
~AT8aT

U N I X® System V/386
[_~ · USER'S GUIDE

Second Edition

UNIX® System V Release 3.0
INTEL 80286/80386
Computer Version

User's Guide

PRENTICE HAll, ENGLEWOOD Cli FFS, NEW JERSEY 07632

© 1988 by AT&T. All Rights Reserved.

IMPORTANT NOTICE TO USERS

While every effort has been made to ensure the accuracy of all information in
this document, AT&T assumes no liability to any party for any loss or damage
caused by errors or omissions or statements of any kind in the UNIX® System
V/386 User's Guide, 2/E © AT&T, its upgrades, supplements, or special
editions, whether such errors are omissions or statements resulting from negli
gence, accident or any other cause. AT&T further assumes no liability arising
out of the application or use of any product or system described herein; nor any
liability for incidental or consequential damages arising from the use of this
document. AT&T disclaims all warranties regarding the information contained
herein, whether expressed, implied or statutory, including implied warranties
or merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any prod
ucts herein to improve reliability, function or design.

No part of this publication may be reproduced, transmitted or used in any form
or by any means-graphic, electronic, mechanical or chemical, including
photocopying, recording in any medium, taping, by any computer or informa
tion storage and retrieval systems, etc. without prior permission in writing from
AT&T.

UNIX is a registered trademark of AT&T

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-940909~2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Copyright© 1987 AT&T
All Rights Reserved
Printed in U.s.A.

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in this document.

386/ix is a trademark of Interactive Systems Corporation.
ACT is a trademark of Micro-Term.
AnnArbor is a trademark of AnnArbor Terminals.
Beehive is a trademark of Beehive International.
Concept is a trademark of Human Designed Systems.
Crystal Writer is a trademark of Syntactics.
DATASPEED is a registered trademark of AT&T.
dBASE II is a registered trademark of Ashton-Tate.
DEC, PDP, V AX, and VT100 are trademarks of Digital Equipment Corporation.
DOCUMENTER'S WORKBENCH is a trademark of AT&T.
Dataphone is a registered trademark of AT&T.
Develcon is a trademark of Develcon Electronics, Incorporated.
Diablo is a registered trademark of Xerox.
Dow Jones News/Retrieval Service is a trademark of Dow Jones.
Ethernet is a registered trademark of Xerox.
HP is a registered trademark of Hewlett-Packard, Inc.
IBM is a trademark of International Business Machines.
IMAGEN is a trademark of IMAGEN Corporation.
INFORMIX is a registered trademark of Relational Database Systems.
INGRES/CS is a trademark of Relational Technology.
INSTRUCTIONAL WORKBENCH is a trademark of AT&T.
Intel is a registered trademark of Intel Corporation.
LSI is a trademark of Lear Siegler.
MBASIC is a registered trademark of Microsoft.
MICOM is a registered trademark of MICOM System, Incorporated.
MS-DOS is a registered trademark of Microsoft Corporation.
MUL TIBUS is a registered trademark of Intel Corporation.
Micro-Term and MIME are trademarks of Micro-Term.
Microsoft is a registered trademark of Microsoft.
Multiplan is a registered trademark of Microsoft.
Official Airline Guide is a trademark of Official Airline Guide, Inc.
PC-Interface is a registered trademark of Locus Computing.
Penril is a trademark of Penril Corporation.
RM/COBOL is a trademark of Ryan-McFarland.
SuperCalc3 is a trademark of Sorcim/IUS Micro Software.
Syntactics is a trademark of Syntactics.
TEKTRONIX and TEKTRONIX 4010 are registered trademarks of Tektronix, Inc.
TELETYPE is a registered trademark of AT&T.
TeleVideo is a registered trademark of TeleVideo Systems.
Teleray is a trademark of Research Inc.
TermiNet is a trademark of General Electric.
UNIX is a registered trademark of AT&T.
UltraCalc is a trademark of OLYMPUS Software.
Unify is a registered trademark of Unify.
Ventel is a trademark of Ven-Tel, Incorporated.
Versatec is a registered trademark of Versatec Corporation.
WE is a registered trademark of AT&T.
WRITER'S WORKBENCH is a trademark of AT&T.
Weitek is a trademark of Weitek Corporation.
XED is a trademark of Computer Concepts.
Xenix is a registered trademark of Microsoft Corporation.

AT&T Products and Services

o To order documents from the Customer Information Center:

o within the continental United States, call 1-800-432-6600

o outside the continental United States, call 1-317-352-8557

o send mail orders to:
AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219

o To sign up for UNIX system or AT&T computer courses:

o within the continental United States, call 1-800-221-1647

o outside the continental United States, call 1-609-639-4593

o TELEX: 1-609-639-4756
Attention: Training Registration

o For information on Intel hardware and software, contact the Intel sales office
nearest you.

o To find out about UNIX system source licenses:

o within the continental United States, except North Carolina, call 1-800-828-
UNIX

o in North Carolina and outside the continental United States, call
1-919-855-2737

o or write to:

Software Licensing
Guilford Center
Salem Bldg. 4th Floor
P.O. Box 25000
Greensboro, NC 27420

Table of Contents

Preface

Part 1: UNIX System Overview

Chapter 1: What is the UNIX System?
What the UNIX System Does

How the UNIX System Works

Chapter 2: Basics for UNIX System Users

xv

1-1

1-3

Getting Started 2-1

The Terminal 2-2

Obtaining a Login Name 2-13

Establishing Contact with the UNIX System 2-14

Part 2: UNIX System Tutorials

Chapter 3: Using the File System
In troduction

How the File System is Structured

Your Place in the File System

Organizing a Directory

Accessing and Manipulating Files

Summary

3-1

3-2

3-4

3-16

3-31

3-74

TABLE OF CONTENTS"

Table of Contents ------------------

Chapter 4: Overview of the Tutorials
Introduction

Text Editing

The Shell

Communicating Electronically

Programming in the System

Chapter 5: Line Editor Tutorial (ed)
Introducing the Line Editor

Suggestions for Using this Tutorial

Getting Started

Exercise 1

General Format of ed Commands

Line Addressing

Exercise 2

Displaying Text in a File

Crea ting Text

Exercise 3

Deleting Text

Substituting Text

Exercise 4

Special Characters

Exercise 5

vi USER'S GUIDE

4-1

4-2

4-7

4-12

4-13

5-1

5-2

5-3

5-14

5-15

5-16

5-30

5-31

5-34

5-42

5-44

5-49

5-58

5-60

5-71

------------------ Table of Contents

Moving Text

Exercise 6

Other Useful Commands and Information

Exercise 7

Answers to Exercises

Chapter 6: Screen Editor Tutorial (vi)

5-73

5-82

5-83

5-93

5-94

Introduction 6-1

Getting Started 6-4

Creating a File 6-7

Editing Text: the Command Mode 6-10

Quitting vi 6-18

Exercise 1 6-21

Moving the Cursor Around the Screen 6-22

Positioning the Cursor in Undisplayed Text 6-40

Exercise 2 6-52

Crea ting Text 6-54

Exercise 3 6-59

Deleting Text 6-60

Exercise 4 6-66

Modifying Text 6-67

Cutting And Pasting Text Electronically 6-75

Exercise 5 6-80

TABLE OF CONTENTS vii

Table of Contents ------------------

Special Commands

Using Line Editing Commands in vi

Quitting vi

Special Options for vi

Exercise 6

Answers To Exercises

Chapter 7: Shell Tutorial
Introduction

Shell Command Language

Command Language Exercises

Shell Programming

Modifying Your Login Environment

Shell Programming Exercises

Answers To Exercises

Chapter 8: Communication Tutorial
Introduction

Exchanging Messages

mail

mailx

mailx Overview

Command Line Options

How to Send Messages: the Tilde Escapes

viii USER'S GUIDE

6-81

6-84

6-90

6-93

6-95

6-96

7-1

7-2

7-36

7-37

7-92

7-99

7-101

8-1

8-2

8-3

8-16

8-17

8-19

8-20

---------------- Table of Contents

How to Manage Incoming Mail

The .mailrc File

Sending and Receiving Files

Networking

Appendices, Glossary, Index

Appendix A: Summary of the File System

Appendix B: Summary of UNIX System
Commands

Appendix C: Quick Reference to ed
Commands

Appendix D: Quick Reference tovi
Commands

Appendix E: Summary of Shell Command
Language

Appendix F: Setting Up the Terminal

Glossary

Index

8-32

8-42

8-47

8-66

TABLE OF CONTENTS ix

List of Figures

Figure 1-1: Model of the UNIX System
Figure 1-2: Functional View of the Kernel
Figure 1-3: The Hierarchical Structure of the File System
Figure 1-4: Example of a File System
Figure 1-5: Execution of a UNIX System Command

Figure 2-1: A Video Display Terminal and a Printing Terminal
Figure 2-2: Keyboard Layout of a Teletype 5410 Terminal
Figure 2-3: UNIX System Typing Conventions
Figure 2-4: Data Phone Set, Modem, and Acoustic Coupler
Figure 2-5: Troubleshooting Problems When Logging In

1-3
1-4
1-5
1-7

1-12

2-2
2-5
2-7

2-15
2-21

Figure 3-1: A Sample File System 3-3
Figure 3-2: Directory of Home Directories 3-5
Figure 3-3: Summary of the pwd Command 3-7
Figure 3-4: Full Path Name of the JuserlJstarship Directory 3-10
Figure 3-5: Relative Path Name of the draft Directory 3-12
Figure 3-6: Relative Path Name from starship to outline 3-13
Figure 3-7: Example Path Names 3-14
Figure 3-8: Summary of the mkdir Command 3-17
Figure 3-9: Description of Output Produced by the Is -I Command 3-24
Figure 3-10: Summary of the Is Command 3-25
Figure 3-11: Summary of the cd Command 3-28
Figure 3-12: Summary of the rmdir Command 3-30
Figure 3-13: Basic Commands for Using Files 3-32
Figure 3-14: Summary of the cat Command 3-36
Figure 3-15: Summary of Commands to Use with pg 3-37
Figure 3-16: Summary of the pg Command 3-41
Figure 3-17: Summary of the pr Command 3-45
Figure 3-18: Examples of Teletype Model 40 Line Printers 3-46
Figure 3-19: Summary of the Ip Command 3-48
Figure 3-20: Summary of the cp Command 3-51
Figure 3-21: Summary of the mv Command 3-54
Figure 3-22: Summary of the rm Command 3-55
Figure 3-23: Summary of the we Command 3-58
Figure 3-24: Summary of the chmod Command 3-65
Figure 3-25: Summary of the diff Command 3-68
Figure 3-26: Summary of the grep Command 3-70
Figure 3-27: Summary of the sort Command 3-73

LIST OF FIGURES xi

List of Figures

Figure 4-1: Comparison of Line and Screen Editors (ed or vi)

Figure 5-1: Summary of ed Editor Commands
Figure 5-2: Summary of Line Addressing
Figure 5-3: Sample Addresses for Displaying Text
Figure 5-4: Summary of Commands for Displaying Text
Figure 5-5: Summary of Commands for Creating Text
Figure 5-6: Summary of Commands for Deleting Text
Figure 5-7: Summary of Special Characters
Figure 5-8: Summary of ed Commands for Moving Text
Figure 5-9: Summary of Other Useful Commands

4-6

5-13
5-29
5-32
5-33
5-41
5-48
5-70
5-81
5-92

Figure 6-1: Displaying a File with a vi Window 6-2
Figure 6-2: Summary of Commands for the vi Editor 6-20
Figure 6-3: Summary of vi Motion Commands (Sheet 1 of 4) 6-36
Figure 6-4: Summary of vi Motion Commands (Sheet 2 of 4) 6-37
Figure 6-5: Summary of vi Motion Commands (Sheet 3 of 4) 6-38
Figure 6-6: Summary of vi Motion Commands (Sheet 4 of 4) 6-39
Figure 6-7: Summary of Additional vi Motion Commands 6-51
Figure 6-8: Summary of vi Commands for Creating Text 6-58
Figure 6-9: Summary of Delete Commands 6-65
Figure 6-10: Summary of vi Commands for Changing Text 6-74
Figure 6-11: Summary of the Yank Command 6-77
Figure 6-12: Summary of vi Commands for Cutting and Pasting Text 6-79
Figure 6-13: Summary of Special Commands 6-83
Figure 6-14: Summary of Line Editor Commands 6-89
Figure 6-15: Summary of the Quit Commands 6-92
Figure 6-16: Summary of Special Options for vi 6-94

Figure 7-1: Characters with Special Meanings in the Shell Language 7-3
Figure 7-2: Summary of the echo Command 7-5
Figure 7-3: Summary of Metacharacters 7-10
Figure 7-4: Summary of the banner Command 7-14
Figure 7-5: Summary of the spell Command 7 -19
Figure 7-6: Summary of the cut Command 7-23
Figure 7-7: Summary of the date Command 7-25
Figure 7-8: Summary of the batch Command 7-28
Figure 7-9: Summary of the at Command 7 -31
Figure 7-10: Summary of the ps Command 7-33
Figure 7-11: Summary of the kill Command 7-34

xii USER'S GUIDE

Figure 7-12: Summary of the nohup Command
Figure 7-13: Summary of the dl Shell Program
Figure 7-14: Summary of the bbday Command
Figure 7-15: Summary of the whoson Command
Figure 7-16: Summary of the get.num Shell Program
Figure 7-17: Summary of the show.param Shell Program
Figure 7-18: Summary of the mknum Shell Program
Figure 7-19: Summary of the num.please Shell Program
Figure 7-20: Summary of the t Shell Program
Figure 7-21: Summary of the log.time Shell Program
Figure 7-22: Format of a Here Document
Figure 7-23: Summary of the gbday Command
Figure 7-24: Summary of the ch.text Command
Figure 7-25: Format of the for Loop Construct
Figure 7-26: Summary of mv.file Shell Program
Figure 7-27: Format of the while Loop Construct
Figure 7-28: Format of the if ... then Conditional Construct
Figure 7-29: Format of the if ... then ... else Conditional Construct
Figure 7-30: Summary of the search Shell Program
Figure 7-31: Summary of the mv.ex Shell Program
Figure 7-32: The case ... esac Conditional Construct
Figure 7-33: Summary of the set.term Shell Program
Figure 7-34: Summary of the tail Command

List of Figures

7-35
7-41
7-45
7-46
7-48
7-51
7-56
7-56
7-58
7-60
7-62
7-64
7-66
7-68
7-71
7-72
7-75
7-77
7-78
7-82
7-83
7-86
7-94

Figure 8-1: Summary of Sending Messages with the mail Command 8-8
Figure 8-2: Summary of the uname Command 8-11
Figure 8-3: Summary of the uuname Command 8-11
Figure 8-4: Summary of Reading Messages with the mail Command 8-15
Figure 8-5: Sample .mailrc File 8-43
Figure 8-6: Summary of the uucp Command 8-57
Figure 8-7: Summary of the uuto Command 8-61
Figure 8-8: Summary of the uustat Command 8-62
Figure 8-9: Summary of the uupick Command 8-65
Figure 8-10: Summary of the ct Command 8-68
Figure 8-11: Command Strings for Use with cu (Sheet 1 of 2) 8-71
Figure 8-12: Command Strings for Use with cu (Sheet 2 of 2) 8-72
Figure 8-13: Summary of the cu Command 8-74
Figure 8-14: Summary of the uux Command 8-76

Figure A-I: Directory Tree from root A-I

LIST OF FIGURES xiii

Preface

The material in this Guide is organized into two major parts: an overview
of the UNIX operating system and a set of tutorials on the main tools avail
able on the UNIX system. A brief description of each part follows. The last
section of this Preface, "Notation Conventions," describes the typographical
notation with which all the chapters of this Guide conform. You may want to
refer back to this section from time to time as you read the Guide.

System Overview
This part consists of Chapters 1-3, which introduce you to the basic prin

ciples of the UNIX operating system. Each chapter builds on information
presented in preceding chapters, so it is important to read them in sequence.

• Chapter I, "What is the UNIX System?", provides an overview of the
operating system.

• Chapter 2, "Basics for UNIX System Users," discusses the general
rules and guidelines for using the UNIX system. It covers topics related
to using your terminal, obtaining a system account, and establishing
contact with the UNIX system.

• Chapter 3, "Using the File System," offers a working perspective of
the file system. It introduces commands for building your own direc
tory structure, accessing and manipulating the subdirectories and files
you organize within it, and examining the contents of other directories
in the system for which you have access permission.

UNIX System Tutorials
The second part of this Guide consists of tutorials on the following topics:

the ed text editor, the vi text editor, the shell command language and pro
gramming language, and electronic communication tools. For a thorough
understanding of the material, we recommend that you work through the
examples and exercises as you read each tutorial. The tutorials assume you
understand the concepts introduced in Chapters 1-3.

PREFACE xv

Preface

• Chapter 4, "UNIX System Capabilities," introduces the four chapters
of tutorials in the second half of the Guide. It highlights UNIX system
capabilities such as command execution, text editing, electronic com
munication, programming, and aids to software development.

• Chapter 5, "Line Editor Tutorial (ed)," teaches you to how to use the
ed text editor to create and modify text on a video display terminal or
paper printing terminal.

• Chapter 6, "Screen Editor Tutorial (vi)," teaches you how to use the
visual text editor, vi, to create and modify text on a video display ter
minal.

vi, the visual editor, is based on software developed by The University of Cal
ifornia, Berkeley, California; Computer Science Division, Department of Electr
ical Engineering and Computer Science, and such software is owned and
licensed by the Regents of the University of California.

• Chapter 7, "Shell Tutorial," teaches you to how to use the shell, both
as a command interpreter and as a programming language used to
create shell programs.

• Chapter 8, "Communication Tutorial," teaches you how to send mes
sages and files to users of both your UNIX system and other UNIX sys
tems.

Reference Information

Six appendices and a glossary of UNIX system terms are also provided for
reference.

• Appendix A, "Summary of the File System," illustrates how informa
tion is stored in the UNIX operating system.

• Appendix B, "Summary of UNIX System Commands," describes, in
alphabetical order, each UNIX system command discussed in the Guide.

xvi USER'S GUIDE

Preface

• Appendix C, "Quick Reference to ed Commands," is a quick reference
for the line editor, ed. (For details, see Chapter 5, II Line Editor
Tutorial. ") The commands are organized by topic, as they are covered
in Chapter 5.

• Appendix D, "Quick Reference to vi Commands, II is a reference for
the full screen editor, vi, discussed in Chapter 6, II Screen Editor
Tutorial (vi). II Commands are organized by topic, as covered in
Chapter 6.

• Appendix E, II Summary of Shell Command Language, II is a summary
of the shell command language, notation, and programming constructs,
as discussed in Chapter 7, II Shell Tutorial. II

• Appendix F, u Setting Up the Terminal, II explains how to configure
your terminal for use with the UNIX system, and create multiple win
dows on the screens of terminals with windowing capability.

• The Glossary defines terms pertaining to the UNIX system used in this
book.

PREFACE xvii

Notation Conventions

The following notation conventions are used throughout this Guide.

bold

italic

constant width

<>

<Achar>

[]

xviii USER'S GUIDE

User input, such as commands, options and argu
ments to commands, variables, and the names of
directories and files, appear in bold.

Names of variables to which values must be
assigned (such as password) appear in italic.

UNIX system output, such as prompt signs and
responses to commands, appear in constant
width.

Input that does not appear on the screen when
typed, such as passwords, tabs, or RETURN,
appear between angle brackets.

Control characters are shown between angle
brackets because they do not appear on the screen
when typed. The circumflex () represents the
control key (usually labeled CTRL). To type a
control character, hold down the control key
while you type the character specified by char.
For example, the notation <Ad> means to hold
down the control key while pressing the D key;
the letter D will not appear on the screen.

Command options and arguments that are
optional, such as [-msCj], are enclosed in square
brackets.

The vertical bar separates optional arguments from
which you may choose one. For example, when
a command line has the following format:

command [argl I arg2]

You may use either argl or arg2 when you issue
the command.

command(number)

Notation Conventions

Ellipses after an argument mean that more than
one argument may be used on a single command
line.

Arrows on the screen (shown in examples in
Chapter 6) represent the cursor.

A command name followed by a number in
parentheses refers to the part of a UNIX system
reference manual that documents that command.
(There are three reference manuals: the User's
Reference Manual, Programmer's Reference Manual,
and System Administrator's Reference Manual.) For
example, the notation cat(l) refers to the page in
section 1 (of the User's Reference Manual) that
documents the cat command.

In sample commands the $ sign is used as the shell command prompt.
This is not true for all systems. Whichever symbol your system uses, keep in
mind that prompts are produced by the system; although a prompt is some
times shown at the beginning of a command line as it would appear on your
screen, you are not meant to type it. (The $ sign is also used to reference the
value of positional parameters and named variables; see Chapter 7 for details.)

In all chapters, full and partial screens are used to display examples of
how your terminal screen will look when you interact with the UNIX system.
These examples show how to use the UNIX system editors, write short pro
grams, and execute commands. The input (characters typed by you) and out
put (characters printed by the UNIX system) are shown in these screens in
accordance with the conventions listed above. All examples apply regardless
of the type of terminal you use.

The commands discussed in each section of a chapter are reviewed at the
end of that section. A summary of vi commands is found in Appendix D,
where they are listed by topic. At the end of some sections, exercises are also
provided so you can experiment with the commands. The answers to all the
exercises in a chapter are at the end of that chapter.

PREFACE xix

Notation Conventions

xx

The text in the User's Guide was prepared with the UNIX system text editors
described in the Guide and formatted with the DOCUMENTER'S WORK
BENCH Software: troff, tbl, pic, and mm macros.

USER'S GUIDE

Chapter 1: What is the UNIX System?

What the UNIX System Does 1-1

How the UNIX System Works 1-3

The Kernel 1-4

The File System 1-5

Ordinary Files 1-5

Directories 1-6

Special Files 1-6

The Shell 1-8

Commands 1-9

What Commands Do 1-9

How to Execute Commands 1-10

How Commands Are Executed 1-12

TABLE OF CONTENTS

What the UNIX System Does

The UNIX operating system is a set of programs (or software) that controls
the computer, acts as the link between you and the computer, and provides
tools to help you do your work. It is designed to provide an uncomplicated,
efficient, and flexible computing environment. Specifically, the UNIX system
offers the following advantages:

• a general purpose system for performing a wide variety of jobs or appli
cations

• an interactive environment that allows you to communicate directly
with the computer and receive immediate responses to your requests
and messages

• a multiuser environment that allows you to share the computer's
resources with other users without sacrificing productivity

This technique is called timesharing. The UNIX system interacts
between users on a rotating basis so quickly that it appears to be
interacting with all users simultaneously.

• a multitasking environment that enables you to execute more than one
program simul taneousl y.

The organization of the UNIX system is based on four major components:

the kernel

the file system

the shell

The kernel is a program that constitutes the nucleus of
the operating system; it coordinates the functioning of
the computer's internals (such as allocating system
resources). The kernel works invisibly; you need
never be aware of it while doing your work.

The file system provides a method of handling data
that makes it easy to store and access information.

The shell is a program that serves as the command
interpreter. It acts as a liaison between you and the
kernel, interpreting and executing your commands.
Because it reads input from you and sends you mes
sages, it is described as interactive.

WHAT IS THE UNIX SYSTEM? 1-1

What the UNIX System Does

commands

1-2 USER'S GUIDE

Commands are the names of programs that you
request the computer to execute. Packages of pro
grams are called tools. The UNIX system provides
tools for jobs such as creating and changing text, writ
ing programs and developing software tools, and
exchanging information with others via the computer.

How the UNIX System Works

Figure 1-1 is a model of the UNIX system. Each circle represents one of
the main components of the UNIX system: the kernel, the shell, and user pro
grams or commands. The arrows suggest the shell's role as the medium
through which you and the kernel communicate. The remainder of this
chapter describes each of these components, along with another important
feature of the UNIX system, the file system.

Programming
Environment

CO~~C~~~;!~ion ~1~hr41~
III Kernel to

Text
Processing

·············11111············
Additional

Utility
Programs

Figure 1-1: Model of the UNIX System

Information
Management

WHAT IS THE UNIX SYSTEM? 1-3

How the UNIX System Works

The Kernel

The nucleus of the UNIX system is called the kernel. The kernel controls
access to the computer, manages the computer's memory, maintains the file
system, and allocates the computer's resources among users. Figure 1-2 is a
functional view of the kernel.

Manages
memory

Allocates
system

resources

Controls
access to
computer

Figure 1-2: Functional View of the Kernel

1-4 USER'S GUIDE

Maintains
file system

How the UNIX System Works

The File System

The file system is the cornerstone of the UNIX operating system. It pro
vides a logical method of organizing, retrieving, and managing information.
The structure of the file system is hierarchical; if you could see it, it might
look like an organization chart or an inverted tree (Figure 1-3).

o = Directories

o ::. Ordinary Files

'1 : Special Files

Figure 1-3: The Hierarchical Structure of the File System

The file is the basic unit of the UNIX system and it can be anyone of
three types: an ordinary file, a directory, or a special file. (See Chapter 3,
"Using the File System. ,,)

Ordinary Files

An ordinary file is a collection of characters that is treated as a unit by the
system. Ordinary files are used to store any information you want to save.
They may contain text for letters or reports, code for the programs you write,
or commands to run your programs. Once you have created a file, you can
add material to it, delete material from it, or remove it entirely when it is no
longer needed.

WHAT IS THE UNIX SYSTEM? 1-5

How the UNIX System Works

Directories

A directory is a super-file that contains a group of related files. For exam
ple, a directory called sales may hold files containing monthly sales figures
called jan, feb, mar, and so on. You can create directories, add or remove
files from them, or remove directories themselves at any time.

All the directories that you create and own will be located in your home
directory. This is a directory assigned to you by the system when you receive
a recognized login. You have control over this directory; no one else can read
or write files in it without your explicit permission, and you determine its
structure.

The UNIX system also maintains several directories for its own use. The
structure of these directories is much the same on all UNIX systems. These
directories, which include junix (the kernel) and several important system
directories, are located directly under the root directory in the file hierarchy.
The root directory (designated by j) is the source of the UNIX file structure;
all directories and files are arranged hierarchic all y under it.

Special Files

Special files constitute the most unusual feature of the file system. A spe
cial file represents a physical device such as a terminal, disk drive, magnetic
tape drive, or communication link. The system reads and writes to special
files in the same way it does to ordinary files. However the system's read
and write requests do not activate the normal file access mechanism; instead,
they activate the device handler associated with the file.

Some operating systems require you to define the type of file you have
and to use it in a specified way. In those cases, you must consider how the
files are stored since they might be sequential, random-access, or binary files.
To the UNIX system, however, all files are alike. This makes the UNIX sys
tem file structure easy to use. For example, you need not specify memory
requirements for your files since the system automatically does this for you.
Or if you or a program you write needs to access a certain device, such as a
printer, you specify the device just as you would another one of your files. In
the UNIX system, there is only one interface for all input from you and output
to you; this simplifies your interaction with the system.

1-6 USER'S GUIDE

How the UNIX System Works

Figure 1-4 shows an example of a typical file system. Notice that the root
directory contains the kernel (Junix) and several important system directories.

Figure 1-4: Example of a File System

o = Directories

o = Ordinary Files

"\] = Special Files

WHAT IS THE UNIX SYSTEM? 1-7

How the UNIX System Works

jbin

jdev

jete

jlib

jtmp

jusr

contains many executable programs and utilities

contains special files that represent peripheral devices such as
the console, the line printer, user terminals, and disks

contains programs and data files for system administration

contains libraries for programs and languages

contains temporary files that can be created by any user

contains other directories including mail, which contains files
for storing electronic mail, and news, which contains files for
storing newsworthy items.

In summary, the directories and files you create comprise the portion of
the file system that is controlled by you. Other parts of the file system are
provided and maintained by the operating system, such as jbin, jdev, jete,
jlib, jtmp, and jusr, and have much the same structure on all UNIX systems.

You will learn more about the file system in other chapters. Chapter 3
shows how to organize a file system directory structure, and access and mani
pulate files. Chapter 4 gives an overview of UNIX system capabilities. The
effective use of these capabilities depends on your familiarity with the file sys
tem and your ability to access information stored within it. Chapters 5 and 6
are tutorials designed to teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communi
cate with the operating system. The shell reads the commands you enter and
interprets them as requests to execute other programs, access files, or provide
output. The shell is also a powerful programming language, not unlike the C
programming language, that provides conditional execution and control flow
features. The model of a UNIX system in Figure 1-1 shows the two-way flow
of communication between you and the computer via the shell.

Chapter 4 describes the shell's capabilities. Chapter 7 is a tutorial that
teaches you to write simple shell programs called shell scripts and custom
tailor your environment.

1-8 USER'S GUIDE

How the UNIX System Works

Commands
A program is a set of instructions to the computer. Programs that can be

executed by the computer without need for translation are called executable
programs or commands. As a typical user of the UNIX system, you have
many standard programs and tools available to you. If you use the UNIX sys
tem to write programs and develop software, you can also draw on system
calls, subroutines, and other tools. Of course, any programs you write your
self will be at your disposal, too.

This book introduces you to many of the UNIX system programs and tools
that you will use on a regular basis. If you need additional information on
these or other standard programs, refer to the User's Reference Manual. For
information on tools and routines related to programming and software
development, consult the Programmer's Reference Manual. The Documentation
Roadmap describes and explains how to order all UNIX system documents
from AT&T.

The reference manuals may also be available on-line. (On-line documents
are stored in your computer's file system.) You can summon pages from the
on-line manuals by executing the command man (short for manual page). For
details on how to use the man command refer to the man(l) page in the
User's Reference Manual.

What Commands Do

The outer circle of the UNIX system model in Figure 1-1 organizes the
system programs and tools into functional categories. These functions include:

text processing

information management

The system provides programs such as
line and screen editors for creating and
changing text, a spelling checker for locat
ing spelling errors, and optional text for
matters for producing high-quality paper
copies that are suitable for publication.

The system provides many programs that
allow you to create, organize, and remove
files and directories.

WHAT IS THE UNIX SYSTEM? 1-9

How the UNIX System Works

electronic communication

software development

additional utilities

How to Execute Commands

Several programs, such as mail, enable
you to transmit information to other users
and to other UNIX systems.

Several UNIX system programs establish a
friendly programming environment by
providing UNIX system-to-programming
language interfaces and by supplying
numerous utility programs.

The system also offers capabilities for gen
erating graphics and performing calcula
tions.

To make your requests comprehensible to the UNIX system, you must
present each command in the correct format, or command line syntax. This
syntax defines the order in which you enter the components of a command
line. Just as you must put the subject of a sentence before the verb in an
English sentence, so you must put the parts of a command line in the order
required by the command line syntax. Otherwise, the UNIX system shell will
not be able to interpret your request. Here is an example of the syntax of a
UNIX system command line.

command option(s) argument(s)<CR>

On every UNIX system command line you must type at least two com
ponents: a command name and the RETURN key. (The notation <CR> is
used as an instruction to press the RETURN key throughout this Guide.) A
command line may also contain either options or arguments, or both. What
are commands, options, and arguments?

• A command is the name of the program you want to run.

• An option modifies how the command runs.

• An argument specifies data on which the command is to operate (usu
ally the name of a directory or file).

1-10 USER'S GUIDE

How the UNIX System Works

In command lines that include options and/or arguments, the component
words are separated by at least one blank space. (You can insert a blank by
pressing the space bar.) If an argument name contains a blank, enclose that
name in double quotation marks. For example, if the argument to your com
mand is sample 1, you must type it as follows: "sample 1". If you forget
the double quotation marks, the shell will interpret sample and 1 as two
separate arguments.

Some commands allow you to specify multiple options and/or arguments
on a command line. Consider the following command line:

command

opr
s

argurnts

A~t A ,

we -I -w filel file2 file3

In this example, we is the name of the command and two options, -I and
-w, have been specified. (The UNIX system usually allows you to group
options such as these to read -Iw if you prefer.) In addition, three files ([ilel,
file2, and file3) are specified as arguments. Although most options can be
grouped together, arguments cannot.

The following examples show the proper sequence and spacing in com
mand line syntax:

Incorrect

wefile
we-lfile
we -I w file

we filelfile2

Correct

we file
we -I file
we -Iw file

or
we -I -w file
we filel file2

WHAT IS THE UNIX SYSTEM? 1-11

How the UNIX System Works

Remember, regardless of the number of components, you must end every
command line by pressing the RETURN key.

How Commands Are Executed

Figure 1-5 shows the flow of control when the UNIX system executes a
command.

YOUR
REQUEST

INPUT
SHELL

~mljr-~O~UT~P~UT~ (COMMAND LANGUAGE
---- INTERPRETER) PROGRAM

EXECUTION

DIRECTORY
SEARCH

Figure 1-5: Execution of a UNIX System Command

PROGRAM
RETRIEVAL

To execute a command, enter a command line when a prompt (such as a
$ sign) appears on your screen. The shell considers your command as input,
searches through one or more directories to retrieve the program you speci
fied' and conveys your request, along with the program requested, to the ker
nel. The kernel then follows the instructions in the program and executes the
command you requested. After the program has finished running, the shell
signals that it is ready for your next command by printing another prompt.

This chapter has described some basic principles of the UNIX operating
system. The following chapters will help you apply these principles according
to your computing needs.

1-12 USER'S GUIDE

Chapter 2: Basics for UNIX System Users

Getting Started

The Terminal
Required Terminal Settings

Keyboard Characteristics

Typing Conventions

The Command Prompt

Correcting Typing Errors

U sing Special Characters as Literal Characters

Typing Speed

Stopping a Command

Using Control Characters

Obtaining a Login N arne

Establishing Contact with the UNIX System
Login Procedure

Password

Possible Problems when Logging In

Simple Commands

The help Command

Logging Off

2-1

2-2

2-3

2-4

2-6

2-7

2-8

2-10

2-10

2-11

2-11

2-13

2-14

2-16

2-16

2-20

2-22

2-23

2-25

TABLE OF CONTENTS

Getting Started

This chapter acquaints you with the general rules and guidelines for work
ing on the UNIX system. Specifically, it lists the required terminal settings
and explains how to use the keyboard, obtain a login, log on and off the sys
tem, and enter simple commands.

To establish contact with the UNIX system, you need:

• a terminal

• a login name (a name by which the UNIX system identifies you as one
of its authorized users)

• a password that verifies your identity

• instructions for dialing in and accessing the UNIX system if your termi
nal is not directly connected or hard-wired to the computer

This chapter follows the notation conventions used throughout this Guide.
For a description of them, see the Preface.

BASICS FOR UNIX SYSTEM USERS 2-1

The Terminal

A terminal is an input/output device: you use it to enter requests to the
UNIX system, and the system uses it to send its responses to you. There are
two basic types of terminals: video display terminals and printing terminals
(see Figure 2-1).

TELETYPE
MODEL 5410

Figure 2-1: A Video Display Terminal and a Printing Terminal

TELETYPE
MODEL 43

The video display terminal shows input and output on a display screen; the
printing terminal, on continuously fed paper. In most respects, this difference
has no effect on the user's actions or the system's responses. Instructions
throughout this book that refer to the terminal screen apply in the same way
to the paper in a printing terminal, unless noted otherwise.

2-2 USER'S GUIDE

The Terminal

Required Terminal Settings

Regardless of the type of terminal you use, you must configure it properly
to communicate with the UNIX system. If you have not set terminal options
before, you might feel more comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are
using. Some terminals are configured with switches; others are configured
directly from the keyboard by using a set of function keys. To determine how
to configure your terminal, consult the owner's manual provided by the
manufacturer.

The following is a list of configuration checks you should perform on any
terminal before trying to log in on the UNIX system.

1. Turn on the power.

2. Set the terminal to ON-LINE or REMOTE operation. This setting
ensures the terminal is under the direct control of the computer.

3. Set the terminal to FULL DUPLEX mode. This mode ensures two
way communication (input/output) between you and the UNIX sys
tem.

4. If your terminal is not directly connected or hard-wired to the com
puter, make sure the acoustic coupler or data phone set you are using
is set to the FULL DUPLEX mode.

S. Set character generation to LOWER CASE. If your terminal generates
only uppercase letters, the UNIX system will accommodate it by print
ing everything in uppercase letters.

6. Set the terminal to NO PARITY.

7. Set the baud rate. This is the speed at which the computer communi
cates with the terminal, measured in characters per second. (For
example, a terminal set at a baud rate of 4800 sends and receives 480
characters per second.) Depending on the computer and the terminal,
baud rates between 300 and 19200 are available. Some computers
may be capable of processing characters at higher speeds.

BASICS FOR UNIX SYSTEM USERS 2-3

The Terminal

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all terminal
keyboards share a standard set of 128 characters called the ASCII character
set. (ASCII is an acronym for American Standard Code for Information Inter
change.) While the keys are labeled with characters that are meaningful to
you (such as the letters of the alphabet), each one is also associated with an
ASCII code that is meaningful to the computer.

The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter's, with a few additional keys for functions such as interrupting
tasks. Figure 2-2 shows an example of a keyboard on an ASCII terminal.

2-4 USER'S GUIDE

----------------- The Terminal

IBGI 1E1tj81
Esc 11 r ~ III ; "I : III ! III ~ "I ~ "I ~ "I ; "1 ! 111 ~ "1- Ill: J II :;Cc

k
• J

DEL CLR
SET DIS

UP ~~

Tob Ilf Q 11 w 11 E JI R II T II y II
U "

I "

o 11 P II 111 : 111 \
,

7 8 9

A II F II H II L II : 11 I R.turn

r--

~ S D G J K 4 5 6
Lock

LINE

11 Shift 11 z II x II C ! II v II B

" N

"I M III ~ II > II; I
FEED

Shift 1 2 3

I---

II CtrlJ II Ctrl ~ - 0 +

Figure 2-2: Keyboard Layout of a Teletype 5410 Terminal

BASICS FOR UNIX SYSTEM USERS 2-5

The Terminal

The keys correspond to the following:

• the letters of the English alphabet (both upper case and lower case)

• the numerals (0 through 9)

• a variety of symbols (including! @ # $ % & () _ - + = ""' I { } [] \

: ; " ' < > , ? /)

• specially defined words (such as RETURN and BREAK) and abbrevia
tions (such as DEL for delete, CTRL for control, and ESC for escape)

While terminal and typewriter keyboards both have alphanumeric keys,
terminal keyboards also have keys designed for use with a computer. These
keys are labeled with characters or symbols that remind the user of their func
tions. However, their placement may vary from terminal to terminal because
there is no standard keyboard layout.

Typing Conventions

To interact effectively with the UNIX system, you should be familiar with
its typing conventions. The UNIX system requires that you enter commands
in lowercase letters (unless the command includes an uppercase letter). Other
conventions enable you to perform tasks, such as erasing letters or deleting
lines, simply by pressing one key or entering a specific combination of charac
ters. Characters associated with tasks in this way are known as special char
acters. Figure 2-3 lists the conventions based on special characters. Detailed
explanations of them are provided on the next few pages.

2-6 USER'S GUIDE

*

t

Key(s)

$

#*

@

<BREAK>

<ESC>

<CR>

<Ad>t
<Ah>

< i>

< s>

< q>

The Terminal

Meaning

System's command prompt (your cue to issue a command)

Erase a character

Erase or kill an entire line

Stop execution of a program or command

Delete or kill the current command line

When used with another character, performs a specific function
(called an escape sequence)

When used in an editing session with the vi editor, ends the text
input mode and returns you to the command mode

Press the RETURN key. This ends a line of typing and puts the
cursor on a new line.

Stop input to the system or log off

Backspace for terminals without a backspace key

Horizontal tab for terminals without a tab key

Temporarily stops output from printing on the screen

Makes the output resume printing on the screen after it has been
stopped by the <AS> command

Nonprinting characters are shown in angle brackets « ».

Characters preceded by a circumflex () are called control characters and are pronounced
control-letter. To type a control character, hold down the control key and press the speci
fied letter.

Figure 2-3: UNIX System Typing Conventions

The Command Prompt

The standard UNIX system command prompt is the dollar sign ($). When
the prompt appears on your terminal screen, the UNIX system is waiting for
instructions from you. The appropriate response to the prompt is to issue a
command and press the RETURN key.

BASICS FOR UNIX SYSTEM USERS 2-7

The Terminal

The $ sign is the default value for the command prompt. Chapter 7
explains how to change it if you would prefer another character or character
string as your command prompt.

Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typ
ing errors. The @ (at) sign key kills the current line and the # (pound) sign
key erases the last character typed. These keys are available by default to per
form these functions. However, if you want to use other keys, you can reas
sign the erase and kill functions. (For instructions, see "Reassigning the
Delete Functions" later in this section and "Setting Terminal Options" in
Chapter 7.)

Deleting the Current Line: the @ Sign

The @ sign key kills the current line. When you press it, an @ sign is
added to the end of the line, and the cursor moves to the next line. The line
containing the error is not erased from the screen but is ignored.

The @ sign key works only on the current line; be sure to press it before
you press the RETURN key if you want to kill a line. In the following exam
ple, a misspelled command is typed on a command line; the command is can
celled with the @ sign:

whooo@
who<CR>

Deleting the Last Characters Typed: the # Sign Key

The # (pound) sign key deletes the character(s) last typed on the current
line. When you type a # sign, the cursor backs up over the last character and
lets you retype it, thus effectively erasing it. This is an easy way to correct a
typing error.

You can delete as many characters as you like as long as you type a
corresponding number of # signs. For example, in the following command
line, two characters are deleted by typing two # signs.

dattw##e<CR>

The UNIX system interprets this as the date command, typed correctly.

2-8 USER'S GUIDE

The Terminal

The BACKSPACE Key

Many people prefer to use the BACKSPACE key for the erase function
instead of the # sign key. When you press the BACKSPACE key, the cursor
backs up over your errors, erasing them as it goes. It does not print anything,
unlike the # sign key, which prints a # sign on your screen between an error
and a correction. When you have finished correcting an error with the BACK
SP ACE key, the line of text on the screen looks as though it was typed per
fectly.

The # sign and BACKSPACE keys are equally effective at deleting charac
ters, but using the BACKSPACE key gives you better visual information about
what you are doing.

Some terminals may not recognize the # sign key as a delete character.

Reassigning the Delete Functions
As stated earlier, you can change the keys that kill lines and erase charac

ters. If you want to change these keys for a single working session, you can
issue a command to the shell to reassign them; the delete functions will revert
to the default keys (# and @) as soon as you log off. If you want to use other
keys regularly, you must specify the reassignment in a file called .profile.
Instructions for making both temporary and permanent key reassignments,
along with a description of the .profile, are given in Chapter 7.

There are three points to keep in mind if you reassign the delete functions
to non-default keys. First, the UNIX system allows only one key at a time to
perform a delete function. When you reassign a function to a non-default key,
you also take that function away from the default key. For example, if you
reassign the erase function from the # sign key to the BACKSPACE key, you
will no longer be able to use the # sign key to erase characters. Neither will
you have two keys that perform the same function.

Secondly, such reassignments are inherited by any other UNIX system
program that allows you to perform the function you have reassigned. For
example, the interactive text editor called ed (described in Chapter 5) allows
you to delete text with the same key you use to correct errors on a shell com
mand line (as described in this section). Therefore, if you reassign the erase
function to the BACKSPACE key, you will have to use the BACKSPACE key
to erase characters while working in the ed editor, as well. The # sign key
will no longer work.

BASICS FOR UNIX SYSTEM USERS 2-9

The Terminal

Finally, keep in mind that any reassignments you have specified in your
.profile do not become effective until after you log in. Therefore, if you make
an error while typing your login name or password, you must use the # sign
key to correct it.

Whichever keys you use, remember that they work only on the current
line. Be sure to correct your errors before pressing the RETURN key at the
end of a line.

Using Special Characters as Literal Characters

What happens if you want to use a special character in with literal mean
ing as a unit of text? Since the UNIX system's default behavior is to interpret
special characters as commands, you must tell the system to ignore or escape
from a character's special meaning whenever you want to use it as a literal
character. The backslash (\) enables you to do this. Type a \ before any spe
cial character that you want to have treated as it appears. By doing this you
essentially tell the system to ignore this character's special meaning and treat
it as a literal unit of text.

For example, suppose you want to add the following sentence to a file:

Only one # appears on this sheet of music.

To prevent the UNIX system from interpreting the # sign as a request to
delete a character, enter a \ in front of the # sign. If you do not, the system
will erase the space after the word one and print your sentence as follows:

Only one appears on this sheet of ImlSic.

To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

Typing Speed

After the prompt appears on your terminal screen, you can type as fast as
you want, even when the UNIX system is executing a command or responding
to one. Since your input and the system's output appear on the screen simul
taneously, the printout on your screen will appear garbled. However, while
this may be inconvenient for you, it does not interfere with the UNIX system's
work because the UNIX system has read-ahead capability. This capability
allows the system to handle input and output separately.

2-10 USER'S GUIDE

The Terminal

The system takes and stores input (your next request) while it sends output
(its response to your last request) to the screen.

Stopping a Command

If you want to stop the execution of a command, simply press the BREAK
or DELETE key. The UNIX system will stop the program and print a prompt
on the screen. This is its signal that it has stopped the last command from
running and is ready for your next command.

Using Control Characters

Locate the control key on your terminal keyboard. It may be labeled
CONTROL or CTRL and is probably to the left of the A key or below the Z
key. The control key is used in combination with other characters to perform
physical controlling actions on lines of typing. Commands entered in this
way are called control characters. Some control characters perform mundane
tasks such as backspacing and tabbing. Others define commands that are
specific to the UNIX system. For example, one control character (control-s)
temporarily halts output that is being printed on a terminal screen.

To type a control character, hold down the control key and press the
appropriate alphabetic key. Most control characters do not appear on the
screen when typed and therefore are shown between angle brackets (see
"Notation Conventions" in the Preface). The control key is represented by a
circumflex () before the letter. Thus, for example, <'" s> designates the
control-s character.

The two functions for which control characters are most often used are to
control the printing of output on the screen and to log off the system. To
preven! information from rolling off the screen on a video display terminal,
type <", s>; the printing will stop. When you are ready to read more output,
type < q> and the printing will resume.

To log off the UNIX system, type <'" d>. (See "Logging Off" later in this
chapter for a detailed description of this procedure.)

In addition, the UNIX system uses control characters to provide capabili
ties that some terminals fail to make available through function-specific keys.
If your keyboard does not have a backspace key, you can use the <"'h> key

BASICS FOR UNIX SYSTEM USERS 2-11

The Terminal

instead. You can also set tabs without a tab key by typing <Ai> if your termi
nal is set properly. (Refer to the section entitled" Possible Problems When
Logging In" for information on how to set the tab key.)

Now that you have configured the terminal and inspected the keyboard,
one step remains before you can establish communication with the UNIX sys
tem: you must obtain a login name.

2-12 USER'S GUIDE

Obtaining a Login Name

A login name is the name by which the UNIX system verifies that you are
an authorized user of the system when you request access to it. It is so called
because you must enter it every time you want to log in. (The expression log
ging in is derived from the fact that the system maintains a log for each user,
in which it records the type and amount of system resources being used.)

To obtain a login name, set up a UNIX system account through your local
system administrator. There are few rules governing your choice of a login
name. Typically, it is three to eight characters long. It can contain any com
bination of lowercase alphanumeric characters, as long as it starts with a letter.
It cannot contain any symbols.

However, your login name will probably be determined by local practices.
The users of your system may all use their initials, last names, or nicknames
as their login names. Here are a few examples of legal login names: starship,
mary2, and jmrs.

BASICS FOR UNIX SYSTEM USERS 2-13

Establishing Contact with the UNIX System

Typically, you will be using either a terminal that is wired directly to a
computer or a terminal that communicates with a computer over a telephone
line.

This section describes a typical procedure for logging in, but may not apply to
your system. There are many ways to log in on a UNIX system over a tele
phone line. Security precautions on your system may require that you use a
special telephone number or other security code. For instructions on logging
in on your UNIX system from outside your computer installation site, see
your system administrator.

Turn on your terminal. If it is directly connected, the login: prompt will
immediately appear in the upper left corner of the screen.

If you are going to communicate with the computer over a telephone line,
you must now establish a connection. The following procedure is an example
of a method you might use to do this. (For the procedure required by your
system, see your system administrator.)

1. Dial the telephone number that connects you to the UNIX system.
You will hear one of the following:

o A busy signal. This means that either the circuits are busy or the
line is in use. Hang up and dial again.

o Continuous ringing and no answer. This usually means that there
is trouble with the telephone line or that the system is inoperable
because of mechanical failure or electronic problems. Hang up
and dial again later.

o A high-pitched tone. This means that the system is accessible.

2. When you hear the high-pitched tone, place the handset of the phone
in the acoustic coupler or momentarily press the appropriate button on
the data phone set (see the owner's manual for the appropriate equip
ment). Then replace the handset in the cradle (see Figure 2-4).

3. After a few seconds, the login: prompt will appear in the upper left
corner of the screen.

4. A series of meaningless characters may appear on your screen. This
means that the telephone number you called serves more than one
baud rate; the UNIX system is trying to communicate with your

2-14 USER'S GUIDE

Establishing Contact with the UNIX System

terminal, but is using the wrong speed. Press the BREAK or RETURN
key; this signals the system to try another speed. If the UNIX system
does not display the login: prompt within a few seconds, press the
BREAK or RETURN key again.

W-=r""""'·'""1 AT&T Dataphone II
Modem

AT&T Data Phone
Set 212A

Figure 2-4: Data Phone Set, Modem, and Acoustic Coupler

AT&T Acoustic
Coupler

BASICS FOR UNIX SYSTEM USERS 2-15

Establishing Contact with the UNIX System

Login Procedure

When the login: prompt appears, type your login name and press the
RETURN key. For example, if your login name is starship, your login line
will look like this:

login: starship<CR>

Remember to type in lowercase letters. If you use uppercase from the time
you log in, the UNIX system will expect and respond in uppercase exclusively
until the next time you log in. It will accept and run many commands typed
in uppercase, but will not allow you to edit files.

Password

N ext, the system prompts you for your password. Type your password
and press the RETURN key. For security reasons, the UNIX system does not
print (or echo) your password on the screen.

If both your login name and password are acceptable to the UNIX system,
the system may print the message of the day and/or current news items and
then the default command prompt ($). (The message of the day might include
a schedule for system maintenance, and news items might include an
announcement of a new system tool.) When you have logged in, your screen
will look similar to this:

2-16 USER'S GUIDE

login: starship<CR>
password:
UNIX system news
$

Establishing Contact with the UNIX System

If you make a typing mistake when logging in, the UNIX system prints
the message login incorrect on your screen. Then it gives you a second
chance to log in by printing another login: prompt.

login: ttarship<CR>
password:
login incorrect
login:

The login procedure may also fail if the communication link between your
terminal and the UNIX system has been dropped. If this happens, you must
reestablish contact with the computer (specifically, with the data switch that
links your terminal to the computer) before trying to log in again. Since pro
cedures for doing this vary from site to site, ask your system administrator to
give you exact instructions for getting a connection on the data switch.

If you have never logged in on the UNIX system, your login procedure
may differ from the one just described. This is because some system adminis
trators follow the optional security procedure of assigning temporary pass
words to new users when they set up their accounts. If you have a temporary

BASICS FOR UNIX SYSTEM USERS 2-17

Establishing Contact with the UNIX System

password, the system will force you to choose a new password before it
allows you to log in.

By forcing you to choose a password for your exclusive use, this extra step
helps to ensure a system's security. Protection of system resources and your
personal files depends on your keeping your password private.

The actual procedure you follow will be determined by the administrative
procedures at your computer installation site. However, it will probably be
similar to the following example of a first-time login procedure.

1. You establish contact; the UNIX system displays the login: prompt.
Type your login name and press the RETURN key.

2. The UNIX system prints the password prompt. Type your temporary
password and press the RETURN key.

3. The system tells you your temporary password has expired and you
must select a new one.

4. The system asks you to type your old password again. Type your
temporary password.

S. The system prompts you to type your new password. Type the pass
word you have chosen.

Passwords must be constructed to meet the following requirements:

D Each password must have at least six characters. Only the first
eight characters are significant.

D Each password must contain at least two alphabetic characters and
at least one numeric or special character. Alphabetic characters
can be uppercase or lowercase letters.

D Each password must differ from your login name and any reverse
or circular shift of that login name. For comparison purposes, an
uppercase letter and its corresponding lowercase letter are
equivalent.

D A new password must differ from the old by at least threecharac
ters. For comparison purposes, an uppercase letter and its
corresponding lowercase letter are equivalent.

Examples of valid passwords are: mar84ch, JonathOn, and BRA V3S.

2-18 USER'S GUIDE

6.

7.

Establishing Contact with the UNIX System

The UNIX system you are using may have different requirements to consider
when choosing a password. Ask your system administrator for details.

For verification, the system asks you to reenter your new password.
Type your new password again.

If you do not reenter the new password exactly as typed the first time,
the system tells you the passwords do not match and asks you to try
the procedure again. On some systems, however, the communication
link may be dropped if you do not reenter the password exactly as
typed the first time. If this happens, you must return to step 1 and
begin the login procedure again. When the passwords match, the sys
tem displays the prompt.

The following screen summarizes this procedure (steps 1 through 6) for
first-time UNIX system users.

login: starship <CR>
password: <CR>
Your password has expired.

Chcx:>Se a new one.

Old password: <CR>
New password: <CR>
Re-enter new password: <CR>
$

BASICS FOR UNIX SYSTEM USERS 2-19

Establishing Contact with the UNIX System

Possible Problems When Logging In

A terminal usually behaves predictably when you have configured it prop
erly. Sometimes, however, it may act peculiarly. For example, the carriage
return may not work properly.

Some problems can be corrected simply by logging off the system and
logging in again. If logging in a second time does not remedy the problem,
you should first check the following and try logging in once again:

the keyboard Keys labeled CAPS, LOCAL, BLOCK, and so on
should not be enabled (put into the locked posi
tion). You can usually disable these keys simply
by pressing them.

the data phone set
or modem

the switches

If your terminal is connected to the computer
via telephone lines, verify that the baud rate and
duplex settings are correctly specified.

Some terminals have several switches that must
be set to be compatible with the UNIX system. If
this is the case with the terminal you are using,
make sure they are set properly.

Refer to the section "Required Terminal Settings" in this chapter if you
need information to verify the terminal configuration. If you need additional
information about the keyboard, terminal, data phone, or modem, check the
owner's manuals for the appropriate equipment.

Figure 2-5 presents a list of procedures you can follow to detect, diagnose,
and correct some problems you may experience when logging in. If you need
further help, contact your system administrator.

2-20 USER'S GUIDE

*

t

Problemt

Meaningless characters

Input/output appears in
UPPERCASE letters

Input appears in UPPER
CASE, output in lowercase

Input is printed twice

Tab key does not work prop
erly

Communication link cannot
be established although high
pitched tone is heard when
dialing in

Communication link (terminal
to UNIX system) is repeatedly
dropped

Possible Cause

UNIX system at wrong speed

Terminal configuration
includes UPPERCASE setting

Key labeled CAPS (or CAPS
LOCK) is enabled

Terminal is set to HALF
DUPLEX mode

Tabs are not set correctly

Terminal is set to LOCAL or
OFF-LINE mode

Bad telephone line or bad
communications port

Action/Remedy

Press RETURN or BREAK key

Log off and set character gen
eration to lowercase

Press CAPS or CAPS LOCK
key to disable setting

Change setting to FULL
DUPLEX mode

Type stty -tabst

Set terminal to ON-LINE
mode try logging in again

Call system administrator

Numerous problems can occur if your terminal is not configured properly. To eliminate
these possibilities before attempting to log in, perform the configuration checks listed
under "Required Terminal Settings."

Some problems may be specific to your terminal, data phone set, or modem. Check the
owner's manual for the appropriate equipment if suggested actions do not remedy the
problem.

Typing sUy -tabs corrects the tab setting only for your current computing session. To
ensure a correct tab setting for all sessions, add the line stty -tabs to your .profile (see
Chapter 7).

Figure 2-5: Troubleshooting Problems When Logging In*

BASICS FOR UNIX SYSTEM USERS 2-21

Simple Commands

When the prompt appears on your screen, the UNIX system has recog
nized you as an authorized user and is waiting for you to request a program
by entering a command.

For example, try running the date command. After the prompt, type the
command and press the RETURN key. The UNIX system accesses a program
called date, executes it, and prints its results on the screen, as shown below.

$ date<CR>
Wed Oct 15 09:49:44 EDT 1986
$

As you can see, the date command prints the date and time, using the 24-
hour clock.

Now type the who command and press the RETURN key. Your screen
will look something like this:

$ who<CR>
starship ttyOO Oct 12 8:53
mary2 tty02 Oct 12 8:56
acct123 tty05 Oct 12 8:54
jmrs tty06 Oct 12 8:56
$

2-22 USER'S GUIDE

The who command lists the login names of everyone currently working on
your system. The tty designations refer to the special files that correspond to
each user's terminal. The date and time at which each user logged in are also
shown.

The help Command
To help you learn how to use these and other commands, the UNIX sys

tem provides an on-line teaching aid: the help command. This program tells
you which command you need to perform a particular task and how to exe
cute specific commands. For novice users of the UNIX system, it also provides
definitions of vocabulary and explanations of basic concepts about the system.

The help command is not available on all UNIX systems; check with your
system administrator to find out if it is installed on your system.

When you need assistance, type help and press the RETURN key. The
program gives you a choice of four ways in which it can help you: by provid
ing general information; by locating the appropriate command for a particular
task; by giving you instructions on how to use a particular command; and by
defining terms. The following example shows how this menu appears on
your screen when you type the command.

BASICS FOR UNIX SYSTEM USERS 2-23

$ help<CR>
help: UNIX System On-Line Help

choices
s

1

u

g

r

q

Enter choice >

description
starter: general information

locate: find a carm:md with keywords

usage: information about ccmnands

glos~: definitions of terms

Redirect to a file or a carm:md
Qrit

Each choice on this menu (starter, locate, usage, and glossary) is an
interactive menu program. Request one of these programs by typing the
option listed beside it under choices (such as u).

Because starter, locate, usage, and glossary are programs, they can also
be cafled from the shell. Once you are familiar with them, you can skip the
step of entering the help command first. If you know which program you
want to run, you can call it by typing its name as either a command or an
argument to the help command. For example, to call the usage program, use
one of the following command lines:

help usage<CR>

or

usage<CR>

2-24 USER'S GUIDE

The program you choose responds by printing a summary of its function,
a menu of choices, instructions, and examples of how to follow the instruc
tions. In this way, the help program leads you through a series of steps that
enable you to get the information you need.

Logging Off

When you have completed a session with the UNIX system, type < ~ d>
after the prompt. (Remember that control characters such as < ~ d> are typed
by holding down the control key and pressing the appropriate alphabetic key.
Because they are nonprinting characters, they do not appear on your screen.)
After several seconds, the UNIX system will display the login: prompt again.

$ <~d>

login:

This shows that you have logged off successfully and the system is ready for
someone else to log in.

Always log off the UNIX system by typing < ~ d> before you turn off the ter
minal or hang up the telephone. If you do not, you may not be actually
logged off the system.

The exit command also allows you to log off but is not used by most
users. It may be convenient if you want to include a command to log off
within a shell program. [(For details, see the "Special Commands" section of
the sh(l) page in the User's Reference Manual.)]

BASICS FOR UNIX SYSTEM USERS 2-25

Chapter 3: Using the File System

In troduction 3-1

How the File System is Structured 3-2

Your Place in the File System 3-4

Your Home Directory 3-4

Your Current Directory 3-6

Path Names 3-7

Full Path Names 3-8

Relative Path Names 3-11

Naming Directories and Files 3-15

Organizing a Directory 3-16

Creating Directories: the mkdir Command 3-16

Listing the Contents of a Directory: the Is Command 3-18

Frequently Used Is Options 3-21

Changing Your Current Directory: the cd Command 3-26

Removing Directories: the rmdir Command 3-28

Accessing and Manipulating Files 3-31

Basic Commands 3-31

Displaying a File's Contents: the cat, pg, and pr Commands 3-33

Requesting a Paper Copy of a File: the Ip Command 3-45

Making a Duplicate Copy of a File: the cp Command 3-49

Moving and Renaming a File: the mv Command 3-52

Removing a File: the rm Command 3-54

Counting Lines, Words, and Characters in a File:
the we Command 3-56

Protecting Your Files: the chmod Command 3-59

TABLE OF CONTENTS

Table of Contents

Advanced Commands

Identifying Differences Between Files: the diff Command

Searching a File for a Pattern: the grep Command

Sorting and Merging Files: the sort Command

Summary

ii USER'S GUIDE

3-65

3-66

3-68

3-70

3-74

Introduction

To use the UNIX file system effectively you must be familiar with its
structure, know something about your relationship to this structure, and
understand how the relationship changes as you move around within it. This
chapter prepares you to use this file system.

The first two sections (" How the File System is Structured" and "Your
Place in the File System") offer a working perspective of the file system. The
rest of the chapter introduces UNIX system commands that allow you to build
your own directory structure, access and manipulate the subdirectories and
files you organize within it, and examine the contents of other directories in
the system for which you have access permission.

Each command is discussed in a separate subsection. Tables at the end of
these subsections summarize the features of each command so that you can
later review a command's syntax and capabilities quickly. Many of the com
mands presented in this section have additional, sophisticated uses. These,
however, are left for more experienced users and are described in other UNIX
system documentation. All the commands presented here are basic to using
the file system efficiently and easily. Try using each command as you read
about it.

USING THE FILE SYSTEM 3-1

How the File System is Structured

The file system is comprised of a set of ordinary files, special files, and
directories. These components provide a way to organize, retrieve, and
manage information electronically. Chapter 1 introduced the properties of
directories and files; this section will review them briefly before discussing
how to use them.

• An ordinary file is a collection of characters stored on a disk. It may
contain text for a report or code for a program.

• A special file represents a physical device, such as a terminal or disk.

• A directory is a collection of files and other directories (sometimes
called subdirectories). Use directories to group files together on the
basis of any criteria you choose. For example, you might create a direc
tory for each product that your company sells or for each of your
student's records.

The set of all the directories and files is organized into a tree shaped struc
ture. Figure 3-1 shows a sample file structure with a directory called root U)
as its source. By moving down the branches extending from root, you can
reach several other major system directories. By branching down from these,
you can, in turn, reach all the directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a directory
have what is called a parenti child relationship. This type of relationship is
possible for many layers of files and directories. In fact, there is no limit to
the number of files and directories you may create in any directory that you
own. Neither is there a limit to the number of layers of directories that you
may create. Thus you have the capability to organize your files in a variety of
ways, as shown in Figure 3-1.

3-2 USER'S GUIDE

Figure 3-1: A Sample File System

How the File System is Structured

o = Directories

D = Ordinary Files

\} = Special Files

USING THE FILE SYSTEM 3-3

Your Place in the File System

Whenever you interact with the UNIX system, you do so from a location
in its file system structure. The UNIX system automatically places you at a
specific point in its file system every time you log in. From that point, you
can move through the hierarchy to work in any of your directories and files
and to access those belonging to others that you have permission to use.

The following sections describe your position in the file system structure
and how this) position changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the UNIX system
places you at a specific point in its file system structure called your login or
home directory. The login name assigned to you when your UNIX system
account was set up is usually the name of this home directory. Every user
with an authorized login name has a unique home directory in the file system.

The UNIX system is able to keep track of all these home directories by
maintaining one or more system directories that organize them. For example,
the home directories of the login names starship, mary2, and jmrs are con
tained in a system directory called userl. Figure 3-2 shows the position of a
system directory such as userl in relation to the other important UNIX system
directories discussed in Chapter 1.

3-4 USER'S GUIDE

Figure 3-2: Directory of Home Directories

Your Place in the File System

o :::;; Directories

D =Ordinary Files

V = Special Files

__ =Branch

USING THE FILE SYSTEM 3-5

Your Place in the File System

Within your home directory, you can create files and additional directories
(sometimes called subdirectories) in which to group them. You can move and
delete your files and directories, and you can control access to them. You
have full responsibility for everything you create in your home directory
because you own it. Your home directory is a vantage point from which to
view all the files and directories it holds, and the rest of the file system, all the
way up to root.

Your Current Directory

As long as you continue to work in your home directory, it is considered
your current working directory. If you move to another directory, that direc
tory becomes your new current directory.

The UNIX system command pwd (short for print working directory) prints
the name of the directory in which you are now working. For example, if
your login name is starship and you execute the pwd command in response
to the first prompt after logging in, the UNIX system will respond as follows:

$pwd<CR>
/user1/starship
$

The system response gives you both the name of the directory in which
you are working (starship) and the location of that directory in the file sys
tem. The path name /user1/starship tells you that the root directory (shown
by the leading / in the line) contains the directory user! which, in turn, con
tains the directory starship. (All other slashes in the path name other than
root are used to separate the names of directories and files, and to show the
position of each directory relative to root.) A directory name that shows the
directory's location in this way is called a full or complete directory name or

3-6 USER'S GUIDE

Your Place in the File System

path name. In the next few pages we will analyze and trace this path name
so you can start to move around in the file system.

Remember, you can determine your position in the file system at any time
simply by issuing a pwd command. This is especially helpful if you want to
read or copy a file and the UNIX system tells you the file you are trying to
access does not exist. You may be surprised to find you are in a different
directory than you thought.

Figure 3-3 provides a summary of the syntax and capabilities of the pwd
command.

Command Recap

pwd - print full name of working directory

command options arguments

pwd none none

Description: pwd prints the full path name of the directory in
which you are currently working.

Figure 3-3: Summary of the pwd Command

Path Names

Every file and directory in the UNIX system is identified by a unique path
name. The path name shows the location of the file or directory, and pro
vides directions for reaching it. Knowing how to follow the directions given
by a path name is your key to moving around the file system successfully.
The first step in learning about these directions is to learn about the two types
of path names: full and relative.

USING THE FILE SYSTEM 3-7

Your Place in the File System

Full Path Names

A full path name (sometimes called an absolute path name) gives direc
tions that start in the root directory and lead you down through a unique
sequence of directories to a particular directory or file. You can use a full path
name to reach any file or directory in the UNIX system in which you are
working.

Because a full path name always starts at the root of the file system, its
leading character is always a j (slash). The final name in a full path name
can be either a file name or a directory name. All other names in the path
must be directories.

To understand how a full path name is constructed and how it directs
you, consider the following example. Suppose you are working in the star
ship directory, located in juserl. You issue the pwd command and the sys
tem responds by printing the full path name of your working directory:
/user1/starship. Analyze the elements of this path name using the following
diagram and key.

3-8 USER'S GUIDE

J (leading)

userl

J (subsequent)

starship

Your Place in the File System

root

system
directory

delimit!
rJ~

VUserlJstarship

home
directory

the slash that appears as the first character in the path name
is the root of the file system

system directory one level below root in the hierarchy to
which root points or branches

the next slash separates or delimits the directory names userl
and starship

curren t working directory

Now follow the bold lines in Figure 3-4 to trace the full path to
JuserlJstarship.

USING THE FILE SYSTEM 3-9

Your Place in the File System

Figure 3-4: Full Path Name of the /userl/starship Directory

3-10 USER'S GUIDE

o = Directories

o =O,dina"l Files

7 = Special Files

Your Place in the File System

Relative Path Names

A relative path name gives directions that start in your current working
directory, and lead you up or down through a series of directories to a particu
lar file or directory. By moving down from your current directory, you can
access files and directories you own. By moving up from your current direc
tory, you pass through layers of parent directories to the grandparent of all
system directories, root. From there you can move anywhere in the file sys
tem.

A relative path name begins with one of the following: a directory or file
name; a 0 (pronounced dot), which is a shorthand notation for your current
directory; or a 00 (pronounced dot dot), which is a shorthand notation for the
directory immediately above your current directory in the file system hierar
chy. The directory represented by 00 (dot dot) is called the parent directory of 0

(your current directory).

For example, say you are in the directory starship in the sample system
and starship contains directories named draft, letters, and bin and a file
named mbox. The relative path name to any of these is simply its name, such
as draft or mbox. Figure 3-5 traces the relative path from starship to draft.

USING THE FILE SYSTEM 3-11

Your Place in the File System

Figure 3-5: Relative Path Name of the draft Directory

o = Directories

D = Ordinary Files

The draft directory belonging to starship contains the files outline and
table. The relative path name from starship to the file outline is
draft/outline.

Figure 3-6 traces this relative path. Notice that the slash in this path
name separates the directory named draft from the file named outline. Here,
the slash is a delimiter showing that outline is subordinate to draft; that is,
outline is a child of its parent, draft.

3-12 USER'S GUIDE

Your Place in the File System

Figure 3-6: Relative Path Name from starship to outline

o = Directories

D = Ordinary Files

So far, the discussion of relative path names has covered how to specify
names of files and directories that belong to, or are children of, your current
directory. You now know how to move down the system hierarchy level by
level until you reach your destination. You can also, however, ascend the lev
els in the system structure or ascend and subsequently descend into other files
and directories.

To ascend to the parent of your current directory, you can use the .. nota
tion. This means that if you are in the directory named draft in the sample
file system, .. is the path name to starship, and .. j .. is the path name to
starship's parent directory, userl.

USING THE FILE SYSTEM 3-13

Your Place in the File System

From draft, you can also trace a path to the file sanders by using the path
name .. /letters/sanders. The .. brings you up to starship. Then the names
letters and sanders take you down through the letters directory to the
sanders file.

Keep in mind that you can always use a full path name in place of a rela
tive one.

Figure 3-7 shows some examples of full and relative path names.

Path Name

/
/bin

Meaning

full path name of the root directory

full path name of the bin directory (contains
most executable programs and utilities)

/userl/starship/bin/tools full path name of the tools directory belonging

bin/tools

tools

to the bin directory that belongs to the starship
directory belonging to userl that belongs to
root

relative path name to the file or directory tools
in the directory bin

If the current directory is /' then the UNIX sys
tem searches for /bin/tools. However, if the
current directory is starship, then the system
searches the full path
/userl / starship /bin/tools.

relative path name of a file or directory tools in
the current directory.

Figure 3-7: Example Path Names

3-14 USER'S GUIDE

Your Place in the File System

You may need some practice before you can use path names such as these
to move around the file system with confidence. However, this is to be
expected when learning a new concept.

Naming Directories and Files
You can give your directories and files any names you want, as long as

you observe the following rules:

• The name of a directory (or file) can be from one to fourteen characters
long.

• All characters other than / are legal.

• Some characters are best avoided, such as a space, tab, backspace, and
the following:

?@#$ &*()'[]\ I j'''<>

If you use a blank or tab in a directory or file name, you must enclose
the name in quotation marks on the command line.

• Avoid using a +, -, or . as the first character in a file name.

• Uppercase and lowercase characters are distinct to the UNIX system.
For example, the system considers a directory (or file) named draft to
be different from one named DRAFT.

The following are examples of legal directory or file names:

memo
file.d

MEMO
chap3+4

section2
iteml-IO

ref:list
outline

The rest of this chapter introduces UNIX system commands that enable
you to examine the file system.

USING THE FILE SYSTEM 3-15

Organizing a Directory

This section introduces four UNIX system commands that enable you to
organize and use a directory structure: mkdir, Is, cd, and rmdir.

mkdir

Is

cd

rmdir

enables you to make new directories and subdirec
tories within your current directory

lists the names of all the subdirectories and files in a
directory

enables you to change your location in the file system
from one directory to another

enables you to remove an empty directory

These commands can be used with either full or relative path names.
Two of the commands, Is and cd, can also be used without a path name.
Each command is described more fully in the four sections that follow.

Creating Directories: the mkdir Command

It is recommended that you create subdirectories in your home directory
according to a logical and meaningful scheme that will facilitate the retrieval
of information from your files. If you put all files pertaining to one subject
together in a directory, you will know where to find them later.

To create a directory, use the command mkdir (short for make directory).
Simply enter the command name, followed by the name you are giving your
new directory or file. For example, in the sample file system, the owner of the
draft subdirectory created draft by issuing the following command from the
home directory (/userljstarship):

$ mkdir draft <CR>
$

The second prompt shows that the command has succeeded; the subdirectory
draft has been created.

Still in the home directory, this user created other subdirectories, such as
letters and bin, in the same way.

3-16 USER'S GUIDE

$ mkdir letters<CR>
$ mkdir bin<CR>
$

Organizing a Directory

The user could have created all three subdirectories (draft, letters, and bin)
simultaneously by listing them all on a single command line.

$ mkdir draft letters bin<CR>
$

You can also move to a subdirectory you created and build additional sub
directories within it. When you build directories or create files, you can name
them anything you want as long as you follow the guidelines listed earlier
under "Naming Directories and Files. "

Figure 3-8 summarizes the syntax and capabilities of the mkdir command.

Command Recap

mkdir - make a new directory

command options arguments

mkdir none directoryname(s)

Description: mkdir creates a new directory (subdirectory).

Remarks: The system returns a prompt ($ by default) if the
directory is successfully created.

Figure 3-8: Summary of the mkdir Command

USING THE FILE SYSTEM 3-17

Organizing a Directory

Listing the Contents of a Directory: the Is
Command

All directories in the file system have information about the files and
directories they contain, such as name, size, and the date last modified. You
can obtain this information about the contents of your current directory and
other system directories by executing the command Is (short for list).

The Is command lists the names of all files and subdirectories in a speci
fied directory. If you do not specify a directory, Is lists the names of files and
directories in your current directory. To understand how the Is command
works, consider the sample file system (Figure 3-2) once again.

Say you are logged in to the UNIX system and you run the pwd com
mand. The system responds with the path name /userl/starship. To display
the names of files and directories in this current directory, you then type Is
and press the RETURN key. After this sequence, your terminal will read:

$pwd<CR>
$/user1/starship
$ls<CR>
bin
draft

letters
list
mbox

$

As you can see, the system responds by listing, in alphabetical order, the
names of files and directories in the current directory starship. (If the first
character of any of the file or directory names had been a number or an
uppercase letter, it would have been printed first.)

3'-18 USER'S GUIDE

Organizing a Directory

To print the names of files and subdirectories in a directory other than
your current directory without moving from your current directory, you must
specify the name of that directory as follows:

Is pathname<CR>

The directory name can be either the full or relative path name of the desired
directory. For example, you can list the contents of draft while you are work
ing in starship by entering Is draft and pressing the RETURN key. Your
screen will look like this:

$ Is draft<CR>
outline
table
$

Here, draft is a relative path name from a parent (starship) to a child (draft)
directory.

You can also use a relative path name to print the contents of a parent
directory when you are located in a child directory. The 00 (dot dot) notation
provides an easy way to do this. For example, the following command line
specifies the relative path name from starship to user1:

USING THE FILE SYSTEM 3-19

Organizing a Directory

$ls .. <CR>
jrnrs

mary2
starship

$

You can get the same results by using the full path name from root to userl.
If you type Is luserl and press the RETURN key, the system will respond by
printing the same list.

Similarly, you can list the contents of any system directory that you have
permission to access by executing the Is command with a full or relative path
name.

The Is command is useful if you have a long list of files and you are try
ing to determine whether one of them exists in your current directory. For
example, if you are in the directory draft and you want to determine if the
files named outline and notes are there, use the Is command as follows:

$ Is outline notes<CR>
outline
notes not found

$

The system acknowledges the existence of outline by printing its name, and
says that the file notes is not found.

3-20 USER'S GUIDE

Organizing a Directory

The Is command does not print the contents of a file. If you want to see
what a file contains, use the cat, pg, or pr command. These commands are
described in "Accessing and Manipulating Files" later in this chapter.

Frequently Used Is Options

The Is command also accepts options that cause specific attributes of a file
or subdirectory to be listed. There are more than a dozen available options
for the Is commands. Of these, the -a and -1 will probably be most valuable
in your basic use of the UNIX system. Refer to the Is(l) page in the User's
Reference Manual for details about other options.

Listing All Names in a File

Some important file names in your home directory, such as .profile (pro
nounced dot-profile), begin with a period. (As you can see from this example,
when a period is used as the first character of a file name it is pronounced
dot.) When a file name begins with a dot, it is not included in the list of files
reported by the Is command. If you want the Is to include these files, use the
-a option on the command line.

For example, to list all the files in your current directory (starship),
including those that begin with a . (dot), type Is -a and press the RETURN
key.

$ Is -a<CR>

. profile
bin
draft

letters
list
mbox

$

USING THE FILE SYSTEM 3-21

Organizing a Directory

Listing Contents in Short Format

The -C and -F options for the Is command are frequently used. Together,
these options list a directory's subdirectories and files in columns, and identify
executable files (with an *) and directories (with a j). Thus, you can list all
files in your working directory starship by executing the command line shown
here:

$ Is -CF<CR>
bin/
draft/
$

letters/
list*

Listing Contents in Long Format

mbox

Probably the most informative Is option is -I, which displays the contents
of a directory in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file. For example, say you
run the Is -1 command while in the starship directory.

$ Is -l<CR>
total 30
drwxr-xr-x 3 starship project 96 Oct 27 08:16 bin
drwxr-xr-x 2 starship project 64 Nov 1 14: 19 draft
drwxr-xr-x 2 starship project 80 Nov 8 08:41 letters
-rwx------ 2 starship project 12301 Nov 2 10:15 list
-rw-------- 1 starship project 40 Oct 27 10:00 mbox

$

3-22 USER'S GUIDE

Organizing a Directory

The first line of output (total 30) shows the amount of disk space used,
measured in blocks. Each of the rest of the lines comprises a report on a
directory or file in starship. The first character in each line (d, -, b, or c) tells
you the type of file.

d directory

ordinary disk file

b block special file

c character special file

Using this key to interpret the previous screen, you can see that the starship
directory contains three directories and two ordinary disk files.

The next several characters, which are either letters or hyphens, identify
who has permission to read and use the file or directory. (Permissions are
discussed in the description of the chmod command under "Accessing and
Manipulating Files" later in this chapter.)

The following number is the link count. For a file, this equals the number
of users linked to that file. For a directory, this number shows the number of
directories immediately under it plus two (for the directory itself and its parent
directory).

Next, the login name of the file's owner appears (here it is starship), fol
lowed by the group name of the file or directory (project).

The following number shows the length of the file or directory entry
measured in units of information (or memory) called bytes. The month, day,
and time that the file was last modified is given next. Finally, the last column
shows the name of the directory or file.

Figure 3-9 identifies each column in the rows of output from the
Is -1 command.

USING THE FILE SYSTEM 3-23

Organizing a Directory

number of
blocks used

owner
name

number
of links

group
name

total 30

File i::~::~~:~ ~
type rwxr-xr-x 2

- wx------ 2
- w------- 1

~

f
permissions

starship project
starship project
starship project
starship proj ect
starship project

name

96 Oct 27 08:16 bin
64 Nov 1 14:19 draft
80 Nov 8 08:41 letters

12301 Nov 2 10:15 list
40 Oct 27 10:00 mbox

'--v---J

f
time / date last

modified

Figure 3-9: Description of Output Produced by the Is -1 Command

Figure 3-10 summarizes the syntax and capabilities of the Is command
and two available options.

3-24 USER'S GUIDE

*

command

Is

Description:

Options:

Remarks:

Organizing a Directory

Command Recap

Is - list contents of a directory

options arguments

-a, -1, and others* directoryname(s)

Is lists the names of the files and subdirectories in
the specified directories. If no directory name is
given as an argument, the contents of your work
ing directory are listed.

-a Lists all entries, including those beginning
with. (dot).

-1 Lists contents of a directory in long format
furnishing mode, permissions, size in
bytes, and time of last modification.

If you want to read the contents of a file, use the
cat command.

See the Is(l) page in the User's Reference Manual for all available options and an explana
tion of their capabilities.

Figure 3-10: Summary of the Is Command

USING THE FILE SYSTEM 3-25

Organizing a Directory

Changing Your Current Directory: the cd Command

When you first log in on the UNIX system, you are placed in your home
directory. As long as you do work in it, it is also your current working direc
tory. However, by using the command cd (short for change directory), you
can work in other directories as well. To use this command, enter cd, fol
lowed by a path name to the directory to which you want to move.

cd pathname_of_newdirectory<CR>

Any valid path name (full or relative) can be used as an argument to the cd
command. If you do not specify a path name, the command will move you to
your home directory. Once you have moved to a new directory, it becomes
your current directory.

For example, to move from the starship directory to its child directory
draft (in the sample file system), type cd draft and press the RETURN key.
(Here draft is the relative path name to the desired directory.) When you get
a prompt, verify your new location by typing pwd and pressing the RETURN
key. Your terminal screen will look like this:

$ cd draft<CR>
$ pwd<CR>
/user1/starship/draft
$

Now that you are in the draft directory you can create subdirectories in it by
using the mkdir command, and new files, by using the ed and vi editors.
(See Chapters 5 and 6 for tutorials on the ed and vi commands, respectively.)

3-26 USER'S GUIDE

Organizing a Directory

It is not necessary to be in the draft directory to access files within it. You
can access a file in any directory by specifying a full path name for it. For
example, to cat the sanders file in the letters directory
(/userl/starship/letters) while you are in the draft directory
(/userl/starship/draft), specify the full path name of sanders on the com
mand line.

cat /userl / starship /letters / sanders<CR>

You may also use full path names with the cd command. For example, to
move to the letters directory from the draft directory, specify
/userl/starship/letters on the command line, as follows:

cd /userl/starship /letters<CR>

Also, because letters and draft are both children of starship, you can use
the relative path name .. /letters with the cd command. The .. notation
moves you to the directory starship, and the rest of the path name moves you
to letters.

Figure 3-11 summarizes the syntax and capabilities of the cd command.

USING THE FILE SYSTEM 3-27

Organizing a Directory

Command Recap

cd - change your working directory

command options arguments

cd none directoryname

Description: cd changes your position in the file system from the
current directory to the directory specified. If no
directory name is given as an argument, the cd com-
mand places you in your home directory.

Remarks: When the shell places you in the directory specified,
the prompt ($ by default) is returned to you. To
access a directory that is not in your working direc-
tory, you must use the full or relative path name in
place of a simple directory name.

Figure 3-11: Summary of the cd Command

Removing Directories: the rmdir Command

If you no longer need a directory, you can remove it with the command
rmdir (short for remove a directory). The standard syntax for this command
is:

rmdir directoryname(s)<CR>

You can specify more than one directory name on the command line.

The rmdir command will not remove a directory if you are not the owner
of it or if the directory is not empty. If you want to remove a file in another
user's directory, the owner must give you write permission for the parent
directory of the file you want to remove.

3-28 USER'S GUIDE

Organizing a Directory

If you try to remove a directory that still contains subdirectories and files
(that is, is not empty), the rmdir command prints the message directoryname
not empty. You must remove all subdirectories and files; only then will the
command succeed.

For example, say you have a directory called memos that contains one
subdirectory, tech, and two files, june.30 and july.31. (Create this directory in
your home directory now so you can see how the rmdir command works.) If
you try to remove the directory memos (by issuing the rmdir command from
your home directory), the command responds as follows:

$ rmdir memos<CR>
rnrlir: mem:>s not empty
$

To remove the directory memos, you must first remove its contents: the sub
directory tech, and the files june.30 and july.31. You can remove the tech
subdirectory by executing the rmdir command. For instructions on removing
files, see "Accessing and Manipulating Files" later in this chapter.

Once you have removed the contents of the memos directory, memos
itself can be removed. First, however, you must move to its parent directory
(your home directory). The rmdir command will not work if you are still in
the directory you want to remove. From your home directory, type:

rmdir memos<CR>

If memos is empty, the command will remove it and return a prompt.

Figure 3-12 summarizes the syntax and capabilities of the rmdir com
mand.

USING THE FILE SYSTEM 3-29

Organizing a Directory

Command Recap

rmdir - remove a directory

command options arguments

rmdir none directoryname(s)

Description: rmdir removes specified directories if they do not
contain files and/or subdirectories.

Remarks: If the directory is empty, it is removed and the
system returns a prompt. If the directory contains
files or subdirectories, the command returns the
message, rnrlir: directoryname not empty.

Figure 3-12: Summary of the rmdir Command

3-30 USER'S GUIDE

Accessing and Manipulating Files

This section introduces several UNIX system commands that access and
manipulate files in the file system structure. Information in this section is
organized into two parts; basic and advanced. The part devoted to basic com
mands is fundamental to using the file system; the advanced commands offer
more sophisticated information processing techniques for working with files.

Basic Commands

This section discusses UNIX system commands that are necessary for
accessing and using the files in the directory structure. Figure 3-13 lists these
commands.

USING THE FILE SYSTEM 3-31

Accessing and Manipulating Files

Command Function

cat prints the contents of a specified file on
a terminal

pg prints the contents of a specified file on
a terminal in chunks or pages

pr prints a partially formatted version of a
specified file on the terminal

Ip requests a paper copy of a file from a
line printer

cp makes a duplicate copy of an existing
file

mv moves and renames a file

rm removes a file

wc reports the number of lines, words, and
characters in a file

chmod changes permission modes for a file (or
a directory)

Figure 3-13: Basic Commands for Using Files

3-32 USER'S GUIDE

Accessing and Manipulating Files

Each command is discussed in detail and summarized in a table that you
can easily reference later. These tables will allow you to review the syntax
and capabilities of these commands at a glance.

Displaying a File's Contents: the cat, pg, and pr Commands

The UNIX system provides three commands for displaying and printing
the contents of a file or files: cat, pg, and pro The cat command (short for
concatenate) outputs the contents of the file(s) specified. This output is
displayed on your terminal screen unless you tell cat to direct it to another file
or a new command.

The pg command is particularly useful when you want to read the con
tents of a long file because it displays the text of a file in pages a screenful at
a time. The pr command formats specified files and displays them on your
terminal or, if you so request, directs the formatted output to a printer (see the
lp command in this chapter).

The following sections describe how to use the cat, pg, and pr commands.

Concatenate and Print Contents of a File: the cat Command

The cat command displays the contents of a file or files. For example, say
you are located in the directory letters (in the sample file system) and you
want to display the contents of the file johnson. Type the command line
shown on the screen and you will receive the following output:

USING THE FILE SYSTEM 3-33

Accessing and Manipulating Files

$ cat johnson<CR>
March 5, 1986

Mr. Ron Jolmson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Jolmson:

I enjoyed speaking with you this rooming
about your ccmpany's plans to autaIate
your business.
Enclosed please find
the naterial you requested
about AB&C' s line of canputers
and office autanation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

Jolm Howe

$

To display the contents of two (or more) files, simply type the names of
the files you want to see on the command line. For example, to display the
contents of the files johnson and sanders, type:

$ cat johnson sanders<CR>

The cat command reads johnson and sanders and displays their contents in
that order on your terminal.

3-34 USER'S GUIDE

$ cat johnson sanders<CR>
March 5, 1986

Mr. Ran Johnson

Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this norning

Yours truly,

Jom How'e

March 5, 1986

Mrs. D.L. Sanders
Sanders Research, Inc.

43 Nassau Street
Princeton, N.J.

Dear Mrs. Sanders:

Accessing and Manipulating Files

My colleagues and I have been following, with great interest,

Sincerely,

Jom How'e
$

USING THE FILE SYSTEM 3-35

Accessing and Manipulating Files

To direct the output of the cat command to another file or to a new com
mand, see the sections in Chapter 7 that discuss input and output redirection.

*

Figure 3-14 summarizes the syntax and capabilities of the cat command.

Command Recap

cat - concatenate and print a file's contents

command options arguments

cat available* filename(s)

Description: The cat command reads the name of each file speci-
fied on the command line and displays its contents.

Remarks: If a specified file exists and is readable, its contents
are displayed on the terminal screen; otherwise, the
message cat: cannot open filename appears on the
screen.

To display the contents of a directory, use the Is
command.

See the cat(l) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-14: Summary of the cat Command

Paging Through the Contents of a File: the pg Command

The command pg (short for page) allows you to examine the contents of
a file or files, page by page, on a terminal. The pg command displays the text
of a file in pages (chunks) followed by a colon prompt (:), a signal that the
program is waiting for your instructions. Possible instructions you can then
issue include requests for the command to continue displaying the file's con
tents a page at a time, and a request that the command search through the
file(s) to locate a specific character pattern. Figure 3-15 summarizes some of
the available instructions.

3-36 USER'S GUIDE

*

t

Command*

h

q or Q

<CR>

I

d or Ad

. or Al

f

n

p

$

jpattern

?pattern

Accessi'ng and Manipulatin.g Files

Function

help; display list of available pgt commands

quit pg perusal mode

display next page of text

display next line of text

display additional half page of text

redisplay current page of text

skip next page of text and display following one

begin displaying next file you specified
on command line

display previous file specified on command line

display last page of text in file currently displayed

search forward in file for specified character pat
tern

search backward in file for specified character pat
tern

Most commands can be typed with a number preceding them. For example,
+1 (display next page), -1 (display previous page), or 1 (display first page of
text).

See the User's Reference Manual for a detailed explanation of all available pg
commands.

Figure 3-15: Summary of Commands to Use with pg

The pg command is useful when you want to read a long file or a series
of files because the program pauses after displaying each page, allowing time
to examine it. The size of the page displayed depends on the terminal. For
example, on a terminal capable of displaying twenty-four lines, one page is
defined as twenty-three lines of text and a line containing a colon. However,

USING THE FILE SYSTEM 3-37

Accessing and Manipulating Files

if a file is less than twenty-three lines long, its page size will be the number
of lines in the file plus one (for the colon).

To peruse the contents of a file with pg, use the following command line
format:

pg filename(s)<CR>

For example, to display the contents of the file outline in the sample file
system, type:

pg outline<CR>

The first page of the file will appear on the screen. Because the file has more '
lines in it than can be displayed on one page, a colon appears at the bottom of
the screen. This is a reminder to you that there is more of the file to be seen.
When you are ready to read more, press the RETURN key and pg will print
the next page of the file.

The following screen summarizes our discussion of the pg command this
far.

$ pg outline<CR>
Mter you analyze the subject for your
report, you 11IIlSt consider organizing and

arranging the rraterial you want to use in
writing it.

An outline is an effective rnetbod of
organizing the rraterial. The outline
is a type of blueprint or skeleton,
a framework for you the builder-wri ter
of the report; in a sense it is a recipe
:<CR>

3-38 USER'S GUIDE

Accessing and Manipulating Files

After you press the RETURN key, pg will resume printing the file's contents
on the screen.

that contains the names of the
ingredients and the order in which

to use them.

Your outline need not be elaborate or
overly detailed; it is s:imply a guide you

nay consult as you write, to be varied,
if need be, when additional important
ideas are suggested in the actual writing.
(OOF) :

Notice the line at the bottom of the screen containing the string (IDF):.

This expression (IDF) means you have reached the end of the file. The colon
prompt is a cue for you to issue another command.

When you have finished examining the file, press the RETURN key; a
prompt will appear on your terminal. (Typing q or Q and pressing the
RETURN key also gives you a prompt.) Or you can use one of the other
available commands, depending on your needs. In addition, there are a
number of options that can be specified on the pg command line [see the
pg(l) page in the User's Reference Manual].

Proper execution of the pg command depends on specifying the type of
terminal you are using. This is because the pg program was designed to be
flexible enough to run on many different terminals; how it is executed differs
from terminal to terminal. By specifying one type, you are telling this com
mand:

• how many lines to print

USING THE FILE SYSTEM 3-39

Accessing and Manipulating Files

• how many columns to print

• how to clear the screen

• how to highlight prompt signs or other words

• how to erase the current line

To specify a terminal type, assign the code for your terminal to the TERM
variable in your .profile file. (For more information about TERM and .profile,
see Chapter 7; for instructions on setting the TERM variable, see Appendix F.)

Figure 3-16 summarizes the syntax and capabilities of the pg command.

3-40 USER'S GUIDE

*

Accessing and Manipulating Files

Command Recap

pg - display a file's contents in chunks or pages

command

pg

Description:

Remarks:

options arguments

available* fi1ename(s)

The pg command displays the contents of the
specified file(s) in pages.

After displaying a page of text, the pg com
mand awaits instructions from you to do one of
the following: continue to display text, search
for a pattern of characters, or exit the pg
perusal mode. In addition, a number of options
are available. For example, you can display a
section of a file beginning at a specific line or at
a line containing a certain sequence or pattern.
You can also opt to go back and review text
that has already been displayed.

See the pg(l) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-16: Summary of the pg Command

Print Partially Formatted Contents of a File: the pr Command

The pr command is used to prepare files for printing. It supplies titles
and headings, paginates, and prints a file, in any of various page lengths and
widths, on your terminal screen.

You have the option of requesting that the command print its output on
another device, such as a line printer (read the discussion of the lp command
in this section). You can also direct the output of pr to a different file (see the
sections on input and output redirection in Chapter 7).

USING THE FILE SYSTEM 3-41

Accessing and Manipulating Files

If you choose not to specify any of the available options, the pr command
produces output in a single column that contains 66 lines per page and is pre
ceded by a short heading. The heading consists of 5 lines: 2 blank lines; a
line containing the date, time, file name, and page number; and 2 more blank
lines. The formatted file is followed by 5 blank lines. (Complete sets of text
formatting tools are available on UNIX systems equipped with the
Documenter's Workbench Software. Check with your system administrator to
see if this software is available to you.)

The pr command is often used together with the lp command to provide a
paper copy of text as it was entered into a file. (See the section on the lp
command for details.) However, you can also use the pr command to format
and print the contents of a file on your terminal. For example, to review the
contents of the file johnson in the sample file system, type:

pr johnson<CR>

The following screen gives an example of output from this command.

3-42 USER'S GUIDE

$ pr johnson <CR>

Mar 5 15:43 1986 johnson Page 1

March 5, 1986

Mr. Ran Jolmson

layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this m:::)]:ning

about your canpany' s plans to autanate
your business.
Enclosed please find
the material you requested
about AB&C' s line of canputers
and office autanation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

Jom Howe

$

Accessing and Manipulating Files

The ellipses after the last line in the file represent the remaining lines (all
blank in this case) that pr formatted into the output (so that each page con
tains a total of 66 lines). If you are working on a video display terminal,
which allows you to view 24 lines at a time, the entire 66 lines of the format
ted file will be printed rapidly without pause. This means that the first
42 lines will roll off the top of your screen, making it impossible for you to

USING THE FILE SYSTEM 3-43

Aceessi.ngandManipulatingFiJes

read them unless you have the ability to roll hack a screen or two. However,
if the file you are examining is particularly long, even this ability may not be
sufficient to .allow you to read the file.

In such casesJ type <AS> (control-s) to interrupt the flow of printing on
your screen. When you are ready tocontinuej' type <A q> (control-q) to
resume printing.

Figure .3-17 summarizes the syntax and capabilities of the pr command.

3-44 USER'S GUIDE

*

command
pr

Description:

Remarks:

Accessing and Manipulating Files

Command Recap

pr - print formatted contents of a file

options arguments
available* filename(s)

The pr command produces a formatted copy of
a file(s) on your terminal screen unless you
specify otherwise. It prints the text of the file(s)
on sixty-six line pages, and places five blank
lines at the bottom of each page and a five-line
heading at the top of each page. The heading
includes: two blank lines; a line containing the
date, time, file name, and page number; and
two additional blank lines.

If a specified file exists, its contents are format
ted and displaye; if not, the message pr: can It
open filename is printed.

The pr command is often used with the lp
command to produce a paper copy of a file. It
can also be used to review a file on a video
display terminal. To stop and restart the print
ing of a file on a terminal, type < ~ s> and
<~ q>, respectively.

See the pr(l) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-17: Summary of the pr Command

Requesting a Paper Copy of a File: the lp Command

Some terminals have built-in printers that allow you to get paper copies of
files. If you have such a terminal, you can get a paper copy of your file sim
ply by turning on the printer and executing the cat or pr command. How
ever, if you are using a video display terminal, you must send a request for a

USING THE FILE SYSTEM 3-45

Accessing and Manipulating Files

paper copy of a file to a printer (see Figure 3-18). The command lp (short for
line printer) allows you to do this.

Figure 3-18: Examples of Teletype Model 40 Line Printers

To execute lp, follow this format:

lp filename<CR>

With Tractor
Feed

With High-Speed
Tractor Feed

For example, to print the file johnson on a line printer, type the following
command line:

lp johnson<CR>

The system responds with the name (or type) of the printer on which the file
will be printed, and an identification (ID) number for your request.

3-46 USER'S GUIDE

$ lp johnson<CR>
request id is laser-688S (1 file)
$

Accessing and Manipulating Files

The system response shows that your job is to be printed on a laser
printer (this system's default type of printer), has a request ID number of
6885, and includes one file.

The -ddest (short for destination) option on the command line causes your
file to be printed on another available device that you specify in the dest argu
ment. The -m option causes mail to be sent to you stating the job has been
completed.

To cancel a request to a printer, type the command cancel and specify the
request ID number. For example, to cancel your request for a printing of the
file letters (request ID laser-6885), type:

cancel laser-688S<CR>

To check the status of a line printer job that it is in progress, or to get its
request ID number, execute the lpstat command. This command also pro
vides a complete listing of every printer available on your system. Which
printers are available to you depends on your UNIX system facility. Ask your
system administrator for the names of available line printers, or type the fol
lowing command line:

lpstat -v<CR>

Figure 3-19 summarizes the syntax and capabilities of the lp command.

USING THE FILE SYSTEM 3-47

Accessing and Manipulating Files

*

Command Recap

lp - request paper copy of file from a line printer

command
lp

Description:

Options:

Remarks:

options ar~uments

-d, -m, and others* fjle(s)
The lp command requests that specified files be
printed by a line printer, thus providing paper
copies of the contents.

-ddest Allows you to choose dest as the
printer or type of printer to produce
the paper copy. If you do not use this
option, the lp program specifies the
printer for you.

-m Sends a message to you via mail after
the printing is complete.

You can cancel a request to the line printer by
typing cancel and the request ID furnished to
you by the system when the request was ack
nowledged.

Check with your system administrator for infor
mation on additional and/or different com
mands for printers that may be available at
your location.

See the Ip(l) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-19: Summary of the lp Command

3-48 USER'S GUIDE

Accessing and Manipulating Files

Making a Duplicate Copy of a File: the cp Command

When using the UNIX system, you may want to make a copy of a file.
For example, you might want to revise a file while leaving the original version
intact. The command cp (short for copy) copies the complete contents of one
file into another. The cp command also allows you to copy one or more files
from one directory into another while leaving the original file or files in place.

To copy the file named outline to a file named new. outline in the sample
directory, simply type cp outline new.outline and press the RETURN key.
The system returns the prompt when the copy is made. To verify the
existence of the new file, you can type Is and press the RETURN key. This
command lists the names of all files and directories in the current directory, in
this case draft. The following screen summarizes these activities.

$ cp outline new.outline<CR>
$ ls<CR>
new. outline
outline
table
$

The UNIX system does not allow you to have two files with the same
name in a directory. In this case, because there was no file called
new.outline when the cp command was issued, the system created a new file
with that name. However, if a file called new.outline had already existed, it
would have been replaced by a copy of the file outline; the previous version
of new.outline would have been deleted.

If you had tried to copy the file outline to another file named outline in
the same directory, the system would have told you the file names were
identical and returned the prompt to you. If you had then listed the contents
of the directory to determine exactly how many copies of outline existed, you
would have received the following output on your screen:

USING THE FILE SYSTEM 3-49

Accessing and Manipulating Files

$ cp outline outline<CR>
cp: outline and outline are identical
$ Is<CR>
outline
table
$

The UNIX system does allow you to have two files with the same name as
long as they are in different directories. For example, the system would let
you copy the file outline from the draft directory to another file named out
line in the letters directory. If you were in the draft directory, you could use
anyone of four command lines. In the first two command lines, you specify
the name of the new file you are creating by making a copy.

• cp outline /userl/starship/letters/outline<CR> (full path name
specified)

• cp outline .. /letters/outline<CR> (relative path name specified)

However, the cp command does not require that you specify the name of
the new file. If you do not include a name for it on the command line, cp
gives your new file the same name as the original one, by default. Therefore
you could also use either of these command lines:

• cp outline /userl/starship /letters<CR> (full path name specified)

• cp outline .. /letters<CR> (relative path name specified)

In any of these four cases, cp will make a copy of the outline file in the
letters directory and call it outline, too.

Of course, if you want to give your new file a different name, you must
specify it. For example, to copy the file outline in the draft directory to a file
named outline.vers2 in the letters directory, you can use either of the follow
ing command lines:

3-50 USER'S GUIDE

Accessing and Manipulating Files

• cp outline /userl/starship/letters/outline.vers2<CR> (full path
name)

• cp outline .. /letters/outline.vers2<CR> (relative path name)

When assigning new names, keep in mind the conventions for naming direc
tories and files described in "Naming Directories and Files" in this chapter.

Figure 3-20 summarizes the syntax and capabilities of the cp command.

Command Recap

cp - make a copy of a file

command options arguments

filel file2
cp none filers) directory

Description: cp allows you to make a copy of filel and call it
file2 leaving filel intact or to copy one or more
files into a different directory.

Remarks: When you are copying filel to file2 and a file
called file2 already exists, the cp command
overwrites the first version of file2 with a copy
of filel and calls it file2. The first version of
file2 is deleted.

You cannot copy directories with the cp com-
mand.

Figure 3-20: Summary of the cp Command

USING THE FILE SYSTEM 3-51

Accessing and Manipulating Files

Moving and Renaming a File: the mv Command

The command mv (short for move) allows you to rename a file in the
same directory or to move a file from one directory to another. If you move a
file to a different directory, the file can be renamed or it can retain its original
name.

To rename a file within one directory, follow this format:

mv file1 file2<CR>

The mv command changes a file's name from file1 to file2 and deletes
file1. Remember that the names file1 and file2 can be any valid names,
including path names.

For example, if you are in the directory draft in the sample file system
and you would like to rename the file table to new.table, simply type
mv table new.table and press the RETURN key. If the command executes
successfully, you will receive a prompt. To verify that the file new.table
exists, you can list the contents of the directory by typing Is and pressing the
RETURN key. The screen shows your input and the system's output as fol
lows:

$ mv table new.table<CR>
$ Is<CR>
new. table
outline
$

You can also move a file from one directory to another, keeping the same
name or changing it to a different one. To move the file without changing its
name, use the following command line:

mv file(s) directory<CR>

The file and directory names can be any valid names, including path names.

3-52 USER'S GUIDE

Accessing and Manipulating Files

For example, say you want to move the file table from the current direc
tory named draft (whose full path name is luserl/starship/draft) to a file
with the same name in the directory letters (whose relative path name from
draft is .. /letters and whose full path name is /userl/starship/letters), you
can use anyone of several command lines, including the following:

mv table /userl/starship/letters<CR>

mv table /userl I starship /letters Itable<CR>

mv table .. /letters<CR>

mv table .. /letters/table<CR>

mv I used / starship I draft /table lused / starship /letters /tab le<CR>

Now suppose you want to rename the file table as table2 when moving it
to the directory letters. Use any of these command lines:

mv table /userl/starship/letters/table2<CR>

mv table .. /letters/table2<CR>

mv luserl/starship/draft/table2 luserl/starship/letters/table2<CR>

You can verify that the command worked by using the Is command to list the
contents of the directory.

Figure 3-21 summarizes the syntax and capabilities of the mv command.

USING THE FILE SYSTEM 3-53

Accessing and Manipulating Files

Command Recap

mv - move or rename files

command options arguments

filel file2
mv none file(s) directory

Description: mv allows you to change the name of a file or
to move a file(s) into another directory.

Remarks: When you are moving filel to file2, if a file
called file2 already exists, the mv command
overwrites the first version of file2 with filel
and renames it file2. The first version of file2 is
deleted. J

Figure 3-21: Summary of the mv Command

Removing a File: the rm Command

When you no longer need a file, you can remove it from your directory by
executing the command rm (short for remove). The basic format for this com
mand is:

rm file(s)<CR>

You can remove more than one file at a time by specifying those files you
want to delete on the command line with a space separating each file name:

rm filel file2 file3<CR>

The system does not save a copy of a file it removes; once you have executed
this command, your file is removed permanently.

3-54 USER'S GUIDE

Accessing and Manipulating Files

After you have issued the rm command, you can verify its successful exe
cution by running the Is command. Since Is lists the files in your directory,
you'll immediately be able to see whether or not rm has executed successfully.

For example, say you have a directory that contains two files, outline and
table. You can remove both files by issuing the rm command once. If rm is
executed successfully, your directory will be empty. Verify this by running
the Is command.

$ rm outline table <CR>
$ Is
$

The prompt shows that outline and table were removed.

*

Figure 3-22 summarizes the syntax and capabilities of the rm command.

Command Recap

rm - remove a file

command options arguments

rm available * file(s)

Description: rm allows you to remove one or more files.

Remarks: Files specified as arguments to the rm com-
mand are removed permanently.

See the rm(l) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-22: Summary of the rm Command

USING THE FILE SYSTEM 3-55

Accessing and Manipulating Files

Counting Lines, Words, and Characters in a File: the we Command

The command we (short for word count) reports the number of lines,
words, and characters there are in the file(s) named on the command line. If
you name more than one file, the we program counts the number of lines,
words, and characters in each specified file and then totals the counts. In
addition, you can direct the we program to give you only a line, a word, or a
character count by using the -I, -w, or -e options, respectively.

To determine the number of lines, words, and characters in a file, use the
following format on the command line:

we filel <CR>

The system responds with a line in the following format:

w c file 1

where

• I represents the number of lines in filel

• w represents the number of words in filel

• c represents the number of characters in filel

For example, to count the lines, words, and characters in the file johnson
(located in the current directory, letters), type the following command line:

$ we johnson<CR>
24 66 406 johnson
$

The system response means that the file johnson has 24 lines, 66 words, and
406 characters.

To count the lines, words, and characters in more than one file, use this
format:

we filel file2<CR>

3-56 USER'S GUIDE

Accessing and Manipulating Files

The system responds in the following format:

w
w
w

c
c
c

file 1
file2
total

Line, word, and character counts for filel and file2 are displayed on separate
lines and the combined counts appear on the last line beside the word total.

For example, ask the we program to count the lines, words, and characters
in the files johnson and sanders in the current directory.

$ we johnson sanders<CR>

$

24 66 406 johnson

28
52

92
158

559 sanders

965 total

The first line reports that the johnson file has 24 lines, 66 words, and
406 characters. The second line reports 28 lines, 92 words, and 559 characters
in the sanders file. The last line shows that these two files together have a
total of 52 lines, 158 words, and 965 characters.

To get only a line, a word, or a character count, select the appropriate
command line format from the following lines:

we
we
we

-1 filel<CR>
-w filel<CR>
-e filel <CR>

(line count)
(word count)
(character count)

For example, if you use the -1 option, the system reports only the number
of lines in sanders.

USING THE FILE SYSTEM 3-57

Accessing and Manipulating Files

$ wc -1 sanders<CR>
28 sanders

$

If the -war -e option had been specified instead, the command would
have reported the number of words or characters, respectively, in the file.

Figure 3-23 summarizes the syntax and capabilities of the we command.

Command Reeap

we - count lines, words, and characters in a file

command options arguments

we -I, -w, -c file(s)

Description: wc counts lines, words, and characters in the speci-
fied file(s), keeping a total count of all tallies when
more than one file is specified.

Options -1 counts the number of lines in the specified
file(s)

-w counts the number of words in the specified
file(s)

-e counts the number of characters in the
specified file (s)

Remarks: When a file name is specified in the command line,
it is printed with the count(s) requested.

Figure 3-23: Summary of the we Command

3-58 USER'S GUIDE

Accessing and Manipulating Files

Protecting Your Files: the chmod Command

The command chmod (short for change mode) allows you to decide who
can read, write, and use your files and who cannot. Because the UNIX operat
ing system is a multiuser system, you usually do not work alone in the file
system. System users can follow path names to various directories and read
and use files belonging to one another, as long as they have permission to do
so.

If you own a file, you can decide who has the right to read it, write in it
(make changes to it), or, if it is a program, to execute it. You can also restrict
permissions for directories with the chmod command. When you grant exe
cute permission for a directory, you allow the specified users to cd to it and
list its contents with the Is command.

To assign these types of permissions, use the following three symbols:

r allows system users to read a file or to copy its contents

wallows system users to write changes into a file (or a copy of it)

x allows system users to run an executable file

To specify the users to whom you are granting (or denying) these types of
permission, use these three symbols:

u you, the owner of your files and directories (u is short for user)

g members of the group to which you belong (the group could con
sist of team members working on a project, members of a depart
ment, or a group arbitrarily designated by the person who set up
your UNIX system account)

o all other system users

When you create a file or a directory, the system automatically grants or
denies permission to you, members of your group, and other system users.
You can alter this automatic action by modifying your environment (see
Chapter 7 for details). Moreover, regardless of how the permissions are
granted when a file is created, as the owner of the file or directory you always
have the option of changing them. For example, you may want to keep cer
tain files private and reserve them for your exclusive use. You may want to
grant permission to read and write changes into a file to members of your

USING THE FILE SYSTEM 3-59

Accessing and Manipulating Files

group and all other system users as well. Or you may share a program with
members of your group by granting them permission to execute it.

How to Determine Existing Permissions

You can determine what permissions are currently in effect on a file or a
directory by using the command that produces a long listing of a directory's
contents:. Is -1. For example, typing Is -I and pressing the RETURN key
while in the directory named starship Ibin in the sample file system produces
the following output:

$ Is -1<CR>
total 35
-:rwx:r-xr-x 1 starship project 9346 Nov 1 08:06 display
-rw--r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
$

Permissions for the display and list files and the tools directory are
shown on the left of the screen under the line total 35, and appear in this
format:

-rwxr-xr-x (for the display file)
-:r:w-r--r-- (for the list file)
drwx--x--- (for the tools directory)

After the initial character, which describes the file type [for example,
a - (dash) symbolizes a regular file and a d a directory1, the other nine char
acters that set the permissions comprise three sets of three characters. The
first set refers to permissions for the owner, the second set to permissions for
group members, and the last set to permissions for all other system users.
Within each set of characters, the r, w, and x show the permissions currently
granted to each category. If a dash appears instead of an r, W, or x, permis
sion to read, write, or execute is denied.

3-60 USER'S GUIDE

Accessing and Manipulating Files

The following diagram summarizes this breakdown for the file named
display.

user group others

\1/
~
rwxr-xr-x

II ~ Permission to write to
~ the file denied to

read group and other

write
execute

As you can see, the owner has r, w, and x permissions, and members of the
group and other system users have r and x permissions.

There are two exceptions to this notation system. Occasionally the letter
s or the letter 1 may appear in the permissions line, instead of an r, w, or x.
The letter s (short for set user ID or set group ID) represents a special type of
permission to execute a file. It appears where you normally see an x (or -)
for the user or group (the first and second sets of permissions). From a user's
point of view it is equivalent to an x in the same position; it implies that exe
cute permission exists. It is significant only for programmers and system
administrators. (See the System Administrator's Guide for details about setting
the user or group ID.)

The letter 1 is the symbol for lock enabling. It does not mean that the file
has been locked. It simply means that the function of locking is enabled, or
possible, for this file. The file mayor may not be locked; that cannot be
determined by the presence or absence of the letter 1.

USING THE FILE SYSTEM 3-61

Accessing and Manipulating Files

How to Change Existing Permissions

After you have determined what permissions are in effect, you can change
them by executing the chmod command in the following format:

chmod who+permission file(s)<CR>

or

chmod who=permission fi1e(s)<CR>

The following list defines each component of this command line.

chmod

who

name of the program

one of three user groups (u, g, or 0)
u = user
g = group
o = others

+ or - instruction that grants (+) or denies (-) permission

permission any combination of three authorizations (r, w, and x)
r = read

fi1e(s)

w = write
x = execute

file (or directory) name(s) listed; assumed to be
branches from your current directory, unless you use
full path names.

The chmod command will not work if you type a space(s) between who, the
instruction that gives (+) or denies (-) permission, and the permission.

The following examples show a few possible ways to use the chmod com
mand. As the owner of display, you can read, write, and run this executable
file. You can protect the file against being accidentally changed by denying
yourself write (w) permission. To do this, type the command line:

chmod u-w display<CR>

3-62 USER'S GUIDE

Accessing and Manipulating Files

After receiving the prompt, type Is -1 and press the RETURN key to verify
that this permission has been changed, as shown in the following screen.

$ chmod u-w display<CR>
$ Is -I<CR>
total 35
-r-:xr-:xr-x 1 starship
rw-r--r-- 1 starship
drwx--x--x 2 starship
$

project
project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

As you can see, you no longer have permission to write changes into the file.
You will not be able to change this file until you restore write permission for
yourself.

Now consider another example. Notice that permission to write into the
file display has been denied to members of your group and other system
users. However, they do have read permission. This means they can copy
the file into their own directories and then make changes to it. To prevent all
system users from copying this file, you can deny them read permission by
typing:

chmod go-r disp1ay<CR>

The g and 0 stand for group members and all other system users, respectively,
and the -r denies them permission to read or copy the file. Check the results
with the Is -1 command.

USING THE FILE SYSTEM 3-63

Accessing and Manipulating Files

$ chmod go-r display<CR>
$ Is -I<CR>
total 35
-rwx--x--x 1 starship
~r--r-- 1 starship
drwx--x--x 2 starship
$

project
project
project

A Note on Permissions and Directories

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

You can use the chmod command to grant or deny permission for direc
tories as well as files. Simply specify a directory name instead of a file name
on the command line.

However, consider the impact on various system users of changing per
missions for directories. For example, say you grant read permission for a
directory to yourself (u), members of your group (g), and other system users
(0). Every user who has access to the system will be able to read the names
of the files contained in that directory by running the Is -1 command. Simi
larly, granting write permission allows the designated users to create new files
in the directory and remove existing ones. Granting permission to execute the
directory allows designated users to move to that directory (and make it their
current directory) by using the cd command.

An Alternative Method

There are two methods by which the chmod command can be executed.
The method described above, in which symbols such as r, W, and x are used
to specify permissions, is called the symbolic method.

An alternative method is the octal method. Its format requires you to
specify permissions using three octal numbers, ranging from 0 to 7. (The octal
number system is different from the decimal system that we typically use on a
day-to-day basis.) To learn how to use the octal method, see the chmod(l)
page in the User's Reference Manual.

3-64 USER'S GUIDE

Accessing and Manipulating Files

Figure 3-24 summarizes the syntax and capabilities of the chmod com
mand.

Command Recap

chmod - change permission modes for files (and directories)

command

chmod

Description:

Remarks:

instruction arguments

who + - permission filename(s)
directoryname(s)

chmod gives (+) or removes (-) permission to
read, write, and execute files for three
categories of system users: user (you), group
(members of your group), and other (all other
users able to access the system on which you
are working).

The instruction set can be represented in either
octal or symbolic terms.

Figure 3-24: Summary of the chmod Command

Advanced Commands

Use of the commands already introduced will increase your familiarity
with the file system. As this familiarity increases, so might your need for
more sophisticated information processing techniques when working with
files. This section introduces three commands that provide just that.

USING THE FILE SYSTEM 3-65

Accessing and Manipulating Files

diff finds differences between two files

grep searches for a pattern in a file

sort sorts and merges files

For additional information about these commands refer to the User's Reference
Manual.

Identifying Differences Between Files: the diff Command

The diff command loea tes and reports all differences between two files
and tells you how to change the first file so that it is a duplicate of the second.
The basic format for the command is:

diff filel file2<CR>

If filel and file2 are identical, the system returns a prompt to you. If they are
not, the diff command instructs you on how to change the first file so it
matches the second by using ed (line editor) commands. (See Chapter 5 for
details about the line editor.) The UNIX system flags lines in filel (to be
changed) with the < (less than) symbol, and lines in file2 (the model text)
with the> (greater than) symbol.

For example, say you execute the diff command to identify the differences
between the files johnson and mcdonough. The mcdonough file contains the
same letter that is in the johnson file, with appropriate changes for a different
recipient. The diff command will identify those changes as follows:

3-66 USER'S GUIDE

3,6c3,6
< Mr. Ron Jolmsan
< Layton Printing

< 52 Hudson Street
< New York, N.Y.

> Mr. J. J. McIXmough

> Ubu Press
> 37 Chico Place
> Springfield, N.J.
9c9
< Dear Mr. Johnson:

> Dear Mr. McDonough:

The first line of output from diff is :

3,6c3,6

Accessing and Manipulating Files

This means that if you want johnson to match mcdonough, you must change
(c) lines 3 through 6 in johnson to lines 3 through 6 in mcdonough. The diff
command then displays both sets of lines.

If you make these changes (using a text editor such as ed or vi), the john
son file will be identical to the sanders file. Remember, the diff command
identifies differences between specified files. If you want to make an identical
copy of a file, use the cp command.

Figure 3-25 summarizes the syntax and capabilities of the diff command.

USING THE FILE SYSTEM 3-67

Accessing and Manipulating Files

*

Command Recap

diff - finds differences between two files

command options arguments

diff available* filel file2

Description: The diff command reports what lines are dif-
ferent in two;files and what you must do to
make the first file identical to the second.

Remarks: Instructions on how to change a file to bring it
into agreement with another file are line editor
(ed) commands: a (append), c (change), and d
(delete). Numbers given with a, c, or d show
the lines to be modified. Also used are the
symbols < (showing a line from the first file)
and> (showing a line from the second file).

See the diff(l) page in the User's Reference Manual for all availahle options and
an explanation of their capabilities.

Figure 3-25: Summary of the diff Command

Searching a File for a Pattern: the grep Command

You can instruct the UNIX system to search through a file for a specific
word, phrase, or group of characters by executing the command grep (short
for globally search for a regular expression and print). Put simply, a regular
expression is any pattern of characters (be it a word, a phrase, or an equation)
that you specify.

3-68 USER'S GUIDE

Accessing and Manipulating Files

The basic format for the command line is:

grep pattern file(s)<CR>

For example, to locate any lines that contain the word automation in the
file johnson, type:

grep automation johnson<CR>

The system responds:

$ grep automation johnson<CR>
and office automation software.
$

The output consists of all the lines in the file johnson that contain the pattern
for which you were searching (automation).

If the pattern contains multiple words or any character that conveys spe
cial meaning to the UNIX system (such as $, I, *, ?, and so on), the entire pat
tern must be enclosed in single quotes. (For an explanation of the special
meaning for these and other characters see "Metacharacters" in Chapter 7.)
For example, say you want to locate the lines containing the pattern office
autanation. Your command line and the system's response will read:

$ grep 'office automation' johnson<CR>
and office automation software.
$

But what if you cannot recall which letter contained a reference to office
automation; your letter to Mr. Johnson or the one to Mrs. Sanders? Type the
following command line to find out:

$ grep 'office automation' johnson sanders<CR>
jobnson:and office automation software.
$

The output tells you that the pattern office autamation is found once in the
johnson file.

In addition to the grep command, the UNIX system provides variations of
it called egrep and fgrep, along with several options that enhance the search
ing powers of the command. See the grep(l}, egrep(l}, and fgrep(l} pages in
the User's Reference Manual for further information about these commands.

USING THE FILE SYSTEM 3-69

Accessing and Manipulating Files

*

Figure 3-26 summarizes the syntax and capabilities of the grep command.

command

grep

Description:

Remarks:

Command Recap

grep - searches a file for a pattern

options arguments

available* pattern fi1e(s)

The grep command searches through specified
file(s) for lines containing a pattern and then
prints the lines on which it finds the pattern. If
you specify more than one file, the name of the
file in which the pattern is found is also
reported.

If the pattern you give contains multiple words
or special characters, enclose the pattern in sin
gle quotes on the command line.

See the grep(l) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-26: Summary of the grep Command

Sorting and Merging Files: the sort Command

The UNIX system provides an efficient tool called sort for sorting and
merging files. The format for the command line is:

sort fi1e(s)<CR>

This command causes lines in the specified files to be sorted and merged in
the following order.

3-70 USER'S GUIDE

Accessing and Manipulating Files

• Lines beginning with numbers are sorted by digit and listed before lines
beginning with letters.

• Lines beginning with uppercase letters are listed before lines beginning
with lowercase letters.

• Lines beginning with symbols such as *, %, or @' are sorted on the
basis of the symbol's ASCII representation.

For example, let's say you have two files, group! and group2, each con
taining a list of names. You want to sort each list alphabetically and then
interleave the two lists into one. First, display the contents of the files by exe
cuting the cat command on each.

$ cat groupl<CR>
Smith, Allyn

Jones, Barbara
Cook, Karen

r.bore, Peter
Wolf, Robert

$ cat group2<CR>
Frank, M. Jay

Nelson, James
West, Donna

Hill, Charles

M::>rgan, Kristine
$

(Instead of printing these two files individually, you could have requested
both files on the same command line. If you had typed cat groupl group2
and pressed the RETURN key, the output would have been the same.)

Now sort and merge the contents of the two files by executing the sort
command. The output of the sort program will be printed on the terminal
screen unless you specify otherwise.

USING THE FILE SYSTEM 3-71

Accessing and Manipulating Files

$ sort groupl group2<CR>
Cook, Karen

Frank, M. Jay

Hill, Charles
Jones, Barbara
fik:lore, Peter

Mo:rgan, Kristine
Nelson, James
Smith, Allyn

West, Darma

Wolf, Robert

$

In addition to combining simple lists as in the example, the sort command
can rearrange lines and parts of lines (called fields) according to a number of
other specifications you designate on the command line. The possible specifi
cations are complex and beyond the scope of this text. Refer to the User's
Reference Manual for a full description of available options.

Figure 3-27 summarizes the syntax and capabilities of the sort command.

3-72 USER'S GUIDE

*

Accessing and Manipulating Files

Command Recap

sort - sorts and merges files

command options arguments

sort available* file(s)

Description: The sort command sorts and merges lines from
a file or files you specify and displays its output
on your terminal screen.

Remarks: If no options are specified on the command
line, lines are sorted and merged in the order
defined by the ASCII representations of the
characters in the lines.

See the sort(l) page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-27: Summary of the sort Command

USING THE FILE SYSTEM 3-73

Summary

This chapter described the structure of the file system and presented ways
to use and to navigate through the file system by using UNIX system com
mands. The next chapter gives you an overview of a variety of UNIX system
capabilities: text editing, using the shell as a command language, communi
cating electronically with other system users, and programming and develop
ing software.

3-74 USER'S GUIDE

Chapter 4: Overview of the Tutorials

In troduction

Text Editing
What is a Text Editor?

How Does a Text Editor Work?

Text Editing Buffers

Modes of Operation

Line Editor

Screen Editor

The Shell
Customizing Your Computing Environment

Programming in the Shell

Communicating Electronically

Programming in the System

4-1

4-2

4-2
4-2
4-3
4-3
4-4
4-4

4-7

4-8

4-9

4-12

4-13

TABLE OF CONTENTS

Introduction

This chapter serves as a transition between the overview that comprises
the first three chapters and the tutorials in the following four chapters.
Specifically, it provides an overview of the subjects covered in these tutorials:
text editing, working in the shell, and communicating electronically. Text
editing is covered in Chapter 5, "Line Editor Tutorial," and Chapter 6,
"Screen Editor Tutorial." How to work and program in the shell is taught in
Chapter 7, "Shell Tutorial," and methods of electronic communication are
covered in Chapter 8, "Communication Tutorial."

OVERVIEW OF THE TUTORIALS 4-1

Text Editing

Using the file system is a way of life in a UNIX system environment. This
section will teach you how to create and modify files with a software tool
called a text editor. The section begins by explaining what a text editor is and
how it works. Then it introduces two types of text editors supported on the
UNIX system: the line editor, ed, and the screen editor, vi (short for visual
editor). A comparison of the two editors is also included. For detailed infor
mation about ed and vi, see Chapters 5 and 6.

What is a Text Editor?

Whenever you revise a letter, memo, or report, you must perform one or
more of the following tasks: insert new or additional material, delete
unneeded material, transpose material (sometimes called cutting and pasting),
and, finally, prepare a clean, corrected copy. Text editors perform these tasks
at your direction, making writing and revising text much easier and quicker
than if done by hand.

The UNIX system text editors, like the UNIX system shell, are interactive
programs; they accept your commands and then perform the requested func
tions. From the shell's point of view, the editors are executable programs.

A major difference between a text editor and the shell, however, is the set
of commands that each recognizes. All the commands introduced up to this
point belong to the shell's command set. A text editor has its own distinct set
of commands that allow you to create, move, add, and delete text in files, as
well as acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works, you need to understand the
environment created when you use an editing program and the modes of
operation understood by a text editor.

4-2 USER'S GUIDE

Text Editing

Text Editing Buffers

When you use a text editor to create a new file or modify an existing one,
you first ask the shell to put the editor in control of your computing session.
As soon as the editor takes over, it allocates a temporary work space called
the editing buffer; any information that you enter while editing a file is stored
in this buffer where you can modify it.

Because the buffer is a temporary work space, any text you enter and any
changes you make to it are also temporary. The buffer and its contents will
exist only as long as you are editing. If you want to save the file, you must
tell the text editor to write the contents of the buffer into a file. The file is
then stored in the computer's memory. If you do not, the buffer's contents
will disappear when you leave the editing program. To prevent this from
happening, the text editors send you a reminder to write your file if you
attempt to end an editing session without doing so.

If you have made a critical mistake or are unhappy with the edited version,
you can choose to leave the editor without writing the file. By doing so, you
leave the original file intact; the edited copy disappears.

Regardless of whether you are creating a new file or updating an existing
one, the text in the buffer is organized into lines. A line of text is simply a
series of characters that appears horizontally across the screen and is ended
when you press the RETURN key. Occasionally, files may contain a line of
text that is too long to fit on the terminal screen. Some terminals automati
cally display the continuation of the line on the next row of the screen; others
do not.

Modes of Operation

Text editors are capable of understanding two modes of operation: com
mand mode and text input mode. When you begin an editing session, you
will be placed automatically in command mode. In this mode you can move
around in a file, search for patterns in it, or change existing text. However,
you cannot create text while you are in command mode. To do this you must
be in text input mode. While you are in this mode, any characters you type
are placed in the buffer as part of your text file. When you have finished
entering text and want to run editing commands again, you must return to
command mode.

OVERVIEW OF THE TUTORIALS 4-3

Text Editing

Because a typical editing session involves moving back and forth between
these two modes, you may sometimes forget which mode you are working in.
You may try to enter text while in command mode or to enter a command
while in input mode. This is something even experienced users do from time
to time. It will not take long to recognize your mistake and determine the
solution after you complete the tutorials in Chapters 5 and 6.

Line Editor
The line editor, accessed by the ed command, is a fast, versatile program

for preparing text files. It is called a line editor because it manipulates text on
a line-by-line basis. This means you must specify, by line number, the line
containing the text you want to change. Then ed prints the line on the screen
where you can modify it.

This text editor provides commands with which you can change lines,
print lines, read and write files, and enter text. In addition, you can invoke
the line editor from a shell program; something you cannot do with the screen
editor. (See Chapter 7 for information on basic shell programming tech
niques.)

The line editor (ed) works well on video display terminals and paper
printing terminals. It will also accommodate you if you are using a slow
speed telephone line. (The visual editor, vi, can be used only on video
display terminals.) Refer to Chapter 5, "Line Editor Tutorial," for instructions
on how to use this editing tool. Also see Appendix C for a summary of line
editor commands.

Screen Editor
The screen editor, accessed by the vi command, is a display-oriented,

interactive software tool. It allows you to view the file you are editing a page
at a time. This editor works most efficiently when used on a video display
terminal operating at 1200 or higher baud.

For the most part, you modify a file (by adding, deleting, or changing text)
by positioning the cursor at the point on the screen where the modification is
to be made and then making the change. The screen editor immediately
displays the results of your editing; you can see the change you made in the
context of the surrounding text. Because of this feature, the screen editor is
considered more sophisticated than the line editor.

4-4 USER'S GUIDE

Text Editing

Furthermore, the screen editor offers a choice of commands. For example,
a number of screen editor commands allow you to move the cursor around a
file. Other commands scroll the file up or down on the screen. Still other
commands allow you to change existing text or to create new text. In addition
to its own set of commands, the screen editor can access line editor com
mands.

The trade-off for the screen editor's speed, visual appeal, efficiency, and
power is the heavy demand it places on the computer's processing time.
Every time you make a change, no matter how simple, vi must update the
screen. Refer to Chapter 6, "Screen Editor Tutorial," for instructions on how
to use this editor. Appendix D contains a summary of screen editor com
mands, and Figure 4-1 compares the features of the line editor (ed) and the
screen editor (vi).

OVERVIEW OF THE TUTORIALS 4-5

Text Editing

Feature

Recommended
terminal type

Speed

Versa tili ty

Sophistication

Power

Advantages

Line Editor (ed)

Video display or
paper-printing

Accommodates high
and low-speed data
transmission lines.

Can be specified to
run from shell
scripts as well as
used during editing
sessions.

Changes text
quickly. Uses com
paratively small
amounts of process
ing time.

Provides a full set of
editing commands.
Standard UNIX sys
tem text editor.

There are fewer
commands you must
learn to use ed.

Screen Editor (vi)

Video display

Works best via high
speed data transmission
lines (1200+ baud).

Must be used interac
tively during editing ses
sions.

Changes text easily.
However, can make
heavy demands on com
puter resources.

Provides its own editing
commands and recog
nizes line editor com
mands as well.

vi allows you to see the
effects of your editing in
the context of a page of
text, immediately.
(When you use the ed
editor, making changes
and viewing the results
are separate steps.)

Figure 4-1: Comparison of Line and Screen Editors (ed and vi)

4-6 USER'S GUIDE

The Shell

Every time you log in to the UNIX system you start communicating with
the shell, and continue to do so until you log off the system. However, while
you are using a text editor, your interaction with the shell is suspended; it
resumes as soon as you stop using the editor.

The shell is much like other programs, except that instead of performing
one job, as cat or Is does, it is central to your interactions with the UNIX sys
tem. The shell's primary function is to act as a command interpreter between
you and the computer system. As an interpreter, the shell translates your
requests into language the computer understands, calls requested programs
into memory, and executes them.

This section introduces methods of using the shell that enhance your abil
ity to use system features. In addition to using it to run a single program, you
may also use the shell to:

• interpret the name of a file or a directory you enter in an abbreviated
way using a type of shell shorthand

• redirect the flow of input and output of the programs you run

• execute multiple programs simultaneously or in a pipeline format

• tailor your computing environment to meet your individual needs

In addition to being the command language interpreter, the shell is a pro
gramming language. For detailed information on how to use the shell as a
command interpreter and a programming language, refer to Chapter 7. Com
plete information about shell programming is available in a separate docu
ment' Shell Commands and Programming.

OVERVIEW OF THE TUTORIALS 4-7

The Shell

Customizing Your Computing Environment

This section deals with another control provided by the shell: your
environment. When you log in to the UNIX system, the shell automatically
sets up a computing environment for you. The default environment set up by
the shell includes these variables:

HOME

LOGNAME

PATH

your login directory

your login name

route the shell takes to search for executable files or com
mands (typically PATH=:jbin:jusrjbin)

The PATH variable tells the shell where to look for the executable pro
gram invoked by a command. Therefore it is used every time you issue a
command. If you have executable programs in more than one directory, you
will want all of them to be searched by the shell to make sure every command
can be found.

You can use the default environment supplied by your system or you can
tailor an environment to meet your needs. If you choose to modify any part
of your environment, you can use either of two methods to do so. If you
want to change a part of your environment only for the duration of your
current computing session, specify your changes in a command line (see
Chapter 7 for details). However, if you want to use a different environment
(not the default environment) regularly, you can specify your changes in a file
that will set up the desired environment for you automatically every time you
log in. This file must be called .profile and must be located in your home
directory.

The .profile typically performs some or all of the following tasks: checks
for mail; sets data parameters, terminal settings, and tab stops; assigns a char
acter or character string as your login prompt; and assigns the erase and kill
functions to keys. You can define as few or as many tasks as you want in
your .profile. You can also change parts of it at any time. For instructions on
modifying a .profile, see "Modifying Your Login Environment" in Chapter 7.

4-8 USER'S GUIDE

The Shell

Now check to see whether or not you have a .profile. If you are not
already in your home directory, cd to it. Then examine your .profile by issu
ing this command:

cat .profile

If you have a .profile, its contents will appear on your screen. If you do not
have a .profile you can create one with a text editor, such as ed or vi. (See
"Modifying Your Login Environment" in Chapter 7 for instructions.)

Programming in the Shell

The shell is not only the command language interpreter; it is also a com
mand level programming language. This means that instead of always using
the shell strictly as a liaison between you and the computer, you can also pro
gram it to repeat sequences of instructions automatically. To do this, you
must create executable files containing lists of commands. These files are
called shell procedures or shell scripts. Once you have a shell script for a par
ticular task, you can simply request that the shell read and execute the con
tents of the script whenever you want to perform that task.

Like other programming languages, the shell provides such features as
variables, control structures, subroutines, and parameter passing. These
features enable you to create your own tools by linking together system com
mands.

For example, you can combine three UNIX system programs (the date,
who, and we commands) into a simple shell script called users that tells you
the current date and time, and how many users are working on your system.
If you use the vi editor (described in Chapter 6) to create your script, you can
follow this procedure. First, create the file users with the editor by typing

vi users<CR>

The editor will draw a blank page on your screen and wait for you to enter
text.

OVERVIEW OF THE TUTORIALS 4-9

The Shell

cursor

"users" [New file]

Enter the three UNIX system commands on one line:

date; who I we -1

Then write and quit the file. Make users executable by adding execute per
mission with the chmod command.

chmod ug+x users<CR>

Now try running your new command. The following screen shows the kind
of output you will get.

$ users<CR>
Sat Mar 1 16:40:12 EST 1986

4
$

4-10 USER'S GUIDE

The Shell

The output tells you that four users were logged in on the system when
you typed the command at 16:40 on Saturday, March I, 1986.

For step-by-step instructions on writing shell scripts and information
about more sophisticated shell programming techniques, see Chapter 7, "Shell
Tutorial. "

OVERVIEW OF THE TUTORIALS 4-11

Communicating Electronically

As a UNIX system user, you can send messages or transmit information
stored in files to other users who work on your system or another UNIX sys
tem. To do so, you must be logged in on a UNIX system that is capable of
communicating with the UNIX system to which you want to send information.
The command you use to send information depends on what you are sending.
This guide introduces you to these communication programs:

mail This command allows you to send messages or files to
other UNIX system users, using their login names as
addresses. It also allows you to receive messages sent by
other users. mail holds messages and lets the recipient
read them at his or her convenience.

mailx This command is a sophisticated, more powerful version of
mail. It offers a number of options for managing the elec
tronic mail you send and receive.

uucp This command is used to send files from one UNIX system
to another. (Its name is an acronym for UNIX system to
UNIX system copy.) You can use uucp to send a file to a
directory you specify on a remote computer. When the file
has been transferred, the owner of the directory is notified
of its arrival by mail.

uuto juupick These commands are used to send and retrieve files. You
can use the uuto command to send a file(s) to a public
directory; when it is available, the recipient is notified by
mail that the file(s) has arrived. The recipient then can use
the uupick command to copy the file(s) from the public
directory to a directory of choice.

uux This command lets you execute commands on a remote
computer. It gathers files from various computers, executes
the specified command on these files, and sends the stan
dard output to a file on the specified computer.

Chapter 8 offers tutorials on each of these commands.

4-12 USER'S GUIDE

Programming in the System

The UNIX system provides a powerful and convenient environment for
programming and software development, using the C programming language,
FORTRAN-77, BASIC, Pascal, and COBOL. As well, the UNIX system pro
vides some sophisticated tools designed to make software development easier
and to provide a systematic approach to programming.

For information on available UNIX system programming languages, see
the Product Overview or Documentation Roadmap.

For information on the general topic of programming in the UNIX system
environment, see the Programmer's Guide. Besides supplementing texts on
programming languages, the Programmer's Guide provides tutorials on the fol
lowing five tools:

sces
RJE

make

lex

yacc

Source Code Control System

Remote Job Entry (not available on all UNIX systems)

main tains programs

generates programs for simple lexical tasks

generates parser programs

OVERVIEW OF THE TUTORIALS 4-13

Chapter 5: Line Editor Tutorial (ed)

Introducing the Line Editor 5-1

Suggestions for Using this Tutorial 5-2

Getting Started 5-3

How to Enter ed 5-3

How to Create Text 5-4

How to Display Text 5-5

How to Delete a Line of Text 5-7

How to Move Up or Down in the File 5-9

How to Save the Buffer Contents in a File 5-10

How to Quit the Editor 5-11

Exercise 1 5-14

General Format of ed Commands 5-15

Line Addressing 5-16

Numerical Addresses 5-16

Symbolic Addresses 5-17

Symbolic Address of the Current Line 5-17

Symbolic Address of the Last Line 5-18

Symbolic Address of the Set of All Lines 5-19

Symbolic Address of the Current Line through the Last Line 5-19

Relative Addresses: Adding or Subtracting Lines from
the Current Line 5-20

Character String Addresses 5-22

Specifying a Range of Lines 5-25

Specifying a Global Search 5-27

TABLE OF CONTENTS

Table of Contents

Exercise 2

Displaying Text in a File
Displaying Text Alone: the p Command

Displaying Text with Line Addresses: the n Command

Creating Text
Appending Text: the a Command

Inserting Text: the i Command

Changing Text: the c Command

Exercise 3

Deleting Text
Deleting Lines: the d Command

Undoing the Previous Command: the u Command

How to Delete in Text Input Mode

Escaping the Delete Function

Substituting Text
Substituting on the Current Line

Substituting on One Line

Substituting on a Range of Lines

Global Substitution

Exercise 4

ii USER'S GUIDE

5-30

5-31

5-31

5-32

5-34

5-34

5-37

5-39

5-42

5-44

5-44

5-45

5-47

5-47

5-49

5-50

5-51

5-52

5-54

5-58

Special Characters

Exercise 5

Moving Text
Move Lines of Text

Copy Lines of Text

Joining Contiguous Lines

Write Lines of Text to a File

Problems

Read in the Contents of a File

Exercise 6

Other Useful Commands and Information
Help Commands

Display Nonprinting Characters

The Current File Name

Escape to the Shell

Recovering from System Interrupts

Conclusion

Exercise 7

Answers to Exercises
Exercise 1

Exercise 2

Exercise 3

Exercise 4

Exercise 5

Exercise 6

Exercise 7

Table of Contents

5-60

5-71

5-73

5-73
5-75
5-77
5-78
5-79
5-80

5-82

5-83

5-83
5-86
5-87
5-89
5-90
5-91

5-93

5-94
5-94

5-96
5-99

5-102
5-105
5-108
5-111

TABLE OF CONTENTS iii

Introducing the Line Editor

This chapter is a tutorial on the line editor, ed. ed is versatile and
requires little computer time to perform editing tasks. It can be used on any
type of terminal. The examples of command lines and system responses in
this chapter will apply to your terminal, whether it is a video display terminal
or a paper printing terminal. The ed commands can be typed in at your ter
minal or they can be used in a shell program (see Chapter 7, "Shell
Tutorial").

ed is a line editor; during editing sessions it is always pointing at a single
line in the file called the current line. When you access an existing file, ed
makes the last line the current line so you can start appending text easily.
Unless you specify the number of a different line or range of lines, ed will
perform each command you issue on the current line. In addition to letting
you change, delete, or add text on one or more lines, ed allows you to add
text from another file to the buffer.

During an editing session with ed, you are altering the contents of a file in
a temporary buffer, where you work until you have finished creating or
correcting your text. When you edit an existing file, a copy of that file is
placed in the buffer and your changes are made to this copy. The changes
have no effect on the original file until you instruct ed, by using the write
command, to move the contents of the buffer into the file.

After you have read through this tutorial and tried the examples and exer
cises, you will have a good working knowledge of ed. The following basics
are included:

• entering the line editor ed, creating text, writing the text to file, and
quitting ed

• addressing particular lines of the file and displaying lines of text

• deleting text

• substituting new text for old text

• using special characters as shortcuts in search and substitute patterns

• moving text around in the file, as well as other useful commands and
information

LINE EDITOR TUTORIAL (ed) 5-1

Suggestions for Using this Tutorial

The commands discussed in each section are reviewed at the end of that
section. A summary of all ed commands introduced in this chapter is found
in Appendix C, where they are listed by topic.

At the end of some sections, exercises are given so you can experiment
with the commands. The answers to all exercises are at the end of this
chapter.

The notation conventions used in this chapter are those used throughout
this Guide. They are described in the Preface.

5-2 USER'S GUIDE

Getting Started

The best way to learn ed is to log in to the UNIX system and try the
examples as you read this tutorial. Do the exercises; do not be afraid to exper
iment. As you experiment and tryout ed commands, you will learn a fast and
versatile method of text editing.

In this section you will learn the commands used to:

• enter ed

• append text

• move up or down in the file to display a line of text

• delete a line of text

• write the buffer to a file

• quit ed

How to Enter ed

To enter the line editor, type ed and a file name:

ed filename<CR>

Choose a name that reflects the contents of the file. If you are creating a
new file, the system responds with a question mark and the file name:

$ ed new-file<CR>
?new-file

If you going to edit an existing file, ed responds with the number of characters
in the file:

$ ed old-file<CR>
235

LINE EDITOR TUTORIAL (ed) 5-3

Getting Started

How to Create Text

The editor receives two types of input, editing commands and text, from
your terminal. To avoid confusing them, ed recognizes two modes of editing
work: command mode and text input mode. When you work in command
mode, any characters you type are interpreted as commands. In input mode,
any characters you type are interpreted as text to be added to a file.

Whenever you enter ed you are put into command mode. To create text
in your file, change to input mode by typing a (for append), on a line by itself,
and pressing the RETURN key:

a<CR>

Now you are in input mode; any characters you type from this point will be
added to your file as text. Be sure to type a on a line by itself; if you do not,
the editor will not execute your command.

After you have finished entering text, type a period on a line by itself.
This takes you out of the text input mode and returns you to the command
mode. Now you can give ed other commands.

The following example shows how to enter ed, create text in a new file
called try-me, and quit text input mode with a period.

$ ed try-me<CR>
? try-me

a<CR>
This is the first line of text.<CR>
This is the second line,<CR>
and this is the third line.<CR>
.<CR>

5-4 USER'S GUIDE

Getting Started

Notice that ed does not give a response to the period; it just waits for a
new command. If ed does not respond to a command, you may have forgot
ten to type a period after entering text and may still be in text input mode.
Type a period and press the RETURN key at the beginning of a line to return
to command mode. Now you can execute editing commands. For example, if
you have added some unwanted characters or lines to your text, you can
delete them once you have returned to command mode.

How to Display Text

To display a line of a file, type p (for print) on a line by itself. The p
command prints the current line, that is, the last line on which you worked.
Continue with the previous example. You have just typed a period to exit
input mode. Now type the p command to see the current line.

$ ed try-me<CR>
? try--me
a<CR>
This is the first line of text.<CR>
This is the second line,<CR>
and this is the third line.<CR>
.<CR>
p<CR>
and this is the third line.

You can print any line of text by specifying its line number (also known
as the address of the line). The address of the first line is 1; of the second, 2;
and so on. For example, to print the second line in the file try-me, type:

2p<CR>
This is the second line,

LINE EDITOR TUTORIAL (ed) 5-5

Getting Started

You can also use line addresses to print a span of lines by specifying the
addresses of the first and last lines of the section you want to see, separated
by a comma. For example, to print the first three lines of a file, type:

l,3p<CR>

You can even print the whole file this way. For example, you can display
a 20-line file by typing l,20p. If you do not know the address of the last line
in your file, you can substitute a $ sign, ed symbol for the address of the last
line. (These conventions are discussed in detail in the section "Line Address
ing. ")

l,$p<CR>
This is the first line of text.
This is a second line,
and this is the third line.

If you forget to quit text input mode with a period, you will add text that
you do not want. Try to make this mistake. Add another line of text to your
try-me file and then try the p command without quitting text input mode.
Then quit text input mode and print the entire file.

5-6 USER'S GUIDE

p<CR>
and this is the third line.

a<CR>
This is the fourth line.<CR>
p<CR>
.<CR>
1,$p<CR>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line.
p

Getting Started

What did you get? The next section will explain how to delete the unwanted
line.

How to Delete a Line of Text

To delete text, you must be in the command mode of ed. Typing d
deletes the current line. Try this command on the last example to remove the
unwanted line containing p. Display the current line (p command), delete it
(d command), and display the remaining lines in the file (p command). Your
screen should look like this:

LINE EDITOR TUTORIAL (ed) 5-7

Getting Started

p<CR>
p

d<CR>
1,$p<CR>
This is the first line of text.
This is a second line.
and this is the third line.
This is the fourth line.

ed does not send you any messages to confirm that you have deleted text.
The only way you can verify that the d command has succeeded is by printing
the contents of your file with the p command. To receive verification of your
deletion, you can put the d and p together on one command line. If you
repeat the previous example with this command, your screen should look like
this:

p<CR>
p

dp<CR>
This is the fourth line.

5-8 USER'S GUIDE

Getting Started

How to Move Up or Down in the File

To display the line below the current line, press the RETURN key while in
command mode. If there is no line below the current line, ed responds with a
? and continues to treat the last line of the file as the current line. To display
the line above the current line, press the minus key (-).

The following screen provides examples of how both of these commands
are used:

p<CR>
This is the fourth line.
-<CR>
and this is the third line.
-<CR>
This is a second line,
-<CR>
This is the first line of text.
<CR>
This is a second line,
<CR>
and this is the third line.

Notice that by typing -<CR> or <CR>, you can display a line of text without
typing the p command. These commands are also line addresses. Whenever
you type a line address and do not follow it with a command, ed assumes that
you want to see the line you have specified. Experiment with these com
mands: create some text, delete a line, and display your file.

LINE EDITOR TUTORIAL (ed) 5-9

Getting Started

How to Save the Buffer Contents in a File

As we discussed earlier, during an editing session, the system holds your
text in a temporary storage area called a buffer. When you have finished edit
ing, you can save your work by writing it from the temporary buffer to a per
manent file in the computer's memory. By writing to a file, you are simply
putting a copy of the contents of the buffer into the file. The text in the buffer
is not disturbed, and you can make further changes to it.

It is a good idea to write the buffer text into your file frequently. If an inter
rupt occurs (such as an accidental loss of power to your terminal), you may
lose the material in the buffer, but you will not lose the copy written to your
file.

To write your text to a file, enter the w command. You do not need to
specify a file name; simply type wand press the RETURN key. If you have
just created new text, ed creates a file for it with the name you specified when
you entered the editor. If you have edited an existing file, the w command
writes the contents of the buffer to that file by default.

If you prefer, you can specify a new name for your file as an argument on
the w command line. Be careful not to use the name of a file that already
exists unless you want to replace its contents with the contents of the current
buffer. ed will not warn you about an existing file; it will simply overwrite
that file with your buffer contents.

For example, if you decide you would prefer the try-me file to be called
stuff, you can rename it:

5-10 USER'S GUIDE

$ ed try-me<CR>
? try-me

a<CR>
This is the first line of text.<CR>
This is the second line,<CR>
and this is the third line.<CR>

w stuff <CR>
85

Getting Started

Notice the last line of the screen. This is the number of characters in your
text. When the editor reports the number of characters in this way, the write
command has succeeded.

How to Quit the Editor

When you have completed editing your text, write it from the buffer into a
file with the w command. Then leave the editor and return to the shell by
typing q (for quit).

w<CR>
85

q<CR>
$

The system responds with a shell prompt. At this point the editing buffer
vanishes. If you have not executed the write command, your text in the

LINE EDITOR TUTORIAL (ed) 5-11

Getting Started

buffer has also vanished. If you did not make any changes to the text during
your editing session, no harm is done. However, if you did make changes,
you could lose your work in this way. Therefore, if you type q after changing
the file without writing it, ed warns you with a ? You then have a chance to
write and quit.

q<CR>
?

w<CR>
85
q<CR>
$

If, instead of writing, you insist on typing q a second time, ed assumes
you do not want to write the buffer's contents to your file and returns you to
the shell. Your file is left unchanged and the contents of the buffer are wiped
out.

You now know the basic commands needed to create and edit a file using
ed. Figure 5-1 summarizes these commands.

5-12 USER'S GUIDE

Command

ed file

a

P

d

<CR>

+

w

q

Getting Started

Function

enter ed to edit file

append text after the current line

quit text input mode and return to ed command
mode.

print text on your terminal

delete text

display the next line in the buffer (literally, car
riage return)

display the next line in the buffer

display the previous line in the buffer

write the contents of the buffer to the file

quit ed and return to the shell

Figure 5-1: Summary of ed Editor Commands

LINE EDITOR TUTORIAL (ed) 5-13

/'

Exercise 1

Answers for all the exercises in this chapter are found at the end of the
chapter. However, they are not necessarily the only possible correct answers.
Any method that enables you to perform a task specified in an exercise is
correct, even if it does not match the answer given.

1-1. Enter ed with a file named junk. Create a line of text containing
Hello World, write it to the file and quit ed.

Now use ed to create a file called stuff. Create a line of text contain
ing two words, Goodbye world, write this text to the file, and quit ed.

1-2. Enter ed again with the file named junk. What was the editor's
response? Was the character count for it the same as the character
count reported by the w command in Exercise I-I?

Display the contents of the file. Is that your file junk?

How can you return to the shell? Try q without writing the file. Why
do you think the editor allowed you to quit without writing to the
buffer?

1-3. Enter ed with the file junk. Add a line:

Wendy's horse came through the window.

Since you did not specify a line address, where do you think the line
was added to the buffer? Display the contents of the buffer. Try quit
ting the buffer without writing to the file. Try writing the buffer to a
different file called stuff. Notice that ed does not warn you that a file
called stuff already exists. You have erased the contents of stuff and
replaced them with new text.

5-14 USER'S GUIDE

General Format of ed Commands

ed commands have a simple and regular format:

[addressl [,address2]]command[argument]<CR>

The brackets around addressl, address2, and argument show that these are
optional. The brackets are not part of the command line.

addressl,address2

command

argument

The addresses give the position of lines in the buffer.
Addressl through address2 gives you a range of lines that
will be affected by the command. If address2 is omitted,
the command will affect only the line specified by
addressl.

The command is one character and tells the editor what
task to perform.

The arguments to a command are those parts of the text
that will be modified, or a file name, or another line
address.

This format will become clearer to you when you begin to experiment
with the ed commands.

LINE EDITOR TUTORIAL (ed) 5-15

Line Addressing

A line address is a character or group of characters that identifies a line of
text. Before ed can execute commands that add, delete, move, or change text,
it must know the line address of the affected text. Type the line address
before the command:

[addressl],[address2]command<CR>

Both addressl and address2 are optional. Specify addressl alone to request
action on a single line of text; both addressl and address2 to request a span of
lines. If you do not specify any address, ed assumes that the line address is
the current line.

The most common ways to specify a line address in ed are:

• by entering line numbers (assuming that the lines of the files are con
secutively numbered from 1 to n, beginning with the first line of the
file)

• by entering special symbols for the current line, last line, or a span of
lines

• by adding or subtracting lines from the current line

• by searching for a character string or word on the desired line

You can access one line or a span of lines, or make a global search for all
lines containing a specified character string. (A character string is a set of suc
cessive characters, such as a word.)

Numerical Addresses
ed gives a numerical address to each line in the buffer. The first line of

the buffer is I, the second line is 2, and so on, for each line in the buffer.
Any line can be accessed by ed with its line address number. To see how line
numbers address a line, enter ed with the file try-me and type a number.

5-16 USER'S GUIDE

$ ed try-me<CR>
110

l<CR>
This is the first line of text.
3<CR>
and this is the third line.

Line Addressing

Remember that p is the default command for a line address specified
without a command. Because you gave a line address, ed assumes you want
that line displayed on your terminal.

Numerical line addresses frequently change in the course of an editing
session. Later in this chapter you will create lines, delete lines, or move a line
to a different position. This will change the line address numbers of some
lines. The number of a specific line is always the current position of that line
in the editing buffer. For example, if you add five lines of text between line 5
and 6, line 6 becomes line 11. If you delete line 5, line 6 becomes line 5.

Symbolic Addresses

Symbolic Address of the Current Line

The current line is the line most recently acted on by any ed command. If
you have just entered ed with an existing file, the current line is the last line
of the buffer. The symbol for the address of the current line is a period.
Therefore you can display the current line simply by typing a period C.) and
pressing the RETURN key.

Try this command in the file try-me:

LINE EDITOR TUTORIAL (ed) 5-17

Line Addressing

$ ed try-me<CR>
110

.<CR>
This is the fourth line.

The . is the address. Because a command is not specified after the period, ed
executes the default command p and displays the line found at this address.

To get the line number of the current line, type the following command:

.=<CR>

ed responds with the line number. For example, in the try-me file, the
current line is 4 .

. <CR>
This is the fourth line .

. =<CR>
4

Symbolic Address of the Last Line

The symbolic address for the last line of a file is the $ sign. To verify that
the $ sign accesses the last line, access the try-me file with ed and specify this
address on a line by itself. (Keep in mind that when you first access a file,
your current line is always the last line of the file.)

5-18 USER'S GUIDE

$ ed try-me<CR>
110

.<CR>
This is the fourth line.

$<CR>
This is the fourth line.

Line Addressing

Remember that the $ address within ed is not the same as the $ prompt from
the shell.

Symbolic Address of the Set of All Lines

When used as an address, a comma (,) refers to all the lines of a file, from
the first through the last line. It is an abbreviated form of the string men
tioned earlier that represents all lines in a file, 1,$. Try this shortcut to print
the contents of try-me:

,p<CR>
This is the first line of text.

This is the seoond line,
and this is the third line.
This is the fourth line.

Symbolic Address of the Current Line through the Last Line

The semicolon (;) represents a set of lines beginning with the current line
and ending with the last line of a file. It is equivalent to the symbolic address
.,$. Try it with the file try-me:

LINE EDITOR TUTORIAL (ed) 5-19

Line Addressing

2p<CR>
This is the second Ime,
;p<CR>
This is the second Ime,
and this is the third Ime.
This is the fourth Ime.

Relative Addresses: Adding or Subtracting Lines from the Current
Line

You may often want to address lines with respect to the current line. You
can do this by adding or subtracting a number of lines from the current line
with a plus (+) or a minus (-) sign. Addresses derived in this way are called
relative addresses. To experiment with relative line addresses, add several
more lines to your file try-me, as shown in the following screen. Also, write
the buffer contents to the file so your additions will be saved:

5-20 USER'S GUIDE

$ ed try-me<CR>
110

.<CR>
This is the fourth line.

a<CR>
five<CR>
six<CR>
seven<CR>
eight<CR>
nine<CR>
ten<CR>
.<CR>
w<CR>
140

Line Addressing

Now try adding and subtracting line numbers from the current line.

4<CR>
This is the fourth line.

+3<CR>
seven

-5<CR>
This is the second line,

What happens if you ask for a line address that is greater than the last line, or
if you try to subtract a number greater than the current line number?

LINE EDITOR TUTORIAL (ed) 5-21

Line Addressing

5<CR>
five
-6<CR>
?
.=<CR>
5

+7<CR>
?

Notice that the current line remains at line 5 of the buffer. The current line
changes only if you give ed a correct address. The? response means there is
an error. "Other Useful Commands and Information," at the end of this
chapter, explains how to get a help message that describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a par
ticular character string. To do so, specify a string, preceded by a delimiter.

Delimiters mark the boundaries of character strings; they tell ed where a
string starts and ends. The most common delimiter is / (slash), used in the
following format:

/pattern

When you specify a pattern preceded by a / (slash), ed begins at the current
line and searches forward (down through subsequent lines in the buffer) for
the next line containing the pattern. When the search reaches the last line of
the buffer, ed wraps around to the beginning of the file and continues its
search from line 1.

The following rectangle represents the editing buffer. The path of the
arrows shows the search initiated by a / :

5-22 USER'S GUIDE

Line Addressing

r---,
I I
I
I

first line I

1
I
I
I
I
I

~ current line
I

I I
I
I
I
I last line I
I I

L ___ .J

Another useful delimiter is? If you specify a pattern preceded by a ?,
(?pattern), ed begins at the current line and searches backward (up through
previous lines in the buffer) for the next line containing the pattern. If the
search reaches the first line of the file, it will wrap around and continue
searching upward from the last line of the file.

The following rectangle represents the editing buffer. The path of the
arrows shows the search initiated by a ? :

r---,
I I

I

r
I first line
I
I
I
I
I current line

t
I

I
I
I
I
I
I
I last line I
I
L ___ .J

LINE EDITOR TUTORIAL (ed) 5-23

Line Addressing

Experiment with these two methods of requesting address searches on the
file try-me. What happens if ed does not find the specified character string?

$ ed try-me<CR>
140
.<CR>
ten
?firsl<CR>
This is the first line of text.
/fourth<CR>
This is the fourth line.

/junk<CR>
?

In this example, ed found the specified strings first and fourth. Then,
because no command was given with the address, it executed the p command
by default, displaying the lines it had found. When ed cannot find a specified
string (such as junk), it responds with a ? .

You can also use the / (slash) to search for multiple occurrences of a pat
tern without typing it more than once. First, specify the pattern by typing
/pattern, as usual. After ed has printed the first occurrence, it waits for
another command. Type / and press the RETURN key; ed will continue to
search forward through the file for the last pattern specified. Try this com
mand by searching for the word line in the file try-me:

5-24 USER'S GUIDE

.<CR>
This is the first line of text.

/line<CR>
This is the second line,

/<CR>
and this is the third line.

/<CR>
This is the fourth line.

/<CR>
This is the first line of text.

Line Addressing

Notice that after ed has found all occurrences of the pattern between the
line where you requested a search and the end of the file, it wraps around to
the beginning of the file and continues searching.

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a range
of lines, such as address1 through address2, or you can specify a global search
for all lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line numbers of
the first and last lines of the range, separated by a comma. Place this address
before the command. For example, if you want to display lines 2 through 7 of
the editing buffer, give address1 as 2 and address2 as 7 in the following format:

2,7p<CR>

Try this on the file try-me:

LINE EDITOR TUTORIAL (ed) 5-25

Line Addressing

2,7p<CR>
This is the second line,
and this is the third line.
This is the fourth line.
five
six

seven

Did you try typing 2,7 without the p? What happened? If you do not add
the p command, ed prints only address2, the last line of the range of
addresses.

Relative line addresses can also be used to request a range of lines. Be
sure that addressl precedes address2 in the buffer. Relative addresses are cal
culated from the current line, as the following example shows:

4<CR>
This is the fourth line

-2,+3p<CR>
This is the second line,
and this is the third line.
This is the fourth line.
five
six
seven

5-26 USER'S GUIDE

Line Addressing

Specifying a Global Search
There are two commands that do not follow the general format of ed

commands: g and v. These are global search commands that specify
addresses with a character string (pattern). The g command searches for all
lines containing the string pattern and performs the command on those lines.
The v command searches for all lines that do not contain the pattern and per
forms the command on those lines.

The general format for these commands is:

g/pattern / command<CR>
v /pattern/ command<CR>

Try these commands by using them to search for the word line in try-me:

g/line/p<CR>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line

v /line/p<CR>
five
six
seven
eight
nine
ten

LINE EDITOR TUTORIAL (ed) 5-27

Line Addressing

Notice the function of the v command: it finds all the lines that do not
contain the word specified in the command line (line).

Once again, the default command for the lines addressed by g or v is p;
you do not need to include a p as the last delimiter on your command line.

g/line<CR>
This is the first line of text.
This is the second line,
and this is the third line.

This is the fourth line

However, if you are giving line addresses to be used by other ed commands,
you need to include beginning and ending delimiters. You can use any of the
methods discussed in this section to specify line addresses for ed commands.
Figure 5-2 summarizes the symbols and commands available for addressing
lines.

5-28 USER'S GUIDE

Address

n ...

$

+n

-n

jabc

Line Addressing

Description

the number of a line in the buffer

the current line (the line most recently acted on by an ed
command)

the command used to request the line number of the
current line

the last line of the file

the set of lines from line 1 through the last line

the set of lines from the current line through the last line

the line that is located n lines after the current line

the line that is located n lines before the current line

the command used to search forward in the buffer for the
first line that contains the pattern abc

?abc the command used to search backward in the buffer for

gjabc

vjabc

the first line that contains the pattern abc

the set of all lines that contain the pattern abc

the set of all lines that do NOT contain the pattern abc

Figure 5-2: Summary of Line Addressing

LINE EDITOR TUTORIAL (ed) 5-29

Exercise 2

2-1. Create a file called towns with the following lines:

My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York
I lost my heart in
San Francisco
I lost $$ in
Las Vegas

2-2. Display line 3.

2-3. If you specify a range of lines with the relative address -2,+3p, what
lines are displayed ?

2-4. What is the current line number? Display the current line.

2-5. What does the last line say?

2-6. What line is displayed by the following request for a search?

?town<CR>

After ed responds, type this command alone on a line:

?<CR>

What happened?

2-7. Search for all lines that contain the pattern. Then search for all lines
that do NOT contain the pattern.

5-30 USER'S GUIDE

Displaying Text in a File

ed provides two commands for displaying lines of text in the editing
buffer: p and n.

Displaying Text Alone: the p Command

You have already used the p command in several examples. You are
probably now familiar with its general format:

[addressl,address2]p<CR>

p does not take arguments. However, it can be combined with a substitution
command line. This will be discussed later in this chapter.

Experiment with the line addresses shown in Figure 5-3 on a file in your
home directory. Try the p command with each address and see if ed responds
as described in the figure.

LINE EDITOR TUTORIAL (ed) 5-31

Displaying Text in a File

Specify this Address Check for this Response

1,$p<CR> ed should display the entire file on
your terminal.

-5p<CR> ed should move backward five lines
from the current line and display the
line found there.

+2p<CR>

1,/x/p<CR>

ed should move forward two lines from
the current line and display the line
found there.

ed displays the set of lines from line
one through the first line after the
current line that contains the character
x. It is important to enclose the letter x
between slashes so that ed can distin
guish between the search pattern
address (x) and the ed command (p).

Figure 5-3: Sample Addresses for Displaying Text

Displaying Text with Line Addresses: the n
Command

The n command displays text and precedes each line with its numerical
line address. It is helpful when you are deleting, creating, or changing lines.
The general command line format for n is the same as that for p.

[addressl,address2]n<CR>

Like p, n does not take arguments, but it can be combined with the substitute
command.

5-32 USER'S GUIDE

Try running n on the try-me file:

$ ed try-me<CR>
140

1,$n<CR>
1 This is the first line of text.
2 This is the second line,
3 and this is the third line.
4 This is the fourth line.
5 five
6 six
7 seven
8 eight

9 nine

10 ten

Displaying Text in a File

Figure 5-4 summarizes the ed commands for displaying text.

Command Function

p displays specified lines of text in the editing buffer on
your terminal

n displays specified lines of text in the editing buffer with
their numerical line addresses on your terminal

Figure 5-4: Summary of Commands for Displaying Text

LINE EDITOR TUTORIAL (ed) 5-33

Creating Text

ed has three basic commands for creating new lines of text:

a append text

i insert text

c change text

Appending Text: the a Command

The append command, a, allows you to add text AFTER the current line
or a specified address in the file. You have already used this command in the
"Getting Started" section of this chapter. The general format for the append
command line is:

[address l]a <CR>

Specifying an address is optional. The default value of addressl is the current
line.

In previous exercises, you used this command with the default address.
Now try using different line numbers for addressl. In the following example,
a new file called new-file is created. In the first append command line, the
default address is the current line. In the second append command line, line 1
is specified as addressl. The lines are displayed with n so that you can see
their numerical line addresses. Remember, the append mode is ended by typ
ing a period (.) on a line by itself.

5-34 USER'S GUIDE

$ ed new-file<CR>
?new-file

a<CR>
Create some lines
of text in
this file .
. <CR>
1,$n<CR>

2

3

la<CR>

Create same lines
of text in
this file.

This will be line 2<CR>
This will be line 3<CR>
.<CR>
1,$n<CR>
1

2

3
4

5

Create same lines
This will be line 2

This will be line 3
of text in
this file.

Creating Text

Notice that after you append the two new lines, the line that was origi
nally line 2 (of text in) becomes line 4.

You can take shortcuts to places in the file where you want to append text
by combining the append command with symbolic addresses. The following
three command lines allow you to move through and add to the text quickly
in this way .

. a<CR> appends text after the current line

$a <CR> appends text after the last line of the file

Oa<CR> appends text before the first line of the file (at a symbolic
address called line 0)

LINE EDITOR TUTORIAL (ed) 5-35

Creating Text

To try using these addresses, create a one-line file called lines and type
the examples shown in the following screens. (The examples appear in
separate screens for easy reference only; it is not necessary to access the lines
file three times to try each append symbol. You can access lines once and try
all three consecutively.)

$ ed lines<CR>
?lines
a<CR>
This is the current line.<CR>
.<CR>
p<CR>
This is the current line .

. a<CR>
This line is after the current line.<CR>
.<CR>
-l,.p<CR>
This is the current line.
This line is after the current line.

$a<CR>
This is the last line now.<CR>
.<CR>
$<CR>
This is the last line now.

5-36 USER'S GUIDE

Oa<CR>
This is the first line now.<CR>
This is the second line now.<CR>
The line numbers change<CR>
as lines are added.<CR>
.<CR>
l,4n<CR>
1
2

3
4

This is the first line now.
This is the second line now.
The line numbers change
as lines are added.

Creating Text

Because the append command creates text after a specified address, the
last example refers to the line before line 1 as the line after line O. To avoid
such circuitous references, use another command provided by the editor: the
insert command, i.

Inserting Text: the i Command

The insert command (i), allows you to add text BEFORE a specified line in
the editing buffer. The general command line format for i is the same as that
for a.

[addressl]i <CR>

As with the append command, you can insert one or more lines of text. To
quit input mode, you must type a period (.) alone on a line.

Create a file called insert in which you can try the insert command (i):

LINE EDITOR TUTORIAL (ed) 5-37

Creating Text

$ ed insert<CR>
?insert
a<CR>
Line l<CR>
Line 2<CR>
Line 3<CR>
Line 4<CR>
.<CR>
w<CR>
69

Now insert one line of text above line 2 and another above line 1. Use the n
command to display all the lines in the buffer:

2i<CR>
This is the new line 2.<CR>
.<CR>
1,$n<CR>
1 Line 1
2 This is the new line 2.

3 Line 2
4 Line 3
5 Line 4
li<CR>
This is the beginning.<CR>
.<CR>
1,$n<CR>
1 In the beginning

2 Line 1
3 Now this is line 2
4 Line 2
5 Line 3
6 Line 4

5-38 USER'S GUIDE

Creating Text

Experiment with the insert command by combining it with symbolic line
addresses, as follows:

• .i<CR>

• $i<CR>

Changing Text: the c Command

The change text command (c) erases all specified lines and allows you to
create one or more lines of text in their place. Because c can erase a range of
lines, the general format for the command line includes two addresses.

[addressl,address2]c<CR>

The change command puts you in text input mode. To leave input mode,
type a period alone on a line.

Addressl is the first and address2 is the last of the range of lines to be
replaced by new text. To erase one line of text, specify only addressl. If no
address is specified, ed assumes the current line is the line to be changed.

Now create a file called change in which you can try this command.
After entering the text shown in the screen, change lines one through four by
typing 1,4c:

LINE EDITOR TUTORIAL (ed) 5-39

Creating Text

1,5n<CR>
1 line
2 line 2
3 line 3
4 line 4
5 line 5

l,4c<CR>
Change line 1 <CR>
and lines 2 through 4<CR>
.<CR>
1,$n<CR>

change line
2 and lines 2 through 4

3 line 5

Now experiment with c and try to change the current line:

.<CR>
line 5

c<CR>
This is the new line 5 .
. <CR>
.<CR>
This is the new line 5.

If you are not sure whether you have left text input mode, it is a good
idea to type another period. If the current line is displayed, you know you are
in the command mode of ed.

5-40 USER'S GUIDE

Creating Text

Figure 5-5 summarizes the ed commands for creating text.

Command Function

a append text after the specified line in the buffer

i insert text before the specified line in the buffer

c change the text on the specified line(s) to new text

quit text input mode and return to ed command mode

Figure 5-5: Summary of Commands for Creating Text

LINE EDITOR TUTORIAL (ed) 5-41

Exercise 3

3-1. Create a new file called ex3. Instead of using the append command to
create new text in the empty buffer, try the insert command. What
happens?

3-2. Enter ed with the file towns. What is the current line?

Insert above the third line:

Illinois<CR>

Insert above the current line:

or<CR>
N aperville<CR>

Insert before the last line:

hotels in<CR>

Display the text in the buffer preceded by line numbers.

3-3. In the file towns, display lines 1 through 5 and replace lines 2
through 5 with:

London<CR>

Display lines 1 through 3.

3-4. After you have completed exercise 3-3, what is the current line?

Find the line of text containing:

Toledo

5-42 USER'S GUIDE

Replace

Toledo

with

Peoria

Display the current line.

Exercise 3

3-5 With one command line search for and replace:

New York

with:

Iron City

LINE EDITOR TUTORIAL (ed) 5-43

Deleting Text

This section discusses two types of commands for deleting text in ed. One
type is to be used when you are working in command mode: d deletes a line
and u undoes the last command. The other type of command is to be used in
text input mode: <#> (the pound sign) deletes a character and <@> (the at
sign) kills a line. The delete keys that are used in input mode are the same
keys you use to delete text that you enter after a shell prompt. They are
described in detail in "Correcting Typing Errors" in Chapter 2.

Deleting Lines: the d Command
You have already deleted lines of text with the delete command (d) in the

"Getting Started" section of this chapter.

The general format for the d command line is:

[addressl,address2]d<CR>

You can delete a range of lines (addressl through address2) or you can delete
one line only (addressl). If no address is specified, ed deletes the current line.

The next example displays lines one through five and then deletes lines
two through four:

l,5n<CR>
1 1 horse
2 2 chickens
3 3 ham taoos
4 4 cans of mustard

5 5 bails of hay

2,4d<CR>
l,$n<CR>
1 1 horse
2 5 bails of hay

5-44 USER'S GUIDE

Deleting Text

How can you delete only the last line of a file? Using a symbolic line
address makes this easy:

$d<CR>

How can you delete the current line? One of the most common errors in
ed is forgetting to type a period to leave text input mode. When this happens,
unwanted text may be added to the buffer. In the next example, a line con
taining a print command (l,$p) is accidentally added to the text before the
user leaves input mode. Because this line was the last one added to the text,
it becomes the current line. The symbolic address . is used to delete it.

a<CR>
Last line of text<CR>
1,$p<CR>
.<CR>
p<CR>
1.$p
.d<CR>
p<CR>
Last line of text.

Before experimenting with the delete command, you may first want to
learn about the undo command, u.

Undoing the Previous Command: the u Command

The command u (short for undo) nullifies the last command and restores
any text changed or deleted by that command. It takes no addresses or argu
ments. The format is:

u<CR>

LINE EDITOR TUTORIAL (ed) 5-45

Deleting Text

One purpose for which the u command is useful is to restore text you
have mistakenly deleted. If you delete all the lines in a file and then type p,
ed will respond with a ? since there are no more lines in the file. Use the u
command to restore them.

l,$p<CR>
This is the first line.
This is the middle line.
This is the last line.
l,$d<CR>
p<CR>
?
u<CR>
p<CR>
This is the last line.

Now experiment with u: use it to undo the append command .

. <CR>
This is the only line of text
a<CR>
Add this line<CR>
.<CR>
l,$p<CR>
This is the only line of text
Add this line

u<CR>
l,$p<CR>
This is the only line of text

5-46 USER'S GUIDE

Deleting Text

u cannot be used to undo the write command (w) or the quit command (q).
However, u can undo an undo command (u).

How to Delete in Text Input Mode

While in text input mode, you can correct the current line of input with
the same keys you use to correct a shell command line. By default, there are
two keys available to correct text. The @ sign key kills the current line. The
sign key backs up over one character on the current line so you can retype
it, thus effectively erasing the original character. (See" Correcting Typing
Errors" in Chapter 2 for details.)

As mentioned in Chapter 2, you can reassign the line kill and character
erase functions to other keys if you prefer. (See "Modifying Your Login
Environment" in Chapter 7 for instructions.) If you have reassigned these
functions, you must use the keys you chose while working in ed; the default
keys (@ and #) will no longer work.

Escaping the Delete Function

You may want to include an @ sign or a # sign as a character of text. To
avoid having these characters interpreted as delete commands, you must pre
cede them with a \ (backslash), as shown in the following example.

a<CR>
leave San Francisco \@ 20:15 on flight \#347 <CR>
.<CR>
p<CR>
leave San Francisco @ 20: 15 on flight #347

LINE EDITOR TUTORIAL (ed) 5-47

Deleting Text

Figure 5-6 summarizes the ed commands and shell commands for deleting
text in ed.

Command Function

In command mode:

<d> delete one or more lines of text

<u> undo the previous command

<@> delete the current command line

In text input mode:

<@> delete the current line

<#> or
<BACKSPACE> delete the last character typed in

Figure 5-6: Summary of Commands for Deleting Text

5-48 USER'S GUIDE

Substituting Text

You can modify your text with a substitute command. This command
replaces the first occurrence of a string of characters with new text. The gen
eral command line format is

[addressl,address2]s J old_text Jnew_text J[command]<CR>

Each component of the command line is described below.

addressl,address2
The range of lines being addressed by s. The address can
be one line, (addressl), a range of lines (addressl through
address2), or a global search address. If no address is
given, ed makes the substitution on the current line.

s The substitute command

J old_text The argument specifying the text to be replaced is usually
delimited by slashes, but can be delimited by other char
acters such as a ? or a period. It consists of the words or
characters to be replaced. The command will replace the
first occurrence of these characters that it finds in the text.

jnew_text The argument specifying the text to replace old_text. It is
delimited by slashes or the same delimiters used to specify
the old_text. It consists of the words or characters that are
to replace the old_text.

j command Anyone of the following four commands:

LINE EDITOR TUTORIAL (ed) 5-49

Substituting Text

g

1

n

p

Change all occurrences of old_text on the specified lines.

Display the lastJine of substituted text, including non
printing characters. (See the last section of this chapter,
"Other Useful Commands and Information. ")

Display the last line of the substituted text preceded by its
numerical line address.

Display the last line of substituted text.

Substituting on the Current Line

The simplest example of the substitute command is making a change to
the current line. You do not need to give a line address for the current line.

s / old_text / new_text / <eR>

The next example contains a typing error. While the line that contains it
is still the current line, you make a substitution to correct it. The old text is
the ai of airor and the new text is er.

a<CR>
In the beginning, I made an air or .
. <CR>
.p<CR>
In the begirming, I made an airor.
s/aijer<CR>

Notice that ed gives no response to the substitute command. To verify
that the command has succeeded in this case, you either have to display the
line with p or n, or include p or n as part of the substitute command line. In
the following example, n is used to verify that the word file has been substi
tuted for the word toad.

5-50 USER'S GUIDE

.p<CR>
This is a test toad
s/toad/file/n<CR>
1 This is a test file

Substituting Text

However, ed allows you one shortcut: it prints the results of the command
automatically, if you omit the last delimiter after the new_text argument:

.p<CR>
This is a test file
s/file/frog<CR>
This is a test frog

Substituting on One Line

To substitute text on a line that is not the current line, include an address
in the command line, as follows:

[addressl]s/old_text/new_text/<CR>

LINE EDITOR TUTORIAL (ed) 5-51

Substituting Text

For example, in the following screen the command line includes an
address for the line to be changed (line 1) because the current line is line 3:

l,3p<CR>
This is a pest toad
testing testing
cane in toad
.<CR>
cane in toad
ls/pest/test<CR>
This is a test toad

As you can see, ed printed the new line automatically after the change was
made, because the last delimiter was omitted.

Substituting on a Range of Lines

You can make a substitution on a range of lines by specifying the first
address (addressl) through the last address (address2).

[addressl,address2]s fold_text fnew_text f <eR>

If ed does not find the pattern to be replaced on a line, no changes are made
to that line.

In the following example, all the lines in the file are addressed for the
substitute command. However, only the lines that contain the string es (the
old_text argument) are changed.

5-52 USER'S GUIDE

1,$p<CR>
This is a test toad

testing testing
cane in toad

testing 1, 2, 3

1,$s/es/ES/n<CR>
4 tEsting 1, 2, 3

Substituting Text

When you specify a range of lines and include p or n at the end of the substi
tute line, only the last line changed is printed.

To display all the lines in which text was changed, use the n or p com
mand with the address 1,$.

1,$n<CR>
1 This is a tESt toad

2 tEsting testing
3 cane in toad

4 tEsting 1, 2, 3

Notice that only the first occurrence of es (on line 2) has been changed.
To change every occurrence of a pattern, use the g command, described in the
next section.

LINE EDITOR TUTORIAL (ed) 5-53

Substituting Text

Global Substitution

One of the most versatile tools in ed is global substitution. By placing the
g command after the last delimiter on the substitute command line, you can
change every occurrence of a pattern on the specified lines. Try changing
every occurrence of the string es in the last example. If you are following
along, doing the examples as you read this, remember you can use u to undo
the last substitute command.

u<CR>
l,$p<CR>
This is a test toad
testing, testing
cane in toad

testing 1, 2, 3
1,$s/es/ES/g<CR>
1,$p<CR>
This is a tESt toad
tESting tESting
cane in toad

tESting 1, 2, 3

Another method is to use a global search pattern as an address instead of
the range of lines specified by 1,$.

5-54 USER'S GUIDE

1,$p<CR>
This is a test toad

testing testing
cane in toad

testing 1, 2, 3

g/test/s/es/ES/g<CR>
1,$p<CR>
This is a tESt toad

tEsting tESting
cane in toad

tEsting 1, 2, 3

Substituting Text

If the global search pattern is unique and matches the argument old_text (text
to be replaced), you can use an ed shortcut: specify the pattern once as the
global search address and do not repeat it as an old_text argument. ed will
remember the pattern from the search address and use it again as the pattern
to be replaced.

gjold_textjsj jnew_text/g<CR>

Whenever you use this shortcut, be sure to include two slashes U /) after the
s.

LINE EDITOR TUTORIAL (ed) 5-55

Substituting Text

l,$p<CR>
This is a test toad
testing testing
cane in toad
testing 1, 2, 3
g/es/s/ /ES/g<CR>
l,$p<CR>
This is a tESt toad
tESting tESting
cane in toad
tESting 1, 2, 3

Experiment with other search pattern addresses:

/pattern<CR>
?pattern<CR>
v /pattern<CR>

See what they do when combined with the substitute command. In the fol
lowing example, the v /pattern search format is used to locate lines that do not
contain the pattern testing. Then the substitute command (s) is used to
replace the existing pattern (in) with a new pattern (out) on those lines.

v /testing/s/in/out<CR>
This is a test toad
cane out toad

5-56 USER'S GUIDE

Substituting Text

Notice that the line This is a test toad was also printed, even though
no substitution was made on it. When the last delimiter is omitted, all lines
found with the search address are printed, regardless of whether or not substi
tutions have been made on them.

Now search for lines that do contain the pattern testing with the g com
mand.

g/testing/s/ /jumping<CR>
jumping testing
jumping 1, 2, 3

Notice that this command makes substitutions only for the first occurrence of
the pattern (testing) in each line. Once again, the lines are displayed on your
terminal because the last delimiter has been omitted.

LINE EDITOR TUTORIAL (ed) 5-57

Exercise 4

4-1. In your file towns change town to city on all lines but the line with
little town on it.

The file should read:

My kind of city is
London
Like being no where at all in
Peoria
I lost those little town blues in
Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

4-2. Try using? as a delimiter. Change the current line

Las Vegas

to

Toledo

Because you are changing the whole line, you can also do this by
using the change command, c.

4-3. Try searching backward in the file for the word

lost

and substitute

found

using the? as the delimiter. Did it work?

5-58 USER'S GUIDE

Exercise 4

4-4. Search forward in the file for

no

and substitute

NO

for it. What happens if you try to use? as a delimiter?

Experiment with the various command combinations available for address
ing a range of lines and doing global searches.

What happens if you try to substitute something for the $$? Try to sub
stitute Big $ for $ on line 9 of your file. Type:

9s /$ /Big $<CR>

What happened?

LINE EDITOR TUTORIAL (ed) 5-59

Special Characters

If you try to substitute the $ sign in the line

I lost my $ in Las Vegas

you will find that instead of replacing the $, the new text is placed at the end
of the line. The $ is a special character in ed that is symbolic for the end of
the line.

ed has several special characters that give you a shorthand for search pat
terns and substitution patterns. The characters act as wild cards. If you have
tried to type in any of these characters, the result was probably different than
what you had expected.

The special characters are:

*

*

Match anyone character.

Match zero or more occurrences of the preceding character.

Match zero or more occurrences of any character following
the period.

Match the beginning of the line.

$ Match the end of the line.

\ Take away the special meaning of the special character
that follows.

& Repeat the old text to be replaced in the new text of the
replacement pattern.

[...] Match the first occurrence of a character in the brackets.

(...] Match the first occurrence of a character that is NOT in the
brackets.

5-60 USER'S GUIDE

Special Characters

In the following example, ed searches for any three-character sequence
ending in the pattern at.

l,$p<CR>
rat
cat
turtle
cow
goat
g/.at<CR>
rat
cat
goat

Notice that the word goat is included because the string oat matches the string
.at.

The * (asterisk) represents zero or more occurrences of a specified charac
ter in a search or substitute pattern. This can be useful in deleting repeated
occurrences of a character that have been inserted by mistake. For example,
suppose you hold down the R key too long while typing the word broke. You
can use the * to delete every unnecessary R with one substitution command.

p<CR>
brrroke

s/br* /br<CR>
broke

LINE EDITOR TUTORIAL (ed) 5-61

Special Characters

Notice that the substitution pattern includes the b before the first r. If the
b were not included in the search pattern, the * would interpret it, during the
search, as a zero occurrence of r, make the substitution on it, and quit.
(Remember, only the first occurrence of a pattern is changed in a substitution,
unless you request a global search with g.) The following screen shows how
the substitution would be made if you did not specify both the b and the r
before the *.

p<CR>
brrroke
s/r* /r<CR>
rbrrroke

If you combine the period and the *, the combination will match all char
acters. With this combination you can replace all characters in the last part of
a line:

p<CR>
Toads are slimy, cold creatures
s / are. * / are wonderful and warm<CR>
Toads are \'.Ollderful and wann

5-62 USER'S GUIDE

Special Characters

The .* can also replace all characters between two patterns.

p<CR>
Toads are slimy, cold creatures
sjare.*crejare wonderful and warm cre<CR>
Toads are \\Ul1derful and wann creatures

If you want to insert a word at the beginning of a line, use the (circum
flex) for the old text to be substituted. This is very helpful when you want to
insert the same pattern in the front of several lines. The next example places
the word all at the beginning of each line:

l,$p<CR>
creatures great and snaIl
things wise and \\Ul1derful
things bright and beautiful

l,$s(jall j<CR>
1,$p<CR>
all creatures great and snaIl
all things wise and wonderful

all things bright and beautiful

The $ sign is useful for adding characters at the end of a line or a range of
lines:

LINE EDITOR TUTORIAL (ed) 5-63

Special Characters

1,$p<CR>
I love
I need
I use
The IRS wants my

1,$s/$/ money.<CR>
1,$p<CR>
I love noney.
I need noney.
I use noney.
The IRS wants my noney.

In these examples, you must remember to put a space after the word all
or before the word m::mey because ed adds the specified characters to the very
beginning or the very end of the sentence. If you forget to leave a space
before the word m::mey, your file will look like this:

1,$s/$/money /<CR>
1,$p<CR>
I lovenoney
I neednoney
I usenoney
The IRS wants ll'!Y'lIOIley

The $ sign also provides a handy way to add punctuation to the end of a line:

5-64 USER'S GUIDE

1,$p<CR>
I love rraney
I need rraney
I use noney
The IRS wants ll!Y rraney

1,$s/$/./<CR>
1,$p/<CR>
I love rraney.
I need rraney.
I use IOC>ney.
The IRS wants ll!Y rraney.

Special Characters

Because. is not matching a character (old text), but replacing a character
(new text), it does not have a special meaning. To change a period in the
middle of a line, you must take away the special meaning of the period in the
old text. To do this, simply precede the period with a backslash (\). This is
how you take away the special meaning of some special characters that you
want to treat as normal text characters in search or substitute arguments. For
example, the following screen shows how to take away the special meaning of
the period:

p<CR>
Way to go. Vk>w!

s/\/!<CR>
Way to go! Wow!

LINE EDITOR TUTORIAL (ed) 5-65

Special Characters

The same method can be used with the backslash character itself. If you
want to treat a \ as a normal text character, be sure to precede it with a \. For
example, if you want to replace the \ symbol with the word backslash, use
the substitute command line shown in the following screen:

1,2p<CR>
This chapter explains

how to use the '\.
s,J'\'\/backslash<CR>

how to use the backslash.

If you want to add text without changing the rest of the line, the & pro
vides a useful shortcut. The & (ampersand) repeats the old text in the replace
ment pattern, so you do not have to type the pattern twice. For example:

p<CR>
The neanderthal skeletal rema.ins
sjthalj& man'sj<CR>
p<CR>
The neanderthal man's skeletal rema.ins

ed automatically remembers the last string of characters in a search pat
tern or the old text in a substitution. However, you must prompt ed to repeat
the replacement characters in a substitution with the % sign. The % sign
allows you to make the same substitution on multiple lines without ,requesting
a global substitution. For example, to change the word money to the word
gold, repeat the last substitution from line 1 on line 3, but not on line 4.

5-66 USER'S GUIDE

Special Characters

1,$n<CR>
1 I love rroney
2 I need food

3 I use rroney
4 The IRS wants my noney

Is/money /gold<CR>
I love gold

3s//%<CR>
I use gold

1,$n<CR>
1 I love gold
2 I need food

3 I use gold
4 The IRS wants my noney

ed automatically remembers the word m::mey (the old text to be replaced),
so that string does not have to be repeated between the first two delimiters.
The % sign tells ed to use the last replacement pattern, gold.

ed tries to match the first occurrence of one of the characters enclosed in
brackets and substitute the specified old text with new text. The brackets can
be at any position in the pattern to be replaced.

In the following example, ed changes the first occurrence of the numbers
6, 7, 8, or 9 to 4 on each line in which it finds one of those numbers:

LINE EDITOR TUTORIAL (ed) 5-67

Special Characters

1,$p<CR>
Monday 33,000
Tuesday 75,000
Wednesday 88,000
Thursday 62, 000
1,$s /[6789]/ 4<CR>
Monday 33,000
Tuesday
Wednesday
Thursday

45,000
48,000
42,000

The next example deletes the Mr or Ms from a list of names:

1,$p<CR>
Mr Arthur Middleton
Mr Matt Lewis

Ms Anna Kelley
Ms M. L. Hodel

1,$s/M[rs] / /<CR>
1,$p<CR>
Arthur Middleton
Matt Lewis
Anna Kelley
M. L. Hodel

If a (circumflex) is the first character in brackets, ed interprets it as an
instruction to match characters that are NOT within the brackets. However, if
the circumflex is in any other position within the brackets, ed interprets it
literally, as a circumflex.

5-68 USER'S GUIDE

1,$p<CR>
grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade D Jogging
grade C Termis

1,$s/grade (AB]/grade A<CR>
1,$p<CR>
grade A
grade B

grade A
grade A

grade A

Computer Science
Robot Design
Boolean Algebra

Jogging

Termis

Special Characters

Whenever you use special characters as wild cards in the text to be
changed, remember to use a unique pattern of characters. In the above exam
ple, if you had used only

1,$8/(AB]/ A<CR>

you would have changed the g in the word grade to A. Try it.

Experiment with these special characters. Find out what happens (or does
not happen) if you use them in different combinations.

Figure 5-7 summarizes the special characters for search or substitute pat
terns.

LINE EDITOR TUTORIAL (ed) 5-69

Special Characters

Command Function

. Match anyone character in a search or substitute pattern .

* Match zero or more occurrences of the preceding charac-
ter in a search or substitute pattern.

* Match zero or more occurrences of any characters follow-
ing the period.

A

Match the beginning of the line in the substitute pattern
to be replaced or in a search pattern.

$ Match the end of the line in the substitute pattern to be
replaced.

\ Take away the special meaning of the special character
that follows in the substitute or search pattern.

& Repeat the old text to be replaced in the new text
replacement pattern.

% Match the last replacement pattern.

[...] Match the first occurrence of a character in the brackets.

(...] Match the first occurrence of a character that is NOT in
the brackets.

Figure 5-7: Summary of Special Characters

5-70 USER'S GUIDE

Exercise 5

5-1. Create a file that contains the following lines of text.

A Computer Science
D Jogging
C Tennis

What happens if you try this command line:

1,$s/(AB]/ A/<CR>

Undo the above command. How can you make the C and D unique?
(Hint: they are at the beginning of the line, in the position shown by
the ~.) Do not be afraid to experiment!

5-2. Insert the following line above line 2:

These are not really my grades.

Using brackets and the character, create a search pattern that you
can use to locate the line you inserted. There are several ways to
address a line. When you edit text, use the way that is quickest and
easiest for you.

5-3. Add the following lines to your file:

I love money
I need money
The IRS wants my money

Now use one command to change them to:

It's my money
It's my money
The IRS wants my money

LINE EDITOR TUTORlAl (ed) 5-71

Exercise 5

Using two command lines, do the following: change the word on the
first line from money to gold, and change the last two lines from
money to gold without using the words money or gold themselves.

5-4. How can you change the line

1020231020

to

10202031020

without repeating the old digits in the replacement pattern?

5-5. Create a line of text containing the following characters.

*. \&% *

Substitute a letter for each character. Do you need to use a backslash
for every substitution?

5-72 USER'S GUIDE

Moving Text

You have now learned to address lines, create and delete text, and make
substitutions. ed has one more set of versatile and important commands. You
can move, copy, or join lines of text in the editing buffer. You can also read
in text from a file that is not in the editing buffer, or write lines of the file in
the buffer to another file in the current directory. The commands that move
text are:

m

t

w

r

move lines of text

copy lines of text

join contiguous lines of text

write lines of text to a file

read in the contents of a file

Move Lines of Text

The m command allows you to move blocks of text to another place in the
file. The general format is:

[address l,address2]m[address3]<CR>

The components of this command line include:

addressl,address2

m

The range of lines to be moved. If only one line is moved,
only addressl is given. If no address is given, the current line
is moved.

The move command.

address3 Place the text after this line.

Try the following example to see how the command works. Create a file
that contains these three lines of text:

I want to move this line.
I want the first line
below this line.

LINE EDITOR TUTORIAL (ed) 5-73

Moving Text

Type:

Im3<CR>

ed will move line 1 below line 3.

r- I want to rocwe this line.

I want the first line
below this line.

~ I want to nove this line.

The next screen shows how this will appear on your terminal:

1,$p<CR>
I want to nove this line.
I want the first line
below this line.

Im3<CR>
1,$p<CR>
I want the first line
below this line.

I want to nove this line.

If you want to move a paragraph of text, have addressl and address2
define the range of lines of the paragraph.

In the following example, a block of text (lines 8 through 12) is moved
below line 65. Notice the n command that prints the line numbers of the file:

5-74 USER'S GUIDE

8,12n<CR>
8
9

10

11

12

64,65n<CR>
64
65

8,12m65<CR>
59,65n<CR>
59
60
61
62

63

64

65

This is line 8.

It is the beginning of a
very short paragraph.

This paragraph ends

on this line.

Move the block of text
below this line.

Move the block of text
below this line.

This is line 8.
It is the beginning of a

very short paragraph.

This paragraph ends

on this line.

Moving Text

How can you move lines above the first line of the file? Try the following
command.

3,4mO<CR>

When address3 is 0, the lines are placed at the beginning of the file.

Copy Lines of Text

The copy command t (transfer) acts like the m command except that the
block of text is not deleted at the original address of the line. A copy of that
block of text is placed after a specified line of text. The general format of the
command line is also similar.

LINE EDITOR TUTORIAL (ed) 5-75

Moving Text

The general format of the t command also looks like the m command.

[addressl,address2]t[address3]<CR>

addressl,address2

t

address3

The range of lines to be copied. If only one line is copied,
only addressl is given. If no address is given, the current line
is copied.

The copy command.

Place the copy of the text after this line.

The next example shows how to copy three lines of text below the last
line.

Safety procedures:

If there is a fire in the building:
Close the door of the roam to seal off the fire

Break glass of nearest alarm.
Pull lever.
Locate and use fire extinguisher.

A chemical fire in the lab requires that yo u:

Break glass of nearest alarm
Pull lever
Locate and use fire extinguisher

The commands and ed's responses to them are displayed in the next
screen. Again, the n command displays the line numbers:

5-76 USER'S GUIDE

Moving Text

5,Sn<CR>
5 Close the door of the rcx:ro, to seal off the fire.
6 Break glass of nearest alarm.
7 Pull lever.
8 lJ::>cate and use fire extinguisher.

30n<CR>
30 A chemical fire in the lab requires that you:

6,St30<CR>
30,$n<CR>
30 A chemical fire in the lab requires that you:
31 Break glass of nearest alarm

32 Pull lever
33 lJ::>cate and use fire extinguisher

6,Sn<CR>
6 Break glass of nearest alarm
7 Pull lever
8 lJ::>cate and use fire extinguisher

The text in lines 6 through 8 remains in place. A copy of those three lines
is placed after line 50.

Experiment with m and t on one of your files.

Joining Contiguous Lines

The j command joins the current line with the following line. The general
format is:

[addressl,addressl]j<CR>

The next example shows how to join several lines together. An easy way
of doing this is to display the lines you want to join using p or n.

LINE EDITOR TUTORIAL (ed) 5-77

Moving Text

1,2p<CR>
Now is the time to join
the team.

p<CR>
the team.

Ip<CR>
Now is the time to join

j<CR>
p<CR>
Now is the time to jointhe team.

Notice that there is no space between the last word (join) and the first
word of the next line (the), and the last word (play). You must place a space
between them by using the s command.

Write Lines of Text to a File

The w command writes text from the buffer into a file. The general for
mat is:

[addressl,address2]w ffilename]<CR>

addressl,address2

w

filename

The range of lines to be placed in another file. If you do not
use addressl or address2, the entire file is written into a new
file.

The write command.

The name of the new file that contains a copy of the block of
text.

5-78 USER'S GUIDE

Moving Text

In the following example the body of a letter is saved in a file called
memo, so that it can be sent to other people.

1,$n<CR>
1 March 17, 1986
2 Dear Kelly,
3 There will be a meeting :in the

4 green roan at 4:30 P.M. today.
5 Refreshments will be served.
3,6w memo<CR>
87

The w command places a copy of lines three through six into a new file
called memo. ed responds with the number of characters in the new file.

Problems

The w command overwrites preexisting files; it erases the current file and
puts the new block of text in the file without warning you. If, in our example,
a file called memo had existed before we wrote our new file to that name, the
original file would have been erased.

In "Special Commands," later in this chapter, you will learn how to exe
cute shell commands from ed. Then you can list the file names in the direc
tory to make sure that you are not overwriting a file.

Another potential problem is that you cannot write other lines to the file
memo. If you try to add lines 13 through 16, the existing lines (3 through 6)
will be erased and the file will contain only the new lines (13 through 16).

LINE EDITOR TUTORIAL (ed) 5-79

Moving Text

Read in the Contents of a File

The r command can be used to append text from a file to the buffer. The
general format for the read command is:

[address1]r filename<CR>

address1 The text will be placed after the line address1. If address1 is not
given, the file is added to the end of the buffer.

r The read command.

filename The name of the file that will be copied into the editing buffer.

Using the example from the write command, the next screen shows a file
being edited and new text being read into it.

1,$n<CR>
1 March 17, 1986
2 Dear Michael,
3 Are you free later today?
4 Hope to see you there.
3r memo<CR>
87
3,$n<CR>
3

4
5

6
7

Are you free later today?
There is a meet:ing in the
green rcx:m at 4:30 P.M. today.
Refreshments will be served.
Hope to see you there.

ed responds to the read command with the number of characters in the file
being added to the buffer (in the example, memo).

5-80 USER'S GUIDE

Moving Text

It is a good idea to display new or changed lines of text to be sure that
they are correct.

Figure 5-8 summarizes the ed commands for moving text.

Command Function

m move lines of text

t copy lines of text

j join contiguous lines

w write text into a new file

r read in text from another file

Figure 5-8: Summary of ed Commands for Moving Text

LINE EDITOR TUTORIAL (ed) 5-81

Exercise 6

6-1. There are two ways to copy lines of text in the buffer: by issuing the
copy command; or by using the write and read commands to first
write text to a file and then read the file into the buffer.

Writing to a file and then reading the file into the buffer is a longer
process. Can you think of an example where this method would be
more practical?

What commands can you use to copy lines 10 through 17 of file exer
into the file exer6 at line 7?

6-2. Lines 33 through 46 give an example that you want placed after line
3, and not after line 32. What command performs this task?

6-3. Say you are on line 10 of a file and you want to join lines 13 and 14.
What commands can you issue to do this?

5-82 USER'S GUIDE

Other Useful Commands and Information

There are four other commands and a special file that will be useful to
you during editing sessions.

h,H access the help commands, which provide error messages

1 display characters that are not normally displayed

f display the current file name

ed.hup

temporarily escape ed to execute a shell command

When a system interrupt occurs, the ed buffer is saved in a
special file named ed.hup.

Help Commands

You may have noticed when you were editing a file that ed responds to
some of your commands with a ? The ? is a diagnostic message issued by
ed when it has found an error. The help commands give you a short message
to explain the reason for the most recent diagnostic.

There are two help commands:

h Display a short error message that explains the reason for the most
recent ?

H Place ed into help mode so that a short error message is displayed
every time the ? appears. (To cancel this request, type H.)

You know that if you try to quit ed without writing the changes in the
buffer to a file, you will get a ? Do this now. When the? appears, type h:

LINE EDITOR TUTORIAL (ed) 5-83

Other Useful Commands and Information

q<CR>
?
h<CR>
warning: expecting 'WI

The ? is also displayed when you specify a new file name on the ed com
mand line. Give ed a new file name. When the? appears, type h to find out
what the error message means.

ed newfile<CR>
? newfile
h<CR>
cannot open input file

This message means one of two things: either there is no file called newfile
or there is such a file but ed is not allowed to read it.

As explained earlier, the H command responds to the? and then turns on
the help mode of ed, so that ed gives you a diagnostic explanation every time
the? is displayed subsequently. To turn off help mode, type H again. The
next screen shows H being used to turn on help mode. Sample error mes
sages are also displayed in response to some common mistakes:

5-84 USER'S GUIDE

$ ed newfile<CR>
e newfile<CR>
?newfile

H<CR>
cannot open input file
/hello<CR>
?

illegal suffix

1,22p<CR>
?
line out of range

a<CR>
I am appending this line to the buffer .
. <CR>
s/$ tea party<CR>
?
illegal or missing delimiter
,$s/$/ tea party<CR>
?

unknown camnand

H<CR>
q<CR>
?

h<CR>
warning: expecting I w'

Other Useful Commands and Information

These are some of the most common error messages that you may encounter
during editing sessions:

illegal suffix
ed cannot find an occurrence of the search pattern hello because the
buffer is empty.

line out of range
ed cannot print any lines because the buffer is empty or the line speci
fied is not in the buffer.

LINE EDITOR TUTORIAL (ed) 5-85

Other Useful Commands and Information

A line of text is appended to the buffer to show you some error messages
associated with the s command.

illegal or missing delimiter
The delimiter between the old text to be replaced and the new text is
missing.

unknown ccmnand
address1 was not typed in before the comma; ed does not recognize ,$.

Help mode is then turned off and h is used to determine the meaning of
the last ? While you are learning ed, you may want to leave help mode
turned on. If so, use the H command. However, once you become adept at
using ed, you will only need to see error messages occasionally. Then you
can use the h command.

Display Nonprinting Characters

If you are typing a tab character, the terminal will normally display up to
eight spaces (covering the space up to the next tab setting. (Your tab setting
may be more or less than eight spaces. See Chapter 7, "Shell Tutorial," on
setting using stty).

If you want to see how many tabs you have inserted into your text, use
the 1 (list) command. The general format for the 1 command is the same as
for nand p.

[address1,address2]1 <CR>

The components of this command line are:

address 1 ,address2
The range of lines to be displayed. If no address is
given, the current line will be displayed. If only
address1 is given, only that line will be displayed.

1 The command that displays the nonprinting characters
along with the text.

5-86 USER'S GUIDE

Other Useful Commands and Information

The 1 command denotes tabs with a > (greater than) character. To type
control characters, hold down the CONTROL key and press the appropriate
alphabetic key. The key that sounds the bell is g (control-g). It is displayed
as \07 which is the octal representation (the computer's code) for A g.

Type in two lines of text that contain a <A g> (control-g) and a tab. Then
use the 1 command to display the lines of text on your terminal.

a<CR>
Add a < Ag> (control-g) to this line.<CR>
Add a <tab> (tab) to this line.<CR>
.<CR>
l,21<CR>
Add a "\07 (control-g) to this line.<CR>

Add a > (tab) to this line. <CR>

Did the bell sound when you typed <A g>?

The Current File Name

In a long editing session, you may forget the file name. The f command
will remind you which file is currently in the buffer. Or, you may want to
preserve the original file that you entered into the editing buffer and write the
contents of the buffer to a new file. In a long editing session, you may forget,
and accidentally overwrite the original file with the customary wand q com
mand sequence. You can prevent this by telling the editor to associate the
contents of the buffer with a new file name while you are in the middle of the
editing session. This is done with the f command and a new file name.

The format for displaying the current file name is f alone on a line:

f<CR>

To see how f works, enter ed with a file. For example, if your file is called
oldfile, ed will respond as shown in the following screen:

LINE EDITOR TUTORIAL (ed) 5-87

Other Useful Commands and Information

ed oldfile<CR>
323
f<CR>
oldfile

To associate the contents of the editing buffer with a new file name use
this general format:

f newfile<CR>

If no file name is specified with the write command, ed remembers the
file name given at the beginning of the editing session and writes to that file.
If you do not want to overwrite the original file, you must either use a new
file name with the write command, or change the current file name using the f
command followed by the new file name. Because you can use f at any point
in an editing session, you can change the file name immediately. You can
then continue with the editing session without worrying about overwriting the
original file.

The next screen shows the commands for entering the editor with oldfile
and then changing its name to newfile. A line of text is added to the buffer
and then the write and quit commands are issued.

5-88 USER'S GUIDE

ed oldfile<CR>
323

f<CR>
oldfile
f newfile<CR>
newfile
a<CR>
Add a line of text.<CR>
.<CR>
w<CR>
343

q<CR>

Other Useful Commands and Information

Once you have returned to the shell, you can list your files and verify the
existence of the new file, newfile. newfile should contain a copy of the con
tents of oidfile plus the new line of text.

Escape to the Shell
How can you make sure you are not overwriting an existing file when you

write the contents of the editor to a new file name? You need to return to the
shell to list your files. The! allows you to temporarily return to the shell, exe
cute a shell command, and then return to the current line of the editor.

The general format for the escape sequence is:

!shell command line<CR>
shell response to the camnand line
!

When you type the! as the first character on a line, the shell command
must follow on that same line. The program's response to your command will
appear as the command is running. When the command has finished execut
ing, the! will be appear alone on a line. This means that you are back in the
editor at the current line.

LINE EDITOR TUTORIAL (ed) 5-89

Other Useful Commands and Information

For example, if you want to return to the shell to find out the correct date,
type! and the shell command date.

p<CR>
This is the current line
! date<CR>
Tue Apr 1 14:24:22 EST 1986

p<CR>
This is the current line.

The screen first displays the current line. Then the command is given to tem
porarily leave the editor and display the date. After the date is displayed, you
are returned to the current line of the editor.

If you want to execute more than one command on the shell command
line, see the discussion on; in the section called" Special Characters" in
Chapter 7.

Recovering from System Interrupts

What happens if you are creating text in ed and there is an interrupt to
the system, you are accidentally hung up on the system, or your terminal is
unplugged? When an interrupt occurs, the UNIX system tries to save the con
tents of the editing buffer in a special file named ed.hup. Later you can
retrieve your text from this file in one of two ways. First, you can use a shell
command to move ed.hup to another file name, such as the name the file had
while you were editing it (before the interrupt). Second, you can enter ed and
use the f command to rename the contents of the buffer. An example of the
second method is shown in the following screen:

5-90 USER'S GUIDE

ed ed.hup<CR>
928
f myfile<CR>
myfile

Other Useful Commands and Information

If you use the second method to recover the contents of the buffer, be sure to
remove the ed.hup file afterward.

Conclusion
You now are familiar with many useful commands in ed. The commands

that were not discussed in this tutoriaC such as G, P, Q and the use of () and
{ L are discussed on the ed(l) page of the User's Reference Manual. You can
experiment with these commands and try them to see what tasks they per
form.

Figure 5-9 summarizes the functions of the commands introduced in this
section.

LINE EDITOR TUTORIAL (ed) 5-91

Other Useful Commands and Information

Command Function

h Display a short error message for the preceding
diagnostic ?

H Turn on help mode. An error message will be
given with each diagnostic? The second H turns
off help mode.

I Display nonprinting characters in the text.

f Display the current file name.

f newfile Change the current file name associated with the
editing buffer to newfile.

femd Temporarily escape to the shell to execute a shell
command emd.

ed.hup The editing buffer is saved in ed.hup if the terminal
is hung up before a write command.

Figure 5-9: Summary of Other Useful Commands

5-92 USER'S GUIDE

Exercise 7

7-1. Create a new file called newfilel. Access ed and change the file's
name to currentl. Then create some text and write and quit ed. Run
the Is command to verify that there is not a file called newfilel in
your directory. If you do the shell command Is, you will see the
directory does not contain a file called newfilel.

7-2. Create a file named filel. Append some lines of text to the file.
Leave append mode but do not write the file. Turn off your terminal.
Then turn on your terminal and log in again. Issue the Is command
in the shell. Is there a new file called ed.hup? Place ed.hup in ed.
How can you change the current file name to filel? Display the con
tents of the file. Are the lines the same lines you created before you
turned off your terminal?

7-3. While you are in ed, temporarily escape to the shell and send a mail
message to yourself.

LINE EDITOR TUTORIAL (ed) 5-93

Answers to Exercises

Exercise 1

1-2.

1-1.

$ ed junk<CR>
? junk

a<CR>
Hello world.<CR>
.<CR>
w<CR>
12

q<CR>
$

$ ed junk<CR>
12

l,$p<CR>
Hello world.<CR>
q<CR>
$

5-94 USER'S GUIDE

Answers to Exercises

The system did not respond with the warning question mark because you
did not make any changes to the buffer.

1-3.

$ ed junk<CR>
12

a<CR>
Wendy's horse came through the window.<CR>
.<CR>
1,$p<CR>
Hello W)rld.
Wendy I S horse came through the window.

q<CR>
?
w stuff<CR>
60
q<CR>
$

LINE EDITOR TUTORIAL (ed) 5-95

Answers to Exercises

Exercise 2
2-1.

2-2.

$ ed towns<CR>
? towns

a<CR>
My kind of town is<CR>
Chicago<CR>
Like being no where at all in<CR>
Toledo<CR>
I lost those little town blues in<CR>
New York<CR>
I lost my heart in<CR>
San Francisco<CR>
I lost $$ in<CR>
Las Vegas<CR>
.<CR>
w<CR>
164

3<CR>
Like being no where at all in

5-96 USER'S GUIDE

2-3.

2-4 .

-2,+3p<CR>
My kind of town is
Chicago
Like being no where at all in
'Ibledo

I lost those little town blues in
New York

. =<CR>
6

6<CR>
New York

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5-97

Answers to Exercises

2-5.

2-6.

$<CR>
Las Vegas

?town<CR>
I lost those little town blues in

?<CR>
My kind of town is

5-98 USER'S GUIDE

2-7.

g/in<CR>
My kind of town is

Like being no where at all in

I lost those little town blues in

I lost Ilo/ heart in
I lost $$ in

v/in<CR>
Chicago

'Ibledo

New York

San Francisco

Las Vegas

Exercise 3
3-1.

$ ed ex3<CR>
?ex3

i<CR>
?

q<CR>

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5-99

Answers to Exercises

The ? after the i means there is an error in the command. There is no
current line before which text can be inserted.

3-2.

5-100

$ ed towns<CR>
164
.n<CR>
10
3i<CR>
Illinois<CR>
.<CR>
.i<CR>
or<CR>

Las Vegas

N aperville<CR>
.<CR>
$i<CR>
hotels in<CR>
1,$n<CR>

1 IT!Y kind of town is
2 Chicago

3 or
4 Naperville
5 Illinois
6 Like being no where at all in

7 '!bledo

8 I lost those little town blues in

9 New York

10 I lost IT!Y heart in
11 San Francisco
12 I lost $$ in
13 hotels in
14 Las Vegas

USER'S GUIDE

3-3.

3-4 .

1,5n<CR>
1 My kind of town is
2 Chicago
3 or

4 Naperville

5 Illinois
2,5c<CR>
London<CR>
.<CR>
1,3n<CR>
1 My kind of town is
2 London

3 Like being no where at all

. <CR>
Like being no where at all
/Tol<CR>
'Ibledo

c<CR>
Peoria<CR>
.<CR>
.<CR>
Peoria

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5-101

Answers to Exercises

3-5 .

. <CR>
/New Y/c<CR>
Iron City<CR>
.<CR>
.<CR>
Iron City

Your search string need not be the entire word or line. It only needs to be
unique.

Exercise 4
4-1.

v /little town/s/town/city<CR>
My kind of city is
London
Like being no where at all in
Peoria
Iron City
I lost II'!Y heart :in

San Francisco
I lost $$:in

hotels :in

Las Vegas

5-102 USER'S GUIDE

Answers to Exercises

The line

I lost those little town blues in

was not printed because it was NOT addressed by the v command.

4-2 .

4-3.

. <CR>
Las Vegas

s?Las Vegas?Toledo<CR>
'lbledo

?lost?s??found<CR>
I found $$ in

LINE EDITOR TUTORIAL (ed) 5-103

Answers to Exercises

4-4.

/no?s??NO<CR>
?

/no/s/ /NO<CR>
Like being 00 where at all in

You cannot mix delimiters such as / and? in a command line.

The substitution command on line 9 produced this output:

I found $$ inBig $

It did not work correctly because the $ sign is a special character in ed.

5-104 USER'S GUIDE

Exercise 5
5-1.

$ ed file1<CR>
? file1
a<CR>
A Computer Science<CR>
D Jogging<CR>
C Tennis<CR>
.<CR>
1,$s/(AB]/A/<CR>
1,$p<CR>
A Computer Science
A Jogging
A Tennis
u<CR>

1,$s /(AB]/ A <CR>
1,$p<CR>
A Computer Science
A Jogging
A Tennis

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5-105

Answers to Exercises

5-2.

5-3.

5-106

2i<CR>
These are not really my grades.<CR>
1,$p<CR>
A Computer Science
These are not really my grades.
A Termis

A Jogging

/(A]<CR>
These are not really my grades
?A[T]<CR>
These are not really my grades

1,$p<CR>
I love noney
I need noney
The IRS wants my rroney

g/I/s/I.*m /It's my m<CR>
It I s my rroney
It I s my noney

USER'S GUIDE

5-4.

5-5.

Is/money /gold<CR>
It's my gold

2,$s/ /%<CR>
The IRS wants my gold

s/10202/&O<CR>
10202031020

a<CR>
* . \ & % A *<CR>
.<CR>
s/*/a<CR>
a.\&%"*
s/*/b<CR>
a.\&%"b

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5-107

Answers to Exercises

Because there were no preceding characters, * substituted for itself.

s/ \./c<CR>
ac\.&%"b
s/ \\/d<CR>
acd&%"b
s/&/e<CR>
acde%"b
s/%/f<CR>
acdef"b

The & and % are only special characters in the replacement text.

s/ \A/g<CR>
acdefgb

Exercise 6

6-1. Any time you have lines of text that you may want to have repeated
several times, it may be easier to write those lines to a file and read in
the file at those points in the text.

If you want to copy the lines into another file, you must write them to
a file and then read that file into the buffer containing the other file.

5-108 USER'S GUIDE

6-2.

ed exer<CR>
725

10,17 w temp<CR>
210

q<CR>
ed exer6<CR>
305

7r temp<CR>
210

Answers to Exercises

The file temp can be called any file name.

33,46m3<CR>

LINE EDITOR TUTORIAL (ed) 5-109

Answers to Exercises

6-3 .

. =<CR>
10

13p<CR>
This is line 13.

j<CR>
.p<CR>
This is line 13. and line 14.

Remember that .= gives you the current line.

5-110 USER'S GUIDE

Exercise 7
7-1.

7-2.

$ ed newfilel <CR>
? newfile1
f currentl <CR>
current 1

a<CR>
This is a line of text<CR>
Will it go into newfilel <CR>
or into currentl <CR>
.<CR>
w<CR>
66

q<CR>
$ Is<CR>
bin
current 1

ed filel <CR>
? file1
a<CR>
I am adding text to this file.<CR>
Will it show up in ed.hup?<CR>
.<CR>

Answers to Exercises

LINE EDITOR TUTORIAL (ed) 5-111

Answers to Exercises

Turn off your terminal.

Log in again.

7-3.

5-112

ed ed.hup<CR>
58

f filel<CR>
file 1

l,$p<CR>
I am adding text to this file.
Will it show up in ed.hup?

$ ed filel <CR>
58

! mail mylogin<CR>
You will get mail when<CR>
you are done editingkCR>
.<CR>

USER'S GUIDE

Chapter 6: Screen Editor Tutorial (vi)

Introduction
Suggestions for Reading this Tutorial

Getting Started
Setting the Terminal Configuration

Changing Your Environment

Setting the Automatic RETURN

Creating a File
How to Create Text: the Append Mode

How to Leave Append Mode

Editing Text: the Command Mode
How to Move the Cursor

Moving the Cursor to the Right or Left

How to Delete Text

How to Add Text

Quitting vi

Exercise 1

Moving the Cursor Around the Screen
Positioning the Cursor on a Character

Moving the Cursor to the Beginning or End of a Line

Searching for a Character on a Line

6-1

6-3

6-4

6-4

6-5

6-6

6-7

6-8

6-9

6-10

6-10

6-12

6-15

6-16

6-18

6-21

6-22

6-22

6-23

6-25

TABLE OF CONTENTS

Table of Contents

Line Positioning 6-26

The Minus Sign Motion Command 6-26

The Plus Sign Motion Command 6-27

Word Positioning 6-27

Positioning the Cursor by Sentences 6-31

Positioning the Cursor by Paragraphs 6-33

Positioning in the Window 6-34

Positioning the Cursor in Undisplayed Text 6-40

Scrolling the Text 6-40

The Control-f Command 6-40

The Control-d Command 6-41

The Control-b Command 6-41

The Control-u Command 6-43

Go to a Specified Line 6-43

Line Numbers 6-44

Searching for a Pattern of Characters: the / and? Commands 6-45

Exercise 2 6-52

Crea ting Text 6-54

Appending Text 6-54

Inserting Text 6-54

Opening a Line for Text 6-56

Exercise 3 6-59

Deleting Text 6-60

Undoing Entered Text in Text Input Mode 6-60

Undo the Last Command 6-61

ii USER'S GUIDE

Table of Contents

Delete Commands in Command Mode 6-62

Deleting Words 6-62

Deleting Paragraphs 6-64

Deleting Lines 6-64

Deleting Text After the Cursor 6-64

Exercise 4 6-66

Modifying Text 6-67

Replacing Text 6-67

Substituting Text 6-68

Changing Text 6-69

Cutting And Pasting Text Electronically 6-75

Moving Text 6-75

Fixing Transposed Letters 6-75

Copying Text 6-76

Copying or Moving Text Using Registers 6-78

Exercise 5 6-80

Special Commands 6-81

Repeating the Last Command 6-81

Joining Two Lines 6-81

Clearing and Redrawing the Window 6-82

Changing Lowercase to Uppercase and Vice Versa 6-82

Using Line Editing Commands in vi 6-84

Temporarily Returning to the Shell: the :sh and :! Commands 6-84

Writing Text to a New File: the:w Command 6-85

Finding the Line Number 6-86

TABLE OF CONTENTS iii

Table of Contents

Deleting the Rest of the Buffer

Adding a File to the Buffer

Making Global Changes

Quitting vi

Special Options for vi
Recovering a File Lost by an Interrupt

Editing Multiple Files

Viewing a File

Exercise 6

Answers To Exercises
Exercise 1

Exercise 2

Exercise 3

Exercise 4

Exercise 5

Exercise 6

iv USER'S GUIDE

6-87

6-87

6-88

6-90

6-93

6-93

6-93

6-94

6-95

6-96

6-96

6-97

6-99

6-100

6-101

6-101

Introduction

This chapter is a tutorial on the screen editor, vi (short for visual editor).
The vi editor is a powerful and sophisticated tool for creating and editing files.
It is designed for use with a video display terminal which is used as a window
through which you can view the text of a file. A few simple commands allow
you to make changes to the text that are quickly reflected on the screen.

The vi editor displays from one to many lines of text. It allows you to
move the cursor to any point on the screen or in the file (by specifying places
such as the beginning or end of a word, line, sentence, paragraph, or file) and
create, change, or delete text from that point. You can also use some line edi
tor commands, such as the powerful global commands that allow you to
change multiple occurrences of the same character string by issuing one com
mand. To move through the file, you can scroll the text forward or backward,
revealing the lines below or above the current window, as shown in Figure 6-
1.

Not all terminals have text scrolling capability; whether or not you can take
advantage of vi's scrolling feature depends on what type of terminal you
have.

SCREEN EDITOR TUTORIAL (vi) 6-1

Introduction

TEXT FILE

You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

This part of the file
is in the display window.

You can edit it.

This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

Figure 6-1: Displaying a File with a vi Window

6-2 USER'S GUIDE

Introduction

There are more than 100 commands within vi. This chapter covers the
basic commands that will enable you to use vi simply but effectively. Specifi
cally, it explains how to do the following tasks:

• set up your terminal so that vi is accessible

• enter vi, create text, delete mistakes, write the text to a file, and quit

• move text within a file

• electronically cut and paste text

• use special commands and shortcuts

• temporarily escape to the shell to execute shell commands

• use line editing commands available within vi

• edit several files in the same session

• recover a file lost by an interruption to an editing session

• change your shell environment to set your terminal configuration and
an automatic carriage return

Suggestions for Reading this Tutorial
As you read this tutorial, keep in mind the notation conventions described

in the Preface. In the screens in this chapter arrows are also used to show the
position of the cursor.

The commands discussed in each section are reviewed at the end of the
section. A summary of vi commands is found in Appendix D, where they are
listed by topic. At the end of some sections, exercises are given so you can
experiment. The answers to all the exercises are at the end of this chapter.
The best way to learn vi is by doing the examples and exercises as you read
the tutorial. Log in on the UNIX system when you are ready to read this
chapter.

SCREEN EDITOR TUTORIAL (vi) 6-3

Getting Started

The UNIX system is flexible; it can run on many types of computers and
can be accessed from many kinds of terminals. However, because it is inter
nally structured to be able to operate in so many ways, it needs to know what
kind of hardware is being used in a given situation.

In addition, the UNIX system offers various optional features for using
your terminal that you mayor may not want to incorporate into your comput
ing session routine. Your choice of these options, together with your
hardware specifications, comprise your login environment. Once you have set
up your login environment, the shell implements these specifications and
options automatically every time you log in.

This section describes two parts of the login environment: setting the ter
minal configuration, which is essential for using vi properly, and setting the
wrapmargin, or automatic (carriage) RETURN, which is optional.

Setting the Terminal Configuration

Before you enter vi, you must set your terminal configuration. This sim
ply means that you tell the UNIX system what type of terminal you are using.
This is necessary because the software for the vi editor is executed differently
on different terminals.

Each type of terminal has several code names that are recognized by the
UNIX system. Appendix F, "Setting Up the Terminal," tells you how to find
a recognized name for your terminal. Keep in mind that many computer ins
tallations add terminal types to the list of terminals supported by default in
your UNIX system. It is a good idea to check with your local system adminis
trator for the most up-to-date list of available terminal types.

To set your terminal configuration, type

TERM =terminal_name<CR>
export TERM <CR>
tput init<CR>

The first line puts a value (a terminal type) in a variable called TERM. The
second line exports this value; it conveys the value to all UNIX system pro
grams whose execution depends on the type of terminal being used.

6-4 USER'S GUIDE

Getting Started

The tput command on the third line initializes (sets up) the software in
your terminal so that it functions properly with the UNIX system. It is essen
tial to run the tput init command when you are setting your terminal confi
guration because terminal functions such as tab settings will not work prop
erly unless you do.

For example, if your terminal is a Teletype 5425 this is how your com
mands will appear on the screen.

$ TERM=5425<CR>
$ export TERM <CR>
$ tput inikCR>

Do not experiment by entering names for terminal types other than your
terminal. This might confuse the UNIX system, and you may have to log off,
hang up, or get help from your system administrator to restore your login
environmen t.

Changing Your Environment

If you are going to use vi regularly, you should change your login
environment permanently so you do not have to configure your terminal each
time you log in. Your login environment is controlled by a file in your home
directory called .profile. (This file, pronounced dot profile, does not exist in
the file system; you must create it. For details, see Chapter 7.)

If you specify the setting for your terminal configuration in your .profile,
your terminal will be configured automatically every time you log in. You can
do this by adding the three lines shown in the last screen (the TERM assign
ment, export command, and tput command) to your .profile. (For detailed
instructions, see Chapter 7.)

SCREEN EDITOR TUTORIAL (vi) 6-5

Getting Started

Setting the Automatic RETURN

To set an automatic RETURN you must know how to create a file. If you are
familiar with another text editor, such as ed, follow the instructions in this
section. If you do not know how to use an editor but would like to have an
automatic RETURN setting, skip this section for now and return to it when
you have learned the basic skills taught in this chapter.

If you want the RETURN key to be entered automatically, create a file
called .exrc in your home directory. You can use the .exrc file to contain
options that control the vi editing environment. (For details about the .exrc
file, see the Editing Guide or Editing Utilities Guide.)

To create a .exrc file, enter an editor with that file name. Then type in
one line of text: a specification for the wrapmargin (automatic carriage return)
option. The format for this option specification is

wm=n<CR>

n represents the number of characters from the right-hand side of the screen
where you want an automatic carriage return to occur. For example, say you
want a carriage return at twenty characters from the right-hand side of the
screen. Type

wm=20<CR>

Finally, write the buffer contents to the file and quit the editor (see" Text
Editing Buffers" in Chapter 4). The next time you log in, this file will give
you an automatic RETURN.

To check your settings for the terminal and wrapmargin when you are in
vi, enter the command

:set<CR>

vi will report the terminal type and the wrapmargin, as well as any other
options you may have specified. You can also use the :set command to create
or change the wrapmargin option. Try experimenting with it.

6-6 USER'S GUIDE

Creating a File

First, enter the editor; type vi and the name of the file you want to create
or edit.

vi filename<CR>

For example, say you want to create a file called stuff. When you type the vi
command with the file name stuff, vi clears the screen and displays a window
in which you can enter and edit text.

"stuff" [New file]

The _ (underscore) on the top line shows the cursor waiting for you to
enter a command there. (On video display terminals the cursor may be a
blinking underscore or a reverse color block.) Every other line is marked with
a '"-' (tilde), the symbol for an empty line.

If, before entering vi, you have forgotten to set your terminal configura
tion or have set it to the wrong type of terminal, you will see an error mes
sage instead.

SCREEN EDITOR TUTORIAL (vi) 6-7

Creating a File

$ vi stuff<CR>
terminaLname: unknown tenninal type

[Using open node]

"stuff" [New file]

You cannot set the terminal configuration while you are in the editor; you
must be in the shell. Leave the editor by typing

:q<CR>

Then set the correct terminal configuration.

How to Create Text: the Append Mode

If you have successfully entered vi, you are in command mode and vi is
waiting for your commands. How do you create text?

• Press the A key «a» to enter the append mode of vi. (Do not press
the RETURN key.) You can now add text to the file. (An A is not
printed on the screen.)

• Type in some text.

• To begin a new line, press the RETURN key.

If you have specified the wrap margin option in a .exrc file, you will get
a new line whenever you get an automatic RETURN (see "Setting the
Automatic RETURN").

6-8 USER'S GUIDE

Creating a File

How to Leave Append Mode

When you finish creating text, press the ESCAPE key to leave append
mode and return to command mode. Then you can edit any text you have
created or write the text in the buffer to a file.

<a>Create some text<CR>
in the screen editor<CR>
and return to<CR>
command mode.<ESC>

If you press the ESCAPE key and a bell sounds, you are already in com
mand mode. The text in the file is not affected by this, even if you press the
ESCAPE key several times.

SCREEN EDITOR TUTORIAL (vi) 6-9

Editing Text: the Command Mode

To edit an existing file you must be able to add, change, and delete text.
However, before you can perform those tasks you must be able to move to the
part of the file you want to edit. vi offers an array of commands for moving
from page to page, between lines, and between specified points inside a line.
These commands, along with commands for deleting and adding text, are
introduced in this section.

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the screen
where you will begin the correction. This is easily done with four keys that
are grouped together on the keyboard: h, j, k, and l.

<h> moves the cursor one character to the left

<j> moves the cursor down one line

<k> moves the cursor up one line

<1> moves the cursor one character to the right

The <j> and <k> commands maintain the column position of the cursor. For
example, if the cursor is on the seventh character from the left, when you type
<j> or <k> it goes to the seventh character on the new line. If there is no
seventh character on the new line, the cursor moves to the last character.

Many people who use vi find it helpful to mark these four keys with
arrows showing the direction in which each key moves the cursor.

6-10 USER'S GUIDE

Editing Text: the Command Mode

!~ " rn " ~E]I !IEULli 1[jE1E]1
Esc III : III i III : III ! III ~ III ~ II r ~ III ; III ! III ~ 111- 11[: llf :p:CC

k
•

Del CLR
SET DIS

UP ~:

Tab II Q II w II Ell R II T JI y II u II I II o II p II ill i Ilf \ '" 7 8 9

[;] H II III r---=
Lock

. S J K L
III

4 5 6

LINE

I I Shift liz II X I r C III V III B I r N II M III ~ II} 11f; II FEED

Shift 1 2 3

-

It CtrlJ II II Ctd ~ - 0 +
LOCK

Some terminals have special cursor control keys that are marked with arrows.
Use them in the same way you use the <h>, <j>, <k>, and <1> commands.

Watch the cursor on the screen while you press the keys <h>, <j>, <k>,
and <1>. Instead of pressing a motion command key a number of times to
move the cursor a corresponding number of spaces or lines, you can precede
the command with the desired number. For example, to move two spaces to
the right, you can press <1> twice or enter <21>. To move up four lines,
press <k> four times or enter <4k>. If you cannot go any farther in the
direction you have requested, vi will sound a bell.

Now experiment with the j and k motion commands. First, move the cur
sor up seven lines. Type

<7k>

SCREEN EDITOR TUTORIAL (vi) 6-11

Editing Text: the Command Mode

The cursor will move up seven lines above the current line. If there are less
than seven lines above the current line, a bell will sound and the cursor will
remain on the current line.

Now move the cursor down 35 lines. Type

<35j>

vi will clear and redraw the screen. The cursor will be on the 35th line below
the current line, appearing in the middle of the new window. If there are less
than 35 lines below the current line, the bell will sound and the cursor will
remain on the current line. Watch what happens when you type the next
command.

<35k>

Like most vi commands, the <h>, <j>, <k>, and <1> motion commands
are silent; they do not appear on the screen as you enter them. The only time
you should see characters on the screen is when you are in append mode and
are adding text to your file. If the motion command letters appear on the
screen, you are still in append mode. Press the ESCAPE key to return to
command mode and try the commands again.

Moving the Cursor to the Right or Left

In addition to the motion command keys <h> and <1>, the space bar and
the BACKSPACE key can be used to move the cursor right or left to a charac
ter on the current line.

<space bar> move the cursor one character to the right

<nspace bar> move the cursor n characters to the right

<BACKSP ACE> move the cursor one character to the left

<nBACKSP ACE> move the cursor n characters to the left

Try typing in a number before the command key. Notice that the cursor
moves the specified number of characters to the left or right. In the following
examples, the cursor movement is shown by the arrows.

6-12 USER'S GUIDE

Editing Text: the Command Mode

To move the cursor quickly to the right or left, prefix a number to the
command. For example, suppose you want to create four columns in your
screen. After you've finished typing the headings for the first three columns,
you notice a typing mistake.

Colunm 1 Column 2 column

t
<ESC>

You want to correct your mistake before continuing. Exit insert mode and
return to command mode by pressing the ESCAPE key; the cursor will move
to the n. Then use the <h> command to move back five spaces.

Column 1 Column 2 column

<5h>

Column 1 Column 2 C01UIlU1

t
<x><i>C<ESC>

SCREEN EDITOR TUTORIAL (vi) 6-13

Editing Text: the Command Mode

Erase the c by typing <x>. Then change to insert mode «i», enter a C, fol
lowed by pressing the ESCAPE key. Use the <1> motion command to return
to your earlier position.

Column 1 Column 2 Column

t
<51>

Column 1 Column 2 Column

t

By now you may have discovered that you can move the cursor back and
forth on a line by using the space bar and the BACKSPACE key.

<space bar> move the cursor one character to the right

<nspace bar> move the cursor n characters to the right

<BACKSP ACE> move the cursor one character to the left

<nBACKSPACE> move the cursor n characters to the left

Again, you can specify a multiple space movement by typing a number before
pressing the space bar or BACKSPACE key. The cursor will move the number
of characters you request to the left or right.

6-14 USER'S GUIDE

Editing Text: the Command Mode

How to Delete Text

If you want to delete a character, move the cursor to that character and
press the <x>. Watch the screen as you do so; the character will disappear
and the line will readjust to the change. To erase three characters in a row,
press <x> three times. In the following example, the arrows under the letters
show the positions of the cursor.

<x>

<nx>

delete one character

delete n characters, where n is the number of charac
ters you want to delete

Hello wurld!

t
<x>

Hello wrld!

Now try preceding <x> with the number of characters you want to delete.
For example, delete the second occurrence of the word deep from the text
shown in the following screen. Put the cursor on the first letter of the string
you want to delete, and delete five characters (for the four letters of deep plus
an extra space).

SCREEN EDITOR TUTORIAL (vi) 6-15

Editing Text: the Command Mode

Tarorrow the Loch Ness rronster
shall slither forth fran

the deep dark rep depths of the lakE.

<5x>

Tarorrow the Loch Ness rronster
shall slither forth fran

the deep dark r of the lakE.

<5x>

Notice that vi adjusts the text so that no gap appears in place of the
deleted string. If, as in this case, the string you want to delete happens to be
a word, you can also use the vi command for deleting a word. This command
is described later in the section "Word Positioning. "

How to Add Text

There are two basic commands for adding text: the insert «i» and
append «a» commands. To add text with the insert command at a point in
your file that is visible on the screen, move the cursor to that point by using
<h>, <j>, <k>, and <1>. Then press <i> and start entering text. As you
type, the new text will appear on the screen to the left of the character on

6-16 USER'S GUIDE

Editing Text: the Command Mode

which you put the cursor. That character and all characters to the right of the
cursor will move right to make room for your new text. The vi editor will
continue to accept the characters you type until you press the ESCAPE key. If
necessary, the original characters will even wrap around onto the next line.

Hello Wrld!

t
<i>o

Hello World!

t
<ESC>

You can use the append command in the same way. The only difference
is that the new text will appear to the right of the character on which you put
the cursor.

Later in this tutorial you will learn how to move around on the screen or
scroll through a file to add or delete characters, words, or lines.

SCREEN EDITOR TUTORIAL (vi) 6-17

Quitting vi

When you have finished your text, you will want to write the buffer con
tents to a file and return to the shell. To do this, hold down the SHIFT key
and press Z twice «ZZ». The editor remembers the file name you specified
with the vi command at the beginning of the editing session, and moves the
buffer text to the file of that name. A notice at the bottom of the screen gives
the file name and the number of lines and characters in the file. Then the
shell gives you a prompt.

<a>This is a test file.<CR>
I am adding text to<CR>
a temporary buffer and<CR>
now it is perfect.<CR>
I want to write this file,<CR>
and return to the shell.<ESC><ZZ>

"stuff" [New file] 7 lines, 151 characters
$

You can also use the :w and :q commands of the line editor for writing
and quitting a file. (Line editor commands begin with a colon and appear on
the bottom line of the screen.) The :w command writes the buffer to a file.
The :q command leaves the editor and returns you to the shell. You can type
these commands separately or combine them into the single command :wq. It
is easier to combine them.

6-18 USER'S GUIDE

<a> This is a test file.<CR>
I am adding text to<CR>
a temporary buffer and<CR>
now it is perfect.<CR>
I want to write this file,<CR>
and return to the shell.<ESC>

:wq<CR>

Quitting vi

SCREEN EDITOR TUTORIAL (vi) 6-19

Quitting vi

Figure 6-2 summarizes the basic commands you need to enter and use vi.

Command Function

TERM =terminal_name
export TERM set the terminal configuration

tput init initialize the terminal as defined by terminal_name

vi filename enter vi editor to edit the file called filename

<a> add text after the cursor

<h> move one character to the left

<j> move down one line

<k> move up one line

<1> move one character to the right

<x> delete a character

<CR> carriage return

<ESC> leave append mode and return to vi
command mode

:w write to a file

:q quit vi

:wq write to a file and quit vi

<zz> write to a file and quit vi

Figure 6-2: Summary of Commands for the vi Editor

6-20 USER'S GUIDE

Exercise 1

Answers to the exercises are given at the end of this chapter. However,
keep in mind that there is often more than one way to perform a task in vi. If
your method works, it is correct.

As you give commands in the following exercises, watch the screen to see
how it changes or how the cursor moves.

1-1. If you have not logged in yet, do so now. Then set your terminal con
figuration.

1-2. Enter vi and append the following five lines of text to a new file
called exerl.

This is an exercise!
Up, down,
left, right,
build your terminal's
muscles bit by bit

1-3. Move the cursor to the first line of the file and the seventh character
from the right. Notice that as you move up the file, the cursor moves
in to the last letter of the file, but it does not move out to the last
letter of the next line.

1-4. Delete the seventh and eighth characters from the right.

1-5. Move the cursor to the last character on the last line of the text.

1-6. Append the following new line of text:

and byte by byte

1-7. Write the buffer to a file and quit vi.

1-8. Reenter vi and append two more lines of text to the file exerl.
What does the notice at the bottom of the screen say once you have
reentered vi to edit exerl?

SCREEN EDITOR TUTORIAL (vi) 6-21

Moving the Cursor Around the Screen

Until now you have been moving the cursor with the <h>, <j>, <k>,
<I>, BACKSPACE key, and the space bar. There are several other commands
that can help you move the cursor quickly around the screen. This section
explains how to position the cursor in the following ways:

• by characters on a line

• by lines

• by text objects

o words

o sentences

o paragraphs

• in the window

There are also commands that position the cursor within parts of the vi edit
ing buffer that are not visible on the screen. These commands will be dis
cussed in the next section, "Positioning the Cursor in Undisplayed Text."

To follow this section of the tutorial, you should enter vi with a file that
contains at least 40 lines. If you do not have a file of that length, create one
now. Remember, to execute the commands described here, you must be in
command mode of vi. Press the ESCAPE key to make sure that you are in
command mode rather than append mode.

Positioning the Cursor on a Character

There are three ways to position the cursor on a character in a line.

• by moving the cursor right or left to a character

• by specifying the character at either end of the line

• by searching for a character on a line

The first method was discussed earlier in this chapter under "Moving the Cur
sor to the Right or Left." The following sections describe the other two
methods.

6-22 USER'S GUIDE

Moving the Cursor Around the Screen

Moving the Cursor to the Beginning or End of a Line

The second method of positioning the cursor on a line is by using one of
three commands that put the cursor on the first or last character of a line.

<$>

<0> (zero)

< A > (circumflex)

puts the cursor on the last character of a line

puts the cursor on the first character of a line

puts the cursor on the first nonblank character of a
line

The following examples show the movement of the cursor produced by
each of these three commands.

Go to the end of the line!

t
<$>

Go to the end of the line!

t

SCREEN EDITOR TUTORIAL (vi) 6-23

Moving the Cursor Around the Screen

Go to the begimring of the line!

t
<0>

Go to the begimring of the line!

t

Go to the first character
of the line

that is not blank!

t
<>

Go to the first character
of the line

that is not blank!

t

6-24 USER'S GUIDE

Moving the Cursor Around the Screen

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a specific
character on the current line. If the character is not found on the current line,
a bell sounds and the cursor does not move. (There is also a command that
searches a file for patterns. This will be discussed in the next section.) There
are six commands you can use to search within a line: <f>, <F>, <t>, <T>,
<i>, and <,> . You must specify a character after all of them except the <i>
and <,> commands.

<fx> Move the cursor to the right to the specified character x.

<Fx> Move the cursor to the left to the specified character x.

<tx> Move the cursor right to the character just before the specified
character x.

<Tx> Move the cursor left to the character just after the specified char
acter x.

<i> Continue the search specified in the last command, in the same
direction. The i remembers the character and seeks out the next
occurrence of that character on the current line.

<,> Continue the search specified in the last command, in the opposite
direction. The, remembers the character and seeks out the previ
ous occurrence of that character on the current line.

For example, in the following screen vi searches to the right for the first
occurrence of the letter A on the current line.

SCREEN EDITOR TUTORIAL (vi) 6-25

Moving the Cursor Around the Screen

Go forward to the letter A on this line.

t
<fA>

Go forward to the letter A on this line.

t

Try the search commands on one of your files.

Line Positioning

Besides the <j> and <k> commands that you have already used, the
<+>, <->, and <CR> commands can be used to move the cursor to other
lines.

The Minus Sign Motion Command
The <-> command moves the cursor up a line, positioning it at the first

nonblank character on the line. To move more than one line at a time,
specify the number of lines you want to move before the <-> command. For
example, to move the cursor up 13 lines, type:

<13->

The cursor will move up 13 lines. If some of those lines are above the current
window, the window will scroll up to reveal them. This is a rapid way to
move quickly up a file.

Now try to move up 100 lines. Type:

<100->

What happened to the window? If there are less then 100 lines above the
current line, a bell will sound, telling you that you have made a mistake, and
the cursor will remain on the current line.

6-26 USER'S GUIDE

Moving the Cursor Around the Screen

The Plus Sign Motion Command

The plus sign command «+» or the <CR> command moves the cursor
down a line. Specify the number of lines you want to move before the <+>
command. For example, to move the cursor down 9 lines, type:

<9+>

The cursor will move down 9 lines. If some of those lines are below the
current screen, the window will scroll down to reveal them.

Now try to do the same thing by pressing the RETURN key. Were the
results the same as when you pressed the + key?

Word Positioning

The vi editor considers a word to be a string of characters that may
include letters, numbers, or underscores. There are six word positioning com
mands: <w>, , <e>, <W>, , and <E>. The lowercase commands
«w>, , and <e» treat any character other than a letter, digit, or under
score as a delimiter, signifying the beginning or end of a word. Punctuation
before or after a blank is considered a word. The beginning or end of a line is
also a delimiter.

The uppercase commands «W>, , and <E» treat punctuation as
part of the word; words are delimited by blanks and newlines only.

The following is a summary of the word-positioning commands.

<w> Move the cursor forward to the first character in the next word.
You may press <w> as many times as you want to reach the
word you want, or you can prefix the necessary number to the
<w>.

<nw> Move the cursor forward n number of words to the first character
of that word. The end of the line does not stop the movement of
the cursor; instead, the cursor wraps around and continues count
ing words from the beginning of the next line.

SCREEN EDITOR TUTORIAL (vi) 6-27

Moving the Cursor Around the Screen

The <w> ccmnand
leaps word by word through the

file. M:Jve fran THIS word forward

t
<6w>

six words to THIS word.

t

The <w> ccmnand
leaps word by word through the

file. M:Jve fran THIS -word forward

six -words to THIS word.

t

<W> Ignore all punctuation and move the cursor forward to the word
after the next blank.

<e> Moves the cursor forward in the line to the last character in the
next word.

6-28 USER'S GUIDE

Go forward one word to the end of
the next word in this line

t
<e>

Go forward one word to the end of
the next word in this line

1

Moving the Cursor Around the Screen

Go to the end of the third word after the current word.

t
<3e>

SCREEN EDITOR TUTORIAL (vi) 6-29

Moving the Cursor Around the Screen

Go to the end of the third word after the current word.

t

<E> Ignores all punctuation except blanks, delimiting words only by
blanks.

<h> Move the cursor backward in the line to the first character of the
previous word.

<nh> Move the cursor backward n number of words to the first charac
ter of the nth word. The <h> command does not stop at the
beginning of a line, but moves to the end of the line above and
continues moving backward.

 Can be used just like the <h> command, except that it delimits
the word only by blank spaces and newlines. It treats all other
punctuation as letters of a word.

Leap backward word by word through

the file. Go back four words fran here.

t \
<4b>

6-30 USER'S GUIDE

Moving the Cursor Around the Screen

the file. Go back four words frcm here.

t

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vi a sentence ends in
! or . or ? If these delimiters appear in the middle of a line, they must be
followed by two blanks for vi to recognize them. You should get used to the
vi convention of recognizing two blanks after a period as the end of a sen
tence, because it is often useful to be able to operate on a sentence as a unit.

You can move the cursor from sentence to sentence in the file with the
«> (open parenthesis) and <» (close parenthesis) commands.

< (> Move the cursor to the beginning of the current sentence.

< n(> Move the cursor to the beginning of the nth sentence above the
current sentence.

<) > Move the cursor to the beginning of the next sentence.

< n) > Move the cursor to the beginning of the nth sentence below the
current sentence.

The example in the following screens shows how the open parenthesis
moves the cursor around the screen.

SCREEN EDITOR TUTORIAL (vi) 6-31

Moving the Cursor Around the Screen

Suddenly we sp:>tted whales in the
distance. Daniel was the first to see them.

t
«>

distance. Daniel was the first to see them.

t

Now repeat the command, preceding it with a number. For example,
type:

<3(> (or)
<5»

Did the cursor move the correct number of sentences?

6-32 USER'S GUIDE

Moving the Cursor Around the Screen

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line. If you
want to be able to move the cursor to the beginning of a paragraph (or later in
this tutorial, to delete or change a whole paragraph), then make sure each
paragraph ends in a blank line.

<{>

<n{>

<}>

<n}>

Move the cursor to the beginning of the current paragraph,
which is delimited by a blank line above it.

Move the cursor to the beginning of the nth paragraph
above the current paragraph.

Move the cursor to the beginning of the next paragraph.

Move the cursor to the nth paragraph below the current
line.

The following two screens show how the cursor can be moved to the
beginning of another paragraph.

SUddenly, we spotted whales in the

distance. Daniel was the first to see them.

t
<}>

"Hey look! Here cane the whales!" he cried excitedly.

SCREEN EDITOR TUTORIAL (vi) 6-33

Moving the Cursor Around the Screen

SUddenly, we spotted whales in the

distance. Daniel was the first to see them.

~

"Hey look! Here ccane the whales!" he cried excitedly.

Positioning in the Window

The vi editor also provides three commands that help you position your
self in the window. Tryout each command. Be sure to type them in upper
case.

<H>

<M>

<L>

Move the cursor to the first line on the screen.

Move the cursor to the middle line on the screen.

Move the cursor to the last line on the screen.

6-34 USER'S GUIDE

Moving the Cursor Around the Screen

This part of the file is
above the display window.

Type <H> (HOME) to move the cursor here. ,
type <M> (MIDDLE) to move the cursor here.

Type <L> (LAST line on screen) to move
, the cursor here.

This part of the file is
below the display window.

Figures 6-3 through 6-6 summarize the vi commands for moving the cur
sor by positioning it on a character, line, word, sentence, paragraph, or posi
tion on the screen. (Additional vi commands for moving the cursor are sum
marized in Figure 6-7, later in the chapter.)

SCREEN EDITOR TUTORIAL (vi) 6-35

Moving the Cursor Around the Screen

Positioning on a Character

<h> Move the cursor one character to the left.

<1> Move the cursor one character to the right.

<BACKSP ACE> Move the cursor one character to the left.

<space bar> Move the cursor one character to the right.

<fx> Move the cursor to the right to the specified
character x.

<Fx> Move the cursor to the left to the specified
character x.

<tx> Move the cursor to the right, to the character
just before the specified character x.

<Tx> Move the cursor to the left, to the character just
after the specified character x.

<i> Continue searching in same direction on the
line for the last character requested with <f>,
<F>, <t>, or <T>. The i remembers the
character and finds the next occurrence of it on
the current line.

<,> Continue searching in opposite direction on the
line for the last character requested with <f>,
<F>, <t>, or <T>. The , remembers the
character and finds the next occurrence of it on
the current line.

Figure 6-3: Summary of vi Motion Commands (Sheet 1 of 4)

6-36 USER'S GUIDE

Moving the Cursor Around the Screen

Positioning on a Line

<k> Move the cursor up to the same column in the pre-
vious line (if a character exists in that column).

<j> Move the cursor down to the same column in the
next line (if a character exists in that column).

<-> Move the cursor up to the beginning of the previ-
ous line.

<+> Move the cursor down to the beginning of the next
line.

<CR> Move the cursor down to the beginning of the next
line.

Figure 6-4: Summary of vi Motion Commands (Sheet 2 of 4)

SCREEN EDITOR TUTORIAL (vi) 6-37

Moving the Cursor Around the Screen

Positioning on a Word

<w> Move the cursor forward to the first character in the
next word.

<W> Ignore all punctuation and move the cursor forward
to the next word delimited only by blanks.

<h> Move the cursor backward one word to the first
character of that word.

 Move the cursor to the left one word, which is del-
imited only by blanks.

<e> Move the cursor to the end of the current word.

<E> Delimit the words by blanks only. The cursor is
placed on the last character before the next blank
space, or end of the line.

Figure 6-5: Summary of vi Motion Commands (Sheet 3 of 4)

6-38 USER'S GUIDE

Moving the Cursor Around the Screen

Positioning on a Sentence

«> Move the cursor to the beginning of the current
sentence.

<» Move the cursor to the beginning of the next sen-
tence.

, Positioning on a Paragraph

<{> Move the cursor to the beginning of the current
paragraph.

<}> Move the cursor to the beginning of the next para-
~raph.

Positioning in the Window

<H> Move the cursor to the first line on the screen (the
home position).

<M> Move the cursor to the middle line on the screen.

<L> Move the cursor to the last line on the screen.

Figure 6-6: Summary of vi Motion Commands (Sheet 4 of 4)

SCREEN EDITOR TUTORIAL (vi) 6-39

Positioning the Cursor in Undisplayed Text

How do you move the cursor to text that is not shown in the current edit
ing window? One option is to use the <20j> or <20k> command. However,
if you are editing a large file, you need to move quickly and accurately to
another place in the file. This section covers those commands that can help
you move around within the file in the following ways:

• by scrolling forward or backward in the file

• by going to a specified line in the file

• by searching for a pattern in the file

Scrolling the Text

Four commands allow you to scroll the text of a file. The < Af> (control-£)
and <Ad> (control-d) commands scroll the screen forward. The <Ab>
(control-b) and <AU> (control-u) commands scroll the screen backward.

The Control-f Command

The < Af> (control-£) command scrolls the text forward one full window of
text below the current window. To do this vi clears the screen and redraws
the window. The three lines that were at the bottom of the current window
are placed at the top of the new window. If there are not enough lines left in
the file to fill the window, the screen displays a -- (tilde) to show that there
are empty lines.

vi clears and redraws the screen as follows:

6-40 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

These last three lines of the current
window become the first two lines of
the new window.

This part of the file
is below the display
window.

You can scroll forward
to place this text in the
display window.

The Control-d Command

The < Ad> (con trol-d) command scrolls down a half screen to reveal text
below the window. When you type <Ad>, the text appears to be rolled up at
the top and unrolled at the bottom. This allows the lines below the screen to
appear on the screen, while the lines at the top of the screen disappear. If
there are not enough lines in the file, a bell will sound.

The Control-b Command

The <Ab> (control-b) command scrolls the screen back a full window to
reveal the text above the current window. To do this, vi clears the screen and
redraws the window with the text that is above the current screen. Unlike the
<A f> command, < Ab> does not leave any reference lines from the previous
window. If there are not enough lines above the current window to fill a full
new window, a bell will sound and the current window will remain on the
screen.

SCREEN EDITOR TUTORIAL (vi) 6-41

Positioning the Cursor in Undisplayed Text

This part of the file
is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is re
drawn with the text above the window.

Now try scrolling backward. Type

<Ab>

vi clears the screen and draws a new screen.

6-42 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the
window.

Any text that was in the display window is placed below the current window.

The Control-u Command

The <AU> (control-u) command scrolls up a half screen of text to reveal
the lines just above the window. The lines at the bottom of the window are
erased. Now scroll down in the text, moving the portion below the screen
into the window. Type:

A

< u>

When the cursor reaches the top of the file, a bell sounds to notify you that
the file cannot scroll further.

Go to a Specified Line

The <G> command positions the cursor on a specified line in the win
dow; if that line is not currently on the screen, <G> clears the screen and
redraws the window around it. If you do not specify a line, <G> goes to the
last line of the file.

SCREEN EDITOR TUTORIAL (vi) 6-43

Positioning the Cursor in Undisplayed Text

<G> go to the last line of the file

<nG> go to the nth line of the file

Line Numbers

Each line of the file has a line number corresponding to its position in the
buffer. To get the number of a particular line, position the cursor on it and
type < A g>. The < A g> command gives you a status notice at the bottom of
the screen which tells you:

• the name of the file

• if the file has been modified

• the line number on which the cursor rests

• the total number of lines in the buffer

• the percentage of the total lines in the buffer represented by the current
line

This line is the 35th line of the buffer.
The cursor is on this line.

t
< g>

There are several nore lines in the
buffer.
The last line of the buffer is line 116.

6-44 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

This line is the 35th line of the buffer.

The cursor is an this line.

There are several rrore lines in the

buffer.

The last line of the buffer is line 116.

"file . name " [m:xlified] line 36 of 116 --34%--

Searching for a Pattern of Characters: the / and ?
Commands

The fastest way to reach a specific place in your text is by using one of the
search commands: I,?, <n>, or <N>. These commands allow you to search
forward or backward in the buffer for the next occurrence of a specified char
acter pattern. The I and? commands are not silent; they appear as you type
them, along with the search pattern, on the bottom of the screen. The <n>
and <N> commands, which allow you to repeat the requests you made for a
search with a I or ? command, are silent.

The I, followed by a pattern (/pattern), searches forward in the buffer for
the next occurrence of the characters in pattern, and puts the cursor on the
first of those characters. For example, the command line

IHello world<CR>

finds the next occurrence in the buffer of the words Hello world and puts the
cursor under the H.

The ?, followed by a pattern (?pattern), searches backward in the buffer for
the first occurrence of the characters in pattern, and puts the cursor on the first
of those characters. For example, the command line

?data set design<CR>

SCREEN EDITOR TUTORIAL (vi) 6-45

Positioning the Cursor in Undisplayed Text

finds the last occurrence in the buffer (before your current position) of the
words data set design and puts the cursor under the d in data.

These search commands do not wrap around the end of a line while
searching for two words. For example, say you are searching for the words
Hello world. If Hello is at the end of one line and world is at the beginning
of the next, the search command will not find that occurrence of Hello World.

However, they do wrap around the end or the beginning of the buffer to
continue a search. For example, if you are near the end of the buffer, and the
pattern for which you are searching (with the /pattern command) is at the top
of the buffer, the command will find the pattern.

The <n> and <N> commands allow you to continue searches you have
requested with /pattern or ?pattern without retyping them.

<n> Repeat the last search command.

<N> Repeat the last search command in the opposite direction.

For example, say you want to search backward in the file for the three-letter
pattern the. Initiate the search with ?the and continue it with <n>. The fol
lowing screens offer a step-by-step illustration of how the <n> searches back
ward through the file and finds four occurrences of the character string the.

SUddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! Here came the whales!" he cried excitedly.

?the

6-46 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

Suddenly, we sJX)tted whales in the
distance. Daniel was the first to see them .
. P

"Hey look! Here cane the whales!" he cried excitedly.

t
(1)

Suddenly, we sJX)tted whales in the
distance. Daniel was the first to see them.

"Hey look! Here cane the whales!" he cried excitedly.

t
<n>

SCREEN EDITOR TUTORIAL (vi) 6-47

Positioning the Cursor in Undisplayed Text

SUddenly, we spotted whales in the
distance. Daniel was the first to see them.

t
(2)

"Hey look! Here cane the whales!" he cried exci tedl y.

SUddenly, we spotted whales in the
distance. Daniel was the first to see them.

t
<n>

"Hey look! Here cane the whales!" he cried excitedly.

6-48 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

SUddenly, we spotted whales in the
distance. Daniel was the first to see them.

t
(3)

"Hey look! Here cane the whales!" he cried exci tedl y .

SUddenly, we spotted whales in the
distance. Daniel was the first to see them.

t
<n>

.P
"Hey look! Here cane the whales!" he cried excitedly.

SCREEN EDITOR TUTORIAL (vi) 6-49

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the

t
(4)

distance. Daniel was the first to see them .
. P
"Hey look! Here ccme the whales!" he cried excitedly.

The / and ? search commands do not allow you to specify particular
occurrences of a pattern with numbers. You cannot, for example, request the
third occurrence (after your current position) of a pattern.

Figure 6-7 summarizes the vi commands for moving the cursor by scrol
ling the text, specifying a line number, and searching for a pattern.

6-50 USER'S GUIDE

Positioning the Cursor in Undisplayed Text

Scrolling

<~f> Scroll the screen forward a full window, revealing the
window of text below the current window.

<~d> Scroll the screen down a half window, revealing lines
below the current window.

<~b> Scroll the screen back a full window, revealing the win-
dow of text above the current window.

~

< u> Scroll the screen up a half window, revealing the lines
of text above the current window.

Positioning on a Numbered Line

<lG> Go to the first line of the file.

<G> Go to the last line of the file.
~

< g> Give the line number and file status.

Searching for a Pattern

/pattern Search forward in the buffer for the next occurrence of
the pattern. Position the cursor on the first character of
the pattern.

?pattern Search backward in the buffer for the first occurrence of
the pattern. Position the cursor under the first character
of the pattern.

<n> Repeat the last search command.

<N> Repeat the search command in the opposite direction.

Figure 6-7: Summary of Additional vi Motion Commands

SCREEN EDITOR TUTORIAL (vi) 6-51

Exercise 2

2-1. Create a file called exer2. Type a number on each line, numbering the
lines from 1 to 50. Your file should look similar to the following.

2

3

48
49

50

2-2. Try using each of the scroll commands, noticing how many lines scroll
through the window. Try the following:

A

< u>
<Ad>

2-3. Go to the end of the file. Append the following line of text.

123456789 123456789

What number does the command <7h> place the cursor on? What
number does the command <31> place the cursor on?

2-4. Try the command <$> and the command <0> (number zero).

2-5. Go to the first character on the line that is not a blank. Move to the
first character in the next word. Move back to the first character of
the word to the left. Move to the end of the word.

6-52 USER'S GUIDE

Exercise 2

2-6. Go to the first line of the file. Try the commands that place the cursor
in the middle of the window, on the last line of the window, and on
the first line of the window.

2-7. Search for the number 8. Find the next occurrence of the number 8.
Find 48.

SCREEN EDITOR TUTORIAL (vi) 6-53

Creating Text

There are three basic commands for creating text:

<a> append text

<i> insert text

<0> open a new line on which text can be entered

After you finish creating text with anyone of these commands, you can
return to the command mode of vi by pressing the ESCAPE key.

Appending Text

<a> append text after the cursor

<A> append text at the end of the current line

You have already experimented with the <a> command in the "Creating
a File" section. Make a new file named junk2. Append some text using the
<a> command. To return to command mode of vi, press the ESCAPE key.
Then compare the <a> command to the <A> command.

Inserting Text

<i> insert text before the cursor

<I> insert text at the beginning of the current line before the first char
acter that is not a blank

To return to the command mode of vi, press the ESCAPE key.

In the following examples you can compare the append and insert com
mands. The arrows show the position of the cursor, where new text will be
added.

6-54 USER'S GUIDE

Creating Text

Append three spaces AFTER the H of Here

t
<a>

Append three spaces AFTER the H of H ere.

t
<ESC>

Insert three spaces BEFORE the H of Here.

t
<i>.

Insert three spaces BEFORE the H of Here.

t
<ESC>

Notice that in both cases, the user has left text input mode by pressing the
ESCAPE key.

SCREEN EDITOR TUTORIAL (vi) 6-55

Creating Text

Opening a Line for Text

<0> Create text from the beginning of a new line below the current
line. You can issue this command from any point in the current
line.

<0> Create text from the beginning of a new line above the current
line. This command can also be issued from any position in the
current line.

The open command creates an open line (space) directly above or below
the current line, and puts you into text input mode. For example, in the fol
lowing screens the <0> command opens a line above the current line, and
the <0> command opens a line below the current line. In both cases, the cur
sor waits for you to enter text from the beginning of the new line.

Create text APIJVE the current line.

t
<0>

[blank line] t Create text AB:NE the =ent line.

6-56 USER'S GUIDE

Now create text BEJ:.(M the current line.

t
<0>

Now create text BEJ:.(M the current line.
[blank line]

t

Creating Text

Figure 6-8 summarizes the commands for creating and adding text with
the vi editor.

SCREEN EDITOR TUTORIAL (vi) 6-57

Creating Text

Command Function

<a> Crea te text after the cursor.

<A> Create text at the end of the current line.

<i> Create text in front of the cursor.

<I> Create text before the first character on the
current line that is not a blank.

<0> Create text at the beginning of a new line
below the current line.

<0> Create text at the beginning of a new line
above the current line.

<ESC> Return vi to command mode from any of
the above text input modes.

Figure 6-8: Summary of vi Commands for Creating Text

6-58 USER'S GUIDE

Exercise 3

3-1. Create a text file called exer3.

3-2. Insert the following four lines of text.

Append text
Insert text
a computer's
job is boring.

3-3. Add the following line of text above the last line:

financial statement and

3-4. Using a text insert command, add the following line of text above the
third line:

Delete text

3-5. Add the following line of text below the current line:

byte of the budget

3-6. Using an append command, add the following line of text below the
last line:

But, it is an exciting machine.

3-7. Move to the first line and add the word some before the word text.

Now practice using each of the six commands for creating text.

3-8. Leave vi and go on to ~he next section to find out how to delete any
mistakes you made in creating text.

SCREEN EDITOR TUTORIAL (vi) 6-59

Deleting Text

You can delete text with various commands in command mode, and undo
the entry of small amounts of text in text input mode. In addition, you can
undo entirely the effects of your most recent command.

Undoing Entered Text in Text Input Mode

To delete a character at a time when you are in text input mode use the
BACKSPACE key.

<BACKSP ACE> Delete the current character (the character shown by
the cursor).

The BACKSPACE key backs up the cursor in text input mode and deletes
each character that the cursor backs across. However, the deleted characters
are not erased from the screen until you type over them or press the ESCAPE
key to return to command mode.

In the following example, the arrows represent the cursor.

Mary had a litttl

t
<BACKSPACE> <BACKSPACE>

Mary had a litttl

t
<ESC>

Mary had a litt

t

6-60 USER'S GUIDE

Deleting Text

Notice that the characters are not erased from the screen until you press the
ESCAPE key.

There are two other keys that delete text in text input mode. Although
you may not use them often, you should be aware that they are available. To
remove the special meanings of these keys so that they can be typed as text,
see the section on special commands.

A

< w> undo the entry of the current word

<@> delete all text entered on current line since text input mode was
entered

When you type < A W>, the cursor backs up over the word last typed and
waits on the first character. It does not literally erase the word until you press
the ESCAPE key or enter new characters over the old ones. The <@> sign
behaves in a similar manner except that it removes all text you have typed on
the current line since you last entered input mode.

Undo the Last Command

Before you experiment with the delete commands, you should try the u
command. This command undoes the last command you issued.

<u> undo the last command

<U> restore the current line to its state before you changed it

If you delete lines by mistake, type <u>; your lines will reappear on the
screen. If you type the wrong command, type <u> and it will be nullified.
The <U> command will nullify all changes made to the current line as long
as the cursor has not been moved from it.

If you type <u> twice in a row, the second command will undo the first;
your undo will be undone! For example, say you delete a line by mistake and
restore it by typing <u>. Typing <u> a second time will delete the line
again. Knowing this command can save you a lot of trouble.

SCREEN EDITOR TUTORIAL (vi) 6-61

Deleting Text

Delete Commands in Command Mode

You know that you can precede a command by a number. Many of the
commands in vi, such as the delete and change commands, also allow you to
enter a cursor movement command after another command. The cursor
movement command can specify a text object such as a word, line, sentence,
or paragraph. The general format of a vi command is:

[number][command]text_object

The brackets around some components of the command format show that
those components are optional.

All delete commands issued in command mode immediately remove
unwanted text from the screen and redraw the affected part of the screen.

The delete command follows the general format of a vi command.

[number]dtext_object

Deleting Words

You can delete a word or part of a word with the <dw> command. Move
the cursor to the first character to be deleted and type <dw>. The character
under the cursor and all subsequent characters in that word will be erased.

the deep dark depths of the lake.

t
<2dw>

6-62 USER'S GUIDE

Deleting Text

the depths of the lake.

t

The <dw> command deletes one word or punctuation mark and the
space(s) that follow it. You can delete several words or marks at once by
specifying a number before the command. For example, to delete three words
and two commas, type <5dw>.

the deep, deep, dark depths of the lake

t
<5dw>

SCREEN EDITOR TUTORIAL (vi) 6-63

Deleting Text

the depths of the lake

t

Deleting Paragraphs

To delete paragraphs, use the following commands.

<d{> or <d}>

Observe what happens to your file. Remember, you can restore the deleted
text with <u>.

Deleting Lines

To delete a line, type <dd>. To delete multiple lines, specify a number
before the command. For example, typing

<tOdd>

will erase ten lines. If you delete more than a few lines, vi will display this
notice on the bottom of the screen:

10 lines deleted

If there are less than ten lines below the current line in the file, a bell will
sound and no lines will be deleted.

Deleting Text After the Cursor

To delete all text on a line after the cursor, put the cursor on the first char
acter to be deleted and type

<D> or <d$>.

6-64 USER'S GUIDE

Deleting Text

Neither of these commands allows you to specify a number of lines; they can
be used only on the current line.

Figure 6-9 summarizes the vi commands for deleting text.

Command Function

For INSERT Mode:

<BACKSPACE> Delete the current character.

<Ah> Delete the current character.

<AW> Delete the current word.

<@> Delete the current line of new text or
delete all new text on the current line.

For COMMAND Mode:

<u> Undo the last command.

<U> Restore current line to its previous state.

<x> Delete the current character.

<ndx> Delete n number of text objects of type x.

<dw> Delete the word at the cursor through
the next space or to the next punctuation
mark.

<dW> Delete the word and punctuation at the
cursor through the next space.

<dd> Delete the current line.

<0> Delete the portion of the line to the right
of the cursor.

<d» Delete the current sentence.

<d}> Delete the current paragraph.

Figure 6-9: Summary of Delete Commands

SCREEN EDITOR TUTORIAL (vi) 6-65

Exercise 4

4-1. Create a file called exer4 and put the following four lines of text in it:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

4-2. Move the cursor to line two and append to the end of that line:

tedious and unsavory.

Delete the word unsavory while you are in append mode.

Delete the word boring while you are in command mode.

What is another way you could have deleted the word boring?

4-3. Insert at the beginning of line four:

congenial and computerized.

Delete the line.

How can you delete the contents of the line without removing the line
itself?

Delete all the lines with one command.

4-4. Leave the screen editor and remove the empty file from your direc
tory.

6-66 USER'S GUIDE

Modifying Text

The delete commands and text input commands provide one way for you
to modify text. Another way you can change text is by using a command that
lets you delete and create text simultaneously. There are three basic change
commands: <r>, <S>, and <c>.

Replacing Text

<r> Replace the current character (the character shown by the cursor).
This command does not initiate text input mode, and so does not
need to be followed by pressing the ESCAPE key.

<nr> Replace n characters with the same letter. This command
automatically terminates after the nth character is replaced. It
does not need to be followed by pressing the ESCAPE key.

<R> Replace only those characters typed over until the ESCAPE com
mand is given. If the end of the line is reached, this command
will append the input as new text.

The <r> command replaces the current character with the next character
that is typed in. For example, suppose you want to change the word acts to
ants in the following sentence:

The circus has many acts.

Place the cursor under the c of acts and type

<r>n

The sentence becomes

The circus has many ants.

To change many to 7777, place the cursor under the In of many and type

<4r7>

The <r> command changes the four letters of many to four occurrences of the
number seven.

The circus has 7777 ants.

SCREEN EDITOR TUTORIAL (vi) 6-67

Modifying Text

Substituting Text

The substitute command replaces characters, but then allows you to con
tinue to insert text from that point until you press the ESCAPE key.

<s> Delete the character shown by the cursor and append text. End
the text input mode by pressing the ESCAPE key.

<ns> Delete n characters and append text. End the text input mode by
pressing the ESCAPE key.

<5> Replace all the characters in the line.

When you enter the <s> command, the last character in the string of
characters to be replaced is overwritten by a $ sign. The characters are not
erased from the screen until you type over them, or leave text input mode by
pressing the ESCAPE key.

Notice that you cannot use an argument with either <r> or <s>. Did you
try?

Suppose you want to substitute the word million for the word hundred in
the sentence My salary is one hlmdred dollars. Put the cursor under the h
of hundred and type <7s>. Notice where the $ sign appears.

My salary is one lmndred dollars.

t
<78>

Then type million.

6-68 USER'S GUIDE

Modifying Text

My salary is one hundre$ dollars.

t
million

My salary is one million dollars.

t

Changing Text

The substitute command replaces characters. The change command
replaces text objects, and then continues to append text from that point until
you press the ESCAPE key. To end the change command, press the ESCAPE
key.

The change command can take an argument. You can replace a character,
word, or an entire line with new text.

<ncx> Replace n number of text objects of type x, such as sentences
(shown by <») and paragraphs (shown by <}».

SCREEN EDITOR TUTORIAL (vi) 6-69

Modifying Text

<ew>

<new>

<ee>

<nee>

<nC>

Replace a word or the remaining characters in a word with
new text. The vi editor prints a $ sign to show the last char
acter to be changed.

Replace n words.

Replace all the characters in the line.

Replace all characters in the current line and up to n lines of
text.

Replace the remaining characters in the line, from the cursor
to the end of the line.

Replace the remaining characters from the cursor in the
current line and replace all the lines following the current line
up to n lines.

The change commands, <cw> and <C>, use a $ sign to mark the last
letter to be replaced. Notice how this works in the following example:

They are nON due to arrive on Tuesday.

t
<cw>

6-70 USER'S GUIDE

Modifying Text

They are now due to arrive on Tuesda$.

t
Wednesday<ESC>

They are now due to arrive on Wednesday.

t

Notice that the new word (Wednesday) has more letters than the word it
replaced (Tuesday). Once you have executed the change command you are in
text input mode and can enter as much text as you want. The buffer will
accept text until you press the ESCAPE key.

The <C> command, when used to change the remaining text on a line,
works in the same way. When you enter the command it uses a $ sign to
mark the end of the text that will be deleted, puts you in text input mode, and
waits for you to type new text over the old. The following screens offer an
example of the C command.

SCREEN EDITOR TUTORIAL (vi) 6-71

Modifying Text

This is line 1.
Oh, I must have the wrong number.

t
<c>
This is line 3.
This is line 4.

This is line 1.
Oh, I must have the wrong number$

t
This is line 2.<ESC>
This is line 3.
This is line 4.

This is line 1.
This is line 2.
This is line 3.
This is line 4.

6-72 USER'S GUIDE

Modifying Text

Now try combining arguments. For example, type

<c{>

Because you know the undo command, do not hesitate to experiment with dif
ferent arguments or to precede the command with a number. You must press
the ESCAPE key before using the <u> command, since <c> places you in
text input mode.

Compare <5> and <cc>. The two commands should produce the same
results.

Figure 6-10 summarizes the vi commands for changing text.

SCREEN EDITOR TUTORIAL (vi) 6-73

Modifying Text

Command Function

<r> Replace the current character.

<R> Replace only those characters typed over with
new characters until the ESCAPE key is
pressed.

<s> Delete the character the cursor is on and
append text. End the append mode by pressing
the ESCAPE key.

<S> Replace all the characters in the line.

<cc> Replace all the characters in the line.

<ncx> Replace n number of text objects of type x, such
as sentences (shown by <») and paragraphs
(shown by <}».

<cw> Replace a word or the remaining characters in a
word with new text.

<C> Replace the remaining characters in the line,
from the cursor to the end of the line.

Figure 6-10: Summary of vi Commands for Changing Text

6-74 USER'S GUIDE

Cutting And Pasting Text Electronically

vi provides a set of commands that cut and paste text in a file. Another
set of commands copies a portion of text and places it in another section of a
file.

Moving Text

You can move text from one place to another in the vi buffer by deleting
the lines and then placing them at the required point. The last text that was
deleted is stored in a temporary buffer. If you move the cursor to that part of
the file where you want the deleted lines to be placed and press the p key, the
deleted lines will be added below the current line.

<p> Place the' contents of the temporary buffer after the cursor.

A partial sentence that was deleted by the <D> command can be placed
in the middle of another line. Position the cursor in the space between two
words, then press <p>. The partial line is placed after the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any text
object that was just deleted can be placed somewhere else in the text with
<p>.

The <p> command should be used right after a delete command since the
temporary buffer only stores the results of one command at a time. The <p>
command is also used to copy text placed in the temporary buffer by the yank
command. The yank command «y» is discussed in "Copying Text. "

Fixing Transposed Letters

A quick way to fix transposed letters is to combine the <x> and the <p>
commands as <xp>. <x> deletes the letter. <p> places it after next charac
ter.

Notice the error in the next line.

A line of tetx

SCREEN EDITOR TUTORIAL (vi) 6-75

Cutting And Pasting Text Electronically

This error can be changed quickly by placing the cursor under the .t in tx and
then pressing the <x> and <p> keys, in that order. The result is:

A line of text

Try this. Make a typing error in your file and use the <xp> command to
correct it. Why does this command work?

Copying Text
You can yank (copy) one or more lines of text into a temporary buffer,

and then put a copy of that text anywhere in the file. To put the text in a
new position type <p>; the text will appear on the next line.

The yank command follows the general format of a vi command.

[number]y[text_object]

Yanking lines of text does not delete them from their original position in the
file. If you want the same text to appear in more than one place, this pro
vides a convenient way to avoid typing the same text several times. However,
if you do not want the same text in multiple places, be sure to delete the origi
nal text after you have put the text into its new position.

Figure 6-11 summarizes the ways you can use the yank command.

6-76 USER'S GUIDE

Cutting And Pasting Text Electronically

Command Function

<nyx> Yank n number of text objects of type x, (such
as sentences) and paragraphs }).

<yw> Yank a copy of a word.

<yy> Yank a copy of the current line.

<nyy> Yank n lines.

<y» Yank all text up to the end of a sentence.

<y}> Yank all text up to the end of the paragraph.

Figure 6-11: Summary of the Yank Command

Notice that this command allows you to specify the number of text objects to
be yanked.

Try the following command lines and see what happens on your screen.
(Remember, you can always undo your last command.) Type:

<5yw>

Move the cursor to another spot. Type:

<p>

Now try yanking a paragraph <y}> and placing it after the current paragraph.
Then move to the end of the file <G> and place that same paragraph at the
end of the file.

SCREEN EDITOR TUTORIAL (vi) 6-77

Cutting And Pasting Text Electronically

Copying or Moving Text Using Registers

Moving or copying several sections of text to a different part of the file is
tedious work. vi provides a shortcut for this: named registers in which you
can store text until you want to move it. To store text you can either yank or
delete the text you wish to store.

Using registers is useful if a piece of text must appear in many places in
the file. The extracted text stays in the specified register until you either end
the editing session, or yank or delete another section of text to that register.

The general format of the command is:

[number][" x]command[text_object]

The x is the name of the register and can be any single letter. It must be pre
ceded by a double quotation mark. For example, place the cursor at the
beginning of a line. Type:

<3 " ayy>

Type in more text and then go to the end of the file. Type:

<nap>

Did the lines you saved in register a appear at the end of the file?

Figure 6-12 summarizes the cut and paste commands.

6-78 USER'S GUIDE

Cutting And Pasting Text Electronically

Command Function

<p> Place the contents of the temporary buffer con-
taining the text obtained from the most recent
delete or yank command into the text after the
cursor.

<yy> Yank a line of text and place it into a temporary
buffer.

<nyx> Yank a copy of n number of text objects of type
x and place them in a temporary buffer.

<"xyn> Place a copy of a text object of type n in the
register named by the letter x.

<"xp> Place the contents of the register x after the
cursor.

Figure 6-12: Summary of vi Commands for Cutting and Pasting Text

SCREEN EDITOR TUTORIAL (vi) 6-79

Exercise 5

5-1. Enter vi with the file called exer2. that you created in Exercise 2.

Go to line eight and change its contents to END OF FI~E

5-2. Yank the first eight lines of the file and place them in register z. Put
the contents of register z after the last line of the file.

5-3. Go to line eight and change its contents to eight is great

5-4. Go to the last line of the file. Substitute EXERCISE for FILE Replace
OF with TO

6-80 USER'S GUIDE

Special Commands

Here are some special commands that you will find useful.

<.> repeat the last command

join two lines together

clear the screen and redraw it

change lowercase to uppercase and vice versa

Repeating the Last Command

The. period repeats the last command to create, delete, or change text in
the file. It is often used with the search command.

For example, suppose you forget to capitalize the S in United States.
However, you do not want to capitalize the s in chemical states. One way to
correct this problem is by searching for the word states. The first time you
find it in the expression United States, you can change the s to S. Then con
tinue your search. When you find another occurrence, you can simply type a
period; vi will remember your last command and repeat the substitution of s
for S.

Experiment with this command. For example, if you try to add a period at
the end of a sentence while in command mode, the last text change will sud
denly appear on the screen. Watch the screen to see how the text is affected.

Joining Two Lines

The <J> command joins lines. To enter this command, place the cursor
on the current line, and press the SHIFT and j keys simultaneously. The
current line is joined with the following line.

For example, suppose you have the following two lines of text:

Dear Mr.

Smith:

SCREEN EDITOR TUTORIAL (vi) 6-81

Special Commands

To join these two lines into one, place the cursor under any character in the
first line and type:

<J>

You will immediately see the following on your screen:

Dear Mr • Smith:

Notice that vi automatically places a space between the last word on the first
line and the first word on the second line.

Clearing and Redrawing the Window

If another UNIX system user sends you a message using the write com
mand while you are editing with vi, the message will appear in your current
window, over part of the text you are editing. To restore your text after you
have read the message, you must be in command mode. (If you are in text.
input mode, press the ESCAPE key to return to command mode.) Then type
< AI> (control-I). vi will erase the message and redraw the window exactly as
it appeared before the message arrived.

Changing Lowercase to Uppercase and Vice Versa

A quick way to change any lowercase letter to uppercase, or vice versa, is
by putting the cursor on the letter to be changed and typing a <--> (tilde).
For example, to change the letter a to A, press --. You can change several
letters by typing -- several times, but you cannot precede the command with
a number to change several letters with one command.

Figure 6-13 summarizes the special commands.

6-82 USER'S GUIDE

Special Commands

Command Function

<.> Repeat the last command.

<J> Join the line below the current line with the current line.

<AI> Clear and redraw the current window.

<--> Change lowercase to uppercase, or vice versa.

Figure 6-13: Summary of Special Commands

SCREEN EDITOR TUTORIAL (vi) 6-83

Using Line Editing Commands in vi

The vi editor has access to many of the commands provided by a line edi
tor called ex. [For a complete list of ex commands see the ex(l) page in the
User's Reference Manual.] This section discusses some of those most commonly
used.

The ex commands are very similar to the ed commands discussed in
Chapter 5. If you are familiar with ed, you may want to experiment on a test
file to see how many ed commands also work in vi.

Line editor commands begin with a : (colon). After the colon is typed, the
cursor will drop to the bottom of the screen and display the colon. The
remainder of the command will also appear at the bottom of the screen as you
type it.

Temporarily Returning to the Shell: the :sh and :!
Commands

When you enter vi, the contents of the buffer fill your screen, making it
impossible to issue any shell commands. However, you may want to do so.
For example, you mCly want to get information from another file to incor
porate into your current text. You could get that information by running one
of the shell commands that display the text of a file on your screen, such as
the cat or pg command. However, quitting and reentering the editor is time
consuming and tedious. vi offers two methods of escaping the editor tem
porarily so that you can issue shell commands (and even edit other files)
without having to write your buffer and quit: the:! command and the :sh
command.

The :! command allows you to escape the editor and run a shell command
on a single command line. From the command mode of vi, type :1. These
characters will be printed at the bottom of your screen. Type a shell com
mand immediately after the!. The shell will run your command, give you
output, and print the message [Hit return to continue]. When you press
the RETURN key, vi will refresh the screen and the cursor will reappear
exactly where you left it.

6-84 USER'S GUIDE

Using Line Editing Commands in vi

The ex command :sh allows you to do the same thing, but behaves dif
ferently on the screen. From the command mode of vi type :sh and press the
RETURN key. A shell command prompt will appear on the next line. Type
your command(s) after the prompt as you would normally do while working
in the shell. When you are ready to return to vi, type <Ad> or exit; your
screen will be refreshed with your buffer contents and the cursor will appear
where you left it.

Even changing directories while you are temporarily in the shell will not
prevent you from returning to the vi buffer where you were editing your file
when you type exit or <Ad>.

Writing Text to a New File: the:w Command

The :w (for write) command allows you to create a file by copying lines of
text from the file your are currently editing into a file that you specify. To
create your new file you must specify a line or range of lines (with their line
numbers), along with the name of the new file, on the command line. You
can write as many lines as you like. The general format is:

:line_number[,line_number]w filename

For example, to write the third line of the buffer to a line named three,
type:

:3w three<CR>

vi reports the successful creation of your new file with the following informa
tion:

"three" [New file] 1 line, 20 characters

To write your current line to a file, you can use a . (period) as the line
address:

:.w junk<CR>

A new file called junk will be created. It will contain only the current line in
the vi buffer.

SCREEN EDITOR TUTORIAL (vi) 6-85

Using Line Editing Commands in vi

You can also write a whole section of the buffer to a new file by specify
ing a range of lines. For example, to write lines 23 through 37 to a file, type
the following:

:23,37w newfile<CR>

Finding the Line Number

To determine the line number of a line, move the cursor to it and type
(colon). The colon will appear at the bottom of the screen. Type .= after it
and press the RETURN key.

If you want to know the number
of this line, type :.=<CR>

As soon as you press the RETURN key, your command line will disappear
from the bottom line and be replaced by the number of your current line in
the buffer.

6-86 USER'S GUIDE

If you want to know the number
of this line, type in :.=<CR>

34

Using Line Editing Commands in vi

You can move the cursor to any line in the buffer by typing: and the line
number. The command line

:n<CR>

means to go to the nth line of the buffer.

Deleting the Rest of the Buffer
One of the easiest ways to delete all the lines between the current line

and the end of the buffer is by using the line editor command d with the spe
cial symbols for the current and last lines.

:.,$d<CR>

The . represents the current line; the $ sign, the last line.

Adding a File to the Buffer
To add text from a file below a specific line in the editing buffer, use the :r

(read) command. For example, to put the contents of a file called data into
your current file, place the cursor on the line above the place where you want
it to appear. Type:

:r data<CR>

You may also specify the line number instead of moving the cursor. For
example, to insert the file data below line 56 of the buffer, type

:56r data<CR>

SCREEN EDITOR TUTORIAL (vi) 6-87

Using Line Editing Commands in vi

Do not be afraid to experiment; you can use the <u> command to undo ex
commands, too.

Making Global Changes

One of the most powerful commands in ex is the global command. The
global command is given here to help those users who are familiar with the
line editor. Even if you are not familiar with a line editor, you may want to
try the command on a test file.

For example, say you have several pages of text about the DNA molecule
in which you refer to its structure as a helix. Now you want to change every
occurrence of the word helix to double helix. The ex editor's global command
allows you to do this with one command line. First, you need to understand a
series of commands.

:g/pattern/command<CR>

For each line containing pattern, execute the ex command named
command. For example, type: :g/helix<CR>. The line editor
will print all lines that contain the pattern helix.

:s/pattern/new_words/<CR>

This is the substitute command. The line editor searches for the
first instance of the characters pattern on the current line and
changes them to new_words.

:s/pattern/new_words/g<CR>

If you add the letter g after the last delimiter of this command
line, ex will change every occurrence of pattern on the current
line. If you do not, ex will change only the first occurrence.

:g/helix/s/ / double helix/g<CR>

This command line searches for the word helix. Each time helix is
found, the substitute command substitutes two words, double
helix, for every instance of helix on that line. The delimiters after
the s do not need to have helix typed in again. The command
remembers the word from the delimiters after the global

6-88 USER'S GUIDE

Using Line Editing Commands in vi

command g. This is a powerful command. For a more detailed
explanation of global and substitution commands, see Chapter 5.

Figure 6-14 summarizes the line editor commands available in vi.

Command Function

: Shows that the commands that follow
are line editor commands.

:sh<CR> Temporarily returns you to the shell to
perform shell commands.

<~d> Escapes the temporary shell and returns
you to the current window of vi to con-
tinue editing.

:n<CR> Goes to the nth line of the buffer.

:x,yw data<CR> Writes lines from the number x through
the number y into a new file (data).

:$<CR> Goes to the last line of the buffer.

:.,$d<CR> Deletes all the lines in the buffer from
the current line to the last line.

:r shell.file<CR> Inserts the contents of shell.file after the
current line of the buffer.

:s / text j new_words j <CR> Replaces the first instance of the char-
acters text on the current line with
new_words.

:s/text jnew_words jg<CR> Replaces every occurrence of text on the
current line with new_words.

:g/textjs/ /new_wordsjg<CR> Replaces every occurrence of text in the
file with new_words.

Figure 6-14: Summary of Line Editor Commands

SCREEN EDITOR TUTORIAL (vi) 6-89

Quitting vi

There are five basic command sequences to quit the vi editor. Commands
that are preceded by a colon (:) are line editor commands.

<ZZ> or :wq<CR>

:w filename<CR>
:q<CR>

:w! filename<CR>
:q<CR>

:q!<CR>

:q<CR>

Write the contents of the vi buffer to the UNIX sys
tem file currently being edited and quit vi.

Write the temporary buffer to a new file named
filename and quit vi.

Overwrite an existing file called filename with the
contents of the buffer and quit vi.

Quit vi without writing the buffer to a file, and dis
card all changes made to the buffer.

Quit vi without writing the buffer to a UNIX sys
tem file. This works only if you have made no
changes to the buffer; otherwise vi will warn you
that you must either save the buffer or use the
:q!<CR> command to terminate.

The <ZZ> command and :wq command sequence both write the contents
of the buffer to a file, quit vi, and return you to the shell. You have tried the
<ZZ> command. Now try to exit vi with :wq. vi remembers the name of
the file currently being edited, so you do not have to specify it when you
want to write the buffer's contents back into the file. Type

:wq<CR>

The system responds in the same way it does for the <ZZ> command. It tells
you the name of the file, and reports the number of lines and characters in the
file.

What must you do to give the file a different name? For example, sup
pose you want to write to a new file called junk. Type:

:w junk<CR>

6-90 USER'S GUIDE

After you write to the new file, leave vi. Type:

:q<CR>

Quitting vi

If you try to write to an existing file, you will receive a warning. For
example, if you try to write to a file called johnson, the system will respond
with:

"johnson" File exists - use "w! johnson" to ove:rw.ri te

If you want to replace the contents of the existing file with the contents of the
buffer, use the :w! command to overwrite johnson.

:w! johnson<CR>

Your new file will overwrite the existing one.

If you edit a file called memo, make some changes to it, and then decide
you don't want to keep the changes, or if you accidentally press a key that
gives vi a command you cannot undo, leave vi without writing to the file.
Type:

:q!<CR>

Figure 6-15 summarizes the quit commands.

SCREEN EDITOR TUTORIAL (vi) 6-91

Quitting vi

Command Function

<zz> Write the file and quit vi.

:wq<CR> Write the file and quit vi.

:w filename<CR> Write the editing buffer to a new file (filename) and
:q<CR> quit vi.

:w! filename<CR> Overwrite an existing file (filename) with the con-
:q<CR> tents of the editing buffer and quit vi.

:q!<CR> Quit vi without writing buffer to a file.

:q<CR> Quit vi without writing the buffer to a file.

Figure 6-15: Summary of the Quit Commands

6-92 USER'S GUIDE

Special Options For vi

The vi command has some special options. It allows you to:

• recover a file lost by an interrupt to the UNIX system

• place several files in the editing buffer and edit each in sequence, and

• view the file at your own pace by using the vi cursor positioning com
mands

Recovering a File Lost by an Interrupt

If there is an interrupt or disconnect, the system will exit the vi command
without writing the text in the buffer back to its file. However, the UNIX sys
tem will store a copy of the buffer for you. When you log back in to the
UNIX system you will be able to restore the file with the -r option for the vi
command. Type

vi -r filename<CR>

The changes you made to filename before the interrupt occurred are now in
the vi buffer. You can continue editing the file, or you can write the file and
quit vi. The vi editor will remember the file name and write to that file.

Editing Multiple Files

If you want to edit more than one file in the same editing session, issue
the vi command, specifying each file name. Type

vi filel file2<CR>

vi responds by telling you how many files you are going to edit. For exam
ple:

2 files to edit

After you have edited the first file, write your changes (in the buffer) to
the file (filel). Type

:w<CR>

SCREEN EDITOR TUTORIAL (vi) 6-93

Special Options For vi

The system response to the :w <CR> command will be a message at the bot
tom of the screen giving the name of the file, and the number of lines and
characters in that file. Then you can bring the next file into the editing buffer
by using the :n command. Type

:n<CR>

The system responds by printing a notice at the bottom of the screen, telling
you the name of the next file to be edited and the number of characters and
lines in that file.

Select two of the files in your current directory. Then enter vi and place
the two files in the editing buffer at the same time. Notice the system
responses to your commands at the bottom of the screen.

Viewing a File

It is often convenient to be able to inspect a file by using vi's powerful
search and scroll capabilities. However, you might want to protect yourself
against accidentally changing a file during an editing session. The read-only
option prevents you from writing in a file. To avoid accidental changes, you
can set this option by invoking the editor as view rather than vi.

Figure 6-16 summarizes the special options for vi.

Option Function

vi filel file2 fi1e3<CR> Enter three files (filel, file2, and file3)
into the vi buffer to be edited.

:w<CR> Write the current file and call the next
:n<CR> file into the buffer.

vi -r fi1el<CR> Restore the changes made to filel.

Figure 6-16: Summary of Special Options for vi

6-94 USER'S GUIDE

Exercise 6

6-1. Try to restore a file lost by an interrupt.

Enter vi, create some text in a file called exer6. Turn off your termi
nal without writing to a file or leaving vi. Turn your terminal back
on, and log in again. Then try to get back into vi and edit exer6.

6-2. Place exert and exer2 in the vi buffer to be edited. Write exert and
call in the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi.

6-3. Tryout the command:

vi exer* <CR>

What happens? Try to quit all the files as quickly as possible.

6-4. Look at exer4 in read-only mode.

Scroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

SCREEN EDITOR TUTORIAL (vi) 6-95

Answers To Exercises

There is often more than one way to perform a task in vi. Any method
that works is correct. The following are suggested ways of doing the exer
cises.

Exercise 1

1-1. Ask your system administrator for your terminal's system name.
Type:

TERM =terminal_name<CR>

1-2. Enter the vi command for a file called exerl:

vi exerl <CR>

Then use the append command «a» to enter the following text in
your file:

This is an exercisekCR>
Up, down<CR>
left, right,<CR>
build your terminal's<CR>
muscles bit by bit<ESC>

1-3. Use the <k> and <h> commands.

1-4. Use the <x> command.

6-96 USER'S GUIDE

Answers To Exercises

1-5. Use the <j> and <1> commands.

1-6. Enter vi and use the append command «a» to enter the following
text:

and byte by byte<ESC>

Then use <j> and <1> to move to the last line and character of the
file. Use the <a> command again to add text. You can create a new
line by pressing the RETURN key. To leave text input mode, press
the ESCAPE key.

1-7. Type:

<zz>

1-8. Type:

vi exert <CR>

Notice the system response:

Exercise 2

2-1. Type:

"exer1" 7 lines, 102 characters

vi exer2<CR>
<a>l<CR>
2<CR>
3<CR>

4S<CR>
49<CR>
50<ESC>

SCREEN EDITOR TUTORIAL (vi) 6-97

Answers To Exercises

2-2. Type:
<Af>
<Ab>

< U>
<Ad>

Notice the line numbers as the screen changes.

2-3. Type:
<G>
<0>
123456789 123456789<ESC>
<7h>
<31>

Typing <7h> puts the cursor
on the 2 in the second set of numbers.
Typing <31> puts the cursor
on the 5 in the
second set of numbers.

2-4. $ = end of line
o = first character in the line

2-5. Type:
<>
<w>

<e>

2-6. Type:
<lG>
<M>
<L>
<H>

2-7. Type:
/8
<n>
/48

6-98 USER'S GUIDE

Exercise 3

3-1. Type:

3-2. Type:

3-3. Type:

3-4. Type:

vi exer3<CR>

<a> Append text <CR>
Insert text<CR>
a computer's <CR>
job is boring.<ESC>

<0>
financial statement and<ESC>

<3G>
<i>Delete text<CR><ESC>

The text in your file now reads:

Append text
Insert text
Delete text
a canputer' s
financial statement and
job is boring.

Answers To Exercises

3-5. The current line is a CCXl'plter's. To create a line of text below that
line use the <0> command.

3-6. The current line is byte of the budget.
<G> puts you on the bottom line.
<A> lets you begin appending at the end of the line.
<CR> creates the new line.
Add the sentence: But, it is an exciting machine.
<ESC> leaves append mode.

3-7. Type:
<lG>
ftext
<i>some<space bar><ESC>

SCREEN EDITOR TUTORIAL (vi) 6-99

Answers To Exercises

3-8. <ZZ> will write the buffer to exer3 and return you to the shell.

Exercise 4

4-1. Type:

4-2. Type:

vi exer4<CR>
<a> When in the course of human events<CR>
there are many repetitive, boring<CR>
chores, then one ought to get a<CR>
robot to perform those chores.<ESC>

<2G>
<A> tedious and unsavory<8BACKSP ACE><CR>
<ESC>

Press <h> until you get to the b of boring. Then type:
<dw>. (You can also use <6x>.)

4-3. You are at the second line. Type:
<2j>
<I> congenial and computerized<ESC>
<dd>

To delete the line and leave it blank, type in:
<0> (zero moves the cursor to the beginning of the line)
<D>

<H>
<3dd>

4-4. Write and quit vi.

<ZZ>

Remove the file.

rm exer4<CR>

6-100 USER'S GUIDE

Exercise 5

5-1. Type:

5-2. Type:

5-3. Type:

5-4. Type:

Exercise 6

6-1. Type:

vi exer2<CR>
<8G>
<cc> END OF FILE <ESC>

<lG>
<8"zyy>
<G>
<"zp>

<8G>
<cc> 8 is great<ESC>

<G>
<2w>
<cw>
EXERCISE<ESC>
<2b>
<cw>
TO <ESC>

vi exer6<CR>
<a> (append several lines of text)
<ESC>

Turn off the terminal.

Turn on the terminal.
Log in on your UNIX system. Type:

vi -r exer6<CR>
:wq<CR>

Answers To Exercises

SCREEN EDITOR TUTORIAL (vi) 6-101

Answers To Exercises

6-2. Type:

6-3. Type:

6-4. Type:

vi exerl exer2<CR>
:w<CR>
:n<CR>

:wjunk<CR>
<zz>

vi exer* <CR>

(Response:)
8 files to edit (vi calls all files with names that begin with exer.)

<zz>
<zz>

view exer4<CR>
<Af>
<Ad>
<Ab>

A

< u>
:q<CR>

6-102 USER'S GUIDE

Chapter 7: Shell Tutorial

Introduction 7-1

Shell Command Language 7-2

Metacharacters 7 -4

The Metacharacter That Matches All Characters: the Asterisk (*) 7-4

The Metacharacter That Matches One Character: the Question
Mark (?) 7-7

Using the * or ? to Correct Typing Errors 7-8

The Metacharacters That Match One of a Set: Brackets ([]) 7-9

Special Characters 7 -10

Running a Command in Background: the Ampersand (&) 7-10

Executing Commands Sequentially: the Semicolon (;) 7-11

Turning Off Special Meanings: the Backslash 0 7 -12

Turning Off Special Meanings: Quotes 7 -12

Using Quotes to Turn Off the Meaning of a Space 7-13

Input and Output Redirection 7-15

Redirecting Input: the < Sign 7-15

Redirecting Output to a File: the> Sign 7-15

Appending Output to an Existing File: the» Symbol 7-16

Useful Applications of Output Redirection 7 -17

Combining Background Mode and Output Redirection 7-20

Redirecting Output to a Command: the Pipe (I) 7-20

A Pipeline Using the cut and date Commands 7-21

Substituting Output for an Argument 7-26

Executing and Terminating Processes 7-26

Running Commands at a Later Time With the batch and at
Commands 7-26

Obtaining the Status of Running Processes 7-32

Terminating Active Processes 7 -33

Using the nohup Command 7 -34

TABLE OF CONTENTS

Table of Contents

Command Language Exercises 7-36

Shell Programming 7-37

Shell Programs 7-38

Creating a Simple Shell Program 7-38

Executing a Shell Program 7-39

Creating a bin Directory for Executable Files 7 -40

Warnings about Naming Shell Programs 7-41

Variables 7 -42

Positional Parameters 7 -42

Special Parameters 7-47

Named Variables 7 -51

Assigning a Value to a Variable 7 -53

Shell Programming Constructs 7 -61

Comments 7-61

The here Document 7-62

Using ed in a Shell Program 7-64

Return Codes 7-67

Looping 7-68

The Shell's Garbage Can: / dev /null 7 -7 4

Conditional Constructs 7 -7 4

Unconditional Control Statements: the break and continue
Commands 7-86

Debugging Programs 7-87

Modifying Your Login Environment 7-92

Adding Commands to Your .profile 7-92

Setting Terminal Options 7-93

Creating an rje Directory 7 -95

Using Shell Variables 7-95

ii USER'S GUIDE

Shell Programming Exercises

Answers To Exercises
Command Language Exercises

Shell Programming Exercises

Table of Contents

7-99

7-101

7-101

7-102

TABLE OF CONTENTS iii

Introduction

This chapter describes how to use the UNIX system shell to do routine
tasks. For example, it shows you how to use the shell to manage your files, to
manipulate file contents, and to group commands together to make programs
the shell can execute for you.

The chapter has two major sections. The first section, "Shell Command
Language," covers in detail using the shell as a command interpreter. It tells
you how to use shell commands and characters with special meanings to
manage files, redirect standard input and output, and execute and terminate
processes. The second section, "Shell Programming," covers in detail using
the shell as a programming language. It tells you how to create, execute, and
debug programs made up of commands, variables, and programming con
structs like loops and case statements. Finally, it tells you how to modify your
login environment.

The chapter offers many examples. You should log in to your UNIX sys
tem and recreate the examples as you read the text. As in the other examples
in this guide, different type (bold, italics, and constant width) is used to dis
tinguish your input from the UNIX system's output. See" Notation Conven
tions" in the Preface for details.

In addition to the examples, there are exercises at the end of both the
"Shell Command Language" and II Shell Programming" sections. The exer
cises can help you better understand the topics discussed. The answers to the
exercises are at the end of the chapter.

Your UNIX system might not have all commands referenced in this chapter.
If you cannot access a command, check with your system administrator.

If you want an overview of how the shell functions as both command
interpreter and programming language, see Chapters 1 and 4 before reading
this chapter. Also, refer to Appendix E, Summary of Shell Command
Language. If you want to learn more advanced concepts in shell program
ming, you might read Shell Commands and Programming (see the Documenta
tion Roadmap for information on ordering this manual).

SHELL TUTORIAL 7-1

Shell Command Language

This section introduces commands and, more importantly, some characters
with special meanings that let you

• find and manipulate a group of files by using pattern matching

• run a command in the background or at a specified time

• run a group of commands sequentially

• redirect standard input and output from and to files and other com
mands

• termina te processes

It first covers the characters having special meanings to the shell and then
covers the commands and notation for carrying out the tasks listed above. For
your convenience, Figure 7-1 summarizes the characters with special meanings
discussed in this chapter.

7-2 USER'S GUIDE

Shell Command Language

Character Function

* ? [] metacharacters that provide a shortcut for specifying
file names by pattern matching

& places commands in background mode, leaving your
terminal free for other tasks

; separates multiple commands on one command line

\ turns off the meaning of special characters such as *, ?,
[], &, ;, >, <, and I.

I I single quotes turn off the delimiting meaning of a space '"

and the special meaning of all special characters

" ... " double quotes turn off the delimiting meaning of a
space and the special meaning of all special characters
except $ and '

> redirects output of a command into a file (replaces
existing contents)

< redirects input for a command to come from a file

» redirects output of a command to be added to the end
of an existing file

I creates a pipe of the output of one command to the I

input of another command
, , grave accents allow the output of a command to be ...

used directly as arguments on a command line

$ used with positional parameters and user-defined vari-
abIes; also used as the default shell prompt symbol

Figure 7-1: Characters with Special Meanings in the Shell Language

SHELL TUTORIAL 7-3

Shell Command Language

Metacharacters

Metacharacters, a subset of the special characters, represent other charac
ters. They are sometimes called wild cards, because they are like the joker in
card games that can be used for any card. The metacharacters * (asterisk), ?
(question mark), and [] (brackets) are discussed here.

These characters are used to match file names or parts of file names,
thereby simplifying the task of specifying files or groups of files as command
arguments. (The files whose names match the patterns formed from these
metacharacters must already exist.) This is known as file name expansion.
For example, you may want to refer to all file names containing the letter
" a ", all file names consisting of five letters, and so on.

The Metacharacter That Matches All Characters: the Asterisk (*)

The asterisk (*) matches any string of characters, including a null (empty)
string. You can use the * to specify a full or partial file name. The * alone
refers to all the file and directory names in the current directory. To see the
effect of the *, try it as an argument to the echo(l) command. Type:

echo *<CR>

The echo command displays its arguments on your screen. Notice that the
system response to echo * is a listing of all the file names in your current
directory. However, the file names are displayed horizontally rather than in
vertical columns such as those produced by the Is command.

Figure 7-2 summarizes the syntax and capabilities of the echo command.

7-4 USER'S GUIDE

Shell Command Language

Command Recap

echo - write any arguments to the output

command options arguments

echo none any character(s)

Description: echo writes arguments, which are separated by
blanks and ended with <CR>, to the output.

Remarks: In shell programming, echo is used to issue
instructions, to redirect words or data into a
file, and to pipe data into a command. All
these uses will be discussed later in this
chapter.

Figure 7-2: Summary of the echo Command

V The • is a powerful character. For example, if you type rm • you will erase
all the files in your current directory. Be very careful how you use it!

For another example, say you have written several reports and have
named them report, reportl, reportla, reportlb.Ol, report25, and report316.
By typing reportl * you can refer to all files that are part of reportl, collec
tively. To find out how many reports you have written, you can use the Is
command to list all files that begin with the string "report," as shown in the
following example.

SHELL TUTORIAL 7-5

Shell Command Language

$ Is report*<CR>
report
report 1
report1a
report1b.01
report25
report316
$

The * matches any characters after the string "report," including no letters at
all. Notice that * matches the files in numerical and alphabetical order. A
quick and easy way to print the contents of your report files in order on your
screen is by typing the following command:

pr report* <CR>

Now try another exercise. Choose a character that all the file names in
your current directory have in common, such as a lowercase "a". Then
request a listing of those files by referring to that character. For example, if
you choose a lowercase "a", type the following command line:

Is *a*<CR>

The system responds by printing the names of all the files in your current
directory that contain a lowercase "a".

The * can represent characters in any part of the file name. For example,
if you know that several files have their first and last letters in common, you
can request a list of them on that basis. For such a request, your command
line might look like this:

Is F*E<CR>

The system response will be a list of file names that begin with F, end with E,
and are in the following order:

7-6 USER'S GUIDE

F123E
FATE
FE
Fig3.4E

Shell Command Language

The order is determined by the ASCII sort sequence: (1) numbers; (2) upper
case letters; (3) lowercase letters.

The Metacharacter That Matches One Character: the Question
Mark (?)

The question mark (?) matches any single character of a file name. Let's
say you have written several chapters in a book that has 12 chapters, and you
want a list of those you have finished through Chapter 9. Use the Is com
mand with the? to list all chapters that begin with the string "chapter" and
end with any single character, as shown below:

$ Is chapter?<CR>
chapter 1
chapter2
chapterS
chapter9
$

The system responds by printing a list of all file names that match.

Although? matches anyone character, you can use it more than once in a
file name. To list the rest of the chapters in your book, type:

Is chapter??<CR>

Of course, if you want to list all the chapters in the current directory, use the
*.

Is chapter*

SHELL TUTORIAL 7-7

Shell Command Language

Using the * or ? to Correct Typing Errors

Suppose you use the mv(l) command to move a file, and you make an
error and enter a character in the file name that is not printed on your screen.
The system incorporates this non-printing character into the name of your file
and subsequently requires it as part of the file name. If you do not include
this character when you enter the file name on a command line, you get an
error message. You can use * or? to match the file name with the non
printing character and rename it to the correct name.

Try the following example.

1 . Make a very short file called trial.

2. Type: mv trial trial< g>1<CR>

(Remember, to type < g> you must hold down the CONTROL key
and press the g key.)

3. Type: Is triall<CR>

The system will respond with an error message:

$ Is triall <CR>
trial 1 : no such file or directory
$

4. Type: Is trial?1 <CR>

The system will respond with the file name triall (including the non
printing character), verifying that this file exists. Use the? again to
correct the file name.

$ mv trial?1 triall <CR>
$ Is triall<CR>
trial 1
$

7-8 USER'S GUIDE

Shell Command Language

The Metacharacters That Match One of a Set: Brackets ([])

Use brackets ([]) when you want the shell to match anyone of several
possible characters that may appear in one position in the file name. For
example, if you include [crf] as part of a file name pattern, the shell will look
for file names that have the letter "c", the letter "r", or the letter "f" in the
specified position, as the following example shows.

$ Is [crf]at<CR>
cat
fat
rat
$

This command displays all file names that begin with the letter· "c", "r", or
" f" and end with the letters "at". Characters that can be grouped within
brackets in this way are collectively called a "character class" .

Brackets can also be used to specify a range of characters, whether
numbers or letters. For example, if you specify

chapter[l-S]

the shell will match any files named chapterl through chapterS. This is an
easy way to handle only a few chapters at a time.

Try the pr command with an argument in brackets:

$ pr chapter[2-4]<CR>

This command will print the contents of chapter2, chapter3, and chapter4, in
tha t order, on your terminal.

SHELL TUTORIAL 7-9

Shell Command Language

A character class may also specify a range of letters. If you specify [A-Z],
the shell will look only for uppercase letters; if [a-z], only lowercase letters.

The uses of the metacharacters are summarized in Figure 7-3. Tryout the
metacharacters on the files in your current directory.

Character Function

* matches any string of characters, including an empty
(null) string

? matches any single character

[] matches one of the sequence of characters specified
within the brackets

[-] matches one of the range of characters specified

Figure 7-3: Summary of Metacharacters

Special Characters

The shell language has other special characters that perform a variety of
useful functions. Some of these additional special characters are discussed in
this section; others are described in the next section, "Input and Output
Redirection. "

Running a Command in Background: the Ampersand (&)

Some shell commands take considerable time to execute. The ampersand
(&) is used to execute commands in background mode, thus freeing your ter
minal for other tasks. The general format for running a command in back
ground mode is

command &<CR>

7-10 USER'S GUIDE

Shell Command Language

You should not run interactive shell commands, for example read (see "Using
the read Command" in this chapter), in the background.

In the example below, the shell is performing a long search in background
mode. Specifically, the grep(l) command is searching for the string" delin
quent" in the file accounts. Notice the & is the last character of the com
mand line:

$ grep delinquent accounts &<CR>
21940
$

When you run a command in the background, the UNIX system outputs a
process number; 21940 is the process number in the example. You can use
this number to stop the execution of a background command. (Stopping the
execution of processes is discussed in the "Executing and Terminating
Processes" section.) The prompt on the last line means the terminal is free
and waiting for your commands; grep has started running in background.

Running a command in background affects only the availability of your
terminal; it does not affect the output of the command. Whether or not a
command is run in background, it prints its output on your terminal screen,
unless you redirect it to a file. (See "Redirecting Output" later in this chapter
for details.)

If you want a command to continue running in background after you log
off, you can submit it with the nohup(l) command. (This is discussed in
"Using the nohup Command" later in this chapter.)

Executing Commands Sequentially: the Semicolon (;)

You can type two or more commands on one line as long as each pair is
separated by a semicolon (;) , as follows:

commandl; command2; command3<CR>

The UNIX system executes the commands in the order that they appear in the
line and prints all output on the screen. This process is called sequential exe
cution.

SHELL TUTORIAL 7-11

Shell Command Language

Try this exercise to see how the; works. First, type

cd; pwd; Is<CR>

The shell executes these commands sequentially:

1. cd changes your location to your login directory

2. pwd prints the full path name of your current directory

3. Is lists the files in your current directory

If you do not want the system's responses to these commands to appear on
your screen, refer to "Redirecting Output II for instructions.

Turning Off Special Meanings: the Backslash (\)

The shell interprets the backslash (\) as an escape character that allows
you to turn off any special meaning of the character immediately after it. To
see how this works, try the following exercise. Create a two-line file called
trial that contains the following text:

The all * game
was held in Sumni t.

Use the grep command to search for the asterisk in the file, as shown in the
following example:

$ grep \ * trial<CR>
The all * game
$

The grep command finds the * in the text and displays the line in which it
appears. Without the \, the * would be a metacharacter to the shell and
would match all file names in the current directory.

Turning Off Special Meanings: Quotes

Another way to escape the meaning of a special character is to use quota
tion marks. Single quotes (' ... ') turn off the special meaning of any character.
Double quotes (" ... ") tum off the special meaning of all characters except $
and' (grave accent), which retain their special meanings within double quotes.
An advantage of using quotes is that numerous special characters can be
enclosed in the quotes; this can be more concise than using the backslash.

7-12 USER'S GUIDE

Shell Command Language

For example, if your file named trial also contained the line

He really wandered why? Why???

you could use the grep command to match the line with the three question
marks as follows:

$ grep '???' trial<CR>
He really wandered why? Why???
$

If you had instead entered the command

grep ??? trial <CR>

the three question marks would have been used as shell metacharacters and
matched all file names of length three.

Using Quotes to Turn Off the Meaning of a Space

A common use of quotes as escape characters is for turning off the special
meaning of the blank space. The shell interprets a space on a command line
as a delimiter between the arguments of a command. Both single and double
quotes allow you to escape that meaning.

For example, to locate two or more words that appear together in text,
make the words a single argument (to the grep command) by enclosing them
in quotes. To find the two words "The all" in your file trial, enter the fol
lowing command line:

$ grep 'The all' trial<CR>
The all * game
$

grep finds the string" The all" and prints the line that contains it. What
would happen if you did not put quotes around that string?

The ability to escape the special meaning of a space is especially helpful
when you are using the banner(l) command. This command prints a mes
sage across a terminal screen in large, poster size letters.

To execute banner, specify a message consisting of one or more argu
ments (in this case usually words), separated on the command line by spaces.
The banner will use these spaces to delimit the arguments and print each
argument on a separate line.

SHELL TUTORIAL 7-13

Shell Command Language

To print more than one argument on the same line, enclose the words,
together, in double quotes. For example, to send a birthday greeting to
another user, type:

banner happy birthday to you<CR>

The command prints your message as a four-line banner. Now print the same
message as a three-line banner. Type:

banner happy birthday "to you" <CR>

Notice that the words "to" and "you" now appear on the same line. The
space between them has lost its meaning as a delimiter.

Figure 7-4 summarizes the syntax and capabilities of the banner com
mand.

Command Recap

banner - make posters

command options arguments

banner none characters

Description: banner displays up to ten characters in large
letters

Remarks: Later in this chapter you will learn how to
redirect the banner command into a file to be
used as a poster.

Figure 7-4: Summary of the banner Command

7-14 USER'S GUIDE

Shell Command Language

Input and Output Redirection

In the UNIX system, some commands expect to receive their input from
the keyboard (standard input) and most commands display their output at the
terminal (standard output). However, the UNIX system lets you reassign the
standard input and output to other files and programs. This is known as
redirection. With redirection, you can tell the shell to

• take its input from a file rather than the keyboard

• send its output to file rather than the terminal

• use a program as the source of data for another program

You use a set of operators, the less than sign «), the greater than sign
(», two greater than signs (»), and the pipe (I) to redirect input and output.

Redirecting Input: the < Sign

To redirect input, specify a file name after a less than sign «) on a com
mand line:

command < file<CR>

For example, assume that you want use the mail(l) command (described in
Chapter 8) to send a message to another user with the login colleague and
that you already have the message in a file named report. You can avoid
retyping the message by specifying the file name as the source of input:

mail colleague < report<CR>

Redirecting Output to a File: the> Sign

To redirect output, specify a file name after the greater than sign (» on a
command line:

command > file<CR>

SHELL TUTORIAL 7-15

Shell Command Language V If you redirect output to a fIle that already exists, the output of your com
mand will overwrite the contents of the existing file.

Before redirecting the output of a command to a particular file, make sure
that a file by that name does not already exist, unless you do not mind losing
it. Because the shell does not allow you to have two files of the same name
in a directory, it will overwrite the contents of the existing file with the output
of your command if you redirect the output to a file with the existing file's
name. The shell does not warn you about overwriting the original file.

To make sure there is no file with the name you plan to use, run the Is
command, specifying your proposed file name as an argument. If a file with
that name exists, Is will list it; if not, you will receive a message that the file
was not found in the current directory. For example, checking for the
existence of the files temp and junk would give you the following output.

$ Is temp<CR>
tenp
$ Is junk<CR>
junk: no such file or directory
$

This means you can name your new output file junk, but you cannot name it
temp unless you no longer want the contents of the existing temp file.

Appending Output to an Existing File: the > > Symbol

To keep from destroying an existing file, you can also use the double
redirection symbol (»), as follows:

command > > file<CR>

This appends the output of a command to the end of the file file. If file does
not exist, it is created when you use the » symbol this way.

7-16 USER'S GUIDE

Shell Command Language

The following example shows how to append the output of the cat com
mand to an existing file. First, the cat command is first executed on both files
without output redirection to show their respective contents. Then the con
tents of tria12 are added after the last line of triall by executing the cat com
mand on tria12 and redirecting the output to triall.

$ cat triall <CR>
This is the first line of trial 1 .

Hello.
This is the last line of tria11.
$

$ cat tria12<CR>
This is the beginning of tria12.
Hello.
This is the end of tria12.

$

$ cat tria12 > > triall <CR>
$ cat triall <CR>
This is the first line of tria11.

Hello.
This is the last line of tria11.
This is the beginning of tria12.

Hello.
This is the end of tria12.
$

Useful Applications of Output Redirection

Redirecting output is useful when you do not want it to appear on your
screen immediately or when you want to save it. Output redirection is also
especially useful when you run commands that perform clerical chores on text
files. Two such commands are spell and sort.

SHELL TUTORIAL 7-17

Shell Command Language

The spell Command

The spell program compares every word in a file against its internal voca
bulary list and prints a list of all potential misspellings on the screen. If spell
does not have a listing for a word (such as a person's name), it will report that
as a misspelling, too.

Running spell on a lengthy text file can take a long time and may pro
duce a list of misspellings that is too long to fit on your screen. spell prints
all its output at once; if it does not fit on the screen, the command scrolls it
continuously off the top until it has all been displayed. A long list of misspel
lings will roll off your screen quickly and may be difficult to read.

You can avoid this problem by redirecting the output of spell to a file. In
the following example, spell searches a file named memo and places a list of
misspelled words in a file named misspell:

$ spell memo> misspell<CR>

Figure 7 -5 summarizes the syntax and capabilities of the spell command.

7-18 USER'S GUIDE

*

command

spell

Description:

Options:

Remarks:

Command Recap

spell - find spelling errors

options arguments

available* file

Shell Command Language

spell collects words from a specified
file or files and looks them up in a
spelling list. Words that are not on the
spelling list are displayed on your ter
minal.

spell has several options, including
one for checking British spellings.

The list of misspelled words can be
redirected into a file.

See the spell(l) manual page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 7-5: Summary of the spell Command

The sort Command

The sort command arranges the lines of a specified file in alphabetical
order (see Chapter 3 for details). Because users generally want to keep a file
that has been alphabetized, output redirection greatly enhances the value of
this command.

Be careful to choose a new name for the file that will receive the output of
the sort command (the alphabetized list). When sort is executed, the shell
first empties the file that will accept the redirected output. Then it performs
the sort and places the output in the blank file. If you type

sort list> list<CR>

the shell will empty list and then sort nothing into list.

SHELL TUTORIAL 7-19

Shell Command Language

Combining Background Mode and Output Redirection

Running a command in background does not affect the command's out
put; unless it is redirected, output is always printed on the terminal screen. If
you are using your terminal to perform other tasks while a command runs in
background, you will be interrupted when the command displays its output
on your screen. However, if you redirect that output to a file, you can work
undisturbed.

For example, in the "Special Characters" section you learned how to exe
cute the grep command in background with &. Now suppose you want to
find occurrences of the word "test" in a file named schedule. Run the grep
command in background and redirect its output to a file called testfile:

$ grep test schedule > testfile &<CR>

You can then use your terminal for other work and examine testfile when
you have finished it.

Redirecting Output to a Command: the Pipe (I)

The I character is called a pipe. Pipes are powerful tools that allow you to
take the output of one command and use it as input for another command
without creating temporary files. A multiple command line created in this
way is called a pipeline.

The general format for a pipeline is:

commandl I command2 I command3 ... <CR>

The output of commandl is used as the input of command2. The output of
command2 is then used as the input for command3.

To understand the efficiency and power of a pipeline, consider the con
trast between two methods that achieve the same results.

• To use the input/output redirection method, run one command and
redirect its output to a temporary file. Then run a second command
that takes the contents of the temporary file as its input. Finally,
remove the temporary file after the second command has finished run
ning.

• To use the pipeline method, run one command and pipe its output
directly into a second command.

7 -20 USER'S GUIDE

Shell Command Language

For example, say you want to mail a happy birthday message in a banner
to the owner of the login david. Doing this without a pipeline is a three-step
procedure. You must

1. Enter the banner command and redirect its output to a temporary file:

banner happy birthday > message.tmp

2. Enter the mail command using message.tmp as its input:

mail david < message.tmp

3. Remove the temporary file:

rm message.tmp

However, by using a pipeline you can do this in one step:

banner happy birthday I mail david<CR>

A Pipeline Using the cut and date Commands

The cut and date commands provide a good example of how pipelines
can increase the versatility of individual commands. The cut command allows
you to extract part of each line in a file. It looks for characters in a specified
part of the line and prints them. To specify a position in a line, use the -c
option and identify the part of the file you want by the numbers of the spaces
it occupies on the line, counting from the left-hand margin.

For example, say you want to display only the dates from a file called
birthdays. The file contains the following list:

SHELL TUTORIAL 7-21

Shell Command Language

Arme 12/26
Klaus 7/4
Mary 10/18
Peter 11/9
Nandy 4/23
Sam 8/12

The birthdays appear between the ninth and thirteenth spaces on each line.
To display them, type:

cut -c9-13 birthdays<CR>

The output is shown below:

12/26
7/4
10/18
11/9
4/23
8/12

Figure 7 -6 summarizes the syntax and capabilities of the cut command.

7-22 USER'S GUIDE

Shell Command Language

Command Recap

cut - cut out selected fields from each line of a file

command

cut

Description:

Options:

Remarks:

options arguments

-clist file
-£list [-d]

cut extracts columns from a table or fields from
each line of a file

-c lists the number of character positions from
the left. A range of numbers such as characters
1-9 can be specified by -c1-9

-f lists the field number from the left separated
by a delimiter described by -d.

-d gives the field delimiter for -f. The default
is a space. If the delimiter is a colon, this would
be specified by -d : .

If you find the cut command useful, you may
also want to use the paste command and the
split command.

Figure 7-6: Summary of the cut Command

The cut command is usually executed on a file. However, piping makes it
possible to run this command on the output of other commands, too. This is
useful if you want only part of the information generated by another com
mand. For example, you may want to have the time printed. The date com
mand prints the day of the week, date, and time, as follows:

$ date<CR>
Sat Dec 27 13:12:32 EST 1986

SHELL TUTORIAL 7-23

Shell Command Language

Notice that the time is given between the twelfth and nineteenth spaces of the
line. You can display the time (without the date) by piping the output of date
into cut, specifying spaces 12-19 with the -c option. Your command line and
its output will look like this:

$ date I cut -c12-19<CR>
13: 14:56

Figure 7-7 summarizes the syntax and capabilities of the date command.

7-24 USER'S GUIDE

*

command

date

Description:

Options:

Remarks:

Command Recap

date - display the date and time

options

+%m%d%y*
+%H%%M%S

Shell Command Language

arguments

available*

date displays the current date and time on your
terminal

+% followed by m (for month), d (for day), y (for
year), H (for hour), M (for month), and S (for
second) will echo these back to your terminal.
You can add explanations such as:

date '+%H:%M is the time'

If you are working on a small computer system
of which you are both a user and the system
administrator, you may be allowed to set the
date and time using optional arguments to the
date command. Check your reference manual
for details. When working in a multiuser
environment, the arguments are available only
to the system administrator.

See the date(1) manual page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 7-7: Summary of the date Command

SHELL TUTORIAL 7-25

Shell Command Language

Substituting Output for an Argument

The output of any command may be captured and used as arguments on
a command line. This is done by enclosing the command in grave accents
C ... ') and placing it on the command line in the position where the output
should be treated as arguments. This is known as command substitution.

For example, you can substitute the output of the date and cut pipeline
command used previously for the argument in a banner printout by typing
the following command line:

$ banner 'date I cut -c12-19'<CR>

Notice the results: the system prints a banner with the current time.

The "Shell Programming" section in this chapter shows you how you can
also use the output of a command line as the value of a variable.

Executing and Terminating Processes

This section discusses the following topics:

• how to schedule commands to run at a later time by using the batch or
at command

• how to obtain the status of active processes

• how to terminate active processes

• how to keep background processes running after you have logged off

Running Commands at a Later Time With the batch and at
Commands

The batch and at commands allow you to specify a command or sequence
of commands to be run at a later time. With the batch command, the system
determines when the commands run; with the at command, you determine
when the commands run. Both commands expect input from standard input
(the terminal); the list of commands entered as input from the terminal must
be ended by pressing < d> (control-d).

7 -26 USER'S GUIDE

Shell Command Language

The batch command is useful if you are running a process or shell pro
gram that uses a large amount of system time. The batch command submits a
batch job (containing the commands to be executed) to the system. The job is
put in a queue, and runs when the system load falls to an acceptable level.
This frees the system to respond rapidly to other input and is a courtesy to
other users.

The general format for batch is:

batch<CR>
first command<CR>

la~t command<CR>
< d>

If there is only one command to be run with batch, you can enter it as fol
lows:

b'!.tch command_line<CR>
< d>

The next example uses batch to execute the grep command at a con
venient time. Here grep searches all files in the current directory and redirects
the output to the file dol.file.

$ patch grep dollar * > dol-file<CR>
< d>
job 155223141.b at Sun Dec 7 11:14:54 1986
$

After you submit a job with batch, the system responds with a job number,
date, and time. This job number is not the same as the process number that
the system generates when you run a command in the background.

SHELL TUTORIAL 7-27

Shell Command Language

Figure 7-8 summarizes the syntax and capabilities of the batch Com
mand.

Command Recap

batch - execute commands at a later time

command options input

batch none command_l ines

Description: batch submits a batch job, which is placed in a
queue and executed when the load on the sys-
tem falls to an acceptable level.

Remarks: The list of commands must end with a < d>
(control-d).

Figure 7-8: Summary of the batch Command

The at command allows you to specify an exact time to execute the com
mands. The general format for the at command is

at time<CR>
first command<CR>

last command<CR>
< d>

The time argument consists of the time of day and, if the date is not
today, the date.

The following example shows how to use the at command to mail a
happy birthday banner to login emily on her birthday:

7-28 USER'S GUIDE

$ at 8:15am Feb 27<CR>
b'!.nner happy birthday I mail emily<CR>
< d>
job 453400603.a at Thurs Feb 27 08:15:00 1986
$

Shell Command Language

Notice that the at command, like the batch command, responds with the job
number, date, and time.

If you decide you do not want to execute the commands currently waiting
in a batch or at job queue, you can erase those jobs by using the -r option of
the at command with the job number. The general format is

at -r jobnumber<CR>

Try erasing the previous at job for the happy birthday banner. Type in:

at -r 453400603.a<CR>

If you have forgotten the job number, the at -1 command will give you a list
of the current jobs in the batch or at queue, as the following screen shows:

$ at -l<CR>
user = mylogin 168302040.a at Sat Nov 29 13:00:00 1986
user = mylogin 453400603.a at Fri Feb 27 08: 15:00 1987
$"

Notice that the system displays the job number and the time the job will run.

SHELL TUTORIAL 7 -29

Shell Command Language

Using the at command, mail yourself the file memo at noon, to tell you it
is lunch time. (You must redirect the file into mail unless you use the "here
document," described in the "Shell Programming" section.) Then try the at
command with the -1 option:

$ at 12:00pm<CR>
mail mylogin < memo<CR>
<~d>

job 263131754.a at Jun 30 12:00:00 1986
$

$ at -l<CR>
user = mylogin 263131754.a at Jun 30 12:00:00 1986
$

Figure 7 -9 summarizes the' syntax and capabilities of the at command.

7-30 USER'S GUIDE

command

at

Description:

Options:

Remarks:

Shell Command Language

Command Recap

at - execute commands at a specified time

options

-r
-1

arguments

time (date)
jobnumber

Executes commands at the time specified. You
can use between one and four digits, and am or
pm to show the time. To specify the date, give
a month name followed by the number for the
day. You do not need to enter a date if you
want your job to run the same day. See the
at(l) manual page in the User's Reference
Manual for other default times.

The -r option with the job number removes
previously scheduled jobs.

The -1 option (no arguments) reports the job
number and status of all scheduled at and
batch jobs.

Examples of how to specify times and dates
with the at command:

at 08:15am Feb 27
at 5:14pm Sept 24

Figure 7-9: Summary of the at Command

SHELL TUTORIAL 7-31

Shell Command Language

Obtaining the Status of Running Processes

The ps command gives you the status of all the processes you are
currently running. For example, you can use the ps command to show the
status of all processes that you run in the background using & (described in
the earlier section "Special Characters").

The next section, "Terminating Active Processes," discusses how you can
use the PID (process identification) number to stop a command from execut
ing. A PID is a number from 1 to 30,000 that the UNIX system assigns to
each active process.

In the following example, grep is run in the background, and then the ps
command is issued. The system responds with the process identification (PID)
and the terminal identification ('lTY) number. It also gives the cumulative exe
cution time for each process (TIME), and the name of the command that is
being executed (C'CJI.1MAND).

$ grep word * > temp &<CR>
28223
$

$ ps<CR>
PID

28124
28223
28224
$

Tl'Y TIME ~

tty100:00 sh

tty100:04 grep

tty100:04 ps

Notice that the system reports a PID number for the grep command, as
well as for the other processes that are running: the ps command itself, and
the sh (shell) command that runs while you are logged in. The shell program
sh interprets the shell commands and is discussed in Chapters 1 and 4.

7-32 USER'S GUIDE

*

Shell Command Language

Figure 7-10 summarizes the syntax and capabilities of the ps command.

Command Recap

ps - report process status

command options arguments

ps several* none

Description: ps displays information about active processes.

Options: Several. If none are specified, ps displays the
status of all active processes you are running.

Remarks: Gives you the PID (process ID). This is needed
to kill a process (stop the process from execut-
ing).

See the ps(l) manual page in the User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 7-10: Summary of the ps Command

Terminating Active Processes

The kill command is used to terminate active shell processes. The general
format for the kill command is

kill PID<CR>

You can use the kill command to terminate processes that are running in
background. Note that you cannot terminate background processes by press
ing the BREAK or DELETE key.

The following example shows how you can terminate the grep command
that you started executing in background in the previous example.

SHELL TUTORIAL 7 -33

Shell Command Language

$ kill 28223<CR>
28223 Terminated
$

Notice the system responds with a message and a $ prompt, showing that
the process has been killed. If the system cannot find the PID number you
specify, it responds with an error message:

*

kill:28223:No such process

Figure 7 -11 summarizes the syntax and capabilities of the kill command.

Command Recap

kill - terminate a process

command options arguments

kill available* job number or PID

Description: kill terminates the process specified by the PID
number.

See the kill(l) manual page in the User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 7-11: Summary of the kill Command

Using the nohup Command

All processes are killed when you log off. If you want a background pro
cess to continue running after you log off, you must use the nohup command
to submit that background command.

7-34 USER'S GUIDE

Shell Command Language

To execute the nohup command, follow this format:

nohup command &<CR>

Notice that you place the, nohup command before the command you intend to
run as a background process.

For example, say you want the grep command to search all the files in the
current directory for the string "word" and redirect the output to a file called
word.list, and you wish to log off immediately afterward. Type the command
line as follows:

nohup grep word * > word.list & <CR>

You can terminate the nohup command by using the kill command.
Figure 7-12 summarizes the syntax and capabilities of the nohup command.

Command Recap

nohup - prevents interruption of command execution by hang ups

command options arguments

nohup none command line

Description: Executes a command line, even if you hang up
or quit the system.

Figure 7-12: Summary of the nohup Command

Now that you have mastered these basic shell commands and notations,
use them in your shell programs! The exercises that follow will help you
practice using shell command language. The answers to the exercises are at
the end of the chapter.

SHELL TUTORIAL 7-35

Command Language Exercises

1-1. What happens if you use an * (asterisk) at the beginning of a file
name? Try to list some of the files in a directory using the * with the
last letter of one of your file names. What happens?

1-2. Try the following two commands; enter them as follows:

cat[O-9]* <CR>
echo *<CR>

1-3. Is it acceptable to use a ? at the beginning or in the middle of a file
name generation? Try it.

1-4. Do you have any files that begin with a number? Can you list them
without listing the other files in your directory? Can you list only
those files that begin with a lowercase letter between a and m? (Hint:
Use a range of numbers or letters in [D.

1-5. Is it acceptable to place a command in background mode on a line
that is executing several other commands sequentially? Try it. What
happens? (Hint: Use; and &.) Can the command in background
mode be placed in any position on the command line? Try placing it
in various positions. Experiment with each new character that you
learn to see the full power of the character.

1-6. Redirect the output of pwd and Is into a file by using the following
command line:

cd; pwd; Is; ed trial <CR>

Remember, if you want to redirect both commands to the same file,
you have to use the » (append) sign for the second redirection. If
you do not, you will wipe out the information from the pwd com
mand.

1-7. Instead of cutting the time out of the date response, try redirecting
only the date, without the time, into banner. What is the only part
you need to change in the time command line?

banner 'date I cut -c12-19'<CR>

7 -36 USER'S GUIDE

Shell Programming

You can use the shell to create programs-new commands. Such pro
grams are also called "shell procedures." This section tells you how to create
and execute shell programs using commands, variables, positional parameters,
return codes, and basic programming control structures.

The examples of shell programs in this section are shown two ways. First,
the cat command is used in a screen to display the contents of a file contain
ing a shell program:

$ cat testfile<CR>
first command

last command
$

Second, the results of executing the shell program appear after a command
line:

$ testfile<CR>
program_ou tpu t
$

You should be familiar with an editor before you try to create shell pro
grams. Refer to the tutorials in Chapter 5 (for the ed editor) and Chapter 6
(for the vi editor).

SHELL TUTORIAL 7-37

Shell Programming

Shell Programs

Creating a Simple Shell Program

We will begin by creating a simple shell program that will do the follow-
ing tasks, in order.

• print the current directory

• list the contents of that directory

• display this message on your terminal: "This is the end of the shell "
program.

Create a file called dl (short for directory list) using your editor of choice,
and enter the following:

pwd<CR>
Is<CR>
echo This is the end of the shell program.<CR>

Now write and quit the file. You have just created a shell program! You can
cat the file to display its contents, as the following screen shows:

$ cat dl<CR>
pvrl

Is
echo This is the end of the shell program.

$

7-38 USER'S GUIDE

Shell Programming

Executing a Shell Program

One way to execute a shell program is to use the sh command. Type:

sh dl<CR>

The dl command is executed by sh, and the path name of the current direc
tory is printed first, then the list of files in the current directory, and finally,
the comment This is the end of the shell program. The sh command pro
vides a good way to test your shell program to make sure it works.

If dl is a useful command, you can use the chmod command to make it
an executable file; then you can type dl by itself to execute the command it
contains. The following example shows how to use the chmod command to
make a file executable and then run the Is -1 command to verify the changes
you have made in the permissions.

$ chmod u +x dl <CR>
$ Is -l<CR>
total 2
-rw-------
-rwx------
$

log-in log-in 3661 Nov 2
log-in log-in 48 Nov 15

10:28 mbox

10:50 dl

Notice that chmod turns on permission to execute (+x) for the user (u).
Now dl is an executable program. Try to execute it. Type:

dl<CR>

You get the same results as before, when you entered sh dl to execute it. For
further details about the chmod command, see Chapter 3.

SHELL TUTORIAL 7-39

Shell Programming

Creating a bin Directory for Executable Files

To make your shell programs accessible from all your directories, you can
make a bin directory from your login directory and move the shell files to
your bin.

You must also set your shell variable PATH to include your bin directory:

P ATH=$P ATH:$HOME/bin

See "Variables" and "Using Shell Variables" in this chapter for more infor
mation about PATH. For more advanced information, refer to the manual
Shell Commands and Programming.

The following example will remind you which commands are necessary.
In this example, dl is in the login directory. Type these command lines:

cd<CR>
mkdir bin<CR>
mv dl bin/dl<CR>

Move to the bin directory and type the Is -I command. Does dl still have
execute permission?

Now move to a directory other than the login directory, and type the fol
lowing command:

dl<CR>

What happened?

Figure 7-13 summarizes your new shell program, dl.

7-40 USER'S GUIDE

Shell Programming

Shell Program Recap

dl - display the directory path and directory contents (user defined)

command arguments

dl none

Description: dl displays the output of the shell command
pwd and Is.

Figure 7-13: Summary of the dl Shell Program

It is possible to give the bin directory another name; if you do so, you
need to change your shell variable PATH again.

Warnings About Naming Shell Programs

You can give your shell program any appropriate file name. However,
you should not give your program the same name as a system command. If
you do, the system will execute your command instead of the system com
mand. For example, if you had named your dl program mv, each time you
tried to move a file the system would have executed your directory list pro
gram instead of my.

Another problem can occur if you name the dl file Is and then try to exe
cute the file. You would create an infinite loop, since your program executes
the Is command. After some time, the system would give you the following
error message:

Too many processes, cannot fork

What happened? You typed in your new command, Is. The shell read and
executed the pwd command. Then it read the Is command in your program
and tried to execute your Is command. This formed an infinite loop.

SHELL TUTORIAL 7-41

Shell Programming

UNIX system designers wisely set a limit on how many times an infinite
loop can execute. One way to keep this from happening is to give the path
name for the system's Is command, /bin/ls, when you write your own shell
program.

The following Is shell program would work:

$ cat Is<CR>
pwd

/bin/Is
echo This is the end of the shell program

If you name your command Is, then you can only execute the system Is
command by using its full path name, /bin/ls.

Variables

Variables are the basic data objects shell programs manipulate, other than
files. Here we discuss three types of variables and how you can use them:

• positional parameters

• special parameters

• named variables

Positional Parameters

A positional parameter is a variable within a shell program whose value is
set from an argument specified on the command line invoking the program.
Positional parameters are numbered and are referred to with a preceding $: $1,
$2, $3, and so on.

7-42 USER'S GUIDE

Shell Programming

A shell program may reference up to nine positional parameters. If a shell
program is invoked on with a command line that appears like this:

shell.prog pp1 pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9<CR>

then positional parameter $1 within the program will be assigned the value
pp1, positional parameter $2 within the program will be assigned the value
pp2, and so on, when the shell program is invoked.

Create a file called pp (short for positional parameters) to practice posi
tional parameter substitution. Then enter the echo commands shown in the
following screen. Enter the command lines so that running the cat command
on your completed file will produce the following output:

$ cat pp<CR>
echo The first positional parameter is: $1<CR>

echo The second positional parameter is: $2<CR>
echo The third positional parameter is: $3<CR>
echo The fourth positional parameter is: $4<CR>
$

If you execute this shell program with the arguments one, two, three, and
four, you will obtain the following results (first you must make the shell pro
gram pp executable using the chmod command):

SHELL TUTORIAL 7-43

Shell Programming

$ chmod u+x pp<CR>
$

$ pp one two three four<CR>
The first positional parameter is: one
The second positional parameter is: b«>

The third positional parameter is: three
The fourth JX)si tional parameter is: four
$

The following screen shows the shell program bbday, which mails a
greeting to the login entered in the command line:

$ cat bbday<CR>
banner happy birthday I mail $1

Try sending yourself a birthday greeting. If your login name is sue, your
command line will be:

bbday sue<CR>

Figure 7-14 summarizes the syntax and capabilities of the bbday shell pro
gram.

7 -44 USER'S GUIDE

Shell Programming

Shell Program Recap

bbday - mail a banner birthday greeting (user-defined)

command arguments

bbday login

Description: bbday mails the message happy birthday, in
poster-sized letters, to the specified login.

Figure 7-14: Summary of the bbday Command

The who command lists all users currently logged in on the system. How
can you make a simple shell program, called whoson, that will tell you if the
owner of a particular login is currently working on the system?

Type the following command line into a file called whoson:

who I grep $1 <CR>

The who command lists all current system users, and grep searches the out
put of the who command for a line containing the string contained as a value
in the positional parameter $1.

Now try using your login as the argument for the new program whoson.
For example, say your login is sue. When you issue the who son command,
the shell program substitutes sue for the parameter $1 in your program and
executes as if it were:

who I grep sue <CR>

The output is shown on the following screen:

SHELL TUTORIAL 7-45

Shell Programming

$ whoson sue<CR>
sue tty26 Jan 24 13: 35
$

If the owner of the specified login is not currently working on the system,
grep fails and whoson prints no output.

Figure 7-15 summarizes the syntax and capabilities of the whoson com
mand.

Shell Program Recap

whoson - display login information if user is logged in (user-defined)

command arguments

whoson login

Description: If a user is on the system, whoson displays the user's
login, the TTY number, and the time and date the user
logged in.

Figure 7-15: Summary of the who son Command

The shell allows a command line to contain 128 arguments. However, a
shell program is restricted to referencing nine positional parameters, $1
through $9, at a given time. This restriction can be worked around using the
shift command, described in the manual Shell Commands and Programming.

7 -46 USER'S GUIDE

Shell Programming

The special parameter $*, described in the next section, can also be used to
access the values of all command line arguments.

Special Parameters

$# This parameter, when referenced within a shell program, contains the
number of arguments with which the shell program was invoked. Its
value can be used anywhere within the shell program.

Enter the command line shown in the following screen in an executable
shell program called get.Dum. Then run the cat command on the file:

$ cat get.num<CR>
echo The number of arguments is: $#
$

The program simply displays the number of arguments with which it is
invoked. For example:

$ get.num test out this program<CR>
The number of arguments is: 4
$

SHELL TUTORIAL 7 -47

Shell Programming

Figure 7 -16 summarizes the get.num shell program.

Shell Program Recap

get.num - count and display the number of arguments (user-defined)

command arguments

get.num (character_string)

Description: get.num counts the number of arguments given to the
command and then displays the total.

Remarks: This command demonstrates the special parameter $#.

Figure 7-16: Summary of the get.num Shell Program

$* This special parameter, when referenced within a shell program, con
tains a string with all the arguments with which the shell program
was invoked, starting with the first. You are not restricted to nine
parameters as with the positional parameters $1 through $9 ..

You can write a simple shell program to demonstrate $*. Create a shell
program called show.param that will echo all the parameters. Use the com
mand line shown in the following completed file:

7 ~48 USER'S GUIDE

$ cat show.param<CR>
echo The parameters for this ccmnand are: $*

$

Shell Programming

show.param will echo all the arguments you give to the command. Make
show.param executable and try it out, using these parameters:

Hello. How are you?

$ show.param Hello. How are you?<CR>
The parameters for this ccmnand are: Hello. How are you?

$

Notice that show.param echoes Hello. How are you? Now try
show.param using more than nine arguments:

SHELL TUTORIAL 7 -49

Shell Programming

$ show.param one two 3 4 5 six 7 8 9 10 l1<CR>
The parameters for this carrna:nd are: one two 3 4 5 six 7 8 9 10 11

$

Once again, show.param echoes all the arguments you give. The $* parame
ter can be useful if you use file name expansion to specify arguments to the
shell command.

Use the file name expansion feature with your show.param command.
For example, say you have several files in your directory named for chapters
of a book: chapl, chap2, and so on, through chap7. show.param will print a
list of all those files.

$ show.param chap?<CR>
The parameters for this carrna:nd are: chap1 chap2 chap3
chap4 chap5 chap6 chap7

$

Figure 7-17 summarizes the show.param shell program.

7-50 USER'S GUIDE

Shell Programming

Shell Program Recap

show.param - display all positional parameters (user-defined)

command arguments

show.param (any positional parameters)

Description: show.param displays all the parameters.

Remarks: If the parameters are file name generations, the com-
mand will display each of those file names.

Figure 7-17: Summary of the show.param Shell Program

Named Variables

Another form of variable that you can use within a shell program is a
named variable. You assign values to named variables yourself. The format
for assigning a value to a named variable is

named_variable= value<CR>

Notice that there are no spaces on either side of the = sign.

In the following example, varl is a named variable, and myname is the
value or character string assigned to that variable:

varl=myname<CR>

A $ is used in front of a variable name in a shell program to reference the
value of that variable. Using the example above, the reference $varl tells the
shell to substitute the value myname (assigned to varl), for any occurrence of
the character string $varl.

SHELL TUTORIAL 7-51

Shell Programming

The first character of a variable name must be a letter or an underscore.
The rest of the name can be composed of letters, underscores, and digits. As
in shell program file names, it is not advisable to use a shell command name
as a variable name. Also, the shell has reserved some variable names you
should not use for your variables. A brief explanation of these reserved shell
variable names follows:

• CDPATH defines the search path for the cd command.

• HOME is the default variable for the cd command (home directory).

• IFS defines the internal field separators (normally the space, the tab,
and the carriage return).

• LOGNAME is your login name.

• MAIL names the file that contains your electronic mail.

• PATH determines the search path used by the shell to find commands.

• PSt defines the primary prompt (default is $).

• PS2 defines the secondary prompt (default is ».

• TERM identifies your terminal type. It is important to set this variable
if you are editing with vi.

• TERMINFO identifies the directory to be searched for information
about your terminal, for example, its screen size.

• TZ defines the time zone (default is EST5EDT).

Many of these variables are explained in "Modifying Your Login Environ
ment" later in this chapter. You can also read more about them on the sh(l)
manual page in the User's Reference Manual.

You can see the value of these variables in your shell in two ways. First,
you can type

echo $variable_name

The system outputs the value of variable_name. Second, you can use the
env(l) command to print out the value of all defined variables in the shell.
To do this, type env on a line by itself; the system outputs a list of the vari
able names and values.

7-52 USER'S GUIDE

Shell Programming

Assigning a Value to a Variable

If you edit with vi, you know you can set the TERM variable by entering
the following command line:

TERM = terminal_name<CR>

This is the simplest way to assign a value to a variable.

There are several other ways to do this:

• Use the read command to assign input to the variable.

• Redirect the output of a command into a variable by using command
substitution with grave accents (' ... ').

• Assign a positional parameter to the variable.

The following sections discuss each of these methods in detail.

Using the read Command

The read command used within a shell program allows you to prompt the
user of the program for the values of variables. The general format for the
read command is:

read variable<CR>

The values assigned by read to variable will be substituted for $variable wher
ever it is used in the program. If a program executes the echo command just
before the read command, the program can display directions such as Type in
. .. . The read command will wait until you type a character string, followed
by a RETURN key, and then make that string the value of the variable.

The following example shows how to write a simple shell program called
num.please to keep track of your telephone numbers. This program uses the
following commands for the purposes specified:

echo to prompt you for a person's last name

read to assign the input value to the variable name

grep to search the file list for this variable

Your finished program should look like the one displayed here:

SHELL TUTORIAL 7 -53

Shell Programming

$ cat num.please<CR>
echo Type in the last name:
read name
grep $narne list
$

Create a file called list that contains several last names and phone
numbers. Then try running num.please.

The next example is a program called mknum, which creates a list.
mknum includes the following commands for the purposes shown.

• echo prompts for a person's name

• read assigns the person's name to the variable name

• echo asks for the person's number

• read assigns the telephone number to the variable num

• echo adds the values of the variables name and num to the file list

If you want the output of the echo command to be added to the end of list,
you must use » to redirect it. If you use >, list will contain only the last
phone number you added.

Running the cat command on mknum displays the program's contents.
When your program looks like this, you will be ready to make it executable
(with the chmod command):

7-54 USER'S GUIDE

$ cat mknum<CR>
echo Type in name
read name
echo Type in number
read num
echo $name $num » list

$ chmod u+x mknum<CR>
$

Shell Programming

Tryout the new programs for your phone list. In the next example,
mknum creates a new listing for Mr. Niceguy. Then num.please gives you
Mr. Niceguy's phone number:

$ mknum<CR>
Type in the name
Mr. Niceguy<CR>
Type in the number
668-0007 <CR>
$ num.please<CR>
Type in last name
Niceguy <CR>
Mr. Niceguy 668-0007
$

Notice that the variable name accepts both Mr. and Niceguy as the value.

Figures 7-18 and 7-19 summarize the mknum and num.please shell pro
grams, respectively.

SHELL TUTORIAL 7 -55

Shell Programming

Shell Program Recap

mknum - place name and number on a phone list

command arguments

mknum (interactive)

Description: Asks you for the name and number of a person and
adds that name and number to your phone list.

Remarks: This is an interactive command.

Figure 7-18: Summary of the mknum Shell Program

Shell Program Recap

num.please - display a person's name and number

command arguments

num.please (interactive)

Description: Asks you for a person's last name, and then displays
the person's full name and telephone number.

Remarks: This is an interactive command.

Figure 7-19: Summary of the num.please Shell Program

7-56 USER'S GUIDE

Shell Programming

Substituting Command Output for the Value of a Variable

You can substitute a command's output for the value of a variable by
using command substitution. This has the following format:

variable = 'command'<CR>

The output from command becomes the value of variable.

In one of the previous examples on piping, the date command was piped
into the cut command to get the correct time. That command line was the
following:

date I cut -c12-19<CR>

You can put this in a simple shell program called t that will give you the time.

$ cat t<CR>
time='date I cut -c12-19'
echo The time is: $t:ime
$

Remember there are no spaces on either side of the equal sign. Make the file
executable, and you will have a program that gives you the time:

SHELL TUTORIAL 7 -57

Shell Programming

$ chmod u+x t<CR>
$ kCR>
The time is: 10:36
$

Figure 7-20 summarizes your t program.

Shell Program Recap

t - display the correct time

command arguments

t none

Description: t gives you the correct time in hours and minutes.

Figure 7-20: Summary of the t Shell Program

ASSigning Values with Positional Parameters

You can assign a positional parameter to a named parameter by using the
following format:

varl=$l<CR>

The next example is a simple program called simp.p that assigns a posi
tional parameter to a variable. The following screen shows the commands in
simp.p:

7-58 USER'S GUIDE

$ cat simp.p<CR>
var1=$1
echo $var1
$

Shell Programming

Of course, you can also assign the output of a command that uses positional
parameters to a variable, as follows:

person='who I grep $l'<CR>

In the next example, the program log. time keeps track of your whoson
program results. The output of whoson is assigned to the variable person,
and added to the file login.file with the echo command. The last echo
displays the value of $person, which is the same as the output from the who
son command:

$ cat log.time<CR>
person=' who I grep $1'
echo $person » login. file
echo $person
$

The system response to log. time is shown in the following screen:

SHELL TUTORIAL 7 -59

Shell Programming

$ log. time maryann<CR>
maryann tty61 Apr 11 10: 26
$

Figure 7-21 summarizes the log.time shell program.

Shell Program Recap

log. time - log and display a specified login (user-defined)

command arguments

log.time login

Description: If the specified login is currently on the system,
log. time places the line of information from the who
command into the file login.file and then displays that
line of information on your terminal.

Figure 7-21: Summary of the log.time Shell Program

7-60 USER'S GUIDE

Shell Programming

Shell Programming Constructs

The shell programming language has several constructs that give added
flexibility to your programs:

• Comments let you document a program's function.

• The "here document" allows you to include within the shell program
itself lines to be redirected to be the input to some command in the
shell program.

• The exit command lets you terminate a program at a point other than
the end of the program and use return codes.

• The looping constructs, for and while, allow a program to iterate
through groups of commands in a loop.

• The conditional control commands, if and case, execute a group of
commands only if a particular set of conditions is met.

• The break command allows a program to exit unconditionally from a
loop.

Comments

You can place comments in a shell program in two ways. All text on a
line following a # (pound) sign is ignored by the shell. The # sign can be at
the beginning of a line, in which case the comment uses the entire line, or it
can occur after a command, in which case the command is executed but the
remainder of the line is ignored. The end of a line always ends a comment.
The general format for a comment line is

#comment<CR>

For example, a program that contains the following lines will ignore them
when it is executed:

This program sends a generic birthday greeting. <CR>
This program needs a login as<CR>
the positional parameter.<CR>

Comments are useful for documenting a program's function and should be
included in any program you write.

SHEll TUTORIAL 7-61

Shell Programming

The here Document

A "here document" allows you to place into a shell program lines that
are redirected to be the input of a command in that program. It is a way to
provide input to a command in a shell program without needing to use a
separate file. The notation consists of the redirection symbol « and a delim
iter that specifies the beginning and end of the lines of input. The delimiter
can be one character or a string of characters; the! is often used.

Figure 7-22 shows the general format for a here document.

command < <delimiter<CR>
... input lines ... <CR>
delimiter<CR>

Figure 7-22: Format of a Here Document

In the next example, the program gbday uses a here document to send a
generic birthday greeting by redirecting lines of input into the mail command:

$ cat gbday<CR>
mail $1 «~I

Best wishes to you on your birthday.

$

7 -62 USER'S GUIDE

Shell Programming

When you use this command, you must specify the recipient's login as the
argument to the command. The input included with the use of the here docu
ment is:

Best wishes to you on your birthday

For example, to send this greeting to the owner of login mary, type:

$ gbday mary<CR>

Login mary will receive your greeting the next time she reads her mail mes
sages:

$ mail<CR>
Frcm mylogin Wed May 14 14:31 car 1986
Best wishes to you on your birthday
$

Figure 7-23 summarizes the format and capabilities of the gbday com
mand.

SHELL TUTORIAL 7 -63

Shell Programming

Shell Program Recap

gbday - send a generic birthday greeting (user-defined)

command arguments

gbday login

Description: gbday sends a generic birthday greeting to the
owner of the login specified in the argument.

Figure 7-23: Summary of the gbday Command

Using ed in a Shell Program

The here document offers a convenient and useful way to use ed in a
shell script. For example, suppose you want to make a shell program that will
enter the ed editor, make a global substitution to a file, write the file, and then
quit ed. The following screen shows the contents of a program called ch.text
which does these tasks.

1-64 USER'S GUIDE

$ cat ch.text<CR>
echo Type in the file name.
read file1
echo Type in the exact text to be changed.

read old_text
echo Type in the exact new text to replace the above.
read new_text
ed - $file1 «!

g/$old_text/s//$new_text/g
w

q

$

Shell Programming

Notice the - (minus) option to the ed command. This option prevents the
character count from being displayed on the screen. Notice, also, the format
of the ed command for global substitution:

gJold_textjsj jnew_textJg<CR>

The program uses three variables: filel, old_text, and new_text. When the
program is run, it uses the read command to obtain the values of these vari
ables. The variables provide the following information:

file the name of the file to be edited

old_text the exact text to be changed

new_text the new text

Once the variables are entered in the programI the here document
redirects the global substitution, the write command, and the quit command
into the ed command. Try the new chAt ext command. The following screen
shows sample responses to the program prompts:

SHELL TUTORIAL 7 -65

Shell Programming

$ ch.text<CR>
Type in the filename.
memo<CR>
Type in the exact text to be changed.

Dear John:<CR>
Type in the exact new text to replace the above.
To whom it may concern:<CR>
$ cat memo<CR>
To whan it may concern:

$

Notice that by running the cat command on the changed file, you could
examine the results of the global substitution.

Figure 7-24 summarizes the format and capabilities of the ch.text com
mand.

Shell Program Recap

ch. text - change text in a file

command arguments

ch.text (interactive)

Description: Replaces text in a file with new text.

Remarks: This shell program is interactive. It will prompt
c you to type in the arguments.

Figure 7-24: Summary of the ch.text Command

7 -66 USER'S GUIDE

Shell Programming

If you want to become more familiar with ed, see Chapter 5, "Line Editor
Tutorial (ed)." The stream editor sed can also be used in shell programming.
You can find more information on the sed editor in the Editing Guide or Edit
ing Utilities Guide.

Return Codes
Most shell commands issue return codes that indicate whether the com

mand executed properly. By convention, if the value returned is 0 (zero) then
the command executed properly; any other value indicates that it did not.
The return code is not printed automatically, but is available as the value of
the shell special parameter $?

Checking Return Codes

After executing a command interactively, you can see its return code by
typing

echo $?

Consider the following example:

$ cat hi
This is file hi.

$ echo $?
o
$ cat hello
cat: cannot open hello
$ echo $?
2
$

In the first case, the file hi exists in your directory and has read permission for
you. The cat command behaves as expected and outputs the contents of the
file. It exits with a return code of 0, which you can see using the parameter
$? In the second case, the file either does not exist or does not have read
permission for you. The cat command prints a diagnostic message and exits
with a return code of 2.

SHELL TUTORIAL 7 -67

Shell Programming

Using Return Codes With the exit Command

A shell program normally terminates when the last command in the file is
executed. However, you can use the exit command to terminate a program at
some other point. Perhaps more importantly, you can also use the exit com
mand to issue return codes for a shell program. For more information about
exit, see the exit(2) manual page in the Programmer's Reference Manual or
Shell Commands and Programming.

Looping

In the previous examples in this chapter, the commands in shell programs
have been executed in sequence. The for and while looping constructs allow
a program to execute a command or sequence of commands several times.

The for Loop

The for loop executes a sequence of commands once for each member of a
list. It has the following format:

for variable<CR>
in a_Iist_of_values<CR>

do<CR>
command 1 <CR>
command 2<CR>

last command<CR>
done<CR>

Figure 7-25: Format of the for Loop Construct

For each iteration of the loop, the next member of the list is assigned to
the variable given in the for clause. References to that variable may be made
anywhere in the commands within the do clause.

7 -68 USER'S GUIDE

Shell Programming

It is easier to read a shell program if the looping constructs are visually
clear. Since the shell ignores spaces at the beginning of lines, each section of
commands can be indented as it was in the above format. Also, if you indent
each command section, you can easily check to make sure each do has a
corresponding done at the end of the loop.

The variable can be any name you choose. For example, if you call it var,
then the values given in the list after the keyword in will be assigned in turn
to var; references within the command list to $var will make the value avail
able. If the in clause is omitted, the values for var will be the complete set of
arguments given to the command and available in the special parameter $*.
The command list between the keywords do and done will be executed once
for each value.

When the commands have been executed for the last value in the list, the
program will execute the next line below done. If there is no line, the pro
gram will end.

The easiest way to understand a shell programming construct is to try an
example. Create a program that will move files to another directory. Include
the following commands for the purposes shown:

echo

read

for variable

to prompt the user for a path name to the new
directory.

to assign the path name to the variable path

to call the variable file; it can be referenced as
$file in the command sequence.

to supply a list of values. If the in clause is omit
ted, the list of values is assumed to be $* (all the
arguments entered on the command line).

do command-Bequence to provide a command sequence. The construct
for this program will be:

do
mv $file $path/$fi1e<CR>

done

SHELL TUTORIAL 7 -69

Shell Programming

The following screen shows the text for the shell program mv.file:

$ cat mv.file<CR>
echo Please type in the directory path

read path
for file

in rneno 1 rneno2 rneno3

do
rnv $file $path/$file

done

$

In this program the values for the variable file are already in the program.
To change the files each time the program is invoked, assign the values using
positional parameters or the read command. When positional parameters are
used, the in keyword is not needed, as the next screen shows:

$ cat mv.file<CR>
echo type in the directory path
read path

for file
do

rnv $file $path/$file

done
$

7-70 USER'S GUIDE

Shell Programming

You can move several files at once with this command by specifying a list
of file names as arguments to the command. (This can be done most easily
using the file name expansion mechanism described earlier.)

Figure 7-26 summarizes the mv.file shell program.

Shell Program Recap

mv.file - move files to another directory (user-defined)

command arguments

mv.file filenames
(interactive)

Description: Moves files to a new directory.

Remarks: This program requires file names to be given as
arguments. The program prompts for the path
to the new directory.

Figure 7-26: Summary of mv.file Shell Program

The while Loop

Another loop construct, the while loop, uses two groups of commands. It
will continue executing the sequence of commands in the second group, the
do ... done list, as long as the final command in the first group, the while list,
returns a status of true (meaning the command can be executed).

The general format of the while loop is shown in Figure 7-27.

SHELL TUTORIAL 7-71

Shell Programming

while<CR>
command 1 <CR>

last command<CR>
do<CR>

command 1 <CR>

last command<CR>
done<CR>

Figure 7-27: Format of the while Loop Construct

For example, a program called enter.name uses a while loop to enter a
list of names into a file. The program consists of the following command
lines:

$ cat enter.name<CR>
while

read x
do

echo $x»xfile
done
$

7-72 USER'S GUIDE

Shell Programming

With some added refinements, the program becomes:

$ cat enter.name<CR>
echo Please type in each person's name and then a <CR>
echo Please end the list of names with a <Ad>

while read x

do
echo $x»xfile

done

echo xfile contains the following names:
cat xfile
$

Notice that after the loop is completed, the program executes the commands
below the done.

You used special characters in the first two echo command lines, so you
must use quotes to turn off the special meaning. The next screen shows the
results of enter .name:

$ enter.name<CR>
Please type in each person's name and then a <CR>
Please end the list of names with a <Ad>

Mary Lou<CR>
Japice<CR>
< d>
xfile contains the following names:
Mary Lou

Janice
$

SHELL TUTORIAL 7 -73

Shell Programming

Notice that after the loop completes, the program prints all the names con
tained in xfile.

The Shell's Garbage Can: /dev /null

The file system has a file called / dev /null where you can have the shell
deposit any unwanted output.

Tryout /dev /null by destroying the results of the who command. First,
type in the who command. The response tells you who is on the system.
Now, try the who command, but redirect the output into /dev /null:

who > /dev /null<CR>

Notice that the system responded with a prompt. The output from the
who command was placed in /dev /null and was effectively discarded.

Conditional Constructs

if ... then

The if command tells the shell program to execute the then sequence of
commands only if the final command in the if command list is successful.
The if construct ends with the keyword fi.

The general format for the if construct is shown in Figure 7-28.

7-74 USER'S GUIDE

if<CR>
commandl <CR>

last command<CR>
then<CR>

commandl <CR>

last command<CR>
fi<CR>

Shell Programming

Figure 7-28: Format of the if ... then Conditional Construct

For example, a shell program called search demonstrates the use of the
if ... then construct. search uses the grep command to search for a word in a
file. If grep is successful, the program will echo that the word is found in the
file. Copy the search program (shown on the following screen) and try it
yourself:

$ cat search<CR>
echo Type in the \\lOrd and the file name.
read \\lOrd file
if grep $word $file

fi
$

then echo $word is in $file

SHELL TUTORIAL 7-75

Shell Programming

Notice that the read command assigns values to two variables. The first
characters you type, up to a space, are assigned to word. The rest of the char
acters, including embedded spaces, are assigned to file.

A problem with this program is the unwanted display of output from the
grep command. If you want to dispose of the system response to the grep
command in your program, use the file / dev /null, changing the if command
line to the following:

if grep $word $file > /dev /null<CR>

Now execute your search program. It should respond only with the message
specified after the echo command.

if ... then ... else

The if ... then construction can also issue an alternate set of commands
with else, when the if command sequence is false. It has the following gen
eral format:

7-76 USER'S GUIDE

if<CR>
command1 <CR>

last command<CR>
then<CR>

command1 <CR>

last command<CR>
else<CR>

command1 <CR>

last command<CR>
fi<CR>

Shell Programming

Figure 7-29: Format of the if ... then ... else Conditional Construct

You can now improve your search command so it will tell you when it
cannot find a word, as well as when it can. The following screen shows how
your improved program will look:

SHELL TUTORIAL 7 -77

Shell Programming

$ cat search <CR>
echo Type in the \'Ord and the file name.
read \'Ord file
if

grep $word $file >/dev/null
then

echo $\'Ord is in $file
else

fi
$

echo $word is NOT in $file

Figure 7 -30 summarizes your enhanced search program.

Shell Program Recap

search - tells you if a word is in a file (user-defined)

command arguments

search interactive

Description: Reports whether a word is in a file.

Remarks: The command prompts you for the arguments
(the word and the file)

Figure 7-30: Summary of the search Shell Program

7-78 USER'S GUIDE

Shell Programming

The test Command for Loops

The test command, which checks to see if certain conditions are true, is a
useful command for conditional constructs. If the condition is true, the loop
will continue. If the condition is false, the loop will end and the next com
mand will be executed. Some of the useful options for the test command are:

test -r file<CR>

test -w file<CR>

test -x file<CR>

test -s file<CR>

true if the file exists and is readable

true if the file exists and has write permission

true if the file exists and is executable

true if the file exists and has at least one character

test varl -eq var2<CR> true if varl equals var2

test varl -ne var2<CR> true if varl does not equal var2

You may want to create a shell program to move all the executable files in
the current directory to your bin directory. You can use the test -x command
to select the executable files. Review the example of the for construct that
occurs in the mv.file program, shown in the following screen:

$ cat rnv.file<CR>
echo type in the directory path

read path

for file
do .

mv $file $path/$file

done

$

Create a program called mv.ex that includes an if test -x statement in the
do ... done loop to move executable files only. Your program will be as fol
lows:

SHELL TUTORIAL 7-79

Shell Programming

$ cat mv.ex<CR>
echo type in the directory path
read path
for file

$

do
if test -x $file

then
mv $file $path/$file

fi
done

The directory path will be the path from the current directory to the bin
directory. However, if you use the value for the shell variable HOME, you
will not need to type in the path each time. $HOME gives the path to the
login directory. $HOME/bin gives the path to your bin.

In the following example, mv.ex does not prompt you to type in the direc
tory name, and therefore, does not read the path variable:

$ cat mv.ex<CR>
for file

$

do
if test -x $file

then

fi
done

mv $file $IlCl-1EIbin/$file

7-80 USER'S GUIDE

Shell Programming

Test the command, using all the files in the current directory, specified
with the * metacharacter as the command argument. The command lines
shown in the following example execute the command from the current direc
tory and then changes to bin and lists the files in that directory. All execut
able files should be there.

$ mv.ex *<CR>
$ cd; cd bin; ls<CR>
lisLof_executable_files
$

Figure 7-31 summarizes the format and capabilities of the mv.ex shell
program.

SHELL TUTORIAL 7-81

Shell Programming

Shell Program Recap

mv.ex - move all executable files in the current
directory to the bin directory

command arguments

mv.ex * (all file names)

Description: Moves all files in the current directory with
execute permission to the bin directory.

Remarks: All executable files in the bin directory (or any
directory shown by the PATH variable) can be
executed from any directory.

Figure 7-31: Summary of the mv.ex Shell Program

case •• esac

The case ... esac construction has a multiple choice format that allows you
to choose one of several patterns and then execute a list of commands for that
pattern. The pattern statements must begin with the keyword in, and a)
must be placed after the last character of each pattern. The command
sequence for each pattern is ended with ;;. The case construction must be
ended with esac (the letters of the word case reversed).

The general format for the case construction is shown in Figure 7-32.

7 -82 USER'S GUIDE

case word<CR>
in<CR>

pattern1)<CR>
command line 1 <CR>

last command line<CR>
;;<CR>
pattern2)<CR>

command line 1 <CR>

last command line<CR>
;;<CR>
pattern3)<CR>

command line 1 <CR>

last command line<CR>
;;<CR>
*)<CR>

command 1 <CR>

last command<CR>
i;<CR>

esac<CR>

Figure 7-32: The case ... esac Conditional Construct

Shell Programming

The case construction tries to match the word following the word case with
the pattern in the first pattern section. If there is a match, the program exe
cutes the command lines after the first pattern and up to the corresponding ;;.

SHELL TUTORIAL 7 -83

Shell Programming

If the first pattern is not matched, the program proceeds to the second
pattern. Once a pattern is matched, the program does not try to match any
more of the patterns, but goes to the command following esac.

The * used as a pattern matches any word, and so allows you to give a
set of commands to be executed if no other pattern matches. To do this, it
must be placed as the last possible pattern in the case construct, so that the
other patterns are checked first. This provides a useful way to detect errone
ous or unexpected input.

The patterns that can be specified in the pattern part of each section may
use the metacharacters *, ?, and [] as described earlier in this chapter for the
shell's file name expansion capability. This provides useful flexibility.

The set.term program contains a good example of the case ... esac construc
tion. This program sets the shell variable TERM according to the type of ter
minal you are using. It uses the following command line:

TERM =terminal_name<CR>

(For an explanation of the commands used, see the vi tutorial in Chapter 6.)
In the following example, the terminal is a Teletype 4420, Teletype 5410, or
Teletype 5420.

set.term first checks to see whether the value of term is 4420. If it is, the
program makes T4 the value of TERM and terminates. If the value of term is
not 4420, the program checks for other values: 5410 and 5420. It executes
the commands under the first pattern that it finds and then goes to the first
command after the esac command.

The pattern *, meaning everything else, is included at the end of the ter
minal patterns. It will warn that you do not have a pattern for the terminal
specified and will allow you to exit the case construct:

7-84 USER'S GUIDE

$ cat set.term<CR>
echo If you have a TrY 4420 type in 4420
echo If you have a TrY 5410 type in 5410
echo If you have a TrY 5420 type in 5420

read term
case $tenn

in

esac
export TERM

4420)
TERM=T4

5410)

TERM=T5

5420)
TERM=T7

*)
echo not a correct terminal type

echo end of program
$

Shell Programming

Notice the use of the export command. You use export to make a vari
able available within your environment and to other shell procedures. What
would happen if you placed the * pattern first? The set. term program would
never assign a value to TERM, since it would always match the first pattern *,

which means everything.

Figure 7-33 summarizes the format and capabilities of the set. term shell
program.

SHELL TUTORIAL 7-85

Shell Programming

Shell Program Recap

set. term - assign a value to TERM (user-defined)

command arguments

set.term interactive

Description: Assigns a value to the shell variable TERM and
then exports that value to other shell pro-
cedures.

Remarks: This command asks for a specific terminal code
to be used as a pattern for the case construc-
tion.

Figure 7-33: Summary of the set.term Shell Program

Unconditional Control Statements: the break and continue
Commands

The break command unconditionally stops the execution of any loop in
which it is encountered and goes to the next command after the done, £i, or
esac statement. If there are no commands after that statement, the program
ends.

In the example for set.term, you could have used the break command
instead of echo to leave the program, as the next example shows:

7-86 USER'S GUIDE

$ cat set.term<CR>
echo If you have a TrY 4420 type in 4420
echo If you have a TrY 5410 type in 5410
echo If you have a TrY 5420 type in 5420

read tenn
case $tenn

esac

in
4420)

TERM=T4

5410)

TERM=T5

5420)
TERM=T7

*)
break

export TERM

echo end of program

$

Shell Programming

The continue command causes the program to go immediately to the next
iteration of a do or for loop without executing the remaining commands in the
loop.

Debugging Programs

At times you may need to debug a program to find and correct errors.
There are two options to the sh command (listed below) that can help you
debug a program:

sh -v shellprogramname prints the shell input lines as they are read by
the system

SHELL TUTORIAL 7-87

Shell Programming

sh -x shellprogramname prints commands and their arguments as they
are executed

To tryout these two options, create a shell program that has an error in it.
For example, create a file called bug that contains the following list of com
mands:

$ cat bug<CR>
today=' date'
echo enter person
read person
mail $1
$person
When you log off cane into my office please.
$today.

MLH

$

Notice that today equals the output of the date command, which must be
enclosed in grave accents for command substitution to occur.

The mail message sent to Tom ($1) at login tommy ($2) should read as
the following screen shows:

7 -88 USER'S GUIDE

$ mail<CR>
Fran mlh Thu. Apr 10 11: 36 CST 1984

Tcm

When you log off come into my office please.
Thu Apr 10 11:36:32 CST 1986

MLH

?

Shell Programming

If you try to execute bug, you will have to press the BREAK or DELETE
key to end the program.

To debug this program, try executing bug using sh -v. This will print the
lines of the file as they are read by the system, as shown below:

$ sh -v bug tom<CR>
today=' date'
echo enter person
enter person
read person
tommy
nail $1

Notice that the output stops on the mail command, since there is a prob
lem with mail. You must use the here document to redirect input into mail.

Before you fix the bug program, try executing it with sh -x, which prints
the commands and their arguments as they are read by the system:

SHELL TUTORIAL 7 -89

Shell Programming

$ sh -x bug tom tommy<CR>
+date
today=Thu Apr 10 11:07:23 CST 1986
+ echo enter person
enter person
+ read person
tommy
+ mail tom
$

Once again, the program stops at the mail command. Notice that the
substitutions for the variables have been made and are displayed.

The corrected bug program is as follows:

$ cat bug<CR>
today=' date'
ecboenterperson
read person
mail $1 «!

$person
When you log off corne into my office please.
$today

MIR

$

The tee command is a helpful command for debugging pipelines. While
simply passing its standard input to its standard output, it also saves a copy of
its input into the file whose name is given as an argument.

7-90 USER'S GUIDE

The general format of the tee command is:

commandl I tee saverfile I command2<CR

Shell Programming

saverfile is the file that saves the output of commandl for you to study.
I

For example, say you want to check on the output of the grep command
in the following command line:

who I grep $1 I cut -cl-9<CR>

You can use tee to copy the output of grep into a file called check, without
disturbing the rest of the pipeline.

who I grep $1 I tee check I cut -cl-9<CR>

The file check contains a copy of the grep output, as shown in the following
screen:

$ who: grep mlhmo: tee check: cut -c1-9<CR>
mJ.lm::>

$ cat check<CR>
mJ.lm::> tty61 Apr 10 11 :30
$

For further information about shell programming, including features such
as command return codes, refer to the manual Shell Commands and Program
ming.

SHELL TUTORIAL 7 -91

Modifying Your Login Environment

The UNIX system lets you modify your login environment in several
ways. One modification that users commonly want to make is to change the
default values of the erase (#) and line kill (@) characters.

When you log in, the shell first examines a file in your login directory
named .profile (pronounced "dot profile"). This file contains commands that
control your shell environment.

Because the .profile is a file, it can be edited and changed to suit your
needs. On some systems you can edit this file yourself, while on others, the
system administrator does this for you. To see whether you have a .profile in
your home directory, type:

Is -al $HOME

If you can edit the file yourself, you may want to be cautious the first few
times. Before making any changes to your .profile, make a copy of it in
another file called safe.profile. Type:

cp .profile safe.profile<CR>

You can add commands to your .profile just as you add commands to any
other shell program. You can also set some terminal options with the stty
command, and set some shell variables.

Adding Commands to Your .profile

Practice adding commands to your .profile. Edit the file and add the fol
lowing echo command to the last line of the file:

echo Good Morning! I am ready to work for you.

Write and quit the editor.

Whenever you make changes to your .profile and you want to initiate
them in the current work session, you may cause the commands in .profile to
be executed directly using the. (dot) shell command. The shell will reinitial
ize your environment by reading executing the commands in your .profile.
Try this now. Type:

. .profile<CR>

7-92 USER'S GUIDE

Modifying Your Login Environment

The system should respond with the following:

Good r-brning! I am ready to work for you.
$

Setting Terminal Options

The stty command can make your shell environment mor~ convenient.
There are three options you can use with stty: -tabs, erase < h>, and echoe.

stty -tabs This option preserves tabs when you are printing.
It expands the tab setting to eight spaces, which is
the default. The number of spaces for each tab
can be changed. [See stty(l) in the User's Refer
ence Manual for details.]

stty erase < h> This option allows you to use the erase key on
your keyboard to erase a letter, instead of the
default character #. Usually the BACKSPACE key
is the erase key.

stty echoe If you have a terminal with a screen, this option
erases characters from the screen as you erase
them with the BACKSPACE key.

If you want to use these options for the stty command, you can create
those command lines in your .profile just as you would create them in a shell
program. If you use the tail command, which displays the last few lines of a
file, you can see the results of adding those four command lines to your .pro
file:

SHELL TUTORIAL 7 -93

Modifying Your Login Environment

$ tail -4 .profile<CR>
echo Good M::>rning! I am ready to work for you
stty -tabs
stty erase <"h>

stty echoe
$

Figure 7 -34 summarizes the format and capabilities of the tail command.

Command Recap

tail - display the last portion of a file

command options arguments

tail -n filename

Description: Displays the last lines of a file.

Options: Use -n to specify the number of lines n (default
is ten lines). You can specify a number of
blocks (-nb) or characters (-nc) instead of lines.

Figure 7-34: Summary of the tail Command

7-94 USER'S GUIDE

Modifying Your Login Environment

Creating an rje Directory

We have often talked about sharing useful programs with other users in
this chapter. Similarly, these users may have programs or other files that they
want to share with you. So that these users can send you the files easily, you
should create an rje (remote job entry) directory:

mkdir rje
chmod go+w rje

Notice that you have to change the permissions of the directory using chmod.
When you have an rje directory with the correct permissions, other users can
send you files using the uucp command. See the uucp(l) manual page in the
User's Reference Manual for details.

Using Shell Variables

Several of the variables reserved by the shell are used in your .profile.
You can display the current value for any shell variable by entering the fol
lowing command:

echo $variable_name

Four of the most basic of these variables are discussed next.

HOME

This variable gives the path name of your login directory. Use the
cd command to go to your login directory and type:

pwd<CR>

What was the system response? Now type:

echo $HOME<CR>

Was the system response the same as the response to pwd?

SHELL TUTORIAL 7-95

Modifying Your Login Environment

$HOME is the default argument for the cd command. If you do
not specify a directory, cd will move you to $HOME.

PATH

This variable gives the search path for finding and executing com
mands. To see the current values for your PATH variable type:

echo $PATH<CR>

The system will respond with your current PATH value.

$ echo $PATH<CR>
: /mylCXJin/bin: /bin: /usr/bin: /usr/lib
$

The colon (:) is a delimiter between path names in the string
assigned to the $PATH variable. When nothing is specified before a :,
then the current directory is understood. Notice how, in the last
example, the system looks for commands in the current directory first,
then in /mylogin/bin/, then in /bin, then in /usr/bin, and finally in
/usr/lib.

If you are working on a project with several other people, you
may want to set up a group bin, a directory of special shell programs
used only by your project members. The path might be named
/projectl/bin. Edit your .profile and add :/projectl/bin to the end
of your PATH, as in the next example.

PATH=" :/mylogin/bin:/bin:/usr/lib:/projectl/bin" <CR>

7-96 USER'S GUIDE

Modifying Your Login Environment

TERM

This variable tells the shell what kind of terminal you are using.
To assign a value to it, you must execute the following three com
mands in this order:

TERM=terminal_name<CR>
export TERM <CR>
tput init

The first two lines, together, are necessary to tell the computer what
type of terminal you are using. (For an explanation of exporting vari
ables, see Shell Commands and Programming.) The last line, containing
the tput command, tells the terminal that the computer is expecting to
communicate with the type of terminal specified in the TERM vari
able. Therefore this command must always be entered after the vari
able has been exported.

If you do not want to specify the TERM variable each time you
log in, add these three command lines to your .profile; they will be
executed automatically whenever you log in. To determine what ter
minal name to assign to the TERM variable, see the instructions in
Appendix F, "Setting Up the Terminal." This appendix also contains
details about the tput command.

If you log in on more than one type of terminal, it would also be
useful to have your set.term command in your .profile.

PSI

This variable sets the primary shell prompt string (the default is
the $ sign). You can change your prompt by changing the PSI vari
able in your .profile.

Try the following example. Note that to use a multiword prompt,
you must enclose the phrase in quotes. Type the following variable
assignment in your .profile.

PSI="Your command is my wish<CR>"

Now execute your .profile (with the. command) and watch for your
new prompt sign.

$.. profile<CR>

SHELL TUTORIAL 7-97

Modifying Your Login Environment

Your ccmnand is IT!Y wish

The mundane $ sign is gone forever, or at least until you delete the
PSt variable from your .profile.

7-98 USER'S GUIDE

Shell Programming Exercises

2-1. Create a shell program called time from the following command line:

banner 'date I cut -c12-19'<CR>

2-2. Write a shell program that will give only the date in a banner display.
Be careful not to give your program the same name as a UNIX system
command.

2-3. Write a shell program that will send a note to several people on your
system.

2-4. Redirect the date command without the time into a file.

2-5. Echo the phrase Dear colleague in the same file that contains the date
command, without erasing the date.

2-6. Using the above exercises, write a shell program that will send a
memo to the same people on your system mentioned in Exercise 2-3.
Include in your memo:

The current date and the words Dear colleague at the top of the
memo

The body of the memo (stored in an existing file)

The closing statement

2-7. How can you read variables into the mv.file program?

2-8. Use a for loop to move a list of files in the current directory to another
directory. How can you move all your files to another directory?

2-9. How can you change the program search, so that it searches through
several files?

Hint:

for file
in $*

2-10. Set the stty options for your environment.

SHELL TUTORIAL 7 -99

Shell Programming Exercises

2-11. Change your prompt to the word Hello.

2-12. Check the settings of the variables $HOME, $TERM, and $PATH in
your environment.

7-100 USER'S GUIDE

Answers To Exercises

Command Language Exercises

1-1. The * at the beginning of a file name refers to all files that end in that
file name, including that file name.

$ Is *t<CR>
cat
123t
new.t
t
$

1-2. The command cat [0-9]* will produce the following output:

1:meno
100data
9
05name

The command echo * will produce a list of all the files in the current
directory.

1-3. You can place? in any position in a file name.

1-4. The command Is [0-9]* will list only those files that start with a
number.

The command Is [a-m]* will list only those files that start with the
letters "a" through "m".

SHELL TUTORIAL 7-101

Answers To Exercises

1-5. If you placed the sequential command line in the background mode,
the immediate system response was the PID number for the job.

No, the & (ampersand) must be placed at the end of the command
line.

1-6. The command line would be:

cd; pwd > junk; Is » junk; ed trial<CR>

1-7. Change the -c option of the command line to read:

banner 'date I cut -cl-10'<CR>

Shell Programming Exercises

2-1.

$ cat time<CR>
banner 'date I cut --c12-19'
$

$ chmod u+x time<CR>
$ time<CR>
(banner display of the time 10: 26)
$

7-102 USER'S GUIDE

2-2.

2-3.

$ cat mydate<CR>
banner 'date I cut --c1-10'
$

$ cat toiriends<CR>
echo '!YPe in the name of the file containing the note.
read note
mail janice narylou bryan < $note
$

Answers To Exercises

Or, if you used parameters for the logins, instead of the logins them
selves, your program may have looked like this:

SHELL TUTORIAL 7-103

Answers To Exercises

$ cat tofriends<CR>
echo Type in the name of the file containing the note.
read note
mail $* < $note

$

2-4. date I cut -cl-10 > filel<CR>

2-5. echo Dear colleague » filel<CR>

2-6.

7-104

$ cat send.memo<CR>
date I cut --c1-10 > meno1
echo Dear colleague » meno1
cat merro » meno 1
echo A merro fran M. L. Kelly» merro1
mail janice marylou bryan < meno1
$

USER'S GUIDE

2-7.

2-8.

$ cat mv.file<CR>
echo type in the directory path
read path
echo type in file names, end with <Ad>

while
read file

do
mv $file $path/$file

dane

echo all done
$

$ cat mv.file<CR>
echo Please type in directory path
read path
for file in $*

do

$

mv $file $path/$file
dane

Answers To Exercises

The command line for moving all files in the current directory is:

$ mv.file *<CR>

SHELL TUTORIAL 7-105

Answers To Exercises

2-9. See hint given with exercise 2-9.

$ cat search<CR>
for file

$

in $*

do
if grep $'WOrd $file >/dev/null

then echo $word is in $file

else echo $word is NOT in $file

fi

done

2 -10. Add the following lines to your .profile.

stty -tabs<c;R>
stty erase < h><CR>
stty echoe<CR>

2-11. Add the following command lines to your .profile

PS1=Hello<CR>
export PSl

2-12. To check the values of these variables in your home environment:

D $ echo $HOME<CR>

D $ echo $TERM<CR>

D $ echo $P A TH <CR>

7-106 USER'S GUIDE

Chapter 8: Communication Tutorial

Introduction

Exchanging Messages

mail
Sending Messages

Undeliverable Mail

Sending Mail to One Person

Sending Mail to Several People Simultaneously

Sending Mail to Remote Systems: the uname and
uuname Commands

Managing Incoming Mail

mailx

mailx Overview

Command Line Options

How to Send Messages: the Tilde Escapes
Editing the Message

Incorporating Existing Text into Your Message

Reading a File into a Message

Incorporating a Message from Your Mailbox into a Reply

Changing Parts of the Message Header

Adding Your Signature

Keeping a Record of Messages You Send

Exiting from mailx
Summary

8-1

8-2

8-3

8-3

8-4

8-6

8-7

8-8

8-12

8-16

8-17

8-19

8-20

8-22

8-24

8-25

8-26

8-27

8-28

8-28

8-31

8-31

TABLE OF CONTENTS

Table of Contents

How to Manage Incoming Mail
The msglist Argument

Commands for Reading and Deleting Mail

Reading Mail

Scanning Your Mailbox

Switching to Other Mail Files

Deleting Mail

Commands for Saving Mail

Commands for Replying to Mail

Commands for Getting Out of mailx

mailx Command Summary

The .mailrc File

Sending and Receiving Files
Sending Small Files: the mail Command

Sending Large Files

Getting Ready: Do You Have Permission?

The uucp Command

Command Line Syntax

Sample Usage of Options with the uucp Command

How the uucp Command Works

The uuto Command

Sending a File: the -m Option and uustat Command

Receiving Files Sent with uuto: the uupick Command

Networking
Connecting a Remote Terminal: the ct Command

Command Line Format

Sample Command Usage

ii USER'S GUIDE

8-32

8-32

8-33

8-33

8-35

8-36

8-37

8-38

8-39

8-40

8-41

8-42

8-47

8-47

8-48

8-49

8-51

8-51

8-53

8-55

8-57

8-58

8-62

8-66

8-66

8-67

8-67

Table of Contents

Calling Another UNIX System: the eu Command 8-69

Command Line Format 8-70

Sample Command Usage 8-72

Executing Commands on a Remote System: the uux Command 8-74

Command Line Format 8-74

Sample Command Usage 8-75

TABLE OF CONTENTS iii

Introduction

The UNIX system offers a choice of commands that enable you to com
municate with other UNIX system users. Specifically, they allow you to:
send and receive messages from other users (on either your system or another
UNIX system); exchange files; and form networks with other UNIX systems.
Through networking, a user on one system can exchange messages and files
between computers, and execute commands on remote computers.

To help you take advantage of these capabilities, this chapter will teach
you how to use the following commands.

For exchanging messages:

For exchanging files:

For networking:

mail, mailx, uname, and uuname

uucp, uuto, uupick, an,i uustat

ct, cu, and uux

COMMUNICATION TUTORIAL 8-1

Exchanging Messages

To send messages, you can use either the mail or mailx command. These
commands deliver your message to a file belonging to the recipient. When
the recipient logs in (or while already logged in), he or she receives a message
that says you have mail. The recipient can use either the mail or mailx com
mand to read your message and reply at his or her leisure.

The main difference between mail and mailx is that only mailx offers the
following features:

• a choice of text editors (ed or vi) for handling incoming and outgoing
messages

• a list of waiting messages that allows the user to decide which mes
sages to handle and in what order

• several options for saving files

• commands for replying to messages and sending copies (of both incom
ing and outgoing messages) to other users

You can also use mail or mailx to send short files containing memos,
reports, and so on. However, if you want to send someone a file that is over
a page long, use one of the commands designed for transferring files: uuto or
uucp. (See "Sending Large Files" later in this chapter for descriptions of
these commands.)

8-2 USER'S GUIDE

mail

This section presents the mail command. It discusses the basics of send
ing mail to one or more people simultaneously, whether they are working on
the local system (the same system as you) or on a remote system. It also cov·
ers receiving and handling incoming mail.

Sending Messages

The basic command line format for sending mail is

mail login<CR>

where login is the recipient's login name on a UNIX system. This login name
can be either of the following:

• a login name if the recipient is on your system (for example, bob)

• a system name and login name if the recipient is on another UNIX sys-
tem that can communicate with yours (for example, sys2!bob)

For the moment, assume that the recipient is on the local system. (We will
deal with sending mail to users on remote systems later.) Type the mail com
mand at the system prompt, press the RETURN key, and start typing the text
of your message on the next line. There is no limit to the length of your mes
sage. Wl}en you have finished typing it, send the message by typing a period
(.) or a < d> (control-d) at the beginning of a new line.

The following example shows how this procedure will appear on your
screen.

COMMUNICATION TUTORIAL 8-3

mail

$ mail phyllis<CR>
My meeting with Smith's<CR>
group tomorrow has been moved<CR>
up to 3:00 so I won't be able to<CR>
see you then. Could we meet<CR>
in the morning instead?<CR>
.<CR>
$

The prompt on the last line means that your message has been queued
(placed in a waiting line of messages) and will be sent.

Undeliverable Mail

If you make an error when typing the recipient's login, the mail command
will not be able to deliver your mail. Instead, it will print two messages tel
ling you that it has failed and that it is returning your mail. Then it will
return your mail in a message that includes the system name and login name
of both the sender and intended recipient, and an error message stating the
reason for the failure.

For example, say you (owner of the login kol) want to send a message to
a user with the login chris on a system called marmaduk. Your message says

-The meeting has been changed to 2:00. Failing to notice that you have
incorrectly typed the login as cris, you try to send your message.

8-4 USER'S GUIDE

$ mail cris<CR>
The meeting has been changed to 2:00 .
. <CR>
nail: Can't send to cris

nail: Return to kol
you have nail in /usr/naillkol
$

mail

The mail that is waiting for you in /usr/mail will be useful if you do not
know why the mail command has failed, or if you want to retrieve your mail
so that you can res end it without typing it in again. It contains the following:

$ mail<CR>
Fran kol Sat Jan 18 17: 33 EST 1986
>Fran kol sat Jan 18 17:33 EST 1986 forwarded by kol

***** UNDELIVERABLE MAIL sent to cris, being returned by ma.rma.duk!kol *****
nail: ERROR # 8 'Invalid recipient' encountered on system marmaduk

The meeting has been changed to 2: 00 .

?

To learn how to display and handle this message see "Managing Incoming
Mail" later in this chapter.

COMMUNICATION TUTORIAL 8-5

mail

Sending Mail to One Person

The following screen shows a typical message.

$ mail tommy<CR>
Tom,<CR>
There's a meeting of the review committee<CR>
at 3:00 this afternoon. D.F. wants your<CR>
comments and an idea of how long you think<CR>
the project will take to complete.<CR>
B.K.<CR>
.<CR>
$

When Tom logs in at his terminal (or while he is already logged in), he
receives a message that tells him he has mail waiting:

$ you. have mail

To find out how he can read his mail, see the section "Managing Incoming
Mail" in this chapter.

You can practice using the mail command by sending mail to yourself.
Type in the mail command and your login ID, anAd then write a short message
to yourself. When you type the final period or < d>, the mail will be sent to
a file named after your login ID in the /usr/mail directory, and you will
receive a notice that you have mail.

Sending mail to yourself can also serve as a handy reminder system. For
example, suppose you (login ID bob) want to call someone the next morning.
Send yourself a reminder in a mail message.

8-6 USER'S GUIDE

$ mail bob<CR>
Call Accounting and find out<CR>
why they haven't returned my 1985 figures!<CR>
.<CR>
$

mail

When you log in the next day, a notice will appear on your screen informing
you that you have mail waiting to be read.

Sending Mail to Several People Simultaneously

You can send a message to a number of people by including their login
names on the mail command line. For example:

$ mail tommy jane wombat dave<CR>
Diamond cutters,<CR>
The game is on for tonight at diamond three.<CR>
Don't forget your gloves!<CR>
Your Manager<CR>
.<CR>
$

Figure 8-1 summarizes the syntax and capabilities of the mail command.

COMMUNICATION TUTORIAL 8-7

mail

Command Recap

mail - sends a message to another user's login

command options arguments

mail none [system_name!]login

Description: Typing mail followed by one or more login
names sends the message typed on the lines
following the command line to the specified
login(s).

Remarks: Typing a period or a < d> (followed by the
RETURN key) at the beginning of a new line
sends the message.

Figure 8-1: Summary of Sending Messages with the mail Command

Sending Mail to Remote Systems: the uname and
uuname Commands

Until now we have assumed that you are sending messages to users on
the local UNIX system. However, your company may have three separate
computer systems, each in a different part of a building, or you may have
offices in several locations, each with its own system.

You can send mail to users on other systems simply by adding the name
of the recipient's system before the login ID on the command line.

mail sys2!bob<CR>

Notice that the system name and the recipient's login ID are separated by an
exclamation point.

8-8 USER'S GUIDE

Before you can run this command, however, you need three pieces of
information:

• the name of the remote system

• whether or not your system and the remote system communicate

• the recipient's login name

The uname and uuname commands allow you to find this information.

mail

If you can, get the name of the remote system and the recipient's login
name from the recipient. If the recipient does not know the system name,
have him or her issue the following command on the remote system:

uname -n<CR>

The' command will respond with the name of the system. For example:

$ uname -n<CR>
dumbo
$

Once you know the remote system name, the uuname command can help
you verify that your system can communicate with the remote system. At the
prompt, type:

uuname<CR>

This generates a list of remote systems with which your system can communi
cate. If the recipient's system is on that list, you can send messages to it by
mail.

You can simplify this step by using the grep command to search through
the uuname output. At the prompt, type:

uuname I grep system<CR>

(Here system is the recipient's system name.) If grep finds the specified sys
tem name, it prints it on the screen. For example:

$ uuname I grep dumbo<CR>
dumbo
$

This means that dumbo can communicate with your system. If dumbo does
not communicate with your system, uuname returns a prompt.

COMMUNICATION TUTORIAL 8-9

mail

$ uunamel grep dumbo<CR>
$

To summarize our discussion of uname and uuname, consider an exam
ple. Suppose you want to send a message to login sarah on the remote sys
tem dumbo. Verify that dumbo can communicate with your system and send
your message. The following screen shows both steps.

$ uuname I grep dumbo<CR>
dumbo
$ mail dumbo!sarah<CR>
Sarah,<CR>
The final counts for the writing seminar<CR>
are as follows:<CR>
<CR>
Our department - lS<CR>
Your department - 20<CR>
<CR>
Tom<CR>
.<CR>
$

Figures 8-2 and 8-3 summarize the syntax and capabilities of the uname
and uuname commands, respectively.

8-10 USER'S GUIDE

*

Command Recap

uname - displays the system name

command options arguments

uname -n and others* none

Description: uname -n displays the name of the system on
which your login resides.

See the uname(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

Figure 8-2: Summary of the uname Command

Command Recap

uuname - displays a list of networked systems

command options arguments

uuname none none

Description: uuname displays a list of remote systems that
can communicate with your system.

Figure 8-3: Summary of the uuname Command

mail

COMMUNICATION TUTORIAL 8-11

mail

Managing Incoming Mail

As stated earlier, the mail command also allows you to display messages
sent to you by other users on your screen so you can read them. If you are
logged in when someone sends you mail, the following message is printed on
your screen:

you have mail

This means that one or more messages are being held for you in a file called
jusrjmailjyour_login, usually referred to as your mailbox. To display these
messages on your screen, type the mail command without any arguments:

mail<CR>

The messages will be displayed one at a time, beginning with the one
most recently received. A typical mail message display looks like this:

$ mail
Fran "t:cmt!Y Wed May 21 15: 33 CST 1986

Bob,
Looks like the meeting has been cancelled.
Do you still want the material for the technical review?

Tan

?

The first line, called the header, provides information about the message: the
login name of the sender and the date and time the message was sent. The
lines after the header (up to the line containing the?) comprise the text of the
message.

If a long message is being displayed on your terminal screen, you m'l)' not
be able to read it all at once. You can interrupt the printing by typing < s>
(control-s). This will freeze the screen, giving you a chance to read. When
you are ready to continue, type < q> and the printing will resume.

8-12 USER'S GUIDE

mail

After displaying each message, the mail command prints a ? prompt and
waits for a response. You have many options, for example, you can leave the
current message in your mailbox while you read the next message; you can
delete the current message; or you can save the current message for future
reference. For a list of mail's available options, type a? in response to mail's
? prompt.

To display the next message without deleting the current message, press
the RETURN key after the question mark.

?<CR>

The current message remains in your mailbox and the next message is
displayed. If you have read all the messages in your mailbox, a prompt
appears.

To delete a message, type a d after the question mark:

? d<CR>

The message is deleted from your mailbox. If there is another message wait
ing, it is then displayed. If not, a prompt appears as a signal that you have
finished reading your messages.

To save a message for later reference, type an s after the question mark:

? s<CR>

This saves the message, by default, in a file called mbox in your home direc
tory. ,To save the message in another file, type the name of that file after the
s command.

For example, to save a message in a file called mailsave (in your current
directory), enter the response shown after the question mark:

? s mailsave<CR>

If mailsave is an existing file, the mail command appends the message to it.
If there is no file by that name, the mail command creates one and stores
your message in it. You can later verify the existence of the new file by using
the Is command. (Is lists the contents of your current directory.)

COMMUNICATION TUTORIAL 8-13

mail

You can also save the message in a file in a different directory by specify
ing a path name. For example:

? s projectl/memo<CR>

This is a relative path name that identifies a file called memo (where your
message will be saved) in a subdirectory (projectl) of your current directory.
You can use either relative or full path names when saving mail messages.
(For instructions on using path names, see Chapter 3.)

To quit reading messages, enter the response shown after the question
mark:

? q<CR>

Any messages that you have not read are kept in your mailbox until the next
time you use the mail command.

To stop the printing of a message entirely, press the BREAK key. The
mail command will stop the display, print a ? prompt, and wait for a response
from you.

Figure 8-4 summarizes the syntax and capabilities of the mail command
for reading messages.

8-14 USER'S GUIDE

*

Command Recap

mail - reads messages sent to your login

command options arguments

mail available* none

Description: When issued without options, the mail com-
mand displays any messages waiting in your
mailbox (the system file jusrjmailjyour_login).

Remarks: A question mark (?) at the end of a message
means that a response is expected. A full list of
possible responses is given in the User's Refer-
ence Manual.

See the mail(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

Figure 8-4: Summary of Reading Messages with the mail Command

mail

COMMUNICATION TUTORIAL 8-15

mailx

This section introduces the mailx facility. It explains how to set up your
mailx environment, send messages with the mailx command, and handle
messages that have been sent to you. The material is presented in four parts:

• mailx Overview

• Sending Messages

• Managing Incoming Mail

• The .mailrc File

8-16 USER'S GUIDE

mailx Overview

The mailx command is an enhanced version of the mail command. There
are many options to mailx that are not available in mail for sending and
reading mail. For example, you can define an alias for a single login or for a
group. This allows you to send mail to an individual using a name or word
other than their login ID, and to send mail to a whole group of peopl~ using
a single name or word. When you use mailx to read incoming mail you can
save it in various files, edit it, forward it to someone else, respond to the per
son who originated the message, and so forth. By using mailx environment
variables you can develop an environment to suit your individual tastes.

If you type the mailx command with one or more logins as arguments,
mailx decides you are sending mail to the named users, prompts you for a
summary of the subject, and then waits for you to type in your message or
issue a command. The section "How to Send Messages II describes features
that are available to you for editing, incorporating other files, adding names to
copy lists, and more.

If you enter the mailx command with no arguments,mailx checks incom
ing mail for you in a file named jusrjmailjyour_login. If there is mail for
you in that file, you are shown a list of the items and given the opportunity to
read, store, remove or transfer each one to another file. The section entitled
"How to Manage Incoming Mail II provides some examples and describes the
options available.

If you choose to customize mailx, you should create a start-up file in your
home directory called .mailre. The section on II The .mailre File II describes
variables you can include in your start-up file.

mailx has two modes of functioning: input mode and command mode.
You must be in input mode to create and send messages. Command mode is
used to read incoming mail. You can use any of the following methods to
control the way mailx works for you:

• by entering options on the command line. [See the mailx(l) manual
page in the User's Reference Manual.]

• by issuing commands when you are in input mode, for example, creat
ing a message to send. These commands are always preceded by a -
(tilde) and are referred to as tilde escapes. [See the mailx(l) manual
page in the User's Reference Manual.]

COMMUNICATION TUTORIAL 8-17

mailx

• by issuing commands when you are in command mode, for example,
reading incoming mail.

• by storing commands and environment variables in a start-up file in
your home directory called $HOMEj.mailrc.

Tilde escapes are discussed in "Sending Messages," command mode com
mands in "Managing Incoming Mail," and the .mailrc file in "The .mailrc
File. "

8-18 USER'S GUIDE

Command Line Options

In this section, we will look at command line options.

The syntax for the mailx command is:

mailx [options] [name ...]

The options are flags that control the action of the command, and name ...
represents the intended recipients.

Anything on the command line other than an option preceded by a
hyphen is read by mailx as a name; that is, the login or alias of a person to
whom you are sending a message.

Two of the command line options deserve special mention:

• -£ [filename]: Allows you to read messages from filename instead of
your mailbox.

Because mailx lets you store messages in any file you name, you need
the -£ option to review these stored options. The default storage file is
$HOME/mbox, so the command:

mailx -£

is used to review messages stored there.

• -n: Do not initialize from the system default mailx.re file.

If you have your own .mailre file (see II The .mailre File "), mailx will
not look through the system default file for specifications when you use
the -n option, but will go directly to your .mailre file. This results in
faster initialization; substantially faster when the system is busy.

COMMUNICATION TUTORIAL 8-19

How to Send Messages: the Tilde Escapes

To send a message to another UNIX system user, enter the following com
mand:

$ mailx daves<CR>

The login name specified belongs to the person who is to receive the message.
The system puts you into input mode and prompts you for the subject of the
message. (You may have to wait a few seconds for the Subject: prompt if
the system is very busy.) This is the simplest way to run the mailx command;
it differs very little from the way you run the mail command.

The following examples show how you can edit messages you are send
ing, incorporate existing text into your messages, change the header informa
tion, and perform other tasks that take advantage of the mailx command's
capabilities. Each example is followed by an explanation of the key points
illustrated in the example.

$ mailx daves<CR>
Subject:

Whether to include a subject or not is optional. If you elect not to, press
the RETURN key. The cursor moves to the next line and the program waits
for you to enter the text of the message.

8-20 USER'S GUIDE

$ mail x daves<CR>
SUbject: meeting<CR>

How to Send Messages: the Tilde Escapes

We're having a meeting for novice mailx users in<CR>
the auditorium at 9:00 tomorrow.<CR>
Would you be willing to give a demonstration?<CR>
Bob<CR>
-. <CR>
cc:<CR>
$

There are two important things to notice about the above example:

• You break up the lines of your message by pressing the RETURN key
at the end of each line. This makes it easier for the recipient to read
the message, and prevents you from overflowing the line buffer.

• You end the text and send the message by entering a tilde and a period
together C.) at the beginning of a line. The system responds with an
,end-of-text notice (OOT) and a prompt.

There are several commands available to you when you are in input mode
(as we were in the example). Each of them consists of a tilde C), followed by
an alphabetic character, entered at the beginning of a line. Together they are
known as tilde escapes. [See the mailx(l) manual page in the User's Reference
Manual.] Most of them are used in the examples in this section.

You can include the subject of your message on the command line by
using the -s option. For example, the command line:

$ mailx -s "meeting" daves<CR>

is equivalent to:

$ mailx daves<CR>
SUbject: meeting<CR>

COMMUNICATION TUTORIAL 8-21

How to Send Messages: the Tilde Escapes

The subject line will look the same to the recipient of the message. Notice
that when putting the subject on the command line, you must enclose a sub
ject that has more than one word in quotation marks.

Editing the Message
When you are in the input mode of mailx, you can invoke an editor by

entering the -e (tilde e) escape at the beginning of a line. The following
example shows how to use tilde:

$ mailx daves<CR>
SUbject: Testing my tilde<CR>
When entering the text of a message<CR>
that has somehow gotten grabled<CR>
you may invoke your favorite editor<CR>
by means of a -e (tilde e).

Notice that you have misspelled a word in your message. To correct the
error, use -e to invoke the editor, in this case the default editor, ed.

8-22 USER'S GUIDE

-e<CR>
12

/grabled/p
that has scmehow gotten grabled

s/gra/gar/p
that has scmehow gotten garbled

w
132

q
(continue)
What more can I tell you?

How to Send Messages: the Tilde Escapes

In this example the ed editor was used. Your .profile or a .mailre file
controls which editor will be invoked when you issue a -e escape command.
The -v (tilde v) escape invokes an alternate editor (most commonly, vi).

When you exited from ed (by typing q), the mailx command returned you
to input mode and prompted you to continue your message. At this point you
may want to preview your corrected message by entering a -p (tilde p) escape.
The -p escape prints out the entire message up to the point where the -p was
entered. Thus, at any time during text entry, you can review the current con
tents of your message.

COMMUNICATION TUTORIAL 8-23

How to Send Messages: the Tilde Escapes

~p

Message contains:
To: daves
SUbject: Testing Ilo/ tilde

When entering the text of a message
that has sanehow gotten garbled
you may invoke your favorite editor
by means of a tilde e Ce).
What more can I tell you?

(continue)

mr
$

Incorporating Existing Text into Your Message
mailx provides four ways to incorporate material from another source into

the message you are creating. You can:

• read a file into your message

• read a message you have received into a reply

• incorporate the value of a named environment variable into a message

• execute a shell command and incorporate the output of the command
into a message

The following examples show the first two of these functions. These are
the most commonly used of these four functions. For information about the
other two, see the mailx(l) manual page of the User's Reference Manual.

8-24 USER'S GUIDE

How to Send Messages: the Tilde Escapes

Reading a File into a Message

$ mailx daves<CR>
SUbject: Work Schedule<CR>
As you can see from the following<CR>
-r letters/filel
"letters/file1" 101725

we have our work cut out for us.
Please give me your thoughts on this.
- Bob

EDT
$

As the example shows, the -r (tilde r) escape is followed by the name of
the file you want to include. The system displays the file name and the
number of lines and characters it contains. You are still in input mode and
can continue with the rest of the message. When the recipient gets the mes
sage, the text of letters/filel is included. [You can, of course, use the -p (tilde
p) escape to preview the contents before sending your message.]

COMMUNICATION TUTORIAL 8-25

How to Send Messages: the Tilde Escapes

Incorporating a Message from Your Mailbox into a Reply

$ mailx<CR>
mailx version 2.14 2/9/85 Type? for help.

"usr/mail/roberts": 2 Iressages 1 new
>N 1 abc Tue May 1 08:09 8/155 Meeting Notice

2 hqtrs Man Apr 30 16:57 4/127 SChedule

? m jones<CR>
Subject: Hq Schedule<CR>
Here is a copy of the schedule from headquarters ... <CR>
-f 2<CR>
Inte:rpolating: 2
(continue)

As you can see, the boss will be visiting our district on<CR>
the 14th and 15th.<CR>
- Robert

IDl'

?

There are several important points illustrated in this example:

• The sequence begins in command mode, where you read and respond
to your incoming mail. Then you switch into input mode by issuing
the command m jones (meaning send a message to jones).

• The -f escape is used in input mode to call in one of the messages in
your mailbox and make it part of the outgoing message. The number 2
after the -f means message 2 is to be interpolated (read in).

• mailx tells you that message 2 is being interpolated and then tells you
to continue.

• When you finish creating and sending the message, you are back in
command mode, as shown by the? prompt. You may now do some
thing else in command mode, or exit mailx by typing q.

8-26 USER'S GUIDE

How to Send Messages: the Tilde Escapes

An alternate command, the -m (tilde m) escape, works the way that -f
does except the read-in message is indented one tab stop. Both the -m and -f
commands work only if you start out in command mode and then enter a
command that puts you into input mode. Other commands that work this
way will be covered in the section "How to Manage Incoming Mail."

Changing Parts of the Message Header
The header of a mailx message has four components:

• subject

• recipient(s)

• copy-to list

• blind-copy list (a list of intended recipients that is not shown on the
copies sent to other recipients)

When you enter the mailx command followed by a login or an alias, you
are put into input mode and prompted for the subject of your message. Once
you end the subject line by pressing the RETURN key, mailx expects you to
type the text of the message. If, at any point in input mode, you want to
change or supplement some of the header information, there are four tilde
escapes that you can use: -h, -t, -c, and -b.

-h displays all the header fields: subject, recipient, copy-to list, and
blind copy list, with their current values. You can change a
current value, add to it, or, by pressing the RETURN key, accept
it.

-t lets you add names to the list of recipients. Names can be either
login names or aliases.

-c lets you create or add to a copy-to list for the message. Enter
either login names or aliases of those to whom a copy of the mes
sage should be sent.

-b lets you create or add to a blind-copy list for the message.

COMMUNICATION TUTORIAL 8-27

How to Send Messages: the Tilde Escapes

All tilde escapes must be in the first position on a line. For the -t, -c, or
-h, any additional material on the line is taken to be input for the list in ques
tion. Any additional material on a line that begins with a -h is ignored.

Adding Your Signature
If you want, you can establish two different signatures with the sign and

Sign environment variables. These can be invoked with the -a (tilde a) or -A
(tilde A) escape, respectively. Assume you have set the value Supreme Com
mander to be called by the -A escape. Here's how it would work:

$ mailx -s orders all <CR>
Be ready to move out at 0400 hours.<CR>
-A<CR>
Supreme Ccmnander
-.<CR>
EDT

$

Having both escapes Ca and -A) allows you to set up two forms for your
signature. However, because the sender's login automatically appears in the
message header when the message is read, no signature is required to identify
you.

Keeping a Record of Messages You Send
The mailx command offers several ways to keep copies of outgoing mes

sages. Two that you can use without setting any special environment vari
ables are the -w (tilde w) escape and the -F option on the command line.

8-28 USER'S GUIDE

How to Send Messages: the Tilde Escapes

The -w followed by a file name causes the message to be written to the
named file. For example:

$ mailx bdr<CR>
SUbject: Saving Copies<CR>
When you want to save a copy of<CR>
the text of a message, use the tilde w.<CR>
-w savemail
"savemail" 2/71

EDT
$

If you now display the contents of savemail, you will see this:

$ cat savemail <CR>
When you want to save a copy of
the text of a message, use the tilde w.
$

The drawback to this method, as you can see, is that none of the header infor
mation is saved.

Using the -F option on the command line does preserve the header infor
mation. It works as follows:

COMMUNICATION TUTORIAL 8-29

How to Send Messages: the Tilde Escapes

$ mailx -F -s Savings bdr<CR>
This method appends this message to a
file in my current directory named bdr.

ror
$

We can check the results by looking at the file bdr.

$ cat bdr<CR>
Fran: kol Fri May 2 11: 14:45 1986
To: bdr

Subject: Savings

This method appends this message to a
file in Il!Y current directory named bdr.

$

The -F option appends the text of the message to a file named after the
first recipient. If you have used an alias for the recipient(s), the alias is first
converted into the appropriate login(s) and the first login is used as the file
name. As noted above, if you have a file by that name in your current direc
tory, the text of the message is appended to it.

8-30 USER'S GUIDE

How to Send Messages: the Tilde Escapes

Exiting from mailx
When you have finished composing your message, you can leave mailx

by typing any of the following three commands:

tilde period C.) is the standard way of leaving input mode. It also
sends the message. If you entered input mode from the command
mode of mailx, you now return to the command mode (as shown
by the? prompt you receive after typing this command). If you
started out in input mode, you now return to the shell (as shown
by the shell prompt).

-q tilde q Cq) simulates an interrupt. It lets you exit the input mode
of mailx. If you have entered text for a message, it will be saved
in a file called dead.letter in your home directory.

-x tilde x Cx) simulates an interrupt. It lets you exit the input mode
of mailx without saving anything.

Summary
In the preceding paragraphs we have described and shown examples of

some of the tilde escape commands available when sending messages via the
mailx command. [See the mailx(l) manual page in the User's Reference
Manual.]

COMMUNICATION TUTORIAL 8-31

How to Manage Incoming Mail

mailx has over fifty commands which help you manage your incoming
mail. See the mailx(l) manual page in the User's Reference Manual for a list
of all of them (and their synonyms) in alphabetic order. The most commonly
used commands (and arguments) are described in the following subsections:

• the msglist argument

• commands for reading and deleting mail

• commands for saving mail

• commands for replying to mail

• commands for getting out of mailx

The msglist Argument
Many commands in mailx take a form of the msglist argument. This

argument provides the command with a list of messages on which to operate.
If a command expects a msglist argument and you do not provide one, the
command is performed on the current message. Any of the following formats
can be used for a msglist:

n message number n the current message

the first undeleted message

$

*
n-m

user

the last message

all messages

an inclusive range of message numbers

all messages from user

/string All messages with string in the subject line (case is ignored)

:c all messages of type c where cis:

8-32 USER'S GUIDE

d-deleted messages
n-new messages
o-old messages
r-read messages
u-unread messages

How to Manage Incoming Mail

The context of the command determines whether this type of specification
makes sense.

Here are two examples (the? is the command mode prompt):

? d 1-3
? s bdr bdr

?

[Delete messages 1, 2 and 3]
[Save all messages from user bdr in a

file named bdr.]

Additional examples may be found throughout the next three subsections.

Commands for Reading and Deleting Mail
When a message arrives in your mailbox the following notice appears on

your screen:

you have mail

The notice appears when you log in or when you return to the shell from
another procedure.

Reading Mail
To read your mail, enter the mailx command with or without arguments.

Execution of the command places you in the command mode of mailx. The
next thing that appears on your screen is a display that looks something like
this:

COMMUNICATION TUTORIAL 8-33

How to Manage Incoming Mail

mailx version 2. 14 10/19/86 Type ? for help
"/usr/maillbdr" : 3 messages 3 new
> N 1 rbt Thur Apr 30 14:20 8/190 Review Session

N 2 admin Thur Apr 30 15:56 5/84 New printer
N 3 daves Fri May 1 08:39 64/1574 Reorganization

?

The first line identifies the version of mailx used on your system, displays
the date, and reminds you that help is available by typing a question mark (?).
The second line shows the path name of the file used as input to the display
(the file name is normally the same as your login name) together with a count
of the total number of messages and their status. The rest of the display is
header information from the incoming messages. The messages are numbered
in sequence with the last one received at the bottom of the list. To the left of
the numbers there may be a status indicator; N for new, U for unread. A
greater than sign (» points to the current message. Other fields in the header
line show the login of the originator of the message, the day, date and time it
was delivered, the number of lines and characters in the message, and the
message subject. The last field may be blank.

When the header information is displayed on your screen, you can print
messages either by pressing the RETURN key or entering a command fol
lowed by a msglist argument. If you enter a command with no msglist argu
ment, the command acts on the message pointed at by the> sign. Pressing
the RETURN key is the equivalent of typing the p (for print) command
without a msglist argument; the message displayed is the one pointed to by
the> sign. To read some other message (or several others in succession),
enter a p (for print) or t (for type) followed by the message number(s). Here
are some examples:

8·34 USER'S GUIDE

? <CR>
? p 2<CR>
? p daves<CR>

[Print the current message.]
[Print message number 2.
[Print all messages from user daves.

How to Manage Incoming Mail

The command t (for type) is a synonym of p (for print).

Scanning Your Mailbox
The mailx command lets you look through the messages in your mailbox

while you decide which ones need your immediate attention.

When you first enter the mailx command mode, the banner tells you how
many messages you have and displays the header line for twenty messages.
(If you are dialed into the computer system, only the header lines for ten mes
sages are displayed.) If the total number of messages exceeds one screenful,
you can display the next screen by entering the z command. Typing z
causes a previous screen (if there is one) to be displayed. If you want to see
the header information for a specific group of messages, enter the f (for from)
command followed by the msglist argument.

Here are examples of those commands:

? z
? z-
? f daves

Scroll forward one screenful of header lines.]
Scroll backward one screenful.]
Display headers of all messages from user daves.

COMMUNICATION TUTORIAL 8-35

How to Manage Incoming Mail

Switching to Other Mail Files

When you enter mailx by issuing the command:

$ mailx<CR>

you are looking at the file jusrjmailjyour_login.

mailx lets you switch to other mail files and use any of the mailx commands
on their contents. (You can even switch to a non-mail file, but if you try to
use mailx commands you are told No applicable messages.) The switch to
another file is done with the fi or fold command (they are synonyms) fol
lowed by the filename. The following special characters work in place of the
filename argument:

% the current mailbox

%login the mailbox of the owner of login (if you have the required per
missions)

the previous file

& the current mbox

Here is an example of how this might look on your screen:

8-36 USER'S GUIDE

$ mailx<CR>

ma.ilx version 2.14 10/19/86 'IyPe? for help.
"usr/ma.il/daves" : 3 messages 2 new 3 unread

U 1 jaf Sat May 9 07:55 7/137 test25

How to Manage Incoming Mail

> N 2 todd Sat May 9 08:59 9/377 UNITS requirements
N 3 has Sat May 9 11:08 29/1214 access to bailey

?fi& [Enter this command to transfer to your mbox.

Held 3 messages in /usr/ma.il/daves
"/fs1/daves/mbox": 74 messages 10 unread

? q<CR>
$

Deleting Mail
To delete a message, enter a d followed by a msglist argument. If the

msglist argument is omitted, the current message is deleted. The messages are
not deleted until you leave the mailbox file you are processing. Prior to that,
the u (for undelete) gives you the opportunity to change your mind. Once
you have issued the quit command (q) or switched to another file, however,
the deleted messages are gone.

mailx permits you to combine the delete and print command and enter a
dp. This is like saying, "Delete the message I just read and show me the next
one." Here are some examples of the delete command:

COMMUNICATION TUTORIAL 8-37

How to Manage Incoming Mail

? d *
? d r
? dp
? d 2-5

[Delete all my messages.]
[Delete all messages that have been read.
[Delete the current message and print the next one.
[Delete messages 2 through 5.]

Commands for Saving Mail
All messages not specifically deleted are saved when you quit mailx.

Messages that have been read are saved in a file in your home directory called
mbox. Messages that have not been read are held in your mailbox
(/usr JmailJyour _login).

The command to save messages comes in two forms: with an uppercase
or a lowercase s. The syntax for the uppercase version is:

S [msglist]

Messages specified by the msglist argument are saved in a file in the current
directory named for the author of the first message in the list.

The syntax for the lowercase version is:

s [msglist] [filename]

Messages specified by the msglist argument are saved in the file named in the
filename argument. If you omit the msglist argument, the current message is
saved. If you are using logins for file names, this can lead to some ambiguity.
If mailx is puzzled, you will get an error message.

8-38 USER'S GUIDE

How to Manage Incoming Mail

Commands for Replying to Mail
The command for replying to mail comes in two forms: with an upper

case or a lowercase r. The principal difference between the two forms is that
the uppercase form (R) causes your response to be sent only to the originator
of the message, while the lower case form (r) causes your response to be sent
not only to the originator but also to all other recipients. [There are other
differences between these two forms. For details, see the mailx(l) manual
page in the User's Reference Manual.]

When you reply to a message, the original subject line is picked up and
used as the subject of your reply. Here's an example of the way it looks:

$ mailx<CR>

mailx version 2.14 10/19/83 Type? for help.

"usr/mail/daves": 3 messages 2 new 3 mrread
U 1 jaf Wed May 9 07:55 7/137 test25

> N 2 todd Wed May 9 08:59 9/377 UNITS requirements

N 3 has Wed May 9 11:08 29/1214 access to bailey

? R 2
'Ib: todd

SUbject: Re: UNITS requirements

Assuming the message about UNITS requirements had been sent to some
additional people, and the lowercase r had been used, the header might have
appeared like this:

COMMUNICATION TUTORIAL 8-39

How to Manage Incoming Mail

? r 2
To: tcxid eg has jcb bdr

Subject: Re: UNITS requirements

Commands for Getting Out of mailx

There are two standard ways of leaving mailx: with a q or with an x. If
you leave mailx with a q, you see messages that summarize what you did
with your mail. They look like this:

? q<CR>
Saved 1 message in /fs1/bdr/mbox
Held 1 message in /usr/mail/bdr
$

From the example we can surmise that user bdr had at least two mes
sages, read one and either left the other unread or issued a command asking
that it be held in /usr/mail/bdr. If there were more than two messages, the
others were deleted or saved in other files. mailx does not issue a message
about those.

8-40 USER'S GUIDE

How to Manage Incoming Mail

If you leave mailx with an x, it is almost as if you had never entered.
Mail read and messages deleted are retained in your mailbox. However, if
you have saved messages in other files, that action has already taken place
and is not undone by the x.

mailx Command Summary
In the preceding subsections we have described some of the most fre

quently used mailx commands. [See the mailx(l) manual page in the User's
Reference Manual for a complete list.] If you need help while you are in the
command mode of mailx, type either a ? or help after the? prompt. A list of
mailx commands and what they do will be displayed on your terminal screen.

COMMUNICATION TUTORIAL 8-41

The .mailre File

The .mailrc file contains commands to be executed when you invoke
mailx.

There may be a system-wide start-up file (jusr/lib/mailx/mailx.rc) on
your system. If it exists, it is used by the system administrator to set common
variables. Variables set in your .mailrc file take precedence over those in
mailx.rc.

Most mailx commands are legal in the .mailrc file. However, the follow
ing commands are NOT legal entries:

! (or) shell

Copy

edit

visual

followup

Followup

mail

reply

Reply

escape to the shell

save messages in msglist in a file whose name is
derived from the author

invoke the editor

invoke vi

respond to a message

respond to a message, sending a copy to msglist

switch into input mode

respond to a message

respond to the author of each message in msglist

You can create your own .mailrc with any editor, or copy a friend's. Fig
ure 8-5 shows a sample .mailrc file.

8-42 USER'S GUIDE

if r
cd $HCME/mail

endif
set al1net append asksub askcc autoprint dot
set metoo quiet save showto header hold keep keepsave
set outfolder
set folder='mail'
set record=' outbox'
set crt=24
set EDITOR=' /bini ed '
set sign= 'Roberts'
set Sign=' Jackson Roberts, SUpervisor'
set toplines=10
alias fred
alias bob

alias alice
alias mark
alias donna

alias pat
group rol>ertsgrp
group accounts

fjs
rem
ap
met
dr

pat
fred bob alice pat mark
robertsgrp donna

Figure 8-5: Sample .mailrc File

mailx

The example in Figure 8-5 includes the commands you are most likely to
find useful: the set command and the alias or group commands.

The set command is used to establish values for environment variables.
The command syntax is:

set
set name
set name = string
set name = number

COMMUNICATION TUTORIAL 8-43

mailx

When you issue the set command without any arguments, set produces a
list of all defined variables and their values. The argument name refers to an
environmental variable. More than one name can be entered after the set
command. Some variables take a string or numeric value. String values are
enclosed in single quotes.

When you put a value in an environment variable by making an assign
ment such as HOME=my_Iogin, you are telling the shell how to interpret that
variable. However, this type of assigment in the shell does not make the
value of the variable accessible to other UNIX system programs that need to
reference environment variables. To make it accessible, you must export the
variable. If you set the TERM variable in your environment in Chapter 6 or
Chapter 7, you will remember using the export command as shown in the fol
lowing example:

$ TERM=5425
$ export TERM

When you export variables from the shell in this way, programs that refer
ence environment variables are said to import them. Some of these variables
(such as EDITOR and VISUAL) are not peculiar to mailx, but may be speci
fied as general environment variables and imported from your execution
environment. If a value is set in .mailre for an imported variable, it overrides
the imported value. There is an unset command, but it works only against
variables set in .mailre; it has no effect on imported variables.

There are 41 environment variables that can be defined in your .mailre;
too many to be fully described in this document. For complete information,
consult the mailx(l) manual page in the User's Reference Manual.

Three variables used in the example in Figure 8-5 deserve special attention
because they demonstrate how to organize the filing of messages. These vari
ables are: folder, record, and outfolder. All three are interrelated and con
trol the directories and files in which copies of messages are kept.

To put a value into the folder variable, use the following format:

set folder=directory

This specifies the directory in which you want to save standard mail files. If
the directory name specified does not begin with a / (slash), it is presumed to
be relative to $HOME. If folder is an exported shell variable, you can specify
file names (in commands that call for a filename argument) with a / before the

8-44 USER'S GUIDE

mailx

name; the name will be expanded so that the file is put into the folder direc
tory.

To put a value in the record variable, use the following format:

set record=filename

This directs mailx to save a copy of all outgoing messages in the specified file.
The header information is saved along with the text of the message. By
default, this variable is disabled.

The outfolder variable causes the file in which you store copies of outgo
ing messages (enabled by the variable record=) to be located in the folder
directory. It is established by being named in a set command. The default is
nooutfolder.

The alias and group commands are synonyms. In Figure 8-5, the alias
command is used to associate a name with a single login; the group command
is used to specify multiple names that can be called in with one pseudonym.
This is a nice way to distinguish between single and group aliases, but if you
want, you can treat the commands as exact equivalents. Notice, too, that
aliases can be nested.

In the .mailrc file shown in Figure 8-5, the alias robertsgroup represents
five users; three of them are specified by previously defined aliases and one is
specified by a login. The fifth user, pat, is specified by both a login and an
alias. The next group command in the example, accounts, uses the alias
robertsgroup plus the alias donna. It expands to twelve logins.

The .mailrc file in Figure 8-5 includes an if-endif command. The full
syntax of that command is:

if sIr mail_commands

else mail_commands

endif

The sand r stand for send and receive, so you can cause some initializing
commands to be executed according to whether mailx is entered in input
mode (send) or command mode (receive). In the preceding example, the com
mand is issued to change directory to $HOME/mail if reading mail.
The user in this case had elected to set up a subdirectory for handling incom
ing mail.

COMMUNICATION TUTORIAL 8-45

mailx

The environment variables shown in this section are those most com
monly included in the .mailrc file. You can, however, specify any of them for
one session only whenever you are in command mode. For a complete list of
the environment variables you can set in mailx, see the mailx(l) manual page
in the User's Reference Manual.

8-46 USER'S GUIDE

Sending and Receiving Files

This section describes the commands available for transferring files: the
mail command for small files (a page or less), and the uucp and uuto com
mands for long files. The mail command can be used for transferring a file
either within a local system or to a remote system. The uucp and uuto com
mands transfer files from one system to another.

Sending Small Files: the mail Command

To send a file in a mail message, you must redirect the input to that file
on the command line. Use the < (less than) redirection symbol as follows:

mail login < filename<CR>

(For further information on input redirection, see Chapter 7.) Here login is the
recipient's login ID and filename is the name of the file you want to send. For
example, to send a copy of a file called agenda to the owner of login sarah
(on your system) type the following command line:

$ mail sarah < agenda<CR>
$

The prompt that appears on the second line means the contents of agenda
have been sent. When sarah issues the mail command to read her messages,
she will receive agenda.

To send the same file to more than one user on your system, use the same
command line format with one difference; in place of one login ID, type
several, separated by spaces. For example:

$ mail sarah tommy dingo wombat < agenda<CR>
$

Again, the prompt returned by the system in response to your command is a
signal that your message has been sent.

The same command line format, with one addition, can also be used to
send a file to a user on a remote system that can communicate with yours. In
this case, you must specify the name of the remote system before the user's
login name. Separate the system name and the login name with an ! (excla
mation point).

COMMUNICATION TUTORIAL 8-47

Sending and Receiving Files

mail system!login < filename<CR>

For example:

$ mail dumbo!wombat < agenda<CR>
$

The system prompt on the second line means that your message (containing
the file) has been queued for sending.

If you are using mailx, you cannot use the mail command line syntax to
send a file. Instead, you use the -r option as follows:

$ mailx phyllis
SUbject: Memo
~r memo
$

Sending Large Files

The uucp and uuto commands allow you to transfer files to a remote
computer. uucp allows you to send files to the directory of your choice on
the destination system. If you are transferring a file to a directory that you
own, you will have permission to put the file in that directory. (See Chapter
3 for information on directory and file permissions.) However, if you are
transferring the file to another user's directory, you must be sure, in advance,
that the user has given you permission to write a file to his or her directory.
In addition, because you must specify path names that are often long and
accuracy is required, uucp command lines may be cumbersome and lead to
error.

8-48 USER'S GUIDE

Sending and Receiving Files

The uuto command is an enhanced version of uucp. It automatically
sends files to a public directory on the recipient's system called
jusrjspooljuucppublic. This means you cannot choose a destination file.
However, it also means that you can transfer a file at any time without having
to request write permission from the owner of the destination directory.
Finally, the uuto command line is shorter and less complicated than the uucp
command line. When you type a uuto command line, the likelihood of mak
ing an error is greatly reduced.

Getting Ready: Do You Have Permission?
Before you actually send a file with the uucp or uuto command, you need

to find out whether or not the file is transferable. To do that, you must check
the file's permissions. If they are not correct, you must use the chmod com
mand to change them, if you own the files. (Permissions and the chmod
command are covered in Chapter 3.)

There are two permission criteria that must be met before a file can be
transferred using uucp or uuto.

• The file to be transferred must have read permission (r) for others.

• The directory that contains the file must have read (r) and execute (x)
permission for others.

For example, assume that you have a file named chicken, under a direc
tory named soup (in your home directory). You want to send a copy of the
chicken file to another user with the uuto command. First, check the permis
sions on soup:

$ Is -l<CR>
total 4
drwxr-xr-x

$

2 reader group 1 45 Feb 9 10:43 soup

COMMUNICATION TUTORIAL 8-49

Sending and Receiving Files

The response of the Is command shows that soup has read (r) and execute (x)
permissions for all three groups; no changes have to be made. Now use the
cd command to move from your home directory to soup, and check the per
missions on the file chicken:

$ Is -1 chicken<CR>
total 4
-rw--------
$

reader group1 3101 Mar 1 18:22 chicken

The command's output means that you (the user) have permission to read the
file chicken, but no one else does. To add read permissions for your group
(g) and others (0), use the chmod command:

$ chmod go+r chicken<CR>

Now check the permissions again with the Is -1 command:

$ Is -1 chicken<CR>
total 4
-rw-r--r--
$

reader group1 3101 Mar01 18;22 chicken

This confirms that the file is now transferable; you can send it with the uucp
or uuto command. After you send copies of the file, you can reverse the pro
cedure and replace the previous permissions.

8-50 USER'S GUIDE

Sending and Receiving Files

The uucp Command

The command uucp (short for UNIX-to-UNIX system copy) allows you to
copy a file directly to the home directory of a user on another computer, or to
any other directory you specify and for which you have write permission.

uucp is not an interactive command. It performs its work silently, invisi
ble to the user. Once you issue this command you may run other processes.

Transferring a file between computers is a multiple-step procedure. First,
a work file, containing instructions for the file transfer, must be created.
When requested, a data file (a copy of the file being sent) is also made. Then
the file is ready to be sent. When you issue the uucp command, it performs
the preliminary steps described above (creating the necessary files in a dedi
cated directory called a spool directory), and then calls the uucico daemon
that actually transfers the file. (Daemons are system processes that run in
background.) The file is placed in a queue and uucico sends it at the first
available time.

Thus, the uucp command allows you to transfer files to a remote com
puter without knowing anything except the name of the remote computer and,
possibly, the login ID of the remote user(s) to whom the file is being sent.

Command Line Syntax

uucp allows you to send:

• one file to a file or a directory or

• multiple files to a directory

To deliver your file(s), uucp must know the full path name of both the
source-file and the destination-file. However, this does not mean you must
type out the full path name of both files every time you use the uucp com
mand. There are several abbreviations you can use once you become familiar
with their formats; uucp will expand them to full path names.

COMMUNICATION TUTORIAL 8-51

Sending and Receiving Files

To choose the appropriate designations for your source-file and
destination-file, begin by identifying the source-file's location relative to your
own current location in the file system. (We'll assume, for the moment, that
the source-file is in your local system.) If the source-file is in your current
directory, you can specify it by its name alone (without a path). If the source
file is not in your current directory, you must specify its full path name.

How do you specify the destination-file? Because it is on a remote system,
the destination-file must always be specified with a path name that begins
with the name of the remote system. After that, however, uucp gives you a
choice: you can specify the full path or use either of two forms of abbrevia
tion. Your destination-file should have one of the following three formats:

• system_name!full_path

• system_namerlogin_name [j directory_name/filename]

• systemnamer jlogin_name [j directory_name / filename]

The login name, in this case, belongs to the recipient of the file.

Until now we have described what to do when you want to send a file
from your local system to a remote system. However, it is also possible to use
uucp to send a file from a remote system to your local system. In either case,
you can use the formats described above to specify either source-files or
destination':'files. The important distinction in choosing one of these formats is
not whether a file is a source-file or a destination-file, but where you are
currently located in the file system relative to the files you are specifying.
Therefore, in the formats shown above, the login_name could refer to the
login of the owner or the recipient of either a source-file or a destination-file.

For example, let's say you are login kol on a system called mickey. Your
home directory is jusrjkol and you want to send a file called chapl (in a
directory called text in your home directory) to login wsm on a system called
minnie. You are currently working in jusrjkoljtext, so you can specify the
source-file with its relative path name, chapl. Specify the destination-file in
any of the ways shown in the following command lines:

• Specify the destination-file with its full path name:

uucp chapl minnie!jusrjwsmjreceivejchapl

• Specify the destination-file with -login_name (which expands to the
name of the recipient's home directory) and a name for the new file.

uucp chapl minnierwsmjreceivejchapl

8-52 USER'S GUIDE

Sending and Receiving Files

(The file will go to minnie!/usr/wsm/receive/chapl.)

• Specify the destination-file with -login_name (which expands to the
recipient's home directory) but without a name for the new file; uucp
will give the new file the same name as the source-file.

uucp chapl minnie!-wsm/receive

(The file will go to minnie!/usr/wsm/receive/chapl.)

• Specify the destination-file with -/login_name. This expands to the
recipient's subdirectory in the public directory on the remote system.

uucp chapl minnie!-/wsm

(The file will go to minnie!/usr/usr/spool/uucppublic/wsm)

Sample Usage of Options with the uucp Command

Suppose you want to send a file called minutes to a remote computer
named eagle. Enter the command line shown in the following screen:

$ uucp -m -s status -j minutes eagle!jusrjgwsjminutes<CR>
eagleN3f45
$

This sends the file minutes (located in your current directory on your local
computer) to the remote computer eagle, and places it under the path name
/usr/gws in a file named minutes. When the transfer is complete, the user
gws on the remote computer is notified by mail.

COMMUNICATION TUTORIAL 8-53

Sending and Receiving Files

The -m option ensures that you (the sender) are also notified by mail as
to whether or not the transfer has succeeded. The -s option, followed by the
name of the file (status), asks the program to put a status report of the file
transfer in the specified file (status).

Be sure to include a file name after the -s option. If you do not, you will get
this message: uucp failed canpletely.

The job ID (eagleN3f4S) is displayed in response to the -j option.

Even if uucp does not notify you of a successful transfer soon after you
send a file, do not assume that the transfer has failed. Not all systems
equipped with networking software have the hardware needed to call other
systems. Files being transferred from these so-called passive systems must be
collected periodically by active systems equipped with the required hardware
(see "How the uucp Command Works" for details). Therefore, if you are
transferring files from a passive system, you may experience some delay.
Check with your system administrator to find out whether your system is
active or passive.

The previous example uses a full path name to specify the destination-file.
There are two other ways the destination-file can be specified:

• The login directory of gws can be specified through use of the -
(tilde), as shown below:

eagle! --gws jminutes

is interpreted as:

eagle!jusr jgwsjminutes

• The uucppublic area is referenced by a similar use of the tilde prefix to
the path name. For example:

eagle!-- jgwsjminutes

is interpreted as:

jusrjspooljuucppublicjgwsjminutes

8-54 USER'S GUIDE

Sending and Receiving Files

How the uucp Command Works

This section is an overview of what happens when you issue the uucp
command. An understanding of the processes involved may help you to be
aware of the command's limitations and requirements: why it can perform
some tasks and not others; why it performs tasks when it does; and why you
mayor may not be able to use it for tasks that uucp performs. For further
details see the System Administrator's Guide and the System Administrator's
Reference Manual.

When you enter a ~ucp command, the uucp program creates a work file
and usually a data file for the requested transfer. (uucp does not create a data
file when you use the -c option.) The work file contains information required
for transferring the file(s). The data file is simply a copy of the specified
source file. After these files are created in the spool directory, the uucico dae
mon is started.

The uucico daemon attempts to establish a connection to the remote com
puter that is to receive the file(s). It first gathers the information reqUired for
establishing a link to the remote computer from the Systems file. This is how
uucico knows what type of device to use in establishing the link. Then
uucico searches the Devices file looking for the devices that match the
requirements listed in the Systems file. After uucico finds an available dev
ice, it attempts to establish the link and log in on the remote computer.

When uucico logs in on the remote computer, it starts the uucico daemon
on the remote computer. The two uucico daemons then negotiate the line
protocol to be used in the file transfer(s). The local uucico daemon then
transfers the file(s) that you are sending to the remote computer; the remote
uucico places the file in the specified path name(s) on the remote computer.
After your local computer completes the transfer(s), the remote computer may
send files that are queued for your local computer. The remote computer can
be denied permission to transfer these files with an entry in the Permissions
file. If this is done, the remote computer must establish a link to your local
computer to perform the transfers.

If the remote computer or the device selected to make the connection to
the remote computer is unavailable, the request remains queued in the spool
directory. Each hour (default), uudemon.hour is started by cron, which in
turn starts the uusched daemon. When the uusched daemon starts, it
searches the spool directory for the remaining work files, generates the

COMMUNICATION TUTORIAL 8-55

Sending and Receiving Files

random order in which these requests are to be processed, and then starts the
transfer process (uucico) described in the previous paragraphs.

The transfer process described generally applies to an active computer.
An active computer (one with calling hardware and networking software) can
be set up to poll a passive computer. Because it has networking software, a
passive computer can queue file transfers. However, it cannot call the remote
computer because it does not have the required hardware. The Poll file
(fusr jlib juucp jPoll) contains a list of computers that are to be polled in this
manner.

Figure 8-6 summarizes the syntax and capabilities of the uucp command.

8-56 USER'S GUIDE

*

Sending and Receiving Files

Command Recap

uucp - copies a file from one computer to another

command

uucp

Description:

Remarks:

options arguments

-jl, -m, -s and others* source-file

uucp performs preliminary tasks required to
copy a file from one computer to another, and
calls uucico, the daemon (background process)
that transfers the file. The user need only issue
the uucp command for a file to be copied.

By default, the only directory to which you can
write files is jusrjspooljuucppublic. To write
to directories belonging to another user, you
must receive write permission from that user.
Although there are several ways of representing
path names as arguments, it is recommended
that you type full path names to avoid confu
sion.

See the uucp(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

Figure 8-6: Summary of the uucp Command

The uuto Command

The uuto command allows you to transfer files to the public directory of
another system. The basic format for the uuto command is:

uuto filename system!login<CR>

where filename is the name of the file to be sent, system is the recipient's sys
tem, and login is the recipient's login name.

COMMUNICATION TUTORIAL 8-57

Sending and Receiving Files

If you send a file to someone on your local system, you may omit the sys
tem name and use the following format:

uuto filename login<CR>

Sending a File: the -m Option and uustat Command

Now that you know how to determine if a file is transferable, let's take an
example and see how the whole thing works.

The process of sending a file by uuto is referred to as a job. When you
issue a uuto command, your job is not sent immediately. First, the file is
stored in a queue (a waiting line of jobs) and assigned a job number. When
the job's number comes up, the file is transmitted to the remote system and
placed in a public directory there. The recipient is notified by a mail message
and must use the uupick command (discussed later in the chapter) to retrieve
the file.

For the following discussions, assume this information:

wombat your login name

sysl your system name

marie recipient's login name

sys2 recipient's system name

money file to be sent

Also assume that the two systems can communicate with each other.

To send the file money to login marie on system sys2, enter the follow
ing:

$ uuto money sys2!marie<CR>
$

The prompt on the second line is a signal that the file has been sent to a job
queue. The job is now out of your hands; all you can do is wait for confirma
tion that the job reached its destination.

8-58 USER'S GUIDE

Sending and Receiving Files

How do you know when the job has been sent? The easiest method is to
alter the uuto command line by adding a -m option, as follows:

$ uuto -m money sys2!marie<CR>
$

This option sends a mail message back to you when the job has reached the
recipient's system. The message may look something like this:

$ mail<CR>
Fran uucp Thur Apr3 09: 45 EST 1986
file Isys1/\\Ut1bat/noney, system sys1
copy succeeded

?

If you would like to check if the job has left your system, you can use the
uustat command. This command keeps track of all the uucp and uuto jobs
you submit and reports the status of each on demand. For example:

$ uustat<CR>
1145 \\Ut1bat sys2 10105-09:31 10/05-09:33 JOB IS QUEUED

$

The elements of this sample status message are as follows:

COMMUNICATION TUTORIAL 8-59

Sending and Receiving Files

• 1145 is the job number assigned to the job of sending the file money to
marie on sys2.

• wombat is the login name of the person requesting the job.

• sys2 is the recipient's system.

• 10/05-09:31 is the date and time the job was queued.

• 10/05-09: 33 is the date and time this uustat message was sent.

• The final part is a status report on the job. Here the report shows that
the job has been queued, but has not yet been sent.

To receive a status report on only one uuto job, use the -j option and
specify the job number on the command line:

uustat -jjobnumber<CR>

For example, to get a report on the job described in the previous example,
specify 1145 (the job number) after the -j option:

$ uustat -j114S<CR>
1145 wombat sys2 10/05-09:31 10/05-09:37 COPY FINISHED,JOB DELETED
$

This status report shows that the job was sent and deleted from the job queue;
it is now in the public directory of the recipient's system. Other status mes
sages and options for the uustat command are described in the User's Refer
ence Manual.

That is all there is to sending files. To practice, try sending a file to your
self.

8-60 USER'S GUIDE

Sending and Receiving Files

Figures 8-7 and 8-8 summarize the syntax and capabilities of the uuto and
uustat commands, respectively.

*

Command Recap

uuto - sends files to another login

command options arguments

uuto -m and others * file system!login

Description: uuto sends a specified file to the public direc-
tory of a specified system, and notifies the
intended recipient (by mail addressed to his or
her login) that the file has arrived there.

Remarks: Files to be sent must have read permission for
others; the file's parent directory must have
read and execute permissions for others.

The -m option notifies the sender by mail
when the file has arrived at its destination.

See the uuto(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

Figure 8-7: Summary of the uuto Command

COMMUNICATION TUTORIAL 8-61

Sending and Receiving Files

*

Command Recap

uustat - checks job status of a uucp or uuto job

command options arguments

uustat -j and others* none

Description: uustat reports the status of all uucp and uuto
jobs you have requested.

Remarks: The -j option, followed by a job number,
allows you to request a status report on only
the specified job.

See the uustat(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

Figure 8-8: Summary of the uustat Command

Receiving Files Sent with uuto: the uupick
Command

When a file sent by uuto reaches the public directory on your UNIX sys
tem, you receive a mail message. To continue the previous example, the
owner of login marie receives the following mail message when the file
money has arrived in her system's public directory:

8-62 USER'S GUIDE

Sending and Receiving Files

$ mail
Fran uu.cp Wed May 14 09:22 EST 1986
/usr/spool/uucppublic/receive/marie/sys1//money fran sys1!wambat arrived
$

The message contains the following pieces of information:

• The first line tells you when the file arrived at its destination.

• The secon9- line, up to the two slashes U I), gives the path name to the
part of the public directory where the file has been stored.

• The rest of the line (after the two slashes) gives the name of the file
and the sender.

Once you have disposed of the mail message, you can use the uupick
command to store the file where you want it. Type the following command
after the system prompt:

uupick<CR>

The command searches the public directory for any files sent to you. If it
finds any, it reports the file name(s). It then prints a ? prompt as a request
for further instructions from you.

For example, say the owner of login marie issues the uupick command to
retrieve the money file. The command will respond as follows:

$ uupick<CR>
fran system sys1: file noney

?

There are several available responses; we will look at the most common
responses and what they do.

COMMUNICATION TUTORIAL 8-63

Sending and Receiving Files

The first thing you should do is move the file from the public directory
and place it in your login directory. To do so, type an m after the question
mark:

?
m<CR>
$

This response moves the file into your current directory. If you want to put it
in some other directory instead, follow the m response with the directory
name:

?
mother _directory<CR>

If there are other files waiting to be moved, the next one is displayed, fol
lowed by the question mark. If not, uucpick returns a prompt.

If you do not want to do anything to that file now, press the RETURN
key after the question mark:

?
<CR>

The current file remains in the public directory until the next time you use the
uupick command. If there are no more messages, the system returns a
prompt.

If you already know that you do not want to save the file, you can delete
it by typing d after the question mark:

?
d<CR>

This response deletes the current file from the public directory and displays
the next message (if there is one). If there are no additional messages about
waiting files, the system returns a prompt.

Finally, to stop the uupick command, type a q after the question mark:

?
q<CR>

Any unmoved or undeleted files will wait in the public directory until the next
time you use the uupick command.

8-64 USER'S GUIDE

Sending and Receiving Files

Other available responses are listed in the User's Reference Manual.

Figure 8-9 summarizes the syntax and capabilities of the uupick com
mand.

Command Recap

uupick - searches for files sent by uuto or uucp

command options arguments

uupick -s system name

Description: uupick searches the public directory of your
system for files sent by uuto or uucp. If any
are found, the command displays information
about the file and prompts you for a response.

Remarks: The question mark (?) at the end of the mes-
sage shows that a response is expected. A com-
plete list of responses is given in the User's
Reference Manual.

Figure 8-9: Summary of the uupick Command

COMMUNICATION TUTORIAL 8-65

Networking

Networking is the process of linking computers and terminals so that
users may be able to:

• log in on a remote computer as well as a local one

• log in and work on two computers in one work session (without alter
nately logging off one and logging in on the other)

• exchange data between computers

The commands presented in this section make it possible for you to per
form these tasks. The ct command allows you to connect your computer to a
remote terminal that is equipped with a modem. The cu command enables
you to connect your computer to a remote computer, and the uux command
lets you run commands on a remote system, without being logged in on it.

On some small computers, the presence of these commands may depend on
whether or not networking software is installed. If it is not installed on your
system, you will receive a message such as the following when you type a
networking command:

cu: not found

Check with your system administrator to verify the availability of networking
commands on your UNIX system.

Connecting a Remote Terminal: the ct Command

The ct command connects your computer to a remote terminal equipped
with a modem, and allows a user on that terminal to log in. To do this, the
command dials the phone number of the modem. The modem must be able
to answer the call automatically. When ct detects that the call has been
answered, it issues a getty (login) process for the remote terminal and allows
a user on it to log in on the computer.

This command can be useful when issued from the opposite end, that is,
from the remote terminal itself. If you are using a remote terminal that is far
from your computer and want to avoid long distance charges, you can use ct
to have the computer place a call to your terminal. Simply call the computer,

8-66 USER'S GUIDE

Networking

log in, and issue the ct command. The computer will hang up the current line
and call your (remote) terminal back.

If ct cannot find an available dialer, it tells you that all dialers are busy
and asks if it should wait until one becomes available. If you answer yes, it
asks how long (in minutes) it should wait for one.

Command Line Format

To execute the ct command, follow this format:

ct [options] teino<CR>

The argument telno is the telephone number of the remote terminal.

Sample Command Usage

Suppose you are logged in on a computer through a local terminal and
you want to connect a remote terminal to your computer. The phone number
of the modem on the remote terminal is 932-3497. Enter this command line:

ct -h -w5 -s1200 9=9323497 <CR>

The equal sign (=) represents a secondary dial tone, and dashes (-) following
the phone number represent delays (the dashes are useful following a long
distance number).

ct will call the modem, using a dialer operating at a speed of 1200 baud. If a
dialer is not available, the -w5 option will cause ct to wait for a dialer for five
minutes before quitting. The -h option tells ct not to disconnect the local ter
minal (the terminal on which the command was issued) from the computer.

Now imagine that you want to log in on the computer from home. To
avoid long distance charges, use ct to have the computer call your terminal:

ct -s1200 9=9323497 <CR>

Because you did not specify the -w option, if no device is available, ct sends
you the following message:

1 busy dialer at 1200 baud Wait for dialer?

COMMUNICATION TUTORIAL 8-67

Networking

If you type n (no), the ct command exits. If you type y (yes), ct prompts you
to specify how long ct should wait:

Time, in minutes?

If a dialer is available, ct responds with:

Allocated dialer at 1200 baud

This means that a dialer has been found. In any case, ct asks if you want the
line connecting your remote terminal to the computer to be dropped:

Confinn hangup?

If you type y (yes), you are logged off and ct calls your remote terminal back
when a dialer is available. If you type n (no), the ct command exits, leaving
you logged in on the computer.

*

Figure 8-10 summarizes the syntax and capabilities of the ct command.

Command Recap

ct - connect computer to remote terminal

command options arguments

ct -h, -w, -s and others* telno

Description: ct connects the computer to a remote terminal
and allows a user to log in from that terminal.

Remarks: The remote terminal must have a modem capa-
ble of answering phone calls automatically.

See the ct(l) manual page in the User's Reference Manual for all avail
able options and an explanation of their capabilities.

Figure 8-10: Summary of the ct Command

8-68 USER'S GUIDE

Networking

Calling Another UNIX System: the ell Command

The eu command connects a remote computer to your computer and
allows you to be logged in on both computers simultaneously. This means
that you can move back and forth between the two computers, transferring
files and executing commands on both, without dropping the connection.

The method used by the eu command depends on the information you
specify on the command line. You must specify the telephone number or sys
tem name of the remote computer. If you specify a phone number, it is
passed on to the automatic dial modem. If you specify a system name, eu
obtains the phone number from the Systems file. If an automatic dial modem
is not used to establish the connection, the line (port) associated with the
direct link to the remote computer can be specified on the command line.

Once the connection is made, the remote computer prompts you to log in
on it. When you have finished working on the remote terminal, log off it and
terminate the connection by typing <-.>. You will still be logged in on the
local computer.

The eu command is not capable of detecting or correcting errors; data may be
lost or corrupted during file transfers. After a transfer, you can check for loss
of data by running the sum command or the Is -I command on the file that
was sent and the file that was received. Both of these commands will report
the total number of bytes in each file; if the totals match, your transfer was
successful. The sum command checks more quickly and gives output that is
easier to interpret. [See the sum(l) and the Is(l) manual pages in the User's
Reference Manual for details.]

COMMUNICATION TUTORIAL 8-69

Networking

Command Line Format

To execute the cu command, follow this format:

cu [options] teIno I systemname<CR>

The components of the command line are:

teino the telephone number of a remote computer

Equal signs (=) represent secondary dial tones and dashes
(-) represent four-second delays.

systemname a system name that is listed in the Systems file.

The cu command obtains the telephone number and baud
rate from the Systems file and searches for a dialer. The -s,
-n, and -1 options should not be used together with system
name. (To see the list of computers in the Systems file, run
the uuname command.)

Once your terminal is connected and you are logged in on the remote
computer, all standard input (input from the keyboard) is sent to the remote
computer. Figures 8-11 and 8-12 show the commands you can execute while
connected to a remote computer through cu.

8-70 USER'S GUIDE

Networking

String Interpretation

--- Terminate the link.

---! Escape to the local computer without dropping
the lin~. To return to the remote computer,
type < d> (control-d).

---!command Execute command on the local computer.

---$command Run command locally and send its output to the
remote system.

---%ed path Change the directory on the local computer
where path is the path name or directory name.

--- %take from [to] Copy a file named from (on the remote com-
puter) to a file named to (on the local com-
puter). If to is omitted, the from argument is
used in both places.

---%put from [to] Copy a file named from (on the local computer)
to a file named to (on the remote computer). If
to is omitted, the from argument is used in both
places.

------ ... Send a line beginning with --- (--- --- ...) to the
remote computer.

---%break Transmit a BREAK to the remote computer (can
also be specified as ---%b).

Figure 8-11: Command Strings for Use with eu (Sheet 1 of 2)

COMMUNICATION TUTORIAL 8-71

Networking

String Interpretation

-- %nostop Turn off the handshaking protocol for the
remainder of the session. This is useful
when the remote computer does not respond
properly to the protocol characters.

--%debug Turn the -d debugging option on or off (can
also be specified as -- %d).

--t Display the values of the terminal I/O
(input/ output) structure variables for your ter-
minal (useful for debugging).

--I Display the values of the termio structure vari-
ables for the remote communication line (useful
for debugging).

Figure 8-12: Command Strings for Use with cu (Sheet 2 of 2)

The use of --%put requires sUy and cat on the remote computer. It also
requires that the current erase and kill characters on the remote computer be
identical to the current ones on the local computer.

The use of -- %take requires the existence of the echo and cat commands on
the remote computer. Also, sUy tabs mode should be set on the remote com
puter if tabs are to be copied without expansion.

Sample Command Usage

Suppose you want to connect your computer to a remote computer called
eagle. The phone number for eagle is 847-7867. Enter the following com
mand line:

eu -s1200 9=8477867 <CR>

The -81200 option causes eu to use a 1200 baud dialer to call eagle. If the -8
option is not specified, eu uses a dialer at the default speed, 300 baud.

8-72 USER'S GUIDE

Networking

When eagle answers the call, eu notifies you that the connection has been
made, and prompts you for a login ID:

cormected
login:

Enter your login ID and password.

The take command allows you to copy files from the remote computer to
the local computer. Suppose you want to make a copy of a file named propo
sal for your local computer. The following command copies proposal from
your current directory on the remote computer and places it in your current
directory on the local computer. If you do not specify a file name for the new
file, it will also be called proposal.

'""-'%take proposal<CR>

The put command allows you to do the opposite: copy files from the
local computer to the remote computer. Say you want to copy a file named
minutes from your current directory on the local computer to the remote com
puter. Type:

'""-' %put minutes minutes.9-18<CR>

In this case, you specified a different name for the new file (minutes.9-18).
Therefore the copy of the minutes file that is made on the remote computer
will be called minutes.9-18.

Figure 8-13 summarizes the syntax and capabilities of the eu command.

COMMUNICATION TUTORIAL 8-73

Networking

*

Command Recap

cu - connects computer to remote computer

command options arguments

cu -s and others* telno (or) systemname

Description: cu connects your computer to a remote com-
puter and allows you to be logged in on both
simultaneously. Once you are logged in, you
can move between computers to execute com-
mands and transfer files on each without drop-
ping the link.

See the cu(l) manual page in the User's Reference Manual for all avail
able options and an explanation of their capabilities.

Figure 8-13: Summary of the cu Command

Executing Commands on a Remote System: the uux
Command

The command uux (short for UNIX system-to-UNIX system command
execution) allows you to execute UNIX system commands on remote comput
ers. It can gather files from various computers, execute a command on a
specified computer, and send the standard output to a file on a specified com
puter. The execution of certain commands may be restricted on the remote
machine. The command notifies you by mail if the command you have
requested is not allowed to execute.

Command Line Format

To execute the uux command, follow this format:

uux [options] command-string<CR>

The command-string is made up of one or more arguments. All special shell

8-74 USER'S GUIDE

Networking

characters (such as "<>1 ,,) must be quoted either by quoting the entire
command-string or quoting the character as a separate argument. Within the
command-string the command and file names may contain a system name! pre
fix. All arguments that do not contain a systemname are interpreted as com
mand arguments. A file name may be either a full path name or the name of
a file under the current directory (on the local computer).

Sample Command Usage

If your computer is hard-wired to a larger host computer you can use uux
to get printouts of files that reside on your computer by entering:

pr minutes I uux -p host!lp<CR>

This command line queues the file minutes to be printed on the area printer
of the computer host.

Figure 8-14 summarizes the syntax and capabilities of the uux command.

COMMUNICATION TUTORIAL 8-75

Networking

*

Command Recap

uux - executes commands on a remote computer

command

uux

Description:

Remarks:

options arguments

-1, -PI and others* command-string

uux allows you to run UNIX system commands
on remote computers. It can gather files from
various computers, run a command on a speci
fied computer, and send the standard output to
a file on a specified computer.

By default, users of the uux command have
permission to run only the mail and mailx
commands. Check with your system adminis
trator to find out if users on your system have
been granted permission to run other com
mands.

See the uux(l) manual page in the User's Reference Manual for all
available options and an explanation of their capabilities.

Figure 8-14: Summary of the uux Command

8-76 USER'S GUIDE

The UNIX System Files

This appendix summarizes the description of the file system given in
Chapter 1 and reviews the major system directories in the root directory.

File System Structure

The UNIX system files are organized in a hierarchy; their structure is often
described as an inverted tree. At the top of this tree is the root directory, the
source of the entire file system. It is designated by a / (slash). All other
directories and files descend and branch out from root, as shown in Figure A
I.

Figure A-I: Directory Tree from root

o ; Directories

D ; Ordinary Files

\] = Special Files

One path from root leads to your home directory. You can organize and
store information in your own hierarchy of directories and files under your
home directory.

SUMMARY OF THE FILE SYSTEM A-1

The UNIX System Files

Other paths lead from root to system directories that are available to all
users. The system directories described in this book are common to all UNIX
system installations and are provided and maintained by the operating system.

In addition to this standard set of directories, your UNIX system may have
other system directories. To obtain a listing of the directories and files in the
root directory on your UNIX system, type the following command line:

Is -I /<CR>

To move around in the file structure, you can use path names. For exam
ple, you can move to the directory /bin (which contains UNIX system execut
able files) by typing the following command line:

cd /bin<CR>

To list the contents of a directory, issue one of the following command lines:

Is<CR>
Is -l<CR>

for a list of file and directory names
for a detailed list of file and
directory names

To list the contents of a directory in which you are not located, issue the
Is command as shown in the following examples:

Is /bin<CR>
Is -I /bin<CR>

for a short listing
for a detailed listing

The following section provides brief descriptions of the root directory and
the system directories under it, as shown in Figure A-1.

A~2 USER'S GUIDE

UNIX System Directories

/ The source of the file system (called root directory)

/bin Contains many executable programs and utilities, such as the
following:

cat
date
login
grep
mkdir
who

/lib Contains available program libraries and language libraries,
such as

libc.a

libm.a

system calls, standard I/O

math routines and support for languages
such as C, FORTRAN, and BASIC.

/dev Contains special files that represent peripheral devices, such
as:

/etc

/tmp

/usr

console
lp
ttyn
dsk/*

console
line printer
user terminal(s)
disks

Contains programs and data files for system administration

Contains temporary files, such as the buffers created for edit
ing a file

Contains the following subdirectories which, in turn, contain
the data listed below:

news
mail
spool

important news items
electronic mail
files waiting to be printed on the line
printer

SUMMARY OF THE FILE SYSTEM A-3

Basic UNIX System Commands

at

banner

batch

Request that a command be run in background mode at a time
you specify on the command line. If you do not specify a
time, at(l) displays the job numbers of all jobs you have run
ning in at(l), batch(l), or background mode.

A sample format is:

at 8:45am Jun 09<CR>
commandl <CR>
command2<CR>
<Ad>

If you use the at command without the date, the command
executes within 24 hours at the time specified.

Display a message (in words up to ten characters long) in
large letters on the standard output.

Submit command(s) to be processed when the system load is
at an acceptable level. A sample format of this command is:

batch<CR>
commandl <CR>
c0f11mand2 <CR>
< d>

You can use a shell script for a command in batch(l).
This may be useful and timesaving if you have a set of commands
you frequently submit using this command.

cat Display the contents of a specified file at your terminal. }o
halt th~ output on an ASCII terminal temporarily, use < s>;
type < q> to restart the output. To interrupt the output and
return to the shell on an ASCII terminal, press the BREAK or
DELETE key.

SUMMARY OF UNIX SYSTEM COMMANDS 8-1

Basic UNIX System Commands

cd

cp

cut

date

diff

echo

ed

grep

kill

lex

lp

lpstat

Change directory from the current one to your home directory.
If you include a directory name, changes from the current
directory to the directory specified. By using a path name in
place of the directory name, you can jump several levels with
one command.

Copy a specified file into a new file, leaving the original file
intact.

Cut out specified fields from each line of a file. This com
mand can be used to cut columns from a table, for example.

Display the current date and time.

Compare two files. The diff(l) command reports which lines
are different and what changes should be made to the second
file to make it the same as the first file.

Display input on the standard output (the terminal), including
the carriage return, and returns a prompt.

Edit a specified file using the line editor. If there is no file by
the name specified, the ed(l) command creates one. See
Chapter 5 for detailed instructions on using the ed(l) editor.

Search a specified file(s) for a specified pattern and prints
those lines that contain the pattern. If you name more than
one file, grep(l) prints the file that contains the pattern.

Terminate a background process specified by its process iden
tification number (PID). You can obtain a PID by running the
ps(l) command.

Generate programs to be used in simple lexical analysis of
text, perhaps as a first step in creating a compiler. See the
User's Reference Manual for details.

Print the contents of a specified file on a line printer, giving
you a paper copy of the file.

Display the status of any requests made to the line printer.
Options are available for requesting more detailed informa
tion.

B-2 USER'S GUIDE

Basic UNIX System Commands

Is List the names of all files and directories except those whose
names begin with a dot (.). Options are available for listing
more detailed information about the files in the directory.
[See the 18(1) entry in the User's Reference Manual for details.]

mail Display any electronic mail you may have received at your
terminal, one message at a time. Each message ends with?
prompt; mail(l) waits for you to request an option such as
saving, forwarding, or deleting a message. To obtain a list of
the available options, type ?

mailx

make

mkdir

mv

nohup

pg

When followed by a login name, mail(l) sends a message to
the owner of that name. Y pu can type as many lines of text
as you want. Then type < d> to end the message and send it
to the recipient. Press the BREAK key to interrupt the mail
session.

mailx(l) is a more sophisticated, expanded version of elec
tronic mail.

Maintain and support large programs or documents on the
basis of smaller ones. See the make(l) page in the User's
Reference Manual for details.

Make a new directory. The new directory becomes a sub
directory of the directory in which you issue the mkdir com
mand. To create subdirectories or files in the new directory,
you must first move into the new directory with the cd com
mand.

Move a file to a new location in the file system. You can
move a file to a new file name in the same directory or to a
different directory. If you move a file to a different directory,
you can use the same file name or choose a new one.

Place execution of a command in the background, so it will
continue executing after you log off of the system. Error mes
sages are placed in a file called nohup.out.

Display the contents of a specified file on your terminal, a
page at a time. After each page, the system pauses and waits
for your instructions before proceeding.

SUMMARY OF UNIX SYSTEM COMMANDS B-3

Basic UNIX System Commands

pr Display a partially formatted version of a specified file at your
terminal. The pr(l) command shows page breaks, but does
not implement any macros supplied for text formatter pack
ages.

ps

pwd

rm

rmdir

sort

Display the status and number of every process currently run
ning. The ps(l) command does not show the status of jobs in
the at(l) or batch(l) queues, but it includes these jobs when
they are executing.

Display the full path name of the current working directory.

Remove a file from the file system. You can use metacharac
ters with the rm(l) command but should use them with cau-
tion; a removed file cannot be recovered easily.

Remove a directory. You cannot be in the directory you want
to delete. Also, the command will not delete a directory
unless it is empty. Therefore, you must remove any subdirec
tories and files that remain in a directory before running this
command on it. (See rm -r in the User's Reference Manual for
the ability to remove directories that are not empty.)

Sort a file in ASCII order and display the results on your ter-
minal. ASCII order is as follows:

1. numbers before letters
2. uppercase before lowercase
3. alphabetical order

There are other options for sorting a file. For a complete list
of sort(1) options, see the sort(1) page in the User's Reference
Manual.

spell Collect words from a specified file and check them against a
spelling list. Words not on the list or not related to words on
the list (with suffixes, prefixes, and so on) are displayed.

stty Report the settings of certain input/output options for your
terminal. When issued with the appropriate options and argu
ments, stty(l) also sets these input/output options. [See the
stty(l) entry in the User's Reference Manual.]

B-4 USER'S GUIDE

Basic UNIX System Commands

uname Display the name of the UNIX system on which you are
currently working.

uuep Send a specified file to another UNIX system. [See the
uuep(l) page in the User's Reference Manual for details.]

uuname List the names of remote UNIX systems that can communicate
with your UNIX system.

uupiek Search the public directory for files sent to you by the uuto(l)
command. If a file is found, uupick(l) displays its name and
the system it came from, and prompts you (with a ?) to take
action.

uustat Report the status of the uuto(l) command you issued to send
files to another user.

uuto Send a specified file to another user. Specify the destination
in the format system! login. The system must be on the list of
systems generated by the uuname(l) command.

vi Edit a specified file using the vi(l) screen editor. If there is no
file by the name you specify, vi(l) creates one. [See
Chapter 6 for detailed information on using the vi(l) editor.]

we Count the number of lines, words, and characters in a speci
fied file and display the results on your terminal.

who Display the login names of the users currently logged in on
your UNIX system. List the terminal address for each login
and the time each user logged in.

yacc Impose a structure on the input of a program. See the User's
Reference Manual for details.

SUMMARY OF UNIX SYSTEM COMMANDS B-5

The ed Commands

The general format for ed commands is:

[addressl,address2] command[parameter] ... <CR>

where addressl and address2 denote line addresses and the parameters show
the data on which the command operates. The commands appear on your
terminal as you type them. You can find complete information on using ed
commands in Chapter is, "Line Editor Tutorial. "

The following is a glossary of ed commands. The commands are grouped
according to function.

Commands for Getting Started

ed filename Accesses the ed line editor to edit a specified file.

a

P

d

<CR>

w

q

Appends text after the current line.

Ends the text input mode and returns to the command mode.

Displays the current line.

Deletes the current line.

Moves down one line in the buffer.

Moves up one line in the buffer.

Writes the buffer contents to the file currently associated with
the buffer.

Ends an editing session. If changes to the buffer were not
written to a file, a warning (?) is issued. Typing q a second
time ends the session without writing to a file.

QUICK REFERENCE TO ed COMMANDS C-1

The ed Commands

Line Addressing Commands

1, 2, 3 ...

$

Denotes line addresses in the buffer.

Address of the current line in the buffer.

Displays the current line address.

Denotes the last line in the buffer.

Addresses the first through the last line.

Addresses the current line through the last line.

+x Relative address, determined by adding x to the current line
number.

-x Relative address, determined by subtracting x from the current
line number.

/ abc Searches forward in the buffer and addresses the first line
after the current line that contains the pattern abc.

?abc Searches backward in the buffer and addresses the first line
before the current line that contains the pattern abc.

g/abc

v/abc

Addresses all lines in the buffer that contain the pattern abc.

Addresses all lines in the buffer that do not contain the pat
tern abc.

Display Commands

p

n

Text Input

Displays the specified lines in the buffer.

Displays the specified lines preceded by their line addresses
and a tab space.

a Enters text after the specified line in the buffer.

C-2 USER'S GUIDE

i

c

Deleting Text

The ed Commands

Enters text before the specified line in the buffer.

Replaces text in the specified lines with new text.

When typed on a line by itself, ends the text input mode and
returns to the command mode.

d Deletes one or more lines of text (command mode).

u Undoes the last command given (command mode).

@ Deletes the current line (in text input mode) or a command
line (in command mode).

or BACKSPACE
Deletes the last character entered as text (in input mode).

Substituting Text

addressl,address2sJold_textJnew_textjcommand
Substitutes new_text for old_text within the range of lines
denoted by addressl,address2 (which may be numbers, sym
bols, or text). The command may be g, I, n, p, or gpo

Special Characters

Matches any single character in search or substitution patterns.

* Matches zero or more occurrences of the preceding character
in search or substitution patterns.

[...] Matches the first occurrence of a pattern in the brackets.

[...] Matches the first occurrence of a character that is not in the
brackets .

. * Matches zero or more occurrences of any characters following
the period in search or substitution patterns.

The circumflex () matches the beginning of the line in search
or substitution patterns.

QUICK REFERENCE TO ed COMMANDS C-3

The ed Commands

$

\

&

%

Matches the end of the line in search or substitution patterns.

Takes away the special meaning of the special character that
follows in search and substitution patterns.

Repeats the last pattern to be substituted.

Repeats the last replacement pattern.

Text Movement Commands

m

t

w

r

Moves the specified lines of text after a destination line;
deletes the lines at the old location.

Copies the specified lines of text and places the copied lines
after a destination line.

Joins the current line with the next contiguous line.

Copies (writes) the buffer contents into a file.

Reads in text from another file and appends it to the buffer.

Other Useful Commands and Information

h

H

Displays a short explanation for the preceding diagnostic
response (?).

Turns on the help mode, which automatically displays an
explanation for each diagnostic response (?) during the edit
ing session.

1 Displays nonprinting characters in the text.

f Displays the current file name.

f newfile Changes the current file name associated with the buffer to
newfile.

!command Allows you to escape, temporarily, to the shell to execute a
shell command.

ed.hup If the terminal is hung up before a write command, the editing
buffer is saved in the file ed.hup.

C-4 USER'S GUIDE

vi Quick Reference

This appendix is a glossary of commands for the screen editor vi. The
commands are grouped according to function.

The general format of a vi command is:

[x][eommand]text-obj eet

where x denotes a number and text-object shows the portion of text on which
the command operates. The commands appear on your screen as you type
them. For an introduction to the use of vi commands, see Chapter 6, "Screen
Editor Tutorial. "

Commands for Getting Started

Shell Commands

TERM=eode

export TERM

tput init

Puts a code name for your terminal into the variable
TERM.

Conveys the value of TERM (the terminal code) to
any UNIX system program that is terminal-dependent.

Initializes the terminal so that it will function properly
with various UNIX system programs.

Before you can use vi, you must complete the first three steps represented by
the above three lines: setting the TERM variable, exporting the vaIue of
TERM, and running the tput init command.

vi filename

Basic vi Commands

<a>

Accesses the vi screen editor so that you can edit a
specified file.

Enters text input mode and appends text after the cur
sor.

QUICK REFERENCE TO vi COMMANDS 0-1

vi Quick Reference

<ESC>

<h>

<j>

<k>

<1>

<x>

<CR>

<zz>

:w

:q

Escape; leaves text input mode and returns to com
mand mode.

Moves the cursor to the left one character.

Moves the cursor down one line in the same column.

Moves the cursor up one line in the same column.

Moves the cursor to the right one character.

Deletes the current character.

Carriage return; moves the cursor down to the begin
ning of the next line.

Writes changes made to the buffer to the fHe and quits
vi.

Writes changes made to the buffer to the file.

Quits vi if changes made to the buffer have been writ
ten to a file.

Commands for Positioning in the Window

Positioning by Character

<h> Moves the cursor one character to the left.

<BACKSP ACE> Backspace; moves the cursor one character to the left.

<1>

<space bar>

<fx>

<Fx>

<tx>

<Tx>

0-2 USER'S GUIDE

Moves the cursor one character to the right.

Moves the cursor one character to the right.

Moves the cursor right to the specified character x.

Moves the cursor left to the specified character x.

Moves the cursor right to the character just before the
specified character x.

Moves the cursor left to the character just after the
specified character x.

<;>

<,>

Positioning by Line

<j>

<k>

<+>

<CR>

<->

Positioning by Word

<w>

<e>

vi Quick Reference

Continues the search for the character specified by the
<f>, <F>, <t>, or <T> commands. The;
remembers the character specified and searches for the
next occurrence of it on the current line.

Continues the search for the character specified by the
<f>, <F>, <t>, or <T> commands. The,
remembers the character specified and searches for the
previous occurrence of it on the current line.

Moves the cursor down one line from its present posi
tion, in the same column.

Moves the cursor up one line from its present posi
tion, in the same column.

Moves the cursor down to the beginning of the next
line.

Carriage return; moves the cursor down to the begin
ning of the next line.

Moves the cursor up to the beginning of the next line.

Moves the cursor to the right, to the first character in
the next word.

Moves the cursor back to the first character of the pre
vious word.

Moves the cursor to the end of the current word.

Positioning by Sentence

Moves the cursor to the beginning of the sentence.

Moves the cursor to the beginning of the next sen
tence.

QUICK REFERENCE TO vi COMMANDS 0-3

vi Quick Reference

Positioning by Paragraph

<{>

<}>

Moves the cursor to the beginning of the paragraph.

Moves the cursor to the beginning of the next para
graph.

Positioning in the Window

<H>

<M>

<L>

Moves the cursor to the first line on the screen, or
"home."

Moves the cursor to the middle line on the screen.

Moves the cursor to the last line on the screen.

Commands for Positioning in the File

Scrolling,

< f>

< d>

< b>

< u>

Scrolls the screen forward a full window, revealing the
window of text below the current window.

Scrolls the screen down a half window, revealing lines
of text below the current window.

Scrolls the screen back a full window, revealing the
window of text above the current window.

Scrolls the screen up a half window, revealing the
lines of text above the current window.

Positioning on a Numbered Line

<nG>

0-4 USER'S GUIDE

Moves the cursor to the beginning of the last line in
the buffer.

Moves the cursor to the beginning of the nth line of
the file (n = line number).

vi Quick Reference

Searching for a Pattern

/pattern

?pattern

<n>

<N>

Searches forward in the buffer for the next occurrence
of the pattern of text. Positions the cursor under the
first character of the pattern.

Searches backward in the buffer for the first
occurrence of pattern of text. Positions the cursor
under the first character of the pattern.

Repeats the last search command.

Repeats the search command in the opposite direction.

Commands for Inserting Text

<a>

<i>

<0>

<0>

<ESC>

Enters text input mode and appends text after the cur
sor.

Enters text input mode and inserts text before the cur
sor.

Enters text input mode by opening a new line immedi
ately below the current line.

Enters text input mode by opening a new line immedi
ately above the current line.

Escape; returns to command mode from text input
mode (entered with any of the above commands).

Commands for Deleting Text

In Text Input Mode

<BACKSPACE> Backspace; deletes the current character.

< w> Deletes the current word delimited by blanks.

QUICK REFERENCE TO vi COMMANDS 0-5

vi Quick Reference

<@>

In Command Mode

<x>

<dw>

<dd>

<ndx>

Erases the current line of text.

Deletes the current character.

Deletes a word (or part of a word) from the cursor
through the next space or to the next punctuation.

Deletes the current line.

Deletes n number of text objects of type x, where x
may be as a word, line, sentence, or paragraph.

Deletes the current line from the cursor to the end of
the line.

Commands for Modifying Text

Characters, Words, Text Objects

<r>

<8>

<cw>

<cc>

<ncx>

0-6 USER'S GUIDE

Replaces the current character.

Deletes the current character and appends text until
the <ESC> command is typed.

Replaces all the characters in the current line.

Changes uppercase to lowercase or lowercase to
uppercase.

Replaces the current word or the remaining characters
in the current word with new text, from the cursor to
the next space or punctuation.

Replaces all the characters in the current line.

Replaces n number of text objects of type x, where x
may be a word, line, sentence, or paragraph.

vi Quick Reference

Replaces the remaining characters in the current line,
from the cursor to the end of the line.

Cutting and Pasting Text

<p>

<yy>

<nyx>

<"lyx>

<"xp>

Places the contents of the temporary buffer (contain
ing the output of the last delete or yank command)
into the text after the cursor or below the current line.

Yanks (extracts) a specified line of text and puts it into
a temporary buffer.

Extracts a copy of n number of text objects of type x
and puts it into a temporary buffer.

Places a copy of text object x into a register named by
a letter 1. x may be a word, line, sentence, or para
graph.

Places the contents of register x after the cursor or
below the current line.

Other Commands

Special Commands

< g>

<.>

<u>

<u>

<J>

< 1>

Gives the line number of current cursor position in the
buffer and modification status of the file.

Repeats the action performed by the last command.

Undoes the effects of the last command.

Restores the current line to its state prior to present
changes.

Joins the line immediately below the current line with
the current line.

Clears and redraws the current window.

QUICK REFERENCE TO vi COMMANDS 0-7

vi Quick Reference

Line Editor Commands

:sh

< d>

:n

:x,zw filename

:$

:.,$d

:r filename

:sjtextjnew_textj

Tells vi that the next commands you issue will be line
editor commands.

Temporarily returns to the shell to perform some shell
commands without leaving vi.

Escapes the temporary return to the shell and returns
to vi so you can edit the current window.

Goes to the nth line of the buffer.

Writes lines from the number x through the number z
into a new file called filename.

Moves the cursor to the beginning of the last line in
the buffer.

Deletes all the lines from the current line to the last
line.

Inserts the contents of the file filename under the
current line of the buffer.

Replaces the first instance of text on the current line
with new_text.

:sjtextjnew_textjg
Replace every occurrence of text on the current line
with new_text.

:gjtextjsj jnew_textjg
Changes every occurrence of text in the buffer to
new_text.

Commands for Quitting vi

<zz>
:wq

0-8 USER'S GUIDE

Writes the buffer to the file and quits vi.

Writes the buffer to the file and quits vi.

:w filename
:q

:w! filename
:q

:q!

:q

vi Quick Reference

Writes the buffer to the new file filename and quits vi.

Overwrites the existing file filename with the contents
of the buffer and quits vi.

Quits vi whether or not changes made to the buffer
were written to a file. Does not incorporate changes
made to the buffer since the last write (:w) command.

Quits vi if changes made to the buffer were written to
a file.

Special Options for vi

vi file1 file2 file3

:w
:n

vi -r file1

view file1

Enters three files into the vi buffer to be edited.
Those files are filet file2, and file3.

When more than one file has been called on a single
vi command line, writes the buffer to the file you are
editing and then calls the next file in the buffer (use :n
only after :w).

Restores the changes made to file1 that were lost
because of an interrupt in the system.

Displays file1 in the read-only mode of vi. Any
changes made to the buffer will not be allowed to be
written to the file.

QUICK REFERENCE TO vi COMMANDS 0-9

Summary of Shell Command Language

This appendix is a summary of the shell command language and program
ming constructs discussed in Chapter 7, "Shell Tutorial." The first section
reviews metacharacters, special characters, input and output redirection, vari
ables and processes. These are arranged by topic in the order that they were
discussed in the chapter. The second section contains models of the shell pro
gramming constructs.

The Vocabulary of Shell Command Language

Special Characters in the Shell

* ? []. Metacharacters; used to provide a shortcut to referencing file
names, through pattern matching.

& Executes commands in the background mode.

\

" "

Sequentially executes several commands typed on one line,
each pair separated by i.

Turns off the meaning of the immediately following special
character.

Enclosing single quotes turn off the special meaning of all
characters.

Enclosing double quotes turn off the special meaning of all
characters except $ and \

Redirecting Input and Output

< Redirects the contents of a file into a command.

> Redirects the output of a command into a new file, or replaces
the contents of an existing file with the output.

» Redirects the output of a command so that it is appended to
the end of a file.

SUMMARY OF SHELL COMMAND LANGUAGE E-1

Summary of Shell Command Language

Directs the output of one command so that it becomes the
input of the next command.

'command' Substitutes the output of the enclosed command in place of
'command'.

Executing and Terminating Processes

batch

at

at -1

at -r

ps

kill PID

Submits the following commands to be processed at a time
when the system load is at an acceptable level. <Ad> ends
the batch command.

Submits the following commands to be executed at a specified
time. <Ad> ends the at command.

Reports which jobs are currently in the at or batch queue.

Removes the at or batch job from the queue.

Reports the status of the shell processes.

Terminates the shell process with the specified process ID
(PID).

nohup command list &
Continues background processes after logging off.

Making a File Accessible to the Shell

chmod u+x filename
Gives the user permission to execute the file (useful for shell
program files).

mv filename $HOME/bin/filename
Moves your file to the bin directory in your home directory.
This bin holds executable shell programs that you want to be
accessible. Make sure the PATH variable in your .profile file
specifies this bin. If it does, the shell will search in
$HOME/bin for your file when you try to execute it. If your
PATH variable does not include your bin, the shell will not
know where to find your file and your attempt to execute it
will fail.

E-2 USER'S GUIDE

Summary of Shell Command Language

filename The name of a file that contains a shell program becomes the
command that you type to run that shell program.

Variables

positional parameter

echo

$#

$*

A numbered variable used within a shell program to refer
ence values automatically assigned by the shell from the
arguments of the command line invoking the shell pro
gram.

A command used to print the value of a variable on your
terminal.

A special parameter that contains the number of arguments
with which the shell program has been executed.

A special parameter that contains the values of all argu
ments with which the shell program has been executed.

named variable
A variable to which the user can give a name and assign
values.

Variables Used in the System

HOME Denotes your home directory; the default variable for the
cd command.

PATH Defines the path your login shell follows to find com
mands.

CDP A TH Defines the search path for the cd command.

MAIL Gives the name of the file containing your electronic mail.

PSt PS2 Define the primary and secondary prompt strings.

TERM Defines the type of terminal.

LOGNAME Login name of the user.

SUMMARY OF SHELL COMMAND LANGUAGE E-3

Summary of Shell Command Language

IFS Defines the internal field separators (normally the space,
the tab, and the carriage return).

TERMINFO Allows you to request that the curses and terminfo sub
routines search a specified directory tree before searching
the default directory for your terminal type.

TZ Sets and maintains the local time zone.

Shell Programming Constructs

Here Document

For Loop

command «!
input lines

for variable<CR>
in this list of values<CR>

do the following commands<CR>
command 1 <CR>
command 2<CR>

.<CR>

.<CR>
last command<CR>

done<CR>

E-4 USER'S GUIDE

While Loop

If ... Then

Summary of Shell Command Language

while command list<CR>
do<CR>

commandl <CR>
command2<CR>

.<CR>

.<CR>
last command<CR>

done<CR>

if this command is successful<CR>
then commandl <CR>

command2<CR>
.<CR>
.<CR>

last command<CR>
fi<CR>

SUMMARY OF SHELL COMMAND LANGUAGE E-5

Summary of Shell Command Language

If ... Then ... Else

if command list<CR>
then command list<CR>
else command list<CR>

fi<CR>

E-6 USER'S GUIDE

Summary of Shell Command Language

Case Construction

case word<CR>
in<CR>

pattern1)<CR>
command line 1 <CR>

.<CR>

.<CR>
last command line<CR>

ii<CR>
pattern2)<CR>

command line 1 <CR>
.<CR>
.<CR>

last command line<CR>
ii<CR>
pattern3)<CR>

command line 1 <CR>
.<CR>
.<CR>

last command line<CR>
ii<CR>

esac<CR>

break and continue Statements

A break or continue statement forces the program to leave any loop and
execute the command following the end of the loop ..

SUMMARY OF SHELL COMMAND LANGUAGE E-7

Setting the TERM Variable

"AT&T supports many types of terminals for use with the UNIX system.
Because some commands are terminal-dependent, the system must know what
type of terminal you are using whenever you log in. The system determines
the characteristics of your terminal by checking the value of a variable called
TERM which holds the name of a terminal. If you have put the name of your
terminal into this variable, the system will be able to execute all programs in a
way that is suitable for your terminal.

This method of telling the UNIX system what type of terminal you are
using is called setting the terminal configuration. To set your terminal confi
guration, type the command lines shown on the following screen, substituting
the name of your terminal for terminal_name.

$ TERM=terminaLname<CR>
$ export TERM<CR>
$ tput init<CR>

These lines must be executed in the order shown; otherwise, they will not
work. Also, this procedure must be repeated every time you log in. There
fore, most users put these lines into a file called .profile that is automatically
executed every time they log in. For details about the .profile file, see
Chapter 7.

The first two lines in the screen tell the UNIX system shell what type of
terminal you are using. The tput init command line instructs your terminal to
behave in ways that the UNIX system expects a terminal of that type to
behave. For example, it sets the terminal's left margin and tabs, if those capa
bilities ex~st for the terminal.

SETTING UP THE TERMINAL F-1

Setting the TERM Variable

The tput command uses the entry in this data base for your terminal to
make terminal dependent capabilities and information available to the shell.
Because the values of these capabilities differ for each type of terminal, you
must execute the tput init command line every time you change the TERM
variable.

For each terminal type, a set of capabilities is defined in a data base. This
data base is usually found in either the /usr/lib/terminfo or
/usr/lib.COREterm directory, depending on the system.

Every system has at least one of these directories; some may have both. Your
system administrator can tell you whether your system has the terminfo
and/or the .COREterm directory.

The following sections describe how you can determine what
terminal_names are acceptable. Further information about the capabilities in
the terminfo data base can be found on the terminfo(4) manual page in the
Programmer's Reference Manual.

Acceptable Terminal Names

The UNIX system recognizes a wide range of terminal types. Before you
put a terminal name into the TERM variable, you must make sure that your
terminal is within that range.

You must also verify that the name you put into the TERM variable is a
recognized terminal name. There are usually at least two recognized names:
the name of the manufacturer and the model number. However, there are
several ways to represent these names: by varying the use of uppercase and
lowercase, using abbreviations, and so on. Do not put a terminal name in the
TERM variable until you have verified that the system recognizes it.

The tput command provides a quick way to make sure your terminal is
supported by your system. Type:

tput - Tterminal_name longname<CR>

If your system supports your terminal, it will respond with the complete name
of your terminal. Otherwise, you will get an error message.

F-2 USER'S GUIDE

Setting the TERM Variable

To find an acceptable name that you can put in the TERM variable, find a
listing for your terminal in either of two directories: Jusr Jlib Jterminfo or
JusrJlib J.COREterm. Each of these directories is a collection of files with
single-character names. Each file, in turn, holds a list of terminal names that
all begin with the name of the file. (This name can be either a letter, such as
the initial A in AT&T, or a number, such as the initial 5 in 5425.) Find the
file whose name matches the first character of your terminal's name. Then list
the file's contents and look for your terminal.

You can also check with your system administrator for a list of terminals
supported by your system, and the acceptable names you can put in the
TERM variable.

SETTING UP THE TERMINAL F-3

Example

Suppose your terminal is an AT&T Teletype Model 5425. Your login is
jim and you are currently in your home directory. First, you verify that your
system supports your terminal by running the tput command. Next, you find
an acceptable name for it in the /usr/lib/.COREterm/ A directory. The fol
lowing screen shows which commands you need to do this:

$ tput - T5425 longname<CR>
AT&T 4425/5425
$ cd /usr/lib/.COREterm/ A<CR>
$ Is
A'IT441 0
A'IT4415
A'IT4418
A'IT4424
A'IT4424-2
A'IT4425
A'IT4426
A'IT513
A'IT541 0
A'IT5418
A'IT5420
A'IT5420-2
A'IT5425
A'IT5620
A'IT610BCI'
ATl'PT505
$

Now you are ready to put the name you found, A'IT5425, in the TERM vari
able. Whenever you do this, you must also export TERM and execute tput
init.

F-4 USER'S GUIDE

$ TERM=ATT5425<CR>
$ export TERM <CR>
$ tput inikCR>
$

Example

The UNIX system now knows what type of terminal you are using and
will execute commands appropriately.

SETTING UP THE TERMINAL F-5

Windowing

The area of the terminal screen in which you work and display files is
similar to the window of a house: both are devices that frame a part of a
whole (whether the world or a file) for viewing. For this reason, the working
area of a terminal screen is called a window. Until now we have assumed
that your terminal screen has only one window (the whole screen). However,
some terminals allow you to create more than one window on your screen.
Each window on a windowing terminal has its own shell and functions almost
exactly like a separate terminal. To help you take advantage of this feature,
the UNIX system provides a set of software tools called the Basic Windowing
Utilities.

We have already discussed how you can perform several tasks simultane
ously with one screen by using tools such as background mode and the at
command. With multiple windows you have the additional capability of
working interactively with more than one process at a time. You can keep
track of several processes at once or look at more than one file simultane
ously. If you have a windowing terminal and the Basic Windowing Utilities
are installed on your UNIX system, you can use the techniques described in
this section to make efficient use of your terminal.

Creating Windows

To create a window you must draw it on your screen and set up the shell
associated with it. The shell is the command interpreter; it allows you to
work interactively with the UNIX system. Without a shell assigned to it, a
window is simply a drawing on your screen.

The layers command allows you to draw a window on any windowing
terminal. If you execute it without any arguments, you must use the mouse to
draw a window. If you give specifications for windows as arguments to the
layers command, you can program the drawing of windows and avoid using
the mouse; your windows will be drawn automatically by the layers com
mand.

F-6 USER'S GUIDE

Windowing

Drawing Windows With a Mouse

The easiest way to draw windows is with the mouse. First, enter the
layers command.

layers<CR>

Next, press a button on your mouse; a pop-up menu of layer operations will
appear on the screen. Choose the menu option for drawing windows (such as
New), and use the mouse to draw one (see the terminal owner's manual for
instructions).

To create more than one window, reinvoke the menu, make your selec
tion, and draw with the mouse. (You cannot issue the layers command
again.) In response, the terminal draws your window(s) on the screen and
then waits for commands from the terminal.

Drawing Windows Without a Mouse

If you prefer to program the drawing of windows, you must first create a
file containing the number and dimensions of the windows you want. Then
run the layers command with the name of that file as an argument, and the -f
option. This option tells the command to read your specifications file. The
general command line format is:

layers -f file<CR>

The specifications file must contain a line for each window you want, in the
following format:

origin---x origin_y corner---x corner_y command_list

The first four fields of the line define the coordinates of the window. The
origin---x and origin_y entries specify the position on the screen of the top, left
hand corner of the window, the point at which the command starts drawing.
The corner---x and corner_y entries specify the position of the lower, right hand
corner.

SETTING UP THE TERMINAL F-7

Windowing

origin--..X orfgjn-1!_

corner --..X corner_y

For example, to create a large rectangular window and a small one, write
a specification file with the following lines:

o
650

o
o

650
792

300
175

Windows drawn to these specifications will look like this:

The fifth field of each line in your specifications file is command_list.
Here you must enter a command that will assign a shell to the window. You
can also assign a particular terminal type or an editor to the window in this
field.

F-8 USER'S GUIDE

Windowing

The command that allows you to assign a shell to your window is exec
(short for execute). Enter this command with an argument specifying the type
of shell you want to run in the window. To run the same type of shell that
normally runs in your terminal, enter the following:

exec $SHELL

To run the standard UNIX system shell, enter

exec /bin/sh

You may also want your window to provide features that are available
only on a type of terminal other than the one you are using. Specify the ter
minal type you want and assign it to the TERM variable. If you include this
assignment in the commands_list field, place it before the exec command.
Separate all three requests (terminal type, TERM assignment, and exec com
mand) with semicolons, and leave spaces on both sides of each semicolon.
For example, say you want your window to provide the features of an HP
2621 terminal running the same type of shell that you normally run on your
terminal. Type the commands_list field in your specifications file as follows:

jim; exec $SHELL

To summarize, the specifications file must contain a line for each window
that you want to create, and each line must include five fields: four coordi
nates for drawing the window and one command line that assigns a shell to
the window. The command line may also include the assignment of a partic
ular editor or terminal to the window. The following example of a specifica
tions file incorporates the previous examples of fields:

8
675
o
o

o
o
200
800

650
800

800
792

300
175
900
1024

exec $SHELL

exec /bin/sh

jim ; exec $SHELL

hp2621 ; TERM=hp2621 exec $SHELL

SETTING UP THE TERMINAL F-9

Windowing

When your specifications file is ready, run the layers command as follows:

layers -£ specifications_file<CR>

The windows you have requested will be drawn on the screen, and the shells
you assigned to them will be activated and ready for your commands.

Working with Layers

Once you have windows on your screens, you need to learn how to work
with them: how to navigate among them, use each one as a terminal, and
delete them. You can perform all these tasks by pressing different buttons on
the mouse (see the owner's manual for your terminal for specific instructions).

Programmers who want to write their own programs for creating or using
windows can do so with the library of functions called libwindows. [See the
libwindows(3X) entry in the Programmer's Reference Manual.]

F-10 USER'S GUIDE

Glossary

acoustic coupler
A device that permit::. cransmission of data over an ordinary tele
phone line. When you place a telephone handset in the coupler,
you link a computer at one end of the phone line to a peripheral
device, such as a user terminal, at the other.

address
Generally, a number that indicates the location of information in the
computer's memory. In the UNIX system, the address is part of an
editor command that specifies a line number or range.

append mode
A text editing mode in which the characters you type are entered as
text into the text editor's buffer. In this mode you enter (append)
text after the current position in the buffer. See text input mode;
compare with command mode and insert mode.

argument
The element of a command line that specifies data on which a com
mand is to operate. Arguments follow the command name and can
include numbers, letters, or text strings. For instance, in the com
mand lp -m myfile, lp is the command and myfile is the argu
ment. See option.

ASCII
(pronounced as'-kee) American Standard Code for Information Inter
change, a standard for data transmission that is used in the UNIX
system. ASCII assigns sets of Os and 1s to represent 128 characters,
including alphabetical characters, numerals, and standard special
characters, such as #, $, %, and &.

AT&T 3B Computers
Computers manufactured by AT&T Technologies, Inc.

background
A type of program execution where you request the shell to run a
command away from the interaction between you and the computer
(" in the background"). While this command runs, the shell
prompts you to enter other commands through the terminal.

GLOSSARY G-1

Glossary

baud rate
A measure of the speed of data transfer from a computer to a peri
pheral device (such as a terminal) or from one device to another.
Common baud rates are 300, 1200, 4800, and 9600. As a general
guide, divide a baud rate by 10 to get the approximate number of
English characters transmitted each second.

buffer
A temporary storage area of the computer used by text editors to
make changes to a copy of an existing file. When you edit a file, its
contents are read into a buffer, where you make changes to the text.
For the changes to become a part of the permanent file, you must
write the buffer contents back into the file. See permanent file.

child directory
See subdirectory.

command
The name of a file that contains a program that can be executed by
the computer on request. Compiled programs and shell programs
are forms of commands.

command file
See executable file.

command language interpreter
A program that acts as a direct interface between you and the com
puter. In the UNIX system, a program called the shell takes com
mands and translates them into a language understood by the com
puter.

command line
A line containing one or more commands, ended by typing a car
riage return «CR». The line may also contain options and argu
ments for the commands. You type a command line to the shell to
instruct the computer to perform one or more tasks.

G-2 USER'S GUIDE

Glossary

command mode
A text-editing mode in which the characters you type are interpreted
as editing commands. This mode permits actions such as moving
around in the buffer, deleting text, or moving lines of text. See text
input mode; compare with append mode and insert mode.

context search
A technique for locating a specified pattern of characters (called a
string) when in a text editor. Editing commands that cause a context
search scan the buffer, looking for a match with the string specified
in the command. See string.

control character
A nonprinting character that is entered by holding down the control
-key and typing a character. Control characters are often used for
special purposes. For instance, when viewing a long file on your
screen with the cat command, typing conlrol-s (s) stops the display
so you can read it, and typing control-q (q) continues the display.

current directory
The directory in which you are presently working. You have direct
access to all files and subdirectories contained in your current direc
tory. The shorthand notation for the current directory is a dot (.).

cursor
A cue printed on the terminal screen that indicates the position at
which you enter or delete a character. It is usually a rectangle or a
blinking underscore character.

default
An automatically assigned value or condition that exists unless you
explicitly change it. For example, the shell prompt string has a
default value of $ unless you change it.

delimiter
A character that logically separates words or arguments on a com
mand line. Two frequently used delimiters in the UNIX system are
the space and the tab.

diagnostic
A message printed at your terminal to indicate an error encountered
while trying to execute some command or program. Generally, you
need not respond directly to a diagnostic message.

GLOSSARY G-3

Glossary

directory

disk

A type of file used to group and organize other files or directories.
You cannot directly enter text or other data into a directory. (For
more detail, see Appendix A, Summary of the File System.)

A magnetic data storage device consisting of several round plates
similar to phonograph records. Disks store large amounts of data
and allow quick access to any piece of data.

electronic mail
The feature of an operating system that allows computer users to
exchange written messages via the computer. The UNIX system
mail command provides electronic mail in which the addresses are
the login names of users.

environment
The conditions under which you work while using the UNIX system.
Your environment includes those things that personalize your login
and allow you to interact in specific ways with the UNIX system and
the computer. For example, your shell environment includes such
things as your shell prompt string, specifics for backspace and erase
characters, and commands for sending output from your terminal to
the computer.

erase character
The character you type to delete the previous character you typed.
The UNIX system default erase character is #; some users set the
erase character to the BACKSPACE key.

escape
A means of getting into the shell from within a text editor or other
program.

execute
The computer's action of running a program or command and per
forming the indicated operations.

executable file
A file that can be processed or executed by the computer without
any further translation. When you type in the file name, the com
mands in the file are executed. See shell procedure.

G-4 USER'S GUIDE

file

Glossary

A collection of information in the form of a stream of characters.
Files may contain data, programs, or other text. You access UNIX
system files by name. See ordinary file, permanent file, and exe
cutable file.

file name
A sequence of characters that denotes a file. [In the UNIX system, a
slash character (I) cannot be used as part of a file name.]

file system
A collection of files and the structure that links them together. The
UNIX file system is a hierarchical structure. (For more detail, see
Appendix A, Summary of the File System.)

filter
A command that reads the standard input, acts on it in some way,
and then prints the result as standard output.

final copy
The completed, printed version of a file of text.

foreground
The normal type of command execution. When executing a com
mand in foreground, the shell waits for one command to end before
prompting you for another command. In other words, you enter
something into the computer and the computer "replies" before you
enter something else.

full-duplex
A type of data communication in which a computer system can
transmit and receive data simultaneously. Terminals and modems
usually have settings for half-duplex (one-way) and full-duplex com
munication; the UNIX system uses the full-duplex setting.

full path name
A path name that originates at the root directory of the UNIX system
and leads to a specific file or directory. Each file and directory in the
UNIX system has a unique full path name, sometimes called an
absolute path name. See path name.

global
A term that indicates the complete or entire file. While normal edi
tor commands commonly act on only the first instance of a pattern

GLOSSARY G-5

Glossary

in the file, global commands can perform the action on all instances
in the file.

hardware
The physical machinery of a computer and any associated devices.

hidden character
One of a group of characters within the standard ASCII character set
thpt are not printable. Characters such as backspace, escape, and
< d> are examples.

home directory
The directory in which you are located when you log in to the UNIX
system; also known as your login directory.

input/output
The path by which information enters a computer system (input)
and leaves the system (output). An input device that you use is the
terminal keyboard and an output device is the terminal display.

insert mode
A text-editing mode in which the characters you type are entered as
text into the text editor's buffer. In this mode you enter (insert) text
before the current position in the buffer. See text input mode; com
pare with append mode and command mode.

interactive
Describes an operating system (such as the UNIX system) that can
handle immediate-response communication between you and the
computer. In other words, you interact with the computer from
moment to moment.

line editor
An editing program in which text is operated upon on a line-by-line
basis within a file. Commands for creating, changing, and removing
text use line addresses to determine where in the file the changes are
made. Changes can be viewed after they are made by displaying
the lines changed. See text editor; compare with screen editor.

login
The procedure used to gain access to the UNIX operating system.

G-6 USER'S GUIDE

Glossary

login directory
See home directory.

login name
A string of characters used to identify a user. Your login name is
different from other login names.

log off
The procedure used to exit from the UNIX operating system.

metacharacter
A subset of the set of special characters that have special meaning to
the shell. The metacharacters are *, ?, and the pair []. Metacharac
ters are used in patterns to match file names.

mode
In general, a particular type of operation (for example, an editor's
append mode). In relation to the file system, a mode is an octal
number used to determine who can have access to your files and
what kind of access they can have. See permissions.

modem
A device that connects a terminal and a computer by way of a tele
phone line. A modem converts digital signals to tones and converts
tones back to digital signals, allowing a terminal and a computer to
exchange data over standard telephone lines.

multitasking
The ability of an operating system to execute more than one pro
gram at a time.

multiuser
The ability of an operating system to support several users on the
system at the same time.

nroff
A text formatter available as an add-on to the UNIX system. You
can use the nroff program to produce a formatted on-line copy or a
printed copy of a file. See text formatter.

operating system
The software system on a computer under which all other software
runs. The UNIX system is an operating system.

GLOSSARY G-7

Glossary

option
Special instructions that modify how a command runs. Options are
a type of argument that follow a command and usually precede
other arguments on the command line. By convention, an option is
preceded by a minus sign (-); this distinguishes it from other argu
ments. You can specify more than one option for some commands
given in the UNIX system. For example, in the command
Is -I -a directory, -I and -a are options that modify the Is com
mand. See argument.

ordinary file
A file, containing text or data, that is not executable. See executable
file.

output
Information processed in some fashion by a computer and delivered
to you by way of a printer, a terminal, or a similar device.

parameter
A special type of variable used within shell programs to access
values related to the arguments on the command line or the
environment in which the program is executed. See positional
parameter.

parent directory
The directory immediately above a subdirectory or file in the file
system organization. The shorthand notation for the parent direc
tory is two dots (..).

parity
A method used by a computer for checking that the data received
matches the data sent.

password
A code word known only to you that is called for in the login pro
cess. The computer uses the password to verify that you may
indeed use the system.

path name
A sequence of directory names separated by the slash character (I)
and ending with the name of a file or directory. The path name
defines the connection path between some directory and the named
file.

G-8 USER'S GUIDE

Glossary

peripheral device
Auxiliary devices under the control of the main computer, used
mostly for input, output, and storage functions. Some examples
include terminals, printers, and disk drives.

permanent file
The data stored permanently in the file system structure. To change
a permanent file, you can make use of a text editor, which maintains
a temporary work space, or buffer, apart from the permanent files.
Once changes have been made to the buffer, they must be written to
the permanent file to make the changes permanent. See buffer.

permissions

pipe

Access modes, associated with directories and files, that permit or
deny system users the ability to read, write, and! or execute the
directories and files. You determine the permissions for your direc
tories and files by changing the mode for each one with the chmod
command.

A method of redirecting the output of one command to be the input
of another command. It is named for the character I that redirects
the output. For example, the shell command who I we -1 pipes
output from the who command to the we command, telling you the
total number of people logged into your UNIX system.

pipeline
A series of filters separated by I (the pipe character). The output of
each filter becomes the input of the next filter in the line. The last
filter in the pipeline writes to its standard output, or may be
redirected to a file. See filter.

positional parameters
Numbered variables used within a shell procedure to access the
strings specified as arguments on the command line invoking the
shell procedure. The name of the shell procedure is positional
parameter $0. See variable and shell procedure.

prompt
A cue displayed at your terminal by the shell, telling you that the
shell is ready to accept your next request. The prompt can be a
character or a series of characters. The UNIX system default prompt
is the dollar sign character ($).

GLOSSARY G-9

Glossary

printer
An output device that prints the data it receives from the computer
on paper.

process
Generally a program that is at some stage of execution. In the UNIX
system, it also refers to the execution of a computer environment,
including contents of memory, register values, name of the current
directory, status of files, information recorded at login time, and
various other items.

program
The instructions given to a computer on how to do a specific task.
Programs are user-executable software.

read-ahead capability
The ability of the UNIX system to read and interpret your input
while sending output information to your terminal in response to
previous input. The UNIX system separates input from output and
processes each correctly.

relative path name
The path name to a file or directory which varies in relation to the
directory in which you are currently working.

remote system

root

A system other than the one on which you are working.

The source directory of all files and directories in the file system;
designated by the slash character (/).

screen editor
An editing program in which text is operated on relative to the posi
tion of the cursor on a visual display. Commands for entering,
changing, and removing text involve moving the cursor to the area
to be altered and performing the necessary operation. Changes are
viewed on the terminal display as they are made. See text editor;
compare with line editor.

search pattern
See string.

G-10 USER'S GUIDE

search string
See string.

secondary prompt

Glossary

A cue displayed at your terminal by the shell to tell you that the
command typed in response to the primary prompt is incomplete.
The UNIX system default secondary prompt is the "greater than"
character (».

shell
A UNIX system program that handles the communication between
you and the computer. The shell is also known as a command
language interpreter because it translates your commands into a
language understandable by the computer. The shell accepts com
mands and causes the appropriate program to be executed.

shell procedure
An executable file that is not a compiled program. A shell procedure
calls the shell to read and execute commands contained in a file.
This lets you store a sequence of commands in a file for repeated
use. It is also called a shell program or command file. See execut
able file.

silent character
See hidden character.

software
Instructions and programs that tell the computer what to do. Con
trast with hardware.

source code
The uncompiled version of a program written in a language such as
C or Pascal. The source code must be translated to machine
language by a program known as a compiler before the computer
can execute the program.

special character
A character having special meaning to the shell program and used
for common shell functions such as file redirection, piping, back
ground execution, and file name expansion. The special characters
include <, >, I, ;, &, *, ?, [, and].

GLOSSARY G-11

Glossary

special file
A file (called a device driver) used as an interface to an input/output
device, such as a user terminal, a disk drive, or a line printer.

standard input
An open file that is normally connected directly to the keyboard.
Standard input to a command normally goes from the keyboard to
this file and then into the shell. You can redirect the standard input
to come from another file instead of from the keyboard; use an argu
ment in the form < file. Input to the command will then come from
the specified file.

standard output
An open file that is normally connected directly to a primary output
device, such as a terminal printer or screen. Standard output from
the computer normally goes to this file and then to the output dev
ice. You can redirect the standard output into another file instead of
to the printer or screen; use an argument in the form> file. Output
will then go to the specified file.

string
Designation for a particular group or pattern of characters, such as a
word or phrase, that may contain special characters. In a text editor,
a context search interprets the special characters and attempts to
match the specified pattern with a string in the editor buffer.

string variable
A sequence of characters that can be the value of a shell variable.
See variable.

subdirectory
A directory pointed to by a directory one level above it in the file
system organization; also called a child directory.

system administrator
The person who monitors and controls the computer on which your
UNIX system runs; sometimes referred to as a super-user.

terminal
An input/output device connected to a computer system, usually
consisting of a keyboard with a video display or a printer. A termi
nal allows you to give the computer instructions and to receive
information in response.

G-12 USER'S GUIDE

Glossary

text editor
Software for creating, changing, or removing text with the aid of a
computer. Most text editors have two modes-an input mode for
typing in text and a command mode for moving or modifying text.
Two examples are the UNIX system editors ed and vi. See line edi
tor and screen editor.

text formatter
A program that prepares a file of text for printed output. To make
use of a text formatter, your file must also contain some special com
mands for structuring the final copy. These special commands tell
the formatter to justify margins, start new paragraphs, set up lists
and tables, place figures, and so on. Two text formatters available as
add-ons to your UNIX system are nroff and troff.

text input mode
A text-editing mode in which the characters you type are entered as
text into the text editor's buffer. To execute a command, you must
leave text input mode. See command mode; compare with append
mode and insert mode.

timesharing

tool

troff

tty

user

A method of operation in which several users share a common com
puter system seemingly simultaneously. The computer interacts
with each user in sequence, but the high-speed operation makes it
seem that the computer is giving each user its complete attention.

A package of software programs.

A text formatter available as an add-on to the UNIX system. The
troff program drives a phototypesetter to produce high-quality
printed text from a file. See text formatter.

Historically, the abbreviation for a teletype terminal. Today, it is
generally used to denote a user terminal.

Anyone who uses a computer or an operating system.

GLOSSARY G-13

Glossary

user-defined
Something determined by the user.

user-defined variable
A named variable given a value by the user. See variable.

UNIX system
A general-purpose, multiuser, interactive, time-sharing operating sys
tem developed by AT&T Bell Laboratories. The UNIX system allows
limited computer resources to be shared by several users and effi
ciently organizes the user's interface to a computer system.

utility
Software used to carry out routine functions or to assist a program
mer or system user in establishing routine tasks.

variable
A symbol whose value may change. In the shell, a variable is a
symbol representing some string of characters (a string value).
Variables may be used in an interactive shell as well as within a
shell procedure. Within a shell procedure, positional parameters and
keyword parameters are two forms of variables. (Keyword parame
ters are discussed fully in "Shell Commands and Programming".)

video display terminal
A terminal that uses a television-like screen (a monitor) to display
information. A video display terminal can display information much
faster than printing terminals.

visual editor
See screen editor.

wor king directory
See current directory.

G-14 USER'S GUIDE

Index

absolute path name ... 3:8, G:5
acceptable terminal names ... F:2-3
active computer ... 8:56
alias ... 8:17, 8:19, 8:27, 8:30, 8:42-

43,8:45
background mode ... 7:10-11, 7:36,

7:102, B:1, E:1, F:6
backslash ... 2:10, 5:47, 5:65-66,

5:72, 7:12
banner ... 7:13-14, 7:21, 7:26, 7:28-

29, 7:36, 7:44, 7:99, 7:102-103,
B:1

BASIC ... 4:13, A:3
Basic Windowing Utilities ... F:6
baud rate ... 2:3, 2:14-15, 8:70, G:2
case construction ... 7:82-84
cat ... 3:21, 3:27, 3:33-36, 3:45, 3:71,

4:7,4:9, 5:61, 7:9, 7:17, 7:36-38,
7:42-44, 7:47, 7:54, 7:57, 7:59,
7:62, 7:65-67, 7:70, 7:72-73,
7:75, 7:78-80, 7:85, 7:87-88,
7:90-91, 7:101-106, 8:29-30,
8:72, A:3, B:1, G:3

cd ... 3:16, 3:26-27, 3:59, 3:64, 4:9,
7:12, 7:36, 7:40, 7:52, 7:81,
7:95-96, 7:102, 8:50, A:2, B:2-3,
E:3, F:4 ,

change text ... 4:3-5, 5:1, 5:4, 5:16-
17, 5:34, 5:39, 5:65, 5:93, 6:67,
6:81, 7:66, 8:20, 8:27

changing directories ... 3:64, 6:85
changing permissions ... 3:59, G:9
character counts ... 3:57
child directory ... 3:12, 3:19, 3:26,

G:2, G:12
chmod ... 3:23, 3:59, 3:62-65, 4:10,

7:39, 7:43, 7:54, 7:58, 7:95,
7:102, 8:49-50, E:2, G:9

command line syntax ... 1:10-11

command mode ... 4:3-4, 5:4-7, 5:9
configuration checks ... 2:3
connecting remote terminal ... 8:69
continue statements ... E:7
control characters ... 2:11, 2:25
CORE term ... F:2
cp ... 3:49-51, 3:67, 7:92, B:2
ct ... 8:1, 8:66-68
cu command ... 8:66, 8:69-70, 8:73
current directory ... 3:6
data file ... 1:1, 1:10, 8:51, 8:55, 8:69,

G:4, G:8-9
date ... 2:8, 2:22-23, 3:18, 3:42, 4:9-

10, 5:90, 7:21, 7:23-24, 7:26,
7:36, 7:57, 7:88, 7:99, 7:104,
8:12, 8:34, 8:60, A:3, B:1-2

date command ... 2:22, 7:23-26
default environment ... 4:8, 7:92
defined variables ... 8:44
delete functions ... 2:8-9
deleting mail ... 8:32, B:3
deleting text ... 4:4, 5:1, 5:32, 5:48,

G:3
destination directory ... 3:13, 8:48-49
destination-file ... 8:51-54
diff ... 3:66-67, B:2
directory ... 1:5-8
display commands ... 4:4, 5:9, 7:15,

G:10
echo ... 7:4
editing messages ... 5:85
erase function ... 2:9
exit ... 2:25, 5:5, 6:90, 6:93, 7:61,

7:68, 8:31, G:7
flow of control ... 1:8, 1:12, 3:44
folder variable ... 8:44-45

INDEX 1-1

Index --

full path name ... 3:6-8, 3:14, 3:16,
3:19-20, 3:26-27, 3:50-51, 3:53,
7:12, 7:42, 8:51-52, 8:54, 8:75,
B:4, G:5

glossary ... 2:24, C:1, D:1
grep ... 3:66, 3:68-70, 7:11-13, 7:20,

7:27, 7:32-33, 7:35, 7:45-46,
7:53, 7:59, 7:75-76, 7:91, 7:106,
8:9-10, A:3, B:2

help ... 1:1, 1:12, 2:3, 2:20, 2:23-25,
5:22, 5:83-84, 5:86, 6:5, 6:22,
6:34, 6:40, 7:1, 7:35, 7:87, 8:1,
8:9, 8:32-34, 8:41, 8:55, C:4, F:6

HOME ... 4:8, 7:52, 7:80, 7:92, 7:95-
96, 7:100, 7:106, 8:44, E:3

home directory ... 1:6, 3:4, 3:6, 3:16,
3:21, 3:26, 3:29, 4:8-9, 5:31, 6:5,
7:92, 8:13, 8:17-18, 8:31, 8:38,
8:50-53, A:1, B:2, E:2, F:4, G:6-
7

if-endif command ... 8:45
incorporate existing text ... 8:20
input redirection ... 3:36, 7:15, 7:20,

7:62, 8:47, E:1
job number ... 3:47, 7:27, 7:29,

7:102, 8:60
job queue ... 7:27, 7:29, 8:58, 8:60,

E:2
kernel ... 1:1, 1:3-4, 1:6-7, 1:12
layers ... 3:2, 3:11, F:6-7, F:10
leaving mailx ... 8:31
lex ... 4:13, B:2
libwindows ... F:10
Line Addressing ... 5:6, 5:16, C:2
line addressing commands ... 5:28
linking computers ... 8:66
local system ... 2:13, 6:4, 8:3, 8:47,

8:52, 8:58
log off ... 2:1, 2:11, 2:25, 4:7, 5:93,

7:11, 7:34-35, 7:88, 7:90, 8:66,
8:69, B:3, G:7

1-2 USER GUIDE

login name ... 2:1, 2:10, 2:12-13,
2:16, 2:18, 3:4, 3:6, 3:23, 4:8,
7:44, 7:52, 7:95, 8:3-4, 8:7-9,
8:12, 8:17, 8:19-20, 8:45, 8:47,
8:51-52, 8:57-58, 8:60, B:3, G:7

login procedure ... 2: 17 -19, 3:4
LOGNAME ... 4:8, 7:52, E:3
loop ... 7:41-42, 7:61, 7:68-69, 7:71-

74, 7:79, 7:86-87, 7:99, E:7
lp ... 3:33, 3:41-42, 3:45-48, 8:75,

A:3, B:2, G:1
lpstat ... 3:47, B:2
Is ... 3:16, 3:18-25
mail ... 1:8, 1:10, 4:12, 7:15, 7:21,

7:30, 7:52, 7:62-63, 7:88-90,
8:1-10, 8:12-15, 8:32-33, 8:39-
40, 8:47-48, 8:58-59, 8:62-63,
A:3, B:3, E:3, G:4

mailbox ... 8:12-14, 8:35-38
mailrc ... 8:16-19, 8:23, 8:42, 8:44-46
mailx ... 8:2, 8:16-46, 8:48, B:3
managing incoming mail ... 8: 12
merging files ... 3:70
mkdir ... 3:16-17, B:3
msglist ... 8:32, 8:34-35, 8:37-38
mv ... 3:52-53, 7:70-71, 7:79-81, B:3,

E:2
networking ... 8:1, 8:66
ordinary file ... 1:5, 3:2, G:5, G:8
outfolder variable ... 8:45
output redirection ... 3:36, 7:15, 7:17,

7:19-20, E:1
parent directory ... 3: 11-13, 3: 19,

3:23, 3:28-29, G:8
password ... 2:1, 2:10, 2:16-19, 8:73,

G:8
PATH ... 4:8, 7:40-41, 7:52, 7:96,

7:100, 7:106, E:2-3
path names ... 3:7-8, 3:13-14, 3:52,

7:96, 8:51, A:2

permission ... 1:6, 3:1, 3:4, 3:20, 3:28,
3:59-65, 4:10, 7:39-40, 7:67,
7:79, 8:48-49, 8:51, 8:55, E:2

pg ... 3:21, 3:33, 3:36-40, B:3
pr ... 3:21, 3:33, 3:41-45, 8:75, B:4
priJ)t command '" 3:41-42, 5:5-7,

5:45,7:6, 7:9, 8:34-35, 8:37
profile ... 2:9-10, 3:21, 3:40, 7:92-93,

7:95-98, 7:106, 8:23, E:2
public directory ... 4:12, 8:49, 8:53,

8:57-58, 8:60, 8:62-64, B:5
put command .. , 8:73
pwd ... 3:6-8, 3:18, 3:26, 7:12, 7:36,

7:38, 7:41-42, 7:95, B:4
read permission ... 1:6, 3:59-65, 7:67,

8:49
reading mail ... 8:14, 8:17-18, 8:32,

8:45
record variable '" 8:45
redirecting input .. , 7:62
relative path name 3:7, 3:11-14,

3:16, 3:19-20, 3:26-27, 3:50-51,
3:53, 8:52, G:10

remote command execution ... 8:74
remote system .,. 4:12, 8:1, 8:9-10,

8:47-48, 8:52-53, 8:58, 8:66,
8:69, 8:74, G:10

rm ... 3:54-55, 6:100, 7:5, 7:21, B:4
rmdir ... 3:16, 3:28-30, B:4
root directory ... 1:6-7, 3:2, 3:6-8,

3:11, A:1-3, G:5, G:10
saving mail ... 8:14, 8:32, 8:38, B:3
scrolling .. , 6:1, 6:40-43, 6:50
set command ... 8:43-46
shell '" 1:1, 1:8, G:11
shell programming constructs ...

7:61, E:1
shell script '" 4:9, 7:64, B:1
software development, tools ... 1:9,

4:13
sort command ... 3:70-73, 7:19

Index

source-file .. , 8:51-53
special character ... 2:10, 5:60-72,

5:104, 7:12, 8:75, C:4, E:1, G:11
specification file ... F:8
spell command .. , 7:18-19
spool directory ... 8:51, 8:55
status report ... 8:54, 8:59-60
take command '" 8:73
TERM '" 3:40, 7:52-53, 7:84-86,

7:97, 7:100, 7:106, 8:44, D:1,
E:3, F:1-4, F:9

terminal configuration '" 2:3, 2:20,
6:8, F:1

tilde escapes ... 8:17, 8:20-21, 8:27-
28

tput command '" D:1, F:1-2, F:4
uname ... 8:1, 8:8-11, B:5
undeliverable mail ... 8:4-5
uucico ... 8:51, 8:55-56
uucp ... 4:12, 7:95, 8:1-2, 8:47-57,

8:59, 8:62, 8:65, B:5
uuname ... 8:1, 8:9-11, 8:70, B:5
uupick ... 4:12, 8:1, 8:58, 8:62-65, B:5
uustat '" 8:1, 8:58-62, B:5
uuto ... 4:12, 8:1-2, 8:47-49, 8:57-59,

8:61-62, 8:65, B:5
uux ... 4:12, 8:1, 8:66, 8:74-75
wc ... 1:11, 3:56-58, 4:9-10, B:5, G:9
who command ... 2:22-23, 7:45,

7:74, G:9
windowing ... F:6
work file ... 8:51, 8:55
write permission ... 1:6, 3:28, 3:59-

64, 8:48-49, 8:51
yacc ... 4:13, B:5

INDEX 1-3

=-~;-- ---------

r Other books in the Prentice Hall C and UNIX® Systems Library

• The C Programmer's Handbook Bell Labs/M. I. Bolsky

• The UNIX System User's Handbook Bell Labs/M. I. Bolsky

• The Vi User's Handbook Bell Labs/M. I. Bolsky

• UNIX System Software Readings AT&T UNIX PACIFIC

• UNIX System Readings and Applications, Volume I Bell Labs

• UNIX System Readings and Applications, Volume II Bell Labs

• UNIX System V/386 Utilities Release Notes AT&T

• UNIX System V/386 Streams Primer AT&T

• UNIX System V/386 User's Guide, Second Edition AT&T

• UNIX System V/386 User's Reference Manual AT&T

• UNIX System V/386 Programmer's Reference Manual AT&T

• UNIX System V/386 Streams Programmer's Guide AT&T

• UNIX System V/386 Network Programmer's Guide AT&T

• UNIX System V/386 Programmer's Guide AT&T

• UNIX System V/388 System Administrator's Guide AT&T

• UNIX System V/386 System Administrator's Reference Manual AT&T

PRENTICE HALL, Englewood Cliffs, N.J. 07632

ISBN 0-13-940925-4

