
~ATQT

U N I X® System V/386
PROGRAMMER'S REFERENCE MANUAL

__ -=----------'A

UNIX® System V Release 3.0
INTEL 80286/80386
Computer Version

Programmer's Reference Manual

PRENTICE HALL, ENGLEWOOD CLIFFS, NEW JERSEY 07632

© 1988 by AT&T. All Rights Reserved.

IMPORTANT NOTICE TO USERS

While every effort has been made to ensure the accuracy of all infonnation in
this document, AT&T assumes no liability to any party for any loss or damage
caused by errors or omissions or statements of any kind in the UNIX@ System
V/386 Programmer's Reference Manual © AT&T, its upgrades, supplements,
or special editions, whether such errors are omissions or statements resulting
from negligence, accident or any other cause. AT&T further assumes no lia
bility arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from
the use of this document. AT&T disclaims all warranties regarding the infor
mation contained herein, whether expressed, implied or statutory, including
implied warranties or merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any prod
ucts herein to improve reliability, function or design.

No part of this publication may be reproduced, transmitted or used in any fonn
or by any means-graphic, electronic, mechanical or chemical, including
photocopying, recording in any medium, taping, by any computer or informa
tion storage and retrieval systems, etc. without prior permission in writing from
AT&T.

UNIX is a registered trademark of AT&T

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-940867-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Copyright© 1987 AT&T
All Rights Reserved
Printed in U.S.A.

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in this document.

386/ix is a trademark of Interactive Systems Corporation.
ACT is a trademark of Micro-Term.
Ann Arbor is a trademark of AnnArbor Terminals.
Beehive is a trademark of Beehive International.
Concept is a trademark of Human Designed Systems.
Crystal Writer is a trademark of Syntactics.
DATASPEED is a registered trademark of AT&T.
dBASE II is a registered trademark of Ashton-Tate.
DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.
DOCUMENTER'S WORKBENCH is a trademark of AT&T.
Dataphone is a registered trademark of AT&T.
Develcon is a trademark of Develcon Electronics, Incorporated.
Diablo is a registered trademark of Xerox.
Dow Jones News/Retrieval Service is a trademark of Dow Jones.
Ethernet is a registered trademark of Xerox.
HP is a registered trademark of Hewlett-Packard, Inc.
IBM is a trademark of International Business Machines.
IMAGEN is a trademark of IMAGEN Corporation.
INFORMIX is a registered trademark of Relational Database Systems.
INGRES/CS is a trademark of Relational Technology.
INSTRUCTIONAL WORKBENCH is a trademark of AT&T.
Intel is a registered trademark of Intel Corporation.
LSI is a trademark of Lear Siegler.
MBASIC is a registered trademark of Microsoft.
MICOM is a registered trademark of MICOM System, Incorporated.
MS-DOS is a registered trademark of Microsoft Corporation.
MUL TIBUS is a registered trademark of Intel Corporation.
Micro-Term and MIME are trademarks of Micro-Term.
Microsoft is a registered trademark of Microsoft.
Multiplan is a registered trademark of Microsoft.
Official Airline Guide is a trademark of Official Airline Guide, Inc.
PC-Interface is a registered trad~mark of Locus Computing.
Penril is a trademark of Penril Corporation.
RMjCOBOL is a trademark of Ryan-McFarland.
SuperCalc3 is a trademark of Sorcim/IUS Micro Software.
Syntactics is a trademark of Syntactics.
TEKTRONIX and TEKTRONIX 4010 are registered trademarks of Tektronix, Inc.
TELETYPE is a registered trademark of AT&T.
TeleVideo is a registered trademark of TeleVideo Systems.
Teleray is a trademark of Research Inc.
TermiNet is a trademark of General Electric.
UNIX is a registered trademark of AT&T.
UltraCalc is a trademark of OLYMPUS Software.
Unify is a registered trademark of Unify.
Ventel is a trademark of Ven-Tel, Incorporated.
Versatec is a registered trademark of Versatec Corporation.
WE is a registered trademark of AT&T.
WRITER'S WORKBENCH is a trademark of AT&T.
Weitek is a trademark of Weitek Corporation.
XED is a trademark of Computer Concepts.
Xenix is a registered trademark of Microsoft Corporation.

AT&T Products and Services

• To order documents from the Customer Information Center:

o within the continental United States, call 1-800-432-6600

o outside the continental United States, call 1-317-352-8557

o send mail orders to:
AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901
Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:

• within the continental United States, call 1-800-221-1647

• outside the continental United States, call 1-609-639-4593

• TELEX: 1-609-639-4756
Attention: Training Registration

For information on Intel hardware and software, contact the Intel sales office
nearest you.

To find out about UNIX system source licenses:

• within the continental United States, except North Carolina, call 1-800-
828-UNIX

• in North Carolina and outside the continental United States, call
1-919-855-2737

• or write to:
Software Licensing
Guilford Center
Salem Bldg. 4th Floor
P.O. Box 25000
Greensboro, NC 27420

Introduction

This manual describes the programming features of the UNIX system. It
provides neither a general overview of the UNIX system nor details of the
implementation of the system.

Not all commands, features, and facilities described in this manual are
available in every UNIX system. Some of the features require additional utili
ties which may not exist on your system.

This manual is divided into five sections, some containing interfiled subc
lasses:

1. Commands
2. System Calls
3. Subroutines:

3C. C Programming Language Libraries
3S. Standard I/O Library Routines
3M. Mathematical Library Routines
3N. Networking Support Utilities
3X. Specialized Libraries
3F. FORTRAN Programming Libraries

4. File Formats
5. Miscellaneous Facilities.

Section 1 (Commands) describes commands that support C and other pro
gramming languages.

Section 2 (System Calls) describes the access to the services provided by
the UNIX system kernel, including the C language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary
versions reside in various system libraries in the directories /lib and /usrjlib.
See intro(3) for descriptions of these libraries and the files in which they are
stored.

Section 4 (File Formats) documents the structure of particular kinds of
files; for example, the format of the output of the link editor is given in
a.out(4). Excluded are files used by only one command (for example, the
assembler's intermediate files). In general, the C language structure~
corresponding to these formats can be found in the directories jusrjinc1ude
and jusr/inc1ude/sys.

INTRODUCTION 1

Introduction

Section 5 (Miscellaneous Facilities) contains a variety of things. Included
are descriptions of character sets, macro packages, etc.

References with numbers other than those above mean that the utility is
contained in the appropriate section of another manual. References with (1)
following the command mean that the utility is contained in this manual or
the User's Reference Manual. Those followed by (1M), (7), or (8) are contained
in the System Administrator's Reference Manual.

Each section consists of a number of independent entries of a page or so
each. Entries within each section are alphabetized, with the exception of the
introductory entry that begins each section (also Section 3 is in alphabetical
order by suffixes). Some entries may describe several routines, commands,
etc. In such cases, the entry appears only once, alphabetized under its "pri
mary" name, the name that appears at the upper corners of each manual
page.

All entries are based on a common format, not all of whose parts always
appear:

• The NAME part gives the name(s) of the entry and briefly states its pur
pose.

• The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 2 (Sys
tem Calls):

D Boldface strings are literals and are to be typed just as they appear.

D Italic strings usually represent substitutable argument prototypes
and program names found elsewhere in the manual.

D Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as
'name' or 'file,' it always refers to a file name.

D Ellipses 000 are used to show that the previous argument prototype
may be repeated.

D A final convention is used by the commands themselves. An argu
ment beginning with a minus -, plus +, or equal sign = is often
taken to be some sort of flag argument, even if it appears in a posi
tion where a file name could appear. Therefore, it is unwise to
have files whose names begin with -, +, or =.

2 PROGRAMMER'S REFERENCE MANUAL

Introduction

• The DESCRIPTION part describes the utility.

• The EXAMPLE(S) part gives example(s) of usage, where appropriate.

• The FILES part gives the file names that are built into the program.

• The SEE ALSO part gives pointers to related information.

• The DIAGNOSTICS part discusses the diagnostic indications that may
be produced. Messages that are intended to be self-explanatory are not
listed.

• The NOTES part gives generally "helpful hints" about the use of the
utility.

• The WARNINGS part points out potential pitfalls.

• The BUGS part gives known bugs and sometimes deficiencies.

• The CAVEATS part gives details of the implementation that might
affect usage.

A "Table of Contents" and a "Permuted Index" derived from that table
precede section 1. The "Permuted Index" is a list of keywords, given in the
second of three columns, together with the context in which each keyword is
found. Keywords are either topical keywords or the names of manual entries.
Entries are identified with their section numbers shown in parentheses. This
is important because there is considerable duplication of names among the
sections, arising principally from components that exist only to exercise a par
ticular system call. The right column lists the name of the manual page on
which each keyword may be found. The left column contains useful informa
tion about the keyword.

INTRODUCTION 3

I

I

I

TABLE OF CONTENTS

1. Commands

intro(l) introduction to programming commands
admin(l) create and administer sees files
ar(l). archive and library maintainer for portable archives
as(l) ~ common assembler
as386.sed(1) sed script to convert Intel ASM386 source to as source
cb(l) . e program beautifier
cc(l) . e compiler
ccoff(l) . convert a eOFF file
cdc(l) change the delta commentary of an sees delta
cflow(l) generate e flowgraph
comb(l) combine sees deltas
conv(l) common object file converter
convert(l) convert archive files to common formats
cpp(1) . the e language preprocessor
cprs(l) compress a common object file
ctrace(l) e program debugger
cxref(l). generate e program cross-reference
delta(l) make a delta (change) to an sees file
dis(l) . object code disassembler
dump(l) dump selected parts of an object file
gencc(lM) create a front-end to the cc command
get(l) . get a version of an sees file
i286emul(1) . emulate 80286
infocmp(lM) compare or print out terminfo descriptions
install(lM) . install commands
ld(l) . link editor for common object files
lex(l) generate programs for simple lexical tasks
lint(l) . a e program checker
list(l) produce e source listing from a common object file
lorder(l) find ordering relation for an object library
m4(1) macro processor
make(l) maintain, update, and regenerate groups of programs
mcs(l) manipulate the object file comment section
mkshlib(l) . create a shared library
nm(l) print name list of common object file
omf(l) convert an object module from eOFF to OMF
prof(l) . display profile data
prs(l) . print an sees file
regcmp(l) regular expression compile
relogin(lM) rename login entry to show current layer
rmdel(l) remove a delta from an sees file
sact(l). print current sees file editing activity
sccsdiff(l) compare two versions of an sees file
sdb(l) symbolic debugger
size(l) print section sizes in bytes of common object files
strip(l) . . strip symbol and line number information from a common object file
tic(lM). .. terminfo compiler

- 1 -

Table of Contents

tsort(l) . topological sort
unget(l) undo a previous get of an sees file
val(l) . validate sees file
vc(l) . version control
what(l) . identify sees files
wtinit(lM) object downloader for the 5620 DMD terminal
xtd(lM) extract and print xt driver link structure
xts(lM) extract and print xt driver statistics
xtt(lM) extract and print xt driver packet traces
yacc(l) . . • yet another compiler-compiler

2. System Calls

intro(2) introduction to system calls and error numbers
access(2) • • determine accessibility of a file
acct(2) enable or disable process accounting
alarm(2) . set a process alarm clock
brk(2) change data segment space allocation
chdir(2) . change working directory
chmod(2). change mode of file
chown(2). • change owner and group of a file
chroot(2) .. change root directory
close(2) . close a file descriptor
creat(2) • create a new file or rewrite an existing one
dup(2) duplicate an open file descriptor
exec(2) execute a file
exit(2) . terminate process
fcnt1(2) • file control
fork(2) create a new process
getdents(2) . . . read directory entries and put in a file system independent format
getmsg(2) . get next message off a stream
getpid(2) get process, process group, and parent process IDs
getuid(2) . get real user, effective user, real group, and effective group IDs
ioctl(2) control device
kil1(2) send a signal to a process or a group of processes
link(2) link to a file
Iseek(2) move read/write file pointer
mkdir(2) make a directory
mknod(2) make a directory, or a special or ordinary file, or a FIFO
mount(2) mount a file system
msgctl(2). . . . • message control operations
msgget(2) . get message queue
msgop(2) . message operations
nice(2) . change priority of a process
open(2) . open for reading or writing
pause(2) suspend process until signal
pipe(2) . create an interprocess channel
plock(2) . . lock process, text, or data in memory
poll(2) • STREAMS input/output multiplexing

- 2 -

Table of Contents

profil(2) execution time profile
ptrace(2) process trace
putmsg(2) . . . send a message on a stream
read(2). read from file
rmdir(2) . remove a directory
semctl(2) semaphore control operations
semget(2) . get set of semaphores
semop(2) semaphore operations
setpgrp(2) set process group ID
setuid(2) . set user and group IDs
shmctl(2) shared memory control operations
shmget(2) get shared memory segment identifier
shmop(2). shared memory operations
signal(2) specify what to do upon receipt of a signal
sigset(2) signal management
stat(2) . get file status
statfs(2) . get file system information
stime(2) set time
sync(2) . update super block
sysfs(2) . get file system type information
sysi86(2) machine-specific functions
time(2) get time
times(2) . . get process and child process times
uadmin(2) administrative control
ulimit(2). get and set user limits
umask(2) set and get file creation mask
umount(2) unmount a file system
uname(2) . get name of current UNIX system
unlink(2) remove directory entry
ustat(2) . get file system statistics
utime(2) set file access and modification times
wait(2) wait for child process to stop or terminate
write(2) . write on a file

3. Subroutines

intro(3) introduction to functions and libraries
a641(3C) .. convert between long integer and base-64 ASCII string
abort(3C) . generate an lOT fault
abort(3F) . terminate FORTRAN program
abs(3C) return integer absolute value
abs(3F) . FORTRAN absolute value
acos(3F) FORTRAN arccosine intrinsic function
aimag(3F) FORTRAN imaginary part of complex argument
aint(3F) FORTRAN integer part intrinsic function
asin(3F) FORTRAN arcsine intrinsic function
assert(3X) verify program assertion
atan(3F) . FORTRAN arctangent intrinsic function
atan2(3F) . . . FORTRAN arctangent intrinsic function

- 3 -

Table of Contents

bessel(3M) . Bessel functions
bool(3F) • . FORTRAN Bitwise Boolean functions
bsearch(3C) . binary search a sorted table
clock(3C) . report CPU time used
conjg(3F) FORTRAN complex conjugate intrinsic function
conv(3C) • . translate characters
cos(3F) FORTRAN cosine intrinsic function
cosh(3F) FORTRAN hyperbolic cosine intrinsic function
crypt(3C) . generate hashing encryption
crypt(3X) password and file encryption functions
ctermid(3S) • generate file name for terminal
ctime(3C) convert date and time to string
ctype(3C) classify characters
curses(3X) • terminal screen handling and optimization package
cuserid(3S) . . • get character login name of the user
dial(3C) establish an out-going terminal line connection
dim(3F) . . . • positive difference intrinsic functions
directory(3X) .. directory operations
dprod(3F) double precision product intrinsic function
drand48(3C) generate uniformly distributed pseudo-random numbers
dup2(3C) • . . duplicate an open file descriptor
ecvt(3C) .•.............. convert floating-point number to string
end(3C) . . • • last locations in program
erf(3M). error function and complementary error function
exp(3F) FORTRAN exponential intrinsic function
exp(3M) ...•....... exponential, logarithm, power, square root functions
fclose(3S) close or flush a stream
ferror(3S) .•..................... stream status inquiries
floor(3M)•..... floor, ceiling, remainder, absolute value functions
fopen(3S) . open a stream
fpgetround(3C) • IEEE floating point environment control
fread(3S) • binary input/output
frexp(3C) manipulate parts of floating-point numbers
fseek(3S) . . . reposition a file pointer in a stream
ftw(3C) . • walk a file tree
ftype(3F) explicit FORTRAN type conversion
gamma(3M) • • log gamma function
getarg(3F) • . return FORTRAN command-line argument
getc(3S) . • get character or word from a stream
getcwd(3C) • . . get path name of current working directory
getenv(3C) return value for environment name
getenv(3F) return FORTRAN environment variable
getgrent(3C). • get group file entry
getlogin(3C). • • get login name
getopt(3C) . . • get option letter from argument vector
getpass(3C) . read a password
getpw(3C) get name from UID
getpwent(3C)•............... get password file entry
gets(3S) . • • • get a string from a stream

- 4 -

Table of Contents

getut(3C) . access utmp file entry
hsearch(3C) manage hash search tables
hypot(3M) . Euclidean distance function
iargc(3F) return the number of command line arguments
index(3F) return location of FORTRAN substring
isnan(3C). test for floating point NaN (Not-A-Number)
13tol(3C) convert between 3-byte integers and long integers
Idahread(3X) read the archive header of a member of an archive file
Idclose(3X) . close a common object file
Idfhread(3X) read the file header of a common object file
Idgetname(3X) .. retrieve symbol name for common object file symbol table entry
Idlread(3X) manipulate line number entries of a common object file function
Idlseek(3X) seek to line number entries of a section of a common object file
Idohseek(3X) seek to the optional file header of a common object file
Idopen(3X) open a common object file for reading
Idrseek(3X) seek to relocation entries of a section of a common object file
Idshread(3X). . . . read an indexed/named section header of a common object file
Idsseek(3X) seek to an indexed/named section of a common object file
Idtbindex(3X) . . compute the index of a symbol table entry of a common object file
Idtbread(3X) read an indexed symbol table entry of a common object file
Idtbseek(3X) seek to the symbol table of a common object file
len(3F) return length of FORTRAN string
libwindows(3X) windowing terminal function library
lockf(3C) . record locking on files
log(3F) FORTRAN natural logarithm intrinsic function
loglO(3F) FORTRAN common logarithm intrinsic function
logname(3X) return login name of user
Isearch(3C) . linear search and update
malloc(3C) main memory allocator
malloc(3X) fast main memory allocator
matherr(3M) . error-handling function
max(3F) FORTRAN maximum-value functions
mclock(3F) return FORTRAN time accounting
memory(3C) memory operations
mil(3F) FORTRAN Military Standard functions
min(3F). FORTRAN minimum-value functions
mktemp(3C) make a unique file name
mod(3F). FORTRAN remaindering intrinsic functions
monitor(3C) . prepare execution profile
nlist(3C) get entries from name list
perror(3C) . system error messages
plot(3X) . graphics interface subroutines
popen(3S). initiate pipe to/from a process
printf(3S) print formatted output
putc(3S) put character or word on a stream
putenv(3C) change or add value to environment
putpwent(3C) write password file entry
puts(3S) put a string on a stream
qsort(3C) quicker sort

- 5 -

Table of Contents

rand(3C) simple random-number generator
rand(3F) random number generator
regcmp(3X) •.............. compile and execute regular expression
round(3F) FORTRAN nearest integer functions
scanf(3S) convert formatted input
setbuf(3S) . • • . . assign buffering to a stream
setjmp(3C) non-local goto
sign(3F) FORTRAN transfer-of-sign intrinsic function
signal(3F) specify FORTRAN action on receipt of a system signal
sin(3F) FORTRAN sine intrinsic function
sinh(3F) FORTRAN hyperbolic sine intrinsic function
sinh(3M). hyperbolic functions
sleep(3C) . suspend execution for interval
sputl(3X) . access long integer data in a machine independent fashion
sqrt(3F) FORTRAN square root intrinsic function
ssignal(3C) • software signals
stdio(3S) standard buffered input/output package
stdipc(3C). standard interprocess communication package
strcmp(3F) string comparison intrinsic functions
string(3C) . string operations
strtod(3C) . convert string to double-precision number
strtol(3C) convert string to integer
swab(3C). swap bytes
system(3F) issue a shell command from FORTRAN
system(3S) . issue a shell command
tan(3F) • . . . • FORTRAN tangent intrinsic function
tanh(3F) FORTRAN hyperbolic tangent intrinsic function
tmpfile(3S) . create a temporary file
tmpnam(3S) . . . create a name for a temporary file
trig(3M) r. • • • • • • • • trigonometric functions
tsearch(3C) manage binary search trees
ttyname(3C). find name of a terminal

. ttyslot(3C). find the slot in the utmp file of the current user
Laccept(3N) accept a connect request
Lalloc(3N) allocate a library structure
Lbind(3N) bind an address to a transport endpoint
Lclose(3N) • close a transport endpoint
Lconnect(3N) establish a connection with another transport user
Lerror(3N) produce error message
Lfree(3N) free a library structure
Lgetinfo(3N) get protocol-specific service information
Lgetstate(3N) get the current state
Llisten(3N) listen for a connect request
Llook(3N) . . . look at the current event on a transport endpoint
Lopen(3N) • establish a transport endpoint
Loptmgmt(3N) manage options for a transport endpoint
Lrcv(3N) receive data or expedited data sent over a connection
Lrcvconnect(3N) .•. receive the confirmation from a connect request
Lrcvdis(3N) retrieve information from disconnect

- 6 -

Table of Contents

Lrcvrel(3N) . . . acknowledge receipt of an orderly release indication
Lrcvudata(3N) receive a data unit
Lrcvuderr(3N) receive a unit data error indication
Lsnd(3N) send data or expedited data over a connection
Lsnddis(3N) send user-initiated disconnect request
Lsndrel(3N). initiate an orderly release
Lsndudata(3N) send a data unit
Lsync(3N) . synchronize transport library
Lunbind(3N) disable a transport endpoint
ungetc(3S) push character back into input stream
vprintf(3S) print formatted output of a varargs argument list

4. File Formats

intro(4) . introduction to file formats
a.out(4) ..•.......... common assembler and link editor output
acct(4). per-process accounting file format
ar(4) . common archive file format
checklist(4) list of file systems processed by fsck and ncheck
config(4) per-module configuration information
core(4) . . format of core image file
cpio(4) format of cpio archive
dir(4) format of directories
dirent(4) file system independent directory entry
filehdr(4) file header for common object files
fs(4). format of system volume
fspec(4) . format specification in text files
fstab(4) . file-system-table
gettydefs(4) speed and terminal settings used by getty
group(4) . group file
inittab(4). script for the init process
inode(4) .. format of an i-node
issue(4) . issue identification file
Idfcn(4) common object file access routines
limits(4) . . file header for implementation-specific constants
linenum(4) line number entries in a common object file
mnttab(4) mounted file system table
passwd(4) password file
plot(4) graphics interface
pnch(4) file format for card images
profile(4) . . . setting up an environment at login time
reloc(4) • relocation information for a common object file
rfmaster(4) . . Remote File Sharing name server master file
sccsfile(4) . format of sees file
scnhdr(4) section header for a common object file
scr_dump(4) format of curses screen image file
syms(4) . common object file symbol table format
system(4). system configuration information
term(4) format of compiled term file

- 7 -

Table of Contents

terminfo(4) . terminal capability data base
timezone(4) . set default system time zone
unistd(4) file header for symbolic constants
utmp(4) utmp and wtmp entry formats

5. Miscellaneous F acilites

intro(5) . introduction to miscellany
ascii(5) map of ASCII character set
environ(5) user environment
fcnt1(5) . file control options
jagent(5) host control of windowing terminal
layers(5) protocol used between host and windowing terminal under
math(5) math functions and constants
prof(5) . profile within a function
regexp(5) regular expression compile and match routines
stat(5) data returned by stat system call
term(5). conventional names for terminals
types(5) . primitive system data types
values(5) . machine-dependent values
varargs(5) . handle variable argument list
xtproto(5) multiplexed channels protocol used by xt(7) driver

- 8 -

PERMUTED INDEX

13tol, ltol3: convert between 3-byte integers and long/ .
object downloader for the 5620 DMD terminal. wtinit:

i286emul: emulate 80286.
long integer and base-64/ a64l, 164a: convert between

abort: generate an lOT fault.
program. abort: terminate FORTRAN

FORTRAN absolute value. abs, iabs, dabs, cabs, zabs:
value. abs: return integer absolute

abs: return integer absolute value.
dabs, cabs, zabs: FORTRAN absolute value. abs, iabs,

/floor, ceiling, remainder, absolute value functions.
Laccept: accept a connect request.

utime: set file access and modification times.
accessibility of a file. access: determine

machine/ sput!, sgetl: access long integer data in a
ldfcn: common object file access routines.

/setutent, endutent, utmpname: access utmp file entry.
access: determine accessibility of a file.

enable or disable process accounting. acct: . .
acct: per-process accounting file format.

mclock: return FORTRAN time accounting.
process accounting. acct: enable or disable

file format. acct: per-process accounting
orderly release/ Lrcvrel: acknowledge receipt of an .

trig: sin, cos, tan, asin, acos, atan, atan2:/
intrinsic function. acos, dacos: FORTRAN arccosine

current sees file editing activity. sact: print
putenv: change or add value to environment.

endpoint. Lbind: bind an address to a transport . .
sees files. admin: create and administer

admin: create and administer sees files.
uadmin: administrative control.

imaginary part of complex/ aimag, dimag: FORTRAN
part intrinsic function. aint, dint: FORTRAN integer

alarm: set a process alarm clock.
clock. alarm: set a process alarm

Lalloc: allocate a library structure.
change data segment space allocation. brk, sbrk:

realloc, calloc: main memory allocator. malloc, free,
mallinfo: fast main memory allocator. /calloc, mallopt,

natural logarithm/ log, alog, dlog, clog: FORTRAN
logarithm intrinsic/ loglO, aloglO, dloglD: FORTRAN common

FORTRAN/ max, maxO, amaxO, maxI, amaxl, dmaxl:
max, maxO, amaxO, maxI, amaxl, dmaxl: FORTRAN/

FORTRAN/ min, minO, aminO, minI, aminI, dminl:
min, minO, aminO, minI, aminI, dminl: FORTRAN/

remaindering intrinsic/ mod, amod, dmod: FORTRAN
rshift: FORTRAN Bitwise/ bool: and, or, xor, not, lshift,

FORTRAN nearest/ round: anint, dnint, nint, idnint:
link editor output. a.out: common assembler and

maintainer for portable/ ar: archive and library

- 1 -

13tol(3C)
wtinit(IM)
i286emul(l)
a641(3C)
abort(3C)
abort(3F)
abs(3F)
abs(3C)
abs(3C)
abs(3F)
floor(3M)
Laccept(3N)
utime(2)
access(2)
sputl(3X)
Idfcn(4)
getut(3C)
access(2)
acct(2)
acct(4)
mclock(3F)
acct(2)
acct(4)
Lrcvrel(3N)
trig(3M)
acos(3F)
sact(l)
putenv(3C)
Lbind(3N)
admin(l)
admin(l)
uadmin(2)
aimag(3F)
aint(3F)
alarm(2)
alarm(2)
Lalloc(3N)
brk(2)
malloc(3C)
malloc(3X)
log(3F)
logI0(3F)
max(3F)
max(3F)
min(3F)
min(3F)
mod(3F)
bool(3F)
round(3F)
a.out(4)
ar(l)

Permuted Index

format. ar: common archive file . • .
acos, dacos: FORTRAN arccosine intrinsic function.

for portable archives. ar: archive and library maintainer
cpio: format of cpio archive. •

ar: common archive file format. . . .
header of a member of an archive file. jthe archive
formats. convert: convert archive files to common .

an archivej ldahread: read the archive header of a member of
maintainer for portable archives. jarchive and library
asin, dasin: FORTRAN arcsine intrinsic function.

atan2, datan2: FORTRAN arctangent intrinsic function. .
atan, datan: FORTRAN arctangent intrinsic function. .

imaginary part of complex argument. jdimag: FORTRAN
return FORTRAN command-line argument. getarg:

varargs: handle variable argument list.
formatted output of a varargs argument list. jprint
getopt: get option letter from argument vector. . •
the number of command line arguments. iargc: return

as: common assembler.
convert Intel ASM386 source to as source. jsed script to

convert Intel ASM386 sourcej as386.sed: sed script to
ascii: map of ASCII character set.

set. ascii: map of ASCII character
long integer and base-64 ASCII string. jconvert between

andj ctime, localtime, gmtime, asctime, tzset: convert date
trig: sin, cos, tan, asin, acos, atan, atan2:j ...
intrinsic function. asin, dasin: FORTRAN arcsine

jsed script to convert Intel ASM386 source to as source.
output. a.out: common assembler and link editor

as: common assembler. . • . . .
assertion. assert: verify program • .

assert: verify program assertion. .•.....
setbuf, setvbuf: assign buffering to a stream.

jsin, cos, tan, asin, acos, atan, atan2: trigonometricj
arctangent intrinsicj atan, datan: FORTRAN
arctangent intrinsicj atan2, datan2: FORTRAN •

cos, tan, asin, acos, atan, atan2: trigonometricj jsin,
double-precisionj strtod, atof: convert string to . .

integer. strtol, atol, atoi: convert string to • .
integer. strtol, atol, atoi: convert string to

ungetc: push character back into input stream.
terminal capability data base. terminfo: •

between long integer and base-64 ASCII string. jconvert
cb: C program beautifier.

jO, jI, jn, yO, yl, yn: Bessel functions. bessel:
yn: Bessel functions. bessel: jO, jI, jn, yO, yl,

fread, fwrite: binary inputjoutput.
bsearch: binary search a sorted table.

tfind, tdelete, twalk: manage binary search trees. tsearch,
endpoint. Lbind: bind an address to a transport

jnot, lshift, rshift: FORTRAN Bitwise Boolean functions.
sync: update super block. •

lshift, rshift: FORTRANj bool: and, or, xor, not,

- 2 -

ar(4)
acos(3F)
ar(l)
cpio(4)
ar(4)
Idahread(3X)
convert(l)
Idahread(3X)
ar(l)
asin(3F)
atan2(3F)
atan(3F)
aimag(3F)
getarg(3F)
varargs(5)
vprintf(3S)
getopt(3C)
iargc(3F)
as(1)
as386.sed(1)
as386.sed(1)
ascii(5)
ascii(5)
a641(3C)
ctime(3C)
trig(3M)
asin(3F)
as386.sed(1)
a.out(4)
as(l)
assert(3X)
assert(3X)
setbuf(3S)
trig(3M)
atan(3F)
atan2(3F)
trig(3M)
strtod(3C)
strtol(3C)
strtol(3C)
ungetc(3S)
terminfo(4)
a641(3C)
cb(l)
bessel(3M)
bessel(3M)
fread(3S)
bsearch(3C)
tsearch(3C)
Lbind(3N)
bool(3F)
sync(2)
bool(3F)

rshift: FORTRAN Bitwise
space allocation.

sorted table.
/ieor, ishft, ishftc, ibits,

stdio: standard
setbuf, setvbuf: assign

size: print section sizes in
swab: swap

cc:
cflow: generate

cpp: the
cb:

lint: a
cxref: generate

ctrace:
object file. list: produce

value. abs, iabs, dabs,
data returned by stat system

malloc, free, realloc,
fast/ malloc, free, realloc,

intro: introduction to system
terminfo: terminal

pnch: file format for

create a front-end to the

function. cos, dcos,
commentary of an sees delta.

ceiling, remainder,/ floor,
/ceil, fmod, fabs: floor,

intrinsic/ exp, dexp,

delta: make a delta
pipe: create an interprocess
xt(7)/ xtproto: multiplexed

/ dble, cmplx, dcmplx, ichar,
stream. ungetc: push

user. cuserid: get
/getchar, fgetc, getw: get

/putchar, fputc, putw: put
ascii: map of ASCII

_tolower, toascii: translate
iscntrl, isascii: classify

directory.
lint: a e program

systems processed by fsck and/
times: get process and

terminate. wait: wait for

of a file.

isgraph, iscntrl, isascii:

Boolean functions. /lshift,
brk, sbrk: change data segment
bsearch: binary search a • . .
btest, ibset, ibclr, mvbits:/ ..
buffered input/output package.
buffering to a stream. • . . .
bytes of common object files.
bytes ..•.
e compiler.
e flowgraph.
e language preprocessor.
e program beautifier. . .
e program checker
e program cross-reference.
e program debugger. • •
e source listing from a common
cabs, zabs: FORTRAN absolute
call. stat:
calloc: main memory allocator.
calloc, mallopt, mallinfo:
calls and error numbers.
capability data base.
card images.
cb: e program beautifier.
cc: e compiler. • • . . .
cc command. gencc:
ccoff: convert a eOFF file.
ccas: FORTRAN cosine intrinsic
cdc: change the delta
ceil, fmod, fabs: floor, . . .
ceiling, remainder, absolute/
cexp: FORTRAN exponential
cflow: generate e flowgraph.
(change) to an sees file.
channel. .•.•.....
channels protocol used by .
char: explicit FORTRAN type/
character back into input
character login name of the
character or word from a/ .
character or word on a stream.
character set.
characters. / _toupper,
characters. /isprint, isgraph,
chdir: change working
checker .•••.•
checklist: list of file • .
child process times. . .
child process to stop or
chmod: change mode of file.
chown: change owner and group
chroot: change root directory.
classify characters. /isprint,

- 3 -

Permuted Index

bool(3F)
brk(2)
bsearch(3C)
mil(3F)
stdio(3S)
setbuf(3S)
size(l)
swab(3C)
cc(l)
cflow(l)
cpp(l)
cb(1)
lint(l)
cxref(l)
ctrace(l)
list(l)
abs(3F)
stat(5)
malloc(3C)
malloc(3X)
intro(2)
terminfo(4)
pnch(4)
cb(l)
cc(l)
gencc(lM)
ccoff(1)
cos(3F)
cdc(l)
floor(3M)
floor(3M)
exp(3F)
cflow(l)
delta(l)
pipe(2)
xtproto(5)
ftype(3F)
ungetc(3S)
cuserid(3S)
getc(3S)
putc(3S)
ascii(5)
conv(3C)
ctype(3C)
chdir(2)
lint(l)
checklist(4)
times(2)
wait(2)
chmod(2)
chown(2)
chroot(2)
ctype(3C)

Permuted Index

status/ ferror, feof, clearerr, fileno: stream
alarm: set, a process alarm clock.

clock: report epu time used.
logarithm/ log, alog, dlog, clog: FORTRAN natural . .

ldclose, ldaclose: close a common object file.
close: close a file descriptor. . .

Lclose: close a transport endpoint.
descriptor. close: close a file

£Close, fflush: close or flush a stream.
telldir, seekdir, rewinddir, closedir: directory / /readdir,

/real, float, sngl, dble, cmplx, dcmplx, ichar, char:/
dis: object code disassembler.

ccoff: convert a eOFF file.
convert an object module from eOFF to OMF. omf:

comb: combine sees deltas.
comb: combine sees deltas.

system: issue a shell command from FORTRAN.
create a front-end to the cc command. gence:
iarge: return the number of command line arguments. .

system: issue a shell command.
getarg: return FORTRAN command-line argument. >.

install: install commands.
introduction to programming commands. intro:

manipulate the object file comment section. mcs:
cdc: change the delta commentary of an sees delta.

ar: common archive file format.
editor output. a.out: common assembler and link

as: common assembler.
convert archive files to common formats. convert:

10glO, aloglO, dloglO: FORTRAN common logarithm intrinsic/
routines. ldfcn: common object file access .

conv: common object file converter.
cprs: compress a common object file.

ldopen, ldaopen: open a common object file fori ..
/line number entries of a common object file function.
ldclose, ldaclose: close a common object file.
read the file header of a common object file. ldfhread:
entries of a section of a common object file. /number

the optional file header of a common object file. /seek to
/entries of a section of a common object file.

/section header of a common object file.
an indexed/named section of a common object file. /seek to

of a symbol table entry of a common object file. /the index
symbol table entry of a common object file. /indexed

seek to the symbol table of a common object file. ldtbseek:
line number entries in a common object file. linenum:

e source listing from a common object file. /produce
nm: print name list of common object file.

relocation information for a common object file. reloc:
scnhdr: section header for a common object file.

line number information from a common object file. / and
/retrieve symbol name for common object file symbolj

table format. syms: common object file symbol

- 4 -

ferror(3S)
alarm(2)
clock(3C)
log(3F)
Idclose(3X)
close(2)
Lclose(3N)
close(2)
fclose(3S)
directory(3X)
ftype(3F)
dis(l)
ccoff(l)
omf(l)
comb(l)
comb(1)
system(3F)
gencc(lM)
iargc(3F)
system(3S)
getarg(3F)
install(lM)
intro(l)
mcs(l)
cdc(l)
ar(4)
a.out(4)
as(l)
convert(l)
loglO(3F)
Idfcn(4)
conv(l)
cprs(l)
Idopen(3X)
Idlread(3X)
Idclose(3X)
Idfhread(3X)
Idlseek(3X)
Idohseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
list(l)
nm(l)
reloc(4)
scnhdr(4)
strip(l)
Idgetname(3X)
syms(4)

filehdr: file header for common object files.
ld: link editor for common object files.

section sizes in bytes of common object files. /print
/ftok: standard interprocess communication package.

descriptions. infocmp: compare or print out terminfo
sees file. sccsdiff: compare two versions of an .

1ge, 19t, He, llt: string comparison intrinsic/ strcmp:
expression. regcmp, regex: compile and execute regular
regexp: regular expression compile and match routines.

regcmp: regular expression compile
term: format of compiled term file.

cc: e compiler.
tic: terminfo compiler.

yacc: yet another compiler-compiler.
erf, erfc: error function and complementary error function.

FORTRAN imaginary part of complex argument. / dimag: .
conjg, dconjg: FORTRAN complex conjugate intrinsic/ .

cprs: compress a common object file.
table entry of a/ ldtbindex: compute the index of a symbol

configuration information. config: per-module . . .
config: per-module configuration information. . .

system: system configuration information. . .
L..rcvconnect: receive the confirmation from a connect/

conjugate intrinsic function. conjg, dconjg: FORTRAN complex
conjg, dconjg: FORTRAN complex conjugate intrinsic function.

Laccept: accept a connect request.
Llisten: listen for a connect request.

the confirmation from a connect request. /receive
an out-going terminal line connection. dial: establish

or expedited data sent over a connection. /receive data
data or expedited data over a connection. Lsnd: send

Lconnect: establish a connection with another/
for implementation-specific constants. jfile header

math: math functions and constants.
file header for symbolic constants. unistd:

ioctl: control device. .
fcntl: file control.

floating point environment control. /fpsetsticky: IEEE
jagent: host control of windowing terminal.

msgct1: message control operations.
semctl: semaphore control operations.

shmctl: shared memory control operations.
fcntl: file control options.

uadmin: administrative control.
vc: version control.
converter. conv: common object file

_toupper, _tolower, toascii:/ conv: toupper, tolower, .
terminals. term: conventional names for .

char: explicit FORTRAN type conversion. /dcmplx, ichar,
ccoff: convert a eOFF file.

eOFF to OMF. omf: convert an object module from
common formats. convert: convert archive files to
integers and/ 13tol, ltol3: convert between 3-byte . . .

- 5 -

Permuted Index

filehdr(4)
ld(l)
siie(l)
stdipc(3C)
infocmp(lM)
sccsdiff(l)
strcmp(3F)
regcmp(3X)
regexp(S)
regcmp(l)
term(4)
cc(l)
tic(lM)
yacc(l)
erf(3M)
aimag(3F)
conjg(3F)
cprs(l)
Idtbindex(3X)
config(4)
config(4)
system(4)
L..rcvconnect(3N)
conjg(3F)
conjg(3F)
Laccept(3N)
Llisten(3N)
L..rcvconnect(3N)
dial(3C)
L..rcv(3N)
Lsnd(3N)
Lconnect(3N)
limits(4)
math(S)
unistd(4)
ioctl(2)
fcntl(2)
fpgetround(3C)
jagent(S)
msgctl(2)
semctl(2)
shmctl(2)
fcntl(S)
uadmin(2)
vc(l)
conv(l)
conv(3C)
term(S)
ftype(3F)
ccoff(l)
omf(l)
convert(l)
13tol(3C)

Permuted Index

and base-64 ASCII/ a64I, 164a: convert between long integer
to common formats. convert: convert archive files

/gmtime, asctime, tzset: convert date and time to/ ..
to string. ecvt, fcvt, gcvt: convert floating-point number

scanf, fscanf, sscanf: convert formatted input.
as/ as386.sed: sed script to convert Intel ASM386 source to

strtod, atof: convert string to/
strtol, atoI, atoi: convert string to integer.

conv: common object file converter.
file. core: format of core image

core: format of core image file.
cosine intrinsic function. cos, dcos, ccos: FORTRAN

atan2:f trig: sin, cos, tan, asin, acos, atan,
hyperbolic cosine intrinsic/ cosh, dcosh: FORTRAN

functions. sinh, cosh, tanh: hyperbolic
cos, dcos, ccos: FORTRAN cosine intrinsic function.

/dcosh: FORTRAN hyperbolic cosine intrinsic function.
cpio: format of cpio archive. . . . • .

cpio: format of cpio archive.
preprocessor. cpp: the C language

file. cprs: compress a common object
clock: report CPU time used.

rewrite an existing one. creat: create a new file or
command. gencc: create a front-end to the cc

file. tmpnam, tempnam: create a name for a temporary
an existing one. creat: create a new file or rewrite

fork: create a new process. .
mkshlib: create a shared library.
tmpfile: create a temporary file.

channel. pipe: create an interprocess .
files. admin: create and administer SCCS

umask: set and get file creation mask.
cxref: generate C program cross-reference.

encryption functions. crypt: password and file
generate hashing encryption. crypt, setkey, encrypt:

function. sin, dsin, csin: FORTRAN sine intrinsic
intrinsic/ sqrt, dsqrt, csqrt: FORTRAN square root

for terminal. ctermid: generate file name
asctime, tzset: convert date/ ctime, localtime, gmtime,

ctrace: C program debugger.
islower, isdigit, isxdigit,f ctype: isalpha, isupper,

endpoint. Uook: look at the current event on a transport
rename login entry to show current layer. relogin: •.

activity. sact: print current SCCS file editing
Lgetstate: get the current state .•.•..

uname: get name of current UNIX system. . •
slot in the utmp file of the current user. /find the
getcwd: get path name of current working directory.

scr_dump: format of curses screen image file. •
handling and optimization/ curses: terminal screen

name of the user. cuserid: get character login
cross-reference. cxref: generate C program •

absolute value. abs, iabs, dabs, cabs, zabs: FORTRAN

- 6 -

a641(3C)
convert(l)
ctime(3C)
ecvt(3C)
scanf(3S)
as386.sed(1)
strtod(3C)
strtol(3C)
conv(l)
core(4)
core(4)
cos(3F)
trig(3M)
cosh(3F)
sinh(3M)
cos(3F)
cosh(3F)
cpio(4)
cpio(4)
cpp(l)
cprs(l)
clock(3C)
creat(2)
gencc(lM)
tmpnam(3S)
creat(2)
fork(2)
mkshlib(l)
tmpfile(3S)
pipe(2)
admin(l)
umask(2)
cxref(l)
crypt(3X)
crypt(3C)
sin(3F)
sqrt(3F)
ctermid(3S)
ctime(3C)
ctrace(l)
ctype(3C)
Uook(3N)
relogin(lM)
sact(l)
Lgetstate(3N)
uname(2)
ttyslot(3C)
getcwd(3C)
scr_dump(4)
curses(3X)
cuserid(3S)
cxref(l)
abs(3F)

intrinsic function. acos, dacos: FORTRAN arccosine
intrinsic function. asin, dasin: FORTRAN arcsine

terminfo: terminal capability data base.
LIcvuderr: receive a unit data error indication.
/sgetl: access long integer data in a machine independent/

plock: lock process, text, or data in memory.
connection. Lsnd: send data or expedited data over a

over a/ LIcv: receive data or expedited data sent
Lsnd: send data or expedited data over a connection. . .

prof: display profile data. •.........
call. stat: data returned by stat system

brk, sbrk: change data segment space allocation.
/receive data or expedited data sent over a connection.

types: primitive system data types.
LIcvudata: receive a data unit.

Lsndudata: send a data unit.
intrinsic function. atan, datan: FORTRAN arctangent

intrinsic function. atan2, datan2: FORTRAN arctangent
/asctime, tzset: convert date and time to string. . .
/idint, real, float, sngl, dble, cmplx, dcmplx, ichar,!

/float, sngl, dble, cmplx, dcmplx, ichar, char: explicit/
conjugate intrinsic/ conjg, dconjg: FORTRAN complex

intrinsic function. cos, dcos, ccos: FORTRAN cosine
cosine intrinsic/ cosh, dcosh: FORTRAN hyperbolic

difference intrinsic/ dim, ddim, idim: positive
ctrace: e program debugger.

sdb: symbolic debugger.
timezone: set default system time zone.

delta commentary of an sees delta. cdc: change the
file. delta: make a delta (change) to an sees

delta. cdc: change the delta commentary of an sees
rmdel: remove a delta from an sees file.
to an sees file. delta: make a delta (change)

comb: combine sees deltas.
compare or print out terminfo descriptions. infocmp:

close: close a file descriptor.
dup: duplicate an open file descriptor. . . • . .

dup2: duplicate an open file descriptor.
file. access: determine accessibility of a

ioctl: control device.
exponential intrinsic/ exp, dexp, cexp: FORTRAN

terminal line connection. dial: establish an out-going
dim, ddim, idim: positive difference intrinsic/

difference intrinsic/ dim, ddim, idim: positive
of complex argument. aimag, dimag: FORTRAN imaginary part

intrinsic function. aint, dint: FORTRAN integer part
dir: format of directories.

dir: format of directories.
chdir: change working directory.

chroot: change root directory.
file system/ getdents: read directory entries and put in a

file system independent directory entry. dirent:
unlink: remove directory entry.

- 7 -

Permuted Index

acos(3F)
asin(3F)
terminfo(4)
Lrcvuderr(3N)
sputl(3X)
plock(2)
Lsnd(3N)
LIcv(3N)
Lsnd(3N)
prof(l)
stat(5)
brk(2)
LIcv(3N)
types(5)
LIcvudata(3N)
Lsndudata(3N)
atan(3F)
atan2(3F)
ctime(3C)
ftype(3F)
ftype(3F)
conjg(3F)
cos(3F)
cosh(3F)
dim(3F)
ctrace(l)
sdb(l)
timezone(4)
cdc(l)
delta(l)
cdc(l)
rmdel(l)
delta(l)
comb(l)
infocmp(lM)
close(2)
dup(2)
dup2(3C)
access(2)
ioct1(2)
exp(3F)
dial(3C)
dim(3F)
dim(3F)
aimag(3F)
aint(3F)
dir(4)
dir(4)
chdir(2)
chroot(2)
getdents(2)
dirent(4)
unlink(2)

Permuted Index

path name of current working directory. getcwd: get
mkdir: make a directory.

telldir, seekdir, rewinddir,j directory: opendir, readdir,
/seekdir, rewinddir, closedir: directory operations.

ordinary file,j mknod: make a directory, or a special or
rmdir: remove a directory.

independent directory entry. dirent: file system
dis: object code disassembler.

Lunbind: disable a transport endpoint.
acct: enable or disable process accounting.

dis: object code disassembler.
Lsnddis: send user-initiated disconnect request. .

retrieve information from disconnect. Lrcvdis:
prof: display profile data.

hypot: Euclidean distance function.
/lcong48: generate uniformly distributed pseudo-random/

logarithm/ log, alog, dlog, clog: FORTRAN natural
logarithm/ loglO, aloglO, dloglO: FORTRAN common .

max, maxO, amaxO, maxI, amaxl, dmaxl: FORTRAN maximum-value/
object downloader for the 5620 DMD terminal. wtinit: .•....

min, minO, aminO, minI, aminI, dminl: FORTRAN minimum-value/
intrinsic/ mod, amod, dmod: FORTRAN remaindering

nearest integer/ round: anint, dnint, nint, idnint: FORTRAN
intrinsic function. dprod: double precision product

/atof: convert string to double-precision number. . .
terminal. wtinit: object downloader for the 5620 DMD

product intrinsic function. dprod: double precision . .
nrand48, mrand48, jrand48,/ drand48, erand48, Irand48,

xtd: extract and print xt driver link structure.
xtt: extract and print xt driver packet traces.
xts: extract and print xt driver statistics.
protocol used by xt(7) driver. /multiplexed channels

transfer-of-sign/ sign, isign, dsign: FORTRAN
intrinsic function. sin, dsin, csin: FORTRAN sine . .

intrinsic function. sinh, dsinh: FORTRAN hyperbolic sine
root intrinsic/ sqrt, dsqrt, csqrt: FORTRAN square

intrinsic function. tan, dtan: FORTRAN tangent
tangent intrinsic/ tanh, dtanh: FORTRAN hyperbolic

an object file. dump: dump selected parts of
object file. dump: dump selected parts of an .

descriptor. dup: duplicate an open file
descriptor. dup2: duplicate an open file

descriptor. dup: duplicate an open file .
descriptor. dup2: duplicate an open file .

floating-point number to/ ecvt, fcvt, gcvt: convert
program. end, etext, edata: last locations in

sact: print current sees file editing activity.
files. ld: link editor for common object

common assembler and link editor output. a.out:
luser, real group, and effective group IDs. . . .

and/ /getegid: get real user, effective user, real group,
i286emul: emulate 80286.

accounting. acct: enable or disable process

- 8 -

getcwd(3C)
mkdir(2)
directory(3X)
directory(3X)
mknod(2)
rmdir(2)
dirent(4)
dis(l)
Lunbind(3N)
acct(2)
dis(l)
Lsnddis(3N)
Lrcvdis(3N)
prof(l)
hypot(3M)
drand48(3C)
log(3F)
loglO(3F)
max(3F)
wtinit(lM)
min(3F)
mod(3F)
round(3F)
dprod(3F)
strtod(3C)
wtinit(lM)
dprod(3F)
drand48(3C)
xtd(lM)
xtt(lM)
xts(lM)
xtproto(5)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
dump(l)
dump(l)
dup(2)
dup2(3C)
dup(2)
dup2(3C)
ecvt(3C)
end(3C)
sact(l)
ld(l)
a.out(4)
getuid(2)
getuid(2)
i286emul(1)
acct(2)

encryption. crypt, setkey, encrypt generate h<).shing
encrypt: generate hashing encryption. crypt, setkey,

crypt: password and file encryption functions.
locations in program. end, etext, edata: last . .

j getgrgid, getgrnam, setgrent, endgrent, fgetgrent: get group j
bind an address to a transport endpoint. Lbind:

Lclose: close a transport endpoint.
current event on a transport endpoint. Llook: look at the

Lopen: establish a transport endpoint.
manage options for a transport endpoint. Loptmgmt:

Lunbind: disable a transport endpoint.
jgetpwuid, getpwnam, setpwent, endpwent, fgetpwent: getj

utmpj jpututline, setutent, endutent, utmpname: access
getdents: read directory entries and put in a filej

nlist: get entries from name list.
file. linenum: line number entries in a common object

filej jmanipulate line number entries of a common object
jldnlseek: seek to line number entries of a section of aj

jldnrseek: seek to relocation entries of a section of aj
system independent directory entry. dirent: file ...
utmp, wtmp: utmp and wtmp entry formats.

fgetgrent: get group file entry. jsetgrent, endgrent,
fgetpwent: get password file entry. jsetpwent, endpwent,
utmpname: access utmp file entry. jsetutent, endutent,

object file symbol table entry. jsymbol name for common
jthe index of a symbol table entry of a common object file.

jread an indexed symbol table entry of a common object file.
putpwent: write password file entry.

relogin: rename login entry to show current layer.
unlink: remove directory entry.

environ: user environment.
profile: setting up an environment at login time.
jIEEE floating point environment control.

environ: user environment.
getenv: return value for environment name. .

putenv: change or add value to environment.
getenv: return FORTRAN environment variable.

mrand48, jrand48,f drand48, erand48, Irand48, nrand48,
complementary error function. erf, erfc: error function and

complementaryerrorj erf, erfc: error function and
system errorj perror, ermo, sys_errlist, sys.Jlerr:

complementary j erf, erfc: error function and
function and complementary error function. jerfc: error

receive a unit data error indication. Lrcvuderr:
Lerror: produce error message.

sys_errlist, sys.Jlerr: system error messages. jerrno, ..
to system calls and error numbers. jintroduction

matherr: error-handling function. . .
another transportj Lconnect: establish a connection with

endpoint. Lopen: establish a transport
terminallinej dial: establish an out-going

in program. end, etext, edata: last locations
hypot: Euclidean distance function.

- 9 -

Permuted Index

crypt(3C)
crypt(3C)
crypt(3X)
end(3C)
getgrent(3C)
Lbind(3N)
Lclose(3N)
Llook(3N)
Lopen(3N)
Loptmgmt(3N)
Lunbind(3N)
getpwent(3C)
getut(3C)
getdents(2)
nlist(3C)
linenum(4)
Idlread(3X)
Idlseek(3X)
Idrseek(3X)
dirent(4)
utmp(4)
getgrent(3C)
getpwent(3C)
getut(3C)
Idgetname(3X)
Idtbindex(3X)
Idtbread(3X)
putpwent(3C)
relogin(lM)
unlink(2)
environ(5)
profile(4)
fpgetround(3C)
environ(5)
getenv(3C)
putenv(3C)
getenv(3F)
drand48(3C)
erf(3M)
erf(3M)
perror(3C)
erf(3M)
erf(3M)
Lrcvuderr(3N)
Lerror(3N)
perror(3C)
intro(2)
matherr(3M)
Lconnect(3N)
Lopen(3N)
dial(3C)
end(3C)
hypot(3M)

Permuted Index

Llook: look at the current event on a transport endpoint.
execve, execlp, execvp:/ exec: execl, execv, execle,

execlp, execvp: execute/ exec: execl, execv, execle, execve,
execvp:/ exec: execl, execv, execle, execve, execlp,

/execl, execv, execle, execve, execlp, execvp: execute a/ •
execve, execlp, execvp: execute a file. /execle,

regcmp, regex: compile and execute regular expression.
sleep: suspend execution for interval.

monitor: prepare execution profile. . . . • .
profil: execution time profile.

execvp: execute/ exec: execl, execv, execle, execve, execlp,
exec: execl, execv, execle, execve, execlp, execvp:/ .

/execv, execle, execve, execlp, execvp: execute a file. . .
a new file or rewrite an existing one. creat: create

process. exit, _exit: terminate
exit, _exit: terminate process.

exponential intrinsic/ exp, dexp, cexp: FORTRAN
exponential, logarithm,/ exp, log, 10glO, pow, sqrt: .

L.snd: send data or expedited data over a/
Lrcv: receive data or expedited data sent over a/

cmplx, dcmplx, ichar, char: explicit FORTRAN type/ /dble,
exp, dexp, cexp: FORTRAN exponential intrinsic/ ..•..

exp, log, 10gIO, pow, sqrt: exponential, logarithm, power';
routines. regexp: regular expression compile and match

regcmp: regular expression compile ..•.
compile and execute regular expression. regcmp, regex:

link structure. xtd: extract and print xt driver
packet traces. xtt: extract and print xt driver

statistics. xts: extract and print xt driver
remainder'; floor, ceil, fmod, fabs: floor, ceiling,

data in a machine independent fashion. /access long integer
/calloc, mallopt, mallinfo: fast main memory allocator.

abort: generate an lOT fault. •.•...•...
a stream. fclose, fflush: close or flush

fcntl: file control. . • • .
fcntl: file control options.

floating-point number/ ecvt, fcvt, gcvt: convert
fopen, freopen, fdopen: open a stream.

status inquiries. ferror, feof, clearerr, fileno: stream
fileno: stream status/ ferror, feof, clearerr,

stream. fclose, fflush: close or flush a
word from a/ getc, getchar, fgetc, getw: get character or

/getgmam, setgrent, endgrent, fgetgrent: get group file/
/getpwnam, setpwent, endpwent, fgetpwent: get password file/

stream. gets, fgets: get a string from a
special or ordinary file, or a FIFO. /make a directory, or a

times. utime: set file access and modification
ldfcn: common object file access routines.

determine accessibility of a file. access:
ccoff: convert a COFF file.

chmod: change mode of file.
change owner and group of a file. chown:

mcs: manipulate the object file comment section.

- 10 -

Llook(3N)
exec(2)
exec(2)
exec(2)
exec(2)
exec(2)
regcmp(3X)
sleep(3C)
monitor(3C)
profil(2)
exec(2)
exec(2)
exec(2)
creat(2)
exit(2)
exit(2)
exp(3F)
exp(3M)
L.snd(3N)
Lrcv(3N)
ftype(3F)
exp(3F)
exp(3M)
regexp(S)
regcmp(l)
regcmp(3X)
xtd(lM)
xtt(lM)
xts(lM)
floor(3M)
sputl(3X)
malloc(3X)
abort(3C)
fclose(3S)
fcntl(2)
fcntl(S)
ecvt(3C)
fopen(3S)
ferror(3S)
ferror(3S)
fclose(3S)
getc(3S)
getgren t(3C)
getpwent(3C)
gets(3S)
mknod(2)
utime(2)
Idfcn(4)
access(2)
ccoff(l)
chmod(2)
chown(2)
mcs(l)

fcntl: file control.
fcntl: file control options.

conv: common object file converter.
core: format of core image file.

cprs: compress a common object file.
umask: set and get file creation mask.

a delta (change) to an sees file. delta: make
close: close a file descriptor.

dup: duplicate an open file descriptor.
dup2: duplicate an open file descriptor.

selected parts of an object file. dump: dump
sact: print current sees file editing activity.

crypt: password and file encryption functions.
endgrent, fgetgrent: get group file entry. /setgrent,

fgetpwent: get password file entry. /endpwent,
utmpname: access utmp file entry. /endutent, .

putpwent: write password file entry.
execlp, execvp: execute a file. /execv, execle, execve,

ldaopen: open a common object file for reading. ldopen,
acct: per-process accounting file format.

ar: common archive file format.
pnch: file format for card images.

intro: introduction to file formats.
entries of a common object file function. /line number

get: get a version of an sees file.
group: group file.
files. filehdr: file header for common object

limits: file header fori •.....
constants. unistd: file header for symbolic . . .

file. ldfhread: read the file header of a common object
ldohseek: seek to the optional file header of a common object/

issue: issue identification file.
of a member of an archive file. /read the archive header

close a common object file. ldclose, ldaclose: . . .
file header of a common object file. ldfhread: read the

a section of a common object file. /line number entries of
file header of a common object file. /seek to the optional .

a section of a common object file. /relocation entries of .
header of a common object file. /indexed/named section
section of a common object file. Ito an indexed/named .

table entry of a common object file. /the index of a symbol .
table entry of a common object file. /read an indexed symbol

table of a common object file. /seek to the symbol
entries in a common object file. linenum: line number

link: link to a file.
listing from a common object file. list: produce e source

ctermid: generate file name for terminal.
mktemp: make a unique file name.

name list of common object file. nm: print
/find the slot in the utmp file of the current user.

or a special or ordinary file, or a FIFO. /a directory,
one. creat: create a new file or rewrite an existing

passwd: password file. . . •

- 11 -

Permuted Index

fcntl(2)
fcntl(5)
conv(l)
core(4)
cprs(l)
umask(2)
delta(l)
close(2)
dup(2)
dup2(3C)
dump(l)
sact(l)
crypt(3X)
getgrent(3C)
getpwent(3C)
getut(3C)
putpwent(3C)
exec(2)
Idopen(3X)
acct(4)
ar(4)
pnch(4)
intro(4)
Idlread(3X)
get(1)
group(4)
filehdr(4)
limits(4)
unistd(4)
Idfhread(3X)
Idohseek(3X)
issue(4)
Idahread(3X)
Idclose(3X)
Idfhread(3X)
Idlseek(3X)
Idohseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
link(2)
list(l)
ctermid(3S)
mktemp(3C)
nm(l)
ttyslot(3C)
mknod(2)
creat(2)
passwd(4)

Permuted Index

/rewind, ftell: reposition a file pointer in a stream.
lseek: move read/write file pointer.

prs: print an sees file.
read: read from file.

for a common object file. /relocation information
Sharing name server master file. rfmaster: Remote File

remove a delta from an sees file. rmdel:
two versions of an sees file. sccsdiff: compare
sccsfile: format of sees file. . •

header for a common object file. scnhdr: section
format of curses screen image file. scr_dump:
master file. rfmaster: Remote File Sharing name server

stat, fstat: get file status.
from a common object file. /line number information

/symbol name for common object file symbol table entry.
syms: common object file symbol table format.

volume. fs: file system: format of system
directory entry. dirent: file system independent .•

directory entries and put in a file system independent/ /read
statfs, fstatfs: get file system information.
mount: mount a file system.

ustat: get file system statistics.
mnttab: mounted file system table. . •

sysfs: get file system type information.
umount: unmount a file system.

and/ checklist: list of file systems processed by fsck
term: format of compiled term file. . . . •

tmpfile: create a temporary file.
create a name for a temporary file. tmpnam, tempnam:

ftw: walk a file tree. .
undo a previous get of an sees file. unget:

val: validate sees file. . . .
write: write on a file. . . .

common object files. filehdr: file h~ader for
ferror, feof, clearerr, fileno: stream status/

create and administer sees files. admin:
file header for common object files. filehdr:

format specification in text files. fspec:
link editor for common object files. ld: • .

lockf: record locking on files.
in bytes of common object files. /print section sizes

convert: convert archive files to common formats.
what: identify sees files. .•......

fstab: file-system-table. . . • .
ttyname, isatty: find name of a terminal.

object library. lorder: find ordering relation for an
of the current user. ttyslot: find the slot in the utmp file

ftype: int, ifix, idint, real, float, sngl, dble, cmplx,!
/fpgetsticky, fpsetsticky: IEEE floating point environment/

isnand, isnanf: test for floating point NaN/ isnan:
ecvt, fcvt, gcvt: convert floating-point number to/

/modf: manipulate parts of floating-point numbers.
floor, ceiling, remainder,! floor, ceil, fmod, fabs: • •

- 12 -

fseek(3S)
Iseek(2)
prs(l)
read(2)
reloc(4)
rfmaster(4)
rmdel(l)
sccsdiff(l)
sccsfile(4)
scnhdr(4)
sCLdump(4)
rfmaster(4)
stat(2)
strip(l)
Idgetname(3X)
syms(4)
fs(4)
dirent(4)
getdents(2)
statfs(2)
mount(2)
ustat(2)
mnttab(4)
sysfs(2)
umount(2)
checklist(4)
term(4)
tmpfile(3S)
tmpnam(3S)
ftw(3C)
unget(l)
val(l)
write(2)
filehdr(4)
ferror(3S)
admin(l)
filehdr(4)
fspec(4)
ld(l)
lockf(3C)
size(l)
convert(l)
what(l)
fstab(4)
ttyname(3C)
lorder(l)
ttyslot(3C)
ftype(3F)
fpgetround(3C)
isnan(3C)
ecvt(3C)
frexp(3C)
floor(3M)

floor, ceil, fmod, fabs: floor, ceiling, remainder,/
cflow: generate e flowgraph.

fclose, fflush: close or flush a stream.
remainder,j floor, ceil, fmod, fabs: floor, ceiling,

stream. fopen, freopen, fdopen: open a
fork: create a new process.

per-process accounting file format. acct:
ar: common archive file format.

pnch: file format for card images.
in a file system independent format. /entries and put

inode: format of an i-node.
term: format of compiled term file.
core: format of core image file.
cpio: format of cpio archive.

file. scr_dump: format of curses screen image
dir: format of directories.

sccsfile: format of sees file.
fs: file system: format of system volume.

files. fspec: format specification in text
object file symbol table format. syms: common

archive files to common formats. convert: convert
intro: introduction to file formats. • . . .

wtmp: utmp and wtmp entry formats. utmp, • • . • .
scan£, fscan£, sscanf: convert formatted input.

/vfprintf, vsprintf: print formatted output of a varargs/
fprintf, sprintf: print formatted output. printf,

abs, iabs, dabs, cabs, zabs: FORTRAN absolute value.
system/ signal: specify FORTRAN action on receipt of a

function. acos, dacos: FORTRAN arccosine intrinsic
function. asin, dasin: FORTRAN arcsine intrinsic

function. atan2, datan2: FORTRAN arctangent intrinsic
function. atan, datan: FORTRAN arctangent intrinsic

or, xor, not, lshift, rshift: FORTRAN Bitwise Boolean/ land,
getarg: return FORTRAN command-line argument.

10g10, aloglO, dloglO: FORTRAN common logarithm/
intrinsic/ conjg, dconjg: FORTRAN complex conjugate .

function. cos, dcos, ccos: FORTRAN cosine intrinsic
getenv: return FORTRAN environment variable.

function. exp, dexp, cexp: FORTRAN exponential intrinsic
intrinsic/ cosh, dcosh: FORTRAN hyperbolic cosine
intrinsic/ sinh, dsinh: FORTRAN hyperbolic sine
intrinsic/ tanh, dtanh: FORTRAN hyperbolic tangent

complex/ aimag, dimag: FORTRAN imaginary part of
function. aint, dint: FORTRAN integer part intrinsic

amaxO, maxI, amaxl, dmaxl: FORTRAN maximum-value/ /maxO,
/btest, ibset, ibclr, mvbits: FORTRAN Military Standard/ . . .

aminO, minI, aminI, dminl: FORTRAN minimum-value/ IminO,
log, alog, dlog, clog: FORTRAN natural logarithm/

/anint, dnint, nint, idnint: FORTRAN nearest integer/
abort: terminate FORTRAN program.

functions. mod, amod, dmod: FORTRAN remaindering intrinsic
function. sin, dsin, csin: FORTRAN sine intrinsic

function. sqrt, dsqrt, csqrt: FORTRAN square root intrinsic

- 13 -

Permuted Index

floor(3M)
cflow(l)
fclose(3S)
floor(3M)
fopen(3S)
fork(2)
acct(4)
ar(4)
pnch(4)
getdents(2)
inode(4)
term(4)
core(4)
cpio(4)
sCLdump(4)
dir(4)
sccsfile(4)
fs(4)
fspec(4)
syms(4)
convert(l)
intro(4)
utmp(4)
scanf(3S)
vprintf(3S)
printf(3S)
abs(3F)
signal(3F)
acos(3F)
asin(3F)
atan2(3F)
atan(3F)
bool(3F)
getarg(3F)
logIO(3F)
conjg(3F)
cos(3F)
getenv(3F)
exp(3F)
cosh(3F)
sinh(3F)
tanh(3F)
aimag(3F)
aint(3F)
max(3F)
mil(3F)
min(3F)
log(3F)
round(3F)
abort(3F)
mod(3F)
sin(3F)
sqrt(3F)

Permuted Index

len: return length of FORTRAN string.
index: return location of FORTRAN substring.

issue a shell command from FORTRAN. system:
function. tan, dtan: FORTRAN tangent intrinsic

mcIock: return FORTRAN time accounting.
intrinsic/ sign, isign, dsign: FORTRAN transfer-of-sign

/dcmplx, ichar, char: explicit FORTRAN type conversion.
fpgetround, fpsetround, fpgetmask, fpsetmask, / . .
fpgetmask, fpsetmask, / fpgetround, fpsetround, . .
/fpgetmask, fpsetmask, fpgetsticky, fpsetsticky: IEEE/

formatted output. print!, fprintf, sprintf: print
/fpsetround, fpgetmask, fpsetmask, fpgetsticky,/ •
fpsetmask,f fpgetround, fpsetround, fpgetmask,

point/ /fpsetmask, fpgetsticky, fpsetsticky: IEEE floating
word on a/ putc, putchar, fputc, putw: put character or

stream. puts, fputs: put a string on a
input/output. fread, fwrite: binary

Lfree: free a library structure.
memory allocator. malloc, free, realIoc, calloc: main

mallopt, maIlinfo:/ malloc, free, realloc, calloc, ...
stream. fopen, freopen, fdopen: open a .

parts of floating-point/ frexp, ldexp, modf: manipulate
list: produce e source listing from a common object file.

land line number information from a common object file.
/receive the confirmation from a connect request.

getw: get character or word from a stream. /fgetc,
gets, fgets: get a string from a stream. . . .
rmdel: remove a delta from an sees file. .

getopt: get option letter from argument vector.
omf: convert an object module from eOFF to OMF.

Lrcvdis: retrieve information from disconnect.
read: read from file.

system: issue a shell command from FORTRAN.
nlist: get entries from name list. •

getpw: get name from UID ..•.
gencc: create a front-end to the cc command.

system volume. fs: file system: format of
formatted input. scanf, fscanf, sscanf: convert

of file systems processed by fsck and ncheck. /list
reposition a file pointer in/ fseek, rewind, ftell: .

text files. fspec: format specification in
fstab: file-system-table.

stat, fstat: get file status. .
information. statfs, fstatfs: get file system .

pointer in a/ fseek, rewind, ftell: reposition a file
communication/ stdipc: ftok: standard interprocess

ftw: walk a file tree.
float, sngl, dble, cmplx,f ftype: int, ifix, idint, real,

FORTRAN arccosine intrinsic function. acos, dacos: . .
FORTRAN integer part intrinsic function. aint, dint: ...

error/ erf, erfc: error function and complementary
FORTRAN arcsine intrinsic function. asin, dasin: .

FORTRAN arctangent intrinsic function. atan2, datan2: .•

- 14 -

len(3F)
index(3F)
system(3F)
tan(3F)
mcIock(3F)
sign(3F)
ftype(3F)
fpgetround(3C)
fpgetround(3C)
fpgetround(3C)
printf(3S)
fpgetround(3C)
fpgetround(3C)
fpgetround(3C)
putc(3S)
puts(3S)
fread(3S)
Lfree(3N)
malIoc(3C)
malloc(3X)
fopen(3S)
frexp(3C)
list(l)
strip(l)
Lrcvconnect(3N)
getc(3S)
gets(3S)
rmdel(l)
getopt(3C)
omf(l)
Lrcvdis(3N)
read(2)
system(3F)
nlist(3C)
getpw(3C)
gencc(lM)
fs(4)
scanf(3S)
checklist(4)
fseek(3S)
fspec(4)
fstab(4)
stat(2)
statfs(2)
fseek(3S)
stdipc(3C)
ftw(3C)
ftype(3F)
acos(3F)
aint(3F)
erf(3M)
asin(3F)
atan2(3F)

FORTRAN arctangent intrinsic
complex conjugate intrinsic

ccos: FORTRAN cosine intrinsic
hyperbolic cosine intrinsic
precision product intrinsic
and complementary error

FORTRAN exponential intrinsic
gamma: log gamma

hypot: Euclidean distance
of a common object file

libwindows: windowing terminal
common logarithm intrinsic

natural logarithm intrinsic
matherr: error-handling

prof: profile within a
transfer-of-sign intrinsic

csin: FORTRAN sine intrinsic
hyperbolic sine intrinsic

FORTRAN square root intrinsic
FORTRAN tangent intrinsic
hyperbolic tangent intrinsic

math: math
intro: introduction to

jO, jl, jn, yO, yl, yn: Bessel
FORTRAN Bitwise Boolean

password and file encryption
positive difference intrinsic

logarithm, power, square root
remainder, absolute value

dmaxl: FORTRAN maximum-value
FORTRAN Military Standard

dmin I: FORTRAN minimum-value
FORTRAN remaindering intrinsic

FORTRAN nearest integer
sinh, cosh, tanh: hyperbolic

string comparison intrinsic
sysi86: machine-specific

atan, atan2: trigonometric
fread,

gamma: log

number to string. ecvt, fcvt,
the cc command.

abort:
cflow:

cross-reference. cxref:
terminal. ctermid:

crypt, setkey, encrypt:
lexical tasks. lex:

/srand48, seed48, lcong48:
srand: simple random-number
irand, srand: random number

gets, fgets:

function. atan, datan:
function. /dconjg: FORTRAN
function.
function.
function.
function.
function.
function.
function.

cos, dcos, ...•.
/ dcosh: FORTRAN
dprod: double .
/ error function
exp, dexp, cexp:

function. /line number entries
function library. . ..•..
function. /dlogIO: FORTRAN
function. /dlog, clog: FORTRAN
function. • •....•.
function.
function. / dsign: FORTRAN
function. sin, dsin,
function. / dsinh: FORTRAN
function. sqrt, dsqrt, csqrt:
function. tan, dtan: • . • .
function. /dtanh: FORTRAN
functions and constants.
functions and libraries.
functions. bessel: . . .
functions. /lshift, rshift:
functions. crypt:
functions. dim, ddim, idim:
functions. /sqrt: exponential,
functions. /floor, ceiling,
functions. /maxl, amaxl,
functions. /ibclr, mvbits:
functions. /minl, aminI,
functions. mod, amod, dmod:
functions. /nint, idnint:
functions.
functions. /lgt, He, Ht:
functions.
functions. /tan, asin, acos,
fwrite: binary input/output.
gamma function. . . . • .
gamma: log gamma function.
gcvt: convert floating-point
gencc: create a front-end to
generate an lOT fault.
generate C flowgraph.
generate C program
generate file name for
generate hashing encryption.
generate programs for simple
generate uniformly distributed/
generator. rand,
generator. rand,
get a string from a stream.

- 15 -

Permuted Index

atan(3F)
conjg(3F)
cos(3F)
cosh(3F)
dprod(3F)
erf(3M)
exp(3F)
gamma(3M)
hypot(3M)
ldlread(3X)
libwindows(3X)
loglO(3F)
log(3F)
matherr(3M)
prof(S)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
math(S)
intro(3)
bessel(3M)
bool(3F)
crypt(3X)
dim(3F)
exp(3M)
floor(3M)
max(3F)
mil(3F)
min(3F)
mod(3F)
round(3F)
sinh(3M)
strcmp(3F)
sysi86(2)
trig(3M)
fread(3S)
gamma(3M)
gamma(3M)
ecvt(3C)
gencc(IM)
abort(3C)
cflow(l)
cxref(l)
ctermid(3S)
crypt(3C)
lex(l)
drand48(3C)
rand(3C)
rand(3F)
gets(3S)

Permuted Index

get: get a version of an sees file.
ulimit: get and set user limits.

the user. cuserid: get character login name of
getc, getchar, fgetc, getw: get character or word from a/

nlist: get entries from name list.
umask: set and get file creation mask.

stat, fstat: get file status.
statfs, fstatfs: get file system information.

ustat: get file system statistics. . .
information. sysfs: get file system type

file. get: get a version of an sees
/setgrent, endgrent, fgetgrent: get group file entry.

getlogin: get login name.
msgget: get message queue.
getpw: get name from DID.

system. uname: get name of current UNIX
getmsg: get next message off a stream.

unget: undo a previous get of an sees file.
argument vector. getopt: get option letter from •.

/setpwent, endpwent, fgetpwent: get password file entry. .
working directory. getcwd: get path name of current

times. times: get process and child process
and/ getpid, getpgrp, getppid: get process, process group,

information. Lgetinfo: get protocol-specific service
/geteuid, getgid, getegid: get real user, effective user,j

semget: get set of semaphores.
identifier. shmget: get shared memory segment

Lgetstate: get the current state.
time: get time.

command-line argument. getarg: return FORTRAN
get character or word from a/ getc, getchar, fgetc, getw:
character or word from/ getc, getchar, fgetc, getw: get .

current working directory. getcwd: get path name of
entries and put in a file/ getdents: read directory .

getuid, geteuid, getgid, getegid: get real user,/
environment variable. getenv: return FORTRAN

environment name. getenv: return value for .
real user, effective/ getuid, geteuid, getgid, getegid: get

user,j getuid, geteuid, getgid, getegid: get real ..
setgrent, endgrent,/ getgrent, getgrgid, getgrnam,

endgrent,j getgrent, getgrgid, getgrnam, setgrent,
getgrent, getgrgid, getgrnam, setgrent, endgrent,/

getlogin: get login name.
stream. getmsg: get next message off a

argument vector. getopt: get option letter from
getpass: read a password. . .

process group, and/ getpid, getpgrp, getppid: get process,
process, process group, and/ getpid, getpgrp, getppid: get
group, and/ getpid, getpgrp, getppid: get process, process •

getpw: get name from UID.
setpwent, endpwent,/ getpwent, getpwuid, getpwnam,

getpwent, getpwuid, getpwnam, setpwent, endpwent,/
endpwent,/ getpwent, getpwuid, getpwnam, setpwent,

- 16 -

get(l)
ulimit(2)
cuserid(3S)
getc(3S)
nlist(3C)
umask(2)
stat(2)
statfs(2)
ustat(2)
sysfs(2)
get(l)
getgrent(3C)
getlogin(3C)
msgget(2)
getpw(3C)
uname(2)
getmsg(2)
unget(l)
getopt(3C)
getpwent(3C)
getcwd(3C)
times(2)
getpid(2)
Lgetinfo(3N)
getuid(2)
semget(2)
shmget(2)
Lgetstate(3N)
time(2)
getarg(3F)
getc(3S)
getc(3S)
getcwd(3C)
getdents(2)
getuid(2)
getenv(3F)
getenv(3C)
getuid(2)
getuid(2)
getgrent(3C)
getgrent(3C)
getgrent(3C)
getlogin(3C)
getmsg(2)
getopt(3C)
getpass(3C)
getpid(2)
getpid(2)
getpid(2)
getpw(3C)
getpwent(3C)
getpwent(3C)
getpwent(3C)

a stream. gets, fgets: get a string from .
and terminal settings used by getty. gettydefs: speed

settings used by getty. gettydefs: speed and terminal
getegid: get real user,/ getuid, geteuid, getgid,

getutline, pututline,j getut: getutent, getutid,
pututline, setutent,/ getut: getutent, getutid, getutline,
setutent,/ getut: getutent, getutid, getutline, pututline,

getut: getutent, getutid, getutline, pututline,/
from a/ getc, getchar, fgetc, getw: get character or word

convert/ ctime,localtime, gmtime, asctime, tzset:
setjmp, longjmp: non-local goto.

plot: graphics interface.
subroutines. plot: graphics interface

/user, effective user, real group, and effective group/
/getppid: get process, process group, and parent process IDs.

endgrent, fgetgrent: get group file entry. /setgrent,
group: group file. . . .

group: group file.
setpgrp: set process group ID.

real group, and effective group IDs. /effective user,
setuid, setgid: set user and group IDs.
chown: change owner and group of a file.

a signal to a process or a group of processes. / send .
update, and regenerate groups of programs. /maintain,

ssignal, gsignal: software signals.
varargs: handle variable argument list.

curses: terminal screen handling and optimization/
hcreate, hdestroy: manage hash search tables. hsearch, .

setkey, encrypt: generate hashing encryption. crypt,
search tables. hsearch, hcreate, hdestroy: manage hash

tables. hsearch, hcreate, hdestroy: manage hash search
file. scnhdr: section header for a common object

files. filehdr: file header for common object • .
limits: file header for /

unistd: file header for symbolic constants.
file. ldfhread: read the file header of a common object

/seek to the optional file header of a common object/
/read an indexed/named section header of a common object/

ldahread: read the archive header of a member of ani
layers: protocol used between host and windowing terminal/

terminal. jagent: host control of windowing
manage hash search tables. hsearch, hcreate, hdestroy:

cosh, dcosh: FORTRAN hyperbolic cosine intrinsic/
sinh, cosh, tanh: hyperbolic functions. . . .

sinh, dsinh: FORTRAN hyperbolic sine intrinsic/
tanh, dtanh: FORTRAN hyperbolic tangent intrinsic/

function. hypot: Euclidean distance
i286emul: emulate 80286.

FORTRAN absolute value. abs, iabs, dabs, cabs, zabs: . .
ishftc, ibits,j mil: ior, iand, not, ieor, ishft,

command line arguments. iargc: return the number of
ishftc, ibits, btest, ibset, ibclr, mvbits: FORTRAN/ /ishft,
/not, ieor, ishft, ishftc, ibits, btest, ibset, ibclr,/ • . . .

- 17 -

Permuted Index

gets(3S)
gettydefs(4)
gettydefs(4)
getuid(2)
getut(3C)
getut(3C)
getut(3C)
getut(3C)
getc(3S)
ctime(3C)
setjmp(3C)
plot(4)
plot(3X)
getuid(2)
getpid(2)
getgrent(3C)
group(4)
group(4)
setpgrp(2)
getuid(2)
setuid(2)
chown(2)
ki1l(2)
make(l)
ssignal(3C)
varargs(5)
curses(3X)
hsearch(3C)
crypt(3C)
hsearch(3C)
hsearch(3C)
scnhdr(4)
filehdr(4)
limits(4)
unistd(4)
Idfhread(3X)
Idohseek(3X)
Idshread(3X)
Idahread(3X)
layers(5)
jagent(5)
hsearch(3C)
cosh(3F)
sinh(3M)
sinh(3F)
tanh(3F)
hypot(3M)
i286emul(1)
abs(3F)
mil(3F)
iargc(3F)
mil(3F)
mil(3F)

Permuted Index

/ishft, ishftc, ibits, btest, ibset, ibclr, mvbits: FORTRAN/
/sngl, dble, cmplx, dcmplx, ichar, char: explicit FORTRAN/

setpgrp: set process group ID. •
issue: issue identification file.

get shared memory segment identifier. shmget:
what: identify SCCS files.

intrinsic/ dim, ddim, idim: positive difference
dble,f ftype: int, ifix, idint, real, float, sngl, .

round: anint, dnint, nint, idnint: FORTRAN nearest/
group, and parent process IDs. /get process, process
group, and effective group IDs. /effective user, real
setgid: set user and group IDs. setuid,

/fpgetsticky, fpsetsticky: IEEE floating point/
btest,f mil: ior, iand, not, ieor, ishft, ish ftc, ibits,

sngl, dble,f ftype: int, ifix, idint, real, float,
core: format of core image file.

format of curses screen image file. scr_dump:
pnch: file format for card images.
aimag, dimag: FORTRAN imaginary part of complex/

limits: file header for implementation-specific/
dirent: file system independent directory entry.

long integer data in a machine independent fashion. /access
and put in a file system independent format. /entries

of a/ ldtbindex: compute the index of a symbol table entry
FORTRAN substring. index: return location of . . .

a common/ ldtbread: read an indexed symbol table entry of
ldshread, ldnshread: read an indexed/named section header/
ldsseek, ldnsseek: seek to an indexed/named section of a/
receipt of an orderly release indication. /acknowledge ..

receive a unit data error indication. Lrcvuderr:
terminfo descriptions. infocmp: compare or print out

inittab: script for the init process. •.....
L-sndrel: initiate an orderly release.

process. popen, pclose: initiate pipe to/from a
process. inittab: script for the init

inode: format of an i-node.
inode: format of an i-node.

sscanf: convert formatted input. scanf, fscanf,
push character back into input stream. ungetc:

fread, fwrite: binary input/output.
poll: STREAMS input/output multiplexing.

stdio: standard buffered input/output package.
fileno: stream status inquiries. /feof, clearerr,

install: install commands.
install: install commands.

sngl, dble, cmplx,f ftype: int, ifix, idint, real, float,
abs: return integer absolute value.

/164a: convert between long integer and base-64 ASCII/
sputl, sgetl: access long integer data in a machine/

nint, idnint: FORTRAN nearest integer functions. /dnint,
function. aint, dint: FORTRAN integer part intrinsic

atol, atoi: convert string to integer. strtol,
/lto13: convert between 3-byte integers and long integers.

- 18 -

mil(3F)
ftype(3F)
setpgrp(2)
issue(4)
shmget(2)
what(l)
dim(3F)
ftype(3F)
round(3F)
getpid(2)
getuid(2)
setuid(2)
fpgetround(3C)
mil(3F)
ftype(3F)
core(4)
sCLdump(4)
pnch(4)
aimag(3F)
limits(4)
dirent(4)
sputl(3X)
getdents(2)
Idtbindex(3X)
index(3F)
Idtbread(3X)
Idshread(3X)
Idsseek(3X)
Lrcvrel(3N)
Lrcvuderr(3N)
infocmp(lM)
inittab(4)
L-sndrel(3N)
popen(3S)
inittab(4)
inode(4)
inode(4)
scanf(3S)
ungetc(3S)
fread(3S)
poll(2)
stdio(3S)
ferror(3S)
install(lM)
install(lM)
ftype(3F)
abs(3C)
a641(3C)
sputl(3X)
round(3F)
aint(3F)
strtol(3C)
13tol(3C)

3-byte integers and long integers. Iconvert between
source. Ised script to convert Intel ASM386 source to as

plot: graphics interface.
plot: graphics interface subroutines. . .

pipe: create an interprocess channel.
stdipc: ftok: standard interprocess communication I

sleep: suspend execution for interval.
acos, dacos: FORTRAN arccosine intrinsic function.

dint: FORTRAN integer part
asin, dasin: FORTRAN arcsine
datan2: FORTRAN arctangent

datan: FORTRAN arctangent
FORTRAN complex conjugate

dcos, ccos: FORTRAN cosine
FORTRAN hyperbolic cosine

double precision product
cexp: FORTRAN exponential

FORTRAN common logarithm
FORTRAN natural logarithm

FORTRAN transfer-of-sign
sin, dsin, csin: FORTRAN sine

intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.
intrinsic function.

aint,

atan2,
atan,
Idconjg:
cos,
/dcosh:
dprod:
Idexp,
/dloglO:
I clog:
Idsign:

dsinh: FORTRAN hyperbolic sine intrinsic function. sinh, •
csqrt: FORTRAN square root intrinsic function. I dsqrt,
tan, dtan: FORTRAN tangent intrinsic function.

FORTRAN hyperbolic tangent intrinsic function. /dtanh:
idim: positive difference intrinsic functions. I ddim,

dmod: FORTRAN remaindering intrinsic functions. lamod,
lIe, lIt: string comparison intrinsic functions. IIgt, .

formats. intra: introduction to file
functions and libraries. intra: introduction to

miscellany. intra: introduction to
programming commands. intro: introduction to

calls and error numbers. intro: introo.uction to system
intro: introduction to file formats.

libraries. intro: introduction to functions and
intra: introduction to miscellany.

commands. intro: introduction to programming
and error numbers. intra: introduction to system calls

ioctl: control device.
ish ftc, ibits, btest,; mil: ior, iand, not, ieor, ishft,

abort: generate an lOT fault.
generator. rand, irand, srand: random number

/islower, is digit, isxdigit, isalnum, isspace, ispunct,;
isdigit, isxdigit,; ctype: isalpha, isupper, islower,

lisprint, isgraph, iscntrl, isascii: classify characters.
terminal. ttyname, isatty: find name of a . .

/ispunct, isprint, isgraph, iscntri, isascii: classify I
/isalpha, isupper, islower, isdigit, isxdigit, isalnum,/

/isspace, ispunct, isprint, isgraph, iscntrl, isascii:1
mil: ior, iand, not, ieor, ishft, ishftc, ibits, btest,1

/ior, iand, not, ieor, ishft, ishftc, ibits, btest, ibset,/
transfer-of-sign/ sign, isign, dsign: FORTRAN

ctype: isalpha, isupper, islower, isdigit, isxdigit,/

- 19 -

Permuted Index

13tol(3C)
as386.sed(1)

plot(4)
plot(3X)
pipe(2)
stdipc(3C)
sleep(3C)
acos(3F)
aint(3F)
asin(3F)
atan2(3F)
atan(3F)
conjg(3F)
cos(3F)
cosh(3F)
dprod(3F)
exp(3F)
loglO(3F)
log(3F)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
dim(3F)
mod(3F)
strcmp(3F)
intro(4)
intro(3)
intro(5)
intro(1)
intro(2)
intro(4)
intro(3)
intro(5)
intro(l)
intro(2)
ioctl(2)
mil(3F)
abort(3C)
rand(3F)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
mil(3F)
mil(3F)
sign(3F)
ctype(3C)

Permuted Index

for floating point NaN/ isnan: isnand, isnanf: test
floating point NaN/ isnan: isnand, isnanf: test for
point NaN/ isnan: isnand, isnanf: test for floating
/isalnum, isspace, ispunct, isprint, isgraph, iscntrI,j
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph,j
/isdigit, isxdigit, isalnum, isspace, ispunct, isprint,j

FORTRAN. system: issue a shell command from
system: issue a shell command.

issue: issue identification file.
file. issue: issue identification

isxdigit,j ctype: isalpha, isupper, islower, isdigit, .
/isupper, islower, isdigit, isxdigit, isalnum, isspace,j

functions. bessel: jO, jl, jn, yO, yl, yn: Bessel
functions. bessel: jO, jI, jn, yO, yI, yn: Bessel
windowing terminal. jagent: host control of

functions. bessel: jO, jI, jn, yO, yl, yn: Bessel
/lrand48, nrand48, mrand48, jrand48, srand48, seed48,j

process or a group off kill: send a signal to a
3-byte integers and long/ l3toI, Itol3: convert between

integer and base-64/ a64l, 164a: convert between long
cpp: the C language preprocessor.

login entry to show current layer. relogin: rename
host and windowing terminaIj layers: protocol used between

/jrand48, srand48, seed48, Icong48: generate uniformly /
object files. ld: link editor for common

object file. ldclose, ldaclose: close a common
header of a member of ani ldahread: read the archive

file for reading. ldopen, ldaopen: open a common object
common object file. ldclose, ldaclose: close a

of floating-point/ frexp, ldexp, modf: manipulate parts
access routines. ldfcn: common object file

of a common object file. ldfhread: read the file header
name for common object file/ ldgetname: retrieve symbol
line number entries/ ldlread, ldlinit, ldlitem: manipulate

number/ IdIread,ldlinit, ldlitem: manipulate line .
manipulate line number / ldlread, ldlinit, ldlitem:
line number entries of a/ ldlseek, ldnlseek: seek to

entries of a section/ ldlseek, ldnlseek: seek to line number
entries of a section/ ldrseek, ldnrseek: seek to relocation

indexed/named/ ldshread, ldnshread: read an
indexed/named/ ldsseek, ldnsseek: seek to an
file header of a common/ ldohseek: seek to the optional

object file for reading. ldopen, ldaopen: open a common
relocation entries of a/ ldrseek, ldnrseek: seek to

indexed/named section header/ ldshread, ldnshread: read an .
indexed/named section of a/ ldsseek, ldnsseek: seek to an .
of a symbol table entry of a/ ldtbindex: compute the index

symbol table entry of a/ ldtbread: read an indexed . .
table of a common object/ ldtbseek: seek to the symbol •

string. len: return length of FORTRAN
len: return length of FORTRAN string.

getopt: get option letter from argument vector.
simple lexical tasks. lex: generate programs for .

- 20 -

isnan(3C)
isnan(3C)
isnan(3C)
ctype(3C)
ctype(3C)
ctype(3C)
system(3F)
system(3S)
issue(4)
issue(4)
ctype(3C)
ctype(3C)
bessel(3M)
bessel(3M)
jagent(5)
bessel(3M)
drand48(3C)
kilI(2)
l3tol(3C)
a641(3C)
cpp(l)
relogin(lM)
layers(5)
drand48(3C)
ld(l)
Idclose(3X)
Idahread(3X)
Idopen(3X)
Idclose(3X)
frexp(3C)
Idfcn(4)
Idfhread(3X)
Idgetname(3X)
Idlread(3X)
IdIread(3X)
Idlread(3X)
Idlseek(3X)
Idlseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idohseek(3X)
Idopen(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
len(3F)
len(3F)
getopt(3C)
lex(l)

generate programs for simple lexical tasks. lex: . . .
update. lsearch, Hind: linear search and

comparison intrinsic/ strcmp: 1ge, 19t, lIe, lIt: string
comparison/ strcmp: 1ge, 19t, lIe, lIt: string

introduction to functions and libraries. intro: . . .
windowing terminal function library. libwindows:

relation for an object library. /find ordering
portable/ ar: archive and library maintainer for

mkshlib: create a shared library.
LalIoe: allocate a library structure.

Lfree: free a library structure.
Lsyne: synchronize transport library.

function library. libwindows: windowing terminal
implementation-specific/ limits: file header for

ulimit: get and set user limits.
return the number of command line arguments. iargc: . . .

an out-going terminal line connection. /establish
common object file. linenum: line number entries in a .

/ldlinit, ldlitem: manipulate line number entries of a/
ldlseek, ldnlseek: seek to line number entries of a/

strip: strip symbol and line number information from a/
lsearch, Hind: linear search and update.

in a common object file. linenum: line number entries
files. ld: link editor for common object

a.out: common assembler and link editor output.
link: link to a file.

extract and print xt driver link structure. xtd:
link: link to a file. . . .

lint: a C program checker.
nlist: get entries from name list.

nm: print name list of common object file.
by fsck and/ checklist: list of file systems processed

from a common object file. list: produce C source listing
handle variable argument list. varargs: . •

output of a varargs argument list./print formatted . . .
Llisten: listen for a connect request.

file. list: produce C source listing from a common object
intrinsic/ strcmp: 1ge, 19t, lIe, lIt: string comparison

strcmp: 1ge, 19t, lIe, lIt: string comparison/
tzset: convert date/ ctime, localtime, gmtime, asctime,

index: return location of FORTRAN substring.
end, etext, edata: last locations in program. . . .

memory. plock: lock process, text, or data in
files. lockf: record locking on . .

lockf: record locking on files.
natural logarithm intrinsic/ log, alog, dlog, clog: FORTRAN

gamma: log gamma function.
exponential,logarithm,/ exp, log, loglO, pow, sqrt: •....
common logarithm intrinsic/ loglO, aloglO, dloglO: FORTRAN
logarithm, power,/ exp, log, loglO, pow, sqrt: exponential,

/alogIO, dloglO: FORTRAN common logarithm intrinsic function. .
/dlog, clog: FORTRAN natural logarithm intrinsic function. .
/logIO, pow, sqrt: exponential, logarithm, power, square root/

- 21 -

Permuted Index

lex(l)
Isearch(3C)
strcmp(3F)
strcmp(3F)
intro(3)
libwindows(3X)
lorder(l)
ar(l)
mkshlib(l)
LalIoc(3N)
Lfree(3N)
Lsync(3N)
libwindows(3X)
limits(4)
ulimit(2)
iargc(3F)
dial(3C)
linenum(4)
Idlread(3X)
Idlseek(3X)
strip(l)
Isearch(3C)
linenum(4)
Id(l)
a.out(4)
link(2)
xtd(IM)
link(2)
lint(l)
nlist(3C)
nm(l)
checklist(4)
list(l)
varargs(S)
vprintf(3S)
Llisten(3N)
list(l)
strcmp(3F)
strcmp(3F)
ctime(3C)
index(3F)
end(3C)
plock(2)
lockf(3C)
lockf(3C)
log(3F)
gamma(3M)
exp(3M)
logIO(3F)
exp(3M)
logIO(3F)
log(3F)
exp(3M)

Permuted Index

layer. relogin: rename login entry to show current
getlogin: get login name.

cuserid: get character login name of the user.
logname: return login name of user ...

setting up an environment at login time. profile:
user. logname: return login name of

a64I, 164a: convert between long integer and base-64 ASCII/
sputI, sgetl: access long integer data in a machine/

between 3-byte integers and long integers. /lto13: convert
setjmp, longjmp: non-local goto.

for an object library. lorder: find ordering relation
jrand48,f drand48, erand48, Irand48, nrand48, mrand48,

and update. lsearch, Hind: linear search
pointer. lseek: move read/write file

bool: and, or, xor, not, lshift, rshift: FORTRAN/
integers and long/ 13toI, Itol3: convert between 3-byte

m4: macro processor. . •..
/ access long integer data in a machine independent fashion.

values: machine-dependent values.
sysi86: machine-specific functions.

m4: macro processor. . ..
malloc, free, realloc, calloc: main memory allocator.

/mallopt, mallinfo: fast main memory allocator.
regenerate groups off make: maintain, update, and

ar: archive and library maintainer for portable/
SCCS file. delta: make a delta (change) to an

mkdir: make a directory
or ordinary file, or a/ mknod: make a directory, or a special

mktemp: make a unique file name.
regenerate groups off make: maintain, update, and

/realloc, calloc, mallopt, mallinfo: fast main memory /
main memory allocator. malloc, free, realloc, calloe:

mallopt, mallinfo: fast main/ malloc, free, realloc, calloc,
malloc, free, realloc, calloc, mallopt, mallinfo: fast main/

/tfind, tdelete, twalk: manage binary search trees.
hsearch, hcreate, hdestroy: manage hash search tables.

endpoint. Loptmgmt: manage options for a transport
sigignore, sigpause: signal management. /sigrelse, ..•

off ldlread, ldlinit, ldlitem: manipulate line number entries
frexp, ldexp, modf: manipulate parts off

comment section. mcs: manipulate the object file
ascii: map of ASCII character set.

set and get file creation mask. umask: •...•.
File Sharing name server master file. rfmaster: Remote

regular expression compile and match routines. regexp: . . .
math: math functions and constants.

constants. math: math functions and • .
function. matherr: error-handling ...

dmaxl: FORTRAN maximum-value/ max, maxO, amaxO, maxI, amaxl,
dmaxl: FORTRAN/ max, maxO, amaxO, maxI, amaxl, ...

max, maxO, amaxO, maxI, amaxl, dmaxl: FORTRAN/
/maxl, amaxl, dmaxl: FORTRAN maximum-value functions.

accounting. mclock: return FORTRAN time

- 22 -

relogin(IM)
getlogin(3C)
cuserid(3S)
logname(3X)
profile(4)
logname(3X)
a641(3C)
sputl(3X)
13tol(3C)
setjmp(3C)
lorder(l)
drand48(3C)
lsearch(3 C)
Iseek(2)
bool(3F)
13tol(3C)
m4(1)
sputl(3X)
values(S)
sysi86(2)
m4(1)
malloc(3C)
malloc(3X)
make(l)
ar(l)
delta(l)
mkdir(2)
mknod(2)
mktemp(3C)
make(l)
malloc(3X)
malloc(3C)
malloc(3X)
malloc(3X)
tsearch(3C)
hsearch(3C)
Loptmgmt(3N)
sigset(2)
Idlread(3X)
frexp(3C)
mcs(l)
ascii(5)
umask(2)
rfmaster(4)
regexp(5)
math(S)
math(5)
matherr(3M)
max(3F)
max(3F)
max(3F)
max(3F)
mc1ock(3F)

file comment section. mcs: manipulate the object
memcpy, memset:/ memory: memccpy, memchr, memcmp,

memset:/ memory: memccpy, memchr, memcmp, memcpy,
memory: memccpy, memchr, memcmp, memcpy, memset: memory/

/memccpy, memchr, memcmp, memcpy, memset: memory /
free, realloc, calloe: main memory allocator. malloc,

mall opt, mallinfo: fast main memory allocator. /calloc,
shmctl: shared memory control operations.

memcmp, memcpy, memset:/ memory: memccpy, memchr,
memcmp, memcpy, memset: memory operations. /memchr,

shmop: shmat, shmdt: shared memory operations.
lock process, text, or data in memory. plock:

shmget: get shared memory segment identifier.
/memchr, memcmp, memcpy, memset: memory operations.

msgctl: message control operations.
getmsg: get next message off a stream.
putmsg: send a message on a stream.

msgop: msgsnd, msgrcv: message operations.
msgget: get message queue.

Lerror: produce error message.
sys-Ilerr: system error messages. /errno, sys_errlist,

ishft, ishftc, ibits, btest,j mil: ior, iand, not, ieor,
/ibset, ibclr, mvbits: FORTRAN Military Standard functions. .

dminI: FORTRAN minimum-value/ min, minD, aminO, minI, aminI,
dminI: FORTRAN/ min, minD, aminO, minI, aminI,

min, minO, aminO, minI, aminI, dminI: FORTRAN/
/minI, aminI, dminI: FORTRAN minimum-value functions.

mkdir: make a directory.
special or ordinary file, or/ mknod: make a directory, or a

library. mkshlib: create a shared
name. mktemp: make a unique file .
table. mnttab: mounted file system

remaindering intrinsic/ mod, amod, dmod: FORTRAN
chmod: change mode of file.

floating-point/ frexp, ldexp, modf: manipulate parts of .
utime: set file access and modification times.

omf: convert an object module from COFF to OMF.
profile. monitor: prepare execution
mount: mount a file system.

mount: mount a file system.
mnttab: mounted file system table.

lseek: move read/write file pointer.
/erand48, Irand48, nrand48, mrand48, jrand48, srand48,j

operations. msgctl: message control . . .
msgget: get message queue.

operations. msgop: msgsnd, msgrcv: message
msgop: msgsnd, msgrcv: message operations. .

operations. msgop: msgsnd, msgrcv: message . •
used by xt(7)/ xtproto: multiplexed channels protocol

poll: STREAMS input/output multiplexing. •
/ibits, btest, ibset, ibclr, mvbits: FORTRAN Military /

test for floating point NaN (Not-A-Number). /isnanf:
log, alog, dlog, clog: FORTRAN natural logarithm intrinsic/

- 23 -

Permuted Index

mcs(I)
memory(3C)
memory(3C)
memory(3C)
memory(3C)
malloc(3C)
malloc(3X)
shmctl(2)
memory(3C)
memory(3C)
shmop(2)
plock(2)
shmget(2)
memory(3C)
msgctl(2)
getmsg(2)
putmsg(2)
msgop(2)
msgget(2)
Lerror(3N)
perror(3C)
mil(3F)
mil(3F)
min(3F)
min(3F)
min(3F)
min(3F)
mkdir(2)
mknod(2)
mkshlib(l)
mktemp(3C)
mnttab(4)
mod(3F)
chmod(2)
frexp(3C)
utime(2)
omf(I)
monitor(3C)
mount(2)
mount(2)
mnttab(4)
Iseek(2)
drand48(3C)
msgctl(2)
msgget(2)
msgop(2)
msgop(2)
msgop(2)
xtproto(5)
poll(2)
mil(3F)
isnan(3C)
log(3F)

Permuted Index

systems processed by fsck and ncheck. /Iist of file • . •
/dnint, nint, idnint: FORTRAN nearest integer functions.

process. nice: change priority of a
integer/ round: anint, dnint, nint, idnint: FORTRAN nearest

list. nlist: get entries from name
object file. nm: print name list of common

setjmp, longjmp: non-local goto. • .
ibits, btest,j mil: ior, iand, not, ieor, ishft, ishftc, • . .

Bitwise/ bool: and, or, xor, not, Ishift, rshift: FORTRAN
test for floating point NaN (Not-A-Number). /isnanf:
drand48, erand48, Irand48, nrand48, mrand48, jrand48,/

dis: object code disassembler.
DMD terminal. wtinit: object downloader for the 5620

Idfcn: common object file access routines. •
mcs: manipulate the object file comment section.

conv: common object file converter.
cprs: compress a common object file. •
dump selected parts of an object file. dump:

ldopen, ldaopen: open a common object file for reading.
number entries of a common object file function. /line

Idac1ose: close a common object file. ldclose,
the file header of a common object file. ldfhread: read

of a section of a common object file. /number entries
file header of a common object file. Ito the optional

of a section of a common object file. /entries • . . .
section header of a common object file. /indexed/named

section of a common object file. /indexed/named
symbol table entry of a common object file. /the index of a
symbol table entry of a common object file. /read an indexed

the symbol table of a common object file. /seek to
number entries in a common object file. linenum: line

C source listing from a common object file. list: produce
nm: print name list of common object file. •

information for a cO.mmon object file. /relocation
section header for a common object file. scnhdr:
information from a common object file. land line number

entry. /symbol name for common object file symbol table
format. syms: common object file symbol table
file header for common object files. filehdr: . .

Id: link editor for common object files.
sizes in bytes of common object files. /print section

find ordering relation for an object library. lorder: . .
OMF. omf: convert an object module from COFF to

from COFF to OMF. omf: convert an object module
an object module from COFF to OMF. omf: convert

reading. Idopen, Ida open: open a common object file for
fopen, freopen, fdopen: open a stream. • •

dup: duplicate an open file descriptor.
dup2: duplicate an open file descriptor.

open: open for reading or writing.
writing. open: open for reading or .

seekdir,j directory: opendir, readdir, telldir, ..
rewinddir, closedir: directory operations. /telldir, seekdir,

- 24 -

checklist(4)
round(3F)
nice(2)
round(3F)
nlist(3C)
nm(1)
setjmp(3C)
mil(3F)
bool(3F)
isnan(3C)
drand48(3C)
dis(l)
wtinit(lM)
Idfcn(4)
mcs(l)
conv(l)
cprs(l)
dump(l)
Idopen(3X)
Idlread(3X)
Idc1ose(3X)
Idfhread(3X)
Idlseek(3X)
Idohseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
list(l)
nm(l)
reloc(4)
scnhdr(4)
strip(l)
Idgetname(3X)
syms(4)
filehdr(4)
ld(l)
size(l)
lorder(l)
omf(l)
omf(l)
omf(l)
Idopen(3X)
fopen(3S)
dup(2)
dup2(3C)
open(2)
open(2)
directory(3X)
directory(3X)

memcmp, memcpy, memset: memory operations. /memccpy, memchr,
msgctl: message control operations.

msgop: msgsnd, msgrcv: message operations.
semctl: semaphore control operations.

semop: semaphore operations.
shmctl: shared memory control operations.
shmat, shmdt: shared memory operations. shmop:

strcspn, strtok: string operations. /strpbrk, strspn,
terminal screen handling and optimization package. curses:

vector. getopt: get option letter from argument
common/ ldohseek: seek to the optional file header of a

fentl: file control options.
endpoint. Loptmgmt: manage options for a transport
FORTRAN Bitwise/ bool: and, or, xor, not, lshift, rshift:

object library. lorder: find ordering relation for an
/acknowledge receipt of an orderly release indication.

Lsndrel: initiate an orderly release.
/a directory, or a special or ordinary file, or a FIFO.

dial: establish an out-going terminal line/
assembler and link editor output. a.out: common
/vsprintf: print formatted output of a varargs argument/

sprintf: print formatted output. print£, fprintf,
chown: change owner and group of a file.

handling and optimization package. /terminal screen
standard buffered input/output package. stdio:

interprocess communication package. /ftok: standard
extract and print xt driver packet traces. xtt:

process, process group, and parent process IDs. /get
passwd: password file.

functions. crypt: password and file encryption
/endpwent, fgetpwent: get password file entry.

putpwent: write password file entry.
passwd: password file.

getpass: read a password.
directory. getcwd: get path name of current working

signal. pause: suspend process until
a process. popen, pelose: initiate pipe to/from

information. config: per-module configuration
format. acct: per-process accounting file

sys-11err: system error/ perror, errno, sys_errlist,
channel. pipe: create an interprocess

popen, pelose: initiate pipe to/from a process. . .
data in memory. plock: lock process, text, or

plot: graphics interface.
subroutines. plot: graphics interface

images. pnch: file format for card
ftell: reposition a file pointer in a stream. /rewind,

lseek: move read/write file pointer.
multiplexing. poll: STREAMS input/output

to/from a process. pop en, pelose: initiate pipe
and library maintainer for portable archives. / archive

functions. dim, ddim, idim: positive difference intrinsic
logarithm'; exp, log, loglO, pow, sqrt: exponential,

- 25 -

Permuted Index

memory(3C)
msgctl(2)
msgop(2)
semctl(2)
semop(2)
shmctl(2)
shmop(2)
string(3C)
curses(3X)
getopt(3C)
Idohseek(3X)
fcntl(5)
Loptmgmt(3N)
bool(3F)
lorder(l)
Lrcvrel(3N)
Lsndrel(3N)
mknod(2)
dial(3C)
a.out(4)
vprintf(3S)
printf(3S)
chown(2)
curses(3X)
stdio(3S)
stdipc(3C)
xtt(lM)
getpid(2)
passwd(4)
crypt(3X)
getpwent(3C)
putpwent(3C)
passwd(4)
getpass(3C)
getcwd(3C)
pause(2)
popen(3S)
config(4)
acct(4)
perror(3C)
pipe(2)
popen(3S)
plock(2)
plot(4)
plot(3X)
pnch(4)
fseek(3S)
Iseek(2)
poll(2)
popen(3S)
ar(l)
dim(3F)
exp(3M)

Permuted Index

/sqrt: exponential, logarithm, power, square root functions.
function. dprod: double precision product intrinsic

monitor: prepare execution profile.
cpp: the e language preprocessor.

unget: undo a previous get of an sees file.
types: primitive system data types.

prs: print an sees file.
editing activity. sact: print current sees file

vprintf, vfprintf, vsprintf: print formatted output of a/
printf, fprintf, sprintf: print formatted output.

object file. nm: print name list of common
infocmp: compare or print out terminfo / . . .

of common object files. size: print section sizes in bytes
structure. xtd: extract and print xt driver link

xtt: extract and print xt driver packet traces.
xts: extract and print xt driver statistics.

print formatted output. printf, fprintf, sprintf:
nice: change priority of a process.

acct: enable or disable process accounting. .
alarm: set a process alarm clock.

times. times: get process and child process
exit, _exit: terminate process.

fork: create a new process.
/getpgrp, getppid: get process, process group, and parenti

setpgrp: set process group ID.
process group, and parent process IDs. /get process,

inittab: script for the init process. . •.....
nice: change priority of a process.

ki1I: send a signal to a process or a group off
initiate pipe to/from a process. popen, pclose:

getpid, getpgrp, getppid: get process, process group, and/
memory. plock: lock process, text, or data in

times: get process and child process times.
wait: wait for child process to stop or terminate.

ptrace: process trace.
pause: suspend process until signal.

/list of file systems processed by fsck and ncheck.
to a process or a group of processes. /send a signal

m4: macro processor. . •.....
a common object file. list: produce e source listing from

Lerror: produce error message.
dprod: double precision product intrinsic function.

prof: display profile data.
function. prof: profile within a

profile. profil: execution time
prof: display profile data.

monitor: prepare execution profile.
profil: execution time profile.

environment at login time. profile: setting up an
prof: profile within a function.

intro: introduction to programming commands.
windowing terminal/ layers: protocol used between host and
xtproto: multiplexed channels protocol used by xt(7) driver.

- 26 -

exp(3M)
dprod(3F)
monitor(3C)
cpp(l)
unget(l)
types(5)
prs(l)
sact(l)
vprintf(3S)
printf(3S)
nm(l)
infocmp(lM)
size(l)
xtd(lM)
xtt(lM)
xts(lM)
printf(3S)
nice(2)
acct(2)
alarm(2)
times(2)
exit(2)
fork(2)
getpid(2)
setpgrp(2)
getpid(2)
inittab(4)
nice(2)
kill(2)
popen(3S)
getpid(2)
plock(2)
times(2)
wait(2)
ptrace(2)
pause(2)
checklist(4)
kill(2)
m4(1)
list(l)
Lerror(3N)
dprod(3F)
prof(l)
prof(5)
profil(2)
prof(l)
monitor(3C)
profil(2)
profile(4)
prof(5)
intro(l)
layers(5)
xtproto(5)

information. Lgetinfo: get protocol-specific service .
prs: print an sees file.

/generate uniformly distributed pseudo-random numbers.
ptrace: process trace.

stream. ungetc: push character back into input
put character or word on a/ putc, putchar, fputc, putw:

character or word on a/ putc, putchar, fputc, putw: put
environment. putenv: change or add value to

stream. putmsg: send a message on a
entry. putpwent: write password file

stream. puts, fputs: put a string on a .
/getutent, getutid, getutline, pututline, setutent, endutent,/

a/ putc, putchar, fputc, putw: put character or word on
qsort: quicker sort.

msgget: get message queue.
qsort: quicker sort. . . .

number generator. rand, irand, srand: random
random-number generator. rand, srand: simple

rand, irand, srand: random number generator.
rand, srand: simple random-number generator.

getpass: read a password.
entry of a common/ ldtbread: read an indexed symbol table
header/ ldshread,ldnshread: read an indexed/named section

in a file system/ getdents: read directory entries and put
read: read from file.

read: read from file.
member of ani ldahread: read the archive header of a

common object file. ldfhread: read the file header of a .
directory: opendir, readdir, telldir, seekdir,/

open a common object file for reading. ldopen, ldaopen:
open: open for reading or writing.

lseek: move read/write file pointer.
ftype: int, ifix, idint, real, float, sngl, dble,j

allocator. malloc, free, realloc, calloc: main memory
mallinfo: fast/ malloc, free, realloc, calloc, mallopt,

specify what to do upon receipt of a Signal. Signal: .
/specify FORTRAN action on receipt of a system signal. .

Lrcvrel: acknowledge receipt of an orderly release/
Lrcvudata: receive a data unit.

indication. Lrcvuderr: receive a unit data error .. .
sent over a/ Lrcv: receive data or expedited data

a connect/ Lrcvconnect: receive the confirmation from
lockf: record locking on files.

execute regular expression. regcmp, regex: compile and
compile. regcmp: regular expression

make: maintain, update, and regenerate groups of programs.
regular expression. regcmp, regex: compile and execute

compile and match routines. regexp: regular expression . .
match routines. regexp: regular expression compile and

regcmp: regular expression compile.
regex: compile and execute regular expression. regcmp,

lorder: find ordering relation for an object/
/receipt of an orderly release indication.

- 27 -

Permuted Index

Lgetinfo(3N)
prs(l)
drand48(3C)
ptrace(2)
ungetc(3S)
putc(3S)
putc(3S)
putenv(3C)
putmsg(2)
putpwent(3C)
puts(3S)
getut(3C)
putc(3S)
qsort(3C)
msgget(2)
qsort(3C)
rand(3F)
rand(3C)
rand(3F)
rand(3C)
getpass(3C)
Idtbread(3X)
Idshread(3X)
getdents(2)
read(2)
read(2)
Idahread(3X)
Idfhread(3X)
directory(3X)
Idopen(3X)
open(2)
Iseek(2)
ftype(3F)
malloc(3C)
malloc(3X)
signal(2)
signal(3F)
Lrcvrel(3N)
Lrcvudata(3N)
Lrcvuderr(3N)
Lrcv(3N)
Lrcvconnect(3N)
lockf(3C)
regcmp(3X)
regcmp(l)
make(l)
regcmp(3X)
regexp(5)
regexp(5)
regcmp(l)
regcmp(3X)
lorder(l)
Lrcvrel(3N)

Permuted Index

Lsndrel: initiate an orderly
for a common object file.
ldrseek, ldnrseek: seek to

common object file. reloc:
show current layer.

/fmod, fabs: floor, ceiling,
mod, amod, dmod: FORTRAN

server master file. rfmaster:
file. rmdel:

release.
reloc: relocation information
relocation entries of a/
relocation information for a
relogin: rename login entry to
remainder, absolute value/
remaindering intrinsic/
Remote File Sharing name
remove a delta from an sees

rmdir: remove a directory ..•..
unlink: remove directory entry. • .

current layer. relogin: rename login entry to show
clock: report epu time used.

stream. fseek, rewind, ftell: reposition a file pointer in a
Laccept: accept a connect request. • •

Llisten: listen for a connect request. •
confirmation from a connect request. /receive the

send user-initiated disconnect request. Lsnddis:
disconnect. Lrcvdis: retrieve information from

common object file/ ldgetname: retrieve symbol name for
argument. getarg: return FORTRAN command-line
variable. getenv: return FORTRAN environment

accounting. mclock: return FORTRAN time
abs: return integer absolute value.

string. len: return length of FORTRAN
substring. index: return location of FORTRAN

logname: return login name of user. •
line arguments. iargc: return the number of command

name. getenv: return value for environment
stat: data returned by stat system call. •

file pointer in a/ fseek, rewind, ftell: reposition a
/readdir, telldir, seekdir, rewinddir, closedir: directory /

creat: create a new file or rewrite an existing one. . ••
name server master file. rfmaster: Remote File Sharing

sees file. rmdel: remove a delta from an
rmdir: remove a directory ..

chroot: change root directory. •.•...
logarithm, power, square root functions. /exponential,

/dsqrt, csqrt: FORTRAN square root intrinsic function.
idnint: FORTRAN nearest/ round: anint, dnint, nint,

common object file access routines. ldfcn:
expression compile and match routines. regexp: regular

and, or, xor, not, lshift, rshift: FORTRAN Bitwise/ bool:
editing activity. sact: print current sees file

space allocation. brk, sbrk: change data segment
formatted input. scan£, fscan£, sscanf: convert

the delta commentary of an sees delta. cdc: change
comb: combine sees deltas. • • . • • .

make a delta (change) to an sees file. delta: •...
sact: print current sees file editing activity.

get: get a version of an sees file.
prs: print an sees file.

rmdel: remove a delta from an sees file.

- 28 -

Lsndrel(3N)
reloc(4)
Idrseek(3X)
reloc(4)
relogin(lM)
floor(3M)
mod(3F)
rfmaster(4)
rmdel(l)
rmdir(2)
unlink(2)
relogin(lM)
clock(3C)
fseek(3S)
Laccept(3N)
Llisten(3N)
Lrcvconnect(3N)
Lsnddis(3N)
Lrcvdis(3N)
Idgetname(3X)
getarg(3F)
getenv(3F)
mclock(3F)
abs(3C)
len(3F)
index(3F)
logname(3X)
iargc(3F)
getenv(3C)
stat(5)
fseek(3S)
directory(3X)
creat(2)
rfmaster(4)
rmdel(l)
rmdir(2)
chroot(2)
exp(3M)
sqrt(3F)
round(3F)
Idfcn(4)
regexp(5)
bool(3F)
sact(l)
brk(2)
scanf(3S)
cdc(l)
comb(l)
delta(l)
sact(l)
get(l)
prs(l)
rmdel(l)

compare two versions of an sees file. sccsdiff:
sccsfile: format of sees file.

undo a previous get of an sees file. unget:
val: validate sees file.

admin: create and administer sees files.
what: identify sees files.

of an sees file. sccsdiff: compare two versions
sccsfile: format of sees file.

common object file. scnhdr: section header for a
screen image file. scr_dump: format of curses

optimization/ curses: terminal screen handling and
scr_dump: format of curses screen image file.

inittab: script for the init process.
source to as/ as386.sed: sed script to convert Intel ASM386

sdb: symbolic debugger.
bsearch: binary search a sorted table.

lsearch, Hind: linear search and update.
hcreate, hdestroy: manage hash search tables. hsearch,

tdelete, twalk: manage binary search trees. tsearch, tfind,
object file. scnhdr: section header for a common

object/ /read an indexed/named section header of a common
the object file comment section. mcs: manipulate

Ito line number entries of a section of a common object/
Ito relocation entries of a section of a common object/

/seek to an indexed/named section of a common object/
common object/ size: print section sizes in bytes of .•

ASM386 source to / as386.sed: sed script to convert Intel
/mrand48, jrand48, srand48, seed48, lcong48: generate/

section off ldsseek,ldnsseek: seek to an indexed/named
a section/ ldlseek, ldnlseek: seek to line number entries of
a section/ ldrseek, ldnrseek: seek to relocation entries of

header of a common/ ldohseek: seek to the optional file . . .
common object file. ldtbseek: seek to the symbol table of a

/opendir, readdir, telldir, seekdir, rewinddir, closedir:/
shmget: get shared memory segment identifier.

brk, sbrk: change data segment space allocation.
file. dump: dump selected parts of an object

semctl: semaphore control operations.
semop: semaphore operations.

semget: get set of semaphores.
operations. semctl: semaphore control . •

semget: get set of semaphores.
semop: semaphore operations.

Lsndudata: send a data unit.
putmsg: send a message on a stream.

a group of processes. kill: send a signal to a process or
over a connection. Lsnd: send data or expedited data

request. Lsnddis: send user-initiated disconnect
/receive data or expedited data sent over a connection.

Remote File Sharing name server master file. rfmaster:
buffering to a stream. setbuf, setvbuf: assign

IDs. setuid, setgid: set user and group •
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent:/

- 29 -

Permuted Index

sccsdiff(1)
sccsfile(4)
unget(l)
val(l)
admin(l)
what(l)
sccs di ff(1)
sccsfile(4)
scnhdr(4)
sCLdump(4)
curses(3X)
sCLdump(4)
inittab(4)
as386.sed(1)
sdb(l)
bsearch(3C)
Isearch(3C)
hsearch(3C)
tsearch(3C)
scnhdr(4)
Idshread(3X)
mcs(l)
Idlseek(3X)
Idrseek(3X)
Idsseek(3X)
size(l)
as386.sed(1)
drand48(3C)
Idsseek(3X)
Idlseek(3X)
Idrseek(3X)
Idohseek(3X)
Idtbseek(3X)
directory(3X)
shmget(2)
brk(2)
dump(l)
semct1(2)
semop(2)
semget(2)
semctl(2)
semget(2)
semop(2)
Lsndudata(3N)
putmsg(2)
kill(2)
Lsnd(3N)
Lsnddis(3N)
Lrcv(3N)
rfmaster(4)
setbuf(3S)
setuid(2)
getgrent(3C)

Permuted Index

goto.
hashing encryption. crypt,

getpwent, getpwuid, getpwnam,
login time. profile:

gettydefs: speed and terminal
group IDs.

/getutid, getutline, pututline,
stream. setbuf,

data in a machine/ sputl,
mkshlib: create a

operations. shmctl:
shmop: shmat, shmdt:
identifier. shmget: get

file. rfmaster: Remote File
system: issue a
system: issue a

operations. shmop:
operations.

operations. shmop: shmat,
segment identifier.

memory operations.
sigpause: signalj sigset,
sigset, sigh old, sigrelse,

transfer-of-sign intrinsic/
sigrelse, sigignore, sigpause:
pause: suspend process until
what to do upon receipt of a
action on receipt of a system

on receipt of a system/
upon receipt of a signal.
of processes. kill: send a
ssignal, gsignal: software

/sighold, sigrelse, sigignore,
signalj sigset, sighold,

sigignore, sigpause: signalj
lex: generate programs for

generator. rand, srand:
atan, atan2:/ trig:
intrinsic function.

sin, dsin, csin: FORTRAN
/dsinh: FORTRAN hyperbolic

functions.
hyperbolic sine intrinsic/

bytes of common object files.
object/ size: print section

interval.
current/ ttyslot: find the

lint, ifix, idint, real, float,
ssignal, gsignal:

qsort: quicker
tsort: topological

bsearch: binary search a

setjmp, longjmp: non-local
setkey, encrypt: generate
setpgrp: set process group ID.
setpwent, endpwent, fgetpwent:/
setting up an environment at
settings used by getty.
setuid, setgid: set user and
setutent, endutent, utmpname:/
setvbuf: assign buffering to a
sgetl: access long integer
shared library.
shared memory control
shared memory operations.
shared memory segment
Sharing name server master
shell command from FORTRAN.
shell command.
shmat, shmdt: shared memory
shmctl: shared memory control
shmdt: shared memory
shmget: get shared memory .
shmop: shmat, shmdt: shared
sighold, sigrelse, sigignore,
sigignore, sigpause: signal/
sign, isign, dsign: FORTRAN
signal management. /sighold,
signal. •........
signal. signal: specify
signal. /specify FORTRAN
Signal: specify FORTRAN action
signal: specify what to do . .
signal to a process or a group
signals.
sigpause: signal management.
sigrelse, sigignore, sigpause:
sigset, sighold, sigrelse,
simple lexical tasks.
simple random-number
sin, cos, tan, asin, acos,
sin, dsin, csin: FORTRAN sine
sine intrinsic function.
sine intrinsic function.
sinh, cosh, tanh: hyperbolic
sinh, dsinh: FORTRAN
size: print section sizes in .
sizes in bytes of common
sleep: suspend execution for
slot in the utmp file of the
sngl, dble, cmplx, dcmplx,j
software signals.
sort.
sort.
sorted table.

- 30 -

setjmp(3C)
crypt(3C)
setpgrp(2)
getpwent(3C)
profile(4)
gettydefs(4)
setuid(2)
getut(3C)
setbuf(3S)
sputl(3X)
mkshlib(l)
shmctl(2)
shmop(2)
shmget(2)
rfmaster(4)
system(3F)
system(3S)
shmop(2)
shmctl(2)
shmop(2)
shmget(2)
shmop(2)
sigset(2)
sigset(2)
sign(3F)
sigset(2)
pause(2)
signal(2)
signal(3F)
signal(3F)
signal(2)
kill(2)
ssignal(3C)
sigset(2)
sigset(2)
sigset(2)
lex(l)
rand(3C)
trig(3M)
sin(3F)
sin(3F)
sinh(3F)
sinh(3M)
sinh(3F)
size(l)
size(l)
sleep(3C)
ttyslot(3C)
ftype(3F)
ssignal(3C)
qsort(3C)
tsort(l)
bsearch(3C)

Intel ASM386 source to as
object file. list: produce C

script to convert Intel ASM386
brk, sbrk: change data segment

fspec: format
receipt of a systemj signal:

receipt of a signal. signal:
used by getty. gettydefs:

output. printf, fprintf,
integer data in a machinej

square root intrinsicj
power,! exp, log, 10glO, pow,
exponential, logarithm, power,

sqrt, dsqrt, csqrt: FORTRAN
generator. rand, irand,

generator. rand,
/nrand48, mrand48, jrand48,

input. scan£, fscan£,
signals.

package. stdio:
mvbits: FORTRAN Military

communication/ stdipc: ftok:
system call.

stat: data returned by
system information.

ustat: get file system
extract and print xt driver

feof, clearerr, fileno: stream
stat, fstat: get file

inputjoutput package.
interprocess communication/

wait for child process to
strcmp, strncmp,! string:

jstrcpy, strncpy, strlen,
string comparison intrinsic/

/strcat, strdup, strncat,
/strncat, strcmp, strncmp,

/strrchr, strpbrk, strspn,
strncmp,/ string: strcat,

£flush: close or flush a
fopen, freopen, fdopen: open a

reposition a file pointer in a
get character or word from a

getmsg: get next message off a
fgets: get a string from a

put character or word on a
putmsg: send a message on a
puts, fputs: put a string on a
setvbuf: assign buffering to a

/feof, clearerr, fileno:
push character back into input

source. /sed script to convert
source listing from a common
source to as source. jsed
space allocation.
specification in text files.
specify FORTRAN action on
specify what to do upon
speed and terminal settings
sprintf: print formatted
sput!, sget!: access long
sqrt, dsqrt, csqrt: FORTRAN
sqrt: exponential, logarithm,
square root functions. /sqrt:
square root intrinsicj ...
srand: random number
srand: simple random-number
srand48, seed48, lcong48:/
sscanf: convert formatted
ssignal, gsignal: software
standard buffered input/output
Standard functions. /ibclr,
standard interprocess . .
stat: data returned by stat
stat, fstat: get file status.
stat system call.
statfs, fstatfs: get file
statistics.
statistics. xts:
status inquiries. ferror,
status
stdio: standard buffered
stdipc: ftok: standard .
stime: set time.
stop or terminate. wait:
strcat, strdup, strncat, .
strchr, strrchr, strpbrk,/
strcmp: 1ge, 19t, lie, lit:
strcmp, strncmp, strcpy,/
strcpy, strncpy, strlen,/
strcspn, strtok: stringj
strdup, strncat, strcmp,
stream. fclose, . • .
stream.
stream. fseek, rewind, ftell:
stream. /getchar, fgetc, getw:
stream.
stream. gets, . . •
stream. /putchar, fputc, putw:
stream.
stream.
stream. setbuf,
stream status inquiries.
stream. ungetc:

- 31 -

Permuted Index

as386.sed(1)
list(l)
as386.sed(1)
brk(2)
fspec(4)
signal(3F)
signaJ(2)
gettydefs(4)
printf(3S)
sputl(3X)
sqrt(3F)
exp(3M)
exp(3M)
sqrt(3F)
rand(3F)
rand(3C)
drand48(3C)
scanf(3S)
ssignal(3C)
stdio(3S)
mil(3F)
stdipc(3C)
stat(5)
stat(2)
stat(5)
statfs(2)
ustat(2)
xts(lM)
ferror(3S)
stat(2)
stdio(3S)
stdipc(3C)
stime(2)
wait(2)
string(3C)
string(3C)
strcmp(3F)
string(3C)
string(3C)
string(3C)
string(3C)
fclose(3S)
fopen(3S)
fseek(3S)
getc(3S)
getmsg(2)
gets(3S)
putc(3S)
putmsg(2)
puts(3S)
setbuf(3S)
£error(3S)
ungetc(3S)

Permuted Index

multiplexing. poll: STREAMS input/output
long integer and base-64 ASCII string. /164a: convert between

strcmp: 1ge, 19t, lIe, lIt: string comparison intrinsic/
convert date and time to string. /asctime, tzset:
floating-point number to string. /fcvt, gcvt: convert

gets, fgets: get a string from a stream.
len: return length of FORTRAN string. . •

puts, fputs: put a string on a stream.
strspn, strcspn, strtok: string operations. /strpbrk,

strncat, strcmp, strncmp,/ string: strcat, strdup,
number. strtod, atof: convert string to double-precision

strtol, atol, atoi: convert string to integer.
number information from a/ strip: strip symbol and line

information from a/ strip: strip symbol and line number
/strncmp, strcpy, strncpy, strlen, strchr, strrchr,j

string: strcat, strdup, strncat, strcmp, strncmp,j
/strdup, strncat, strcmp, strncmp, strcpy, strncpy,j

/strcmp, strncmp, strcpy, strncpy, strlen, strchr,/
/strlen, strchr, strrchr, strpbrk, strspn, strcspn,j

/strncpy, strlen, strchr, strrchr, strpbrk, strspn,j .
/strchr, strrchr, strpbrk, strspn, strcspn, strtok:/

to double-precision number. strtod, atof: convert string
/strpbrk, strspn, strcspn, strtok: string operations.

string to integer. strtol, atol, atoi: conv~ert
Lalloc: allocate a library structure.

Lfree: free a library structure.
and print xt driver link structure. xtd: extract
plot: graphics interface subroutines.

return location of FORTRAN substring. index: • .
sync: update super block.

interval. sleep: suspend execution for
pause: suspend process until signal.

swab: swap bytes.
swab: swap bytes.

information from/ strip: strip symbol and line number
file/ ldgetname: retrieve symbol name for common object

name for common object file symbol table entry. /symbol
object/ /compute the index of a symbol table entry of a common

ldtbread: read an indexed symbol table entry of a common/
syms: common object file symbol table format.

object/ ldtbseek: seek to the symbol table of a common
unistd: file header for symbolic constants. • . .

sdb: symbolic debugger. . . •
symbol table format. syms: common object file

sync: update super block.
Lsync: synchronize transport library.

error/ perror, ermo, sys_errlist, sys-11err: system
information. sysfs: get file system type

functions. sysi86: machine-specific
perror, errno, sys_errlist, sys-11err: system error/ .

binary search a sorted table. bsearch:
for common object file symbol table entry. /symbol name

/compute the index of a symbol table entry of a common object/

- 32 -

poll(2)
a641(3C)
strcmp(3F)
ctime(3C)
ecvt(3C)
gets(3S)
len(3F)
puts(3S)
string(3C)
string(3C)
strtod(3C)
strtol(3C)
strip(l)
strip(l)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
strtod(3C)
string(3C)
strtol(3C)
Lalloc(3N)
Lfree(3N)
xtd(lM)
plot(3X)
index(3F)
sync(2)
sleep(3C)
pause(2)
swab(3C)
swab(3C)
strip(l)
Idgetname(3X)
Idgetname(3X)
Idtbindex(3X)
Idtbread(3X)
syms(4)
Idtbseek(3X)
unistd(4)
sdb(l)
syms(4)
sync(2)
Lsync(3N)
perror(3C)
sysfs(2)
sysi86(2)
perror(3C)
bsearch(3C)
Idgetname(3X)
Idtbindex(3X)

file. /read an indexed symbol table entry of a common object
common object file symbol table format. syms:

mnttab: mounted file system table. . •
ldtbseek: seek to the symbol table of a common object file.

hdestroy: manage hash search tables. hsearch, hcreate, .
request. Laccept: accept a connect .

structure. LaUoc: allocate a library
trigonometric/ trig: sin, cos, tan, asin, acos, atan, atan2:

intrinsic function. tan, dtan: FORTRAN tangent
tan, dtan: FORTRAN tangent intrinsic function.

/dtanh: FORTRAN hyperbolic tangent intrinsic function.
hyperbolic tangent intrinsic/ tanh, dtanh: FORTRAN •

sinh, cosh, tanh: hyperbolic functions.
programs for simple lexical tasks. lex: generate

transport endpoint. Lbind: bind an address to a
endpoint. Lclose: close a transport

connection with another / Lconnect: establish a . . .
search trees. tsearch, tfind, tdelete, twalk: manage binary
directory: opendir, readdir, telldir, seekdir, rewinddir,/

temporary file. tmpnam, tempnam: create a name for a
tmpfile: create a temporary file.

tempnam: create a name for a temporary file. tmpnam,
terminals. term: conventional names for

term: format of compiled term file. •........
file. term: format of compiled term

terminfo: terminal capability data base.
generate file name for terminal. ctermid:

libwindows: windowing terminal function library.
host control of windowing terminal. jagent:
dial: establish an out-going terminal line connectiC!.n.

optimization package. curses: terminal screen handling and
getty. gettydefs: speed and terminal settings used by

isatty: find name of a terminal. ttyname,
between host and windowing terminal under. /protocol used

downloader for the 5620 DMD terminal. wtinit: object
term: conventional names for terminals.

abort: terminate FORTRAN program.
exit, _exit: terminate process.

for child process to stop or terminate. wait: wait
tic: terminfo compiler.

infocmp: compare or print out terminfo deSCriptions.
data base. terminfo: terminal capability
message. Lerror: produce error

isnan: isnand, isnanf: test for floating point NaN/
fspec: format specification in text files. •.......

plock: lock process, text, or data in memory.
binary search trees. tsearch, tfind, tdelete, twalk: manage

structure. Lfree: free a library
protocol-specific service/ Lgetinfo: get

state. Lgetstate: get the current
tic: terminfo compiler.

mclock: return FORTRAN time accounting.
time: get time.

- 33 -

Permuted Index

Idtbread(3X)
syms(4)
mnttab(4)
Idtbseek(3X)
hsearch(3C)
Laccept(3N)
Lalloc(3N)
trig(3M)
tan(3F)
tan(3F)
tanh(3F)
tanh(3F)
sinh(3M)
lex(1)
Lbind(3N)
Lclose(3N)
Lconnect(3N)
tsearch(3C)
directory(3X)
tmpnam(3S)
tmpfile(3S)
tmpnam(3S)
term(5)
term(4)
term(4)
terminfo(4)
ctermid(3S)
libwindows(3X)
jagent(5)
dial(3C)
curses(3X)
gettydefs(4)
ttyname(3C)
layers(5)
wtinit(lM)
term(5)
abort(3F)
exit(2)
wait(2)
tic(lM)
infocmp(lM)
terminfo(4)
Lerror(3N)
isnan(3C)
fspec(4)
plock(2)
tsearch(3C)
Lfree(3N)
Lgetinfo(3N)
Lgetstate(3N)
tic(lM)
mc1ock(3F)
time(2)

Permuted Index

profil: execution time profile.
up an environment at login time. profile: setting

stime: set time.
time: get time.

tzset: convert date and time to string. /asctime,
clock: report CPU time used.

timezone: set default system time zone.
process times. times: get process and child

get process and child process times. times:
file access and modification times. utime: set

time zone. timezone: set default system
request. Uisten: listen for a connect

event on a transport/ Uook: look at the current
file. tmpfile: create a temporary

for a temporary file. tmpnam, tempnam: create a name
/tolower, _toupper, _tolower, toascii: translate characters.

popen, pclose: initiate pipe to/from a process.
/toupper, tolower, _toupper, _tolower, toascii: translate/

toascii:/ conv: toupper, tolower, _toupper, _tolower,
endpoint. Lopen: establish a transport

tsort: topological sort.
a transport endpOint. Loptmgmt: manage options for

conv: toupper, tolower, _toupper, _tolower, toascii:/
_tolower, toascii:/ conv: toupper, tolower, _toupper,

ptrace: process trace.
and print xt driver packet traces. xtt: extract

sign, isign, dsign: FORTRAN transfer-of-sign intrinsic/
/ _toupper, _tolower, toascii: translate characters.
Lbind: bind an address to a transport endpoint.

Lclose: c;lose a transport endpoint.
look at the current event on a transport endpoint. Uook:

Lopen: establish a transport endpoint.
/manage options for a transport endpoint.

Lunbind: disable a transport endpoint.
Lsync: synchronize transport library. .

a connection with another transport user. /establish
expedited data sent over a/ Lrcv: receive data or ..

confirmation from a connect/ Lrcvconnect: receive the
from disconnect. Lrcvdis: retrieve information

of an orderly release/ Lrcvrel: acknowledge receipt
unit. Lrcvudata: receive a data

data error indication. Lrcvuderr: receive a unit
ftw: walk a file tree.

twalk: manage binary search trees. /tfind, tdelete,
acos, atan, atan2:/ trig: sin, cos, tan, asin,

tan, asin, acos, atan, atan2: trigonometric functions. /cos,
twalk: manage binary search/ tsearch, tfind, tdelete,

data over a connection. Lsnd: send data or expedited
disconnect request. Lsnddis: send user-initiated .

release. Lsndrel: initiate an orderly
Lsndudata: send a data unit.
tsort: topological sort.

library. Lsync: synchronize transport

- 34 -

profil(2)
profile(4)
stime(2)
time(2)
ctime(3C)
clock(3C)
timezone(4)
times(2)
times(2)
utime(2)
timezone(4)
Uisten(3N)
Uook(3N)
tmpfile(3S)
tmpnam(3S)
conv(3C)
popen(3S)
conv(3C)
conv(3C)
Lopen(3N)
tsort(l)
Loptmgmt(3N)
conv(3C)
conv(3C)
ptrace(2)
xtt(lM)
sign(3F)
conv(3C)
Lbind(3N)
Lclose(3N)
Uook(3N)
Lopen(3N)
Loptmgmt(3N)
Lunbind(3N)
Lsync(3N)
Lconnect(3N)
Lrcv(3N)
Lrcvconnect(3N)
Lrcvdis(3N)
Lrcvrel(3N)
Lrcvudata(3N)
Lrcvuderr(3N)
ftw(3C)
tsearch(3C)
trig(3M)
trig(3M)
tsearch(3C)
Lsnd(3N)
Lsnddis(3N)
Lsndrel(3N)
Lsndudata(3N)
tsort(l)
Lsync(3N)

a terminal.
utmp file of the current/

endpoint.
tsearch, tfind, tdelete,

ichar, char: explicit FORTRAN
sysfs: get file system

types.
types: primitive system data
/localtime, gmtime, asctime,

control.
getpw: get name from

limits.
creation mask.

UNIX system.
file. unget:

an sees file.
into input stream.

/seed48, lcong48: generate
mktemp: make a

symbolic constants.
t-rcvuderr: receive a

t-rcvudata: receive a data
Lsndudata: send a data

entry.
umount:

of programs. make: maintain,
lfind: linear search and

sync:
setuid, setgid: set

character login name of the
/ getgid, getegid: get real

environ:
ulimit: get and set

logname: return login name of
/get real user, effective
with another transport

the utmp file of the current
request. Lsnddis: send

statistics.
modification times.

utmp, wtmp:
endutent, utmpname: access

tty slot: find the slot in the
entry formats.

/pututline, setutent, endutent,

ttyname, isatty: find name of
tty slot: find the slot in the .
Lunbind: disable a transport
twalk: manage binary search/
type conversion. / dcmplx,
type information.
types: primitive system data
types
tzset: convert date and time/
uadmin: administrative
UID.
ulimit: get and set user
umask: set and get file
umount: unmount a file system.
uname: get name of current . .
undo a previous get of an sees
unget: undo a previous get of
ungetc: push character back
uniformly distributed/
unique file name.
unistd: file header for •
unit data error indication.
unit.
unit.
unlink: remove directory
unmount a file system.
update, and regenerate groups
update. lsearch,
update super block.
user and group IDs.
user. cuserid: get •
user, effective user, real/
user environment.
user limits.
user.
user, real group, and/
user. /establish a connection
user. /find the slot in .
user-initiated disconnect
ustat: get file system
utime: set file access and
utmp and wtmp entry formats.
utmp file entry. /setutent,
utmp file of the current user.
utmp, wtmp: utmp and wtmp
utmpname: access utmp file/
val: validate sees file.

val: validate sees file.
abs: return integer absolute value. •

cabs, zabs: FORTRAN absolute value. abs, iabs, dabs,
getenv: return value for environment name.

ceiling, remainder, absolute value functions. /fabs: floor,
putenv: change or add value to environment.

- 35 -

Permuted Index

ttyname(3C)
ttyslot(3C)
Lunbind(3N)
tsearch(3C)
ftype(3F)
sysfs(2)
types(5)
types(5)
ctime(3C)
uadmin(2)
getpw(3C)
ulimit(2)
umask(2)
umount(2)
uname(2)
unget(l)
unget(l)
ungetc(3S)
drand48(3C)
mktemp(3C)
unistd(4)
t-rcvuderr(3N)
t-rcvudata(3N)
Lsndudata(3N)
unlink(2)
umount(2)
make(l)
Isearch(3C)
sync(2)
setuid(2)
cuserid(3S)
getuid(2)
environ(5)
ulimit(2)
logname(3X)
getuid(2)
Lconnect(3N)
ttyslot(3C)
Lsnddis(3N)
ustat(2)
utime(2)
utmp(4)
getut(3C)
ttyslot(3C)
utmp(4)
getut(3C)
val(l)
val(l)
abs(3C)
abs(3F)
getenv(3C)
floor(3M)
putenv(3C)

Permuted Index

values. values: machine-dependent
values: machine-dependent values. •.••...

/print formatted output of a varargs argument list. .
argument list. varargs: handle variable

varargs: handle variable argument list.
return FORTRAN environment variable. getenv: .

vc: version control. .
option letter from argument vector. getopt: get

assert: verify program assertion.
vc: version control.

get: get a version of an sees file. .
sccsdiff: compare two versions of an sees file.

formatted output off vprintf, vfprintf, vsprintf: print
file system: format of system volume. fs:
print formatted output of a/ vprintf, vfprintf, vsprintf:
output off vprintf, vfprintf, vsprintf: print formatted

or terminate. wait: wait for child process to stop
to stop or terminate. wait: wait for child process

ftw: walk a file tree.
what: identify sees files. .

signal. signal: specify what to do upon receipt of a
library. libwindows: windowing terminal function

jagent: host control of windowing terminal.
/protocol used between host and windowing terminal under.

chdir: change working directory.
get path name of current working directory. getcwd:

write: write on a file. . . • . .
putpwent: write password file entry.

write: write on a file.
open: open for reading or writing. •• . . . •

the 5620 DMD terminal. wtinit: object downloader for
utmp, wtmp: utmp and wtmp entry formats.

formats. utmp, wtmp: utmp and wtmp entry
FORTRAN/ bool: and, or, xor, not, lshift, rshift:

xtd: extract and print xt driver link structure.
xtt: extract and print xt driver packet traces.
xts: extract and print xt driver statistics.

channels protocol used by xt(7) driver. /multiplexed
driver link structure. xtd: extract and print xt •

protocol used by xt(7)/ xtproto: multiplexed channels
driver statistics. xts: extract and print xt

driver packet traces. xtt: extract and print xt
bessel: jO, jl, jn, yO, yl, yn: Bessel functions.

bessel: jO, j1, jn, yO, yl, yn: Bessel functions.
compiler-compiler. yacc: yet another • . • • .

bessel: jO, jl, jn, yO, yl, yn: Bessel functions.
abs, iabs, dabs, cabs, zabs: FORTRAN absolute value.

set default system time zone. timezone:

- 36 -

values(5)
values(5)
vprintf(3S)
varargs(5)
varargs(5)
getenv(3F)
vc(l)
getopt(3C)
assert(3X)
vc(l)
get(l)
sccsdiff(1)
vprintf(3S)
fs(4)
vprintf(3S)
vprintf(3S)
wait(2)
wait(2)
ftw(3C)
what(l)
signal(2)
libwindows(3X)
jagent(5)
layers(5)
chdir(2)
getcwd(3C)
write(2)
putpwent(3C)
write(2)
open(2)
wtinit(IM)
utmp(4)
utmp(4)
bool(3F)
xtd(IM)
xtt(IM)
xts(IM)
xtproto(5)
xtd(IM)
xtproto(5)
xts(IM)
xtt(IM)
bessel(3M)
bessel(3M)
yacc(l)
bessel(3M)
abs(3F)
timezone(4)

INTRO(l) INTRO(l)

NAME
intro - introduction to programming commands

DESCRIPTION
This section describes, in alphabetical order, commands available for your
computer. The top of each page indicates the utilities package to which the
command belongs. The packages are:

Advanced C Utilities
AT&T Windowing Utilities
C Programming Language Utilities
Directory and File Management Utilities
Extended Software Generation System Utilities
Software Generation System Utilitites
Source Code Control System Utilities
Terminal Information Utilities

COMMAND SYNTAX
Unless otherwise noted, the commands described accept options and other
arguments according to the following syntax:

name [option(s)] [cmdarg(s)]

where:

name

option

is the name of an executable file

is - noargletter(s) or
- argletter<>optarg

where:

noargletter is a single letter representing an option without an
option-argument

argletter is a single letter representing an option requiring an
option-argument

<> is optional white space

optarg is an option-argument (character string) satisfying the
preceding argletter.

cmdarg is a path name (or other command argument) not beginning
with "_", or "_" by itself indicating the standard input.

Throughout the manual pages there are references to TMPDIR, BINDIR,
INCDIR, LIBDIR, and LLIBDIR. These represent directory names whose
value is specified on each manual page as necessary. For example, TMPDIR
might refer to jtmp or jusrjtmp. These are not environment variables and
cannot be set. [There is also an environment variable called TMPDIR
which can be set. See tmpnam(3S).]

- 1 -

INTRO(l) INTRO(l)

SEE ALSO
exit(2), wait(2), getopt(3C).
getopts(l) in the User's Reference Manual,

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
"normal" termination) one supplied by the program [see wait(2) and
exit(2)]. The former byte is 0 for normal termination; the latter is cus
tomarily 0 for successful execution and non-zero to indicate troubles such as
erroneous parameters, or bad or inaccessible data. It is called variously
"exit code", "exit status", or "return code", and is described only where
special conventions are involved.

WARNINGS
Some commands produce unexpected results when processing files contain
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator) within a line.

- 2 -

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-fflag[flag-val]] [-dflag[flag-val]]
[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files

DESCRIPTION
The admin command is used to create new sees files and change parame
ters of existing ones. Arguments to admin, which may appear in any order,
consist of keyletter arguments, which begin with -, and named files (note
that sees file names must begin with the characters s.). If a named file
does not exist, it is created, and its parameters are initialized according to
the specified keyletter arguments. Parameters not initialized by a keyletter
argument are assigned a default value. If a named file does exist, parame
ters corresponding to specified keyletter arguments are changed, and other
parameters are left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be processed.
Again, non-sees files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments apply
independently to each named file.

-n

-i[name]

-rrel

-t[name]

This keyletter indicates that a new sees file is to be
created.

The name of a file from which the text for a new sees
file is to be taken. The text constitutes the first delta
of the file (see -r keyletter for delta numbering
scheme). If the i key letter is used, but the file name
is omitted, the text is obtained by reading the stan
dard input until an end-of-file is encountered. If this
keyletter is omitted, then the sees file is created
empty. Only one sees file may be created by an
admin command on which the i keyletter is supplied.
Using a single admin to create two or more sees files
requires that they be created empty (no -i keyletter).
Note that the -i keyletter implies the -n keyletter.

The release into which the initial delta is inserted.
This keyletter may be used only if the -i keyletter is
also used. If the -r keyletter is not used, the initial
delta is inserted into release 1. The level of the initial
delta is always 1 (by default initial deltas are named
1.1).

The name of a file from which descriptive text for the
sees file is to be· taken. If the -t keyletter is used

- 1 -

ADMIN(l)

-fflag

(Source Code Control System Utilities) ADMIN(l)

b

cceil

ffloor

dSID

i[str]

llist

<list>

and admin is creating a new sees file (the -n and/or
-i keyletters also used), the descriptive text file name
must also be supplied. In the case of existing sees
files: (1) a -t keyletter without a file name causes
removal of descriptive text (if any) currently in the
sees file, and (2) a -t key letter with a file name
causes text (if any) in the named file to replace the
descriptive text (if any) currently in the sees file.

This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the sees file. Several f
keyletters may be supplied on a single admin com
mand line. The allowable flags and their values are:

Allows use of the -b keyletter on a get(1) command
to create branch deltas.

The highest release (Le., "ceiling"), a number greater
than 0 but less than or equal to 9999, which may be
retrieved by a get(1) command for editing. The
default value for an unspecified c flag is 9999.

The lowest release (Le., "floor"), a number greater
than 0 but less than 9999, which may be retrieved by
a get(1) command for editing. The default value for
an unspecified f flag is 1.

The default delta number (SIDs+l) to be used by a get(l)
command.

Causes the "No id keywords (ge6)" message issued
by get(1) or delta(1) to be treated as a fatal error. In
the absence of this flag, the message is only a warn
ing. The message is issued if no sees identification
keywords [see get(1)] are found in the text retrieved or
stored in the sees file. If a value is supplied, the
keywords must exactly match the given string, how
ever the string must contain a keyword, and no
embedded new lines.

Allows concurrent get(1) commands for editing on the
same SID of an sees file. This allows multiple con
current updates to the same version of the sees file.

A list of releases to which deltas can no longer be
made (get -e against one of these "locked" releases
fails). The list has the following syntax:

::= <range> I <list> , <range>
<range> -::= I a

The character a in the list is equivalent to specifying
all releases for the named sees file.

- 2 -

AOMIN(l) (Source Code Control System Utilities) ADMIN(l)

n

qtext

mmod

ttype

vpgm

-dflag

llist

-alogin

Causes delta(l) to create a "null" delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as "anchor points" so that branch deltas
may later be created from them. The absence of this
flag causes skipped
releases to be non-existent in the sees file, preventing
branch deltas from being created from them in the
future.

User-definable text substituted for all occurrences of
the %Q% keyword in sees file text retrieved by
get(l).

Mod ule name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by get(l). If the m flag is not specified, the
value assigned is the name of the sees file with the
leading s. removed.

Type of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text
retrieved by get(l).

Causes delta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta. The
optional value specifies the name of an MR number
validity checking program [see delta(l)]. (If this flag
is set when creating an sees file, the m keyletter
must also be used even if its value is null.)

Causes removal (deletion) of the specified flag from
an sees file. The -d keyletter may be specified only
when processing existing sees files. Several -d
keyletters may be supplied on a single admin com
mand. See the -£ keyletter for allowable flag names.

A list of releases to be "unlocked". See the -£
keyletter for a description of the I flag and the syntax
of a list.

A login name, or numerical UNIX system group 10, to
be added to the list of users which may make deltas
(changes) to the sees file. A group 10 is equivalent
to specifying all login names common to that group
10. Several a keyletters may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simultane
ously. If the list of users is empty, then anyone may
add deltas. If login or group 10 is preceded by a !
they are to be denied permission to make deltas.

- 3 -

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

-elogin

-m[mrlistJ

-y[commentJ

-h

-z

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on a
single admin command line.

The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason for creating
the initial delta in a manner identical to delta(l). The
v flag must be set and the MR numbers are validated
if the v flag has a value (the name of an MR number
validation program). Diagnostics will occur if the v
flag is not set or MR validation fails.

The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical to
that of delta(l). Omission of the -y keyletter results
in a default comment line being inserted in the form:

date and time created YY /MM/DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -n
keyletters are specified (Le., a new sees file is being
created).

Causes admin to check the structure of the sees file
[see sccsfile(5)], and to compare a newly computed
check-sum (the sum of all the characters in the sees
file except those in the first line) with the check-sum
that is stored in the first line of the sces file.
Appropriate error diagnostics are produced,

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

The sees file check-sum is recomputed and stored in
the first line of the sces file (see -h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

The last component of all sees file names must be of the form s.file
name. New sees files are given mode 444 [see chmod(l)]. Write per
mission in the pertinent directory is, of course, required to create a file.
All writing done by admin is to a temporary x-file, called x.file-name,
[see get(l)], created with mode 444 if the admin command is creating a
new SCCS file, or with the same mode as the sccs file if it exists.
After successful execution of admin, the sees file is removed (if it
exists), and the x-file is renamed with the name of the sees file. This
ensures that changes are made to the sccs file only if no errors
occurred.

- 4 -

ADMIN(l) (Source Code Control System Utilities) ADMIN(l)

FILES

It is recommended that directories containing sees files be mode 755
and that sees files themselves be mode 444. The mode of the direc
tories allows only the owner to modify sees files contained in the
directories. The mode of the sees files prevents any modification at
all except by sees commands.

If it should be necessary to patch an sees file for any reason, the
mode may be changed to 644 by the owner allowing use of ed(l).
Care must be taken! The edited file should always be processed by an
admin -h to check for corruption followed by an admin -z to gen
erate a proper check-sum. Another admin -h is recommended to
ensure the sees file is valid.

The admin command also makes use of a transient lock file (called
z.file-name), which is used to prevent simultaneous updates to the
sees file by different users. See get(l) for further information.

g-file Existed before the execution of delta; removed after com
pletion of delta.

p-file Existed before the execution of delta; may exist after com
pletion of delta.

q-file Created during the execution of delta; removed after com
pletion of delta.

x-file Created during the execution of delta; renamed to sees file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta; removed after com
pletion of delta.

jusrjbinjbdiff Program to compute differences between the "gotten" file
and the g-file.

SEE ALSO
delta(l), get(l), prs(l), what(l), sccsfile(4).
ed(l), help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations.

- 5 -

AR(l) (Directory and F~le Management Utilities) AR(l)

NAME
ar - archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile [name] ...

DESCRIPTION
The ar command maintains groups of files combined into a single archive
file. Its main use is to create and update library files as used by the link
editor. It can be used, though, for any similar purpose. The magic string
and the file headers used by ar consist of printable ASCII characters. If an
archive is composed of printable files, the entire archive is printable.
Archives of text files created by ar are portable between implementations of
System V.

When ar creates an archive, it creates headers in a format that is portable
across all machines. The portable archive format and structure is described
in detail in ar(4). The archive symbol table [described in ar(4)] is used by
the link editor [ld(l)] to effect multiple passes over libraries of object files in
an efficient manner. An archive symbol table is only created and main
tained by ar when there is at least one object file in the archive. The
archive symbol table is in a specially named file which is always the first
file in the archive. This file is never mentioned nor is accessible to the user.
Whenever the ar(l) command is used to create or update the contents of
such an archive, the symbol table is rebuilt. The s option, described in the
following, text will force the symbol table to be rebuilt.

Unlike command options, the command key is a required part of ar's com
mand line. The key (which may begin with a -) is formed with one of the
following letters: drqtpmx. Arguments to the key, alternatively, are made
with one of more of the following set: vuaibcls. Posname is an archive
member name used as a reference point in positioning other fiies in the
archive. Afile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are as follows:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character
u is used with r, then only those files with dates of modification
later than the archive files are replaced. If an optional positioning
character from the set abi is used, then the posname argument must
be present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. This
option is useful to avoid quadratic behavior when creating a large
archive piece-by-piece. Unchecked, the file may grow exponentially
up to the second degree.

Print a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

- 1 -

AR(l)

FILES

(Directory and File Management Utilities) AR(l)

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive file.

The meanings of the key arguments are as follows:

v Give a verbose file-by-file description of the making of a new
archive file from the old archive and the constituent files. When
used with t, give a long listing of all information about the files.
When used with x, precede each file with a name.

c Suppress the message that is produced by default when afile is
created.

1 Place temporary files in the local (current working) directory rather
than in the default temporary directory, TMPDIR.

s Force the regeneration of the archive symbol table even if ar(l) is
not invoked with a command which will modify the archive con
tents. This command is useful to restore the archive symbol table
after the strip(l) command has been used on the archive.

$ TMPDIRj * temporary files

$TMPDIR is usually jusrjtmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

SEE ALSO

NOTES

ld(l), lorder(l), strip(l), tmpnam(3S), a.out(4), ar(4) in the Programmer's
Reference Manual.

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

- 2 -

AS(l) (Software Generation System Utilities) AS(l)

NAME
as - common assembler

SYNOPSIS
as [options] file name

DESCRIPTION

FILES

The as command assembles the named file. The following flags may be
specified in any order:

-0 objfile Put the output of the assembly in objfile. By default, the output
file name is formed by removing the .s suffix, if there is one, from
the input file name and appending a .0 suffix.

-n Turn off long/short address optimization. By default, address
optimization takes place.

-m Run the m4 macro processor on the input to the assembler.

-R Remove (unlink) the input file after assembly is completed.

-dl Do not produce line number information in the object file.

-MI (80286 only) Assemble the program using the large memory
model. See Programming Procedures for UNIX System V /286.

-Ms (80286 only) Assemble the program using the small memory
model. This model is used by default when no memory model is
specified. See Programming Procedures for UNIX System V /286.

-V Write the version number of the assembler being run on the stan
dard error output.

-y [md},dir
Find the m4 preprocessor (m) and/or the file of predefined mac
ros (d) in directory dir instead of in the customary place.

TMPDIR/* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

SEE ALSO
cc(l), Id(l), m4(1), nm(l), strip(l), tmpnam(3S), a.out(4)

WARNING

BUGS

If the -m (m4 macro processor invocation) option is used, keywords for m4
[see m4(1)] cannot be used as symbols (variables, functions, labels) in the
input file since m4 cannot determine which are assembler symbols and
which are real m4 macros.

The .align assembler directive may not work in the .text section when
optimization is performed.

CAVEATS
Arithmetic expressions may only have one forward referenced symbol per
expression.

- 1 -

AS(l)

NOTES

(Software Generation System Utilities) AS(l)

Wherever possible, the assembler should be accessed through a compilation
system interface program [such as cc(l)].

- 2 -

AS386.SED(1) AS386.SED(1)

NAME
as386.sed - sed script to convert Intel ASM386 source to as source

SYNOPSIS
sed -f as386.sed < input-file >output-file

DESCRIPTION
The as386.sed sed script is used to convert an Intel ASM386 assembler
source file to a form acceptable to the UNIX system as assembler.

The sed script does not attempt to convert 100% of the ASM386 source
code; it cannot handle the following constructs:

Macros.

Strange segmentation schemes.

Data declarations beyond the simple db/dw /dd/dp with simple
constant init list.

Quoted ASCII strings.

Structure or record template addressing (Le., [ebp].foo).

Complex expressions (parentheses and operators other than simple
+ and -).

Immediate operands that are not simple constants.

Immediate operands with automatically typed memory operands.

Source files with opcodes in upper case.

Source files with continued lines.

The sed script will preserve all comments, it will also transform certain
ASM386 directives into comments (like EXTERN, SEGMENT, etc.) Since it
translates the ASM386 NAME directive into the .file directive, it is best to
put the NAME directive as the first line of the source file.

EXAMPLES
The following command will read an uppercase ASM386 formatted file
named misc.asm and produce a UNIX system as formatted file named misc.s.

tr "[A-Z]" "[a-z]" <misc.asm I sed -f as386.sed >misc.s

SEE ALSO
sed(1)

BUGS
Except for the limitations mentioned above, there are no known bugs.

- 1 -

CB(l) (Advanced C Utilities) CB(l)

NAME
cb - C program beautifier

SYNOPSIS
cb [-s] [-j] [-I leng] [file ...]

DESCRIPTION
The cb comand reads C programs either from its arguments or from the
standard input, and writes them on the standard output with spacing and
indentation that display the structure of the code. Under default options, cb
preserves all user new-lines.

The cb command accepts the following options.

-s

-j

-Ileng

Canonicalizes the code to the style of Kernighan and Ritchie in
The C Programming Language.

Causes split lines to be put back together.

Causes cb to split lines that are longer than leng.

SEE ALSO
cc(1).

BUGS

The C Programming Language. Prentice-Hall, 1978.

Punctuation that is hidden in preprocessor statements will cause indentation
errors.

- 1 -

CC(l) (C Programming Language Utilities) CC(l)

NAME
cc - C compiler

SYNOPSIS
ec [options] files

DESCRIPTION
The cc command is the interface to the C Compilation System. The compi
lation tools consist of a preprocessor, compiler, optimizer, assembler, and
link editor. The cc command processes the supplied options and then exe
cutes the various tools with the proper arguments. The cc command accepts
several types of files as arguments.

Files whose names end with .e are taken to be C source programs and may
be preprocessed, compiled, optimized, assembled and link edited. The com
pilation process may be stopped after the completion of any pass if the
appropriate options are supplied. If the compilation process runs through
the assembler, then an object program is produced and is left in the file
whose name is that of the source with .0 substituted for .e. However, the .0

file is normally deleted if a single C program is compiled and then immedi
ately link edited. In the same way, files whose names end in .s are taken to
be assembly source programs and may be assembled and link edited; and
files whose names end in .i are taken to be preprocessed C source programs
and may be compiled, optimized, assembled, and link edited. Files whose
names do not end in .e, .s, or .i are handed to the link editor.

Since the cc command usually creates files in the current directory during
the compilation process, it is necessary to run the cc command in a directory
in which a file can be created.

The following options are interpreted by cc: .

-c Suppress the link editing phase of the compilation and do not
remove any produced object files.

-ds Do not generate symbol attribute information for the symbolic
debugger.

-dl Do not generate symbolic debugging line number information. This
and the above flag may be used in conjunction as -dsl (-dsl is the
default unless the -g flag is given).

-g Cause the compiler to generate additional information needed for
the use of sdb(l).

-MI (80286 only) Compile the program using the large memory model.
See Programming Procedures for UNIX System V /286 for details.

-Ms (80286 only) Compile the program using the small memory model.
This memory model is used by default when no memory model is
specified. See Programming Procedures for UNIX System V /286 for
details.

-0 outfile
Produce an output object file by the name outfile. The name of the
default file is a.out. This is a link editor option.

- 1 -

CC(l) (C Programming Language Utilities) CC(l)

-p Arrange for the compiler to produce code that counts the number of
times each routine is called; also, if link editing takes place, profiled
versions of libc.a and libm.a (with -1m option) are linked and
monitor(3C) is automatically called. A mon.out file will then be
produced at normal termination of execution of the object program.
An execution profile can then be generated by use of prof(1).

-qp Arrange for profiled. code to be produced where the p argument
produces identical results to the -p option [allows profiling with
prof(l)].

-Bstring
-t[p02al]

These options will be removed in the next release. Use the - y
option.

-E Run only cpp(l) on the named C programs, and send the result to
the standard output.

-F Cause the compiler to generate code for single precision arithmetic
whenever an expression contains float variables and no doubles.

-H Print out on stderr the path name of each file included during the
current compilation.

-0 Do compilation phase optimization. This option will not have any
effect on .s files.

-p Run only cpp(l) on the named C programs and leave the result in
corresponding files suffixed.i. This option is passed to cpp(l).

-S Compile and do not assemble the named C programs, and leave the
assembler-language output in corresponding files suffixed .s.

-v Print the version of the compiler, optimizer, assembler and/or link
editor that is invoked.

-Wc,argt[,arg2 ...]
Hand off the argument[s] argi to pass c where c is one of [p02al]
indicating the preprocessor, compiler, optimizer, assembler, or link
editor, respectively. For example: -Wa,-m passes -m to the assem
bler.

- Y [p02aISILU],dirname
Specify a new path name, dirname, for the locations of the tools and
directories designated in the first argument. [p02aISILU] represents:

p preprocessor
o compiler
2 optimizer
a assembler
1 link editor
S directory containing the start-up routines
I default include directory searched by cpp(l)
L first default library directory searched by Id(l)
U second default library directory searched by Id(l)

- 2 -

CC(l)

FILES

(C Programming Language Utilities) CC(l)

If the location of a tool is being specified, then the new path name
for the tool will be dirname / tool. If more than one - Y option is
applied to anyone tool or directory, then the last occurrence holds.

The cc command also recognizes -C, -D, -H, -I and -U and passes these
options and their arguments directly to the preprocessor without using the
-W option. Similarly, the cc command recognizes -a, -1, -m, -0, -r, -s, -t,
-u, -x, -z, -L, -M and -v and passes these options and their arguments
directly to the loader. See the manual pages for cpp(l) and ld(l) for
descriptions.

Other arguments are taken to be C compatible object programs, typically
produced by an earlier cc run, or perhaps libraries of C compatible routines
and are passed directly to the link editor. These programs, together with
the results of any compilations specified, are link edited (in the order given)
to produce an executable program with name a.out unless the -0 option of
the link editor is used.

If the cc command is put in a file prefixcc the prefix will be parsed off the
command and used to call the tools, i.e., prefixtool. For example, OLDcc
will call OLDcpp, OLDcomp, OLDoptim, OLDas, and OLDld and will link
OLDcrtl.o. Therefore, one MUST be careful when moving the cc command
around. The prefix will apply to the preprocessor, compiler, optimizer,
assembler, link editor, and the start-up routines.

The C language standard was extended to allow arbitrary length variable
names. The option pair "-Wp,-T -WO,-XT" will cause cc to truncate arbi
trary length variable names.

file.c
fiie.i
file. 0

file.s
a.out
LIBDIR/*crtl.o
LIBDIR/ <model> /*crtl.o

LIBDIR/ crtn.o
LIBDIR/ <model> / crtn.o

TMPDIR/*
LIBDIR/cpp
LIBDIR/ comp
LIBDIR/optim
BINDIR/as
BINDIR/ld
LIBDIR/libc.a
LIBDIR/ <model> /libc.a

LIBDIR/libc-s.a

C source file
preprocessed C source me
object file
assembly language file
link edited output
start-up routine
start-up routine (80286 only; model is either
small or large)
start-up routine
start-up routine (80286 only; model is either
small or large)
temporary files
preprocessor, cpp(l)
compiler
optimizer
assembler, as(l)
link editor, ld(l)
standard C library
standard C library (80286 only; model is either
small or large)
standard C shared library

- 3 -

CC(l) (C Programming Language Utilities) CC(l)

LIBDIRj <model> jlib<:-s.a standard C shared library (80286 only; model is
large)

LIBDIR is usually jlib
LIBDIRj<model> is usually jlib (80286 only; model is either small or large)
BINDIR is usually jbin
TMPDIR is usually jusrjtmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

SEE ALSO
as(l), ld(l), cpp(l), gencc(lM), lintel), prof(l), sdb(l), tmpnam(3S).
Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

DIAGNOSTICS

NOTES
The diagnostics produced by the C compiler are sometimes cryptic.

By default, the return value from a compiled C program is completely ran
dom. The only two guaranteed ways to return a specific value is to expli
citly call exit(2) or to leave the function mainO with a "return expression;"
construct.

- 4 -

CCOFF(l) CCOFF(l)

NAME
ccoff - convert a COFF file

SYNOPSIS
ccoff [-r] [-v] file .. ,

DESCRIPTION
The ceo!! command converts a COFF file by byte-swapping all multi-byte
integers in the file. Thus, if the COFF file has been built by a cross com
piler running on a big-endian development machine (Motorola 68000, etc.),
ccoff will convert the file to a format suitable for running on the target
(80386) machine. The ccoff command will convert relocated executables,
non-relocated objects, and archives (libraries). The -r flag performs the
reverse conversion, so that a file that has already been run through ceo!! can
be restored to its original state; or a file that has been built on a target
machine can be manipulated on the development machine. The -v flag
causes ceo!! to operate verbosely.

SEE ALSO
convert(l)

- 1 -

CDC(l) (Source Code Control System Utilities) CDC(l)

NAME
cdc - change the delta commentary of an sces delta

SYNOPSIS
cdc -rSID [-m[mrlist]] [-y[comment]] files

DESCRIPTION
The cdc command changes the delta commentary, for the SID (SeeS IDentif
ication string) specified by the -r keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and com
ment information normally specified via the delta(l) command (-m and -y
keyletters).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SeCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read (see WARNINGS)
and each line of the standard input is taken to be the name of an sces file
to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter argu
ments and file names.

All the described keyletter arguments apply independently to each named
file:

-rSID

-mmrlist

Used to specify the sees IDentification (SID) string of
a delta for which the delta commentary is to be
changed.

If the secs file has the v flag set [see admin(l)] then a
list of MR numbers to be added and/or deleted in the
delta commentary of the SID specified by the -r
keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta(l). In order to delete an MR,
precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a
"comment" line. A list of all deleted MRs is placed in
the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see
-y keyletter).

- 1 -

CDC(l) (Source Code Control System Utilities) CDC(l)

-y[commentj

MRs in a list are separated by blanks and/or tab char
acters. An unescaped new-line character terminates
the MR list.

Note that if the v flag has a value [see admin(1)], it is
taken to be the name of a program (or shell pro
cedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates
and the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s) already
existing for the delta specified by the -r keyletter.
The previous comments are kept and preceded by a
comment line stating that they were changed. A null
comment has no effect.

If -y is not specified and the standard input is a ter
minal, the prompt comments? is issued on the stan
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An un escaped new-line character terminates the com
ment text.

Simply stated, the keyletter arguments are either (1) if you made the delta,
you can change its delta commentary; or (2) if you own the file and direc
tory, you can modify the delta commentary.

EXAMPLES
cdc -r1.6 -m "bI78-12345 !bI77-54321 bI79-00001" -ytrouble s.file

adds b178-12345 and b179-00001 to the MR list, removes b177-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc -r1.6 s.file
MRs? !bI77-54321 b178-12345 b179-00001
comments? trouble

does the same thing.

WARNINGS

FILES

If sces file names are supplied to the cdc command via the standard input
(- on the command line), then the -m and -y keyletters must also be used.

x-file [see delta(1)]
z-file [see delta(1)]

SEE ALSO
admin(1), delta(1), get(1), prs(1), sccsfile(4).
help(1) in the User's Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

- 2 -

CFLOW(l) (Advanced C Utilities) CFLOW(l)

NAME
cflow - generate C flowgraph

SYNOPSIS
cflow [-r] [-ix] [-L] [-dnum] files

DESCRIPTION
The cflow command analyzes a collection of C, yacc, lex, assembler, and
object files and attempts to build a graph charting the external references.
Files suffixed with 0y, .I, and oC are yacced, lexed, and C-preprocessed as
appropriate. The results of the preprocessed files, and files suffixed with oi,
are then run through the first pass of lint(l). Files suffixed with oS are
assembled. Assembled files, and files suffixed with 00, have information
extracted from their symbol tables. The results are collected and turned into
a graph of external references which is displayed upon the standard output.

Each line of output begins with a reference number, followed by a suitable
number of tabs indicating the level, then the name of the global symbol fol
lowed by a colon and its definition. Normally only function names that do
not begin with an underscore are listed (see the -i options below). For
information extracted from C source, the definition consists of an abstract
type declaration (e.g., char *), and, delimited by angle brackets, the name of
the source file and the line number where the definition was found. Defini
tions extracted from object files indicate the file name and location counter
under which the symbol appeared (e.g., text). Leading underscores in C
style external names are deleted.

Once a definition of a name has been printed, subsequent references to that
name contain only the reference number of the line where the definition
may be found. For undefined references, only < > is printed.

As an example, given the following in file.c:

int i;

mainO
{

fO;
gO;
fO;

fO
{

i = hO;
}

- 1 -

CFLOW(l) (Advanced C Utilities) CFLOW(l)

the command

cflow -ix file.c

produces the output

1 main: intO, <file.c 4>
2 f: intO, <file.c 11>
3 h:<>
4 i: int, <file.c 1>
5 g: <>

When the nesting level becomes too deep, the output of cflow can be piped
to pr(l), using the -e option, to compress the tab expansion to something
less than every eight spaces.

In addition to the -D, -I, and -U options [which are interpreted just as they
are by cc(l) and cpp(l)], the following options are interpreted by cflow:

-r Reverse the "caller:callee" relationship producing an inverted listing
showing the callers of each function. The listing is also sorted in
lexicographical order by callee.

-ix Include external and static data symbols. The default is to include
only functions in the flowgraph.

-L Include names that begin with an underscore. The default is to
exclude these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flow
graph is cut off. By default this is a very large number. Attempts
to set the cutoff depth to a nonpositive integer will be ignored.

DIAGNOSTICS
Complains about bad options. Complains about multiple definitions and
only believes the first. Other messages may come from the various pro
grams used (e.g., the C-preprocessor).

SEE ALSO

BUGS

as(l), cc(l), cpp(l), lex(l), lint(l), nm(l), yacc(l).
pr(l) in the User's Reference Manual.

Files produced by lex(l) and yacc(l) cause the reordering of line number
declarations which can confuse cflow. To get proper results, feed cflow the
yacc or lex input.

- 2 -

COMB(1) (Source Code Control System Utilities) COMB(1)

NAME
comb - combine sees deltas

SYNOPSIS
comb files

DESCRIPTION

FILES

The comb command generates a shell procedure [see sh(l)] which, when
run, will reconstruct the given sees files. The reconstructed files will,
hopefully, be smaller than the original files. The arguments may be speci
fied in any order, but all keyletter arguments apply to all named sees files.
If a directory is named, comb behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
input is taken to be the name of an sees file to be processed; non-sees
files and unreadable files are silently ignored. The generated shell pro
cedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

-0

-pSID

For each get -e generated, this argument causes the recon
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed
at the most recent ancestor. Use of the -0 keyletter may
decrease the size of the reconstructed sees file. It may
also alter the shape of the delta tree of the original file.

The Sees IDentification string (SID) of the oldest delta to
be preserved. All older deltas are discarded in the recon
structed file.

-s This argument causes comb to generate a shell procedure
which, when run, will produce a report giving, for each file:
the file name, size (in blocks) after combining, original size
(also in blocks), and percentage change computed by:

100 * (original - combined) / original
It is recommended that before any sees files are actually
combined, one should use this option to determine exactly
how much space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

s.eOMB
comb?????

The name of the reconstructed sees file.
Temporary.

SEE ALSO
admin(l), delta(l), get(l), prs(l), sccsfile(4).
help(l), sh(l) in the User's Reference Manual.

- 1 -

COMB(1) (Source Code Control System Utilities) COMB(1)

DIAGNOSTICS

BUGS

Use help(l) for explanations.

The comb command may rearrange the shape of the tree of deltas. It may
not save any space; in fact, it is possible for the reconstructed file to actually
be larger than the original.

- 2 -

CONV(l) (Software Generation System Utilities) CONV(l)

NAME
con v - common object file converter

SYNOPSIS
cony [-a] [-0] [-p] -t target [- I files]

DESCRIPTION
The conv command converts object files in the common object file format
from their current byte ordering to the byte ordering of the target machine.
The converted file is written to file. v . The conv command can be used on
either the source (sending) or target (receiving) machine.

Command line options are:

Indicates that the names of files should be read from the
standard input.

-a If the input file is an archive, produce the output file in the
UNIX System V Release 2.0 portable archive format.

-0

-p

-t target

If the input file is an archive, produce the output file in the old
(pre- UNIX System V) archive format.

If the input file is an archive, produce the output file in the
UNIX System V Release 1.0 random access archive format.

Convert the object file to the byte ordering of the machine
(target) to which the object file is being shipped. This may be
another host or a target machine. Legal values for target are:
pdp, vax, ibm, x86, b16, n3b, mc68, and m32.

The conv command is meant to ease the problems created by a multi-host
cross-compilation development environment. The conv command is best
used within a procedure for shipping object files from one machine to
another.

The conv command will recognize and produce archive files in three for
mats: the pre- UNIX System V format, the UNIX System V Release 1.0 ran
dom access format, and the UNIX System V Release 2.0 portable ASCII for
mat. By default, conv will create the output archive file in the same format
as the input file. To produce an output file in a different format than the
input file, use the -a, -0, or -p option. If the output archive format is the
same as the input format, the archive symbol table will be converted, other
wise the symbol table will be stripped from the archive. The ar(l) com
mand with its -t and -s options must be used on the target machine to
recreate the archive symbol table.

EXAMPLE
To ship object files from a VAX computer sytem to a 3B2 computer, execute
the following commands:

conv -t m32 *.out

uucp *.out.v my3b2r JrjeJ

- 1 -

CONV(l) (Software Generation System Utilities) CONV(l)

DIAGNOSTICS
The diagnostics are self-explanatory. Fatal diagnostics on the command
lines cause termination. Fatal diagnostics on an input file cause the pro
gram to continue to the next input file.

CAVEATS
The conv command will not convert archives from one format to another if
both the source and target machines have the same byte ordering. The
UNIX system tool convert(l) should be used for this purpose.

SEE ALSO
ar(l), convert(l), ar(4), a.out(4).

- 2 -

CONVERT(l) (Software Generation System Utilities) CONVERT(l)

NAME
convert - convert archive files to common formats

SYNOPSIS
convert infile outfile

DESCRIPTION

FILES

The convert command transforms input infile to output outfile. Infile must
be a UNIX System V Release 1.0 archive file and outfile will be the
equivalent UNIX System V Release 2.0 archive file. All other types of input
to the convert command will be passed unmodified from the input file to the
output file (along with appropriate warning messages).

Infile must be different from outfile.

TMPDIRjconv* temporary files

TMPDIR is usually jusrjtmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

SEE ALSO
ar(l), tmpnam(3S), a.out(4), ar(4)

- 1 -

CPP(l) (C Programming Language Utilities) CPP(l)

NAME
cpp - the C language preprocessor

SYNOPSIS
LIBDIR/cpp [option ...] [ifile [ofile]]

DESCRIPTION
The C language preprocessor, cpp, is invoked as the first pass of any C
compilation by the cc(l) command. Thus cpp's output is designed to be in
a form acceptable as input to the next pass of the C compiler. As the C
language evolves, cpp and the rest of the C compilation package will be
modified to follow these changes. Therefore, the use of cpp other than
through the cc(l) command is not suggested, since the functionality of cpp
may someday be moved elsewhere. See m4(1) for a general macro proces
sor.

The cpp command optionally accepts two file names as arguments. Ifile
and ofile are respectively the input and output for the preprocessor. They
default to standard input and standard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information
used by the next pass of the C compiler.

-C By default, cpp strips C-style comments. If the -C option is speci
fied, all comments (except those found on cpp directive lines) are
passed along.

-Uname

-Dname

Remove any initial definition of name, where name is a reserved
symbol that is predefined by the particular preprocessor. Following
is the current list of these possibly reserved symbols. On the 80286
and 80386, unix and one of i286 or i386 are defined.

operating system: unix, dmert, gcos, ibm, os, tss
hardware: i286, i386, interdata, pdpll, u370, u3b,

UNIX system variant:
lint(l):

u3b5,u3b2,u3b20d,vax
RES,RT
lint

-Dname=def
Define name with value def as if by a #define. If no =def is given,
name is defined with value 1. The -D option has lower precedence
than the -U option. That is, if the same name is used in both a -U
option and a -D option, the name will be undefined regardless of
the order of the options.

- T The - T option forces cpp to use only the first eight characters to
distinguish preprocessor symbols and is included for backward com
patibility.

-Idir Change the algorithm for searching for #indude files whose names
do not begin with / to look in dir before looking in the directories
on the standard list. Thus, #indude files whose names are

- 1 -

CPP(l) (C Programming Language Utilities) CPP(l)

enclosed in " " will be searched for first in the directory of the file
with the #include line, then in directories named in -I options, and
last in directories on a standard list. For #include files whose
names are enclosed in <>, the directory of the file with the
#include line is not searched.

- Y dir Use directory dir in place of the standard list of directories when
searching for #include files.

-H Print, one per line on standard error, the path names of included
files.

Two special names are understood by cpp. The name __ LINE __ is
defined as the current line number (as a decimal integer) as known by cpp,
and _-FILE __ is defined as the current file name (as a C string) as known
by cpp. They can be used anywhere (including in macros) just as any other
defined name.

All cpp directive lines start with # in column 1. Any number of blanks and
tabs is allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ... , arg) token-string
Notice that there can be no space between name and the (. Replace
subsequent instances of name followed by a (, a list of comma
separated sets of tokens, and a) followed by token-string, where
each occurrence of an arg in the token-string is replaced by the
corresponding set of tokens in the comma-separated list. When a
macro with arguments is expanded, the arguments are placed into
the expanded token-string unchanged. After the entire token-string
has been expanded, cpp re-starts its scan for names to expand at the
beginning of the newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.
No additional tokens are permitted on the directive line after name.

#ident "string"
Put string into the .comment section of an object file.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will then be
run through cpp). When the <filename> notation is used, filename
is only searched for in the standard places. See the -I and -Y
options above for more detail. No additional tokens are permitted
on the directive line after the final " or >.

#line integer-constan t "filename"
Causes cpp to generate line control information for the next pass of
the C compiler. Integer-constant is the line number of the next line
and filename is the file from which it comes. If "filename" is not
given, the current file name is unchanged. No additional tokens are
permitted on the directive line after the optional filename.

- 2 -

CPP(l)

#endif

(C Programming Language Utilities) CPP(l)

Ends a section of lines begun by a test directive (#if, #ifdef, or
#ifndef). Each test directive must have a matching #endif. No
additional tokens are permitted on the directive line.

#ifdef name
The lines following will appear in the output if and only if name has
been the subject of a previous #define without being the subject of
an intervening #undef. No additional tokens are permitted on the
directive line after name.

#ifndef name
The lines following will appear in the output if and only if name has
not been the subject of a previous #define. No additional tokens
are permitted on the directive line after name.

#if constant-expression
Lines following will appear in the output if and only if the
constant-expression evaluates to non-zero. All binary non
assignment C operators, the ?: operator, the unary -, I, and - opera
tors are all legal in constant-expression. The precedence of the
operators is the same as defined by the C language. There is also a
unary operator defined, which can be used in constant-expression in
these two forms: defined (name) or defined name. This allows
the utility of #ifdef and #ifndef in a #if directive. Only these
operators, integer constants, and names which are known by cpp
should be used in constant-expression. In particular, the sizeof
operator is not available.

To test whether either of two symbols, foo and fum, are defined, use

#if defined(foo) II defined(fum)

#elif constant-expression
An arbitrary number of #elif directives is allowed between a #if,
#ifdef, or #ifndef directive and a #else or #endif directive. The
lines following the #elif directive will appear in the output if and
only if the preceding test directive evaluates to zero, all intervening
#elif directives evaluate to zero, and the constant-expression evalu
ates to non-zero. If constant-expression evaluates to non-zero, all
succeeding #elif and #else directives will be ignored. Any
constant-expression allowed in a #if directive is allowed in a #elif
directive.

#else The lines following will appear in the output if and only if the
preceding test directive evaluates to zero, and all intervening #elif
directives evaluate to zero. No additional tokens are permitted on
the directive line.

The test directives and the possible #else directives can be nested.

- 3 -

CPP(l)

FILES
INCDIR

(C Programming Language Utilities) CPP(l)

standard directory list for #inc1ude files, usually
/usr/include

LIBDIR

SEE ALSO

usually /lib

cc(l), lint(l), m4(1).

DIAGNOSTICS

NOTES

The error messages produced by cpp are intended to be self-explanatory.
The line number and file name where the error occurred are printed along
with the diagnostic.

The unsupported -W option enables the #c1ass directive. If it encounters a
#c1ass directive, cpp will exit with code 27 after finishing all other process
ing. This option provides support for lie with classes".

Because the standard directory for included files may be different in dif
ferent environments, this form of #inc1ude directive:

#include <file.h>

should be used, rather than one with an absolute path, like:

#include "/usr/include/file.h"

The cpp commnad warns about the use of the absolute path name.

- 4 -

CPRS(l) (Software Generation System Utilities) CPRS(l)

NAME
cprs - compress a common object file

SYNOPSIS
eprs [-p] file 1 file2

DESCRIPTION
The cprs command reduces the size of a common object file, filel, by
removing duplicate structure and union descriptors. The reduced file, file2,
is produced as output.

The sole option to cprs is:

-p Print statistical messages including: total number of tags, total dupli
cate tags, and total reduction of filel .

SEE ALSO
strip(l), a.out(4), syms(4).

- 1 -

CTRACE(l) (Advanced C Utilities) CTRACE(l)

NAME
ctrace - C program debugger

SYNOPSIS
ctrace [options] [file]

DESCRIPTION
The ctrace command allows you to follow the execution of a C program,
statement-by-statement. The effect is similar to executing a shell procedure
with the -x option. The ctrace command reads the C program in file (or
from standard input if you do not specify file), inserts statements to print
the text of each executable statement and the values of all variables refer
enced or modified, and writes the modified program to the standard output.
You must put the output of ctrace into a temporary file because the cc(l)
command does not allow the use of a pipe. You then compile and execute
this file.

As each statement in the program executes it will be listed at the terminal,
followed by the name and value of any variables referenced or modified in
the statement, followed by any output from the statement. Loops in the
trace output are detected and tracing is stopped until the loop is exited or a
different sequence of statements within the loop is executed. A warning
message is printed every 1000 times through the loop to help you detect
infinite loops. The trace output goes to the standard output so you can put
it into a file for examination with an editor or the bfs{l) or tail(l) com
mands.

The options commonly used are:

-f functions Trace only these functions.
-v functions Trace all but these functions.

You may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to
character arrays are also printed as strings if appropriate. Char, short, and
int variables are also printed as signed integers and, if appropriate, as char
acters. Double variables are printed as floating point numbers in scientific
notation. You can request that variables be printed in additional formats, if
appropriate, with these options:

-0 Octal
-x Hexadecimal
-u Unsigned
-e Floating point

These options are used only in special circumstances:

-1 n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from
loops.

-s Suppress redundant trace output from simple assignment statements
and string copy function calls. This option can hide a bug caused
by use of the = operator in place of the == operator.

-t n Trace n variables per statement instead of the default of 10 (the
maximum number is 20). The Diagnostics section explains when to

- 1 -

CTRACE(l) (Advanced C Utilities) CTRACE(l)

use this option.
-p Run the C preprocessor on the input before tracing it. You can also

use the -D, -I, and -U cpp(l) options.

These options are used to tailor the run-time trace package when the traced
program will run in a non-UNIX System environment:

-b Use only basic functions in the trace code, that is, those in
ctype(3C), printf(3S), and string(3C). These are usually available
even in cross-compilers for microprocessors. In particular, this
option is needed when the traced program runs under an operating
system that does not have signal (2), fflush(3S), longjmp(3C), or
setjmp(3C).

-p string
Change the trace print function from the default of 'printf('. For
example, 'fprintf(stderr,' would send the trace to the standard error
output.

-r f Use file f in place of the runtime.c trace function package. This lets
you change the entire print function, instead of just the name and
leading arguments (see the -p option).

EXAMPLE
If the file lc.c contains this C program:

1 #include <stdio.h>
2 mainO /* count lines in input * /
3 {
4
5
6
7
8
9

10
ll}

int c, nl;

nl = 0;
while ((c = getchar()) != EOF)

if (c = '\n')
++nl;

printf(" %d\n " , nl);

and you enter these commands and test data:
cc lc.c
a.out
1
(cntl-d)

the program will be compiled and executed. The output of the program' will
be the number 2, which is not correct because there is only one line in the
test data. The error in this program is common, but subtle. If you invoke
ctrace with these commands:

ctrace lc.c >temp.c
cc temp.c
a.out

the output will be:
2 mainO
6 nl = 0;

/* nl == 0 */

- 2 -

CTRACE(l) (Advanced C Utilities) CTRACE(l)

7 while «c = getchar()) != EOF)
The program is now waiting for input. If you enter the same test data as
before, the output will be:

/* c == 49 or '1' */
8 if (c = '\n')

/* c == 10 or ,\n' */
9 ++nl;

/* nl == 1 */
7 while «c = getchar()) != EOF)

/* c == 10 or '\n' */
8 if (c = '\n')

/* c == 10 or ,\n' */
9 ++nl;

/* nl == 2 */
7 while «c = getchar()) != EOF)

If you now enter an end-of-file character (cntl-d) the final output will be:
/* c == -1 */

10 printf(II %d\n II, nl);
/* nl == 2 */2
return

Note that the program output printed at the end of the trace line for the nl
variable. Also note the return comment added by ctrace at the end of the
trace output. This shows the implicit return at the terminating brace in the
function.

The trace output shows that variable c is assigned the value '1' in line 7, but
in line 8 it has the value '\n'. Once your attention is drawn to this if state
ment, you will probably realize that you used the assignment operator (=)
in place of the equality operator (==). You can easily miss this error during
code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program file, unless
you use the -f or -v options to trace specific functions. This does not give
you statement-by-statement control of the tracing, nor does it let you turn
the tracing off and on when executing the traced program.

You can do both of these by adding ctroffO and ctron 0 function calls to
your program to turn the tracing off and on, respectively, at execution time.
Thus, you can code arbitrarily complex criteria for trace control with if state
ments, and you can even conditionally include this code because ctrace
defines the CTRACE preprocessor variable. For example:

#ifdef CTRACE

#endif

if (c == 'I' && i > 1000)
ctronO;

- 3 -

CTRACE(l) (Advanced C Utilities) CTRACE(l)

You can also call these functions from sdb(1) if you compile with the -g
option. For example, to trace all but lines 7 to 10 in the main function,
enter:

sdb a.out
main:7b ctroffO
main:l1b ctronO
r

You can also turn the trace off and on by setting static variable tr_cL to 0
and 1, respectively. This is useful if you are using a debugger that cannot
call these functions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since
the traced code often gets some cc warning messages. You can get cc error
messages in some rare cases, all of which can be avoided.

ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C com
piler "out of tree space; simplify expression" error. Use the -t
option to increase this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are
using tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option
This is usually caused by #ifdef/#endif preprocessor statements in
the middle of a C statement, or by a semicolon at the end of a
#define preprocessor statement.

'if ... else if' sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try -P option
Use the -P option to preprocess the ctrace input, along with any
appropriate -D, -I, and -U preprocessor options. If you still get the
error message, check the Warnings section below.

Cc Diagnostics
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0

Ignore these messages.

compiler takes size of function
See the ctrace "possible syntax error" message above.

yacc stack overflow
See the ctrace "'if .,. else if' sequence too long" message above.

- 4 -

CTRACE(l) (Advanced C Utilities) CTRACE(l)

out of tree space; simplify expression
Use the -t option to reduce the number of traced variables per state
ment from the default of 10. Ignore the "ctrace: too many variables
to trace II warnings you will now get.

redeclaration of signal
Either correct this declaration of signal(2), or remove it and #include
<signal.h>.

SEE ALSO
signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C), string(3C).
bfs(l), tail(l) in the User's Reference Manual.

WARNINGS

BUGS

FILES

You will get a ctrace syntax error if you omit the semicolon at the end of
the last element declaration in a structure or union, just before the right
brace (}). This is optional in some C compilers. Defining a function with
the same name as a system function may cause a syntax error if the number
of arguments is changed. Just use a different name.

The ctrace command assumes that BAD MAG is a preprocessor macro, and
that EOF and NULL are #defined constants. Declaring any of these to be
variables, e.g., "int EOF; ", will cause a syntax error.

The ctrace command does not know about the components of aggregates
like structures, unions, and arrays. It cannot choose a format to print all the
components of an aggregate when an assignment is made to the entire
aggregate. ctrace may choose to print the address of an aggregate or use the
wrong format (e.g., 3.149050e-311 for a structure with two integer
members) when printing the value of an aggregate.

Pointer values are always treated as pointers to character strings.

The loop trace output elimination is done separately for each file of a multi
file program. This can result in functions called from a loop still being
traced, or the elimination of trace output from one function in a file until
another in the same file is called.

jusrjlibjctracejruntime.c run-time trace package

- 5 -

CXREF(l) (Advanced C Utilities) CXREF(l)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION

FILES

The cxref command analyzes a collection of C files and attempts to build a
cross-reference table. The cxref command uses a special version of cpp to
include #define'd information in its symbol table. It produces a listing on
standard output of all symbols (auto, static, and global) in each file
separately, or, with the -c option, in combination. Each symbol contains an
asterisk (*) before the declaring reference.

In addition to the -D, -I, and -U options [which are interpreted just as they
are by cc(1) and cpp(l)], the following options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-w<num>
Width option which formats output no wider than <num>
(decimal) columns. This option will default to 80 if <num> is not
specified or is less than 51.

-0 file Direct output to file.

-s Operate silently; do not print input file names.

-t Format listing for 80-column width.

LLIBDIR usually /usr/lib

LLIBDIR/xcpp special version of the C preprocessor.

SEE ALSO
cc(l), cpp(l).

DIAGNOSTICS

BUGS

Error messages are unusually cryptic, but usually mean that you cannot
compile these files.

The cxref command considers a formal argument in a #define macro defini
tion to be a declaration of that symbol. For example, a program that
#includes ctype.h, will contain many ,declarations of the variable c.

- 1 -

DELTA(l) (Source Code Control System Utilities) DELTA(l)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files

DESCRIPTION
The delta command is used to permanently introduce into the named secs
file changes that were made to the file retrieved by get(l) (called the g-file,
or generated file).

The delta command makes a delta to each named SCCS file. If a directory is
named, delta behaves as though each file in the directory were specified as
a named file, except that non-SeeS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read (see WARNINGS); each line of the
standard input is taken to be the name of an SCCS file to be processed.

The delta command may issue prompts on the standard output depending
upon certain keyletters specified and flags [see admin(l)] that may be
present in the sees file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get -e) on
the same sees file were done by the same person
(login name). The SID value specified with the -r
keyletter can be either the SID specified on the get
command line or the SID to be made as reported by
the get command [see get(l)]. A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

-s

-n

-glist

-m[mrlistJ

Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted, and unchanged in the sees file.

Specifies retention of the edited g-file (normally
removed at completion of delta processing).

a list [see get(l) for the definition of list] of deltas
which are to be ignored when the file is accessed at
the change level (SID) created by this delta.

If the sees file has the v flag set [see admin(l)] then a
Modification Request (MR) number must be supplied
as the reason for creating the new delta.

If -m is not used and the standard input is a terminal,
the prompt MRs? is issued on the standard output
before the standard input is read; if the standard input
is not a terminal, no prompt is issued. The MRs?
prompt always precedes the comments? prompt (see
-y key letter).

- 1 -

DELTA(l) (Source Code Control System Utilities) DELTA(l)

FILES

-y[commentJ

-p

MRs in a list are separated by blanks and/or tab char
acters. An un escaped new-line character terminates
the MR list.

Note that if the v flag has a value [see admin(l)], it is
taken to be the name of a program (or shell pro
cedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, delta terminates.
(It is assumed that the MR numbers were not all
valid.)

Arbitrary text used to describe the reason for making
the delta. A null string is considered a valid comment.

If -y is not specified and the standard input is a ter
minal, the prompt comments? is issued on the stand
ard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com
ment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied in a diff(l) format.

g-file Existed before the execution of delta; removed after com
pletion of delta.

p-file Existed before the execution of delta; may exist after com
pletion of delta.

q-file Created during the execution of delta; removed after com
pletion of delta.

x-file Created during the execution of delta; renamed to SCCS file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta; removed after com
pletion of delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file
and the g-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in the SCCS file unless the SOH is escaped. This character has special mean
ing to SCCS [see sccsfile(4)] and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
get! delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y keyletters must also be present. Omission of these
keyletters causes an error to occur.

- 2 -

DELTA(l) (Source Code Control System Utilities)

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(l), cdc(l), get(l), prs(l), rmdel(l), sccsfile(4).
bdiff(l), help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations.

- 3 -

DELTA(l)

DIS(1) (Software Generation System Utilities) DIS(1)

NAME
dis - object code disassembler

SYNOPSIS
dis [-0] [-V] [-L] [-s] [-d sec] [-da sec] [-F function] [-t sec] [-1 string]
file ...

DESCRIPTION
The dis command produces an assembly language listing of file, which may
be an object file or an archive of object files. The listing includes assembly
statements and an octal or hexadecimal representation of the binary that
produced those statements.

The following options are interpreted by the disassembler and may be speci
fied in any order.

-0 Print numbers in octal. The default is hexadecimal.

-V Print, on standard error, the version number of the disassem-
bler being executed.

-L Look up source labels in the symbol table for subsequent
printing. This option works only if the file was compiled with
additional debugging information [e.g., the -g option of cc(l)].

-s Perform symbolic disassembly, Le., specify source symbol
names for operands where possible. Symbolic disassembly out
put will appear on the line following the instruction. For maxi
mal symbolic disassembly to be performed, the file must be
compiled with additional debugging information [e.g., the -g
option of cc(l)]. Symbol names will be printed using C syn
tax.

-d sec Disassemble the named section as data, printing the offset of
the data from the beginning of the section.

-da sec Disassemble the named section as data, printing the actual
address of the data.

-F function Disassemble only the named function in each object file speci
fied on the command line. The -F option may be specified
multiple times on the command line.

-t sec Disassemble the named section as text.

-1 string Disassemble the library file specified by string. For example,
one would issue the command dis -1 x -1 z to disassemble
lihx.a and libz.a. All libraries are assumed to be in LIBDIR.

If the -d, -da or -t options are specified, only those named sections from
each user-supplied file name will be disassembled. Otherwise, all sections
containing text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as
[5], represents that the break-pointable line number starts with the following
instruction. These line numbers will be printed only if the file was com
piled with additional debugging information [e.g., the -g option of cc(l)].
An expression such as <40> in the operand field or in the symbolic

- 1 -

DIS(l)

FILES

(Software Generation System Utilities) DIS(l)

disassembly, following a relative displacement for control transfer instruc
tions, is the computed address within the section to which control will be
transferred. A function name will appear in the first column, followed by
O.

LIBDIR usually /lib.

SEE ALSO
as(l), cc(l), ld(l), a.out(4).

DIAGNOSTICS
The self-explanatory diagnostics indicate errors in the command line or
problems encountered with the specified files.

- 2 -

DUMP(l) (Software Generation System Utilities) DUMP(l)

NAME
dump - dump selected parts of an object file

SYNOPSIS
dump [options] files

DESCRIPTION
The dump command dumps selected parts of each of its object file argu
ments.

This command will accept both object files and archives of object files. It
processes each file argument according to one or more of the following
options:

-a

-g
-f

-0

-h
-8

-r

-1

-t

-z name

-c
-L

Dump the archive header of each member of each archive file
argument.

Dump the global symbols in the symbol table of an archive.

Dump each file header.

Dump each optional header.

Dump section headers.

Dump section contents.

Dump relocation information.

Dump line number information.

Dump symbol table entries.

Dump line number entries for the named function.

Dump the string table.

Interpret and print the contents of the .lib sections.

The following modifiers are used in conjunction with the options listed
above to modify their capabilities.

-d number Dump the section number, number, or the range of sections
starting at number and ending at the number specified by +d.

+d number Dump sections in the range either beginning with first section
or beginning with section specified by -d.

-n name

-p
-t index

+t index

-u

Dump information pertaining only to the named entity. This
modifier applies to -h, -8, -r, -I, and -to

Suppress printing of the headers.

Dump only the indexed symbol table entry. The -t used in
conjunction with +t, specifies a range of symbol table entries.

Dump the symbol table entries in the range ending with the
indexed entry. The range begins at the first symbol table entry
or at the entry specified by the -t option.

Underline the name of the file for emphasis.

- 1 -

DUMP(l)

-v

(Software Generation System Utilities) DUMP(l)

Dump information in symbolic representation rather than
numeric (e.g., C_STATIC instead of OX02). This modifier can be
used with all the above options except -s and -0 options of
dump.

-z name, number
Dump line number entry or range of line numbers starting at
number for the named function.

+z number Dump line numbers starting at either function name or number
specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma
separating the name from the number modifying the -z option may be
replaced by a blank.

The dump command attempts to format the information it dumps in a
meaningful way, printing certain information in character, hex, octal, or
decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4).

- 2 -

GENCC(lM) (C Programming Language Utilities) GENCC(lM)

NAME
gencc - create a front-end to the cc command

SYNOPSIS
gencc

DESCRIPTION
The genee command is an interactive command designed to aid in the crea
tion of a front-end to the ec command. Since hard-coded path names have
been eliminated from the C Compilation System (CCS), it is possible to
move pieces of the CCS to new locations without recompiling the CCS.
The new locations of moved pieces can be specified through the - Y option
to the ee command. However, it is inconvenient to supply the proper - Y
options with every invocation of the ee command. Further, if a system
administrator moves pieces of the CCS, such movement should be invisible
to users.

The front-end to the ee command which genee generates is a one-line shell
script which calls the ee command with the proper - Y options specified.
The front-end to the ee command will also pass all user supplied options to
the cc command.

The gence command prompts for the location of each tool and directory
which can be respecified by a -Y option to the ee command. If no location
is specified, it assumes that that piece of the CCS has not been relocated.
After all the locations have been prompted for, genee will create the front
end to the ee command.

The genee command creates the front-end to the ee command in the current
working directory and gives the file the same name as the ee command.
Thus, genee can not be run in the same directory containing the actual ee
command. Further, if a system administrator has redistributed the CCS, the
actual ce command should be placed somewhere which is not typically in a
user's PATH (e.g., jlib). This will prevent users from accidentally invoking
the cc command without using the front-end.

CAVEATS
The genee command does not produce any warnings if a tool or directory
does not exist at the specified location. Also, genee does not actually move
any files to new locations.

FILES
.jcc

SEE ALSO
cc(1).

front-end to cc

- 1 -

GET(l) (Source Code Control System Utilities) GET(l)

NAME
get - get a version of an SCCS file

SYNOPSIS
get [-rSID] [-ccutoff] [-Hist] [-xlist] [-wstring] [-aseq-no.] [-k] [-e] [-1[P]
[-p] [-m] [-n] [-s] [-b] [-g] [-t] file ...

DESCRIPTION
The get command generates an ASCII text file from each named sces file
according to the specifications given by its keyletter arguments, which begin
with -. The arguments may be specified in any order, but all keyletter
arguments apply to all named SCCS files. If a directory is named, get
behaves as though each file in the directory were specified as a named file,
except that non-SCeS files (last component of the path name does not begin
with s.) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the
name of an SCCS file to be processed. Again, non-SCeS files and unread
able files are silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the SCCS file name by simply removing the leading s.;
(see also FILES, below).

Each of the keyletter arguments is explained below as though only one
SCCS file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

-rSID The sces IDentification string (SID) of the version (delta) of
an SCCS file to be retrieved. Table-l below shows, for the
most useful cases, what version of an sces file is retrieved
[as well as the SID of the version to be eventually created by
delta(l) if the -e keyletter is also used], as a function of the
SID specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the secs file which were created
after the specified cutoff date-time are included in the gen
erated ASCII text file. Units omitted from the date-time
default to their maximum possible values; that is, -c7502 is
equivalent to -c750228235959. Any number of non-numeric
characters may separate the various 2-digit pieces of the cut
off date-time. This feature allows one to specify a cutoff
date in the form: "-c77 /2/2 9:22:25". Note that this
implies that one may use the %E% and %U% identification
keywords (see below) for nested gets.

-'get "-c%E% %U%" s.file

- 1 -

GET(l) (Source Code Control System Utilities) GET(l)

-ilist A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following
syntax:

-xlist

-e

<list> ::= <range> I <list> , <range>
<range> ::= SID I SID - SID

SID, the sees Identification of a delta, may be in any form
shown in the "SID Specified" column of Table 1.

A list of deltas to be excluded in the creation of the gen
erated file. See the -i keyletter for the list format.

Indicates that the get is for the purpose of editing or making
a change (delta) to the sees file via a subsequent use of
delta(l). The -e keyletter used in a get for a particular ver
sion (SID) of the sees file prevents further gets for editing
on the same SID until delta is executed or the j (joint edit)
flag is set in the sees file [see admin(l)]. Concurrent use of
get -e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is acciden
tally ruined in the process of editing it, it may be regen
erated by re-executing the get command with the -k
keyletter in place of the -e keyletter.

sees file protection specified via the ceiling, floor, and
authorized user list stored in the sees file [see admin(l)] are
enforced when the -e key letter is used.

-b Used with the -e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1.
This keyletter is ignored if the b flag is not present in the
file [see admin(1)] or if the retrieved delta is not a leaf delta.
(A leaf delta is one that has no successors on the sees file
tree.)
Note: A branch delta may always be created from a non-leaf
delta. Partial SIDs are interpreted as shown in the "SID
Retrieved" column of Table 1.

-k Suppresses replacement of identification keywords (see
below) in the retrieved text by their value. The -k keyletter
is implied by the -e keyletter.

-1[P] Causes a delta summary to be written into an I-file. If -lp
is used, then an I-file is not created; the delta summary is
written on the standard output instead. See FILES for the
format of the I-file.

-p Causes the text retrieved from the sees file to be written on
the standard output. No g-file is created. All output which
normally goes to the standard output goes to file descriptor
2 instead, unless the -s keyletter is used, in which case it
disappears.

- 2 -

GET(l) (Source Code Control System Utilities) GET(l)

-s Suppresses all output normally written on the standard out
put. However, fatal error messages (which always go to file
descriptor 2) remain unaffected.

-m Causes each text line retrieved from the SCCS file to be pre
ceded by the SID of the delta that inserted the text line in
the SCCS file. The format is: SID, followed by a horizontal
tab, followed by the text line.

-n Causes each generated text line to be preceded with the
%M% identification keyword value (see below). The format
is: %M% value, followed by a horizontal tab, followed by
the text line. When both the -m and -n keyletters are used,
the format is: %M% value, followed by a horizontal tab,
followed by the -m keyletter generated format.

-g Suppresses the actual retrieval of text from the SCCS file. It
is primarily used to generate an I-file, or to verify the
existence of a particular SID.

-t Used to access the most recently created delta in a given
release (e.g., -rl), or release and level (e.g., -rl.2).

-w string Substitute string for all occurrences of % W% when getting
the file.

-aseq-no. The delta sequence number of the SCCS file delta (version)
to be retrieved [see sccsfile(5)]. This keyletter is used by the
comb(l) command; it is not a generally useful keyletter. If
both the -r and -a keyletters are specified, only the -a
keyletter is used. Care should be taken when using the -a
keyletter in conjunction with the -e keyletter, as the SID of
the delta to be created may not be what one expects. The
-r keyletter can be used with the -a and -e key letters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the -e keyletter is used, the SID of the delta to be made appears after the
SID accessed and before the number of lines generated. If there is more
than one named file or if a directory or standard input is named, each file
name is printed (preceded by a new-line) before it is processed. If the -i
keyletter is used, included deltas are listed following the notation
"Included"; if the -x keyletter is used, excluded deltas are listed following
the notation "Excluded".

- 3 -

GET(l)

SID*
Specified
nonei
nonei
R
R
R
R

R

R

RL
RL

RL

RL.B
RL.B
RL.B.S
RL.B.S
RL.B.S

*

**

t

:t:

(Source Code Control System Utilities) GET(l)

TABLE 1. Determination of sees Identification String
-b Keyletter Other SID SID of Delta

Used! Conditions Retrieved to be Created
no R defaults to mR mRmL mR(mL+1)
yes R defaults to mR mRmL mRmL.(mB+1).1
no R>mR mRmL R1 ***
no R=mR mRmL mR(mL+1)
yes R>mR mRmL mRmL.(mB+ 1).1
yes R=mR mRmL mRmL.(mB+1).l

R < mR and hRmL** hRmL.(mB+1).1 R does not exist
Trunk succ.#
in release > R RmL RmL.(mB+1).1
and R exists

no No trunk succ. RL R(L+1)
yes No trunk succ. RL RL.(mB+1).1

Trunk succ. RL RL.(mB+1).1 in release ~ R
no No branch succ. RL.B.mS RL.B.(mS+1)
yes No branch succ. RL.B.mS RL.(mB+1).1
no No branch succ. RL.B.S RL.B.(S+l)
yes No branch succ. RL.B.S RL.(mB+1).1

Branch succ. RL.B.S RL.(mB+1).1

"R", "L", "B", and "s" are the "release", "level", "branch", and
"sequence" components of the SID, respectively; "m" means "max
imum". Thus, for example, "RmL" means "the maximum level
number within release R"; "RL.(mB+1).1" means "the first sequence
number on the new branch (Le., maximum branch number plus one) of
level L within release R". Note that if the SID specified is of the form
"RL", "RL.B", or "RL.B.S", each of the specified components must
exist.
"hR" is the highest existing release that is lower than the specified,
nonexistent, release R
This is used to force creation of the first delta in a new release.
Successor.
The -b keyletter is effective only if the b flag [see admin (1)] is present
in the file. An entry of - means "irrelevant".
This case applies if the d (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus, one
of the other cases in this table applies.

- 4 -

GET(l) (Source Code Control System Utilities) GET(l)

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from the sees file
by replacing identification keywords with their value wherever they occur.
The following keywords may be used in the text stored in an sees file:

Keyword Value
%M% Module name: either the value of the m flag in the file [see

admin(l)], or if absent, the name of the sees file with the lead
ing s. removed.

%1% sees identification (SID) (%R%.%L%.%B%.%S%) of the

%R%
%L%
%B%
%5%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY IMM/DD).
Current date (MM/DD IYY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD IYY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file [see admin(l)].
sees file name.
Fully qualified sees file name.
The value of the q flag in the file [see admin(l)].
Current line number. This keyword is intended for identifying
messages output by the program such as "this should not have
happened" type errors. It is not intended to be used on every
line to provide sequence numbers.
The 4-character string @(#) recognizable by what(l).
A shorthand notation for constructing what(l) strings for UNIX
system program files. %W% = %Z%%M%<horizontal
tab>%I%
Another shorthand notation for constructing what(l) strings for
non-UNIX system program files.
%A% = %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get. These files are known generi
cally as the g-file, I-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the sees file name:
the last component of all sees file names must be of the form s.module
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s.xyz.c, the auxiliary file names would be xyz.c,
l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current direc
tory (unless the -p keyletter is used). A g-file is created in all cases,
whether or not any lines of text were generated by the get.

- 5 -

GET(l) (Source Code Control System Utilities) GET(l)

It is owned by the real user. If the -k keyletter is used or implied, its mode
is 644; otherwise its mode is 444. Only the real uS'er need have write per
mission in the current directory.

The I-file contains a table showing which deltas were applied in generating
the retrieved text. The I-file is created in the current directory if the -1
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or was not
applied and ignored;
* if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or
was not applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. SCCS identification (SID).
f. Tab character.
g. Date and time (in the form YY /MM/DD HH:MM:SS) of crea-

tion.
h. Blank.
L Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with a -e
keyletter along to delta. Its contents are also used to prevent a subsequent
execution of get with a -e keyletter for the same SID until delta is executed
or the joint edit flag, j, [see admin(l)] is set in the SCCS file. The p-file is
created in the directory containing the SCCS file and the effective user must
have write permission in that directory. Its mode is 644 and it is owned by
the effective user. The format of the p-file is: the gotten SID, followed by a
blank, followed by the SID that the new delta will have when it is made,
followed by a blank, followed by the login name of the real user, followed
by a blank, followed by the date-time the get was executed, followed by a
blank and the -i keyletter argument if it was present, followed by a blank
and the -x keyletter argument if it was present, followed by a new-line.
There can be an arbitrary number of lines in the p-file at any time; no two
lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (Le., get) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

- 6 -

GET(l)

FILES

(Source Code Control System Utilities) GET(l)

g-file Existed before the execution of delta; removed after com
pletion of delta.

p-file Existed before the execution of delta; may exist after com
pletion of delta.

q-file Created during the execution of delta; removed after com
pletion of delta.

x-file Created during the execution of delta; renamed to sees file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta; removed after com
pletion of delta.

jusrjbinjbdiff Program to compute differences between the "gotten" file
and the g-file.

SEE ALSO
admin(l), delta(l), prs(l), what(l).
help(l) in the User's Reference Manual.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

If the effective user has write permission (either explicitly or implicitly) in
the directory containing the secs files, but the real user does not, then only
one file may be named when the -e keyletter is used.

- 7 -

I286EMUL(1) I286EMUL(1)

NAME
i286emul - emulate 80286

SYNOPSIS
i286emul [arg ...] prog286

DESCRIPTION

FILES

BUGS

I286emul is an emulator that allows programs from UNIX System V Release
2 or Release 3 on the Intel 80286 to run on UNIX System V Release 3 on
the Intel 80386.

The UNIX system recognizes an attempt to exec(2) a 286 program, and
automatically exec's the 286 emulator with the 286 program name as an
additional argument. It is not necessary to specify the i28 6em ul emulator
on the command line. The 286 programs can be invoked using the same
command format as on the 286 UNIX System V.2 or V.3.

I286emul reads the 286 program's text and data into memory and maps
them through the LDT [via sysi86(2)] as 286 text and data segments. It also
sets callgate 89 in the GDT (which is used by 286 programs for system
calls) to point to a routine in i286emul. 1286emul starts the 286 program by
jumping to its entry point.

When the 286 program attempts to do a system call, i286emul takes control.
It does any conversions needed between the 286 system call and the
equivalent 386 system call, and performs the 386 system call. The results
are converted to the form the 286 program expects, and the 286 program is
resumed.

The following are some of the differences between a program running on a
286 and a 286 program using i286emul on a 386:

A 286 program under i286emul always has 64k in the stack segment
if it is a large-model process, or 64k in the data segment if it is a
small-model process.

System calls and signal handling use more space on the stack under
i286emul than it does on a 286.

Attempts to unlink or write on the 286 program will fail on the 286
with ETXTBSY. Under i286emul, they will not fail.

Ptrace(2) is not supported under i286emul.

The 286 program must be readable for the emulator to read it.

Ibin/i286emul
The emulator must have this name and be in Ibin if it is to be
automatically invoked when exec(2) is used on a 286 program.

The signal mechanism under the emulator is the System V release 2 signal
mechanism rather than the System V release 3 mechanism.

- 1 -

INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM)

NAME
infocmp - compare or print out terminfo descriptions

SYNOPSIS
infocmp [-d] [-c] [-n] [-I] [-L] [-C] [-r] [-u] [-s dlilllc] [-v] [-V] [-1] [-w
width] [-A directory] [-B directory] [termname ...]

DESCRIPTION
infocmp can be used to compare a binary terminfo(4) entry with other ter
minfo entries, rewrite a term info (4) description to take advantage of the
use= terminfo field, or print out a terminfo(4) description from the binary
file (term(4» in a variety of formats. In all cases, the boolean fields will be
printed first, followed by the numeric fields, followed by the string fields.

Default Options
If no options are specified and zero or one termnames are specified, the -I
option will be assumed. If more than one term name is specified, the -d
option will be assumed.

Comparison Options [-d] [-c] [-n]
infocmp compares the terminfo(4) description of the first terminal termname
with each of the descriptions given by the entries for the other terminal's
termnames. If a capability is defined for only one of the terminals, the value
returned will depend on the type of the capability: F for boolean variables,
-1 for integer variables, and NULL for string variables.

-d produce a list of each capability that is different. In this manner, if
one has two entries for the same terminal or similar terminals,
using infocmp will show what is different between the two entries.
This is sometimes necessary when more than one person produces
an entry for the same terminal and one wants to see what is dif
ferent between the two.

-c produce a list of each capability that is common between the two
entries. Capabilities that are not set are ignored. This option can
be used as a quick check to see if the -u option is worth using.

-n produce a list of each capability that is in neither entry. If no term
names are given, the environment variable TERM will be used for
both of the term names . This can be used as a quick check to see if
anything was left out of the description.

Source Listing Options [-I] [-L] [-C] [-r]
The -I, -L, and -C options will produce a source listing for each terminal
named.

-I use the terminfo(4) names

-L use the long C variable name listed in <term.h>

-C use the termcap names

-r when using -C, put out all capabilities in termcap form

If no termnames are given, the environment variable TERM will be used for
the terminal name.

- 1 -

INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM)

The source produced by the -C option may be used directly as a term cap
entry, but not all of the parameterized strings may be changed to the
termcap format. infocmp will attempt to convert most of the parameterized
information, but that which it doesn't will be plainly marked in the output
and commented out. These should be edited by hand.

All padding information for strings will be collected together and placed at
the beginning of the string where term cap expects it. Mandatory padding
(padding information with a trailing , /') will become optional.

All term cap variables no longer supported by terminfo(4), but which are
derivable from other terminfo(4) variables, will be output. Not all ter
minfo(4) capabilities will be translated; only those variables which were part
of termcap will normally be output. Specifying the -r option will take off
this restriction, allowing all capabilities to be output in termcap form.

Note that because padding is collected to the beginning of the capability,
not all capabilities are output, mandatory padding is not supported, and
termcap strings were not as flexible, it is not always possible to convert a
terminfo(4) string capability into an equivalent termcap format. Not all of
these strings will be able to be converted. A subsequent conversion of the
term cap file back into terminfo(4) format will not necessarily reproduce the
original terminfo(4) source.

Some common terminfo parameter sequences, their termcap equivalents, and
some terminal types which commonly have such sequences, are:

Terminfo

%pl%c
%pl%d
%pl %'x'%+%c
%i
%pl %?%'x'%>%t%pl %'y'%+%;
%p2 is printed before %pl

Use= Option [-u]

Termcap Representative Terminals

%.
%d
%+x
%i
%>xy
%r

adm
hp, ANSI standard, vt100
concept
ANSI standard, vtl 00
concept
hp

-u produce a terminfo(4) source description of the first terminal term
name which is relative to the sum of the descriptions given by the
entries for the other terminals termnames. It does this by analyzing
the differences between the first termname and the other termnames
and producing a description with use= fields for the other termi
nals. In this manner, it is possible to retrofit generic terminfo
entries into a terminal's description. Or, if two similar terminals
exist, but were coded at different times or by different people so
that each description is a full description, using infocmp will show
what can be done to change one description to be relative to the
other.

A capability will get printed with an at-sign (@) if it no longer exists in the
first termname, but one of the other termname entries contains a value for it.
A capability's value gets printed if the value in the first termname is not
found in any of the other termname entries, or if the first of the other

- 2 -

INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM)

termname entries that has this capability gives a different value for the capa
bility than that in the first termname.

The order of the other termname entries is significant. Since the terminfo
compiler tic(1M) does a left-to-right scan of the capabilities, specifying two
use= entries that contain differing entries for the same capabilities will pro
duce different results depending on the order that the entries are given in.
infocmp will flag any such inconsistencies between the other term name
en tries as they are found.

Alternatively, specifying a capability after a use= entry that contains that
capability will cause the second specification to be ignored. Using infocmp
to recreate a description can be a useful check to make sure that everything
was specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow
down the compilation time, is specifying extra use= fields that are superflu
ous. infocmp will flag any other termname use= fields that were not
needed.

Other Options [-s dlHllc] [-v] [-V] [-1] [-w width]
-s sort the fields within each type according to the argument below:

d leave fields in the order that they are stored in the term info
database.

sort by term info name.

sort by the long C variable name.

c sort by the term cap name.

If no -s option is given, the fields printed out will be sorted alpha
betically by the term info name within each type, except in the case
of the -C or the -L options, which cause the sorting to be done by
the termcap name or the long C variable name, respectively.

-v print out tracing information on standard error as the program
runs.

- V print out the version of the program in use on standard error and
exit.

-1 cause the fields to printed out one to a line. Otherwise, the fields
will be printed several to a line to a maximum width of 60 charac
ters.

-w change the output to width characters.

Changing Databases [-A directory] [-B directory]
The location of the compiled terminfo(4) database is taken from the environ
ment variable TERMINFO. If the variable is not defined, or the terminal is
not found in that location, the system terminfo(4) database, usually in
/usr/lib/terminfo, will be used. The options -A and -B may be used to
override this location; The -A option will set TERMINFO for the first term
name and the -B option will set TERMINFO for the other termnames. With
this, it is possible to compare descriptions for a terminal with the same
name located in two different databases. This is useful for comparing

- 3 -

INFOCMP(lM) (Terminal Information Utilities) INFOCMP(lM)

FILES

descriptions for the same terminal created by different people. Otherwise
the terminals would have to be named differently in the terminfo(4) data
base for a comparison to be made.

jusrjlibjterminfoj?j* compiled terminal description database

DIAGNOSTICS
malloc is out of space!

There was not enough memory available to process all the
terminal descriptions requested. Run infocmp several
times, each time including a subset of the desired term
names.

use= order dependency found:
A value specified in one relative terminal specification was
different from that in another relative terminal specifica
tion.

'use=term' did not add anything to the description.
A relative terminal name did not contribute anything to
the final description.

must have at least two terminal names for a comparison to be done.
The -u, -d and -c options require at least two terminal
names.

SEE ALSO

NOTE

tic(IM), curses(3X), term(4), terminfo(4) in the Programmer's Reference
Manual.
captoinfo(IM) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

The termcap database (from earlier releases of UNIX System V) may not be
supplied in future releases.

- 4 -

INSTALL(lM) (Extended Software Generation System Utilities) INSTALL(lM)

NAME
install - install commands

SYNOPSIS
fete/install [-e dira] [-f dirb] [-i] [-n dirc] [-m mode] [-u user] [-g
group] [-0] [-s] file [dirx ...]

DESCRIPTION
The install command is most commonly used in "makefiles" [see make(l)]
to install a file (updated target file) in a specific place within a file system.
Each file is installed by copying it into the appropriate directory, thereby
retaining the mode and owner of the original command. The program
prints messages telling the user exactly what files it is replacing or creating
and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories Ubin, /usr/bin, /ete, /lib, and /usr/lib, in that order)
for a file with the same name as file. When the first occurrence is found,
install issues a message saying that it is overwriting that file with file, and
proceeds to do so. If the file is not found, the program states this and exits
without further action.

If one or more directories (dirx ...) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

-e dira

-f dirb

-i

-n dire

-m mode

-u user

Installs a new command (file) in the directory speci
fied by dira, only if it is not found. If it is found,
install issues a message saying that the file already
exists, and exits without overwriting it. May be used
alone or with the -s option.

Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the
new file will be set to 755 and bin, respectively. If
the file already exists, the mode and owner will be
that of the already existing file. May be used alone or
with the -0 or -s options.

Ignores default directory list, searching only through
the given directories (dirx ...). May be used alone or
with any other options except -e and -f.

If file is not found in any of the searched directories,
it is put in the directory specified in dire. The mode
and owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other
options except -e and -f.

The mode of the new file is set to mode. Only avail
able to the superuser.

The owner of the new file is set to user. Only avail
able to the superuser.

- 1 -

INSTALL(lM) (Extended Software Generation System Utilities) INSTALL(lM)

-g group

-0

-s

SEE ALSO
make(l).

The group id of the new file is set to group. Only
available to the superuser.

If file is found, this option saves the "found" file by
copying it to OLDfile in the directory in which it was
found. This option is useful when installing a fre
quently used file such as jbin j sh or j etc j getty, where
the existing file cannot be removed. May be used
alone or with any other options except -c.

Suppresses printing of messages other than error mes
sages. May be used alone or with any other options.

- 2 -

LD(l) (Software Generation System Utilities) LD(l)

NAME
ld - link editor for common object files

SYNOPSIS
Id [options] file name

DESCRIPTION
The ld command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for sym
bolic debugging. In the simplest case, the names of several object programs
are given, and ld combines the objects, producing an object module that can
either be executed or, if the -r option is specified, used as input for a subse
quent ld run. The output of ld is left in a.out. By default this file is execut
able if no errors occurred during the load. If any input file, filename, is not
an object file, ld assumes it is either an archive library or a text file contain
ing link editor directives. [See Link Editor Directives in the UNIX System V
Programmer's Guide for a discussion of input directives.]

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. The library may be either a relocatable
archive library or a shared library. [See Shared Libraries in the UNIX System
V Programmer's Guide for a discussion of shared libraries.] Only those rou
tines defining an unresolved external reference are loaded. The library
(archive) symbol table [see ar(4)] is searched sequentially with as many
passes as are necessary to resolve external references which can be satisfied
by library members. Thus, the ordering of library members is functionally
unimportant, unless there exist multiple library members defining the same
external symbol.

The following options are recognized by ld:

-e epsym
Set the default entry point address for the output file to be that of
the symbol epsym.

-£ fill Set the default fill pattern for "holes" within an output section as
well as initialized bss sections. The argument fill is a two-byte con
stant.

-kx (80286 only) Set the allocated stack area to x, where x is the number
of bytes you wish to allocate for the stack. The value entered will
be rounded up to a multiple of 512 bytes.

-Ix Search a library libx.a, where x is up to nine characters. A library is
searched when its name is encountered, so the placement of a -I is
significant. By default, libraries are located in LIBDIR or LLIBDIR.

-m Produce a map or listing of the input/output sections on the stand
ard output.

-0 outfile
Produce an output object file by the name outfile. The name of the
default object file is a.out.

-r Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a

- 1 -

LD(l) (Software Generation System Utilities) LD(l)

subsequent ld run. The link editor will not complain about
unresolved references, and the output file will not be executable.

-a Create an absolute file. This is the default· if the -r option is not
used. Used with the -r option, -a allocates memory for common
symbols.

-s Strip line number entries and symbol table information from the
output object file.

-t Turn off the warning about multiply-defined symbols that are not
the same size.

-u symnare
Enter symname as an undefined symbol in the symbol table. This is
useful for loading entirely from a library, since initially the symbol
table is empty and an unresolved reference is needed to force the
loading of the first routine. The placement of this option on the ld
line is significant; it must be placed before the library which will
define the symbol.

-x Do not preserve local symbols in the output symbol table; enter
external and static symbols only. This option saves some space in
the output file.

-z Do not bind anything to address zero. This option will allow run
time detection of null pointers.

-L dir Change the algorithm of searching for libx.a to look in dir before
looking in LIBDIR and LLIBDIR. This option is effective only if it
precedes the -1 option on the command line.

-M Output a message for each multiply-defined external definition.

-N Put the text section at the beginning of the text segment rather than
after all header information, and put the data section immediately
following text in the core image.

-R (80286 only) Real address mode linkage.

- V Output a message giving information about the version of ld being
used.

-VS num
Use num as a decimal version stamp identifying the a.out file that is
produced. The version stamp is stored in the optional header.

-Y[LU},dir
Change the default directory used for finding libraries. If L is speci
fied the first default directory which ld searches, LIBDIR, is replaced
by dir. If U is specified and ld has been built with a second default
directory, LLIBDIR, then that directory is replaced by dir. If ld was
built with only one default directory and U is specified a warning is
printed and the option is ignored.

- 2 -

LD(l)

FILES

(Software Generation System Utilities)

LIBDIRjlibx.a libraries
LLIBDIRjlibx.a libraries
a.out output file
LIBDIR usually jlib
LLIBDIR usually jusr jlib
jlib j <model> jlibx.a libraries (80286 only)
jusr jlib j <model> jlibx.a libraries (80286 only)
where "<model>" is either small or large.

LD(l)

SEE ALSO
as(l), cc(l), mkshlib(l), exit(2), end(3C), a.out(4), ar(4), and Link Editor
Directives and Shared Libraries in the Programmer's Guide.

CAVEATS
Through its options and input directives, the common link editor gives users
great flexibility; however, those who use the input directives must assume
some added responsibilities. Input directives and options should insure the
following properties for programs:

C defines a zero pointer as null. A pointer to which zero has been
assigned must not point to any object. To satisfy this, users must not
place any object at virtual address zero in the program's address space.

When the link editor is called through cc(l), a startup routine is linked
with the user's program. This routine calls exit() [see exit(2)] after exe
cution of the main program. If the user calls the link editor directly,
then the user must insure that the program always calls exit() rather
than falling through the end of the entry routine.

The symbols etext, edata, and end [see end(3C)] are reserved and are defined
by the link editor. It is incorrect for a user program to redefine them.

If the link editor does not recognize an input file as an object file or an
archive file, it will assume that it contains link editor directives and will
attempt to parse it. This will occasionally produce an error message com
plaining about "syntax errors" .

Arithmetic expressions may only have one forward referenced symbol per
expression.

- 3 -

LEX(l) (Extended Software Generation System Utilities) LEX(l)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rctvn] [file] ...

DESCRIPTION
The lex command generates programs to be used in simple lexical analysis
of text.

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then
the corresponding program text is executed. The actual string matched is
left in yytext, an external character array. Matching is done in order of the
strings in the file. The strings may contain square brackets to indicate char
acter classes, as in [abx-z] to indicate a, b, x, y, and z; and the operators *,
+, and? mean respectively any non-negative number of, any positive
number of, and either zero or one occurrence of, the previous character or
character class. The character . is the class of all ASCII characters except
new-line. Parentheses for grouping and vertical bar for alternation are also
supported. The notation r {d,e} in a rule indicates between d and e
instances of regular expression r. It has higher precedence than I, but lower
than *, ?, +, and concatenation. Thus [a-zA-Z]+ matches a string of
letters. The character A at the beginning of an expression permits a success
ful match only immediately after a new-line, and the character $ at the end
of an expression requires a trailing new-line. The character / in an expres
sion indicates trailing context; only the part of the expression up to the slash
is returned in yytext, but the remainder of the expression must follow in the
input stream. An operator character may be used as an ordinary symbol if
it is within " symbols or preceded by \.

Three subroutines defined as macros are expected: inputO to read a charac
ter; unput(c) to replace a character read; and output(c) to place an output
character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylex(), and the library
contains a main() which calls it. The action REJECT on the right side of the
rule causes this match to be rejected and the next suitable match executed;
the function yymore() accumulates additional characters into the same
yytext; and the function yyless(p) pushes back the portion of the string
matched beginning at p, which should be between yytext and
yytext+yyleng. The macros input and output use files yyin and yyout to
read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes %%, it is copied into the external definition area of the
lex.yy.c file. All rules should follow a %%, as in YACC. Lines preceding
%% which begin with a non-blank character define the string on the left to
be the remainder of the line; it can be called out later by surrounding it with
{}. Note that curly brackets do not imply parentheses; only string substitu
tion is done.

- 1 -

LEX(l) (Extended Software Generation System Utilities) LEX(l)

EXAMPLE
D [0-9]
%%
if
[a-z]+
O{D}+
{D}+
n++n
n+n
n I*n

printf(n IF statement\n n);
printf(n tag, value %s\n n ,yytext);
printf(n octal number %s\n n ,yytext);
printf(n decimal number %s\n n ,yytext);
printf(n unary op\n n);
printf(n binary op \n n);

skipcommntsO;
%%
skipcommn tsO
{

for (;;)
{

while (inputO != '*')

if (inputO != 'I')
unput(yytext[yyleng-l]);

else
return;

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag -r indicates RATFOR
actions, -c indicates C actions and is the default, -t causes the lex.yy.c pro
gram to be written instead to standard output, -v provides a one-line sum
mary of statistics, -n will not print out the -v summary. Multiple files are
treated as a single file. If no files are specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2500)

%n n number of states is n (500)

%e n number of parse tree nodes is n (1000)

%a n number of transitions is n (2000)

%k n number of packed character classes is n (1000)

%0 n size of output array is n (3000)

The use of one or more of the above automatically implies the -v option,
unless the -n option is used.

SEE ALSO

BUGS

yacc(l).
Programmer's Guide.

The -r option is not yet fully operational.

- 2 -

LlNT(1) (Advanced C Utilities) LlNT(l)

NAME
lint - a C program checker

SYNOPSIS
lint [option] ... file .. ,

DESCRIPTION
The lint command attempts to detect features of the C program files that are
likely to be bugs, non-portable, or wasteful. It also checks type usage more
strictly than the compilers. Among the things that are currently detected
are unreachable statements, loops not entered at the top, automatic vari
ables declared and not used, and logical expressions whose value is con
stant. Moreover, the usage of functions is checked to find functions that
return values in some places and not in others, functions called with vary
ing numbers or types of arguments, and functions whose values are not
used or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Argu
ments whose names end with .In are taken to be the result of an earlier
invocation of lint with either the -c or the -0 option used. The.In files are
analogous to .0 (object) files that are produced by the ec(1) command when
given a .c file as input. Files with other suffixes are warned about and
ignored.

The lint command will take all the .c, .In, and llib-Ix.In (specified by -Ix)
files and process them in their command line order. By default, lint
appends the standard C lint library (llib-Ic.In) to the end of the list of files.
However, if the -p option is used, the portable C lint library (llib-port.ln) is
appended instead. When the -c option is not used, the second pass of lint
checks this list of files for mutual compatibility. When the -c option is
used, the .In and the llib-Ix.In files are ignored.

Any number of lint options may be used, in any order, intermixed with
file-name arguments. The following options are used to suppress certain
kinds of complaints:

-a Suppress complaints about assignments of long values to variables
that are not long.

-b Suppress complaints about break statements that cannot be reached.
(Programs produced by lex or yaee will often result in many such
complaints.)

-h Do not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.,

-u Suppress complaints about functions and external variables used
and not defined, or defined and not used. (This option is suitable
for running lint on a subset of files of a larger program.)

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but
never used.

- 1 -

UNT(l) (Advanced C Utilities) UNT{l)

The following arguments alter lint's behavior:

-Ix Include additional lint library llib-Ix.In. For example, you can
include a lint version of the math library llib-Im.In by inserting -1m
on the command line. This argument does not suppress the default
use of llib-Ie.In. These lint libraries must be in the assumed direc
tory. This option can be used to reference local lint libraries and is
useful in the development of multifile projects.

-n Do not check compatibility against either the standard or the port
able lint library.

-p Attempt to check portability to other dialects (IBM and GCOS) of C.
Along with stricter checking, this option causes all non-external
names to be truncated to eight characters and all external names to
be truncated to six characters and one case.

-c Cause lint to produce a .In file for every .e file on the command
line. These.In files are the product of lint's first pass only, and are
not checked for inter-function compatibility.

-0 lib Cause lint to create a lint library with the name llib-llib .In. The-c
option nullifies any use of the -0 option. The lint library produced
is the input that is given to lint's second pass. The -0 option sim
ply causes this file to be saved in the named lint library. To pro
duce a llib-llib.In without extraneous messages, use of the -x
option is suggested. The -v option is useful if the source file(s) for
the lint library are just external interfaces (for example, the way the
file llib-Ie is written). These option settings are also available
through the use of "lint comments" (see below).

The -D, -U, and -I options of cpp(1) and the -g and -0 options of cc(1) are
also recognized as separate arguments. The -g and -0 options are ignored,
but, by recognizing these options, lint's behavior is closer to that of the
cc(1) command. Other options are warned about and ignored. The prepro
cessor symbol "lint" is defined to allow certain questionable code to be
altered or removed for lint. Therefore, the symbol "lint" should be thought
of as a reserved word for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of
lint:

j*NOTREACHED* j
at appropriate points stops comments about unreachable
code. [This comment is typically placed just after calls to
functions like exit(2)].

j*VARARGSn*j
suppresses the usual checking for variable numbers of argu
ments in the following function declaration. The data types
of the first n arguments are checked; a missing n is taken to
be o.

j*ARGSUSED* j
turns on the -v option for the next function.

- 2 -

UNT(1)

FILES

(Advanced C Utilities) UNT(l)

/*LINTLIBRARY* /
at the beginning of a file shuts off complaints about unused
functions and function arguments in this file. This is
equivalent to using the -v and -x options.

The lint command produces its first output on a per-source-file basis. Com
plaints regarding included files are collected and printed after all source files
have been processed. Finally, if the -c option is not used, information gath
ered from all input files is collected and checked for consistency. At this
point, if it is not clear whether a complaint stems from a given source file or
from one of its included files, the source file name will be printed followed
by a question mark.

The behavior of the -c and the -0 options allows for incremental use of lint
on a set of C source files. Generally, one invokes lint once for each source
file with the -c option. Each of these invocations produces a .In file which
corresponds to the .c file, and prints all messages that are about just that
source file. After all the source files have been separately run through lint,
it is invoked once more (without the -c option), listing all the .In files with
the needed -Ix options. This will print all the interfile inconsistencies. This
scheme works well with make(l); it allows make to be used to lint only the
source files that have been modified since the last time the set of source
files were linted.

LLIBDIR

LLIBDIR/lint[12]
LLIBDIR/llib-lc.ln

LLIBDIR/llib-port.ln

LLIBDIR/llib-Im.ln

TMPDIR/*lint*
TMPDIR

the directory where the lint libraries specified by the
-Ix option must exist, usually /usr/lib
first and second passes
declarations for C Library functions (binary format;
source is in LLIBDIR/llib-lc)
declarations for portable functions (binary format;
source is in LLIBDIR/llib-port)
declarations for Math Library functions (binary for
mat; source is in LLIBDIR/llib-Im)
temporaries
usually /usr/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnamO in
tmpnam(3S)).

SEE ALSO

BUGS
cc(l), cpp(l), make(l).

exit(2), setjmp(3C), and other functions that do not return are not under
stood; this causes various lies.

- 3 -

LIST(l) (C Programming Language Utilities) LIST(l)

NAME
list - produce C source listing from a common object file

SYNOPSIS
list [-V] [-h] [-F function] source-file ... [object-file]

DESCRIPTION
The list command produces a C source listing with line number information
attached. If multiple C source files were used to create the object file, list
will accept multiple file names. The object file is taken to be the last non-C
source file argument. If no object file is specified, the default object file,
a.out, will be used.

Line numbers will be printed for each line marked as breakpoint inserted by
the compiler (generally, each executable C statement that begins a new line
of source). Line numbering begins anew for each function. Line number 1
is always the line containing the left curly brace ({) that begins the function
body. Line numbers will also be supplied for inner block redeclarations of
local variables so that they can be distinguished by the symbolic debugger.

The following options are interpreted by list and may be given in any order:

-V Print, on standard error, the version number of the list com-
mand executing.

-h Suppress heading output.

-Ffunction List only the named function. The -F option may be specified
multiple times on the command line.

SEE ALSO
as(l), cc(l), Id(l).

CAVEATS
Object files given to list must have been compiled with the -g option of
cc(l).

Since list does not use the C preprocessor, it may be unable to recognize
function definitions whose syntax has been distorted by the use of C
preprocessor macro substitutions.

DIAGNOSTICS
The list command will produce the error message "list: name: cannot open"
if name cannot be read. If the source file names do not end in .C I the mes
sage is "list: name: invalid C source name". An invalid object file will
cause the message "list: name: bad magic" to be produced. If some or all of
the symbolic debugging information is missing, one of the following mes
sages will be printed: "list: name: symbols have been stripped, cannot
proceed", "list: name: cannot read line numbers", and "list: name: not in
symbol table". The following messages are produced when list has become
confused by #ifdef's in the source file: "list: name: cannot find function in
symbol table", "list: name: out of sync: too many}", and "list: name: unex
pected end-of-file". The error message "list: name: missing or inappropriate
line numbers" means that either symbol debugging information is missing,
or list has been confused by C preprocessor statements.

- 1 -

LORDER(l) (Software Generation System Utilities) LORDER(l)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

FILES

The input is one or more object or library archive files [see ar(l»). The
standard output is a list of pairs of object file or archive member names,
meaning that the first file of the pair refers to external identifiers defined in
the second. The output may be processed by tsort(l) to find an ordering of
a library suitable for one-pass access by ld(l). Note that the link editor
ld(l) is capable of multiple passes over an archive in the portable archive
format [see ar(4») and does not require that lorder(l) be used when building
an archive. The usage of the lorder(l) command may, however, allow for a
slightly more effici~nt access of the archive during the link edit process.

The following example builds a new library from existing .0 files.

ar -cr library 'lorder *.0 I tsort'

TMPDIRj*symref temporary files

TMPDIRj*symdef temporary files

TMPDIR is usually jusrjtmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnam() in tmpnam(3S»).

SEE ALSO
ar(l), ld(l), tsort(l), ar(4).

CAVEAT
The lorder command will accept as input any object or archive file, regard
less of its suffix, provided there is more than one input file. If there is but a
single input file, its suffix must be .0.

- 1 -

M4(1) (Software Generation System Utilities) M4(1)

NAME
nn4 - nnacro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
The m4 connnnand is a nnacro processor intended as a front end for Ratfor,
C, and other languages. Each of the argunnent files is processed in order; if
there are no files, or if a file name is -, the standard input is read. The pro
cessed text is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered.

-8 Enable line sync output for the C preprocessor (#line ...)

-Bint Change the size of the push-back and argument collection buffers
fronn the default of 4,096.

-Hint Change the size of the synnbol table hash array fronn the default of
199. The size should be prinne.

-Sint Change the size of the call stack fronn the default of 100 slots.
Macros take three slots, and non-nnacro argunnents take one.

-Tint Change the size of the token buffer fronn the default of 512 bytes.

To be effective, these flags nnust appear before any file nannes and before
any -D or -U flags:

-Dname[=val]
Defines name to valor to null in val's absence.

-Uname
Undefines name.

Macro calls have the fornn:

nanne(argl,arg2, ... , argn)

The (nnust innnnediately follow the nanne of the nnacro. If the nanne of a
defined nnacro is not followed by a (, it is deenned to be a call of that nnacro
with no argunnents. Potential nnacro nannes consist of alphabetic letters,
digits, and underscore _, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
argunnents. Left and right single quotes are used to quote strings. The
value of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its argunnents are collected by searching
for a matching right parenthesis. If fewer argunnents are supplied than are
in the macro definition, the trailing arguments are taken to be null. Macro
evaluation proceeds nornnally during the collection of the arguments, and
any connmas or right parentheses which happen to turn up within the value
of a nested call are as effective as those in the original input text. After
argunnent collection, the value of the macro is pushed back onto the input
streann and rescanned.

- 1 -

M4(1) (Software Generation System Utilities) M4(1)

The m4 command makes available the following built-in macros. They may
be redefined, but once this is done, the original meaning is lost. Their
values are null unless otherwise stated.

define

undefine

defn

pushdef

popdef

ifdef

shift

changequote

changecom

divert

undivert

the second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of $n in
the replacement text, where n is a digit, is replaced by the n
th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string; $# is replaced by
the number of arguments; $* is replaced by a list of all the
arguments separated by commas; $@ is like $*, but each
argument is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the
previous one, if any.

if the first argument is defined, the value is the second argu
ment, otherwise the third. If there is no third argument, the
value is null. The word unix is predefined on UNIX system
versions of m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quot
ing nullifies the effect of the extra scan that will subsequently
be performed.

change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote
without arguments restores the original values (Le., \ ').

change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new
line. With two arguments, both markers are affected. Com
ment markers may be up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order;
initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argu
ment. Output diverted to a stream other than 0 through 9 is
discarded.

causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Un diverting discards the
diverted text.

- 2 -

M4(1)

divnum

dnl

ifelse

incr

decr

eval

len

index

substr

translit

include

sinclude

syscmd

sysval

make temp

m4exit

(Software Generation System Utilities) M4(1)

returns the value of the current output stream.

reads and discards characters up to and including the next
new-line.

has three or more arguments. If the first argument is the
same string as the second, then the value is the third argu
ment. If not, and if there are more than four arguments, the
process is repeated with arguments 4, 5, 6, and 7. Otherwise,
the value is either the fourth string, or, if it is not present,
null.

returns the value of its argument incremented by 1. The
value of the argument is calculated by interpreting an initial
digit-string as a decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-
bit arithmetic. Operators include +, -, *, /, %, ~ (exponentia
tion), bitwise &, I, ~, and -; relationals; parentheses. Octal
and hex numbers may be specified as in C. The second argu
ment specifies the radix for the result; the default is 10. The
third argument may be used to specify the minimum number
of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second
argument begins (zero origin), or -1 if the second argument
does not occur.

returns a substring of its first argument. The second argu
ment is a zero origin number selecting the first character; the
third argument indicates the length of the substring. A miss
ing third argument is taken to be large enough to extend to
the end of the first string.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third.
No abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX system command given in the first argu
ment. No value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the current pro
cess ID.

causes immediate exit from m4. Argument I, if given, is the
exit code; the default is O.

- 3 -

M4(1)

m4wrap

errprint

dumpdef

traceon

traceoff

SEE ALSO
cc(l), cpp(l).

(Software Generation System Utilities) M4(1)

argument 1 will be pushed back at final EOF; example:
m4wrap('cleanup()')

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or
for all if no arguments are given.

with no arguments, turns on tracing for all macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

The m4 Macro Processor in the Support Tools Guide.

- 4 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f make file] [-p] [-i] [-k] [-5] [-r] [-n] [-b] [-e] [-u] [-t] [-q]
[names]

DESCRIPTION
The make command allows the programmer to maintain, update, and regen
erate groups of computer programs. The following is a brief description of
all options and some special names:

-f makefile Description file name. makefile is assumed to be the name of a
description file.

-p Print out the complete set of macro definitions and target
descriptions.

-i Ignore error codes returned by invoked commands. This mode
is entered if the fake target name .IGNORE appears in the
description file.

-k Abandon work on the current entry if it fails, but continue on
other branches that do not depend on that entry.

-5 Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name .SILENT
appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them.
Even lines beginning with an @ are printed.

-b Compatibility mode for old makefiles.

-e Environment variables override assignments within makefiles.

-u Force an unconditional update.

-t Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

-q Question. The make command returns a zero or non-zero
status code depending on whether the target file is or is not
up-to-date .

. DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists .

. PRECIOUS Dependents of this target will not be removed when quit or
interrupt are hit .

. SILENT Same effect as the -5 option.

. IGNORE Same effect as the -i option .

The make command executes commands in makefiIe to update one or more
target names. Name is typically a program. If no -f option is present,
makefile, Makefile, and the Source Code Control System(SCCS) files

- 1 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

s.makefile, and s.Makefile are tried in order. If makefile is -, the standard
input is taken. More than one - makefile argument pair may appear.

The make command updates a target only if its dependents are newer than
the target (unless the -u option is used to force an unconditional update).
All prerequisite files of a target are added recursively to the list of targets.
Missing files are deemed to be out-of-date.

The makefile file contains a sequence of entries that specify dependencies.
The first line of an entry is a blank-separated, non-null list of targets, then a
:, then a (possibly null) list of prerequisite files or dependencies. Text fol
lowing a ; and all following lines that begin with a tab are shell commands
to be executed to update the target. The first non-empty line that does not
begin with a tab or # begins a new dependency or macro definition. Shell
commands may be continued across lines with the <backslash><new-line>
sequence. Everything printed by make (except the initial tab) is passed
directly to the shell as is. Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.o and b.o, and
that they in turn depend on their corresponding source files (a.c and b.c)
and a common file incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The
SHELL environment variable can be used to specify which shell make should
use to execute commands. The default is /bin/sh. The first one or two
characters in a command can be the following: -, @, -@, or @-. If @ is
present, printing of the command is suppressed. If - is present, make
ignores an error. A line is printed when it is executed unless the -s option
is present, or the entry .sILENT: is in makefile, or unless the initial character
sequence contains a @. The -n option specifies printing without execution;
however, if the command line has the string $(MAKE) in it, the line is
always executed (see discussion of the MAKE FLAGS macro under Environ
ment). The -t (touch) option updates the modified date of a file without
executing any commands.

Commands returning non-zero status normally terminate make. If the -i
option is present, or the entry .IGNORE: appears in makefile, or the initial
character sequence of the command contains -. the error is ignored. If the

- 2 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

-k option is present, work is abandoned on the current entry, but continues
on other branches that do not depend on that entry.

The -b option allows old make files (those written for the old version of
make) to run without errors.

Interrupt and quit cause the target to be deleted unless the target is a depen
dent of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are processed
before any make file and after the internal rules; thus, macro assignments in
a make file override environment variables. The -e option causes the
environment to override the macro assignments in a makefile. Suffixes and
their associated rules in the make file will override any identical suffixes in
the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing
any legal input option (except -f and -p) defined for the command line.
Further, upon invocation, make "invents" the variable if it is not in the
environment, puts the current options into it, and passes it on to invocations
of commands. Thus, MAKEFLAGS always contains the current input
options. This proves very useful for "super-makes". In fact, as noted
above, when the -n option is used, the command $(MAKE) is executed any
way; hence, one can perform a make -n recursively on a whole software
system to see what would have been executed. This is because the -n is
put in MAKEFLAGS and passed to further invocations of $(MAKE). This is
one way of debugging all of the makefiles for a software project without
actually doing anything.

Include Files
If the string include appears as the first seven letters of a line in a makefile,
and is followed by a blank or a tab, the rest of the line is assumed to be a
file name and will be read by the current invocation, after substituting for
any macros.

Macros
Entries of the form stringl = string2 are macro definitions. String2 is
defined as all characters up to a comment character or an unescaped new
line. Subsequent appearances of $(stringl [:substl =[subst2]]) are replaced by
string2. The parentheses are optional if a single character macro name is
used and there is no substitute sequence. The optional :substl =subst2 is a
substitute sequence. If it is specified, all non-overlapping occurrences of
substl in the named macro are replaced by subst2. Strings (for the purposes
of this type of substitution) are delimited by blanks, tabs, new-line charac
ters, and beginnings of lines". An example of the use of the substitute
sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing
rules for building targets.

- 3 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

$* The macro $* stands for the file name part of the current dependent
with the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It
is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT
rule. It is the module which is out-of-date with respect to the target
(Le., the "manufactured" dependent file name). Thus, in the .c.o rule,
the $< macro would evaluate to the .c file. An example for making
optimized .0 files from .c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$1 The $1 macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with
respect to the target; essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o). In this case, $@ evaluates to lib and
$% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an uppercase D
or F is appended to any of the four macros, the meaning is changed to
"directory part" for D and "file part" for F. Thus, $(@D) refers to the
directory part of the string $@. If there is no directory part, .j is generated.
The only macro excluded from this alternative form is $1.

Suffixes
Certain names (for instance, those ending with .0) have inferable prere
quisites such as .c, .5, etc. If no update commands for such a file appear in
makefile, and if an inferable prerequisite exists, that prerequisite is compiled
to make the target. In this case, make has inference rules which allow
building files from other files by examining the suffixes and determining an
appropriate inference rule to use. The current default inference rules are:

.c .c- .f .1 .sh .sh-

.c.o .c.a .C-.O .C-.C .c-.a

.f.o .f.a .1.0 .I.f .l.a

.h-.h .s.O .S-.O .S-.S .s-.a .sh-.sh

.1.0 .I.c .r.o r.l .r.c

.y.o .y.c .y-.o .y-.y .y-.c

The internal rules for make are contained in the source file rules.c for the
make program. These rules can be locally modified. To print out the rules
compiled into the make on any machine in a form suitable for recompila
tion, the following command is used:

make -fp - 2>jdevjnull <jdevjnull

- 4 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

A tilde in the above rules refers to an sees file [see sccsfile(4)]. Thus, the
rule .c-.o would transform an sees C source file into an object file (.0).
Because the s. of the sees files is a prefix, it is incompatible with make's
suffix point of view. Hence, the tilde is a way of changing any file refer
ence into an sees file reference.

A rule with only one suffix (Le., .c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This is useful for building targets
from only one source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

.SUFFIXES: .0 .c .c- .y .y- .1 .r .s .s- .sh .sh- .h .h- .f .r

Here again, the above command for printing the internal rules will display
the list of suffixes implemented on the current machine. Multiple suffix lists
accumulate; .SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user
may add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclu
sion of optional matter in any resulting commands. For example, eFLAGS,
LFLAGS, and YFLAGS are used for compiler options to cc(l), lex(l), and
yacc(l), respectively. Again, the previous method for examining the current
rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file
with suffix .0 from a file with suffix .c is specified as an entry with .c.o: as
the target and no dependents. Shell commands associated with the target
define the rule for making a .0 file from a .c file. Any target that has no
slashes in it and starts with a dot is identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within
the library. Thus lib(file.o) and $(LIB)(file.o) both refer to an archive library
which contains file.o. (This assumes the LIB macro has been previously
defined.) The expression $(LIB)(filel.o file2.0) is not legal. Rules pertaining
to archive libraries have the form .XX.a where the XX is the suffix from
which the archive member is to be made. An unfortunate byproduct of the
current implementation requires the XX to be different from the suffix of the

- 5 -

MAKE(l) (Extended Software Generation System Utilities) MAKE(l)

FILES

archive member. Thus, one cannot have lib(file.o) depend upon file.o
explicitly. The most common use of the archive interface follows. Here, we
assume the source files are all C type source:

lib: lib(file1.o) lib(file2.0) lib(file3.0)
@echo lib is now up-to-date

.c.a:
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.0
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive
library maintenance construction follows:

lib: lib(file1.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(?:.o=.c)
$(AR) $(ARFLAGS) lib $?
rm $? @echo lib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object file names (inside lib) whose C source files
are out-of-date. The substitution mode translates the .0 to .c. (Unfor
tunately, one cannot as yet transform to .c-; however, this may become pos
sible in the future.) Note also, the disabling of the .c.a: rule, which would
have created each object file, one by one. This particular construct speeds
up archive library maintenance considerably. This type of construct
becomes very cumbersome if the archive library contains a mix of assembly
programs and C programs.

[Mm]akefile and s.[Mm]akefile
/bin/sh

SEE ALSO

NOTES

BUGS

cc(l), lex(l), yacc(l), printf(3S), sccsfile(4).
cd(l), sh(l) in the User's Reference Manual.

Some commands return non-zero status inappropriately; use -i to overcome
the difficulty.

File names with the characters = : @ will not work. Commands that are
directly executed by the shell, notably cd(l), are ineffectual across new-lines
in make. The syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot build
lib(file.o) from file.o. The macro $(a:.o=.c-) does not work. Named pipes
are not handled well.

- 6 -

MCS(1) (Software Generation System Utilities) MCS(l)

NAME
mcs - manipulate the object file comment section

SYNOPSIS
mes [options] object-file ...

DESCRIPTION
The mcs command manipulates the comment section, normally the ".com
ment" section, in an object file. It is used to add to, delete, print, and
compress the contents of the comment section in a UNIX system object file.
The mcs command must be given one or more of the options described
below. It takes each of the options given and applies them in order to the
object-files.

If the object file is an archive, the file is treated as a set of individual object
files. For example, if the -a option is specified, the string is appended to
the comment section of each archive element.

The following options are available.

-a string
Append string to the comment section of the object-files. If string
contains embedded blanks, it must be enclosed in quotation marks.

-e Compress the contents of the comment section. All duplicate
entries are removed. The ordering of the remaining entries is not
disturbed.

-d Delete the contents of the comment section from the object file.
The object file comment section header is removed also.

-n name
Specify the name of the section to access. By default, mcs deals
with the section named .comment. This option can be used to
specify another section.

-p Print the contents of the comment section on the standard output.
If more than one name is specified, each entry printed is tagged by
the name of the file from which it was extracted, using the format
II filename:string."

EXAMPLES

FILES

mcs -p file # Print file's comment section.

mcs -a string file # Append string to file's comment section

TMPDIR/mcs* temporary files

TMPDIR/* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

SEE ALSO
cpp(l), a.out(4).

- 1 -

MCS(l)

NOTES

(Software Generation System Utilities) MCS(l)

The mcs command cannot add new sections or delete existing sections to
executable objects with magic number 0413 [see a.out(4)].

- 2 -

MKSHLIB(l) (Advanced C Utilities) MKSHLIB(l)

NAME
mkshlib - create a shared library

SYNOPSIS
mkshlib -s specfil [-t target] [-h host] [-n] [-q]

DESCRIPTION
The mkshlib command builds both the host and target shared libraries. A
shared library is similar in function to a normal, non~shared library, except
that programs which link with a shared library will share the library code
during execution, whereas programs which link with a non-shared library
will get their own copy of each library routine used.

The host shared library is an archive which is used to link-edit user pro
grams with the shared library [see ar(4)]. A host shared library can be
treated exactly like a non-shared library and should be included on cc(1)
command lines in the usual way [see cc(1)]. Further, all operations which
can be performed on an archive can also be performed on the host shared
library.

The target shared library is an executable module which is attached to the
user's process during execution of a program using the shared library. The
target shared library contains the code for all the routines in the library and
must be fully resolved. The target will be brought into memory during exe
cution of a program using the shared library, and subsequent processes
which use the shared library will share the copy of code already in memory.
The text of the target is always shared, but each process will get its own
copy of the data.

The user interface to mkshlib consists of command line options and a shared
library specification file. The shared library specification file describes the
contents of the shared library.

The mkshlib command invokes other tools such as the archiver, ar(1), the
assembler, as(1), and the loader, Id(1). Tools are invoked through the use of
system(3S) which searches directories in the user's PATH. Also, prefixes to
mkshlib are parsed in the same manner as prefixes to the cc(1) command,
and invoked tools are given the prefix, where appropriate. For example,
i386mkshlib or i286mkshlib will invoke i3861d or i2861d, respectively.

The following command line options are recognized by mkshlib:

-s specfil Specifies the shared library specification file, specfil. This file
contains the information necessary to build a. shared library.
Its contents include the branch table specifications for the tar
get, the path name in which the target should be installed, the
start addresses of text and data for the target, the initialization
specifications for the host, and the list of object files to be
included in the shared library (see details below).

- 1 -

MKSHLIB(l)

-t target

-h host

-n

-q

(Advanced C Utilities) MKSHLIB(l)

Specifies the name, target, of the target shared library pro
duced on the host machine. When target is moved to the tar
get machine, it should be installed at the location given in the
specification file (see the #target directive below). If the -n
option is used, then a new target shared library will not be
generated.

Specifies the name of the host shared library, host. If this
option is not given, then the host shared library will not be
produced.

Do not generate a new target shared library. This option is
useful when producing only a new host shared 'library. The-t
option must still be supplied since a version of the target
shared library is needed to build the host shared library.

Quiet warning messages. This option is useful when warning
messages are expected but not desired.

The shared library specification file contains all the information necessary to
build both the host and target shared libraries. The contents and format of
the specification file are given by the following directives:

#address sectname address
Specifies the start address, address, of section sectname for the
target. This directive typically is used to specify the start
addresses of the .text and .data sections.

#target pathname

#branch

Specifies the absolute path name, pathname, of the target
shared library on the target machine. This pathname is copied
to a.out files and is the location where the operating system
will look for the shared library when executing a file which
uses it.

Specifies the start of the branch table specifications. The lines
following this directive are taken to be branch table specifica
tion lines.

Branch table specification lines have the following format:

funcname <white space> position

where funcname is the name of the symbol given a branch
table entry and position specifies the position of funcname's
branch table entry. Position may be a single integer or a range
of integers of the form positionl-position2. Each position must
be greater than or equal to one, the same position cannot be
specified more than once, and every position from one to the
highest given position must be accounted for.

If a symbol is given more than one branch table entry by asso
ciating a range of positions with the symbol or by specifying
the same symbol on more than one branch table specification

- 2 -

MKSHLIB(l)

#objects

#init object

(Advanced C Utilities) MKSHLIB(l)

line, then the symbol is defined to have the address of the
highest associated branch table entry. All other branch table
entries for the symbol can be thought of as II empty II slots and
can be replaced by new entries in future versions of the shared
library.

Finally, only functions should be given branch table entries,
and those functions must be external.

This directive can be specified only once per shared library
specification file.

Specifies the names of the object files constituting the target
shared library. The lines following this directive are taken to
be the list of input object files in the order they are to be
loaded into the target. The list simply consists of each file
name followed by white space. This list is also used to deter
mine the input object files for the host shared library, but the
order for the host is given by running the list through 10rder(1)
and tsort(l).

This directive can be specified only once per shared library
specification file.

Specifies that the object file, object, requires initialization code.
The lines following this directive are taken to be initialization
specification lines.

Initialization specification lines have the following format:

pimport <white space> import

Pimport is a pointer to the associated imported symbol, import,
and must be defined in the current specified object file, object.
The initialization code generated for each such line is of the
form:

pimport = &import;

where pimpaddr is the absolute address of pimport.

All initializations for a particular object file must be given at
once and multiple specifications of the same object file are not
allowed.

#ident string

Specifies a string, string, to be included in the .comment sec
tion of the target shared library. This directive can be speci
fied only once per shared library specification file.

Specifies a comment. All information on a line following this
directive is ignored.

- 3 -

MKSHLIB(l) (Advanced C Utilities) MKSHLIB(l)

FILES

All directives which may be followed by multiline specifications are valid
until the next directive or the end of the file.

TEMPDIRj* temporary files

TEMPDIR is usually jusrjtmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

SEE ALSO
ar(1), as(1), cc(1), Id(1), a.out(4), ar(4).
Chapter 8 (" Shared Libraries") in the Programmer's Guide.

- 4 -

NM(l) (Software Generation System Utilities) NM(l)

NAME
nm - print name list of common object file

SYNOPSIS
nm [-oxhvnefurpVT] file name ...

DESCRIPTION
The nm command displays the symbol table of each common object file,
filename. Filename may be a relocatable or absolute common object file; or
it may be an archive of relocatable or absolute common object files. For
each symbol, the following information will be printed:

Name The name of the symbol.

Value Its value expressed as an offset or an address depending on its
storage class.

Class Its storage class.

Type Its type and derived type. If the symbol is an instance of a struc
ture or of a union, then the structure or union tag will be given
following the type (e.g., struct-tag). If the symbol is an array,
then the array dimensions will be given following the type (e.g.,
char[n][m]). Note that the object file must have been compiled
with the -g option of the cc(1) command for this information to
appear.

Size Its size in bytes, if available. Note that the object file must have
been compiled with the -g option of the cc(1) command for this
information to appear.

Line The source line number at which it is defined, if available. Note
that the object file must have been compiled with the -g option of
the cc(1) command for this information to appear.

Section For storage classes static and external, the object file section con-
taining the symbol (e.g., text, data, or bss).

The output of nm may be controlled using the following options:

-0 Print the value and size of a symbol in octal instead of decimal.

-x Print the value and size of a symbol in hexadecimal instead of
decimal.

-h Do not display the output header data.

-v Sort external symbols by value before they are printed.

-n Sort external symbols by name before they are printed.

-e Print only external and static symbols.

-f Produce full output. Print redundant symbols (.text, .data, .lib,
and .bss), normally suppressed.

-u Print undefined symbols only.

-r Prepend the name of the object file or archive to each output line.

- 1 -

NM(l)

FILES

BUGS

(Software Generation System Utilities) NM(l)

-p Produce easily pars able, terse output. Each symbol name is pre
ceded by its value (blanks if undefined) and. one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data seg
ment symbol), S (user-defined segment symbol), R (register sym
bol), F (file symbol), or C (common symbol). If the symbol is
local (non-external), the type letter is in lower case.

- V Print the version of the nm command executing on the standard
error output.

- T By default, nm prints the entire name of the symbols listed. Since
object files can have symbols names with an arbitrary number of
characters, a name that is longer than the width of the column set
aside for names will overflow its column, forcing every column
after the name to be misaligned. The - T option causes nm to
truncate every name which would otherwise overflow its column
and place an asterisk as the last character in the displayed name
to mark it as truncated.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both nm name -e -v
and nm -ve name print the static and external symbols in name, with exter
nal symbols sorted by value.

TMPDIRj* temporary files

TMPDIR is usually jusrjtmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

When all the symbols are printed, they must be printed in the order they
appear in the symbol table in order to preserve scoping information. There
fore, the -v and -n options should be used only in conjunction with the -e
option.

SEE ALSO
as(l), cc(l), ld(l), tmpnam(3S), a.out(4), ar(4).

DIAGNOSTICS
"nm: name: cannot open"

if name cannot be read.

"nm: name: bad magic"
if name is not a common object file.

"nm: name: no symbols"
if the symbols have been stripped from name.

- 2 -

OMF(l) OMF(l)

NAME
omf - convert an object module from COFF to OMF

SYNOPSIS
omf [-i input-file] [-0 output-file] -G gdLlimit,gdLbase -I
idLlimit,idLbase - T tss_selector [-3]

DESCRIPTION
The omf command is used to convert an object module from AT&T's COFF
(Common Object File Format) to Xenix's OMF (Object Module Format).
The following options may be given in any order:

input-file is the name of the COFF file. If it is missing then omf will attempt
to read from a file named a.out.

output-file is the name of the OMF file. If it is missing then omf will
attempt to write to a file named x.out.

gdt_Iimit,gdt_base are the limit and base of the Global Descriptor Table
(GDT); these numbers are separated by a comma.

idt_Iimit,idt_base are the limit and base of the Interrupt Descriptor Table
(IDT); these numbers are separated by a comma.

tss--.Selector is a selector into the GDT for the initial task state.

By default, omf will convert a file to the format of an Intel 80286 boot
loadable file. The -3 argument causes omf to produce an 80386 boot
loadable file.

EXAMPLES
The following command will read a COFF formatted file named "a.out"
and produce an 80286 boot-Ioadable file named "x.out". "x.out" will have
a GDT limit of 100, a GDT base of 1000, an IDT limit of 200, an IDT base
of 2000, and a TSS selector of 32:

omf -G100,1000 -I200,2000 -T32

The following command will read a COFF formatted file named "test" and
produce an 80386 boot-loadable file named "x.out". "x.out" will have a
GDT limit of 256, a GDT base of 0, an IDT limit of 512, an IDT base of 256,
and a TSS selector of 64:

SEE ALSO
a.out(4)

DIAGNOSTICS

omf -i test -G256,O -I512,256 -T64 -3

The error messages are intended to be self-explanatory.

- 1 -

PROF(l) (Extended Software Generation Utilities) PROF(l)

NAME
prof - display profile data

SYNOPSIS
prof [-tcan] [-ox] [-g] [-z] [-h] [-s] [-m mdata] [prog]

DESCRIPTION
The prof command interprets a profile file produced by the monitor(3C)
function. The symbol table in the object file prog (a.out by default) is read
and correlated with a profile file (mon.out by default). For each external
text symbol the percentage of time spent executing between the address of
that symbol and the address of the next is printed, together with the
number of times that function was called and the average number of mil
liseconds per call.

The mutually exclusive options t, c, a, and n determine the type of sorting
of the output lines:

-t Sort by decreasing percentage of total time (default).

-c Sort by decreasing number of calls.

-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the address
of each symbol monitored:

-0 Print each symbol address (in Dctal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol
name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

-z Include all symbols in the profile range [see monitor(3C)], even if
associated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is use
ful if the report is to be processed further.)

-s Print a summary of several of the monitoring parameters and statis
tics on the standard error output.

-m mdata
Use file mdata instead of mon.out as the input profile file.

A program creates a profile file if it has been loaded with the -p option of
cc(l). This option to the cc command arranges for calls to monitor(3C) at
the beginning and end of execution. It is the call to monitor at the end of
execution that causes a profile file to be written. The number of calls to a
function is tallied if the -p option was used when the file containing the
function was compiled.

The name of the file created by a profiled program is controlled by the
environment variable PROFDIR. If PROFDIR does not exist, "mon.out" is
produced in the directory that is current when the program terminates. If

- 1 -

PROF(l) (Extended Software Generation Utilities) PROF(l)

FILES

PROFDIR = string, "stringjpid.progname" is produced, where progname con
sists of argv[O] with any path prefix removed, and pid is the program's pro
cess id. If PROFDIR is the null string, no profiling output is produced.

A single function may be split into subfunctions for profiling by means of
the MARK macro [see prof(5)].

mon.out for profile
a.out for namelist

SEE ALSO
cc(l), exit(2), profil(2), monitor(3C), prof(5).

WARNING
The times reported in successive identical runs may show variances of 20%
or more, because of varying cache-hit ratios due to sharing of the cache
with other processes. Even if a program seems to be the only one using the
machine, hidden background or asynchronous processes may blur the data.
In rare cases, the clock ticks initiating recording of the program counter may
"beat" with loops in a program, grossly distorting measurements.

Call counts are always recorded precisely.

The times for static functions are attributed to the preceding external text
symbol if the -g option is not used. However, the call counts for the
preceding function are still correct, Le., the static function call counts are not
added in with the call counts of the external function.

CAVEATS
Only programs that call exit(2) or return from main will cause a profile file
to be produced, unless a final call to monitor is explicitly coded.

The use of the -p option to cc(l) to invoke profiling imposes a limit of 600
functions that may have call counters established during program execution.
For more counters you must call monitor(3C) directly. If this limit is
exceeded, other data will be overwritten and the mon.out file will be cor
rupted. The number of call counters used will be reported automatically by
the prof command whenever the number exceeds 5 j 6 of the maximum.

- 2 -

PRS(l) (Source Code Control System Utilities) PRS(l)

NAME
prs - print an SCCS file

SYNOPSIS
prs [-d[dataspec]] [-r[SID]] [-e] [-1] [-c[date-time]] [-a] files

DESCRIPTION
The prs command prints, on the standard output, parts or all of an sees file
[see sccsfile(4)] in a user-supplied format. If a directory is named, prs
behaves as though each file in the directory were specified as a named file,
except that non-SeCS files (last component of the path name does not begin
with s.), and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to be the
name of an SCCS file or directory to be processed; non-SCeS files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter argu
ments and file names.

All the described keyletter arguments apply independently to each named
file:

-d[dataspec]

-r[SID]

-e

-1

-c[date-time]

-a

Used to specify the output data specification. The
dataspec is a string consisting of sces file data key
words (see DATA KEYWORDS) interspersed with
optional user-supplied text.

Used to specify the sees IDentification (SID) string of
a delta for which information is desired. If no SID is
specified, the SID of the most recently created delta is
assumed.

Requests information for all deltas created earlier than
and including the delta designated via the -r key letter
or the date given by the -c option.

Requests information for all deltas created later than
and including the delta designated via the -r keyletter
or the date given by the -c option.

The cutoff date-time -c[cutoff]] is in the form:

YY[MM[DD[HH[MM[SS]]]]]

Units omitted from the date-time default to their max
imum possible values; that is, -c7502 is equivalent to
-c750228235959. Any number of non-numeric charac
ters may separate the various 2-digit pieces of the cut
off date in the form: " -c77/2/2 9:22:25".

Requests printing of information for both removed,
i.e., delta type = R, [see rmdel(l)] and existing, i.e.,
delta type = D, deltas. If the -a keyletter is not speci
fied, information for existing deltas only is provided.

- 1 -

PRS(l) (Source Code Control System Utilities) PRS(l)

DATA KEYWORDS

Keyword
:Dt:
:DL:
:Li:
:Ld:
:Lu:
:DT:

:1:
:R:
:L:
:B:
:S:
:D:

:Dy:
:Dm:
:Dd:
:T:

:Th:
:Tm:
:Ts:
:P:

:DS:
:DP:
:DI:
:Dn:
:Dx:
:Dg:
:MR:
:C:

:UN:
:FL:
:Y:

:MF:

Data keywords specify which parts of an SCCS file are to be retrieved and
output. All parts of an SCCS file [see sccsfile(4)] have an associated data
keyword. There is no limit on the number of times a data keyword may
appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and
(2) appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (5), in which keyword sub
stitution is direct, or Multiline (M), in which keyword substitution is fol
lowed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/new-line is specified by \n.
The default data keywords are:

II :Dt:\ t:DL:\nMRs:\n:MR:COMMENTS:\n:C: II

TABLE 1. SCCS Files Data Keywords
Data Item
Delta information
Delta line statistics
Lines inserted by Delta
Lines deleted by Delta
Lines unchanged by Delta
Delta type
SCCS ID string (SID)
Release number
Level number
Branch number
Sequence number
Date Delta created
Year Delta created
Month Delta created
Day Delta created
Time Delta created
Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seq-no.
Seq-no. of deltas incl., excl., ignored
Deltas included (seq #)
Deltas excluded (seq #)
Deltas ignored (seq #)
MR numbers for delta
Comments for delta
User names
Flag list
Module type flag
MR validation flag

- 2 -

File Section
Delta Table

User Names
Flags

Value
See below*

:Li:/:Ld:/:Lu:
nnnnn
nnnnn
nnnnn
D-or-R

:R:.:L:.:B:.:S:
nnnn
nnnn
nnnn
nnnn

:Dy:/:Dm:j:Dd:
nn
nn
nn

:Th:::Tm:::Ts:
nn
nn
nn

logname
nnnn
nnnn

:Dn:/:Dx:/:Dg:
:DS:-:DS: ...
:DS:-:DS: ...
:DS:-:DS: ...

text
text
text
text
text

yes-or-no

Format
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
M
M
M
M
S
S

PRS(l)

Keyword
:MP:
:KF:
:KV:
:BF:
:J:

:LK:
:Q:
:M:
:FB:
:CB:
:Ds:
:ND:
:FD:
:BD:
:GB:
:W:
:A:
:Z:
:F:

:PN:

(Source Code Control System Utilities)

TABLE 1. sees Files Data Keywords (continued)
Data Item
MR validation pgm name
Keyword error/warning flag
Keyword validation string
Branch flag
Joint edit flag
Locked releases
User-defined keyword
Module name
Floor boundary
Ceiling boundary
Default SID
Null delta flag
File descriptive text
Body
Gotten body
A form of what(l) string
A form of what(l) string
what(l) string delimiter
SCCS file name
SCCS file path name

* :Dt:-=-:DT:-:I:-:D:-:T:-:P:-:DS:-:DP:

File Section

Comments
Body

N/A
N/A
N/A
N/A
N/A

Value
text

yes-or-no
text

yes-or-no
yes-or-no

:R: ...
text
text
:R:
:R:
:1:

yes-or-no
text
text
text

:Z::M:\t:l:
:Z::Y:-:M:-:I::Z:

@(#)
text
text

PRS(l)

Format
S
S
S
S
S
S
S
S
S
S
S
S
M
M
M
S
S
S
S
S

EXAMPLES
prs -d "Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d" Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

- 3 -

PRS(l) (Source Code Control System Utilities)

FILES
/tmp/pr?????

SEE ALSO
admin(l), delta(l), get(l), sccsfile(4).
help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations.

- 4 -

PRS(l)

REGCMP(l) (Advanced C Utilities) REGCMP(l)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
The regcmp command performs a function similar to regcmp (3X) and, in
most cases, precludes the need for calling regcmp (3X) from C programs.
This saves on both execution time and program size. The command regcmp
compiles the regular expressions in file and places the output in file.i. If the
- option is used, the output will be placed in file .c. The format of entries in
file is a name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotes. The output of regcmp is C
source code. Compiled regular expressions are represented as extern char
vectors. File.i files may thus be included in C programs, or file.c files may
be compiled and later loaded. In the C program which uses the regcmp out
put, regex(abc,line) will apply the regular expression named abc to line.
Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-z][A-Za-zO-9_]*)$0"

telno "\({O,l }([2-9][Ol][1-9])$0\) {O,l } *"
"([2-9][0-9H2})$l[-HO,l}"
"([0-9] {4})$2 "

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X).

- 1 -

RELOGIN(lM) (AT&T Windowing Utilities) RELOGIN(lM)

NAME
relogin - rename login entry to show current layer

SYNOPSIS
/usr/lib/layersys/relogin [-s] [line]

DESCRIPTION

FILES

The relogin command changes the terminal line field of a user's utmp(4)
entry to the name of the windowing terminal layer attached to standard
input. write(l) messages sent to this user are directed to this layer. In addi
tion, the who(l) command will show the user associated with this layer.
relogin may only be invoked under layers(l).

The relogin command is invoked automatically by layers(l) to set the
utmp(4) entry to the terminal line of the first layer created upon startup, and
to reset the utmp(4) entry to the real line on termination. It may be invoked
by a user to designate a different layer to receive write(l) messages.

-s Suppress error messages.

line Specifies which utmp(4) entry to change. The utmp(4) file is
searched for an entry with the specified line field. That field is
changed to the line associated with the standard input. (To learn
what lines are associated with a given user, say jdoe, type ps -£ -u
jdoe and note the values shown in the TTY field [see ps(l))].

/etc/utmp

EXIT STATUS

data base of users versus terminals

Returns 0 upon successful completion, 1 otherwise.

SEE ALSO

NOTES

utmp(4) in the Programmer's Reference Manual.
layers(l), mesg(l), ps(l), who(l), write(l) in the User's Reference Manual.

If line does not belong to the user issuing the relogin command or standard
input is not associated with a terminal, relogin will fail.

- 1 -

RMDEL(l) (Source Code Control System Utilities) RMDEL(l)

NAME
rmdel - remove a delta from an SCCS file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

The rmdel command removes the delta specified by the SID from each
named SCCS file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named sees file. In
addition, the specified must not be that of a version being edited for the
purpose of making a delta (i. e., if a p-file [see get(l)] exists for the named
sees file, the specified must not appear in any entry of the p-file).

The -r option is used for specifying the SID (SeeS IDentification) level of
the delta to be removed.

If a directory is named, rmdel behaves as though each file in the directory
were specified as a named file, except that non-SeeS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file· to be processed;
non-Sees files and unreadable files are silently ignored.

Simply stated, they are either (1) if you make a delta you can remove it; or
(2) if you own the file and directory you can remove a delta.

x.file [see delta(l)]
z.file [see delta(l)]

SEE ALSO
delta(l), get(l), prs(l), sccsfile(4).
help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

SACT(l) (Source Code Control System Utilities) SACT(l)

NAME
sact - print current sees file editing activity

SYNOPSIS
sad files

DESCRIPTION
The sact command informs the user of any impending deltas to a named
sees file. This situation occurs when get(l) with the -e option has been
previously executed without a subsequent execution of delta(l). If a direc
tory is named on the command line, sact behaves as though each file in the
directory were specified as a named file, except that non-SeeS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an sees file to be
processed.

The output for each named file consists of five fields separated by spaces.

SEE ALSO

Field 1 specifies the SID of a delta that currently exists in the
secs file to which changes will be made to make the
new delta.

Field 2

Field 3

Field 4

Field 5

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta
(Le., executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

delta(l), get(l), unget(l).

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

SCCSDIFF(l) (Source Code Control System Utilities) SCCSDIFF(l)

NAME
sccsdiff - compare two versions of an sees file

SYNOPSIS
sccsdiff -rSml -rSID2 [-p] [-sn] files

DESCRIPTION

FILES

The sccsdiff command compares two versions of an sees file and generates
the differences between the two versions. Any number of sces files may
be specified, but arguments apply to all files.

-rSID?

-p
-sn

SIDl and SID2 specify the deltas of an sees file that are
to be compared. Versions are passed to bdiff(l) in the
order given.

pipe output for each file through pr(l).

n is the file segment size that bdiff will pass to diff(l).
This is useful when diff fails due to a high system load.

/tmp/get????? Temporary files

SEE ALSO
get(l).
bdiff(l), help(l), pr(l) in the User's Reference Manual.

DIAGNOSTICS
"file: No differences" If the two versions are the same.
Use help(l) for explanations.

- 1 -

SDB(l) (Extended Software Generation System Utilities) SDB(l)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [-w] [-W] [objfil [corfil [directory-list]]]

DESCRIPTION
The sdb command calls a symbolic debugger that can be used with C and
F77 programs. It may be used to examine their object files and core files
and to provide a controlled environment for their execution.

Objfil is an executable program file which has been compiled with the -g
(debug) option. If it has not been compiled with the -g option, the sym
bolic capabilities of sdb will be limited, but the file can still be examined and
the program debugged. The default for objfil is a.out. Corfil is assumed to
be a core image file produced after executing objfil; the default for corfil is
core. The core file need not be present. A - in place of corfil will force sdb
to ignore any core image file. The colon-separated list of directories
(directory-list) is used to locate the source files used to build objfil.

It is useful to know that at any time there is a current line and current file.
If corfil exists, then they are initially set to the line and file containing the
source statement at which the process terminated. Otherwise, they are set
to the first line in mainO. The current line and file may be changed with
the source file examination commands.

By default, warnings are provided if the source files used in producing objfil
cannot be found, or are newer than objfil. This checking feature and the
accompanying warnings may be disabled by the use of the -W flag.

Names of variables are written just as they are in C or F77. sdb does not
truncate names. Variables local to a procedure may be accessed using the
form procedure:variable. If no procedure name is given, the procedure con
taining the current line is used by default.

It is also possible to refer to structure members as variable .member, pointers
to structure members as variable->member, and array elements as
variable[number]. Pointers may be dereferenced by using the form
pointer[O]. Combinations of these forms may also be used. F77 common
variables may be referenced by using the name of the common block
instead of the structure name. Blank common variables may be named by
the form .variable. A number may be used in place of a structure variable
name, in which case the number is viewed as the address of the structure,
and the template used for the structure is that of the last structure refer
enced by sdb. An unqualified structure variable may also be used with vari
ous commands. Generally, sdb will interpret a structure as a set of vari
ables. Thus, sdb will display the values of all the elements of a structure
when it is requested to display a structure. An exception to this interpreta
tion occurs when displaying variable addresses. An entire structure does
have an address, and it is this value sdb displays, not the addresses of indi
vidual elements.

Elements of a multidimensional array may be' referenced as variable
[number][numberJ ... , or as variable [number,number, .. .]. In place of number,

- 1 -

SD8(1) (Extended Software Generation System Utilities) SD8(1)

the form numberinumber may be used to indicate a range of values, * may
be used to indicate all legitimate values for that subscript, or subscripts may
be omitted entirely if they are the last subscripts and the full range of values
is desired. As with structures, sdb displays all the values of an array or of
the section of an array if trailing subscripts are omitted. It displays only the
address of the array itself or of the section specified by the user if subscripts
are omitted. A multidimensional parameter in an F77 program cannot be
displayed as an array, but it is actually a pointer, whose value is the loca
tion of the array. The array itself can be accessed symbolically from the cal
ling function.

A particular instance of a variable on the stack may be referenced by using
the form procedure:variable,number. All the variations mentioned in naming
variables may be used. Number is the occurrence of the specified procedure
on the stack, counting the top, or most current, as the first. If no procedure
is specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer
constants which are valid in C may be used, so that addresses may be input
in decimal, octal, or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure :number. In either case the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or file
is used.

While a process is running under sdb, all addresses refer to the executing
program; otherwise they refer to objfil or corfil. An initial argument of -w
permits overwriting locations in objfil.

Addresses
The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri
ples (bl, el, fl) and (b2, e2, f2) and the file address corresponding to a writ-
ten address is calculated as follows: .

bl :;;,address <el
then
file address =address +fl-b 1

otherwise

b 2 :;;,address <e2
then
file address =address +f2-b2

otherwise, the requested address is not legal. In some cases (e.g., for pro
grams with separated I and D space) the two segments for a file may over
lap.

The initial setting of both mappings is suitable for normal a.out and core
files. If either file is not of the kind expected then, for that file, bl is set to
0, el is set to the maximum file size, and fl is set to 0; in this way the
whole file can be examined with no address translation.

- 2 -

SDB(1) (Extended Software Generation System Utilities) SDB(1)

In order for sdb to be used on large files, all appropriate values are kept as
signed 32-bit integers.

Commands
The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.

T Print the top line of the stack trace.

variable jclm
Print the value of variable according to length I and format m. A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers
are:

b one byte
h two bytes (half word)
1 four bytes (long word)

Legal values for mare:
c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
f 32-bit single precision floating point
g 64-bit double precision floating point
s Assume variable is a string pointer and print characters

starting at the address pointed to by the variable.
a Print characters starting at the variable's address. This

format may not be used with register variables.
p pointer to procedure
i disassemble machine-language instruction with

addresses printed numerically and symbolically.
I disassemble machine-language instruction with

addresses just printed numerically.

Length specifiers are only effective with the c, d, u, 0, and x formats.
Any of the specifiers, c, I, and m, may be omitted. If all are omitted,
sdb chooses a length and a format suitable for the variable's type as
declared in the program. If m is specified, then this format is used for
displaying the variable. A length specifier determines the output
length of the value to be displayed, sometimes resulting in truncation.
A count specifier c tells sdb to display that many units of memory,
beginning at the address of variable. The number of bytes in one such
unit of memory is determined by the length specifier I, or if no length
is given, by the size associated with the variable. If a count specifier is
used for the s or a command, then that many characters are printed.
Otherwise successive characters are printed until either a null byte is
reached or 128 characters are printed. The last variable may be
redisplayed with the command .j.

- 3 -

508(1) (Extended Software Generation System Utilities) 508(1)

The sh(l) metacharacters * and? may be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, variables local to the current procedure and
global variables are matched; if a procedure name is specified, then
only variables local to that procedure are matched. To match only
global variables, the form :pattern is used.

linenumber?lm
variable:?lm

Print the value at the address from a.out or I space given by
linenumber or variable (procedure name), according to the format 1m.
The default format is Ii'.

variable=lm
linenumber=lm
number=lm

Print the address of variable or linenumber, or the value of number, in
the format specified by 1m. If no format is given, then Ix is used. The
last variant of this command provides a convenient way to convert
between decimal, octal, and hexadecimal.

variable!value
Set variable to the given value. The value may be a number, a charac
ter constant, or a variable. The value must be well defined; expres
sions which produce more than one value, such as structures, are not
allowed. Character constants are denoted 'character. Numbers are
viewed as integers unless a decimal point or exponent is used. In this
case, they are treated as having the type double. Registers are viewed
as integers. The variable may be an expression which indicates more
than one variable, such as an array or structure name. If the address
of a variable is given, it is regarded as the address of a variable of type
int. C conventions are used in any type conversions necessary to per
form the indicated assignment.

x Print the machine registers and the current machine-language instruc-
tion.

X Print the current machine-language instruction.

The commands for examining source files are:

e procedure
e file-name
e directory /
e directory file-name

The first two forms set the current file to the file containing procedure
or to file-name. The current line is set to the first line in the named
procedure or file. Source files are assumed to be in directory. The
default is the current working directory. The latter two forms change
the value of directory. If no procedure, file name, or directory is given,
the current procedure name and file name are reported.

- 4 -

SDB(l) (Extended Software Generation System Utilities) SDB(l)

/regular expression /
Search forward from the current line for a line containing a string
matching regular expression as in ed(I). The trailing / may be deleted.

?regular expression?
Search backward from the current line for a line containing a string
matching regular expression as in ed(I). The trailing? may be deleted.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the current line
to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current
line.

count+
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument begin
ning with < or > causes redirection for the standard input or output,
respectively. If count is given, it specifies the number of breakpoints
to be ignored.

linen umber c count
linenumber C count

Continue after a breakpoint or interrupt. If count is given, the pro
gram will stop when count breakpoints have been encountered. The
signal which caused the program to stop is reactivated with the C
command and ignored with the c command. If a line number is speci
fied, then a temporary breakpoint is placed at the line and execution is
continued. The breakpoint is deleted when the command finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line.
If count is given, it specifies the number of breakpoints to be ignored.

s count
S count

Single-step the program through count lines. If no count is given, then
the program is run for one line. S is equivalent to s except it steps
through procedure calls.

- 5 -

SDB(1) (Extended Software Generation System Utilities) SDB(1)

i
I Single-step by one machine-language instruction. The signal which

caused the program to stop is reactivated with the I command and
ignored with the i command.

variable$m count
address:m count

Single-step (as with s) until the specified location is modified with a
new value. If count is omitted, it is effectively infinity. Variable must
be accessible from the current procedure. Since this command is done
by software, it can be very slow.

level v
Toggle verbose mode, for use when single-stepping with S, s, or m. If
level is omitted, then just the current source file and/or subroutine
name is printed when either changes. If level is 1 or greater, each C
source line is printed before it is executed; if level is 2 or greater, each
assembler statement is also printed. A v turns verbose mode off if it is
on for any level.

k Kill the program being debugged.

procedure(argl,arg2, ...)
procedure(argl,arg2, ...) /m

Execute the named procedure with the given arguments. Arguments
can be integer, character, or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
If no format is given, it defaults to d. This facility is only available if
the program was loaded with the -g option.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line
number is given (e.g., "proc:"), a breakpoint is placed at the first line
in the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, execution stops just before the breakpoint and
control is returned to sdb. Otherwise the commands are executed
when the breakpoint is encountered and execution continues. Multi
ple commands are specified by separating them with semicolons. If k
is used as a command to execute at a breakpoint, control returns to
sdb, instead of continuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given, then
the breakpoints are deleted interactively. Each breakpoint location is
printed and a line is read from the standard input. If the line begins
with a y or d, then the breakpoint is deleted.

D Delete all breakpoints.

1 Print the last executed line.

- 6 -

SDB(1)

FILES

(Extended Software Generation System Utilities) SDB(1)

linenumber a
Announce. If linenumber is of the form proc:number, the command
effectively does a linenumber b 1. If linenumber is of the form proc:,
the command effectively does a proc: b T.

Miscellaneous commands:

!command
The command is interpreted by sh(I).

new-line
If the previous command printed a source line, then advance the
current line by one line and print the new current line. If the previous
command displayed a memory location, then display the next memory
location.

end-of-file character
Scroll. Print the next 10 lines of instructions, source or data depend
ing on which was printed last. The end-of-file character is usually
control-D.

< filename
Read commands from filename until the end of file is reached, and
then continue to accept commands from standard input. When sdb is
told to display a variable by a command in such a file, the variable
name is displayed along with the value. This command may not be
nested; < may not appear as a command in a file.

M Print the address maps.

M [? /] [*] b e f
Record new values for the address map. The arguments ? and /
specify the text and data maps, respectively. The first segment (bl, el,
fl) is changed unless * is specified; in which case, the second segment
(b2, e2, f2) of the mapping is changed. If fewer than three values are
given, the remaining map parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form \character
are recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

a.out
core

SEE ALSO
cc(I), a.out(4), core(4), syms(4).
sh(l) in the User's Reference Manual.

- 7 -

SDB(1) (Extended Software Generation System Utilities) SDB(1)

WARNINGS

BUGS

When sdb prints the value of an external variable for which there is no
debugging information, a warning is printed before the value. The size is
assumed to be int (integer).

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some
information may be missing.

If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged), all variables are initialized
before the procedure is started. This makes it impossible to use a procedure
which formats data from a core image.

The sdb command cannot print the value of an F77 parameter. It will
erroneously print the address.

Tracebacks containing F77 subprograms with multiple entry points may
print too many arguments in the wrong order, but their values are correct.

The range of an F77 array subscript is assumed to be 1 to n, where n is the
dimension corresponding to that subscript. This is only significant when
the user omits a subscript, or uses * to indicate the full range. There is no
problem in general with arrays having subscripts whose lower bounds are
not 1.

- 8 -

SIZE(l) (Software Generation System Utilities) SIZE(l)

NAME
size - print section sizes in bytes of common object files

SYNOPSIS
size [-n] [-f] [-0] [-x] [-V] files

DESCRIPTION
The size command produces section size information in bytes for each
loaded section in the common object files. The size of the text, data, and
bss (un initialized data) sections is printed, as well as the sum of the sizes of
these sections. If an archive file is input to the size command, the informa
tion for all archive members is displayed.

The -n option includes NOLOAD sections in the size.

The -f option produces full output, that is, it prints the size of every loaded
section, followed by the section name in parentheses.

Numbers will be printed in decimal unless either the -0 or the -x option is
used, in which case they will be printed in octal or in hexadecimal, respec
tively.

The -V flag will supply the version information on the size command.

SEE ALSO
as(l), cc(l), ld(l), a.out(4), ar(4).

CAVEAT
Since the size of bss sections is not known until link-edit time, the size com
mand will not give the true total size of pre-linked objects.

DIAGNOSTICS
size: name: cannot open

if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

- 1 -

STRIP(l) (Software Generation System Utilities) STRIP(l)

NAME
strip - strip symbol and line number information from a common object file

SYNOPSIS
strip [-I] [-x] [-b] [-r] [-V] filename ...

DESCRIPTION

FILES

The strip command strips the symbol table and line number information
from common object files, including archives. Once this has been done, no
symbolic debugging access will be available for that file; therefore, this com
mand is normally run only on production modules that have been debugged
and tested.

The amount of information stripped from the symbol table can be controlled
by using any of the following options:

-I Strip line number information only; do not strip any symbol table
information.

-x Do not strip static or external symbol information.

-b Same as the -x option, but also do not strip scoping information
(e.g., beginning and end of block delimiters).

-r Do not strip static or external symbol information, or relocation
information.

- V Print the version of the strip command executing on the standard
error output.

If there are any relocation entries in the object file and any symbol table
information is to be stripped, strip will complain and terminate without
stripping filename unless the -r option is used.

If the strip command is executed on a common archive file [see ar(4)] the
archive symbol table will be removed. The archive symbol table must be
restored by executing the ar(l) command with the s option before the
archive can be link-edited by the Id(l) command. strip will produce
appropriate warning messages when this situation arises.

The strip command is used to reduce the file storage overhead taken by the
object file.

TMPDIR/strp* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environ
ment variable TMPDIR [see tempnamO in tmpnam(3S)].

SEE ALSO
ar(l), as(l), cc(l), ld(l), tmpnam(3S), a.out(4), ar(4).

DIAGNOSTICS
strip: name: cannot open

if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

- J -

STRIP(l) (Software Generation System Utilities) STRIP(l)

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag
is not used, the symbol table information
cannot be stripped.

- 2 -

TIC(lM) (Terminal Information Utilities) TIC(lM)

NAME
tic - terminfo compiler

SYNOPSIS
tic [-v[n]] [-c] file

DESCRIPTION

FILES

tic translates a terminfo(4) file from the source format into the compiled for
mat. The results are placed in the directory jusr jlib jterminfo. The com
piled format is necessary for use with the library routines described in
curses(3X).

-vn (verbose) output to standard error trace information showing tic's
progress. The optional integer n is a number from 1 to 10,
inclusive, indicating the desired level of detail of information. If n
is omitted, the default level is 1. If n is specified and greater than
1, the level of detail is increased.

-c only check file for errors. Errors in use= links are not detected.

file contains one or more terminfo(4) terminal descriptions in source
format (see terminfo(4)). Each description in the file describes the
capabilities of a particular terminal. When a use=entry-name field
is discovered in a terminal entry currently being compiled, tic reads
in the binary from jusr jlib jterminfo to complete the entry. (Entries
created from file will be used first. If the environment variable
TERMINFO is set, that directory is searched instead of
jusr jlib jterminfo.) tic duplicates the capabilities in entry-name for
the current entry, with the exception of those capabilities that
explicitly are defined in the current entry.

If the environment variable TERMINFO is set, the compiled results are
placed there instead of jusr jlib jterminfo.

jusrjlibjterminfoj? j* compiled terminal description data base

SEE ALSO
curses(3X), term(4), terminfo(4) in the Programmer's Reference Manual.
Chapter 10 in the Programmer's Guide.

WARNINGS

BUGS

Total compiled entries cannot exceed 4096 bytes. The name field cannot
exceed 128 bytes.

Terminal names exceeding 14 characters will be truncated to 14 characters
and a warning message will be printed.

When the -c option is used, duplicate terminal names will not be diagnosed;
however, when -c is not used, they will be.

To allow existing executables from the previous release of the UNIX System
to continue to run with the compiled terminfo entries created by the new
terminfo compiler, cancelled capabilities will not be marked as cancelled
within the terminfo binary unless the entry name has a 1+' within it. (Such
terminal names are only used for inclusion within other entries via a use=

- 1 -

TIC{lM) (Terminal Information Utilities)

entry. Such names would not be used for real terminal names.)

For example:

4415+nl, kf1@, kf2@,

4415+base, kf1=\EOc, kf2=\EOd,

4415-n1l4415 terminal without keys,
use=4415+nl, use=4415+base,

TIC{lM)

The above example works as expected; the definitions for the keys do not
show up in the 441S-nl entry. However, if the entry 441S+nl did not have
a plus sign within its name, the cancellations would not be marked within
the compiled file and the definitions for the function keys would not be
cancelled within 441S-nl.

DIAGNOSTICS
Most diagnostic messages produced by tic during the compilation of the
source file are preceded with the approximate line number and the name of
the terminal currently being worked on.

mkdir ... returned bad status
The named directory could not be created.

File does not start with terminal names in column one
The first thing seen in the file, after comments, must be the list of
terminal names.

Token after a Iseek(2) not NAMES
Somehow the file being compiled changed during the compilation.

Not enough memory for use--1ist element
or

Out of memory
Not enough free memory was available (malloc(3C) failed).

Can't open ...
The named file could not be created.

Error in writing ...
The named file could not be written to.

Can't link ... to ...
A link failed.

Error in re-reading compiled file ...
The compiled file could not be read back in.

Premature EOF
The current entry ended prematurely.

Backspaced off beginning of line
This error indicates something wrong happened within tic.

Unknown Capability - " ... "
The named invalid capability was found within the file.

- 2 -

TIC(lM) (Terminal Information Utilities) TIC(lM)

Wrong type used for capability " ... "
For example, a string capability was given a numeric value.

Unknown token type
Tokens must be followed by '@' to cancel, ',' for booleans, '#' for
numbers, or '=' for strings.

" ... ": bad term name
or

Line ... : Illegal terminal name - "
Terminal names must start with a letter or digit

The given name was invalid. Names must not contain white space
or slashes, and must begin with a letter or digit.

" ... ": terminal name too long.
An extremely long terminal name was found.

" ... ": terminal name too short.
A one-letter name was found.

" ... " filename too long, truncating to " ... "
The given name was truncated to 14 characters due to UNIX file
name length limitations.

" ... " defined in more than one entry. Entry being used is "
An entry was found more than once.

Terminal name" ... " synonym for itself
A name was listed twice in the list of synonyms.

At least one synonym should begin with a letter.
At least one of the names of the terminal should begin with a
letter.

Illegal character - " ... "
The given invalid character was found in the input file.

Newline in middle of terminal name
The trailing comma was probably left off of the list of names.

Missing comma
A comma was missing.

Missing numeric value
The number was missing after a numeric capability.

NULL string value
The proper way to say that a string capability does not exist is to
cancel it.

Very long string found. Missing comma?
self-explanatory

Unknown option. Usage is:
An invalid option was entered.

Too many file names. Usage is:
self-explanatory

- 3 -

TIC(lM) (Terminal Information Utilities)

II ••• II non-existant or permission denied
The given directory could not be written into.

II ••• II is not a directory
self-explana tory

II ••• II: Permission denied
access denied.

II ••• II: Not a directory

TIC(lM)

tic wanted to use the given name as a directory, but it already
exists as a file

SYSTEM ERROR!! Fork failed!!!
A fork(2) failed.

Error in following up use-links. Either there is a loop in the links or they
reference non-existant terminals. The following is a list of the entries
involved:

A terminfo(4) entry with a use=name capability either referenced a
non-existant terminal called name or name somehow referred back to
the given entry.

- 4 -

TSORT(l) (Software Generation System Utilities)

NAME
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION

TSORT(l)

The tsort command produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the input file.
If no file is specified, the standard input is understood.

The input consists of pairs of items (non empty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

SEE ALSO
lorder(l).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

- 1 -

UNGET(l) (Source Code Control System Utilities) UNGET(l)

NAME
unget - undo a previous get of an SCCS file

SYNOPSIS
unget [-rSID] [-s] [-n] files

DESCRIPTION
The unget command undoes the effect of a get -e done prior to creating the
intended new delta. If a directory is named, unget behaves as though each
file in the directory were specified as a named file, except that non-sees
files and unreadable files are silently ignored. If a name of - is given, the
standard input is read with each line being taken as the name of an sees
file to be processed.

Keyletter arguments apply independently to each named file.

SEE ALSO

-rSID Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the "new
delta"). The use of this keyletter is necessary only if two
or more outstanding gets for editing on the same sees
file were done by the same person (login name). A diag
nostic results if the specified SID is ambiguous, or if it is
necessary and omitted on the command line.

-s Suppresses the printout, on the standard output, of the
intended delta's SID.

-n Causes the retention of the gotten file which would nor
mally be removed from the current directory.

delta(l), get(l), sact(l).
help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations.

- 1 -

VAL(l) (Source Code Control System Utilities) VAL(l)

NAME
val - validate SCCS file

SYNOPSIS
val -
val [-8] [-rSID] [-mname] [-ytype] files

DESCRIPTION
The val command determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments to val
may appear in any order. The arguments consist of keyletter arguments,
which begin with a -, and named files.

The val command has a special argument, -, which causes reading of the
standard input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

The val command generates diagnostic messages on the standard output for
each command line and file processed, and also returns a single 8-bit code
upon exit as described below.

The keyletter arguments are defined as follows. The effects of any key letter
argument apply independently to each named file on the command line.

-8

-rSID

-mname

-ytype

The presence of this argument silences the diagnostic message
normally generated on the standard output for any error that is
detected while processing each named file on a given com
mand line.

The argument value SID (SCCS IDentification String) is an
SCCS delta number. A check is made to determine if the SID
is ambiguous (e. g., rl is ambiguous because it physically does
not exist but implies 1.1, 1.2, etc., which may exist) or invalid
(e. g., r1.0 or r1.1.0 are invalid because neither case can exist
as a valid delta number). If the SID is valid and not ambigu
ous, a check is made to determine if it actually exists.

The argument value name is compared with the SCCS %M%
keyword in file.

The argument value type is compared with the SCCS % Y%
keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e.,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted SCCS file;
bit 3 = cannot open file or file not SCCS;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

- 1 -

VAL(l) (Source Code Control System Utilities) VAL(l)

Note that val can process two or more files on a given command line and in
tum can process multiple command lines (when reading the standard input).
In these cases an aggregate code is returned - a logical OR of the codes gen
erated for each command line and file processed.

SEE ALSO
admin(l), delta(l), get(l), prs(l).
help(l) in the User's Reference Manual.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

The val command can process up to 50 files on a single command line.
Any number above 50 will produce a core dump.

- 2 -

VC(l) (Source Code Control System Utilities) VC(l)

NAME
vc - version control

SYNOPSIS
vc [-a] [-t] [-cchar] [-s] [keyword=value ... keyword=value]

DESCRIPTION
The vc command copies lines from the standard input to the standard out
put under control of its arguments and control statements encountered in the
standard input. In the process of performing the copy operation, user
declared keywords may be replaced by their string value when they appear
in plain text and/or control statements.

The copying of lines from the standard input to the standard output is con
ditional, based on tests (in control statements) of keyword values specified
in control statements or as vc command arguments.

A control statement is a single line beginning with a control character,
except as modified by the -t keyletter (see below). The default control char
acter is colon (:), except as modified by the -c keyletter (see below). Input
lines beginning with a backslash (\) followed by a control character are not
control lines and are copied to the standard output with the backslash
removed. Lines beginning with a backslash followed by a non-control char
acter are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alpha
betic. A value is any ASCII string that can be created with ed(l); a numeric
value is an unsigned string of digits. Keyword values may not contain
blanks or tabs.

Replacement of keywords by values is done whenever a keyword sur
rounded by control characters is encountered on a version control statement.
The -a keyletter (see below) forces replacement of keywords in all lines of
text. An uninterpreted control character may be included in a value by
preceding it with \. If a literal \ is desired, then it too must be preceded by
\.
Keyletter Arguments

-a

-t

-cchar

-s

Forces replacement of keywords surrounded by control charac
ters with their assigned value in all text lines and not just in
vc statements.

All characters from the beginning of a line up to and including
the first tab character are ignored for the purpose of detecting
a control statement. If one is found, all characters up to and
including the tab are discarded.

Specifies a control character to be used in place of :.

Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements

:dcl keyword[, ... , keyword]
Used to declare keywords. All keywords must be declared.

- 1 -

VC(l) (Source Code Control System Utilities) VC(l)

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line
and all previous asg's for that keyword. Keywords declared, but not
assigned values have null values.
:if condition

:end
Used to skip lines of the standard input. If the condition is true, all
lines between the if statement and the matching end statement are
copied to the standard output. If the condition is false, all intervening
lines are discarded, including control statements. Note that interven
ing if statements and matching end statements are recognized solely
for the purpose of maintaining the proper if-end matching.
The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::= ["not"] <or>
::= <and> I <and> "I" <or>
::= <exp> I <exp> "&" <and>
::= "(,, <or> ")" I <value> <op> <value>
::= "=" I "!=" I "<,, I ,,>"
::= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

!=
&
I
>
<
()
not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

The> and < operate only on unsigned integer values (e.g., : 012 > 12
is false). All other operators take strings as arguments (e.g., : 012 !=
12 is true). The precedence of the operators (from highest to lowest)
is:

= !=> <
&
I

all of equal precedence

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least
one blank or tab.

- 2 -

VC(l)

::text

:on

:off

(Source Code Control System Utilities) VC(l)

Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and key
words surrounded by control characters in text are replaced by their
value before the line is copied to the output file. This action is
independent of the -a keyletter.

Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line ... (915)
on the diagnostic output. vc halts execution and returns an exit code
of 1.

SEE ALSO
ed(l), help(l) in the User's Reference Manual.

DIAGNOSTICS
Use help(l) for explanations.

EXIT CODES
a - normal
1 - any error

- 3 -

WHAT(l) (Source Code Control System Utilities) WHAT(l)

NAME
what - identify SCCS files

SYNOPSIS
what [-s] files

DESCRIPTION
The what command searches the given files for all occurrences of the pat
tern that get(l) substitutes for %Z% (this is @(#) at this printing) and prints
out what follows until the first -, >, new-line, \, or null character. For
example, if the C program in file f.e contains

char ident[] = "@(#)identification information";

and f.e is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
iden tifica tion information

f.o:
identification information

a.out:
identification information

The what command is intended to be used in conjunction with the com
mand get(l), which automatically inserts identifying information, but it can
also be used where the information is inserted manually. Only one option
exists:

-s Quit after finding the first occurrence of pattern in each file.

SEE ALSO
get(l).
help(l) in the User's Reference Manual.

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, otherwise 1. Use help(l) for expla
nations.

It is possible that an unintended occurrence of the pattern @(#) could be
found just by chance, but this causes no harm in nearly all cases.

- 1 -

WTINIT(lM) (AT&T Windowing Utilities) WTINIT(lM)

NAME
wtinit - object downloader for the 5620 DMD terminal

SYNOPSIS
JusrJlibJlayersysJwtinit [-d] [-p] file

DESCRIPTION
The wtinit utility downloads the named file for execution in the AT&T Tele
type 5620 DMD terminal connected to its standard output. file must be a
DMD object file. wtinit performs all necessary bootstrap and protocol pro
cedures.

There are two options.

-d Prints out the sizes of the text, data, and bss portions of the down
loaded file on standard error.

-p Prints the down-loading protocol statistics and a trace on standard
error.

The environment variable JP A TH is the analog of the shell's PATH variable
to define a set of directories in which to search for file.

If the environment variable DMDLOAD has the value hex, wtinit will use a
hexadecimal download protocol that uses only printable characters.

Terminal Feature Packages for specific versions of AT&T windowing termi
nals will include terminal-specific versions of wtinit under those installation
sub-directories. Jusr Jlib /layersys/wtinit is used for layers(l) initialization
only when no Terminal Feature Package is in use.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

WARNING
Standard error should be redirected when using the -d or -p options.

SEE ALSO
layers(l) in the User's Reference Manual.

- 1 -

XTD(lM) (AT&T Windowing Utilities) XTD(lM)

NAME
xtd - extract and print xt driver link structure

SYNOPSIS
xtd [-f] [-n ...]

DESCRIPTION
The xtd command is a debugging tool for the xt(7) driver. It performs an
XTIOCDATA ioctl(2) call on its standard input file to extract the Link data
structure for the attached group of channels. This call will fail if data
extraction has not been configured in the driver or the standard input is not
attached to an xt(7) channel. The data are printed one item per line on the
standard output. The output should probably be formatted via pr -3.

The optional flags affect output as follows:

-n n is a number in the range 0 to 7. Channel n is included in the
list of channels to be printed. The default prints all channels,
whereas the occurrence of one or more channel numbers implies
a subset.

-£ Causes a "formfeed" character to be put out at the end of the
output, for the benefit of page-display programs.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO
xts(lM), xtt(lM), ioctl(2), xtproto(5)
xt(7) in the System Administrator's Reference Manual.
pr(l) in the User's Reference Manual.

- 1 -

XTS(lM) (AT&T Windowing Utilities) XTS(lM)

NAME
xts - extract and print xt driver statistics

SYNOPSIS
xts [-f]

DESCRIPTION
The xts command is a debugging tool for the xt(7) driver. It performs an
XTIOCSTATS ioctl(2) call on its standard input file to extract the accumu
lated statistics for the attached group of channels. This call will fail if statis
tics have not been configured in the driver, or the standard input is not
attached to an xt(7) channel. The statistics are printed, one item per line, on
the stand:.~d output.

-f Causes a "formfeed" character to be put out at the end of the out
put, for the benefit of page-display programs.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO
xtd(lM), xtt(lM), ioctl(2), xtproto(5)
xt(7) in the System Administrator's Reference Manual.

- 1 -

XTT(lM) (AT&T Windowing Utilities) XTT(lM)

NAME
xtt - extract and print xt driver packet traces

SYNOPSIS
xU [-f] [-0]

DESCRIPTION
The xtt command is a debugging tool for the xt(7) driver. It performs an
XTIOCTRACE ioctl(2) call on its standard input file to turn on tracing and
extract the circular packet trace buffer for the attached group of channels.
This call will fail if tracing has not been configured in the driver, or the
standard input is not attached to an xt(7) channel. The packets are printed
on the standard output.

The optional flags are:

-£ Causes a "formfeed" character to be put out at the end of the out
put, for the benefit of page-display programs.

-0 Turns off further driver tracing.

EXIT STATUS

NOTE

Returns 0 upon successful completion, 1 otherwise.

If driver tracing has not been turned on for the terminal session by invoking
layers(l) with the -t option, xtt will not generate any output the first time it
is executed.

SEE ALSO
xtd(lM), xts(lM), ioctl(2), layers(5)
xt(7) in the System Administrator's Reference Manual.
layers(l) in the User's Reference Manual.

- 1 -

YACC(l) (Extended Software Generation System Utilities) YACC(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vdlt] grammar

DESCRIPTION

FILES

The yaee command converts a context-free grammar into a set of tables for a
simple automaton which executes an LR(l) parsing algorithm. The grammar
may be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical analyzer
program, yylex, as well as main and yyerror, an error-handling routine.
These routines must be supplied by the user; lex(l) is useful for creating lex
ical analyzers usable by yaee.

If the -v flag is given, the file y:~~tput is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define state
ments that associate the yaee-assigned "token codes" with the user-declared
"token names". This allows source files other than y.tab.c to access the
token codes.

If the -1 flag is given, the code produced in y.tab.c will not contain any
#line constructs. This should only be used after the grammar and the asso
ciated actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when y.tab.c is
compiled. However, when yaee's -t option is used, this debugging code
will be compiled by default. Independent of whether the -t option was
used, the runtime debugging code is under the control of YYDEBUG, a
preprocessor symbol. If YYDEBUG has a non-zero value, then the debug
ging code is included. If its value is zero, then the code will not be
included. The size and execution time of a program produced without the
runtime debugging code will be smaller and slightly faster.

y.output
y.tab.c
y.tab.h
yacc.tmp,
yacc.debug, yacc.acts
j usr jlib j yaccpar

defines for token names

temporary files
parser prototype for C programs

SEE ALSO
lex(l).
Programmer's Guide.

- 1 -

YACC(l) (Extended Software Generation System Utilities) YACC(l)

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file.
Similarly, if some rules are not reachable from the start symbol, this is also
reported.

CAVEAT
Because file names are fixed, at most one yacc process can be active in a
given directory at a given time.

- 2 -

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#inc1ude <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one
or more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always -lor the NULL pointer;
the individual descriptions specify the details. An error number is also
made available in the external variable errna. Errna is not cleared on suc
cessful calls, so it should be tested only after an error has been indicated.

Each system call description attempts to list all possible error numbers. The
following is a complete list of the error numbers and their names as defined
in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also returned
for attempts by ordinary users to do things allowed only to the
super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should
exist but doesn't, or when one of the directories in a path name
does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill(2) or ptrace(2).

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter
rupted system call returned this error condition.

5 EIO I/O error
Some physical I/O error has occurred. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a sub device which does not exist, or
beyond the limits of the device. It may also occur when, for exam
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member
of the exec(2) family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
[see a.aut(4)].

- 1 -

INTRO(2) INTRO(2)

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read(2) [respec
tively, write(2)] request is made to a file which is open only for
writing (respectively, reading).

10 ECHILD No child processes
A wait was executed by a process that had no existing or unwaited
for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or the user is
not allowed to create any more processes. Or a system call failed
because of insufficient memory or swap space.

12 ENOMEM Not enough space
During an exec(2), brk(2), or sbrk(2), a program asks for more space
than the system is able to supply. This may not be a temporary
condition; the maximum space size is a system parameter. The
error may also occur if the arrangement of text, data, and stack seg
ments requires too many segmentation registers, or if there is not
enough swap space during a fork(2). If this error occurs on a
resource associated with Remote File Sharing (RFS), it indicates a
memory depletion wich may be temporary, dependent on system
activity at the time the call was invoked.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an
argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required,
e.g., in mount(2).

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted
or an attempt was made to dismount a device on which there is an
active file (open file, current directory, mounted-on file, active text
segment). It will also occur if an attempt is made to enable account
ing when it is already enabled. The device or resource is currently
unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link(2).

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

- 2 -

INTRO(2) INTRO(2)

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in signal(2) or kill(2); reading or
writing a file for which lseek(2) has generated a negative pointer).
Also set by the math functions described in the (3M) entries of this
manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
No process may have more than NOFILES (default 20) descriptors
open at a time.

25 ENOTTY Not a character device (or) Not a typewriter
An attempt was made to ioctl(2) a file that is not a special character
device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing or
to remove a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size or UUMIT [see
ulimit(2)].

28 ENOSPC No space left on device
During a write(2) to an ordinary file, there is no free space left on
the device. In fcntl(2), the setting or removing of record locks on a
file cannot be accomplished because there are no more record
entries left on the system.

29 ESPIPE Illegal seek
An Iseek(2) was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMUNK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

- 3 -

INTRO(2) INTRO(2)

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the
domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not represent
able within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not
exist on the specified message queue [see msgop(2)].

36 EIDRM Identifier removed
This error is returned to processes that resume execution due to the
removal of an identifier from the file system's name space [see
msgctl (2), semctl (2), and shmctl (2)].

37-44 Reserved numbers

45 EDEADLK Deadlock
A deadlock situation was detected and avoided. This error pertains
to file and record locking.

46 ENOLCK No lock
In fcntl(2) the setting or removing of record locks on a file cannot be
accomplished because there are no more record entries left on the
system.

60 ENOSTR Not a stream
A putmsg(2) or getmsg(2) system call was attempted on a file
descriptor that is not a STREAMS device.

62 ETIME Stream ioctl timeout
The timer set for a STREAMS ioctl(2) call has expired. The cause of
this error is device specific and could indicate either a hardware or
software failure, or perhaps a timeout value that is too short for the
specific operation. The status of the ioctl(2) operation is indeter
minate.

63 ENOSR No stream resources
During a STREAMS open(2), either no STREAMS queues or no
STREAMS head data structures were available.

64 ENONET Machine is not on the network
This error is Remote File Sharing (RFS)-specific. It occurs when
users try to advertise, unadvertise, mount, or unmount remote
resources while the machine has not done the proper start-up to
connect to the network.

65 ENOPKG No package
This error occurs when users attempt to use a system call from a
package which has not been installed.

- 4 -

INTRO(2) INTRO(2)

66 EREMOTE Resource is remote
This error is RFS-specific. It occurs when users try to advertise a
resource which is not on the local machine, or try to
mountjunmount a device (or path name) that is on a remote
machine.

67 ENOLINK Virtual circuit is gone
This error is RFS-specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

68 EADV Advertise error
This error is RFS-specific. It occurs when users try to advertise a
resource which has been advertised already, or try to stop the RFS
while there are resources still advertised, or try to force unmount a
resource when it is still advertised.

69 ESRMNT Srmount error
This error is RFS-specific. It occurs when users try to stop RFS while
there are resources still mounted by remote machines.

70 ECOMM Communication error
This error is RFS-specific. It occurs when trying to send messages to
remote machines but no virtual circuit can be found.

71 EPROTO Protocol error
Some protocol error occurred. This error is device-specific, but is
generally not related to a hardware failure.

74 EMULTIHOP Multihop attempted
This error is RFS-specific. It occurs when users try to access remote
resources which are not directly accessible.

77 EBADMSG Bad message
During a read(2), getmsg(2), or ioctl(2) LRECVFD system call to a
STREAMS device, something has come to the head of the queue that
can't be processed. That something depends on the system call:

read(2)-control information or a passed file descriptor.
getmsg(2)-passed file descriptor.
ioctl(2)-control or data information.

83 ELIBACC Cannot access a needed shared library
Trying to exec(2) an a.out that requires a shared library (to be linked
in) and the shared library doesn't exist or the user doesn't have per
mission to use it.

84 ELIBMAX Accessing a corrupted shared library
. Trying to exec(2) an a.out that requires a shared library (to be linked

in) and exec(2) could not load the shared library. The shared library
is probably corrupted.

85 ELIBSCN .lib section in a.out corrupted
Trying to exec(2) an a.out that requires a shared library (to be linked
in) and there was erroneous data ih the .lib section of the a.out. The
.lib section tells exec(2) what shared libraries are needed. The a.out
is probably corrupted.

- 5 -

INTRO(2) INTRO(2)

86 ELIBMAX Attempting to link in more shared libraries than system limit
Trying to exec(2) an a.out that requires more shared libraries (to be
linked in) than is allowed on the current configuration of the sys
tem. See the System Administrator's Guide.

87 ELIBEXEC Cannot exec a shared library directly
Trying to exec(2) a shared library directly. This is not allowed.

DEFINITIONS

Process ID. Each active process in the system is uniquely identified by a
positive integer called a process 10. The range of this 10 is from 1 to
30,000. By convention, process-ID 0 and 1 are reserved for special system
processes.

Parent Process ID. A new process is created by a currently active process
[see fork(2)]. The parent process ID of a process is the process ID of its crea
tor.

Process Group ID. Each active process is a member of a process group that
is identified by a positive integer called the process group ID. This ID is the
process ID of the group leader. This grouping permits the signaling of
related processes [see kill(2)].

Process Group Leader. A process group leader is any process whose pro
cess group ID is the same as its process ID. Any process that is not a pro
cess group leader may detach itself from its current process group and
become a new process group leader by calling the setpgrp(2).

Tty Group ID. Each active process can be a member of a terminal group
that is identified by a positive integer called the tty group ID. This grouping
is used to terminate a group of related processes upon termination of one of
the processes in the group [see exit(2) and signal(2)].

Real User ID and Real Group ID. Each user allowed on the system is iden
tified by a positive integer (0 to 65535) called a real user ID.

Each user is also a member of a group. The group is identified by a positive
integer called the real group ID.

An active process has a real user 10 and real group ID that are set to the real
user ID and real group ID, respectively, of the user responsible for the crea
tion of the process.

Effective User ID and Effective Group ID. An active process has an effec
tive user 10 and an effective group ID that are used to determine file access
permissions (see below). The effective user ID and effective group ID are
equal to the process's real user ID and real group ID respectively, unless the
process or one of its ancestors evolved from a file that had the set-user-ID
bit or set-group ID bit set [see exec(2)].

- 6 -

INTRO(2) INTRO(2)

Super-user. A process is recognized as a super-user process and is granted
special privileges, such as immunity from file permissions, if its effective
user ID is O.

Special Processes. The processes with a process 10 of 0 and a process ID of
1 are special processes and are referred to as procO and proc1.

ProcO is the scheduler. Proc1 is the initialization process (init). Proc1 is the
ancestor of every other process in the system and is used to control the pro
cess structure.

File Descriptor. A file descriptor is a small integer used to do I/0 on a file.
The value of a file descriptor is from 0 to (NOFILES - 1). A process may
have no more than NOFILES file descriptors open simultaneously. A file
descriptor is returned by system calls such as open(2), or pipe(2). The file
descriptor is used as an argument by calls such as read(2), write(2), ioctl(2),
and close(2).

File Name. Names consisting of 1 to 14 characters may be used to name
an ordinary file, special file or directory.

These characters may be selected from the set of all character values exclud
ing \0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names
because of the special meaning attached to these characters by the shell [see
sh(l)]. Other characters to avoid are the hypen, blank, tab, <, >,
blackslash, single and double quotes, accent grave, vertical bar, caret, curly
braces, and parentheses. Although permitted, the use of unprintable charac
ters in file names should be avoided.

Path Name and Path Prefix. A path name is a null-terminated character
string starting with an optional slash (J), followed by zero or more directory
names separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at the root direc
tory. Otherwise, the search begins from the current working directory.

A slash by itself names the root directory. An attempt to create or delete
the path-name slash by itself is undefined and may be considered an error.
The meaning of . and .. are defined under directory.

Unless specifically stated otherwise, the null path name is treated as if it
named a non-existent file.

Directory. Directories organize files into a hierarchical system of files
where directories are the nodes in the hierarchy. A directory is a file that
catalogues the list of files, including directories (sub-directories), that are
directly beneath it in the hierarchy. Directory entries are called links. By
convention, a directory contains at least two links, . and .. , referred to as dot

- 7 -

INTRO(2) INTRO(2)

and dot-dot respectively. Dot refers to the directory itself and dot-dot refers
to its parent directory. The root-directory, which is the top-most node of
the hierarchy, has itself as its parent-directory. The path-name of the root
directory is / and the parent directory of the root-directory is /.

Root Directory and Current Working Directory. Each process has associ
ated with it a concept of a root directory and a current working directory for
the purpose of resolving path name searches. The root directory of a pro
cess need not be the root directory of the root file system.

File Access Permissions. Read, write, and execute/search permissions on a
file are granted to a process if one or more of the following are true:

The effective user 10 of the process is super-user.

The effective user 10 of the process matches the user ID of the
owner of the file; and the appropriate access bit of the "owner" por
tion (0700) of the file mode is set.

The effective user 10 of the process does not match the user 10 of
the owner of the file; and the effective group ID of the process
matches the group of the file; and the appropriate access bit of the
"group" portion (0070) of the file mode is set.

The effective user 10 of the process does not match the user 10 of
the owner of the file; and the effective group 10 of the process does
not match the group 10 of the file; and the appropriate access bit of
the "other" portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier. A message queue identifier (msqid) is a unique
positive integer created by a msgget(2) system call. Each msqid has a mes
sage queue and a data structure associated with it. The data structure is
referred to as msqid_ds and contains the following members:

struct
struct
struct
ushort

ipc-perm msg_perm;
msg *msg_first;
msg *msg-Iast;
msg_cbytes;

ushort msg_qnum;
ushort msg_qbytes;
ushort msg-Ispid;
ushort msg-Irpid;
time_t msg_stime;
time_t msg-I"time;
time_t msg_ctime;

ms~perm is an ipc_perm structure that specifies the message operation
permission (see below). This structure includes the following members:

ushort cuid; /* creator user id * /
ushort cgid; /* creator group id * /

- 8 -

INTRO(2)

ushort
ushort
ushort
ushort
key_t

msg *msgJirst

uid;
gid;
mode;
seq;
key;

/* user id */
/* group id */
/* r/w permission */
/* slot usage sequence # */
/* key */

is a pointer to the first message on the queue.

msg *ms~ast
is a pointer to the last message on the queue.

msg-cbytes
is the current number of bytes on the queue.

msg-qnum
is the number of messages currently on the queue.

msg-qbytes
is the maximum number of bytes allowed on the queue.

ms~spid

INTRO(2)

is the process id of the last process that performed a msgsnd opera
tion.

ms~rpid
is the process id of the last process that performed a msgrcv opera
tion.

msg-stime
is the time of the last msgsnd operation.

msg-rtime
is the time of the last msgrcv operation.

msg-ctime
is the time of the last msgctl(2) operation that changed a member of
the above structure.

Message Operation Permissions. In the msgop(2) and msgctl(2) system call
descriptions, the permission required for an operation is given as
" {token} ", where "token" is the type of permission needed, interpreted as
follows:

00400
00200
00040
00020
00004
00002

Read by user
Write by user
Read by group
Write by group
Read by others
Write by others

Read and write permissions on a msqid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

- 9 -

INTRO(2) INTRO(2)

The effective user ID of the process matches ms~perm.cuid or
ms~perm.uid in the data structure associated with msqid and the
appropriate bit of the "user" portion (0600) of ms~perm.mode is
set.

The effective group ID of the process matches ms~perm.cgid or
ms~perm.gid and the appropriate bit of the "group" portion (060)
of ms~perm.mode is set.

The appropriate bit of the "other" portion (006) of
ms~perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier. A semaphore identifier (semid) is a unique positive
integer created by a semget(2) system call. Each semid has a set of sema
phores and a data structure associated with it. The data structure is referred
to as semid_ds and contains the following members:

struct
struct
ushort
time_t
time_t

ipc-perm seIIL-perm; 1* operation permission struct *1
sem *seIIL-base; 1* ptr to first semaphore in set *1
seIIL-nsems; 1* number of sems in set *1
seIIL-otime; 1* last operation time *1
seIIL-ctime; 1* last change time *1

1* Times measured in secs since *1
1* 00:00:00 GMT, Jan. 1, 1970 *1

seIIL-perm is an ipc-perm structure that specifies the semaphore operation
permission (see below). This structure includes the following members:

ushort uid; 1* user id *1
ushort gid; 1* group id *1
ushort cuid; 1* creator user id *1
ushort cgid; 1* creator group id *1
ushort mode; 1* ria permission *1
ushort seq; 1* slot usage sequence number *1
key_t key; 1* key *1

seIIL-nsems
is equal to the number of semaphores in the set. Each semaphore
in the set is referenced by a positive integer referred to as a
sem_num. SeIIL-num values run sequentially from 0 to the value of
seIIL-nsems minus 1.

seIIL-otime
is the time of the last semop(2) operation.

seIIL-ctime
is the time of the last semctl (2) operation that changed a member of
the above structure.

A semaphore is a data structure called sem that contains the following
members:

ushort
short

semval;
sempid;

1* semaphore value *1
1* pid of last operation * I

- 10 -

INTRO(2)

semval

sempid

ushort semncnt;
ushort semzcnt;

/* # awaiting semval > cval * /
/* # awaiting semval = 0 * /

INTRO(2)

is a non-negative integer which is the actual value of the semphore.

is equal to the process 10 of the last process that performed a sema
phore operation on this semaphore.

semncnt
is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become greater than its current
value.

semzcnt
is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become zero.

Semaphore Operation Permissions. In the semop(2) and semctl(2) system
call descriptions, the permission required for an operation is given as
" {token} ", where "token" is the type of permission needed, interpreted as
follows:

00400
00200
00040
00020
00004
00002

Read by user
Alter by user
Read by group
Alter by group
Read by others
Alter by others

Read and alter permissions on a semid are granted to a process if one or
more of the following are true:

The effective user 10 of the process is super-user.

The effective user 10 of the process matches seDL-perm.cuid or
seDL-perm.uid in the data structure associated with semid , and the
appropriate bit of the "user" portion (0600) of seDL-perm.mode is
set.

The effective group ID of the process matches seDL-perm.cgid or
seDL-perm.gid and the appropriate bit of the "group" portion (060)
of seDL-perm.mode is set.

The appropriate bit of the "other" portion (006) of seDL-perm.mode
is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier. A shared memory identifier (shmid) is a unique
positive integer created by a shmget(2) system call. Each shmid has a seg
ment of memory (referred to as a shared memory segment) and a data struc
ture associated with it. (Note that these shared memory segments must be
explicitly removed by the user after the last reference to them is removed.)

- 11 -

INTRO(2) INTRO(2)

The data structure is referred to as shmid_ds and contains the following
members:

struct
int
struct
char
ushort
ushort
ushort
ushort
time_t
time_t
time_t

ipc_perm shlIL.perm; /* operation permission struct * /
shID-Segsz; /* size of segment * /
region *shIIL.reg; /*ptr to region structure * /
pad[4]; /* for swap compatibility */
shID-lpid; /* pid of last operation * /
shlIL.cpid; /* creator pid */
shIIL.nattch; /* number of current attaches * /
shlIL.cnattch; /* used only for shminfo * /
shlIL.atime; /* last attach time */
shlIL.dtime; /* last detach time * /
shlIL.ctime; /* last change time * /

/* Times measured in secs since * /
/* 00:00:00 GMT, Jan. 1, 1970 * /

shIIL-perm is an ipc_perm structure that specifies the shared memory
operation permission (see below). This structure includes the following
members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id * /
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */
ushort seq; /* slot usage sequence # * /
key_t key; /* key */

shIIL-segsz
specifies the size of the shared memory segment in bytes.

shIIL-cpid
is the process id of the process that created the shared memory
identifier.

shIILlpid
is the process id of the last process that performed a shmop(2)
operation.

shnL.Dattch
is the number of processes that currently have this segment
attached.

shIIL-atime
is the time of the last shmat(2) operation,

shIIL-dtime
is the time of the last shmdt(2) operation.

shIIL-ctime
is the time of the last shmctl (2) operation that changed one of the
members of the above structure.

- 12 -

INTRO(2) INTRO(2)

Shared Memory Operation Permissions. In the shmop(2) and shmctl(2)
system call descriptions, the permission required for an operation is given as
" {token} ", where "token" is the type of permission needed, interpreted as
follows:

00400
00200
00040
00020
00004
00002

Read by user
Write by user
Read by group
Write by group
Read by others
Write by others

Read and write permissions on a shmid are granted to a process if one or
more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shIIL-perm.cuid or
shIIL-perm.uid in the data structure associated with shmid and the
appropriate bit of the "user" portion (0600) of shIIL-perm.mode is
set.

The effective group ID of the process matches shIIL-perm.cgid or
shIIL-perm.gid and the appropriate bit of the "group" portion (060)
of shIIL-perm.mode is set.

The appropriate bit of the "other" portion (06) of shIIL-perm.mode
is set.

Otherwise, the corresponding permissions are denied.

STREAMS. A set of kernel mechanisms that support the development of
network services and data communication drivers. It defines interface stan
dards for character input/output within the kernel and between the kernel
and user-level processes. The STREAMS mechanism is composed of utility
routines, kernel facilities, and a set of data structures.

Stream. A stream is a full-duplex data path within the kernel between a
user process and driver routines. The primary components are a stream
head, a driver, and zero or more modules between the stream head and
driver. A stream is analogous to a Shell pipeline except that data flow and
processing are bidirectional.

Stream Head. In a stream, the stream head is the end of the stream that pro
vides the interface between the stream and a user process. The principle
functions of the stream head are processing STREAMS-related system calls,
and passing data and information between a user process and the stream.

- 13 -

INTRO(2) INTRO(2)

Driver. In a stream, the driver provides the interface between peripheral
hardware and the stream. A driver can also be a pseudo-driver, such as a
multiplexer or log driver [see log(7)], which is not associated with a hardware
device.

Module. A module is an entity containing processing routines for input
and output data. It always exists in the middle of a stream, between the
stream's head and a driver. A module is the STREAMS counterpart to the
commands in a Shell pipeline except that a module contains a pair of func
tions which allow independent bidirectional (downstream and upstream) data
flow and processing.

Downstream. In a stream, the direction from stream head to driver.

Upstream. In a stream, the direction from driver to stream head.

Message. In a stream, one or more blocks of data or information, with asso
ciated STREAMS control structures. Messages can be of several defined
types, which identify the message contents. Messages are the only means of
transferring data and communicating within a stream.

Message Queue. In a stream, a linked list of messages awaiting processing
by a module or driver.

Read Queue. In a stream, the message queue in a module or driver contain
ing messages moving upstream.

Write Queue. In a stream, the message queue in a module or driver contain
ing messages moving downstream.

Multiplexer. A multiplexer is a driver that allows streams associated with
several user processes to be connected to a single driver, or several drivers
to be connected to a single user process. STREAMS does not provide a gen
eral multiplexing driver, but does provide the facilities for constructing
them, and for connecting multiplexed configurations of streams.

SEE ALSO
intro(3).

- 14 -

ACCESS(2) ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access (path, amode)
char *path;
int amode;

DESCRIPTION
The path argument points to a path name naming a file. The access func
tion checks the named file for accessibility according to the bit pattern con
tained in amode, using the real user ID in place of the effective user ID and
the real group ID in place of the effective group ID. The bit pattern con
tained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

The symbolic constants for the argument amode are defined by the
<unistd.h> header file and are as follows:

Name Description
R_OK test for read permission.
W _OK test for write permission.
X_OK test for execute (search) permission.
F_OK test for existence of file.

The argument amode is either the logical OR of one or more of the values
of the symbolic constants for LOK, W _OK, and X_OK or is the value of
the symbolic constant F_OK.

Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is

[ENOENT]
[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULT]

[EINTR]

[ENOLINK]

requested for a null path name.
The named file does not exist.
Search permission is denied on a component of the
path prefix.
Write access is requested for a file on a read-only
file system.
Write access is requested for a pure procedure
(shared text) file that is being executed.
Permission bits of the file mode do not permit
the requested access.
Path points outside the allocated address
space for the process.
A signal was caught during the access
system call.
Path points to a remote machine and the link
to that machine is no longer active.

- 1 -

ACCESS(2) ACCESS(2)

[EMULTIHOP] Components of path require hopping to multiple
remote machines.

The owner of a file has permission checked with respect to the "owner"
read, write, and execute mode bits. Members of the file's group other than
the owner have permissions checked with respect to the "group" mode bits,
and all others have permissions checked with respect to the "other" mode
bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS
If the requested access is permitted, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

- 2 -

ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
acct is used to enable or disable the system process accounting routine. If
the routine is enabled, an accounting record will be written on an account
ing file for each process that terminates. Termination can be caused by one
of two things: an exit call or a signal [see exit(2) and signal (2)]. The effec
tive user ID of the calling process must be super-user to use this call.

path points to a pathname naming the accounting file. The accounting file
format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur dur
ing the system call.

acct will fail if one or more of the following are true:

[EPERM]

[EBUSY]

[ENOTDIR]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

SEE ALSO

The effective user of the calling process is not super-user.

An attempt is being made to enable accounting when it is
already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file path name
do not exist.

The file named by path is not an ordinary file.

The named file resides on a read-only file system.

Path points to an illegal address.

exit(2), signal(2), acct(4).

DIAGNOSTICS
Upon successful completion, a value of a is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

- 1 -

ALARM(2) ALARM(2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
The alarm system call instructs the alarm clock of the calling process to send
the signal SIGALRM to the calling process after the number of real time
seconds specified by sec have elapsed [see signal(2)].

Alarm requests are not stacked; successive calls reset the alarm clock of the
calling process.

If sec is 0, any previously made alarm request is canceled. The fork(2) sys
tem call sets the alarm clock of a new process to O. A process created by
the exec(2) family of calls inherits the time left on the old process's alarm
clock.

SEE ALSO
exec(2), fork(2), pause(2), signal(2), sigpause(2), sigset(2).

DIAGNOSTICS
The alarm system call returns the amount of time previously remaining in
the alarm clock of the calling process.

- 1 -

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
The brk and sbrk system calls are used to change dynamically the amount of
space allocated for the calling process's data segment [see exec(2»). The
change is made by resetting the process's break value and allocating the
appropriate amount of space. The break value is the address of the first
location beyond the end of the data segment. The amount of allocated
space increases as the break value increases. Newly allocated space is set to
zero. If, however, the same memory space is reallocated to the same pro
cess, its contents are undefined.

The brk system call sets the break value to endds and changes the allocated
space accordingly.

The sbrk system call adds incr bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in which case the amount
of allocated space is decreased.

For the 80286 computer endds and incr are rounded up to the next multiple
of 512 in large model programs.

The brk and sbrk system calls will fail without making any change in the
allocated space if one or more of the following are true:

[ENOMEM] (For 80386 and 80286 computers) Such a change
would result in more space being allocated than is
allowed by the system-imposed maximum process
size [see ulimit(2»).

[ENOMEM]

[ENOMEM]

[ENOMEM]

[ENOMEM]

(For the 80286 computer only) Such a change would
result in the segment selector of the break location
being greater than or equal to the segment selector of
any attached shared memory segment [see shmop(2»).

(For the 80286 computer only) A large model process
attempts to brk to an endds that has a segment selec
tor which is greater than one more than the segment
selector of the old break value.

(For the 80286 computer only) Such a change would
result in the break value being in the stack or text
areas of the process.

(For the 80286 computer only) Such a change would
result in the break value being placed within an unal
located area between two currently allocated seg
ments.

- 1 -

BRK(2)

[EAGAIN]

BRK(2)

(For the 80386 computer only) Total amount of sys
tem memory available for a read during physical 10 is
temporarily insufficient [see shmop(2)]. This may
occur even though the space requested was less than
the system-imposed maximum process size [see
ulimit(2)].

The following table summarizes the actions of brk(2), and sbrk(2) in the dif
ferent memory models (5 = small, L = large). The table is applicable to the
80286 computer only.

Operation Model Action
sbrk(O) 5 Returns current break value.

L Returns starting address of NEXT data
segment.

sbrk(+incr) 5 Allocates incr bytes in current segment.
L Allocates incr bytes in next data segment

(space from old break value* to end of
old segment is not allocated).

S,L Returns the same value as sbrk (0).
sbrk(-incr) 5 Frees incr bytes in current segment.

L Frees incr bytes from as many segments
as needed.

SL Returns the same value as sbrk JOj.
brk(endds) S,L Sets break value to endds and allocates
(current segment) or frees memory to that point.
brk(endds) L Sets break value to endds and frees
(previous segment) memory between old break value and endds.

Endds must be an allocated location.
Can free multiple segments.

brk(endds) L Sets break value to endds in next segment.
(new segment) L Can allocate up to one segment per call.

L Space from old break value to end of
old segment is not allocated.

* "Old break value" is the break value previous to the execution of the
current operation.

RETURN VALUE
On the 80386 computer, upon successful completion brk returns a value of
0, and sbrk returns the old break value. On the 80286 computer, upon suc
cessful completion brk returns a value of 0, and sbrk returns either the
current break value (small model) or the starting address of the next data
segment (large model). Otherwise, a value of -1 is returned and errno is set
to indicate the error.

CAVEATS (80286 computer only)
Brk(2) and sbrk(2) are not intended for general use: The malloc(3C) function
is the recommended way to obtain arbitrary amounts of memory.

Processes must not assume that the allocated address space is contiguous.
When large model processes perform any sbrk with a non-negative incr or a

- 2 -

BRK(2) BRK(2)

brk to a new segment, the area between the old segment's break location
offset and the end of the old segment (offset 65535) is not accessible. Any
reference to this area will cause a segmentation violation.

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C).

- 3 -

CHDIR(2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path pOints to the path name of a directory. chdir causes the named direc
tory to become the current working directory, the starting point for path
searches for path names not beginning with f.
chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT]

[EACCES]

[EFAULT]

The named directory does not exist.

Search permission is denied for any component of the path
name.

Path points outside the allocated address space of the pro
cess.

[EINTR] A signal was caught during the chdir system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMUL TIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chroot(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

- 1 -

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
#inc1ude <sys jtypes.h>
#inc1ude <sysjstat.h>

int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
The path argument points to a path name naming a file. The chmod system
call sets the access permission portion of the named file's mode according to
the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000
020#0

01000
00400
00200
00100
00070
00007

Set user ID on execution.
Set group ID on execution if # is 7, 5, 3, or 1
Enable mandatory file/record locking if # is 6, 4, 2, or 0
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute (search) by group.
Read, write, execute (search) by others.

Symbolic constants defining the access permission bits are in the
<sys/stat.h> header file and should be used to construct the argument
mode. The value of the argument mode should be the logical OR of the
values of the desired permissions:

Name Description

S-ISUID

S-ISGID

S_ISVTX

S_IRUSR

S_IWUSR

S_IXUSR

S_IRGRP

S-IWGRP

S_IXGRP

S-IROTH

S-IWOTH

S_IXOTH

Set user-ID on execution.

Set group-ID on execution.

Reserved.

Read by owner.

Write by owner.

Execute (search) by owner.

Read by group.

Write by group.

Execute (search) by group.

Read by others (Le., anyone else).

Write by others.

Execute (search) by others.

- 1 -

CHMOD(2) CHMOD(2)

Record locking enforced.

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000
(save text image on execution) is cleared.

If the effective user ID of the process is not super-user and the effective
group ID of the process does not match the group ID of the file, mode bit
02000 (set group ID on execution) is cleared.

If a 410 executable file has the sticky bit (mode bit 01000) set, the operating
system will not delete the program text from the swap area when the last
user process terminates. If a 413 executable file has the sticky bit set, the
operating system will not delete the program text from memory when the
last user process terminates. In either case, if the sticky bit is set, the text
will already be available (either in a swap area or in memory) when the
next user of the file executes it, thus making execution faster.

If the mode bit 02000 (set group ID on execution) is set and the mode bit
00010 (execute or search by group) is not set, mandatory file/record locking
will exist on a regular file. This may effect future calls to open(2), creat(2),
read(2), and write(2) on this file.

The chmod system call will fail and the file mode will be unchanged if one
or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[EAeCES]

[EPERM]

[EROFS]

[EFAULT]

[EINTR]

[ENOLINK]

[EMUL TIHOP]

SEE ALSO

The named file does not exist.

Search permission is denied on a component of the path
prefix.

The effective user ID does not match the owner of the file
and the effective user 10 is not super-user.

The named file resides on a read-only file system.

The path argument points outside the allocated address
space of the process.

A signal was caught during the chmod system call.

The path argument points to a remote machine and the link
to that machine is no longer active.

Components of path require hopping to multiple remote
machines.

chown(2), creat(2), fcnt1(2), mknod(2), open(2), read(2), write(2).
chmod(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

- 2 -

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group ID of
the named file are set to the numeric values contained in owner and group
respectively.

Only processes with effective user ID equal to the file owner or super-user
may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set
group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

Search permission is denied on a component of the path
prefix.

The effective user ID does not match the owner of the file
and the effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of the pro
cess.

[EINTR] A signal was caught during the chown system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMUL TIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chmod(2).
chown(1) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

- 1 -

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
The path argument points to a path name naming a directory. The chroot
system call causes the named directory to become the root directory, the
starting point for path searches for path names beginning with j. The
user's working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root
directory.

The 00 entry in the root directory is interpreted to mean the root directory
itself. Thus, 00 cannot be used to access files outside the subtree rooted at
the root directory.

The chroot system call will fail and the root directory will remain
unchanged if one or more of the following are true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user.

[EFAULT] The path argument points outside the allocated address
space of the process.

[EINTR] A signal was caught during the chroot system call.

[ENOLINK] The Path argument points to a remote machine and the link
to that machine is no longer active.

[EMUL TIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chdir(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

- 1 -

CLOSE(2) CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
The fildes argument is a file descriptor obtained from a creat, open, dup,
fcntl, or pipe system call. The close system call closes the file descriptor
indicated by fildes. All outstanding record locks owned by the process (on
the file indicated by fildes) are removed.

If a STREAMS [see intro(2)] file is closed, and the calling process had previ
ously registered to receive a SIGPOLL signal [see signal(2) and sigset(2)] for
events associated with that file [see LSETSIG in streamio(7)], the calling pro
cess will be unregistered for events associated with the file. The last close
for a' stream causes the stream associated with fildes to be dismantled. If
O_NDELA Y is not set and there have been no signals posted for the stream,
close waits up to 15 seconds, for each module and driver, for any output to
drain before dismantling the stream. If the O~DELA Y flag is set or if there
are any pending signals, close does not wait for output to drain and disman
tles the stream immediately.

The named file is closed unless one or more of the following are true:

[EBADF] The fildes argument is not a valid open file descriptor.

[EINTR]

[ENOLINK]

SEE ALSO

A signal was caught during the close system call.

Fildes is on a remote machine and the link to that machine
is no longer ctive.

creat(2), dup(2), exec(2), fcntl(2), intro(2), open(2), pipe(2), signal(2), sig
set(2).
streamio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

- 1 -

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
#include <sysjtypes.h>
#include <sysjstat.h>

int creat (path, mode)
char *path;
int mode;

DESCRIPTION
The creat system call creates a new ordinary file or prepares to rewrite an
existing file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner ID is set to the effective user ID of
the process; the group ID of the process is set to the effective group ID of
the process; and the low-order 12 bits of the file mode are set to the value
of mode modified as follows:

All bits set in the process's file mode creation mask are cleared [see
umask(2)].

The "save text image after execution bit" of the mode is cleared [see
chmod(2)].

Upon successful completion, a write-only file descriptor is returned and the
file is open for writing, even if the mode does not permit writing. The file
pointer is set to the beginning of the file. The file descriptor is set to remain
open across exec system calls [see fcntl(2)]. No process may have more
than 20 files open simultaneously. A new file may be created with a mode
that forbids writing.

Symbolic constants defining the access permission bits are specified in the
<sysjstat.h> header file and should be used to construct mode [see
chmod(2)].

The call creat(path, mode) is equivalent to the following [see open(2)]:

open{path, O_WRONLY I O_CREAT I O_TRUNC, mode)

The creat system call fails if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[EACCES]

[ENOENT]

[EACCES]

[EROFS]

A component of the path prefix does not exist.

Search permission is denied on a component of the path
prefix.

The path name is null.

The file does not exist and the directory in which the file is
to be created does not permit writing.

The named file resides or would reside on a read-only file
system.

- 1 -

CREA T(2) CREA T(2)

[ETXTBSY] The file is a pure procedure (shared text) file that is being
executed.

[EACCES] The file exists and write permission is denied.

[EISDIR] The named file is an existing directory.

[EMFILE] NOFILES file descriptors are currently open.

[EFAULT] The path argument points outside the allocated address
space of the process.

[ENFILE] The system file table is full.

[EAGAIN] The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chmod(2)].

[EINTR] A signal was caught during the creat system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMUL TIHOP] Components of path require hopping to multiple remote
machines.

[ENOSPC] The file system is out of inodes.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), Iseek(2), open(2), read(2), umask(2),
write(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely the file descrip
tor, is returned. Otherwise, a value of -1 is returned, and ermo is set to
indicate the error.

- 2 -

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
The fildes argument is a file descriptor obtained from a creat, open, dup,
fcntI, or pipe system call. The dup system call returns a new file descriptor
having the following in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write, or read/write).

The new file descriptor is set to remain open across exec system calls [see
fcntl (2)].

The file descriptor returned is the lowest one available.

The dup system call will fail if one or more of the following are true:

[EBADF] The fildes argument is not a valid open file descriptor.

[EINTR]

[EMFILE]

[ENOLINK]

SEE ALSO

A signal was caught during the dup system call.

NOFILES file descriptors are currently open.

Fildes is on a remote machine and the link to that machine
is no longer active.

close(2}, creat(2}, exec(2}, fcnt1(2}, open(2}, pipe(2}, lockf(3C}.

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file descrip
tor, is returned. Otherwise, a value of -1 is returned, and errno is set to
indicate the error.

- 1 -

EXEC(2) EXEC(2)

NAME
exec: execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, argl, ... , argn, (char *)0)
char *path, *argO, *argl, ... , *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, argO, argl, ... , argn, (char *)0, envp)
char *path, *argO, *argl, ... , *argn, *envp[];

int execve (path, argv, envp)
char *path, *argv[], *envp[];

int execlp (file, argO, argl, ... , argn, (char *)0)
char *file, *argO, *argl, ... , *argn;

int execvp (file, argv)
char *file, *argv[];

DESCRIPTION
The exec system call in all its forms transforms the calling process into a
new process. The new process is constructed from an ordinary, executable
file called the new process file. This file consists of a header [see a.out(4)], a
text segment, and a data segment. The data segment contains an initialized
portion and an uninitialized portion (bss). There can be no return from a
successful exec because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count, argv is an array of character pointers to
the arguments themselves, and envp is an array of character pointers to the
environment strings. As indicated, argc is conventionally at least one and
the first member of the array points to a string containing the name of the
file.

The path argument points to a path name that identifies the new process
file.

The file argument points to the new process file. The path prefix for this
file is obtained by a search of the directories passed as the environment line
"PATH =" [see environ (5)]. The environment is supplied by the shell [see
sh (1)].

The argO, argl, ... , argn are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process. By
convention, at least argO must be present and point to a string that is the
same as path (or its last component).

The argv is an array of character pointers to null-terminated strings. These
strings constitute the argument list available to the new process. By con
vention, argv must have at least one member, and it must point to a string

- 1 -

EXEC(2) EXEC(2)

that is the same as path (or its last component). The argv is terminated by a
null pointer.

The envp is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process. The envp is ter
minated by a null pointer. For execl and execv, the C run-time start-off rou
tine places a pointer to the environment of the calling process in the global
cell:

extern char **en viron;
and it is used to pass the environment of the calling process to the new pro
cess.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fcntl (2). For those file
descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new
process. Signals set to be ignored by the calling process will be set to be
ignored by the new process. Signals set to be caught by the calling process
will be set to terminate new process; see signal (2).

For signals set by sigset(2), exec will ensure that the new process has the
same system signal action for each signal type whose action is SIG_DFL,
SIG_IGN, or SIG_HOLD as the calling process. However, if the action is
to catch the signal, then the action will be reset to SIG_DFL, and any pend
ing signal for this type will be held.

If the set-user-ID mode bit of the new process file is set [see chmod(2)], exec
sets the effective user ID of the new process to the owner ID of the new pro
cess file. Similarly, if the set-group-ID mode bit of the new process file is
set, the effective group ID of the new process is set to the group ID of the
new process file. The real user ID and real group ID of the new process
remain the same as those of the calling process.

The shared memory segments attached to the calling process will not be
attached to the new process [see shmop(2)].

Profiling is disabled for the new process; see profil (2).

The new process also inherits the following attributes from the calling pro
cess:

nice value [see nice(2)]
process ID
parent process ID
process group ID
semadj values [see semop(2)]
tty group ID [see exit(2) and signal(2)]
trace flag [see ptrace(2) request 0]
time left until an alarm clock signal [see alarm(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
file size limit [see ulimit(2)]

- 2 -

EXEC(2) EXEC(2)

utime, stime, cutime, and cstime [see times(2)]
file-locks [see fcntl(2) and lackf(3C)]

The exec system call will fail and return to the calling process if one or more
of the following are true:

[ENOENT] One or more components of the new process path name of
the file do not exist.

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

[EAGAIN]

[ELIBACC]

[ELIBEXEC]

[EINTR]

[ENOLINK]

[EMUL TIHOP]

A component of the new process path of the file prefix is
not a directory.

Search permission is denied for a directory listed in the
new process file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution permission.

The exec is not an execlp or execvp, and the new process
file has the appropriate access permission but an invalid
magic number in its header.

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM.

The number of bytes in the new process's argument list is
greater than the system-imposed limit of 5120 bytes.

Required hardware is not present.

Path, argv, or envp point to an illegal address.

Not enough memory.

Required shared library does not have execute permission.

Trying to exec(2) a shared library directly.

A signal was caught during the exec system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

SEE ALSO
alarm(2), exit(2), fcntl(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), sig
set(2), times(2), ulimit(2), umask(2), lockf(3C), a.out(4), environ(5).
sh(l) in the User's Reference Manual.

DIAGNOSTICS
If exec returns to the calling process, an error has occurred; the return value
will be -1 and errna will be set to indicate the error.

- 3 -

EXIT(2) EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION
The exit system call terminates the calling process with the following conse
quences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified
of the calling process's termination and the low order eight bits (Le., bits
0377) of status are made available to it [see wait(2)].

If the parent process of the calling process is not executing a wait, the cal
ling process is transformed into a zombie process. A zombie process is a
process that only occupies a slot in the process table. It has no other space
allocated either in user or kernel space. The process table slot that it occu
pies is partially overlaid with time accounting information (see
<sysjproc.h» to be used by times.

The parent process ID of all of the calling processes' existing child processes
and zombie processes is set to 1. This means the initialization process [see
intro(2)] inherits each of these processes.

Each attached shared memory segment is detached and the value of
shIIL-nattach in the data structure associated with its shared memory iden
tifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value
[see semop(2)], that semadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed [see
plock(2)].

An accounting record is written on the accounting file if the system's
accounting routine is enabled [see acct (2)].

If the process ID, tty group ID, and process group ID of the calling process
are equal, the SIGHUP signal is sent to each process that has a process
group ID equal to that of the calling process.

A death of child signal is sent to the parent.

The C function exit may cause cleanup actions before the process exits. The
function _exit circumvents all cleanup.

SEE ALSO
acct(2), intro(2), plock(2), semop(2), signal(2), sigset(2), wait(2).

WARNING
See WARNING in signal(2).

- 1 -

EXIT(2) EXIT(2)

DIAGNOSTICS
None. There can be no return from an exit system call.

- 2 -

FCNTL(2) FCNTL(2)

NAME
fcnt! - file control

SYNOPSIS
#inc1ude <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd;

DESCRIPTION
The fcntl system call provides for control over open files. The fildes argu
ment is an open file descriptor obtained from a creat, open, dup, fcntl, or
pipe system call. The data type and value of arg are specific to the type of
command specified by cmd. The symbolic names for commands and file
status flags are defined by the <fcntl.h> header file.

The commands available are:

F_GETFD

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (Le., both file descrip
tors share one file pointer).

Same access mode (read, write, or read/write).

Same file status flags (Le., both file descriptors share the
same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec(2) system
calls.

Get the close-on-exec flag associated with the file descrip
tor fildes. If the low-order bit is 0 the file will remain
open across exec; otherwise the file will be closed upon
execution of exec.

Set the close-on-exec flag associated with fildes to the
low-order bit of arg (0 or 1 as above).

Get file status flags [see open(2)].

Set file status flags to arg. Only certain flags can be set
[see fcntl(5)].

The following commands are used for file-locking and record-locking.
Locks may be placed on an entire file or segments of a file.

F_GETLK
Get the first lock which blocks the lock description given by the
variable of type struct flock pointed to by argo The information
retrieved overwrites the information passed to fcntl in the flock
structure. If no lock is found that would prevent this lock from
being created, then the structure is passed back unchanged except
for the lock type which will be set to F_UNLCK.

- 1 -

FCNTL(2) FCNTL(2)

F_SETLK
Set or clear a file segment lock according to the variable of type
struct flock pointed to by arg [see fcntl(5)]. The cmd F_SETLK is used
to establish read (F_RDLCK) and write (F_WRLCK) locks, as well as
remove either type of lock (F_UNLCK). If a read or write lock can
not be set, fcntl will return immediately with an error value of -1.

F_SETLKW
This cmd is the same as F_SETLK except that if a read or write lock
is blocked by other locks, the process will sleep until the segment is
free to be locked.

A read lock prevents any process from write locking the protected area.
More than one read lock may exist for a given segment of a file at a given
time. The file descriptor on which a read lock is being placed must have
been opened with read access.

A write lock prevents any process from read-locking or write-locking the
protected area. Only one write lock may exist for a given segment of a file
at a given time. The file descriptor on which a write lock is being placed
must have been opened with write access.

The structure flock defined by the <fcntl.h> header file describes a lock. It
describes the type (I_type), starting offset (I_whence), relative offset
(L.start), size (I_len), and process-ID (I_pid):

short I_type; /* F_RDLCK, F_WRLCK, F_UNLCK * /
short I_whence; /* flag for starting offset * /
long I-start; /* relative offset in bytes * /
long I_len; /* if 0 then until EOF * /
short I_pid; /* returned with F_GETLK * /

The value of I_whence is 0, 1, or 2 to indicate that the relative offset, I-start
bytes, will be measured from the start of the file, current position, or end of
file, respectively. The value of I_len is the number of consecutive bytes to
be locked. The process id is used only with the F_GETLK cmd to return the
values for a blocking lock. Locks may start and extend beyond the current
end of a file, but may not be negative relative to the beginning of the file.
A lock may be set to always extend to the end of file by setting I_len to
zero (0). If such a lock also has I_whence and I-start set to zero (0), the
whole file will be locked. Changing or unlocking a segment from the mid
dle of a larger locked segment leaves two smaller segments for either end.
Locking a segment that is already locked by the calling process causes the
old lock type to be removed and the new lock type to take effect. All locks
associated with a file for-a given process are removed when a file descriptor
for that file is closed by that process or the process holding that file descrip
tor terminates. Locks are not inherited by a child process in a fork(2) system
call.

When mandatory file and record locking is active on a file, [see chmod(2)],
read and write system calls issued on the file will be affected by the record
locks in effect.

- 2 -

FCNTL(2) FCNTL(2)

The fcntZ system call will fail if one or more of the following are true:

[EBADF]

[EINVAL]

[EINVAL]

[EACCES]

[ENOLCK]

[EMFILE]

[EBADF]

[EBADF]

[EDEADLK]

[EFAULT]

[EINTR]

[ENOLINK]

SEE ALSO

The fildes argument is not a valid open file descriptor.

The cmd argument is F_DUPFD. The arg argument is either
negative, or greater than or equal to the configured value
for the maximum number of open file descriptors allowed
each user.

The cmd argument is F_GETLK, F_SETLK, or SETLKW and
arg or the data it points to is not valid.

The cmd argument is F_SETLK the type of lock (I_type) is a
read (F _RDLCK) lock and the segment of a file to be locked
is already write locked by another process or the type is a
write (F_WRLCK) lock and the segment of a file to be
locked is already read or write locked by another process.

The cmd argument is F_SETLK or F_SETLKW, the type of
lock is a read or write lock, and there are no more record
locks available (too many file segments locked) because the
system maximum has been exceeded.

The cmd argument is F_DUPFD and file-descriptors are
currently open in the calling-process.

The cmd argument is F_SETLK of F_SETLKW, the type of
lock (I_type) is a read-lock (F_RDLCK), and fildes is not a
valid file-descriptor open for reading.

The cmd argument is F_SETLK or F_SETLKW, the type of
lock (I_type) is a write-lock (F_WRLCK), and fildes is not a
valid file-descriptor open for writing.

The cmd argument is F_SETLKW, the lock is blocked by
some lock from another process, and putting the calling
process to sleep, waiting for that lock to become free,
would cause a deadlock.

The cmd argument is F_SETLK, arg points outside the pro
gram address space.

A signal was caught during the fcntl system call.

Fildes is on a remote machine and the link to that machine
is no longer active.

close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2), fcnt1(5).

DIAGNOSTICS
Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).
F _SETFD Value other than -1.
F _GETFL Value of file flags.

- 3 -

FCNTL(2)

F_SETFL
F_GETLK
F_SETLK
F_SETLKW

Value other than -1.
Value other than -1.
Value other than -1.
Value other than -1.

FCNTL(2)

Otherwise, a value of -1 is returned, and errna is set to indicate the error.

WARNINGS
Because in the future the variable errna will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process, port
able application programs should expect and test for either value.

- 4 -

FORK(2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
The fork system call causes creation of a new process. The new process
(child process) is an exact copy of the calling process (parent process). This
means the child process inherits the following attributes from the parent
process:

environment
close-on-exec flag [see exec(2)]
signal handling settings (Le., SIG_DFL, SIG_IGN, SIGJIOLD, func
tion address)
set-user-ID mode bit
set-group-ID mode bit
profiling onloff status
nice value [see nice(2)]
all attached shared memory segments [see shmop(2)]
process group ID
tty group ID [see exit(2)]
current working directory
root directory
file mode creation mask [see umask(2)]
file size limit [see ulimit(2)]

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (Le., the process
ID of the parent process).

The child process has its own copy of the parent's file descriptors.
Each of the child's file descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared [see semop(2)].

Process locks, text locks, and data locks are not inherited by the
child [see plock(2)].

The child process's utime, stime, cutime, and cstime are set to O.
The time left until an alarm clock signal is reset to O.

The fork system call will fail and no child process will be created if one or
more of the following are true:

[EAGAIN]

[EAGAIN]

The system-imposed limit on the total number of processes
under execution would be exceeded.

The system-imposed limit on the total number of processes
under execution by a single user would be exceeded.

- 1 -

FORK(2)

[EAGAIN]

[ENOMEM]

SEE ALSO

FORK(2)

Total amount of system memory available when reading
via raw IO is temporarily insufficient.

The process requires more space than the system is able to
supply.

exec(2}, nice(2}, plock(2}, ptrace(2}, semop(2}, shmop(2}, signal(2}, sigset(2},
times(2), ulimit(2), umask(2), wait(2).

DIAGNOSTICS
Upon successful completion, fork returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Other
wise, a value of -1 is returned to the parent process, no child process is
created, and errno is set to indicate the error.

- 2 -

GETDENTS(2) GETDENTS(2)

NAME
getdents - read directory entries and put in a file system independent for
mat

SYNOPSIS
#inc1ude <sys/dirent.h>

int getdents (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
The fildes argument is a file descriptor obtained from an apen(2) or dup(2)
system call.

The getdents system call attempts to read nbyte bytes from the directory
associated with fildes and to format them as file system independent direc
tory entries in the buffer pointed to by buf. Since the file system indepen
dent directory entries are of variable length, in most cases the actual number
of bytes returned will be strictly less than nbyte.

The file system independent directory entry is specified by the dirent struc
ture. For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given
by the file pointer associated with fildes. Upon return from getdents, the file
pointer is incremented to point to the next directory entry.

This system call was developed in order to implement the readdir(3X) rou
tine [for a description see directary(3X)], and should not be used for other
purposes.

The getdents system call will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT]

[EINVAL]

[ENOENT]

[ENOLINK]

[ENOTDIR]

[EIO]

SEE ALSO

Buf points outside the allocated address space.

nbyte is not large enough for one directory entry.

The current file pointer for the directory is not located at a
valid entry.

Fildes points to a remote machine and the link to that
machine is no longer active.

Fildes is not a directory.

An I/0 error occurred while accessing the file system.

directory(3X), dirent(4).

DIAGNOSTICS
Upon successful completion a non-negative integer is returned, indicating
the number of bytes actually read. A value of 0 indicates the end of the
directory has been reached. If the system call failed, a -1 is returned, and
errna is set to indicate the error.

- 1 -

GETMSG(2) GETMSG(2)

NAME
getmsg - get next message off a stream

SYNOPSIS
#include <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

DESCRIPTION
The getmsg system call retrieves the contents of a message [see intro(2)]
located at the stream head read queue from a STREAMS file, and places the
contents into user-specified buffer(s). The message must contain either a
data part, a control part or both. The data and control parts of the message
are placed into separate buffers, as described below. The semantics of each
part is defined by the STREAMS module that generated the message.

The fd argument specifies a file descriptor referencing an open stream.
Ctlptr and dataptr each point to a strbuf structure which contains the follow
ing members:

int maxlen;
int len;
char *buf;

j* maximum buffer length * j
j* length of data * j
j* ptr to buffer * j

where buf points to a buffer in which the data or control information is to
be placed, and maxlen indicates the maximum number of bytes this buffer
can hold. On return, len contains the number of bytes of data or control
information actually received, or is 0 if there is a zero-length control or data
part, or is -1 if no data or control information is present in the message.
Flags may be set to the values 0 or RS_HIPRI and is used as described
below.

The ctlptr argument is used to hold the control part from the message and
dataptr is used to hold the data part from the message. If ctlptr (or dataptr)
is NULL or the maxlen field is -1, the control (or data) part of the message is
not processed and is left on the stream head read queue, and len is set to -l.
If the maxlen field is set to 0 and there is a zero-length control (or data)
part, that zero-length part is removed from the read queue and len is set to
O. If the maxlen field is set to 0 and there are more than zero bytes of con
trol (or data) information, that information is left on the read queue and len
is set to O. If the maxlen field in ctlptr or dataptr is less than, respectively,
the control or data part of the message, maxlen bytes are retrieved. In this
case, the remainder of the message is left on the stream head read queue and
a non-zero return value is provided, as described below under DIAGNOS
TICS. If information is retrieved from a priority message, flags is set to
RS_HIPRI on return.

- 1 -

GETMSG(2) GETMSG(2)

By default, getmsg processes the first priority or non-priority message avail
able on the stream head read queue. However, a user may choose to
retrieve only priority messages by setting flags to RS_HIPRI. In this case,
getmsg will only process the next message if it is a priority message.

If O_NDELAY has not been set, getmsg blocks until a message, of the type(s)
specified by flags (priority or either), is available on the stream head read
queue. If O_NDELAY has been set and a message of the specified type(s) is
not present on the read queue, getmsg fails and sets ermo to EAGAIN.

If a hangup occurs on the stream from which messages are to be retrieved,
getmsg will continue to operate normally, as described above, until the
stream head read queue is empty. Thereafter, it will return 0 in the len fields
of ctlptr and dataptr.

The getmsg system call fails if one or more of the following are true:

[EAGAIN] The O_NDELAY flag is set, and no messages are available.

[EBADF]

[EBADMSG]

[EFAULT]

[EINTR]

[EINVAL]

[ENOSTR]

Fd is not a valid file descriptor open for reading.

Queued message to be read is not valid for getmsg.

Ctlptr, dataptr, or flags points to a location outside the allo
cated address space.

A signal was caught during the getmsg system call.

An illegal value was specified in flags, or the stream refer
enced by fd is linked under a multiplexer.

A stream is not associated with fd.

A getmsg can also fail if a STREAMS error message had been received at the
stream head before the call to getmsg. The error returned is the value con
tained in the STREAMS error message.

SEE ALSO
intro(2), read(2), poll(2), putmsg(2), write(2).
STREAMS Primer
STREAMS Programmer's Guide

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A value of 0
indicates that a full message was read successfully. A return value of
MORECTL indicates that more control information is waiting for retrieval. A
return value of MOREDATA indicates that more data is waiting for retrieval.
A return value of MORECTLIMOREDATA indicates that both types of infor
mation remain. Subsequent getmsg calls will retrieve the remainder of the
message.

- 2 -

GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent process IDs

SYNOPSIS
int getpid ()

int getpgrp 0
int getppid ()

DESCRIPTION
The getpid system call returns the process ID of the calling process.

The getpgrp system call returns the process group ID of the calling process.

The getppid system call returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

- 1 -

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and
effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION
The getuid system call returns the real user ID of the calling process.

The geteuid system call returns the effective user ID of the calling process.

The getgid system call returns the real group ID of the calling process.

The getegid system call returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

- 1 -

IOCTL(2) IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
int ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION
The ioctl system call performs a variety of control functions on devices and
STREAMS. For non-STREAMS files, the functions performed by this call are
device-specific control functions. The arguments request and arg are passed
to the file designated by fildes and are interpreted by the device driver. This
control is infrequently used on non-STREAMS devices, with the basic
input/output functions performed through the read(2) and write(2) system
calls.

For STREAMS files, specific functions are performed by the ioctl call as
described in streamio(7).

Fildes is an open file descriptor that refers to a device. Request selects the
control function to be performed and will depend on the device being
addressed. Arg represents additional information that is needed by this
specific device to perform the requested function. The data type of arg
depends upon the particular control request, but it is either an integer or a
pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic functions are
provided by more than one device driver, for example, the general terminal
interface [see termio(7)].

The ioctl system call will fail for any type of file if one or more of the fol
lowing are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY] Fildes is not associated with a device driver that accepts
control functions.

[EINTR] A signal was caught during the ioctl system call.

The ioctl system call will also fail if the device driver detects an error. In
this case, the error is passed through ioctl without change to the caller. A
particular driver might not have all of the following error cases. Other
requests to device drivers will fail if one or more of the following are true:

[EFAULT] Request requires a data transfer to or from a buffer pointed
to by arg, but some part of the buffer is outside the
process's allocated space.

[EINVAL]

[EIO]

[ENXIO]

Request or arg is not valid for this device.

Some physical I/O error has occurred.

The request and arg are valid for this device driver, but the
service requested cannot be performed on this particular
subdevice.

- 1 -

IOCTL(2) IOCTL(2)

[ENOLINK] Fildes is on a remote machine and the link to that machine
is no longer active.

STREAMS errors are described in streamio(7).

SEE ALSO
streamio(7), termio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion, the value returned depends upon the device
control function, but must be a non-negative integer. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

- 2 -

KILL(2) KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
#include <signal.h>

int kill (pid, sig)
int pid, sig;

DESCRIPTION
The kill system call sends a signal to a process or a group of processes. The
process or group of processes to which the signal is to be sent is specified
by pid. The signal that is to be sent is specified by sig and is either one
from the list given in signaJ(2), or O. If sig is 0 (the null signal), error check
ing is performed but no signal is actually sent. This can be used to check
the validity of pid.

The real or effective user ID of the sending process must match the real or
effective user ID of the receiving process, unless the effective user ID of the
sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special
processes [see intro(2)] and will be referred to below as procO and proc1,
respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is
equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and proc1 whose
process group ID is equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will
be sent to all processes excluding procO and proc1 whose real user ID is
equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding procO and proc1.

If pid is negative but not -1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

The kill system call will fail and no signal will be sent if one or more of the
following are true:

[EINVAL]

[EINVAL]

[ESRCH]

[EPERM]

SEE ALSO

Sig is not a valid signal number.

Sig is SIGKILL and pid is 1 (prod).

No process can be found corresponding to that specified by
pid.

The user ID of the sending process is not super-user, and its
real or effective user ID does not match the real or effective
user ID of the receiving process.

getpid(2), setpgrp(2), signal(2), sigset(2).
kill(l) in the User's Reference Manual.

- 1 -

KILL(2) KILL(2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

- 2 -

LINK(2) LINK(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION
The pathl argument points to a path name naming an existing file. The
path2 argument points to a path name naming the new directory entry to be
created. The link system call creates a new link (directory entry) for the
existing file.

The link system call will fail and no link will be created if one or more of
the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EEXIST]

[EPERM]

[EXDEV]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permis
sion.

The file named by pathl does not exist.

The link named by path2 exists.

The file named by pathl is a directory and the effective
user ID is not super-user.

The link named by path2 and the file named by pathl are
on different logical devices (file systems).

Path2 points to a null path name.

The requested link requires writing in a directory with a
mode that denies write permission.

The requested link requires writing in a directory on a
read-only file system.

Path points outside the allocated address space of the pro-
cess.

[EMLINK] The maximum number of links to a file would be exceeded.

[EINTR] A signal was caught during the link system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMUL TIHOP] Components of path require hopping to multiple remote
machines.

[ENOSPC] The directory containing the link cannot be extended.

SEE ALSO
unlink(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and erma is set to indicate the error.

- 1 -

LSEEK(2) LSEEK(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
#inc1ude <unistd.h>

long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
The fildes argument is a file descriptor returned from a creat, open, dup, or
fcntl system call. The lseek system call sets the file pointer associated with
fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Symbolic constants for whence are defined in the <unistd.h> header file:

Name

SEELSET

SEELCUR

SEELEND

Description

Set file-pointer equal to offset bytes.

Set file-pointer to current location plus offset.

Set file-pointer to EOF plus offset.

Upon successful completion, the resulting pointer location, as measured in
bytes from the beginning of the file, is returned. Note that if fildes is a
remote file descriptor and offset is negative, lseek will return the file pointer
even if it is negative.

lseek will fail and the file pointer will remain unchanged if one or more of
the following are true:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe or fifo.

[EINV AL and SIGSYS signal]

[EINVAL]

Whence is not 0, 1, or 2.

Fildes is not a remote file descriptor, and the resulting file
pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associ
ated with such a device is undefined.

SEE ALSO
creat(2), dup(2), fcnt1(2), open(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer indicating the file
pointer value is returned. Otherwise, a value of -1 is returned, and errno is
set to indicate the error.

- 1 -

MKDIR(2) MKDIR(2)

NAME
mkdir - make a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkdir (path, mode)
char *path;
int mode;

DESCRIPTION
The routine mkdir creates a new directory with the name path. The argu
ment mode specifies the initial mode of the new directory. The protection
bits of the argument mode are modified by the process' file mode creation
mask [see umask(2)]. The value of the argument mode should be the logical
OR of the values of the desired permissions:

Name Description

Read by owner.

Write by owner .

S-IEXEC . Execute (search) by owner.

S-IRGRP Read by group.

Write by group.

Execute (search) by group.

Read by others (Le., anyone else).

Write by others.

S-IXOTH Execute (search) by others.

The directory's owner ID is set to the process's effective user ID. The
directory's group ID is set to the process's effective group ID. The newly
created directory is empty with the possible exception of entries for "."
and " .. ". mkdir will fail and no directory will be created if one or more of
the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

- 1 -

MKDIR(2)

[EACCES]

[ENOENT]

[EEXIST]

[EROFS]

[EFAULT]

[EMLINK]

[EIO]

DIAGNOSTICS

MKDIR(2)

Either a component of the path prefix denies search permis
sion, or write permission is denied on the parent directory
of the directory to be created.

The path is longer than the maximum allowed.

The named file already exists.

The path prefix resides on a read-only file system.

Path points outside the allocated address space of the pro
cess.

The maximum number of links to the parent directory
would be exceeded.

An I/O error has occurred while accessing the file system.

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

- 2 -

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file, or a FIFO

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/stat.h>

int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
The mknod system call creates a new file named by the path name pointed
to by path. The mode of the new file is initialized from mode. Where the
value of mode is interpreted as follows:

0170000 file type; one of the following:

0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
00020#0 set group ID on execution if # is 7, 5, 3, or 1

enable mandatory file/record locking if # is 6, 4, 2, or 0
0001000 save text image after execution
0000777 access permissions; constructed from the following:

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

Symbolic constants defining the value of the argument mode are in the
<sysjstat.h> header file and should be used to construct mode. The value
of the argument mode should be the logical OR of the values of the desired
permissions:

Name Description

file type; one of the following:

S-IFIFO FIFO-special

character-special

directory node

block-special

- 1 -

MKNOD(2) MKNOD(2)

S_IFREG ordinary -file

S_ISUID set user-ID on execution

S_ISGID set group-ID on execution

S~SVTX (reserved)

S.J:NFMT record-locking enforced

S_IRUSR read by owner

S_IWUSR write by owner

S_IXUSR execute (search) by owner

S_IRGRP read by group

S_IWGRP write by group

S_IXGRP execute (search) by group

S_IROTH read by others (Le., anyone else)

S_IWOTH write by others

S_IXOTH execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The
group ID of the file is set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be
used. The low-order 9 bits of mode are modified by the process's file mode
creation mask: all bits set in the process's file mode creation mask are
cleared [see umask(2)]. If mode indicates a block or character special file,
dev is a configuration-dependent specification of a character or block I/O
device. If mode does not indicate a block special or character special device,
dev is ignored.

The mknod routine may be invoked only by the super-user for file types
other than FIFO special.

The mknod routine will fail and the new file will not be created if one or
more of the following are true:

[EPERM] The effective user ID of the process is not super-user.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[EROFS]

A component of the path prefix does not exist.

The directory in which the file is to be created is located on
a read-only file system.

- 2 -

MKNOD(2) MKNOD(2)

The named file exists. [EEXIST]

[EFAULT] Path points outside the allocated address space of the pro
cess.

[ENOSPC] No space is available.

[EINTR] A signal was caught during the mknod system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMUL TIHOP] Components of path require hopping to multiple remote
machines.

SEE ALSO
chmod(2), exec(2), umask(2}, fs(4}.
mkdir(l} in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

WARNING
If mknod is used to create a device in a remote directory (Remote File Shar
ing), the major and minor device numbers are interpreted by the server.

- 3 -

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
#inc1ude <sys/mount.h>

int mount (spec, dir, mflag, fstyp)
char *spec, *diri
int mflag, fstYPi

DESCRIPTION
The'mount system call requests that a removable file system contained on
the block special file identified by spec be mounted on the directory identi
fied by dir. Spec and dir are pointers to path names. Fstyp is the file sys
tem type number. The sysfs(2) system call can be used to determine the file
system type number. Note that if the MS_FSS flag bit of mflag is off, the
file system type will default to the root file system type. Only if the bit is on
will fstyp be used to indicate the file system type.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of mflag is used to control write permission. on the
mounted file system; if 1, writing is forbidden, otherwise writing is permit
ted according to individual file accessibility.

The mount system call may be invoked only by the super-user. It is
intended for use only by the mount(lM) utility.

The mount system call will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR]

[EREMOTE]

[ENOLINK]

[EMULTIHOP]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

[EBUSY]

[EBUSY]

[EBUSY]

A component of a path prefix is not a directory.

Spec is remote and cannot be mounted.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

Spec is not a block special device.

The device associated with spec does not exist.

Dir is not a directory.

Spec or dir points outside the allocated address space of the
process.

Dir is currently mounted on, is someone's current working
directory, or is otherwise busy.

The device associated with spec is currently mounted.

There are no more mount table entries.

- 1 -

MOUNT(2)

[EROFS]

[ENOSPC]

[EINVAL]

SEE ALSO

MOUNT(2)

Spec is write-protected and mflag requests write permission.

The file system state in the super-block is not FsOKA Y and
mflag requests write permission.

The super-block has an invalid magic number, or the fstyp
is invalid, or mflag is not valid.

sysfs(2), umount(2), fs(4).
mount(1M) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

- 2 -

MSGCTL(2) MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys jtypes.h>
#include <sysjipc.h>
#include <sysjmsg.h>

int msgctl <msqid, cmd, buf)
int msqid, cmd;
struct msqic:Lds *buf;

DESCRIPTION
The msgctl system call provides a variety of message control operations as
specified by cmd. The following cmds are available:

IPC_ST A T Place the current value of each member of the data struc
ture associated with msqid into the structure pointed to by
buf. The contents of this structure are defined in intra(2).
{READ}

Set the value of the following members of the data struc
ture associated with msqid to the corresponding value
found in the structure pointed to by but:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits * /
msg_qbytes

This cmd can only be executed by a process that has an
effective user ID equal to either that of super user, or to the
value of ms~perm.cuid or ms~perm.uid in the data
structure associated with msqid. Only super user can raise
the value of ms~qbytes.

IPC-RMID Remove the message queue identifier specified by msqid
from the system and destroy the message queue and data
structure associated with it. This cmd can only be executed
by a process that has an effective user ID equal to either
that of super user, or to the value of ms~perm.cuid or
ms~perm.uid in the data structure associated with msqid.

The msgctl system call will fail if one or more of the following are true:

[EINVAL] The msqid argument is not a valid message queue identifier.

[EINVAL]

[EACCES]

[EPERM]

The cmd argument is not a valid command.

The cmd argument is equal to IPC_STAT and {READ}
operation permission is denied to the calling process [see
intra (2)].

The cmd argument is equal to IPC-RMID or IPC_SET. The
effective user ID of the calling process is not equal to that
of super user, or to the value of ms~perm.cuid or
ms~perm.uid in the data structure associated with msqid.

- 1 -

MSGCTL(2)

[EPERM]

[EFAULT]

SEE ALSO

MSGCTL(2)

The cmd argument is equal to IPC--SET, an attempt is being
made to increase to the value of ms~qbytes, and the
effective user ID of the calling process is not equal to that
of super-user.

The but argument points to an illegal address.

intro(2), msgget(2), msgop(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

- 2 -

MSGGET(2) MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sysjtypes.h>
#include <sysjipc.h>
#include <sysjmsg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION
The msgget system call returns the message queue identifier associated with
key.

A message queue identifier and associated message queue and data structure
[see intro(2)] are created for key if one of the following is true:

The key argument is equal to IPCJRIVATE.

The key argument does not already have a message queue identifier
associated with it, and (msgflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

Msg-perm.cuid, msg-perm.uid, msg-perm.cgid, and
msg.-perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of msg-perm.mode are set equal to the low
order 9 bits of msgflg.

Msg-qnum, msgJspid, msgJrpid, msg-stime, and msg-rtime
are set equal to O.

Msg-ctime is set equal to the current time.

Msg-qbytes is set equal to the system limit.

The msgget system call will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for key, but operation per
mission [see intro(2)] as specified by the low-order 9 bits of
msgflg would not be granted.

[ENOENT]

[ENOSPC]

[EEXIST]

SEE ALSO

A message queue identifier does not exist for key and
(msgflg & IPC-CREAT) is "false".

A message queue identifier is to be created but the system
imposed limit on the maximum number of allowed message
queue identifiers system wide would be exceeded.

A message queue identifier exists for key but «msgflg &
IPC_CREAT) & (msgflg & IPC_EXCL) is "true".

intro(2), msgctl(2), msgop(2).

- 1 -

MSGGET(2) MSGGET(2)

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a message
queue identifier, is returned. Otherwise, a value of -1 is returned, and errna
is set to indicate the error.

- 2 -

MSGOP(2) MSGOP(2)

NAME
msgop: msgsnd, msgrcv - message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
The msgsnd system call is used to send a message to the queue associated
with the message queue identifier specified by msqid. {WRITE} Msgp points
to a structure containing the message. This structure is composed of the fol
lowing members:

long mtype;
char mtext[];

/* message type */
/* message text * /

The mtype integer is positive and can be used by the receiving process for
message selection (see msgrcv below). The array mtext is any text of length
msgsz bytes. The msgsz argument can range from a to a system-imposed
maximum.

Msgflg specifies the action to be taken if one or more of the following are
true:

The number of bytes already on the queue is equal to ms~qbytes
[see intro(2)].

The total number of messages on all queues system-wide is equal to
the system-imposed limit.

These actions are as follows:

If (msgflg & IPC~OWAIT) is "true", the message will not be sent
and the calling process will return immediately.

If (msgflg & IPC~OWAIT) is "false", the calling process will
suspend execution until one of the following occurs:

The condition responsible for the suspension no longer
exists, in which case the message is sent.

The msqid argument is removed from the system [see
msgctl(2)]. When this occurs, errno is set equal to EIDRM,
and a value of -1 is returned.

- 1 -

MSGOP(2) MSGOP(2)

The calling process receives a signal that is to be caught.
In this case the message is not sent and the calling process
resumes execution in the manner prescribed in signal (2).

Msgsnd will fail and no message will be sent if one or more of the following
are true:

[EINVAL]

[EACCES]

[EINVAL]

[EAGAIN]

[EINVAL]

[EFAULT]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling process [see
intra (2)].

Mtype is less than 1.

The message cannot be sent for one of the reasons cited
above and (msgflg & IPC--NOWAIT) is "true".

Msgsz is less than zero or greater than the system-imposed
limit.

Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to
the data structure associated with msqid [see intro (2)].

Msg-qnum is incremented by 1.

Msg-lspid is set equal to the process ID of the calling process.

Msg-stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the structure pointed to by
msgp. {READ} This structure is composed of the following members:

long mtype; /* message type */
char mtext[]; /* message text */

Mtype is the received message's type as specified by the sending process.
Mtext is the text of the message. Msgsz specifies the size in bytes of mtext.
The received message is truncated to msgsz bytes if it is larger than msgsz
and (msgflg & MSG--NOERROR) is "true". The truncated part of the mes
sage is lost and no indication of the truncation is given to the calling pro
cess.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is
received.

If msgtyp is less than 0, the first message of the lowest type that is
less than or equal to the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not
on the queue. These are as follows:

If (msgflg & IPC--NOWAIT) is "true", the calling process will return
immediately with a return value of -1 and errna set to ENOMSG.

- 2 -

MSGOP(2) MSGOP(2)

If (msgflg & IPCJJOWAIT) is "false", the calling process will
suspend execution until one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught.
In this case a message is not received and the calling pro
cess resumes execution in the manner prescribed in sig
nal(2).

Msgrcv will fail and no message will be received if one or more of the fol
lowing are true:

[EINVAL] Msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process.

[EINV AL] Msgsz is less than O.

[E2BIG) Mtext is greater than msgsz and (msgflg & MSGJJOERROR)
is "false".

[ENOMSG] The queue does not contain a message of the desired type
and (msgtyp & IPCJJOWAIT) is "true".

[EFAULT] Msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to
the data structure associated with msqid [see intro (2)].

SEE ALSO

Ms~qnum is decremented by 1.

MsgJ.rpid is set equal to the process ID of the calling process.

Ms~time is set equal to the current time.

intro(2), msgctl(2), msgget(2), signal(2).

DIAGNOSTICS
If msgsnd or msgrcv return due to the receipt of a Signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If they return due
to removal of msqid from the system, a value of -1 is returned and errno is
set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of O.

Msgrcv returns a value equal to the number of bytes actually placed
into mtext.

Otherwise, a value of -1 is returned, and errno is set to indicate the error.

- 3 -

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
The nice system call adds the value of incr to the nice value of the calling
process. A process's nice value is a non-negative number for which a more
positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed
by the system. (The default nice value is 20.) Requests for values above or
below these limits result in the nice value being set to the corresponding
limit.

[EPERM]

SEE ALSO
exec(2).

The nice system call will fail and not change the nice value
if incr is negative or greater than 39, and the effective user
ID of the calling process is not super-user.

nice(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of -1 is returned, and errna is setto indicate the error.

- 1 -

OPEN(2) OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, oflag [, mode])
char *path;
int oflag, mode;

DESCRIPTION
Path points to a path name naming a file. The open system call opens a file
descriptor for the named file and sets the file status flags according to the
value of oflag. For non-STREAMS [see intro(2)] files, oflag values are con
structed by OR-ing flags from the following list (only one of the first three
flags below may be used):

OJDONLY Open for reading only.

O_WRONLY Open for writing only.

OJDWR Open for reading and writing.

O~DELAY This flag may affect subsequent reads and writes [see read(2)
and write(2)].

O-APPEND

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NDELA Y is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

If O_NDELA Y is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

When opening a file associated with a communication line:

If O_NDELA Y is set:

The open will return without waiting for carrier.

If O_NDELA Y is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior
to each write.

When opening a regular file, this flag affects subsequent
writes. If set, each write(2) will wait for both the file data
and file status to be physically updated.

- 1 -

OPEN(2)

O_TRUNC

OPEN(2)

If the file exists, this flag has no effect. Otherwise, the
owner ID of the file is set to the effective user ID of the pro
cess; the group ID of the file is set to the effective group ID
of the process; and the low-order 12 bits of the file mode
are set to the value of mode, modified as follows [see
creat(2)]:

All bits set in the file mode creation mask of the
process are cleared [see umask(2)].

The "save text image after execution bit" of the
mode is cleared [see chmod(2)].

If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

If O_EXCL and O_CREA T are set, open will fail if the file
exists.

When opening a STREAMS file, oflag may be constructed from O_NDELA Y
or-ed with either O_RDONLY, O_WRONLY or O_RDWR. Other flag values
are not applicable to STREAMS devices and have no effect on them. The
value of O_NDELA Y affects the operation of STREAMS drivers and certain
system calls [see read(2), getmsg(2), putmsg(2), and write(2)]. For drivers, the
implementation of O_NDELAY is device-specific. Each STREAMS device
driver may treat this option differently.

Certain flag values can be set following open as described in fcntl(2).

The file pointer used to mark the current position within the file is set to the
beginning of the file.

The new file descriptor is set to remain open across exec system calls [see
fcntl(2)].

The named file is opened unless one or more of the following are true:

[EACCES] A component of the path prefix denies search permission.

[EACCES] oflag permission is denied for the named file.

[EAGAIN]

[EEXIST]

[EFAULT]

The file exists, mandatory file/record locking is set, and
there are outstanding record locks on the file [see chmod
(2)].

O_CREAT and O_EXCL are set, and the named file exists.

Path points outside the allocated address space of the pro
cess.

[EINTR] A signal was caught during the open system call.

[EIO] A hangup or error occurred during a STREAMS open.

[EISDIR] The named file is a directory and oflag is write or
read/write.

[EMFILE] NOFILES file descriptors are currently open.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

- 2 -

OPEN(2)

[ENFILE]

[ENOENT]

[ENOLINK]

[ENOMEM]

[ENOSPC]

[ENOSR]

[ENOTDIR]

[ENXIO]

[ENXIO]

[ENXIO]

[EROFS]

[ETXTBSY]

SEE ALSO

OPEN(2)

The system file table is full.

O_CREA T is not set and the named file does not exist.

Path points to a remote machine, and the link to that
machine is no longer active.

The system is unable to allocate a send descriptor.

O_CREA T and O_EXCL are set, and the file system is out of
inodes.

Unable to allocate a stream.

A component of the path prefix is not a directory.

The named file is a character special or block special file,
and the device associated with this special file does not
exist.

O~DELAY is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading.

A STREAMS module or driver open routine failed.

The named file resides on a read-only file system and oflag
is write or read/write.

The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write.

chmod(2), close(2), creat(2), dup(2), fcnt1(2), intro(2), Iseek(2), read(2),
getmsg(2), putmsg(2), umask(2), write(2).

DIAGNOSTICS
Upon successful completion, the file descriptor is returned. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

- 3 -

PAUSE(2) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
The pause system call suspends the calling process until it receives a signal.
The signal must be one that is not currently set to be ignored by the calling
process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process, and control is returned from
the signal-catching function [see signal(2)], the calling process resumes exe
cution from the point of suspension; with a return value of -1 from pause
and errna set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), sigpause(2), wait(2).

- 1 -

PIPE(2) PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe and returns
two file descriptors, fildes[O] and fildes[1]. Fildes[O] is opened for reading
and fildes [1] is opened for writing.

Up to 5120 bytes of data are buffered by the pipe before the writing process
is blocked. A read-only file descriptor fildes [0] accesses the data written to
fildes[1] on a first-in-first-out (FIFO) basis.

The pipe system call will fail if:

[EMFILE]

[ENFILE]

SEE ALSO
read(2), write(2).

NOFILES file descriptors are currently open.

The system file table is full.

sh(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

- 1 -

PLOCK(2) PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#inc1ude <sysjlock.h>

int plock (op)
int op;

DESCRIPTION
The plock system call allows the calling process to lock its text segment (text
lock), its data segment (data lock), or both its text and data segments (pro
cess lock) into memory. Locked segments are immune to all routine swap
ping. plock also allows these segments to be unlocked. The effective user
ID of the calling process must be super-user to use this call. Op specifies
the following:

PRO CLOCK - lock text and data segments into memory (process
lock)

TXTLOCK - lock text segment into memory (text lock)

DATLOCK - lock data segment into memory (data lock)

UNLOCK - remove locks

The plock system call will fail and not perform the requested operation if
one or more of the following are true:

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

[EAGAIN]

SEE ALSO

The effective user ID of the calling process is not super
user.

Op is equal to PRO CLOCK and a process lock, a text lock,
or a data lock already exists on the calling process.

Op is equal to TXTLOCK and a text lock or a process lock
already exists on the calling process.

Op is equal to DA TLOCK and a data lock or a process lock
already exists on the calling process.

Op is equal to UNLOCK and no type of lock exists on the
calling process.

Not enough memory.

exec(2), exit(2), fork(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of -1 is returned, and errno is set to indicate the error.

- 1 -

POLL(2) POLL(2)

NAME
poll - STREAMS input/output multiplexing

SYNOPSIS
#include <stropts.h>
#include <poll.h>

int poll(fds, nfds, timeout)
struct pollfd fds[];
unsigned long nfds;
int timeout;

DESCRIPTION
The poll system call provides users with a mechanism for multiplexing
input/output over a set of file descriptors that reference open streams [see
intro(2)]. The poll system call identifies those streams on which a user can
send or receive messages, or on which certain events have occurred. A user
can receive messages using read(2) or getmsg(2) and can send messages
using write(2) and putmsg(2). Certain ioctl(2) calls, such as LRECVFD and
LSENDFD [see streamio(7)], can also be used to receive and send messages.

Fds specifies the file descriptors to be examined and the events of interest
for each file descriptor. It is a pointer to an array with one element for each
open file descriptor of interest. The array's elements are pollfd structures
which contain the following members:

int fd; /* file descriptor * /
short events; /* requested events * /
short revents; /* returned events * /

where fd specifies an open file descriptor and events and revents are bit
masks constructed by or-ing any combination of the following event flags:

POLLIN A non-priority or file descriptor passing message (see
LRECVFD) is present on the stream head read queue. This flag
is set even if the message is of zero length. In revents, this
flag is mutually exclusive with POLLPRI.

POLLPRI

POLLOUT

POLLERR

POLLHUP

A priority message is present on the stream head read queue.
This flag is set even if the message is of zero length. In
revents, this flag is mutually exclusive with POLLIN.

The first downstream write queue in the stream is not full.
Priority control messages can be sent (see putmsg) at any time.

An error message has arrived at the stream head. This flag is
only valid in the revents bitmask; it is not used in the events
field.

A hangup has occurred on the stream. This event and POLL
OUT are mutually exclusive; a stream can never be writable if a
hangup has occurred. However, this event and POLLIN or
POLLPRI are not mutually exclusive. This flag is only valid in
the revents bitmask; it is not used in the events field.

- 1 -

POLL(2) POLL(2)

POLLNV AL The specified fd value does not belong to an open stream. This
flag is only valid in the revents field; it is not used in the
events field.

For each element of the array pointed to by fds, poll examines the given file
descriptor for the event(s) specified in events. The number of file descrip
tors to be examined is specified by nfds. If nfds exceeds NOFILES, the sys
tem limit of open files [see ulimit(2)], poll will fail.

If the value fd is less than zero, events is ignored and revents is set to 0 in
that entry on return from poll.

The results of the poll query are stored in the revents field in the pollfd
structure. Bits are set in the revents bitmask to indicate which of the
requested events are true. If none are true, none of the specified bits is set
in revents when the poll call returns. The event flags POLLHUP, POLLERR
and POLLNVAL are always set in revents if the conditions they indicate are
true; this occurs even though these flags were not present in events.

If none of the defined events have occurred on any selected file descriptor,
poll waits at least timeout msec for an event to occur on any of the selected
file descriptors. On a computer where millisecond timing accuracy is not
available, timeout is rounded up to the nearest legal value available on that
system. If the value timeout is 0, poll returns immediately. If the value of
timeout is -1, poll blocks until a requested event occurs or until the call is
interrupted. The poll system call is not affected by the O_NDELA Y flag.

The poll system call fails if one or more of the following are true:

[EAGAIN] Allocation of internal data structures failed but request should
be attempted again.

[EFAULT]

[EINTR]

[EINVAL]

SEE ALSO

Some argument points outside the allocated address space.

A signal was caught during the poll system call.

The argument nfds is less than zero, or nfds is greater than
NOFILES.

intro(2), read(2), getmsg(2), putmsg(2), write(2).
streamio(7) in the System Administrator's Reference Manual.
STREAMS Primer.
STREAMS Programmer's Guide.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. A positive
value indicates the total number of file descriptors that has been selected
(Le., file descriptors for which the revents field is non-zero). A value of 0
indicates that the call timed out and no file descriptors have been selected.
Upon failure, a value of -1 is returned, and errno is set to indicate the error.

- 2 -

PROFIL(2) PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
void (* offset) Oi
char *buff;
int bufsiz, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bUfsiz.
After this call, the user's program counter (pc) is examined each clock tick.
Then the value of offset is subtracted from it, and the remainder multiplied
by scale. If the resulting number corresponds to an entry inside buff, that
entry is incremented. An entry is defined as a series of bytes with length
sizeof(short).

The scale is interpreted as an unsigned, fixed-point fraction with binary
point at the left: 0177777 (octal) gives a 1-1 mapping of pc's to entries in
buff; 077777 (octal) maps each pair of instruction entries together. 02(octal)
maps all instructions onto the beginning of buff (producing a non
interrupting core dock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective
by giving a bufsiz of O. Profiling is turned off when an exec is executed, but
remains on in child and parent both after a fork. Profiling will be turned off
if an update in buff would cause a memory fault.

SEE ALSO
prof(l), times(2), monitor(3C).

DIAGNOSTICS
Not defined.

WARNING
On the 80286 computer, the type of offset is: void (*offset)O;

- 1 -

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, data;

DESCRIPTION
The ptrace system call provides a means by which a parent process may
control the execution of a child process. Its primary use is for the imple
mentation of breakpoint debugging [see sdb(l)]. The child process behaves
normally until it encounters a signal [see signal(2) for the list], at which time
it enters a stopped state and its parent is notified via wait(2). When the
child is in the stopped state, its parent can examine and modify its /I core
image" using ptrace. Also, the parent can cause the child either to ter
minate or continue, with the possibility of ignoring the signal that caused it
to stop. The data type of the argument addr depends upon the particular
request given to ptrace.

The request argument determines the precise action to be taken by ptrace
and is one of the following:

o This request. must be issued by the child process if it is to be
traced by its parent. It turns on the child's trace flag that
stipulates that the child should be left in a stopped state upon
receipt of a signal rather than the state specified by June [see
signal(2»). The pid, addr, and data arguments are ignored, and
a return value is not defined for this request. Peculiar results
will ensue if the parent does not expect to trace the child.

The remainder of the requests can only be used by the parent process. For
each, pid is the process ID of the child. The child must be in a stopped state
before these requests are made.

1, 2 With these requests, the word at location addr in the address
space of the child is returned to the parent process. If I and D
space are separated, request 1 returns a word from I space, and
request 2 returns a word from D space. If I and D space are
not separated, either request 1 or request 2 may be used with
equal results. The data argument is ignored.

3 With this request, the word at location addr in the child's USER
area in the system's address space (see <sysjuser.h» is
returned to the parent process. The data argument is ignored.
This request will fail if addr is outside the USER area, in which
case a value of -1 is returned to the parent process and the
parent's ermo is set to EIO.

4, 5 With these requests, the value given by the data argument is
written into the address space of the child at location addr. If
I and D space are separated, request 4 writes a word into I
space, and request 5 writes a word into D space. If I and D
space are not separated, either request 4 or request 5 may be
used with equal results. Upon successful completion, the

- 1 -

PTRACE(2) PTRACE(2)

value written into the address space of the child is returned to
the parent. These two requests will fail if addr is a location in
a pure procedure space and another process is executing in
that space. Upon failure a value of -1 is returned to the
parent process and the parent's errna is set to EIO.

6 With this request, a few entries in the child's USER area can be
written. Data gives the value that is to be written and addr is
the location of the entry. The few entries that can be written
are all registers.

On the 80386, the ptrace system call can be used to modify
the debug registers.

The 80386 debug registers are used to specify an address to
monitor in a user process. Any access to this location by the
user process will deliver a SIGTRAP [see signal(2)] to the user
process and possibly restart the parent process.

The 80386 debug registers can be accessed by using the 3 or 6
options of the ptrace system call to read or write a traced
process's u-area. The file <sys/debugreg.h> should be
included in the parent process that wants to control the debug
registers. This header file defines bit masks that describe the
debug-registers in the tLdebugreg[] array in the u-area.

The debug registers numbered u.tLdebugreg[DlLFIRSTADDR]
(%drO) to u.u_debugreg[DlLLASTADDR] (%dr3) contain pro
cess addresses which will be monitored according to the
instructions provided in u.tLdebugreg[DlLCONTROL] (%dr7).
Only the DlLLOCALENABLE_MASK and the various
read/write and length bits in u.tLdebugreg[DlLCONTROL] can
be set. Setting DlLLOCALSLOWDOWN to slow down pro
cessing is also highly recommended. The setting of all other
bits is undefined and should be set to z.ero to ensure compati
bility with future Intel processors.

In the process being debugged, these registers are automati
cally loaded before entering user-mode (privilege level 3) and
cleared before entering the system for any reason. In System
V Release 3.0, if the location specified by a debug-register is
accessed during a system call, core-dump, or interrupt service,
no trap will ensue.

- 2 -

PTRACE(2)

7

8

9

PTRACE(2)

This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that
caused the child to stop are canceled before it resumes execu
tion. If the data argument is a valid signal number, the child
resumes execution as if it had incurred that signal, and any
other pending signals are canceled. The addr argument must
be equal to 1 for this request. Upon successful completion, the
value of data is returned to the parent. This request will fail if
data is not ° or a valid signal number, in which case a value
of -1 is returned to the parent process and the parent's errna
is set to EIO.

This request causes the child to terminate with the same
consequences as exit(2).

This request sets the trace bit in the Processor Status Word of
the child and then executes the same steps as listed above for
request 7. The trace bit causes an interrupt upon completion
of one machine instruction. This effectively allows single step
ping of the child.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subse
quent exec(2) calls. If a traced process calls exec, it will stop before execut
ing the first instruction of the new image showing signal SIGTRAP.

General Errors
The ptrace system call will in general fail if the child process is running
under i286emul(1) or one or more of the following are true:

[EIO]

[ESRCH]

SEE ALSO

Request is an illegal number.

Pid identifies a child that does not exist or has not executed
a ptrace with request o.

sdb(l), exec(2), signal(2), wait(2).

- 3 -

PUTMSG(2) PUTMSG(2)

NAME
putmsg - send a message on a stream

SYNOPSIS
#include <stropts.h>

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

DESCRIPTION
The putmsg system call creates a message [see intra(2)] from user specified
buffer(s) and sends the message to a STREAMS file. The message may con
tain either a data part, a control part or both. The data and control parts to
be sent are distinguished by placement in separate buffers, as described
below. The semantics of each part is defined by the STREAMS module that
receives the message.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr
each point to a strbuf structure which contains the following members:

int maxlen; /* not used * /
int len; /* length of data * /
char *buf; /* ptr to buffer * /

ctlptr points to the structure describing the control part, if any, to be
included in the message. The buf field in the strbuf structure points to the
buffer where the control information resides, and the len field indicates the
number of bytes to be sent. The maxlen field is not used in putmsg [see
getmsg(2)]. In a similar manner, dataptr specifies the data, if any, to be
included in the message. flags may be set to the values 0 or RS_HIPRI and
is used as described below.

To send the data part of a message, dataptr must be non-NULL and the len
field of dataptr must have a value of 0 or greater. To send the control part
of a message, the corresponding values must be set for ctlptr. No data (con
trol) part will be sent if either dataptr (ctlptr) is NULL or the len field of
dataptr (ctlptr) is set to -1.

If a control part is specified, and flags is set to RS_HIPRI, a priority message
is sent. If flags is set to 0, a non-priority message is sent. If no control part
is specified, and flags is set to RS_HIPRI, putmsg fails and sets errno to EIN
VAL. If no control part and no data part are specified, and flags is set to 0,
no message is sent, and 0 is returned.

For non-priority messages, putmsg will block if the stream write queue is full
due to internal flow control conditions. For priority messages, putmsg does
not block on this condition. For non-priority messages, putmsg does not
block when the write queue is full and O_NDELA Y is set. Instead, it fails
and sets errna to EAGAIN.

- 1 -

PUTMSG(2) PUTMSG(2)

The putmsg system call also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks in the stream,
regardless of priority or whether O~DELAY has been specified. No partial
message is sent.

The putmsg system call fails if one or more of the following are true:

[EAGAIN] A non-priority message was specified, the O_NDELA Y flag is
set and the stream write queue is full due to internal flow
control conditions.

[EAGAIN]

[EBADF]

[EFAULT]

[EINTR]

[EINVAL]

[EINVAL]

[ENOSTR]

[ENXIO]

[ERANGE]

Buffers could not be allocated for the message that was to be
created.

fd is not a valid file descriptor open for writing.

ctlptr or dataptr points outside the allocated address space.

A signal was caught during the putmsg system call.

An undefined value was specified in flags, or flags is set to
RS_HIPRI and no control part was supplied.

The stream referenced by fd is linked below a multiplexer.

A stream is not associated with fd.

A hangup condition was generated downstream for the speci
fied stream.

The size of the data part of the message does not fall within
the range specified by the maximum and minimum packet
sizes of the topmost stream module. This value is also
returned if the control part of the message is larger than the
maximum configured size of the control part of a message, or
if the data part of a message is larger than the maximum con
figured size of the data part of a message.

A putmsg also fails if a STREAMS error message had been processed by the
stream head before the call to putmsg. The error returned is the value con
tained in the STREAMS error message.

SEE ALSO
intro(2), read(2), getmsg(2), poll(2), write(2).
STREAMS Primer.
STREAMS Programmer's Guide.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and erma is set to indicate the error.

- 2 -

READ(2) READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat(2), open(2), dup(2), fcntl(2),
or pipe(2) system call.

The read system call attempts to read nbyte bytes from the file associated
with tildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given
by the file pointer associated with fildes. Upon return from read, the file
pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read
and placed in the buffer; this number may be less than nbyte if the file is
associated with a communication line [see ioctl(2) and termio(7)], or if the
number of bytes left in the file is less than nbyte bytes. A value of 0 is
returned when an end-of-file has been reached.

A read from a STREAMS [see intro(2)] file can operate in three different
modes: "byte-stream" mode, "message-nondiscard" mode, and "message
discard" mode. The default is byte-stream mode. This can be changed
using the LSRDOPT ioctl request [see streamio(7)], and can be tested with
the LGRDOPT ioctl. In byte-stream mode, read will retrieve data from the
stream until it has retrieved nbyte bytes, or until there is no more data to be
retrieved. Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read retrieves data until it has read
nbyte bytes, or until it reaches a message boundary. If the read does not
retrieve all the data in a message, the remaining data are replaced on the
stream, and can be retrieved by the next read or getmsg(2) call. Message
discard mode also retrieves data until it has retrieved nbyte bytes, or it
reaches a message boundary. However, unread data remaining in a mes
sage after the read returns are discarded, and are not available for a subse
quent read or getmsg.

When attempting to read from a regular file with mandatory file/record
locking set [see chmod(2)], and there is a blocking (i.e., owned by another
process) write lock on the segment of the file to be read:

If O_NDELA Y is set, the read will return a -1 and set errno to
EAGAIN.

If O_NDELA Y is clear, the read will sleep until the blocking record
lock is removed.

- 1 -

READ(2) READ(2)

When attempting to read from an empty pipe (or FIFO):

If O~DELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available:

If O_NDELAY is set, the read will return a O.

If O_NDELAY is clear, the read will block until data becomes avail
able.

When attempting to read a file associated with a stream that has no data
currently available:

If O_NDELA Y is set, the read will return a -1 and set errno to
EAGAIN.

If O_NDELAY is clear, the read will block until data becomes avail
able.

When reading from a STREAMS file, handling of zero-byte messages is deter
mined by the current read mode setting. In byte-stream mode, read accepts
data until it has read nbyte bytes, or until there is no more data to read, or
until a zero-byte message block is encountered. The read system call then
returns the number of bytes read, and places the zero-byte message back on
the stream to be retrieved by the next read or getmsg. In the two other
modes, a zero-byte message returns a value of 0 and the message is
removed from the stream. When a zero-byte message is read as the first
message on a stream,' a value of 0 is returned regardless of the read mode.

A read from a STREAMS file can only process data messages. It cannot pro
cess any type of protocol message and will fail if a protocol message is
encountered at the stream head.

The read system call will fail if one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELA Y was
set, and there was a blocking record lock.

[EAGAIN]

[EAGAIN]

[EBADF]

[EBADMSG]

[EDEADLK]

[EFAULT]

[EINTR]

Total amount of system memory available when reading
via raw 10 is temporarily insufficient.

No message waiting to be read on a stream and O_NDELA Y
flag set.

Fildes is not a valid file descriptor open for reading.

Message waiting to be read on a stream is not a data mes
sage.

The read was going to go to sleep and cause a deadlock
situation to occur.

But points outside the allocated address space.

A signal was caught during the read system call.

- 2 -

READ(2)

[EIO]

[ENXIO]

[EINVAL]

[ENOLCK]

[ENOLINK]

READ(2)

A physical I/0 error has occurred.

The device associated with the file-descriptor is a block
special or character-special file, and the value of the file
pointer is out of range.

Attempted to read from a stream linked to a multiplexer.

The system record lock table was full, so the read could not
go to sleep until the blocking record lock was removed.

Fildes is on a remote machine and the link to that machine
is no longer active.

A read from a STREAMS file will also fail if an error message is received at
the stream head. In this case, errna is set to the value returned in the error
message. If a hangup occurs on the stream being read, read will continue to
operate normally until the stream head read queue is empty. Thereafter, it
will return O.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2),intro(2), open(2), pipe(2), getmsg(2).
streamio(7), termio(7) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating
the number of bytes actually read. Otherwise, a -1 is returned, and errno is
set to indicate the error.

- 3 -

RMDIR(2) RMDIR(2)

NAME
rmdir - remove a directory

SYNOPSIS
int rmdir (path)
char *path;

DESCRIPTION
The rmdir system call removes the directory named by the path name
pointed to by path. The directory must not have any entries other than "."
and " .. ".

The named directory is removed unless one or more of the following are
true:

[EINVAL]

[EINVAL]

[EEXIST]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[EIO]

[ENOLINK]

[EMULTIHOP]

DIAGNOSTICS

The current directory may not be removed.

The "." entry of a directory may not be removed.

The directory contains entries other than those for

A component of the path prefix is not a directory.

The named directory does not exist.

and

Search permission is denied for a component of the path
prefix.

Write permission is denied on the directory containing the
directory to be removed.

The directory to be removed is the mount point for a
mounted file system.

The directory entry to be removed is part of a read-only file
system.

Path points outside the process's allocated address space.

An I/0 error occurred while accessing the file system.

Path points to a remote machine, and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO
mkdir(2).
rmdir(1), rm(1), and mkdir(1) in the User's Reference Manual.

- 1 -

SEMCTL(2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/ipc.h>
#inc1ude <sys/sem.h>

int semell (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struel semiLds *buf;
ushort *arraYi

arg;

DESCRIPTION
The semctl system call provides a variety of semaphore control operations as
specified by cmd.

The following cmds are executed with respect to the semaphore specified by
semid and semnum:

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

Return the value of semval [see intro(2)]. {READ}

Set the value of semval to argo val. { ALTER} When
this cmd is successfully executed, the semadj value
corresponding to the specified semaphore in all
processes is cleared.

Return the value of sempid. {READ}

Return the value of semncnt. {READ}

Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of
semaphores.

GETALL Place semvals into array pointed to by arg.array.
{READ}

SET ALL Set semvals according to the array pointed to by
arg.array. {ALTER} When this cmd is successfully exe
cuted the semadj values corresponding to each speci
fied semaphore in all processes are cleared.

The following cmd s are also available:

IPC_ST A T Place the current value of each member of the data
structure associated with semid into the structure
pointed to by arg.buf. The contents of this structure
are defined in intro(2). {READ}

Set the value of the following members of the data
structure associated with semid to the corresponding
value found in the structure pointed to by arg.buf:
seDL-perm. uid

- 1 -

SEMCTL(2)

SEE ALSO

SEMCTL(2)

se1I1-perm.gid
se1I1-perm.mode /* only low 9 bits * /
This cmd can only be executed by a process that has
an effective user ID equal to either that of super-user,
or to the value of sem_perm.cuid or sem_perm.uid
in the data structure associated with semid.

IPCJMID Remove the semaphore identifier specified by semid
from the system and destroy the set of semaphores
and data structure associated with it. This cmd can
only be executed by a process that has an effective
user ID equal to either that of super-user, or to the
value of se1I1-perm.cuid or sem_perm.uid in the
data structure associated with semid.

The semetl system call fails if one or more of the following are true:

[EINVAL] Semid is not a valid semaphore identifier.

[EINVAL] Semnum is less than zero or greater than
se111-Dsems.

[EINVAL]

[EACCES]

[ERANGE]

[EPERM]

[EFAULT]

Cmd is not a valid command.

Operation permission is denied to the calling pro
cess [see intro(2)].

Cmd is SETV AL or SET ALL and the value to which
semval is to be set is greater than the ~ystem
imposed maximum.

Cmd is equal to IPCJMID or IPC_SET and the
effective user ID of the calling process is not equal
to that of super-user or to the value of
se1I1-perm.cuid or sem_perm.uid in the data
structure associated with semid.

Arg.buf points to an illegal address.

intro(2), semget(2), semop(2).

DIAGNOSTICS
Upon successful completion, the value returned depends on emd as follows:

GETV AL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT
All others

The value of semzcnt.
A value of O.

Otherwise, a value of -1 is returned, and errno is set to indicate the error.

- 2 -

SEMGET(2) SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
The semget system call returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing
nsems semaphores [see intro(2)] are created for key if one of the following is
true:

Key is equal to IPCJRIVATE.

Key does not already have a semaphore identifier associated with it,
and (semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new semaphore iden
tifier is initialized as follows:

SeDL-perm.cuid, seDL-perm.uid, seDL-perm.cgid, and
seDL-perm.gid are set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of seDL-perm.mode are set equal to the low
order 9 bits of semflg.

SeDL-Dsems is set equal to the value of nsems.

SeDL-otime is set equal to a and sem_dime is set equal to the
current time.

The data structure associated with each semaphore in the set is not initial
ized. The function semctl with the command setval or setaH can be used to
initialize each semaphore.

The semget system call fails if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL]

[ENOENT]

Nsems is either less than or equal to zero or greater than
the system-imposed limit.

A semaphore identifier exists for key, but operation permis
sion [see intro(2)] as specified by the low-order 9 bits of
semflg would not be granted.

A semaphore identifier exists for key, but the number of
semaphores in the set associated with it is less than nsems,
and nsems is not equal to zero.

A semaphore identifier does not exist for key , and (semflg
& IPC_CREAT) is "false".

- 1 -

SEMGET(2)

[ENOSPC]

[ENOSPC]

[EEXIST]

SEE ALSO

SEMGET(2)

A semaphore identifier is to be created, but the system
imposed limit on the maximum number of allowed sema
phore identifiers system wide would be exceeded.

A semaphore identifier is to be created, but the system
imposed limit on the maximum number of allowed sema
phores system wide would be exceeded.

A semaphore identifier exists for key , but «semflg &
IPC_CREAT) and (semflg & IPC_EXCL» are "true".

intro(2), semctl(2), semop(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely a semaphore
identifier, is returned. Otherwise, a value of -1 is returned, and errna is set
to indicate the error.

- 2 -

SEMOP(2) SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sysjtypes.h>
#include <sysjipc.h>
#include <sysjsem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf **SOPSi
unsigned nsopsi

DESCRIPTION
The semop system call is used to automatically perform an array of sema
phore operations on the set of semaphores associated with the semaphore
identifier specified by semid. Sops is a pointer to the array of semaphore
operation structures. Nsops is the number of such structures in the array.
The contents of each structure includes the following members:

short selll-I1um; j* semaphore number * j
short seIIL-0p; /* semaphore operation * /
short seIIL-flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the
corresponding semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will occur:
{ALTER}

If semval [see intro(2)] is greater than or equal to the abso
lute value of sem_op, the absolute value of sem_op is sub
tracted from semval. Also, if (sem-flg & SEM-UNDO) is
"true", the absolute value of sem_op is added to the calling
process's semadj value [see exit(2)] for the specified sema
phore.

If semval is less than the absolute value of sem_op and
(sem-flg & IPC.-NOWAIT) is "true", semop will return
immediately.

If semval is less than the absolute value of sem_op and
(sem-flg & IPC.-NOWAIT) is "false", semop will increment
the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the
following conditions occur.

Semval becomes greater than or equal to the absolute
value of sem_op. When this occurs, the value of semncnt
associated with the specified semaphore is decremented,
the absolute value of sem_op is subtracted from semval
and, if (sem-flg & SEM-UNDO) is "true", the absolute
value of sem_op is added to the calling process's semadj
value for the specified semaphore.

- 1 -

SEMOP(2) SEMOP(2)

The semid for which the calling process is awaiting action
is removed from the system [see semctl(2)]. When this
occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semncnt associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in sig
naI(2).

If sem-op is a positive integer, the value of sem_op is added to
semval and, if (sem-fIg & SE~UNDO) is "true", the value of
sem_op is subtracted from the calling process's semadj value for the
specified semaphore. {ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_fIg &
IPC-NOWAIT) is "true", semop will return immediately.

If semval is not equal to zero and (sem-fIg &
IPC-NOWAIT) is "false", semop will increment the semzcnt
associated with the specified semaphore and suspend exe
cution of the calling process until one of the following
occurs:

Semval becomes zero, at which time the value of semzcnt
associated with the specified semaphore is decremented.

The semid for which the calling process is awaiting action
is removed from the system. When this occurs, errno is
set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught.
When this occurs, the value of semzcnt associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in sig
naI(2).

The semop system call will fail if one or more of the following are true for
any of the semaphore operations specified by sops:

[EINVAL] Semid is not a valid semaphore identifier.

[EFBIG] Sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.

[E2BIG] Nsops is greater than the system-imposed maximum.

[EACCES]

[EAGAIN]

Operation permission is denied to the calling process [see
intro(2)].

The operation would result in suspension of the calling
process but (sem-fIg & IPC-NOWAIT) is "true".

- 2 -

SEMOP(2)

[ENOSPC]

[EINVAL]

[ERANGE]

[ERANGE]

[EFAULT]

SEMOP(2)

The limit on the number of individual processes requesting
an SEM-UNDO would be exceeded.

The number of individual semaphores for which the calling
process requests a SEM-UNDO would exceed the limit.

An operation would cause a semval to overflow the
system-imposed limit.

An operation would cause a semadj value to overflow the
system-imposed limit.

Sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore speci
fied in the array pointed to by sops is set equal to the process ID of the cal
ling process.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

DIAGNOSTICS
If semap returns due to the receipt of a signal, a value of -1 is returned to
the calling process and errna is set to EINTR. If it returns due to the removal
of a semid from the system, a value of -1 is returned and errna is set to
EIDRM.

Upon successful completion, a value of zero is returned. Otherwise, a value
of -1 is returned and errna is set to indicate the error.

- 3 -

SETPGRP(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION

SETPGRP(2)

The setpgrp system call sets the process group 10 of the calling process to
the process 10 of the calling process and returns the new process group 10.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

DIAGNOSTICS
The setpgrp system call returns the value of the new process group 10.

- 1 -

SETUID(2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
The setuid (setgid) system call is used to set the real user (group) 10 and
effective user (group) 10 of the calling process.

If the effective user 10 of the calling process is super-user, the real user
(group) 10 and effective user (group) 10 are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real
user (group) 10 is equal to uid (gid), the effective user (group) ID is set to
uid (gid).

If the effective user 10 of the calling process is not super-user, but the saved
set-user (group) 10 from exec(2) is equal to uid (gid), the effective user
(group) 10 is set to uid (gid).

The setuid (setgid) system call will fail if the real user (group) 10 of the cal
ling process is not equal to uid (gid) and its effective user ID is not super
user. [EPERM]

The uid (gid) is out of range. [EINVAL]

SEE ALSO
getuid(2), intro(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

- 1 -

SHMCTL(2) SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#inc1ude <sys /types.h>
#inc1ude <sys /ipe.h>
#inc1ude <sys/shm.h>

int shmctl (shmid, emd, buf)
int shmid, emd;
struct shmi<Lds *buf;

DESCRIPTION
The shmctl system call provides a variety of shared memory control opera
tions as specified by cmd. The following cmds are available:

IPC_ST A T Place the current value of each member of the data structure
associated with shmid into the structure pointed to by but.
The contents of this structure are defined in intro(2). {READ}

Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by but:

shIlL-perm. uid
shIlL-perm.gid
shIlL-perm. mode /* only low 9 bits * /
This cmd can only be executed by a process that has an effec
tive user ID equal to that of super-user, or to the value of
shlll-perm.euid or shIIL-perm.uid in the data structure asso
ciated with shmid.

IPC-RMID Remove the shared memory identifier specified by shmid from
the system and destroy the shared memory segment and data
structure associated with it. This cmd can only be executed by
a process that has an effective user ID equal to that of super
user, or to the value of shIIL-perm.euid or shm_perm.uid in
the data structure associated with shmid.

SHM-LOCK Lock the shared memory segment specified by shmid in
memory. This cmd can only be executed by a process that has
an effective user ID equal to super-user.

SHM-UNLOCK
Unlock the shared memory segment specified by shmid. This
cmd can only be executed by a process that has an effective
user ID equal to super-user.

The shmctl system call will fail if one or more of the following are true:

[EINVAL] Shmid is not a valid shared memory identifier.

[EINVAL]

[EACCES]

Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation permission is
denied to the calling process [see intro{2)].

- 1 -

SHMCTL(2) SHMCTL(2)

[EPERM]

[EPERM]

Cmd is equal to IPC-RMID or IPC_SET, and the effective user
ID of the calling process is not equal to that of super-user or to
the value of shD1-perm.cuid or shD1-perm.uid in the data
structure associated with shmid.

Cmd is equal to SHM-LOCK or SHM_UNLOCK, and the effec
tive user ID of the calling process is not equal to that of super
user.

[EFAULT] But points to an illegal address.

[ENOMEM] Cmd is equal to SHM-LOCK, and there is not enough memory.

SEE ALSO
shmget(2), shmop(2).

DIAGNOSTICS

NOTES

Upon successful completion, a value of a is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

The user must explicitly remove shared memory segments after the last
reference to them has been removed.

- 2 -

SHMGET(2) SHMGET(2)

NAME
shmget - get shared memory segment identifier

SYNOPSIS
#include <sysjtypes.h>
#include <sysjipc.h>
#include <sysjshm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
The shmget system call returns the shared memory identifier associated with
key.

A shared memory identifier and associated data structure and shared
memory segment of at least size bytes [see intro(2)] are created for key if one
of the following is true:

Key is equal to IPCJRIV ATE.

Key does not already have a shared memory identifier associated
with it, and (shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory
identifier is initialized as follows:

Shl1'Lperm.cuid, shl1'Lperm. uid, shl1'Lperm.cgid, and
shl1'Lperm.gid are- set equal to the effective user ID and effective
group ID, respectively, of the calling process.

The low-order 9 bits of shl1'Lperm.mode are set equal to the low
order 9 bits of shmflg .Shl1'Lsegsz is set equal to the value of size.

Shl1'Llpid, shl1'Lnattch, shl1'Latime, and sh1t1-dtime are set
equal to O.

Shl1'Lctime is set equal to the current time.

The shmget system call will fail if one or more of the following are true:

[EINVAL] Size is less than the system-imposed minimum or greater
than the system-imposed maximum.

[EACCES] A shared memory identifier exists for key, but operation
permission [see intro(2)] as specified by the low-order 9 bits
of shmflg would not be granted.

[EINVAL]

[ENOENT]

[ENOSPC]

A shared memory identifier exists for key, but the size of
the segment associated with it is less than size, and size is
not equal to zero.

A shared memory identifier does not exist for key, and
(shmflg & IPC_CREAT) is "false".

A shared memory identifier is to be created, but the
system-imposed limit on the maximum number of allowed
shared memory identifiers system wide would be exceeded.

- 1 -

SHMGET(2) SHMGET(2)

[ENOMEM]

[EEXIST]

A shared memory identifier and associated shared memory
segment are to be created, but the amount of available
memory is not sufficient to fill the request.

A shared memory identifier exists for key but «shmflg &
IPC_CREAT) and (shmflg& IPC_EXCL» are "true".

SEE ALSO
intro(2), shmctl(2), shmop(2).

DIAGNOSTICS

NOTES

Upon successful completion, a non-negative integer, namely a shared
memory identifier is returned. Otherwise, a value of -1 is returned, and
errno is set to indicate the error.

The user must explicitly remove shared memory segments after the last
reference to them has been removed.

- 2 -

SHMOP(2) SHMOP(2)

NAME
shmop: shmat, shmdt - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmidi
char *shmaddri
int shmflg;

int shmdt (shmaddr)
char *shmaddr;

DESCRIPTION
The shmat system call attaches the shared memory segment associated with
the shared memory identifier specified by shmid to the data segment of the
calling process. The segment is attached at the address specified by one of
the following criteria:

If shmaddr is equal to zero, the segment is attached at the first avail
able address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM-RND) is "true",
the segment is attached at the address given by (shmaddr - (shmaddr
modulus SHMLBA».

If shmaddr is not equal to zero and (shmflg & SHM-RND) is "false",
the segment is attached at the address given by shmaddr.

Shmdt detaches from the calling process's data segment the shared memory
segment located at the address specified by shmaddr.

The segment is attached for reading if (shmflg & SHM-RDONL Y) is "true"
{READ}, otherwise it is attached for reading and writing {READ/WRITE}.

Shmat will fail and not attach the shared memory segment if one or more of
the following are true:

[EINVAL]

[EACCES]

[ENOMEM]

[EINVAL]

[EINVAL]

[EMFILE]

Shmid is not a valid shared memory identifier.

Operation permission is denied to the calling process [see
intro(2)].

The available data space is not large enough to accommo
date the shared memory segment.

Shmaddr is not equal to zero, and the value of (shmaddr -
(shmaddr modulus SHMLBA» is an illegal address.

Shmaddr is not equal to zero, (shmflg & SHM-RND) is
"false", and the value of shmaddr is an illegal address.

The number of shared memory segments attached to the
calling process would exceed the system-imposed limit.

- 1 -

SHMOP(2) SHMOP(2)

[EINVAL] Shmdt will fail and not detach the shared memory segment
if shmaddr is not the data segment start address of a shared
memory segment.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

DIAGNOSTICS

NOTES

Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the attached shared
memory segment.

Shmdt returns a value of o.
Otherwise, a value of -1 is returned, and errna is set to indicate the error.

The user must explicitly remove shared memory segments after the last
reference to them has been removed.

- 2 -

SIGNAL(2) SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

void (*signal (sig, func»()
int sig;
void (*func)()i

DESCRIPTION
The signal system call allows the calling process to choose one of three
ways in which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and func specifies the choice ..

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03[1] quit
SIGILL 04[1] illegal instruction (not reset when caught)
SIGTRAP 05[1] trace trap (not reset when caught)
SIGIOT 06[1] lOT instruction
SIGABRT 06 used by abort, replaces SIGI0T
SIGEMT 07[1] EMT insL'uction
SIGFPE 08[1] floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10[1] bus error
SIGSEGV 11[1] segmentation violation
SIGSYS 12[1] bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSRl 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18[2] death of a child
SIGPWR 19[2] power fail
SIGPOLL 22[3] selectable event pending

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. SIG_DFL, and SIG-IGN, are defined in the include file signal.h.
Each is a macro that expands to a constant expression of type pointer to
function returning void, and has a unique value that matches no declarable
function.

The actions prescribed by the values of func are as follows:

SIG_DFL -terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be ter
minated with all of the consequences outlined in exit(2). See
NOTE [1] below.

- 1 -

SIGNAL(2) SIGNAL(2)

SIG-IGN -ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address -catch signal
Upon receipt of the signal sig, the receiving process is to execute
the signal-catching function pointed to by func. The signal
number sig will be passed as the only argument to the signal
catching function. Additional arguments are passed to the
signal-catching function for hardware-generated signals. Before
entering the signal-catching function, the value of func for the
caught signal will be set to SIG_DFL unless the signal is SIGILL,
SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving pro
cess will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read(2), a
write(2), an open(2), or an ioctl(2) system call on a slow device
(like a terminal; but not a file), during a pause(2) system call, or
during a wait(2) system call that does not return immediately
due to the existence of a previously stopped or zombie process,
the signal catching function will be executed. Then the inter
rupted system call may return a -1 to the calling process with
errno set to EINTR.

The signal system call will not catch an invalid function argu
ment, func, and results are undefined when an attempt is made
to execute the function at the bad address.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL
signal.

The signal system call will fail if sig is an illegal signal number, including
SIGKILL. [EINV AL]

- 2 -

SIGNAL(2) SIGNAL(2)

NOTES
[1] If SIG_DFL is assigned for these signals, in addition to the process being

terminated, a "core image" will be constructed in the current working
directory of the process, if the following conditions are met:

The effective user ID and the real user ID of the receiving pro
cess are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

a mode of 0666 modified by the file creation
mask [see umask(2)]

a file owner ID that is the same as the effective
user ID of the receiving process

a file group ID that is the same as the effective
group ID of the receiving process.

[2] For the signals SIGCLD and SIGPWR, func is assigned one of three
values: SIG-DFL, SIG-IGN, or a function address. The actions
prescribed by these values are:

SIG_DFL -ignore signal
The signal is to be ignored.

SIG_IGN -ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the cal
ling process's child processes will not create zombie
processes when they terminate [see exit(2)].

function address -catch signal
If the signal is SIGPWR, the action to be taken is the same as
that described above for func equal to function address. The
same is true if the signal is SIGCLD with one exception:
while the process is executing the signal-catching function,
any received SIGCLD signals will be ignored. (This is the
default action.)

In addition, SIGCLD affects the wait and exit system calls as follows:

wait If the func value of SIGCLD is set to SIG_IGN and a wait is
executed, the wait will block until all of the calling process's
child processes terminate; it will then return a value of -1
with errno set to ECHILD.

exit If in the exiting process's parent process the func value of
SIGCLD is set to SIG_IGN, the exiting process will not create
a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that may
be piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

- 3 -

SIGNAL(2) SIGNAL(2)

[3] SIGPOLL is issued when a file descriptor corresponding to a STREAMS
[see intra(2)] file has a "selectable" event pending. A process must
specifically request that this signal be sent using the LSETSIG iactl call.
Otherwise, the process will never receive SIGPOLL.

SEE ALSO
intro(2), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C), sigset(2).
kill(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, signal returns the previous value of func for
the specified signal sig. Otherwise, a value of SIG.-ERR is returned and
errna is set to indicate the error. SIG_ERR is defined in the include file
signal.h.

- 4 -

SIGSET(2) SIGSET(2)

NAME
sigset, sigh old, sigrelse, sigignore, sigpause - signal management

SYNOPSIS
#inc1ude <signal.h>

void (*sigset (sig, func»)()
int sig;
void (*func)();

int sighold (sig)
int sig;

int sigrelse (sig)
int sig;

int sigignore (sig)
int sig;

int sigpause (sig)
int sig;

DESCRIPTION
These functions provide signal management for application processes. The
sigset system call specifies the system signal action to be taken upon receipt
of signal sig. This action is either calling a process signal-catching handler
Junc or performing a system-defined action.

Sig can be assigned anyone of the following values except SIGKILL.
Machine-or implementation-dependent signals are not included (see NOTES
below). Each value of sig is a macro, defined in <signal.h>, that expands to
an integer constant expression.

SIGHUP hangup
SIGINT interrupt
SIGQUIT* quit
SIGILL * illegal instruction (not held when caught)
SIGTRAP* trace trap (not held when caught)
SIGABRT* abort
SIGFPE* floating point exception
SIGKILL kill (cannot be caught or ignored)
SIGSYS* bad argument to system call
SIGPIPE write on a pipe with no one to read it
SIGALRM alarm clock
SIGTERM software termination signal
SIGUSRI user-defined signal 1
SIGUSR2 user-defined signal 2
SIGCLD death of a child (see WARNING below)
SIGPWR power fail (see WARNING below)
SIGPOLL selectable event pending (see NOTES below)

See below under SIG_DFL regarding asterisks (*) in the above list.

- 1 -

SIGSET(2) SIGSET(2)

The following values for the system-defined actions of tunc are also defined
in <signal.h>. Each is a macro that expands to a constant expression of
type pointer to function returning void and has a unique value that matches
no declarable function.

SIG_DFL -default system action
Upon receipt of the signal sig, the receiving process is to be ter
minated with all of the consequences outlined in exit(2). In
addition a "core image" will be made in the current working
directory of the receiving process if sig is one for which an aster
isk appears in the above list and the following conditions are
met:

The effective user ID and the real user ID of the receiv
ing process are equal.

An ordinary file named core exists and is writable or can
be created. If the file must be created, it will have the
following properties:

SIG_IGN -ignore signal

a mode of 0666 modified by the file creation
mask [see umask(2)]

a file owner ID that is the same as the effective
user ID of the receiving process

a file group ID that is the same as the effective
group ID of the receiving process.

Any pending signal sig is discarded and the system signal action is
set to ignore future occurrences of this signal type.

SIGJIOLD -hold signal
The signal sig is to be held upon receipt. Any pending signal of
this type remains held. Only one signal of each type is held.

Otherwise, tunc must be a pointer to a function, the signal-catching handler,
that is to be called when signal sig occurs. In this case, sigset specifies that
the process will call this function upon receipt of signal sig. Any pending
signal of this type is released. This handler address is retained across calls
to the other signal management functions listed here.

When a signal occurs, the signal number sig will be passed as the only
argument to the signal-catching handler. Before calling the signal-catching
handler, the system signal action will be set to SIG_HOLD. During normal
return from the signal-catching handler, the system signal action is restored
to tunc and any held signal of this type released. If a non-local goto
(longjmp) is taken, then sigrelse must be called to restore the system signal
action and release any held signal of this type.

In general, upon return from the signal-catching handler, the receiving pro
cess will resume execution at the point it was interrupted. However, when
a signal is caught during a read(2), a write(2), an open(2), or an ioctl (2) sys
tem call during a sigpause system call, or during a wait(2) system call that
does not return immediately due to the existence of a previously stopped or

- 2 -

SIGSET(2) SIGSET(2)

zombie process, the signal-catching handler will be executed. Then the
interrupted system call may return a -1 to the calling process with errno set
to EINTR.

Sighold and sigrelse are used to establish critical regions of code. Sighold is
analogous to raising the priority level and deferring or holding a signal until
the priority is lowered by sigrelse. Sigrelse restores the system signal action
to that specified previously by sigset.

Sigignore sets the action for signal sig to SIG_IGN (see above).

Sigpause suspends the calling process until it receives a signal, the same as
pause(2). However, if the signal sig had been received and held, it is
released and the system signal action taken. This system call is useful for
testing variables that are changed on the occurrence of a signal. The correct
usage is to use sighold to block the signal first, then test the variables. If
they have not changed, then call sigpause to wait for the signal. sigset will
fail if one or more of the following are true:

[EINVAL) Sig is an illegal signal number (including SIGKILL) or the
default handling of sig cannot be changed.

[EINTR] A signal was caught during the system call sigpause.

DIAGNOSTICS
Upon successful completion, sigset returns the previous value of the system
signal action for the specified signal sig. Otherwise, a value of SIG_ERR is
returned and ermo is set to indicate the error. SIG_ERR is defined in
<signal.h> .

For the other functions, upon successful completion, a value of 0 is
returned. Otherwise, a value of -1 is returned and ermo is set to indicate
the error.

SEE ALSO
kill(2), pause(2), signal(2), wait(2), setjmp(3C).

WARNING
Two signals that behave differently than the signals described above exist in
this release of the system:

SIGCLD death of a child (reset when caught)
SIGPWR power fail (not reset when caught)

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN,
or a function address. The actions; prescribed by these values are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling
process's child processes will not create zombie processes when
they terminate [see exit(2)].

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that
described above for func equal to function address. The same is

- 3 -

SIGSET(2) SIGSET(2)

NOTES

true if the signal is SIGCLD with one exception: while the pro
cess is executing the signal-catching function, any received
SIGCLD signals will be ignored. (This is the default action.)

The SIGCLD affects two other system calls [wait(2), and exit(2)] in the fol
lowing ways:

wait If the tunc value of SIGCLD is set to SIG_IGN and a wait is exe
cuted, the wait will block until all of the calling process's child
processes terminate; it will then return a value of -1 with errna
set to ECHILD.

exit If in the exiting process's parent process the tunc value of
SIGCLD is set to SIG_IGN , the exiting process will not create a
zombie process.

When processing a pipeline, the shell makes the last process in the pipe
line the parent of the proceeding processes. A process that may be piped
into in this manner (and thus become the parent of other processes)
should take care not to set SIGCLD to be caught.

SIGPOLL is issued when a file descriptor corresponding to a STREAMS [see
intro(2)] file has a II selectable" event pending. A process must specifically
request that this signal be sent using the LSETSIG ioctl(2) call [see
streamio(7)]. Otherwise, the process will never receive SIGPOLL.

For portability, applications should use only the symbolic names of signals
rather than their values and use only the set of signals defined here. The
action for the signal SIGKILL cannot be changed from the default system
action.

Specific implementations may have other implementation-defined signals.
Also, additional implementation-defined arguments may be passed to the
signal-catching handler for hardware-generated signals. For certain
hardware-generated signals, it may not be possible to resume execution at
the point of interruption.

The signal type SIGSEGV is reserved for the condition that occurs on an
invalid access to a data object. If an implementation can detect this condi
tion, this signal type should be used.

The other signal management functions, signal(2) and pause(2), should not
be used in conjunction with these routines for a particular signal type.

- 4 -

STAT(2) STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/stat.h>

int stat (path, buf)
char *path;
struct stat *buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write, or execute permis
sion of the named file is not required, but all directories listed in the path
name leading to the file must be searchable. The stat system call obtains
information about the named file.

Note that in a Remote File Sharing environment, the information returned
by stat depends upon the user/group mapping set-up between the local and
remote computers. [See idZoad(1M»).

Fstat obtains information about an open file known by the file descriptor
fildes, obtained from a successful open, creat, dup, fcntZ, or pipe system call.

Buf is a pointer to a stat structure into which information is placed concern
ing the file.

The contents of the structure pointed to by bUf include the following
members:

ushort sLmode; /* File mode [see mknod(2») */
ino_t sUno;
dev_t sLdev;

dev_t sLrdev;

short sLnlink;
ushort sLuid;
ushort sLgid;
off_t sLsize;
time_t sLatime;
time_t sLmtime;
time_t sLctime;

/* Inode number */
/* ID of device containing */
/* a directory entry for this file * /
/* ID of device */
/* This entry is defined only for */
/* character special or block special files * /
/* Number of links */
/* User ID of the file's owner */
/* Group ID of the file's group */
/* File size in bytes */
/* Time of last access */
/* Time of last data modification * /
/* Time of last file status change * /
/* Times measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

sLmode The mode of the file as described in the mknod(2) system call.

st-ino This field uniquely identifies the file in a given file system. The
pair sUno and sLdev uniquely identifies regular files.

- 1 -

STA T(2) ST A T(2)

sLdev This field uniquely identifies the file system that contains the
file. Its value may be used as input to the ustat(2) system call to
determine more information about this file system. No other
meaning is associated with this value.

sLrdev This field should be used only by administrative commands. It
is valid only for block special or character special files and only
has meaning on the system where the file was configured.

sLnlink This field should be used only by administrative commands.

st_uid The user ID of the file's owner.

sLgid The group ID of the file's group.

sLsize For regular files, this is the address of the end of the file. For
pipes or fifos, this is the count of the data currently in the file.
For block special or character special, this is not defined.

sLatime Time when file data was last accessed. Changed by the follow-
ing system calls: creat(2), mknod(2), pipe(2), utime(2), and
read(2).

sLmtime Time when data was last modified. Changed by the following
system calls: creat(2), mknod(2), pipe(2), utime(2), and write(2).

sLctime Time when file status was last changed. Changed by the follow
ing system calls: chmod(2), chown(2), creat(2), link(2), mknod(2),
pipe(2), unlink(2), utime(2), and write(2).

The stat system call will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path
prefix.

[EFAULT] But or path points to an invalid address.

[EINTR] A signal was caught during the stat system call.

[ENOLINK] Path points to a remote machine and the link to that
machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote
machines.

Fstat will fail if one or more of the following are true:

[EBADF]

[EFAULT]

[ENOLINK]

SEE ALSO

Fildes is not a valid open file descriptor.

But points to an invalid address.

Fildes points to a remote machine and the link to that
machine is no longer active.

chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2), write(2).

- 2 -

STAT(2) STAT(2)

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

- 3 -

STATFS(2) STATFS(2)

NAME
statfs, fstatfs - get file system information

SYNOPSIS
#indude <sys/types.h>
#indude <sys/statfs.h>

int statfs (path, buf, len, fstyp)
char *path;
struct statfs *buf;
int len, fstyp;

int fstatfs (fildes, buf, len, fstyp)
int fildes;
struct statfs *buf;
int len, fstyp;

DESCRIPTION
The statfs system call returns a "generic superblock" describing a file sys
tem. It can be used to acquire information about mounted as well as
unmounted file systems, and usage is slightly different in the two cases. In
all cases, buf is a pointer to a structure (described below) which will be
filled by the system call, and len is the number of bytes of information
which the system should return in the structure. Len must be no greater
than sizeof (struct statfs) and ordinarily it will contain exactly that value; if
it holds a smaller value, the system will fill the structure with that number
of bytes. (This allows future versions of the system to grow the structure
without invalidating older binary programs.)

If the file system of interest is currently mounted, path should name a file
which resides on that file system. In this case the file system type is known
to the operating system and the fstyp argument must be zero. For an
unmounted file system path must name the block special file containing it
and fstyp must contain the (non-zero) file system type. In both cases read,
write, or execute permission of the named file is not required, but all direc
tories listed in the path name leading to the file must be searchable.

The statfs structure pointed to by buf includes the following members:
short f_fstyp; /* File system type * /
short f_bsize; /* Block size */
short f_frsize; /* Fragment size * /
long f_blocks; /* Total number of blocks */
long f_bfree; /* Count of free blocks * /
long f_files; /* Total number of file nodes */
long f_ffree; /* Count of free file nodes */
char f_fname[6]; /* Volume name */
char f_fpack[6]; /* Pack name */

The fstatfs system call is similar, except that the file named by path in statfs
is instead identified by an open file descriptor file des obtained from a suc
cessful open(2), creat(2), dup(2), fcntl(2), or pipe(2) system call.

The statfs system call obsoletes ustat(2) and should be used in preference to
it in new programs.

- 1 -

STATFS(2) STATFS(2)

The statfs and fstatfs system calls will fail if one or more of the following
are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EFAULT]

[EBADF]

[EINVAL]

[ENOLINK]

[EMUL TIHOP]

DIAGNOSTICS

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path
prefix.

Buf or path points to an invalid address.

Fildes is not a valid open file descriptor.

Fstyp is an invalid file system type; path is not a block spe
cial file and fstyp is nonzero; len is negative or is greater
than sizeof (struct statfs).

Path points to a remote machine, and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

Upon successful completion a value of a is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2), time(2),
unlink(2), utime(2)~ write(2), fs(4).

- 2 -

STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

STIME(2)

The stime system call sets the system's idea of the time and date. Tp points
to the value of time as measured in seconds from 00:00:00 GMT January 1,
1970.

[EPERM]

SEE ALSO
time(2).

DIAGNOSTICS

stime will fail if the effective user ID of the calling process
is not super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

- 1 -

SYNC(2) SYNC(2)

NAME
sync - update super block

SYNOPSIS
void sync ()

DESCRIPTION
The sync system call causes all information in memory that should be on
disk to be written out. This includes modified super blocks, modified i
nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example
fsck, df, etc. It is mandatory before are-boot.

The writing, although scheduled, is not necessarily complete upon return
from sync.

- 1 -

SYSFS(2) SYSFS(2)

NAME
sysfs - get file system type information

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs (opcode, fsname)
int opcode;
char *fsname;

int sysfs (opcode, fs~ndex, buf)
int opcode;
int fs~ndex;
char *buf;

int sysfs (opcode)
int opcode;

DESCRIPTION
The sysfs system call returns information about the file system types config
ured in the system. The number of arguments accepted by sysfs varies and
depends on the opcode. The currently recognized opcodes and their functions
are described below:

GETFSIND

GETFSTYP

GETNFSTYP

translates fsname, a null-terminated file-system
identifier, into a file-system type index.

translates fs_index, a file-system type index, into
a null-terminated file-system identifier and writes
it into the buffer pointed to by buf; this buffer
must be at least of size FSTYPSZ as defined in
<sys/fstyp.h>.

returns the total number of file system types con
figured in the system.

The sysfs system call will fail if one or more of the following are true:

[EINV AL] Fsname points to an invalid file-system identifier;
fs_index is zero, or invalid; opcode is invalid.

[EF AUL T] But or fsname point to an invalid user address.

DIAGNOSTICS
Upon successful completion, sysfs returns the file-system type index if the
opcode is GETFSIND, a value of 0 if the opcode is GETFSTYP, or the
number of file system types configured if the opcode is GETNFSTYP. Oth
erwise, a value of -1 is returned, and errno is set to indicate the error.

- 1 -

SYSI86(2) SYSI86(2)

NAME
sysi86 - machine-specific functions

SYNOPSIS
#inc1ude <sys/sysi86.h>

int sysi86(cmd, arg)
int cmd;
char *arg;

int sysi86(cmd, arg);
int cmd;
int arg;

int sysi86(cmd, arg);
int cmd;
long arg;

long sysi86(cmd, arg);
int cmd;

DESCRIPTION
The sysi86 system call implements machine-specific functions. The cmd
argument determines the function to be performed. The types of the argu
ments expected depend on the function.

Command RTODC (80286 only)
When cmd is RTODC, the expected argument is the address of a struct
bcd_tm:

struct bcLtm {
unsigned char uniLsec, ten_sec,
uniLmin, ten_min, uniLhr, ten_hr,
uniLday, ten_day, uniLmon, ten_mon,
uniLyr, telL-yr, 11 yr;

};
\

This function reads the hardware time of day clock and returns the data in
the structure referenced by the argument. This command is available only
to the super-user.

Command SI86FPHW
This command expects the address of an integer as its argument. After suc
cessful return from the system call, the integer specifies how floating-point
computation is supported.

The low-order byte of the integer contains the value of "fpkind", a variable
that specifies whether an 80287 or 80387 floating-point coprocessor is
present, emulated in software, or not supported. The values are defined in
the header file sys/fp.h.

FP_NO
FP_SW
FP_HW
FP_287
FP_387

no fp chip, no emulator (no fp support)
no fp chip, using software emulator
chip present bit
80287 chip present
80387 chip present

- 1 -

SYSI86(2) SYSI86(2)

(80386 only) The second byte of the integer contains the value of
weitek_kind, a variable that specifies whether a Weitek floating-point copro
cessor is present, emulated or not supported. The values are defined in the
header file sys /weitek.h.

WEITEICNO
WEITEI<-HW
WEITEI<-SW

Command SET NAME

no chip support
chip present
emulator present

This command, which is only available to the super-user expects an argu
ment of type char * which points to a NULL terminated string of at most 7
characters. The command will change the running system's sysname and
nodename [see uname(2)] to this string.

Command STIME
When cmd is STIME, an argument of type long is expected. This function
sets the system time and date. The argument contains the time as measured
in seconds from 00:00:00 GMT January I, 1970. Note that this command is
only available to the super-user.

Command SI86DSCR
This command sets a segment or gate descriptor in the kernel. The follow
ing descriptor types are accepted:

• executable and data segments in the LDT at DPL 3
• a call gate in the GDT at DPL 3 that points to a segment in the

LDT

The argument is a pointer to a request structure that contains the values to
be placed in the descriptor. The request structure is declared in the
sys/sysi86.h header file.

Command SI86MEM
This command returns the size of available memory in bytes.

Command SI86SWPI
Note: This cmd is available only with System V Releases 2.1 and 3.0
software.

When cmd is SI86SWPI, individual swapping areas may be added, deleted
or the current areas determined. The address of an appropriately primed
swap buffer is passed as the only argument. (Refer to sys/swap.h header file
for details of loading the buffer.)

The format of the swap buffer is:

struct swapint {
char sLcmd;
char *sLbuf;
long sLswplo;
long sLnblks;
long sLblksiz;

/* command: list, add, delete * /
/* swap file path pointer * /
/* start block */
/* swap size * /
/* The blocksize (in bytes) of the

swap file */

- 2 -

SYSI86(2) SYSI86(2)

Note that the add and delete options of the command may only be exer
cised by the super-user.

Typically, a swap area is added by a single call to sysi86. First, the swap
buffer is primed with appropriate entries for the structure members. Then
sysi86 is invoked.

#include <sysjsysi86.h>
#include <sysjswap.h>

struct swapint swapbuf; j*swap into buffer ptr* j

sysi86(SI86SWPI, &swapbuf);

If this command succeeds, it returns 0 to the calling process. This command
fails, returning -1, if one or more of the following is true:

[EFAULT] Swapbuf points to an invalid address

[EFAULT]

[ENOTBLK]

[EEXIST]

[ENOSPC]

[ENOMEM]

[EINVAL]

[ENOMEM]

SEE ALSO
uname(2)

Swapbuf.si_buf points to an invalid address

Swap area specified is not a block special device

Swap area specified has already been added

Too many swap areas in use (if adding)

Tried to delete last remaining swap area

Bad arguments

No place to put swapped pages when deleting a swap area

swap(lM) in the System Administrator's Reference Manual.

DIAGNOSTICS
Upon successful completion, the value of zero is returned; otherwise, -1 is
returned, and errno is set to indicate the error. When the cmd is invalid,
errno is set to EINV AL.

- 3 -

TIME(2) TIME(2)

NAME
time - get time

SYNOPSIS
#include <sys/types.h>

time_t time (tloc)
long *tloci

DESCRIPTION
The time system call returns the value of time in seconds since 00:00:00
Greenwich Mean Time (GMT), January I, 1970.

If tIoe is non-zero, the return value is also stored in the location to which
tioe points.

SEE ALSO
stime(2).

WARNING
The time system call fails and its actions are undefined if tIoe points to an
illegal address.

DIAGNOSTICS
Upon successful completion, time returns the value of time. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

- 1 -

TIMES(2) TIMES(2)

NAME
times - get process and child process times

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION
The times system call fills the structure pointed to by buffer with time
accounting information. The following are the contents of this structure:

struct tms {

} ;

time_t tms_utime;
time_t tms-stime;
time_t tms_cutime;
time_t tms_cstime;

This information comes from the calling process and each of its terminated
child processes for which it has executed a wait. All times are reported in
clock ticks per second. Clock ticks are a system-dependent parameter. The
specific value for an implementation is defined by the variable HZ, found in
the include file param.h.

Tms_utime is the CPU time used while executing instructions in the user
space of the calling process.

Tms-stime is the CPU time used by the system on behalf of the calling pro
cess.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child
processes.

Tms_cstime is the sum of the tms-stimes and tms_cstimes of the child
processes.

[EFAULT] The times system call will fail if buffer points to an illegal address.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

DIAGNOSTICS
Upon successful completion, times returns the elapsed real time, in clock
ticks per second, from an arbitrary point in the past (e.g., system start-up
time). This point does not change from one invocation of times to another.
If times fails, a -1 is returned and errno is set to indicate the error. On a
80286 computer, clock ticks occur 60 times per second. On a 80386 com
puter, clock ticks occur 100 times per second.

- 1 -

UADMIN(2) UADMIN(2)

NAME
uadmin - administrative control

SYNOPSIS
#include <sys/uadmin.h>

int uadmin (emd, fen, mdep)
int emd, fen, mdep;

DESCRIPTION
The uadmin system call provides control for basic administrative functions.
This system call is tightly coupled to the system administrative procedures
and is not intended for general use. The argument mdep is provided for
machine-dependent use and is not defined here.

As specified by emd, the following commands are available:

A-SHUTDOWN The system is shutdown. All user processes are killed, the
buffer cache is flushed, and the root file system is
unmounted. The action to be taken after the system has
been shut down is specified by fen. The functions are gen
eric; the hardware capabilities vary on specific machines.

A-REBOOT

AD-HALT Halt the processor and turn off the power.

AD_BOOT Reboot the system, using junix.

AD_IBOOT Interactive reboot; user is prompted for system
name.

The system stops immediately without any further process
ing. The action to be taken next is specified by fen as
above.

A-REMOUNT The root file system is mounted again after having been
fixed. This should be used only during the startup process.

The uadmin system call fails if any of the following are true:

[EPERM] The effective user ID is not super-user.

DIAGNOSTICS
Upon successful completion, the value returned depends on emd as follows:

A-SHUTDOWN Never returns.
A-REBOOT Never returns.
A-REMOUNT 0

Otherwise, a value of -1 is returned, and errna is set to indicate the error.

- 1 -

ULIMIT(2) ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values
available are:

1. Get the regular file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of any size
can be read.

2. Set the regular file size limit of the process to the value of new limit.
Any process may decrease this limit, but only a process with an effec
tive user ID of super-user may increase the limit. The ulimit system
call fails and the limit is unchanged if a process with an effective user
ID other than super-user attempts to increase its regular file size limit.
[EPERM]

3. Get the maximum possible break value [see brk(2)].

For the 80286 computer:

in small model, the address returned is the maximum break value;
in large model, the address returned is the last address of the next seg
ment.

4. Return configured value of NOFILES, the value for the maximum
number of open files per process.

SEE ALSO
brk(2), write(2).

WARNING
The ulimit system call is effective in limiting the growth of regular files.
Pipes are currently limited to 5,120 bytes.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. Otherwise, a
value of -1 is returned, and errna is set to indicate the error.

- 1 -

UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (em ask)
int em ask;

DESCRIPTION

UMASK(2)

The umask system call sets the process's file mode creation mask to cmask
and returns the previous value of the mask. Only the low-order 9 bits of
cmask and the file mode creation mask are used.

SEE ALSO
chmod(2), creat(2), mknod(2), open(2).
mkdir(l), sh(l) in the User's Reference Manual.

DIAGNOSTICS
The previous value of the file mode creation mask is returned.

- 1 -

UMOUNT(2) UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (file)
char *file;

DESCRIPTION
The umount system call requests that a previously mounted file system con
tained on the block special device or directory identified by file be
unmounted. File is a pointer to a path name. After unmounting the file
system, the directory upon which the file system was mounted reverts to its
ordinary h.~erpretation.

The umount system call may be invoked only by the super-user.

The umount system call will fail if one or more of the following are true:

[EPERM]

[EINVAL]

[ENOTBLK]

[EINVAL]

[EBUSY]

[EFAULT]

[EREMOTE]

[ENOLINK]

[EMULTIHOP]

[ENOTDIR]

[ENOENT]

SEE ALSO
mount(2).

DIAGNOSTICS

The process's effective user ID is not super-user.

File does not exist.

File is not a block special device.

File is not mounted.

A file on file is busy.

File points to an illegal address.

File is remote.

File is on a remote machine, and the link to that machine is
no longer active.

Components of the path pointed to by file require hopping
to multiple remote machines.

A component of the path-prefix is not a directory.

The named file does not exist.

Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

- 1 -

UNAME(2) UNAME(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
#inc1ude <sys Jutsname.h>

int uname (name)
struct utsname *namei

DESCRIPTION
The uname system call stores information identifying the current UNIX sys
tem in the structure pointed to by name.

The uname system call uses the structure defined in <sysJutsname.h>
whose members are:

char sysname[9];
char nodename[9];
char release[9];
char version[9];
char machine[9];

The uname system call returns a null-terminated character string naming the
current UNIX system in the character array sysname. Similarly, nodename
contains the name that the system is known by on a communications net
work. Release and version further identify the operating system. Machine
contains a standard name that identifies the hardware that the UNIX system
is running on.

[EFAULT] uname will fail if name points to an invalid address.

SEE ALSO
uname(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. Otherwise, a
value of -1 is returned, and errno is set to indicate the error.

- 1 -

UNLINK(2) UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
The unlink system call removes the directory entry named by the path name
pointed to by path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFS]

[EFAULT]

[EINTR]

[ENOLINK]

[EMUL TIHOP]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path
prefix.

Write permission is denied on the directory containing the
link to be removed.

The named file is a directory and the effective user ID of
the process is not super-user.

The entry to be unlinked is the mount point for a mounted
file system.

The entry to be unlinked is the last link to a pure pro
cedure (shared text) file that is being executed.

The directory entry to be unlinked is part of a read-only file
system.

Path points outside the process's allocated address space.

A signal was caught during the unlink system call.

Path points to a remote machine and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to exist. If
one or more processes have the file open when the last link is removed, the
removal is postponed until all references to the file have been closed.

SEE ALSO
close(2), link(2), open(2).
rm(l) in the User's Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errno is set to indicate the error.

- 1 -

USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys /types.h>
#include <ustat.h>

int ustat (dev, buf)
dev_t dev;
struct ustat *buf;

DESCRIPTION
The ustat system call returns information about a mounted file system. Dev
is a device number identifying a device containing a mounted file system.
Buf is a pointer to a ustat structure that includes the following elements:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name */
char f.-fpack[6]; /* Filsys pack name * /

The last two fields, f_name and f-fpack may not have significant informa
tion on all systems, and, in that case, will contain the null character.

The ustat system call will fail if one or more of the following are true:

[EINV AL] Dev is not the device number of a device containing a
mounted file system.

[EFAULT]

[EINTR]

[ENOLINK]

[ECOMM]

SEE ALSO
stat(2), fs(4).

DIAGNOSTICS

Buf points outside the process's allocated address space.

A signal was caught during a ustat system call.

Dev is on a remote machine and the link to that machine is
no longer active.

Dev is on a remote machine and the link to that machine is
no longer active.

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errna is set to indicate the error.

- 1 -

UTIME(2) UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#inc1ude <sys/types.h>
int utime (path, times)
char *path;
struct utimbuf *times;

DESCRIPTION
Path points to a path n'ame naming a file. The utime system call sets the
access and modification times of the named file.

If times is NULL, the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write permis
sion to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure
and the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user may use
utime this way.

The times in the following structure are measured in seconds since 00:00:00
Greenwich Mean Time (GMT), Jan. 1, 1970.

struct utimbuf {

} ;

time_t actime;
time_t mod time;

/* access time */
/* modification time */

The utime system call1Will fail if one or more of the following are true:

[ENOENT] The named file does not exist.

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES]

[EROFS]

[EFAULT]

[EFAULT]

[EINTR]

[ENOLINK]

[EMUL TIHOP]

A component of the path prefix is not a directory.

Search permission is denied by a component of the path
prefix.

The effective user ID is not super-user and not the owner of
the file, and times is not NULL.

The effective user ID is not super-user and not the owner of
the file, and times is NULL and write access is denied.

The file system containing the file is mounted read-only.

Times is not NULL and points outside the process's allo
cated address space.

Path points outside the process's allocated address space.

A signal was caught during the utime system call.

Path points to a remote machine, and the link to that
machine is no longer active.

Components of path require hopping to multiple remote
machines.

- 1 -

UTIME(2)

SEE ALSO
stat(2}.

DIAGNOSTICS

UTIME(2)

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and errna is set to indicate the error.

- 2 -

WAIT(2) WAI'I:(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (staLloc)
int *stat-Ioc;
int wait «int *) 0)

DESCRIPTION
The wait system call suspends the calling process until one of the immedi
ate children terminates or until a child that is being traced stops, because it
has hit a break point. The wait system call will return prematurely if a sig
nal is received and if a child process stopped or terminated prior to the call
on wait; return is immediate.

If stat_lac is non-zero, 16 bits of information called status are stored in the
low order 16 bits of the location pointed to by stat_lac. Status can be used
to differentiate between stopped and terminated child processes and if the
child process terminated, status identifies the cause of termination and
passes useful information to the parent. This is accomplished in the follow
ing manner:

If the child process stopped, the high order 8 bits of status will con
tain the number of the signal that caused the process to stop, and
the low order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8
bits of status will be zero, and the high order 8 bits will contain the
low order 8 bits of the argument that the child process passed to
exit [see exit(2)].

If the child process terminated due to a signal, the high order 8 bits
of status will be zero, and the low order 8 bits will contain the
number of the signal that caused the termination. In addition, if the
low order seventh bit (Le., bit 200) is set, a "core image" will have
been produced [see signal(2)].

If a parent process terminates without waiting for its child processes to ter
minate, the parent process ID of each child process is set to 1. This means
the initialization process inherits the child processes [see intro(2»).

The wait system call will fail and return immediately if one or more of the
following are true:

[ECHILD] The calling process has no existing unwaited-for child
processes.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

WARNING
The wait system call fails and its actions are undefined if stat_lac points to
an invalid address.

See WARNING in signal(2).

- 1 -

WA1T(2) WAIT(2)

DIAGNOSTICS
If wait returns due to the receipt of a signal, a value of -1 is returned to the
calling process, and erma is set to EINTR. If wait returns due to a stopped
or terminated child process, the process ID of the child is returned to the
calling process. Otherwise, a value of -1 is returned, and erma is set to
indicate the error.

- 2 -

WRITE(2) WRITE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
tildes is a file descriptor obtained from a creat(2), open(2), dup(2), tcntl(2), or
pipe (2) system call.

The write system call attempts to write nbyte bytes from the buffer pointed
to by but to the file associated with the tildes.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write,
the file pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the O-APPEND flag of the file status flags is set, the file pointer will be set
to the end of the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, the write
will not return until both the file data and file status have been physically
updated. This function is for special applications that require extra reliabil
ity at the cost of performance. For block special files, if O_SYNC is set, the
write will not return until the data has been physically updated.

A write to a regular file will be blocked if mandatory file/record locking is
set [see chmod(2)], and there is a record lock owned by another process on
the segment of the file to be written. If O_NDELA Y is not set, the write will
sleep until the blocking record lock is removed.

For STREAMS [see intro(2)] files, the operation of write is determined by the
values of the minimum and maximum nbyte range (" packet size") accepted
by the stream. These values are contained in the topmost stream module.
Unless the user pushes [see LPUSH in streamio(7)] the topmost module,
these values cannot be set or tested from user level. If nbyte falls within the
packet size range, nbyte bytes will be written. If nbyte does not fall within
the range and the minimum packet size value is zero, write will break the
buffer into maximum packet size segments prior to sending the data down
stream (the last segment may contain less than the maximum packet size).
If nbyte does not fall within the range and the minimum value is non-zero,
write will fail with errno set to ERANGE. Writing a zero-length buffer (nbyte
is zero) sends zero bytes with zero returned.

For STREAMS files, if O_NDELA Y is not set and the stream cannot accept
data (the stream write queue is full due to internal flow control conditions),
write will block until data can be accepted. O_NDELAY will prevent a pro
cess from blocking due to flow control conditions. If O_NDELA Y is set and
the stream cannot accept data, write will fail. If O_NDELA Y is set and part

- 1 -

WRITE(2) WRITE(2)

of the buffer has been written when a condition in which the stream cannot
accept additional data occurs, write will terminate and return the number of
bytes written.

The write system call will fail and the file pointer will remain unchanged if
one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was set,
and there was a blocking record lock.

[EAGAIN]

[EAGAIN]

[EBADF]

[EDEADLK]

[EFAULT]

[EFBIG]

[EINTR]

[EINVAL]

[ENOLCK]

[ENOLINK]

[ENOSPC]

Total amount of system memory available when reading
via raw 10 is temporarily insufficient.

Attempt to write to a stream that cannot accept data with
the O_NDELA Y flag set.

tildes is not a valid file descriptor open for writing.

The write was going to go to sleep and cause a deadlock
situation to occur.

but points outside the process's allocated address space.

An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size [see
ulimit(2)].

A signal was caught during the write system call.

Attempt to write to a stream linked below a multiplexer.

The system record lock table was full, so the write could
not go to sleep until the blocking record lock was removed.

tildes is on a remote machine and the link to that machine
is no longer active.

During a write to an ordinary file, there is no free space left
on the device.

[ENXIO] A hangup occurred on the stream being written to.

[EPIPE and SIGPIPE signal]

[ERANGE]

[EIO]

An attempt is made to write to a pipe that is not open for
reading by any process.

Attempt to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum
value is non-zero.

A physical I/O error has occurred.

If a write requests that more bytes be written than there is room for (e.g.,
the ulimit [see ulimit(2)] or the physical end of a medium), only as many
bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512-
bytes will return 20. The next write of a non-zero number of bytes will give
a failure return (except as noted below).

If the file being written is a pipe (or FIFO) and the O_NDELA Y flag of the file
flag word is set, then write to a full pipe (or FIFO) will return a count of O.

- 2 -

WRITE(2) WRITE(2)

Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will block until
space becomes available.

A write to a STREAMS file can fail if an error message has been received at
the stream head. In this case, errna is set to the value included in the error
message.

SEE ALSO
creat(2), dup(2), fcnt1(2), intro(2), Iseek(2), open(2), pipe(2), ulimit(2).

DIAGNOSTICS
Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned, and errna is set to indicate the error.

- 3 -

INTRO(3) INTRO(3)

NAME
intro - introduction to functions and libraries

DESCRIPTION
This section describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described
in Section 2 of this volume. Certain major collections are identified by a
letter after the section number:

(3C) These functions, together with those of Section 2 and those marked
(3S), constitute the Standard C Library libc, which is automatically
loaded by the C compiler, cc(1). (For this reason the (3C) and (3S)
sections together comprise one section of this manual.) The link edi
tor ld (1) searches this library under the -Ie option. A " shared
library" version of libc can be searched using the -lc_s option,
resulting in smaller a.outs. Declarations for some of these functions
may be obtained from #indude files indicated on the appropriate
pages.

(3S) These functions constitute the "standard I/O package" [see stdio(3S)].
These functions are in the library libc, already mentioned. Declara
tions for these functions may be obtained from the #include file
<stdio.h>.

(3M) These functions constitute the Math Library, libm. They are automat
ically loaded as needed by the FORTRAN compiler /77(1). They are
not automatically loaded by the C compiler, cc(1); however, the link
editor searches this library under the -1m option. Declarations for
these functions may be obtained from the #indude file <math.h>.
Several generally useful mathematical constants are also defined
there [see math(5)].

(3N) This contains sets of functions constituting the Network Services
library. These sets provide protocol independent interfaces to net
working services based on the service definitions cif the OSI (Open
Systems Interconnection) reference model. Application developers
access the function sets that provide services at a particular level.
The function sets contained in the library are:

TRANSPORT INTERFACE (TI)-provide the services of the OSI
Transport Layer. These services provide reliable end-to-end data
transmission using the services of an underlying network. Appli
cations written using the TI functions are independent of the
underlying protocols. Declarations for these functions may be
obtained from the #indude file <tiuser.h>. The link editor
Id(1) searches this library under the -lnsLs option.

(3X) Various specialized libraries. The files in which these libraries are
found are given on the appropriate pages.

(3F) These functions constitute the FORTRAN intrinsic function library,
libF77. These functions are automatically available to the FORTRAN
programmer and require no special invocation of the compiler.

DEFINITIONS
A character is any bit pattern able to fit into a byte on the machine. The
null character is a character with value 0, represented in the C language as

- 1 -

INTRO(3) INTRO(3)

FILES

'\0'. A character array isa sequence of characters. A null-terminated charac
ter array is a sequence of characters, the last of which is the null character.
A string is a designation for a null-terminated character array. The null
string is a character array containing only the null character. A NULL
pointer is the value that is obtained by casting 0 into a pointer. The C
language guarantees that this value will not match that of any legitimate
pointer, so many functions that return pointers return it to indicate an error.
NULL is defined as 0 in <stdio.h>; the user can include an appropriate
definition if not using <stdio.h>.

Many groups of FORTRAN intrinsic functions have generic function names
that do not require explicit or implicit type declaration. The type of the
function will be determined by the type of its argument(s). For example,
the generic function max will return an integer value if given integer argu
ments (maxO), a real value if given real arguments (amaxl), or a double
precision value if given double-precision arguments (dmaxl).

Netbuf In the Network Services library, netbuf is a structure used in various
Transport Interface (TI) functions to send and receive data and information.
It contains the following members:

unsigned int maxi en;
unsigned int len;
char *buf;

Buf points to a user input andjor output buffer. Len generally specifies the
number of bytes contained in the buffer. If the structure is used for both
input and output, the function will replace the user value of len on return.

Maxlen generally has significance only when buf is used to receive output
from the TI function. In this case, it specifies the physical size of the buffer,
the maximum value of len that can be set by the function. If maxlen is not
large enough to hold the returned information, an TBUFOVFL W error will
generally result. However, certain functions may return part of the data and
not generate an error.

LIBDIR usually jlib
LIBDIRjlibc.a
LIBDIRj <model> jlibc.a (80286 only)
LIBDIRjlibc_s.a
LIBDIRj <model> jlibc_s.a (80286 only)
LIBDIRjlibm.a
LIBDIRj <model> jlibm.a (80286 only)
LIBDIRjlib77.a
jshlibjlibc_s
jshlibjlargejlibc_s (80286 only)
jshlibjlibnsl_s (3N)
jshlibjlargejlibnsLs (3N) (80286 only)
jusr jlib jlibnsl_s.a (3N)
jusrjlibjlargejlibnsl_s.a (3N) (80286 only)
Where model is either small or large.

- 2 -

INTRO(3)

SEE ALSO
ar(l), cc(l), Id(l), lint(l), nm(l), intro(2), stdio(3S), math(5).
f77(1) in the FORTRAN Programming Language Manual.

DIAGNOSTICS

INTRO(3)

Functions in the C and Math Libraries (3C and 3M) may return the conven
tional values 0 or ± HUGE (the largest-magnitude single-precision floating
point numbers; HUGE is defined in the <math.h> header file) when the
function is undefined for the given arguments or when the value is not
representable. In these cases, the external variable errna [see intra(2)] is set
to the value EDOM or ERANGE.

WARNING
Many of the functions in the libraries call and/or refer to other functions
and external variables described in this section and in Section 2 (System
Calls). If a program inadvertently defines a function or external variable
with the same name, the presumed library version of the function or exter
nal variable may not be loaded. The lint(l) program checker reports name
conflicts of this kind as "multiple declarations" of the names in question.
Definitions· for Sections 2, 3C, and 3S are checked automatically. Other
definitions can be included by using the -1 option. (For example, -1m
includes definitions for Section 3M, the Math Library.) Use of lint is highly
recommended.

On the 80286 computer, size is an unsigned into

- 3 -

A64L(3C) (C Programming Language Utilities) A64L(3C)

NAME
a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char *s;

char *164a (1)
long I;

DESCRIPTION
These functions are used to maintain numbers stored in base-64 ASCII char
acters. This is a notation by which long integers can be represented by up
to six characters; each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1, 0 through 9 for
2-11, A through Z for 12-37, and a through z for 38-63.

The a641 function takes a pointer to a null-terminated base-64 representa
tion and returns a corresponding long value. If the string pointed to by s
contains more than six characters, a641 will use the first six.

The a641 function scans the character string from left to right, decoding each
character as a 6-bit Radix 64 number.

The 164a function takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, 164a returns a
pointer to a null string.

CAVEAT
The value returned by 164a is a pointer into a static buffer, the contents of
which are overwritten by each call.

- 1 -

ABORT(3C) (C Programming Language Utilities) ABORT(3C)

NAME
abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION
The abort function does the work of exit(2), but instead of just exiting, abort
causes SIGABRT to be sent to the calling process. If SIGABRT is neither
caught nor ignored, all stdio(3S) streams are flushed prior to the signal
being sent, and a core dump results.

The abort function returns the value of the kill (2) system call.

SEE ALSO
sdb(l), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is writ
able, a core dump is produced and the message "abort - core dumped" is
written by the shell.

- 1 -

ABS(3C) (C Programming Language Utilities)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
The abs function returns the absolute value of its integer operand.

SEE ALSO
floor(3M).

CAVEAT

ABS(3C)

In two's-complement representation, the absolute value of the negative
integer with largest magnitude is undefined. Some implementations trap
this error, but others simply ignore it.

- 1 -

BSEARCH(3C) (C Programming Language Utilities) BSEARCH(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch «char *) key, (char *) base, nel, sizeof (*key), compar)
unsigned nelj
int (*compar)()j

DESCRIPTION
The bsearch function is a binary search routine generalized from Knuth
(6.2.1) Algorithm B. It returns a pointer into a table indicating where a
datum may be found. The table must be previously sorted in increasing
order according to a provided comparison function. Key points to a datum
instance to be sought in the table. Base points to the element at the base of
the table. NeZ is the number of elements in the table. Campar is the name
of the comparison function, which is called with two arguments that point
to the elements being compared. The function must return an integer less
than, equal to, or greater than zero as accordingly the first argument is to be
considered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting
of a string and its length. The table is ordered alphabetically on the string
in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node
and prints out the string and its length, or prints an error message.

#include <stdio.h>
#include <search.h>

#define TAB SIZE 1000

struct node { /* these are stored in the table * /

};

char *string;
int length;

struct node table[T ABSIZE]; /* table to be searched * /

{
struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node. string = str_space;
while (scanf(" %s", node. string) != EOF) {

node_ptr = (struct node *)bsearch«char *)(&node),

- 1 -

BSEARCH(3C) (C Programming Language Utilities) BSEARCH(3C)

NOTES

}
/*

*/
int

(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void)printf(II string = %20s, length = %d\n II ,

node_ptr->string, node_ptr-> length);
else {

(void)printf(IInot found: %s\n", node. string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare(nodel, node2)
char *nodel, *node2;
{

return (strcmp(
«struct node *)nodel)->string,
«struct node *)node2)->string»;

The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
Although bsearch is declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

- 2 -

CLOCK(3C) (C Programming Language Utilities) CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
The clock function returns the amount of CPU time (in microseconds) used
since the first call to clock. The time reported is the sum of the user and
system times of the calling process and its terminated child processes for
which it has executed wait(2), pclose(3S), or system(3S).

The resolution of the clock is 16.6667 milliseconds on 80286 computers.
The resolution of the clock is 10 milliseconds on 80386 computers.

SEE ALSO

BUGS

times(2), wait(2), popen(3S), system(3S).

The value returned by clock is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resolution. Because
of this, the value returned will wrap around after accumulating only 2147
seconds of CPU time (about 36 minutes).

- 1 -

CONV(3C) (C Programming Language Utilities) CONV(3C)

NAME
conv: toupper,-rolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#inc1ude <ctype.h>

int toupper (c)
int Ci

int tolower (c)
int Ci

int _toupper (c)
int ci

int _tolower (c)
int Ci

int to ascii (c)
int Ci

DESCRIPTION
The toupper and tolower functions have as domain the range of getc(3S):
the integers from -1 through 255. If the argument of toupper represents a
lower case letter, the result is the corresponding upper case letter. If the
argument of tolower represents an upper case letter, the result is the
corresponding lower case letter. All other arguments in the domain are
returned unchanged.

The macros _toupper and _to lower, are macros that accomplish the same
thing as toupper and tolower but have restricted domains and are faster.
_toupper requires a lower case letter as its argument; its result is the
corresponding upper case letter. The macro _tolower requires an upper case
letter as its argument; its result is the corresponding lower case letter. Argu
ments outside the domain cause undefined results.

Toascii yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other systems.

SEE ALSO
ctype(3C), getc(3S).

- 1 -

CRYPT(3C) (C Programming Language Utilities) CRYPT(3C)

NAME
crypt, setkey, encrypt - generate hashing encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, ignored)
char *block;
int ignored;

DESCRIPTION
The crypt function is the password encryption function. It is based on a
one-way hashing encryption algorithm with variations intended (among
other things) to frustrate use of hardware implementations of a key search.

Key is a user's typed password. Salt is a two-character string chosen from
the set [a-zA-ZO-9./]; this string is used to perturb the hashing algorithm in
one of 4096 different ways, after which the password is used as the key to
encrypt repeatedly a constant string. The returned value points to the
encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual
hashing algorithm. The argument of setkey is a character array of length 64
containing only the characters with numerical value 0 and 1. If this string is
divided into groups of 8, the low-order bit in each group is ignored; this
gives a 56-bit key which is set into the machine. This is the key that will
be used with the hashing algorithm to encrypt the string block with the
function encrypt.

The argument to the encrypt entry is a character array of length 64 contain
ing only the characters with numerical value 0 and 1. The argument array
is modified in place to a similar array representing the bits of the argument
after having been subjected to the hashing algorithm using the key set by
setkey. Ignored is unused by encrypt but it must be present.

SEE ALSO
getpass(3C), passwd(4).
login(1), passwd(1) in the User's Reference Manual.

CAVEAT
The return value points to static data that are overwritten by each call.

- 1 -

CTERMID(3S) (C Programming Language Utilities) CTERMID(3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#inc1ude <stdio.h>
char *ctermid (s)
char *s;

DESCRIPTION

NOTES

The ctermid function generates the path name of the controlling terminal for
the current process and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the con
tents of which are overwritten at the next call to ctermid, and the address of
which is returned. Otherwise, s is assumed to point to a character array of
at least L_dermid elements; the path name is placed in this array, and the
value of s is returned. The constant L_dermid is defined in the <stdio.h>
header file.

The difference between ctermid and ttyname(3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal associ
ated with that file descriptor, while ctermid returns a string (fdev ftty) that
will refer to the terminal if used as a file name. Thus ttyname is useful only
if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

- 1 -

CTIME(3C) (C Programming Language Utilities) CTIME(3C)

NAME
ctime, local time, gmtime, asctime, tzset - convert date and time to string

SYNOPSIS
#include <sys/types.h>
#include <time.h>

char *ctime (clock)
time_t *clock;

struct tm *localtime (clock)
time_t *clock;

struct tm *gmtime (clock)
time_t *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION
The ctime function converts a long integer, pointed to by clock, representing
the time in seconds since 00:00:00 Greenwich Mean Time (GMT), January 1,
1970, and returns a pointer to a 26-character string in the following form.
All the fields have constant width.

Sun Sep 16 01:03:52 1985\n\0

Localtime and gmtime return pointers to "tm" structures, described below.
Localtime corrects for the time zone and possible Daylight Saving Time;
gmtime converts directly to GMT, which is the time the UNIX system uses.

Asctime converts a "tm" structure to a 26-character string, as shown in the
above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the "tm" structure, are
in the <time.h> header file. The structure declaration is:

struct tm {

};

int tIILSec;
int tIlLmin;
int tID-hour;
int tIlLmday;
int tID-mon;
int tID-year;
int tID-wday;
int tID-yday;
int tID-isdst;

/* seconds (0 - 59) */
/* minutes (0 - 59) * /
/* hours (0 - 23) * /
/* day of month (1 - 31) */
/* month of year (0 - 11) */
/* year - 1900 */
/* day of week (Sunday = 0) * /
/* day of year (0 - 365) * /

Tm_isdst is non-zero if Daylight Saving Time is in effect.

- 1 -

CTIME(3C) (C Programming Language Utilities) CTIME(3C)

The external long variable timezone contains the difference, in seconds,
between GMT and local standard time (in EST, timezone is 5*60*60); the
external variable daylight is non-zero if and only if the standard U.S.A. Day
light Saving Time conversion should be applied. The program knows about
the peculiarities of this conversion in 1974 and 1975; if necessary, a table
for these years can be extended.

If an environment variable named TZ is present, asctime uses the contents of
the variable to override the default time zone. The value of TZ must be a
three-letter time zone name, followed by a number representing the differ
ence between local time and Greenwich Mean Time in hours, followed by
an optional three-letter name for a daylight time zone. For example, the
setting for New Jersey would be EST5EDT. The effects of setting TZ are
thus to change the values of the external variables timezone and daylight; in
addition, the time zone names contained in the external variable

char *lzname[2] = { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets these
external variables from TZ; tzset is called by asctime and may also be called
explicitly by the user.

Note that in most installations, TZ is set by default when the user logs on,
to a value in the local/etc/profile file [see profile(4)].

SEE ALSO
time(2), getenv(3C), profile(4), environ(5).

CAVEAT
The return values point to static data whose content is overwritten by each
call.

- 2 -

CTYPE(3C) (C Programming Language Utilities) CTYPE(3C)

NAME
ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include <ctype.h>

int isalpha (c)
int Ci

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each
is a predicate returning nonzero for true, zero for false. Isascii is defined on
all integer values; the rest are defined only where isascii is true and on the
single non-ASCII value EOF [-1; see stdio(3S}].

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

is ascii

SEE ALSO

c is a letter.

c is an uppercase letter.

c is a lowercase letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F], or [a-f].

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, newline, vertical tab, or
form-feed.

c is a punctuation character (neither control nor
alphanumeric).

c is a printing character, code 040 (space) through 0176
(tilde).

c is a printing character, like isprint except false for space.

c is a delete character (0177) or an ordinary control charac
ter (less than 040).

c is an ASCII character, code less than 0200.

stdio(3S}, ascii(5}.

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the function,
the result is undefined.

- 1 -

CUSERID(3S) (C Programming Language Utilities) CUSERID(3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#indude <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
The cuserid function generates a character-string representation of the login
name that the owner of the current process is logged in under. If s is a
NULL pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise, 5 is assumed to point to an array
of at least L_cuserid characters; the representation is left in this array. The
constant L_cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cU5erid returns a NULL pointer; if 5 is not
a NULL pointer, a null character (\0) will be placed at 5[0] .

SEE ALSO
getlogin(3C), getpwent(3C).

- 1 -

DIAL(3C) (C Programming Language Utilities) DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#inc1ude <dial.h>

in t dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
The dial function returns a file-descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure (defined in the
<dial.h> header file).

When finished with the terminal line, the calling program must invoke
undial to release the semaphore that has been set during the allocation of
the terminal device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio *attr;
int baud;
int speed;
char *line;
char *telno;
int modem;
char * device;

int dev-Ien;

} CALL;

/* pointer to termio attribute struct * /
/* transmission data rate * /
/* 212A modem: low=300, high=1200 */
/* device name for out-going line * /
/* pointer to tel-no digits string * /
/* specify modem control for direct lines * /
/*Will hold the name of the device used
to make a connection * /
/* The length of the device used to make
connection * /

The CALL element speed is intended only for use with an outgoing dialed
call,~in which case its value should be either 300 or 1200 to identify the
113A modem, or the high- or low-speed setting on the 212A modem. Note
that the 113A modem or the low-speed setting of the 212A modem will
transmit at any rate between 0 and 300 bits per second. However, the
high-speed setting of the 212A modem transmits and receives at 1200 bits
per secound only. The CALL element baud is for the desired transmission
baud rate. For example, one might set baud to 110 and speed to 300 (or
1200). However, if speed set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device
name should be placed in the line element in the CALL structure. Legal
values for such terminal device names are kept in the Devices file. In this
case, the value of the baud element need not be specified as it will be deter
mined from the Devices file.

- 1 -

DIAL(3C) (C Programming Language Utilities) DIAL(3C)

FILES

The teInD element is for a pointer to a character string representing the tele
phone number to be dialed. The termination symbol will be supplied by
the dial function and should not be included in the teInD string passed to
dial in the CALL structure.

The CALL element modem is used to specify modem control for direct lines.
This element should be non-zero if modem control is required. The CALL
element attr is a pointer to a termio structure, as defined in the termio.h
header file. A NULL value for this pointer element may be passed to the
dial function, but if such a structure is included, the elements specified in it
will be set for the outgoing terminal line before the connection is esta
blished. This is often important for certain attributes such as parity and
baud-rate.

The CALL element device is used to hold the device name (cuI..) that estab
lishes the connection.

The CALL element dev_Ien is the length of the device name that is copied
into the array device.

/usr /lib /uucp /Devices
/usr / spool/locks /LCK .. tty-device

SEE ALSO
alarm(2), read(2), write(2).
termio(7) in the System Administrator's Reference Manual.
uucp(1 C) in the User's Reference Manual.

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be
returned. Mnemonics for the negative indices listed here are defined in the
<dial.h> header file.

WARNINGS

INTRPT
D_HUNG
NO-ANS
ILLBD
~PROB

LPROB
NO_Ldv
DV_NT-A
DV-NT_K
NO_BD-A
NO_BD_K

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11

/* interrupt occurred */
/* dialer hung (no return from write) * /
/* no answer within 10 seconds */
/* illegal baud-rate */
/* acu problem (openO failure) */
/* line problem (openO failure) */
/* can't open LDEVS file */
/* requested device not available * /
/* requested device not known * /
/* no device available at requested baud * /
/* no device known at requested baud * /

The dial (3C) library function is not compatible with Basic Networking Utili
ties on UNIX System V Release 2.0.

Including the <dial.h> header file automatically includes the <termio.h>
header file.

The above routine uses <stdio.h>, which causes it to increase the size of
programs not otherwise using standard I/O, more than might be expected.

- 2 -

DIAL(3C) (C Programming Language Utilities) DIAL(3C)

BUGS
An alarm(2) system call for 3600 seconds is made (and caught) within the
dial module for the purpose of "touching" the LCK.. file and constitutes the
device allocation semaphore for the terminal device. Otherwise, uucp(lC)
may simply delete the LCK .. entry on its 90-minute clean-up rounds. The
alarm may go off while the user program is in a read(2) or write(2) system
call, causing an apparent error return. If the user program expects to be
around for an hour or more, error returns from reads should be checked for
(errno==EINTR), and the read possibly reissued.

- 3 -

DRAND48(3C) (C Programming Language Utilities) DRAND48(3C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void Icong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well
known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [0, 231

).

Functions mrand48 and jrand48 return signed long integers uniformly distri
buted over the interval [_231

, 231
).

Functions srand48, seed48, and Icong48 are initialization entry points, one of
which should be invoked before either drand48, Irand48, or mrand48 is
called. (Although it is not recommended practice, constant default initializer
values will be supplied automatically if drand48, Irand48, or mrand48 is
called without a prior call to an initialization entry point.) Functions
erand48, nrand48, and jrand48 do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer values, Xi,
according to the linear congruential formula

Xn+1 = (aXn + C)mod m n ;;:::0.

- 1 -

DRAND48(3C) (C Programming Language Utilities) DRAND48(3C)

NOTES

The parameter m = 248
; hence 48-bit integer arithmetic is performed. Unless

Icong48 has been invoked, the multiplier value a and the addend value care
given by

a = 5DEECE66D 16 = 273673163155 8
C = B16 = 13 8•

The value returned by any of the functions drand48, erand48, Irand48,
nrand48, mrand48, or jrand48 is computed by first generating the next 48-bit
Xi in the sequence. Then the appropriate number of bits, according to the
type of data item to be returned, are copied from the high-order (leftmost)
bits of Xi and transformed into the returned value.

The functions drand48, Irand48, and mrand48 store the last 48-bit Xi gen
erated in an internal buffer, and must be initialized prior to being invoked.
The functions erand48, nrand48, and jrand48 require the calling program to
provide storage for the successive Xi values in the array specified as an
argument when the functions are invoked. These routines do not have to
be initialized; the calling program must place the desired initial value of Xi
into the array and pass it as an argument. By using different arguments,
functions erand48, nrand48, and jrand48 allow separate modules of a large
program to generate several independent streams of pseudo-random
numbers; i.e., the sequence of numbers in each stream will not depend upon
how many times the routines have been called to generate numbers for the
other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the 32
bits contained in its argument. The low-order 16 bits of Xi are set to the
arbitrary value 330E16 .

The initializer function seed48 sets the value of Xi to the 48-bit value speci
fied in the argument array. In addition, the previous value of Xi is copied
into a 48-bit internal buffer used only by seed48, and a pointer to this buffer
is the value returned by seed48. This returned pointer, which can just be
ignored if not needed, is useful if a program is to be restarted from a given
point at some future time - use the pointer to get at and store the last Xi
value, and then use this value to reinitialize via seed48 when the program is
restarted.

The initialization function lcong48 allows the user to specify the initial Xi,
the multiplier value a, and the addend value c. Argument array elements
param[O-2] specify Xi, param[3-S] specify the multiplier a, and param[6]
specifies the 16-bit addend c. After Icong48 has been called, a subsequent
call to either srand48 or seed48 will restore the "standard" multiplier and
addend values, a and c, specified on the previous page.

The source code for the portable version can be used on computers which
do not have floating-point arithmetic. In such a situation, functions drand48
and erand48 are replaced by the two new functions below.

long irand48 (m)
unsigned short mi

- 2 -

DRAND48(3C) (C Programming Language Utilities)

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

DRAND48(3C)

Functions irand48 and krand48 return non-negative long integers uniformly
distributed over the interval [0, m -1].

SEE ALSO
rand(3C).

- 3 -

DUP2(3C) DUP2(3C)

NAME
dup2 - duplicate an open file descriptor

SYNOPSIS
int dup2 (fildes, fildes2)
int fildes, fildes2;

DESCRIPTION
The fildes argument is a file descriptor referring to an open file, and fildes2
is a non-negative integer less than NOFILES. dup2 causes fildes2 to refer to
the same file as fildes. If fildes2 already referred to an open file, it is closed
first.

The dup2 function will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] NOFILES file descriptors are currently open.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2), lockf(3C).

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file descrip
tor, is returned. Otherwise, a value of -1 is returned, and errno is set to
indicate the error.

- 1 -

ECVT(3C) (C Programming Language Utilities) ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
The ecvt function converts value to a null-terminated string of ndigit digits
and returns a pointer thereto. The high-order digit is non-zero, unless the
value is zero. The low-order. digit is rounded. The position of the decimal
point relative to the beginning of the string is stored indirectly through
decpt (negative means to the left of the returned digits). The decimal point
is not included in the returned string. If the sign of the result is negative,
the word pointed to by sign is non-zero, otherwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has been rounded for
printf H%f" (FORTRAN F-format) output of the number of digits specified by
ndigit.

Gcvt converts the value to a null-terminated string in the array pointed to
by buf and returns buf. It attempts to produce ndigit significant digits in
FORTRAN F-format if possible, otherwise E-format, ready for printing. A
minus sign, if there is one, or a decimal point will be included as part of the
returned string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and fcvt point to a single static data array
whose content is overwritten by each call.

- 1 -

END(3C) (C Programming Language Utilities) END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting con
tents. The address of etext is the first address above the program text, edata
above the initialized data region, and end above the uninitialized data
region.

When execution begins, the program break (the first location beyond the
data) coincides with end, but the program break may be reset by the rou
tines of brk(2), malloc(3C), standard input/output [stdio(3S)], the profile (-p)
option ofcc(l), and so on. Thus, the current value of the program break
should be determined by sbrk «char *)0) [see brk(2)].

SEE ALSO
cc(l), brk(2), malloc(3C), stdio(3S).

- 1 -

FCLOSE(3S) (C Programming Language Utilities) FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *streami

int fflush (stream)
FILE *stream;

DESCRIPTION
The Iclose function causes any buffered data for the named stream to be
written out, and the stream to be closed.

The Iclose function is performed automatically for all open files upon calling
exit(2).

Fflush causes any buffered data for the named stream to be written to that
file. The stream remains open.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS
These functions return 0 for success and EOF if any error (such as trying to
write to a file that has not been opened for writing) was detected.

- 1 -

FERROR(3S) (C Programming Language Utilities) FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#indude <stdio.h>

int ferror (stream)
FILE *stream;

int feof (stream)
FILE *stream;

void dearerr (stream)
FILE *stream;

int fileno (stream)
FILE *stream;

DESCRIPTION

NOTES

The ferror function returns non-zero when an I/0 error has previously
occurred reading from or writing to the named stream, otherwise zero.

Feof returns non-zero when EOF has previously been detected reading the
named input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named
stream.

Fileno returns the integer file descriptor associated with the named stream;
see open(2).

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO
open(2), fopen(3S), stdio(3S).

- 1 -

FOPEN(3S) (C Programming Language Utilities) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#inc1nde <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

FILE *freopen (filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION
The fopen function opens the file named by filename and associates a stream
with it. The fopen function returns a pointer to the FILE structure associated
with the stream.

Filename points to a character string that contains the name of the file to be
opened.

Type is a character string having one of the following values:

"r"

"w"

"a"

"r+"

"w+"

"a+"

open for reading

truncate or create for writing

append; open for writing at end of file, or create for writ
ing

open for update (reading and writing)

truncate or create for update

append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original
stream is closed, regardless of whether the open ultimately succeeds. Freo
pen returns a pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated with
stdin, stdont, and stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors are
obtained from open, dup, creat, or pipe(2), which open files but do not
return pointers to a FILE structure stream. Streams are necessary input for
many of the Section 3S library routines. The type of stream must agree
with the mode of the open file.

When a file is opened for update, both input and output may be done on
the resulting stream. However, output may not be directly followed by
input without an intervening fseek or rewind, and input may not be directly
followed by output without an intervening fseek, rewind, or an input opera
tion which encounters end-of-file.

- 1 -

FOPEN(3S) (C Programming Language Utilities) FOPEN(3S)

When a file is opened for append (Le., when type is "a" or "a + ,,), it is
impossible to overwrite information already in the file. The fseek function
may be used to reposition the file pointer to any position in the file, but
when output is written to the file, the current file pointer is disregarded. All
output is written at the end of the file and causes the file pointer to be repo
sitioned at the end of the output. If two separate processes open the same
file for append, each process may write freely to the file without fear of des
troying output being written by the other. The output from the two
processes will be intermixed in the file in the order in which it is written.

When the file cannot be opened, the function fopen or the function freopen
will fail and will set errno to:

[ENOTDIR]

[ENOENT]

[EACCES]

[EISDIR]

[EROFS]

[ETXTBSY]

[EINTR]

SEE ALSO

If a component of the path prefix in path is not a directory.

If the named file does not exist, or a component of the path
name should exist but does not.

If a component of the path prefix denies search permission,
or type permission is denied for the named file.

If the named file is a directory, and type is write or
read/write.

If the named file resides on a read-only file system, and
type is write or read/write.

If the file is a pure procedure (shared text) file that is being
executed, and type is write or read/write.

If a signal was caught during the open operation.

creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S), stdio(3S).

DIAGNOSTICS
fopen, fdopen, and freopen return a NULL pointer on failure.

- 2 -

FPGETROUND(3C) (C Programming Language Utilities) FPGETROUND(3C)

NAME
fpgetround, fpsetround, fpgetmask, fpsetmask,
IEEE floating point environment control

fpgetsticky, fpsetsticky -

SYNOPSIS
#inc1ude <ieeefp.h>

typedef enum {
FP-RN=O,
FP-RM,
FP-RP,
FP-RZ,

/* round to nearest * /
/* round to minus */
/* round to plus * /

DESCRIPTION

/* round to zero (truncate) * /
} fp-I'nd;

fp-I'nd fpgetround();

fp-I'nd fpsetround(rnLdir)
fp-I'nd rnLdir;

#define fp_except
#define FP -X_INV OxOl
#define FP -X_OFL Ox08
#define FP -X_UFL OxlO
#define FP -X_DZ Ox04
#define FP -X-IMP Ox20
#define FP -X_DNML Ox02

fp_except fpgetmask();

fp_except fpsetmask(mask);
fp_except mask;

fp_except fpgetsticky();

fp_except fpsetsticky(sticky);
fp_except sticky;

int
/* invalid operation exception* /
/* overflow exception* /
/* underflow exception* /
/* divide-by-zero exception* /
/* imprecise (loss of precision)* /
/* denormalization exception * /

There are six floating point exceptions: divide-by-zero, overflow, underflow,
imprecise (inexact) result, denormalization, and invalid operation. When a
floating point exception occurs, the corresponding sticky bit is set (1), and if
the mask bit is enabled (I), the trap takes place. These routines let the user
change the behavior on occurrence of any of these exceptions, as well as
change the rounding mode for floating point operations.

fpgetroundO returns the current rounding mode.

fpsetroundO sets the rounding mode and returns the previous rounding
mode.

fpgetmaskO returns the current exception masks.

- 1 -

FPGETROUND(3C) (C Programming Language Utilities) FPGETROUND(3C)

fpsetmaskO sets the exception masks and returns the previous setting.

fpgetstickyO returns the current exception sticky flags.

fpsetstickyO sets (clears) the exception sticky flags and returns the previous
setting.

The default environment on the Intel 80386 processor family is:

Rounding mode set to nearest(FP _RN),
Divide-by-zero,
Floating point overflow, and
Invalid operation traps enabled.

SEE ALSO
isnan(3C).

WARNINGS
fpsetstickyO modifies all sticky flags. fpsetmaskO changes all mask bits.

Both C and F77 require truncation (round to zero) for floating point to
integral conversions. The current rounding mode has no effect on these
conversions.

CAVEATS
One must clear the sticky bit to recover from the trap and to proceed. If the
sticky bit is not cleared before the next floating point instruction is executed,
a wrong exception type may be signaled.

For the same reason, when calling fpsetmaskO the user should make sure
that the sticky bit corresponding to the exception being enabled is cleared.

- 2 -

FREAD(3S) (C Programming Language Utilities) FREAD(3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#inc1ude <stdio.h>
#inc1ude <sys/types.h>

int fread (pt!, size, nitems, stream)
char *ptr;
int nitems;
size_t size;
FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int nitems;
size_t size;
FILE *stream;

DESCRIPTION
The fread function copies, into an array pointed to by ptr, nitems items of
data from the named input. stream, where an item of data is a sequence of
bytes (not necessarily terminated by a null byte) of length size. fread stops
appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. fread leaves the file
pointer in stream, if defined, pointing to the byte following the last byte
read if there is one. tread does not change the contents of stream.

fwrite appends at most nitems items of data from the array pointed to by ptr
to the named output stream. fwrite stops appending when it has appended
nitems items of data or if an error condition is encountered on stream.
fwrite does not change the contents of the array pointed to by ptr.

The argument size is typically sizeaf(*ptr) where the pseudo-function sizeaf
specifies the length of an item pointed to by ptr. If ptr points to a data type
other than char, it should be cast into a pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S), puts(3S),
scanf(3S), stdio(3S).

DIAGNOSTICS
The fread and fwrUe functions return the number of items read or written.
If nitems is non-positive, no characters are read or written, and 0 is returned
by both fread and fwrite.

WARNING
On the 80286 computer, the number of bytes transferred is the product of
size and nitems, modulo 65536.

- 1 -

FREXP(3C) (C Programming Language Utilities) FREXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2n

, where the
"mantissa" (fraction) x is in the range 0.5 ::; Ix I < 1.0, and the "exponent"
n is an integer. frexp returns the mantissa of a double value and stores the
exponent indirectly in the location pointed to by eptr. If value is zero, both
results returned by frexp are zero.

Ldexp returns the quantity value * 2exp
.

Modf returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

DIAGNOSTICS
If ldexp would cause overflow, ±HUGE (defined in <math.h>) is returned
(according to the sign of value), and errno is set to ERANGE.
If ldexp would cause underflow, zero is returned and errno is set to
ERANGE.

- 1 -

FSEEK(3S) (C Programming Language Utilities) FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
The fseek function sets the position of the next input or output operation on
the stream. The new position is at the signed distance offset bytes from the
beginning, from the current position, or from the end of the file, according
as ptrname has the value 0, 1, or 2, which is defined in the <unistd.h>
header file as follows:

Name

SEEICSET

SEEICCUR

SEEICEND

Description

Set position equal to offset bytes.

Set position to current location plus offset.

Set position to EOF plus offset.

Rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is
returned.

fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for update may be
either input or output.

Ftell returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

SEE ALSO
Iseek(2), fopen(3S), popen(3S), stdio(3S), ungetc(3S).

DIAGNOSTICS
The fseek function returns non-zero for improper seeks, otherwise zero. An
improper seek can be, for example, an fseek done on a file that has not been
opened via fopen; in particular, fseek may not be used on a terminal or on a
file opened via popen(3S).

WARNING
Although on the UNIX system an offset returned by ftell is measured in
bytes, and it is permissible to seek to positions relative to that offset, porta
bility to non-UNIX systems requires that an offset be used by fseek directly.
Arithmetic may not meaningfully be performed on such an offset, which is
not necessarily measured in bytes. .

- 1 -

FTW(3C) (C Programming Language Utilities) FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

DESCRIPTION
The ftw function recursively descends the directory hierarchy rooted in path.
For each object in the hierarchy, ftw calls fn, passing it a pointer to a null
terminated character string containing the name of the object, a pointer to a
stat structure [see stat(2)] containing information about the object, and an
integer. Possible values of the integer, defined in the <ftw.h> header file,
are FTWJ for a file, FTW_D for a directory, FTW_DNR for a directory that
cannot be read, and FTW~S for an object for which stat could not success
fully be executed. If the integer is FTW _DNR, descendants of that directory
will not be processed. If the integer is FTW_NS, the stat structure will con
tain garbage. An example of an object that would cause FTW_NS to be
passed to fn would be a file in a directory with read but without execute
(search) permission.

The ftw function visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn
returns a nonzero value, or some error is detected within ftw (such as an
I/O error). If the tree is exhausted, ftw returns zero. If fn returns a
nonzero value, ftw stops its tree traversal and returns whatever value was
returned by fn. If ftw detects an error, it returns -1 and sets the error type
in errno.

The ftw function uses one file descriptor for each level in the tree. The
depth argument limits the number of file descriptors so used. If depth is
zero or negative, the effect is the same as if it were 1. Depth must not be
greater than the number of file descriptors currently available for use. ftw
will run more quickly if depth is at least as large as the number of levels in
the tree.

SEE ALSO

BUGS

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a memory
fault when applied to very deep file structures.

CAVEAT
The ftw function uses malloc(3C) to allocate dynamic storage during its
operation. If ftw is forcibly terminated, such as by longjmp being executed
by fn or an interrupt routine, ftw will not have a chance to free that storage,
so it will remain permanently allocated. A safe way to handle interrupts is
to store the fact that an interrupt has occurred, and arrange to have fn
return a nonzero value at its next invocation.

- 1 -

GETC(3S) (C Programming Language Utilities) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream

SYNOPSIS
#inc1ude <stdio.h>

int getc (stream)
FILE *stream;

int getchar 0
int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION
The getc function returns the next character (Le., byte) from the named
input stream, as an integer. It also moves the file pointer, if defined, ahead
one character in stream. getchar is defined as getc(stdin). getc and getchar
are macros.

The fgetc function behaves like getc, but is a function rather than a macro.
Fgetc runs more slowly than getc, but it takes less space per invocation and
its name can be passed as an argument to a function.

The getw function returns the next word (Le., integer) from the named input
stream. Getw increments the associated file pointer, if defined, to point to
the next word. The size of a word is the size of an integer and varies from
machine to machine. Getw assumes no special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S),
stdio(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an error.
Because EOF is a valid integer, ferror(3S) should be used to detect getw
errors.

WARNING
If the integer value returned by getc, getchar, or fgetc is stored into a charac
ter variable and then compared against the integer constant EOF, the com
parison may never succeed, because sign-extension of a character on widen
ing to integer is machine-dependent.

CAVEATS
Because it is implemented as a macro, getc evaluates a stream argument
more than once. In particular, getc(*f++) does not work sensibly. Fgetc
should be used instead.

Because of possible differences in word length and byte ordering, files writ
ten using putw are machine-dependent, and may not be read using getw on
a different processor.

- 1 -

GETGRENT(3C) (C Programming Language Utilities) GETGRENT(3C)

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size
of programs, not otherwise using standard I/0, more than might be
expected.

CAVEAT
All information is contained in a static area, so it must be copied if it is to
be saved.

- 2 -

GETCWO(3C) (C Programming Language Utilities) GETCWO(3C)

NAME
getcwd - get path name of current working directory

SYNOPSIS
char *getcwd (buf, size)
char *buf;
int size;

DESCRIPTION
The getcwd function returns a pointer to the current directory path name.
The value of size must be at least two greater than the length of the path
name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using
malloc(3C). In this case, the pointer returned by getcwd may be used as the
argument in a subsequent call to free.

The function is implemented by using popen (35) to pipe the output of the
pwd(l) command into the specified string space.

EXAMPLE

SEE ALSO

void exitO, perrorO;

if «cwd = getcwd«char *)NULL, 64» == NULL) {
perror(" pwd ");
exit(2);

}
printf(" %s\n ", cwd);

malloc(3C), popen(35).
pwd(l) in the User's Reference Manual.

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error occurs
in a lower-level function.

[EINVAL]

[ERANGE]

If size is zero.

If size is not large enough to hold the path name.

- 1 -

GETENV(3C) (C Programming Language Utilities)

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *namei

DESCRIPTION

GETENV(3C)

The getenv function searches the environment list [see environ (5)] for a
string of the form name = value and returns a pointer to the value in the
current environment if such a string is present, otherwise a NULL pointer.

SEE ALSO
exec(2), putenv(3C), environ(5).

- 1 -

GETGRENT(3C) (C Programming Language Utilities) GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file
entry

SYNOPSIS
#include <grp.h>

struct group *getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
ehar *name;

void setgrent ()

void endgrent ()

struet group *fgetgrent (f)
FILE *f;

DESCRIPTION

FILES

The getgrent, getgrgid, and getgrnam functions each return pointers to an
object with the following structure containing the broken-out fields of a line
in the /ete/group file. Each line contains a "group" structure, defined in
the <grp.h> header file.

struct group {
char
char
int
char

} ;

gr_name; / the name of the group * /
gr_passwd; / the encrypted group password * /
gr_gid; /* the numerical group ID * /
**gr_mem; /* vector of pointers to member names * /

The getgrent function when first called returns a pointer to the first group
structure in the file; thereafter, it returns a pointer to the next group struc
ture in the file; so, successive calls may be used to search the entire file.
Getgrgid searches from the beginning of the file until a numerical group id
matching gid is found and returns a pointer to the particular structure in
which it was found. Getgrnam searches from the beginning of the file until
a group name matching name is found and returns a pointer to the particu
lar structure in which it was found. If an end-of-file or an error is encoun
tered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is
complete.

Fgetgrent returns a pointer to the next group structure in the stream I, which
matches the format of /ete/group.

/etc/group

- 1 -

GETLOGIN(3C) (C Programming Language Utilities) GETLOGIN(3C)

NAME
getlogin - get login name

SYNOPSIS
char *getlogin ()i

DESCRIPTION

FILES

The getlogin function returns a pointer to the login name as found in
/etc/utmp. It may be used in conjunction with getpwnam to locate the
correct password file entry when the same user ID is shared by several login
names.

If getlogin is called within a process that is not attached to a terminal, it
returns a NULL pointer. The correct procedure for determining the login
name is to call cuserid, or to call getlogin and if it fails, to call getpwuid.

/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name is not found.

CAVEAT
The return values point to static data whose content is overwritten by each
call.

- 1 -

GETOPT(3C) (C Programming Language Utilities) GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argci
char **argv, *opstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
The getopt function returns the next option letter in argv that matches a
letter in optstring. It supports all the rules of the command syntax standard
[see intro(l)]. So all new commands will adhere to the command syntax
standard, they should use getopts (1) or getopt (3C) to parse positional
parameters and check for options that are legal for that command.

optstring must contain the option letters the command using getopt will
recognize; if a letter is followed by a colon, the option is expected to have
an argument, or group of arguments, which must be separated from it by
white space.

optarg is set to point to the start of the option-argument on return from
getopt.

getopt places in optind the argv index of the next argument to be processed.
optind is external and is initialized to 1 before the first call to getopt.

When all options have been processed (Le., up to the first non-option argu
ment), getopt returns -1. The special option " __ " may be used to delimit
the end of the options; when it is encountered, -1 will be returned, and
" __ " will be skipped.

The following rules comprise the System V standard for command-line syn
tax:

RULE 1

RULE 2

RULE 3

RULE 4

RULE 5

RULE 6

RULE 7

RULE 8

Command names must be between two and nine charac
ters.

Command names must include lowercase letters and digits
only.

Option names must be a single character in length.

All options must be delimited by the - character.

Options with no arguments may be grouped behind one
delimiter.

The first option-argument following an option must be pre
ceded by white space.

Option arguments cannot be optional.

Groups of option arguments following an option must be
separated by commas or separated by white space and
quoted.

- 1 -

GETOPT(3C)

RULE 9

RULE 10

RULE 11

RULE 12

RULE 13

(C Programming Language Utilities) GETOPT(3C)

All options must precede operands on the command line.

The characters -- may be used to delimit the end of the
options.

The order of options relative to one another should not
matter.

The order of operands may matter and position-related
interpretations should be determined on a command
specific basis.

The - character preceded and followed by white space
should be used only to mean standard input.

The function getopt is the command-line parser that will enforce the rules of
this command syntax standard.

DIAGNOSTICS
getopt prints an error message on standard error and returns a question
mark (1) when it encounters an option letter not included in optstring or no
option-argument after an option that expects one. This error message may
be disabled by setting opt err to O.

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the mutually exclusive options a and b, and
the option 0, which requires an option-argument:

main (argc, argv)
int argc;
char **argv;

int c;
extern
extern

char *optarg;
int optind;

while ((c getopt(argc, argv, "abo:")) != -1)
swi tch (c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc ();

break;
case '0':

ofile optarg;

- 2 -

GETOPT(3C)

WARNING

(C Programming Language Utilities)

break;
case '?':

errflg++;
}

if (errflg)
(void)fprintf(stderr, "usage:
exi t (2) ;

for optind < argc; optind++) {
if (access(argv[optind], 4» {

GETOPT(3C)

") ;

Although the following command syntax rule [see intro(l)] relaxations are
permitted under the current implementation, they should not be used
because they may not be supported in future releases of the system. As in
the EXAMPLE section above, a and b are options, and the option 0 requires
an option-argument:

cmd -aboxxx f i 1 e (Rule 5 violation: options with
option-arguments must not be grouped with other options)

cmd -ab -oxxx f i 1 e (Rule 6 violation: there must be
white space after an option that takes an option-argument)

SEE ALSO
getopts(l), intro(l) in the User's Reference Manual.

WARNING
Although the following command syntax rule [see intro(l)] relaxations are
permitted under the current implementation, they should not be used
because they may not be supported in future releases of the system. As in
the EXAMPLE section above, a and b are options, and the option 0 requires
an option-argument:

cmd -aboxxx file

cmd -ab -oxxx file

(Rule 5 violation: options with
option-arguments must not be
grouped with other options)

(Rule 6 violation: there must be
white space after an option that
takes an option-argument)

Changing the value of the variable optind or calling getopt with different
values of argv may lead to unexpected results.

- 3 -

GETP ASS(3C) (C Programming Language Utilities) GETP ASS(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

FILES

The getpass function reads up to a new-line or EOF from the file jdev jtty
after prompting on the standard error output with the null-terminated string
prompt and disabling echoing. A pointer is returned to a null-terminated
string of at most 8 characters. If jdev jtty cannot be opened, a NULL
pointer is returned. An interrupt will terminate input and send an interrupt
signal to the calling program before returning.

/dev/tty

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of
programs not otherwise using standard I/O more than might be expected.

CAVEAT
The return value points to static data whose content is overwritten by each
call.

- 1 -

GETPW(3C) (C Programming Language Utilities) GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char *buf;

DESCRIPTION

FILES

The getpw function searches the password file for a user id number that
equals uid, copies the line of the password file in which uid was found into
the array pointed to by but, and returns o. getpw returns non-zero if uid
cannot be found.

This routine is included only for compatibility with prior systems and
should not be used; see getpwent(3C) for routines to use instead.

/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
The getpw function returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase, more than
might be expected, the size of programs not otherwise using standard I/0.

- 1 -

GETPWENT(3C) (C Programming Language Utilities) GETPWENT(3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get pass
word file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uidi

struct passwd *getpwnam (name)
char *namei

void setpwent ()

void endpwent ()

struct passwd *fgetpwent (f)
FILE *fi

DESCRIPTION
The getpwent, getpwuid, and getpwnam functions each returns a pointer to
an object with the following structure containing the broken-out fields of a
line in the /etc/passwd file. Each line in the file contains a "passwd"
structure, declared in the <pwd.h> header file:

struct passwd {
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw _dir;
char *pw_shell;

} ;

This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The fields have meanings described in passwd(4).

The getpwent function when first called, returns a pointer to the first passwd
structure in the file; thereafter, it returns a pointer to the next passwd struc
ture in the file; so successive calls can be used to search the entire file.
Getpwuid searches from the beginning of the file until a numerical user id
matching uid is found and returns a pointer to the particular structure in
which it was found. Getpwnam searches from the beginning of the file until
a login name matching name is found, and returns a pointer to the particu
lar structure in which it was found. If an end-of-file or an error is encoun
tered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file when
processing is complete.

- 1 -

GETPWENT(3C) (C Programming Language Utilities) GETPWENT(3C)

FILES

Fgetpwent returns a pointer to the next passwd structure in the stream [,
which matches the format of /etc/passwd.

/etc/passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size
of programs, not otherwise using standard I/O, more than might be
expected.

CAVEAT
All information is contained in a static area, so it must be copied if it is to
be saved.

- 2 -

GETS(3S) (C Programming Language Utilities) GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#inc1ude <stdio.h>

char *gets (s)
char *Si

char *fgets (s, n, stream)
char *Si
int ni
FILE *streami

DESCRIPTION
The gets function reads characters from the standard input stream, stdin,
into the array pointed to by s, until a new-line character is read or an end
of-file condition is encountered. The new-line character is discarded and
the string is terminated with a null character.

The [gets function reads characters from the stream into the array pointed to
by s, until n-l characters are read, or a new-line character is read and
transferred to s, or an end-of-file condition is encountered. The string is
then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S), stdio(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters
are transferred to s and a NULL pointer is returned. If a read error occurs,
such as trying to use these functions on a file that has not been opened for
reading, a NULL pointer is returned. Otherwise s is returned.

- 1 -

GETUT(3C) (C Programming Language Utilities) GETUT(3C)

NAME
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmpname -
access utmp file entry

SYNOPSIS
#include <utmp.h>

strud utmp *getutent ()

strud utmp *getutid (id)
strud utmp *id;

strud utmp *getutline (line)
strud utmp *line;

void pututline (utmp)
strud utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

DESCRIPTION
The getutent, getutid, and getutline
structure of the following type:

functions each return a pointer to a

struct utmp {
char
char
char
short
short

} ;

struct
short
short

} uLexit;

uLuser[8];
uLid[4];
uLline[12];
uLpid;
uLtype;
exiLstatus {

e_termination;
e_exit;

uLtime;

/* User login name */
/* /etc/inittab id (usually line #) */
/* device name (console, lnxx) */
/* process id * /
/* type of entry */

/* Process termination status * /
/* Process exit status * /
/* The exit status of a process
* marked as DEAD_PROCESS. * /
/* time entry was made */

The getutent function reads in the next entry from a utmp-like file. If the
file is not already open, it opens it. If it reaches the end of the file, it fails.

The getutid function searches forward from the current point in the utmp
file until it finds an entry with a ut_type matching id->ut_type if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME or NEW_TIME. If the type
specified in id is INIT_PROCESS, LOGIN_PROCESS, USEILPROCESS or
DEAD_PROCESS, then getutid will return a pointer to the first entry whose
type is one of these four and whose ut_id field matches id->ut_id. If the
end of file is reached without a match, it fails.

- 1 -

GETUT(3C) (C Programming Language Utilities) GETUT(3C)

FILES

The getutline function searches forward from the current point in the utmp
file until it finds an entry of the type LOGIN_PROCESS or USEILPROCESS,
which also has a ut_line string matching the line->ut_Iine string. If the
end of file is reached without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It uses
getutid to search forward for the proper place if it finds that it is not already
at the proper place. It is expected that normally the user of pututline will
have searched for the proper entry using one of the getut routines. If so,
pututline will not search. If pututline does not find a matching slot for the
new entry, it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This should be
done before each search for a new entry if it is desired that the entire file be
examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from
/ete/utmp to any other file. It is most often expected that this other file
will be /ete/wtmp. If the file does not exist, this will not be apparent until
the first attempt to reference the file is made. Utmpname does not open the
file. It just closes the old file if it is currently open and saves the new file
name.

/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS

NOTES

A NULL pointer is returned upon failure to read, whether for permissions or
having reached the end of file, or upon failure to write.

The most current entry is saved in a static structure. Multiple accesses
require that it be copied before further accesses are made. Each call to
either getutid or getutline sees the routine examine the static structure before
performing more I/0. If the contents of the static structure match what it is
searching for, it looks no further. For this reason, to use getutline to search
for multiple occurrences, it would be necessary to zero out the static after
each success, or getutline would just return the same pointer over and over
again. There is one exception to the rule about removing the structure
before further reads are done. The implicit read done by pututline (if it
finds that it is not already at the correct place in the file) will not hurt the
contents of the static structure returned by the getutent, getutid, or getutIine
routines, if the user has just modified those contents and passed the pointer
back to pututline.

These routines use buffered standard I/O for input, but pututIine uses an
unbuffered nort-standard write to avoid race conditions between processes
trying to modify the utmp and wtmp files.

- 2 -

HSEARCH(3C) (C Programming Language Utilities) HSEARCH(3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#inc1ude <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

The hsearch function is a hash-table search routine generalized from Knuth
(6.4) Algorithm D. It returns a pointer into a hash table indicating the loca
tion at which an entry can be found. Item is a structure of type ENTRY
(defined in the <search.h> header file) containing two pointers: item.key
points to the comparison key, and item.data points to any other data to be
associated with that key. (Pointers to types other than character should be
cast to pointer-to-character.) Action is a member of an enumeration type
ACTION indicating the disposition of the entry if it cannot be found in the
table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuc
cessful resolution is indicated by the return of a NULL pointer.

Hcreate allocates sufficient space for the table and must be called before
hsearch is used. Nel is an estimate of the maximum number of entries that
the table will contain. This number may be adjusted upward by the algo
rithm in order to obtain certain mathematically favorable circumstances.

Hdestroy destroys the search table and may be followed by another call to
hcreate.

The hsearch function uses open addressing with a multiplicative hash func
tion. However, its source code has many other options available which the
user may select by compiling the hsearch source with the following symbols
defined to the preprocessor:

DIV Use the remainder modulo table size as the hash function
instead of the mUltiplicative algorithm.

USCR Use a User-Supplied Comparison Routine for ascertaining
table membership. The routine should be named hcom
par and should behave in a mannner similar to strcmp
[see string(3C)].

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become available.

START Place new entries at the beginning of the
linked list (default is at the end).

- 1 -

HSEARCH(3C) (C Programming Language Utilities) HSEARCH(3C)

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in des-
cending order.

Additionally, there are preprocessor flags for obtaining debugging printout
(-DDEBUG) and for including a test driver in the calling routine
(-DDRIVER). The source code should be consulted for further details.

EXAMPLE
The following example will read in strings followed by two numbers and
store them in a hash table, discarding duplicates. It will then read in strings
and find the matching entry in the hash table and print it out.

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the table * /
int age, room; /* other than the key. */

} ;
#define NUM_EMPL 5000 /* # of elements in search table * /

main(
{

/* space to store strings * /
char string_space[NUM_EMPL*20);
/* space to store employee info * /
struct info info_space[NUM_EMPL);
/* next avail space in string_space * /
char *str_ptr = string_space;
/* next avail space in info_space * /
struct info *info_ptr = info_space;
ENTRY item, *founcLitem, *hsearch();
/* name to look for in table * /
char name_to~ind[30];
int i = 0;

/* create table * /
(void) hcreate(NUM_EMPL);
while (scanf(" %s%d %d ", str_ptr, &info_ptr-> age,

&info_ptr->room) != EOF && i++ < NUM_EMPL)
/* put info in structure, and structure in item * /
item.key = str_ptr;
item. data = (char *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;
/* put item into table * /
(void) hsearch(item, ENTER);

/* access table */

- 2 -

HSEARCH(3C)

SEE ALSO

(C Programming Language Utilities) HSEARCH(3C)

item.key = name_to-.find;
while (scanf(" %s", item.key) != EOF) {

}

if «founcLitem = hsearch(item, FIND» != NULL) {
/* if item is in the table * /
(void)printf(" found %s, age = %d, room = %d\n",

founcLitem->key,

else {

«struct info *)founcLitem->data)->age,
«struct info *)founcLitem->data)->room);

(void)printf(IIno such employee %s\n",
name_to-.find)

bsearch(3C), Isearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).

DIAGNOSTICS
The hsearch function returns a NULL pointer if either the action is FIND and
the item could not be found, or the action is ENTER and the table is full.

Hcreate returns zero if it cannot allocate sufficient space for the table.

WARNING
hsearch and hcreate use malloc(3C) to allocate space.

CAVEAT
Only one hash search table may be active at any given time.

- 3 -

ISNAN(3C) (C Programming Language Utilities) ISNAN(3C)

NAME
isnan: isnand, isnanf - test for floating point NaN (Not-A-Number)

SYNOPSIS
#include <ieeefp.h>

int isnand (dsrc)
double dsrc;

int isnanf (fsrc)
float fsrc;

DESCRIPTION
The isnand and isnanf functions return true (1) if the argument dsre or fsre is
a NaN; otherwise they return false (0).

Neither routine generates any exception, even for signaling NaNs.

isnanfO is implemented as a macro included in <ieeefp.h>.

SEE ALSO
fpgetround(3C).

- 1 -

L3TOL(3C) (C Programming Language Utilities) L3TOL(3C)

NAME
13tol, ltol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (lp, cp, n)
long *Ip;
char *cp;
int ni

void ltol3 (cp, Ip, n)
char *cp;
long *Ip;
int ni

DESCRIPTION
The 13tol function converts a list of n three-byte integers packed into a char
acter string pointed to by cp into a list of long integers pointed to by lp.

Ltol3 performs the reverse conversion from long integers (lp) to three-byte
in tegers (cp).

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

SEE ALSO
fs(4).

CAVEAT
Because of possible differences in byte ordering, the numerical values of the
long integers are machine-dependent.

- 1 -

LOCKF(3C) (C Programming Language Utilities) LOCKF(3C)

NAME
lockf - record locking on files

SYNOPSIS
#include <unistd.h>

int lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION
The lockf command will allow sections of a file to be locked; advisory or
mandatory write locks depending on the mode bits of the file [see chmod(2)].
Locking calls from other processes which attempt to lock the locked file sec
tion will either return an error value or be put to sleep until the resource
becomes unlocked. All the locks for a process are removed when the pro
cess terminates. [See fcntl(2) for more information about record locking.]

Fildes is an open file descriptor. The file descriptor must have O_WRONLY
or O_RDWR permission in order to establish lock with this function call.

Function is a control value which specifies the action to be taken. The per
missible values for function are defined in <unistd.h> as follows:

#define
#define
#define
#define

F_ULOCK
F_LOCK
F_TLOCK
F_TEST

o
1
2
3

/* Unlock a previously locked section * /
/* Lock a section for exclusive use * /
/* Test and lock a section for exclusive use * /
/* Test section for other processes locks * /

All other values of function are reserved for future extensions and will result
in an error return if not implemented.

F_TEST is used to detect if a lock by another process is present on the speci
fied section. F _LOCK and F _ TLOCK both lock a section of a file if the sec
tion is available. F_ULOCK removes locks from a section of the file.

Size is the number of contiguous bytes to be locked or unlocked. The
resource to be locked starts at the current offset in the file and extends for
ward for a positive size and backward for a negative size (the preceding
bytes up to but not including the current offset). If size is zero, the section
from the current offset through the largest file offset is locked (i.e., from the
current offset through the present or any future end-of-file). An area need
not be allocated to the file in order to be locked as such locks may exist past
the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part,
contain or be contained by a previously locked section for the same process.
When this occurs, or if adjacent sections occur, the sections are combined
into a single section. If the request requires that a new element be added to
the table of active locks and this table is already full, an error is returned,
and the new section is not locked.

F _LOCK and F _ TLOCK requests differ only by the action taken if the
resource is not available. F_LOCK will cause the calling process to sleep

- 1 -

LOCKF(3C) (C Programming Language Utilities) LOCKF(3C)

until the resource is available. F_TLOCK will cause the function to return a
-1 and set errno to [EACCES] error if the section is already locked by another
process.

F_ULOCK requests may, in whole or in part, release one or more locked sec
tions controlled by the process. When sections are not fully released, the
remaining sections are still locked by the process. Releasing the center sec
tion of a locked section requires an additional element in the table of active
locks. If this table is full, an [EDEADLK] error is returned, and the requested
section is not released.

A potential for deadlock occurs if a process controlling a locked resource is
put to sleep by accessing another process's locked resource. Thus calls to
lockf or fcntl scan for a deadlock prior to sleeping on a locked resource. An
error return is made if sleeping on the locked resource would cause a
deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(2) com
mand may be used to provide a timeout facility in applications which
require this facility.

The lockf utility will fail if one or more of the following are true:

[EBADF]
Fildes is not a valid open descriptor.

[EACCES]
Cmd is F_TLOCK or F_TEST and the section is already locked by
another process.

[EDEADLK]
Cmd is F_LOCK and a deadlock would occur. Also the cmd is either
F_LOCK, F_TLOCK, or F_ULOCK and the number of entries in the
lock table would exceed the number allocated on the system.

[ECOMM]

SEE ALSO

Fildes is on a remote machine and the link to that machine is no
longer active.

chmod(2), c1ose(2), creat(2), fcntl(2), intro(2), open(2), read(2), write(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

WARNINGS
Unexpected results may occur in processes that do buffering in the user
address space. The process may later read/write data which is/was locked.
The standard I/O package is the most common source of unexpected buffer
ing.

Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process, port
able application programs should expect and test for either value.

- 2 -

LSEARCH(3C) (C Programming Language Utilities) LSEARCH(3C)

NAME
lsearch, Hind - linear search and update

SYNOPSIS
#include <stdio.h>
#include <search.h>

char *lsearch «char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

char *lfind «char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

DESCRIPTION

NOTES

The lsearch function is a linear search routine generalized from Knuth (6.1)
AlgOrithm S. It returns a pointer into a table indicating where a datum may
be found. If the datum does not occur, it is added at the end of the table.
Key points to the datum to be sought in the table. Base points to the first
element in the table. Nelp points to an integer containing the current
number of elements in the table. The integer is incremented if the datum is
added to the table. Compar is the name of the comparison function which
the user must supply (strcmp, for example). It is called with two arguments
that point to the elements being compared. The function must return zero if
the elements are equal and non-zero otherwise.

Lfind is the same as lsearch except that if the datum is not found, it is not
added to the table. Instead, a NULL pointer is returned.

The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element.

EXAMPLE
This fragment will read in less than TAB SIZE strings of length less than
ELSIZE and store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define T ABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[T ABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELsIZE, stdin) != NULL &&
nel < T ABSIZE)

- 1 -

LSEARCH(3C) (C Programming Language Utilities) LSEARCH(3C)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), string(3C), tsearch(3C).

DIAGNOSTICS

BUGS

If the searched-for datum is found, both lsearch and lfind return a pointer to
it. Otherwise, lfind returns NULL and lsearch returns a pointer to the newly
added element.

Undefined results can occur if there is not enough room in the table to add
a new item.

- 2 -

MALLOC(3C) (C Programming Language Utilities) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
The malloe and free functions provide a simple, general-purpose, memory
allocation package. The malloe function returns a pointer to a block of at
least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by malloe;
after free is performed this space is made available for further allocation, but
its contents are left undisturbed.

Undefined results will occur if the space assigned by malloe is overrun or if
some random number is handed to free.

The malloe function allocates the first big enough, contiguous reach of free
space found in a circular search from the last block allocated or freed,
coalescing, adjacent free blocks as it searches. It calls sbrk [see brk(2)] to get
more memory from the system when there is no suitable space already free.

Realloe changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes. If no free block of size
bytes is available in the storage arena, then realloe will ask malloe to enlarge
the arena by size bytes and will then move the data to the new space.

Realloe also works if ptr points to a block freed since the last call of malloe,
realloe, or ealloe; thus sequences of free, malloe, and realloe can exploit the
search strategy of malloe to do storage compaction.

Calloe allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS
The malloe, realloe and ealloe functions return a NULL pointer if there is no
available memory, or if the arena has been detectably corrupted by storing
outside the bounds of a block. When this happens the block pointed to by
ptr may be destroyed.

- 1 -

MALLOC(3C) (C Programming Language Utilities) MALLOC(3C)

NOTES
Search time increases when many objects have been allocated; that is, if a
program allocates but never frees, then each successive allocation takes
longer. For an alternate, more flexible implementation, see malloc(3X).

- 2 -

MEMORY(3C) (C Programming Language Utilities) MEMORY(3C)

NAME
memory: memccpy, memchr, memcmp, memcpy, memset - memory opera
tions

SYNOPSIS
#inc1ude <memory.h>

char *memccpy (sl, s2, c, n)
char *sl, *s2;
int c, n;

char *memchr (s, c, n)
char *s;
int c, n;

int memcmp (sl, s2, n)
char *sl, *s2;
int n;

char *memcpy (sl, s2, n)
char *sl, *s2;
int n;

char *memset (s, c, n)
char *s;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays
of characters bounded by a count, not terminated by a null character). They
do not check for the overflow of any receiving memory area.

Memccpy copies characters from memory area s2 into sl, stopping after the
first occurrence of character c has been copied, or after n characters have
been copied, whichever comes first. It returns a pointer to the character
after the copy of c in sl, or a NULL pointer if c was not found in the first n
characters of s2.

Memchr returns a pointer to the first occurrence of character c in the first n
characters of memory area s, or a NULL pointer if c does not occur.

Memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, according as sl is
lexicographically less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to sl. It returns sl.

Memset sets the first n characters in memory area s to the value of character
c. It returns s.

For user convenience, all these functions are declared in the optional
<memory.h> header file.

CAVEATS
Memcmp is implemented by using the most natural character comparison on
the machine. Thus the sign of the value returned when one of the charac
ters has its high order bit set is not the same in all implementations and
should not be relied upon.

- 1 -

MEMORY(3C) (C Programming Language Utilities) MEMORY(3C)

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

- 2 -

MKTEMP(3C) (C Programming Language Utilities) MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION
The mktemp function replaces the contents of the string pointed to by tem
plate by a unique file name, and returns the address of template. The string
in template should look like a file name with six trailing Xs; mktemp will
replace the XS with a letter and the current process ID. The letter will be
chosen so that the resulting name does not duplicate an existing file.

SEE ALSO
getpid(2}, tmpfile(3S}, tmpnam(3S}.

DIAGNOSTIC
The mktemp function will assign to template the NULL string if it cannot
create a unique name.

CAVEAT
If called more than 17,576 time in a single process, this function will start
recycling previously used names.

- 1 -

MONITOR(3C) (C Programming Language Utilities) MONITOR(3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#inc1ude <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfund
int (*lowpc)(), (*highpc)();
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION

FILES

An executable program created by cc -p automatically includes calls for
monitor with default parameters; monitor need not be called explicitly except
to gain fine control over profiling.

The monitor function is an interface to profil (2). Lowpc and highpc are the
addresses of two functions; buffer is the address of a user-supplied array of
bufsize WORDs (defined in the <mon.h> header file). monitor arranges to
record a histogram of periodically sampled values of the program counter,
and of counts of calls of certain functions, in the buffer. The lowest address
sampled is that of lowpc and the highest is just below highpc. Lowpc may
not equal 0 for this use of monitor. At most nfunc, call counts can be kept;
only calls of functions compiled with the profiling option -p of cc(l) are
recorded.

For the results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few times
smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor ((int (*)())2, &etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results, use

monitor ((int (*)())O, 0, 0, 0, 0);

The prof(l) command can then be used to examine the results.

The name of the file written by monitor is controlled by the environment
variable PROFDIR. If PROFDIR does not exist, "mon.out" is created in the
current directory. If PROFDIR exists but has no value, monitor does not do
any profiling and creates no output file. Otherwise, the value of PROFDIR is
used as the name of the directory in which to create the output file. If
PROFDIR is dirname, then the file written is "dirname jpid .mon.out" where
pid is the program's process id. (When monitor is called automatically by
compiling via cc -p, the file created is "dirname jpid.progname" where prog
name is the name of the program.)

mon.out

- 1 -

MONITOR(3C) (C Programming Language Utilities) MONITOR(3C)

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

BUGS
The II dirname jpid .mon.out" form does not work; the
II dirname jpid.progname" form (automatically called via cc -p) does work.

- 2 -

NLIST(3C) (C Programming Language Utilities) NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist (filename, nl)
char *filename;
strud nlist *nl;

DESCRIPTION

NOTES

The nlist function examines the name list in the executable file whose name
is pointed to by filename, and selectively extracts a list of values and puts
them in the array of nlist structures pointed to by nl. The name list nl con
sists of an array of structures containing names of variables, types, and
values. The list is terminated with a null name; that is, a null string is in
the name position of the structure. Each variable name is looked up in the
name list of the file. If the name is found, the type and value of the name
are inserted in the next two fields. The type field will be set to 0 unless the
file was compiled with the -g option. If the name is not found, both entries
are set to O. See a.out(4) for a discussion of the symbol table structure.

This function is useful for examining the system name list kept in the file
junix. In this way programs can obtain system addresses that are up to
date.

The <nlist.h> header file is automatically included by <a.out.h> for compa
tability. However, if the only information needed from <a.out.h> is for use
of nlist, then including <a.out.h> is discouraged. If <a.out.h> is included,
the line "#undef n_name" may need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or if it does not con
tain a valid name list.

The nlist function returns -1 upon error; otherwise it returns o.

- 1 -

PERROR(3C) (C Programming Language Utilities) PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char *Si

extern int ~rrnoi

extern char *sys_errlist[]i

extern int sYS-flerri

DESCRIPTION
The perrar function produces a message on the standard error output,
describing the last error encountered during a call to a system or library
function. The argument string s is printed first, then a colon and a blank,
then the message and a new-line. (However, if s="" the colon is not
printed.) To be of most use, the argument string should include the name
of the program that incurred the error. The error number is taken from the
external variable errna, which is set when errors occur but not cleared when
non -erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; errna can be used as an index into this table to get
the message string without the new-line. Sys_nerr is the number of mes
sages in the table; it should be checked because new error codes may be
added to the system before they are added to the table.

SEE ALSO
intro(2).

- 1 -

POPEN(3S) (C Programming Language Utilities) POPEN(3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

DESCRIPTION
The popen function creates a pipe between the calling program and the
command to be executed. The arguments to popen are pointers to null
terminated strings. Command consists of a shell command line. Type is an
I/O mode, either r for reading or w for writing. The value returned is a
stream pointer such that one can write to the standard input of the com
mand, if the I/O mode is w, by writing to the file stream; and one can read
from the standard output of the command, if the I/O mode is r, by reading
from the file stream.

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input
filter and a type w as an output filter.

EXAMPLE
A typical call may be:

char *cmd = "Is *.c" ;
FILE *ptr;
if «ptr = popen(cmd, "r"» 1= NULL)

while (fgets(buf, n, ptr) != NULL)
(void) printf(" %s ",buf);

This will print in stdout [see stdio (35)] all the file names in the current
directory that have a ".c" suffix.

SEE ALSO
pipe(2), wait(2), fclose(35), fopen(35), stdio(35), system(35).

DIAGNOSTICS
The popen function returns a NULL pointer if files or processes cannot be
created.

The pcIose function returns -1 if stream is not associated with a "popen ed"
command.

WARNING
If the original and "pop en ed" processes concurrently read or write a com
mon file, neither should use buffered I/O, because the buffering gets all
mixed up. Problems with an output filter may be forestalled by careful
buffer flushing, e.g., with [flush [see [cIose(3S)].

- 1 -

PRINTF(3S) (C Programming Language Utilities) PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format, arg
char *format;

int fprintf (stream, format , arg ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg] ...
char *s, *format;

DESCRIPTION
The printf function places output on the standard output stream stdout.
Fprintf places output on the named output stream. Sprintf places /I output,"
followed by the null character (\0), in consecutive bytes starting at *s; it is
the user's responsibility to ensure that enough storage is available. Each
function returns the number of characters transmitted (not including the \0
in the case of sprint!), or a negative value if an output error was encoun
tered.

Each of these functions converts, formats, and prints its args under control
of the format. The format is a character string that contains three types of
objects: plain characters, which are simply copied to the output stream;
escape sequences that represent non-graphic characters; and conversion
specifications, each of which results in fetching of zero or more args. The
results are undefined if there are insufficient args for the format. If the for
mat is exhausted while args remain, the excess args are simply ignored.

The following escape sequences produce the associated action on display
devices capable of the action:

\b Backspace.

\f

\n

\t

Moves the printing position to one character before
the current position, unless the current position is
the start of a line.

Form feed.
Moves the printing position to the initial printing
position of the next logical page.

New line.
Moves the printing position to the start of the next
line.

Carriage return.
Moves the printing position to the start of the
current line.

Horizontal tab.
Moves the printing position to the next
implementation-defined horizontal tab position on
the current line.

- 1 -

PRINTF(3S)

\v

(C Programming Language Utilities) PRINTF(3S)

Vertical tab
Moves the printing position to the start of the next
implementation-defined vertical tab position.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specific a tion.

An optional, decimal digit string specifying a minimum field width.
If the converted value has fewer characters than the field width, it
will be padded on the left (or right, if the left-adjustment flag '-',
described below, has been given) to the field width. The padding is
with blanks unless the field width digit string starts with a zero, in
which case the padding is with zeros.

A precision that gives the minimum number of digits to appear for
the d, i, 0, U, x, or X conversions, the number of digits to appear
after the decimal point for the e, E, and f conversions, the maximum
number of significant digits for the g and G conversion, or the max
imum number of characters to be printed from a string in s conver
sion. The precision takes the form of a period (.) followed by a
decimal digit string; a null digit string is treated as zero. Padding
specified by the precision overrides the padding specified by the
field width.

An optional 1 (ell) specifying that a following d, i, 0, U, X, or X
conversion character applies to a long integer arg. An 1 before any
other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision or both may be indicated by an asterisk (*)
instead of a digit string. In this case, an integer arg supplies the field width
or precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field width or precision must
appear before the arg (if any) to be converted. A negative field width argu
ment is taken as a '-' flag followed by a positive field width. If the precision
argument is negative, it will be changed to zero.

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign
(+ or -).

blank If the first character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and
+ flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alter
nate form." For c, d, i, s, and U conversions, the flag has no
effect. For 0 conversion, it increases the precision to force the
first digit of the result to be a zero. For x or X conversion, a
non-zero result will have Ox or OX prefixed to it. For e, E, f, g,
and G conversions, the result will always contain a decimal

- 2 -

PRINTF(3S) (C Programming Language Utilities) PRINTF(3S)

point, even if no digits follow the point (normally, a decimal
point appears in the result of these conversions only if a digit
follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), unsigned
octal, (0), decimal (u), or hexadecimal notation (x or X), respec
tively; the letters abcdef are used for x conversion and the letters
ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading
zeroes. The default precision is 1. The result of converting a
zero value with a precision of zero is a null string.

f The float or double arg is converted to decimal notation in the
style "[-]ddd.ddd," where the number of digits after the decimal
point is equal to the precision specification. If the precision is
missing, six digits are output; if the precision is explicitly 0, no
decimal point appears.

e,E The float or double arg is converted in the style "[-]d.ddde ± dd,"
where there is one digit before the decimal point and the number
of digits after it is equal to the precision; when the precision is
missing, six digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a
number with E instead of e introducing the exponent. The
exponent always contains at least two digits.

g,G The float or double arg is printed in style f or e (or in style E in
the case of a G format code), with the precision specifying the
number of significant digits. The style used depends on the
value converted: style e will be used only if the exponent result
ing from the conversion is less than -4 or greater than the preci
sion. Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and characters
from the string are printed until a null character (\0) is encoun
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are
printed. A NULL value for arg will yield undefined results.

% Print a %; no argument is converted.

- 3 -

PRINTF(3S) (C Programming Language Utilities) PRINTF(3S)

In printing floating point types (float and double), if the exponent is Ox7FF
and the mantissa is not equal to zero, then the output is

[-]N aNOxdddddddd

where Oxdddddddd is the hexadecimal representation of the leftmost 32 bits
of the mantissa. If the mantissa is zero, the output is

[±]info

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters generated by
printf and fprintf are printed as if putc(3S) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02," where week
day and month are pointers to null-terminated strings:

printf(" %s, %s %i, %d:%.2d", weekday, month, day, hour, min);

To print 7r to S decimal places:

printf("pi = %.Sf", 4 * atan(1.0»;

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

- 4 -

PUTC(3S) (C Programming Language Utilities) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#inc1ude <stdio.h>

int putc (c, stream)
int c;
FILE *stream;

int putchar (c)
int c;

int £putc (c, stream)
int c;
FILE *stream;

int putw (w, stream)
int Wi
FILE *stream;

DESCRIPTION
The pute function writes the character e onto the output stream (at the posi
tion where the file pointer, if defined, is pointing). putehar(e) is defined as
pute(e, stdout). pute and putehar are macros.

Fpute behaves like pute, but is a function rather than a macro. Fpute runs
more slowly than pute, but it takes less space per invocation and its name
can be passed as an argument to a function.

Putw writes the word (Le., integer) w to the output stream (at the position
at which the file pointer, if defined, is pointing). The size of a word is the
size of an integer and varies from machine to machine. Putw neither
assumes nor causes special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), setbuf(3S),
stdio(3S).

DIAGNOSTICS
On success, these functions (with the exception of putw) each return the
value they have written. [Putw returns ferror (stream)]. On failure, they
return the constant EOF. This will occur if the file stream is not open for
writing or if the output file cannot grow. Because EOF is a valid integer,
ferror(3S) should be used to detect putw errors.

CAVEATS
Because it is implemented as a macro, pute evaluates a stream argument
more than once. In particular, putc(c, *f++) doesn't work sensibly. Fpute
should be used instead.
Because of possible differences in word length and byte ordering, files writ
ten using putw are machine-dependent, and may not be read using getw on
a different processor.

- 1 -

PUTENV(3C) (C Programming Language Utilities) PUTENV(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
String points to a string of the form "name =value." The putenv function
makes the value of the environment variable name equal to value by alter
ing an existing variable or creating a new one. In either case, the string
pointed to by string becomes part of the environment, so altering the string
will change the environment. The space used by string is no longer used
once a new string-defining name is passed to putenv.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

DIAGNOSTICS
The putenv function returns non-zero if it was unable to obtain enough
space via malloe for an expanded environment, otherwise zero.

WARNINGS
The putenv function manipulates the environment pointed to by environ,
and can be used in conjunction with getenv. However, envp (the third argu
ment to main) is not changed.
This routine uses malloe(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argu
ment, then exit the calling function while string is still part of the environ
ment.

- 1 -

PUTPWENT(3C) (C Programming Language Utilities) PUTPWENT(3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (P, f)
struct passwd *p;
FILE *f;

DESCRIPTION
The putpwent function is the inverse of getpwent(3C). Given a pointer to a
passwd structure created by getpwent (or getpwuid or getpwnam), putpwent
writes a line on the stream /' which matches the format of /etc/passwd.

SEE ALSO
getpwent(3C).

DIAGNOSTICS
The putpwent function returns non-zero if an error was detected during its
operation, otherwise zero.

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of
programs, not otherwise using standard I/0, more than might be expected.

- 1 -

PUTS(3S) (C Programming Language Utilities) PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (s)
char *s;

int £puts (s, stream)
char *s;
FILE *stream;

DESCRIPTION
The puts function writes the null-terminated string pointed to by s ,followed
by a new-line character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S), stdio(3S).

DIAGNOSTICS

NOTES

Both routines return EOF on error. This will happen if the routines try to
write on a file that has not been opened for writing.

The puts function appends a new-line character while fputs does not.

- 1 -

QSORT(3C) (C Programming Language Utilities) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort «char *) base, nel, size of (*base), compar)
unsigned neli
int (*compar)()i

DESCRIPTION

NOTES

The qsart function is an implementation of the quicker-sort algorithm. It
sorts a table of data in place.

Base points to the element at the base of the table. Nel is the number of
elements in the table. Campar is the name of the comparison function,
which is called with two arguments that point to the elements being com
pared. The comparison function must return an integer less than, equal to,
or greater than zero, according to whether the first argument is to be con
sidered as less than, equal to, or greater than the second argument.

The pointer to the base of the table should be of type pointer-to-element,
and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being compared.
The order in the output of two items which compare as equal is unpredict
able.

SEE ALSO
bsearch(3C), Isearch(3C), string(3C).
sort(l) in the User's Reference Manual.

WARNING
The total size of the table (nel x sizeof(*base)) must be less than 65536 on the
80286 computer.

- 1 -

RAND(3C) (C Programming Language Utilities) RAND(3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

NOTES

The rand function uses a multiplicative congruential random-number gen
erator with period 232 that returns successive pseudo-random numbers in
the range from 0 to 215_l.

The srand function can be called at any time to reset the random-number
generator to a random starting point. The generator is initially seeded with
a value of 1.

The spectral properties of rand are limited. The drand48(3C) function pro
vides a much better, though more elaborate, random-number generator.

The follwoing functions define the semantics of the functions rand and
srand.

static unsigned long int next = 1;
int randO
{

next = next * 1103515245 + 12345;
return «unsigned int) (next/65536) % 32768);

}
void srand(seed)
unsigned int seed;
{

next = seed;

Specifying the semantics makes it possible to reproduce the behavior of pro
grams that use pseudo-random sequences. This facilitates the testing of
portable applications in different implementations.

SEE ALSO
drand48(3C).

- 1 -

SCANF(3S) (C Programming Language Utilities) SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#inc1ude <stdio.h>

int scanf (format [, pointer] ...
char *format;

int fscanf (stream, format [, pointer]
FILE *stream;
char *format;

int sscanf (s, format [, pointer] ...
char *s, *format;

DESCRIPTION
The scanf function reads from the standard input stream stdin. Fscanf reads
from the named input stream. Sscanf reads from the character string s.
Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control
string format described below, and a set of pointer arguments indicating
where the converted input should be stored. The results are undefined in
that there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored.

The control string usually contains conversion specifications, which are used
to direct interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character *, an optional numerical maximum
field width, an optional 1 (ell) or h indicating the size of the receiving
variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument,
unless assignment suppression was indicated by *. The suppression of
assignment provides a way of describing an input field which is to be
skipped. An input field is defined as a string of non-space characters; it
extends to the next inappropriate character or until the field width, if speci
fied, is exhausted. For all descriptors except "[" and "c", white space lead
ing an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion
codes are legal:

% a single % is expected in the input at this point; no assignment is
done.

- 1 -

SCANF(3S) (C Programming Language Utilities) SCANF(3S)

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

u an unsigned decimal integer is expected; the corresponding argu
ment should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should be
an integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

i an integer is expected; the corresponding argument should be an
integer pointer. It will store the value of the next input item inter
preted according to C conventions: a leading "0" implies octal; a
leading "Ox" implies hexadecimal; otherwise, decimal.

n stores in an integer argument the total number of characters (includ
ing white space) that have been scanned so far since the function
call. No input is consumed.

e,f,g a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly containing
a decimal point, followed by an optional exponent field consisting
of an E or an e, followed by an optional + or - , followed by an
integer.

s a character string is expected; the corresponding argument should be
a character pointer pointing to an array of characters large enough
to accept the string and a terminating \0, which will be added
automatically. The input field is terminated by a white-space char
acter.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed
in this case; to read the next non-space character, use %1s. If a field
width is given, the corresponding argument should refer to a char
acter array; the indicated number of characters is read.

indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters,
which we will call the scanset, and a right bracket; the input field is
the maximal sequence of input character~ consisting entirely of char
acters in the scan set. The circumflex (), when it appears as the
first character in the scan set, serves as a complement operator and
redefines the scanset as the set of all characters not contained in the
remainder of the scanset string. There are some conventions used
in the construction of the scanset. A range of characters may be

SCANF(3S) (C Programming Language Utilities) SCANF(3S)

represented by the construct first-last, thus [0123456789] may be
expressed [0-9]. Using this convention, first must be lexically less
than or equal to last, or else the dash will stand for itself. The dash
will also stand for itself whenever it is the first or the last character
in the scanset. To include the right square bracket as an element of
the scanset, it must appear as the first character (possibly preceded
by a circumflex) of the scan set, and in this case it will not be syntac
tically interpreted as the closing bracket. The corresponding argu
ment must point to a character array large enough to hold the data
field and the terminating \0, which will be added automatically. At
least one character must match for this conversion to be considered
successful.

The conversion characters d, u, 0, x and i may be preceded by I or h to
indicate that a pointer to long or to short rather than to int is in the argu
ment list. Similarly, the conversion characters e, f, and g may be preceded
by I to indicate that a pointer to double rather than to float is in the argu
ment list. The I or h modifier is ignored for other conversion characters.

The scan! function conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control string. In the
latter case, the offending character is left unread in the input stream.

The scanf function returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early conflict
between an input character and the control string. If the input ends before
the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and
name will contain thompson\O . Or:

int i, j; float x; char name[50];
(void) scanf (" %i%2d%f%*d %[0-9] ", &j, &i, &x, name);

with input:

011 56789 0123 56a72

will assign 9 to j, 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in
name. The next call to getchar [see getc(3S)] will return a. Or:

int i, j, s, e; char name[50];
(void) scanf("%i %i %n%s%n", &i, &j, &s, name, &e);

with input:

Ox11 Oxy johnson

- 3 -

SCANF(3S) (C Programming Language Utilities) , SCANF(3S)

will assign 17 to i, 0 to j, 6 to 5, will place the string xy\O in name, and will
assign 8 to e. Thus, the length of name is e - 5 = 2 . The next call to
getchar [see getc(3S)] will return a blank.

SEE ALSO
getc(3S), printf(3S), stdio(3S), strtod(3C), strtol(3C).

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing or
illegal data items.

CAVEATS
Trailing white space (including a new-line) is left unread unless matched in
the control string.

- 4 -

SETBUF(3S) (C Programming Language Utilities) SETBUF(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION
The setbuf function may be used after a stream has been opened but before
it is read or written. It causes the array pointed to by buf to be used instead
of an automatically allocated buffer. If buf is the NULL pointer,
input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an
array is needed:

char buf[BUFSIZ];

Setvbuf may be used after a stream has been opened but before it is read or
written. Type determines how stream will be buffered. Legal values for
type (defined in stdio.h) are:

_IOFBF causes input/output to be fully buffered.

.-IOLBF

_IONBF

causes output to be line buffered; the buffer will be flushed
when a newline is written, the buffer is full, or input is
requested.

causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffer
ing, instead of an automatically allocated buffer. Size specifies the size of
the buffer to be used. The constant BUFSIZ in <stdio.h> is suggested as a
good buffer size. If input/output is unbuffered, buf and size are ignored.

By default, output to a terminal is line-buffered and all other input/output
is fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS

NOTES

If an illegal value for type or size is provided, setvbuf returns a non-zero
value. Otherwise, the value returned will be zero.

A common source of error is allocating buffer space as an "automatic" vari
able in a code block, and then failing to close the stream in the same block.

- 1 -

SETJMP(3C) (C Programming Language Utilities) SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#inc1ude <setjmp.h>

int setjmp (env)
jmp_buf envi

void longjmp (env, val)
jmp_buf enVi
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encoun
tered in a low-level subroutine of a program.

The setjmp function saves its stack environment in env (whose type,
jmp_buf, is defined in the <setjmp.h> header file) for later use by longjmp.
It returns the value O.

Longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed, program execu
tion continues as if the corresponding call of setjmp (which must not itself
have returned in the interim) had just returned the value val. Longjmp can
not cause setjmp to return the value O. If longjmp is invoked with a second
argument of 0, setjmp will return 1. At the time of the second return from
setjmp, all accessible data have values as of the time longjmp is called.
However, global variables will have the expected values, i.e., those as of the
time of the longjmp (see example).

EXAMPLE
#include <setjmp.h>

jmp_buf env;
int i = 0;
main 0
{

gO
{

void exitO;

if(setjmp(env) != 0) {
(void) printf(" value of i on 2nd return from setjmp: %d\n", i);
exit(O);

}
(void) printf(" value of i on 1st return from setjmp: %d\n", i);
i = 1;
gO;
j*NOTREACHED* j

longjmp(env, 1);
j*NOTREACHED* j

- 1 -

SETJMP(3C) (C Programming Language Utilities) SETJMP(3C)

If the a.out resulting from this C language code is run, the
output will be:

value of i on 1st return from setjmp: 0

value of i on 2nd return from setjmp: 1

SEE ALSO
signal(2).

WARNING

BUGS

If longjmp is called even though env was never primed by a call to setjmp,
or when the last such call was in a function which has since returned, abso
lute chaos is guaranteed.

The values of the registers on the second return from setjmp are the register
values at the time of the first call to setjmp, not those at the time of the
longjmp. This means that variables in a given function may behave dif
ferently in the presence of setjmp, depending on whether they are register
or stack variables.

- 2 -

SLEEP(3C) (C Programming Language Utilities) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than
that requested for two reasons: (1) Because scheduled wakeups occur at
fixed I-second intervals, (on the second, according to an internal clock) and
(2) because any caught signal will terminate the sleep following execution of
that signal's catching routine. Also, the suspension time may be longer
than requested by an arbitrary amount due to the scheduling of other
activity in the system. The value returned by sleep will be the "unslept"
amount (the requested time minus the time actually slept) in case the caller
had an alarm set to go off earlier than the end of the requested sleep time,
or premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it
(or some other signal) occurs. The previous state of the alarm signal is
saved and restored. The calling program may have set up an alarm signal
before calling sleep. If the sleep time exceeds the time till such alarm signal,
the process sleeps only until the alarm signal would have occurred. The
caller's alarm catch routine is executed just before the sleep routine returns.
But if the sleep time is less than the time till such alarm, the prior alarm
time is reset to go off at the same time it would have without the interven
ing sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

- 1 -

SSIGNAL(3C) (C Programming Language Utilities) SSIGNAL(3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signa1.h>

int (*ssignal (sig, action»()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION
The ssignal and gsignal functions implement a software facility similar to
signal (2). This facility is used by the Standard C Library to enable users to
indicate the disposition of error conditions, and is also made available to
users for their own purposes.

Software signals made available to users are associated with integers in the
inclusive range 1 through 16. A call to ssignal associates a procedure, action,
with the software signal sig; the software signal, sig, is raised by a call to
gsignal. Raising a software signal causes the action established for that sig
nal to be taken.

The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the
action; it is either the name of a (user-defined) action function or one of the
manifest constants SIG_DFL (default) or SIGJGN (ignore). The ssignal func
tion returns the action previously established for that signal type; if no
action has been established or the signal number is illegal, ssignal returns
SIG_DFL.

The gsignal function raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is
reset to SIG_DFL and the action function is entered with argument sig.
Gsignal returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes
no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes
no other action.

If sig has an illegal value or no action was ever specified for sig, gsig
nal returns the value 0 and takes no other action.

SEE ALSO

NOTES

signal(2), sigset(2).

There are some additional signals with numbers outside the range 1 through
16 which are used by the Standard C Library to indicate error conditions.
Thus, some signal numbers outside the range 1 through 16 are legal,
although their use may interfere with the operation of the Standard C
Library.

- 1 -

STDIO(3S) (C Programming Language Utilities) STDIO(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE *stdin, *stdout, *stderr;

DESCRIPTION
The functions described in the entries of sub-class 35 of this manual consti
tute an efficient, user-level I/O buffering scheme. The in-line macros
gete(35) and pute(35) handle characters quickly. The macros getehar and
putehar, and the higher-level routines fgete, fgets, fprintf, fpute, fputs, fread,
fseanf, fwrite, gets, getw, printf, puts, putw, and seanf all use or act as if they
use gete and pute; they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a
pointer to a defined type FILE. The fopen(35) function creates certain
descriptive data for a stream and returns a pointer to designate the stream in
all further transactions. Normally, there are three open streams with con
stant pointers declared in the <stdio.h> header file and associated with the
standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descriptions for
details).

An integer constant BUFSIZ specifies the size of the buffers used by the par
ticular implementation.

Any program that uses this package must include the header file of per
tinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 35 of this
manual are declared in that header file and need no further declaration.
The constants and the following "functions" are implemented as macros
(redeclaration of these names is perilous): gete, getehar, pute, putehar, fer
ror, feof, clearerr, and fileno.

Output streams, with the exception of the standard error stream stderr, are
by default buffered if the output refers to a file, and line-buffered if the out
put refers to a terminal. The standard error output stream stderr is by
default unbuffered, but use of freopen [see fopen(35)] will cause it to become

- 1 -

STDIO(3S) (C Programming Language Utilities) STDIO(3S)

buffered or line-buffered. When an output stream is unbuffered, informa
tion is queued for writing on the destination file or terminal as soon as writ
ten. When it is buffered, many characters are saved up and written as a
block. When it is line-buffered, each line of output is queued for writing on
the destination terminal as soon as the line is completed (that is, as soon as
a new-line character is written or terminal input is requested). The
setbuf(3S) or setvbufO functions in setbuf(3S) may be used to change the
stream's buffering strategy.

SEE ALSO
open(2), close(2), Iseek(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S),
fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S),
popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), system(3S),
tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible
error conditions.

- 2 -

STDIPC(3C) (C Programming Language Utilities) STDIPC(3C)

NAME
stdipc: ftok - standard interprocess communication package

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/ipc.h>

key_t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to
be used by the msgget(2), semget(2), and shmget (2) system calls to obtain
interprocess communication identifiers. One suggested method for forming
a key is to use the ftok subroutine described below. Another way to com
pose keys is to include the project ID in the most significant byte and to use
the remaining portion as a sequence number. There are many other ways
to form keys, but it is necessary for each system to define standards for
forming them. If some standard is not adhered to, it will be possible for
unrelated processes to unintentionally interfere with each other's operation.
Therefore, it is strongly suggested that the most significant byte of a key in
some sense refer to a project so that keys do not conflict across a given sys
tem.

Ftok returns a key based on path and id that is usable in subsequent msgget,
semget, and shmget system calls. Path must be the path name of an existing
file that is accessible to the process. Id is a character which uniquely identi
fies a project. Note that ftok will return the same key for linked files when
called with the same id, and that it will return different keys when called
with the same file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key_t) -1 if path does not exist or if it is not accessible to the
process.

WARNING
If the file whose path is passed to ftok is removed when keys still refer to
the file, future calls to ftok with the same path and id will return an error. If
the same file is recreated, then ftok is likely to return a different key than it
did the original time it was called.

- 1 -

STRING(3C) (C Programming Language Utilities) STRING(3C)

NAME
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#inc1ude <string.h>
#include <sysjtypes.h>

char *strcat (sl, s2)
char *sl, *s2;

char *strdup (sl)
char *sl;

char *strncat (sl, s2, n)
char *sl, *s2;
size_t n;

int strcmp (sl, s2)
char *sl, *s2;

int strncmp (sl, s2, n)
char *sl, *s2;
size_t n;

char *strcpy (sl, s2)
char *sl, *s2;

char *strncpy (sl, s2, n)
char *sl, *s2;
size_t n;

int stden (s)
char *s;

char *strchr (s, c)
char *s;
int c;

char *strrchr (s, c)
char *s;
int C;

char *strpbrk (sl, s2)
char *sl, *s2;

int strspn (sl, s2)
char *sl, *s2;

int strcspn (sl, s2)
char *sl, *s2;

char *strtok (sl, s2)
char *sl, *s2;

- 1 -

STRING(3C) (C Programming Language Utilities) STRING(3C)

DESCRIPTION
The arguments sl, s2, and s point to strings (arrays of characters terminated
by a null character). The functions strcat, strncat, strcpy, and strncpy all
alter sl. These functions do not check for overflow of the array pointed to
by sl.

Strcat appends a copy of string s2 to the end of string sl.

Strdup returns a pointer to a new string which is a duplicate of the string
pointed to by s1. The space for the new string is obtained using malloc(3C).
If the new string cannot be created, null is returned.

Strncat appends at most n characters. Each returns a pointer to the null
terminated result.

Strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as sl is lexicographically less than, equal to, or
greater than s2. Strncmp makes the same comparison but looks at most n
characters.

Strcpy copies string s2 to sl, stopping after the null character has been
copied. Strncpy copies exactly n characters, truncating s2 or adding null
characters to sl if necessary. The result will not be null-terminated if the
length of s2 is n or more. Each function returns sl.

Strlen returns the number of characters in s, not including the terminating
null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c
in string s, or a NULL pointer if c does not occur in the string. The null
character terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string sl of any character
from string s2, or a NULL pointer if no character from s2 exists in sl.

Strspn (strcspn) returns the length of the initial segment of string sl which
consists entirely of characters from (not from) string s2.

Strtok considers the string sl to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer sl specified) returns a pointer to the
first character of the first token, and will have written a null character into
sl immediately following the returned token. The function keeps track of its
position in the string between separate calls, so that subsequent calls (which
must be made with the first argument a NULL pointer) will work through
the string sl immediately following that token. In this way subsequent calls
will work through the string sl until no tokens remain. The separator
string s2 may be different from call to call. When no token remains in sl, a
NULL pointer is returned.

For user convenience, all these functions are declared in the optional
<string.h> header file.

SEE ALSO
malloc(3C), malloc(3X).

- 2 -

STRING(3C) (C Programming Language Utilities) STRING(3C)

CAVEATS
Strcmp and strncmp are implemented by using the most natural character
comparison on the machine. Thus the sign of the value returned when one
of the characters has its high-order bit set not the same in all implementa
tions and should not be relied upon.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

- 3 -

STRTOD(3C) (C Programming Language Utilities) STRTOD(3C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *str;

DESCRIPTION
The strtod function returns as a double-precision floating-point number the
value represented by the character string pointed to by str. The string is
scanned up to the first unrecognized character.

The strtod function recognizes an optional string of "white-space" characters
[as defined by isspace in ctype(3C)], then an optional sign, then a string of
digits optionally containing a decimal point, then an optional e or E fol
lowed by an optional sign or space, followed by an integer.

If the value of ptr is not (char **)NULL, a pointer to the character terminat
ing the scan is returned in the location pointed to by ptr. If no number can
be formed, *ptr is set to str, and zero is returned.

Atof(str) is equivalent to strtod(str, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, ± HUGE (as defined in <math.h»
is returned (according to the sign of the value), and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and errno is set
to ERANGE.

- 1 -

STRTOL(3C) (C Programming Language Utilities) STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
The strtol function returns as a long integer the value represented by the
character string pointed to by str. The string is scanned up to the first char
acter inconsistent with the base. Leading "white-space" characters [as
defined by isspace in ctype(3C)] are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminat
ing the scan is returned in the location pointed to by ptr. If no integer can
be formed, that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored, and
"Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an optional
leading sign a leading zero indicates octal conversion, and a leading "Ox" or
"OX" hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or
by an explicit cast.

Atol(str) is equivalent to strtol(str, (char **)NULL, 10).

Atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10).

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

CAVEAT
Overflow conditions are ignored.

DIAGNOSTICS
If the argument ptr is a null-pointer, the function strtol will return the value
of the string str as a long integer.

If the argument ptr is not NULL, the function strtol will return the value of
the string str as a long integer, and a pointer to the character terminating
the scan will be returned in the location pointed to by ptr.

If no integer can be formed, that location is set to the argument str and the
function strtol returns O.

- 1 -

SWAB(3C) (C Programming Language Utilities) SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
The swab function copies nbytes bytes pointed to by from to the array
pointed to by to, exchanging adjacent even and odd bytes. Nbytes should
be even and non-negative. If nbytes is odd and positive swab uses nbytes-l
instead. If nbytes is negative, swab does nothing.

- 1 -

SYSTEM(3S) (C Programming Language Utilities)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio.h>

int system (string)
char *string;

DESCRIPTION

SYSTEM(3S)

The system function causes the string to be given to sh(l) as input, as if the
string had been typed as a command at a terminal. The current process
waits until the shell has completed, then returns the exit status of the shell.

FILES
/bin/sh

SEE ALSO
exec(2).
sh(l) in the User's Reference Manual.

DIAGNOSTICS
The system function forks to create a child process that in turn exec's
/bin/sh in order to execute string. If the fork or exec fails, system returns a
negative value and sets errno.

- 1 -

TMPFILE(3S) (C Programming Language Utilities) TMPFILE(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#indude <stdio.h>

FILE *tmpfile ()

DESCRIPTION
The tmpfile function creates a temporary file using a name generated by
tmpnam(3S), and returns a corresponding FILE pointer. If the file cannot be
opened, an error message is printed using perror(3C), and a NULL pointer is
returned. The file will automatically be deleted when the process using it
terminates. The file is opened for update (" w+ ").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), stdio(3S),
tmpnam(3S).

- 1 -

TMPNAM(3S) (C Programming Language Utilities) TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary
file.

The tmpnam function always generates a file name using the path-prefix
defined as P _tmpdir in the <stdio.h> header file. If s is NULL, tmpnam
leaves its result in an internal static area and returns a pointer to that area.
The next call to tmpnam will destroy the contents of the area. If s is not
NULL, it is assumed to be the address of an array of at least L_tmpnam
bytes, where L_tmpnam is a constant defined in <stdio.h>; tmpnam places
its result in that array and returns s.

Tempnam allows the user to control the choice of a directory. The argument
dir points to the name of the directory in which the file is to be created. If
dir is NULL or points to a string that is not a name for an appropriate direc
tory, the path-prefix defined as P _tmpdir in the <stdio.h> header file is
used. If that directory is not accessible, Itmp will be used as a last resort.
This entire sequence can be up-staged by providing an environment variable
TMPDIR in the user's environment, whose value is the name of the desired
temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial
letter sequences in their names. Use the pfx argument for this. This argu
ment may be NULL or point to a string of up to five characters to be used as
the first few characters of the temporary-file name.

Tempnam uses malloc(3C) to get space for the constructed file name and
returns a pointer to this area. Thus, any pointer value returned from temp
nam may serve as an argument to free [see malloc(3C)]. If tempnam cannot
return the expected result for any reason, i.e., malloc(3C) failed, or none of
the above mentioned attempts to find an appropriate directory was success
ful, a NULL pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3S) or creat(2) are tem
porary only in the sense that they reside in a directory intended for tem
porary use, and their names are unique. It is the user's responsibility to use
unlink (2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

- 1 -

TMPNAM(3S) (C Programming Language Utilities) TMPNAM(3S)

CAVEATS
If called more than 17,576 times in a single process, these functions will
start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible
for some other process to create a file with the same name. This can never
happen if that other process is using these functions or mktemp, and the file
names are chosen to render duplication by other means unlikely.

- 2 -

TSEARCH(3C) (C Programming Language Utilities) TSEARCH(3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#inc1ude <search.h>

char *tsearch «char *) key, (char **) rootp, compar)
int (*compar)();

char *tfind «char *) key, (char **) rootp, compar)
int (*compar)();

char *tdelete «char *) key, (char **) rootp, compar)
int (*compar)();

void twalk «char *) root, action)
void (*action)();

DESCRIPTION
The tsearch, tfind, tdelete, and twalk functions are routines for manipulating
binary search trees. They are generalized from Knuth (6.2.2) Algorithms T
and D. All comparisons are done with a user-supplied routine. This rou
tine is called with two arguments, the pointers to the elements being com
pared. It returns an integer less than, equal to, or greater than 0, according
to whether the first argument is to be considered less than, equal to, or
greater than the second argument. The comparison function need not com
pare every byte, so arbitrary data may be contained in the elements in addi
tion to the values being compared.

The tsearch function is used to build and access the tree. Key is a pointer
to a datum to be accessed or stored. If there is a datum in the tree equal to
*key (the value pointed to by key), a pointer to this found datum is
returned. Otherwise, *key is inserted, and a pointer to it returned. Only
pointers are copied, so the calling routine must store the data. Rootp points
to a variable that points to the root of the tree. A NULL value for the vari
able pointed to by rootp denotes an empty tree; in this case, the variable
will be set to point to the datum which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to
it if found. However, if it is not found, tfind will return a NULL pointer.
The arguments for tfind are the same as for tsearch.

Tdelete deletes a node from a binary search tree. The arguments are the
same as for tsearch. The variable pointed to by rootp will be changed if the
deleted node was the root of the tree. Tdelete returns a pointer to the
parent of the deleted node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below
that node.) Action is the name of a routine to be invoked at each node.
This routine is, in turn, called with three arguments. The first argument is
the address of the node being visited. The second argument is a value from
an enumeration data type typedef enum { preorder, postorder, endorder, leaf}
VISIT; (defined in the <search.h> header file), depending on whether this is
the first, second, or third time that the node has been visited (during a
depth-first, left-to-right traversal of the tree), or whether the node is a leaf.

- 1 -

TSEARCH(3C) (C Programming Language Utilities) TSEARCH(3C)

The third argument is the level of the node in the tree, with the root being
level zero.

The pointers to the key and the root of the tree should be of type pointer
to-element, and cast to type pointer-to-character. Similarly, although
declared as type pointer-to-character, the value returned should be cast into
type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing a
pointer to each string and a count of its length. It then walks the tree,
printing out the stored strings and their lengths in alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { /* pointers to these are stored in the tree */

};

char *string;
int length;

char string_space[10000]; /* space to store strings */
struct node nodes[500]; /* nodes to store * /
struct node *root = NULL; /* this points to the root * /

main()
{

}
/*

*/
int

char *strptr = string_space;
struct node *nodeptr = nodes;
void prinLnode(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500)
/* set node */

}

nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
/* put node into the tree * /
(void) tsearch((char *)nodeptr, (char **) &root,

node_compare);
/* adjust pointers, so we don't overwrite tree */
strptr += nodeptr->length + 1;
nodeptr++;

twalk((char *)root, prinLnode);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

node_compare(node1, node2)
char *node1, *node2;

- 2 -

TSEARCH(3C)

SEE ALSO

}
/*

*/
void

(C Programming Language Utilities)

return strcmp«(struct node *)nodel)->string,
«struct node *) node2)->string);

This routine prints out a node, the first time
twalk encounters it.

prinLnode(node, order, level)
char **node;
VISIT order;
int level;
{

if (order == pre order I order == leaf) {

TSEARCH(3C)

(void)printf(" string = %20s, length = %d\n",
(*«struct node **)node»->string,
(*«struct node **)node»->length);

bsearch(3C), hsearch(3C), Isearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available
to create a new node.
A NULL pointer is returned by tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not,
tfind returns NULL, and tsearch returns a pointer to the inserted item.

WARNINGS
The root argument to twalk is one level of indirection less than the rootp
arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes
are visited. The tsearch function uses preorder, postorder, and endorder to
respectively refer to visting a node before any of its children, after its left
child and before its right, and after both its children. The alternate nomen
clature uses preorder, inorder, and postorder to refer to the same visits,
which could result in some confusion over the meaning of postorder.

CAVEAT
If the calling function alters the pointer to the root, results are unpredict
able.

- 3 -

TTYNAME(3C) (C Programming Language Utilities) TTYNAME(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

FILES

The ttyname function returns a pointer to a string containing the null
terminated path name of the terminal device associated with file descriptor
fildes.

[satty returns 1 if fildes is associated with a terminal device, 0 otherwise.

/dev/*

DIAGNOSTICS
The ttyname function returns a NULL pointer if fildes does not describe a
terminal device in directory / dev.

CAVEAT
The return value points to static data whose content is overwritten by each
call.

- 1 -

TTYSLOT(3C) (C Programming Language Utilities) TTYSLOT(3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION

FILES

The ttyslot function returns the index of the current user's entry in the
/etc/utmp file. This is accomplished by actually scanning the file
/etc/inittab for the name of the terminal associated with the standard
input, the standard output, or the error output (0, 1 or 2).

/etc/inittab
jetcjutmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the
terminal name or if none of the above file descriptors is associated with a
terminal device.

- 1 -

UNGETC(3S) (C Programming Language Utilities) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#indude <stdio.h>

int ungetc (c, stream)
int Ci
FILE *streami

DESCRIPTION
The ungetc function inserts the character c into the buffer associated with an
input stream. That character, c, will be returned by the next getc(3S) call on
that stream. The ungetc function returns c, and leaves the file stream
unchanged.

One character of pushback is guaranteed, provided something has already
been read from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

The /seek(3S) function erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS

BUGS

ungetc returns EOF if it cannot insert the character.

When stream is stdin, one character may be pushed back onto the buffer
without a previous read statement.

- 1 -

VPRINTF(3S) (C Programming Language Utilities) VPRINTF(3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#inc1ude <stdio.h>
#inc1ude <varargs.h>

int vprintf (format, ap)
char *format;
vuist ap;

int vfprintf (stream, format, ap)
FILE *stream;
char *format;
vuist api

int vsprintf (s, format, ap)
char *s, *format;
vuist ap;

DESCRIPTION
The vprintf, vfprintf, and vsprintf functions are the same as printf, fprintf,
and sprintf respectively, except that instead of being called with a variable
number of arguments, they are called with an argument list as defined by
varargs(5).

EXAMPLE
The following demonstrates the use of vfprintf to write an error routine.

#include <stdio.h>
#include <varargs.h>

/*
* error should be called like
* error(functioIL-Ilame, format, argI, arg2 ...); */

/*V ARARGS* /
void
error(va_alist)
/* Note that the functioIL-Ilame and format arguments cannot be
* separately declared because of the definition of varargs. * /

va_dcl
{

va-list args;
char *fmt;

va-start(args);
/* print out name of function causing error * /
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *»;
fmt = va_arg(args, char *);
/* print out remainder of message * /
(void)vfprintf(stderr, fmt, args);
va_end(args);

- 1 -

VPRINTF(3S) (C Programming Language Utilities) VPRINTF(3S)

(void)abort();

SEE ALSO
printf(3S), varargs(5).

- 2 -

BESSEL(3M) (Math Libraries) BESSEL(3M)

NAME
bessel: jO, jl, jn, yO, yl, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO (x)
double Xi

double jl (x)
double Xi

double jn (n, x)
int ni
double Xi

double yO (x)
double Xi

double yl (x)
double Xi

double yn (n, x)
int ni
double Xi

DESCRIPTION
JO and jl return Bessel functions of x of the first kind of orders 0 and 1
respectively. In returns the Bessel function of x of the first kind of order n.

YO and yl return Bessel functions of x of the second kind of orders 0 and 1
respectively. Yn returns the Bessel function of x of the second kind of order
n. The value of x must be positive.

SEE ALSO
matherr(3M).

DIAGNOSTICS
Non-positive arguments cause yO, yl, and yn to return the value -HUGE and
to set errno to EDOM. In addition, a message indicating DOMAIN error is
printed on the standard error output.

Arguments too large in magnitude cause jO, jl, yO, and yl to return zero
and to set errno to ERANGE. In addition, a message indicating TLOSS error
is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

- 1 -

ERF(3M) (Math Libraries)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double Xi

double erfc (x)
double Xi

DESCRIPTION

ERF(3M)

x

The erf function returns the error function of x, defined as l~ f e-t2 dt.
V1I" 0

erfc, which returns 1.0 - erf(x) , is provided because of the extreme loss of
relative accuracy if erf(x) is called for large x and the result subtracted from
1.0 (e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

- 1 -

EXP(3M) (Math Libraries) EXP(3M)

NAME
exp, log, logIO, pow, sqrt - exponential, logarithm, power, square root func
tions

SYNOPSIS
#inc1ude <math.h>

double exp (x)
double x;

double log (x)
double x;

double loglO (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
The exp function returns eX.

Log returns the natural logarithm of x. The value of x must be positive.

LaglO returns the logarithm base ten of x. The value of x must be positive.

Pow returns xY• If x is zero, y must be positive. If x is negative, y must be
an integer.

Sqrt returns the non-negative square root of x. The value of x may not be
negative.

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

DIAGNOSTICS
The exp function returns HUGE when the correct value would overflow, or 0
when the correct value would underflow, and sets errna to ERANGE.

Log and laglO return -HUGE and set errna to ED OM when x is non-positive.
A message indicating DOMAIN error (or SING error when x is 0) is printed
on the standard error output.

Pow returns 0 and sets errna to EDOM when x is 0 and y is non-positive, or
when x is negative and y is not an integer. In these cases a message indi
cating DOMAIN error is printed on the standard error output. When the
correct value for pow would overflow or underflow, pow returns ± HUGE or
o respectively, and sets errna to ERANGE.

Sqrt returns 0 and sets errna to EDOM when x is negative. A message indi
cating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

- 1 -

FLOOR(3M) (Math Libraries) FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
The floor function returns the largest integer (as a double-precision number)
not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by y: zero if
y is zero or if xjy would overflow; otherwise the number f with the same
sign as x, such that x = iy + f for some integer i, and If I < Iy I.

Fabs returns the absolute value of x, Ix I.

SEE ALSO
abs(3C).

- 1 -

GAMMA(3M) (Math Libraries) GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
#inc1ude <math.h>

double gamma (x)
double Xi

extern int signgami

DESCRIPTION

The gamma function returns In(li(x)l), where i(x) is defined as Je-ttX-1dt.
o

The sign of i(x) is returned in the external integer signgam. The argument
x may not be a non-positive integer.

The following C program fragment might be used to calculate i:

if «y = gamma(x» > LN_MAXDOUBLE)
error();

y = signgam * exp(y);

where LN_MAXDOUBLE is the least value that causes exp(3M) to return a
range error, and is defined in the <values.h> header file.

SEE ALSO
exp(3M), matherr(3M), values(5).

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errna is set to
EDOM. A message indicating SING error is printed on the standard error
output.

If the correct value would overflow, gamma returns HUGE and sets errna to
ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

- 1 -

HYPOT(3M) (Math Libraries)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
hypat returns

sqrt(x * x + Y * y),

taking precautions against unwarranted overflows.

SEE ALSO
matherr(3M).

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, hypat returns HUGE and sets errna
to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

- 1 -

MATHERR(3M) (Math Libraries) MATHERR(3M)

NAME
math err - error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
The matherr function is invoked by functions in the Math Library when
errors are detected. Users may define their own procedures for handling
errors by including a function named matherr in their programs. The math
err function must be of the form described above. When an error occurs, a
pointer to the exception structure x will be passed to the user-supplied
matherr function. This structure, which is defined in the <math.h> header
file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

} ;

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function
that incurred the error. The variables argl and arg2 are the arguments with
which the function was invoked. Retval is set to the default value that will
be returned by the function unless the user's matherr sets it to a different
value.

If the user's matherr function returns non-zero, no error message will be
printed, and errno will not be set.

H matherr is not supplied by the user, the default error-handling procedures,
described with the math functions involved, will be invoked upon error.
These procedures are also summarized in the table below. In every case,
errno is set to ED OM or ERANGE and the program continues.

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *x;
{

switch (x->type) {

- I -

MATHERR(3M)

}

type

erma

BESSEL:

ivO, vi, vn (arg :s:; 0)

EXP:

LOG, LOGlO:

(arg < 0)

(arg = 0)

POW:

neg ** non-int

0** non-pos

SQRT:

GAMMA:

HYPOT:

SINH:

COSH:

SIN, COS, TAN: -

(Math Libraries) MATHERR(3M)

case DOMAIN:
/* change sqrt to return sqrt(-arg1), not 0 */
if (!strcmp(x->name, "sqrt"» {

x->retval = sqrt(-x->arg1);
return (0); /* print message and set errno */

case SING:
/* all other domain or sing errors, print message and abort * /
fprintf(stderr, II domain error in %s\n II , x->name);
abort();

case PLOSS:

}

/* print detailed error message *1
fprintf(stderr, II loss of significance in %s(%g) = %g\n II ,

x->name, x->arg1, x->retval);
return (1); /* take no other action */

return (0); /* all other errors, execute default procedure */

DEF AULT ERROR HANDLING PROCEDURES

Types of Errors
DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

EDaM EDOM ERANGE ERANGE ERANGE ERANGE

- - - - M,O *
M,-H - - - - -

- - H 0 - -

M,-H - - - - -

- M,-H - - - -

- - ±H 0 - -
M,O - - - - -

M,O - - - - -

- M,H H - - -

- - H - - -

- - +H - - -

- - H - - -

- - - M,O *

AS IN, ACOS, ATAN2: M, 0 - - - - -

- 2 -

MATHERR(3M) (Math Libraries) MATHERR(3M)

ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.

-H -HUGE is returned.
± H HUGE or -HUGE is returned.
o 0 is returned.

- 3 -

SINH(3M) (Math Libraries) SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#inc1ude <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
The sinh, cosh, and tanh functions return, respectively, the hyberbolic sine,
cosine and tangent of their argument.

SEE ALSO
matherr(3M).

DIAGNOSTICS
The sinh and cosh functions return HUGE (and sinh may return -HUGE for
negative x) when the correct value would overflow and set errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

- 1 -

TRIG(3M) (Math Libraries) TRIG(3M)

NAME
trig: sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#indude <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double at an (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION
The sin, cos, and tan functions return respectively the sine, cosine, and
tangent of their argument, x, measured in radians.

Asin returns the arcsine of x, in the range [-7r /2,7r /2].

Acos returns the arccosine of x, in the. range [O,7r].

Atan returns the arctangent of x, in the range [-7r /2,7r /2].

Atan2 returns the arctangent of y /x, in the range (-7r,7r], using the signs of
both arguments to determine the quadrant of the return value.

SEE ALSO
matherr(3M).

DIAGNOSTICS
Sin, cos, and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there would
otherwise be a complete loss of significance. In this case a message indicat
ing TLOSS error is printed on the standard error output. For less extreme
arguments causing partial loss of significance, a PLOSS error is generated but
no message is printed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if
both arguments of atan2 are zero, zero is returned and errno is set to ED OM.
In addition, a message indicating DOMAIN error is printed on the standard
error output.

These error-handling procedures may be changed with the function
matherr(3M).

- 1 -

T-ACCEPT(3N) (Networking Support Utilities) T-ACCEPT(3N)

NAME
Laccept - accept a connect request

SYNOPSIS
#include <tiuser.h>

int Laccept(fd, resfd, call)
int fd;
int resfd;
struct LcaH *caH;

DESCRIPTION
This function is issued by a transport user to accept a connect request. Fd
identifies the local transport endpoint where the connect indication arrived,
resfd specifies the local transport endpoint where the connection is to be
established, and call contains information required by the transport provider
to complete the connection. Call points to a t_call structure which contains
the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). In call, addr is the address of the caller, opt
indicates any protocol-specific parameters associated with the connection,
udata points to any user data to be returned to the caller, and sequence is the
value returned by t_Iisten that uniquely associates the response with a pre
viously received connect indication.

A transport user may accept a connection on either the same, or on a dif
ferent, local transport endpoint than the one on which the connect indica
tion arrived. If the same endpoint is specified (Le., resfd=fd), the connection
can be accepted unless the following condition is true: The user has
received other indications on that endpoint but has not responded to them
(with t_accept or L.snddis). For this condition, t_accept will fail and set
t_errno to TBADF.

If a different transport endpoint is specified (resfd!=fd), the endpoint must
be bound to a protocol address and must be in the T-IDLE state [see
t_getstate(3N)] before the t_accept is issued.

For both types of endpoints, t_accept will fail and set t_errna to TLOOK if
there are indications (e.g., a connect or disconnect) waiting to be received
on that endpoint.

The values of parameters specified by opt and the syntax of those values are
protocol-specific. The udata argument enables the called transport user to
send user data to the caller and the amount of user data must not exceed
the limits supported by the transport provider as returned by t_open or
t_getinfo. If the len [see netbuf in intro(3)] field of udata is zero, no data will
be sent to the caller.

- 1 -

T-ACCEPT(3N) (Networking Support Utilities) T-ACCEPT(3N)

On failure, t_errno may be set to one of the following:

[TBADF]

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADDATA]

[TBADSEQ]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a tran
sport endpoint, or the user is illegally accepting a con
nection on the same transport endpoint on which the
connect indication arrived.

The function was issued in the wrong sequence on the
transport endpoint referenced by fd, or the transport
endpoint referred to by resfd is not in the T-IDLE state.

The user does not have permission to accept a connec
tion on the responding transport endpoint or use the
specified options.

The specified options were in an incorrect format or
contained illegal information.

The amount of user data specified was not within the
bounds allowed by the transport provider.

An invalid sequence number was specified.

An asynchronous event has occurred on the transport
endpoint referenced by fd and requires immediate
attention.

This function is not supported by the underlying tran
sport provider.

A system error has occurred during execution of this
function.

intro(3), Lconnect(3N), Lgetstate(3N), Llisten(3N), Lopen(3N),
Lrcvconnect(3N).
Network Programmer's Guide.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned, and t_errno is set to indicate the error.

- 2 -

T-ALLOC(3N) (Networking Support Utilities) T-ALLOC(3N)

NAME
Lalloc - allocate a library structure

SYNOPSIS
#include <tiuser.h>

char *Lalloc(fd, struct_type, fields)
int fd;
int struct_type;
int fields;

DESCRIPTION
The t_alloc function dynamically allocates memory for the various transport
function argument structures as specified below. This function will allocate
memory for the specified structure, and will also allocate memory for
buffers referenced by the structure.

The structure to allocate is specified by struct_type, and can be one of the
following:

T_BIND struct Lbind

T_CALL struct Lcall

T_OPTMGMT struct Loptmgmt
I

T_DIS struct Ldiscon

T_UNITDATA struct Lunitdata

T_UDERROR struct Luderr

T_INFO struct Unfo

where each of these structures may subsequently be used as an argument to
one or more transport functions.

Each of the above structures, except T_INFO, contains at least one field of
type struct netbuf. Netbuf is described in intro(3). For each field of this
type, the user may specify that the buffer for that field should be allocated
as well. The fields argument specifies this option, where the argument is
the bitwise-OR of any of the following:

T-ADDR The addr field of the t_bind, t_call, t_unitdata, or t_uderr struc
tures.

The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr
structures.

T_UDATA The udata field of the t_call, t_discon, or t_unitdata structures.

T-ALL All relevant fields of the given structure.

For each field specified in fields, t_alloc will allocate memory for the buffer
associated with the field, and initialize the buf pointer and maxlen [see net
buf in intro(3) for description of buf and maxlen] field accordingly. The
length of the buffer allocated will be based on the same size information
that is returned to the user on t_open and t_getinfo. Thus, fd must refer to
the transport endpoint through which the newly allocated structure will be
passed, so that the appropriate size information can be accessed. If the size

- 1 -

T-ALLOC(3N) (Networking Support Utilities) T~LLOC(3N)

value associated with any specified field is :.....1 or -2 (see t_open or
t_getinfo), t_alloc will be unable to determine the size of the buffer to allo
cate and will fail, setting t_errno to TSYSERR and errno to EINV AL. For any
field not specified in fields, buf will be set to NULL and maxlen will be set to
zero.

Use of t_alloc to allocate structures will help ensure the compatibility of
user programs with future releases of the transport interface.

On failure, t_errno may be set to one of the following:

[TBADF]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a transport
endpoint.

A system error has occurred during execution of this func
tion.

intro(3), Lfree(3N), Lgetinfo(3N), Lopen(3N).
Network Programmer's Guide.

DIAGNOSTICS
On successful completion, t_alloc returns a pointer to the newly allocated
structure. On failure, NULL is returned.

- 2 -

T_BINO(3N) (Networking Support Utilities) T_BINO(3N)

NAME
Lbind - bind an address to a transport endpoint

SYNOPSIS
#inc1ude <tiuser.h>

int Lbind(fd, req, ret)
int fd;
struct Lbind *req;
struct t_bind *ret;

DESCRIPTION
This function associates a protocol address with the transport e1jldpoint
specified by td and activates that transport endpoint. In connection mode,
the transport provider may begin accepting or requesting connections on the
transport endpoint. In connectionless mode, the transport user may send or
receive data units through the transport endpoint.

The req and ret arguments point to a t_bind structure containing the follow
ing members:

struct netbuf addr;
unsigned qlen;

Netbut is described in intro(3). The addr field of the t_bind structure speci
fies a protocol address and the qlen field is used to indicate the maximum
number of outstanding connect indications.

Req is used to request that an address, represented by the netbut structure,
be bound to the given transport endpoint. Len [see netbut in intro(3); also
for but and maxlen] specifies the number of bytes in the address and but
points to the address buffer. Maxlen has no meaning for the req argument.
On return, ret contains the address that the transport provider actually
bound to the transport endpoint; this may be different from the address
specified by the user in req. In ret, the user specifies maxlen which is the
maximum size of the address buffer and but which points to the buffer
where the address is to be placed. On return, len specifies the number of
bytes in the bound address and but points to the bound address. If maxlen
is not large enough to hold the returned address, an error will result.

If the requested address is not available, or if no address is specified in req
(the len field of addr in req is zero) the transport provider will assign an
appropriate address to be bound, and will return that address in the addr
field of ret. The user can compare the addresses in req and ret to determine
whether the transport provider bound the transport endpoint to a different
address than that requested.

Req may be NULL if the user does not wish to specify an address to be
bound. Here, the value of qlen is assumed to be zero, and the transport
provider must assign an address to the transport endpoint. Similarly, ret
may be NULL if the user does not care what address was bound by the pro
vider and is not interested in the negotiated value of qlen. It is valid to set
req and ret to NULL for the same call, in which case the provider chooses
the address to bind to the transport endpoint and does not return that infor
mation to the user.

- 1 -

T_BIND(3N) (Networking Support Utilities)

The qlen field has meaning only when initializing a connection-mode ser
vice. It specifies the number of outstanding connect indications the tran
sport provider should support for the given transport endpoint. An out
standing connect indication is one that has been passed to the transport user
by the transport provider. A value of qlen greater than zero is only mean
ingful when issued by a passive transport user that expects other users to
call it. The value of qlen will be negotiated by the transport provider and
may be changed if the transport provider cannot support the specified
number of outstanding connect indications. On return, the qlen field in ret
will contain the negotiated value.

This function allows more than one transport endpoint to be bound to the
same protocol address (however, the transport provider must support this
capability also), but it is not allowable to bind more than one protocol
address to the same transport endpoint. If a user binds more than one tran
sport endpoint to the same protocol address, only one endpoint can be used
to listen for connect indications associated with that protocol address. In
other words, only one t_bind for a given protocol address may specify a
value of qlen greater than zero. In this way, the transport provider can
identify which transport endpoint should be notified of an incoming connect
indication. If a user attempts to bind a protocol address to a second tran
sport endpoint with a value of qlen greater than zero, the transport provider
will assign another address to be bound to that endpoint. If a user accepts a
connection on the transport endpoint that is being used as the listening end
point, the bound protocol address will be found to be busy for the duration
of that connection. No other transport endpoints may be bound for listen
ing while that initial listening endpoint is in the data transfer phase. This
will prevent more than one transport endpoint bound to the same protocol
address from accepting connect indications.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran
sport endpoint.

[TOUTSTATE]

[TBADADDR]

[TNOADDR]

[TACCES]

[TBUFOVFLW]

[TSYSERR]

The function was issued in the wrong sequence.

The specified protocol address was in an incorrect for
mat or contained illegal information.

The transport provider could not allocate an address.

The user does not have permission to use the specified
address.

The number of bytes allowed for an incoming argu
ment is not sufficient to store the value of that argu
ment. The provider's state will change to T_IDLE and
the information to be returned in ret will be discarded.

A system error has occurred during execution of this
function.

- 2 -

(Networking Support Utilities)

SEE ALSO
intro(3), Lopen(3N), Loptmgmt(3N), Lunbind(3N).
Network Programmer's Guide.

DIAGNOSTICS

T_BIND(3N)

The t_bind function returns 0 on success and -1 on failure, and t_errno is
set to indicate the error.

- 3 -

T_CLOSE(3N) (Networking Support Utilities)

NAME
Lclose - close a transport endpoint

SYNOPSIS
#include <tiuser.h>

int Lclose(fd)
int fd;

DESCRIPTION
The t_close function informs the transport provider that the user is finished
with the transport endpoint specified by fd, and frees any local library
resources associated with the endpoint. In addition, t_close closes the file
associated with the transport endpoint.

The t_close function should be called from the T_UNBND state [see
t_getstate (3N)]. However, this function does not check state information, so
it may be called from any state to close a transport endpoint. If this occurs,
the local library resources associated with the endpoint will be freed
automatically. In addition, close(2) will be issued for that file descriptor; the
close will be abortive if no other process has that file open, and will break
any transport connection that may be associated with that endpoint.

On failure, t_errno may be set to the following:

[TBADF] The specified file descriptor does not refer to a transport end
point.

SEE ALSO
Lgetstate(3N), Lopen(3N), Lunbind(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t_close function returns a on success and -Ion failure, and t_errno is
set to indicate the error.

- 1 -

T_CONNECT(3N) (Networking Support Utilities)

NAME
Lconnect - establish a connection with another transport user

SYNOPSIS
#inc1ude <tiuser.h>

int Lconned(fd, sndcall, rcvcall)
int fd;
strud t_call *sndcall;
strud Lcall *rcvcall;

DESCRIPTION
This function enables a transport user to request a connection to the speci
fied destination transport user. Fd identifies the local transport endpoint
where communication will be established, while sndcall and rcvcall point to
a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Sndcall specifies information needed by the transport provider to establish a
connection, and rcvcall specifies information that is associated with the
newly established connection.

Netbuf is described in intro(3). In sndcall, addr specifies the protocol address
of the destination transport user, opt presents any protocol-specific informa
tion that might be needed by the transport provider, udata points to
optional user data that may be passed to the destination transport user dur
ing connection establishment, and sequence has no meaning for this func
tion.

On return in rcvcall, addr returns the protocol address associated with the
responding transport endpoint; opt presents any protocol-specific informa
tion associated with the connection; udata points to optional user data that
may be returned by the destination transport user during connection estab
lishment; and sequence has no meaning for this function.

The opt argument implies no structure on the options that may be passed to
the transport provider. The transport provider is free to specify the struc
ture of any options passed to it. These options are specific to the underly
ing protocol of the transport provider. The user may choose not to nego
tiate protocol options by setting the len field of opt to zero. In this case, the
provider may use default options.

The udata argument enables the caller to pass user data to the destination
transport user and receive user data from the destination user during con
nection establishment. However, the amount of user data must not exceed
the limits supported by the transport provider as returned by t_open (3N) or
t_getinfo (3N). If the len [see netbuf in intro(3)] field of udata is zero in
sndcall, no data will be sent to the destination transport user.

- 1 -

(Networking Support Utilities) T_CONNECT(3N)

On return, the addr, opt, and udata fields of rcvcall will be updated to reflect
values associated with the connection. Thus, the maxZen [see netbuJ in
intro(3)] field of each argument must be set before issuing this function to
indicate the maximum size of the buffer for each. However, rcvcall may be
NULL, in which case no information is given to the user on return from
t_connect.

By default, t_connect executes in synchronous mode, and will wait for the
destination user's response before returning control to the local user. A suc
cessful return (i.e., return value of zero) indicates that the requested connec
tion has been established. However, if O_NDELA Y is set (via t_open or
JcntZ), t_connect executes in asynchronous mode. In this case, the call will
not wait for the remote user's response, but will return control immediately
to the local user and return -1 with t_errno set to TNODATA to indicate that
the connection has not yet been established. In this way, the function sim
ply initiates the connection establishment procedure by sending a connect
request to the destination transport user.

On failure, t_errno may be set to one of the following:

[TBADF]

[TOUTSTATE]

[TNODATA]

[TBADADDR]

[TBADOPT]

[TBADDATA]

[TACCES]

[TBUFOVFLW]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

The specified file descriptor does not refer to a tran
sport endpoint.

The function was issued in the wrong sequence.

O-NDELAY was set, so the function successfully Im

tiated the connection establishment procedure, but did
not wait for a response from the remote user.

The specified protocol address was in an incorrect for
mat or contained illegal information.

The specified protocol options were in an incorrect for
mat or contained illegal information.

The amount of user data specified was not within the
bounds allowed by the transport provider.

The user does not have permission to use the specified
address or options.

The number of bytes allocated for an incoming argu
ment is not sufficient to store the value of that argu
ment. If executed in synchronous mode, the provider's
state, as seen by the user, changes to T_DATAXFER,
and the connect indication information to be returned
in rcvcall is discarded.

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

This function is not supported by the underlying tran
sport provider.

A system error has occurred during execution of this
function.

- 2 -

T_CONNECT(3N) (Networking Support Utilities) T_CONNECT(3N)

SEE ALSO
intro(3), Laccept(3N), Lgetinfo(3N), Llisten(3N), Lopen(3N),
Loptmgmt(3N), Lrcvconnect(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t_connect function returns a on success and -Ion failure, and t_errno
is set to indicate the error.

- 3 -

T _ERROR(3N) (Networking Support Utilities)

NAME
Lerror - produce error message

SYNOPSIS
#include <tiuser.h>

void Lerror(errmsg)
char *errmsg;
extern int t_errnoj
extern char *t_errlist[]j
extern int t-Ilerrj

DESCRIPTION
The t_error function produces a message on the standard error output
which describes the last error encountered during a call to a transport func
tion. The argument string errmsg is a user-supplied error message that gives
context to the error. The t_error function prints the user-supplied error
message followed by a colon and a standard error message for the current
error defined in t_errno. To simplify variant formatting of messages, the
array of message strings t_errlist is provided; t_errno can be used as an
index in this table to get the message string without the new line. The
t_nerr function is the largest message number provided for in the t_errlist
table.

The t_errno function is only set when an error occurs and is not cleared on
successful calls.

EXAMPLE
If a t_connect function fails on transport endpoint fd2 because a bad address
was given, the following call might follow the failure:

Lerror("Lconnect failed on fd2");

The diagnostic message to be printed would look like:

Lconnect failed on fd2: Incorrect transport address format

where "Incorrect transport address format" identifies the specific error that
occurred, and "Lconnect failed on fd2" tells the user which function failed
on which transport endpoint.

SEE ALSO
Network Programmer's Guide.

- 1 -

(Networking Support Utilities) T_FREE(3N)

NAME
Lfree - free a library structure

SYNOPSIS
#include <tiuser.h>

int Lfree(ptr, strucLtype)
char *ptr;
int strucLtype;

DESCRIPTION
The t-free function frees memory previously allocated by t_alloe. This
function will free memory for the specified structure and will also free
memory for buffers referenced by the structure.

Ptr points to one of the six structure types described for t_alloe, and
struet_type identifies the type of that structure which can be one of the fol
lowing:

T _BIND struct Lbind

T_CALL struct Lcall

T_OPTMGMT struct Loptmgmt

T_DIS struct Ldiscon

T_UNITDATA struct Lunitdata

T_UDERROR struct Luderr

T-INFO struct Unfo

where each of these structures is used as an argument to one or more tran
sport functions.

The t_free function will check the addr, opt, and udata fields of the given
structure (as appropriate) and free the buffers pointed to by the buf field of
the netbuf [see intro(3)] structure. If buf is NULL, t_free will not attempt to
free memory. After all buffers are freed, t_free will free the memory associ
ated with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a
block of memory that was not previously allocated by t_alloe.

On failure, t_errno may be set to the following:

[TSYSERR]

SEE ALSO

A system error has occurred during execution of this func
tion.

intro(3), Lalloc(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t-free function returns 0 on success and -1 on failure, and t_errno is set
to indicate the error.

- 1 -

T _GETINFO(3N) (Networking Support Utilities) T_GETINFO(3N)

NAME
Lgetinfo - get protocol-specific service information

SYNOPSIS
#inc1ude <tiuser.h>

int Lgetinfo(fd, info)
int fd;
struct Linfo *info;

DESCRIPTION
This function returns the current characteristics of the underlying transport
protocol associated with file descriptor fd. The info structure is used to
return the same information returned by t_open. This function enables a
transport user to access this information during any phase of communica
tion.

This argument points to a t_info structure which contains the following
members:

long addr;
long options;
long tsdu;
long etsdu;

long connect;

long discon;

long servtype;

j* max size of the transport protocol address * j
j* max number of bytes of protocol-specific options * j
j* max size of a transport service data unit (TSDU) * j
j* max size of an expedited transport service data
unit (ETSDU) * j
j* max amount of data allowed on connection establishment
functions * j
j* max amount of data allowed on L-Bnddis and t_rcvdis
functions * j
j* service type supported by the transport provider * j

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the maximum
size of a transport protocol address; a value of -1 specifies
that there is no limit on the address size; and a value of -2
specifies that the transport provider does not provide user
access to transport protocol addresses.

options

tsdu

A value greater than or equal to zero indicates the maximum
number of bytes of protocol-specific options supported by
the provider; a value of -1 specifies that there is no limit on
the option size; and a value of -2 specifies that the transport
provider does not support user-settable options.

A value greater than zero specifies the maximum size of a
transport service data unit (TSDU); a value of zero specifies
that the transport provider does not support the concept of
TSDU, although it does support the sending of a data stream
with no logical boundaries preserved across a connection; a
value of -1 specifies that there is no limit on the size of a
TSDU; and a value of -2 specifies that the transfer of normal
data is not supported by the transport provider.

- 1 -

T ,,-GETINFO(3N)

etsdu

connect

discon

servtype

(Networking Support Utilities) T _GETINFO(3N)

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSOU); a value of
zero specifies that the transport provider does not support
the concept of ETSOU, although it does support the sending
of an expedited data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that
there is no limit on the size of an ETSOU; and a value of -2
specifies that the transfer of expedited data is not supported
by the transport provider.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with connection
establishment functions; a value of -1 specifies that there is
no limit on the amount of data sent during connection estab
lishment; and a value of -2 specifies that the transport pro
vider does not allow data to be sent with connection estab
lishment functions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the t-snddis and
t_rcvdis functions; a value of -1 specifies that there is no
limit on the amount of data sent with these abortive release
functions; and a value of -2 specifies that the transport pro
vider does not allow data to be sent with the abortive
release functions.

This field specifies the service type supported by the tran
sport provider, as described below.

If a transport user is concerned with protocol independence, the above sizes
may be accessed to determine how large the buffers must be to hold each
piece of information. Alternatively, the t_aUoc function may be used to
allocate these buffers. An error will result if a transport user exceeds the
allowed data size on any function. The value of each field may change as a
result of option negotiation, and t_getinfo enables a user to retrieve the
current characteristics.

The servtype field of info may specify one of the following values on return:

T_COTS The transport provider supports a connection-mode service
but does not support the optional orderly release facility.

T _COTS_ORO The transport provider supports a connection -mode service
with the optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode ser
vice. For this service type, t_open will return -2 for etsdu,
connect, and discon.

On failure, t_errno may be set to one of the following:

[TBAOF] The specified file descriptor does not refer to a transport
endpoint.

[TSYSERR] A system error has occurred during execution of this func
tion.

- 2 -

SEE ALSO
Lopen(3N).

(Networking Support Utilities)

Network Programmer's Guide.

DIAGNOSTICS

T_GETINFO(3N)

The t_getinfo function returns 0 on success and -Ion failure, and t_errno is
set to indicate the error.

- 3 -

T_GETSTATE(3N) (Networking Support Utilities) T_GETSTATE(3N)

NAME
Lgetstate - get the current state

SYNOPSIS.
#inc1ude <tiuser.h>

int Lgetstate(fd)
int fd;

DESCRIPTION
The t_getstate function returns the current state of the provider associated
with the transport endpoint specified by fd.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TSTATECHNG]

[TSYSERR]

The transport provider is undergoing a state change.

A system error has occurred during execution of this
function.

SEE ALSO
Lopen(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t_getstate function returns the current state on successful completion
and -Ion failure, and t_errno is set to indicate the error. The current state
may be one of the following:

T_UNBND unbound

T_IDLE idle

T_OUTCON outgoing connection pending

T_INCON incoming connection pending

T_DATAXFER data transfer

T_OUTREL outgoing orderly release (waiting for an orderly release
indication)

T-INREL incoming orderly release (waiting for an orderly release
request)

If the provider is undergoing a state transition when t_getstate is called, the
function will fail.

- 1 -

(Networking Support Utilities)

NAME
Llisten - listen for a connect request

SYNOPSIS
#include <tiuser.h>

int Llisten(fd, call)
int fd;
strud Lcall * call;

DESCRIPTION
This function listens for a connect request from a calling transport user. Fd
identifies the local transport endpoint where connect indications arrive, and
on return, call contains information describing the connect indication. Call
points to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). In call, addr returns the protocol address of
the calling transport user; opt returns protocol-specific parameters associated
with the connect request; udata returns any user data sent by the caller on
the connect request; and sequence is a number that uniquely identifies the
returned connect indication. The value of sequence enables the user to listen
for multiple connect indications before responding to any of them.

Since this function returns values for the addr, opt, and udata fields of call,
the maxlen [see netbuf in intro(3)] field of each must be set before issuing the
t_listen to indicate the maximum size of the buffer for each.

By default, t_listen executes in synchronous mode and waits for a connect
indication to arrive before returning to the user. However, if O_NDELA Y is
set (via t_open or fcntl), t_listen executes asynchronously, reducing to a poll
for existing connect indications. If none are available, it returns -1 and sets
t_errno to TNODATA.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran
sport endpoint.

[TBUFOVFLW]

[TNODATA]

[TLOOK]

The number of bytes allocated for an incoming argu
ment is not sufficient to store the value of that argu
ment. The provider's state, as seen by the user,
changes to T-INCON, and the connect indication
information to be returned in call is discarded.

O-NDELA Y was set, but no connect indications had
been queued.

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

- 1 -

[TNOTSUPPORT]

[TSYSERR]

CAVEATS

(Networking Support Utilities) T_LISTEN(3N)

This function is not supported by the underlying tran
sport provider.

A system error has occurred during execution of this
function.

If a user issues t_Iisten in synchronous mode on a transport endpoint that
was not bound for listening (Le., qlen was zero on t_hind), the call will wait
forever because no connect indications will arrive on that endpoint.

SEE ALSO
intro(3), Laccept(3N), Lbind(3N), Lconnect(3N), Lopen(3N),
Lrcvconnect(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t_Iisten function returns 0 on success and -Ion failure, and t_errno is
set to indicate the error.

- 2 -

(Networking Support Utilities)

NAME
Uook - look at the current event on a transport endpoint

SYNOPSIS
#include <tiuser.h>

int Llook(fd)
int fd;

DESCRIPTION
This function returns the current event on the transport endpoint specified
by fd. This function enables a transport provider to notify a transport user
of an asynchronous event when the user is issuing functions in synchronous
mode. Certain events require immediate notification of the user and are
indicated by a specific error, TLOOK, on the current or next function to be
executed.

This function also enables a transport user to poll a transport endpoint
periodically for asynchronous events.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TSYSERR]

SEE ALSO
Lopen(3N).

A system error has occurred during execution of this func
tion.

Network Programmer's Guide.

DIAGNOSTICS
Upon success, t_Iook returns a value that indicates which of the allowable
events has occurred, or returns zero if no event exists. One of the following
events is returned:

T_LISTEN

T_CONNECT

T_DATA

T-EXDATA

T_DISCONNECT

T-ERROR

T_UDERR

T_ORDREL

connection indication received

connect confirmation received

normal data received

expedited data received

disconnect received

fatal error indication

datagram error indication

orderly release indication

On failure, -1 is returned, and t_errno is set to indicate the error.

- 1 -

(Networking Support Utilities)

NAME
Lopen - establish a transport endpoint

SYNOPSIS
#include <tiuser.h>

int Lopen(path, oflag, info)
char *path;
int oflag;
struct Linfo * info;

DESCRIPTION
The t_open function must be called as the first step in the initialization of a
transport endpoint. This function establishes a transport endpoint by open
ing a UNIX system file that identifies a particular transport provider (Le.,
transport protocol) and returning a file descriptor that identifies that end
point. For example, opening the file / dev / iso_cots identifies an OSI
connection-oriented transport layer protocol as the transport provider.

Path points to the path name of the file to open, and oflag identifies any
open flags [as in open(2)]. t_open returns a file descriptor that will be used
by all subsequent functions to identify the particular local transport end
point.

This function also returns various default characteristics of the underlying
transport protocol by setting fields in the t_info structure. This argument
points to a t_info which contains the following members:

long addr; /* max size of the transport protocol address * /
long options; /* max number of bytes of protocol-specific

long tsdu;
long etsdu;

options * /
/* max size of a transport service data unit (TSDU) * /
/* max size of an expedited transport service data
unit (ETSDU) * /

long connect; /* max amount of data allowed on connection

long discon;
establishment functions * /
/* max amount of data allowed on t-snddis and
t_rcvdis functions * /

long servtype; /* service type supported by the transport provider * /
The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the maximum
size of a transport protocol address; a value of -1 specifies
that there is no limit on the address size; and a value of -2
specifies that the transport provider does not provide user
access to transport protocol addresses.

options A value greater than or equal to zero indicates the maximum
number of bytes of protocol-specific options supported by
the provider; a value of -1 specifies that there is no limit on
the option size; and a value of -2 specifies that the transport
provider does not support user-settable options.

- 1 -

tsdu

etsdu

connect

discon

servtype

(Networking Support Utilities)

A value greater than zero specifies the maximum size of a
transport service data unit (TSDU); a value of zero specifies
that the transport provider does not support the concept of
TSDU, although it does support the sending of a data stream
with no logical boundaries preserved across a connection; a
value of -1 specifies that there is no limit on the size of a
TSDU; and a value of -2 specifies that the transfer of normal
data is not supported by the transport provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of
zero specifies that the transport provider does not support
the concept of ETSDU, although it does support the sending
of an expedited data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that
there is no limit on the size of an ETSDU; and a value of -2
specifies that the transfer of expedited data is not supported
by the transport provider.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with connection
establishment functions; a value of -1 specifies that there is
no limit on the amount of data sent during connection estab
lishment; and a value of -2 specifies that the transport pro
vider does not allow data to be sent with connection estab
lishment functions.

A value greater than or equal to zero specifies the maximum
amount of data that may be associated with the t-Bnddis and
t_rcvdis functions; a value of -1 specifies that there is no
limit on the amount of data sent with these abortive release
functions; and a value of -2 specifies that the transport pro
vider does not allow data to be sent with the abortive
release functions.

This field specifies the service type supported by the tran
sport provider, as described below.

If a transport user is concerned with protocol independence, the above sizes
may be accessed to determine how large the buffers must be to hold each
piece of information. Alternatively, the t_alloc function may be used to
allocate these buffers. An error will result if a transport user exceeds the
allowed data size on any function.

The servtype field of info may specify one of the following values on return:

T_COTS The transport provider supports a connection-mode service
but does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service
with the optional orderly release facility.

The transport provider supports a connectionless-mode ser
vice. For this service type, t_open will return -2 for etsdu,
connect, and disc on.

- 2 -

(Networking Support Utilities)

A single transport endpoint may support only one of the above services at
one time.

If info is set to ULL by the transport user, no protocol information is returned
by t_open.

On failure, t_errno may be set to the following:

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
open(2).
Network Programmer's Guide.

DIAGNOSTICS
The t_open function returns a valid file descriptor on success and -1 on
failure, and t_errno is set to indicate the error.

- 3 -

T_OPTMGMT(3N) (Networking Support Utilities) T_OPTMGMT(3N)

NAME
Loptmgmt - manage options for a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_optmgmt(fd, req, ret)
int fd;
strud t_optmgmt *req;
strud t_optmgmt *ret;

DESCRIPTION
The t_optmgmt function enables a transport user to retrieve, verify, or nego
tiate protocol options with the transport provider. Fd identifies a bound
transport endpoint.

The req and ret arguments point to a t_optmgmt structure containing the fol
lowing members:

struct netbuf opt;
long flags;

The opt field identifies protocol options, and the flags field is used to specify
the action to take with those options.

The options are represented by a netbut [see intro(3); also for len, but, and
maxlen] structure in a manner similar to the address in t_bind. Req is used
to request a specific action of the provider and to send options to the pro
vider. Len specifies the number of bytes in the options, but points to the
options buffer, and maxlen has no meaning for the req argument. The tran
sport provider may return options and flag values to the user through ret.
For ret, maxlen specifies the maximum size of the options buffer and but
points to the buffer where the options are to be placed. On return, len
specifies the number of bytes of options returned. Maxlen has no meaning
for the req argument, but must be set in the ret argument to specify the
maximum number of bytes the options buffer can hold. The actual structure
and content of the options is imposed by the transport provider.

The flags field of req can specify one of the following actions:

T_NEGOTIATE This action enables the user to negotiate the values of the
options specified in req with the transport provider. The
provider will evaluate the requested options and negotiate
the values, returning the negotiated values through ret.

T_CHECK This action enables the user to verify whether the options
specified in req are supported by the transport provider.
On return, the flags field of ret will have either T_SUCCESS
or T_FAILURE set to indicate to the user whether the
options are supported. These flags are only meaningful for
the T_CHECK request.

- 1 -

T_OPTMGMT(3N) (Networking Support Utilities) T_OPTMGMT(3N)

This action enables a user to retrieve the default options
supported by the transport provider into th~ opt field of ret.
In req, the len field of opt must be zero, and the but field
may be NULL.

If issued as part of the connectionless-mode service, t_optmgmt may block
due to flow control constraints. The function will not complete until the
transport provider has processed all previously sent data units.

On failure, t_errno may be set to one of the following:

[TBADF]

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADFLAG]

[TBUFOVFLW]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a tran
sport endpoint.

The function was issued in the wrong sequence.

The user does not have permission to negotiate the
specified options.

The specified protocol options were in an incorrect
format or contained illegal information.

An invalid flag was specified.

The number of bytes allowed for an incoming argu
ment is not sufficient to store the value of that argu
ment. The information to be returned in ret will be
discarded.

A system error has occurred during execution of this
function.

intro(3), Lgetinfo(3N), Lopen(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t_optmgmt function returns 0 on success and -1 on failure, and t_errno
is set to indicate the error.

- 2 -

(Networking Support Utilities)

NAME
t-rcv - receive data or expedited data sent over a connection

SYNOPSIS
int Lrcv(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int * flags;

DESCRIPTION
This function receives either normal or expedited data. Fd identifies the
local transport endpoint through which data will arrive; buf points to a
receive buffer where user data will be placed; and nbytes specifies the size of
the receive buffer. Flags may be set on return from t_rcv and specifies
optional flags as described below.

By default, t_rcv operates in synchronous mode and will wait for data to
arrive if none is currently available. However, if O~DELAY is set (via
t_open or fcntl), t_rcv will execute in asynchronous mode and will fail if no
data is available. (See TNODATA below.)

On return from the call, if T~ORE is set in flags, this indicates that there is
more data and the current transport service data unit (TSDU) or expedited
transport service data unit (ETSDU) must be received in multiple t_rcv calls.
Each t_rcv with the T~ORE flag set indicates that another t_rev must fol
low immediately to get more data for the current TSDU. The end of the
TSDU is identified by the return of a t_rcv call with the T_MORE flag not
set. If the transport provider does not support the concept of a TSDU as
indicated in the info argument on return from t_open or t_getinfo, the
T~ORE flag is not meaningful and should be ignored.

On return, the data returned is expedited data if T-EXPEDITED is set in flags.
If the number of bytes of expedited data exceeds nbytes, t_rcv will set
T-EXPEDITED and T~ORE on return from the initial call. Subsequent calls
to retrieve the remaining ETSDU will not have T-EXPEDITED set on return.
The end of the ETSDU is identified by the return of a t_rcv call with the
T~ORE flag not set.

If expedited data arrives after part of a TSDU has been retrieved, receipt of
the remainder of the TSDU will be suspended until the ETSDU has been pro
cessed. Only after the full ETSDU has been retrieved (T~ORE not set) will
the remainder of the TSDU be available to the user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran
sport endpoint.

[TNODATA]

[TLOOK]

O_NDELAY was set, but no data is currently available
from the transport provider.

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

- 1 -

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

(Networking Support Utilities)

This function is not supported by the underlying tran
sport provider.

A system error has occurred during execution of this
function.

Lopen(3N), Lsnd(3N).
Network Programmer's Guide.

DIAGNOSTICS
On successful completion, t_rcv returns the number of bytes received, and it
returns -Ion failure, and t_ermo is set to indicate the error.

- 2 -

T_RCVCONNECT(3N) (Networking Support Utilities) T-RCVCONNECT(3N)

NAME
tJcvconnect - receive the confirmation from a connect request

SYNOPSIS
#inc1ude <tiuser.h>

int LJ'cvconnect(fd, call)
int fd;
strud t_call * call;

DESCRIPTION
This function enables a calling transport user to determine the status of a
previously sent connect request and is used in conjunction with t_connect to
establish a connection in asynchronous mode. The connection will be esta
blished on successful completion of this function.

Fd identifies the local transport endpoint where communication will be esta
blished, and call contains information associated with the newly established
connection. Call points to a t_call structure which contains the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). In call, addr returns the protocol address
associated with the responding transport endpoint, opt presents any
protocol-specific information associated with the connection, udata points to
optional user data that may be returned by the destination transport user
during connection establishment, and sequence has no meaning for this
function.

The maxlen [see netbuf in intro(3)] field of each argument must be set before
issuing this function to indicate the maximum size of the buffer for each.
However, call may be NULL, in which case no information is given to the
user on return from t_rcvconnect. By default, t_rcvconnect executes in syn
chronous mode and waits for the connection to be established before return
ing. On return, the addr, opt, and udata fields reflect values associated with
the connection.

If O_NDELAY is set (via t_open or fcntl), t_rcvconnect executes in asynchro
nous mode and reduces to a poll for existing connect confirmations. If none
are available, t_rcvconnect fails and returns immediately without waiting for
the connection to be established. (See TNODATA below.) t_rcvconnect
must be re-issued at a later time to complete the connection establishment
phase and retrieve the information returned in call.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran
sport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming argu
ment is not sufficient to store the value of that argu
ment and the connect information to be returned in

- 1 -

T_RCVCONNECT(3N)

[TNODATA]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

(Networking Support Utilities) T-RCVCONNECT(3N)

call will be discarded. The provider's state, as seen
by the user, will be changed to DATAXFER.

O_NDELA Y was set, but a connect confirmation has
not yet arrived.

An asynchronous event has occurred on this transport
connection and requires immediate attention.

This function is not supported by the underlying tran
sport provider.

A system error has occurred during execution of this
function.

intro(3), Laccept(3N), Lbind(3N), Lconnect(3N), Llisten(3N),
Lopen(3N).
Network Programmer's Guide.

DIAGNOSTICS
t_rcvconnect returns 0 on success and -1 on failure, and t_errno is set to
indicate the error.

- 2 -

T_RCVDIS(3N) (Networking Support Utilities) T_RCVDIS(3N)

NAME
Lrcvdis - retrieve information from disconnect

SYNOPSIS
#include <tiuser.h>

Lrcvdis(fd, discon)
int fd;
struct Ldiscon *discon;

DESCRIPTION
This function is used to identify the cause of a disconnect, and to retrieve
any user data sent with the disconnect. Fd identifies the local transport
endpoint where the connection existed, and discon points to a t_discon
structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

Netbuf is described in intro(3). Reason specifies the reason for the discon
nect through a protocol-dependent reason code, udata identifies any user
data that was sent with the disconnect, and sequence may identify an out
standing connect indication with which the disconnect is associated.
Sequence is only meaningful when t_rcvdis is issued by a passive transport
user who has executed one or more t_listen functions and is processing the
resulting connect indications. If a disconnect indication occurs, sequence can
be used to identify which of the outstanding connect indications is associ
ated with the disconnect.

If a user does not care if there is incoming data and does not need to know
the value of reason or sequence, discon may be NULL and any user data asso
ciated with the disconnect will be discarded. However, if a user has
retrieved more than one outstanding connect indication (via t_listen) and
discon is NULL, the user will be unable to identify with which connect indi
cation the disconnect is associated.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran
sport endpoint.

[TNODIS]

[TBUFOVFLW]

[TNOTSUPPORT]

[TSYSERR]

No disconnect indication currently exists on the speci
fied transport endpoint.

The number of bytes allocated for incoming data is
not sufficient to store the data. The provider's state,
as seen by the user, will change to T_IDLE, and the
disconnect indication information to be returned in
discon will be discarded.

This function is not supported by the underlying tran
sport provider.

A system error has occurred during execution of this
function.

- 1 -

T_RCVDIS(3N) (Networking Support Utilities) T_RCVDIS(3N)

SEE ALSO
intro(3), Lconnect(3N), Llisten(3N), Lopen(3N), Lsnddis(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t_rcvdis function returns a on success and -1 on failure, and t_errno is
set to indicate the error.

- 2 -

T_RCVREL(3N) (Networking Support Utilities) T-RCVREL(3N)

NAME
Lrcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS
#include <tiuser.h>

Lrcvrel(fd)
int fd;

DESCRIPTION
This function is used to acknowledge receipt of an orderly release indica
tion. Fd identifies the local transport endpoint where the connection exists.
After receipt of this indication, the user may not attempt to receive more
data because such an attempt will block forever. However, the user may
continue to send data over the connection if t-sndrel has not been issued by
the user.

This function is an optional service of the transport provider, and is only
supported if the transport provider returned service type T_COTS_ORD on
t_open or t_getinfo.

On failure, t_errno may be set to one of the following:

[TBADF]

[TNOREL)

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a tran
sport endpoint.

No orderly release indication currently exists on the
specified transport endpoint.

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

This function is not supported by the underlying tran
sport provider.

A system error has occurred during execution of this
function.

Lopen(3N), Lsndrel(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t_rcvrel function returns 0 on success and -Ion failure, and t_errno is
set to indicate the error.

- 1 -

T_RCVUDATA(3N) (Networking Support Utilities) T-RCVUDATA(3N)

NAME
Lrcvudata - receive a data unit

SYNOPSIS
#include <tiuser.h>

int Lrcvudata(fd, unit data, flags)
int fd;
struct t_unitdata *unitdata;
int *flags;

DESCRIPTION
This function is used in connection less mode to receive a data unit from
another transport user. Fd identifies the local transport endpoint through
which data will be received, unitdata holds information associated with the
received data unit, and flags is set on return to indicate that the complete
data unit was not received. Unitdata points to a t_unitdata structure con
taining the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxZen [see netbufin intro(3)] field of addr, opt, and udata must be set
before issuing this function to indicate the maximum size of the buffer for
each.

On return from this call, addr specifies the protocol address of the sending
user, opt identifies protocol-specific options that were associated with this
data unit, and udata specifies the user data that was received.

By default, t_revudata operates in synchronous mode and will wait for a
data unit to arrive if none is currently available. However, if O_NDELA Y is
set (via t_open or JentZ), t_revudata will execute in asynchronous mode and
will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to
hold the current data unit, the buffer will be filled and T-MORE will be set
in flags on return to indicate that another t_revudata should be issued to
retrieve the rest of the data unit. Subsequent t_revudata call(s) will return
zero for the length of the address and options until the full data unit has
been received.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a trans
port endpoint.

[TNODATA]

[TBUFOVFLW]

O-NDELA Y was set, but no data units are currently
available from the transport provider.

The number of bytes allocated for the incoming pro
tocol address or options is not sufficient to store the
information. The unit data information to be returned
in unitdata will be discarded.

- 1 -

T-RCVUDATA(3N)

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

(Networking Support Utilities) T-RCVUDATA(3N)

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

intro(3), Lrcvuderr(3N), Lsndudata(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t_rcvudata function returns 0 on successful completion and -1 on
failure, and t_errno is set to indicate the error.

- 2 -

T -RCVUDERR(3N) (Networking Support Utilities) T -RCVUDERR(3N)

NAME
Lrcvuderr - receive a unit data error indication

SYNOPSIS
#inc1ude <tiuser.h>

int t-I'cvuderr(fd, uderr)
int fd;
struct t_uderr *uderr;

DESCRIPTION
This function is used in connectionless mode to receive information con
cerning an error on a previously sent data unit, and should only be issued
following a unit data error indication. It informs the transport user that a
data unit with a specific destination address and protocol options produced
an error. Fd identifies the local transport endpoint through which the error
report will be received, and uderr points to a t_uderr structure containing
the following members:

struct netbuf addr;
struct netbuf opt;
long error;

Netbuf is described in intro(3). The maxlen [see netbuf in intro(3)] field of
addr and opt must be set before issuing this function to indicate the max
imum size of the buffer for each.

On return from this call, the addr structure specifies the destination protocol
address of the erroneous data unit; the opt structure identifies protocol
specific options that were associated with the data unit; and error specifies a
protocol-dependent error code.

If the user does not care to identify the data unit that produced an error,
uderr may be set to NULL and t_rcvuderr will simply clear the error indica
tion without reporting any information to the user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TNOUDERR]

[TBUFOVFLW]

[TNOTSUPPORT]

[TSYSERR]

No unit data error indication currently exists on the
specified transport endpoint.

The number of bytes allocated for the incoming protocol
address or options is not sufficient to store the informa
tion. The unit data error information to be returned in
uderr will be discarded.

This function is not supported by the underlying trans
port provider.

A system error has occurred during execution of this
function.

- 1 -

T_RCVUDERR(3N) (Networking Support Utilities)

SEE ALSO
intro(3), Lrcvudata(3N), Lsndudata(3N).
Network Programmer's Guide.

DIAGNOSTICS

T_RCVUDERR(3N)

The t_rcvuderr function returns a on successful completion and -Ion
failure, and t_errno is set to indicate the error.

- 2 -

(Networking Support Utilities) T_SND(3N)

NAME
Lsnd - send data or expedited data over a connection

SYNOPSIS
#include <tiuser.h>

int Lsnd(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int flags;

DESCRIPTION
This function is used to send either normal or expedited data. Fd identifies
the local transport endpoint over which data should be sent, buf points to
the user data, nbytes specifies the number of bytes of user data to be sent,
and flags specifies any optional flags described below.

By default, t-Bnd operates in synchronous mode and may wait if flow con
trol restrictions prevent the data from being accepted by the local transport
provider at the time the call is made. However, if O_NDELAY is set (via
t_open or fentZ), t-Bnd will execute in asynchronous mode and will fail
immediately if there are flow control restrictions.

On successful completion, t-Bnd returns the number of bytes accepted by
the transport provider. Normally this will equal the number of bytes speci
fied in nbytes. However, if O-NDELA Y is set, it is possible that only part of
the data will be accepted by the transport provider. In this case, t-Bnd will
set T--MORE for the data that was sent (see below) and will return a value
less than nbytes. If nbytes is zero, no data will be passed to the provider,
and t-Bnd will return zero.

If T_EXPEDITED is set in flags, the data will be sent as expedited data and
will be subject to the interpretations of the transport provider.

If T_MORE is set in flags or set as described above, an indication is sent to
the transport provider that the transport service data unit (TSDU) (or
expedited transport service data unit - ETSDU) is being sent through multi
ple t-Bnd calls. Each t-Bnd with the T--MORE flag set indicates that another
t-Bnd will follow with more data for the current TSDU. The end of the
TSDU (or ETSDU) is identified by a t-Bnd call with the T--MORE flag not set.
Use of T--MORE enables a user to break up large logical data units without
losing the boundaries of those units at the other end of the connection. The
flag implies nothing about how the data is packaged for transfer below the
transport interface. If the transport provider does not support the concept
of a TSDU as indicated in the info argument on return from t_open or
t_getinfo, the T--MORE flag is not meaningful and should be ignored.

The size of each TSDU or ETSDU must not exceed the limits of the transport
provider as returned by t_open or t_getinfo. Failure to comply will result in
protocol error EPROTO. (See TSYSERR below.)

If t-Bnd is issued from the T--IDLE state, the provider may silently discard
the data. If t-Bnd is issued from any state other than T_DATAXFER or
T_IDLE, the provider will generate an EPROTO error.

- 1 -

T_SND(3N) (Networking Support Utilities) T_SND(3N)

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a trans
port endpoint.

[TFLOW]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

O~DELAY was set, but the flow control mechanism
prevented the transport provider from accepting data
at this time.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

Lopen(3N), Lrcv(3N).
Network Programmer's Guide.

DIAGNOSTICS
On successful completion, L..snd returns the number of bytes accepted by
the transport provider. It returns -Ion failure, and t_errno is set to indicate
the error.

- 2 -

T_SNDDIS(3N) (Networking Support Utilities) T_SNDDIS(3N)

NAME
Lsnddis - send user-initiated disconnect request

SYNOPSIS
#inc1ude <tiuser.h>

int t-snddis(fd, call)
int fd;
strud t_call *call;

DESCRIPTION
This function is used to initiate an abortive release on an already established
connection or to reject a connect request. Fd identifies the local transport
endpoint of the connection, and call specifies information associated with
the abortive release. Call points to a t_call structure which contains the fol
lowing members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). The values in call have different semantics,
depending on the context of the call to t-snddis. When rejecting a connect
request, call must be non-NULL and contain a valid value of sequence to
uniquely identify the rejected connect indication to the transport provider.
The addr and opt fields of call are ignored. In all other cases, call need only
be used when data is being sent with the disconnect request. The addr, opt,
and sequence fields of the t_call structure are ignored. If the user does not
wish to 'send data to the remote user, the value of call may be NULL.

Udata specifies the user data to be sent to the remote user. The amount of
user data must not exceed the limits supported by the transport provider as
returned by t_open or t_getjnfo. If the len field of udata is zero, no data
will be sent to the remote user.

On failure, t_errno may be set to one of the following:

[TBADF]

[TOUTSTATE]

[TBADDATA]

[TBADSEQ]

The specified file descriptor does not refer to a trans
port endpoint.

The function was issued in the wrong sequence. The
transport provider's outgoing queue may be flushed, so
data may be lost.

The amount of user data specified was not within the
bounds allowed by the transport provider. The trans
port provider's outgoing queue will be flushed, so data
may be lost.

An invalid sequence number was specified, or a NULL
call structure was specified when rejecting a connect
request. The transport provider's outgoing queue will
be flushed, so data may be lost.

- 1 -

T_SNDDIS(3N)

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

(Networking Support Utilities) T_SNDDIS(3N)

An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

This function is not supported by the underlying trans
port provider.

A system error has occurred during execution of this
function.

intro(3), Lconnect(3N), Lgetinfo(3N), Llisten(3N), Lopen(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t-snddis function returns a on success and -1 on failure, and t_errno is
set to indicate the error.

- 2 -

T_SNDREL(3N) (Networking Support Utilities)

NAME
Lsndrel - initiate an orderly release

SYNOPSIS
#include <tiuser.h>

int Lsndrel(fd)
int fd;

DESCRIPTION
This function is used to initiate an orderly release of a transport connection
and indicates to the transport provider that the transport user has no more
data to send. Fd identifies the local transport endpoint where the connec
tion exists. After issuing L..sndrel, the user may not send any more data
over the connection. However, a user may continue to receive data if an
orderly release indication has been received.

This function is an optional service of the transport provider and is only
supported if the transport provider returned service type T_COTS_ORD on
t_open or t_getinfo.

On failure, t_errno may be set to one of the following:

[TBADF]

[TFLOW]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a trans
port endpoint.

O_NDELA Y was set, but the flow control mechanism
prevented the transport provider from accepting the
function at this time.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

Lopen(3N), Lrcvrel(3N).
Network Programmer's Guide.

DIAGNOSTICS
The t-Bndrel function returns 0 on success and -1 on failure, and t_errno is
set to indicate the error.

- 1 -

T_SNDUDATA(3N) (Networking Support Utilities) T_SNDUDATA(3N)

NAME
Lsndudata - send a data unit

SYNOPSIS
#inc1ude <tiuser.h>

int Lsndudata(fd, unitdata)
int fd;
struct Lunitdata *unitdata;

DESCRIPTION
This function is used in connectionless mode to send a data unit to another
transport user. Fd identifies the local transport endpoint through which
data will be sent, and unitdata points to a t_unitdata structure containing
the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

Netbuf is described in intro(3). In unitdata, addr specifies the protocol
address of the destination user, opt identifies protocol-specific options that
the user wants associated with this request, and udata specifies the user data
to be sent. The user may choose not to specify what protocol options are
associated with the transfer by setting the len field of opt to zero. In this
case, the provider may use default options.

If the len field of udata is zero, no data unit will be passed to the transport
provider; L . ..sndudata will not send zero-length data units.

By default, L..sndudata operates in synchronous mode and may wait if flow
control restrictions prevent the data from being accepted by the local trans
port provider at the time the call is made. However, if O_NDELA Y is set
(via t_open or fentl), L . ..sndudata will execute in asynchronous mode and
will fail under such conditions.

If t-Bndudata is issued from an invalid state, or if the amount of data speci
fied in udata exceeds the TSDU size as returned by t_open or t_getinfo, the
provider will generate an EPROTO protocol error. (See TSYSERR below.)

On failure, t_errno may be set to one of the following:

[TBADF]

[TFLOW]

[TNOTSUPPORT]

[TSYSERR]

The specified file descriptor does not refer to a transport
endpoint.

O~DELA Y was set, but the flow control mechanism
prevented the transport provider from accepting data at
this time.

This function is not supported by the underlying trans
port provider.

A system error has occurred during execution of this
function.

- 1 -

T_SNDUDATA(3N) (Networking Support Utilities)

SEE ALSO
intro(3}, Lrcvudata(3N}, Lrcvuderr(3N}.
Network Programmer's Guide.

DIAGNOSTICS

T_SNDUDATA(3N)

The t-Bndudata function returns 0 on successful completion and -Ion
failure, and t_errno is set to indicate the error.

- 2 -

(Networking Support Utilities)

NAME
Lsync - synchronize transport library

SYNOPSIS
#include <tiuser.h>

int Lsync(fd)
int fd;

DESCRIPTION
For the transport endpoint specified by fd, t-sync synchronizes the data
structures managed by the transport library with information from the
underlying transport provider. In doing so, it can convert a raw file descrip
tor [obtained via open(2), dup(2), or as a result of a fork(2) and exec(2)] to an
initialized transport endpoint, assuming that file descriptor referenced a
transport provider. This function also allows two cooperating processes to
synchronize their interaction with a transport provider.

For example, if a process forks a new process and issues an exec, the new
process must issue a t-sync to build the private library data structure associ
ated with a transport endpoint and to synchronize the data structure with
the relevant provider information.

It is important to remember that the transport provider treats all users of a
transport endpoint as a single user. If multiple processes are using the same
endpoint, they should coordinate their activities so as not to violate the state
of the provider. t-sync returns the current state of the provider to the user,
thereby enabling the user to verify the state before taking further action.
This coordination is only valid among cooperating processes; it is possible
that a process or an incoming event could change the provider's state after a
t-sync is issued.

If the provider is undergoing a state transition when t_sync is called, the
function will fail.

On failure, t_errno may be set to one of the following:

[TB~DF] The specified file descriptor is a valid open file descrip
tor but does not refer to a transport endpoint.

[TSTATECHNG]

[TSYSERR]

SEE ALSO

The transport provider is undergoing a state change.

A system error has occurred during execution of this
function.

dup(2), exec(2), fork(2), open(2).
Network Programmer's Guide.

DIAGNOSTICS
The t-sync function returns the state of the transport provider on successful
completion and -Ion failure, and t_errno is set to indicate the error. The
state returned may be one of the following:

T_UNBND unbound

idle

- 1 -

T~YNC(3N)

T_OUTCON

T_INCON

T_DATAXFER

T_OUTREL

(Networking Support Utilities)

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly release
indication)

incoming orderly release (waiting for an orderly release
request).

- 2 -

T_UNBIND(3N) (Networking Support Utilities)

NAME
Lunbind - disable a transport endpoint

SYNOPSIS
#inc1ude <tiuser.h>

int Lunbind(fd)
int fd;

DESCRIPTION
The t_unbind function disables the transport endpoint specified by fd,
which was previously bound by t_bind (3N). On completion of this call, no
further data or events destined for this transport endpoint will be accepted
by the transport provider.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

[TOUTSTATE]

[TLOOK]

[TSYSERR]

SEE ALSO
Lbind(3N).

The function was issued in the wrong sequence.

An asynchronous event has occurred on this transport end
point.

A system error has occurred during execution of this func
tion.

Network Programmer's Guide.

DIAGNOSTICS
The t_unbind function returns 0 on success and -Ion failure, and t_errno is
set to indicate the error.

- 1 -

ASSERT(3X) (Specialized Libraries) ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
#inc1ude <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is exe
cuted, if expression is false (zero), assert prints

II Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is the
name of the source file and nnn the source line number of the assert state
ment.

Compiling with the preprocessor option -DNDEBUG [see cpp (1)], or with the
preprocessor control statement lI#define NDEBUG" ahead of the lI#inc1ude
<assert.h>" statement, will stop assertions from being compiled into the
program.

SEE ALSO
cpp(1), abort(3C).

CAVEAT
Since assert is implemented as a macro, the expression may not contain any
string literals.

- 1 -

CRYPT(3X) (C Programming Language Utilities) CRYPT(3X)

NAME
crypt - password and file encryption functions

SYNOPSIS
cc [flag ...] file ... -lcrypt

char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, flag)
char *block;
int flag;

char *des_crypt (key, salt)
char *key, *salt;

void des_setkey (key)
char *key;

void des_encrypt (block, flag)
char *block;
int flag;

int rU11-Setkey (p, key)
int p[2];
char *key;

int rU11-crypt (offset, buffer, count, p)
long offset;
char *buffer;
unsigned int count;
int p[2];

int crypLclose(p)
int p[2];

DESCRIPTION
des_crypt is the password encryption function. It is based on a one-way
hashing encryption algorithm with variations intended (among other things)
to frustrate use of hardware implementations of a key search.

Key is a user's typed password. Salt is a two-character string chosen from
the set [a-zA-ZO-9./]; this string is used to perturb the hashing algorithm in
one of 4096 different ways, after which the password is used as the key to
encrypt repeatedly a constant string. The returned value points to the
encrypted password. The first two characters are the salt itself.

The des-Betkey and des_encrypt entries provide (rather primitive) access to
the actual hashing algorithm. The argument of des-Betkey is a character
array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each
group is ignored; this gives a 56-bit key which is set into the machine. This
is the key that will be used with the hashing algorithm to encrypt the string
block with the function des_encrypt.

- 1 -

CRYPT(3X) (C Programming Language Utilities) CRYPT(3X)

The argument to the des_encrypt entry is a character array of length 64 con
taining only the characters with numerical value 0 and 1. The argument
array is modified in place to a similar array representing the bits of the
argument after having been subjected to the hashing algorithm using the
key set by des---.Setkey. If edflag is zero, the argument is encrypted; if non
zero, it is decrypted.

Note that decryption is not provided in the international version of
crypt(3X). The international version is part of the C Programming Language
Utilities, and the domestic version is part of the Security Administration Util
ities. If decryption is attempted with the international version of
des_encrypt, an error message is printed.

Crypt, setkey; and encrypt are front-end routines that invoke des_crypt,
des---.Setkey, and des_encrypt respectively.

The routines run---.Setkey and run_crypt are designed for use by applications
that need cryptographic capabilities [such as ed(l) and vi(l)] that must be
compatible with the crypt(l) user-level utility. Run---.Setkey establishes a
two-way pipe connection with crypt(l), using key as the password argument.
Run_crypt takes a block of characters and transforms the cleartext or cipher
text into their ciphertext or cleartext using crypt(l). Offset is the relative byte
position from the beginning of the file that the block of text provided in
block is coming from. Count is the number of characters in block, and con
nection is an array containing indices to a table of input and output file
streams. When encryption is finished, crypt_close is used to terminate the
connection with crypt(l).

Run---.Setkey returns -1 if a connection with crypt(l) cannot be established.
This will occur on international versions of UNIX where crypt(l) is not
available. If a null key is passed to run---.Setkey, 0 is returned. Otherwise, 1
is returned. Run_crypt returns -1 if it cannot write output or read input
from the pipe attached to crypt. Otherwise it returns O.

DIAGNOSTICS
In the international version of crypt(3X), a flag argument of 1 to des_encrypt
is not accepted, and an error message is printed.

SEE ALSO
getpass(3C), passwd(4).
crypt(l), 10gin(l), passwd(l) in the User's Reference Manual.

CAVEAT
The return value in crypt points to static data that are overwritten by each
call.

- 2 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

NAME
curses - terminal screen handling and optimization package

SYNOPSIS
The curses manual page is organized as follows:

In SYNOPSIS
- compiling information
- summary of parameters used by curses routines
- alphabetical list of curses routines, showing their parameters

In DESCRIPTION:
- An overview of how curses routines should be used

In ROUTINES, descriptions of curses routines are grouped under the
appropriate topics:
- Overall Screen Manipulation
- Window and Pad Manipulation
- Output
- Input
- Output Options Setting
- Input Options Setting
- Environment Queries
- Soft Labels
- Low-Level Curses Access
- Terminfo-Level Manipulations
- Termcap Emulation
- Miscellaneous
- Use of curser

Then come sections on:
- ATTRIBUTES
- FUNCTION CALLS
- LINE GRAPHICS

cc [flag ...] file ... -lcurses [library ...]

#include <curses.h> (automatically includes <stdio.h>,
<termio.h>, and <unctrl.h».

The parameters in the following list are not global variables, but rather
this is a summary of the parameters used by the curses library routines.
All routines return the int values ERR or OK unless otherwise noted.
Routines that return pointers always return NULL on error. (ERR, OK,
and NULL are all defined in <curses.h>.) Routines that return integers
are not listed in the parameter list below.

bool bf

char **area,*boolnames[], *boolcodes[], *boolfnames[], *bp
char *cap, *capname, codename[2], erasechar, *filename, *fmt
char *keyname, kill char, *label, *longname

- 1 -

CURSES(3X) (Terminal Information Utilities)

char *name, *numnames[], *numcodes[], *numfnames[]
char *slk-Iabel, *str, *strnames[], *strcodes[], *strfnames[]
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type
chtype attrs, ch, horch, vertch

FILE *infd, *outfd
int begil1-'<, begiIL-Y, begline, bot, c, col, count
int dmaxcol, dmaxrow, dmincol, dminrow, *errret, fildes
int (*init(», labfmt, labnum, line
int ms, ncols, new, newcol, newrow, nlines, numlines
int oldcol, oldrow, overlay
int pI, p2, p9, pmincol, pminrow, (*putc(», row
int smaxcol, smaxrow, smincol, sminrow, start
int tenths, top, visibility, x, Y
SCREEN *new, *newterm, *seLterm
TERMINAL *cur_term, *nterm, *oterm
vuist varglist
WINDOW *curscr, *dstwin, *initscr, *newpad, *newwin, *orig
WINDOW *pad, *srcwin, *stdscr, *subpad, *subwin, *win

addch(ch)
addstr(str)
attroff(attrs)
attron(attrs)
attrset(attrs)
baudrate()
beep()
box(win, vertch, horch)
cbreak()
clear()
clearok(win, bf)
clrtobot()
clrtoeol()
copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol,

dmaxrow, dmaxcol, overlay)"
curs-set(visibility)
def_pro~ode()
def-sheILmode()
deLcurterm(oterm)
delay_output(ms)
delch()
deleteln()
delwin(win)
doupdate()
draino(ms)
echo()
echochar(ch)
endwin()
erase()

- 2 -

CURSES(3X)

CURSES(3X) (Terminal Information Utilities)

erasechar()
filter()
flash()
flushinp()
garbagedlines(win, begline, numlines)
getbegyx(win, y, x)
getch()
getmaxyx(win, y, x)
getstr(str)
getsyx(y, x)
getyx(win, y, x)
halfdelay(tenths)
has-ic()
has-il()
idlok(win, bf)
inch()
initscr()
insch(ch)
insertln()
intrflush(win, bf)
isendwin()
keyname(c)
keypad(win, bf)
killchar()
leaveok(win, bf)
longname()
meta(win, bf)
move(y, x)
mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)
mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch(y, x)
mvinsch(y, x, ch)
mvprintw(y, x, fmt [, arg ...])
mvscanw(y, x, fmt [, arg ...])
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x, str)
mvwin(win, y, x)
mvwinch(win, y, x)
mvwinsch(win, y, x, ch)
mvwprintw(win, y, x, fmt [, arg ...])
mvwscanw(win, y, x, fmt [, arg ...])
napms(ms)
newpad(nlines, ncols)

- 3 -

CURSES(3X)

CURSES(3X) (Terminal Information Utilities)

newterm(type, outfd, infd)
newwin(nlines, ncols, begiILY, begil1-'<)
nl()
nocbreak()
nodelay(win, bf)
noecho()
nonl()
noraw()
notimeout(win, bf)
overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)
pechochar(pad, ch)

CURSES(3X)

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
prefresh(pad, pminrow, pmiFtcol, sminrow, smincol, smaxrow, smaxcol)
printw(fmt [, arg ...])
putp(str)
raw()
refresh()
reseLpro~ode()
reseLshelLmode()
resetty()
restartterm(term, fildes, errret)
ripoffline(line, init)
savetty()
scanw(fmt [, arg ...])
scr_dump(filename)
scr-init(filename)
scr-Iestore(filename)
scroll(win)
scrollok(win, bf)
seLcurterm(nterm)
seLterm(new)
setscrreg(top , bot)
setsyx(y, x)
setupterm(term, fildes, errret)
sILdear()
slk-init(fmt)
slLlabel(labnum)
slLnoutrefresh()
slk--Iefresh()
slk--Iestore()
slLset(labnum, label, fmt)
slLtouch()
standend()
standout()
subpad(orig, nlines, ncols, begiILY, begil1-'<)
subwin(orig, nlines, ncols, begiILy, begil1-'<)
tgetent(bp, name)
tgetflag(codename)
tgetnum(codename)

- 4 -

CURSES(3X) (Terminal Information Utilities)

tgetstr(codename, area)
tgoto(cap, col, row)
tigetflag(capname)
tigetnum(capname)
tigetstr(ca pname)
touchline(win, start, count)
touchwin(win)
tparm(str, pI, p2, ... , p9)
tputs(str, count, putc)
traceoff()
traceon()
typeahead(fildes)
unctrl(c)
ungetch(c)
vidattr(attrs)
vidputs(attrs, putc)
vwprintw(win, fmt, varglist)
vwscanw(win, fmt, varglist)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wc1ear(win)
wc1rtobot(win)
wc1rtoeol(win)
wdelch(win)
wdeleteln(win)
wechochar(win, ch)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, ch)
winsertln(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fmt [, arg ...])
wrefresh(win)
wscanw(win, fmt [, arg ...])
wsetscrreg(win, top, bot)
wstandend(win)
wstandout(win)

DESCRIPTION

CURSES(3X)

The curses routines give the user a terminal-independent method of updat
ing screens with reasonable optimization.

In order to initialize the routines, the routine initscr() or newterm() must
be called before any of the other routines that deal with windows and
screens are used. (Three exceptions are noted where they apply.) The

- 5 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

routine endwin() must be called before exiting. To get character-at-a-time
input without echoing, (most interactive, screen- oriented programs want
this) after calling initscr() you should call IIcbreak(); noecho();" Most pro
grams would additionally call IInonl(); intrflush (stdscr, FALSE);
keypad(stdscr, TRUE);".

Before a curses program is run, a terminal's tab stops should be set and its
initialization strings, if defined, must be output. This can be done by exe
cuting the tput init command after the shell environment variable TERM
has been exported. For further details, see profile(4), tput(l), and the "Tabs
and Initialization" subsection of terminfo(4).

The curses library contains routines that manipulate data structures called
windows that can be thought of as two-dimensional arrays of characters
representing all or part of a terminal screen. A default window called stdscr
is supplied, which is the size of the terminal screen. Others may be created
with newwin(). Windows are referred to by variables declared as WIN
DOW *; the type WINDOW is defined in <curses.h> to be a C structure.
These data structures are manipulated with routines described below,
among which the most basic are move() and addch(). (More general ver
sions of these routines are included with names beginning with w, allowing
you to specify a window. The routines not beginning with w usually affect
stdscr.) Then refresh() is called, telling the routines to make the user's ter
minal screen look like stdscr. The characters in a window are actually of
type chtype, so that other information about the character may also be
stored with each character.

Special windows called pads may also be manipulated. These are windows
which are not constrained to the size of the screen and whose contents need
not be displayed completely. See the description of newpad() under "Win
dow and Pad Manipulation" for more information.

In addition to drawing characters on the screen, video attributes may be
included which cause the characters to show up in modes such as under
lined or in reverse video on terminals that support such display enhance
ments. Line drawing characters may be specified to be output. On input,
curses is also able to translate arrow and function keys that transmit escape
sequences into single values. The video attributes, line-drawing characters,
and input values use names, defined in <curses.h>, such as A-REVERSE,
ACS-HLINE, and KEY_LEFT.

The curses function also defines the WINDOW * variable, curscr, which is
used only for certain low-level operations like clearing and redrawing a gar
baged screen. curscr can be used in only a few routines. If the window
argument to clearok() is curscr, the next call to wrefresh() with any win
dow will cause the screen to be cleared and repainted from scratch. If the
window argument to wrefresh() is curscr, the screen is immediately cleared
and repainted from scratch. This is how most programs would implement a
"repaint-screen" function. More information on using curscr is provided
where its use is appropriate.

- 6 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

The environment variables LINES and COLUMNS may be set to override
terminfo's idea of how large a screen is. These may be used in an AT&T
Teletype 5620 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using curses
will check for a local terminal definition before checking in the standard
place. For example, if the environment variable TERM is set to att4425, then
the compiled terminal definition is found in I usr llib I term info I a I att4425.
(The a is copied from the first letter of att4425 to avoid creation of huge
directories.) However, if TERMINFO is set to $HOMElmyterms, curses will
first check $HOMElmytermslalatt4425, and, if that fails, will then check
lusrlliblterminfolalatt4425. This is useful for developing experimental
definitions or when write permission on lusr llib I term info is not available.

The integer variables LINES and COLS are defined in <curses.h> and will
be filled in by initscr() with the size of the screen. (For more information,
see the subsection "Terminfo-Level Manipulations".) The constants TRUE
and FALSE have the values 1 and 0, respectively. The constants ERR and
OK are returned by routines to indicate whether the routine successfully
completed. These constants are also defined in <curses.h>.

ROUTINES
Many of the following routines have two or more versions. The routines
prefixed with w require a window argument. The routines prefixed with p
require a pad argument. Those without a prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to move to
before performing the appropriate action. The mv() routines imply a call to
move() before the call to the other routine. The window argument is
always specified before the coordinates; y always refers to the row (of the
window), and x always refers to the column. The upper left corner is
always (0,0), not (1,1). The routines prefixed with mvw take both a window
argument and y and x coordinates.

In each case, win is the window affected and pad is the pad affected. (win
and pad are always of type WINDOW *.) Option-setting routines require a
Boolean flag bf with the value TRUE or FALSE. (bf is always of type bool.)
The types WINDOW, bool, and chtype are defined in <curses.h>. See the
SYNOPSIS for a summary of what types all variables are.

All routines return either the integer ERR or the integer OK, unless other
wise noted. Routines that return pointers always return NULL on error.

Overall Screen Manipulation
WINDOW *initscr() The first routine called should almost always be

initscr(). [The exceptions are sILinit(), fiUer(), and
ripoffline().] This will determine the terminal type
and initialize all curses data structures. initscr() also
arranges that the first call to refresh() will clear the
screen. If errors occur, initscr() will write an
appropriate error message to standard error and exit;
otherwise, a pointer to stdscr is returned. If the pro
gram wants an indication of error conditions,

- 7 -

CURSES(3X)

endwin()

(Terminal Information Utilities) CURSES(3X)

newterm() should be used instead of initscr().
initscr() should only be called once per application.

A program should always call endwin() before exit
ing or escaping from curses mode temporarily, to do a
shell escape or system(3S) call, for example. This rou
tine will restore tty(7) modes, move the cursor to the
lower left corner of the screen and reset the terminal
into the proper non-visual mode. To resume after a
temporary escape, call wrefresh() or doupdate().

isendwin() Returns TRUE if endwin() has been called without
any su~sequent calls to wrefresh().

SCREEN *newterm(type, outfd, infd)
A program that outputs to more than one terminal
must use newterm() for each terminal instead of
initscr(). A program that wants an indication of error
conditions, so that it may continue to run in a line
oriented mode if the terminal cannot support a
screen-oriented program, must also use this routine.
newterm() should be called once for each terminal.
It returns a variable of type SCREEN* that should be
saved as a reference to that terminal. The arguments
are the type of the terminal to be used in place of the
environment variable TERM; outfd, a stdio(3S) file
pointer for output to the terminal; and infd, another
file pointer for input from the terminal. When it is
done running, the program must also call endwin()
for each terminal being used. If newterm() is called
more than once for the same terminal, the first termi
nal referred to must be the last one for which
endwin() is called.

SCREEN *seLterm(new)
This routine is used to switch between different termi
nals. The screen reference new becomes the new
current terminal. A pointer to the screen of the previ
ous terminal is returned by the routine. This is the
only routine which manipulates SCREEN pointers; all
other routines affect only the current terminal.

Window and Pad Manipulation
refresh()
wrefresh (win) These routines [or prefresh(), pnoutrefresh(),

wnoutrefresh(), or doupdate()] must be called to
write output to the terminal, as most other routines
merely manipulate data structures. wrefresh() copies
the named window to the physical terminal screen,
taking into account what is already there in order to
minimize the amount of information that's sent to the
terminal (called optimization). refresh() does the
same thing, except it uses stdscr as a default window.

- 8 -

CURSES(3X)

wnoutrefresh(win)
doupdate()

(Terminal Information Utilities) CURSES(3X)

Unless leaveok() has been enabled, the physical cur
sor of the terminal is left at the location of the
window's cursor. The number of characters output to
the terminal is returned.

Note that refresh() is a macro.

These two routines allow multiple updates to the
physical terminal screen with more efficiency than
wrefresh() alone. How this is accomplished is
described in the next paragraph.

The curses function keeps two data structures
representing the terminal screen: a physical terminal
screen, describing what is actually on the screen, and
a virtual terminal screen, describing what the pro
grammer wants to have on the screen. wrefresh()
works by first calling wnoutrefresh(), which copies
the named window to the virtual screen, and then by
calling doupdate(), which compares the virtual screen
to the physical screen and does the actual update. If
the programmer wishes to output several windows at
once, a series of calls to wrefresh() will result in
alternating calls to wnoutrefresh() and doupdate(),
causing several bursts of output to the screen. By first
calling wnoutrefresh() for each window, it is then
possible to call doupdate() once, resulting in only one
burst of output, with probably fewer total characters
transmitted and certainly less processor time used.

WINDOW *newwin(nlines, ncols, begi11-y, begi11-X)
Create and return a pointer to a new window with
the given number of lines (or rows), nlines, and
columns, ncols. The upper left corner of the window
is at line begin_y, column begin---x. If either nlines or
ncols is 0, they will be set to the value of
lines-begin_y and cols-begin---x. A new full-screen
window is created by calling newwin(O,O,O,O).

mvwin(win, y, x) Move the window so that the upper left corner will
be at position (y, x). If the move would cause the
window to be off the screen, it is an error and the
window is not moved.

WINDOW *subwin(orig, nlines, ncols, begi11-y, begi11-X)
Create and return a pointer to a new window with
the given number of lines (or rows), nlines, and
columns, ncols. The window is at position (begin_y,
begin---x) on the screen. (This position is relative to
the screen, and not to the window orig.) The window
is made in the middle of the window o rig, so that

- 9 -

CURSES(3X)

delwin(win)

(Terminal Information Utilities) CURSES(3X)

changes made to one window will affect both win
dows. When using this routine, often it will be neces
sary to call touchwin() or touchline() on orig before
calling wrefresh().

Delete the named window, freeing up all memory
associated with it. In the case of overlapping win
dows, subwindows should be deleted before the main
window.

WINDOW *newpad(nlines, ncols)
Create and return a pointer to a new pad data struc
ture with the given number of lines (or rows), nlines,
and columns, ncols. A pad is a window that is not
restricted by the screen size and is not necessarily
associated with a particular part of the screen. Pads
can be used when a large window is needed, and
only a part of the window will be on the screen at
one time. Automatic refreshes of pads (e.g., from
scrolling or echoing of input) do not occur. It is not
legal to call wrefresh() with a pad as an argument;
the routines prefresh() or pnoutrefresh() should be
called instead. Note that these routines require addi
tional parameters to specify the part of the pad to be
displayed and the location on the screen to be used
for display.

WINDOW *subpad(orig, nlines, ncols, begin_y, begiI1-'<)
Create and return a pointer to a sub window within a
pad with the given number of lines (or rows), nlines,
and columns, ncols. Unlike subwin(), which uses
screen coordinates, the window is at position
(begin_y, begin---=x) on the pad. The window is made
in the middle of the window orig, so that changes
made to one window will affect both windows.
When using this routine, often it will be necessary to
call touchwin() or touchline() on orig before calling
prefresh().

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

These routines are analogous to wrefresh() and
wnoutrefresh() except that pads, instead of windows,
are involved. The additional parameters are needed
to indicate what part of the pad and screen are
involved. pminrow and pmincol specify the upper left
corner, in the pad, of the rectangle to be displayed.
sminrow, smincol, smaxrow, and smaxcol specify the
edges, on the screen, of the rectangle to be displayed
in. The lower right corner in the pad of the rectangle
to be displayed is calculated from the screen coordi
nates, since the rectangles must be the same size.

- 10 -

CURSES(3X)

Output

(Terminal Information Utilities) CURSES(3X)

Both rectangles must be entirely contained within
their respective structures. Negative values of pmin
row, pmincol, sminrow, or smincol are treated as if
they were zero.

These routines are used to "draw" text on windows.

addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)
mvwaddch(win, y, x, ch)

echochar(ch)
wechochar(win, ch)
pechochar(pad, ch)

The character ch is put into the window at the current
cursor position of the window and the position of the
window cursor is advanced. Its function is similar to
that of putchar [see putc(3S)]. At the right margin, an
automatic new-line is performed. At the bottom of
the scrolling region, if scrollok() is enabled, the scrol
ling region will be scrolled up one line.

If ch is a tab, new-line, or backspace, the cursor will
be moved appropriately within the window. A new
line also does a c1rtoeol() before moving. Tabs are
considered to be at every eighth column. If ch is
another control character, it will be drawn in the ~X
notation. [Calling winch() after adding a control
character will not return the control character, but
instead will return the representation of the control
character.]

Video attributes can be combined with a character by
or-ing them into the parameter. This will result in
these attributes also being set. [The intent here is that
text, including attributes, can be copied from one
place to another using inch() and addch().] See
standout(), below.

Note that ch is actually of type chtype, not a charac
ter.

Note that addch(), mvaddch(), and mvwaddch(), are
macros.

These routines are functionally equivalent to a call to
addch(ch) followed by a call to refresh(), a call to
waddch(win, ch) followed by a call to wrefresh(win),
or a call to waddch(pad, ch) followed by a call to
prefresh(pad). The knowledge that only a single
character is being output is taken into consideration
and, for non-control characters, a considerable perfor
mance gain can be seen by using these routines

- 11 -

CURSES(3X)

addstr(str)

(Terminal Information Utilities) CURSES(3X)

instead of their equivalents. In the case of pecho
char(), the last location of the pad on the screen is
reused for the arguments to prefresh().

Note that ch is actually of type chtype, not a charac
ter.

Note that echochar() is a macro.

waddstr(win, str)
mvwaddstr(win, y, x, str)
mvaddstr(y, x, str) These routines write all the characters of the null

terminated character string str on the given window.
This is equivalent to calling waddch() once for each
character in the string.

attroff(attrs)
wattroff(win, attrs)
attron(attrs)
wattron(win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend()
wstandend(win)
standout()
wstandout(win)

Note that addstr(), mvaddstr(), and mvwaddstr()
are macros.

These routines manipulate the current attributes of
the named window. These attributes can be any com
bination of A_STANDOUT, A-REVERSE, A_BOLD,
LDIM, LBLINK, A_UNDERLINE, and
LALTCHARSET. These constants are defined in
<curses.h> and can be combined with the C logical
OR (I) operator.

The current attributes of a window are applied to all
characters that are written into the window with
waddch(). Attributes are a property of the character,
and move with the character through any scrolling
and insert/delete line/character operations. To the
extent possible on the particular terminal, they will be
displayed as the graphic rendition of the characters
put on the screen.

attrset(attrs) sets the current attributes of the given
window to attrs. attroff(attrs) turns off the named
attributes without turning on or off any other attri
butes. attron(attrs) turns on the named attributes
without affecting any others. standout() is the same
as attron(LST ANDOUT). standend() is the same as
attrset (0), that is, it turns off all attributes.

- 12 -

CURSES(3X)

beep()
flash()

(Terminal Information Utilities) CURSES(3X)

Note that attrs is actually of type chtype, not a char
acter.

Note that attroff(), attron(), attrset(), standend(),
and standout() are macros.

These routines are used to signal the terminal user.
beep() will sound the audible alarm on the terminal,
if possible, and if not, will flash the screen (visible
bell), if that is possible. flash() will flash the screen,
and if that is not possible, will sound the audible sig
nal. If neither signal is possible, nothing will happen.
Nearly all terminals have an audible signal (bell or
beep) but only some can flash the screen.

box(win, vertch, horch)

erase()
werase(win)

clear()
wc1ear(win)

c1rtobot()
wc1rtobot(win)

c1rtoeol()
wc1rtoeol(win)

A box is drawn around the edge of the window, win.
vertch and horch are the characters the box is to be
drawn with. If vertch and horch are 0, then appropri
ate default characters, ACS_ VLINE and ACSJlLINE,
will be used.

Note that vertch and horch are actually of type
chtype, not characters.

These routines copy blanks to every position in the
window.

Note that erase() is a macro.

These routines are like erase() and werase(), but they
also call c1earok(), arranging that the screen will be
cleared completely on the next call to wrefresh() for
that window and repainted from scratch.

Note that c1ear() is a macro.

All lines below the cursor in this window are erased.
Also, the current line to the right of the cursor,
inclusive, is erased.

Note that clrtobot() is a macro.

The current line to the right of the cursor, inclusive, is
erased.

Note that c1rtoeol() is a macro.

- 13 -

CURSES(3X)

delay_output(ms)

delch()
wdelch(win)
mvdelch(y, x)

(Terminal Information Utilities) CURSES(3X)

Insert an ms millisecond pause in the output. It is not
recommended that this routine be used extensively,
because padding characters are used rather than a
processor pause.

mvwdelch(win, y, x) The character under the cursor in the window is
deleted. All characters to the right on the same line
are moved to the left one position and the last charac
ter on the line is filled with a blank. The cursor posi
tion does not change [after moving to (y, x), if speci
fied]. (This does not imply use of the hardware
"delete-character" feature.)

deleteln()
wdeleteln(win)

getyx(win, y, x)

getbegyx(win, y, x)

Note that delch(), mvdelch(), and mvwdelch() are
macros.

The line under the cursor in the window is deleted.
All lines below the current line are moved up one
line. The bottom line of the window is cleared. The
cursor position does not change. (This does not
imply use of the hardware "delete-line" feature.)

Note that deleteln() is a macro.

The cursor position of the window is placed in the
two integer variables y and x. This is implemented as
a macro, so no 11&" is necessary before the variables.

getmaxyx(win, y, x) Like getyx(), these routines store the current begin
ning coordinates and size of the specified window.

Note that getbegyxO and getmaxyxO are macros.

insch(ch)
winsch(win, ch)
mvwinsch(win, y, x, ch)
mvinsch(y, x, ch) The character ch is inserted before the character under

the cursor. All characters to the right are moved one
space to the right, possibly losing the rightmost char
acter of the line. The cursor position does not change
(after moving to [y, x), if specified]. (This does not
imply use of the hardware "insert-character" feature.)

Note that ch is actually of type chtype, not a charac
ter.

Note that insch(), mvinsch(), and mvwinsch() are
macros.

- 14 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

insertln()
winsertln(win)

move(y, x)
wmove(win, y, x)

A blank line is inserted above the current line and the
bottom line is lost. (This does not imply use of the
hardware "insert-line" feature.)

Note that insertln() is a macro.

The cursor associated with the window is moved to
line (row) y, column x. This does not move the phy
sical cursor of the terminal until refresh() is called.
The position specified is relative to the upper left
corner of the window, which is (0, 0).

Note that move() is a macro.

overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)

These routines overlay srcwin on top of dstwin; that
is, all text in srcwin is copied into dstwin. scrwin and
dstwin need not be the same size; only text where the
two windows overlap is copied. The difference is that
overlay() is non-destructive (blanks are not copied),
while overwrite() is destructive.

copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol, dmaxrow,
dmaxcol, overlay) This routine provides a finer grain of control over the

overlay() and overwrite() routines. Like in the
prefresh() routine, a rectangle is specified in the des
tination window, (dminrow, dmincol) and (dmaxrow,
dmaxcol), and the upper-left-comer coordinates of the
source window, (sminrow, smincol). If the argument
overlay is true, then copying is non-destructive, as in
overlay().

printw(fmt [, arg ... J)
wprintw(win, fmt [, arg ... J)
mvprintw(y, x, fmt [, arg ... J)
mvwprintw(win, y, x, fmt [, arg ...])

These routines are analogous to printf(3S). The
string which would be output by printf(3S) is instead
output using waddstr() on the given window.

vwprintw(win, fmt, varglist)

scroll(win)

This routine corresponds to vfprintf(3S). It performs a
wprintw() using a variable argument list. The third
argument is ava_list, a pointer to a list of arguments,
as defined in <varargs.h>. See the vprintf(3S) and
varargs(5) manual pages for a detailed description on
how to use variable argument lists.

The window is scrolled up one line. This involves
moving the lines in the window data structure. As an
optimization, if the window is stdscr and the scrolling

- 15 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

region is the entire window, the physical screen will
be scrolled at the same time.

touchwin(win)
touchline(win, start, count)

Input
getch()
wgetch(win)
mvgetch(y, x)

Throwaway all optimization information about which
parts of the window have been touched, by pretend
ing that the entire window has been drawn on. This
is sometimes necessary when using overlapping win
dows, since a change to one window will affect the
other window, but the records of which lines have
been changed in the other window will not reflect the
change. touchline() only pretends that count lines
have been changed, beginning with line start .

mvwgetch(win, y, x) A character is read from the terminal associated with
the window. In NODELAY mode, if there is no input
waiting, the value ERR is returned. In DELAY mode,
the program will hang until the system passes text
through to the program. Depending on the setting of
cbreak(), this will be after one character (CBREAK
mode), or after the first new-line (NOCBREAK mode).
In HALF-DELAY mode, the program will hang until a
character is typed or the specified timeout has been
reached. Unless noecho() has been set, the character
will also be echoed into the designated window. No
refresh() will occur between the move() and the
getch() done within the routines mvgetch() and
mvwgetch().

When using getch(), wgetch(), mvgetch(), or
mvwgetch(), do not set both NOCBREAK mode [noc
breakO] and ECHO mode [echoO] at the same time.
Depending on the state of the tty(7) driver when each
character is typed, the program may produce undesir
able results.

If keypad(win, TRUE) has been called, and a function
key is pressed, the token for that function key will be
returned instead of the raw characters. [See keypad()
under " Input Options Setting."] Possible function
keys are defined in <curses.h> with integers begin
ning with 0401, whose names begin with KEY _. If a
character is received that could be the beginning of a
function key (such as escape), curses will set a timer.
If the remainder of the sequence is not received
within the designated time, the character will be
passed through, otherwise the function key value will

- 16 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

getstr(str)

be returned. For this reason, on many terminals,
there will be a delay after a user presses the escape
key before the escape is returned to the program.
[Use by a programmer of the escape key for a single
character routine is discouraged. Also see
notimeout() below.]

Note that getch(), mvgetch(), and mvwgetch() are
macros.

wgetstr(win, str)
mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

A series of calls to getch() is made, until a new-line,
carriage return, or enter key is received. The resulting
value is placed in the area pointed at by the character
pointer str. The user's erase and kill characters are
interpreted. As in mvgetch(), no refresh() is done
between the move() and getstr() within the routines
mvgetstr() and mvwgetstr().

Note that getstr(), mvgetstr(), and mvwgetstr() are
macros.

flushinp() Throws away any typeahead that has been typed by
the user and has not yet been read by the program.

ungetch(c) Place c back onto the input queue to be returned by
the next call to wgetch().

inch()
winch(win)
mvinch(y, x)
mvwinch(win, y, x) The character, of type chtype, at the current position

in the named window is returned. If any attributes
are set for that position, their values will be OR' ed
into the value returned. The predefined constants
LCHARTEXT and LATTRIBUTES, defined in
<curses.h>, can be used with the C logical AND (&)
operator to extract the character or attributes alone.

scanw(fmt [, arg ...])

Note that inch(), winch(), mvinch(), and
mvwinch() are macros.

wscanw(win, fmt [, arg ...])
mvscanw(y, x, fmt [, arg ...])
mvwscanw(win, y, x, fmt [, arg ...])

These routines correspond to scanf(3S), as do their
arguments and return values. wgetstr() is called on
the window, and the resulting line is used as input for
the scan.

- 17 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

vwscanw(win, fmt, ap)

Output Options Setting

This routine is similar to vwprintw() above in that
performs a wscanw() using a variable argument list.
The third argument is a va_list, a pointer to a list of
arguments, as defined in <varargs.h>. See the
vprintf(3S) and varargs(5) manual pages for a detailed
description on how to use variable argument lists.

These routines set options within curses that deal with output. All options
are initially FALSE, unless otherwise stated. It is not necessary to turn these
options off before calling endwin().

clearok(win, bf) If enabled (bf is TRUE), the next call to wrefresh()
with this window will clear the screen completely and
redraw the entire screen from scratch. This is useful
when the contents of the screen are uncertain, or in
some cases for a more pleasing visual effect.

idlok(win, bf)

leaveok(win, bf)

If enabled (bf is TRUE), curses will consider using the
hardware "insert/delete-line" feature of terminals so
equipped. If disabled (bf is FALSE), curses will very
seldom use this feature. (The "insert/ delete
character" feature is always considered.) This option
should be enabled only if your application needs
"insert/delete-line", for example, for a screen editor.
It is disabled by default because "insert/delete-line"
tends to be visually annoying when used in applica
tions where it isn't really needed. If "insert/ delete
line" cannot be used, curses will redraw the changed
portions of all lines.

Normally, the hardware cursor is left at the location
of the window cursor being refreshed. This option
allows the cursor to be left wherever the update hap
pens to leave it. It is useful for applications where
the cursor is not used, since it reduces the need for
cursor motions. If possible, the cursor is made invisi
ble when this option is enabled.

setscrreg(top , bot)
wsetscrreg(win, top, bot)

These routines allow the user to set a software scrol
ling region in a window. top and bot are the line
numbers of the top and bottom margin of the scrol
ling region. (Line 0 is the top line of the window.) If
this option and scrollok() are enabled, an attempt to
move off the bottom margin line will cause all lines in
the scrolling region to scroll up one line. (Note that
this has nothing to do with use of a physical scrolling
region capability in the terminal, like that in the DEC
VT100. Only the text of the window is scrolled; if

- 18 -

CURSES(3X)

scrollok(win, bf)

nl()
nonl(}

Input Options Setting

(Terminal Information Utilities) CURSES(3X)

idlok(} is enabled and the terminal has either a scrol
ling region or "insert/delete-line" capability, they will
probably be used by the output routines.}

Note that setscrreg(} and wsetscrreg() are macros.

This option controls what happens when the cursor of
a window is moved off the edge of the window or
scrolling region, either from a new-line on the bottom
line, or typing the last character of the last line. If
disabled (bf is FALSE), the cursor is left on the bottom
line at the location where the offending character was
entered. If enabled (bf is TRUE), wrefresh() is called
on the window, and then the physical terminal and
window are scrolled up one line. [Note that in order
to get the physical scrolling effect on the terminal, it
is also necessary to call idlok().]

These routines control whether new-line is translated
into carriage return and linefeed on output, and
whether return is translated into new-line on input.
Initially, the translations do occur. By disabling these
translations using nonl(), curses is able to make better
use of the linefeed capability, resulting in faster cursor
motion.

These routines set options within curses that deal with input. The options
involve using ioctl(2) and therefore interact with curses routines. It is not
necessary to tum these options off before calling endwin().

For more information on these options, see Chapter 10 of the Programmer's
Guide.

cbreak()
nocbreak() These two routines put the terminal into and out of

CBREAK mode, respectively. In CBREAK mode, char
acters typed by the user are immediately available to
the program and erase/kill character processing is not
performed. When in NOCBREAK mode, the tty driver
will buffer characters typed un til a new -line or car
riage return is typed. Interrupt and flow-control char
acters are unaffected by this mode [see termio(7)]. Ini
tially the terminal mayor may not be in CBREAK
mode, as it is inherited, therefore, a program should
call cbreak() or nocbreak() explicitly. Most interac
tive programs using curses will set CBREAK mode.

Note that cbreak() overrides raw(). See getch()
under "Input" for a discussion of how these routines
interact with echo() and noecho().

- 19 -

CURSES(3X)

echo()
noecho()

halfdelay(tenths)

intrflush(win, bf)

keypad(win, bf)

meta(win, bf)

nodelay(win, bf)

notimeout(win, bf)

(Terminal Information Utilities) CURSES(3X)

These routines control whether characters typed by
the user are echoed by getch() as they are typed.
Echoing by the tty driver is always disabled, but ini
tially getch() is in ECHO mode, so characters typed
are echoed. Authors of most interactive programs
prefer to do their own echoing in a controlled area of
the screen, or not to echo at all, so they disable efoo
ing by calling noecho(). See getchO under "Input"
for a discussion of how these routines interact with
cbreak() and nocbreak().

Half-delay mode is similar to CBREAK mode in that
characters typed by the user are immediately available
to the program. However, after blocking for tenths
tenths of seconds, ERR will be returned if nothing has
been typed. tenths must be a number between 1 and
255. Use nocbreak() to leave half-delay mode.

If this option is enabled, when an interrupt key is
pressed on the keyboard (interrupt, break, quit) all
output in the tty driver queue will be flushed, giving
the effect of faster response to the interrupt, but caus
ing curses to have the wrong idea of what is on the
screen. Disabling the option prevents the flush. The
default for the option is inherited from the tty driver
settings. The window argument is ignored.

This option enables the keypad of the user's terminal.
If enabled, the user can press a function key (such as
an arrow key) and wgetch() will return a single value
representing the function key, as in KEY_LEFT. If dis
abled, curses will not treat function keys specially and
the program would have to interpret the escape
sequences itself. If the keypad in the terminal can be
turned on (made to transmit) and off (made to work
locally), turning on this option will cause the terminal
keypad to be turned on when wgetch() is called.

If enabled, characters returned by wgetch() are
transmitted with all 8 bits, instead of with the highest
bit stripped. In order for meta() to work correctly,
the km (has-Illeta-1<ey) capability has to be specified
in the terminal's terminfo(4) entry.

This option causes wgetch() to be a non-blocking
call. If no input is ready, wgetch() will return ERR.
If disabled, wgetch() will hang until a key is pressed.

While interpreting an input escape sequence,
wgetch() will set a timer while waiting for the next
character. If notimeout(win, TRUE) is called, then
wgetch() will not set a timer. The purpose of the

- 20 -

CURSES(3X)

raw()
noraw()

typeahead(fildes)

Environment Queries
baudrate()

char erasechar()

has--ic()

has--il()

char killchar()

char *longname()

(Terminal Information Utilities) CURSES(3X)

timeout is to differentiate between sequences received
from a function key and those typed by a user.

The terminal is placed into or out of raw mode. RAW
mode is similar to CBREAK mode, in that characters
typed are immediately passed through to the user
program. The differences are that in RAW mode, the
interrupt, quit, suspend, and flow control characters
are passed through uninterpreted, instead of generat
ing a signal. RAW mode also causes 8-bit input and
output. The behavior of the BREAK key depends on
other bits in the tty(7) driver that are not set by
curses.

curses does "line-breakout optimization" by looking
for typeahead periodically while updating the screen.
If input is found, and it is coming from a tty, the
current update will be postponed until refresh() or
doupdate() is called again. This allows faster
response to commands typed in advance. Normally,
the file descriptor for the input FILE pointer passed to
newterm(), or stdin in the case that initscr() was
used, will be used to do this typeahead checking.
The typeahead() routine specifies that the file
descriptor tildes is to be used to check for typeahead
instead. If tildes is -1, then no typeahead checking
will be done.

Note that tildes is a file descriptor, not a <stdio.h>
FILE pointer.

Returns the output speed of the terminal. The
number returned is in bits per second, for example,
9600, and is an integer.

The user's current erase character is returned.

True if the terminal has insert- and delete-character
capabilities.

True if the terminal has insert- and delete-line capa
bilities, or can simulate them using scrolling regions.
This might be used to check to see if it would be
appropriate to turn on physical scrolling using scrol
lok().

The user's current line-kill character is returned.

This routine returns a pointer to a static area contain
ing a verbose description of the current terminal. The
maximum length of a verbose description is 128 char
acters. It is defined only after the call to initscr() or
newterm(). The area is overwritten by each call to

- 21 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Soft Labels

newterm() and is not restored by set_term(), so the
value should be saved between calls to newterm() if
longname() is going to be used with multiple termi
nals.

If desired, curses will manipulate the set of soft function-key labels that exist
on many terminals. For those terminals that do not have soft labels, if you
want to simulate them, curses will take over the bottom line of stdscr,
reducing the size of stdscr and the variable LINES. curses standardizes on 8
labels of 8 characters each.

slLinit(labfmt) In order to use soft labels, this routine must be called
before initscr() or newterm() is called. If initscr()
winds up using a line from stdscr to emulate the soft
labels, then labfmt determines how the labels are
arranged on the screen. Setting labfmt to 0 indicates
that the labels are to be arranged in a 3-2-3 arrange
ment; 1 asks for a 4-4 arrangement.

sILset(labnum, label, labfmt)

slLrefresh()

labnum is the label number, from 1 to 8. label is the
string to be put on the label, up to 8 characters in
length. A NULL string or a NULL pointer will put up
a blank label. labfmt is one of 0, 1 or 2, to indicate
whether the label is to be left-justified, centered, or
right-justified within the label.

slLnoutrefresh() These routines correspond to the routines wrefresh()
and wnoutrefresh(). Most applications would use
sILnoutrefresh() because a wrefresh() will most
likely soon follow.

char *sILlabel(labnum)

sILdear()

slLrestore()

slLtouch()

Low-Level curses Access

The current label for label number labnum, with lead
ing and trailing blanks stripped, is returned.

The soft labels are cleared from the screen.

The soft labels are restored to the screen after a
slLclear().

All of the soft labels are forced to be output the next
time a slLnoutrefresh() is performed.

The following routines give low-level access to various curses functionality.
These routines typically would be used inside of library routines.

def_pro~ode()
def_sheILmode() Save the current terminal modes as the "program" (in

curses) or "shell" (not in curses) state for use by the
reseLpro~ode() and reseLsheILmode() rou
tines. This is done automatically by initscr().

- 22 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

reseL-prog-xnode()
reseL-shel1-mode() Restore the terminal to "program" (in curses) or

"shell" (out of curses) state. These are done automati
cally by endwin() and doupdate() after an endwin(),
so they normally would not be called.

resetty()
savetty()

getsyx(y, x)

These routines save and restore the state of the termi
nal modes. savetty() saves the current state of the
terminal in a buffer and resetty() restores the state to
what it was at the last call to savetty().

The current coordinates of the virtual screen cursor
are returned in y and x. Uke getyx(), the variables y
and x do not take an "&" before them. If leaveok()
is currently TRUE, then -1,-1 will be returned. If lines
may have been removed from the top of the screen
using ripoffline() and the values are to be used
beyond just passing them on to setsyx(), the value
y +stdscr-> _ yoffset should be used for those other
uses.

Note that getsyx() is a macro.

setsyx(y, x) The virtual screen cursor is set to y, x. If y and x are
both -1, then leaveok() will be set. The two routines
getsyx() and setsyx() are designed to be used by a
library routine which manipulates curses windows but
does not want to mess up the current position of the
program's cursor. The library routine would call get
syx() at the beginning, do its manipulation of its own
windows, do a wnoutrefresh() on its windows, call
setsyx(), and then call doupdate().

ripoffline(line, init) This routine provides access to the same facility that
sllLinit() uses to reduce the size of the screen. rip
offline() must be called before initscr() or
newterm() is called. If line is positive, a line will be
removed from the top of stdscr; if negative, a line will
be removed from the bottom. When this is done
inside initscr(), the routine init() is called with two
arguments: a window pointer to the 1-line window
that has been allocated and an integer with the
number of columns in the window. Inside this initial
ization routine, the integer variables LINES and COLS
(defined in <curses.h» are not guaranteed to be
accurate and wrefresh() or doupdate() must not be
called. It is allowable to call wnoutrefresh() during
the initialization routine.

ripoffline() can be called up to five times before cal
ling initscr() or newterm().

- 23 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

scr_dump(filename) The current contents of the virtual screen are written
to the file filename.

scr-l'estore(filename)
The virtual screen is set to the contents of filename,
which must have been written using scr_dump().
The next call to doupdate() will restore the screen to
what it looked like in the dump file.

scr--init(filename) The contents of filename are read in and used to ini
tialize the curses data structures about what the termi
nal currently has on its screen. If the data is deter
mined to be valid, curses will base its next update of
the screen on this information rather than clearing the
screen and starting from scratch. scr-init() would be
used after initscr() or a system (35) call to share the
screen with another process which has done a
scr_dump() after its endwin() call. The data will be
declared invalid if the time-stamp of the tty is old or
the terminfo(4) capability nrrmc is true.

curs_set(visibility) The cursor is set to invisible, normal, or very visible
for visibility equal to 0, 1, or 2.

draino(ms) Wait until the output has drained enough that it will
only take ms more milliseconds to drain completely.

garbagedlines(win, begline, numlines)

napms(ms)

This routine indicates to curses that a screen line is
garbaged and should be thrown away before having
anything written over the top of it. It could be used
for programs such as editors which want a command
to redraw just a single line. Such a command could
be used in cases where there is a noisy communica
tions line and redrawing the entire screen would be
subject to even more communication noise. Just
redrawing the single line gives some semblance of
hope that it would show up unblemished. The
current location of the window is used to determine
which lines are to be redrawn.

Sleep for ms milliseconds.

Terminfo-Level Manipulations
These low-level routines must be called by programs that need to deal
directly with the terminfo(4) data base to handle certain terminal capabili
ties, such as programming function keys. For all other functionality, curses
routines are more suitable and their use is recommended.

Initially, setupterm() should be called. [Note that setupterm() is automati
cally called by initscr() and newtermO.] This will define the set of
terminal-dependent variables defined in the terminfo(4) data base. The ter
minfo(4) variables lines and columns [see terminfo(4)] are initialized by
setupterm() as follows: if the environment variables LINES and COLUMNS

- 24 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

exist, their values are used. If the above environment variables do not exist
and the program is running in a layer [see layers(l)], the size of the current
layer is used. Otherwise, the values for lines and columns specified in the
terminfo(4) data base are used.

The header files <curses.h> and <term.h> should be included, in this
order, to get the definitions for these strings, numbers, and flags.
Parameterized strings should be passed through tparm() to instantiate them.
All terminfo(4) strings [including the output of tparmO] should be printed
with tputs() or putp(). Before exiting, reseLsheILmode() should be
called to restore the tty modes. Programs which use cursor addressing
should output enter_cCl-mode upon startup and should output
exiLcCl-mode before exiting [see term info (4)]. (Programs desiring shell
escapes should call reset-sheILmode() and output exiLcCl-mode before
the shell is called and should output enter_cCl-mode and call
reseLpro~ode() after returning from the shell. Note that this is dif
ferent from the curses routines [see endwin()].

setupterm(term, fildes, errret)
Reads in the terminfo(4) data base, initializing the ter
minfo(4) structures, but does not set up the output vir
tualization structures used by curses. The terminal
type is in the character string term; if term is NULL,
the environment variable TERM will be used. All out
put is to the file descriptor fildes. If errret is not
NULL, then setupterm() will return OK or ERR and
store a status value in the integer pointed to by errret.
A status of 1 in errret is normal, 0 means that the ter
minal could not be found, and -1 means that the ter
minfo(4) data base could not be found. If errret is
NULL, setupterm() will print an error message upon
finding an error and exit. Thus, the simplest call is
setupterm [(char *)0, 1, (int *)0], which uses all the
defaults.

The terminfo(4) Boolean, numeric and string variables
are stored in a structure of type TERMINAL. After
setupterm() returns successfully, the variable
cur_term (of type TERMINAL *) is initialized with all
of the information that the term info (4) Boolean,
numeric and string variables refer to. The pointer
may be saved before calling setupterm() again.
Further calls to setupterm() will allocate new space
rather than reuse the space pointed to by cur_term.

seLcurterm(nterm) nterm is of type TERMINAL *. seLcurterm() sets the
variable cur_term to nterm, and makes all of the ter
minfo(4) Boolean, numeric and string variables use the
values from nterm.

deLcurterm(oterm) oterm is of type TERMINAL *. deLcurterm() frees
the space pointed to by oterm and makes it available

- 25 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

for further use. If oterm is the same as cur_term,
then references to any of the term info (4) Boolean,
numeric and string variables thereafter may refer to
invalid memory locations until another setupterm()
has been called.

restartterm(term, fildes, errret)
Like setupterm() after a memory restore.

char *tparm(str, PI' p , ... , P9)
1nstantiate the string str with parms p.. A pointer is
returned to the result of str with the parameters
applied.

tputs(str, count, putc)
Apply padding to the string str and output it. str
must be a terminfo(4) string variable or the return
value from tparm(), tgetstr(), tigetstr() or tgoto().
count is the number of lines affected, or 1 if not appli
cable. putcO is a putchar(3S)-like routine to which
the characters are passed, one at a time.

putp(str) A routine that calls tputs [str, 1, putchar()].

vidputs(attrs, putc) Output a string that puts the terminal in the video
attribute mode aUrs, which is any combination of the
attributes listed below. The characters are passed to
the putchar(3S)-like routine putc().

vidattr(attrs) Like vidputs(), except that it outputs through
putchar(3S).

mvcur(oldrow, oldcol, newrow, newcol)
Low-level cursor motion.

The following routines return the value of the capability corresponding to
the terminfo(4) capname passed to them, such as xenl.

tigetflag(capname) The value -1 is returned if capname is not a Boolean
capability.

tigetnum(capname) The value -2 is returned if capname is not a numeric
capability.

tigetstr(capname) The value (char *) -1 is returned if capname is not a
string capability.

char *boolnames[], *boolcodes[], *boolfnames[]
char *numnames[], *numcodes[], *numfnames[]
char *strnames[], *strcodes[], *strfnames[]

These null-terminated arrays contain the capnames,
the termcap codes, and the full C names, for each of
the terminfo(4) variables.

- 26 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Termcap Emulation
These routines are included as a conversion aid for programs that use the
termcap library. Their parameters are the same and the routines are emu
lated using the terminfo(4) data base.

tgetent(bp, name) Look up termcap entry for name. The emulation
ignores the buffer pointer bp.

tgetflag(codename) Get the Boolean entry for codename.

tgetnum(codes) Get numeric entry for codename.

char *tgetstr(codename, area)
Return the string entry for codename. If area is not
NULL, then also store it in the buffer pointed to by
area and advance area. tputs() should be used to
output the returned string.

char *tgoto(cap, col, row)

tputs(str, affcnt, putc)

Miscellaneous
traceoff()
traceon()

unctrl(c)

char *keyname(c)

filter()

Use of curser

Instantiate the parameters into the given capability.
The output from this routine is to be passed to
tputs().

See tputs() above, under "Terminfo-Level Manipula
tions" .

Turn off and on debugging trace output when using
the debug version of the curses library,
jusr jlib jlibdcurses.a. This facility is available only to
customers with a source license.

This macro expands to a character string which is a
printable representation of the character c. Control
characters are displayed in the AX notation. Printing
characters are displayed as is.

unctrl() is a macro, defined in <unctrl.h>, which is
automatically included by <curses.h>.

A character string corresponding to the key c is
returned.

This routine is one of the few that is to be called
before initscr() or newterm() is called. It arranges
things so that curses thinks that there is a l-line
screen. curses will not use any terminal capabilities
that assume that they know what line on the screen
the cursor is on.

The special window curser can be used in only a few routines. If the win
dow argument to c1earok() is curser, the next call to wrefresh() with any
window will cause the screen to be cleared and repainted from scratch. If

- 27 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

the window argument to wrefresh() is curscr, the screen is immediately
cleared and repainted from scratch. (This is how most programs would
implement a "repaint-screen" routine.) The source window argument to
overlay(), overwrite(), and copywin() may be curscr, in which case the
current contents of the virtual terminal screen will be accessed.

Obsolete Calls
Various routines are provided to maintain compatibility in programs written
for older versions of the curses library. These routines are all emulated as
indicated below.

crmode()

fixterm()

gettmode()

nocrmode()

resetterm()

saveterm()

setterm()

ATTRIBUTES

Replaced by cbreak().

Replaced by reseLpro~ode().

A no-op.

Replaced by nocbreak().

Replaced by reset_sheILmode().

Replaced by def_pro~ode().

Replaced by setupterm().

The following video attributes, defined in <curses.h>, can be passed to the
routines attron(), attroff(), and attrset(), or OR' ed with the characters
passed to addch().

A-STANDOUT Terminal's best highlighting mode
A-UNDERLINE Underlining
A-REVERSE Reverse video
A-BLINK Blinking
A-DIM Half bright
A-BOLD Extra bright or bold
A-AL TCHARSET Alternate character set

A-CHARTEXT Bit-mask to extract character [described under winch()]
A-ATTRIBUTES Bit-mask to extract attributes [described under winch()]
A-NORMAL Bit mask to reset all attributes off

(for example: attrset (A-NORMAL)

FUNCTION-KEYS
The following function keys, defined in <curses.h>, might be returned by
getch() if keypad() has been enabled. Note that not all of these may be
supported on a particular terminal if the terminal does not transmit a unique
code when the key is pressed or the definition for the key is not present in
the terminfo(4) data base.

Name

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT

Value

0401
0402
0403
0404

Key name

break key (unreliable)
The four arrow keys ...

- 28 -

CURSES(3X)

KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_Fa
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

KEY-Al
KEY-A3
KEY_B2
KEY_Cl
KEY_C3
KEY_BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY_COMMAND
KEY_COPY
KEY_CREATE
KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK
KEY~ESSAGE

KEY_MOVE
KEY_NEXT
KEY_OPEN

(Terminal Information Utilities) CURSES(3X)

0405
0406
0407
0410
(KEY_FO+(n»
0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

0534
0535
0536
0537
0540
0541
0542
0543
0544
0545
0546
0547
0550
0551
0552
0553
0554
0555
0556
0557
0560

Home key (upward+left arrow)
backspace (unreliable)
Function keys. Space for 64 keys is reserved.
Formula for f .
Delete line n
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
soft (partial) reset
reset or hard reset
print or copy
home down or bottom (lower left)
keypad is arranged like this:

A1 up A3
left B2 right
C1 down C3

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab key
beg(inning) key
cancel key
close key
cmd (command) key
copy key
create key
end key
exit key
find key
help key
mark key
message key
move key
next object key
open key

- 29 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

KEY_OPTIONS 0561 options key
KEY_PREVIOUS 0562 previous object key
KEY_REDO 0563 redo key
KEY_REFERENCE 0564 ref(erence) key
KEY_REFRESH 0565 refresh key
KEY_REPLACE 0566 replace key
KEY_RESTART 0567 restart key
KEY_RESUME 0570 resume key
KEY_SAVE 0571 save key
KEY_SBEG 0572 shifted beginning key
KEY_SCANCEL 0573 shifted cancel key
KEY_SCOMMAND 0574 shifted command key
KEY_SCOPY 0575 shifted copy key
KEY_SCREATE 0576 shifted create key
KEY_SOC 0577 shifted delete char key
KEY_SOL 0600 shifted delete line key
KEY_SELECT 0601 select key
KEY_SEND 0602 shifted end key
KEY_SEOL 0603 shifted clear line key
KEY_SEXIT 0604 shifted exit key
KEY_SPINO 0605 shifted find key
KEY_SHELP 0606 shifted help key
KEY_SHOME 0607 shifted home key
KEY_SIC 0610 shifted input key
KEY_SLEFT 0611 shifted left arrow key
KEY_SMESSAGE 0612 shifted message key
KEY_SMOVE 0613 shifted move key
KEY_SNEXT 0614 shifted next key
KEY _SOPTIONS 0615 shifted options key
KEY _SPREVIOUS 0616 shifted prev key
KEY_SPRINT 0617 shifted print key
KEY_SREDO 0620 shifted redo key
KEY_SREPLACE 0621 shifted replace key
KEY_SRIGHT 0622 shifted right arrow
KEY_SRSUME 0623 shifted resume key
KEY_SSAVE 0624 shifted save key
KEY_SSUSPEND 0625 shifted suspend key
KEY_SUNDO 0626 shifted undo key
KEY_SUSPEND 0627 suspend key
KEY_UNDO 0630 undo key

LINE GRAPHICS
The following variables may be used to add line-drawing characters to the
screen with waddch(). When defined for the terminal; the variable will
have the A_AL TCHARSET bit turned on. Otherwise, the default character
listed below will be stored in the variable. The names were chosen to be
consistent with the DEC VT100 nomenclature.

- 30 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Name Default Glyph Description

ACS_ULCORNER + upper left corner
ACS_LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS_RTEE + right tee (~)
ACS_LTEE + left tee (I-)
ACS_BTEE + bottom tee (1.)
ACS_TTEE + top tee (t)
ACS_HLINE horizontal line
ACS_VLINE vertical line
ACS_PLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACSJLMINUS # plus/minus
ACS_BULLET 0 bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

RETURN VALUES

BUGS

All routines return the integer OK upon successful completion and the
integer ERR upon failure, unless otherwise noted in the preceding routine
descriptions.

All macros return the value of their w version, except setscrreg(),
wsetscrreg(), getsyx(), getyx(), getbegy(), getmaxyx(). For these macros,
no useful value is returned.

Routines that return pointers always return (type *) NULL on error.

Currently typeahead checking is done using a nodelay read followed by an
ungetch() of any character that may have been read. Typeahead checking
is done only if wgetch() has been called at least once. This will be changed
when proper kernel support is available. Programs which use a mixture of
their own input routines with curses input routines may wish to call typea
head(-l) to turn off typeahead checking.

The argument to napms() is currently rounded up to the nearest second.

draino (ms) only works for ms equal to O.

WARNINGS
To use the new curses features, use the Release 3.0 version of curses on
UNIX System Release 3.0. All programs that ran with System V Release 2

- 31 -

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

curses will run with System V Release 3.0. You may link applications with
object files based on the Release 2 curses/terminfo with the Release 3.0
libcurses.a library. You may link applications with object files based on the
Release 3.0 curses/terminfo with the Release 2 libcurses.a library, so long as
the application does not use the new features in the Release 3.0
curses / terminfo.

The plotting library plot(3X) and the curses library curses(3X) both use the
names erase() and move(). The curses versions are macros. If you need
both libraries, put the plot(3X) code in a different source file than the
curses(3X) code, and/or #undef move() and eraseO in the plot(3X) code.

Between the time a call to initscr() and endwin() has been issued, use only
the routines in the curses library to generate output. Using system calls or
the "standard IjO package" [see stdio(3S)] for output during that time can
cause unpredictable results.

SEE ALSO
cc(l), Id(l), ioctl(2), plot(3X), putc(3S), scanf(3S), stdio(3S), system(3S),
vprintf(3S), profile(4), term(4), terminfo(4), varargs(5).
termio(7), tty(7) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

- 32 -

DIRECTORY(3X) DIRECTORY(3X)

NAME
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - directory
operations

SYNOPSIS
#inc1ude <sys /types.h>
#inc1ude <dirent.h>

DIR *opendir (filename)
char *filenamei

struct dirent *readdir (dirp)
DIR *dirpi

long telldir (dirp)
DIR *dirpi

void seekdir (dirp, loc)
DIR *dirpi
long lOCi

void rewinddir (dirp)
DIR *dirpi

void c1osedir(dirp)
DIR *dirpi

DESCRIPTION
Opendir opens the directory named by filename and associates a directory
stream with it. Opendir returns a pointer to be used to identify the directory
stream in subsequent operations. The pointer NULL is returned if filename
cannot be accessed or is not a directory, or if it cannot malloc(3X) enough
memory to hold a OIR structure or a buffer for the directory entries.

Readdir returns a pointer to the next active directory entry. No inactive
entries are returned. It returns NULL upon reaching the end of the directory
or upon detecting an invalid location in the directory.

Telldir returns the current location associated with the named directory
stream.

Seekdir sets the position of the next readdir operation on the directory
stream. The new position reverts to the one associated with the directory
stream when the telldir operation from which loc was obtained was per
formed. Values returned by telldir are good only if the directory has not
changed due to compaction or expansion. This is not a problem with Sys
tem V, but it may be with some file system types.

Rewinddir resets the position of the named directory stream to the beginning
of the directory.

Closedir closes the named directory stream and frees the DIR structure.

The following errors can occur as a result of these operations.

- 1 -

DIRECTORY(3X)

opendir:

[ENOTDIR]

[EACCES]

[EMFILE]

[EFAULT]

readdir:

[ENOENT]

[EBADF]

DIRECTORY(3X)

A component of filename is not a directory.

A component of filename denies search permission.

The maximum number of file descriptors are currently
open.

Filename points outside the allocated address space.

The current file pointer for the directory is not located at a
valid entry.

The file descriptor determined by the DIR stream is no
longer valid. This results if the DIR stream has been
closed.

telldir, seekdir, and closedir:

[EBADF]

EXAMPLE

The file descriptor determined by the DIR stream is no
longer valid. This results if the DIR stream has been
closed.

Sample code which searches a directory for entry name:

SEE ALSO

dirp = opendir(".");
while ((dp = readdir(dirp)) != NULL)

if (strcmp(dp->Lname, name) == 0)

c1osedir(dirp);

{
c1osedir(dirp);
return FOUND;
}

return NOTJOUND;

getdents(2), dirent(4).

WARNINGS
Rewinddir is implemented as a macro, so its function address cannot be
taken.

- 2 -

LDAHREAD(3X) (Specialized Libraries) LDAHREAD(3X)

NAME
ldahread - read the archive header of a member of an archive file

SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idahread (ldptr, arhead)
LDFILE *Idptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(ldptr) is the archive file magic number, Idahread reads the archive
header of the common object file currently associated with Idptr into the
area of memory beginning at arhead.

Idahread returns SUCCESS or FAILURE. Idahread will fail if TYPE(ldptr) does
not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library
libId.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4), ar(4).

- 1 -

LDCLOSE(3X) (Specialized Libraries) LDCLOSE(3X)

NAME
ldclose, ldaclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldclose (ldptr)
LDFILE *ldptr;

int ldaclose (ldptr)
LDFILE *Idptr;

DESCRIPTION
The Idopen (3X) and Idclose functions are designed to provide uniform access
to both simple object files and object files that are members of archive files.
Thus an archive of common object files -can be processed as if it were a
series of simple common object files.

H TYPE(ldptr) does not represent an archive file, Idclose will close the file
and free the memory allocated to the LDFILE structure associated with Idptr.
If TYPE(ldptr) is the magic number of an archive file, and if there are any
more files in the archive, Idclose will reinitialize OFFSET(ldptr) to the file
address of the next archive member and return FAILURE. The LDFILE struc
ture is prepared for a subsequent Idopen (3X). In all other cases, Idclose
returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to the LDFILE struc
ture associated with Idptr regardless of the value of TYPE(ldptr). Ldaclose
always returns SUCCESS. The function is often used in conjunction with
ldaopen.

The program must be loaded with the object file access routine library
libId.a.

SEE ALSO
fclose(3S), Idopen(3X), Idfcn(4).

- 1 -

LDFHREAD(3X) (Specialized Libraries) LDFHREAD(3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
#inc1ude <stdio.h>
#inc1ude <filehdr.h>
#inc1ude <ldfcn.h>

int ldfhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

DESCRIPTION
The ldfhread function reads the file header of the common object file
currently associated with ldptr into the area of memory beginning at file
head.

ldfhread returns SUCCESS or FAILURE. ldfhread will fail if it cannot read the
file header.

In most cases the use of ldfhread can be avoided by using the macro
HEADER(ldptr) defined in ldfcn.h [see ldfcn (4)]. The information in any
field, fieldname, of the file header may be accessed using
HEADER(ldptr).fieldname.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4).

- 1 -

LDGETNAME(3X) (Specialized Libraries) LDGETNAME(3X)

NAME
ldgetname - retrieve symbol name for common object file symbol table
entry

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

char *Idgetname (ldptr, symbol)
LDFILE *Idptr;
SYMENT *symbol;

DESCRIPTION
The ldgetname function returns a pointer to the name associated with sym
bol as a string. The string is contained in a static buffer local to ldgetname
that is overwritten by each call to ldgetname, and therefore must be copied
by the caller if the name is to be saved.

The ldgetname function can be used to retrieve names from object files
without any backward compatibility problems. The ldgetname function will
return NULL (defined in stdio.h) for an object file if the name cannot be
retrieved. This situation can occur:

if the "string table" cannot be found,

if not enough memory can be allocated for the string table,

if the string table appears not to be a string table (for example, if an
auxiliary entry is handed to ldgetname that looks like a reference to
a name in a nonexistent string table), or

if the name's offset into the string table is past the end of the string
table.

Typically, ldgetname will be called immediately after a successful call to
ldtbread to retrieve the name associated with the symbol table entry filled
by ldtbread.

The program must be loaded' with the object file access routine library
Hbld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idtbseek(3X), Idfcn(4).

- 1 -

LDLREAD(3X) (Specialized Libraries) LDLREAD(3X)

NAME
Idlread, ldlinit, ldlitem - manipulate line number entries of a common object
file function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfcn.h>

int ldlread(ldptr, fcnindx, linenum, linent)
LDFILE *ldptr;
long fcnindx;
unsigned short linenum;
LlNENO *linent;

int ldlinit(ldptr, fcnindx)
LDFILE *ldptr;
long fcnindx;

int ldlitem(ldptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenum;
LINE NO *linent;

DESCRIPTION
The Idlread function searches the line number entries of the common object
file currently associated with Idptr. The Idlread function begins its search
with the line number entry for the beginning of a function and confines its
search to the line numbers associated with a single function. The function
is identified by fcnindx, the index of its entry in the object file symbol table.
The Idlread function reads the entry with the smallest line number equal to
or greater than linenum into the memory beginning at linent.

The Idlinit and Idlitem functions together perform exactly the same function
as Idlread. After an initial call to Idlread or Idlinit, Idlitem may be used to
retrieve a series of line number entries associated with a single function.
Ldlinit simply locates the line number entries for the function identified by
fcnindx. Ldlitem finds and reads the entry with the smallest line number
equal to or greater than linenum into the memory beginning at linent.

The Idlread, Idlinit, and Idlitem functions each return either SUCCESS or
FAILURE. Idlread will fail if there are no line number entries in the object
file, if fcnindx does not index a function entry in the symbol table, or if it
finds no line number equal to or greater than linenum. Ldlinit will fail if
there are no line number entries in the object file or if fcnindx does not
index a function entry in the symbol table. Ldlitem will fail if it finds no
line number equal to or greater than linenum.

The programs must be loaded with the object file access routine library
libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbindex(3X), Idfcn(4).

- 1 -

LDLSEEK(3X) (Specialized Libraries) LDLSEEK(3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a section of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idlseek (ldptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idniseek (ldptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
The Idlseek function seeks to the line number entries of the section specified
by sectindx of the common object file currently associated with Idptr.

The Idnlseek function seeks to the line number entries of the section speci
fied by sectname.

The Idlseek and Idnlseek functions return SUCCESS or FAILURE. ldlseek will
fail if sectindx is greater than the number of sections in the object file;
Idnlseek will fail if there is no section name corresponding with *sectname.
Either function will fail if the specified section has no line number entries or
if it cannot seek to the specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
libId.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), ldfcn(4).

- 1 -

LDOHSEEK(3X) (Specialized Libraries) LDOHSEEK(3X)

NAME
ldohseek - seek to the optional file header of a common object file

SYNOPSIS
#inc1ude <stdio.h>
#inc1ude <filehdr.h>
#inc1ude <Idfcn.h>

int Idohseek (ldptr)
LDFILE *Idptr;

DESCRIPTION
The ldohseek function seeks to the optional file header of the common object
file currently associated with ldptr.

The ldohseek function returns SUCCESS or FAILURE. ldohseek will fail if the
object file has no optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library
libId.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfhread(3X), ldfcn(4).

- 1 -

LDOPEN(3X) (Specialized Libraries) LDOPEN(3X)

NAME
ldopen, ldaopen - open a common object file for reading

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

LDFILE *ldopen (filename, ldptr)
char *filenamei
LDFILE *ldptri

LDFILE *ldaopen (filename, oldptr)
char *filenamei
LDFILE *oldptr;

DESCRIPTION
The ldopen and Idclose(3X) functions are designed to provide uniform
access to both simple object files and object files that are members of
archive files. Thus an archive of common object files can be processed as if
it were a series of simple common object files.

If ldptr has the value NULL, then ldopen will open filename and allocate and
initialize the LDFILE structure, and return a pointer to the structure to the
calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic number, ldopen will
reinitialize the LDFILE structure for the next archive member of filename.

The ldopen and Idclose(3X) functions are designed to work in concert.
Ldclose will return FAILURE only when TYPE(ldptr) is the archive magic
number and there is another file in the archive to be processed. Only then
should Idopen be called with the current value of ldptr. In all other cases, in
particular whenever a new filename is opened, ldopen should be called with
a NULL ldptr argument.

The following is a prototype for the use of ldopen and Idclose(3X).

/* for each filename to be processed */
ldptr = NULL;
do
{

if ((ldptr = ldopen(filename, ldptr» != NULL)
{

}

/* check magic number */
/* process the file */

} while (ldclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, ldaopen will open filename anew and allo
cate and initialize a new LDFILE structure, copying the TYPE, OFFSET, and
HEADER fields from oldptr. Ldaopen returns a pointer to the new LDFILE
structure. This new pointer is independent of the old pointer, oldptr. The
two pointers may be used concurrently to read separate parts of the object
file. For example, one pointer may be used to step sequentially through the

- 1 -

LDOPEN(3X) (Specialized Libraries) LDOPEN(3X)

relocation information, while the other is used to read indexed symbol table
entries.

Both ldopen and ldaopen open filename for reading. Both functions return
NULL if filename cannot be opened, or if memory for the LDFILE structure
cannot be allocated. A successful open does not insure that the given file is
a common object file or an archived object file.

The program must be loaded with the object file access routine library
HbId.a.

SEE ALSO
fopen(3S), Idclose(3X), Idfcn(4).

- 2 -

LDRSEEK(3X) (Specialized Libraries) LDRSEEK(3X)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of a common
object file

SYNOPSIS
#inc1ude <stdio.h>
#inc1ude <filehdr.h>
#inc1ude <Idfcn.h>

int Idrseek (ldptr, sectindx)
LDFILE *Idptri
unsigned short sectindxi

int Idnrseek (ldptr, sectname)
LDFILE *Idptri
char *sectname;

DESCRIPTION
The Idrseek function seeks to the relocation entries of the section specified
by sectindx of the common object file currently associated with Idptr.

The Idnrseek function seeks to the relocation entries of the section specified
by sectname.

The Idrseek and Idnrseek functions return SUCCESS or FAILURE. Idrseek will
fail if sectindx is greater than the number of sections in the object file;
Idnrseek will fail if there is no section name corresponding with sectname.
Either function will fail if the specified section has no relocation entries or if
it cannot seek to the specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
libId.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), ldfcn(4).

- 1 -

LDSHREAD(3X) (Specialized Libraries) LDSHREAD(3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <Idfcn.h>

int Idshread (ldptr, sectindx, secthead)
LDFILE *Idptr;
unsigned short sectindx;
SCNHDR *secthead;

int Idnshread (ldptr, sectname, secthead)
LDFILE *Idptr;
char *sectname;
SCNHDR *secthead;

DESCRIPTION
The Idshread function reads the section header specified by sectindx of the
common object file currently associated with Idptr into the area of memory
beginning at secthead.

The Idnshread function reads the section header specified by sectname into
the area of memory beginning at secthead.

The Idshread and Idnshread functions return SUCCESS or FAILURE. Idshread
will fail if sectindx is greater than the number of sections in the object file;
Idnshread will fail if there is no section name corresponding with sectname.
Either function will fail if it cannot read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine library
HbId.a.

SEE ALSO
Idclose(3X), Idopen(3X), ldfcn(4).

- 1 -

LDSSEEK(3X) (Specialized Libraries) LDSSEEK(3X)

NAME
Ids seek, ldnsseek - seek to an indexed/named section of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int ldsseek (ldptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnsseek (ldptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
The Idsseek function seeks to the section specified by sectindx of the com
mon object file currently associated with Idptr.

The Idnsseek function seeks to the section specified by sectname.

The Idsseek and Idnsseek functions return SUCCESS or FAILURE. Idsseek will
fail if sectindx is greater than the number of sections in the object file;
Idnsseek will fail if there is no section name corresponding with sectname.
Either function will fail if there is no section data for the specified section or
if it cannot seek to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
libId.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

- 1 -

LDTBINDEX(3X) (Specialized Libraries) LDTBINDEX(3X)

NAME
ldtbindex - compute the index of a symbol table entry of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

long ldtbindex (ldptr)
LDFILE *ldptr;

DESCRIPTION
The Idtbindex function returns the (long) index of the symbol table entry at
the current position of the common object file associated with Idptr.

The index returned by Idtbindex may be used in subsequent calls to
Idtbread (3X). However, since Idtbindex returns the index of the symbol table
entry that begins at the current position of the object file, if Idtbindex is
called immediately after a particular symbol table entry has been read, it
will return the index of the next entry.

The Idtbindex function will fail if there are no symbols in the object file, or if
the object file is not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library
Hbld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idtbseek(3X), ldfcn(4).

- 1 -

LDTBREAD(3X) (Specialized Libraries) LDTBREAD(3X)

NAME
ldtbread - read an indexed symbol table entry of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

int ldtbread (ldptr, symindex, symbol)
LDFILE *ldptr;
long symindex;
SYMENT *symboI;

DESCRIPTION
The Idtbread function reads the symbol table entry specified by symindex of
the common object file currently associated with Idptr into the area of
memory beginning at symbol.

The Idtbread function returns SUCCESS or FAILURE. Idtbread will fail if sym
index is greater than or equal to the number of symbols in the object file, or
if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library
HbId.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbseek(3X), Idgetname(3X), ldfcn(4).

- 1 -

LDTBSEEK(3X) (Specialized Libraries) LDTBSEEK(3X)

NAME
ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#inc1ude <stdio.h>
#inc1ude <filehdr.h>
#inc1ude <ldfcn.h>

int ldtbseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
The ldtbseek function seeks to the symbol table of the common object file
currently associated with ldptr.

The ldtbseek function returns SUCCESS or FAILURE. ldtbseek will fail if the
symbol table has been stripped from the object file, or if it cannot seek to
the symbol table.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idfcn(4).

- 1 -

LIBWINDOWS(3X) (AT&T Windowing Utilities) LIBWINDOWS(3X)

NAME
libwindows - windowing terminal function library

SYNOPSIS
cc [flag ...] file ... -lwindows [library ...]

int cntlfd, fd
int chan
int origi"-X, origiIL-y, corner_x, corner_y
char *command

cntlfd = openagent ()

chan New (cntlfd, origi"-X, origiIL-y, corner_x, corner_ y)

chan Newlayer (cntlfd, origi"-X, origiIL-y, corner-x, corner_y)

fd = openchan (chan)

Runlayer (chan, command)

Current (cntlfd, chan)

Delete (cntlfd, chan)

Top (cntlfd, chan)

Bottom (cntlfd, chan)

Move (cntlfd, chan, origi"-X, origiIL-y)

Reshape (cntlfd, chan, origiIL-x, origiIL-y, corner_x, corner_y)

Exit (cntlfd)

DESCRIPTION
This library of routines enables a program running on a host UNIX system
to perform windowing terminal functions [see layers(l)].

The openagent() routine opens the control channel of the xt(7) channel
group to which the calling process belongs. Upon successful completion,
openagent() returns a file descriptor, cntlfd, that can be passed to any of the
other libwindows routines except openchan() and Runlayer(). [cntlfd can
also be passed to close(2).] Otherwise, the value -1 is returned.

The New() routine creates a new layer with a separate shell. The origin----x,
origin_y, corner----x, and corner_y arguments are the coordinates of the layer
rectangle. If all the coordinate arguments are 0, the user must define the
layer's rectangle interactively. The layer appears on top of any overlapping
layers. The layer is not made current (Le., the keyboard is not attached to
the new layer). Upon successful completion, New() returns the xt(7) chan
nel number associated with the layer. Otherwise, the value -1 is returned.

The Newlayer() routine creates a new layer without executing a separate
shell. Otherwise it is identical to New(), described above.

The openchan() routine opens the channel argument chan which is
obtained from the New() or Newlayer() routine. Upon successful comple
tion, openchan() returns a file descriptor that can be used as input to
write(2) or close(2). Otherwise, the value -1 is returned.

- 1 -

LIBWINDOWS(3X) (AT&T Windowing Utilities) LIBWINDOWS(3X)

The Runlayer() routine runs the specified command in the layer associated
with the channel argument chan. Any processes currently attached to this
layer will be killed, and the new process will have the environment of the
layers(l) process.

The Current() routine makes the layer associated with the channel argu
ment chan current (i.e., attached to the keyboard).

The Delete() routine deletes the layer associated with the channel argument
chan and kills all host processes associated with the layer.

The Top() routine makes the layer associated with the channel argument
chan appear on top of all overlapping layers.

The Bottom() routine puts the layer associated with the channel argument
chan under all overlapping layers.

The Move() routine moves the layer associated with the channel argument
chan from its current screen location to a new screen location at the origin
point (origin--.:x, origin_y). The size and contents of the layer are main
tained.

The Reshape() routine reshapes the layer associated with the channel argu
ment chan. The arguments origin--.:x, origin_y, corner--.:x, and corner_yare
the new coordinates of the layer rectangle. If all the coordinate arguments
are 0, the user is allowed to define the layer's rectangle interactively.

The Exit() routine causes the layers(l) program to exit, killing all processes
associated with it.

RETURN VALUE

FILES

NOTE

Upon successful completion, Runlayer(), Current(), Delete(), Top(), Bot
tom(), Move(), Reshape(), and Exit() return a 0, while openagent(),
New(), Newlayer(), and openchan() return values as described above
under each routine. If an error occurs, -1 is returned.

jusr jlib jlibwindows.a windowing terminal function library

The values of layer rectangle coordinates are dependent on the type of ter
minal. This dependency affects the routines that pass layer rectangle coor
dinates: Move(), New(), Newlayer(), and Reshape(). Some terminals will
expect these numbers to be passed as character positions (bytes); others will
expect the information to be in pixels (bits).

For example, for the AT&T Teletype 5620 DMD terminal, New(),
Newlayer(), and Reshape() take minimum values of 8 (pixels) for origin--.:x
and origin_y and maximum values of 792 (pixels) for corner-x and 1016
(pixels) for corner _y. In addition, the minimum layer size is 28 by 28 pixels
and the maximum layer size is 784 by 1008 pixels.

SEE ALSO
c1ose(2), jagent(5), write(2).
layers(l) in the User's Reference Manual.
xt(7) in the System Administrator's Reference Manual.

- 2 -

LOGNAME(3X) (Specialized Libraries)

NAME
logname - return login name of user

SYNOPSIS
char *logname()

DESCRIPTION

LOGNAME(3X)

The logname function returns a pointer to the null-terminated login name; it
extracts the LOGNAME environment variable from the user's environment.

This routine is kept in jlibjlibPW.a.

FILES
/ etc/profile

SEE ALSO
getenv(3C), profile(4), environ(5).
env(l), login(l) in the User's Reference Manual.

CAVEATS
The return values point to static data whose content is overwritten by each
call.

This method of determining a login name is subject to forgery.

- 1 -

MALLOC{3X) (Specialized Libraries) MALLOC{3X)

NAME
malloc, free, realloc, calloc, mall opt, mallinfo - fast main memory allocator

SYNOPSIS
#indude <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfoO

DESCRIPTION
The maUoe and free functions provide a simple general-purpose memory
allocation package, which runs considerably faster than the malloc(3C) pack
age. It is found in the library "malloc" and is loaded if the option" -lmal
lac" is used with ee(l) or Id(l).

The maUoe function returns a pointer to a block of at least size bytes suit
ably aligned for any use.

The argument to free is a pointer to a block previously allocated by maUoe;
after free is performed, this space is made available for further allocation,
and its contents have been destroyed. But see maUopt below for a way to
change this behavior.

Undefined results will occur if the space assigned by malloe is overrun or if
some random number is handed to free.

ReaUoe changes the size of the block pointed to by ptf to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Calloe allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

MaUopt provides for control over the allocation algorithm. The available
values for emd are:

Set maxfast to value. The algorithm allocates all blocks
below the size of maxfast in large groups and then doles
them out very quickly. The default value for maxfast is 24.

Set numlblks to value. The above mentioned "large groups"
each contain numlblks blocks. Numlblks must be greater
than O. The default value for numlblks is 100.

- 1 -

MALLOC(3X) (Specialized Libraries) MALLOC(3X)

Set grain to value. The sizes of all blocks smaller than max
fast are considered to be rounded up to the nearest multiple
of grain. Grain must be greater than O. The default value
of grain is the smallest number of bytes which will allow
alignment of any data type. Value will be rounded up to a
multiple of the default when grain is set.

Preserve data in a freed block until the next malloe, realloe,
or ealloe. This option is provided only for compatibility
with the old version of malloe and is not recommended.

These values are defined in the <malloe.h> header file.

Mallopt may be called repeatedly, but may not be called after the first small
block is allocated.

Mallinfo provides instrumentation describing space usage. It returns the
structure:

struct mallinfo {
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

/* total space in arena */
/* number of ordinary blocks * /
/* number of small blocks */
/* space in holding block headers * /
/* number of holding blocks * /
/* space in small blocks in use * /
/* space in free small blocks */
/* space in ordinary blocks in use * /
/* space in free ordinary blocks * /
/* space penalty if keep option */
/* is used */

This structure is defined in the <malloe.h> header file.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS
The malloe, realloe, and ealloe functions return a NULL pointer if there is not
enough available memory. When realloe returns NULL, the block pointed to
by ptr is left intact. If mallopt is called after any allocation or if emd or
value are invalid, non-zero is returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloe(3C).
The code size is also bigger than malloe(3C).
Note that unlike malloe(3C), this package does not preserve the contents of
a block when it is freed, unless the M_KEEP option of mallopt is used.
Undocumented features of malloe(3C) have not been duplicated.

- 2 -

PLOT(3X) (Specialized Libraries) PLOT(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openpl ()

erase ()

label (s)
char *s;

line (xl, yl, x2, y2)
int xl, yl, x2, y2;

circle (x, y, r)
int x, y, ri

arc (x, y, xO, yO, xl, yl)
int x, y, xO, yO, xl, yli

move (x, y)
int x, y;

cont (x, y)
int x, Yi
point (x, y)
int x, Yi
linemod (s)
char *Si

space (xO, yO, xl, yl)
int xO, yO, xl, yli

c10sepl 0
DESCRIPTION

FILES

These subroutines generate graphic output in a relatively device
independent manner. Space must be used before any of these functions to
declare the amount of space necessary [see plot(4)]. Openpl must be used
before any of the others to open the device for writing. Closepl flushes the
output.

Circle draws a circle of radius r with center at the point (x, y).

Arc draws an arc of a circle with center at the point (x, y) between the points
(xO, yO) and (xl, yl).

String arguments to label and linemod are terminated by nulls and do not
contain new-lines.

See plot(4) for a description of the effect of the remaining functions.

The library files listed below provide several flavors of these routines.

LIBDIRjlibplot.a

LIBDIRjlib300.pa

produces output for tplot(l G) filters

for DASI 300

- 1 -

PLOT(3X)

LIBDIR/lib300.a

LIBDIR/lib450.a

LIBDIR/lib4014.a

LIBDIRusually /usr/lib

SEE ALSO
plot(4).

(Specialized Libraries)

for DASI 300s

for DASI 450

for TEKTRONIX 4014

graph(lG), stat(lG), tplot(lG) in the User's Reference Manual.

WARNINGS

PLOT(3X)

In order to compile a program containing these functions in file.c, it is
necessary to use "cc file.c -lplot".

In order to execute it, it is necessary to use" a.out : tplot".

The above routines use <stdio.h>, which causes them to increase the size
of programs, not otherwise using standard I/O more than might be
expected.

- 2 -

REGCMP(3X) (Specialized Libraries) REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (stringl [, string2, 000], (char *)0)
char *stringl, *string2, 0 0 0;

char *regex (re, subject[, retO, 0 0 0])
char *re, *subject, *retO, 00 0,

extern char *_-1oc1;

DESCRIPTION
The regcmp function compiles a regular expression (consisting of the con
catenated arguments) and returns a pointer to the compiled form. The
malloc(3C) function is used to create space for the compiled form. It is the
user's responsibility to free unneeded space so allocated. A NULL return
from regcmp indicates an incorrect argument. regcmp(1) has been written to
generally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back. Regex returns NULL on failure
or a pointer to the next unmatched character on success. A global character
pointer _locl points to where the match began. regcmp and regex were
mostly borrowed from the editor, ed(1); however, the syntax and semantics
have been changed slightly. The following are the valid symbols and their
associated meanings.
These symbols retain their meaning in

ed(1).

By necessity, all the above defined symbols are special.
They must, therefore, be escaped with a \ (backslash) to be used as
themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex«ptr = regcmp(II \n ", (char *)0», cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed at
by cursor.

Example 2:
char retO[9];
char *newcursor, *name;

name = regcmp(II([A-Za-z][A-za-zO-9]{O,7})O, (char *)0);

This example will match through the string "Testing3" and will return the
address of the character after the last matched character (the "4"). The
string "Testing3" will be copied to the character array reW.

Example 3:
#include II file.i II

- 1 -

SPUTL(3X) SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine independent fashion

SYNOPSIS
void sputl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION
The sputl function takes the four bytes of the long integer value and places
them in memory starting at the address pointed to by buffer. The ordering
of the bytes is the same across all machines.

The sgetl function retrieves the four bytes in memory starting at the address
pointed to by buffer and returns the long integer value in the byte ordering
of the host machine.

The combination of sputl and sgetl provides a machine-independent way of
storing long numeric data in a file in binary form without conversion to
characters.

A program which uses these functions must be loaded with the object-file
access routine library Hbld.a.

SEE ALSO
intro(4),

- 1 -

ABORT(3F) (FORTRAN Programming Language Utilities)

NAME
abort - terminate FORTRAN program

SYNOPSIS
call abort ()

DESCRIPTION

ABORT(3F)

The abort function terminates the program which calls it, closing all open
files truncated to the current position of the file pointer. The abort usually
results in a core dump.

DIAGNOSTICS
When invoked, abort prints "FORTRAN abort routine called" on the standard
error output. The shell prints the message "abort - core dumped" if a core
dump results.

SEE ALSO
abort(3C).
sh(l) in the User's Reference Manual.

- 1 -

ABS(3F) (FORTRAN Programming Language Utilities) ABS(3F)

NAME
abs, iabs, dabs, cabs, zabs - FORTRAN absolute value

SYNOPSIS
integer iI, i2
real rt, r2
double precision dpl, dp2
complex cxl, cx2
double complex dxl, dx2

r2 = abs(rt)

i2 = iabs(il)
i2 = abs(il)

dp2 = dabs(dpl)
dp2 = abs(dpl)

cx2 = cabs(cxl)
cx2 = abs(cxl)

dx2 = zabs(dxl)
dx2 = abs(dxl)

DESCRIPTION
The abs functions are a family of absolute value functions. The iabs func
tion returns the integer absolute value of its integer argument. The dabs
function returns the double-precision absolute value of its double-precision
argument. The cabs function returns the complex absolute value of its com
plex argument. The zabs function returns the double-complex absolute
value of its double-complex argument. The generic form abs returns the
type of its argument.

SEE ALSO
floor(3M}.

- l -

ACOS(3F) (FORTRAN Programming Language Utilities)

NAME
acos, dacos - FORTRAN arccosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = acos(rl)

dp2 = dacos(dpl)
dp2 = acos(dpl)

DESCRIPTION

ACOS(3F)

The acos function returns the real arccosine of its real argument. The dacos
function returns the double-precision arccosine of its double-precision argu
ment. The generic form acos may be used with impunity as its argument
will determine the type of the returned value.

SEE ALSO
trig(3M).

- 1 -

AIMAG(3F) (FORTRAN Programming Language Utilities) AIMAG(3F)

NAME
aimag, dimag - FORTRAN imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double precision dp
double complex cxd
r = aimag(cxr)

dp = dimag(cxd)

DESCRIPTION
The aimag function returns the imaginary part of its single-precision com
plex argument. The dimag function returns the double-precision imaginary
part of its double-complex argument.

- 1 -

AINT(3F) (FORTRAN Programming Language Utilities) AINT(3F)

NAME
aint, dint - FORTRAN integer part intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = aint(rl)

dp2 = dint(dpl)
dp2 = aint(dpl)

DESCRIPTION
The aint function returns the truncated value of its real argument in a real.
The dint function returns the truncated value of its double-precision argu
ment as a double-precision value. The aint function may be used as a gen
eric function name, returning either a real or double-precision value depend
ing on the type of its argument.

- 1 -

ASIN(3F) (FORTRAN Programming Language Utilities)

NAME
asin, dasin - FORTRAN arcsine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = asin(rl)

dp2 = dasin(dpl)
dp2 = asin(dpl)

DESCRIPTION

ASIN(3F)

The as in function returns the real arcsine of its real argument. The dasin
function returns the double-precision arcsine of its double-precision argu
ment. The generic form asin may be used with impunity as it derives its
type from that of its argument.

SEE ALSO
trig(3M).

- 1 -

ATAN(3F) (FORTRAN Programming Language Utilities)

NAME
atan, datan - FORTRAN arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = atan(rl)

dp2 = datan(dpl)
dp2 = atan(dpl)

DESCRIPTION

ATAN(3F)

The atan function returns the real arctangent of its real argument. The
datan function returns the double-precision arctangent of its double
precision argument. The generic form atan may be used with a double
precision argument returning a double-precision value.

SEE ALSO
trig(3M).

- 1 -

ATAN2(3F) (FORTRAN Programming Language Utilities)

NAME
atan2, datan2 - FORTRAN arctangent intrinsic function

SYNOPSIS
real rl, r2, r3
double precision dpl, dp2, dp3

r3 = atan2(rl, r2)

dp3 = datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)

DESCRIPTION

ATAN2(3F)

The atan2 function returns the arctangent of argl / arg2 as a real value. The
datan2 function returns the double-precision arctangent of its double
precision arguments. The generic form atan2 may be used with impunity
with double-precision arguments.

SEE ALSO
trig(3M).

- 1 -

BOOL(3F) (FORTRAN Programming Language Utilities) BOOL(3F)

NAME
bool: and, or, xor, not, lshift, rshift - FORTRAN Bitwise Boolean functions

SYNOPSIS
integer i, j, k
real a, b, c

k = and(i, j)
c = or(a, b)
j = xor(i, a)
j = not(i)
k = lshift(i, j)
k = rshift(i, j)

DESCRIPTION

BUGS

The generic intrinsic Boolean functions and, or and xor return the value of
the binary operations on their arguments. Not is a unary operator returning
the one's complement of its argument. Lshift and rshift return the value of
the first argument shifted left or right, respectively, the number of times
specified by the second (integer) argument.

While it is recommended that Boolean functions be used only on integer
data, these functions are generic; that is, they are defined for all data types
as arguments and return values. Where required, the compiler generates
appropriate type conversions. However, when the functions are not used
with integer data, the results are unpredictable.

The implementation of the shift functions may cause large shift values to
deliver weird results.

SEE ALSO
mil(3F).

- 1 -

CONJG(3F) (FORTRAN Programming Language Utilities) CONJG(3F)

NAME
conjg, dconjg - FORTRAN complex conjugate intrinsic function

SYNOPSIS
complex cx1, cx2
double complex dx1, dx2

cx2 = conjg(cx1)

dx2 = dconjg(dx1)

DESCRIPTION
The conjg function returns the complex conjugate of its complex argument.
The dconjg function returns the double-complex conjugate of its double
complex argument.

- 1 -

COS(3F) (FORTRAN Programming Language Utilities) COS(3F)

NAME
COS, dcos, ccos - FORTRAN cosine intrinsic function

SYNOPSIS
real rt, r2
double precision dpl, dp2
complex cxl, cx2

r2 = cos(rl)

dp2 = dcos(dpl)
dp2 = cos(dpl)

cx2 = ccos(cxl)
cx2 = cos(cxl)

DESCRIPTION
The cos function returns the real cosine of its real argument. The dcos func
tion returns the double-precision cosine of its double-precision argument.
The ccos function returns the complex cosine of its complex argument. The
generic form cos may be used with impunity as its returned type is deter
mined by that of its argument.

SEE ALSO
trig(3M).

- 1 -

COSH(3F) (FORTRAN Programming Language Utilities)

NAME
cosh, dcosh - FORTRAN hyperbolic cosine intrinsic function

SYNOPSIS
real rt, r2
double precision dpl, dp2

r2 = cosh(rt)

dp2 = dcosh(dpl)
dp2 = cosh(dpl)

DESCRIPTION

COSH(3F)

The cosh function returns the real hyperbolic cosine of its real argument.
The dcosh function returns the double-precision hyperbolic cosine of its
double-precision argument. The generic form cosh may be used to return
the hyperbolic cosine in the type of its argument.

SEE ALSO
sinh(3M).

- 1 -

DIM(3F) (FORTRAN Programming Language Utilities)

NAME
dim, ddim, idim - positive difference intrinsic functions

SYNOPSIS
integer aI, a2, a3
a3 = idim(al, a2)

real aI, a2, a3
a3 = dim(al, a2)

double precision aI, a2, a3
a3 = ddim(al, a2)

DESCRIPTION
These functions return:

al-a2 if al > a2
o if al <= a2

- 1 -

DIM(3F)

DPROD(3F) (FORTRAN Programming Language Utilities)

NAME
dprod - double precision product intrinsic function

SYNOPSIS
real al, a2

double precision a3

a3 = dprod(al, a2)

DESCRIPTION

DPROD(3F)

The dprod function returns the double precision product of its real argu
ments.

- 1 -

EXP(3F) (FORTRAN Programming Language Utilities) EXP(3F)

NAME
exp, dexp, cexp - FORTRAN exponential intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = exp(rl)

dp2 = dexp(dpl)
dp2 = exp(dpl)

cx2 = cexp(cxl)
cx2 = exp(cxl)

DESCRIPTION
The exp function returns the real exponential function eX of its real argu
ment. The dexp function returns the double-precision exponential function
of its double-precision argument. The cexp function returns the complex
exponential function of its complex argument. The generic function exp
becomes a call to dexp or cexp as required, depending on the type of its
argument.

SEE ALSO
exp(3M}.

- 1 -

FTYPE(3F) (FORTRAN Programming Language Utilities) FTYPE(3F)

NAME
ftype: int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char -
explicit FORTRAN type conversion

SYNOPSIS
integer i, j
real r, s
double precision dp, dq
complex cx
double complex dcx
character*l ch

i = int(r)
i = int(dp)
i = int(cx)
i = int(dcx)
i = ifix(r)
i = idint(dp)

r = real(i)
r = real(dp)
r = real(cx)
r = real(dcx)
r = fioat(i) ~
r = sngl(dp)

dp = dble(i)
dp dble(r)
dp = dble(cx)
dp = dble(dcx)

cx = cmplx(i)
cx = cmplx(i, j)
cx = cmplx(r)
cx = cmplx(r, s)
cx = cmplx(dp)
cx = cmplx(dp, dq)
cx = cmplx(dcx)

dcx = dcmplx(i)
dcx = dcmplx(i, j)
dcx = dcmplx(r)
dcx = dcmplx(r, s)
dcx = dcmplx(dp)
dcx = dcmplx(dp, dq)
dcx = dcmplx(cx)

i = ichar(ch)
ch = char(i)

DESCRIPTION
These functions perform conversion from one data type to another.

The function int converts to integer form its real, double precision, complex,
or double complex argument. If the argument is real or double· precision, int

- 1 -

FTYPE(3F) (FORTRAN Programming Language Utilities) FTYPE(3F)

returns the integer whose magnitude is the largest integer that does not
exceed the magnitude of the argument and whose sign is the same as the
sign of the argument (i.e., truncation). For complex types, the above rule is
applied to the real part. ifix and idint convert only real and double preci
sion arguments, respectively.

The function real converts to real form an integer, double precision, complex,
or double complex argument. If the argument is double precision or double
complex, as much precision is kept as possible. If the argument is one of the
complex types, the real part is returned. float and sngl convert only integer
and double precision arguments, respectively.

The function dble converts any integer, real, complex, or double complex
argument to double precision form. If the argument is of a complex type, the
real part is returned.

The function cmplx converts its integer, real, double precision, or double com
plex argument(s) to complex form.

The function dcmplx converts to double complex form its integer, real, double
precision, or complex argument(s).

Either one or two arguments may be supplied to cmplx and dcmplx. If
there is only one argument, it is taken as the real part of the complex type
and an imaginary part of zero is supplied. If two arguments are supplied,
the first is taken as the real part and the second as the imaginary part.

The function ichar converts from a character to an integer depending on the
character's position in the collating sequence.

The function char returns the character in the ith position in the processor
collating sequence where i is the supplied argument.

For a processor capable of representing n characters,

ichar(char(i» = i for 0 :::;; i < n, and

char(ichar(ch» = ch for any representable character ch.

- 2 -

GETARG(3F) (FORTRAN Programming Language Utilities)

NAME
getarg - return FORTRAN command-line argument

SYNOPSIS
character*N c
integer i

call getarg(i, c)

DESCRIPTION

GETARG(3F)

The getarg function returns the i-th command-line argument of the current
process. Thus, if a program were invoked via

for arg 1 arg2 arg3

The getarg(2, c) function would return the string "arg2" in the character vari
able c.

SEE ALSO
getopt(3C).

- 1 -

GETENV(3F) (FORTRAN Programming Language Utilities)

NAME
getenv - return FORTRAN environment variable

SYNOPSIS
character*N c

call getenv(" VARIABLE~AME", c)

DESCRIPTION

GETENV(3F)

The getenv function returns the character-string value of the environment
variable represented by its first argument into the character variable of its
second argument. If no such environment variable exists, all blanks will be
returned.

SEE ALSO
getenv(3C), environ(5).

- 1 -

IARGC(3F) (FORTRAN Programming Language Utilities)

NAME
iargc - return the number of command line arguments

SYNOPSIS
integer i

i = iargc()

DESCRIPTION

IARGC(3F)

The iargc function returns the number of command line arguments passed
to the program. Thus, if a program were invoked via

foo arg 1 arg2 arg3

iargc() would return 3.

SEE ALSO
getarg(3 F).

- 1 -

INDEX(3F) (FORTRAN Programming Language Utilities) INDEX(3F)

NAME
index - return location of FORTRAN substring

SYNOPSIS
charader*Nl chl
charader*N2 ch2
integer i

i = index(chl, ch2)

DESCRIPTION
The index function returns the location of substring ch2 in string chI. The
value returned is the position at which substring ch2 starts, or 0 if it is not
present in string chI. If N2 is greater than NI, a zero is returned.

- 1 -

LEN(3F) (FORTRAN Programming Language Utilities)

NAME
len - return length of FORTRAN string

SYNOPSIS
character*N ch
integer i

i = len(ch)

DESCRIPTION
The len function returns the length of string ch.

- 1 -

LEN(3F)

LOG(3F) (FORTRAN Programming Language Utilities) LOG(3F)

NAME
log, alog, dlog, clog - FORTRAN natural logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex exl, ex2

r2 = alog(rl)
r2 = log(rl)

dp2 = dlog(dpl)
dp2 = log(dpl)

cx2 = clog(cxl)
cx2 = log(exl)

DESCRIPTION
The alog function returns the real natural logarithm of its real argument.
The dlog function returns the double-precision natural logarithm of its
double-precision argument. The clog function returns the complex loga
rithm of its complex argument. The generic function log becomes a call to
alog, dlog, or clog depending on the type of its argument.

SEE ALSO
exp(3M).

- 1 -

LOGlO(3F) (FORTRAN Programming Language Utilities) LOGIO(3F)

NAME
loglO, aloglO, dloglO - FORTRAN common logarithm intrinsic function

SYNOPSIS
real rt, r2
double precision dpl, dp2

r2 = aloglO(rt)
r2 = loglO(rt)

dp2 = dloglO(dpl)
dp2 = loglO(dpl)

DESCRIPTION
The alogl0 function returns the real common logarithm of its real argument.
The dloglO function returns the double-precision common logarithm of its
double-precision argument. The generic function log10 becomes a call to
alogl0 or dlogl0 depending on the type of its argument.

SEE ALSO
exp(3M).

- I -

MAX(3F) (FORTRAN Programming Language Utilities) MAX(3F)

NAME
max, maxO, amaxO, maxl, amaxl, dmaxl - FORTRAN maximum-value func
tions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3

1 = max(i, j, k)
c = max(a, b)
dp = max(a, b, c)
k = maxO(i, j)
a = amaxO(i, j, k)
i = maxl(a, b)
d = amaxl(a, b, c)
dp3 = dmaxl(dpl, dp2)

DESCRIPTION
The maximum-value functions return the largest of their arguments (of
which there may be any number). max is the generic form which can be
used for all data types and takes its return type from that of its arguments
(which must all be of the same type). maxO returns the integer form of the
maximum value of its integer arguments; amaxO, the real form of its integer
arguments; maxl, the integer form of its real arguments; amaxl, the real
form of its real arguments; and dmaxl, the double-precision form of its
double-precision arguments.

SEE ALSO
min(3F).

- 1 -

MCLOCK(3F) (FORTRAN Programming Language Utilities)

NAME
mclock - return FORTRAN time accounting

SYNOPSIS
integer i

i = mc1ock()

DESCRIPTION

MCLOCK(3F)

The mclock function returns time accounting information about the current
process and its child processes. The value returned is the sum of the current
process's user time and the user and system times of all child processes.

SEE ALSO
times(2), clock(3C), system(3F).

- 1 -

MIL(3F)

NAME

(FORTRAN Programming Language Utilities) MIL(3F)

mil: ior, iand, not, ieor, ishft, ishftc, ibits, btest, ibset, ibclr, mvbits - FOR
TRAN Military Standard functions

SYNOPSIS
integer i, k, 1, m, n, len
logical b

ior(m, n)
iand(m, n)
not(m)
ieor(m, n)
ishft(m, k)
ishftc(m, k, len)

i ibits(m, k, len)
b = btest(n, k)
i = ibset(n, k)
i = ibclr(n, k)
call mvbits(m, k, len, n, 1)

DESCRIPTION
mil is the general name for the bit field manipulation intrinsic functions and
subroutines from the FORTRAN Military Standard (MIL-STD-17S3). ior,
iand, not, ieor - return the same results as and, or, not, and xor as defined in
bool(3F).

ishft, ishfte - m specifies the integer to be shifted. k specifies the shift
count. k > 0 indicates a left shift. k = 0 indicates no shift. k < 0 indicates
a right shift. In ishft, zeros are shifted in. In ishfte, the rightmost len bits
are shifted circularly k bits. If k is greater than the machine word-size,
ishfte will not shift.

Bit fields are numbered from right to left and the rightmost bit position is
zero. The length of the len field must be greater than zero.

ibits - extract a subfield of len bits from m starting with bit position k and
extending left for len bits. The result field is right justified and the remain
ing bits are set to zero.

btest - The kth bit of argument n is tested. The value of the function is
.TRUE. if the bit is a 1 and .FALSE. if the bit is O.

ibset - the result is the value of n with the kth bit set to 1.

ibelr - the result is the value of n with the kth bit set to O.

mvbits - len bits are moved beginning at position k of argument m to posi
tion I of argument n.

SEE ALSO
bool(3F).

- 1 -

MIN(3F)

NAME

(FORTRAN Programming Language Utilities) MIN(3F)

min, minO, aminO, minI, aminI, dminI - FORTRAN minimum-value func
tions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3

I = min(i, j, k)
c = min(a, b)
dp = min(a, b, c)
k = minO(i, j)
a = aminO(i, j, k)
i = minl(a, b)
d = aminl(a, b, c)
dp3 = dminl(dpl, dp2)

DESCRIPTION
The minimum-value functions return the minimum of their arguments (of
which there may be any number). min is the generic form which can be
used for all data types and takes its return type from that of its arguments
(which must all be of the same type). minO returns the integer form of the
minimum value of its integer arguments; aminO, the real form of its integer
arguments; minI, the integer form of its real arguments; aminI, the real
form of its real arguments; and dminI, the double-precision form of its
double-precision arguments.

SEE ALSO
max(3F).

- 1 -

MOD(3F) (FORTRAN Programming Language Utilities) MOD(3F)

NAME
mod, amod, dmod - FORTRAN remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k = mod(i, j)

r3 = amod(rl, r2)
r3 = mod(rl, r2)

dp3 = dmod(dpl, dp2)
dp3 = mod(dpl, dp2)

DESCRIPTION
The mod function returns the integer remainder of its first argument divided
by its second argument. Amod and dmod return, respectively, the real and
double-precision whole number remainder of the integer division of their
two arguments. The generic version mod will return the data type of its
arguments.

- 1 -

RAND(3F) (FORTRAN Programming Language Utilities)

NAME
rand, irand, srand - random number generator

SYNOPSIS
integer iseed, i, irand
double precision x, rand

call srand(iseed)

i = irand()

x = rand()

DESCRIPTION

RAND(3F)

The irand function generates successive pseudo-random integers in the
range from 0 to 2**15-1. The rand function generates pseudo-random
numbers distributed in [0, 1.0]. The srand function uses its integer argument
to re-initialize the seed for successive invocations of irand and rand.

SEE ALSO
rand(3C).

- 1 -

ROUND(3F) (FORTRAN Programming Language Utilities) ROUNO(3F)

NAME
round: anint, dnint, nint, idnint - FORTRAN nearest integer functions

SYNOPSIS
integer i
real rl, r2
double precision dpl, dp2

r2 = anint(rl)
i = nint(rl)

dp2 = anint(dpl)
dp2 = dnint(dpl)

i = nint(dpl)
i = idnint(dpl)

DESCRIPTION
The anint function returns the nearest whole real number to its real argu
ment (i.e., int(a+0.5) if a ~ 0, int(a-0.5) otherwise). The dnint function
does the same for its double-precision argument. The nint function returns
the nearest integer to its real argument. The idnint function is the double
precision version. The anint function is the generic form of anint and dnint,
performing the same operation and returning the data type of its argument.
The nint function is also the generic form of idnint.

- 1 -

SIGN(3F) (FORTRAN Programming Language Utilities) SIGN(3F)

NAME
sign, isign, dsign - FORTRAN transfer-of-sign intrinsic function

SYNOPSIS
integer i, j, k
real rt, r2, r3
double precision dpl, dp2, dp3

k = isign(i, j)
k = sign(i, j)

r3 = sign(rt, r2)

dp3 = dsign(dpl, dp2)
dp3 = sign(dpl, dp2)

DESCRIPTION
The isign function returns the magnitude of its first argument with the sign
of its second argument. The sign and dsign functions are its real and
double-precision counterparts, respectively. The generic version is sign and
will devolve to the appropriate type depending on its arguments.

- 1 -

SIGNAL(3F) (FORTRAN Programming Language Utilities) SIGNAL(3F)

NAME
signal - specify FORTRAN action on receipt of a system signal

SYNOPSIS
integer i, intfc
external intfc

call signal(i, intfc)

DESCRIPTION
The argument i specifies the signal to be caught. signal allows a process to
specify a function to be invoked upon receipt of a specific signal. The first
argument specifies which fault or exception. The second argument specifies
the function to be invoked.
NOTE: The interrupt processing function, intfc, does not take an argument.

SEE ALSO
kill(2), signal(2).

- 1 -

SIN(3F) (FORTRAN Programming Language Utilities) SIN(3F)

NAME
sin, dsin, csin - FORTRAN sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = sin(rl)

dp2 = dsin(dpl)
dp2 = sin(dpl)

cx2 = csin(cxl)
cx2 = sin(cxl)

DESCRIPTION
The sin function returns the real sine of its real argument. The dsin func
tion returns the double-precision sine of its double-precision argument. The
csin function returns the complex sine of its complex argument. The generic
sin function becomes dsin or csin as required by argument type.

SEE ALSO
trig(3M).

- 1 -

SINH(3F) (FORTRAN Programming Language Utilities)

NAME
sinh, dsinh - FORTRAN hyperbolic sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = sinh(rl)

dp2 = dsinh(dpl)
dp2 = sinh(dpl)

DESCRIPTION

SINH(3F)

The sinh function returns the real hyperbolic sine of its real argument. The
dsinh function returns the double-precision hyperbolic sine of its double
precision argument. The generic form sinh may be used to return a
double-precision value when given a double-precision argument.

SEE ALSO
sinh(3M).

- 1 -

SQRT(3F) (FORTRAN Programming Language Utilities) SQRT(3F)

NAME
sqrt, dsqrt, csqrt - FORTRAN square root intrinsic function

SYNOPSIS
real rt, r2
double precision dpl, dp2
complex cxl, cx2

r2 = sqrt(rl)

dp2 = dsqrt(dpl)
dp2 = sqrt(dpl)

cx2 = csqrt(cxl)
cx2 = sqrt(cxl)

DESCRIPTION
The sqrt function returns the real square root of its real argument. The
dsqrt function returns the double-precision square root of its double
precision argument. The csqrt function returns the complex square root of
its complex argument. sqrt, the generic form, will become dsqrt or csqrt as
required by its argument type.

SEE ALSO
exp(3M).

- 1 -

STRCMP(3F) (FORTRAN Programming Language Utilities)

NAME
strcmp: 1ge, 19t, lle, lIt - string comparison intrinsic functions

SYNOPSIS
character*N aI, a2
logical I

I Ige(al, a2)
I Igt(al, a2)
I lle(al, a2)
I llt(al, a2)

DESCRIPTION

STRCMP(3F)

These functions return .TRUE. if the inequality holds and .FALSE. otherwise.

- 1 -

SYSTEM(3F) (FORTRAN Programming Language Utilities)

NAME
system - issue a shell command from FORTRAN

SYNOPSIS
character*N c

call system(c)

DESCRIPTION

SYSTEM(3F)

The system function causes its character argument to be given to sh(l) as
input, as if the string had been typed at a terminal. The current process
waits until the shell has completed.

SEE ALSO
exec(2), system(3S).
sh(l) in the User's Reference Manual.

- 1 -

TAN(3F) (FORTRAN Programming Language Utilities)

NAME
tan, dtan - FORTRAN tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = tan(rl)

dp2 = dtan(dpl)
dp2 = tan(dpl)

DESCRIPTION

TAN(3F)

The tan function returns the real tangent of its real argument. The dtan
function returns the double-precision tangent of its double-precision argu
ment. The generic tan function becomes dtan as required with a double
precision argument.

SEE ALSO
trig(3M).

- 1 -

TANH(3F) (FORTRAN Programming Language Utilities)

NAME
tanh, dtanh - FORTRAN hyperbolic tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = tanh(rl)

dp2 = dtanh(dpl)
dp2 = tanh(dpl)

DESCRIPTION

TANH(3F)

The tanh function returns the real hyperbolic tangent of its real argument.
The dtanh function returns the double-precision hyperbolic tangent of its
double-precision argument. The generic form tanh may be used to return a
double-precision value given a double-precision argument.

SEE ALSO
sinh(3M).

- 1 -

INTRO(4) INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C structure declara
tions for the file formats are given where applicable. Usually, the header
files containing these structure declarations can be found in the directories
jusrjinclude or jusrjincludejsys. For inclusion in C language programs,
however, the syntax #include <filename.h> or #include
<sysjfilename.h> should be used.

- 1 -

A.OUT(4) A.OUT(4)

NAME
a.out - common assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPTION
The file name a.out is the default output file name from the link editor
Id(l). The link editor will make a.out executable if there were no errors in
linking. The output file of the assembler as (1) also follows the common
object file format of the a.out file although the default file name is different.

A common object file consists of a file header, a UNIX system header (if the
file is link editor output), a table of section headers, relocation information,
(optional) line numbers, a symbol table and a string table. The order is
given below.

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts of an object file (line numbers, symbol table and string
table) may be missing if the program was linked with the -s option of Id(l)
or if they were removed by strip(l). Also note that the relocation informa
tion will be absent after linking unless the -r option of Id(l) was used. The
string table exists only if the symbol table contains symbols with names
longer than eight characters.

The sizes of each section (contained in the header, discussed below) are in
bytes.

When an a.out file is loaded into memory for execution, three logical seg
ments are set up: the text segment, the data segment (initialized data fol
lowed by uninitialized, the latter actually being initialized to all O's), and a
stack. On your computer, the text segment starts at location virtual address
O.

The a.out file produced by Id(l) may have one of two magic numbers in the
first field of the UNIX system header. A magic number of 0410 indicates

- 1 -

A.OUT(4) A.OUT(4)

that the executable must be swapped through the private swapping store of
the UNIX system, while the magic number 0413 causes the system to
attempt to page the text directly from the a.out file.

In a 0410 executable, the text section is loaded at virtual location
OxOOOOOOOO. The data section is loaded immediately following the end of
the text section.

For a 0413 executable, the headers (file header, UNIX system header, and
section headers) are loaded at the beginning of the text segment and the text
immediately follows the headers in the user address space. The first text
address will equal the sum of the sizes of the headers, and will vary
depending on the number of sections in the a.out file. In an a.out file with
3 sections (.text, .data, and .bss) the first text address is at OxOOOOOODO. The
data section starts in the next page table directory after the last one used by
the text section, in the first page of that directory, with an offset into that
page equal to the 1st unused memory offset in the last page of text. That is
to say, given that etext is the address of the last byte of the text section, the
1st byte of the data section will be at Ox00400000 + (etext & OxFFCOOOOO) +
«etext+1) & OxFFCOOFFF).

The user address space of the 80286 consists of 4096 segments. Segment
number N is located at address (N*8+7)*65536. A small model process has
one text segment (segment number 10), and one segment that contains data,
bss, and stack (segment 11). A large model process has one segment for the
stack (segment 9), one or more segments for text (starting at segment 10),
and one or more segments for data and bss (starting at the first segment
after the last text segment). Segments consist of some integer multiple of
512 bytes, with a maximum of 65536 bytes per segment.

On the 80386 computer the stack begins at location 7FFFFFFC and grows
toward lower addresses. On the 80286 computer the stack begins at loca
tion Ox004FFFFF and grows toward lower addresses. The stack is automati
cally extended as required. The data segment is extended only as requested
by the brk(2) system call.

For relocatable files the value of a word in the text or data portions that is
not a reference to an undefined external symbol is exactly the value that
will appear in memory when the file is executed. If a word in the text
involves a reference to an undefined external symbol, there will be a reloca
tion entry for the word, the storage class of the symbol-table entry for the
symbol will be marked as an U external symbol", and the value and section
number of the symbol-table entry will be undefined. When the file is pro
cessed by the link editor and the external symbol becomes defined, the
value of the symbol will be added to the word in the file.

- 2 -

A.OUT(4) A.OUT(4)

File Header
The format of the filehdr header is

struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic;
f_nscns;
f_timdat;
f_symptr;
f_nsyms;
f_opthdr;
f_flags;

/* magic number */
/* number of sections */
/* time and date stamp */
/* file ptr to symtab * /
/* # symtab entries * /
/* sizeof(opt hdr) */
/* flags */

UNIX System Header
The format of the UNIX system header is

typedef struct aouthdr
{

short
short
long
long
long
long
long
long

magic;
vstamp;
tsize;
dsize;
bsize;
entry;
texLstart;
data-start;

/* magic number * /
/* version stamp */
/* text size in bytes, padded * /
/* initialized data (.data) */
/ * uninitialized data (. bss) * /
/* entry point * /
/* base of text used for this file * /
/* base of data used for this file */

} AOUTHDR;

Section Header
The format of the section header is

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN];/* section name */
s_paddr; /* physical address * /
s_vaddr; /* virtual address */
s_size; /* section size */
s_scnptr; /* file ptr to raw data * /
sJ'elptr; /* file ptr to relocation * /
s-Innoptr; /* file ptr to line numbers * /
s-Dreloc; /* # reloc entries * /
s_nlnno; /* # line number entries * /
s_flags; /* flags * /

- 3 -

A.OUT(4) A.OUT(4)

Relocation
Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the following
format:

struct reloc
{

};

long
long
ushort

r_vaddr; /* (virtual) address of reference */
r-symndx; /* index into symbol table * /
r_type; /* relocation type * /

The start of the relocation information is s_relptr from the section header.
If there is no relocation information, s_relptr is o.

Symbol Table
The format of each symbol in the symbol table is

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment
{

};

union
{

char
struct
{

long
long

} -11-11;
char

} -11;
long
short
unsigned short
char
char

#define n_name
#define IL-Zeroes
#define n_offset
#define n_nptr

/* all ways to get a symbol name * /

_n_name[SYMNMLEN]; /* name of symbol * /

-11-zeroes;
_IL-offset;

/* == OL if in string table * /
/* location in string table * /

-11-11ptr[2]; / allows overlaying */

n_value;
IL-scnum;
n_type;
IL-sclass;
IL-numaux;

/* value of symbol * /
/* section number*/
/* type and derived type * /
/* storage class * /
/* number of aux entries * /

_n._n-11ame
_n.-11-11._n-zeroes
_n._IL-n._n_offset
_n._IL-nptr[1]

Some symbols require more information than a single entry; they are fol
lowed by auxiliary entries that are the same size as a symbol entry. The for
mat follows.

- 4 -

A.OUT(4)

union auxent {
struet {

long x-tagndx;
union {

struct {
unsigned short X-lnno;
unsigned short x-size;

} X-lnsz;
long X-fsize;

} X-ffiise;
union {

struct {
iong
long

} X-fen;
struet {

X-innoptr;
x-endndx;

A.OUT(4)

unsigned short x-dimen[DIMNUM];
} x-ary;

};

} X-fenary;
unsigned short x-tvndx;

} x-sym;

struct {
ehar x-fname[FlLNMLEN];

} x-file;

struct {
long x-senlen;
unsigned short X-Ilreloe;
unsigned short x-nlinno;

} x-sen;

struct {
long
unsigned short
unsigned short

} x-tv;

x-tvfill;
x-tvlen;
x-tvran[2];

Indexes of symbol table entries begin at zero. The start of the symbol table
is f-symptr (from the file header) bytes from the beginning of the file. If the
symbol table is stripped, f-symptr is O. The string table (if one exists)
begins at f-symptr + <t_nsyms * SYMESZ) bytes from the beginning of the
file.

SEE ALSO
as(l), ee(l), ld(l), brk(2), filehdr(4), Idfen(4), linenum(4), reloe(4), senhdr(4),
syms(4).

- 5 -

ACCT(4) ACCT(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form defined
by <sys/acct.h>, whose contents are:

typedef ushort comp_t; /* "floating point" * /
/* 13-bit fraction, 3-bit exponent */

struct acct
{

};

char aLJlag;
char ac-stat;
ushort ac_uid;
ushort ac-gid;
dev_t ac-tty;
time_t ac-btime;
comp_t ac-utime;
comp_t ac-stime;
comp_t ac-etime;
comp_t aC-Inem;
comp_t auo;
comp_t aC-l'W;
char ac-comm[8];

extern struct acct
extern struct inode

/* Accounting flag */
/* Exit status * /

/* Beginning time */
/* acctng user time in clock ticks */
/* acctng system time in clock ticks */
/* acctng elapsed time in clock ticks * /
/* memory usage in clicks * /
/* chars trnsfrd by read/write * /
/* number of block reads/writes */
/* command name */

acctbuf;
acctp; / inode of accounting file * /

#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges * /
#define ACCTF 0300 /* record type: 00 = acct * /

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by an
exec (2). The ac_comm field is inherited from the parent process and is reset
by any exec. Each time the system charges the process with a clock tick, it
also adds to ac_mem the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem / (ac---stime + ac_utime) can be viewed as an approxi
mation to the mean process size, as modified by text-sharing.

- 1 -

ACCT(4) ACCT(4)

The structure tacct.h, which resides with the source files of the accounting
commands, represents the total accounting format used by the various
accounting commands:

/*
* total accounting (for acct period), also for day
*/

struct tacct {
uicLt ta_uid; /* userid * /
char ta-Ilame[8]; /* login name */
float ta_cpu[2]; /* cum. cpu time, p/np (mins) */
float ta_kcore[2]; /* cum kcore-minutes, p jnp * /
float ta_con[2]; /* cum. connect time, p/np, mins */
float ta_du; /* cum. disk usage * /
long ta_pc; /* count of processes */
unsigned short ta_sc; /* count of login sessions * /
unsigned short ta_dc; /* count of disk samples * /
unsigned short ta_fee; /* fee for special services */

};

SEE ALSO

BUGS

acct(2), exec(2), fork(2).
acct(1M) in the System Administrator's Reference Manual.
acctcom(l) in the User's Reference Manual.

The ac_mem value for a short-lived command gives little information about
the actual size of the command, because ac_mem may be incremented while
a different command (e.g., the shell) is being executed by the process.

- 2 -

AR(4) AR(4)

NAME
ar - common archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar(l) is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link editor ld(l).

Each archive begins with the archive magic string.

#define ARMAG " !<arch> \n "
#define SARMAG 8

/* magic string * /
/* length of magic string * /

Each archive which contains common object files [see a.out(4)] includes an
archive symbol table. This symbol table is used by the link editor ld(l) to
determine which archive members must be loaded during the link edit pro
cess. The archive symbol table (if it exists) is always the first file in the
archive (but is never listed) and is automatically created and/or updated by
ar.

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following for
mat:

#define ARFMAG " '\n "

};

char
char
char
char
char
char
char

ar-name[16];
ar_date[12];
ar_uid[6];
ar_gid[6];
ar_mode[8];
ar_size[lO];
ar~mag[2];

/* header trailer string * /

/* file member header * /

/* '/' terminated file member name * /
/* file member date */
/* file member user identification */
/* file member group identification */
/* file member mode (octal) */
/* file member size */
/* header trailer string * /

All information in the file member headers is in printable ASCII. The
numeric information contained in the headers is stored as decimal numbers
(except for ar _mode which is in octal). Thus, if the archive contains print
able files, the archive itself is printable.

The ar_name field is blank-padded and slash U) terminated. The ar_date
field is the modification date of the file at the time of its insertion into the
archive. Common format archives can be moved from system to system as
long as the portable archive command ar(l) is used. Conversion tools such
as convert(l) exist to aid in the transportation of non-common format
archives to this format.

- 1 -

AR(4) AR(4)

Each archive file member begins on an even byte boundary; a new-line is
inserted between files if necessary. Nevertheless, the size given reflects the
actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero
length name (Le., ar-name[O] == '/'). The contents of this file are as fol
lows:

The number of symbols. Length: 4 bytes.

The array of offsets into the archive file. Length: 4 bytes * lithe
number of symbols".

The name string table. Length: ar-Bize - (4 bytes * (lithe number
of symbols" + 1».

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null-terminated strings as
there are elements in the offsets array. Each offset from the array is associ
ated with the corresponding name from the string table (in order). The
names in the string table are all the defined global symbols found in the
common object files in the archive. Each offset is the location of the archive
header for the associated symbol.

SEE ALSO
ar(l), ld(l), strip(l), sputl(3X), a.out(4).

WARNINGS
The strip(l) command will remove all archive symbol entries from the
header. The archive symbol entries must be restored via the ts option of
the ar(l) command before the archive can be used with the link editor ld(l).

- 2 -

CHECKLIST(4) CHECKLIST(4)

NAME
checklist - list of file systems processed by fsck and ncheck

DESCRIPTION

FILES

The checklist file format resides in directory jete and contains a list of, at
most, 15 special file names. Each special file name is contained on a
separate line and corresponds to a file system. Each file system will then be
automatically processed by the fsck(IM) command.

j etc / checklist

SEE ALSO
fsck(IM), ncheck(IM) in the System Administrator's Reference Manual.

- 1 -

CONFIG(4) CONFIG(4)

NAME
config - per-module configuration information

DESCRIPTION
Each module in a configuration tree can have a file named config associated
with it [see mkunix(lM)]. This file specifies various attributes of the
module. In the syntax given below, the following non-terminals are used:

<name> := alphanumeric sequence
<string> := "alphanumeric sequence"
<number> := "decimai number"

White space may be inserted anywhere, and comments begin with an aster
isk and end at the end of the line. All lines are optional and may be speci
fied in any order:

prefix = <name>
module function prefix

block(<number>)
module is a block device driver with specified major number

character(<number»
module is a character device driver with specified major number

streamd(<number>)
module is a STREAMS driver with specified major number

streamm
module is a STREAMS module

fs(<number>, <string>, <number»
module is a file system type; the parameters are used to fill in the
kernel's fsinfo structure, and represent the fs-I1ags, fs_name, and
fS-Ilotify members, respectively.

intvec = <number> [,<number>] ...
interrupt vector number(s) for hardware device drivers

functions = <name> [,<name>] ...
list of standard interface functions supplied with the module. These
may include start, init, intr (for hardware drivers), or one of the fol
lowing depending on module type:

Module TypeLegal Functions
streamminfo
streamdinfo
blockopen, close, strategy, print
characteropen, close, read, write, ioctl, tty
fsinit, iput, iread, iupdat, readi,
writei, itrunc, statf, namei, mount,
umount, getinode, openi, closei,
update, statfs, access, getdents,
allocmap, freemap, readmap, setattr,
notify, fentl, fsinfo, ioctl

Not all combinations of the above lines are legal; for example, a module
cannot be both a file system and any other type of driver. Config(lM)

- 1 -

CONFlG(4)

performs consistency checks of this nature.

FILES
$CONF jmodulesj* jconfig

SEE ALSO
mkunix(lM), config(lM), system(4).

- 2 -

CONFlG(4)

CORE(4) CORE(4)

NAME
core - format of core image file

DESCRIPTION
The UNIX system writes out a core image of a terminated process when any
of various errors occur. See signal(2) for the list of reasons; the most com
mon are memory violations, illegal instructions, bus errors, and user
generated quit signals. The core image is called core and is written in the
process's working directory (provided it can be; normal access controls
apply). A process with an effective user ID different from the real user ID
will not produce a core image.

The first section of the core image is a copy of the system's per-user data
for the process, including the registers as they were at the time of the fault.
The size of this section depends on the parameter usize, which is defined in
<sys/param.h>. The remainder represents the actual contents of the user's
core area when the core image was written. If the text segment is read-only
and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user
structure of the system, defined in <sys/user.h>. Not included in this file
are the locations of the registers. These are outlined in <sys/reg.h>.

SEE ALSO
sdb(l), setuid(2), signal(2).
crash(lM) in the System Administrator's Reference Manual.

- 1 -.

CPIO(4) CPIO(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio(l) is not used, is:

struct {

} Hdr;

short h_magic,
Ldev;

ushort uno,
lLJnode,
Luid,
Lgid;

short h-nlink,
lLJdev,
h-Intime[2],
h-namesize,
Lfilesize[2];

char h-name[h-namesize rounded to word];

When the -c option is used, the header information is described by:
sscanf(Chdr," %60%60%60%60%60%60%60%60% 1110%60% 1110%s" ,

&Hdr.lLJnagic, &Hdr.Ldev, &Hdr.uno, &Hdr.h-Inode,
&Hdr.Luid, &Hdr.Lgid, &Hdr.h-nlink, &Hdr.lLJdev,
&Longtime, &Hdr.Lnamesize,&Longfile,Hdr.Lname);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize,
respectively. The contents of each file are recorded in an element of the
array of varying length structures, archive, together with other items
describing the file. Every instance of h_magic contains the constant 070707
(octal). The items h_dev through h_mtime have meanings explained in
stat(2). The length of the null-terminated path name h_name, including the
null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!!. Special
files, directories, and the trailer are recorded with h_filesize equal to zero.

SEE ALSO
stat(2).
cpio(l), find(l) in the User's Reference Manual.

- 1 -

DIR(4) DIR(4)

NAME
dir - format of directories

SYNOPSIS
#include <sysjdir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a bit
in the flag word of its i-node entry [see f8(4)]. The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct

ushort cLJ.no;
char cLname[DIRSIZ];

};

By convention, the first two entries in each directory are for . and ... The
first is an entry for the directory itself. The second is for the parent direc
tory. The meaning of .. is modified for the root directory of the master file
system; there is no parent, so .. has the same meaning as ..

SEE ALSO
fs(4).

- 1 -

DIRENT(4) DIRENT(4)

NAME
dirent - file system independent directory entry

SYNOPSIS
#include <sysjdirent.h>
#inc1ude <sysjtypes.h>

DESCRIPTION

FILES

Different file system types may have different directory entries. The dirent
structure defines a file system independent directory entry, which contains
information common to directory entries in different file system types. A
set of these structures is returned by the getdents(2) system call.

The dirent structure is defined below.
struct dirent {

};

long
off_t
unsigned short
char

Lino;
<Loff;
cLreclen;
<Lname[l];

The d_ino is a number which is unique for each file in the file system. The
field d_off is the offset of that directory entry in the actual file system direc
tory. The field d_name is the beginning of the character array giving the
name of the directory entry. This name is null-terminated and may have at
most MAXNAMLEN characters. This results in file system independent
directory entries being variable length entities. The value of d_reclen is the
record length of this entry. This length is defined to be the number of bytes
between the current entry and the next one, so that it will always result in
the next entry being on a long boundary.

jusrjincludejsysjdirent.h

SEE ALSO
getdents(2).

- 1 -

FILEHDR(4) FILEHDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION
Every common object file begins with a 20-byte header. The following C
struct declaration is used:

struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f-ffiagic ;
f-Ilscns;
f_timdat;
f_symptr;
f-Ilsyms;
f_opthdr;
f-Hags;

/* magic number * /
/* number of sections * /
/* time & date stamp * /
/* file ptr to symtab * /
/* # symtab entries * /
/* sizeof(opt hdr) */
/* flags */

F -Bymptr is the byte offset into the file at which the symbol table can be
found. Its value can be used as the offset in fseek(3S) to position an I/O
stream to the symbol table. The UNIX system optional header is 28-bytes.
The valid magic numbers are given below:

#define 1286SMAGIC 0512 /* 80286 computers-small model
programs */

#define 1286LMAGIC 0522 /* 80286 computers-large model

#define 1386MAGIC
#define FBOMAGIC
#define N3BMAGIC
#define NTVMAGIC

programs */
0514 /* 80386 computers */
0560 /* 3B2 and 3B5 computers * /
0550 /* 3B20 computer * /
0551 /* 3B20 computer */

#define VAXWRMAGIC 0570 /* VAX writable text segments */
#define V AXROMAGIC 0575 /* VAX read only sharable

text segments * /
The value in f_timdat is obtained from the time(2) system call.
currently defined are:

Flag bits

#define F -RELFLG
#define F -EXEC
#define F_LNNO
#define F_LSYMS
#define F -MINMAL
#define F_UPDATE
#define F _SWABD
#define F-AR16WR
#define F -AR32WR
#define F-AR32W
#define FJ ATCH
#define F_80186

0000001 /* relocation entries stripped * /
0000002 /* file is executable * /
0000004 /* line numbers stripped * /
0000010 1* local symbols stripped * /
0000020 /* minimal object file * /
0000040 /* update file, ogen produced * /
0000100 /* file is "pre-swabbed" */
0000200 /* 16-bit DEC host */
0000400 /* 32-bit DEC host */
0001000 /* non-DEC host */
0002000 /* "patch" list in opt hdr * /
010000 /* contains 80186 instructions */

- 1 -

FILEHDR(4)

SEE ALSO

FILEHDR(4)

#define F_80286 020000 /* contains 80286 instructions */
#define F_BM32ID 0160000 /* WE32000 family ID field */
#define F_BM32B 0020000 /* file contains WE 32100 code */
#define F_BM32MAU 0040000 /* file reqs MAU to execute */
#define F_BM32RST 0010000 /* this object file contains restore

work around [3B5/3B2 only] */

time(2), fseek(3S), a.out(4).

- 2 -

FS(4) FS(4)

NAME
fs: file system - format of system volume

SYNOPSIS
#inc1ude <sys/filsys.h>
#inc1ude <sys /types.h>
#inc1ude <sys /param.h>

DESCRIPTION
Every file system storage volume has a common format for certain vital
information. Every such volume is divided into a certain number of 512-
byte long sectors. Sector 0 is unused and is available to contain a bootstrap
program or other information.

Sector 1 is the superblock. The format of a super block is:

struct filsys

ushort s~size; /* size in blocks of i-list */
daddr_t s~size; /* size in blocks of entire volume * /
short s-Ilfree; /* number of addresses in s_free * /
daddr_t s~ree[NICFREE]; /* free block list * /
short s_ninode; /* number of i-nodes in s~node */
ushort s~node[NICINOD]; /* free i-node list * /
char s~ock; /* lock during free list manipulation * /
char s~lock; /* lock during i-list manipulation */
char s~mod; /* super block modified flag * /
char s-1"only; /* mounted read-only flag * /
time_t s_time; /* last super block update * /
short s_dinfo[4]; /* device information * /
daddr_t s_tfree; /* total free blocks* /
ushort s_tinode; /* total free i-nodes * /
char s_fname[6]; /* file system name * /
char s~pack[6]; /* file system pack name * /
long s_fil1[12]; /* ADJUST to make sizeof filsys

be 512; for 80286, array is s_fill[14] */
long s_state; /* file system state * /
long s_magic; /* magic number to denote new

file system */
long s_typ~; /* type of new file system * /

};

#define FsMAGIC Oxfd187e20 /* s-1I\agic number * /

#define Fslb 1 /* 5l2-byte block */
#define Fs2b 2 /* 1024-byte block */

#define FsOKA Y Ox7c269d38 /* s_state: clean * /
#define FsACTIVE Ox5e72d8la /* s_state: active * /
define FsBAD Oxcb096f43 /* s_state: bad root */
#define FsBADBLK Oxbadbc14b /* s_state: bad block corrupted it * /

- 1 -

FS(4) FS(4)

•

S_type indicates the file system type. Currently, two types of file systems
are supported: the original 512-byte logical block and the improved 1024-
byte logical block. S_magic is used to distinguish the original 512-byte
oriented file systems from the newer file systems. If this field is not equal
to the magic number, fSMAGIC, the type is assumed to be fsIb, otherwise the
s_type field is used. In the following description, a block is then deter
mined by the type. For the original 512-byte oriented file system, a block is
512-bytes. For the 1024-byte oriented file system, a block is 1024-bytes or
two sectors. The operating system takes care of all conversions from logical
block numbers to physical sector numbers.

S---state indicates the state of the file system. A cleanly unmounted, not
damaged file system is indicated by the FsOKAY state. After a file system
has been mounted for update, the state changes to FsACTIVE. A special
case is used for the root file system. If the root file system appears dam
aged at boot time, it is mounted but marked FSBAD. Lastly, after a file sys
tem has been unmounted, the state reverts to FsOKAY.

S_isize is the address of the first data block after the i-list; the i-list starts
just after the super block, namely in block 2; thus the i-list is s_isize-2
blocks long. S_fsize is the first block not potentially available for allocation
to a file. These numbers are used by the system to check for bad block
numbers; if an "impossible" block number is allocated from the free list or
is freed, a diagnostic is written on the on-line console. Moreover, the free
array is cleared, so as to prevent further allocation from a presumably cor
rupted free list.

The free list for each volume is maintained as follows. The s_free array
contains, in s_free[l], ... , s_free[s_nfree-1], up to 49 numbers of free blocks.
S_free[O] is the block number of the head of a chain of blocks constituting
the free list. The first long in each free-chain block is the number (up to 50)
of free-block numbers listed in the next 50 longs of this chain member. The
first of these 50 blocks is the link to the next member of the chain. To allo
cate a block: decrement s_nfree, and the new block is s_free[s_nfree]. If
the new block number is 0, there are no blocks left, so give an error. If
s_nfree became 0, read in the block named by the new block number,
replace s_nfree by its first word, and copy the block numbers in the next 50
longs into the s_free array. To free a block, check -if s_nfree is 50; if so,
copy s_nfree and the s_free array into it, write it out, and set s_nfree to O.
In any event set s_free[s_nfree] to the freed block's number and increment
s_nfree.

S_tfree is the total free-blocks available in the file system.
" S_ninode is the number of free i-numbers in the s_inode array. To allocate

an i-node: if s_ninode is greater than 0, decrement it and return
s_inode[s_ninode]. If it was 0, read the i-list and place the numbers of all
free i-nodes (up to 100) into the s_inode array, then try again. To free an
i-node, provided s_ninode is less than 100, place its number into
s_inode[s_ninode] and increment s_ninode. If s_ninode is already 100, do
not bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the
i-node is really free or not is maintained in the i-node itself.

- 2 -

FS(4) FS(4)

S_tinode is the total free i-nodes available in the file system.

S_flock and s_ilock are flags maintained in the core copy of the file system
while it is mounted and their values on disk are immaterial. The value of
s_fmod on disk is likewise immaterial; it is used as a flag to indicate that the
super block has changed and should be copied to the disk during the next
periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super block of the file system was changed, and
is the number of seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT).
During a reboot, the s_time of the super block for the root file system is
used to set the system's idea of the time.

S_fname is the name of the file system and s_fpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also,
i-nodes are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is
reserved for the root directory of the file system, but no other i-number has
a built-in meaning. Each i-node represents one file. For the format of an i
node and its flags, see inode(4).

SEE ALSO
mount(2), inode(4).
fsck(IM), fsdb(IM), mkfs(IM) in the System Administrator's Reference
Manual.

- 3 -

FSPEC(4) FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX system with
non-standard tabs, (Le., tabs which are not set at every eighth column).
Such files must generally be converted to a standard format, frequently by
replacing all tabs with the appropriate number of spaces, before they can be
processed by UNIX system commands. A format specification occurring in
the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and :>. Each parameter consists
of a keyletter, possibly followed immediately by a value. The following
parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value
of tabs must be one of the following:

1. a list of column numbers separated by commas, indicating
tabs set at the specified columns;

2. a - followed immediately by an integer n, indicating tabs
at intervals of n columns;

3. a - followed by the name of a "canned" tab specification.

Standard tabs are specified by t-8, or equivalently, tl,9,17,25,etc.
The canned tabs which are recognized are defined by the
tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of
size must be an integer. Size checking is performed after tabs
have been expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended
to each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the
line containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specifica
tion is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and
mO. If the s parameter is not specified, no size checking is performed. If
the first line of a file does not contain a format specification, the above
defaults are assumed for the entire file. The following is an example of a
line containing a format specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary
to code the d parameter.

- 1 -

FSPEC(4) FSPEC(4)

SEE ALSO
ed(l), newform(l), tabs(l) in the User's Reference Manual.

- 2 -

FSTAB(4) FSTAB(4)

NAME
fstab - file-system-table

DESCRIPTION

FILES

The jetcjfstab file contains information about file systems for use by
mount (1M) and mountall(1M). Each entry in jetcjfstab has the following
format:

column 1

column 2

column 3

column 4

column 5+

block special file name of file system or advertised
remote resource

mount-point directory

"-r II if to be mounted read-only; II -d[r]" if remote

(optional) file system type string

ignored

White-space separates columns. Lines beginning with "# " are comments.
Empty lines are ignored.

A file-system-table might read:

jdev jdskjcldOs2 jusr S51K
jdev jdskjcldls2 jusrjsrc -r
adv-fesource jmnt -d

jetcjfstab

SEE ALSO
mount(lM), mountall(lM), rmountall(lM) in the System Administrator's
Reference Manual.

- 1 -

GETTYDEFS(4) GETTYDEFS(4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty(lM) to set up the
speed and terminal settings for a line. It supplies information on what the
login prompt should look like. It also supplies the speed to try next if the
user indicates the current speed is not correct by typing a <break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-labei

Each entry is followed by a blank line. The various fields can contain
quoted characters of the form \b, \n, \c, etc., as well as \nnn, where nnn is
the octal value of the desired character. The various fields are:

label This is the string against which getty tries to match its
second argument. It is often the speed, such as 1200, at
which the terminal is supposed to run, but it need not be
(see below).

initial-flags These flags are the initial ioctl(2) settings to which the termi
nal is to be set if a terminal type is not specified to getty.
The flags that getty understands are the same as the ones
listed in /usr/include/sys/termio.h [see termio(7)]. Nor
mally only the speed flag is required in the initial-flags.
Getty automatically sets the terminal to raw input mode and
takes care of most of the other flags. The initial-flag settings
remain in effect until getty executes login(l).

final-flags These flags take the same values as the initial-flags and are
set just prior to getty executes login. The speed flag is again
required. The composite flag SANE takes care of most of the
other flags that need to be set so that the processor and ter
minal are communicating in a rational fashion. The other
two commonly specified final-flags are TAB3, so that tabs are
sent to the terminal as spaces, and HUPCL, so that the line is
hung up on the final close.

login-prompt This entire field .is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space, tab, or
new-line), they are included in the login-prompt field.

next-label If this entry does not specify the desired speed, indicated by
the user typing a <break> character, then getty will search
for the entry with next-label as its label field and set up the
terminal for those settings. Usually, a series of speeds are
linked together in this fashion, into a closed set; For
instance, 2400 linked to 1200, which in turn is linked to 300,
which finally is linked to 2400.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the
default entry. It is also used if getty cannot find the specified label. If
/etc/gettydefs itself is missing, there is one entry built into the command

- 1 -

GETTYDEFS(4) GETTYDEFS(4)

FILES

which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs,
it be run through getty with the check option to be sure there are no errors.

/ etc / gettydefs

SEE ALSO
ioctl(2).
getty(lM), termio(7) in the System Administrator's Reference Manual.
login(l) in the User's Reference Manual.

- 2 -

GROUP(4) GROUP(4)

NAME
group - group file

DESCRIPTION

FILES

The group file format contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.

This file resides in directory jete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example, to
map numerical group ID's to names.

jetcjgroup

SEE ALSO
passwd(4).
passwd(l) in the User's Reference Manual.
newgrp(lM) in the System Administrator's Reference Manual.

- 1 -

INITTAB(4) INITTAB(4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process
dispatcher. The process that constitutes the majority of init's process
dispatching activities is the line process Jete/getty that initiates individual
terminal lines. Other processes typically dispatched by init are daemons
and the shell.

The inittab file is composed of entries that are position-dependent and have
the following format:

id:rstate:action:process

Each entry is delimited by a new-line; however, a backslash (\) preceding a
new-line indicates a continuation of the entry. Up to 512 characters per
entry are permitted. Comments may be inserted in the process field using
the sh(l) convention for comments. Comments for lines that spawn gettys
are displayed by the who(l) command. It is expected that they will contain
some information about the line such as the location. There are no limits
(other than maximum entry size) imposed on the number of entries within
the inittab file. The entry fields are:

id This is one or two characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed.
Run-levels effectively correspond to a configuration of processes in
the system. That is, each process spawned by init is assigned a
run-level or run-levels in which it is allowed to exist. The run
levels are represented by a number ranging from 0 through 6. As
an example, if the system is in run-levell, only those entries hav
ing a 1 in the rstate field will be processed. When in it is requested
to change run-levels, all processes which do not have an entry in
the rstate field for the target run-level will be sent the warning sig
nal (SIGTERM) and allowed a 20-second grace period before being
forcibly terminated by a kill signal (SIGKILL). The rstate field can
define multiple run-levels for a process by selecting more than one
run-level in any combination from 0-6. If no run-level is specified,
then the process is assumed to be valid at all run-levels 0-6. There
are three other values, a, b, and e, which can appear in the rstate
field, even though they are not true run-levels. Entries which
have these characters in the rstate field are processed only when
the telinit [see init(lM)] process requests them to be run (regard
less of the current run-level of the system). They differ from run
levels in that init can never enter run-level a, b, or e. Also, a
request for the execution of any of these processes does not
change the current run-level. Furthermore, a process started by an
a, b , or e command is not killed when init changes levels. They
are only killed if their line in /ete/inittab is marked off in the
action field, their line is deleted entirely from /ete/inittab, or init
goes into the SINGLE USER state.

- 1 -

INITTAB(4)

action

INITTAB(4)

Key words in this field tell init how to treat the process specified
in the process field. The actions recognized by init are as follows:

respawn If the process does not exist, then start the process,
do not wait for its termination (continue scanning the
inittab file); and when it dies, restart the process. If
the process currently exists, then do nothing and con
tinue scanning the inittab file.

wait Upon init's entering the run-level that matches the
entry's rstate, start the process and wait for its termi
nation. All subsequent reads of the inittab file while
init is in the same run-level will cause init to ignore
this entry.

once Upon init's entering a run-level that matches the
entry's rstate, start the process, do not wait for its ter
mination. When it dies, do not restart the process. If
upon entering a new run-level, where the process is
still running from a previous run-level change, the
program will not be restarted.

boot The entry is to be processed only at init's boot-time
read of the inittab file. [nit is to start the process, not
wait for its termination; and when it dies, not restart
the process. In order for this instruction to be mean
ingful, the rstate should be the default or it must
match init's run-level at boot time. This action is
useful for an initialization function following a
hardware reboot of the system.

bootwait The entry is to be processed the first time init goes
from single-user to multi-user state after the system
is booted. (If initdefault is set to 2, the process will
run right after the boot.) [nit starts the process, waits
for its termination and, when it dies, does not restart
the process.

powerfail Execute the process associated with this entry only
when init receives a power fail signal [SIGPWR see
signal (2)].

powerwait Execute the process associated with this entry only
when init receives a power fail signal (SIGPWR) and
wait until it terminates before continuing any pro
cessing of inittab.

off If the process associated with this entry is currently
running, send the warning signal (SIGTERM) and
wait 20 seconds before forcibly terminating the pro
cess via the kill signal (SIGKILL). If the process is
nonexistent, ignore the entry.

on demand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is

- 2 -

INITTAB(4) INITTAB(4)

FILES

given a different keyword in order to divorce its
association with run-levels. This is used only with
the a, b, or c values described in the rstate field.

initdefault An entry with this action is only scanned when init
initially invoked. lnit uses this entry, if it exists, to
determine which run-level to enter initially. It does
this by taking the highest run-level specified in the
rstate field and using that as its initial state. If the
rstate field is empty, this is interpreted as 0123456
and so init will enter run-level 6. Additionally, if init
does not find an initdefault entry in /etc/inittab,
then it will request an initial run-level from the user
at reboot time.

sysinit Entries of this type are executed before init tries to
access the console (Le., before the Console Login:
prompt). It is expected that this entry will be used
only to initialize devices on which init might try to
ask the run-level question. These entries are exe
cuted and waited for before continuing.

process This is a sh command to be executed. The entire process field is
prefixed with exec and passed to a forked sh as sh -c 'exec com
mand'. For this reason, any legal sh syntax can appear in the pro
cess field. Comments can be inserted with the; #comment syntax.

/ etc/inittab

SEE ALSO
exec(2), open(2), signal(2).
getty(lM), init(lM) in the System Administrator's Reference Manual.
sh(l), who(l) in the User's Reference Manual.

- 3 -

INODE(4)

NAME
inode - format of an i-node

SYNOPSIS
#include <sysjtypes.h>
#include <sysjino.h>

DESCRIPTION

INODE(4)

An i-node for a plain file or directory in a file system has the following
structure defined by <sysjino.h>.

j* Inode structure as it appears on a disk block. *j
struct din ode
{

};
/*

ushort
short
ushort
ushort
off_t
char
time_t
time_t
time_t

dLmode; /* mode and type of fiie * /
dLnlink; /* number of links to file * /
dLuid; /* owner's user id */
dLgid; /* owner's group id */
dLsize; /* number of bytes in file * /
dLaddr[40]; /* disk block addresses */
dLatime; /* time last accessed * /
dLmtime; /* time last modified * /
dLctime; /* time of last file status change */

* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*/

For the meaning of the defined types off-t and time_t see types (5).

SEE ALSO
stat(2), fs(4), types(5).

- 1 -

ISSUE(4) ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION
The file jetejissue contains the issue or project identification to be printed
as a login prompt. This is an ASCII file which is read by program getty and
then written to any terminal spawned or respawned from the lines file.

FILES
jete/issue

SEE ALSO
login(l) in the User's Reference Manual.

- 1 -

LDFCN(4) LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

DESCRIPTION
The common object file access routines are a collection of functions for
reading common object files and archives containing common object files.
Although the calling program must know the detailed structure of the parts
of the object file that it processes, the routines effectively insulate the calling
program from knowledge of the overall structure of the object file.

The interface between the calling program and the object file access routines
is based on the defined type LDFILE, defined as struct ldfile, declared in
the header file ldfcn.h. The primary purpose of this structure is to provide
uniform access to both simple object files and to object files that are
members of an archive file.

The function ldopen (3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through macros defined in
ldfcn.h. The fields contain the following information:

LDFILE *ldptr;

TYPE (ldptr) The file magic number used to distinguish between archive
members and simple object files.

IOPTR(ldptr) The file pointer returned by [open and used by the standard
inputj output functions.

OFFSET(ldptr) The file address of the beginning of the object file; the
offset is non-zero if the object file is a member of an
archive file.

HEADER(ldptr) The file header structure of the object file.

The object file access functions themselves may be divided into four
categories:

(1) functions that open or close an object file

Idopen(3X) and ldaopen[see Idopen(3X)]
open a common object file

Idclose(3X) and Idaclose[see Idclose(3X)]
close a common object file

(2) functions that read header or symbol table information

Idahread(3X)
read the archive header of a member of an archive
file

ldfhread (3X)
- read the file header of a common object file

- 1 -

LDFCN(4) LDFCN(4)

Idshread(3X) and ldnshread[see Idshread(3X)]
read a section header of a common object file

Idtbread(3X)
read a symbol table entry of a common object file

ldgetname (3X)
retrieve a symbol name from a symbol table entry
or from the string table

(3) functions that position an object file at (seek to) the start of the
section, relocation, or line number information for a particular sec
tion.

Idohseek(3X)
seek to the optional file header of a common object
file

Idsseek(3X) and ldnsseek[see Idsseek(3X)]
seek to a section of a common object file

Idrseek(3X) and ldnrseek[see Idrseek(3X)]
seek to the relocation information for a section of a
common object file

Idlseek(3X) and ldnlseek[see Idlseek(3X)]
seek to the line number information for a section of
a common object file

Idtbseek(3X)
seek to the symbol table of a common object file

(4) the function Idtbindex(3X) which returns the index of a particular
common object file symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except Idopen(3X), Idgetname(3X), Idtbindex(3X), return
either SUCCESS or FAILURE, both constants defined in ldfcn.h. The
Idopen(3X) and ldaopen[(see Idopen(3X)] functions both return pointers to an
LDFILE structure.

Additional access to an object file is provided through a set of macros
defined in ldfcn.h. These macros parallel the standard input/output file
reading and manipulating functions, translating a reference of the LDFILE
structure into a reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c,ldptr)
FGETS(s, n, ldptr)
FREAD« char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)

- 2 -

LDFCN(4)

FILENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

LDFCN(4)

The STROFFSET macro calculates the address of the string table. See the
manual entries for the corresponding standard input/output library func
tions for details on the use of the rest of the macros.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
fseek(3S), Idahread(3X), Idclose(3X), Idgetname(3X), Idfhread(3X),
Idlread(3X), Idlseek(3X), Idohseek(3X), Idopen(3X), Idrseek(3X), Idlseek(3X),
Idshread(3X), Idtbindex(3X), Idtbread(3X), Idtbseek(3X), stdio(3S), intro(5).

WARNING
The macro FSEEK defined in the header file ldfcn.h translates into a call to
the standard input/output function fseek(3S). FSEEK should not be used to
seek from the end of an archive file, since the end of an archive file may
not be the same as the end of one of its object file members!

- 3 -

LIMITS(4) LIMITS(4)

NAME
limits - file header for implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

The header file <limits.h> is a list of magnitude limitations imposed by a
specific implementation of the operating system. All values are specified in
decimal.

ARG MAX -
CHAR BIT -
CHAR MAX -
CHAR_ MIN

CHILD MAX -
CLK TCK -
DBL DIG -
DBL MAX -

DBL MIN -

FCHR MAX -
FLT DIG -
FLT MAX -

FLT MIN -

HUGE _VAL

INT_MAX

INT MIN -

LINK MAX -

LONG MAX -
LONG MIN -
NAME MAX -
OPEN MAX -
PASS MAX -
PATH MAX -

PID MAX -
PIPE BUF -

PIPE MAX -

SHRT MAX -
SHRT MIN -
STD BLK -

5120

8

127

-128

25

100

/* max length of arguments to exec */

/* # of bits in a "char" */

/* max integer value of a "char" */

/* min integer value of a "char" */

/* max # of processes per user id */

/* # of clock ticks per second */

16 /* digits of precision of a "double" */

1.79769313486231470e+308 /*max decimal value of a

"double"*/

4.94065645841246544e-324 /*min decimal value of a

"double"*/

1048576 /* max size of a file in bytes */

7 /* digits of precision of a "float" */

3.40282346638528860e+38 /*max decimal value of a

"float" */

1.40129846432481707e-45 /*min decimal value of a

"float" */

3.40282346638528860e+38 /*error value returned by

Math lib*/

32767 /* 80286 only, max decimal value

of an "int" */
32768 /* 80286 only, min decimal value

of an "int" */
1000 /* 80286/80386, max # of links to a

single file */
2147483647

-2147483648

/* max decimal value of a "long" */

/* min decimal value of a "long" */

14 /* max # of characters in a file name */

20 /* max # of files a process can have open */

8 /* max # of characters in a password */

512 /* 80286/80386, max # of characters in

a path name */

30000 /* max value for a process ID */

10240 /* 80286 only, max # bytes atomic in write

to a pipe */

5120 /* 80286 only, max # bytes written to a

pipe in a write */

32767 /* max decimal value of a "short" */

-32767 /* min decimal value of a "short" */

1024 /* # bytes in a physical I/O block */

- 1 -

LIMITS(4) LIMITS(4)

#define SYS - NMLN 9 1* # of chars in uname-returned strings *1

#define UID - MAX 30000 1* max value for a user or group ID *1

#define USI.:....MAX 65535 1* 80286 only, max decimal value

of an "unsigned" *1

#define WORD - BIT 16 1* 80286 only, # of bits in

a "word" or "int" *1

- 2 -

LINENUM(4) LINENUM(4)

NAME
linenum - line number entries in a common object file

SYNOPSIS
#include <linenum.h>

DESCRIPTION
The cc command generates an entry in the object file for each C source line
on which a breakpoint is possible [when invoked with the -g option; see
cc(l)]. Users can then reference line numbers when using the appropriate
software test system [see sdb(l)]. The structure of these line number entries
appears below.

struct lineno
{

union
{

long Lsymndx ;
long Lpaddr ;

} Laddr;
unsigned short Unno;

} ;

Numbering starts with one for each function. The initial line number entry
for a function has l_lnno equal to zero, and the symbol table index of the
function's entry is inl-Bymndx. Otherwise, l_lnno is non-zero, and I_paddy
is the physical address of the code for the referenced line. Thus the overall
structure is the following:

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
cc(l), sdb(l), a.out(4).

- 1 -

MNTTAB(4) MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <mnttab.h>

DESCRIPTION
The mnttab file format resides in directory fete and contains a table of dev
ices, mounted by the mount(lM) command, in the following structure as
defined by <mnttab.h>:

struct mnttab {
char
char
short
time_t

} ;

mLdev[32];
mLfilsys[32];
mLro-Ilg;
mLtime;

Each entry is 70 bytes in length; the first 32 bytes are the null-padded name
of the place where the special file is mounted; the next 32 bytes represent
the null-padded root name of the mounted special file; the remaining 6
bytes contain the mounted special file's read/write permissions and the date
on which it was mounted.

The maximum number of entries in mnttab is based on the system parame
ter NMOUNT, which defines the number of allowable mounted special files.

SEE ALSO
mount(lM), setmnt(lM) in the System Administrator's Reference Manual.

- 1 -

PASSWD(4) PASSWD(4)

NAME
passwd - password file

DESCRIPTION

FILES

The passwd file format contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
GeOS job number, box number, optional GCOS user ID
initial working directory
program to use as shell

This is an ASCII file. Each field within each user's entry is separated from
the next by a colon. The GCOS field is used only when communicating
with that system, and in other installations can contain any desired informa
tion. Each user is separated from the next by a new-line. If the password
field is null, no password is demanded; if the shell field is null, the shell
itself is used.

This file resides in directory lete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example, to
map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-
character alphabet (., I, 0-9, A-Z, a-z), except when the password is null, in
which case the encrypted password is also null. Password aging is effected
for particular users if their encrypted passwords in the password file are
followed by a comma and a non-null string of characters from the above
alphabet. (Such a string must be introduced in the first instance by the
super-user.)

The first character of the age, M say, denotes the maximum number of
weeks for which a password is valid. A user who attempts to login after his
password has expired will be forced to supply a new one. The next charac
ter, m say, denotes the minimum period in weeks which must expire before
the password may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last changed.
(A null string is equivalent to zero.) M and m have numerical values in the
range 0-63 that correspond to the 64-character alphabet shown above (Le.,
I = 1 week; z = 63 weeks). If m = M = 0 (derived from the string. or ..)
users will be forced to change their passwords the next time they log in
(and the "age" will disappear from their entry in the password file). If m >
M (signified, e.g., by the string ./) only the super-user will be able to
change the password.

letc/passwd
SEE ALSO

a641(3C), getpwent(3C), group(4).
login(l), passwd(l) in the User's Reference Manual.

- 1 -

PLOT(4) PLOT(4)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X) and are
interpreted for various devices by commands described in tplot(lG). A
graphics file is a stream of plotting instructions. Each instruction consists of
an ASCII letter usually followed by bytes of binary information. The
instructions are executed in order. A point is designated by four bytes
representing the x and y values; each value is a signed integer. The last
designated point in an 1, m, 0, or p instruction becomes the "current point"
for the ney~ instruction.

Each of the following descriptions begins with the name of the correspond
ing routine in plot(3X).

m move: The next four bytes give a new current point.

o cont: Draw a line from the current point to the point given by the next
four bytes [see tplot(lG)].

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the
point given by the following four bytes.

t label: Place the following ASCII string so that its first character falls on
the current point. The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style for
drawing further lines. The styles are "dotted", "solid", "longdashed",
"shortdashed", and "dotdashed". Effective only for the -T4014 and
-Tver options of tplot(lG) (TEKTRONIX 4014 terminal and Versatec
plotter).

s space: The next four bytes give the lower left corner of the plotting area;
the following four give the upper right corner. The plot will be magni
fied or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear
below for devices supported by the filters of tplot(lG). The upper limit is
just outside the plotting area. In every case the plotting area is taken to be
square; points outside may be displayable on devices whose face is not
square.

SEE ALSO

DASI300
DASI300s
DASI450
TEKTRONIX 4014
Versatec plotter

plot(3X), gps(4), term(S).

space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0, 3120, 3120);
space(O, 0, 2048, 2048);

graph(lG), tplot(lG) in the User's Reference Manual.

- 1 -

PLOT(4) PLOT(4)

WARNING
The plotting library plot(3X) and the curses library curses(3X) both use the
names eraseO and moveO. The curses versions are macros. If you need
both libraries, put the plot(3X) code in a different source file than the
curses(3X) code, and/or #undef moveO and eraseO in the plot(3X) code.

- 2 -

PNCH(4) PNCH(4)

NAME
pnch - file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consisting of card
images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record con
sists of a single control byte followed by a variable number of data bytes.
The control byte specifies the number (which must lie in the range 0-80) of
data bytes that follow. The data bytes are 8-bit codes that constitute the
card image. If there are fewer than 80 data bytes, it is understood that the
remainder of the card image consists of trailing blanks.

- 1 -

PROFILE(4) PROFILE(4)

NAME
profile - setting up an environment at login time

SYNOPSIS
fete/profile
$HOME / .profile

DESCRIPTION
All users who have the shell, sh(l), as their login command have the com
mands in these files executed as part of their login sequence.

fete/profile allows the system administrator to perform services for the
entire user community. Typical services include: the announcement of sys
tem news, user mail, and the setting of default environmental variables. It
is not unusual for / ete /profile to execute special actions for the root login or
the su(1M) command. Computers running outside the Eastern time zone
should have the line

. /etc/TIMEZONE

included early in jete/profile [see timezone(4)].

The file $HOMEj.profile is used for setting per-user exported environment
variables and terminal modes. The following example is typical (except for
the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 027
Tell me when new mail comes in
MAIL= /usr /mail/$LOGNAME
Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
while:
do echo "terminal: \ c "

read TERM

done

if [-f ${TERMINFO:-/usr/lib/terminfo}/?/$TERM]
then break
elif [-f /usr/lib/terminfo/? /$TERM]
then break
else echo "invalid term $TERM" 1>&2
fi

Initialize the terminal and set tabs
The environmental variable TERM must have been exported
before the "tput init" command is executed.
tput init
Set the erase character to backspace
stty erase ,AH' echoe

- 1 -

PROFILE(4) PROFILE(4)

FILES
/ etc/TIMEZONEtimezone environment
$HOMEj.profile user-specific environment
/ etc /profile system-wide environment

SEE ALSO

NOTES

terminfo(4), timezone(4), environ(5), term(5).
env(I), login(I), mail(I), sh(I), stty(I), su(IM), tput(l) in the User's Reference
Manual.
su(IM) in the System Administrator's Reference Manual.
User's Guide.
Chapter 10 in the Programmer's Guide.

Care must be taken in providing system-wide services in /etc/profile. Per
sonal .profile files are better for serving all but the most global needs.

- 2 -

RELOC(4) RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#inc1ude <reloc.h>

DESCRIPTION
Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the following
format.

struct reloc
{

long r_vaddr; /* (virtual) address of
reference * /

long r_symndx; /* index into symbol table * /
short r_type; /* relocation type * /

} ;

#define lLDIR16 01 /* 80286 computer only * /
#define lLREL16 02 /* 80286 computer only * /
#define lLSEG12 011 /* 80286 computer only * /
#define lLPCRLONG 024 /* 80386 computer only * /

As the link editor reads each input section and performs relocation, the relo
cation entries are read. They direct how references found within the input
section are treated.

lLDIR16

lLREL16

lLSEG12

lLPCRLONG

(80286 computer only) A direct 16-bit reference to the
symbol's virtual address.

(80286 computer only) A "PC-relative" 16-bit reference to
the symbol's virtual address. Relative references occur in
instructions such as jumps and calls. The actual address
used is obtained by adding a constant to the value of the
program counter at the time the instruction is executed.

(80286 computer only) A direct 16-bit reference to the
segment-selector bits of a 32-bit virtual address.

(80386 computer only) A "PC-relative" 32-bit reference to
the symbol's virtual address.

More relocation types exist for other processors. Equivalent relocation types
on different processors have equal values and meanings. New relocation
types will be defined (with new values) as they are needed.

Relocation entries are generated automatically by the assembler and
automatically used by the link editor. Link editor options exist for both
preserving and removing the relocation entries from object files.

SEE ALSO
as(l), Id(l), a.out(4), syms(4).

- 1 -

RFMASTER(4) RFMASTER(4)

NAME
rfmaster - Remote File Sharing name server master file

DESCRIPTION
The rfmaster file is an ASCII file that identifies the hosts that are responsi
ble for providing primary and secondary domain name service for Remote
File Sharing domains. This file contains a series of records, each terminated
by a new-line; a record may be extended over more than one line by escap
ing the new-line character with a backslash (" \ "). The fields in each record
are separated by one or more tabs or spaces. Each record has three fields:

name type data

The type field, which defines the meaning of the name and data fields, has
three possible values:

p The p type defines the primary domain name server. For this type,
name is the domain name and data is the full host name of the
machine that is the primary name server. The full host name is
specified as domain.nodename. There can be only one primary name
server per domain.

s The s type defines a secondary name server for a domain. Name and
data are the same as for the p type. The order of the s entries in the
rfmaster file determines the order in which secondary name servers
take over when the current domain name server fails.

a The a type defines a network address for a machine. Name is the full
domain name for the machine and data is the network address of the
machine. The network address can be in plain ASCII text or it can be
preceded by a \x to be interpreted as hexadecimal notation. (See the
documentation for the particular network you are using to determine
the network addresses you need.)

There are at least two lines in the rfmaster file per domain name server:
one p and one a line, to define the primary and its network address. There
should also be at least one secondary name server in each domain.

This file is created and maintained on the primary domain name server.
When a machine other than the primary tries to start Remote File Sharing,
this file is read to determine the address of the primary. If rfmaster is miss
ing, the -p option of rfstart must be used to identify the primary. After
that, a copy of the primary's rfmaster file is automatically placed on the
machine.

Domains not served by the primary can also be listed in the rfmaster file.
By adding primary, secondary, and address information for other domains
on a network, machines served by the primary will be able to share
resources with machines in other domains.

A primary name server may be a primary for more than one domain. How
ever, the secondaries must then also be the same for each domain served by
the primary.

- 1 -

RFMASTER(4) RFMASTER(4)

Example

FILES

An example of an rfmaster file is shown below. (The network address
examples, compl.serve and comp2.serve, are STARLAN network addresses.)

ees p ees.eompl
ees s ccs.comp2
ccs.comp2 a comp2.serve
ecs.comp I a comp I.serve

NOTE: If a line in the rfmaster file begins with a # character, the entire
line will be treated as a comment.

/ usr / nserve / rfmaster

SEE ALSO
rfstart(IM) in the System Administrator's Reference Manual.

- 2 -

seeSFILE(4) seeSFILE(4)

NAME
sccsfile - format of sees file

DESCRIPTION
An sees (Source Code Control System) file is an ASCII file. It consists of
six logical parts: the checksum, the delta table (contains information about
each delta), user names (contains login names and/or numerical group IDs
of users who may add deltas), flags (contains definitions of internal key
words), comments (contains arbitrary descriptive information about the file),
anci~ the body (contains the actual text lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASCII SOH
(start of heading) character (octal 001). This character is hereafter referred
to as the control character and will be represented graphically as @. Any
line described below which is not depicted as beginning with the control
character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between
00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line
is:

@hDDDDD

The value of the checksum is the sum of all characters, except those
of the first line. The @h provides a magic number of (octal)
06400l.

Delta table
The delta table consists of a variable number of entries of the form:

@sDDDDD/DDDDD/DDDDD
@d <type> <sees 10> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD .. .
@XDDDDD .. .
@gDDDDD .. .
@m <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:
R), the sees ID of the delta, the date and time of creation of the

- 1 -

SCCSFILE(4) SCCSFILE(4)

delta, the login name corresponding to the real user ID at the time
the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated
with the delta; the @c lines contain comments associated with the
delta.

The @e line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines con
taining these login names and/or numerical group IDs are sur
rounded by the bracketing lines @u and @U. An empty list allows
anyone to make a delta. Any line starting with a ! prohibits the
succeeding group or user from making deltas.

Keywords used internally. [See admin(l) for more information on
their use.] Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:
@f t <type of program>
@f v <program name>
@f i <keyword string>
@fb
@fm
@ff
@fc
@fd
@fn
@fj

<module name>
<floor>
<ceiling>
<default-sid>

@f I <lock-releases>
@f q <user-defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the % Y% identification key
word. The v flag controls prompting for MR numbers in addition to
comments; if the optional text is present, it defines an MR number
validity checking program. The i flag controls the warning/error
aspect of the "No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is present,
this message will cause a "fatal" error (the file will not be gotten, or
the delta will not be made). When the b flag is present the -b

- 2 -

SCCSFILE(4) SCCSFILE(4)

keyletter may be used on the get command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement
text of the %M% identification keyword. The f flag defines the
"floor" release; the release below which no deltas may be added.
The c flag defines the "ceiling" release; the release above which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delta
to insert a "null" delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped). The absence of the n flag causes skipped releases to be
completely empty. The j flag causes get to allow concurrent edits of
the same base SID. The 1 flag defines a list of releases that are
locked against editing [get(l) with the -e keyletter]. The q flag
defines the replacement for the %Q% identification keyword. The z
flag is used in certain specialized interface programs.

Comments

Body

SEE ALSO

Arbitrary text is surrounded by the bracketing lines @t and @T.
The comments section typically will contain a description of the
file's purpose.

The body consists of text lines and control lines. Text lines do not
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to
the delta for the control line.

admin(l), delta(l), get(l), prs(l).

- 3 -

SCNHDR(4) SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include <scnhdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify the lay
out of the data within the file. Each section within an object file has its
own header. The C structure appears below.

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN]; /* section name * /
s_paddr; /* physical address * /
s_vaddr; /* virtual address */
s_size; /* section size */
s-scnptr; /* file ptr to raw data * /
s-I"elptr; /* file ptr to relocation * /
s~nnoptr; /* file ptr to line numbers * /
s_nreloc; /* # reloc entries */
s-fllnno; /* # line number entries * /
sJlags; /* flags */

File pointers are byte offsets into the file; they can be used as the offset in a
call to FSEEK [see Idfcn(4)]. If a section is initialized, the file contains the
actual bytes. An uninitialized section is somewhat different. It has a size,
symbols defined in it, and symbols that refer to it. But it can have no relo
cation entries, line numbers, or data. Consequently, an uninitialized section
has no raw data in the object file, and the values for s-scnptr, s_relptr,
s_lnnoptr, s_nreloc, and s_nlnno are zero.

SEE ALSO
ld(l), fseek(3S), a.out(4).

- 1 -

SCILDUMP(4) (Terminal Information Utilities) SCILDUMP(4)

NAME
scr_dump - format of curses screen image file.

SYNOPSIS
scr_dump(file)

DESCRIPTION
The curses(3X) function scr_dumpO will copy the contents of the screen into
a file. The format of the screen image is as described below.

The name of the tty is 20 characters long and the modification time (the
mtime of the tty that this is an image of) is of the type time_to All other
numbers and characters are stored as chtype (see <curses.h». No new
lines are stored between fields.

<magic number: octal 0433>
<name of tty>
<mod time of tty>
<columns> <lines>
<line length> <chars in line> for each line on the screen
<line length> <chars in line>

<labels?> I, if soft screen labels are present
<cursor row> <cursor column>

Only as many characters as are in a line will be listed. For example, if the
<line length> is 0, there will be no characters following <line length>. If
<labels?> is TRUE, following it will be

<number of labels>
<label width>
<chars in label 1>
<chars in label 2>

SEE ALSO
curses(3X).

- 1 -

SYMS(4) SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include <syms.h>

DESCRIPTION
Common object files contain information to support symbolic software test
ing [see sdb(l)]. Line number entries, linenum(4), and extensive symbolic
information permit testing at the C source level. Every object file's symbol
table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the
structure hold the name (null padded), its value, and other information.
The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

struct syment
{

union /* all ways to get symbol name * /
{

char
struct

-ILname[SYMNMLEN]; /* symbol name * /

{
long
long

} -ILn;
char

} -11;
long

-11-Zeroes;
_n_offset;

* -ILnptr[2];

I1-.value;

- 1 -

/* == OL when in string table * /
/* location of name in table * /

/* allows overlaying * /

/* value of symbol * /

SYMS(4)

};

short
unsigned short
char
char

#define IL-name
#define IL-zeroes
#define IL-offset
#define IL-nptr

SYMS(4)

1* section number *1 IL-Scnum;
IL-type;
IL-sclass;
IL-numaux;

1* type and derived type *1
1* storage class *1
1* number of aux entries *1

_n.-11-name
-11._n-11._IL-Zeroes
-11.-11-11._n_offset
_n._n_nptr[l]

Meaningful values and explanations for them are given in both syms.h and
Common Object File Format. Anyone who needs to interpret the entries
should seek more information in these sources. Some symbols require more
information than a singie entry; they are foliowed by auxiliary entries that
are the same size as a symbol entry. The format follows.

union auxent
{

struct
{

long
union
{

x-tagndx;

struct
{

unsigned short X-lnno;
unsigned short x-size;

} X-lnsz;
long X-fsize;

} X-misc;
union
{

struct
{

struct
{

long
long
x-fcn;

X-lnnoptr;
x-endndx;

unsigned short x-dimen[DIMNUM];
} x-ary;

} x-fcnary;
unsigned short x-tvndx;
x-sym;

struct
{

}
struct
{

char
X-file;

x-fname[FILNMLEN];

- 2 -

SYMS(4)

struct
{

};

long ,,-scnlen;
unsigned short X-nreloc;
unsigned short X-nlinno;
,,-scn;

long "-tv fill;
unsigned short ,,-tvlen;
unsigned short ,,-tvran[2];
"-tv;

Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(l), a.out(4), linenum(4).
"Common Object File Format" in the Programming Guide.

WARNINGS

SYMS(4)

On machines on which ints are equivalent to longs, all longs have their
type changed to into Thus the information about which symbols are
declared as longs and which, as ints, does not show up in the symbol table.

- 3 -

SYSTEM(4) SYSTEM(4)

NAME
system - system configuration information

DESCRIPTION

FILES

A system file specifies the configuration of a kernel; see mkunix(lM) for
details of its use. In the syntax given below, the following non-terminals
are used:
<name> := alphanumeric sequence
<string> := "alphanumeric sequence"
<number> := decimal number
White space may be inserted anywhere, and comments begin with an aster
isk and end at the end of the line.

rootdev = <number> I <number>
The root device has the given major and minor numbers. This line
is required.

pipedev = <number>, <number>
The pipe device has the given major and minor numbers. This line
is required.

swapdev = <number>, <number>
The swap device has the given major and minor numbers.

dumpdev = <number>, <number>
The dump device has the given major and minor numbers.

modules = <name>[,<name>] ...
List of modules to be included in the system. This line is required.

<name> = <number>
or

<name> = <string>
Tunable parameter overrides; <name> should be the name of a tun
able parameter defined in a space.c file or in
jusrjincludejsysjkdef.h. There may be zero or more lines of this
form.

$CONF jsystemsjsystem.suffix

SEE ALSO
mkunix(lM), config(lM), config(4).

- 1 -

TERM(4) TERM(4)

NAME
term - format of compiled term file.

SYNOPSIS
lusr llib Iterminfo I? 1*

DESCRIPTION
Compiled terminfo(4) descriptions are placed under the directory
/usr /lib /terminfo. In order to avoid a linear search of a huge UNIX system
directory, a two-level scheme is used: /usr /lib /terminfo / c /name where
name is the name of the terminal, and c is the first character of name. Thus,
att4425 can be found in the file /usr/lib/terminfo/a/att4425. Synonyms for
the same terminal are implemented by multiple links to the same compiled
file.

The format has been chosen so that it will be the same on all hardware. An
8-bit byte is assumed, but no assumptions about byte ordering or sign
extension are made. Thus, these binary terminfo(4) files can be transported
to other hardware with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most signifi
cant 8 bits. (Thus, the value represented is 256*second+first.) The value -1
is represented by 0377,0377, and the value -2 is represented by 0376,0377;
other negative values are illegal. Computers where this does not
correspond to the hardware read the integers as two bytes and compute the
result, making the compiled entries portable between machine types. The
-1 generally means that a capability is missing from this terminal. The-2
means that the capability has been cancelled in the terminfo(4) source and
also is to be considered missing.

The compiled file is created from the source file descriptions of the termi
nals [see the -I option of infocmp(lM)] by using the terminfo(4) compiler,
tic(lM), and read by the routine setuptermO. [See curses(3X).] The file is
divided into six parts: the header, terminal names, Boolean flags, numbers,
strings, and string table.

The header section begins the file. This section contains six short integers
in the format described below. These integers are: (1) the magic number
(octal 0432); (2) the size, in bytes, of the names section; (3) the number of
bytes in the Boolean section; (4) the number of short integers in the
numbers section; (5) the number of offsets (short integers) in the strings sec
tion; (6) the size, in bytes, of the string table.

The terminal names section comes next. It contains the first line of the ter
minfo(4) description, listing the various names for the terminal, separated by
the bar (I) character [see term(5)]. The section is terminated with an ASCII
NUL character.

The Boolean flags have one byte for each flag. This byte is either 0 or 1 as
the flag is present or absent. The value of 2 means that the flag has been
cancelled. The capabilities are in the same order as the file <term.h>.

Between the Boolean section and the number section, a null byte will be
inserted, if necessary, to ensure that the number section begins on an even

- 1 -

TERM(4) TERM(4)

byte. All short integers are aligned on a short word boundary.

The numbers section is similar to the Boolean flags section. Each capability
takes up two bytes, and is stored as a short integer. If the value represented
is -1 or -2, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short
integer, in the format above. A value of -1 or -2 means the capability is
missing. Otherwise, the value is takeI! as an offset from the beginning of
the string table. Special characters in X or \c notation are stored in their
interpreted form, not the printing representation. Padding information
($<nn» and parameter information (%x) are stored intact in uninterpreted
form.

The final section is the string table. It contains all the values of string capa
bilities referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm() to expect a different set of capabili
ties than are actually present in the file. Either the data base may have
been updated since setupterm() has been recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recompiled
more recently than the data base was updated (resulting in missing entries).
The routine setupterm() must be prepared for both possibilities - this is
why the numbers and sizes are included. Also, new capabilities must
always be added at the end of the lists of Boolean, number, and string capa
bilities.

As an example, an octal dump of the description for the AT&T Model 37
KSR is included:

37 Itty37 I AT&T model 37 teletype,
he, os, XOIl,

bel="G, cr=\r, cub 1=\b, cud 1=\n, cuu 1=\E7, hd=\E9,
hu.='\E8, ind=\n,

0000000032001 \0032 \0013 \0021 001 3 \0 3 7
0000020 t Y 3 7 I A T & T mod e I
0000040 3 7 tel e t y p e \0 \0 \0 \ 0 \ 0
0000060 \0 \0 \0001 \0 \0 \0 \0 \0 \0 \0001 \0 \0 \0 \0
0000100001 \0 \0 \0 \0 \0377377377377377377377377377 377
0000120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 & \0
0000140 \0377377377377377377377377377377377377377377
0000160377377 " \0377377377377 (\0377377377377377377
0000200377377 0 \0377377377377377377377377 - \0377377
0000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

0000520377377377377377377377377377377377377377377 $ \0
0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 * \ 0
0000560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

0001160 377 377 377 377 377 377 377 377 377 377 377 377 377 377 3 7
0001200 tty 3 7 A T & T mod e
0001220 I 3 7 tel e t y p e \0 \r \0

- 2 -

TERM(4) TERM(4)

FILES

0001240 \n \0 \n \0007 \0 \b \0033 8 \0033 9 \0033 7
0001260 \0 \0
0001261

Some limitations: total compiled entries cannot exceed 4096 bytes; all
entries in the name field cannot exceed 128 bytes.

/ usr /lib / terminfo /? / *
/usr/include/term.h

compiled terminal description data base
terminfo(4) header file

SEE ALSO
curses(3X), terrninfo(4), terrn(5).
infocmp(lM) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

- 3 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr /lib /terminfo /1 /*

DESCRIPTION
The terminfo file format is a compiled data base [see tic(lM)] describing the
capabilities of terminals. Terminals are described in terminfo source descrip
tions by giving a set of capabilities which they have, by describing how
operations are performed, by describing padding requirements, and by
specifying initialization sequences. This data base is used by applications
programs, such as vi(l) and curses(3X), so they can work with a variety of
terminals without changes to the programs. To obtain the source descrip
tion for a terminal, use the -I option of infocmp(lM).

Entries in terminfo source files consist of a number of comma-separated
fields. White space after each comma is ignored. The first line of each ter
minal description in the term info data base gives the name by which ter
minfo knows the terminal, separated by bar (I) characters. The first name
given is the most common abbreviation for the terminal [this is the one to
use to set the environment variable TERM in $HOMEj.profile; see profile(4)],
the last name given should be a long name fully identifying the terminal,
and all others are understood as synonyms for the terminal name. All
names but the last should contain no blanks and must be unique in the first
14 characters; the last name may contain blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using
the following conventions. The particular piece of hardware making up the
terminal should have a root name chosen, for example, for the AT&T 4425
terminal, att442S. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the mode.
See term(5) for examples and more information on choosing names and
synonyms.

CAP ABILITIES
In the table below, the Variable is the name by which the C programmer
(at the terminfo level) accesses the capability. The Capname is the short
name for this variable used in the text of the data base. It is used by a per
son updating the data base and by the tput(l) command when asking what
the value of the capability is for a particular terminal. The Termcap Code
is a two-letter code that corresponds to the old term cap capability name.

Capability names have no hard length limit, but an informal limit of 5 char
acters has been adopted to keep them short. Whenever possible, names are
chosen to be the same as or similar to the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the specification.

All string capabilities listed below may have padding specified, with the
exception of those used for input. Input capabilities, listed under the
Strings section in the table below, have names beginning with key_. The
following indicators may appear at the end of the Description for a vari
able.

- 1 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

(G) indicates that the string is passed through tparm() with parameters
(parms) as given (# i)'

(*) indicates that padding may be based on the number of lines
affected.

(# i) indicates the ith parameter.

Variable Cap- Termcap
name Code

Booleans:
auto-1efL-rnargin bw bw

auto-fighLmargb am am
no_esc-ctlc xsb xb
ceoLstandouLglitch xhp xs

eaLnewline_glitch xenl xn

erase_overstrike eo eo
generic_type gn gn
hard-copy hc hc
hard-cursor chts HC
has_meta-1<ey km km
has-status-1ine hs hs
inserLnulLglitch in in
memory_above da da

memory_below db db

move--inserL-rnode mir mi
move-standouL-rnode msgr ms
needs--,<on--,<off nxon nx

nOILJev -fmcup nrrmc NR
no_pad-char npc NP
over-strike os os

prtr-silent mcSi Si
status-1ine_esc_ok eslok es
desLtabs-Illagic-smso xt xt

tilde_glitch hz hz
transparenLunderline ul ul
xon--'<off xon xo

Numbers:
columns cols co
iniLtabs it it
labeLheight lh lh

- 2 -

Description

cubl wraps from column 0 to last
column
Terminal has automatic margins
Beehive (f1=escape, f2=ctrl C)
Standout not erased by
overwriting (hp)
New-line ignored after
80 cols (Concept)
Can erase overstrikes with a blank
Generic line type (e.g., dialup, switch)
Hardcopy terminal
Cursor is hard to see
Has a meta key (shift, sets parity bit)
Has extra "status line"
Insert mode distinguishes nulls
Display may be retained above
the screen
Display may be retained below
the screen
Safe to move while in insert mode
Safe to move in standout modes
Padding won't work, xonjxoff
required
smcup does not reverse rmcup
Pad character doesn't exist
Terminal overstrikes on hard-copy
terminal
Printer won't echo on screen
Escape can be used on the status line
Destructive tabs, magic smso
char (tl061)
Hazeltine; can't print tildesC)
Underline character overstrikes
Terminal uses xonjxoff handshaking

Number of columns in a line
Tabs initially every # spaces
Number of rows in each label

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

labeLwidth lw lw Number of cols in each label
lines lines li Number of lines on screen or page
lines_of_memory 1m 1m Lines of memory if > lines; 0 means

varies
magic_cookie_glitch xmc sg Number blank chars left by

smso or rmso
nUIlLJ.abels nlab NI Number of labels on

screen (start at 1)
padding_bawLrate pb pb Lowest baud rate where padding

needed
virtuaLterminal vt vt Virtual terminal number

(UNIX system)
width_status~ine wsl ws Number of columns in status line

Strings:
acs_chars acsc ac Graphic charset pairs

aAbBcC - def=vtlOO+
back-tab cbt bt Back tab
bell bel bl Audible signal (bell)
carriage-feturn cr cr Carriage return (*)
change_scroll-fegion csr cs Change to lines # 1 thru # 2

(vt100) (G)
char_padding rmp rP Like ip but when in replace mode
clear_alLtabs tbc ct Clear all tab stops
clear_margins mgc MC Clear left and right soft margins
clear-screen clear cl Clear screen and home cursor (*)
clr_bol ell cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display (*)
column_address hpa ch Horizontal position absolute (G)
commanLcharacter cmdch CC Term. settable cmd char in prototype
cursor--<lddress cup cm Cursor motion to row #1 col #2 (G)
cursor_down cudl do Down one line
cursor_home home ho Home cursor (if no cup)
cursor-1nvisible civis vi Make cursor invisible
cursor~eft cubl Ie Move cursor left one space
cursor-IlleIIL-address mrcup CM Memory relative cursor

addressing (G)
cursor_normal cnorm ve Make cursor appear normal

(undo vsjvi)
cursor-fight cufl nd Non-destructive space (cursor right)
cursor_to~l 11 11 Last line, first column (if no cup)
cursor_up cuul up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
delete_character dchl dc Delete character (*)
delete~ine dll dl Delete line (*)
dis_status~ine dsl ds Disable status line
dowIL-half~ine hd hd Half-line down (forward Ij2 linefeed)
ena_acs enacs eA Enable alternate char set
enter_alLcharseLmode smacs as Start alternate character set

- 3 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

enter_aIlL-mode smam SA Turn on automatic margins
enter_blinLmode blink mb Turn on blinking
enter_bolcLmode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that

use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_diIlL-mode dim mh Turn on half-bright mode
enter~nserLmode smir im Insert mode (enter);
enter_protectecLmode prot mp Turn on protected mode
enter-I"everse_mode rev mr Turn on reverse video mode
enter_secure-Illode invis mk Turn on blank mode

(chars invisible)
enter_standouLmode smso so Begin standout mode
enter_underline_mode smul us Start underscore mode
enter-'<on--Illode smxon SX Turn on xonjxoff handshaking
erase_chars ech ec Erase #1 characters (G)
exiLalLcharseLmode rmacs ae End alternate character set
exiLaffi--Illode rmam RA Turn off automatic margins
exiLattribute_mode sgrO me Turn off all attributes
exiLca_mode rmcup te String to end programs that use cup
exiLdelete-Illode rmdc ed End delete mode
exiUnserLmode rmir ei End insert mode
exiLstandouLmode rmso se End standout mode
exiLunderline_mode rmul ue End underscore mode
exit-Xon_mode rmxon RX Turn off xonjxoff handshaking
flash-screen flash vb Visible bell (may not move cursor)
forIlL-feed ff ff Hardcopy terminal page eject (*)
from--Status-1ine fsl fs Return from status line
iniL1string is1 it Terminal initialization string
iniL2string is2 is Terminal initialization string
iniL3string is3 i3 Terminal initialization string
iniLfile if if Name of initialization file

containing is
iniLprog iprog iP Path name of program for init
inserLcharacter ich1 ic Insert character
inserUine ill al Add new blank line (*)
inserLpadding ip ip Insert pad after character inserted (*)
key_a 1 ka1 K1 KEY--A1, 0534, Upper left of keypad
key_a3 ka3 K3 KEY--A3, 0535, Upper right of

keypad
key_b2 kb2 K2 KEY_B2, 0536, Center of keypad
key_backspace kbs kb KEY_BACKSPACE, 0407, Sent by

backspace key
key_beg kbeg @1 KEY_BEG, 0542, Sent by beg(inning)

key
key_btab kcbt kB KEY_BTAB, 0541, Sent by back-tab

key
key_c1 kc1 K4 KEY_C1, 0537, Lower left of keypad
key_c3 kc3 K5 KEY_C3, 0540, Lower right of

keypad

- 4 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

key_cancel kcan @2 KEY_CANCEL, 0543, Sent by cancel
key

key_catab ktbc ka KEY_CATAB, 0526, Sent by
clear-alI-tabs key

key_clear kclr kC KEY_CLEAR, 0515, Sent by
clear-screen or erase key

key_close kclo @3 KEY_CLOSE, 0544, Sent by
close key

key_command kcmd @4 KEY_COMMAND, 0545, Sent by
cmd (command) key

key_copy kcpy @5 KEY_COPY, 0546, Sent by copy key
key_create kcrt @6 KEY_CREATE, 0547, Sent by create

key
key_ctab kctab kt KEY_CTAB, 0525, Sent by clear-tab

key
key_dc kdch1 kD KEY_DC, 0512, Sent by

delete-character key
key_dl kdll kL KEY_DL, 0510, Sent by

delete-line key
key_down kcud1 kd KEY_DOWN, 0402, Sent by

terminal down-arrow key
key_eic krmir kM KEY_EIC, 0514, Sent by rmir or

smir in insert mode
key_end kend @7 KEY_END, 0550, Sent by end key
key_enter kent @8 KEY_ENTER, 0527, Sent by

enter/send key
key_eol kel kE KEY_EOL, 0517, Sent by

clear-to-end-of-line key
key_eos ked kS KEYJOS, 0516, Sent by

clear-to-end-of-screen key
key_exit kext @9 KEY_EXIT, 0551, Sent by exit key
key_fO kfO kO KEY_F(O), 0410, Sent by function

key fO
key_fl kfl k1 KEY_F(l), 0411, Sent by function

key fl
key_f2 kf2 k2 KEY_F(2), 0412, Sent by function

key f2
key-t'3 kf3 k3 KEYJ(3), 0413, Sent by function

key f3
key_f4 kf4 k4 KEY_F(4), 0414, Sent by function

key f4
key_f5 kf5 k5 KEY_F(5), 0415, Sent by function

key f5
key-t'6 kf6 k6 KEY_F(6), 0416, Sent by function

key f6
key_f7 kf7 k7 KEY_F(7), 0417, Sent by function

key f7
key-t'8 kf8 k8 KEY _F(8), 0420, Sent by function

key f8

- 5 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

key_f9 kf9 k9 KEY_F(9), 0421, Sent by function
key f9

key~10 kflO k; KEYJ(10), 0422, Sent by function
key flO

key~ll kfll F1 KEYJ(1l), 0423, Sent by function
key fl1

key_fl2 kfl2 F2 KEY_F(12), 0424, Sent by function
key fl2

key_fl3 kfl3 F3 KEYJ(13), 0425, Sent by function
key fl3

key~14 kfl4 F4 KEY_F(14), 0426, Sent by function
key fl4

key_fl5 kfl5 F5 KEY_F(15), 0427, Sent by function
key fl5

key~16 kfl6 F6 KEY_F(16), 0430, Sent by function
key fl6

key~17 kfl7 F7 KEY_F(17), 0431, Sent by function
key fl7

key_fl8 kfl8 F8 KEYJ(18), 0432, Sent by function
key fl8

key_fl9 kfl9 F9 KEY_F(19), 0433, Sent by function
key fl9

key_f20 kf20 FA KEY _F(20), 0434, Sent by function
key f20

key_f21 kf21 FB KEY_F(21), 0435, Sent by function
key f21

key~22 kf22 FC KEY_F(22), 0436, Sent by function
key f22

key_f23 kf23 FD KEY_F(23), 0437, Sent by function
key f23

key_f24 kf24 FE KEY_F(24), 0440, Sent by function
key f24

key_f25 kf25 FF KEYJ(25), 0441, Sent by function
key f25

key_f26 kf26 FG KEYJ(26), 0442, Sent by function
key f26

key~27 kf27 FH KEY_F(27), 0443, Sent by function
key f27

key~28 kf28 FI KEY_F(28), 0444, Sent by function
key f28

key_f29 kf29 FJ KEYJ(29), 0445, Sent by function
key f29

key_f30 kf30 FK KEYJ(30), 0446, Sent by function
key f30

key_f31 kf31 FL KEY_F(31), 0447, Sent by function
key f31

key_f32 kf32 FM KEY_F(32), 0450, Sent by function
key f32

key_f33 kf33 FN KEY_F(13), 0451, Sent by function
key fl3

- 6 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

key_f34 kf34 FO KEY_F(34), 0452, Sent by function
key f34

key_f35 kf35 FP KEY_F(35), 0453, Sent by function
key f35

key_f36 kf36 FQ KEY_F(36), 0454, Sent by function
key f36

key_f37 kf37 FR KEY_F(37), 0455, Sent by function
key f37

key_f38 kf38 FS KEY_F(38), 0456, Sent by function
key f38

key_f39 kf39 FT KEY_F(39), 0457, Sent by function
key f39

key_f40 kf40 FU KEY_F(40), 0460, Sent by function
key f40

key_f41 kf41 FV KEY_F(41), 0461, Sent by function
key f41

key_f42 kf42 FW KEY_F(42), 0462, Sent by function
key f42

key_f43 kf43 FX KEY_F(43), 0463, Sent by function
key f43

key_f44 kf44 FY KEY-F(44), 0464, Sent by function
key f44

key_f45 kf45 FZ KEY_F(45), 0465, Sent by function
key f45

key_f46 kf46 Fa KEY-F(46), 0466, Sent by function
key f46

key_f47 kf47 Fb KEY_F(47), 0467, Sent by function
key f47

key_f48 kf48 Fc KEY_F(48), 0470, Sent by function
key f48

key_f49 kf49 Fd KEY_F(49), 0471, Sent by function
key f49

key_f50 kf50 Fe KEY_F(50), 0472, Sent by function
key f50

key_f51 kf51 Ff KEY_F(51), 0473, Sent by function
key f51

key_f52 kf52 Fg KEY_F(52), 0474, Sent by function
key f52

key_f53 kf53 Fh KEY_F(53), 0475, Sent by function
key f53

key_f54 kf54 Fi KEY_F(54), 0476, Sent by function
key f54

key_f55 kf55 Fj KEY_F(55), 0477, Sent by function
key f55

key_f56 kf56 Fk KEY_F(56), 0500, Sent by function
key f56

key_f57 kf57 FI KEY_F(57), 0501, Sent by function
key f57

key_f58 kf58 Fm KEY_F(58), 0502, Sent by function
key f58

- 7 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

key_f59 kf59 Fn KEY_F(59), 0503, Sent by function
key f59

key_f60 kf60 Fo KEY_F(60), 0504, Sent by function
key f60

key_f61 kf61 Fp KEYJ(61), 0505, Sent by function
key f61

key~62 kf62 Fq KEY_F(62), 0506, Sent by function
key f62

key_f63 kf63 Fr KEY_F(63), 0507, Sent by function
key f63

key_find kfnd @O KEY_FIND, 0552, Sent by find key
keYJelp khlp %1 KEY_HELP, 0553, Sent by help key
key_home khome kh KEY_HOME, 0406, Sent by

home key
key-.ic kich1 kI KEY_IC, 0513, Sent by

ins-char/enter ins-mode key
key-.il kill kA KEY_IL, 0511, Sent by

insert-line key
key~eft kcub1 kl KEY_LEFT, 0404, Sent by terminal

left-arrow key
key~l kll kH KEY_LL, 0533, Sent by home-down

key
key_mark kmrk %2 KEY_MARK, 0554, Sent by mark

key
key_message kmsg %3 KEY_MESSAGE, 0555, Sent by

message key
key_move kmov %4 KEY_MOVE, 0556, Sent by move

key
key_next knxt %5 KEY_NEXT, 0557, Sent by

next-object key
key_npage knp kN KEY_NPAGE, 0522, Sent by

next-page key
key_open kopn %6 KEY_OPEN, 0560, Sent by open

key
key_options kopt %7 KEY_OPTIONS, 0561, Sent by

options key
key_ppage kpp kP KEY_PPAGE, 0523, Sent by

previous-page key
key_previous kprv %8 KEY_PREVIOUS, 0562, Sent by

previous-object key
key_print kprt %9 KEY_PRINT, 0532, Sent by print or

copy key
keY--1"edo krdo %0 KEY_REDO, 0563, Sent by redo key
key --1"eference kref &1 KEY_REFERENCE, 0564, Sent by

ref(erence) key
key --1"efresh krfr &2 KEY-REFRESH,0565,Sentby

refresh key
key --1"eplace krpl &3 KEY_REPLACE, 0566, Sent by

replace key

- 8 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

keY-I'estart krst &4 KEY_RESTART,0567,Sentby
restart key

key -I'esume kres &5 KEY_RESUME, 0570, Sent by
resume key

key-I'ight kcufl kr KEY_RIGHT, 0405, Sent by terminal
right-arrow key

key_save ksav &6 KEY_SAVE, 0571, Sent by save key
key-sbeg kBEG &9 KEY_SBEG, 0572, Sent by shifted

beginning key
key _scancel kCAN &0 KEY_SCANCEL, 0573, Sent by

shifted cancel key
key _scommand kCMO *1 KEY_SCOMMANO, 0574, Sent by

shifted command key
key_scopy kCPY *2 KEY_SCOPY, 0575, Sent by shifted

copy key
key_screate kCRT *3 KEY_SCREATE, 0576, Sent by

shifted create key
key-sdc kOC *4 KEY_SOC, 0577, Sent by shifted

delete-char key
key_sdl kOL *5 KEY_SOL, 0600, Sent by shifted

delete-line key
key_select kslt *6 KEY_SELECT,0601,Sentby

select key
key-send kENO *7 KEY_SEND, 0602, Sent by shifted

end key
key_seol kEOL *8 KEY_SEOL, 0603, Sent by shifted

clear-line key
key_sexit kEXT *9 KEY_SEXIT, 0604, Sent by shifted

exit key
key-sf kind kF KEY_SF,0520,Sentby

scroll-forward/down key
key_sfind kFNO *0 KEY_SFINO, 0605, Sent by shifted

find key
key_shelp kHLP #1 KEY_SHELP, 0606, Sent by shifted

help key
key_shome kHOM #2 KEY_SHOME, 0607, Sent by shifted

home key
key-sic kIC #3 KEY_SIC, 0610, Sent by shifted

input key
key_sleft kLFT #4 KEY_SLEFT, 0611, Sent by shifted

left-arrow key
key -smessage kMSG %a KEY_SMESSAGE, 0612, Sent by

shifted message key
key_smove kMOV %b KEY_SMOVE, 0613, Sent by shifted

move key
key_snext kNXT %c KEY_SNEXT, 0614, Sent by shifted

next key
key _soptions kOPT %d KEY_SOPTIONS, 0615, Sent by

shifted options key

- 9 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

key _sprevious kPRV %e KEY_SPREVIOUS, 0616, Sent by
shifted prev key

key-sprint kPRT %f KEY_SPRINT, 0617, Sent by shifted
print key

key_sr kri kR KEY_SR,OS21,Sentby
scroll-backward/up key

key_sredo kRDO %g KEY_SREDO, 0620, Sent by shifted
redo key

key-sreplace kRPL %h KEY_SREPLACE, 0621, Sent by
shifted replace key

key_sright kRIT %i KEY_SRIGHT, 0622, Sent by shifted
right-arrow key

key_srsume kRES %j KEY_SRSUME, 0623, Sent by shifted
resume key

key-ssave kSAV !1 KEY _SSA VE, 0624, Sent by shifted
save key

key _ssuspend kSPD !2 KEY_SSUSPEND, 0625, Sent by
shifted suspend key

key-stab khts kT KEY_STAB, 0524, Sent by set-tab key
key-sundo kUND !3 KEY_SUNDO, 0626, Sent by shifted

undo key
key -suspend kspd &7 KEY_SUSPEND, 0627, Sent by

suspend key
key_undo kund &8 KEY_UNDO, 0630, Sent by undo key
key_up kcuu1 ku KEY_UP, 0403, Sent by terminal

up-arrow key
keypa<LJ.ocal rmkx ke Out of "keypad-transmit" mode
keypa<Lxmit smkx ks Put terminal in

"keypad-transmit" mode
lab~O lfO 10 Labels on function key fO if not fO
lab_fl lf1 11 Labels on function key fl if not fl
lab_f2 lf2 12 Labels on function key f2 if not f2
lab_f3 lf3 13 Labels on function key f3 if not f3
lab~4 lf4 14 Labels on function key f4 if not f4
lab_fS If 5 15 Labels on function key fS if not fS
lab~6 lf6 16 Labels on function key f6 if not f6
lab_f7 lf7 17 Labels on function key f7 if not f7
lab~8 lf8 18 Labels on function key f8 if not f8
lab_f9 lf9 19 Labels on function key f9 if not f9
lab~10 lf10 la Labels on function key flO

if not flO
labeLoff rmln LF Turn off soft labels
labeLon smln LO Turn on soft labels
meta_off rmm mo Turn off "meta mode"
meta_on smm mm Turn on "meta mode" (8th bit)
newline nel nw New-line

(behaves like cr followed by If)
pacLchar pad pc Pad character (rather than null)
parIIL-dch dch DC Delete #1 chars (G*)
parIIL-delete~ine dl DL Delete #1 lines (G*)

- 10 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

parID-dow11-cursor cud DO Move cursor down #1 lines. (G*)
parID-ich ich IC Insert #1 blank chars (G*)
parID-index indn SF Scroll forward #11ines. (G)
parID-inserUine il AL Add #1 new blank lines (G*)
parID-lefL-cursor cub LE Move cursor left #1 spaces (G)
parID-righL-cursor cuf RI Move cursor right #1 spaces. (G*)
parID-rindex rin SR Scroll backward #1 lines. (G)
parID-up_cursor cuu UP Move cursor up #11ines. (G*)
pkey_key pfkey pk Prog funct key #1 to type string #2
pkey~ocal pfloc pI Prog funct key # 1 to execute

string #2
pkey-xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pIn pn Prog label #1 to show string #2
prinL-screen mcO ps Print contents of the screen
prtr_non mcSp pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mcS po Turn on the printer
repeaL-char rep rp Repeat char #1 #2 times (G*)
req_for~nput rfi RF Send next input char (for ptys)
reseL-l string rsl r1 Reset terminal completely to

sane modes
reseL-2string rs2 r2 Reset terminal completely to

sane modes
reseL-3string rs3 r3 Reset terminal completely to

sane modes
reseL-file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Vertical position absolute (G)
save_cursor sc sc Save cursor position.
scroll_forward ind sf Scroll text up
scroll-feverse ri sr Scroll text down
seL-attributes sgr sa Define the video

attributes #1-#9 (G)
seUefL-margin smgl ML Set soft lett margin
set-fighL-margin smgr MR Set soft right margin
seL-tab hts st Set a tab in all rows,

current column.
seL-window wind wi Current window is

lines #1-#2 cols #3-#4 (G)
tab ht ta Tab to next 8 space hardware

tab stop.
to_status~ine tsl ts Go to status line, col #1 (G)
underline_char uc uc Underscore one char and move

past it
up_half~ine hu hu Half-line up (reverse 1/2 linefeed)
xoff_character xoffc XF X-off character
x011-character xonc XN X-on character

- 11 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

SAMPLE ENTRY
The following entry, which describes the Concept-100 terminal, is among
the more complex entries in the terminfo file as of this writing.

concept100 I c1001 concept I c1041 c100-4p I concept 100,

am, db, eo, in, mir, ul, xenl,
colS#80, lineS#24, pb#9600, vt#8,

bel=~G, blarik=\EH, blink=\EC, clear=~L$<2*>,

cnorrrF\Ew, cr=~M$<9>, cub1=~H, cud1=~J,

cuf 1 =\E=, cup=\Ea%p 1%' '%+'YaC"lop2%' '%+'Yoe,

cuu1=\E;, cvvis=\EW, dch1=\E~A$<16*>, dim=\EE,

dl1=\E~B$<3*>, ed=\E~C$<16*>, el=\E~U$<16>,

flash=\Ek$<20>\EK, ht=\t$<8> , i11=\E~R$<3*>,

ind=~J, .ind=~J$<9>, ip=$<16*> ,

is2=\EU\Ef\E7\E5\E8\El\ENH\EK\E\O\Eo&\O\Eo\47\E,

kbs=~h, kcub1=\E> , kcud1=\E<, kcuf1=\E=, kcuu.1=\E;,

kf1=\E5, kf2=\E6, kf3=\E7, khcme=\E?,

prot=\EI, rep=\Er%p1%c%p2"Io' '%+'Yoe$<.2*>,
rev=\ED, rmcup=\Ev\s\s\s\s$<6>\Ep\r\n,

nnir=\E\O, nnkx=\EK, nnso=\Ed\Ee, nmIl=\Eg,

nmIl=\Eg, sgrO=\EN\O, smcup=\EU\Ev\s\s8p\Ep\r,

smir=\E~P, smkx=\EX, smso=\EE\ED, smul=\EG,

Entries may continue onto multiple lines by placing white space at the
beginning of each line except the first. Lines beginning with 1/#" are taken
as comment lines. Capabilities in terminfo are of three types: Boolean capa
bilities which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or particular features, and string
capabilities, which give a sequence which can be used to perform particular
terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the Concept has
automatic margins (Le., an automatic return and linefeed when the end of a
line is reached) is indicated by the capability am. Hence the description of
the Concept includes am. Numeric capabilities are followed by the character
'#' and then the value. Thus cols, which indicates the number of columns
the terminal has, gives the value 80 for the Concept. The value may be
specified in decimal, octal, or hexadecimal using normal C conventions.

Finally, string-valued capabilities, such as el (clear to end of line sequence)
are given by the two- to five-character capname, an '=', and then a string
ending at the next following comma. A delay in milliseconds may appear
anywhere in such a capability, enclosed in $< .. > brackets, as in
el=\EK$<3>, and padding characters are supplied by tputs() [see
curses(3X)] to provide this delay. The delay can be either a number, e.g., 20,
or a number followed by an '*' (Le., 3*), a '/' (Le., 5/), or both (Le., 10*/).
A '*' indicates that the padding required is proportional to the number of
lines affected by the operation, and the amount given is the per-affected
unit padding required. (In the case of insert character, the factor is still the
number of lines affected. This is always one unless the terminal has in and
the software uses it.) When a '*' is specified, it is sometimes useful to give a

- 12 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO.(4)

delay of the form 3.5 to specify a delay per unit to tenths of milliseconds.
(Only one decimal place is allowed.) A' I' indicates that the padding is
mandatory. Otherwise, if the terminal has xon defined, the padding infor
mation is advisory and will only be used for cost estimates or when the ter
minal is in raw mode. Mandatory padding will be transmitted regardless of
the setting of xon.

A number of escape sequences are provided in the string valued capabilities
for easy encoding of characters there. Both \E and \e map to an ESCAPE
character, A X maps to a control-x for any appropriate x, and the sequences
\n, \1, \r, \t, \b, \f, and \s give a new-line, linefeed, returI~, tab, backsyace,
formfeed, and space, respectively. Other escapes include: \ for caret (); \ \
for backslash (\); \, for comma (,); \: for colon (:); and \0 for null. (\0 will
actually produce \200, which does not terminate a string but behaves as a
null character on most terminals.) Finally, characters may be given as three
octal digits after a backslash (e.g., \123).

Sometimes individual capabilities must be commented out. To do this, put
a period before the capability name. For example, see the second ind in the
example above. Note that capabilities are defined in a left-to-right order
and, therefore, a prior definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in term info and to build up a description
gradually, using partial descriptions with vi(l) to check that they are
correct. Be aware that a very unusual terminal may expose deficiencies in
the ability of the terminfo file to describe it or the inability of vi(l) to work
with that terminal. To test a new terminal description, set the environment
variable TERMINFO to a pathname of a directory containing the compiled
description you are working on and programs will look there rather than in
lusrl1iblterminfo. To get the padding for insert-line correct (if the terminal
manufacturer did not document it) a severe test is to comment out xon, edit
a large file at 9600 baud with vi(l), delete 16 or so lines from the middle of
the screen, then hit the u key several times quickly. If the display is cor
rupted, more padding is usually needed. A similar test can be used for
insert-character.

Basic Capabilities
The number of columns on each line for the terminal is given by the cols
numeric capability. If the terminal has a screen, then the number of lines
on the screen is given by the lines capability. If the terminal wraps around
to the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, leaving
the cursor in the home position, then this is given by the clear string capa
bility. If the terminal overstrikes (rather than clearing a position when a
character is struck over) then it should have the os capability. If the termi
nal is a printing terminal, with no soft copy unit, give it both hc and os. (os
applies to storage scope terminals, such as Tektronix 4010 series, as well as
hard-copy and APL terminals.) If there is a code to move the cursor to the
left edge of the current row, give this as cr. (Normally this will be carriage
return, control M.) If there is a code to produce an audible signal (bell,

- 13 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

beep, etc.) give this as bel. If the terminal uses the xon-xoff flow-control
protocol, like most terminals, specify XOD.

If there is a code to move the cursor one position to the left (such as back
space) that capability should be given as cubl. Similarly, codes to move to
the right, up, and down should be given as cufl, cuul, and cudl. These
local cursor motions should not alter the text they pass over; for example,
you would not normally use "cufl=\s" because the space would erase the
character moved over.

A very important point here is that the local cursor motions encoded in ter
minfo are undefined at the left and top edges of a screen terminal. Pro
grams should never attempt to backspace around the left edge, unless bw is
given, and should never attempt to go up locally off the top. In order to
scroll text up, a program will go to the bottom left corner of the screen and
send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined
when not on their respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin, which
have the same semantics as ind and ri except that they take one parameter
and scroll that many lines. They are also undefined except at the appropri
ate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the
screen when text is output, but this does not necessarily apply to a cufl
from the last column. The only local motion which is defined from the left
edge is if bw is given, then a cubl from the left edge will move to the right
edge of the previous row. If bw is not given, the effect is undefined. This
is useful for drawing a box around the edge of the screen, for example. If
the terminal has switch-selectable automatic margins, the terminfo file usu
ally assumes that this is on; i.e., am. If the terminal has a command which
moves to the first column of the next line, that command can be given as
nel (new-line). It does not matter if the command clears the remainder of
the current line, so if the terminal has no cr and If it may still be possible to
craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus
the model 33 teletype is described as

33: tty33 : tty: model 33 teletype,
he, ind= AI, os,

while the Lear Siegler ADM-3 is described as

adm31lsi adm3, am, bel= AC, clear=AZ, cols#80, cr= AM, cub1=AH,
cud1= AI, ind= AI, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in the terminal are
described by a parameterized string capability, with printf(3S)-like escapes
(%x) in it. For example, to address the cursor, the cup capability is given,
using two parameters: the row and column to address to. (Rows and
columns are numbered from zero and refer to the physical screen visible to

- 14 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

the user, not to any unseen memory.) If the terminal has memory-relative
cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it
in the manner of a Reverse Polish Notation (postfix) calculator. Typically a
sequence will push one of the parameters onto the stack and then print it in
some format. Often more complex operations are necessary. Binaryopera
tions are in postfix form with the operands in the usual order. That is, to
get x-5 one would use %gx%{5}%-.

The % encodings have the following meanings:

%% outputs '%'
%[[:]flags][width[.precision]][doxXs]

%c

%p[1-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}
%1

as in printf, flags are [-+#] and space
print popO gives %c

h .th pus 1 parm
set variable [a-z] to popO
get variable [a-z] and push it
push char constant c
push decimal constant nn
push strlen(pop())

%+ %- %* %j %m

%& %: %A
%= %> %<
%A%O
%! %-
%i

arithmetic (%m is mod): push(popO op popO)
bit operations: push(popO op popO)
logical operations: push(popO op popO)
logical operations: and, or
unary operations: push(op popO)
(for ANSI terminals)

add 1 to first parm, if one parm present,
or first two parms, if more than one parm present

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional;
else-if's are possible ala Algol 68:
%? c %t b %e c %t b %e c %t b %e c %t b %e b %;

1 J.. 2 b 2 b l 3 4 4 5
Ci are con lhons, i are 0 les.

If the "_" flag is used with I/%[doxXs]", then a colon (:) must be placed
between the 1/%" and the "_" to differentiate the flag from the binary "%-"
operator, e.g., "%:-16.16s".

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12,
needs to be sent \E&a12c03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row and
column are zero-padded as two digits. Thus its cup capability is
"cup=\E&a%p2%2.2dc%pl %2.2dY$<6>".

Tl~e Micro-Term ACT-IV needs the current row and column sent preceded by
a T, with the row and column simply encoded in binary,
"CUp= AT%pl %c%p2%c". Terminals which use I/%c" need to be able to

- 15 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

backspace the cursor (cubl), and to move the cursor up one line on the
screen (cuul). This is necessary because it is not always safe to transmit \n,
AD, and \r, as the system may change or discard them. (The library rou
tines dealing with term info set tty modes so that tabs are never expanded, so
\t is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus "cup=\E=%p1 %'\s'%+%c%p2%'\s'%+%c". After
sending I/\E=", this pushes the first parameter, pushes the ASCII value for
a space (32), adds them (pushing the sum on the stack in place of the two
previous values), and outputs that value as a character. Then the same is
done for the second parameter. More complex arithmetic is possible using
the stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner
of screen) then this can be given as home; similarly a fast way of getting to
the lower left corner can be given as 11; this may involve going up with
cuul from the home position, but a program should never do this itself
(unless II does) because it can make no assumption about the effect of mov
ing up from the home position. Note that the home position is the same as
addressing to (0,0): to the top left corner of the screen, not of memory.
(Thus, the \EH sequence on Hewlett-Packard terminals cannot be used for
home without losing some of the other features on the terminal.)

If the terminal has row or column absolute-cursor addressing, these can be
given as single parameter capabilities hpa (horizontal position absolute) and
vpa (vertical position absolute). Sometimes these are shorter than the more
general two-parameter sequence (as with the Hewlett-Packard 2645) and
can be used in preference to cup. If there are parameterized local motions
(e.g., move n spaces to the right) these can be given as cud, cub, cuf, and
cuu with a single parameter indicating how many spaces to move. These
are primarily useful if the terminal does not have cup, such as the Tektronix
4025.

Area Clears
If the terminal can clear from the current position to the end of the line,
leaving the cursor where it is, this should be given as el. If the terminal can
clear from the beginning of the line to the current position inclusive, leaving
the cursor where it is, this should be given as ell. If the termillal can clear
from the current position to the end of the display, then this should be
given as ed. ed is only defined from the first column of a line. (Thus, it
can be simulated by a request to delete a large number of lines, if a true ed
is not available.)

Insert/ delete line
If the terminal can open a new blank line before the line where the cursor
is, this should be given as ill; this is done only from the first position of a
line. The cursor must then appear on the newly blank line. If the terminal
can delete the line which the cursor is on, then this should be given as dll;
this is done only from the first position on the line to be deleted. Versions
of ill and dll which take a single parameter and insert or delete that many
lines can be given as il and dl.

- 16 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

If the terminal has a settable destructive scrolling region (like the VT100),
the command to set this can be described with the esr capability, which
takes two parameters: the top and bottom lines of the scrolling region. The
cursor position is, alas, undefined after using this command. It is possible
to get the effect of insert or delete line using this command-the se and re
(save and restore cursor) commands are also useful. Inserting lines at the
top or bottom of the screen can also be done using ri or ind on many termi
nals without a true insert/delete line, and is often faster even on terminals
with those features.

To determine whether a terminal has destructive scrolling regions or non
destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the cur
sor to the top line of the scrolling region, and do a reverse index (ri) fol
lowed by a delete line (dl1) or index (ind). If the data that was originally
on the bottom line of the scrolling region was restored into the scrolling
region by the dl1 or ind, then the terminal has non-destructive scrolling
regions. Otherwise, it has destructive scrolling regions. Do not specify esr
if the terminal has non-destructive scrolling regions, unless ind, ri, indn,
rin, dl, and dl1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which
all commands affect, it should be given as the parameterized string wind.
The four parameters are the starting and ending lines in memory and the
starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability
should be given; if display memory can be retained below, then db should
be given. These indicate that deleting a line or scrolling a full screen may
bring non-blank lines up from below or that scrolling back with ri may
bring down non-blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to
insert/delete character operations which can be described using term info.
The most common insert/delete character operations affect only the charac
ters on the current line and shift characters off the end of the line rigidly.
Other terminals, such as the Concept 100 and the Perkin Elmer Owl, make a
distinction between typed and untyped blanks on the screen, shifting upon
an insert or delete only to an untyped blank on the screen which is either
eliminated or expanded to two untyped blanks. You can determine the kind
of terminal you have by clearing the screen and then typing text separated
by cursor motions. Type "abc def" using local cursor motions (not
spaces) between the abc and the def. Then position the cursor before the
abc and put the terminal in insert mode. If typing characters causes the rest
of the line to shift rigidly and characters to fall off the end, then your termi
nal does not distinguish between blanks and untyped positions. If the abc
shifts over to the def which then move together around the end of the
current line and onto the next as you insert, you have the second type of
terminal and should give the capability in, which stands for "insert null".

- 17 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

While these are two logically separate attributes (one line versus multiline
insert mode and special treatment of untyped spaces) we have seen no ter
minals whose insert mode cannot be described with the single attribute.

terminfo can describe both terminals which have an insert mode and termi
nals which send a simple sequence to open a blank position on the current
line. Give as smir the sequence to get into insert mode. Give as rmir the
sequence to leave insert mode. Now give as ichl any sequence needed to
be sent just before sending the character to be inserted. Most terminals
with a true insert mode will not give ichl; terminals which send a sequence
to open a screen position should give it here. (If your terminal has both,
insert mode is usually preferable to ichl. Do not give both unless the ter
minal actually requires both to be used in combination.) If post-insert pad
ding is needed, give this as a number of milliseconds padding in ip (a string
option). Any other sequence which may need to be sent after an insert of a
single character may also be given in ip. If your terminal needs both to be
placed into an 'insert mode' and a special code to precede each inserted
character, then both smir/rmir and ichl can be given, and both will be
used. The ich capability, with one parameter, n, will repeat the effects of
ichl n times.

If padding is necessary between characters typed while not in insert mode,
give this as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (e.g., if there is a tab after the insertion posi
tion). If your terminal allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir will affect
only speed. Some terminals (notably Datamedia's) must not have mir
because of the way their insert mode works.

Finally, you can specify dehl to delete a single character, deh with one
parameter, n, to delete n characters, and delete mode by giving smde and
rmde to enter and exit delete mode (any mode the terminal needs to be
placed in for dehl to work).

A command to erase n characters (equivalent to outputting n blanks without
moving the cursor) can be given as eeh with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these can be
represented in a number of different ways. You should choose one display
form as standout mode [see curses(3X)], representing a good, high contrast,
easy-on-the-eyes format for highlighting error messages and other
attention-getters. (If you have a choice, reverse-video plus half-bright is
good, or reverse-video alone; however, different users have different prefer
ences on different terminals.) The sequences to enter and exit standout
mode are given as smso and rmso, respectively. If the code to change into
or out of standout mode leaves one or even two blank spaces on the screen,
as the TVI 912 and Teleray 1061 do, then xme should be given to tell how
many spaces are left.

Codes to begin underlining and end underlining can be given as smul and
rmul respectively. If the terminal has a code to underline the current

- 18 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

character and move the cursor one space to the right, such as the Micro
Term MIME, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blink
ing), bold (bold or extra-bright), dim (dim or half-bright), invis (blanking or
invisible text), prot (protected), rev (reverse-video), sgrO (tum off all attri
bute modes), smacs (enter alternate-character-set mode), and rmacs (exit
alternate-character-set mode). Turning on any of these modes singly may
or may not turn off other modes. If a command is necessary before alter
nate character set mode is entered, give the sequence in enacs (enable
alternate-character-set mode).

If there is a sequence to set arbitrary combinations of modes, this should be
given as sgr (set attributes), taking nine parameters. Each parameter is
either 0 or non-zero, as the corresponding attribute is on or off. The nine
parameters are, in order: standout, underline, reverse, blink, dim, bold,
blank, protect, alternate character set. Not all modes need be supported by
sgr, only those for which corresponding separate attribute commands exist.
(See the example at the end of this section.)

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies"
when they receive mode-setting sequences, which affect the display algo
rithm rather than having extra bits for each character. Some terminals, such
as the Hewlett-Packard 2621, automatically leave standout mode when they
move to a new line or the cursor is addressed. Programs using standout
mode should exit standout mode before moving the cursor or sending a
newline, unless the msgr capability, asserting that it is safe to move in stan
dout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly
(a bell replacement), then this can be given as flash; it must not move the
cursor. A good flash can be done by changing the screen into reverse
video, pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on
the bottom line (to make, for example, a non-blinking underline into an
easier to find block or blinking underline) give this sequence as cvvis. The
Boolean chts should also be given. If there is a way to make the cursor
completely invisible, give that as civis. The capability cnorm should be
given which undoes the effects of either of these modes.

If the terminal needs to be in a special mode when running a program that
uses these capabilities, the codes to enter and exit this mode can be given as
smcup and rmcup. This arises, for example, from terminals like the Concept
with more than one page of memory. If the terminal has only memory rela
tive cursor addressing and not screen-relative cursor addressing, a one
screen-sized window must be fixed into the terminal for cursor addressing
to work properly. This is also used for the Tektronix 4025, where smcup
sets the command character to be the one used by terminfo. If the smcup
sequence will not restore the screen after an rmcup sequence is output (to
the state prior to outputting rmcup), specify nrrmc.

If your terminal generates underlined characters by using the underline
character (with no special codes needed) even though it does not otherwise

- 19 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

overstrike characters, then you should give the capability ul. For terminals
where a character overstriking another leaves both characters on the screen,
give the capability os. If overstrikes are erasable with a blank, then this
should be indicated by giving eo.

Example of highlighting: assume that the terminal under question needs the
following escape sequences to turn on various modes.

tparm attribute escape sequence
parameter

none \E[Om
pI standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
p8 protect not available
p9 altcharset AO (off) AN(on)

Note that each escape sequence requires a 0 to turn off other modes before
turning on its own mode. Also note that, as suggested above, standout is
set up to be the combination of reverse and dim. Also, since this terminal
has no bold mode, bold is set up as the combination of reverse and under
line. In addition, to allow combinations, such as underline+blink, the
sequence to use would be \E[0;3;5m. The terminal doesn't have protect
mode, either, but that cannot be simulated in any way, so p8 is ignored.
The altcharset mode is different in that it is either A 0 or AN depending on
whether it is off or on. If all modes were to be turned on, the sequence
would be \E [0;3;4; 5;7;8m AN.

Now look at when different sequences are output. For example, ;3 is output
when either p2 or p6 is true, that is, if either underline or bold modes are
turned on. Writing out the above sequences, along with their dependencies,
gives the following:

sequence

\E[O
;3
;4
;5
;7
;8
m
AN or AO

when to output

always
if p2 or p6
if P I or p3 or p6
if p4
if pI or p5
if p7
always
if p9 AN, else AO

terminfo translation

\E[O
%?%p2%p6%I%t;3%;
%?%pl %p3%I%p6%I%t;4%;
%?%p4%t;5%;
%?%pl %p5%I%t;7%;
%?%p7%t;8%;
m
% ?%p9%(N%e A 0%;

Putting this all together into the sgr sequence gives:

sgr=\E[O%?%p2%p6%I%t;3%;%?%pl %p3%I%p6%I%t;4%;%?%p5%t;5%;%?%pl %
p5%I%t;7%;% ?%p7%t;8%;m% ?%p9%t AN%e

A

0%;,

- 20 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

Keypad
If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to han
dle terminals where the keypad only works in local (this applies, for exam
ple, to the unshifted Hewlett-Packard 2621 keys). If the keypad can be set
to transmit or not transmit, give these codes as smkx and rmkx. Otherwise
the keypad is assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcubl, kcu£1, kcuul, kcudl, and khome respec
tively. If there are function keys such as £0, fl, ... , f63, the codes they send
can be given as kfO, k£1, "" kf63. If the first 11 keys have labels other than
the default fO through flO, the labels can be given as IfO, If 1, .. ,' 1£10. The
codes transmitted by certain other special keys can be given: kll (home
down), kbs (backspace), ktbc (clear all tabs), kctab (clear the tab stop in this
column), kclr (clear screen or erase key), kdchl (delete character), kdll
(delete line), krmir (exit insert mode), kel (clear to end of line), ked (clear
to end of screen), kichl (insert character or enter insert mode), kill (insert
line), knp (next page), kpp (previous page), kind (scroll forward/down), kri
(scroll backward/up), khts (set a tab stop in this column). In addition, if
the keypad has a 3 by 3 array of keys including the four arrow keys, the
other five keys can be given as kal, ka3, kb2, kc1, and kc3. These keys are
useful when the effects of a 3 by 3 directional pad are needed. Further keys
are defined above in the capabilities list.

Strings to program function keys can be given as pfkey, pfloc, and pfx. A
string to program their soft-screen labels can be given as pIn. Each of these
strings takes two parameters: the function key number to program (from 0
to 10) and the string to program it with. Function key numbers out of this
range may program undefined keys in a terminal-dependent manner. The
difference between the capabilities is that pfkey causes pressing the given
key to be the same as the user typing the given string; pfloc causes the
string to be executed by the terminal in local mode; and pfx causes the
string to be transmitted to the computer. The capabilities nlab, Iw and Ih
define how many soft labels there are and their width and height. If there
are commands to turn the labels on and off, give them in smln and rmln.
smIn is normally output after one or more pIn sequences to make sure that
the change becomes visible.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to the next tab
stop can be given as ht (usually control I). A "backtab" command which
moves leftward to the next tab stop can be given as cbt. By convention, if
the teletype modes indicate that tabs are being expanded by the computer
rather than being sent to the terminal, programs should not use ht or cbt
even if they are present, since the user may not have the tab stops properly
set. If the terminal has hardware tabs which are initially set every n spaces
when the terminal is powered up, the numeric parameter it is given, show
ing the number of spaces the tabs are set to. This is normally used by tput
init [see tput(I)] to determine whether to set the mode for hardware tab
expansion and whether to set the tab stops. If the terminal has tab stops

- 21 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

that can be saved in nonvolatile memory, the terminfo description can
assume that they are properly set. If there are commands to set and clear
tab stops, they can be given as tbe (clear all tab stops) and hts (set a tab
stop in the current column of every row).

Other capabilities include: isl, is2, and is3 initialization strings for the ter
minal; iprog, the path name of a program to be run to initialize the termi
nal; and if, the name of a file containing long initialization strings. These
strings are expected to set the terminal into modes consistent with the rest
of the term info description. They must be sent to the terminal each time the
user logs in and be output in the following order: run the program iprog;
output isl; output is2; set the margins using mge, smgl, and smgr; set the
tabs using tbe and hts; print the file if; and finally output is3. This is usu
ally done using the init option of tput(l); see profile(4).

Most initialization is done with is2. Special terminal modes can be set up
without duplicating strings by putting the common sequences in is2 and
special cases in isl and is3. Sequences that do a harder reset from a totally
unknown state can be given as rsl, rs2, rf, and rs3, analogous to isl, is2,
is3, and if. (The method using files, if and rf, is used for a few terminals,
from /usr/lib/tabset/*; however, the recommended method is to use the
initialization and reset strings.) These strings are output by tput reset,
which is used when the terminal gets into a wedged state. Commands are
normally placed in rsl, rs2, rs3, and rf only if they produce annoying
effects on the screen and are not necessary when logging in. For example,
the command to set a terminal into 80-column mode would normally be
part of is2, but on some terminals it causes an annoying glitch on the screen
and is not normally needed, since the terminal is usually already in 80-
column mode.

If a more complex sequence is needed to set the tabs than can be described
by using tbe and hts, the sequence can be placed in is2 or if.

If there are commands to set and clear margins, they can be given as mge
(clear all margins), smgl (set left margin), and smgr (set right margin).

Delays
Certain capabilities control padding in the tty(7) driver. These are primarily
needed by hard-copy terminals, and are used by tput init to set tty modes
appropriately. Delays embedded in the capabilities er, ind, eubl, ff, and
tab can be used to set the appropriate delay bits to be set in the tty driver.
If pb (padding baud rate) is given, these values can be ignored at baud rates
below the value of pb.

Status Lines
If the terminal has an extra "status line" that is not normally used by
software, this fact can be indicated. If the status line is viewed as an extra
line below the bottom line, into which one can cursor address normally
(such as the Heathkit h19's 25th line, or the 24th line of a VT100 which is
set to a 23-line scrolling region), the capability hs should be given. Special
strings that go to a given column of the status line and return from the
status line can be given as tsl and fsl. (fsl must leave the cursor position in
the same place it was in before tsl. If necessary, the se and re strings can

- 22 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

be included in tsl and fsl to get this effect.) The capability tsl takes one
parameter, which is the column number of the status line the cursor is to be
moved to.

If escape sequences at:J.d other special commands, such as tab, work while in
the status line, the flag eslok can be given. A string which turns off the
status line (or otherwise erases its contents) should be given as dsl. If the
terminal has commands to save and restore the position of the cursor, give
them as sc and rc. The status line is normally assumed to be the same
width as the rest of the screen, e.g., cols. If the status line is a different
width (possibly because the terminal does not allow an entire line to be
loaded) the width, in columns, can be indicated with the numeric parameter
wsl.

Line Graphics
If the terminal has a line-drawing, alternate character set, the mapping of
glyph to character would be given in acsc. The definition of this string is
based on the alternate character set used in the DEC VT100 terminal,
extended slightly with some characters from the AT&T 4410v1 terminal.

glyph name vt100+
character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block 0
lantern symbol I
arrow pointing up
diamond
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right corner k
upper left corner I
lower left corner m
plus n
scan line 1 0

horizontal line q
scan line 9 s
left tee (~) t
right tee (~) u
bottom tee (1.) v
top tee (t) w
vertical line x
bullet

- 23 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

The best way to describe a new terminal's line graphics set is to add a third
column to the above table with the characters for the new terminal that pro
duce the appropriate glyph when the terminal is in the alternate character
set mode. For example,

glyph name

upper left corner
lower left corner
upper right corner
lower right corner
horizontal line
vertical line

vt100+
char

m
k
j
q
x

new tty
char

R
F
T
G

Now write down the characters left to right, as in " acsc=IRmFkTjGq\,x.".

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this
can be given as pad. Only the first character of the pad string is used. If
the terminal does not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with
hu (half-line up) and hd (half-line down). This is primarily useful for
superscripts and subscripts on hardcopy terminals. If a hardcopy terminal
can eject to the next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times
(to save time transmitting a large number of identical characters) this can be
indicated with the parameterized string rep. The first parameter is the char
acter to be repeated and the second is the number of times to repeat it.
Thus, tparm(repeaLchar, 'x', 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix
4025, this can be indicated with cmdch. A prototype command character is
chosen which is used in all capabilities. This character is given in the
cmdch capability to identify it. The following convention is supported on
some UNIX systems: If the environment variable CC exists, all occurrences
of the prototype character are replaced with the character in cc.
Terminal descriptions that do not represent a specific kind of known termi
nal, such as switch, dialup, patch, and network, should include the gn
(generic) capability so that programs can complain that they do not know
how to talk to the terminal. (This capability does not apply to virtual ter
minal descriptions for which the escape sequences are known.) If the termi
nal is one of those supported by the UNIX system virtual terminal protocol,
the terminal number can be given as vt. A line-turn-around sequence to be
transmitted before doing reads should be specified in rfi.

If the terminal uses xon/xoff handshaking for flow control, give xon. Pad
ding information should still be included so that routines can make better
decisions about costs, but actual pad characters will not be transmitted.

- 24 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

Sequences to turn on and off xonjxoff handshaking may be given in smxon
and rmxon. If the characters used for handshaking are not -Sand -Q, they
may be specified with xonc and xoffc.

If the terminal has a "meta key" which acts as a shift key, setting the 8th
bit of any character transmitted, this fact can be indicated with km. Other
wise, software will assume that the 8th bit is parity and it will usually be
cleared. If strings exist to turn this "meta mode" on and off, they can be
given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once,
the number of lines of memory can be indicated with 1m. A value of Im#O
indicates that the number of lines is not fixed, but that there is still more
memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the ter
minal can be given as mcO: print the contents of the screen, mc4: turn off
the printer, and mc5: turn on the printer. When the printer is on, all text
sent to the terminal will be sent to the printer. A variation, mc5p, takes one
parameter and leaves the printer on for as many characters as the value of
the parameter, then turns the printer off. The parameter should not exceed
255. If the text is not displayed on the terminal screen when the printer is
on, specify mc5i (silent printer). All text, including mc4, is transparently
passed to the printer while an mc5p is in effect.

Special Cases
The working model used by term info fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring
special support by terminfo. These are not meant to be construed as defi
ciencies in the terminals; they are just differences between the working
model and the actual hardware. They may be unusual devices or, for some
reason, do not have all the features of the term info model implemented.

Terminals which can not display tilde C) characters, such as certain Hazel
tine terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as
the Concept 100, should indicate xen!. Those terminals whose cursor
remains on the right-most column until another character has been received,
rather than wrapping immediately upon receiving the right-most character,
such as the VT100, should also indicate xen!.

If el is required to get rid of standout (instead of writing normal text on top
of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to
blanks, should indicate xt (destructive tabs). This capability is also taken to
mean that it is not possible to position the cursor on top of a "magic
cookie" therefore, to erase standout mode, it is instead necessary to use
delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or
control-C characters, should specify xsb, indicating that the f1 key is to be
used for escape and the f2 key for control-Co

- 25 -

TERMINFO(4) (Terminal Information Utilities) TERMINFO(4)

Similar Terminals

FILES

If there are two very similar terminals, one can be defined as being just like
the other with certain exceptions. The string capability use can be given
with the name of the similar terminal. The capabilities given before use
override those in the terminal type invoked by use. A capability can be
canceled by placing xx@ to the left of the capability definition, where xx is
the capability. For example, the entry

att4424-21 Teletype 4424 in display function group ii,
rev@, sg:I@, srro.ll@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul
capabilities, and hence cannot do highlighting. This is useful for different
modes for a terminal, or for different user preferences. More than one use
capability may be given.

jusr jlib jterminfo j? j*
jusr jlib j .COREtermj? j*

jusr jlib jtabsetj*

compiled terminal description data base
subset of compiled terminal description data
base
tab settings for some terminals, in a format
appropriate to be output to the terminal (escape
sequences that set margins and tabs)

SEE ALSO
curses(3X), printf(3S), term(5).
captoinfo(IM), infocmp(IM), tic(IM), tty(7) in the System Administrator's
Reference Manual .
tput(l) in the User's Reference Manual.
Chapter 10 of the Programmer's Guide.

WARNING

NOTE

As described in the "Tabs and Initialization" section above, a terminal's ini
tialization strings, is1, is2, and is3, if defined, must be output before a
curses(3X) program is run. An available mechanism for outputting such
strings is tput init (see tput(l) and profile(4».

Tampering with entries in jusr jlib j.COREtermj? j* or jusr jlib jterminfo j? j*
(for example, changing or removing an entry) can affect programs such as
vi(l) that expect the entry to be present and correct. In particular, removing
the description for the "dumb" terminal will cause unexpected problems.

The termcap data base (from earlier releases of UNIX System V) may not be
supplied in future releases.

- 26 -

TIMEZONE(4)

NAME
time zone - set default system time zone

SYNOPSIS
/ etc/TIMEZONE

DESCRIPTION

TIMEZONE(4)

This file sets and exports the time zone environmental variable TZ.

This file is "dotted" into other files that must know the time zone.

EXAMPLES
/etc/TIMEZONE for the east coast:

SEE ALSO

Time Zone
TZ=EST5EDT
export TZ

ctime(3C), profile(4).
rc2(lM) in the System Administrator's Reference Manual.

- 1 -

UNISTD(4) UNISTD(4)

NAME
unistd - file header for symbolic constants

SYNOPSIS
#include <unistd.h>

DESCRIPTION
The header file <unistd.h> lists the symbolic constants and structures not
already defined or declared in some other header file.

/* Symbolic constants for the "access" routine: * /

#define LOK
#define W_OK
#define X_OK
#define F_OK

#define F _ULOCK
#define F _LOCK
#define F _ TLOCK
#define F_TEST

4
2
1
o

o
1
2
3

/*Test for Read permission * /
/*Test for Write permission * /
/*Test for eXecute permission */
/*Test for existence of File */

/*Unlock a previously locked region * /
/*Lock a region for exclusive use * /
/*Test and lock a region for exclusive use * /
/*Test a region for other processes locks * /

/*Symbolic constants for the "lseek" routine: * /

#define SEEK-SET 0
#define SEEK-CUR 1
#define SEELEND 2

/*Path names:* /

/* Set file pointer to "offset" * /
/* Set file pointer to current plus "offset" * /
/* Set file pointer to EOF plus "offset" * /

#define GF _P A TH
#define PF J ATH

/etc/group /*Path name of the group file */
/etc/passwd/*Path name of the passwd file */

- 1 -

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such commands
as who(l), write(l), and login(l), have the following structure as defined by
<utmp.h>:

#define UTMP _FILE
#define WTMP _FILE
define uLna me

" /etc/utmp"
" /etc/wtmp"
uLuser

struct utmp {
char
char
char
short
short
struct

};

short
short

} uLexit;

uLuser[8];
uLid[4];
uLline[12];
uLpid;
uLtype;
exiLstatus {

e_termination;
e_exit;

uLtime;

/* Definitions for uLtype */
#define EMPTY 0
#define RUN_L VL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5
#define LOGIN_PROCESS 6
#define USEILPROCESS 7
#define DEAD_PROCESS 8
#define ACCOUNTING 9

/* User login name * /
/* /etc/inittab id (usually line #) */
/* device name (console, lnxx) */
/ * process id * /
/* type of entry */

/* Process termination status * /
/* Process exit status */
/* The exit status of a process
* marked as DEAD,-PROCESS. * /
/* time entry was made * /

/* Process spawned by "init" * /
/* A "getty" process waiting for login * /
/* A user process */

#define UTMAXTYPE ACCOUNTING /* Largest legal value of uLtype * /

- 1 -

UTMP(4)

FILES

/* Special strings or formats used in the "uUine" field when * /
/* accounting for something other than a process * /
/* No string for the uUine field can be more than 11 chars + * /
/ * a NULL in length * /
#define RUNL VLMSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME-MSG "old time"
#define NTIME-MSG "new time"

/etc/utmp
/etc/wtmp

SEE ALSO
getut(3C).
login(I), who(I), write(l) in the User's Reference Manual.

- 2 -

UTMP(4)

INTRO(5)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRO(5)

This section describes miscellaneous facilities such as macro packages, char
acter set tables, etc.

- 1 -

ASCII(5) ASCII(5)

NAME
,.scii - map of ASCII character set

DESCRIPTION
ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains·

1000 nul 1001 soh 002 stx 1003 etxl004 eot 1005 enql006 ack 007 bel
1010 bs 1011 ht 012 nl 1013 vt 014 np 1015 cr 1016 so 017 s i
1020 dIe 1021 del 022 dc21023 dc3 024 dc4 1025 nakl026 syn 027 etb
1030 canl031 em 032 sub 1033 esc 034 fs 1035 gs 1036 rs 037 us
1040 1041 ! 042 " 1043 # 044 $ 1045 % 1046 & 047

,
sp

1050 (1051 052 ... 1053 + 054 1055 - 1056 . 057 /
1060 0 1061 062 2 1063 3 064 4 1065 5 1066 6 067 7
'070 8 1071 9 072 '073 ; 074 < '075 = 1076 > 077 ?

100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
1l0H 111 I 112 J 113 K 114 L 115M 116N 1170
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 137 _
140

I
141 a 142 b 143 c 144 d 145 e 146 f 147 g

150 h 151 152 153 k 154 I 155 m 156 n 157 0

160 P 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 Y 172 z 173 174 175 176 - 177 del

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht Oa nl Ob vt Oc np Od cr Oe so Of si
10 dIe 11 del 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1a sub 1b esc Ie fs 1d gs Ie rs If us
20 sp 21 22 " 23 # 24 $ 25 % 26 & 27 '
28 (29 2a ... 2b + 2c 2d - 2e . 2f /
30 0 31 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a 3b ; 3c < 3d = 3e > 3f ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f 0
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y Sa Z 5b [5c \ 5d] 5e Sf _
60 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 6a j 6b k 6c I 6d m 6e n 6f 0

70 P 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7a z 7b{ 7c 7d } 7e - 7f del

- 1 -

ENVIRON(5) ENVIRON(5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2)
when a process begins. By convention, these strings have the form
"name=value". The following names are used by various commands:

PATH The sequence of directory prefixes that sh(l), time(l), nice(l),
nohup(l), etc., apply in searching for a file known by an incomplete
path name. The prefixes are separated by colons (:). Login(l) sets
PATH=:/bin:/usr Ibin.

HOME Name of the user's login directory, set by login(l) from the pass
word file passwd(4).

TERM The kind of terminal for which output is to be prepared. This infor
mation is used by commands, such as mm(l) or tplot(lG), which
may exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is stan
dard local time zone abbreviation, n is the difference in hours from
GMT, and zzz is the abbreviation for the daylight-saving local time
zone, if any; for example, EST5EDT.

Further names may be placed in the environment by the export command
and "name=value" arguments in sh(l), or by exec(2). It is unwise to con
flict with certain shell variables that are frequently exported by .profile files:
MAIL, PSt, PS2, IFS.

SEE ALSO
exec(2).
env(l), login(l), sh(l), nice(l), nohup(l), time(l), tplot(lG) in the User's
Reference Manual.
mm(l) in the DOCUMENTER'S WORKBENCH Software Release 2.0 Technical
Discussion and Reference Manual.

- 1 -

FCNTL(5)

NAME
fcntl - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The fcntl (2) function provides for control over open files.
describes requests and arguments to fcntl and open(2).

/* Flag values accessible to open(2) and fcntl(2) * /
/* (The first three can only be set by open) */
#define O-RDONL Y 0
#define 0_ WRONL Y 1
#define O-RD\VR 2

/* Non-blocking I/O */

FCNTL(5)

This include file

#define O-NDELA Y 04
#define O-APPEND 010
#define O_SYNC 020

/* append (writes guaranteed at the end) * /
/* synchronous write option */

/* Flag values accessible only to open(2) * /
#define O_CREAT 00400 /* open with file create (uses third open arg)* /
#define O_TRUNC 01000 /* open with truncation */
#define O-EXCL 02000 /* exclusive open * /

/* fcntl(2) requests * /
#define F_DUPFD 0
#define F _GETFD 1
#define F _SETFD 2
#define F _GETFL 3
#define F _SETFL 4
#define F _GETLK 5
#define F _SETLK 6
#define F _SETLKW 7
#define F _CHKFL 8

/* Duplicate fildes * /
/* Get fildes flags * /
/* Set fildes flags * /
/* Get file flags * /
/* Set file flags * /
/* Get file lock */
/* Set file lock */
/* Set file lock and wait * /
/* Check legality of file flag changes * /

/* file segment locking control structure * /
struct flock {

} ;

short Ltype;
short Lwhence;
long Lstart;
long LIen;
short Lsysid;
short Lpid;

/* if 0 then until EOF * /
/* returned with F_GETLK*/
/* returned with F_GETLK*/

/* file segment locking types * /
#define F-RDLCK 01 /* Read lock */
#define F_WRLCK 02 /* Write lock */
#define F_UNLCK 03 /* Remove locks */

SEE ALSO
fcntl(2), open(2).

- 1 -

JAGENT(5) (AT&T Windowing Utilities) JAGENT(5)

NAME
jagent - host control of windowing terminal

SYNOPSIS
#include <sys/jioctl.h>

ioctl (cntlfd, JAGENT, &arg)

int cntlfd
strud bagent arg

DESCRIPTION
The ioctl(2) system call, when performed on an xt(7) device with the
JAGENT request, aUows a host program to send information to a windowing
terminal.

ioctl has three arguments:

cntlfd the xt(7) control channel file descriptor

JAGENT the xt(7) ioctl(2) request to invoke a windowing terminal agent
routine.

arg the address of a bagent structure, defined in <sys/jiodl.h> as
follows:

RETURN VALUE

struct
long
char
char

} ;

bagent {
size;

*src;
*dest;

1* size of src in & dest out *1
1* the source byte string *1
1* the destination byte string *1

The src pointer must be initialized to point to a byte string which
is sent to the windowing terminal. See layers(5) for a list of
JAGENT strings recognized by windowing terminals. Likewise,
the dest pointer must be initialized to the address of a buffer to
receive a byte string returned by the terminal. When ioctl(2) is
called, the size argument must be set to the length of the src
string. Upon return, size is set by ioctl(2) to the length of the
destination byte string, dest.

Upon successful completion, the size of the destination byte string is
returned. If an error occurs, -1 is returned.

SEE ALSO
ioctl(2), layers(5), libwindows(3X).
xt(7) in the System Administrator's Reference Manual.

- 1 -

LAYERS(5) (AT&T Windowing Utilities) LAYERS(5)

NAME
layers - protocol used between host and windowing terminal under
layers(l)

SYNOPSIS
#inc1ude <sys/jioctl.h>

DESCRIPTION
The layers are asynchronous windows supported by the operating system in
a windowing terminal. Communication between the UNIX system processes
and terminal processes under layers(l) occurs via multiplexed channels
managed by the respective operating systems using a protocol as specified
in xtproto(5).

The contents of packets transferring data between a UNIX system process
and a layer are asymmetric. Data sent from the UNIX system to a particular
terminal process is undifferentiated and it is up to the terminal process to
interpret the contents of packets.

Control information for terminal processes is sent via channel O. Process 0
in the windowing terminal performs the designated functions on behalf of
the process connected to the designated channel. These packets take the
form:

command, channel

except for timeout and jagent information which take the form

command, data ...

The commands are the bottom eight bits extracted from the following
ioct1(2) codes:

JBOOT Prepare to load a new terminal program into the designated
layer.

JTERM Kill the downloaded layer program and restore the default win
dow program.

JTIMO Set the timeout parameters for the protocol. The data consist of
two bytes: the value of the receive timeout in seconds and the
value of the transmit timeout in seconds.

JTIMOM Set the timeout parameters for the protocol. The data consist of
four bytes in two groups: the value of the receive timeout in
milliseconds (the low eight bits followed by the high eight bits)
and the value of the transmit timeout (in the same format).

JZOMBOOT
Like JBOOT, but do not execute the program after loading.

JAGENT Send a source byte string to the terminal agent routine and wait
for a reply byte string to be returned.

The data are from a bagent structure [see jagent(5)] and consist of
a one-byte size field followed by a two-byte agent command

- 1 -

LAYERS(5) (AT&T Windowing Utilities) LAYERS(5)

code and parameters. Two-byte integers transmitted as part of
an agent command are sent with the high-order byte first. The
response from the terminal is generally identical to the command
packet, with the two command bytes replaced by the return
code: 0 for success, -1 for failure. Note that the routines in the
libwindows(3X) library all send parameters in an agentrect struc
ture. The agent command codes and their parameters are as fol
lows:

A-NEWLA YER followed by a two-byte channel number and a
rectangle structure (four two-byte coordinates).

LCURRENT followed by a two-byte channel number.

LDELETE followed by a two-byte channel number.

A_TOP followed by a two-byte channel number.

LBOTTOM followed by a two-byte channel number.

LMOVE followed by a two-byte channel number and a
point to move to (two two-byte coordinates).

A-RESHAPE followed by a two-byte channel number and
the new rectangle (four two-byte coordinates).

A-NEW followed by a two-byte channel number and a
rectangle structure (four two-byte coordinates).

LEXIT no parameters needed.

A-ROMVERSION
no parameters needed. The response packet
contains the size byte, two-byte return code,
two unused bytes, and the parameter part of
the terminal id string (e.g., "8;7;3").

Packets from the windowing terminal to the UNIX system all take the fol
lowing form:

command, data ...

The single-byte commands are as follows:

C_SENDCHAR Send the next byte to the UNIX system process.

C-NEW Create a new UNIX system process group for this
layer. Remember the window size parameters for
this layer. The data for this command is in the
form described by the jwinsize structure. The size
of the window is specified by two 2-byte integers,
sent low byte first.

Unblock transmission to this layer. There is no
data for this command.

- 2 -

LAYERS(5)

C3ENDNCHARS

C-RESHAPE

SEE ALSO

(AT&T Windowing Utilities) LAYERS(5)

Delete the UNIX system process group attached to
this layer. There is no data for this command.

Exit. Kill all UNIX system process groups associated
with this terminal and terminate the session. There
is no data for this command.

Layer program has died, send a terminate signal to
the UNIX system process groups associated with this
terminal. There is no data for this command.

The rest of the data are characters to be passed to
the UNIX system process.

The layer has been reshaped. Change the window
size parameters for this layer. The data takes the
same form as for the C-NEW command.

libwindows(3X), jagent(5), xtproto(5).
layers(l) in the User's Reference Manual.
xt(7) in the System Administrator's Reference Manual.

- 3 -

MATH(5) MATH(5)

NAME
math - math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various functions in the C Library
(Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M) error
handling mechanisms, including the following constant used as an error
return value:

HUGE The maximum value of a single-precision floating
point number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E

M-LOGIOE

M-LN2

M-LNIO

M_PI

M_PL2

M_PL4

M_l_PI

M-2_PI

M_2_SQRTPI

M_SQRT2

M_SQRTl_2

The base-2 logarithm of e.

The base-10 logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

7r, the ratio of the circumference of a circle to its
diameter.

7r/2.

7r/4.

1/7r.

2/7r.

2/V7r•

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent "constants," see. the
description of the <values.h> header file.

SEE ALSO
intro(3), matherr(3M), values(S).

- 1 -

PROF(5) PROF(5)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the same as a
function entry point. Execution of the mark will add to a counter for that
mark, and program-counter time spent will be accounted to the immediately
preceding mark or to the function if there are no preceding marks within
the active function.

Name may be any combination of numbers or underscores. Each name in a
single compilation must be unique, but may be the same as any ordinary
program symbol.

For marks to be effective, the symbol MARK must be defined before the
header file <prof.h> is included. This may be defined by a preprocessor
directive as in the synopsis or by a command line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in the
source files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent in
each loop. Unless this example is compiled with MARK defined on the com
mand line, the marks are ignored.

#include <prof.h>
foo()
{

int i, j;

MARK (loop 1);
for (i = 0; i

}
MARK(loop2);
for (j = 0; j

SEE ALSO

< 2000; i++) {

< 2000; j++) {

prof(l), profil(2), monitor(3C).

- 1 -

REGEXP(5) REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC() <getc code>
#define PEEK CO <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;
int eof;

int step (string, expbuf)
char *string, *expbuf;

extern char *10c1, *loc2, *locs;

extern int cird, sed, nbra;

DESCRIPTION
This page describes general-purpose, regular expression matching routines
in the form of ed(l), defined in <regexp.h> . Programs such as ed(l),
sed(l), grep(l),expr(l), etc., which perform regular expression matching use
this source file. In this way, only this file need be changed to maintain reg
ular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include
this file must have the following five macros declared before the
I/#include <regexp.h>" statement. These macros are used by the compile
routine.

GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

Return the value of the next character in the regular
expression pattern. Successive calls to GETC() should
return successive characters of the regular expression.

Return the next character in the regular expression.
Successive calls to PEEKC() should return the same
character [which should also be the next character
returned by GETC()].

Cause the argument c to be returned by the next call
to GETC() [and PEEKC()]. No more than one character
of pushback is eV,er needed, and this character is
guaranteed to be the last character read by GETC().
The value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile rou
tine. The value of the argument pointer is a pointer
to the character after the last character of the com
piled regular expression. This is useful to programs
which have memory allocation to manage.

- 1 -

REGEXP(5) REGEXP(5)

ERROR(val) This is the abnormal return from the compile routine.
The argument val is an error number (see table below
for meanings). This call should never return.

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \ { \}.
45 } expected after \.
46 First number exceeds second in \ { \}.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eo£)

The first parameter instring is never used explicitly by the compile routine
but is useful for programs that pass down different pointers to input charac
ters. It is sometimes used in the INIT declaration (see below). Programs
which call functions to input characters or have characters in an external
array can pass down a value of «char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place
where the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the com
piled regular expression may be placed. If the compiled expression cannot
fit in (endbuf-expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular
expression. For example, in ed(I), this character is usually a I-
Each program that includes this file must have a #define statement for INIT.
This definition will be placed right after the declaration for the function
compile and the opening curly brace ({). It is used for dependent declara
tions and initializations. Most often it is used to set a register variable to
point the beginning of the regular expression so that this register variable
can be used in the declarations for GETC(), PEEKC(), and UNGETC(). Other
wise it can be used to declare external variables that might be used by
GETC(), PEEKC(), and UNGETC(). See the example below of the declara
tions taken from grep(I).

There are other functions in this file which perform actual regular expres
sion matching, one of which is the function step. The call to step is as fol
lows:

step(string, expbu£)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null-terminated.

- 2 -

REGEXP(5) REGEXP(5)

The second parameter expbu! is the compiled regular expression which was
obtained by a call of the function compile.

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match,
two external character pointers are set as a side effect to the call to step.
The variable set in step is locl. This is a pointer to the first character that
matched the regular expression. The variable loc2, which is set by the func
tion advance, points to the character after the last character that matches the
regular expression. Thus if the regular expression matches the entire line,
loel will point to the first character of string, and loc2 will point to the null
at the end of string.

Step uses the external !"ariable eirc! which is set by compile if the regular
expression begins with . If this is set, then step will try to match the regu
lar expression to the beginning of the string only. If more than one regular
expression is to be compiled before the first is executed, the value of eire!
should be saved for each compiled expression, and eire! should be set to
that saved value before each call to step.

The function advance is called from step with the same arguments as step.
The purpose of step is to step through the string argument and call advance
until advance returns non-zero indicating a match or until the end of string
is reached. If one wants to constrain string to the beginning of the line in
all cases, step need not be called; simply call advance.

When advance encounters a * or \ { \} sequence in the regular expression, it
will advance its pointer to the string to be matched as far as possible and
will recursively call itself trying to match the rest of the string to the rest of
the regular expression. As long as there is no match, advance will back up
along the string until it finds a match or reaches the point in the string that
initially matched the * or \{ \}. It is sometimes desirable to stop this back
ing up before the initial point in the string is reached. If the external char
acter pointer IDes is equal to the point in the string at sometime during the
backing up process, advance will break out of the loop that backs up and
will return zero. This is used by ed(l) and sed(l) for substitutions done glo
bally (no_ just the first occurrence, but the whole line) so, for example,
expressions like s/Y*/ /g do not loop forever.

The additional external variables sed and nbra are used for special purposes.

EXAMPLES
The following is an example of how the regular expression macros and calls
look from grep(l):

#define INIT
#define GETC{)
#define PEEKC{)
#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

register char *sp = instring;
(*sp++)
(*sp)
(--sp)
return;
regerr()

- 3 -

REGEXP(5) REGEXP(5)

#include <regexp.h>

(void) compile(*argv, expbuf, &expbuf[ESIZE], '\0');

SEE ALSO

if (step(linebuf, expbuf)
succeed();

ed(l), expr(l), grep(l), sed(l) in the User's Reference Manual.

- 4 -

STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS
#inc1ude <sys/types.h>
#inc1ude <sys/stat.h>

DESCRIPTION

STAT(5)

The system calls stat and fstat return data whose structure is defined by this
include file. The encoding of the field st_mode is defined in this file also.

Structure of the result of stat

struct stat
f
l

dev_t sLdev;
ushort sLino;
ushort sLmode;
short SLnlink;
ushort sLuid;
ushort SLgid;
dev_t sLrdev;
off_t sLsize;
time_t sLatime;
time_t sLmtime;
time_t sLctime;

} ;

#define S-IFMT 0170000 /* type of file */
#define S-IFDIR 0040000 /* directory * /
#define S-IFCHR 0020000 /* character special * /
#define S_IFBLK 0060000 /* block special * /
#define S-IFREG 0100000 /* regular */
#define S-IFIFO 0010000 /* fifo */
#define S-ISUID 04000 /* set user id on execution */
#define S-ISGID 02000 /* set group id on execution * /
#define S-ISVTX 01000 /* save swapped text even after use */
#define S-IREAD 00400 /* read permission, owner * /
#define S-IWRITE 00200 /* write permission, owner * /
#define S-IEXEC 00100 /* execute/search permission, owner */
#define S-ENFMT S-ISGID /* record locking enforcement flag * /
#define S-IRWXU 00700 /* read, write, execute: owner * /
#define S-IRUSR 00400 /* read permission: owner * /
#define S-IWUSR 00200 /* write permission: owner * /
#define S-IXUSR 00100 /* execute permission: owner */
#define S_IRWXG 00070 /* read, write, execute: group * /
#define S-IRGRP 00040 /* read permission: group * /
#define S-IWGRP 00020 /* write permission: group * /
#define S-IXGRP 00010 /* execute permission: group */
#define S-IRWXO 00007 /* read, write, execute: other * /
#define S-IROTH 00004 /* read permission: other * /

- 1 -

STAT(5)

#define S~WOTH 00002
#define S_IXOTH 00001

SEE ALSO
stat(2), types(5).

/* write permission: other */
/* execute permission: other */

- 2 -

STAT(5)

TERM(5) TERM(5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands [e.g., tabs(l), tput(l), vi(l) and
curses(3X)] and are maintained as part of the shell environment in the
environment variable TERM [see sh(l), profile(4), and environ(5)].

Entries in terminfo(4) source files consist of a number of comma-separated
fields. [To obtain the source description for a terminal, use the -I option of
infocmp(lM).] White space after each comma is ignored. The first line of
each terminal description in the terminfo(4) data base gives the names by
which terminfo(4) knows the terminal, separated by bar (I) characters. The
first name given is the most common abbreviation for the terminal [this is
the one to use to set the environment variable TERMINFO in
$HOMEj.profile; see profile(4)], the last name given should be a long name
fully identifying the terminal, and all others are understood as synonyms for
the terminal name. All names but the last should contain no blanks and
must be unique in the first 14 characters; the last name may contain blanks
for readability.

Terminal names (except for the last, verbose entry) should be chosen using
the following conventions. The particular piece of hardware making up the
terminal should have a root name chosen, for example, for the AT&T 4425
terminal, att442S. This name should not contain hyphens, except that
synonyms may be chosen that do not conflict with other names. Up to 8
characters, chosen from [a-zO-9], make up a basic terminal name. Names
should generally be based on original vendors, rather than local distributors.
A terminal acquired from one vendor should not have more than one dis
tinct basic name. Terminal sub-models, operational modes that the
hardware can be in, or user preferences, should be indicated by appending a
hyphen and an indicator of the mode. Thus, an AT&T 4425 terminal in 132
column mode would be att442S-w. The following suffixes should be used
where possible:

Suffix
-w
-am
-nam
-n
-na
-np
-rv

Meaning
Wide mode (more than 80 columns)
With auto. margins (usually default)
Without automatic margins
Number of lines on the screen
No arrow keys (leave them in local)
Number of pages of memory
Reverse video

Example
att4425-w
vt100-am
vt100-nam
aaa-60
c100-na
c100-4p
att4415-rv

T.:> avoid conflicts with the naming conventions used in describing the dif
ferent modes of a terminal (e.g., -w), it is recommended that a terminal's
root name not contain hyphens. Further, it is good practice to make all ter
minal names used in the terminfo(4) data base unique. Terminal entries that
are present only for inclusion in other entries via the use= facilities should
have a '+' in their name, as in 441S+nl.

Some of the known terminal names may include the following (for a com
plete list, type: Is -C /usr/lib/terminfo/?):

- 1 -

TERM(5)

2621,hp2621
2631
2631-c

2631-e

2640,hp2640
2645,hp2645
3270
33,tty33
35,tty35
37,tty37
4000a
4014,tek4014
40,tty40
43,tty43
4410,5410

441 0-nfk,541 O-nfk

441 0-nsl,541 O-nsl
4410-w,5410-w
4410v1,5410v1

4410v1-w,5410v1-w

4415,5420
4415-nl,5420-nl

4415-rv,5420-rv
4415-rv-nl,5420-rv-nl

4415-w,5420-w
4415-w-nl,5420-w-nl

4415-w-rv,5420-w-rv
4415-w-rv-nl,5420-w-rv -nl

4418,5418
4418-w,5418-w
4420
4424
4424-2

4425,5425
4425-fk,5425-fk
4425-nl,5425-nl

4425-w,5425-w

Hewlett-Packard 2621 series
Hewlett-Packard 2631 line printer
Hewlett-Packard 2631 line
printer - compressed mode
Hewlett-Packard 2631 line
printer - expanded mode
Hewlett-Packard 2640 series
Hewlett-Packard 2645 series
IBM Model 3270
AT&T Teletype Model 33 KSR
AT&T Teletype Model 35 KSR
AT&T Teletype Model 37 KSR
Trendata 4000a
TEKTRONIX 4014
AT&T Teletype Dataspeed 40/2
AT & T Teletype Model 43 KSR

TERM(5)

AT&T 4410/5410 terminal in 80-column
mode - version 2
AT&T 4410/5410 without function
keys - version 1
AT&T 4410/5410 without pIn defined
AT&T 4410/5410 in 132-column mode
AT&T 4410/5410 terminal in 80-column
mode - version 1
AT&T 4410/5410 terminal in 132-column
mode - version 1
AT&T 4415/5420 in 80-column mode
AT&T 4415/5420 without
changing labels
AT&T 4415/5420 80 columns in reverse video
AT&T 4415/5420 reverse video without
changing labels
AT&T 4415/5420 in 132-column mole
AT&T 4415/5420 in 132-column mode without
changing labels
AT&T 4415/5420 132 columns in reverse video
AT&T 4415/5420 132 columns reverse video

without changing labels
AT&T 5418 in 80-column mode
AT&T 5418 in 132-column mode
AT&T Teletype Model 4420
AT&T Teletype Model 4424
AT &T Teletype Model 4424 in display function
group ii
AT&T 4425/5425
AT&T 4425/5425 without function keys
AT&T 4425/5425 withr,ut changing labels
in 80-column mode
AT&T 4425/5425 in 132-column mode

- 2 -

TERM(5)

4425-w-fk,5425-w-fk

4425-nl-w,5425-nl-w

4426
450
450-12
500,att500
510,510a
513bct,att513
5320
5420_2
5420_2-w
5620,dmd
5620-24,dmd-24

5620-34,dmd-34

610,610bct
610-w,610bct-w
6300PLUS, 6300plus, PC6300PLUS
7300,pc7300,unix-pc
735,ti
745
dumb

hp
lp
pt505
pt505-24
sync

TERM(5)

AT&T 4425/5425 without function keys in
132-column mode
AT&T 4425/5425 without changing labels in
132-column mode
AT&T Teletype Model 44265
DASI 450 (same as Diablo 1620)
DASI 450 in 12-pitch mode
AT&T-IS 500 terminal
AT&T 510/510a in 80-column mode
AT&T 513 bct terminal
AT&T 5320 hardcopy terminal
AT&T 5420 model 2 in 80-column mode
AT&T 5420 model 2 in 132-column mode
AT&T 5620 terminal 88 columns
AT&T Teletype Model DMD 5620 in a
24x80 layer
AT&T Teletype Model DMD 5620 in a
34x80 layer
AT&T 610 bct terminal in 80-column mode
AT&T 610 bct terminal in 132-column mode
AT&T Model PC6300PLUS
AT&T UNIX PC Model 7300
Texas Instruments TI735 and TI725
Texas Instruments TI745
generic name for terminals that lack reverse

line-feed and other special escape sequences
Hewlett-Packard (same as 2645)
generic name for a line printer
AT&T Personal Terminal 505 (22 lines)
AT&T Personal Terminal 505 (24-line mode)
generic name for synchronous Teletype Model

4540-compatible terminals

Commands whose behavior depends on the type of terminal should accept
arguments of the form - Tterm where term is one of the names given above;
if no such argument is present, such commands should obtain the terminal
type from the environment variable TERM, which, in turn, should contain
term.

FILES
/usr/lib/terminfo/?/* compiled terminal description data base

SEE ALSO

NOTES

curses(3X), profile(4), terminfo(4), environ(5).
sh(l), stty(I), tabs(I), tput(l), tplot(IG), vi(l) in the User's Reference Manual.
infocmp(lM) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

Not all programs follow the above naming conventions.

- 3 -

TYPES(5)

NAME
types - primitive system data types

SYNOPSIS
#indude <sys/types.h>

DESCRIPTION

TYPES(5)

The data types defined in the include file are used in UNIX system code;
some data of these types are accessible to user code:

80386 computer
typedef struct { int r[1]; } *physadr;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef ushort ino_t;
typedef short cnLt;
typedef long time_t;
typedef int labeLt[6];
typedef short dev _t;
typedef long off_t;
typedef long paddr_t;
typedef int key_t;
typedef unsigned char use_t;
typedef short sysi<L-t;
typedef short index-t;
typedef short locLt;
typedef unsigned int size_t;

80286 computer
typedef struct { int r[l]; } *physadr;
typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
typedef ushort ino_t;
typedef short cnLt;
typedef long time_t;
typedef int labeLt[7];
typedef short dev _t;
typedef long off_t;
typedef long paddr_t;
typedef long key _t;
typedef unsigned char use_t;

- 1 -

TYPES(5)

typedef short
typedef short
typedef short
typedef unsigned int

sysiLt;
index-t;
locLt;
size_t;

TYPES(5)

The form daddr_t is used for disk addresses except in an i-node on disk, see
fs(4}. Times are encoded in seconds since 00:00:00 GMT, January 1, 1970.
The major and minor parts of a device code specify kind and unit number
of a device and are installation-dependent. Offsets are measured in bytes
from the beginning of a file. The label_t variables are used to save the pro
cessor state while another process is running.

SEE ALSO
fs(4).

- 2 -

VALUES(5) VALUES(5)

NAME
values - machine-dependent values

SYNOPSIS
#inc1ude <values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined for par
ticular processor architectures.

The model assumed for integers is binary representation (one's or two's
complement), where the sign is represented by the value of the high-order
bit.

BITS(type)

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

MAXI NT

The number of bits in a specified type (e.g., int).

The value of a short integer with only the high-order
bit set (in most implementations, Ox8000).

The value of a long integer with only the high-order
bit set (in most implementations, Ox80000000).

The value of a regular integer with only the high
order bit set (usually the same as HIBITS or HIBITL).

The maximum value of a signed short integer (in most
implementations, Ox7FFF == 32767).

The maximum value of a signed long integer (in most
implementations,Ox7FFFFFFF == 2147483647).

The maximum value of a signed regular integer (usu
ally the same as MAXSHORT or MAXLONG).

MAXFLOAT, LN~AXFLOAT The maximum value of a single-precision
floating-point number and its natural loga
rithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double-precision
floating-point number and its natural loga
rithm.

MINFLOAT, LN~INFLOAT The minimum positive value of a single
precision floating-point number and its
natural logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double
precision floating-point number and its
natural logarithm.

FSIGNIF

DSIGNIF

SEE ALSO

The number of significant bits in the mantissa of a
single-precision, floating-point number.

The number of significant bits in the mantissa of a
double-precision, floating-point number.

intro(3), limits(4), math(5).

- 1 -

VARARGS(5) VARARGS(5)

NAME
varargs - handle variable argument list

SYNOPSIS
#inc1ude <varargs.h>

va-alist

va-del

void va-start(pvar)
vuist pvar;

type va-arg(pvar, type)
vuist pvar;

void va-end(pvar)
vuist pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable argument
lists to be written. Routines that have variable argument lists [such as
printf(3S)] but do not use varargs are inherently nonportable, as different
machines use different argument-passing conventions.

va-alist is used as the parameter list in a function header.

va-del is a declaration for va_a lis t . No semicolon should follow va_del.

vuist is a type defined for the variable used to traverse the list.

va-start is called to initialize pvar to the beginning of the list.

va-arg will return the next argument in the list pointed to by pvar. Type is
the type the argument is expected to be. Different types can be mixed, but
it is up to the routine to know what type of argument is expected, as it can
not be determined at runtime.

va-end is used to clean up.

Multiple traversals, each bracketed by va-Start ... va_end, are possible.

EXAMPLE
This example is a possible implementation of exeel (2).

#include <varargs.h>
#define MAXARGS 100

/ * execl is called by
exed(file, argl, arg2, ... , (char *)0);

*/
execl(v~alist)
va_dcl
{

va-list ap;
char *file;
char *args[MAXARGS];
int argno = 0;

- 1 -

VARARGS(5) VARARGS(5)

v~tart(ap);

file = va_arg(ap, char *);
while «args[argno++] = va_arg(ap, char *» != (char *)0)

vCLend(ap);
return execv(file, args);

SEE ALSO

NOTES

exec(2), printf(3S), vprintf(3S).

It is up to the calling routine to specify how many arguments there are,
since it is not always possible to determine this from the stack frame. For
example, execl is passed a zero pointer to signal the end of the list. Print!
can tell how many arguments are there by the format.
It is non-portable to specify a second argument of char, short, or float to
va_arg, since arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float argu
ments to double before passing them to a function.

- 2 -

XTPROTO(5) (AT&T Windowing Utilities) XTPROTO(5)

NAME
xtproto - multiplexed channels protocol used by xt(7) driver

DESCRIPTION

FILES

The xt(7) driver contains routines which implement a multiplexed, multi
buffered, full-duplex protocol with guaranteed delivery of ordered data via
an 8-bit byte data stream. This protocol is used for communication between
multiple UNIX system host processes and an AT&T windowing terminal
operating under layers(l).

The protocol uses packets with a 2-byte header containing a 3-bit sequence
numb~r, 3-bit channel number, control flag, and data size. The data part of
a packet may not be larger than 32 bytes. The trailer contains a CRC-16
code in 2 bytes. Each channel is double-buffered.

Correctly received packets in sequence are acknowledged with a control
packet containing an ACK; however, out of sequence packets generate a con
trol packet containing a NAK, which will cause the retransmission in
sequence of all unacknowledged packets.

Unacknowledged packets are retransmitted after a timeout interval which is
dependent on baud rate. Another timeout parameter specifies the interval
after which incomplete receive packets are discarded.

jusrjindudejsysjxtproto.h channel multiplexing protocol definitions

SEE ALSO
layers(5).
layers(l) in the User's Reference Manual.
xt(7) in the System Administrator's Reference Manual.

- 1 -

