrel to indicate that it is
ready to release the connection. The connection will be released only after
both users have requested an orderly release and received the corresponding
indication from the other user.

In this example, data is transferred in one direction from the server to the
client, so the server does not expect to receive data from the client after it has
initiated the release procedure. Thus, the server simply calls pause(2) after
initiating the release. Eventually, the remote user will respond with its ord
erly release request, and the indication will generate a signal that will be
caught by connrelease. Remember that the server earlier issued an LSETSIG
ioctl call to generate a signal on any incoming event. Since the only possible
Transport Interface events that can occur in this situation are a disconnect
indication or orderly release indication, connrelease will terminate normally
when the orderly release indication arrives. The exit call in connrelease will
close the transport endpoint, thereby freeing the bound address for use by

3-24 NETWORK PROGRAMMER'S GUIDE

Connection Release

another user. If a user process wants to close a transport endpoint without
exiting, it may call Ldose.

The Client
The client's view of connection release is similar to that of the server. As

mentioned earlier, the client continues to process incoming data until Lrcv
fails. If the server releases the connection (using either Lsnddls or Lsndrel),
Lrcv will fail and set Lerrno to TLOOK. The client then processes the con
nection release as follows:

if «t_en:nO == TL<XX<) &&. (tJoak(fd) == T_ORmEL»
if (t_rcvrel(fd) < OJ {

t_error("t_rcvrel failed");
exit(6) ;

if (t_sndrel(fd) < 0) {
t_error("t_sndrel failed");
exit(7) ;

exit(O) ;

t_error("t_rev failed");
exit(8);

Under normal circumstances, the client terminates the transfer of data by cal
ling Lsndrel to initiate the connection release. When the orderly release
indication arrives at the client's side of the connection, the client checks to
make sure the expected orderly release indication has arrived. If so, it
proceeds with the release procedures by calling Lrcvrel to process the indica
tion and Lsndrel to inform the server that it is also ready to release the con
nection. At this point the client exits, thereby closing its transport endpoint.

CONNECTION-MODE SERVICE 3-25

Connection Release

Because all transport providers do not support the orderly release facility
just described, users may have to use the abortive release facility provided by
Lsnddis and Lrcvdis. However, steps must be taken by each user to
prevent any loss of data. For example, a special byte pattern may be inserted
in the data stream to indicate the end of a conversation. Many mechanisms
are possible for preventing data loss. Each application and high level protocol
must choose an appropriate mechanism given the target protocol environment
and requirements.

3-26 NETWORK PROGRAMMER'S GUIDE

Chapter 4: Connectionless-Mode Service

Introduction

Local Management

Data Transfer

Datagram Errors

TABLE OF CONTENTS

4-1

4-2

4-5

4-8

Introduction

This chapter describes the connectionless-mode service of the Transport
Interface. Connectionless-mode service is appropriate for short-term
request/response interactions, such as transaction processing applications.
Data are transferred in self-contained units with no logical relationship
required among multiple units.

The connectionless-mode services will be described using a transaction
server as an example. This server waits for incoming transaction queries, and
processes and responds to each query.

CONNECTIONLESS-MODE SERVICE 4-1

Local Management

Just as with connection-mode service, the transport users must perform
appropriate local management steps before data can be transferred. A user
must choose the appropriate connectionless service provider using Lopen and
establish its identity using Lbind.

Loptmgmt may be used to negotiate protocol options that may be associ
ated with the transfer of each data unit. As with the connection-mode service,
each transport provider specifies the options, if any, that it supports. Option
negotiation is therefore a protocol-specific activity.

In the example, the definitions and local management calls needed by the
transaction server are as follows:

#include <stdio.h>
#include <fcntl.h>
#include <tiuser.h>

#define SRV_AIl::R 2

main()
{

int fd;
int flags;

struct t_bind *bind;
struct t_unitdata *ud;
struct t_uderr *uderr;

/* server's well known address */

if «fd = t_ope!l("/dev/tidg", O_RDWR, NULL» < 0) {
t_error("unable to open /dev/provider");
exit(1);

4-2 NETWORK PROGRAMMER'S GUIDE

Local Management

continued

if «bind = (stzuct t_bind *)t_alloc(fd, T_BIND, T_ADIR» == NULL) {
t_er:ror("t_alloc of t_bind structure failed");
exit(2) ;

bind->addr . len = sizeof (int) ;
*(int *)bind->addr.buf = SRV_AIDR;
bind->qlen = 0;

if (t_bind(fd, bind, bind) < 0)
t_er:ror("t_bind failed");
exit(3) ;

/*
* is the ba.md address correct?

*/

if (*(int *)bind->addr.buf 1= SRV_ADDR) {
fprintf(stderr, "t_bind ba.md wrong addresso);
exit(4) ;

The local management steps should look familiar by now. The server
establishes a transport endpoint with the desired transport provider using
Lopen. Each provider has an associated service type, so the user may choose
a particular service by opening the appropriate transport provider file. This
connectionless-mode server ignores the characteristics of the provider returned
by Lopen in the same way as the users in the connection-mode example, set
ting the third argument to NULL. For simplicity, the transaction server
assumes the transport provider has the following characteristics:

CONNECTIONLESS-MODE SERVICE 4-3

Local Management

• The transport address is an integer value that uniquely identifies each
user.

• The transport provider supports the T_CLTS service type (connection
less transport service, or datagram).

• The transport provider does not support any protocol-specific options.

The connectionless server also binds a transport address to the endpoint,
so that potential clients may identify and access the server. A Lbind struc
ture is allocated using LaHoe, and the but and len fields of the address are set
accordingly.

One important difference between the connection-mode server and this
connectionless-mode server is that the qlen field of the t_bind structure has
no meaning for connectionless-mode service. That is because all users are
capable of receiving datagrams once they have bound an address. The Tran
sport Interface defines an inherent client-server relationship between two
users while establishing a transport connection in the connection-mode ser
vice. However, no such relationship exists in the connectionless-mode service.
It is the context of this example, not the Transport Interface, that defines one
user as a server and another as a client.

Because the address of the server is known by all potential clients, the
server checks the bound address returned by Lbind to ensure it is correct.

4-4 NETWORK PROGRAMMER'S GUIDE

Data Transfer

Once a user has bound an address to the transport endpoint, datagrams
may be sent or received over that endpoint. Each outgoing message is accom
panied by the address of the destination user. In addition, the Transport
Interface enables a user to specify protocol options that should be associated
with the transfer of the data unit (for example, transit delay). As discussed
earlier, each transport provider defines the set of options, if any, that may
accompany a datagram. When the datagram is passed to the destination user,
the associated protocol options may be returned as well.

The following sequence of calls illustrates the data transfer phase of the
connectionless-mode server:

if «ud = (st:ruct t_unitdata *)t_alloc(fd, T_UNITDATA, T_ALL» == NlJLL)

t_error("t_alloc of t_unitdata structure failed");
exit(5) ;

if «uderr = (struct t_uderr *)t_alloc(fd, T_UDERRCR, T_ALL» == NlJLL) {

t_error("t_alloc of t_uderr structure failed");
exit(6) ;

while (1)
if (t_rcvudata(fd, ud, &flags) < 0) {

if (t_errIlO == TUXI<) {

1*
* Error an previously sent datagram
*1

if (t_rcvuderr(fd, uderr) < 0) {
exit(7) ;

fprintf(stderr, "bad datagram, error = %do,

uderr->error) ;
oontinue;

CONNECTIONLESS-MODE SERVICE 4-5

Data Transfer

t_erro:r("t_rcvudata failed");
eX1t(8) ;

/*
* Qle%y() processes the request and places the
* response in ud->udata.bl:f, setting ud->udata.len
*/

qu.ez:y(ud) ;

if (t_SDiudata(fd, ud, 0) < 0)
t_erro:r("t_SDiudata failed");
exit(9) ;

qu.ez:y()

{

/* Merely a stub far simplicity */

continued

The server must first allocate a Lunitdata structure for storing datagrams,
which has the following format:

struct: t_uni tdata {
struct net:blf addr;
struct netbuf opt;
struct net:blf udata;

}

ilddr holds the source address of incoming datagrams and the destination
address of outgoing datagrams, opt identifies any protocol options associated
with the transfer of the datagram, and udata holds the data itself. The addr,
opt, and udata fields must all be allocated with buffers that are large enough

4·& NETWORK PROGRAMMER'S GUIDE

Data Transfer

to hold any possible incoming values. As described in the previous chapter,
the T -ALL argument to Lalloe will ensure this and will set the maxlen field
of each netbuf structure accordingly. Because the provider does not support
protocol options in this example, no options buffer will be allocated, and max
len will be set to zero in the netbuf structure for options. A Luderr structure
is also allocated by the server for processing any datagram errors, as will be
discussed later in this chapter.

The transaction server loops forever, receiving queries, processing the
queries, and responding to the clients. It first calls Lrevudata to receive the
next query. Lrevudata will retrieve the next available incoming datagram. If
none is currently available, Lrevudata will block, waiting for a datagram to
arrive. The second argument of Lrevudata identifies the t_unitdata structure
where the datagram should be stored.

The third argument, flags, must point to an integer variable and may be
set to T~ORE on return from Lrevudata to indicate that the user's udata
buffer was not large enough to store the full datagram. In this case, subse
quent calls to Lrevudata will retrieve the remainder of the datagram.
Because Lalloe allocates a udata buffer large enough to store the maximum
datagram size, the transaction server does not have to check the value of flags.

If a datagram is received successfully, the transaction server calls the query
routine to process the request. This routine will store the response in the
structure pointed to by ud, and will set ud->udata.len to indicate the number
of bytes in the response. The source address returned by Lrevudata in
ud->addr will be used as the destination address by Lsndudata.

When the response is ready, Lsndudata is called to return the response
to the client. The Transport Interface prevents a user from flooding the tran
sport provider with datagrams using the same flow control mechanism
described for the connection-mode service. In such cases, Lsndudata will
block until the flow control is relieved, and will then resume its operation.

CONNECTIONLESS-MODE SERVICE 4-7

Datagram Errors

If the transport provider cannot process a datagram that was passed to it
by Lsndudata, it will return a unit data error event, T_UDERR, to the user.
This event includes the destination address and options associated with the
datagram, plus a protocol-specific error value that describes what may be
wrong with the datagram. The reason a datagram could not be processed is
protocol-specific. One reason may be that the transport provider could not
interpret the destination address or options. Each transport protocol is
expected to specify all reasons for which it is unable to process a datagram.

The unit data error indication is not necessarily intended to indicate success or
failure in delivering the datagram to the specified destination. The transport
protocol decides how the indication will be used. Remember, the connection
less service does not guarantee reliable delivery of data.

The transaction server will be notified of this error event when it attempts
to receive another datagram. In this case, Lrcvudata will fail, setting Lerrno
to TLOOK. If TLOOK is set, the only possible event is T_UDERR, so the
server calls Lrcvuderr to retrieve the event. The second argument to
Lrcvuderr is the Luderr structure that was allocated earlier. This structure
is filled in by Lrcvuderr and has the following format:

stroot t_uderr {
stroot netbuf addr;
stroot netbuf opt;
lang error;

}

where addr and opt identify the destination address and protocol options as
specified in the bad datagram, and error is a protocol-specific error code that
indicates why the provider could not process the datagram. The transaction
server prints the error code and then continues by entering the processing
loop again.

4-8 NETWORK PROGRAMMER'S GUIDE

Chapter 5: A Reild/Write Interface

Introduction

write

read

Close

TABLE OF CONTENTS

5-1

5-3

5-4

5-5

Introduction
A user may wish to establish a transport connection and then exec(2) an

existing user program such as cat(l) to process the data as it arrives over the
connection. However, existing programs use read(2) and write(2) for their
input/output needs. The Transport Interface does not directly support a
read/write interface to a transport provider, but one is available with UNIX
System V. This interface enables a user to issue read and write calls over a
transport connection that is in the data transfer phase. This chapter describes
the read/write interface to the connection-mode service of the Transport
Interface. This interface is not available with the connectionless-mode service.

The read/write interface is presented using the client example of Chapter
3 with some minor modifications. The clients are identical until the data
transfer phase is reached. At that point, this client will use the read/write
interface and cat(l) to process incoming data. cat can be run without change
over the transport connection. Only the differences between this client and
that of the example in Chapter 3 are shown below.

#include <stropts.h>

/*

* Same local management and connection
* establislInent steps.
*/

if (ioctl(fd, I_PUSH, "tirdwr") < 0) {
perror("I_PUSH of tirdwr failed");
exi.t(S) ;

close(O) ;

dup(fd);

execl ("/bin/cat", "/bin/cat", 0);
pe=("execl of /bin/cat failed");
exi.t(6) ;

A READ/WRITE INTERFACE 5-1

Introduction

The client invokes the read/write interface by pushing the tirdwr(7)
module onto the Stream associated with the transport endpoint where the
connection was established [see LPUSH in streamio(7)]. This module con
verts the Transport Interface above the transport provider into a pure
read/write interface. With the module in place, the client calls dose(2) and
dup(2) to establish the transport endpoint as its standard input file, and uses
/bin/cat to process the input. Because the transport endpoint identifier is a
file descriptor, the facility for duping the endpoint is available to users.

Because the Transport Interface has been implemented using STREAMS,
the facilities of this character input/output mechanism can be used to provide
enhanced user services. By pushing the tirdwr module above the transport
provider, the user's interface is effectively changed. The semantics of read
and write must be followed, and message boundaries will not be preserved.

\!. The tirdwr module may only be pushed onto a Stream when the transport
endpoint is in the data transfer phase. Once the module is pushed, the user
may not call any Transport. Interface routines. If a T~ansport Interface routine
is invoked, tirdwr will generate a fatal protocol error, EPROTO, on that
Stream, rendering it unusable. Furthermore, if the user pops the tirdwr
module off the Stream [see LPOP in streamio(7)], the transport connection
will be aborted.

The exact semantics of write, read, and close using tirdwr are described
below. To summarize, tirdwr enables a user to send and receive data over a
transport connection using read and write. This module will translate all
Transport Interface indications into the appropriate actions. The connection
can be released with the close system call.

5-2 NETWORK PROGRAMMER'S GUIDE

write

The user may transmit data over the transport connection using write.
The tirdwr module will pass data through to the transport provider. How
ever, if a user attempts to send a zero-length data packet, which the
STREAMS mechanism allows, tirdwr will discard the message. If for some
reason the transport connection is aborted (for example the remote user aborts
the connection using Lsnddis), a STREAMS hangup condition will be gen
erated on that Stream, and further write calls will fail and set errno to ENXIO.
The user can still retrieve any available data after a hangup, however.

A READ/WRITE INTERFACE 5-3

read

read may be used to retrieve data that has arrived over the transport con
nection. The tirdwr module will pass data through to the user from the tran
sport provider. However, any other event or indication passed to the user
from the provider will be processed by tirdwr as follows:

• read cannot process expedited data because it cannot distinguish
expedited data from normal data for the user. If an expedited data
indication is received, tirdwr will generate a fatal protocol error,
EPROTO, on that Stream. This error will cause further system calls to
fail. You must therefore be aware that you should not communicate
with a process that is sending expedited data.

• If an abortive disconnect indication is received, tirdwr will discard the
indication and generate a STREAMS hangup condition on that Stream.
Subsequent read calls will retrieve any remaining data, and then read
will return zero for all further calls (indicating end-of-file).

• If an orderly release indication is received, tirdwr will discard the indi
cation and deliver a zero-length STREAMS message to the user. As
described in read(2), this notifies the user of end-of-file by returning 0
to the user.

• If any other Transport Interface indication is received, tirdwr will gen
erate a fatal protocol error, EPROTO, on that Stream. This will cause
further system calls to fail. If a user pushes tirdwr onto a Stream after
the connection has been established, such indications will not be gen
erated.

5-4 NETWORK PROGRAMMER'S GUIDE

Close

With tirdwr on a Stream, the user can send and receive data over a tran
sport connection for the duration of that connection. Either user may ter
minate the connection by closing the file descriptor associated with the tran
sport endpoint or by popping the tirdwr module off the Stream. In either
case, tirdwr will take the following actions:

• If an orderly release indication had previously been received by tirdwr,
an orderly release request will be passed to the transport provider to
complete the orderly release of the connection. The remote user, who
initiated the orderly release procedure, will receive the expected indica
tion when data transfer completes.

• If a disconnect indication had previously been received by tirdwr, no
special action is taken.

• If neither an orderly release indication nor disconnect indication had
previously been received by tirdwr, a disconnect request will be passed
to the transport provider to abortively release the connection.

• If an error had previously occurred on the Stream and a disconnect
indication has not been received by tirdwr, a disconnect request will be
passed to the transport provider.

A process may not initiate an orderly release after tirdwr is pushed onto a
Stream, but tirdwr will handle an orderly release properly if it is initiated by
the user on the other side of a transport connection. If the client in this
chapter is communicating with the server program in Chapter 3, that server
will terminate the transfer of data with an orderly release request. The server
then waits for the corresponding indication from the client. At that point, the
client exits and the transport endpoint is closed. As explained in the first bul
let item above, when the file descriptor is closed, tirdwr will initiate the ord
erly release request from the client's side of the connection. This will generate
the indication that the server is expecting, and the connection will be released
properly.

A READfWRITE INTERFACE 5-5

Chapter 6: Advanced Topics

Introduction

Asynchronous Execution Mode

Advanced Programming Example

6-1

6-2

6-3

TABLE OF CONTENTS

Introduction
This chapter presents important concepts of the Transport Interface that

have not been covered in the previous chapters. First, an optional non
blocking (asynchronous) mode for some library calls is described. Then, an
advanced programming example is presented that defines a server that sup
ports multiple outstanding connect indications and operates in an
event-driven manner.

ADVANCED TOPICS 6-1

Asynchronous Execution Mode

Many Transport Interface library routines may block waiting for an incom
ing event or the relaxation of flow control. However, some time-critical appli
cations should not block for any reason. Similarly, an application may wish
to do local processing while waiting for some asynchronous transport interface
event.

Support for asynchronous processing of Transport Interface events is
available to applications using a combination of the STREAMS asynchronous
features and the non-blocking mode of the Transport Interface library rou
tines. Earlier examples in this guide have illustrated the use of the STREAMS
poll system call and the I_SETSIG ioctl command for processing events in an
asynchronous manner.

In addition, each Transport Interface routine that may block waiting for
some event can be run in a special non-blocking mode. For example, t--1isten
will normally block, waiting for a connect indication. However, a server can
periodically poll a transport endpoint for existing connect indications by cal
ling t--1isten in the non-blocking (or asynchronous) mode. The asynchronous
mode is enabled by setting O_NDELAY on the file descriptor. This can be set
as a flag on Lopen, or by calling fcntl(2) before calling the Transport Inter
face routine. fcntl can be used to enable or disable this mode at any time.
All programming examples illustrated throughout this guide use the default,
synchronous mode of processing.

O-NDELA Y affects each Transport Interface routine in a different
manner. To determine the exact semantics of O-NDELAY for a particular
routine, see the appropriate pages in Section 3N of the Programmer's Reference
Manual.

6-2 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

The following example demonstrates two important concepts. The first is
a server's ability to manage multiple outstanding connect indications. The
second is an illustration of the ability to write event-driven software using the
Transport Interface and the STREAMS system call interface.

The server example in Chapter 3 was capable of supporting only one out
standing connect indication, but the Transport Interface supports the ability to
manage multiple outstanding connect indications. One reason a server might
wish to receive several, simultaneous connect indications is to impose a prior
ity scheme on each client. A server may retrieve several connect indications,
and then accept them in an order based on a priority associated with each
client. A second reason for handling several outstanding connect indications
is that the single-threaded scheme has some limitations. Depending on the
implementation of the transport provider, it is possible that while the server is
processing the current connect indication, other clients will find it busy. If,
however, multiple connect indications can be processed simultaneously, the
server will be found to be busy only if the maximum allowed number of
clients attempt to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint
for incoming Transport Interface events, and then takes the appropriate
actions for the current event. The example demonstrates the ability to poll
multiple transport endpoints for incoming events.

The definitions and local management functions needed by this example
are similar to those of the server example in Chapter 3.

ADVANCED TOPICS 6-3

Advanced Programming Example

#i:nclude <tiuser.h>
#i:nclude <fcntl.h>
#i:nclude <stdio.h>
#i:nclude <poll.h>
#i:nclude <stropts.h>
#i:nclude <signal.h>

#define N!JM]al
#define MAX_<:n6_IND 4
#define SRV_AID. /* server's well laxlwn address *1

int OCll'llLfd; /* server cxmnectian here *1
struct t_call *calls[NlJoI]al][MAX_<:nlN_IND] ;/* holds oannect indications *1
extern int t_en'DO;

maine)
{

struct pollfd pollfds[NlJoI]al];
struct t_bind *bind;
int i;

/*
* Only openiDJ and biniiD;J one transport erxipoint,

* but m:xre could be suw=ted
*/

if «pollfds[O].fd '" t_open("/dev/tivc", O_RDWR, NULL» < 0) {
t_error("t_open failed");
exit(1);

if «bind '" (struct t_bind *)t_alloc(pollfds[O] .fd, T_BIND, T_ALL» "'''' NULL) {
t_error("t_alloc of t_bind structure failed");
exit(2) ;

bind->qlen '" MAX_CXHl_IND;
bind->addr.len '" sizeof(int);
*(int *)bind->addr.buf '" SRV_ADIR;

6-4 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

if (t_bind(pollfds[O] .fd, bind, bind) < 0)
t_errCIr(lit_bind failed");
exit(3) ;

1*
* Was the correct address I:xnmd?

*1
if (*(mt *)bind->addr;blf J= SRV_AOCR)

fprintf(stderr, lit_bind bound wrong addresSO);
exit(4);

continued

The file descriptor returned by Lopen is stored in a pollfd structure [see
poll(2)] that will be used to poll the transport endpoint for incoming data.
Notice that only one transport endpoint is established in this example. How
ever, the remainder of the example is written to manage multiple transport
endpoints. Several endpoints could be supported with minor changes to the
above code.

An important aspect of this server is that it sets qlen to a value greater
than 1 for Lbind. This indicates that the server is willing to handle multiple
outstanding connect indications. Remember that the earlier examples single
threaded the connect indications and responses. The server would accept the
current connect indication before retrieving additional connect indications.
This example, however, can retrieve up to MAX-CONN-IND connect indica
tions at one time before responding to any of them. The transport provider
may negotiate the value of qlen downward if it cannot support
MAX-CONN_IND outstanding connect indications.

Once the server has bound its address and is ready to process incoming
connect requests, it does the following:

ADVANCED TOPICS 6-5

Advanced Programming Example

pollfds[O).events = FOLLIN;

while (1) {

if (poll (pollfds, NlJ'LPm, -1) < 0)
perror("poll failed");

exit(S) ;

switch (pollfds(i) • revents) {

default:

perror("poll returned error event");
exit(6) ;

case 0:

oontinue;

case FOLLIN:

do_event(i, pollfds(i) .fd);

service_oomLind(i, pollfds(i) .fd) ;

The events field of the pollfd structure is set to POLLIN, which will notify the
server of any incoming Transport Interface events. The server then enters an
infinite loop, in which it will poll the transport endpoint(s) for events, and
then process those events as they occur.

The poll call will block indefinitely, waiting for an incoming event. On
return, each entry (corresponding to each transport endpoint) is checked for an
existing event. If revents is set to 0, no event has occurred on that endpoint.
In this case, the server continues to the next transport endpoint. If revents is
set to POLLIN, an event does exist on the endpoint. In this case, do_event is
called to process the event. If revents contains any other value, an error must
have occurred on the transport endpoint, and the server will exit.

6-6 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

For each iteration of the loop, if any event is found on the transport end
point, service_conIL-ind is called to process any outstanding connect indica
tions. However, if another connect indication is pending, service_conIL-ind
will save the current connect indication and respond to it later. This routine
will be explained shortly.

If an incoming event is discovered, the following routine is called to pro
cess it:

do_event (slot, fd)
{

struct t_disoan *disoan;
int i;

switch (t_look(fd» {

default:
fprintf(stderr,"t_look returned an unexpected eventO);
exit(?) ;

case T_ERKlR:
fprintf(stderr,"t_look returned T_ERRCR evento);
exit(S) ;

case -1:

t_errar("t_look failed");
exit(9) ;

case 0:
1* since FOLLIN returned, this should not happen *1
fprintf(stderr,"t_look returned no eventO);
exit(10);

case T _LISl'EN:

1*
* filxi free element in calls azray

*1
for (i = 0; i < MAX_cx:tlN_IND; i++)

if (calls[slot][i] == NULL)

break;

if ((calls[slot][i] = (struct t_call *)t_alIOC(fd, T_CALL, T_ALL» = NULL) {
t_errar("t_alloc of t_call structure failed");
exit(11);

if (t_Iisten(fd, calls[slot][i]) < 0) {

ADVANCED TOPICS 6-7

Advanced Programming Example

t_ett=("t_Iisten failEd");
exit(12);

break;

case T _DJ:SCX:HIll!Cl':
disoan = (stroot t_disoan *)t_alloc(fd, T_DIS, T_ALL);

if (t_rcvdis(fd, disOCin) < 0) {

t_ett=("t_rcvdis failed");
exit(13);

/*
* find call ind in array and delete it
*/

for (i = 0; i < !WUXl!iILIND; i++) {

}

if (disoan->seqilence == calls[slot][i]->seqilence)
t_free(calls[slot][i], T_CALL);
calls [slot] [i] = NULL;

}

break;

continued

This routine takes a number, slot, and a file descriptor, fd, as arguments. slot
is used as an index into the global array calls. This array contains an entry for
each polled transport endpoint, where each entry consists of an array of LeaH
structures that hold incoming connect indications for that transport endpoint.
The value of slot is used to identify the transport endpoint of interest.

do_event calls Llook to determine the Transport Interface event that has
occurred on the transport endpoint referenced by fd. If a connect indication
(T_LISTEN event) or disconnect indication (T_DISCONNECT event) has
arrived, the event is processed. Otherwise, the server prints an appropriate
error message and exits.

6-8 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

For connect indications, do_event scans the array of outstanding connect
indications looking for the first free entry. A Leall structure is then allocated
for that entry, and the connect indication is retrieved using Uisten. There
must always be at least one free entry in the connect indication array, because
the array is large enough to hold the maximum number of outstanding con
nect indications as negotiated by Lbind. The processing of the connect indi
cation is deferred until later.

If a disconnect indication arrives, it must correspond to a previously
received connect indication. This scenario arises if a client attempts to undo a
previous connect request. In this case, do_event allocates a Ldiseon struc
ture to retrieve the relevant disconnect information. This structure has the fol
lowing members:

struct t_disoan {
stru.ct netbuf udata;
int reason;
int sequence;

}

where udata identifies any user data that might have been sent with the
disconnect indication, reason contains a protocol-specific disconnect reason
code, and sequence identifies the outstanding connect indication that matches
this disconnect indication.

Next, t-revdis is called to retrieve the disconnect indication. The array of
connect indications for slot is then scanned for one that contains a sequence
number that matches the sequence number in the disconnect indication. When
the connect indication is found, it is freed and the corresponding entry is set
to NULL.

As mentioned earlier, if any event is found on a transport endpoint,
serviee_eonB-ind is called to process all currently outstanding connect indi
cations associated with that endpoint as follows:

ADVANCED TOPICS 6-9

Advanced Programming Example

service_carm_lnd(slot, fd)
{

int i;

far (i = 0; i < MAlcaNLIND; i++)
if (calls[slot][i] == NULL)

continue;

if «carm_fd = t_open("/dev/tivc", o_~, NULL» < 0) {
t_errar("open failed");
exit(14) ;

if (t_blnd(carm_fd, NULL, NULL) < 0) {
t_errar("t_bind failed");
exit(15);

if (t_aocept(fd, oann-fd, calls[slot][i]) < 0) {
if (t_errIlO == TLOOK)

t_close(oann_fd) ;
ret:1n:n;

t_errar("t_acc'~pt failed");
exit(16) ;

t_free (calls [slot] [i], T_CALL);
calls[slot][i] = NULL;

rUILserver(fd) ;

For the given slot (the transport endpoint), the array of outstanding connect
indications is scanned. For each indication, the server will open a responding
transport endpoint, bind an address to the endpoint, and then accept the con
nection on that endpoint. If another event (connect indication or disconnect
indication) arrives before the current indication is accepted, Laccept will fail
and set Lerrno to TLOOK.

6-10 NETWORK PROGRAMMER'S GUIDE

Advanced Programming Example

The user cannot accept an outstanding connect indication if any pending con
nect indication events or disconnect indication events exist on that transport
endpoint.

If this error occurs, the responding transport endpoint is closed and
service_conIL-ind will return immediately (saving the current connect indica
tion for later processing). This causes the server's main processing loop to be
entered, and the new event will be discovered by the next call to poll. In this
way, multiple connect indications may be queued by the user.

Eventually, all events will be processed, and service_conIL-ind will be
able to accept each connect indication in turn. Once the connection has been
established, the rUll-server routine used by the server in Chapter 3 is called
to manage the data transfer.

ADVANCED TOPIC$ 6-11

Appendix A: State Transitions

The tables in this appendix describe all state transitions associated with
the Transport Interface. First, however, the states and events will be
described.

Transport Interface States
Figure A-I defines the states used to describe the Transport Interface state

transitions.

State Description Service Tvpe
T_UNINIT uninitialized - initial and T_COTS,

final state of interface T_COTS_ORD, T_CLTS
T_UNBND initialized but not bound T_COTS,

T_COTS_ORD,T_CLTS

T-IDLE no connection established T_COTS,
T_COTS_ORD,T_CLTS

T_OUTCON outgoing connection T_COTS,T_COTS_ORD
pending for client

T-INCON incoming connection T_COTS, T_COTS_ORD
pending for server

T_DATAXFER data transfer T_COTS,T_COTS_ORD
T_OUTREL outgoing orderly release T_COTS_ORD

(waiting for orderly
release indication)

T_INREL incoming orderly release T_COTS_ORD
(waiting to send orderly
release request)

Figure A-I: Transport Interface States

APPENDIX A: STATE TRANSITIONS A-1

Appendix A: State Transitions

Outgoing Events
The outgoing events described in Figure A-2 correspond to the return of

the specified transport routines, where these routines send a request or
response to the transport provider.

In the figure, some events (such as aeeeptN) are distinguished by the con
text in which they occur. The context is based on the values of the following
variables:

Dent count of outstanding connect indications

fd file descriptor of the current transport endpoint

resfd file descriptor of the transport endpoint where a connection
will be accepted

A-2 NETWORK PROGRAMMER'S GUIDE

Appendix A: State Transitions

Event Description Service Tvpe
opened successful return of Lopen T_COTS,

T_COTS_ORD,T_CLTS

bind successful return of Lbind T_COTS,
T_COTS_ORD,T_CLTS

optmgmt successful return of Loptmgmt T_COTS,
T_COTS_ORD, T_CLTS

unbind successful return of Lunbind T_COTS,
T_COTS_ORD, T_CLTS

closed successful return of Lclose T_COTS,
T_COTS_ORD,T_CLTS

connect 1 successful return of Lconnect in syn- T_COTS, T_COTS_ORD
chronous mode

connect2 TNODATA error on Lconned in asyn- T_COTS, T_COTS_ORD
chronous mode, or TLOOK error due to
a disconnect indication arriving on the
transport endpoint

acceptl successful return of Laccept with Dent T_COTS,T_COTS_ORD
== 1, fd == resfd

accept2 successful return of t_accept with Dent T_COTS, T_COTS_ORD
== 1, fd != resfd

accept3 successful return of Laccept with Dent T_COTS, T_COTS_ORD
>1

snd successful return of t-snd T_COTS, T_COTS_ORD

snddisl successful return of t-Snddis with Dent T_COTS, T_COTS_ORD
<= 1

snddis2 successful return of t-Snddis with Dent T_COTS, T_COTS_ORD
>1

sndrel successful return of t-Sndrel T_COTS_ORD

sndudata successful return of t-sndudata T_CLTS

Figure A-2: Transport Interface Outgoing Events

APPENDIX A: STATE TRANSITIONS A-3

Appendix A: State Transitions

Incoming Events
The incoming events correspond to the successful return of the specified

routines, where these routines retrieve data or event information from the
transport provider. The only incoming event not associated directly with the
return of a routine is pass_conn, which occurs when a user transfers a connec
tion to another transport endpoint. This event occurs on the endpoint that is
being passed the connection, despite the fact that no Transport Interface rou
tine is issued on that endpoint. pass_conn is included in the state tables to
describe the behavior when a user accepts a connection on another transport
endpoint.

In Figure A-3, the rcvdis events are distinguished by the context in which
they occur. The context is based on the value of ocnt, which is the count of
outstanding connect indications on the transport endpoint.

Incoming
Event Description Service Type

listen successful return of Llisten T_COTS, T_COTS_ORD
rcvconnect successful return of Lrcvconnect T_COTS, T_COTS_ORD

rcv successful return of Lrcv T_COTS, T_COTS_ORD

rcvdisl successful return of Lrcvdis T_COTS, T_COTS_ORD
with ocnt <= 0

rcvdis2 successful return of Lrcvdis T_COTS,T_COTS_ORD
with ocnt == 1

rcvdis3 successful return of tJcvdis T_COTS, T_COTS_ORD
with ocnt > 1

rcvrel successful return of Lrcvrel T_COTS_ORD
rcvudata successful return of tJcvudata T_CLTS
rcvuderr successful return of Lrcvuderr T_CLTS
pass_conn receive a passed connection T_COTS, T_COTS_ORD

Figure A-3: Transport Interface Incoming Events

A-4 NETWORK PROGRAMMER'S GUIDE

Appendix A: State Transitions

Transport User Actions
In the state tables that follow, some state transitions are accompanied by a

list of actions the transport user must take. These actions are represented by
the notation [n], where n is the number of the specific action as described
below.

[1] Set the count of outstanding connect indications to zero.

[2] Increment the count of outstanding connect indications.

[3] Decrement the count of outstanding connect indications.

[4] Pass a connection to another transport endpoint as indicated in
Laccept.

State Tables
The following tables describe the Transport Interface state transitions.

Given a current state and an event, the transition to the next state is shown,
as well as any actions that must be taken by the transport user (indicated by
[n]). The state is that of the transport provider as seen by the transport user.

The contents of each box represent the next state, given the current state
(column) and the current incoming or outgoing event (row). An empty box
represents a state/event combination that is invalid. Along with the next
state, each box may include an action list (as specified in the previous section).
The transport user must take the specific actions in the order specified in the
state table.

The following should be understood when studying the state tables:

• The Lclose routine is referenced in the state tables (see closed event in
Figure A-2), but may be called from any state to close a transport end
point. If Lclose is called when a transport address is bound to an end
point, the address will be unbound. Also, if Lclose is called when the
transport connection is still active, the connection will be aborted.

• If a transport user issues a routine out of sequence, the transport pro
vider will recognize this and the routine will fail, setting Lerrno to
TOUTSTATE. The state will not change.

APPENDIX A: STATE TRANSITIONS A-5

Appendix A: State Transitions

• If any other transport error occurs, the state will not change unless
explicitly stated on the manual page for that routine. The exception to
this is a TLOOK or TNODATA error on Leonnect, as described in Fig
ure A-2. The state tables assume correct use of the Transport Interface.

• The support routines Lgetinfo, Lgetstate, LaUoe, Lfree, Lsyne,
Llook, and Lerror are excluded from the state tables because they do
not affect the state.

A separate table is shown for common local management steps, data
transfer in connectionless-mode, and connection-establishment/connection
release/data-transfer in connection-mode.

~ event
T_UNINIT T_UNBND T-IDLE

opened T_UNBND

bind T-IDLE [1]

optmgmt T-IDLE

unbind T_UNBND

closed T_UNINIT

Figure A-4: Common Local Management State Table

A-6 NETWORK PROGRAMMER'S GUIDE

Appendix A: State Transitions

~ T-IDLE
event

sndudata T-IDLE

rcvudata T-IDLE

rcvuderr T-IDLE

Figure A-5: Connectionless-Mode State Table

APPENDIX A: STATE TRANSITIONS A-7

Appendix A: State Transitions

~ event
T_IDLE T_OUTCON L1NCON T_DATAXFER T_OUTREL LINREL

connectl T_DATAXFER

connect2 T_OUTCON

rcvconnect T_DATAXFER

listen LINCON[2] LINCON[2]

accept! LDATAXFER[3]

accept2 T-'DLE [3][4]

accept3 T-'NCON [3][4]

snd T_DATAXFER T-'NREL

rcv T_DATAXFER T_OUTREL

snddisl T-'DLE T-'DLE [3] T-'DLE T-'DLE T_IDLE

snddis2 T-'NCON [3]

rcvdisl T_IDLE T-'DLE T_IDLE T_IDLE

rcvdis2 LIDLE [3]

rcvdis3 T-'NCON [3]

sndrel T_OUTREL T_IDLE

rcvrel T_INREL T-'DLE

pass_conn T_DATAXFER

Figure A-6: Connection-Mode State Table

A-8 NETWORK PROGRAMMER'S GUIDE

Appendix B: Guidelines for Protocol Indepen
dence

By defining a set of services common to many transport protocols, the
Transport Interface offers protocol independence for user software. However,
all transport protocols do not support all the services supported by the Tran
sport Interface. If software must be run in a variety of protocol environments,
only the common services should be accessed. The following guidelines
highlight services that may not be common to all transport protocols.

• In the connection-mode service, the concept of a transport service data
unit (TSDU) may not be supported by all transport providers. The user
should make no assumptions about the preservation of logical data
boundaries across a connection. If messages must be transferred over a
connection, a protocol should be implemented above the Transport
Interface to support message boundaries.

• Protocol and implementation specific service limits are returned by the
Lopen and Lgetinfo routines. These limits are useful when allocating
buffers to store protocol-specific transport addresses and options. It is
the responsibility of the user to access these limits and then adhere to
the limits throughout the communication process.

• User data should not be transmitted with connect requests or disconnect
requests [see Leonnect(3N) and Lsnddis(3N)]. All transport protocols
do not support this capability.

• The buffers in the LeaH structure used for Llisten must be large
enough to hold any information passed by the client during connection
establishment. The server should use the T-ALL argument to Lalloe,
which will determine the maximum buffer sizes needed to store the
address, options, and user data for the current transport provider.

• The user program should not look at or change options that are associ
ated with any Transport Interface routine. These options are specific to
the underlying transport protocol. The user should choose not to pass
options with Leonnect or Lsndudata. In such cases, the transport
provider will use default values. Also, a server should use the options
returned by Llisten when accepting a connection.

• Protocol-specific addressing issues should be hidden from the user pro
gram. A client should not specify any protocol address on t_bind, but
instead should allow the transport provider to assign an appropriate

APPENDIX B: PROTOCOL INDEPENDENCE B-1

Appendix B: Guidelines for Protocol Independence

address to the transport endpoint. Similarly, a server should retrieve its
address for Lbind in such a way that it does not require knowledge of
the transport provider's address space. Such addresses should not be
hard-coded into a program. A name server mechanism could be useful
in this scenario, but the details for providing such a service are outside
the scope of the Transport Interface.

• The reason codes associated with Lrcvdis are protocol-dependent.
The user should not interpret this information if protocol-independence
is a concern.

• The error codes associated with Lrcvuderr are protocol-dependent.
The user should not interpret this information if protocol-independence
is a concern.

• The names of devices should not be hard-coded into programs, because
the device node identifies a particular transport provider and is not
protocol-independent.

• The optional orderly release facility of the connection-mode service
(provided by Lsndrel and Lrcvrel) should not be used by programs
targeted for multiple protocol environments. This facility is not sup
ported by all connection-based transport protocols. In particular, its use
will prevent programs from successfully communicating with ISO open
systems.

B-2 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

The examples presented throughout this guide are shown in entirety in
this appendix.

Connection-Mode Client

The following code represents the connection-mode client program
described in Chapter 3. This client establishes a transport connection with a
server, and then receives data from the server and writes it to its standard out
put. The connection is released using the orderly release facility of the Tran
sport Interface. This client will communicate with each of the connection
mode servers presented in the guide.

#include <stdio.h>
#include <tiuser. h>
#include <fcnt1.h>

1* server's well known address *1

maine)
{

int fd;
int nbytes;
int flags = 0;
cha7: buf[1024];
st:ruct t_call *sndcall;
exteDl int t_ errno;

if «fd = t_apen("/dev/tivc", O_RIMR, NULL» < 0) {

t_e:rror("t_open failed");
exit(1);

if (t_bind(fd, NULL, NULL) < 0)

t_e:rror("t_bind failed");
exit(2) ;

1*
* By assuming that the address is an integer value,
* this program may not run over another protocol.

APPENDIX C: EXAMPLES C-1

Appendix C: Examples

continued

*1
if «sndcall = (struct t_call *)t_alloc(fd, T_CALL, T_AlDR» == NULL) {

t_error("t_alloc failed");
exit(3);

sndcall->addr.len = siz9of(int);
*(int *)sndcall->addr.buf = SRV_ADDR;

if (t_CXlllllect(fd, sndcall, NULL) < 0)
t_error("t_cxmnect failed for fd");
exit(4);

while «nbytes = t_rev(fd, buf, 1024, &flags» 1= -1) {

if (fwrite(buf, 1, nbytes, stdout) < 0) {
fprintf(stderr, "£write failedO);
exit(5);

if «t_errIlO == TIDOK) && (t_look(fd) == T_ORmEL» {

if (t_rcvrel(fd) < 0) {
t_error("tJcvrel failed");
exit(6) ;

if (t_srxlrel(fd) < 0) {
t_error("t_srxlrel failed");
exit(7) ;

exit(O) ;

t_error("t_rev failed");
exit(S) ;

C-2 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

Connection-Mode Server
The following code represents the connection-mode server program

described in Chapter 3. This server establishes a transport connection with a
client, and then transfers a log file to the client on the other side of the con
nection. The connection is released using the orderly release facility of the
Transport Interface. The connection-mode client presented earlier will com
municate with this server.

#include <tiuser.h>
#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <signal.h>

#define D:rsa::J>INEJ:T -1
#define SRV_ADDR 1 1* server's well known address *1

int camLfd; 1* connection established here *1
extern int t_en:IlO;

main()

{

int listerLfd; 1* listening transport endpoint *1
struct t_bind *bind;
struct t_call *call;

if «listerLfd = t_ope!l(n/dev/tivcn, O_~, NULL» < 0) {
t_errat'(nt_open failed for listen_fd");
exit(1);

1*
* By asSlmlinq that the address is an integer value,
* this program may not run aver another protocol.
*1

if «bind = (struct t_bind *)t_alloc(listerLfd, T_BIND, T_ALL» == NULL)
t_errat'("t_alloc of t_bind st:zucture failed");
exit(2);

bind->qlen = 1;
bind->addr.len = sizeof(int);

APPENDIX C: EXAMPLES C-3

Appendix C: Examples

*(int *)bin:1->addr.rut = SRV..JIIlIR;

if (t_bind(listeILfd, bind, bin:1) < 0)

t_error("t_bind failed for listeILfd");
exit(3);

/*
* was the correct address bound?
*/

if (*(int *)bind->addr.rut 1= SRV_AID!.)
fprintf(stderr, nt_bind bound wrong addressO)j
exit(4) ;

continued

if «call = (struct t_call *)t_alloc(listeILfd, T_CALL, T_ALL» == NULL) {

t_error("t_alloc of t_call structure failed");
exit(S);

while (1) {

if (t_listen(listen_fd, call) < 0) {
t_error("t_Iisten failed for listen_fd");
exit(6) ;

if «carmJd = accept_call(listen_fd, call» 1= DIS<XNm::T)

rIlILserver(listen_fd) ;

accept_call (listen_fd, call)
int listen_fd;
struct t_call *call;
{

int resfd;

if «resfd = t_open(n/dev/tivc", O_RDWR, NULL» < 0) {
t_error("t_open for respa!ld:i.nq fd failed");
exit(7) ;

C-4 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

if (t_bind(resfd, NULL, NULL) < 0) {
t_errar("t_bind f= responding fd failed");
exit(S) ;

if (t_accept(listerLfd, resfd, call) < 0) {

if (t_er:IllO == TUlOK) { /* must be a disconnect */
if (t_rcvdis(listen_fd, NULL) < 0) {

t_er:rm'("t_rcvdis failed f= listerLfd");
exit(9);

if (t_close(resfd) < 0) {

t_er:rm'("t_close failed f= responding fd");
exit(10);

/* go back up and listen f= other calls * /

return(DI~) ;

t_er:rm'("t_accept failed");
exit(11);

return(resfd) ;

cannrelease()

{

/* OOIllLfd is global because needed here */
if (t_lcxlk(oonn_fd) == T_DI~) {

fprintf (stderr, "oarmection abortedo);
exit(12);

1* else orderly release indication - nar:mal exit */

exit(O) ;

rllILserver(listen Jd)

int listen _fd;

{

int nlJytes;

FILE *1ogfp; /* file pointer to log file *1

continued

APPENDIX C: EXAMPLES C-5

Appendix C: Examples

char buf[1024];

switch (fork(»

case -1:

perro:r("fork failed");
exit(20);

default: 1* parent *1

1* close oamLfd and then go up and listen again *1
if (t_close(cannJd) < 0) {

t_error("t_close failed for cann_fd");
exit(21) ;

return;

case 0: 1* child *1

1* close listen_fd and do service *1
if (t_close(listen_fd) < 0) {

t_error("t_close failed for listen_fd");
exit(22);

if « logfp = fopen("logfile", "r"» == NULL) {
perror("canIXJt open logfile");
exit(23) ;

signal(SIGroLL, oannrelease);
if (ioctl(oann_fd, I_SETSIG, S_INPUT) < 0) {

perro:r("ioctl I_SETSIG failed");
exit(24) ;

continued

if (t_look(oann_fd) 1= 0) { 1* was disoannect already there? *1
fprintf(stderr, "t_look returned tmex:pected eventO);

exit(25) ;

While «nbytes = fread(buf, 1, 1024, logfp» > 0)
if (t~(oannJd, buf, nbytes, 0) < 0) {

t_error("t_snd failed");
exit(26);

C-6 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

continued

if (t ___ sndrel(oann ___ fd) < 0) {
t ___ error("t ___ sndrel failed");
exit(27) ;

pause(); 1* until orderly release indication arrives *1

APPENDIX C: EXAMPLES C-7

Appendix C: Examples

Connectionless-Mode Transaction Server
The following code represents the connectionless-mode transaction server

program described in Chapter 4. This server waits for incoming datagram
queries, and then processes each query and sends a response.

#include <stdio.h>
#include <fcntl.h>
#include <tiuser.h>

#define SRV_AIm. 2

main()

{

int fd;
int flags;
struct t_biild *b:ind;
struCt t_unitdata *ud;
struct t_uderr *uderr;
extern int t_errno;

/* server's well known address */

if «fd = t_open("/dev/tidq", O_RrMR, NULL» < 0)
t_error("unable to open /dev/provi.der");
exit(1);

if «b:ind = (struct t_b:ind *)t_a1loc(fd, T_BIND, T_AIm.» == NULL)
t_error("t_alIoc of t_bind St:rw::ture failed");
exit(2);

bind->addr.len = sizeof(int);
*(int *)b:ind->addr.bu:f = SRV_AtlI:R;
bind->qlen = 0;

if (t_bind(fd, bind, bind) < 0)
t_error("t_bind failed");
exit(3);

/*
* is the bound address car:rect.?

*/

C-8 NETWORK PROGRAMMER'S GUIDE

Appendix C: Examples

if (*(int *)bind->addr.buf != SRV_AIDR) {

fprintf(stderr, "t_bind boImd wrong addresso);
exit(4) ;

continued

if «ud = (struct t_unitdata *)t3lloc(fd, T_UNI'lDATA, T_ALL» == NULL) {

t_error("t_alloc of t_unitdata structure failed");
exit(5) ;

}

if «uderr = (struct t_uderr *)t_alloc(fd, T_UDERROR, T_ALL» == NULL) {

t_error("t_alloc of t_ude= structure failed");
exit(6) ;

while (1) {

if (t_rcvudata(fd, 00, &flags) < 0) {
if (t_arne == TUXI<) {

/*
* Error an previously sent datagram

*/

/*

if (t_rcvuderr(fd, uderr) < 0) {

t_error("t_rcvuderr failed");
exit(7) ;

fprintf(stderr. "bad datagram. error = Mo.
uderr->error) ;

continue;

t_error("t_rcvudata failed");
exit(8) ;

* Glue%y() processes the request and places the

* response in OO->udata.buf, settinq OO->udata.len

*/
query(OO);

if (t_sOOudata(fd, ud, 0) < 0) {

t_error("t_sOOudata failed");
exit(9) ;

APPENDIX C: EXAMPLES C-9

Appendix C: Examples

query(J
{

1* Merely a stub for simplicity *1

C-10 NETWORK PROGRAMMER'S GUIDE

continued

Appendix C: Examples

Read/Write Client
The following code represents the connection-mode read/write client pro

gram described in Chapter 5. This client establishes a transport connection
with a server, and then uses cat(l) to retrieve the data sent by the server and
write it to its standard output. This client will communicate with each of the
connection-mode servers presented in the guide.

#include <stdio.h>
#include <tiuser. h>
#include <fcntl.h>

#include <stropts .h>

#define SRV_ADm /* server' s well lalown address * /

1IB:in()
{

:int fd;
:int nbytes;
:int flags = 0;
char l::uf [1024] ;
struct t_call *sndcall;
extern int t_ errDO;

if «fd = t_open("/dev/tivc", O_RD>lR, NULL» < 0) {

t_error("t_open failed");
exit(1);

if (t_bind(fd, NULL, NULL) < 0)

t_error("t_bind failed");
exit(2);

/*
* By asSllllli.n;J that the address is an integer value,
* this program may rot run over another protocol.
*/

if «sndcall = (struct t_call *)t_alloc(fd, T_CALL, T_.ADI.R» == NULL) {

t_error("t_alloc failed");
exit(3) ;

APPENDIX C: EXAMPLES C-11

Appendix C: Examples

C-12

sndcall->addr.len = sizeof(int);
*(int *)sndcall->addr.buf = SRV_ADDR;

if (t_oannect(fd, sndcall, NULL) < 0)
t_error("t_oannect failed far fd");
exit(4);

if (ioctl(fd, I_PUSH, "tirdwr") < 0) {

perror("I_PUSH of tirdwr failed");
exit(S) ;

close(O);
dup(fd);

execl("/bin/cat", "/bin/cat", 0);

perror("execl of /bin/cat failed");
exit(6) ;

NETWORK PROGRAMMER'S GUIDE

continued

Appendix C: Examples

Event-Driven Server
The following code represents the connection-mode server program

described in Chapter 6. This server manages multiple connect indications in
an event-driven manner. Either connection-mode client presented earlier will
communicate with this server.

#inc:lude <tiuser. h>
#inc:lude <fcntl.h>

#inc:lude <stdio.h>
#inc:lude <poll.h>
#include <stxopts.h>
#include <signal.h>

#define MAX_CXHl_lND 4
#define SRIl_M::IB /* server's well lmoim address */

:lnt camLfd; /* server oannectian here */

stxuct t_call *calls[tULPm][MAX_CaltLlND) ;/* h:>lds connect illdicatians */
extern int t_er.r:IlO;

main()
{

struct pollfd pollfds[tULPm);

int i;

/*
* Cklly opening' and biniilYJ c:ne transport ernpoint,
* rut DOre could be supported

*/
if «pollfds[O).fd = t_open("/dev/tivc", O_RDWR, NULL» < 0) {

t_error("t_open failed");
exit(1);

if «biIxi = (struct t_bind *)t3lloc(pollfds[0) .fd, T_BlND, T_ALL» == NULL)
t_error("t_alloc of t_biIxi structure failed");
exit(2) ;

bind->qlen = MAX_<XH'LlND;
biIxi->addr.len = sizeaf(int);

APPENDIX C: EXAMPLES C-13

Appendix C: Examples

*(int *)bind->addr.buf = SRV_ADDR;

if (t_bind(pollfds[O] .fd, bind, bind) < 0) {

t_err=("t_bind failed");
exit(3);

1*
* Was the correct address bound?

*1
if (*(int *)bind->addr.buf 1= SRV_AOCR)

fprintf (stderr, "t_bind bound w.raog- addreSSO);

exit(4);

pollfds[O] . events = OOLLIN;

while (1) {
if (poll(pollfds, NllILFDS, -1) < 0) {

perror("poll failed");
exit(5);

for (i = 0; i < NUILIDS; i++) {

switch (pollfds[i] .revents)

default:

perror("poll returned err= event");
exit(6) ;

case 0:

oontimle;

case OOLLIN:

do_event(i, pollfds[i] .fd);
service_=_ind(i, pollfds[i] .fd);

C-14 NETWORK PROGRAMMER'S GUIDE

continued

Appendix C: Examples

do_event(slot, fd)
{

struct t_discan *disOClll;
int i;

default:
fprintf(stderr, lOt_look returned an unexpected evento);
exit(7);

case T _ERR:R:
fprintf(stderr, lOt_look returned T_ERR:R evento);
exit(8) ;

case -1:
t_error(lOt_look failed");
exit(9) ;

case 0:
/* since FOLLIN returned, this should not happen */
fprintf (stderr ,"t_look returned no evento);
exit(10);

case T_LISTEN:
/*
* find free element in calls array
*/

for (i = 0; i < MAJUXInLIND; i++)
if (calls [slot][i) == NULL)

break;

continued

if «calls[slot][i) = (st:ruct t_call *)t_alIoc(fd, T_CALL, T_ALLll == NULL)
{

t_error("t_alIoc of t_call structure failed");
exit(11);

if (t_Iisten(fd, cal1s[slot)[i) < 0) {
t_error(lOt_listen failed");
exit(12);

APPENDIX C: EXAMPLES C-1S

Appendix C: Examples

break;

case T_DI~:
disoan = (stJ:uct t_disoan *)t_alloc(fd, T_DIS, T_ALL);

if (t_rcvdis(fd, disoan) < 0) {
t_error("t_rcvdis failed");
exit(13) ;

/*
* f:ind call :ind in array and delete it
*/

for (i = 0; i < MAlUXI'ItLIND; i++) {
if (disoan->sequence == calls [slot] [i]->sequence)

t_free(calls[slot] [i], T_CALL);
calls [slot] [i] = NULL;

t_free(disoan, T_DIS);
break;

Service_(XlIlIL:ind(slot, fd)
{

int i;

for (i = 0; i < MAX_aHl_IND; i++)
if (calls[slot][i] == NULL)

oantinue;

if «CXmILfd = t_open("/dev/tivc", O_RIMR, NULL» < 0) {
t_error("open failed");
exit(14) ;

if (t_b:ind(COIlILfd, NULL, NULL) < 0) {
t_error("t_b:ind failed");
exit(1S) ;

if (t_accept(fd, (XmILfd, calls[slotHi]) < 0) {
if (t_errIlO == 'l'LO(I{). {

C-16 NETWORK PROGRAMMER'S GUIDE

continued

t_close(comLfd) ;
return;

t_error("t_accept failed");
exit(16);

tJree(calls[slot] [i]. T_CArL);
calls[slot][i] = NULL;

zuI'Lserver(fd) ;

cannrelease ()
{

/* oomLfd is global because needed here *1
if (t_look(comLfd) == T_DIS<nINI!lCT) {

fprintf (stderr. "carmect:ian abartedo);
exit(12);

1* else orderly release indication - rxmnal exit *1
exit(O) ;

rmLserver(liste!Lfd)
:int liste!Lfd;
{

:int nbytes;
FILE *logfp; 1* file po:inte:r to log file *1
char buf[1024];

switch (fork(»

case -1:
perrar("fork failed");
exit(20);

default: /* parent */

1* close comLfd and then go up and listen aga:in *1

Appendix C: Examples

continued

APPENDIX C: EXAMPLES C-17

Appendix C: Examples

if (t __ close(oann __ fd) < 0) {

t_errar("t_close failed for oann_fd");
exit(21) ;

return;

case 0: /* child */

/* close listeILfd and do service */
if (t __ close(listen __ fd) < 0) {

t __ errar("t __ close failed for listen __ fd");

exit(22) ;

if « logfp = fope:n("logfile", "r" II == NULL) {

perror("cannot open logfile");
exit(23) ;

signal (SIGPOLL , oannrelease);
if (ioctl(oannJd, I_SEl'SIG, S __ INPllT) < 0) {

perror("ioctl I_SEl'SIG failed");
exit(24) ;

}

continued

if (t_look(oann_fd) 1= 0) {/* was disconnect already there? *1
fprintf(stderr, "t_look returned unexpected evento);
exit(25) ;

while «nbytes = fread(buf, 1, 1024, logfp» > 0)
if (t_snd(oann_fd, buf, nbytes, 0) < 0) {

t __ errar("t_snd failed");

exit(26) ;

if (t __ sndrel(oann __ fd) < 0) {
t_errar("t_sndrel failed");
exit(27) ;

pause(); /* until orderly release iDdicatian arrives */

C-18 NETWORK PROGRAMMER'S GUIDE

Glossary
The following terms apply to the Transport Interface:

Abortive release An abrupt termination of a transport connection,
which may result in the loss of data.

Asynchronous execution

Client

The mode of execution in which Transport Interface
routines will never block while waiting for specific
asynchronous events to occur, but instead will return
immediately if the event is not pending.

The transport user in connection-mode that initiates
the establishment of a transport connection.

Connection establishment
The phase in connection-mode that enables two tran
sport users to create a transport connection between
them.

Connection-mode A circuit-oriented mode of transfer in which data are
passed from one user to another over an established
connection in a reliable, sequenced manner.

Connectionless-mode

Connection release

Datagram

Data transfer

Expedited data

A mode of transfer in which data are passed from one
user to another in self-contained units with no logical
relationship required among multiple units.

The phase in connection-mode that terminates a pre
viously established transport connection between two
users.

A unit of data transferred between two users of the
connectionless-mode service.

The phase in connection-mode or connectionless
mode that supports the transfer of data between two
transport users.

Data that are considered urgent. The specific seman
tics of expedited data are defined by the transport pro
tocol that provides the transport service.

GLOSSARY G-1

Glossary

Expedited transport service data unit

Local management

Orderly release

Peer user

Server

Service indication

The amount of expedited user data the identity of
which is preserved from one end of a transport con
nection to the other (that is, an expedited message).

The. phase in either connection-mode or
connectionless-mode in which a transport user estab
lishes a transport endpoint and binds a transport
address to the endpoint. Functions in this phase per
form local operations, and require no transport layer
traffic over the network.

A procedure for gracefully terminating a transport
connection with no loss of data.

The user with whom a given user is communicating
above the Transport Interface.

The transport user in connection-mode that offers ser
vices to other users (clients) and enables these clients
to establish a transport connection to it.

The notification of a pending event generated by the
provider to a user of a particular service.

Service primitive The unit of information passed across a service inter
face that contains either a service request or service
indication.

Service request A request for some action generated by a user to the
provider of a particular service.

Synchronous execution
The mode of execution in which Transport Interface
routines may block while waiting for specific asyn
chronous events to occur.

Transport address The identifier used to differentiate and locate specific
transport endpoints in a network.

Transport connection
The communication circuit that is established between
two transport users in connection-mode.

G-2 NETWORK PROGRAMMER'S GUIDE

Transport endpoint

Transport Interface

Transport provider

Glossary

The local communication channel between a transport
user and a transport provider.

The library routines and state transition rules that sup
port the services of a transport protocol.

The transport protocol that provides the services of
the Transport Interface.

Transport service data unit

Transport user

Virtual circuit

The amount of user data whose identity is preserved
from one end of a transport connection to the other
(that is, a message).

The user-level application or protocol that accesses the
services of the Transport Interface.

A transport connection established in connection
mode.

The following acronyms are used throughout this guide:

CL TS Connectionless Transport Service

COTS Connection Oriented Transport Service

ETSDU Expedited Transport Service Data Unit

TSDU Transport Service Data Unit

GLOSSARY G-3

Index

abortive release ... 2:9, 3:2, 3:5, 3:23,
3:26

asynchronous mode ... 3:14, 6:1-2,
G:1-2

bind ... 2:4, 2:6, 3:2-3, 3:5-9, 3:14-16,
4:2,4:4,6:4-5,6:9-10, A:3, B:2,
C:1, C:3, C:8, C:11, C:13

client-server ... 2:6, 3:1, 3:24, 4:4,
C:3-7, C:13-18

clone open ... 3:4
connect indication ... 3:3, 3:8, 3:13-

17,3:21,6:3,6:5,6:7-11, C:13
connect request ... 2:6, 3:8, 3:10-14,

3:16, 6:9, B:1
connection establishment ... 2:3, 2:6,

3:2, 3:5, 3:9-10, 3:14, 3:16, 5:1,
5:4, 6:11, B:1, C:1, C:3, C:11,
G:1

connection mode ... 2:3, 2:8, 3:1,
3:18, A:8, B:1, C:1-7, G:1

connection release ... 2:3, 2:9, 3:2,
3:5, 3:12, 3:18, 3:20, 3:23-25,
5:2, 5:5, C:1, C:3, G:1-2

data transfer ... 1:2-3, 2:1, 2:3, 2:8,
2:10, 3:1, 3:3, 3:10, 3:14, 3:16,
3:18-20,3:23-25,4:2,4:5-6,5:1-
2, 5:5, 6:11, A:6, G:1

data unit ... 2:3, 2:10, 3:18, 4:2, 4:5,
4:8, B:1, G:1-3

datagram ... 1:3, 3:13, 4:4-5, 4:7-8,
C:8, G:1

disconnect indication ... 2:9, 3:12-13,
3:16,3:20-24,5:4-5,6:8-11, C:3,
C:16-17

error value ... 3:5-6, 3:11, 4:8, 6:6,
C:1, C:3

event handling ... 1:4, 2:11, 3:12

exit ... 3:4, 3:6, 3:11, 3:15, 3:19-22,
3:24-25, 4:2-3, 4:5-6, 5:1, 6:4-9,
C:1-18,

expedited data ... 3:2-3, 3:12, 3:18,
3:22,5:4, G:1-2

flow control ... 3:22, 4:7, 6:2
local management ... 2:3, 2:6, 2:10,

3:3, 3:6, 4:2-3, 5:1, 6:3, A:6
message interface ... 3:5, 3:18-19,

4:5,5:2, B:1
netbuf structure ... 3:8-9, 3:12, 3:14,

4:7,6:9
Network Services Library ... 2:2
non-blocking mode ... 6:1-2
options ... 3:2-3, 3:5, 3:10-11, 3:14,

3:16, 4:2,4:4-8, B:1
orderly release ... 2:9, 3:2, 3:5, 3:12,

3:20, 3:23-26, 5:4-5, B:2, C:1,
C:3

OSI Reference Model ... 1:1
outstanding connect indications ...

3:8, 3:16, 6:1, 6:3, 6:5, 6:9-11,
A:2, A:4-5

O-NDELA Y ... 6:2
poll call ... 6:2, 6:6, 6:11, C:13
protocol independence ... 1:3-4,8:1
SIGPOLL ... 3:21, C:6, C:18
state tables ... 2:11, 3:13, A:4-6
state transition ... 2:11, 3:16, A:1,

A:5, G:3
STREAMS ... 1:3, 3:22, 5:2-5, 6:2
struct netbuf ... 3:7-8, 3:11, 4:6, 4:8,

6:9
tirdwr ... 5:1-5, C:11-12
transport address ... 2:3-4, 2:6, 2:10,

3:2-3,3:5,3:7-9,3:14-16,3:25,
4:4-5, B:1-2, G:2

INDEX 1-1

Index ------------------------

transport endpoint ... 2:3-4,
3:2-3,3:5-9,3:11-17,3:20-21,
3:25, 4:3-5, 5:2, 5:5, 6:2, 6:4-11,
A:2, A:4-5, B:2, C:3, C:13, G:2

transport layer ... 1:2-3, 2:1, G:2
Transport Service Data Units ... 3:18
transport user actions ... 5:5, A:5
TSDU ... 3:18-19, B:1, G:3
Laccept ... 2:6-7, 3:10-11, 3:16, 6:10,

A:3, A:5
LaHoc ... 2:5, 3:9, 3:11, 3:14,4:4,

4:7, A:6, B:1
Lbind ... 2:4-6, 3:2-3, 3:5-9, 3:15-16,

4:2, 4:4, 6:5, 6:9, A:3, B:2
LcaH ... 3:11, 3:14-16, 6:8, 6:9, B:1
Lclose ... 2:5, 3:20, 3:25, A:3, A:5
Lconnect ... 3:10-13, 3:16, 3:21, A:3,

B:1
LDATA ... 3:12
Ldiscon ... 3:12, 3:16, 6:9
Lermo ... 2:5, 3:5-6, 3:12, 3:16, 3:25,

4:7-8,6:10
Lerror ... 3:5, A:6
T-EXDATA ... 3:12
L.free ... 2:5, A:6
Lgetinfo ... 2:5, 3:3, 3:18, A:6, B:1
Lgetstate ... 25, A:6
Llisten ... 2:6-7, 3:10, 3:12-16, 6:2,

6:8-9, A:4, B:1
Llook ... 3:13, 6:8, A:6
TLOOK ... 3:13, 6:10
T--MORE ... 3:18-19
Lopen ... 2:3, 2:5-6, 3:2-5, 3:7, 3:9-

10, 3:14, 3:16, 3:18, 4:2-3, 6:2,
6:5, A:3, B:1

Loptmgmt ... 3:3, 4:2, A:3
T_ORDREL ... 3:12
Lrcv ... 2:8, 3:18-19, 3:22, 3:25, A:4
Lrcvdis ... 2:9, 3:16, 3:23, 3:26, 6:9,

A:4, B:2
Lrcvrel ... 2:9, 3:25, A:4, B:2

1-2 NETWORK PROGRAMMER'S GUIDE

Lrcvudata ... 2:10, 4:7, 4:8, A:4
Lrcvuderr ... 2:10, 4:8, A:4, B:2
Lsnd ... 2:8, 3:18-19, 3:22, A:3
Lsnddis ... 2:9, 3:10, 3:23-26, 5:3,

A:3, B:1
Lsndrel ... 2:9, 3:24-25, A:3, B:2
Lsndudata ... 2:10, 4:7-8, A:3, B:1
Lsync ... 2:5, A:6
Luderr ... 3:12, 4:7-8
Lunbind ... 2:5, A:3
Lunitdata ... 4:6-7
virtual circuit ... 1:3, 2:6

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

