
Documents for 
UNIX 

VOLUME 1 

T. A. Dolotta 
S. B. Olsson 

A. G. Petruccelli 

Editors 

January 1981 

Not for use or disclosure outside the 
Bell System except under written agreement 

Laboratory 4517 
Bell Telephone Laboratories, Incorporated 

Murray Hill, NJ 07974 



Copyright © 1981 Bell Telephone Laboratories, Inc. 

UNIX is a trademark of Bell Telephone Laboratories, Inc. 

These documents were set on an AUTOLOGIC, 
Inc. APS-5 phototypesetter driven by the TROFF 
formatter operating under the UNIX system. 



Documents for UNIX 

ANNOTATED 

TABLE OF CONTENTS 

NOTES: All the documents inCluded here are supplements to the UNIX User's Manual (see G.I 
below); the reader's attention is also drawn to documents G.2, G.3, and G.4. 

Each document listed in Sections A through F below applies to UNIX Release 4.0, unless 
otherwise indicated after its title. 

The number of pages in each document is given after the name(s) of its author(s). 

VOLUME 1 
A. OVERVIEWS 

l. Overview and Synopsis 
l. UNIX- Overview and Synopsis of Facilities 

T. A. Dolotta, R. C. Haight, and A. G. Petruccelli (p. 17) 
A concise outline of the features and facilities of UNIX. 

l. The UNIX Time-Sharing System 
l. The UNIX Time-Sharing System 

D. M. Ritchie and K. Thompson (p. 16) 
The original, prize-winning UNIX paper, reprinted from G.5 below. 

B. GETTING STARTED 

l. Road Map 
l. UNIX Documentation Road Map 

G. A. Snyder and J. R. Mashey (p. 8) 
A structured list of UNIX documents and information sources. 

lliil"' A local section should be added to this document at each installation. 

2. Editors 
l. A Tutorial Introduction to the UNIX Text Editor 

B. W. Kernighan (p. 11) 
An easy way to get started with.the text editor. 

l. Advanced Editing on UNIX 
B. W. Kernighan (p. 16) 

A guide to the more advanced features of the text editor. 
3. SED-A Non-Interactive Text Editor 

L. E. McMahon (p. 10) 
A variant of the text editor for stream editing. 

3. UNIX for Beginners 
1. UNIX for Beginners (Second Edition) 

B. W. Kernighan (p. 13) 
An introduction to some of the basic uses of UNIX. 

4. Shell 
1. UNIX Shell Tutorial 

G. A. Snyder and J. R. Mashey (p. 36+ii) 
An introduction to the various uses and facilities of the UNIX com
mand language interpreter, with many examples. 

l. An Introduction to the UNIX Shell 
S. R. Bourne (p. 24) 

Description of the UNIX command language interpreter. 

January 1981 



2 Documents/or UNIX 

C. DOCUMENT PREPARATION 

l. NROFF /TROFF 
I. A TROFF Tutorial 

B. W. Kernighan (p. 14) 
A beginner's guide to phototypesetting with TROFF. 

2. NROFF/TROFF User's Manual 
J. F. Ossanna (p. 37) 

Reference manual for the UNIX text formatters. 

2. Macros for NROFF /TROFF 
1. MM- Memorandum Macros 

D. W. Smith and J. R. Mashey (p. 69+iv) 
Reference manual for MM, the standard BTL text-formatting macros. 

2. Typing Documents with MM 
D. W. Smith and E. M. Piskorik (p. 16) 

A fold-out card that summarizes the MM macros; furnished separately. 
3. A Macro Package for View Graphs and Slides 

T. A. Dolotta and D. W. Smith (p. 23) 
A guide to making visual aids with TROFF. 

3. TBL and EQN 
I. TBL - A Program to Format Tables 

M. E. Lesk (p. 18) 
An NROFF/TROFF preprocessor that permits easy formatting of tabular 
matter. 

2. Typesetting Mathematics-User's Guide (Second Edition) 
B. W. Kernighan and L. L. Cherry (p. 11) 

Manual for the EQN and NEQN preprocessors for TROFF and NROFF, 
respectively; these preprocessors allow one to specify, in an easy-to
learn language, how to typeset complex mathematical expressions. 

3. A System for Typesetting Mathematics 
B. W. Kernighan and L. L. Cherry (p. 8) 

A revision of the original EQN paper (CACM 18, March 1975), describ
ing the principles behind the design of its. input language and internal 
structure. 

D. PROGRAMMING 

I. C and LINT 

January 1981 

I. The C Programming Language- Reference Manual 
D. M. Ritchie (p. 31) 

Official statement of the syntax and semantics of C; supplemented by 
G.9 below. 

2. A Guide to the C Library for UNIX Users 
C. D. Perez (p. 20) 

An explanation of how to use the C library. 
3. LINT. a C Program Checker 

S. C. Johnson (p. 11) 
A program that checks C code for syntax errors, type violations, porta
bility problems, and a variety of potential errors. 



Documents for UNIX 3 

2. FORTRAN, RATFOR, and EFL 
1. A Portable FORTRAN 77 Compiler 

S. I. Feldman and P. J. Weinberger (p. 19) 
The FORTRAN 77 language and its interfaces with the operating sys
tem. 

2. RATFOR-A Preprocessor for a Rational FORTRAN 
B. W. Kernighan (p. 12) 

A preprocessor that endows FORTRAN with C-like control structures 
and input format. 

3. The Programming Langu.age EFL 
S. I. Feldman (p. 36) 

A general-purpose computer language intended to encourage portable 
programming, while making use of the good features and facilities of 
FORTRAN. 

3. UNIX Programming 
1. UNIX Programming (Second Edition) 

B. W. Kernighan and D. M. Ritchie (p. 22) 
A guide to writing programs that interface to the UNIX operating sys-
tem, either directly or through the Standard 1/0 Library. · 

4. MAKE 
1. MAKE-A Program for Maintaining Computer Programs 

S. I. Feldman (p. 9) · 
A tool for automating the recompilation of large programs. 

2. An Augmented Version of MAKE 
E. G. Bradford (p. 16) 

A discussion of how to use MAKE to its fullest advantage. 

5. Debuggers 
1. Sos-A Symbolic Debugger 

H. P. Katseff (p. 9) 
A debugger that allows one to examine the "core image" of an aborted 
program. 

2. A Tutorial Introduction to ADB 
J. F. Maranzano and S. R. Bourne (p. 27) 

A guide to debugging crashed systems and programs; ADB is used 
mostly by system programmers. 

January 1981 



4 Documents/or UNIX 

VOLUME 2 

E. SUPPORTING TOOLS AND LANGUAGES 

1. LEX and Y Aee 
1. LEX-A Lexical Analyzer Generator 

M. E. Lesk and E. Schmidt (p. 19) 
A program that generates recognizers of sets of regular expressions; 
each regular expression can be followed by arbitrary C code that is exe
cuted when the regular expression is found. 

2. YACC- Yet Another Compiler-Compiler 
S. C. Johnson (p. 33) 

A converter from a BNF specification of a language and semantic 
actions written in C into a compiler for that language. 

2. ~4 ~acto Processor 
1. The M4 Macro Processor 

B. W. Kernighan and D. M. Ritchie {p. 6) 
A macro processor, also useful as a front end for languages such as C 
and RATFOR. 

3. AWK 
1. AWK-A Pattern Scanning and Processing Language (Second Edition) 

A. V. Aho, B. W. Kernighan, and P. J. Weinberger (p. 8) 
A language that makes it easy to specify many data selection and 
transformation operations. 

4. Secs 
1. Source Code Control System User's Guide 

L. E. Bonanni and C. A. Salemi (p. 27) 
A package for controlling access and changes to (possibly multiple ver
sions of) source programs and text files. 

2. Function and Use of an Secs Interface Program 
L. E. Bonanni and A. Guyton (p. 3) 

A discussion of how to control concurrent updates to secs files. 

5. Calculators 
1. BC-An Arbitrary Precision Desk-Calculator Language 

L. L. Cherry and R. Morris (p. 14) 
A front end for DC (see below) that provides infix notation, flow con
trol, and built-in functions. 

2. DC-An Interactive Desk Calculator 
R. Morris and L. L. Cherry (p. 8) 

An interactive desk calculator program that implements arbitrary
precision integer arithmetic. 

6. Graphics 

January 198 I 

I. UNIX Graphics Overview 
A. R. Feuer (p. 7) 

An introduction to the UNIX graphics facility. 
2. A Tutorial Introduction to the Graphics Editor 

A. R. Feuer (p. 17) 
A guide to making graphs, drawings, and pictures on Tektronix series 
4010 terminals. 



Documents for UNIX 

3. STAT-A Tool for Analyzing Data 
A. R Feuer and A. Guyton (p. 20) 

5 

A collection of programs that can be interconnected via the shell to 
analyze statistical data and display the results in graphical form. 

4. Administrative Information for the UNIX Graphics Package 
R. L. Chen, D. E. Pinkston, and A. Guyton (p. 6) 

A reference guide for administrators of UNIX graphics facilities. 

7. RJE and Networking 
1. UNIX Remote Job Entry User's Guide 

A. L. Sabsevitz and K. A. Kelleman (p. 7) 
A guide to submitting jobs to an IBM system via the UNIX Remote Job 
Entry (RJE) facility. 

2. UNIX Remote Job Entry Administrator's Guide 
M. J. Fitton (p. 20) 

A guide to setting up RJE on both UNIX and IBM systems, and to 
trouble-shooting when things go wrong. 

3. Release 1.0 of the UNIX Virtual Protocol Machine (UNIX 3.0) 
P. F. Long and C. Mee, III (p. 7) 

A description of the first version of VPM; good background reading. 
4. Release 2.0 of the UNIX Virtual Protocol Machine (UNIX 3.0) 

P. F. Long and C. Mee, III (p. 20) 
A newer release of VPM; supports bit-oriented, full-duplex protocols. 

8. UUCP _ 
1. A Dial-up Network of UNIX Systems 

D. A. Nowitz and M. E. Lesk (p. 10) 
Description of the design of a dial-up UNIX network called UUCP and 
used for transmission and distribution of programs and text files. 

2. UUCP Implementation Description 
D. A. Nowitz (p. 15) 

A detailed description of UUCP for use by administrators of UNIX 
systems. 

9. Printer Spooler 
l. The Implementation of the LP Spooling System 

J. R. Kliegman (p. 13) 
Explanation of how the LP spooler works and how it can be used as a 
general-purpose spooler, as well as a line-printer spooler. 

2. LP Administrator's Guide 
J. R. Kliegman (p. 12) 

A guide for those who oversee the operation of LP spoolers. 

F. ADMINISTRATION, MAINTENANCE, AND IMPLEMENTATION 

l. Operations and FSCK 
l. UNIX Operations Manual 

A.G. Petruccelli (p. 24+ii) 
Duties of a UNIX operator. 

2. FscK-The UNIX File System Check Program 
T. J. Kowalski (p. 20) 

A guide to checking and fixing UNIX file systems. 

January 1981 



6 Documents for UNIX 

2. Accounting and System Activity 
1. The UNIX Accounting' System 

H. S. McCreary and A. G. Petruccelli (p. 19) 
A guide to the use and management of the UNIX accounting system. 

2. The UNIX System Activity Package 
T. W. Pao (p. 8) 

A package that reports on processor utilization, terminal activity, disk 
and tape 1/0, swapping, system calls, etc. 

3. Stand-Alone 1/0 
I. A Stand-Alone Input/Output Library 

S. R. Eisen (p. 11) 
A guide to the stand-alone library and the stand-alone shell (SASH). 

4. ETP 
I. The UNIX Equipment Test Package: Operational Procedures (UNIX 3.0) 

A. L. Chellis and T. J. Kowalski (p. 24) 
The Equipment Test Package, a collection of UNIX hardware exercisers. 

5. UNIX Internals 
1. UNIX Implementation 

K. Thompson (p. I 0) 
An explanation of how UNIX works; reprinted from G.5 below. 

2. The UNIX 1/0 System 
D. M. Ritchie (p. 7) 

Guide for writers of UNIX device drivers. 
3. UNIX on the PDP-11/23 and 11/34 Computers (UNIX 3.0) 

T. J. Kowalski (p. 7) 
Description of what had to be done to UNIX to make it run on the 
PDP- I I /23 and the PDP- I I /34. 

4. UNIX Assembler Reference Manual 
D. M. Ritchie (p. 12) 

Describes the UNIX PDP- I I assem bier; a tool of last resort. 

6. C Internals 
I. A Tour Through the Portable C Compiler 

S. C. Johnson (p. 25) 
A description of how the portable C compiler works. 

2. A Tour Through the UNIX C Compiler 
D. M. Ritchie (p. 15) 

A description of how the PDP- I I C compiler works. 

7. Security 
I. On the Security of UNIX 

D. M. Ritchie (p. 3) 
Hints on how to break UNIX and how to prevent it. 

2. Password Security-A Case History 
R. Morris and K. Thompson (p. 6) 

The story of how the bad guys used to be able to break the password 
algorithm and why they can't now, at least not so e.asily. 

January 1981 



Documents /or UNIX 

G. RECOMMENDED READING (not included) 

1. UNIX User's Manual- Release 3.0 
T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds.) 

Bell Laboratories (June 1980). 
The basic document for every UNIX user. 

2. UNIX Reference Guide 
J. C. White (compiler) and P. V. Guidi (ed.) 

Bell Laboratories (April 1981). 
A pocket-size summary of UNIX commands, macro packages, etc. 

3. Setting up UNIX 
R. C. Haight, M. J. Petrella, and L. A. Wehr 

Bell Laboratories. 

7 

Procedures for installing UNIX; must reading for anyone who wants to 
configure and/or generate a UNIX system. (Because this document changes 
with each release of UNIX, it is not included here; it is distributed with each 
copy of the UNIX system itself.) 

4. Administrative Advice for UNIX 
R. C. Haight 

Bell Laboratories. 
Hints for getting UNIX up, getting it going, and keeping it going, plus .some 
information about hardware; must reading for UNIX system administrators. 
(This document is distributed just like G.3 above.) 

5. The Bell System Technical Journal 
Vol. 57, No. 6, Part 2 (July-August 1978). 

Special issue devoted to UNIX. 
6. Using a Command Language as the Primary Programming Tool 

T. A. Dolotta and J. R. Mashey 
In: Beech, D. (ed.), Command Language Directions (Proc. Second IFIP Working 
Conf. on Command Languages). Amsterdam: North Holland ( 1980), pp. 35-55. 

A discussion of how to get the most out of the UNIX shell. 
7. The UNIX Programming Environment 

B. W. Kernighan and J. R. Mashey 
COMPUTER, Vol. 14, No. 4, pp. 12-24 (April 1981); an earlier version of this 
paper was published in Software-Practice & Experience, Vol. 9, No. 1, pp. 1-15 
(Jan. 1979). 

A discussion of what's good about UNIX. 
8. Software Tools 

B. W. Kernighan and P. J. Plauger 
Reading, MA: Addison-Wesley (1976). 

A textbook for building good software tools similar to those available in 
UNIX. 

9. The C Programming Language 
B. W. Kernighan and D. M. Ritchie 

Englewood Cliffs, NJ: Prentice-Hall (1978). 
The basic book for every C programmer; contains a tutorial and many 
examples. 

10. Experiences with the UNIX Time-sharing System 
J. Lions 

Software-Practice & Experience, Vol. 9, No. 9, pp. 701-709 (September 1979). 
An enjoyable article that tells why they like UNIX in New South Wales. 

January 1981 



8 

11. The Evolution of the UNIX Time-sharing System 
D. M. Ritchie 

Documents/or UNIX 

Proc. Symposium on Language Design and Programming Methodology. Sydney, Aus
tralia (September 1979). 

Ten years later, one of the creators of UNIX looks back. 
12. The Source Code Control System 

M. J. Rochkind 
IEEE Trans. Software Eng., Vol. SE-1, No. 4, pp. 364-370 (December 1975). 

The motivation for, and the underlying design of, SCCS. 

January 1981 



UNIX-Overview and Synopsis of Facilities 

T. A. Dolotta 
R. C. Haight 

A. G. Petruccelli 

Bell Laboratories 
Murray Hill, New Jersey 07974 

OVERVIEW 

1. UNIX TIME-SHARING SYSTEM 

UNIX 

A.I.I 

The UNIXt Time-Sharing System is a general-purpose, multi-user, interactive operating system 
specifically engineered to make the designer's, programmer's, and documenter's computing 
environment simple, efficient, flexible, and productive. UNIX contains features such as: 

• A hierarchical file system. 
• A flexible, easy-to-use command language (can be "tailored" to meet specific user needs). 
• Ability to execute sequential, asynchronous, and background processes. 
• A powerful context editor. . 
• Very flexible document preparation and text processing systems. 
• A high-level programming language conducive to structured programming (C). 
• Other languages, including FORTRAN 77, EFL, and variants of SNOBOL and BASIC. 
• Symbolic debugging systems. 
• A variety of system programming tools (i.e., lexical analyzers, compiler-compilers, etc.). 
• Sophisticated "desk-calculator" packages. 
• Inter-machine communication by both hard-wired and dial-up facilities. 
• A system designed to help control changes to source code and fili;:s of text (SCCS). 
• A graphical plotting package. 

Currently, UNIX runs on the Western Electric Co. 3B-20; Digital Equipment Corporation's 
(DEC) PDP-11/23, /34, /45, /70, VAX-11/780, and VAX-11/750; and IBM System/370 and 
equivalent. The cost per user-hour of UNIX is significantly lower than that of most other 
interactive computer systems; UNIX typically runs unattended. 

The UNIX file system consists of a highly-uniform set of directories and files arranged in a 
tree-like hierarchical structure. Some of its features are: 

• Simple and consistent naming conventions; names can be absolute, or relative to any direc-
tory in the file system hierarchy. 

• Mountable and de-mountable file systems and volumes. 
• File linking across directories. 
• Automatic file space allocation and de-allocation that is invisible to users. 
• A complete set of flexible directory and file protection modes, allowing all combinations of 

read, wrile, and execute access, independently for the owner of each file or directory, for a 
group of users (e.g., all members of a project), and for all other users; protection modes can 
be set dynamically. 

• Facilities for creating, accessing, moving, and processing files, directories, or sets of these in 
a simple, uniform, and natural way. 

• Each physical 1/0 device, from interactive terminals to main memory, is treated like a file, 
allowing uniform file and device 1/0. 

t UNIX is a trademark of Bell Laboratories. 



2 Overview and Synopsis of Facilities 

2. UNIX COMMAND LANGUAGE 

Unlike other interactive command languages, the UNIX shell is a full programming language. 
The shell provides variables, conditional and iterative constructs, and a user environment that 
can be tailored to an individual's or group's needs. Any user can to create new commands sim
ply by writing shell scripts. 

3. DOCUMENT PREPARATION AND TEXT PROCESSING 

In a software development project of any appreciable size, the production of usable, accurate 
documentation may well consume more effort than the production of the software itself. 
Several years of experience with many projects that use . UNIX have shown that document 
preparation should not be separated from software development, and that the combination of a 
flexible operating system, a powerful command language, and good text processing facilities 
permit quick and convenient production of many kinds of documentation that might be other
wise unobtainable, impractical, or very expensive. · 

In UNIX, one also obtains a very useful "word processing" system -an editing system, text for
matting systems, a typesetting system, and spelling and typographical error-detection facilities. 
The document preparation and text processing facilities of UNIX include commands that 
automatically control pagination, style of paragraphs, line justification, hyphenation, multi
column pages, footnote placement, generation of marginal revision bars, generation of tables of 
contents, etc., for specialized documents such as program run books, or for general documents 
such as letters, memoranda, legal briefs, etc. There are also excellent facilities for formatting 
and typesetting complex tables and equations. This document was produced in its entirety by 
these facilities. 

4. REMOTE JOB ENTRY 

The RJE facility provides for the submission and retrieval of jobs from an IBM host system 
(e.g., a System/360 or System/370 computer using HASP, ASP, JES2, or JES3). To the host sys
tem, RJE appears to be a System/360 work station. 

At the request of a UNIX user, RJE gathers the job control statements and source code from 
files created and stored on UNIX, sends them to the host IBM system and, subsequently, 
retrieves from the host the resulting output, either placing it in a convenient UNIX file for later 
perusal, or using that output as the standard input to a specified shell procedure. Automatic 
notification of the output's arrival is also available. 

S. SOURCE CODE CONTROL SYSTEM 

The UNIX Source Code Control System (SCCS) is an integrated set of commands designed to · 
help software development projects control changes to source code and to files of text (e.g., 
manuals). It provides facilities for storing, updating, and retrieving, by version number or 
date, all versions of source code modules or of documents, and for recording who made each 
software change, when it was made, and why. SCCS is designed to solve most of the source 
code and documentation control problems that software development projects encounter when 
customer support, system testing, and development are all proceeding simultaneously. Some of 
the main characteristics of secs are: 

• The exact source code or text, as it existed at any point of development or maintenance, can 
be recreated at any later time. 

• All releases and versions of a source code module or document are stored together, so the 
common code or text is stored only once. ' 

• Jleleases in production or system test status can be protected from unauthorized changes. 
• Enough identifying information can be automp.tically inserted into source code modules to 

enable one to identify the exact version and release of any such module, given only the 
corresponding load module or its memory dump. 



Overview and Synopsis of Facilities 3 

SOFTWARE, FACILITIES, AND DOCUMENTATION 

Often-used UNIX commands are listed below. Every command, including all its options, is 
issued as a single line, unless specifically described below as being "interactive." Interactive 
programs can be made to run from a prepared "script" simply by redirecting their input. All 
commands are fully described in the UNIX User's Manual (see Section 6.1 below). Commands 
for which additional manuals and tutorials are provided are marked with [m] and [t], respec
tively. All indicated manuals and tutorials are listed in Section 6.2 below. 

File processing commands that go from standard input to standard output are called "filters" 
and are marked with [f]. The "pipe" facility of the shell may be used to connect filters directly 
to the input or output of other filters and programs thus creating a "pipeline." 

Almost all of UNIX is written in C. UNIX is totally self-supporting: it contains all the software 
that is needed to generate it, maintain it, and modify it. Source code is included except as 
noted below. 

1. BASIC SOFTWARE 

Included are the operating system with utilities, an assembler, and a compiler for the program
ming language C-enough software to regenerate, maintain, and modify UNIX itself, and to 
write and run new applications. Due to hardware constraints, not all the commands listed 
below will work on all the supported hardware configurations. 

1.1. Operatio& System 

• UNIX [m] 

• Devices [ml 

This is the basic resident code, also known as the kernel, on which every
thing else depends. It executes the system calls, maintains the file system, 
and manages the system's resources; it contains device drivers, 1/0 buffers, 
and other system information. A general description of UNIX design philo
sophy and system facilities appeared in the Communications of the ACM. A 
more extensive survey is in the Bell System Technical Journal for July
August 1978. Further capabilities include: 

• Automatically-supported reentrant code. 
• Separation of instruction and data spaces (machine dependent). 
• Timer-interrupt sampling and interprocess monitoring for debugging and 

measurement. 

All 1/0 is logically synchronous. Normally, automatic buffering by the sys
tem makes the physical record structure invisible and exploits the 
hardware's ability to do overlapped I/O. Unbuffered physical record 1/0 is 
available for unusual applications. Software drivers are provided for many 
devices; others can be easily written. 

1.2. User Access Control 

• LOGIN Signs on a new user: 

• Adapts to characteristics of terminal. 
• Verifies password and establishes user's individual and group (project) 

identity. 
• Establishes working directory. 
• Publishes message of the day. 
• Announces presence of mail. 
• Lists unseen news items. 
• Executes an optional user-specified profile. 
• Starts command interpreter (shell) or other user-specified program. 

• PASSWD Changes a password: 

• User can change own password. 
• Passwords are kept encrypted for security. 



4 

• SU 

• NEWGRP 

• S1TY 

• TABS 

Overview and Synopsis of Facilities 

Assume the permissions and privileges of another user or root (super-user) 
provided that the proper password is supplied. 

Changes working group (project ID). This provides access with protection 
for groups of related users. 

Sets up options for optimal control of a terminal. In so far as they are 
deducible from the input, these options are set automatically by LOGIN: 

• Speed. 
• Parity. 
• Mapping of upper-case characters to lower case. 
• Carriage-return plus line-feed versus new-line. 
• Interpretation of tab characters. 
• Delays for tab, new-line, and carriage-return characters. 
• Raw versus edited input. 

Sets terminal's tab stops. Knows several "standard" formats . 

1.3. Manipulation of Flies and Directories 

• ED [m,t] 

•SEO [f,m) 

• CAT [f) 

• PR [f] 

•SPLIT 

• CSPLIT 

•SUM 

•DD [f) 

• CP 

• LN 

• MV 

Interactive line-oriented context editor. Random access to all lines of a file . 
It can: 

• Find lines by number or pattern (regular expressions). Patterns can 
include: specified characters, "don't care" characters, choices among 
characters, (specified numbers oO repetitions of these constructs, begin
ning of line, end of line. 

• Add, delete, change, copy, or move lines. 
• Permute contents of a line. 
• Replace one or more instances of a pattern within a line. 
• Combine or split lines. 
• Combine or split files. 
• Do any of above operations on every line (in a given range) that 

matches a pattern. 
• Escape to the shell (UNIX command language) during editing. 

A stream (one-pass) editor with facilities similar to those of ED. 

Concatenates one or more files onto standard output. Mostly used for 
unadorned printing, for inserting data into a .. pipe," and for buffering out
put that comes in dribs and drabs. 

Prints files with title, date, and page number on every page: 

• Multi-column output. 
• Parallel column merge of several files. 

Splits a large file into more manageable pieces. 

Like SPLIT, with the splitting controlled by context. 

Computes the check sum of a file. 

Physical file format translator, for exchanging data with non-UNIX systems, 
especially OS/360, VSI, MVS, etc. 

Copies one file to another or many files to a directory. Works on any file 
regardless of its contents. 

Links another name (alias) to an existing file. 

Moves one or more files. Usually used for renaming files or directories. 



Overview and Synopsi.s of Facilities 5 

•RM 

• CHMOD 

8 CHOWN 

8 MKDIR 

8 RMDIR 

8 CD 

8 FIND 

8 CPIO [f] 

8 SCCS [m] 

Removes one or more files. If any names are linked to the file, only the 
name being removed goes away. 

Changes access permissions on a file(s). Executable by the owner of the 
file(s), or by the super-user. 

Changes owner of a file(s). 

Makes one or more new directories. 

Removes one or more (empty) directories. 

Changes working (i.e., current) directory. 

Searches the directory hierarchy for, and performs specified commands on, 
every file that meets given criteria: 

• File name matches a given pattern. 
• Modified date in given range. 
• Date of last use in given range. 
• Given permissions. 
• Given owner. 
• Given special file characteristics. 
• Any logical combination of the above. 
• Any directory can be the starting "node." 

Copies a sub-tree of the file system (directories, links, and all) to another 
place in the file system. Can also copy a sub-tree onto a tape, and later 
recreate it from tape. Often used with the FIND command. 

SCCS (Source Code Control System) is a collections of UNIX commands 
(some interactive) for controlling changes to files of text (typically the 
source code of programs or the text of documents). It provides facilities 
for: 

• Storing, updating, and retrieving any version of any source or text file. 
• Controlling updating privileges. 
• Identifying both source and object (or load) modules by version 

number. 
• Recording who made each change, when it was made, and why. 

l.4. Execution of Programs 

8 SH [f,m,t] The shell, or command language interpreter, understands a set of con
structs that constitute a full programming language; it allows a user or a 
command procedure to: 

• Supply arguments to and run any executable program. 
• Redirect standard input, standard output, and standard error files. 
• Pipes: simultaneous execution with output of one process connected to 

the input of another. 
· • Compose compound commands using: 

·if ... then .. , else, 
case switches, 
while loops, 
for loops over lists, 
break, continue, and exit, 

. parentheses for grouping. 
• Initiate background processes. 
• Perform shell procedures (i.e., .command scripts with substitutable argu

ments). 
• Construct argument lists from all file names matching specified patterns. 
• Take user-specified action on traps and interrupts. 



6 

•TEST 

• EXPR 

• ECHO 

• RSH 

• SLEEP 

• WAIT 

• NOHUP 

•NICE 

•KILL 

•CRON 

• TEE [f] 

•HELP 

1.5. Status Inquiries 

•I.S 

• FILE 

• DATE 

• OF 

• DU 

• TTY 

Overview and Synopsis of Facilities 

• Specify a search path for finding commands. 
• Upon login, automatically create a user-specifiable environment. 
• Optionally announce presence of mail as it arrives. 
• Provide variables and parameters with default settings. 

Tests argument values in shell conditional constructs: 

• String comparison. 
• File nature and accessibility. 
• Boolean combinations of the above. 

String computations for calculating command arguments: 

• Integer arithmetic 
• Pattern matching 
• Like TEST above, EXPR can be used for conditional side-effect. 

Prints its arguments on the standard output. Useful for diagnostics or 
prompts in shell procedures, or for inserting data into a "pipe." 

Restricted shell; restricts a user to a subset of UNIX commands. The sys
tem administrator may construct different levels of restriction. 

Suspends execution for a specified time. 

Waits for t~rmination of a specific or all processes that are running in the 
background. 

Runs a command immune to interruption from "hanging up" the terminal. 

Runs a command at low (or high) priority. 

Terminates named process(es). 

Performs actions at specified times: 

• Actions are arbitrary shell procedures or executable programs. 
• Times are conjunctions of month, day of month, day of week, hour, and 

minute. Ranges are specifiable for each. 

Passes data between processes (like a .. pipe"), but also diverts copies into 
one or more files. 

Explains error messages from certain other programs. 

Lists the names of one, several, or all files in one or more directories: 

• Alphabetic or chronological sorting, up or down. 
• Optional information: size, owner, group, date last modified, date last 

accessed, permissions. 

Tries to determine what kind of information is in a file by consulting the 
file system index and by reading the file itself. 

Print current date and time. Has considerable knowledge of calendrical and 
horologic peculiarities; can· be used to set UNIX's idea of date and time. 
(As yet, cannot cope with Daylight Saving Time in the Southern Hemi
sphere.) 

Reports amount of free space in file system. 

Prints a summary of total space occupied by all files in a hierarchy . 

Prints the "name" of your terminal (i.e., the name of the port to which 
your terminal is connected). 



Overview and Synopsis of Facilities 7 

• WHO 

• PS 

Tells who is logged onto the system: 

• Lists logged-in users, their ports, and time they logged in. 
• Optional history of all logins and logouts. 
• Tells you who you are logged in as. 

Reports on active processes: 

• Lists your own or everybody's processes. 
• Tells what commands are being executed at the moment. 
• Optional status information: state and scheduling information, priority, 

attached terminal, what the process is waiting for, its size, etc. 

• ACCTCOM [f) Reports a chronological history of all process that have terminated. Infor
mation includes: 

• PWD 

• RJESTAT 

• WHAT 

• User and system times and sizes. 
• Start and end real times. 
• Owner and terminal line associated with process. 
• System exit status. 

Prints name of your working (i.e., current) directory. 

Reports on the status of the Remote Job Entry (RJE) interface(s) to an 
IBM host. 

Prints informational lines found in files usually inserted by SCCS . 

1.6. Inter-User Communication 

•MAIL 

•NEWS 

• CALENDAR 

• WRITE 

• WALL 

• MESG 

Mails a message to one or more users. Also used to read and dispose of 
incoming mail. The presence of mail is announced by LOGIN. 

Prints out current general information and announcement files. 

An automatic reminder service . 

Establishes direct, interactive terminal-to-terminal communication with 
another user. 

Broadcasts a message to all users who are logged in . 

Inhibits or permits receipt of messages from WRITE and WALL. 

1.7. Inter-Machine Communication 

• UUCP [m) 

•SEND [m) 

• FSEND 

• FGET 

• cu 

• CT 

• VPM [m] 

• BX.25 

Sends files back and forth between UNIX machines. 

Collects files together to be sent as a "job" to an IBM host. 

Sends files to the HONEYWELL 6000 . 

Retrieves files from the HONEYWELL 6000 . 

Dials a phone number and attempts to make an interactive connection with 
another machine. 

Dials the phone number of a modem that is attached to a terminal, and 
spawns a LOGIN process to that terminal. 

A software package for implementing communications protocols. It con
sists of a protocol script interpreter that runs in a front-end microprocessor, 
allowing a variety of different protocols to be implemented with the same 
hardware. 

A superset of the international X.25 communications protocol; it is imple
mented using VPM. 



8 Overview and Synopsis of Facilities 

J.8. Program Development Package 

A kit of fundamental programming tools. Some of these are used as integral parts of the 
higher-level languages described in Section 2 below. 

•AR Maintains library archives, especially useful with LD. Combines several 
files into one for housekeeping efficiency: 

• Creates new archive. 
• Updates archive by date. 
• Replaces or deletes files. 
• Prints table of contents. 
• Retrieves from archive. 

• Libraries [m] Basic run-time libraries. They are used freely by all system software: 

• ADB [t] 

•OD [f] 

• SOB [m] 

•LO 

• NM 

• SIZE 

• STRIP 

• PROF 

• Number conversions. 
• Time conversions. 
• Mathematical functions: sin, cos, log. exp, atan, sqrt, gamma. 
• Buffered character-by-character 1/0. 
• Random number generator. 
• An elaborate library for formatted 1/0. 
• Password encryption. 

Interactive debugger: 

• Postmortem dumping. 
• Examination of arbitrary files, with no limit on size. 
• Interactive breakpoint debugging; the debugger is a separate process. 
• Symbolic reference to local and global variables. 
• Stack trace for C programs. 
• Output formats: 

1-, 2-, or 4-byte integers in octal, decimal, or hex 
single and double floating point 
character and string 
disassembled machine instructions 

• Patching. 
• Searching for integer, character, or floating patterns. 
• Handles separated instruction and data space. 

Dumps any file: 

• Output options include: octal or decimal by words, octal by bytes, ASCII, 
operation codes, hexadecimal, or any combination thereof. 

• Range of dumping is controllable. 

Symbolic debugger for C and F77 programs . 

Linkage editor. Combines relocatable object files. Inserts required routines 
from specified libraries; resulting code: 

• Can be made sharable. .1 " 

• Can be made to have separate instruction and data spaces~ 
. . 

Prints the name/isl (symbol table) of an object program. Provides control 
over the style and order of names that are printed. 

Reports the main memory requirements of one or more object files . 

Removes the relocation and symbol table information from an object file to 
save file space. 

Constructs a profile of time spent in each routine from data gathered by 
time-sampling the execution of a program; gives subroutine call frequencies 
and average times for C programs. 



Overview and Synopsis of Facilities 9 

• MAKE [m] 

1.9. Utilities 

• CXREF 

• SORT ff] 

• UNIQ [f) 

• TR [f] 

• DIFF [f] 

•COMM [f] 

• CMP 

• GREP [f] 

• WC [f] 

• TIME 

Controls creation of large programs. Uses a control file specifying source 
file dependencies to make new version; uses time last changed to deduce 
minimum amount of work necessary. Knows about SCCS, CC, YACC, LEX, 
etc. 

Makes cross-reference listings of a set of C source files. The listing con
tains all symbols in each file separately or, optionally, in combination. An 
asterisk appears before a symbol's declaration. 

Merges and/or sorts ASCII files line-by-line: 

• Jn ascending or descending order. 
• Lexicographically or on numeric key. 
• On multiple keys located by delimiters or by position. 
• Can fold upper-case characters together with lower-case into dictionary 

order. 

Deletes successive duplicate lines in a file: 

• Prints lines that were originally unique, duplicated, or both. 
• Can give redundancy count for each line. 

Does character translation according to an arbitrary code: 

• Can "squeeze out" repetitions of selected characters. 
• Can delete selected characters. 

Reports line changes, additions, and deletions necessary to bring two files 
into agreement; can produce an editor script to convert one file into 
another. 

Identifies common lines in two sorted files. Output in up to 3 columns 
shows lines present in first file only, present in second file only, and/or 
present in both. 

Compares two files and reports disagreeing bytes. 

Prints all lines in one or more files that match a pattern of the kind used by 
ED (the editor): 

• Can print all lines that fail to match. 
• Can print count of "hits." 

Counts lines and "words" (strings separated by blanks or tab characters) in 
a file. 

Runs a command and reports timing information about it . 

2. PROGRAMMING LANGUAGES 

2.1. The Programming Language C 

•CC [m,t] Compiles and/or link-edits programs in the C language. The UNIX operat
ing system, almost all of its subsystems, and C itself are written in C: 

• General-purpose language designed for structured programming. 
• Data types: 

- Character. 
- Short. 
- Integer. 
- Long integer. 
- Floating-point. 
- Double. 
- Pointers to all types. 



10 

• PCC [m] 

•CB [f] 

2.2. FORTRAN 

• F77 [m] 

• RATFOR [m] 

• EFL [m] 

Overview and Synopsis of Facilities 

- Functions returning all types. 
- Arrays of any type. 
- Structures containing various types. 

• Provides machine-independent control of all machine facilities, includ
ing to-memory operations and pointer arithmetic. 

• Macro-preprocessor for parameterized code and for the inclusion of 
other files. 

• All procedures recursive, with parameters passed by value. 
• Run-time library gives access to all system facilities. 

Portable version of CC for a variety of computers. 

C beautifier: gives a C program that well-groomed, structured, indented 
look. 

A full compiler for ANSI Standard FORTRAN 77: 

• Compatible with C and supporting tools at object level. 
• Optional source compatibility with FORTRAN 66. 
• Free format source. 
• Optional subscript-range checking, detection of uninitialized variables. 
• All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8-

and 16-byte complex. 

Ratfor adds rational control structure a la C to FORTRAN: 

• Compound statements. 
• If-else, do, for, while, repeat-until, break, next statements. 
• Symbolic constants. 
• File insertion. 
• Free format source 
• Translation of relationals like >, > =, etc. 
• Produces genuine FORTRAN to carry away. 
• May be used with F77. 

Compiles a program written in the EFL Language into clean FORTRAN on 
the standard output. It provides the C-like control constructs of RATFOR. 

2.3. Other Algorithmic Languages 

• AWK [m] 

•BS 

Pattern scanning and processing language. Searches input for patterns, and 
performs actions on each line of input that satisfies the pattern: 

• Patterns include regular expressions, arithmetic and lexicographic condi-
tions, boolean combinations and ranges of these. 

• Data treated as string or numeric as appropriate. 
• Can break input into fields; fields are variables. 
• Variables and arrays (with non-numeric subscripts). 
• Full set of arithmetic operators and control flow. 
• Multiple output stream_s to files and pipes. 
• Output can be formatted as desired. 
• Multi-line capabilities. 

An interactive interpreter, containing features of both BASIC and SNOBOL4: 

• Statements indude: 
- for/while ••• next 
- goto 
- if . .. else ••• ft 
- trace 
- symbolic dump 



Overview and Synopsis of Facilities 11 

• DC [m] 

• BC [m] 

• SNO 

• All numeric calculations in double precision. 
• Recursive function defining and calling. 
• Built-in functions include log, exp, sin, cos, atan, ceil, floor, sqn, abs, 

rand. 
• String operations include regular expression pattern matching. 
• Very general 1/0 (including pipes to commands) is provided. 

Interactive programmable desk calculator. Has named storage locations, as 
well as conventional stack for holding integers and programs: 

• Arbitrary-precision decimal arithmetic. 
• Appropriate treatment of decimal fractions. 
• Arbitrary input and output radices, in particular binary, octal, decimal, 

and hexadecimal. 
• Postfix ("Reverse Polish") operators: 

+ - * I 
remainder, power, square root 
load, store, duplicate, clear 
print, enter program text, execute 

A C-like interactive interface to the desk calculator DC: 

• All the capabilities of DC with a high-level syntax. 
• Arrays and recursive functions. 
• Immediate evaluation of expressions and evaluation of functions upon 

call. 
• Arbitrary-precision elementary functions: exp, sin, cos, atan. 
• Goto-less programming. 

An interpreter very similar to SNOBOL 3; its limitations are: 

• Function definitions are static. 
• Pattern matches are always anchored. 
• No built-in functions. 

2.4. Macro-Processors and Compiler-Compilers 

• M4 [f,m] 

• YACC [m] 

•LEX [m] 

A general-purpose macro-processor: 

• Stream-oriented, recognizes macros anywhere in text. 
• Integer arithmetic. 
• String and substring capabilities. 
• Condition testing, file manipulation, arguments. 

An LALR( l )-based compiler-writing system. During execution of resulting 
parsers, arbitrary C functions can be called to do code generation or take 
semantic actions: 

• BNF syntax specifications. 
• Precedence relations. 
• Accepts formally ambiguous grammars with non-BNF resolution rules. 

LEX helps write programs whose control flow is directed by instances of 
regular expressions in the input stream. It is well suited for editor-script 
type transformations and for segmenting input in preparation for a parsing 
routine. 



12 Overview and Synopsis of Facilities 

3. TEXT PROCESSING 

3.1. Formatters 

High-level formatting macros have been developed to ease the preparation of documents with 
NROFF and TROFF, as well as to exploit their more complex formatting capabilities. 

• NROFF [f,m,t) Advanced formatter for terminals. Capable of many elaborate feats: 

• Justification of either or both margins. 
• Automatic hyphenation. 
• Generalized page headers and footers, automatic page numbering, with 

even-odd page differentiation capability, etc. 
• Hanging indents and one-line indents. 
• Absolute and relative parameter settings. 
• Optional legal-style numbering of output lines. 
• Nested or chained input files. 
• Complete page format control, keyed to dynamically-planted .. traps" at 

specified lines. 
• Several separately-definable formatting environments (e.g., one for reg-

ular text, one for footnotes, and one for .. floating" tables and displays). 
• Macros with substitutable arguments. 
• Conditional execution of macros. 
• Conditional insertion or deletion of text. 
• String variables that can be invoked in mid-line. 
• Computation and printing of numerical quantities. 
• String-width computations for unusually-difficult layout problems. 
• Positions and distances expressible in inches, centimeters, ems, ens, line 

spaces, points, picas, machine units, and arithmetic combinations 
thereof. 

• Dynamic (relative or absolute) positioning. 
• Horizontal and vertical line drawing. 
• Multi-column output on terminals capable of reverse line-feed, or 

through the postprocessor COL. 

• TROFF [f,m,t] This formatter generates output on a phototypesetter. It provides facilities 
that are upward-compatible with NROFF, but with the following additions: 

• Vocabulary of several 102-character fonts (any 4 simultaneously) in 15 
different point sizes. 

• Character-width and string-width computations for unusually difficult 
layout problems. 

• Overstrikes and built-up brackets. 
• Dynamic (relative or absolute) point size selection, globally or at the 

character level. 
• Terminal output for rough sampling of the product. 

bf" This entire document was typeset by TROFF, assisted by MM, TBL, and EQN. '1ii1 

• EQN (f,m] A mathematical preprocessor for TROFF. Translates in-line or displayed 
formulae from a very easy-to-type form into detailed typesetting instruc
tions. For example: 

sigma sup 2 == 1 over N sum from j-= 1 to N ( x subj - x bar ) sup 2 

produces: 

l N 
a2 = -~ (xi-X)2 

Nj-1 

• Automatic calculation of point size changes for subscripts, superscripts, 
• Full vocabulary of Greek letters, such as -y, II, r, a. 
• Automatic calculation of the size of large brackets. 



Overview and Synopsis of Facilities 13 

• NEQN [f,m) 

•MM [m) 

• MV [ml 

• TBL [f,m] 

• cw [f] 

• Vertical .. piling" of formulae for matrices, conditional alternatives, etc. 
• Jhtegrals, sums, etc., with arbitrarily complex limits. 
• Diacriticals: dots, double dots, hats, bars, etc. 

Formulae can appear within tables to be formatted by TBL (see below).· 

A mathematical preprocessor for NROFF with the same facilities as EQN, 
except for the limitations imposed by the graphic capabilities of the termi
nal being used. Prepares formulae for display on various Diablo
mechanism terminaJs, etc. 

A standardized manuscript layout macro package for use with 
NROFF/TROFF. Provides a flexible, user-oriented interface to these two 
formatters; designed to be: 

• Robust in face of user errors. 
• Adaptable to a wide range of output styles. 
• Can be extended by users familiar with the formatter. 
• Compatible with both NROFF and TROFF. 

Some of its features are: 

• Page numbers and draft dates. 
• Cover sheets and title pages. 
• Automatically-numbered or .. lettered" headings. 
• Automatically-numbered or "lettered" lists. 
• Automatically-numbered figure and table captions. 
• Automatically-numbered and positioned footnotes. 
• Single- or double-column text. 
• Paragraphing, displays, and indentation. 
• Automatic table of contents. 

A TROFF macro package that makes it easy to typeset professional-looking 
projection foils and slides. 

A preprocessor for NROFF that translates simple descriptions of table lay
outs and contents into detailed formatting instructions: 

• Computes appropriate column widths. 
• Handles left- and right-justified columns, centered columns, and 

decimal-point aligned columns. 
• Places column titles; spans these titles, as appropriate. 

For example: 

Com i-osition of Foods 
Percent by We!g_ht 

Food 
Protein Fat 

Carbo-
h_y_drate 

Apples .4 .5 13.0 
Halibut 18.4 '5.2 ... 
Lima beans 7.5 .8 22.0 
Milk 3.3 4.0 5.0 
Mushrooms 3.5 .4 6.0 
R_y_e bread 9.0 .6 52.7 

A preprocessor for TROFF that prepares text to be displayed in a special 
"constant-width" typeface; this typeface is very useful for printing exam
ples of computer output in, e.g., programming manuals. 



14 Overview and Synopsis of Facilities 

3.2. Other Text Processing Tools 

• SPELL [f) 

• PTX 

• GRAPH [f) 

• TPLOT [f) 

• 300, 450 [f] 

•HP [f) 

•COL [f) 

Finds spelling errors by looking up all uncommon words from a document 
in a large spelling list. Knows about prefixes and suffixes and can cope with 
such rotten spellings as "roted." 

Generates a permuted index, like the one in the UNIX User's Manual. 

Given the coordinates of the points to be plotted, draws the corresponding 
graph; has many options for scaling, axes, grids, labeling, etc. 

Makes the output of GRAPH suitable for plotting on a Diablo-mechanism 
terminal. 

Exploits the hardware facilities of GSI 300, DASI 450, and other Diablo
mechanism terminals: 

• Implements reverse line-feeds and forward and reverse fractional-line 
motions. 

• Allows any com bi nation of l 0- or 12-pitch printing with 6 or 8 
lines/inch spacing. 

• Approximates Greek letters and other special characters by overstriking 
in plot mode. 

Like 300, but for the Hewlett-Packard 2640 family of terminals. 

Reformats files with reverse line-feeds so that they can be correctly printed 
on terminals that cannot reverse line-feed. 

• Graphics [m,tl Graphics is the name of a collection of commands for manipulating and 
plotting statistical and graphical data on a Tektronix series 4010 terminal or 
a Hewlett-Packard 7221 A Graphics Plotter. Its facilities include: 

• A sophisticated graphical editor. 
• Pie and bar chart generators. 
• Built-in mathematical functions such as powers, roots, logarithms, and 

slope and intercept generation. 
• Histograms. 
• Additive sequence, prime number, and random sequence generators. 
• Table of contents generators. 

4. SYSTEM ADMINISTRATION 

4.1. Normal Day-to-Day Administration and Maintenance 

• MOUNT 

• UMOUNT 

• MKFS 

• MKNOD 

• VOLCOPY 

• FSCK [m] 

Attaches a device containing a file system to the tree of directories. Pro
tects against nonsense arrangements. 

Removes the file system contained on a device from the tree of directories . 
Protects against removing a busy device. 

Makes a new file system on a device. 

Makes a file system entry for a special file. Special files are physical dev
ices, virtual devices, physical memory, etc. 

File system backup/recovery system for disk/disk or disk/tape. Protective 
labeling of disks and tapes is included. 

Used to check the consistency of file systems and directories and make 
interactive repairs: 

• Print statistics: number of files, space used, free space. 
• Report duplicate use of space. 
• Retrieve lost space. 



Overview and Synopsis of Facilities 15 

•SYNC 

• CONFIG 

• CRASH 

• Report inaccessible files. 
• Check consistency of directories. 
• Reorganize free disk space for maximum operating efficiency. 

Forces all outstanding 1/0 on the system to completion. Used to shut down 
the system gracefully. 

Tailors device-dependent system code to a specific hardware configuration . 
As distributed, UNIX can be brought up directly on any supported computer 
equipped with an acceptable tape drive and disk, sufficient amount of main 
memory, a console terminal, and a clock. 

Prints out tables and structures in the operating system. May be used on a 
running system, but more useful for examining operating system core 
dumps after a "crash." 

4.2. System Monitoring Facilities 

• Accounting [ml 
The process accounting package covers connect time accounting, command 
usage, command frequency, disk utilization, and line usage. All of these 
are summarized by user and by command on a daily, monthly, and fiscal 
basis. The system lends itself to local needs and modification. 

• Error Logging The UNIX operating system incorporates continuous hardware error detec
tion and reporting. 

• Equipment Test Package [ml 
The Equipment Test Package (ETP-available on a separate tape) is a use
ful addition to a hardware supplier's diagnostic software. It is essentially a 
UNIX-based hardware exerciser and verifier. 

• System Activity Report [ml 

• Profiler 

The System Activity Report (SAR) package is a body of programs for sam
pling the behavior of the operating system. The sampling consists of 
several time counters, 1/0 activity counters, context-switching counters, 
system-call counters, and file-access counters. Reports can be generated on 
a daily basis, or as desired. 

The Profiler. is another group of commands for studying the activity of the 
operating system. It reports the percentage of time that the operating sys
tem spends on user tasks, on system functions, and in being idle. 

4.3. Installation, Administration, and Operation 

• Installation [ml The Sening up UNIX document contains the procedures and advice for the 
first-time installation and for the periodic upgrading of the operating sys
tem. 

• Administration [ml 
The Administrative Advice for UNIX document describes various problems 
that can occasionally arise during normal operation, and suggests possible 
solutions. Included are tips on data-set options, specifications for photo
typesetter fonts and chemicals, for system tuning, security, troubleshooting, 
as well as other useful information. 

• Operation [ml The UNIX Operations Manual contains a description of console operations, 
step-by-step operator functions, and operating system error messages and 
th.cir meanings. 



16 Overview and Synopsis of Facilities 

5. DEMONSTRATION AND TRAINING PROGRAMS 

Unless otherwise indicated, source code for the following interactive programs is not included: 

• QUIZ Tests your knowledge of Shakespeare, presidents, capitals, etc. Source code 
included. 

• BJ A blackjack dealer. 

• MOO A fascinating number-guessing game, rather like Mastermind~. 

• CAL 

•UNITS 

• TIT 

• BACK 

• HANGMAN 

• WUMP 

Prints a calendar of specified month or year between A.D. and 9999. 
Source code included. 

Converts quantities between different scales of measurement. Knows hun
dreds of units; for example, how many kilometers/second (or 
furlongs/fortnight) is a parsec/megayear? Source code included. 

A traditional 3X3 tic-tac-toe program that learns. It never makes the same 
mistake twice, unless you make it forget what it has learned. 

The game of Backgammon. 

Children's "guess the word" game . 

Thrilling hunt for the mighty wumpus in a dangerous cave. 

6. USER DOCUMENTATION 

6.1. UNIX User's Manual 

• MAN [ml On-line and hard-copy versions are provided. The manual contains: 

• A system overview. 
• Commands. 
• System calls. 
• Subroutines in the C, math, standard 1/0, and specialized libraries. 
• File formats for most files known to the system software. 
• etc. 

6.2. Documents For UNIX 

This two-volume collection contains documents that supplement the information in the UNIX 
User's Manual. It contains: 

• OVERVIEWS 

• UNIX-Overview and Synopsis of Facilities 
• The UNIX Time-Sharing System 

• GETTING STARTED 

• UNIX Documentation Road Map 
• A Tutorial Introduction to the UNIX Text Editor 
• Advanced Editing on UNIX 
• SEO-A Non-Interactive Text Editor 
• UNIX for Beginners (Second Edition) 
• UNIX Shell Tutorial 
• An Introduction to the UNIX Shell 

• DOCUMENT PREPARATION 

• A TROFF Tutorial 
• NROFF/TROFF User's Manual 
• MM - Memorandum Macros 
• Typing Documents with MM 
• A Macro Package for View Graphs and Slides 
• TBL-A Program to Format Tables 



Overview and Synopsis of Facilities 17 

• Typesetting Mathematics-User's Guide (Second Edition) 
• A System for Typesetting Mathematics 

• PROGRAMMING 

• The C Programming Language-Reference Manual 
• A Guide to the C Library for UNIX Users 
• LINT, a C Program Checker 
• A Portable FORTRAN 77 Compiler 
• RATFOR - A Preprocessor for a Rational FORTRAN 
• The Programming Language EFL 
• UNIX Programming (Second Edition) 
• MAKE-A Program for Maintaining Computer Programs 
• An Augmented Version of MAKE 
• SOB-A Symbolic Debugger 
• A Tutorial Introduction to ADB 

• SUPPORTING TOOLS AND LANGUAGES 

• LEX- A Lexical Analyzer Generator 
• YACC-Yet Another Compiler-Compiler 
• The M4 Macro Processor 
• A WK- A Pattern Scanning and Processing Language (Second Edition) 
• Source Code Control System User's Guide 
• Function and Use of an SCCS Interface Program 
• BC-An Arbitrary Precision Desk-Calculator Language 
• DC-An Interactive Desk Calculator 
• UNIX Graphics Overview 
• A Tutorial Introduction to the Graphics Editor 
• STAT-A Tool for Analyzing Data 
• Administrative Information for the UNIX Graphics Package 
• UNIX Remote Job Entry User's Guide 
• UNIX Remote Job Entry Administrator's Guide 
• Release 1.0 of the UNIX Virtual Protocol Machine 
• Release 2.0 of the UNIX Virtual Protocol Machine 
• A Dial-up Network of UNIX Systems 
• UUCP Implementation Description 
• The Implementation of the LP Spooling System 
• LP Administrator's Guide 

• ADMINISTRATION, MAINTENANCE, AND IMPLEMENTATION 

• UNIX Operations Manual 
• FSCK-The UNIX File System Check Program 
• The UNIX Accounting System 
• The UNIX System Activity Package 
• A Stand-Alone Input/Output Library 
• The UNIX Equipment Test Package: Operational Procedures 
• UNIX Implementation 
• The UNIX I/0 System . 
• UNIX on the PDP- I I /23 and I I /34 Computers 
• UNIX Assembler Reference Manual 
• A Tour Through the Portable C Compiler 
• A Tour Through the UNIX C Compiler 
• On the Security of UNIX 
• Password Security-A Case History 

January 1981 



The UNIX Time-Sharing System* 

D. M. Ritchie 

K. Thompson 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

UNIXt is a general-purpose, multi-user, interactive operating system for 
the larger Digital Equipment Corporation PDP-I I and the Interdata 8/32 com
puters. It offers a number of features seldom found even in larger operating 
systems, including 

• A hierarchical file system incorporating demountable volumes, 

• Compatible file, device, and inter-process 1/0, 

• The ability to initiate asynchronous processes, 

• System command language selectable on a per-user basis, 

• Over JOO subsystems including a dozen languages, 

• High degree of portability. 

This paper discusses the nature and implementation of the file system and of 
the user command interface. 

I. INTRODUCTION 

UNIX 

A.2.1 

There have been four versions of the UNIX time-sharing system. The earliest (circa 
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver· 
sion ran on the unprotected PDP·l 1/20 computer. The third incorporated multiprogramming 
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre
viously published version of this paper, and is also the most widely used today. This paper 
describes only the fourth, current system that runs on the PDP-I I /70 and the Interdata 8/32 
computers. In fact, the differences among the various systems is rather small; most of the revi
sions made to the originally published version of this paper, aside from those concerned with 
style, had to do with details of the implementation of the file system. 

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have 
been put into service. Most of them arc engaged in applications such as computer science edu
cation, the preparation and formatting of documents and other textual material, the collection 
and processing of trouble data from various switching machines within the Bell System, and 
recording and checking telephone service orders. Our own installation is used mainly for 
research in operating systems, languages, computer networks, and other topics in computer sci
ence, and also for document preparation. 

• Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised 
version of an article that appeared in Communications of the ACM, 17, No. 7 (July 1974), pp. 365-375. That 
article was a revised version of a paper presented at the Fourth ACM Symposium on Operating Systems 
Principles, IBM Thomas .I. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973. 

t UNIX is a trademark of Bell Laboratories. 



2 The UNIX Time-Sharing System 

Perhaps the most important achievement of UNIX is to demonstrate that a powerful 
operating system for interactive use need not be expensive either in equipment or in human 
effort: it can run on hardware costing as little as $40,000, and less than two man-years were 
spent on the main system software. We hope, however, that users find that the most important 
characteristics of the system are its simplicity, elegance, and ease of use. 

Besides the operating system proper, some major programs available under UNIX are 

C compiler 
Text editor based on QED 1 

Assembler, linking loader, symbolic debugger 
Phototypesetting and equation setting programs2• 3 

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, 
TMG, Pascal 

There is a host of maintenance, utility, recreation and novelty programs, all written locally. 
The UNIX user community, which numbers in the thousands, has contributed many more pro
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX 
software is maintained on the system; likewise, this paper and all other documents in this issue 
were generated and formatted by the UNIX editor and text formatting programs. 

II. HARDWARE AND SOFTWARE ENVIRONMENT 

The PDP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit 
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about 
equally divided between code and data tables. This system, however, includes a very large 
number of device drivers and enjoys a generous allotment of space for 1/0 buffers and system 
tables; a minimal system capable of running the software mentioned above can require as little 
as 96K bytes of core altogether. There are even larger installations; see the description of the 
PWB/UNIX systems, 4, 5 for example. There are also much smaller, though somewhat restricted, 
versions of the system.6 

Our own PDP-I I has two 200-Mb moving-head disks for file system storage and swapping. 
There are 20 variable-speed communications interfaces attached to 300- and 1,200-baud data 
sets, and an additional 12 communication lines hard-wired to 9,600-baud terminals and satellite 
computers. There are also several 2,400- and 4,800-baud synchronous communication inter
faces used for machine-to-machine file transfer. Finally, there is a variety of miscellaneous 
devices including nine-track magnetic tape, a line printer, a voice synthesizer, a photo
typesetter, a digital switching network, and a chess machine. 

The preponderance of UNIX software is written in the abovementioned C language. 7 

Early versions of the operating system were written in assembly language, but during the sum
mer of 1973, it was rewritten in C. The size of the new system was about one-third greater 
than that of the old. Since the new system not only became much easier to understand and to 
modify but also included many functional improvements, including multiprogramming and the 
ability to share reentrant code among several user programs, we consider this increase in size 
quite acceptable. 

III. THE FILE SYSTEM 

The most important role of the system is to provide a file system. From the point of view 
of the user, there are three kinds of files: ordinary disk files, directories, and special files. 

3.1 Or~inary files 

A file contains whatever information the user places on it, for example, symbolic or 
binary (object) programs. No particular structuring is expected by the system. A file of text 
consists simply of a string of characters, with lines demarcated by the new-line character. 
Binary programs are sequences of words as they will appear in core memory when the program 
starts executing. A few user programs manipulate file.s with more structure; for example, the 



The UNIX Time·Sharing System 3 

assembler generates, and the loader expects, an object file in a particular format. However, the 
structure of files is controlled by the programs that use them, not by the system. 

3.2 Directories 

Directories provide the mapping between the names of files and the files themselves, and 
thus induce a structure on the file system as a whole. Each user has a directory of his own 
files; he may also create subdirectories to contain groups of files conveniently treated together. 
A directory behaves exactly like an ordinary file except that it cannot be written on by 
unprivileged programs, so that the system controls the contents of directories. However, any· 
one with appropriate permission may read a directory just like any other file. 

The system maintains several directories for its own use. One of these is the root direc· 
tory. All files in the system can be found by tracing a path through a chain of directories until 
the desired file is reached. The starting point for such searches is often the root. Other system 
directories contain all the programs provided for general use; that is, all the commands. As will 
be seen, however, it is by no means necessary that a program reside in one of these directories 
for it to be executed. 

Files are named by sequences of 14 or fewer characters. When the name of a file is 
specified to the system, it may be in the form of a path name, which is a sequence of directory 
names separated by slashes, "/", and ending in a file name. If the sequence begins with a 
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys· 
tern to search the root for directory alpha, then to search alpha for beta, finally to find gamma 
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the 
name "/" refers to the root itself. 

A path name not starting with "/" causes the system to begin the search in the user's 
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory 
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file 
that itself is found in the current directory. As another limiting case, the null file name refers 
to the current directory. 

The same non·directory file may appear in several directories under possibly different 
names. This feature is called linking; a directory entry for a file is sometimes called a link. The 
UNIX system differs from other systems in which linking is permitted in that all links to a file 
have equal status. That is, a file does not exist within a particular directory; the directory entry 
for a file consists merely of its name and a pointer to the information actually describing the 
file. Thus a file exists independently of any directory entry, although in practice a file is made 
to disappear along with the last link to it. 

Each directory always has at least two entries. The name ". " in each directory refers to 
the directory itself. Thus a program may read the current directory under the name "." 
without knowing its complete path name. The name " .. " by convention refers to the parent 
of the directory in which it appears, that is, to the directory in which it was created. 

The directory structure is constrained to have the form of a rooted tree. Except for the 
special entries " . " and " .. ", each directory must appear as an entry in exactly one other 
directory, which is its parent. The reason for this is to simplify the writing of programs that 
visit subtrees of the directory structure, and more important, to avoid the separation of portions 
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to 
detect when the last connection from the root to a directory was severed. 

3.3 Special files 

Special files constitute the most unusual feature of the UNIX file system. Each supported 
1/0 device is associated with at least one such file. Special files are read and written just like 
ordinary disk files, but requests to read or write result in activation of the associated device. 
An entry for each special file resides in directory /dev, although a link may be made to one of 
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one 



4 The UNIX Time-Sharing System 

may write on the file /dev /mt. Special files exist for each communication line, each disk, each 
tape drive, and for physical main memory. Of course, the active disks and the memory special 
file are protected from indiscriminate access. 

There is a threefold advantage in treating 1/0 devices this way: file and device 1/0 are as 
similar as possible; file and device names have the same syntax and meaning, so that a program 
expecting a file name as a parameter can be passed a device name; finally, special files are sub
ject to the same protection mechanism as regular files. 

3.4 Removable file systems 

Although the root of the file system is always stored on the same device, it is not neces
sary that the entire file system hierarchy reside on this device. There is a mount system 
request with two arguments: the name of an existing ordinary file, and the name of a special file 
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen
dent file system containing its own directory hierarchy. The effect of mount is to cause refer
ences to the herefofore ordinary file to refer instead to the root directory of the file system on 
the removable volume. In effect, mount replaces a leaf of the hierarchy tree (the ordinary file} 
by a whole new subtree (the hierarchy stored on the removable volume). After the mount, 
there is virtually no distinction between files on the removable volume and those in the per
manent file system. In our installation, for example, the root directory resides on a small parti
tion of one of our disk drives, while the other drive, which contains the user's files, is mounted 
by the system initialization sequence. A mountable file system is generated by writing on its 
corresponding special file. A utility program is available to create an empty file system, or one 
may simply copy an existing file system. 

There is only one exception to the rule of identical treatment of files on different devices: 
no link may exist between one file system hierarchy and another. This restriction is enforced 
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of 
the links whenever the removable volume is dismounted. 

3.5 Protection 

Although the access control scheme is quite simple, it has some unusual features. Each 
user of the system is assigned a unique user identification number. When a file is created, it is 
marked with the user ID of its owner. Also given for new files is a set of ten protection bits. 
Nine of these specify independently read, write, and execute permission for the owner of the 
file, for other members of his group, and for all remaining users. 

If the tenth bit is on, the system will temporarily change the user identification (hereafter, 
user ID) of the current user to that of the creator of the file whenever the file is executed as a 
program. This change in user ID is effective only during the execution of the program that calls 
for it. The set-user-ID feature provides for privileged programs that may use files inaccessible 
to other users. For example, a program may keep an accounting file that should neither be read 
nor changed except by the program itself. If the set-user-ID bit is on for the program, it may 
access the file although this access might be forbidden to other programs invoked by the given 
program's user. Since the actual user ID of the invoker of any program is always available, set
user-ID programs may take any measures desired to satisfy themselves as to their invoker's 
credentials. This mechanism is used to allow users to execute the carefully written commands 
that call privilege~ system entries. For examplt:; there is a system entry invokable only by the 
"super-user" (below) that creates an empty directory. As indicated above, directories are 
expected to have entries for ··." and " .• ". The command which creates a directory is owned 
by the super-user and has the set-user-ID bit set After it checks its invoker's authorization to 
create the specified directory, it creates it and makes the entries for " • " and " .. "_ 

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is 
generally available without administrative intervention. For example, this protection scheme 
easily solves the MOO accounting problem posed by "Aleph-null. " 8 



The UNIX Time-Sharing System 5 

The system recognizes one particular user ID (that of the "super-user") as exempt from 
the usual constraints on'file access; thus (for example), programs may be written to dump and 
reload the file system without unwanted interference from the protection system. 

3.6 1/0 calls 

The system calls to do 1/0 are designed to eliminate the differences between the various 
devices and styles of access. There is no distinction between "random" and "sequential" 1/0, 
nor is any logical record size imposed by the system. The size of an ordinary file is determined 
by the number of bytes written on it; no predetermination of the size of a file is necessary or 
possible. 

To illustrate the essentials of 1/0, some of the basic calls are summarized below in an 
anonymous language that will indicate the required parameters without getting into the underly
ing complexities. Each call to the system may potentially result in an error return, which for 
simplicity is not represented in the calling sequence. 

To read or write a file assumed to exist already, it must be opened by the following call: 

filep = open (name, flag) 

where name indicates the name of the file. An arbitrary path name may be given. The flag 
argument indicates whether the file is to be read, written, or "updated," that is, read and writ
ten simultaneously. 

The returned value filep is called afile descriptor. It is a small integer used to identify the 
file in subsequent calls to read, write, or otherwise manipulate the file. 

To create a new file or completely rewrite an old one, there is a create system call that 
creates the given file if it does not exist, or truncates it to zero length if it does exist; create 
also opens the new file for writing and, like open, returns a file descriptor. 

The file system maintains no locks visible to the user, nor is there any restriction on the 
number of users who may have a file open for reading or writing. Although it is possible for 
the contents of a file to become scrambled when two users write on it simultaneously, in prac
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in 
our environment, to prevent interference between users of the same file. They are unnecessary 
because we are not faced with large, single-file data bases maintained by independent processes. 
They are insufficient because locks in the ordinary sense, whereby one user is prevented from 
writing on a file that another user is reading, cannot prevent confusion when, for example, both 
users are editing a file with an editor that makes a copy of the file being edited. 

There are, however, sufficient internal interlocks to maintain the logical consistency of the 
file system when two users engage simultaneously in activities such as writing on the same file, 
creating files in the same directory, or deleting each other's open files. 

Except as indicated below, reading and writing are sequential. This means that if a partic
ular byte in the file was the last byte written (or read), the next I/0 call implicitly refers to the 
immediately following byte. For each open file there is a pointer, maintained inside the system, 
that indicates the next byte to be read or written. If n bytes are read or written, the pointer 
advances by n bytes. 

Once a file is open, the following calls may be used: 

n = read ( filep, buffer, .count) 
n = write ( filep, buff er, count). 

Up to count bytes are transmitted between the file specified by filep and the byte array specified 
by buffer. The returned value n is the number of bytes actually transmitted. In the write case, 
n is the same as count except under exceptional conditions, such as 1/0 errors or end of physi
cal medium on special files; in a read, however, n may without error be less than count. If the 
read pointer is so near the end of the file that reading count characters would cause reading 
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also, 



6 The UNIX Time-Sharing System 

typewriter-like terminals never return more than one line of input. When a read call returns 
with n equal to zero, the end of the file has been reached. For disk files this occurs when the 
read pointer becomes equal to the current size of the file. It is possible to generate an end-of
file from a terminal by use of an escape sequence that depends on the device used. 

Bytes written affect only those parts of a file implied by the position of the write pointer 
and the count; no other part of the file is changed. If the last byte lies beyond the end of the 
file, the file is made to grow as needed. 

To do random (direct-access) 1/0 it is only necessary to move the read or write pointer to 
the appropriate location in the file. 

location = !seek ( filep, offset, base) 

The pointer associated with filep is moved to a position offset bytes from the beginning of the 
file, from the current position bf the pointer, or from the end of the file, depending on base. 
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are 
ignored. The actual offset from the beginning of the file to which the pointer was moved is 
returned in location. 

There are several additional system entries having to do with 1/0 and with the file system 
that will not be discussed. For example: close a file, get the status of a file, change the protec
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file. 

IV. IMPLEMENTATION OF THE FILE SYSTEM 

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ
ated file and a pointer to the file itself. This pointer is an integer called the i-number (for index 
number) of the file. When the file is accessed, its i-number is used as an index into a system 
table (the i-list) stored in a known part of the device on which the directory resides. The entry 
found thereby (the file's i-node) contains the description of the file: 

• the user and group-ID of its owner 

• its protection bits 

• the physical disk or tape addresses for the file contents 

• its size 

• time of creation, last use, and last modification 

• the number of links to the file, that is, the number of times it appears in a directory 

• a code indicating whether the file is a directory, an ordinary file, or a special file. 

The purpose of an open or create system call is to turn the path name given by the user into an 
i-number by searching the explicitly or implicitly named directories. Once a file is open, its 
device, i-number, and read/write pointer are stored in a system table indexed by the file 
descriptor returned by the open or create. Thus, during a subsequent call to read or write the 
file, the descriptor may be easily related to the information necessary to access the file. 

When a new file is created, an i-node is allocated for it and a directory entry is made that 
contains the name of the file and the i-node number. Making a link to an existing file involves 
creating a directory entry with the new name, copying the i-number from the original file entry, 
and incrementing the link-count field of the i-node .. Removing (deleting) a file is done by 
decrementing the link-count of the i-node specified by its directory entry and erasing the direc
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is 
de-allocated. · · , · 

The space on all disks that contain a file system is divided into a number of 512-byte 
blocks logically addressed from 0 up to a limit that depends on the device. There is space in 
the i-node of each file for 13 device addresses. For nonspecial files, the first 10 de.vice 
addresses point at the first 10 blocks of the file. If the file is larger than l 0 blocks, the 11 dev
ice address points to an indirect block containing up to 128 addresses of additional blocks in the 



The UNIX Time-Sharing System 7 

file. Still larger files use the twelfth device address of the i-node to point to a double-indirect 
block naming 128 indirect blocks, each pointing to 128 blocks of the file. If required, the thir
teenth device address is a triple-indirect block. Thus files may conceptually grow to 
[(10+128+128 2+128 3)X512] bytes. Once opened, bytes numbered below 5,120 can be read 
with a single disk access; bytes in the range 5,120 to 70,656 require two accesses; bytes in the 
range 70,656 to 8,459,264 require three accesses; bytes from there to the largest file 
( 1,082,201,088) require four accesses. In practice, a device cache mechanism (see below) 
proves effective in eliminating most of the indirect fetches. 

The foregoing discussion applies to ordinary files. When an 1/0 request is made to a file 
whose i-node indicates that it is special, the last 12 device address words are immaterial, and 
the first specifies an internal device name, which is interpreted as a pair of numbers represent· 
ing, respectively, a device type and subdevice number. The device type indicates which system 
routine will deal with 1/0 on that device; the subdevice number selects, for example, a disk 
drive attached to a particular controller or one of several similar terminal interfaces. 

In this environment, the implementation of the mount system call (Section 3.4) is quite 
straightforward. mount maintains a system table whose argument is the i-number and device 
name of the ordinary file specified during the mount, and whose corresponding value is the 
device name of the indicated special file. This table is searched for each i-number/device pair 
that turns up while a path name is being scanned during an open or create; if a match is found, 
the i-number is replaced by the i-number of the root directory and the device name is replaced 
by the table value. 

To the user, both reading and writing of files appear to be synchronous and unbuffered. 
That is, immediately after return from a read call the data are available; conversely, after a 
write the user's workspace may be reused_ In fact, the system maintains a rather complicated 
buffering mechanism that reduces greatly the number of 1/0 operations required to access a 
file. Suppose a write call is made specifying transmission of a single byte. The system will 
search its buffers to see whether the affected disk block currently resides in main memory; if 
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an 
entry is made in a list of blocks to be written. The return from the write call may then take 
place, although the actual 1/0 may not be completed until a later time. Conversely, if a single 
byte is read, the system determines whether the secondary storage block in which the byte is 
located is already in one of the system's buffers; if so, the byte can be returned immediately. If 
not, the block is read into a buff er and the byte picked out. 

The system recognizes when a program has made accesses to sequential blocks of a file, 
and asynchronously pre-reads the next block. This significantly reduces the running time of 
most programs while adding little to system overhead. 

A program that reads or writes files in units of 512 byte~ has an advantage over a program 
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from 
the avoidance of system overhead. If a program is used rarely or does no great volume of 1/0, 
it may quite reasonably read and write in units as small as it wishes. 

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organ· 
izing the file system has proved quite reliable and easy to deal with. To the system itself, one 
of its strengths is the fact that each file has a short, unambiguous name related in a simple way 
to the protection, addressing; and other information needed to access the file. It also permits a 
quite simple and rapid algorithm for checking the consistency of a nle system, for example, 
verification that the portions of each device containing useful information and those free to be 
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen· 
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the 
same time the notion of the i-list induces certain peculiarities not found in other file system 

'organizations. For example, there is the question of who is to be charged for the space a file 
occupies, because all directory entries for a file have equal status. Charging the owner of a file 
is unfair in general, for one user may create a file, another may link to it, and the first user may 
delete the file. The first user is still the owner of the file, but it should be charged to the 



8 The UNIX Time-Sharing System 

second user. The simplest reasonably fair algorithm seems to be to spread the charges equally 
among users who have links to a file. Many installations avoid the issue by not charging any 
fees at all. 

V. PROCESSES AND IMAGES 

An image is' a computer execution environment. It includes a memory image, general 
register values, status of open files, current directory and the like. An image is the current 
state of a pseudo-computer. 

A process is the execution of an image. While the processor is executing on behalf of a 
process, the image must reside in main memory; during the execution of other processes it 
remains in main memory unless the appearance of an active, higher-priority process forces it to 
be swapped out to the disk. 

The user-memory part of an image is divided into three logical segments. The program 
text segment begins at location 0 in the virtual address space. During execution, this segment 
is write-protected and a single copy of it is shared among all processes executing the same pro
gram. At the first hardware protection byte boundary above the program text segment in the 
virtual address space begins a non-shared, writable data segment, the size of which may be 
extended by a system call. Starting at the highest address in the virtual address space is a stack 
segment, which automatically grows downward as the stack pointer fluctuates. 

5.1 Processes 

Except while the system is bootstrapping itself into operation, a new process can come 
into existence only by use of the fork system call: 

processid = fork ( ) 

When fork is executed, the process splits into two independently executing processes. The two 
processes have independent copies of the original memory image, and share all open files. The 
new processes differ only in that one is considered the parent process: in the parent, the 
returned processid actually identifies the child process and is never 0, while in the child, the 
returned value is always 0. 

Because the values returned by fork in the parent and child process are distinguishable, 
each process may determine whether it is the parent or child. 

5.2 Pipes 

Processes may communicate with related processes using the same system read and write 
calls that are used for file-system 1/0. The call: 

filep = pipe ( ) 

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel, 
like other open files, is passed from parent to child process in the image by the fork call. A 
read using a pipe file descriptor waits until another process writes using the file descriptor for 
the same pipe. At this point, data are passed between the images of the two processes. Neither 
proce~s need know that ~ pipe, rather than an ordinary file, is involved. 

Although inter-proc'ess communication via pipes is a quite valuable tool (see Section 6.2), 
it is not a completely general mechanism, because the pipe must be set up by a common ances
tor of the processes involved. 

5.3 Execution of programs 

Another major system primitive is invoked by 

execute (file, arg1, arg2, ... , .arg0 ) 

which requests the system to read in and execute the program named by file, passing it string 



The UNIX Time-Sharing System 9 

arguments arg1 , arg2 , ... , arg0 . All the code and data in the process invoking execute is 
replaced from the file, but open files, current directory. and inter-process relationships are 
unaltered. Only if the call fails, for example because file could not be found or because its 
execute-permission bit was not set, does a return take place from the execute primitive;. it 
resembles a "jump" machine instruction rather than a subroutine call. 

5.4 Process synchronization 

Another process control system call: 

processid = wait ( status) 

causes its caller to suspend execution until one of its children has completed execution. Then 
wait returns the processid of the terminated process. An error return is taken if the calling 
process has no descendants. Certain status from the child process is also available. 

S.S Termination 

Lastly: 

exit ( status) 

terminates a process, destroys its image, closes its open files, and generally obliterates it. The 
parent is notified through the wait primitive, and status is made available to it. Processes may 
also terminate as a result of various illegal actions or user-generated signals (Section VII 
below). 

VI. THE SHELL 

For most users, communication with the system is carried on with the aid of a program 
called the shell. The shell is a command-line interpreter: it reads Ii nes typed by the user and 
interprets them as requests to execute other programs. (The shell is described fully elsewhere,9 
so this section will discuss only the theory of its operation.) In simplest form, a command line 
consists of the command name followed by arguments to the command, all separated by spaces: 

command arg 1 arg2 ... argn 

The shell splits up the command name and the arguments into separate strings. Then a file 
with name command is sought; command may be a path name including the "/" character to 
specify any file in the system. If command is found, it is brought into memory and executed. 
The arguments collected by the shell are accessible to the command. When the command is 
finished, the shell resumes its own execution, and indicates its readiness to accept another com
mand by typing a prompt character. 

If file command cannot be found, the shell generally prefixes a string such as /bin/ to 
command and attempts again to find the file. Directory /bin contains commands intended to 
be generally used. (The sequence of directories to be searched may be changed by user 
request.) 

6.1 Standard 1/0 

The discussion of 1/0 in Section III above seems to imply that every file used by a pro
gram must be opened or created by the program in order to get a file descriptor for the file. 
Programs executed by the shell, however, start off with three open files with file descriptors 0, 
1, and 2. As such a program begins execution, file 1 is open for writing, and is best understood 
as the standard output file. Except under circumstances indicated below, this file is the user's 
terminal. Thus programs that wish to write informative information ordinarily use file descrip
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages 
typed by the user read this file. 

The shell is able to change the standard assignments of these file descriptors from the 
user's terminal printer and keyboar~. If one of the arguments to a command is prefixed by 



10 The UNIX Time-Sharing System 

"> ", file descriptor I will, for the duration of the command, refer to the file named after the 
"> ". For example: 

Is 

ordinarily lists, on the typewriter, the names of the files in the current directory. The com
mand: 

ls >there 

creates a file called there and places the listing there. Thus the argument >there means "place 
output on there." On the other hand: 

ed 

ordinarily enters the editor, which takes requests from the user via his keyboard. The com
mand 

ed <script 

interprets script as a file of editor commands; thus <script means "take input from script." 

Although the file name following"<" or">" appears to be an argument to the com
mand, in fact it is interpreted completely by the shell and is not passed to the command at all. 
Thus no special coding to handle 1/0 redirection is needed within each command; the com
mand need merely use the standard file descriptors 0 and 1 where appropriate. 

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream. 
When an output-diversion request with ">" is specified, file 2 remains attached to the termi
nal, so that commands may produce diagnostic messages that do not silently end up in the out
put file. 

6.2 Filters 

An extension of the standard 1/0 notion is used to direct output from one command to 
the input of another. A sequence of commands separated by vertical bars causes the shell to 
execute all the commands simultaneously and to arrange that the standard output of each com
mand be delivered to the standard input of the next command in the sequence. Thus in the 
command line: 

Is I pr -2 I opr 

Is lists the names of the files in the current directory; its output is passed to pr, which paginates 
its input with dated headings. (The argument "-2" requests double-column output.) Likewise, 
the output from pr is input to opr; this command spools its input onto a file for off-line print· 
ing. 

This procedure could have been carried out more clumsily by: 

Is >templ 
pr -2 <templ >temp2 
opr <temp2 

followed by removal of the temporary files. In the absence of the ability to redirect output and 
input, a still clumsier method would have been to require the Is command to accept user 
requests to paginate its output, to print in multi-column format, and to arrange that its output 
be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons, 
to expect authors of commands such as Is to provide such a wide variety of output options. 

· A program such as pr which copies its standard input to its standard output (with process
ing) is called a filter. Some filters that we have found useful perform character transliteration,. 
selection of lines according to a pattern, sorting of the input, and encryption and decryption. 



The UNIX Time-Sharing Syscem I I 

6.3 Command separators; multitasking 

Another feature provided by the shell is relatively straightforward. Commands need not 
be on different lines; instead they may be separated by semicolons: 

Is; ed 

will first list the contents of the current directory, then enter the editor. 

A related feature is more interesting. If a command is followed by "&," the shell will not 
wait for the command to finish before prompting again; instead, it is ready immediately to 
accept a new command. For example: 

as source >output & 

causes source to be assembled, with diagnostic output going to output; no matter how long the 
assembly takes, the shell returns immediately. When the shell does not wait for the completion 
of a command, the identification number of the process running that command is printed. This 
identification may be used to wait for the completion of the command or to terminate it. The 
"&" may be used several times in a line: 

as source >output & Is >files & 

does both the assembly and the listing in the background. In these examples, an output file 
other than the terminal was provided; if this had not been done, the outputs of the various 
commands would have been intermingled. 

The shell also allows parentheses in the above operations. For example: 

(date; Is) >x & 

writes the current date and time followed by a list of the current directory onto the file x. The 
shell also returns immediately for another request. 

6.4 The shell as a command; command files 

The shell is itself a command, and may be called recursively. Suppose file tryout contains 
the lines: 

as source 
mv a.out testprog 
testprog 

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of 
the asscm bier, ready to be executed. Thus if the three lines above were typed on the keyboard, 
source would be assembled, the resulting program renamed testprog, and testprog executed. 
When the lines are in tryout, the command: 

sh <tryout 

would cause the shell sh to execute the commands sequentially. 

The shell has further capabilities, including the ability to substitute parameters and to con
struct argument lists from a specified subset of the file names in a directory. It also provides 
general conditional and looping constructions. 

6.5 Implementation of the shell 

The outline of the operation of the shell can now be understood. Most of the time, the 
shell is waiting for the user to type a command. When the ne~-line character ending the line is 
typed, the shell's read call returns. The shell analyzes the command line, putting the argu
ments in a form appropriate for execute. Then fork is called. The child process, whose code of 
course is still that of the shell, attempts to perform an execute with the appropriate arguments. 
If successful, this will bring in and start execution of the program whose name was given. 
Meanwhile, the other process resulting from the fork, which is the parent process, waits for the 



12 The UNIX Time-Sharing System 

child process to die. When this happens, the shell knows the command is finished, so it types 
its prompt and reads the keyboard to obtain another command. 

Given this framework, the implementation of background processes is trivial; whenever a 
command line contains "&," the shell merely refrains from waiting for the process that it 
created to execute the command. 

Happily, all of this mechanism meshes very nicely with the notion of standard input and 
output files. When a process is created by the fork primitive, it inherits not only the memory 
image of its parent but also all the files currently open in its parent, including those with file 
descriptors 0, l, and 2. The shell, of course, uses these files to read command lines and to 
write its prompts and diagnostics, and in the ordinary case its children-the command 
programs-inherit them automatically. When an argument with "<" or ''>" is given, how
ever, the offspring process, just before it performs execute, makes the standard 1/0 file descrip
tor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smal
lest unused file descriptor is assigned when a new file is opened (or created); it is only neces· 
sary to close file 0 (or 1) and open the named file. Because the process in which the command 
program runs simply terminates when it is through, the association between a file specified after 
"<" or">" and file descriptor 0 or I is ended automatically when the process dies. There· 
fore the shell need not know the actual names of the files that are its own standard input and 
output, because it need never reopen them. 

Filters are straightforward extensions of standard IjO redirection with pipes used instead 
of files. 

In ordinary circumstances, the main loop of the shell never terminates. (The main loop 
includes the branch of the return from fork belonging to the parent process; that is, the branch 
that does a wait, then reads another command line.) The one thing that causes the shell to ter
minate is discovering an end-of-file condition on its input file. Thus, when the shell is exe
cuted as a command with a given input file, as in: 

sh <comfile 

the commands in comfile will be executed until the end of comfile is reached; then the instance 
of the shell invoked by sh will terminate. Because this shell process is the child of another 
instance of the shell, the wait executed in the latter will return, and another command may 
then be processed. 

6.6 Initialization 

The instances of the shell to which users type commands are themselves children of 
another process. The last step in the initialization of the system is the creation of a single pro
cess and the invocation (via execute) of a program called init. The role of init is to create one 
process for each terminal channel. The various subinstances of init open the appropriate termi
nals for input and output on files 0, I, and 2, waiting, if necessary, for carrier to be established 
on dial-up lines. Then a message is typed out requesting that the user log in. When the user 
types a name or other identification, the appropriate instance of init wakes up, receives the 
log-in line, and reads a password file. If the user's name is found, and if he is able to supply 
the correct password, init changes to the user's default current directory, sets the process's user 
ID to that of the person logging in, and performs an execute of the shell. At this point, the 
shell is ready to receive commands and the logging-in protocol is complete. 

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that 
will later become shells) does a wait. If one of the child processes terminates, either because a 
shell found an end of file or because a user typed an incorrect name or password, this path of 
init simply recreates the defunct process, which in turn reopens the appropriate input and out
put files and types another log-in message. Thus a user may log out simply by typing the end
of-file sequence to the shell. 



The UNIX Time-Sharing System 13 

6.7 Other programs as shell 

The shell as described above is designed to allow users full access to the facilities of the 
system, because it will invoke the execution of any program with appropriate protection mode. 
Sometimes, however, a different interface to the system is desirable, and this feature is easHy 
arranged for. 

Recall that after a user has successfully logged in by supplying a name and password, init 
ordinarily invokes the shell to interpret command lines. The user's entry in the password file 
may contain the name of a program to be invoked after log-in instead of the shell. This pro
gram is free to interpret the user's messages in any way it wishes. 

For example, the password file entries for users of a secretarial editing system might 
specify that the editor ed is to be used instead of the shell. Thus when users of the editing sys
tem log in, they are inside the editor and can begin work immediately; also, they can be 
prevented from invoking programs not intended for their use. In practice, it has _proved desir
able to allow a temporary escape from the editor to execute the formatting program and other 
utilities. 

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus
trate a much more severely restricted environment. For each of these, an entry exists in the 
password file specifying that the appropriate game-playing program is to be invoked instead of 
the shell. People who log in as a player of one of these games find themselves limited to the 
game and unable to investigate the (presumably more interesting) offerings of the UNIX system 
as a whole. 

VII. TRAPS 

The PDP-11 hardware detects a number of program faults, such as references to non
existent memory, unimplemented instructions, and odd addresses used where an even address 
is required. Such faults cause the processor to trap to a system routine. Unless other arrange
ments have been made, an illegal action causes the system to terminate the process and to write 
its image on file core in the current directory. A debugger can be used to determine the state 
of the program at the time of the fault. 

Programs that are looping, that produce unwanted output, or about which the user has 
second thoughts may be halted by the use of the interrupt signal, which is generated by typing 
the "delete" character. Unless special action has been taken, this signal simply causes the pro
gram to cease execution without producing a core file. There is also a quit signal used to force 
an image file to be produced. Thus programs that loop unexpectedly may be halted and the 
remains inspected without prearrangement. 

The hardware-generated faults and the interrupt and quit signals can, by request, be either 
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log
ging the user out. The editor catches interrupts and returns to its command level. This is use
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of 
the file it is editing). In systems without floating-point hardware, unimplemented instructions 
are caught and floating-point instructions are interpreted. 

VIII. PERSPECTIVE 

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was 
not designed to meet any predefined objectives. The first version was written when one of us 
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7 
and set out to create a more hospitable environment. This (essentially personal) effort was 
sufficiently successful to gain the interest of the other author and several colleagues, and later 
to justify the acquisition of the PDP- I I /20, specifically to support a text editing and formatting 
system. When in turn the 11/20 was outgrown, the system had proved useful enough to per
suade management to invest in the PDP-I I /45, and later in the PDP-11/70 and Interd~ta 8/32 
machines, upon which it developed to its present form. Our goals throughout the effort, when 



14 The UNIX Time-Sharing System 

articulated at all, have always been to build a comfortable relationship with the machine and to 
explore ideas and inventions in operating ·systems and other software. We have not been faced 
with the need to satisfy someone else's requirements, and for this freedom we are grateful. 

Three considerations that influenced the design of UNIX are visible in retrospect. 

First: because we are programmers, we naturally designed the system to make it easy to 
write, test, and run programs. The most important expression of our desire for programming 
convenience was that the system was arranged for interactive use, even though the original ver
sion only supported one user. We believe that a properly designed interactive system is much 
more productive and satisfying to use than a .. batch" system. Moreover, such a system is 
rather easily adaptable to noninteractive use, while the converse is not true. 

Second: there have always been fairly severe size constraints on the system and its 
software. Given the partially antagonistic desires for reasonable efficiency and expressive 
power, the size constraint has encouraged not only economy, but also a certain elegance of 
design. This may be a thinly disguised version of the "salvation through suffering" philosophy, 
but in our case it worked. 

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is 
more important than it might seem. If designers of a system are forced to use that system, 
they quickly become aware of its functional and superficial deficiencies and are strongly 
motivated to correct them before it is too late. Because all source programs were always avail
able and easily modified on-line, we were willing to revise and rewrite the system and its 
software when new ideas were invented, discovered, or suggested by others. 

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these 
design considerations. The interface to the file system, for example, is extremely convenient 
from a progrnmming standpoint. The lowest possible interface level is designed to eliminate 
distinctions between the various devices and files and between direct and sequential access. No 
large "access method" routines are required to insulate the programmer from the system calls; 
in fact, all user programs either call the system directly or use a small library program, less than 
a page long, that buffers a number of characters and reads or writes them all at once. 

Another important aspect of programming convenience is that there are no "control 
blocks" with a complicated structure partially maintained by and depended on by the file system 
or other system calls. Generally speaking, the contents of a program's address space are the 
property of the program, and we have tried to avoid placing restrictions on the data structures 
within that address space. 

Given the requirement that all programs should be usable with any file or device as input 
or output, it is also desirable to push device-dependent considerations into the operating system 
itself. The only alternatives seem to be to load, with all programs, routines for dealing with 
each device, which is expensive in space, or to depend on some means of dynamically linking 
to the routine appropriate to each device when it is actually needed, which is expensive either 
in overhead or in hardware. 

Likewise, the process-control scheme and the command interface have proved both con
venient and efficient. Because the shell operates as an ordinary, swappable user program, it 
consumes no "wired-down" space in the system proper, and it may be made as powerful as 
desired at little cost. In particular, given the framework in which the shell executes as a process 
that spawns other processes to perform commands, the notions of 1/0 redirection, background 
processes, command files, and user-selectable system interfaces all become essentially trivial to 
implement. 

Influences 

The success of UNIX lies not so much in new inventions but rather in the full exploitation 
of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the 
implementation of a small yet powerful operating system. 



The UNIX Time-Sharing System 15 

The fork operation, essentially as we implemented it, was present in the GENIE time
sharing system.IO On a number of points we were influenced by Multics, which suggested the 
particular form of the 1/0 system calls 11 and both the name of the shell and its general func
tions. The notion that the shell should create .a process for each command was also suggested 
to us by the early design of Multics, although in that system it was later dropped for efficiency 
reasons. A similar scheme is used by TENEx.12 

IX. STATISTICS 

The following numbers are presented to suggest the scale of the Research UNIX opera
tion. Those of our users not involved in document preparation tend to use the system for pro
gram development, especially language work. There are few important "applications" pro
grams. 

Over.~.11, we have today: 

125 
33 

1,630 
28,300 

301,700 

user population 
maximum simultaneous users 
directories 
files 
512-byte secondary storage blocks used 

There is a "background" process that runs at the lowest possible priority; it is used to soak up 
any idle CPU time. It has been used to produce a million-digit approximation to the constant e, 
and other semi-infinite problems. Not counting this background work, we average daily: 

X. ACKNOWLEDGEMENTS 

13,500 
9.6 
230 
62 

240 

commands 
CPU hours 
connect hours 
different users 
log-ins 

The contributors to UNIX are, in the traditional but here especially apposite phrase, too 
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing 
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant 
support of R. Morris, M. D. Mcilroy, and J. F. Ossanna. 

REFERENCES 

[I] L. P. Deutsch and B. W. Lampson. An online editor, CACM 10(12):793-99,803 
(December 1967). 

[2] B. W. Kernighan and L.. L. Cherry. A System for Typesetting Mathematics, CACM 
18(3):151-57 (March 1975). 

[3] B. W. Kernighan, M. E. Lesk, and J. F. Ossanna. UNIX Time-Sharing System: Document 
Preparation, Bell Sys. Tech. J. 57(6):2115-35 (July-August 1978, Part 2). 

[4] T. A. Dolotta and J. R. Mashey. An Introduction to the Programmer's Workbench, Proc. 
2nd Int. Conf on Software Engineering, pp. 164-68 (October 13-15, 1976). 

[5] T. A. Dolotta, R. C. Haight, and J. R. Mashey. UNIX Time-Sharing System: The 
Programmer's Workbench, Bell Sys. Tech. J. 57(6):2177-2200 (July-August 1978, Part 2). 



16 The UNIX Time-Sharing System 

[6] H. Lycklama. UNIX Time-Sharing System: UNIX on a Microprocessor, Bell Sys. Tech. J. 
57(6):2087-2101 (July-August 1978, Part 2). 

[7] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, Engle· 
wood Cliffs, New Jersey (1978). 

[8] Aleph-null. Computer Recreations, Software Practice & Experience 1(2):210-4 (April-June 
1971 ). 

[9] S. R. Bourne. UNIX Time-Sharing System: The UNIX Shell, Bell Sys. Tech. J. 
57(6):1971-90 (July-August 1978, Part 2). 

[10] L. P. Deutsch and B. W. Lampson. SDS 930 Time-Sharing System Preliminary Reference 
Manual, Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965). 

[11] R. J. Feiertag and E. I. Organick. The Multics Input-Output System, Proc. Third Sympo
sium on Operating Systems Principles, pp. 35-41(October18-20, 1971). 

[12] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson. TENEX, a Paged 
Time Sharing System for the PDP-10, CACM 15(3):135-43 (March 1972). 

January 1981 



J. INTRODUCTION 

UNIX Documentation Road Map 

G. A. Snyder 
J. R. Mashey 

Bell Laboratories 
Murray Hill, New Jersey 07974 

UNIX 

B.1.1 

A great deal of documentation exists for the UNIXt time-sharing system. New users are often 
overcome by the volume and distributed nature of the documentation. This "road map" 
attempts to be a terse, up-to-date outline of important documents and information sources. 

~ The information in this document applies only to UNIX Release 4.0. 

l. l Things to Do 

See a local UNIX "system administrator" to obtain a "login name" and get other appropriate 
system information. See also Section 12 below. 

1.2 Notation Used in This Road Map (8.1.1) •• 

{N} -+ Section N in this road map. 
• • -+ Item required for everyone. 
• -+ Item recommended for most users. 

All other items are optional and depend on specific interests. If the name of a document men
tioned here is followed by a number such as "(A.1.1)," then that document can be found in 
Documents for UNIX. Examine Section G of the Annotated Table of Contents in that volume for 
additional sources of information. 

Entries in Section n of the UNIX User's Manual are referred to by name(n). 

1.3 List of Following Sections •• 

{2} BASIC INFORMA TlON 
{3} BASIC TEXT PROCEs.SING AND DOCUMENT PREPARATION 
{4} SPECIALIZED TEXT PROCEs.SING 
{5} ADVANCED TEXT PROCEs.SING 
{6} COMMAND LANGUAGE (SHELL) PROGRAMMING 
{7} FILE MANIPULATION 
{8} C PROGRAMMING 
{9} NUMERICAL COMPUTATION 

{10} SOURCE CODE CONTROL SYSTEM 
{ 11} INTER-SYSTEM COMMUNICATION 
{12} LOCAL INFORMATION 

J.4 Prerequisite Structure of Following Sections •• 

{2} 
I 

-----------------
1 I I I 

{3} {6} {7} {9} 
I \ \ I 

{4} {5} {8, 10, l l} 

t UNIX is a trademark of Bell Laboratories. 



2 UNIX Documentation Road Map 

Each section contains a list of relevant documents and a list of pertinent manual entries; some 
sections also contain a list of suggested things to do. 

Only the manual entries for the most frequently used commands are listed here; other relevant 
entries may be found by consulting the Table of Contents and the Permuted Index of the UNIX 
User's Manual {2.1 }; it is also wise to periodically scan Section 1 of that manual-you will often 
discover new uses for commands. 

l. BASIC INFORMATION 

You won't be able to do much until you have learned most of the material in {2.1}, {2.2}, and 
{2.3}. You must know how to log into the system, make your terminal work correctly, enter 
and edit files, and perform basic operations on directories and files. Get the UNIX Programming 
Staner Package from your local Computer Information Service Library. 

l.l UNIX User's Manual • • 

- Read Introduction and How to Get Started. 
-- Read the intro entry in each section. 
- Look through Section 1 to become familiar with command names. 
- Get into the habit of using the Table of Contents and the Permuted Index. 

Section I will be especially needed for reference use. 

2.2 UNIX for Beginners (Second Edition) (B.3.1) •• 

2.3 A Tutorial Introduction to the UNIX Text Editor (B.2.1) •• 

2.4 Advanced Editing on UNIX (B.l.l) • 

l.5 The Bell System Technical Journal, Vol. 57, No. 6, Part 2 • 

Contains several articles on UNIX. In particular, the first paper gives a good overview of UNIX. 

l.6 Things to Do 

- Do all the exercises found in {2.2} and {2.3}, and maybe {2.4}. 
- If you want some sequence of commands to be executed each time you log in, create a file 

named .profile in your login directory. 1 A sample .profile can be found in projile(5). 
- Files in directory /usr/news contain recent information on various topics. To print all the 

news items that have been added since you last looked, type: 

news 

2.7 Manual Entries 

The following commands are described in Section 1 of the UNIX User's Manual and are used 
for creating, editing, moving (i.e., renaming), and removing files: 

cat( 1) 
cd(l) 
chmod(l) 
cp(l) 
ed(l) 
Is( 1) 

mkdir( I) 

concatenate and print files (no pagination). 
change working (current) directory. 
change the mode of a file. 

.. copy (cp), mpve (mv) or link (In) ,files. 
edit a file. 
list a directory; file names beginning with • are not listed unless the·.~. 
flag is used. 
make a (new) directory. 

I. The directory you are in when you log into the system. 



UNIX Documentation Road Map 

print files (paginated listings). 
print working directory. 

3 

pr(I) 
pwd(l) 
rm(l) remove (delete) file(s); rmdir removes the named directories, which must 

be empty. 

The following help you communicate with other users, make proper use of different kinds of 
terminals, and print manual entries on-line: 

sign on. 
send mail to other users or inspect mail from them. 
print entries of UNIX User's Manual. 
permit or deny messages to your terminal. 

login(l) 
mail( 1) 
man( I) 
mesg(l) 
news( I) 
passwd(l) 
stty( 1) 

print news items: news - n prints a list of recent items. 
change your login password. 
set terminal options; i.e., inform the system about the hardware characteris
tics of your terminal. 

tabs( 1) 
term(7) 
who(l) 
write( I) 

set tab stops on your terminal. 
a list of commonly-used terminals. 
print list of currently logged-in users. 
communicate with another (logged-in) user. 

Several useful status commands also exist: 

date( 1) 
du(l) 
ps(l) 

print time and date. 
summarize disk usage. 
report active process status. 

3. BASIC TEXT PROCESSING AND DOCUMENT PREPARATION 

You should read this section if you want to use existing text processing tools to write letters, 
memoranda, manuals, etc. Get the UNIX Text Editing and Phototypesetting Starter Package from 
your local Computer Information Service Library. 

3.l MM-Memorandum Macros (C.2.l) •• 

This is a reference manualthat can be moderately heavy going for a beginner. Try out some of 
the examples and stick close to the default options. 

3.2 Typing Documents with MM (C.2.2) • • 

A handy fold-out. 

3.3 A TROFF Tutorial (C.1.1) • 

An introduction to formatting text with the phototypesetter. 

3.4 NROFF/TROFF User's Manual (C.1.2) e 

Describes the text formatting language in great detail; look at the SUMMARY AND INDEX, but 
don't try to digest the whole manual on first reading. 

3.5 Manual Entries 

mm(l) 
troff( 1) 

spell( I) 

·~u .i 

print a document using the memorandum macros. 
typeset or format (nroff) text files; read this to become familiar with 
options. 
identify possible spelling errors. 

To obtain some special functions (e.g., reverse paper motion, subscripts, superscripts), you 
must either indicate the terminal type to nroff or post-process nroff output through one of the 
following: 



4 UNIX Documentation Road Map 

col(l) process text for terminals lacking physical reverse vertical motion, such as 
the Texas Instruments 700 series, Model 43 TELETYPE®, etc. 

greek(l) 

tc(l) 

handle special functions for many terminals, such as DASI 300, Tektronix 
4014, Diablo 1620, Hewlett-Packard 2645, etc. 
simulate phototypesetter output on a Tektronix 4014 terminal. 

4. SPECIALIZED TEXT PROCESSING 

The tools listed here are of a more specialized nature than those in {3}. 

4.1 TBL-A Program to Format Tables (C.3.1) • 

Great help in formatting tabular data (see also tb/(1)). 

4.2 Typesetting Mathematics-User's Guide (Second Edition) (C.3.2) • 

Read this if you need to produce mathematical equations. It describes the use of the equation
setting command eqn (l ). 

4.3 A Macro Package for View Graphs and Slides (C.2.3) 

Tells how to prepare typeset visuals. 

4.4 UNIX Graphics Overview (E.6.1) 

Describes the Graphics sub-system of UNIX. 

4.5 Manual Entries 

cw(l) 
diffmk(1) 

eqn(J) 
eqnchar(7) 
graphics(IG) 
mmt(I) 
tbl(l) 

use a special constant-width "example" font. 
mark changes between versions of a file, using output of diff( 1) to produce 
"revision bars" in the right margin. 
preprocessor for mathematical equations. 
special character definitions for eqn(l). 
get into the graphics sub-system. 
typeset documents, view graphs, and slides. 
preprocessor for tabular data. 

5. ADVANCED TEXT PROCESSING 

You should read this section if you need to design your own package of formatting macros or 
perform other actions beyond the capabilities of existing tools; {3} is a prerequisite, and fami
liarity with {4} is very helpful, as is an experienced advisor. 

5.1 NROFF /TROFF User's Manual (C.1.2) •• 

Look at this in detail and try modifying the examples. Read A TROFF Tutorial {3.3 }. 

5.2 Things to Do 

It is fairly easy to use the text formatters for simple purposes. A typical application is that of 
writing simple macros that print standard headings in order to eliminate repetitive keying of 
such headings. It is extremely difficult to set up general-purpose macro packages for use by 
large numbers of people. Don't re-invent what you can borrow from an existing package (such 
as MM-see {3.1} and {3.2}). 

5.3 Manual Entries 

All entries mentioned in {3.5} and {4.5}. 



UNIX Documentation Road Map 5 

6. COMMAND LANGUAGE (SHELL) PROGRAMMING 

The shell provides a powerful programming language for combining existing commands. This 
section should be especially useful to those who want to automate manual procedures and ~uild 
data bases. 

6.1 The UNIX Time-Sharing System (A.1.2) •• 

6.2 UNIX Shell Tutorial (8.4.1) •• 

6.3 An Introduction to the UNIX Shell (8.4.2) 

6.4 Things to Do 

If you want to create your own library of commands, for example /usr/gas/bin, set the PATH 
parameter in your .profile so that your own library is searched when a command is invoked. 
For example: 

PATH=:$HOME/bin:/bin:/usr/bin 

The HOME parameter is described in sh(I). 

6.5 Manual Entries 

Read sh (I) first; the following entries give further details on commands that are most fre
quently used within command language programs: 

echo( 1) 
env(I) 
expr( 1) 
line{l) 
nohup( 1) 
sh(l) 
test( l) 

echo arguments (typically to terminal). 
set environment for command execution. 
evaluate an algebraic expression; includes some string operations. 
read a line from the standard input. 
run a command immune to communications line hang-up. 
shell (command interpreter and programming language). 
evaluate a logical expression. 

7. FILE MANIPULATION 

In addition to the basic commands of {2}, many UNIX commands exist to perform various 
kinds of file manipulation. Small data bases can often be managed quite simply by combining 
text processing {5}, shell programming {6}, and the commands listed below in {7.3}. 

7.1 SED-A Non-Interactive Text Editor (8.2.3) 

7.l AWK-A Pattern Scanning and Processing Lanauage (E.3.1) 

7.3 Manual Entries 

The starred ( *) items below are especially useful for dealing with "fielded data," i.e., data 
where each line is a sequence of delimited fields. The following are used to search or edit files 
in a single pass: 

awk(l)* 
grep( l) 

sed(l)* 
tr( l) 

perform actions on lines matching specified patterns. 
search a file for a pattern; more powerful and specialized versions include 
egrep and fgrep. 
stream editor. 
transliterate (substitute or delete specified characters). 

The following compare files in different ways: 

cmp(I) 
comm(l) 
diff(I) 

compare files (byte by byte). 
print lines common to and/or different in two files. 
differential file comparator (minimal editing for conversion). 



6 

The following combine files and/or split them apart: 

archiver and library maintainer. 
general file copying and archiving. 
cut out selected fields of each line of a file. 

UNIX Documentation Road Map 

ar(l) 
cpio(l) 
cut( I)* 
join( 1) 
paste(l )* 
split( I) 

join two relations specified by the lines of two files. 
merge lines from several files. 
split file into chunks of specified size. 

The following interrogate files and print information about them: 

file( I) 
od(l) 
sum(l) 
wc(l) 

determine file type (best guess). 
octal dump (and other kinds also). 
sum and count blocks in a file. 
word (and line and character) count. 

Miscellaneous commands: 

find(l) 
sort( 1 )* 
tail( I) 
tee(l) 
uniq(I )* 

search directory structure for specified kinds of files. 
sort or merge files. 
print the last part of a file. 
copy single input to several output files. 
report repeated lines in a file, or obtain unique ones. 

8. C PROGRAMMING 

Try to use existing tools first, before writing C programs at all. 

8.1 The C Proeramming Language 

A book written by B. W. Kernighan and D. M. Ritchie; published by Prentice Hall (1978). It 
contains comprehensive text and includes a tutorial and a reference manual. Read the tutorial; 
try the examples. Check for updates to the reference manual {8.2} from time to time. 

8.2 The C Programmin2 Language-Reference Manual (D.1.1) •• 

8.3 UNIX Programming (D.3.1) • 

8.4 A Guide to the C Library for UNIX Users (D.1.2) • 

8.5 SDB-A Symbolic Debugger (D.5.1) 

8.6 YACC-Yet Another Compiler-Compiler (E.1.2) 

8.7 LEX-A Lexical Analyzer Generator (E.l.1) 

8.8 LINT, a C Program Checker (D.1.3) 

8.9 MAKE-A Program for Maintaining Computer Pr02rams (D.4.1) 

8.10 An Augmented Version of MAKE (D.4.2) 

8.11 Things to Do 

Read {8.1} and do some of the exercises. A good way to become familiar with C is to look at 
the source code of existing programs, especially ones whose functions are well known to you. 
Much code can be found in directory /usr/src. In particular, the directory cmd contains the 
source for most of the commands. Also, investigate directory /usr/include. 

8.12 Manual Entries 

ar(l) archive and library maintainer. 
cc( 1) compile C programs. 
ld(I) link edit object. files; you must know about some of its flags. 



UNIX Documemation Road Map 

lex( 1) 
lint( I) 
!order( 1) 
make( I) 
nm(l) 
prof( I) 
ps(l) 
sdb( l) 
strip( I) 
time(l) 
yacc(l) 

generate lexical analyzers. 
verify C programs. 
find ordering relation for an object library. 
automate program (re)generation procedures. 
print name (i.e., symbol) list. 
display profile data; used for program optimization. 
report active process status. 
debug C and F77 programs symbolically on the VAX 11/780. 
remove symbols and relocation bits from executable files. 
time a command. 
parser generator. 

9. NUMERICAL COMPUTATION 

9.1 DC-An InteractiYe Desk Calculator (E.5.2) 

9.2 BC-An Arbitrary Precision Desk-Calculator Language (E.S.l) 

9.3 AWK-A Pattern S~nning and Processing Language (E.3.1) 

9.4 A Portable FORTRAN 77 Compiler (D.2.1) 

9.S RATFOR-A Preprocessor for a Rational FORTRAN (D.2.2) 

9.6 SDB-A Symbolic Debugger (D.5.1) 

9. 7 Manual Entries 

awk( 1) 
bc(l) 
bs(l) 
dc(l) 
f77(1) 
ratfor( 1) 
sdb( I) 

perform actions on lines matching specified patterns. 
an interactive language, acts as front end for dc(l). 
a compiler/interpreter for modest-sized programs. 
a desk calculator. 
a FORTRAN compiler. 
a rational FORTRAN dialect. 
debug C and F77 programs symbolically on the VAX 11/780. 

10. SOURCE CODE CONTROL SYSTEM 

10.1 Source Code Control System User's Guide (E.4.1) • 

10.l Manual Entries 

admin(l) 
cdc(l) 
comb( I) 
delta( 1) 
get( 1) 
help{ I) 
prs(l) 
rmdel(l) 
sact( l) 
sccsdiff( 1) 
unget{l) 
val( I) 
what(l) 

create and administer SCCS files. 
change the delta commentary of an SCCS file. 
combine deltas of an SCCS file. 
create a new version or delta of a file under SCCS control. 
get a particular version of an SCCS file, usually for editing. 
print helpful error messages and information about a command. 
print delta information of an SCCS file in a specified format. 
remove a delta. 
print current SCCS file editing activity. 
print the different lines between two deltas of an SCCS file. 
undo the version control mechanism created by a get for editing. 
validate an SCCS file. 
print out embedded information lines placed in a file by secs. 

7 



8 

11. INTER-SYSTEM COMMUNICATION 

11.1 A Dial-up Network of UNIX Systems· (E.8.1) • 

11.2 UNIX Remote Job Entry User's Guide (E.7.1) • 

11.3 Manual Entries 

UNIX Documentation Road Map 

The following commands (most of which are site-dependent) are useful in communicating with 
other systems: 

cu(lC) 
dpr{IC) 
fget(IC) 
fsend( IC) 
gcat( l C) 
send(lC) 
uucp(lC) 
uux(lC) 

call another system. 
print files off-line at a specified destination. 
retrieve files from the HONEYWELL 6000. 
send files to the HONEYWELL 6000. 
send phototypesetter output to the HONEYWELL 6000. 
send files to an IBM host for execution using Remote Job Entry. 
copy files from one UNIX system to another. 
execute command(s) on another UNIX system. 

12. LOCAL INFORMATION 

l<it' This section should be provided by each individual UNIX installation. 

January 1981 



UNIX 

B.2.1 

A Tutorial Introduction to the UNIX Text Editor 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Almost all text input on the UNIXt operating system is done with the text-editor ed. 
This memorandum is a tutorial guide to help beginners get started with text editing. 

Although it does not cover everything, it does discuss enough for most users' day
to-day needs. This includes printing, appending, changing, deleting, moving and insert
ing entire lines of text; reading and writing files; context searching and line addressing; 
the substitute command; the global commands; and the use of special characters for 
advanced editing. 

Introduction 

Ed is a "text editor", that is, an interactive 
program for creating and modifying "text'', 
using directions provided by a user at a terminal. 
The text is often a document like this one, or a 
program or perhaps data for a program. 

This introduction is meant to simplify learn
ing ed. The recommended way to learn ed is to 
read this document, simultaneously using ed to 
follow the examples, then to read the description 
in Section 1 of the UNIX User's Manual, all the 
while experimenting with ed. (Solicitation of 
advice from experienced users is also useful.) 

Do the exercises! They cover material not 
completely discussed in the actual text. An 
appendix summarizes the commands. 

Disclaimer 

This is an introduction and a tutorial. For 
this reason, no attempt is made to cover more 
than a part of the facilities that ed offers 
(although this fraction includes the most useful 
and frequently used parts). When you have 
mastered the Tutorial, try Advanced Editing on 
UNIX. Also, there is not enough space to explain 
basic UNIX procedures. We will assume that you 
know how to log on to UNIX, and that you have 
at least a vague understanding of what a file is. 
For more on that, read UNIX for Beginners. 

t UNIX is a trademark of Bell Laboratories. 

You must also know what character to type 
as the end-of-line on your particular terminal. 
This character is the RETURN key on most ter
minals. Throughout, we will refer to this charac
ter, whatever it is, as RETURN. 

Getting Started 

We'll assume that you have logged in to your 
system and it has just printed the prompt charac
ter, usually either a $ or a %. The easiest way to 
get ed is to type 

ed (followed by a return) 

You are now ready to go - ed is waiting for you 
to tell it what to do. 

Creating Text - The Append Command "a" 

As yaur first problem, suppose you want to 
create some text starting from scratch. Perhaps 
you are .typing the very first draft of a paper; 
clearly it will have to start somewhere, and 
undergo modifications later. This section will 
show how to get some text in, just to get started. 
Later we'll talk about how to change it. 

When ed is first started, it is rather like work
ing with a blank piece of paper - there is no 
text or information present. This must be sup
plied by the person using ed; it is usually done 
by typing in the text, or by reading it into ed 
from a file. We will start by typing in some text, 
and return shortly to how to read files. 



2 

First a bit of terminology. In ed jargon, the 
text being worked on is said to be "kept in a 
buffer." Think of the buffer as a work space, if 
you like, or simply as the information that you 
are going to be editing. In effect the buffer is 
like the piece of paper, on which we will write 
things, then change some of them, and finally 
file the whole thing away for another day. 

The user tells ed what to do to his text by 
typing instructions called "commands." Most 
commands consist of a single letter, which must 
be typed in lower case. Each command is typed 
on a separate line. (Sometimes the command is 
preceded by information about what line or lines 
of text are to be affected - we will discuss these 
shortly.) Ed makes no response to most com
mands - there is no prompting or typing of 
messages like "ready". (This silence is preferred 
by experienced users, but sometimes a hangup 
for beginners.) 

The first command is append. written as the 
letter 

a 

all by itself. It means "append (or add) text 
lines to the buffer, as I type them in." Append
ing is rather like writing fresh material on a piece 
of paper. 

So to enter lines of text into the buffer, just 
type an a followed by a RETURN, followed by 
the lines of text you want, like this: 

a 
Now is the time 
for all good men 
to come to the aid of their party. 

The only way to stop appending is to type a 
line that contains only a period. The "." is used 
to tell ed that you have finished appending. 
(Even experienced users forget that terminating 
"." sometimes. If ed seems to be ignoring you, 
type an extra line with just "." on it. You may 
then find you've added some garbage lines to 
your text, which you'll have to take out later.) 

After the append command has been done, 
the buffer will contain the three lines 

Now is the time 
for all good men 
to come to the aid of their party. 

The "a" and "." aren't there, because they are 
not te'xt. 

To add more text to wh,af you already have, 
just issue another a command, and continue typ
ing. 

Editor Tutorial 

Error Messages - "?" 

If at any time you make an error in the com
mands you type to ed, it will tell you by typing 

? 

This is about as cryptic as it can be, but with 
practice, you can usually figure out how you 
goofed. In some versions of ed, you can get a 
brief explanation of the error by typing 

h 

Writing Text out as a File - The Write Com
mand "w" 

It's likely that you 'II want to save your text 
for later use. To write out the contents of the 
buffer onto a file, use the write command 

w 

followed by the file name you want to write on. 
This will copy the buffer's contents onto the 
specified file (destroying any previous informa
tion on the file). To save the text on a file 
named junk, for example, type 

w junk 

Leave a space between w and the file name. Ed 
will respond by printing the number of characters 
it wrote out. In this case, ed would respond with 

68 

(Remember that blanks and the return character 
at the end of each line are included in the char
acter count.) Writing a file just makes a copy of 
the text - the buffer's contents are not dis
turbed, so you can go on adding lines to it. This 
is an important point. Ed at all times works on a 
copy of a file, not the file itself. No change in 
the contents of a file takes place until you give a 
w command. (Writing out the text onto a file 
from time to time as it is being created is a good 
idea, since if the system crashes or if you make 
some horrible mistake, you will lose all the text 
in the buffer but any text that was written onto a 
file is relatively safe.) 

Leaving ed - The Quit Command "q" 

To terminate a session with ed, first save 
your text by writing it onto a file using the w 
command, and then type the quit command 

q 

The system will respond with the prompt charac
ter ($ or%). At this point your buffer vanishes, 
with all its text, which is why you want to write it 
out before quitting.• 

• Actually, ed will print ! if you try to quit without 
writing. At that point, write if you want; if not, another q 
will get you out regardless. 



Editor Tutorial 

Exercise 1: 

Enter ed and create some text using 

a 
... text ... 

Write it out using w. Then leave ed with the q 
command, and print the file, to see that every
thing worked. (To print a file, say 

pr file_name 

or 

cat file_name 

in response to the prompt character. Try both.) 

Reading Text From a File - The Edit Com
mand "e" 

A common way to get text into the buffer is 
to read it from a file in the file system. This is 
what you do to edit text that you saved with the 
w command in a previous session. The edit 
command e fetches the entire contents of a file 
into the buffer. So if you had saved the three 
lines "Now is the time", etc., with a w com
mand in an earlier session, theed command 

ejunk 

would fetch the entire contents of the file junk 
into the buffer, and respond 

68 

which is the number of characters in junk. If 
anything was already in the buffer, it is deleted first. 

If you use the e command to read a file into 
the buffer, then you need not use a file name 
after a subsequent w command; ed remembers 
the last file name used in an e command, and w 
will write on this file. Thus a good way to 
operate is 

ed 
e file 
[editing session] 
w 
q 

This way, you can simply say w from time to 
time, and be .secure in the knowledge that if you 
got the file name right at the beginning, you are 
writing into the proper file each time. 

You can find out at any time what file name 
ed is remembering by typing the file command f. 
In this example, if you typed 

f 

ed would reply 

junk 

3 

Reading Text From a File - The Read Com
mand "r" 

Sometimes you want to read a file into the 
buffer without destroying anything that is already 
there. This is done by the read command r. 
The command 

rjunk 

will read the file junk into the buffer; it adds it 
to the end of whatever is already in the buffer. 
So if you do a read after an edit: 

ejunk 
r junk 

the buffer will contain two copies of the text (six 
Jines). 

Now is the time 
for all good men 
to come to the aid of their party. 
Now is the time 
for all good men 
to come to the aid of their party. 

Like the w and e commands, r prints the number 
of characters read in, after the reading operation 
is complete. 

Generally speaking, r is much less used than 
e. 

Exercise 2: 

Experiment with the e command - try read
ing and printing various files. You may get an 
error ?name, where name is the name of a file; 
this means that the file doesn't exist, typically 
because you spelled the file name wrong, or 
perhaps that you are not allowed to read or write 
it. Try alternately reading and appending to see 
that they work similarly. Verify that 

ed file_name 

is exactly equivalent to 

ed 
e file_name 

What does 

f file_name 

do? 

Printing the Contents of the Buffer - The 
Print Command "p" 

To print or list the contents of the buffer (or 
parts of it) on the terminal, use the print com
mand 

p 

The way this is done is as follows. Specify the 
lines where you want printing to begin and where 



4 

you want it to end, separated by a comma, and. 
followed by the letter p. Thus to print the first 
two lines of the buffer, for example, (that is, 
lines 1 through 2) say 

l,2p (starting line-I, ending line=2 p) 

Ed will respond with 

Now is the time 
for all good men 

Suppose you want to print all the lines in the 
buffer. You could use l,3p as above if you knew 
there were exactly 3 lines in the buffer. But in 
general, you don't know how many there are, so 
what do you use for the ending line number? 
Ed provides a shorthand symbol for "line 
number of last line in buffer" - the dollar sign 
$. Use it this way: 

1,$p 

This will print all the lines in the buffer (line 1 
to last line); I ,Sp .can be abbreviated ,p. If you 
want to stop the printing before it is finished, 
push the DEL or Delete key; ed will type 

? 

and wait for the next command. 

To print the last line of the buffer, you could 
use 

$,Sp 

but ed lets you abbreviate this to 

$p 

You can print any single line by typing the line 
number followed by a p. Thus 

lp 

produces the response 

Now is the time 

which is the first line of the buffer. 

In fact, ed lets you abbreviate even further: 
you can print any single line by typing just the 
line number - no need to type the letter p. So 
if you say 

$ 

ed will print the last line of the buffer. 

You can also use$ in combinations like 

$-I.Sp 

which prints the last two lines of the buffer. 
This helps when you want to sec how far you got 
in typing. 

Editor Tutorial 

Exercise 3: 

As before, create some text using the a com
mand and experiment with the p command. You 
will find, for example, that you can't print line 0 
or a line beyond the end of the buffer, and that 
attempts to print a buffer in reverse order by say
ing 

3,lp 

don't work. 

The Current Line - "Dot" or"." 

Suppose your buffer still contains the six 
lines as above, that you have just typed 

I.3p 

and ed has printed the three lines for you. Try 
typing just 

p (no line numbers) 

This will print 

to come to the aid of their party. 

which is the third line of the buffer. In fact it is 
the last (most recent) line that you have done 
anything with. (You just printed it!) You can 
repeat this p command without line numbers, 
and it will continue to print line 3. 

The reason is that ed maintains a record of 
the last line that you did anything to (in this 
case, line 3, which you just printed) so that it 
can be used instead of an explicit line number. 
This most recent line is referred to by the short
hand symbol 

(pronounced .. dot"). 

Dot is a line number in the same way that Sis; it 
means exactly "the current line'', or loosely, 
"the line you most recently did something to." 
You can use it in several ways - one possibility 
is to say 

.,Sp 

This will print all the lines from (including) the 
current line to the end of the buffer. In our 
example these are lines 3 through 6. 

Some commands change the value of dot, 
while others do not. The p command sets dot to 
the number of the last line printed; the last com
mand will set both . and S to 6. 

Dot is most useful when used in combina
tions like this one: 

. + l. (or equivalently, • +Ip) 

This means "print the next line" and is a handy 
way to step slowly through a buffer. You can 
also say 



Editor Tutorial 

. - 1 (or . - 1 p ) 

which means "print the line before the current 
line." This enables you to go backwards if you 
wish. Another useful one is something like 

.-3,.-lp 

which prints the previous three lines. 

Don't forget that all of these change the 
value of dot. You can find out what dot is at any 
time by typing 

Ed will respond by printing the value of dot. 

Let's summarize some things about the p 
command and dot. Essentially p can be preceded 
by 0, I, or 2 line numbers. If there is no line 
number given, it prints the "current line", the 
line that dot refers to. If there is one line 
number given (with or without the letter p), it 
prints that line (and dot is set there); and if 
there are two line numbers, it prints all the lines 
in that range (and sets dot to the last line 
printed.) If two line numbers are specified the 
first can't be bigger than the second (see Exer
cise 2.) 

Typing a single return will cause printing of 
the next line - it's equivalent to .+lp. Try it. 
Try typing a - ; you will find that it's equivalent 
to .-lp. 

Deleting Lines - The Delete Command "d" 

Suppose you want to get rid of the three 
extra lines in the buffer. This is done by the 
delete command 

d 

Except that d deletes lines instead of printing 
them, its action is similar to that of p. The lines 
to be deleted are specified for d exactly as they 
are for p: 

starting line, ending line d 

Thus the command 

4,Sd 

deletes lines 4 through the end. There are now 
three lines left, as you can check by using 

1,Sp 

And notice that$ now is line 3! Dot is set to the 
next line after the last line deleted, unless the 
last line deleted is the last line in the buffer. In 
that case, dot is set to $. 

5 

Exercise 4: 

Experiment with a, e, r, w, p and d until you 
.are sure that you know what they do, and until 
you understand how dot, S, and line numbers 
are used. 

If you are adventurous, try using line 
numbers with a, r and w as well. You will find 
that a will append lines after the line number 
that you specify (rather than after dot); that r 
reads a file in after the line number you specify 
(not necessarily at the end of the buffer); and 
that w will write out exactly the lines you specify, 
not necessarily the whole buffer. These varia
tions are sometimes handy. For instance you 
can insert a file at the beginning of a buffer by 
saying 

Or file_name 

and you can enter lines at the beginning of the 
buffer by saying 

Oa 
... text ... 

Notice that .w is very different from 

w 

Modifying Text - The Substitute Command 
"su 

We are now ready to try one of the most 
important of all commands - the substitute 
command 

s 

This is the command that is used to change indi
vidual words or letters within a line or group of 
lines. It is what you use, for example, for 
correcting spelling mistakes and typing errors. 

Suppose that, because of a typing error, line 
I says 

Now is th time 

namely, the e has been left off the the. You can 
use s to fix this up as follows: 

ls/th/the/ 

This says: "in line I, substitute for the characters 
th the characters the." To verify that it works (ed 
will not print the result automatically) say 

p 

and get 

Now is the time 

which is what you wanted. Notice that dot must 
have been set to the line where the substitution 



6 

took place, since the p command printed that 
line. Dot is always set this way with the s com
mand. 

The general way to use the substitute com
mand is 

starting-line. ending-line sf change this/to this/ 

Whatever string of characters is between the first 
pair of slashes is replaced by whatever is between 
the second pair, in all the lines between starting
line and ending-line. Only the first occurrence on 
each line is changed, however. If you want to 
change every occurrence, see Exercise 5. The 
rules for line numbers are the same as those for 
p, except that dot is set to the last line changed. 
(But there is a trap for the unwary: if no substi
tution took place, dot is not changed. This 
causes an error ? as a warning.) 

Thus you can say 

1,Ss/speling/spelling/ 

and correct the first spelling mistake on each line 
in the text. (This is useful for people who are 
consistent misspellers!) 

If no line numbers are given, the s command 
assumes we mean "make the substitution on line 
dot", so it changes things only on the current 
line. This leads to the very common sequence 

s/something/something else/p 

which makes some correction on the current 
line, and then prints it, to make sure it worked 
out right. If it didn't, you can try again. (Notice 
that there is a p on the same line as the s com
mand. With few exceptions, p can follow any 
command; no other multi-command lines are 
legal.) 

It's also legal to say 

s/ ... // 
which means "change the first string of charac
ters to "nothing", i.e., remove them. This is 
useful for deleting extra words in a line or 
removing extra letters from words. For instance, 
if you had 

Nowxx is the time 

you can say 

s/xx//p 

to get 

Now is the time 

Notice that // (two adjacent slashes) means "no 
characters'', not a blank. There is a difference! 
(See below for another meaning of//.) 

Editor Tutorial 

Exercise 5: 

Experiment with the substitute command. 
See what happens if you substitute for some 
word on a line with several occurrences of that 
word. For example, do this: 

a 
the other side of the coin 

s/the/on the/p 

You will get 

on the other side of the coin 

A substitute command changes only the first 
occurrence of the first string. You can change all 
occurrences by adding a g (for "global") to the s 
command, like this: 

s/ ... / ... /gp 

Try other characters instead of slashes to delimit 
the two sets of characters in the s command -
anything should work except blanks or tabs. 

(If you get funny results using any of the 
characters · 

s • \ &. 

read the section on ••special Characters".) 

Context Searching - "/ ..• /" 

With the substitute command mastered, you 
can move on to another highly important idea of 
ed - context searching. 

Suppose you have the original three line text 
in the buffer: 

Now is the time 
for all good men 
to come to the aid of their party. 

Suppose you want to find the line that contains 
their so you can change it to the. Now with only 
three lines in the buffer, it's pretty easy to keep 
track of what line the word their is on. But if the 
buffer contained several hundred lines, and 
you'd been making changes, deleting and rear
ranging lines, and so on, you would no longer 
really know what this line number would be. 
Context searching is simply a method of specify
ing the desired line, regardless of what its 
number is, by specifying some context on it. 

The way to say "search for a line that con
tains this particular string of characters" is to 
type 

/string of characters we want to find/ 

for example, the ed command 

/their/ 



Editor Tutorial 

is a context search which is sufficient to find the 
desired line - it will locate the next occurrence 
of the characters between slashes ("their"). It 
also sets dot to that line and prints the line for 
verification: 

to come to the aid of their party. 

"Next occurrence" means that ed starts looking 
for the string at line , +I, searches to the end of 
the buffer, then continues at line I and searches 
to line dot. (That is, the search "wraps around" 
from S to I.) It scans all the lines in the buffer 
until it either finds the desired line or gets back 
to dot again. If the give.n string of characters 
can't be found in any line, ed types the error 
message 

? 

Otherwise it prints the line it found. 

You can do both the search for the desired 
line and a substitution all at once, like this: 

/their/s/their/the/p 

which will yield 

to come to the aid of the party. 

There were three parts to that last command: 
context search for the desired line, make the 
substitution, print the line. 

The expression /their/ is a context search 
expression. Jn their simplest form, all context 
search expressions are like this - a string of 
characters surrounded by slashes. Context 
searches are interchangeable with line numbers, 
so they can be used by themselves to find and 
print a desired line, or as line numbers for some 
other command, like s. They were used both 
ways in the examples above. 

Suppose the buffer contains the three familiar 
lines 

Now is the time 
for all good men 
to come to the aid of their party. 

Then theed line numbers 

/Now/+l 
/good/ 
/party/-1 

are all context search expressions, and they all 
refer to the same line (line 2). · To make a 
change in line 2, you could say 

/Now/+ ls/good/bad/ 

or 

/good/s/good/bad/ 

or 

7 

/party/-ls/good/bad/ 

The choice is dictated only by convenience. You 
could print all three lines by, for instance 

/Now/ ,/party /p 

or 

/Now/,/Now/+2p 

or by any number of similar combinations. The 
first one of these might be better if you don't 
know how many lines are involved. (Of course, 
if there were only three lines in the buffer, you'd 
use 

1,Sp 

but not if there were several hundred.) 

The basic rule is: a context search expression 
is the same as a line number, so it can be used 
wherever a line number is needed. 

Exercise 6: 

Experiment with context searching. Try a 
body of text with several occurrences of the 
same string of characters, and scan through it 
using the same context search. 

Try using context searches as line numbers 
for the substitute, print and delete commands. 
(They can also be used with r, w, and a.) 

Try context searching using ?text? instead 
of /text/. This scans lines in the buffer in 
reverse order rather than normal. This is some
times useful if you go too far while looking for 
some string of characters - it's an easy way to 
back up. 

(If you get funny results with any of the 
characters 

$ • \ & 

read the section on "Special Characters".) 

Ed provides a shorthand for repeating a con· 
text search for the same string. For example, 
theed line number 

/string/ 

will find the next occurrence of strinz. It often 
happens that this is not the desired line, so the 
search must be repeated. This can be done by 
typing merely 

II 
This shorthand stands for "the most recently 
used context search expression." It can also be 
used as the first string of the substitute com
mand, as in 

/stringl /s//string2/ 



8 

which will find the next occurrence of stringl 
and replace it by string2. This can save a lot of 
typing. Similarly 

?'! 

means "scan backwards for the same expres
sion." 

Change and Insert - The "c" and "i" Com
mands 

This section discusses the change command 

c 

which is used to change or replace a group of 
one or more lines, and the insert command 

which is used for inserting a group of one or 
more lines. 

"Change", written as 

c 

is used to replace a number of lines with 
different lines, which are typed in at the termi
nal. for example, to change lines . +I through $ 
to something else, type 

.+J,$c 

... type the lines of text you want here ... 

The lines you type between the c command and 
the . will take the place of the original lines 
between start line and end line. This is most 
useful in replacing a line or several lines which 
have errors in them. 

If only one line is specified in the c com
mand, then just that line is replaced. (You can 
type in as many replacement lines as you like.) 
Notice the use of . to end the input - this 
works just like the . in the append command 
and must appear by itself on a new line. If no 
line number is given, line dot is replaced. The 
value of dot is set to the last line you typed in. 

"Insert" is similar to append - for instance 

/string/i 
... type the lines to be inserted here ... 

will insert the given text before the next line that 
contains "string''. The text between i and . is 
inserted before the specified line. If no line 
number is specified dot is used. Dot is set to the 
last line io.serted. 

Editor Tutorial 

Exercise 7: 

"Change" is rather like a combination of 
delete followed by insert. Experiment to verify 
that 

start, end d 
I 

... text ... 

is almost the same as 

start, end c 
... text ... 

These are not precisely the same if line $ gets 
deleted. Check this out. What is dot? 

Experiment with a and i, to see that they are 
similar, but not the same. You will observe that 

line-number a 
... text ... 

appends after the given line, while 

line-number i 
... text ... 

inserts before it. Observe that if no line number 
is given, i inserts before line dot, while a 
appends after line dot. 

Mo~ing Text Around - The "m'' Command 

The move command m is used for cutting 
and pasting - it lets you move a group of lines 
from one place to another in the buffer. Sup
pose you want to put the first three lines of the 
buffer at the end instead. You could do it by 
saying: 

l,3w temp 
$r temp 
I ,3d 

(Do you see why?) but you can do it a lot easier 
with the m command: 

J,3m$ 

The general case is 

start line, end line m after this line 

Notice that there is a third line to be specified -
the place where the moved stuff gets put. Of 
course the lines to be moved can be specified by 
context searches; if you had 



Editor Tutorial 

First paragraph 

end of first paragraph. 
Second paragraph 

end of second paragraph. 

you could reverse the two paragraphs like this: 

/Second/ ,/end of second/m/First/-1 

Notice the -1: the moved text goes after the 
line mentioned. Dot is set to the last line 
moved. 

The Global Commands "g" and "•" 

The global command g is used to execute one 
or more ed commands on all those lines in the 
buffer that match some specified string. For 
example 

g/peling/p 

prints all lines that contain peling. More use
fully, 

g/peling/s//pelling/gp 

makes the substitution everywhere on the line, 
then prints each corrected line. Compare this to 

l ,$s/peling/pelling/gp 

which only prints the last line substituted. 
Another subtle difference is that the g command 
does not give a ? if peling is not found where 
the s command will. 

There may be several commands (including 
a, c, I, r, w, but not g); in that case, every line 
except the last must end with a backslash\: 

g/xxx/, - I s/abc/deff\ 
.+2s/ghi/jklf\ 
.-2,.p 

makes changes in the lines before and after each 
line that contains xxx, then prints all three lines. 

The ' command is the same as g, except that 
the commands are executed on every line that 
does not match the string following v: 

v/ /d 
deletes every line that does not contain a blank. 

Special Characters 

You may have noticed that things just don't 
work right when you used some characters like ., 
•, $, and others in context searches and the sub
stitute command. The reason is rather complex, 
although the cure is simple. Basically, ed treats 
these characters as special, with special mean
ings. For instance, in a context search or the first 
string of the substitute command only, . means 

9 

"any character." not a period, so 

/x.y/ 

means "a line with an x, any character, and a 
y," not just "a line with an x, a period, and a 
y." A complete list of the special characters that 
can cause trouble is the following: 

$ . \ 
Warning: The backslash character \ is special to 
ed. For safety's sake, avoid it where possible. If 
you have to use one of the special characters in a 
substitute command, you can turn off its magic 
meaning temporarily by preceding it with the 
backslash. Thus 

sf\\\.\•/backslash dot star/ 

will change\.• into "backslash dot star". 

Here is a hurried synopsis of the other special 
characters. First, the circumflex A signifies the 
beginning of a line. Thus 

;-string/ 

finds string only if it is at the beginning of a 
!in e: it will find 

string 

but not 

the string ... 

The dollar-sign S is just the opposite of the 
circumflex; it means the end of a line: 

/string$/ 

will only find an occurrence of string that is at 
the end of some line. This implies, of course, 
that 

rstring$/ 

will find only a line that contains just string, and 

r.s/ 
finds a line containing exactly one character. 

The character ., as we mentioned above, 
matches anything; 

/x.y/ 

matches any of 

x+y 
x-y 
xy 
x.y 

This is useful in conjunction with •, which is a 
repetition character; a• is a shorthand for "any 
number of a's," so .• matches any number of 
anythings. This is used like this: 



10 

s/.•/stuff/ 

which changes an entire line, or 

s/.•,// 
which deletes all characters in the line up to and 
including the last comma. (Since .• finds the 
longest possible match, this goes up to the last 
comma.) 

[ is used with ] to form "character classes": 
for example, 

/[0123456789)/ 

matches any single digit - any one of the char
acters inside the braces will cause a match. This 
can be abbreviated to [0-9). 

Finally, the & is another shorthand character 
- it is used only on the right-hand part of a sub
stitute command where it means "whatever was 
matched on the left-hand side". It is used to 
save typing. Suppose the current line contained 

Now is the time 

and you wanted to put parentheses around it. 
You could just retype the line, but this is tedi
ous. Or you could say 

sr /(/ 
s/$/)/ 

using your knowledge of ~ and $. But the easi
est way uses the&: 

s/.•/(&.)/ 

This says "match the whole line, and replace it 
by itself surrounded by parentheses." The & can 
be used several times in a line; consider using 

s/.•/&.? &.!!/ 

to produce 

Now is the time? Now is the time!! 

You don't have to match the whole line, of 
course: if the buffer contains 

the end of the world 

you could type 

/world/s//& is at hand/ 

to produce 

the end of the world is at hand 

Observe this expression carefully, for it illus
trates how to take advantage of ed to save typ
ing. The· string /world/ found the desired line; 
the shorthand // found the same word in the 
line: and the & saves you from typing it again. 

The & is a special character only within the 
replacement text of a substitute command, and 

Editor Tutorial 

has no special meaning elsewhere. You can turn 
off the special meaning of & by preceding it with 
a\: 

s/ampersand/\&./ 

will convert the word "ampersand" into the 
literal symbol & in the current line. 

Summary of Commands and Line Numbers 

The general form of ed commands is the 
command name, perhaps preceded by one or two 
line numbers, and, in the case of e, r, and w, 
followed by a file name. Only one command is 
allowed per line, but a p command may follow 
any other command (except fore, r, wand q). 

a: Append, that is, add lines to the buffer (at line 
dot, unless a different line is specified). Append
ing continues until . is typed on a new line. Dot 
is set to the last line appended. 

c: Change the specified lines to the new text 
which follows. The new lines are terminated by 
a ., as with a. If no lines arc specified, replace 
line dot. Dot is set to last line changed. 

d: Delete the lines specified. If none are 
specified, delete line dot. Dot is set to the first 
undeleted line, unless S is deleted, in which case 
dot is set to $. 

e: Edit new file. Any previous contents of the 
buffer are thrown away, so issue a w beforehand. 

f: Print remembered file name. If a name fol
lows f the remembered name will be set to it. 

g: The command 

g/---/commands 

will execute the commands on those lines that 
contain ---, which can be any context search 
expression. 

i: Insert lines before specified line (or dot) until 
a . is typed on a new line. Dot is set to last line 
inserted. 

m: Move lines specified to after the line named 
after m. Dot is set to the last line moved. 

p: Print specified lines. If none specified, print 
line dot. A single line number is equivalent to 
line-number p. A single return prints • + 1, the 
next line. 

q: Quit ed. Wipes out all text in buffer if you 
give it twice in a row without first giving a w 
command. 

r: Read a file into buffer (at end unless specified 
elsewhere.) Dot is set to last line read. 

s: The command 

s/stringl /string2/ 



Editor Tutorial 

substitutes the characters striogl into striogl in 
the specified lines. If no lines are specified, 
make the substitution in line dot. Dot is set to 
last line in which a substitution took place, which 
means that if no substitution took place, dot is 
not changed. s changes only the first occurrence 
of stringl on a line; to change all of them, type 
a g after the final slash. 

v: The command 

v /---/commands 

executes commands on those lines that do not 
contain ---. 

w: Write out buffer onto a file. Dot is not 
changed . 

• - : Print value of dot. ( = by itself prints the 
value of S.) 

!: The line 

!command-line 

causes command-line to be executed as a UNIX 
command. 

/-----/: Context search. Search for next line . 
which contains this string of characters. Print it. 
Dot is set to the line where string was found. 
Search starts at • +I, wraps around from $ to 1, 
and continues to dot, if necessary. 

?-----?: Context search in reverse direction. 
Start search at • -1, scan to 1, wrap around to S. 

January 1981 

11 



UNIX 

B.2.2 

Advanced Editing on UNIX 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This paper is meant to help secretaries, typists and programmers to make effective 
use of the UNIXt facilities for preparing and editing text. It provides explanations and 
examples of 

• special characters, line addressing and global commands in the editor ed; 

• commands for "cut and paste" operations on files and parts of files, including the 
mv, cp, cat and rm commands, and the r, w, m and t commands of the editor; 

• editing scripts and editor-based programs like grep and sed. 

Although the treatment is aimed at non-programmers, new UNIX users with any back
ground should find helpful hints on how to get their jobs done more easily. 

1. INTRODUCTION 

Although UNIX provides remarkably 
effective tools for text editing, that by itself is no 
guarantee that everyone will automatically make 
the most effective use of them. In particular, 
people who are not computer specialists - typ
ists, secretaries, casual users - often use the 
system less effectively than they might. 

This document is intended as a sequel to A 
Tutorial Introduction to the UNIX Text Editor [I]. 
providing explanations and examples of how to 
edit with less effort. (You should also be fami
liar with the material in UNIX For Beginners 
[2].) Further information on all commands dis
cussed here can be found in the UNIX User's 
Manual [3]. 

Examples are based on observations of 
users and the difficulties they encounter. Topics 
covered include special characters in searches 
and substitute commands, line addressing, the 
global commands, and line moving and copying. 
There are also brief discussions of effective use 
of related tools, like those for file manipulation, 
and those based on ed, like grep and sed. 

A word of caution. There is only one way 
to learn to use something, and that is to use it. 
Reading a description is no substitute for trying 

t UNIX is a trademark of Bell Laboratories. 

something. A paper like this one should give 
you ideas about what to try, but until you actu
ally try something, you will not learn it. 

2. SPECIAL CHARACTERS 

The editor ed is the primary interface to 
the system for many people, so it is worthwhile 
to know how to get the most out of ed for the 
least etf ort. 

The next few sections will discuss 
shortcuts and labor-saving devices. Not all of 
these will be instantly useful to any one person, 
of course, but a few will be, and the others 
should give you ideas to store away for future 
use. And as always, until you try these things, 
they will remain theoretical knowledge, not 
something you have confidence in. 

The List Command 'I' 

ed provides two commands for printing the 
contents of the lines you 're editing. Most people 
are familiar with p, in combinations like 

l,$p 

to print all the lines you 're editing, or 

s/abc/def/p 

to change 'abc' to 'def' on the current line. Less 



2 

familiar is the list command I (the letter 'l'), 
which gives slightly more information than p. In · 
particular, I makes visible characters that are 
normally invisible, such as tabs and backspaces. 
If you list a line that contains some of these, I 
will print each tab as ~ and each backspace as 
~- This makes it much easier to correct the sort 
of typing mistake that inserts extra spaces adja
cent to tabs, or inserts a backspace followed by a 
space. 

The I command also 'folds' long lines for 
printing - any line that exceeds 72 characters is 
printed on multiple lines; each printed line 
except the last is terminated by a backslash \, so 
you can tell it was folded. This is useful for 
printing long lines on short terminals. 

Occasionally the I command will print in a 
line a string of numbers preceded by a backslash, 
such as \07 or \16. These combinations are used 
to make visible characters that normally don't 
print, like form feed or vertical tab or bell. Each 
such combination is a single character. When 
you see such characters, be wary - they may 
have surprising meanings when printed on some 
terminals. Often their presence means that your 
finger slipped while you were typing; you almost 
never want them. 

The Substitute Command 's' 

Most of the next few sections will be taken 
up with a discussion of the substitute command 
s. Since this is the command for changing the 
contents of individual lines, it probably has the 
most complexity of any ed command, and the 
most potential for effective use. 

As the simplest place to begin, recall the 
meaning of a trailing g after a substitute com
mand. With 

s/this/that/ 

and 

s/this/that/g 

the first one replaces the first 'this' on the line 
with 'that'. If there is more than one 'this' on 
the line, the second form with the trailing g 
changes all of them. 

Either form of the s command can be fol
lowed by p or I to 'print' or 'list' (as described in 
the previous section) the contents of the line: 

s/this/that/p 
s/thi~/that/l 
s/this/that/gp 
s/this/that/gl 

are all legal, and mean slightly different things. 
Make sure you know what the differences are. 

Advanced Editing 

Of course, any s command can be pre
ceded by one or two 'line numbers' to specify 
that the substitution is to take place on a group 
of lines. Thus 

l ,$s/mispell/misspcll/ 

changes the first occurrence of 'mispell' to 
'misspell' on every line of the file. But 

1,$s/mispell/misspell/g 

changes every occurrence in every line (and this 
is more likely to be what you wanted in this par
ticular case). 

You should also notice that if you add a p 
or I to the end of any of these substitute com
mands, only the last line that got changed will be 
printed, not all the lines. We will talk later about 
how to print all the lines that were modified. 

The Undo Command 'u' 

Occasionally, you will make a substitution 
in a line, only to realize too late that it was a 
ghastly mistake. The 'undo' command u lets 
you 'undo' the last command, so that the last 
line that was substituted can be restored to its 
previous state by typing the command 

u 

The Metacharacter '. • 

As you have undoubtedly noticed when 
you use ed, certain characters have unexpected 
meanings when they occur in the left side of a 
substitute command, or in a search for a particu
lar line. In the next several sections, we will talk 
about these special characters, which are often 
called 'metacharacters'. 

The first one is the period • .'. On the left 
side of a substitute command, or in a search with 
'/ .. . f', ','stands for any single character. Thus 
the search 

/x.y/ 

finds any line where 'x' and 'y' occur separated 
by a single character, as in 

x+y 
x-y 
xay 
x.y 

and so on. (We will use a to stand for a space 
whenever we need to make it visible.) 

Since '.' matches a single character, that 
gives you a way to deal with funny characters 
printed by I. Suppose you have a line ihat, when 
printed with the 1 command, appears as 



Advanced Editing 

. . . th\07is ... 

and you want to get rid of the \07 (which 
represents the bell character, by the way). 

The most obvious solution is to try 

s/\07 // 

but this will fail. (Try it.) The brute force solu
tion, which most people would now take, is to 
re-type the entire line. This is guaranteed, and is 
actually quite a reasonable tactic if the line in 
question isn't too big, but for a very Jong line, 
re-typing is a bore. This is where the metachar· 
acter '.' comes in handy. Since '\07' really 
represents a single character, if we say 

s/th.is/this/ 

the job is done. The '.' matches the mysterious 
character between the 'h' and the 'i', whatever it 
is. 

Bear in mind that since '.' matches any 
single character, the command 

s/././ 
converts the first character on a line into a •, ', 
which very often is not what you intended. 

As is true of many characters in ed. the • .' 
has several meanings, depending on its context. 
This line shows all three: 

. s/././ 
The first '.'is a line number, the number of the 
line we are editing, which is called 'line dot'. 
(We will discuss line dot more in Section 3.) 
The second •.' is a metacharacter that matches 
any single character on that line. The third •.' is 
the only one that really is an honest literal 
period. On the right side of a substitution, '.' is 
not special. If you apply this command to the 
line 

Now is the time. 

the result will be 

.ow is the time. 

which is probably not what you intended. 

The Backslash '\' 

Since a period means 'any character', the 
question naturally arises of what to do when you 
really want a period. For example, how do you 
convert the line 

Now is the time. 

into 

Now is the time? 

The backslash '\' does the job. A backslash 

3 

turns off any special meaning that the next char
acter might have; in particular, '\.' converts the 
'.' from a 'match anything' into a period, so you 
can use it to replace the period in 

Now is the time. 

like this: 

sf\./? I 
The pair of characters '\.' is considered by ed to 
be a single real period. 

The backslash can also be used when 
searching for lines that contain a special charac
ter. Suppose you are looking for a line that con
tains 

.PP 

The search 

/.PP/ 

isn't adequate, for it will find a line like 

THE APPLICATION OF ... 

because the '.' matches the letter •A'. But if you 
say 

f\.PP/ 

you will find only lines that contain •.PP'. 

The backslash can also be used to turn off 
special meanings for characters other than '.' . 
For example, consider finding a line that con
tains a backslash. The search 

IV 
won't work, because the '\' isn't a literal '\', but 
instead means that the second '/' no longer 
delimits the search. But by preceding a backslash 
with another one, you can search for a literal 
backslash. Thus 

/\\/ 
does work. Similarly, you can search for a for
ward slash • /' with 

/\// 
The backslash turns off the meaning of the 
immediately following '/' so that it doesn't ter
minate the / ... / construction prematurely. 

As an exercise, before reading further, 
find two substitute commands each of which will 
convert the line 

\x\.\y 

into the line 

\x\y 

Here are several solutions; verify that each 
works as advertised. 



4 

sf\\\.// 
s/x •• /x/ 
s/ .. y/y/ 

A couple of miscellaneous notes about 
backslashes and special characters. First, you 
can use any character to delimit the pieces of an 
s command: there is nothing sacred about 
slashes. (But you must use slashes for context 
searching.) For instance, in a line that contains 
a lot of slashes already, like 

I /exec/ /sys.fort.go // etc .... 

you could use a colon as the delimiter - to 
delete all the slashes, type 

s:/::g 

Second, if * and @ are your character 
erase and line kill characters, you have to type 
\* and\@; this is true whether you're talking to 
ed or any other program. 

When you are adding text with a or i or c, 
backslash is not special, and you should only put 
in one backslash for each one you really want. 

The Dollar Sign 'S' 

The next metacharacter, the '$', stands for 
'the end of the line'. As its most obvious use, 
suppose you have the line 

Now is the 

and you wish to add the word 'time' to the end. 
Use the $ like this: 

s/$/ctime/ 

to get 

Now is the time 

Notice that a space is needed before 'time' in the 
substitute command, or you will get 

Now is thetime 

As another example, replace the second 
comma in the following line with a period 
without altering the first: 

Now is the time, for all good men, 

The command needed is 

s/,$/./ 

The $ sign here provides context to make specific 
which comma we mean. Without it, of course, 
the s command would operate on the first 
comma to produce 

Now is the time. for all good men, 

As another example, to convert 

Advanced Editing 

Now is the time. 

into 

Now is the time? 

as we did earlier, we can use 

s/.$/?/ 

Like •. ', the '$' has multiple meanings 
depending on context. In the line 

$s/$/$/ 

the first '$' refers to the last line of the file, the 
second refers to the end of that line, and the 
third is a literal dollar sign, to be added to that 
line. 

The Circumllex ,. ' 

The circumflex (or hat or caret) .~' stands 
for the beginning of the line. For example, sup
pose you are looking for a line that begins with 
'the'. If you simply say 

/the/ 

you will in all likelihood find several lines that 
contain 'the' in the middle before arriving at the 
one you want. But with 

rthe/ 

you narrow the context, and thus arrive at the 
desired one more easily. 

The other use of .~' is of course to enable 
you to insert something at the beginning of a 
line: 

sr /o/ 
places a space at the beginning of the current 
line. 

Metacharacters can be combined. To 
search for a line that contains only the characters 

.PP 

you can use the command 

The Star'•' 

Suppose you have a line that looks like 
this: 

text x y text 

where text stands for lots of text, and there are 
some indeterminate number of spaces between 
the x and the y. Suppose the job is to replace all 
the spaces between x and y by a single space. 
The line is too long to retype, and there are too 
many spaces to count. What now? 



Advanced Editing 

This is where the metacharacter '•' comes 
in handy. A character followed by a star stands 
for as many consecutive occurrences of that 
character as possible. To refer to all the spaces 
at once, say 

s/xo•y/xoy/ 

The construction 'a•' means 'as many spaces as 
possible'. Thus 'xo•y' means 'an x, as many 
spaces as possible, then a y'. 

The star can be used with any character, 
not just space. If the original example was 
instead 

text x - - - - - - - -y text 

then all '-' signs can be replaced by a single 
space with the command 

s/x-*y/xoy/ 

Finally, suppose that the line was 

text x ••••••••• y text 

Can you see what trap lies in wait for the 
unwary? If you blindly type 

s/x.*y/xoy/ 

what will happen? The answer, naturally, is that 
it depends. If there are no other x's or y's on 
the line, then everything works, but it's blind 
luck, not good management. Remem her that '.' 
matches any single character? Then '.•' matches 
as many single characters as possible, and unless 
you're careful, it can eat up a lot more of the 
line than you expected. If the line was, for 
example, like this: 

text x text x ••.•••••• y text y text 

then saying 

s/x.•y/xoy/ 

will take everything from the first 'x' to the.last 
'y', which, in this example, is undoubtedly more 
than you wanted. 

The solution, of course, is to turn off the 
special meaning of '.' with '\.': 

s/x\.*y/xoy/ 

Now everything works, for '\.*' means 'as many 
periods as possible'. 

There are times when the pattern • .•' is 
exactly what you want. For example, to change 

Now is the time for all good men ... 

into 

Now is the time. 

use '·*' to eat up everything after the 'for': 

5 

s/ofor.*/./ 

There are a couple of additional pitfalls 
associated with '*' that you should be aware pf. 
Most notable is the fact that 'as many as possi
ble' means zero or more. The fact that zero is a 
legitimate possibility is sometimes rather surpris
ing. For example, if our line contained 

text xy text x 

and we said 

s/XD*Y/Xoy/ 

y text 

the first 'xy' matches this pattern, for it consists 
of an 'x', zero spaces, and a 'y'. The result is 
that the substitute acts on the first 'xy', and does 
not touch the later one that actually contains 
some intervening spaces. 

The way around this, if it matters, is to 
specify a pattern like 

/xoo•y/ 

which says 'an x, a space, then as many more 
spaces as possible, then a y', in other words, one 
or more spaces. 

The other startling behavior of '*' is again 
related to the fact that zero is a legitimate 
number of occurrences of something followed by 
a star. The command 

S/X*/y/g 

when applied to the line 

abcdef 

produces 

yaybycydyeyfy 

which is almost certainly not what was intended. 
The reason for this behavior is that zero is a 
legal number of matches, .and there are no x's at 
the beginning of the line (so that gets converted 
into a 'y'), nor between the 'a' and the 'b' (so 
that gets converted into a 'y'), nor . . . and so 
on. Make sure you really want zero matches; if 
not, in this case write 

s/XX*/y/g 

'xx*' is one or more x's. 

The Brackets '[ I' 
Suppose that you want to delete any 

num hers that appear at the beginning of all lines 
of a file. You might first think of trying a series 
of commands like 

1,ssr I•// 
1,ssr 2*// 
1,ssr 3*// 



6 

and so on, but this is clearly going to take for
ever if the numbers are at all long. Unless you 
want to repeat the commands over and over until 
finally all numbers are gone, you must get all the 
digits on one pass. This is the purpose of the 
brackets [ and ] . 

The construction 

[O 123456789] 

matches any single digit - the whole thing is 
called a 'character class'. With a character class, 
the job is easy. The pattern '[0123456789]•' 
matches zero or more digits (an entire number), 
so 

1 .ssr [01234567891•// 

deletes all digits from the beginning of all lines. 

Any characters can appear within a charac
ter class, and just to confuse the issue there are 
essentially no special characters inside the brack
ets; even the backslash doesn't have a special 
meaning. To search for special characters, for 
example, you can .say 

/[.\$A 11/ 

Within [ ... ], the '[' is not special. To get a ']' 
into a character class, make it the first character. 

It's a nuisance to have to spell out the 
digits, so you can abbreviate them as [0-9]; 
similarly, [a -z) stands for the lower case letters, 
and [A -Z) for upper case. 

As a final frill on character classes, you can 
specify a class that means 'none of the following 
characters'. This is done by beginning the class 
with a •A': 

stands for 'any character except a digit'. Thus 
you might find the first line that doesn't begin 
with a tab or space by a search like 

r [A (space)(tab)]/ 

Within a character class, the circumflex has 
a special meaning only if it occurs at the begin
ning. Just to convince yourself, verify that 

finds a line that doesn't begin with a circumflex. 

The Ampersand'&' 
The ampersand '&' is used primarily to 

save typi;ig. Suppose you have the line 

Now is the time 

and you want to make it 

Now is the best time 

Advanced Editing 

Of course you can always say 

s/the/the best/ 

but it seems silly to have to repeat the 'the'. 
The '&' is used to eliminate the repetition. On 
the right side of a substitute, the ampersand 
means 'whatever was just matched', so you can 
say 

s/the/& best/ 

and the '&' will stand for 'the'. Of course this 
isn't much of a saving if the thing matched is 
just 'the', but if it is something truly long or 
awful, or if it is something like '.•' which 
matches a lot of text, you can save some tedious 
typing. There is also much less chance of mak
ing a typing error in the replacement text. For 
example, to parenthesize a line, regardless of its 
length, 

s/.•/(&)/ 

The ampersand can occur more than once 
on the right side: 

s/the/& best and & worst/ 

makes 

Now is the best and the worst time 

and 

s/.•/&? &!!/ 

converts the original line into 

Now is the time? Now is the time!! 

To get a literal ampersand, naturally the 
backslash is used to turn off the special meaning: 

s/ampersand/\&/ 

converts the word into the symbol. Notice that 
'&' is not special on the left side of a substitute, 
only on the right side. 

Substituting New-lines 

ed provides a facility for splitting a single 
line into two or more shorter lines by 'substitut
ing in a new-line'. As the simplest example, 
suppose a line has gotten unmanageably long 
because of editing (or merely because it was 
unwisely typed). If it looks like 

text xy text 

you can break it between the 'x' and the 'y' like 
this: 

s/xy/x\ 
y/ 

This is actually a single command, although it is 
typed on two lines. Bearing in mind that '\' 



Advanced Editing 

turns off special meanings, it seems relatively 
intuitive that a '\' at the· end of a line would 
make the new-line there no longer special. 

You can in fact make a single line into 
several lines with this same mechanism. As a 
large example, consider underlining the word 
'very' in a long line by splitting 'very' onto a 
separate line, and preceding it by the nroff for
matting command '.ul'. 

text a very big text 

The command 

s/overyo/\ 
.ul\ 
very\ 

I 
converts the line into four shorter lines, preced
ing the word 'very' by the line '.ul'. and elim
inating the spaces around the 'very', all at the 
same time. 

When a new-line is substituted in, dot is 
left pointing at the last line created. 

Joining Lines 

Lines may also be joined together, but this 
is done with the j command instead of s. Given 
the lines 

Now is 
othe time 

and supposing that dot is set to the first of them, 
then the command 

joins them together. No blanks are added, which 
is why we carefully showed a blank at the begin
ning of the second line. 

All by itself, a j command joins line dot to 
line dot+ I, but any contiguous set of lines can 
be joined. Just specify the starting and ending 
line numbers. For example, 

l,$jp 

joins all the lines into one big one and prints it. 
(More on line numbers in Section 3.) 

Rearranging a Line with \( ••• \) 

(This section should be skipped on first 
reading.) Recall that '&' is a shorthand that 
stands for whatever was matched by the left side 
of an s command. In much the same way you 
can capture separate pieces of what was matched; 
the only difference is that you have to specify on 
the left side just what pieces you're interested in. 

Suppose, for instance, that you have a file 
of lines that consist of names in the form 

Smith, A. B. 
Jones, C. 

7 

and so on, and you want the initials to pre<:ede 
the name, as in 

A. B. Smith 
C. Jones 

It is possible to do this with a series of editing 
commands, but it is tedious and error-prone. (It 
is instructive to figure out how it is done, 
though.) 

The alternative is to 'tag' the pieces of the 
pattern (in this case, the last name, and the ini
tials), and then rearrange the pieces. On the left 
side of a substitution, if part of the pattern is 
enclosed between \( and \), whatever matched 
that part is remembered, and available for use on 
the right side. On the right side, the symbol '\I' 
refers to whatever matched the first\( ... \) pair. 
'\2' to the second\( ... \). and so on. 

The command 

1.ssr \([~ .l•\),o•\(A)/\2o\I / 

although hard to read, does the job. The first 
\( ... \) matches the last name, which is any 
string up to the comma; this is referred to on the 
right side with '\I'. The second \( ... \) is what
ever follows the comma and any spaces, and is 
referred to as '\2'. 

Of course, with any editing sequence this 
complicated, it's foolhardy to simply run it and 
hope. The global commands g and v discussed 
in section 4 provide a way for you to print 
exactly those lines which were affected by the 
substitute command, and thus verify that it did 
what you wanted in all cases. 

3. LINE ADDRESSING IN THE EDITOR 

The next general area we will discuss is 
that of line addressing in ed, that is, how you 
specify what lines are to be affected by editing 
commands. We have already used constructions 
like 

1,$s/x/y/ 

to specify a change on all lines. And most users 
are long since familiar with using a single new
line (or return) to print the next line, and with 

/thing/ 

to find a line that contains 'thing'. Less familiar, 
surprisingly enough, is the use of 

?thing? 

to scan backwards for the previous occurrence of 
'thing'. This is especially handy when you real
ize that the thing you want to operate on is back 



8 

up the page from where you are currently edit
ing. 

The slash and question mark are the only 
characters you can use to delimit a context 
search, though you can use essentially any char
acter in a substitute command. 

Address Arithmetic 

The next step is to combine the line 
numbers like '.', '$', '/ ... f' and '? ... ?' with 
•+•and'-'. Thus 

$-1 

is a command to print the next to last line of the 
current file (that is, one line before line '$'). 
For example, to recall how far you got in a previ
ous editing session, 

$-5,$p 

prints the last six lines. (Be sure you understand 
why it's six, not five.) If there aren't six, of 
course, you 'II get an error message. 

As another example, 

. -3,.+3p 

prints from three lines before where you are now 
(at line dot) to three lines after, thus giving you 
a bit of context. By the way, the '+' can be 
omitted: 

.-3,.3p 

is absolutely identical in meaning. 

Another area in which you can save typing 
effort in specifying lines is to use '-' and • +' as 
line numbers by themselves. 

by itself is a command to move back up one line 
in the file. In fact, you can string several minus 
signs together to move back up that many lines: 

moves up three lines, as does '-3'. Thus 

-3,+3p 

is also identical to the examples above. 

Since ' - ' is shorter than •. - I', construc
tions like 

- ,.s/bad/good/ 

are useful. This changes 'bad' to 'good' on the 
previous .line and on the current line. 

·+· and '-' can be used in combination 
with searches using '/- .. /'and '? .. _?',and with 
'$'. The search 

/thing/- -

Advanced Editing 

finds the line containing 'thing', and positions 
you two lines before it. 

Repeated Searches 

Suppose you ask for the search 

/horrible thing/ 

and when the line is printed you discover that it 
isn't the horrible thing that you wanted, so it is 
necessary to repeat the search again. You don't 
have to re-type the search, for the construction 

II 
is a shorthand for 'the previous thing that was 
searched for', whatever it was. This can be 
repeated as many times as necessary. You can 
also go backwards: 

?? 

searches for the same thing, but in the reverse 
direction. 

Not only can you repeat the search, but 
you can use '//' as the left side of a substitute 
command, to mean 'the most recent pattern' . 

/horrible thing/ 
... ed prints line with 'horrible thing' ... 

s//good/p 

To go backwards and change a line, say 

??s//good/ 

Of course, you can still use the '&' on the right 
hand side of a substitute to stand for whatever 
got matched: 

//s//&o&/p 

finds the next occurrence of whatever you 
searched for last, replaces it by two copies of 
itself, then prints the line just to verify that it 
worked. 

Default Line Numbers and the Value of Dot 

One of the most effective ways to speed up 
your editing is always to know what lines will be 
affected by a command if you don't specify the 
lines it is to act on, and on what line you will be 
positioned (i.e., the value of dot) when a com
mand finishes. If you can edit without specifying 
unnecessary line numbers, you can save a lot of 
typing. 

As the most obvious example, if you issue 
a search command like 

/thing/ 

you .are left pointing at the next line that con
tains 'thing'. Then no address is required with 
commands like s to make a substitution on that 
line, or p to print it, or I to list it, or d to delete 



Advanced Editing 

it, or a to append text after it, or c to change it, 
or i to insert text before it. 

What happens if there was no 'thing'? 
Then you are left right where you were - dot is 
unchanged. This is also true if you were sitting 
on the only 'thing' when you issued the com
mand. The same rules hold for searches that use 
'? ... ?'; the only difference is the direction in 
which you search. 

The delete command d leaves dot pointing 
at the line that followed the last deleted line. 
When line '$' gets deleted, however, dot points 
at the new line '$'. 

The line-changing commands a, c and i by 
default all affect the current line - if you give 
no line number with them, a appends text after 
the current line, c changes the current line, and i 
inserts text before the current line. 

a, c, and i behave identically in one 
respect - when you stop appending, changing or 
inserting, dot points at the last line entered. 
This is exactly what you want for typing and edit
ing on the fly. For example, you can say 

a 
... text .. . 
... botch .. . 

s/botch/correct/ 
a 
... more text ... 

(minor error) 

(fix botched line) 

without specifying any line number for the sub
stitute command or for the second append com
mand. Or you can say 

a 
... text ... 
... horrible botch ... (major error) 

c (replace entire line) 
... fixed up line ... 

You should experiment to determine what 
happens if you add no lines with a, c or i. 

The r command will read a file into the 
text being edited, either at the end if you give no 
address, or after the specified line if you do. In 
either case, dot points at the last line read in. 
Remember that you can even say Or to read a 
file in at the beginning of the text. (You can 
also say Oa or ti to start adding text at the begin
ning.) 

The w command writes out the entire file. 
If you precede the command by one line 
number, that line is written, while if you precede 
it by two line numbers, that range of lines is 
written. The w command does not change dot: 
the current line remains the same, regardless of 

9 

what lines are written. This is true even if you 
say something like 

r\.AB/.r\.AE/w abstract 

which involves a context search. 

Since the w command is so easy to use, 
you should save what you are editing regularly as 
you go along just in case the system crashes, or 
in case you do something foolish, like clobbering 
what you 're editing. 

The least intuitive behavior, in a sense, is 
that of the s command. The rule is simple -
you are left sitting on the last line that got 
changed. If there were no changes, then dot is 
unchanged. 

To illustrate, suppose that there are three 
lines in the buffer, and you are sitting on the 
middle one: 

xl 
x2 
x3 

Then the command 

-,+s/x/y/p 

prints the third line, which is the last one 
changed. But if the three lines had been 

xl 
y2 
y3 

and the same command had been issued while 
dot pointed at the second line, then the result 
would be to change and print only the first line, 
and that is where dot would be set. 

Semicolon ';' 

Searches with '/ ... /' and '? ... ?' start at 
the current line and move forward or backward 
respectively until they either find the pattern or 
get back to the current line. Sometimes this is 
not what is wanted. Suppose, for example, that 
the buffer contains lines like this: 

ab 

be 

Starting at line I, one would expect that the 
command 

/a/,/b/p 

prints all the lines from the 'ab' to the 'be' 
inclusive. Actually this is not what happens. 
Both searches (for 'a' and for 'b') start from the 
same point, and thus they both find the line that 



10 

contains 'ab'. The result is to print a single line. 
Worse, if there had been a line with a 'b' in ·it 
before the 'ab' line, then the print command 
would be in error, since the second line number 
would be less than the first, and it is illegal to try 
to print lines in reverse order. 

This is because the comma separator for 
line numbers doesn't set dot as each address is 
processed; each search starts from the same 
place. In ed, the semicolon ';' can be used just 
like comma, with the single difference that use 
of a semicolon forces dot to be set at that point 
as the line numbers are being evaluated. In 
effect, the semicolon 'moves' dot. Thus in our 
example above, the command 

/a/;/b/p 

prints the range of lines from 'ab' to 'be', 
because after the 'a' is found, dot is set to that 
line, and then 'b' is searched for, starting beyond 
that line. 

This property is most often useful in a 
very simple situation. Suppose you want to find 
the second occurrence of 'thing'. You could say 

/thing/ 
II 

but this prints the first occurrence as well as the 
second, and is a nuisance when you know very 
well that it is only the second one you're 
interested in. The solution is to say 

/thing/;// 

This says to find the first occurrence of 'thing', 
set dot to that line, then find the second and 
print only that. 

Closely related is searching for the second 
previous occurrence of something, as in 

?something?;?? 

Printing the third or fourth or ... in either direc
tion is left as an exercise. 

Finally, bear in mind that if you want to 
find the first occurrence of something in a file, 
starting at an arbitrary place within the file, it is 
not sufficient to say 

I ;/thing/ 

because this fails if 'thing' occurs on line I; ·But 
it is possible to say 

0;/thing/ 

(one of. the few places where 0 is a legal line 
number), for this starts the search at line l. 

Advanced Editing 

Interrupting the Editor 

As a final note on what dot gets set to, you 
should be aware that if you hit the interrupt or 
delete or rubout or break key white ed is doing a 
command, things are put back together again and 
your state is restored as much as possible to what 
it was before the command began. Naturally, 
some changes are irrevocable - if you are read
ing or writing a file or making substitutions or 
deleting lines, these will be stopped in some 
clean but unpredictable state in the middle 
(which is why it is not usually wise to stop 
them). Dot may or may not be changed. 

Printing is more clear cut. Dot is not 
changed until the printing is done. Thus if you 
print until you see an interesting line, then hit 
delete, you are not sitting on that line or even 
near it. Dot is left where it was when the p com
mand was started. 

4. GLOBAL COMMANDS 

The global commands g and v are used to 
perform one or more editing commands on all 
lines that either contain (g) or don't contain (v) 
a specified pattern. 

As the simplest example, the command 

g/UNIX/p 

prints all lines that contain the word 'UNIX'. 
The pattern that goes between the slashes can be 
anything that could be used in a line search or in 
a substitute command; exactly the same rules 
and limitations apply. 

As another example, then, 

prints all the formatting commands in a file 
(lines that begin with'.'). 

The v command is identical to g, except 
that it operates on those line that do not contain 
an occurrence of the pattern. (Don't look too 
hard for mnemonic significance to the letter 
'v'.) So 

vr\./p 
prints all the lines that don't begin with '.' - the 
actual text lines. 

The command that follows. g or ' can· be 
anythi!lg: 

sr\./d 
deletes all lines that begin with ·.'. and 

grs1d 
deletes all empty lines. 

Probably the most useful command that 
can follow a global is the substitute command. 



Advanced Editing 

for this can be used to make a change and print 
each affected line for verification. For example, 
we could change the word 'Unix' to 'UNIX' 
everywhere, and verify that it really worked, with 

g/Unix/s//UNIX/gp 

Notice that we used '//' in the substitute com
mand to mean 'the previous pattern', in this 
case, 'Unix'. The p command is done on every 
line that matches the pattern, not just those on 
which a substitution took place. 

The global command operates by making 
two passes over the file. On the first pass, all 
lines that match the pattern are marked. On the 
second pass, each marked line in turn is exam
ined, dot is set to that line, and the command 
executed. This means that it is possible for the 
command that follows a g or v to use addresses, 
set dot, and so on, quite freely. 

gr\.PP/+ 

prints the line that follows each •.PP' command 
(the signal for a new paragraph in some format
ting packages). Remember that • +' means 'one 
line past dot'. And 

g/topic/?A \.SH? 1 

searches for each line that contains 'topic', scans 
backwards until it finds a line that begins '.SH' 
(a section heading) and prints the line that fol
lows that, thus showing the section headings 
under which 'topic' is mentioned. Finally, 

gr \.EQ/ + .r\.EN/-p 

prints all the lines that lie between lines begin
ning with '.EQ' and '.EN' formatting commands. 

The g and v commands can also be pre
ceded by line numbers, in which case the lines 
searched are only those in the range specified. 

Multi-line Global Commands 

It is possible to do more than one com
mand under the control of a global command, 
although the syntax for expressing the operation 
is not especially natural or pleasant. As an 
example, suppose the task is to change 'x' to 'y' 
and 'a' to 'b' on all lines that contain 'thing'. 
Then 

g/thing/s/x/y/\ 
s/a/b/ 

is sufficient. The '\' signals the g command that 
the set of commands continues on the next line; 
it terminates on the first line that does not end 
with '\'. (As a minor blemish, you can't use a 
substitute command to insert a new-line within a 
g command.) 

11 

You should watch out for this problem: 
the command 

g/x/s//y/\ 
s/a/b/ 

does not work as you expect. The remembered 
pattern is the last pattern that was actually exe
cuted, so sometimes it will be 'x' (as expected), 
and sometimes it will be 'a' (not expected). You 
must spell it out, like this: 

g/x/s/x/y/\ 
s/a/b/ 

It is also possible to execute a, c and I 
commands under a global command; as with 
other multi-line constructions, all that is needed 
is to add a '\' at the end of each line except the 
last. Thus to add a '.nf' and '.sp' command 
before each • .EQ' line, type 

gr\.EQ/i\ 
.nf\ 
.sp 

There is no need for a final line containing a '.' 
to terminate the I command, unless there are 
further commands being done under the global. 
On the other hand, it does no harm to put it in 
either. 

5. CUT A ND PASTE WITH UNIX COM
MANDS 

One editing area in which non-
programmers seem not very confident is in what 
might be called 'cut and paste' operations -
changing the name of a file, making a copy of a 
file somewhere else, moving a few lines from 
one place to another in a file, inserting one file in 
the middle of another, splitting a file into pieces, 
and splicing two or more files together. 

Yet most of these operations are actually 
quite easy, if you keep your wits about you and 
go cautiously. The next several sections talk 
about cut and paste. We will begin with the 
UNIX commands for moving entire files around, 
then discuss ed commands for operating on 
pieces of files. 

Changing the Name of a File 

You have a file named 'memo' and you 
want it to be called 'paper' instead. How is it 
done? 

The UNIX program that renames files is 
called mv (for 'move'); it 'moves' the file from 
one name to another, like this: 

mv memo paper 

That's all there is to it: mv from the old name to 
the new name. 



12 

mv old_name new_name 

Warning: if there is already a file around with the 
new name, its present contents will be silently 
clobbered by the information from the other file. 
The one exception is that you can't move a file 
to itself -

mv x x 

is illegal. 

Making a Copy of a File 

Sometimes what you want is a copy of a 
file - an entirely fresh version. This might be 
because you want to work on a file, and yet save 
a copy in case something gets fouled up, or just 
because you're paranoid. 

In any case, the way to do it is with the cp 
command. (cp stands for 'copy'; the UNIX sys
tem is big on short command names, which are 
appreciated by heavy users, but sometimes a 
strain for novices.) Suppose you have a file 
called 'good' and you want to save a copy before 
you make some dramatic editing changes. 
Choose a name - 'save_good' might be accept· 
able - then type 

cp good save_good 

This copies 'good' onto 'save_good', and you 
now have two identical copies of the file 'good'. 
(If 'save_good' previously contained something, 
it gets overwritten.) 

Now if you decide at some time that you 
want to get back to the original state of 'good', 
you can say 

mv save_good good 

(if you 're not interested m 'save_good' any 
more), or 

cp save_good good 

if you still want to retain a safe copy. 

In summary, mv just renames a file; cp 
makes a duplicate copy. Both of them clobber 
the 'target' file if it already exists, so you had 
better be sure that's what you want to do before 
you do it. 

Removing a File 

If you decide you are really done with a 
file forever, you can remove it with the rm com
mand: 

rm save_good 

throws away (irrevocably) the file called 
'save_good'. 

Advanced Editing 

Putting Two or More Files Together 

The next step is the familiar one of collect· 
ing two or more files into one big one. This will 
be needed, for example, when the author of a 
paper decides that several sections need to be 
combined into one. There are several ways to do 
it, of which the cleanest, once you get used to it, 
is a program called cat. (Not all UNIX programs 
have two-letter names.) cat is short for 'con
catenate', which is exactly what we want to do. 

Suppose the job is to combine the files 
'filel' and 'file2' into a single file called 'big_file'. 
If you say 

cat file 

the contents of 'file' will get printed on your ter
minal. · If you say 

cat file 1 file2 

the contents of 'filel' and then the contents of 
'file2' will both be printed on your terminal, in 
that order. So cat combines the files, all right, 
but it's not much help to print them on the ter
minal - we want them in 'big_file'. 

Fortunately, there is a way. You can tell 
the system that instead of printing on your ter
minal, you want the same information put in a 
file. The way to do it is to add to the command 
line the character > and the name of the file 
where you want the output to go. Then you can 
say 

cat file 1 file2 >big_ file 

and the job is done. (As with cp and mv, you're 
putting something into 'big_file', and anything 
that was already there is destroyed.) 

This ability to 'capture' the output of a 
program is one of the most useful aspects of the 
UNIX system. Fortunately it's not limited to the 
cat program - you can use it with any program 
that prints on your terminal. We'll see some 
more uses for it in a moment. 

Naturally, you can combine several files, 
not just two: 

cat file 1 file2 file3 . . . > big_file 

collects a whole bunch. 

and 

Question: is there any difference between 

cp good save_good 

cat good >save_good 

Answer: for most purposes, no. You might rea
sonably ask why there are two programs in that 
case, since cat is obviously all you need. The 
answer is that cp will do some other things as 



Advanced Editing 

well, which you can investigate for yourself by 
reading the manual. For now we'll stick to sim
ple usages. 

Adding Something to the End of a File 

Sometimes you want to add one file to the 
end of another. We have enough building blocks 
now that you can do it; in fact before reading 
further it would be valuable if you figured out 
how. To be specific, how would you use cp, mv 
and/or cat to add the file 'good I' to the end of 
the file 'good'? 

You could try 

cat good goodl >temp 
mv temp good 

which is probably most direct. You should also 
understand why 

cat good good! >good 

doesn't work. (Don't practice with a good 
'good'!) 

The easy way is to use a variant of >, 
called > >. In fact, > > is identical to > 
except that instead of clobbering the old file, it 
simply tacks stuff on at the end. Thus you could 
say 

cat goodl >>good 

and 'goodl' is added to the end of 'good'. (And 
if 'good' didn't exist, this makes a copy of 
'good I' called 'good'.) 

6. CUT AND PASTE WITH THE EDITOR 

Now we move on to manipulating pieces 
of files - individual lines or groups of lines. 
This is another area where new users seem 
unsure of themselves. 

File Names 

The first step is to ensure that you know 
the ed commands for reading and writing files. 
Of course you can't go very far without knowing 
r and w. Equally useful, but less well known, is 
the 'edit' command e. Within ed, the command 

e new_file 

says .'I want to edit a new file called nt;W_file, 
without leaving the editor.' The e command dis
cards whatever you 're currently working on and 
starts over on new_.file. It's exactly the same as 
if you had quit with the q command, then re
entered ed with a new file name, except that if 
you have a pattern remembered,· then a co~
mand like / / will still work. 

If you entered with the command 

13 

ed file 

ed remembers the name of the file, and any sub
sequent e, r or w commands that don't contain a 
file name will refer to this remembered file. 
Thus 

ed filel 
. . . (editing) ... 

w (writes back in file I ) 
e file2 (edit new file, without leaving editor) 
... (editing on file2) ... 

w (writes back on file2) 

(and so on) does a series of edits on various files 
without ever leaving ed and without typing the 
name of any file more than once. (As an aside, · 

· if you examine the sequence of commands here, 
you can see why many UNIX systems use e as a 
synonym for ed.) 

You can find out the remembered file 
name at any time with the f command; just type 
f without a file name. You can also change the 
name of the remembered file name with f; a use
ful sequence is 

ed precious 
f junk 
... (editing) ... 

which gets a copy of a precious file, then uses f 
to guarantee that a careless w command won't 
clobber the original. 

Inserting One File into Another 

Suppose you have a file called 'memo', 
and you want the file called 'table' to be inserted 
just after the reference to Table 1. That is, in 
'memo' somewhere is a line that says 

Table 1 shows that ... 

and the data contained in 'table' has to go there, 
probably so it will be formatted properly by nroff' 
or troff. Now what? 

This one is easy. Edit 'memo', find 'Table 
1 ', and add the file 'table' right there: 

ed memo 
/Table 1/ 
Table 1 shows that ... f response from ed/ 
.r table 

The critical line is the last one. As we said ear
lier, the r command reads a file; here you asked 
for it to be read in right after line dot. An r 
command without any address adds lines at the 
end, so it is the same as Sr. 



14 

Writing out Part of a File 

The other side of the coin is writing out 
part of the document you 're editing. For exam
ple, maybe you want to split out into a separate 
file that table from the previous example, so it 
can be formatted and tested separately. Suppose 
that in the file being edited we have 

.TS 
. . . [lots of stuff] 

• TE 

which is the way a table is set up for the tbl pro
gram. To isolate the table in a separate file 
called 'table', first find the start of the table (the 
'.TS' line), then write out the interesting part: 

r\.TS/ 
.1S fed prints the line it found/ 
.. r\.TE/w table 

and the job is done. If you arc confident, you 
can do it all at once with 

The point is that the w command can write 
out a group of lines, instead of the whole file. In 
fact, you can write out a single line if you like; 
just give one line number instead of two. For 
example, if you have just typed a horribly com
plicated line and you know that it (or something 
like it) is going to be needed later, then save it 
- don't re-type it. In the editor, say 

a 
... lots of stuff .. . 
. . . horrible line .. . 

• w temp 
a 
... more stuff ... 

.r temp 
a 
... more stuff ... 

This last example is worth studying, to be sure 
you appreciate what's going on. 

Moving Lines Around 

Suppose you want to move a paragraph 
from its present position in a paper to the end. 
How would you do it? As a concrete example, 
suppose each paragraph in the paper begins with 
the formatting command '.PP'. Think about it 
and write down the details before reading on. 

The brute force way (not necessarily bad) 
is to write the paragraph onto a temporary file, 
delete it from its current position, then read in 
the temporary file at the end. Assuming that 

Advanced Editing 

you are sitting on the '.PP' command that begins 
the paragraph, this is the sequence of commands: 

.. r\.PP/-w temp 

.,//-d 
Sr temp 

That is, from where you are now (' .') until one 
line before the next '.PP' ('r\.PP/-') write 
onto 'temp'. Then delete the same lines . 
Finally, read 'temp' at the end . 

As we said, that's the brute force way. 
The easier way (often) is to use the move com
mand m that ed provides - it lets you do the 
whole set of operations at one crack, without any 
temporary file. 

The m command is like many other ed 
commands in that it takes up to two line 
numbers in front that tell what lines are to be 
affected. It is also followed by a line number that 
tells where the lines are to go. Thus 

line I, line2 m line3 

says to move all the lines between 'line!' and 
'linc2' after 'linc3'. Naturally, any of 'line I' 
etc., can be patterns between slashes, S signs, or 
other ways to specify lines. 

Suppose again that you're sitting at the 
first line of the paragraph. Then you can say 

•• r\.PP/-mS 

That's all. 

As another example of a frequent opera
tion, you can reverse the order of two adjacent 
lines by rhoving the first one to after the second . 
Suppo~~-. ·that you are positioned at the first . 
Then 

m+ 
does it. It says to move line dot to after one line 
after line dot. If you are positioned on the 
second line, 

m--

does the interchange. 

As you can sec, the m command is more 
succinct and direct than writing, deleting and re
reading. When is brute force better anyway? 
This is a matter of personal taste - do what you 
have most confidence in. The main difficulty 
with the m command is that if you use patterns 
to specify both the lines you are moving and the 
target, you have to take care that you specify 
them properly, or you may well not move the 
lines you thought you did. The result of a 
botched m command can be a ghastly mess. 
Doing the job a step at a time makes it easier for 
you to verify at each step that you accomplished 
what you wanted to. It's also a good idea to 



Advanced Editing 

issue a w command before doing anything com
plicated; then if you goof, it's easy to back up to 
where you were. 

Marks 

ed provides a facility for marking a line 
with a particular name so you can later reference 
it by name regardless of its actual line number. 
This can be handy for moving lines, and for 
keeping track of them as they move. The mark 
command is k; the command 

kx 

marks the current line with the name 'x'. If a 
line number precedes the k, that line is marked. 
(The mark name must be a single lower case 
letter.) Now you can refer to the marked line 
with the address 

'x 

Marks are most useful for moving things 
around. Find the first line of the block to be 
moved, and mark it with 'a. Then find the last 
line and mark it with 'h. Now position yourself 
at the place where the stuff is to go and say 

'a,'bm. 

Bear in mind that only one line can have a 
particular mark name associated with it at any 
given time. 

Copying Lines 

We mentioned earlier the idea of saving a 
line that was hard to type or used often, so as to 
cut down on typing time. Of course this could 
be more than one line; then the saving is · 
presumably even greater. 

ed provides another command, called t 
(for 'transfer') for making a copy of a group of 
one or more lines at any point. This is often 
easier than writing and reading. 

The t command is identical to the m com
mand, except that instead of moving lines it sim
ply duplicates them at the place you named. 
Thus 

l ,$t$ 

duplicates the entire contents that you are edit
ing. A m.c;ire common use for t is for creating a 
series of lines that differ only slightly. For 
example, you can say 

a 

t. 
s/x/y/ 
t. 
s/y/z/ 

and so on. 

x ...... (long line) 

(make a copy) 
(change it a bit) 
(make third copy) 
(change it a bit) 

The Temporary Escape'!' 

15 

Sometimes it is convenient to be able to 
temporarily escape from the editor to do some 
other UNIX command, perhaps one of the file 
copy or move commands discussed in section 5, 
without leaving the editor. The 'escape' com
mand ! provides a way to do this. If you say 

!any UNIX command 

your current editing state is suspended, and the 
UNIX command you asked for is executed. 
When the command finishes, ed will signal you 
by printing another !; at that point you can 
resume editing. 

You can really do any UNIX command, 
including another ed. (This is quite common, in 
fact.) In this case, you can even do another !. 

7. SUPPORTING TOOLS 

There are several tools and techniques that 
go along with the editor, all of which are rela
tively easy once you know how ed works, 
because they are all based on the editor. In this 
section we will give some fairly cursory examples 
of these tools, more to indicate their existence 
than to provide a complete tutorial. More infor
mation on each can be found in [3]. 

Grep 

Sometimes you want to find all 
occurrences of some word or pattern in a set of 
files, to edit them or perhaps just to verify their 
presence or absence. It may be possible to edit 
each file separately and look for the pattern ·of 
interest, but if there are many files this can get 
very tedious, and if the files are really big, it may 
be impossible because of limits in ed. 

The program grep was invented to get 
around these limitations. The search patterns 
that we have described in the paper arc often 
called 'regular expressions', and 'grep' stands for 

g/re/p 

That describes exactly what grep docs - it prints 
every line in a set of files that contains a particu
lar pattern. Thus 



16 

grep 'thing' file 1 file2 file3 ... 

finds 'thing' wherever it occurs in any of the files 
'filel ', 'file2 '. etc. grep also indicates the file in 
which the line was found, so you can later edit it 
if you like. 

The pattern represented by 'thing' can be 
any pattern you can use in the editor, since &rep 
and ed use exactly the same mechanism for pat
tern searching. It is wisest always to enclose the 
pattern in the single quotes ' ... ' if it contains 
any non-alphabetic characters, since many such 
characters also mean something special to the 
UNIX command interpreter (the 'shell'). If you 
don't quote them, the command interpreter will 
try to interpret them before grep gets a chance. 

There is also a way to find lines that don't 
contain a pattern: 

grep -v 'thing' filel file2 ... 

finds all lines that don't contain 'thing'. The -v 
must occur in the position shown. Given grep 
and grep - v, it is possible to do things like 
selecting all lines that contain some combination 
of patterns. For example, to get all lines that 
contain 'x' but not 'y': 

grep x file ... I grep -v y 

(The notation I is a 'pipe', which causes the out
put of the first command to be used as input to 
the second command; see [2].) 

Editing Scripts 

If a fairly complicated set of editing opera
tions is to be done on a whole set of files, the 
easiest thing to do is to make up a 'script', i.e., a 
file that contains the operations you want to per
form, then apply this script to each file in turn. 

For example, suppose you want to change 
every 'Unix' to 'UNIX' and every 'Gcos' to 
'GCOS' in a large number of files. Then put into 
the file 'script' the lines 

g/Unix/s//UNIX/g 
g/Gcos/s//GCOS/g 
w 
q 

Now you can say 

ed filel <script 
ed file2 <script 

This ca-uses ed to take its commands from the 
prepared script. Notice that the whole job has to 
be planned in advance. · · · 

And of course by using the UNIX com
mand interpreter, you can cycle through a set of 
files automatically, with varying degrees of ease. 

Advanced Editing 

Sed 

sed ('stream editor') is a version of the 
editor with restricted capabilities but which is 
capable of processing unlimited amounts of 
input. Basically sed copies its input to its output, 
applying one or more editing commands to each 
line of input. 

As an example, suppose that we want to 
do the 'Unix' to 'UNIX' part of the example 
given above, but without rewriting the files. 
Then the command 

sed 's/Unix/UNIX/g' filel file2 ... 

applies the command 's/Unix/UNIX/g' to all 
lines from 'filel ', 'file2', etc., and copies all lines 
to the output. The advantage of using sed in 
such a case is that it can be used with input too 
large for ed to handle. All the output can be col
lected in one place, either in a file or perhaps 
piped into another program. 

If the editing transformation is so compli
cated that more than one editing command is 
needed, commands can be supplied from a file, 
or on the command line, with a slightly more 
complex syntax. To take commands from a file, 
for example, 

sed - f cmdfile input_files ... 

sed has further capabilities, including con
. c:iitional testing and branching, which we cannot 
gp into here. 

Acknowledgement 

I am grateful to Ted Dolotta for his careful 
reading and valuable suggestions. 

References 

(l] Brian W. Kernighan. A Tutorial Introduc
tion to the UNIX Text Editor, Bell Labora
tories. 

(2) Brian W. Kernighan. UNIX For Beginners, 
Bell Laboratories. 

[3] T. A. Dolotta, S. B. Olsson, and A. G. 
Petruccelli (eds.). UNIX User's 
Manual - Release 3.0, Bell Laboratories 
(June 1980). 

January 1981 



SED-A Non-Interactive Text Editor 

Lee E. McMahon 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Sed is a non-interactive context editor that runs on the UNIXt operating 
system. Sed is designed to be especially useful in three cases: 

I) To edit files too large for comfortable interactive editing. 

2) To edit any size file when the sequence of editing commands is too 
complicated to be comfortably typed in interactive mode. 

3) To perform multiple 'global' editing functions efficiently in one pass 
through the input. 

This memorandum constitutes a manual for users of sed. 

INTRODUCTION 

Sed is a non-interactive context editor designed to be especially useful in three cases: 

1) To edit files too large for comfortable interactive editing. 

UNIX 

B.2.3 

2) To edit any size file when the sequence of editing commands is too complicated to 
be comfortably typed in interactive mode. 

3) To perform multiple 'global' editing functions efficiently in one pass through the 
input. 

Because only a few lines of the input reside in memory at one time, and no temporary files are 
used, the effective size of file that can be edited is limited only by the requirement that the 
input and output fit simultaneously into available secondary storage. 

Complicated editing scripts can be created separately and given to sed as a command file. For 
complex edits, this saves considerable typing, and its attendant errors. Sed running from a 
command file is much more efficient than any interactive editor known to the author, even if 
that editor can be driven by a pre-written script. 

The principal loss of functions compared to an interactive editor are lack of relative addressing 
(because of the line-at-a-time operation), and lack of immediate verification that a command 
has done what was intended. 

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac
tive and non-interactive operation, considerable changes have been made between ed and sed; 
even confirmed users of ed will frequently be surprised (and probably cl:lagrined), if they rashly 
use sed without reading Sections 2 and 3 of this document. The most striking family resem
blance between the two editors is in the class of patterns ('regular expressions') they recognize; 
the code for matching patterns is copied almost verbatim from the code for ed. and the descrip
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX Programmer's 
Manual [l]. (Both code and description were written by Dennis M. Ritchie.) 

t UNIX is a trademark of Bell Laboratories. 



2 SED 

l. OVERALL OPERATION 

Sed by default copies the standard input to· the standard output, perhaps performing one or 
more editing commands on each line before writing it to the output. This behavior may be 
modified by flags on the command line; see Section l.l below. 

The general format of an editing command is: 

[address l ,address2] [function] [arguments] 

One or both addresses may be omitted; the format of addresses is given in Section 2. Any 
number of blanks or tabs may separate the addresses from the function. The function must be 
present; the available commands are discussed in Section 3. The arguments may be required or 
optional, according to which function is given; again, they are discussed in Section 3 under each 
individual function. 

Tab characters and spaces at the beginning of lines are ignored. 

1.1. Command-line Flags 

Three flags are recognized on the command line: 

-n tells sed not to copy all lines, but only those specified by p functions or p flags afters 
functions (sec Section 3.3); 

-e tells sed to take the next argument as an editing command; 

-f tells sed to take the next argument as a file name; the file should contain editing 
commands, one to a line. 

1.2. Order of Application of Editing Commands 

Before any editing is done (in fact, before any input file is even opened), all the editing com
mands are compiled into a form which will be moderately efficient during the execution phase 
(when the commands are actually applied to lines of the input file). The commands are com
piled in the order in which they are encountered; this is generally the order in which they will 
be attempted at execution time. The commands are applied one at a time; the input to each 
command is the output of all preceding commands. 

The default linear order of application of editing commands can be changed by the flow-of
control commands, t and b (see Section 3). Even when the order of application is changed by 
these commands, it is still true that the input line to any command is the output of any previ
ously applied command. 

1.3. Pattern-space 

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one 
line of the input text, but more than one line can be read into the pattern space by using the N 
command (Section 3.6.). 

1.4. Examples · 

Examples are scattered throughout the text. Except where otherwise noted, the examples all 
assume the following input text: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

(In no case is the output of the sed commands to be considered an improvement on Coleridge.) 



SED 3 

Example: 

The command 

2q 

will quit after copying the first two lines of the input. The output will be: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 

2. ADDRESSES: SELECTING LINES FOR EDITING 

Lines in the input file(s) to which editing commands are to be applied can be selected by 
addresses. Addresses may be either line numbers or context addresses. 

The application of a group of commands can be controlled by one address (or address-pair) by 
grouping the commands with curly braces('[ ]'-see Section 3.6.). 

2.l. Line-number Addresses 

A line number is a decimal integer. As each line is read from the input, a line-number counter 
is incremented; a line-number address matches (selects) the input line which causes the inter
nal counter to equal the address line-number. The counter runs cumulatively through multiple 
input files; it is not reset when a new input file is opened. 

As a special case, the character $ matches the last line of the last input file. 

2.2. Context Addresses 

A context address is a pattern ('regular expression') enclosed in slashes ('/'). The regular 
expressions recognized by sed are constructed as follows: 

l) An ordinary character (not one of those discussed below) is a regular expression, 
and matches that character. 

2) A circumflex 'ft' at the beginning of a regular expression matches the null character 
at the beginning of a line. 

3) A dollar-sign '$' at the end of a regular expression matches the null character at the 
end of a line. 

4) The characters '\n' match an embedded new-line character, but not the new-line at 
the end of the pattern space. 

5) A period '.' matches any character except the terminal new-line of the pattern space. 
6) A regular expression followed by an asterisk '*' matches any number (including 0) 

of adjacent occurrences of the regular expression it follows. 
7) A string of characters in square brackets '[ ]' matches any character in the string, and 

no others. If, however, the first character of the string is circumflex •" ', the 
regular expression matches any character except the characters in the string and 
the terminal new-line of the pattern space. 

8) A concatenation of regular expressions is a regular expression which matches the 
concatenation of strings matched by the components of the regular expression. 

9) A regular expression between the sequences '\(' and '\)' is identical in effect to the 
. unadorned regular expression, but has side-effects which are described under 

the s command below and 'pecification 10) immediately below. 
10) The expression '\d' means the same string of characters matched by an expression 

enclosed in '\(' and '\)' earlier in the same pattern. Here dis a single digit; the 
string specified is that beginning with the dth occurrence of'\(' counting from 
the left. For example, the expression '"\(.•\)\l' matches a line beginning with 
two repeated occurrences of the same string. 

I I) The null regular expression standing alone (e.g., '//') is equivalent to the last regu· 
lar expression compiled. 



4 SED 

To use one of the special characters (A $ • * [ ] \ /) as a literal (to match an occurrence of itself 
in the input), precede the special character·by a backslash'\'_ 

For a context address to 'match' the input requires that.the whole pattern within the address 
match some portion of the pattern space. 

2.3. Number of Addresses 

The commands in the next section can have 0, 1, or 2 addresses. Under each command the 
maximum number of allowed addresses is given. For a command to have more addresses than 
the maximum allowed is considered an error. 

If a command has no addresses, it is applied to every line in the input. 

If a command has one address, it is applied to all lines which match that address. 

If a command has two addresses, it is applied to the first line which matches the first address, 
and to all subsequent lines until (and including) the first subsequent line which matches the 
second address. Then an attempt is made on subsequent lines to again match the first address, 
and the process is repeated. 

Two addresses are separated by a comma. 

Examples: 

/an/ 
/an.*an/ 
ran/ 

matches lines I, 3, 4 in our sample text 
matches line 1 
matches no lines 

/./ matches all lines 
/\./ matches line 5 
/f*an/ 
/\{an\) .*\11 

matches lines 1, 3, 4 (number= zero!) 
matches line 1 

3. FUNCTIONS 

All functions are named by a single character. In the following summary, the maximum 
number of allowable addresses is given enclosed in parentheses, then the single character func
tion name, possible arguments enclosed in angles ( < > ), an expanded English translation of 
the single-character name, and finally a description of what each function does. The angles 
around the arguments are not part of the argument, and should not be typed in actual editing 
commands. 

3. t. Whole-line Oriented Functions 

(2)d - delete lines 

The d function deletes from the file (does not write to the output) all those 
lines matched by its address(es). 

It also has the side effect that no further commands are attempted on the 
corpse of a deleted line; as soon as the d function is executed, a new line is 
read from the input, and the list of editing commands is re-started from the 
beginning on the new line. 

(2)n - next line 

(l)a\ 

The n function reads the next line from the input, replacing the current line. 
The current line is written to the output if it should be. The list of editing 
commands is continued following then command. 

<text> - append lines 

The a function causes the argument <text> to be written to the output after 



SED 

(I )i\ 

5 

the line matched by its address. The a command is inherently multi-line; a 
must appear at the end of a line, and <text> may contain any number of 
lines. To preserve the one-command-to-a-line fiction, the interior new-lines 
must be hidden by a backslash character ('\') immediately preceding the ne'_'V· 
line. The <text> argument is terminated by the first unhidden new-line (the 
first one not immediately preceded by backslash). 

Once an a function is successfully executed, <text> will be written to the out
put. regardless of what later commands do to the line which triggered it; that 
line may be deleted entirely; <text> will still be written to the output. 

The <text> is not scanned for address matches, and no editing commands are 
attempted on it. It does not cause any change in the line-number counter. 

<text> - insert lines 

(2)c\ 

The i function behaves ·identically to the a function, except that <text> is 
written to the output before the matched line. All other comments about the a 
function apply to the i function as well. 

<text> - change lines 

The c function deletes the lines selected by its address(es), and replaces them 
with the lines in <text>. Like a and i, c must be followed by a new-line hid
den by a backslash; and interior new lines in <text> must be hidden by 
backslashes. 

The c command may have two addresses, and therefore select a range of lines. 
If it does, all the lines in the range are deleted, but only one copy of <text> is 
written to the output, not one copy per line deleted. As with a and i, <text> 
is not scanned for address matches, and no editing commands are attempted on 
it. It does not change the line-number counter. 

After a line has been deleted by a c function, no further commands are 
attempted on the corpse. 

If text is appended after a line by a or r functions, and the line is subsequently 
changed, the text inserted by the c function will be placed before the text of the 
a or r functions. (The r function is described in Section 3.4.) 

Note: Within the text put in the output by these functions, leading blanks and tabs will disap
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the 
first desired blank or tab by a backslash; the backslash will not appear in the output. 

Example: 

The list of editing commands: 

n 
a\ 
xx xx 
d 

applied to our standard input, produces: 

In Xanadu did Kubla Khan 
xxxx 
Where Alph, the sacred river, ran 
xx xx 
Down to a sunless sea. 



6 SED 

In this particular case, the same effect would be produced by either of the two following com
mand lists: 

n 
i\ 
xxxx 
d 

n 
c\ 
xxxx 

3.2. Substitute Function 

One very important function changes parts of lines selected by a context search within the line. 

(2)s<pattern> <replacement> <flags> - substitute 

The s function replaces part of a line (selected by <pattern>) with <replace· 
ment>. It can best be read: 

Substitute for <pattern>, <replacement> 

The <pattern> argument contains a pattern, exactly like the patterns in 
addresses (see Section 2.2 above). The only difference between <pattern> 
and a context address is that the context address must be delimited by slash 
('/') characters; <pattern> may be delimited by any character other than space 
or new-line. 

By default, only the first string matched by <pattern> is replaced, but see the 
g flag below. 

The <replacement> argument begins immediately after the second delimiting 
character of <pattern>, and must be followed immediately by another instance 
of the delimiting character. (Thus there are exactly three instances of the 
delimiting character.) 

The <replacement> is not a pattern, and the characters which are special in 
patterns do not have special meaning in <replacement>. Instead, other char· 
acters are special: 

& is replaced by the string matched by <pattern> 

\d (where d is a single digit) is replaced by the dth substring matched 
by parts of <pattern> enclosed in '\(' and '\)'. If nested sub· 
strings occur in <pattern>, the dth is determined by counting 
opening delimiters ('\('). 

As in patterns, special characters may be made literal by 
preceding them with backslash ('\'). 

The <flags> argument may contain the following flags: 

g - substitute <replacement> for all (non-overlapping) instances of 
<pattern> in the line. After a successful substitution, the 
scan for the next instance of <pattern> begins just after the 
end of the inserted characters; characters put into the line from 
<replacement> are not rescanned. 

p - print the line if a successful replacement was done. The p flag 
causes the line to be written to the output if and only if a sub
stitution was actually made by the s function. Notice that if 
several s functions, each followed by a p flag, successfully sub
stitute in the same input line, multiple copies of the line will be 
written to the output: one for each successful substitution. 



SED 7 

w <filename> - write the line to a file if a successful replacement 
was done. The w flag causes lines which are actually substi
tuted by the s function to be written to a file named by 
<filename>. If <filename> exists before sed is run; it is 
overwritten; if not, it is created. 

Examples: 

A single space must separate w and <filename>. 

The possibilities of multiple, somewhat different copies of one 
input line being written arc the same as for p. 

A maximum of 10 different file names may be mentioned after 
w flags and w functions (see below), combined. 

The following command, applied to our standard input, 

s/to/by/w changes 

produces, on the standard output: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless by man 
Down by a sunless sea. 

and, on the file 'changes': 

Through caverns measureless by man 
Down by a sunless sea. 

If the no-copy option is in effect, the command: 

s/[.,; ?:l/•P&•/gp 

produces: 

A stately pleasure dome decree•P:• 
Where Alph•P,• the sacred rivel'*P,• ran 
Down to a sunless sea•P.• 

Finally, to illustrate the effect of the g flag, the command: 

/X/s/an/ AN/p 

produces (assuming no-copy mode): 

In XANadu did Kubla Khan 

and the command: 

/X/s/an/ AN/gp 

produces: 

In XANadu did Kubla KhAN 

3.3. Input-output Functions 

(2)p - print 

The print function writes the addressed lines to the standard output file. They 
are written at the time the p function is encountered, regardless of what 
succeeding editing commands may do to the lines. 

(2)w <filename> - write on <filename> 

The write function writes the addressed lines to the file named by <filename>. 
If the file previously existed, it is overwritten; if not, it is created. The lines 



8 SED 

are written exactly as they exist when the write function is encountered for 
each line, regardless of what subsequent editing commands may do to them. 

Exactly one space must separate thew and <filename>. 

A maximum of ten different files may be mentioned in write functions and w 
flags afters functions, combined. 

( l )r <filename> - read the contents of a file 

The read function reads the contents of <filename>, and appends them after 
the line matched by the address. The file is read and appended regardless of 
what subsequent editing commands do to the line which matched its address. 
If r and a functions are executed on the same line, the text from the a func
tions and the r functions is written to the output in the order that the functions 
are executed. 

Exactly one space must separate the rand <filename>. If a file mentioned by 
a r function cannot be opened, it is considered a null file, not an error, and no 
diagnostic is given. 

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care 
should be taken that no more than ten files be mentioned in w functions or flags: that number 
is reduced by one if any r functions are present. (Only one read file is open at one time.) 

Examples: 

Assume that the file 'note I' has the following contents: 

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson 
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the 
Mongol dynasty in China. 

Then the following command: 

/Kubla/r note I 

produces: 

In Xanadu did Kubla Khan 
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson 
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the 
Mongol dynasty in China. 

A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

3.4. Multiple Input·line Functions 

Three functions, all spelled with capital letters, deal specially with pattern spaces contammg 
embedded new-lines; they are intended principally to provide pattern matches across lines in 
the input. 

(2)N - Next line 

The next input line is appended to the current line in the pattern space; the two 
input lines are separated by an embedded new-line. Pattern matches may 
extend across the embedded new-line(s). 

(2)D - Delete first part_ of the pattern spa(:e 

Delete up to and including the first new-line character in the current pattern 
space. If the pattern space becomes empty (the only new-line was the terminal 



S'ED 9 

new-line), read another line from the input. In any case, begin the list of edit
ing commands again from its beginning. 

(2)P - Print first part of the pattern space 

Print up to and including the first new-line in the pattern space. 

The P and D functions are equivalent to their lower-case counterparts if there are no embedded 
new-lines in the pattern space. 

3.5. Hold and Get Functions 

Four functions save and retrieve part of the input for possible later use. 

(2)h - hold pattern space 

The h functions copies the contents of the pattern space into a hold area (des
troying the previous contents of the hold area). 

(2)H - Hold pattern space 

The H function appends the contents of the pattern space to the contents of the 
hold area; the former and new contents are separated by a new-line. 

(2)g - get contents of hold area 

The g function copies the contents of the hold area into the pattern space (des
troying the previous contents of the pattern space). 

(2)G - Get contents of hold area 

The G function appends the contents of the hold area to the contents of the 
pattern space; the former and new contents are separated by a new-line. 

(2)x - exchange 

The exchange command interchanges the contents of the pattern space and the 
hold area. 

Example: 

The commands 

lh 
ls/ did.•// 
Ix 
G 
s/\n/ :/ 

applied to our standard example, produce: 

In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In Xanadu 
Where Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

3.6. Flow-of-control Functions 

These functions do no editing on the input lines, but control the application of functions to the 
lines selected by the address part. 

(2)! - Don't. 

The Don't command causes the next command (written on the same line), to 



10 SED 

be applied to all and only those input lines not selected by the address part. 

(2){ - Grouping 

The grouping command '{' causes the next set of commands to be applied (or 
not applied) as a block to the input lines selected by the addresses of the group
ing command. The first of the commands under control of the grouping may 
appear on the same line as the '{' or on the next line. 

The group of commands is terminated by a matching '}' standing on a line by 
itself. 

Groups can be nested. 

(O):<label> - place a label 

The label function marks a place in the list of editing commands which may be 
referred to by b and t functions. The <label> may be any sequence of eight 
or fewer characters; if two different colon functions have identical labels, a 
compile time diagnostic will be generated, and no execution attempted. 

(2)b<label> - branch to label 

The branch function causes the sequence of editing commands being applied to 
the current input line to be restarted immediately after the place where a colon 
function with the same <label> was encountered. If no colon function with 
the same label can be found after all the editing commands have been com
piled, a compile time diagnostic is produced, and no execution is attempted. 

A b function with no <label> is taken to be a branch to the end of the list of 
editing commands; whatever should be done with the current input line is 
done, and another input line is read; the list of editing commands is restarted 
from the beginning on the new line. 

(2)t<label> - test substitutions 

The t function tests whether any successful substitutions have been made on 
the current input line; if so, it branches to <label>; if not, it does nothing. 
The flag which indicates that a successful substitution has been executed is 
reset by: 

I) reading a new input line, or 
2) executing a t function. 

3. 7. Miscellaneous Functions 

(I)= - equals 

The = function writes to the standard output the line number of the line 
matched by its address. 

(l)q - quit 

REFERENCE 

The q function causes the current line to be written to the output (if it should 
be), any appended or read text to be written, and execution to be terminated. 

[1] UNIX Programmer's Manual, Bell Laboratories, 1978. 

January 1981 



UNIX 

B.3.1 

UNIX for Beginners (Second Edition) 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This paper is meant to help new users get started on the UNIXt operating system. 
It includes: 

• basics needed for day-to-day use of the system - typing commands, correcting 
typing mistakes, logging in and out, mail, inter-terminal communication, the file 
system, printing files, redirecting I/O, pipes, and the shell. 

• document preparation - a brief discussion of the major formatting programs and 
macro packages, hints on preparing documents, and capsule descriptions of some 
supporting software. 

• UNIX programming - using the editor, programming the shell, programming in C, 
other languages and tools. 

• pointers to additional sources of information about UNIX. 

INTRODUCTION 

From the user's point of view, the UNIX 
operating system is easy to learn and use, and 
presents few of the usual impediments to getting 
the job done. It is hard, however, for the 
beginner to know where to start, and how to 
make the best use of the facilities available. The 
purpose of this introduction is to help new users 
get used to the main ideas of the UNIX system 
and start making effective use of it quickly. 

You should have a couple of other docu
ments with you for easy reference as you read 
this one. The most important is UNIX User's 
Manual; it's often easier to tell you to read about 
something in the manual than to repeat its con
tents here. The other useful document is A 
Tutorial Introduction to the UNIX Text Edi.tor, 
which will tell you how to use the editor to get 
text - programs, data, documents - into the 
computer. 

A word of warning: the UNIX system has 
become quite popular, and there are several 
major variants in widespread use. Of course 
details also change with time. So although the 
basic structure of UNIX and how to use it is com· 
mon to all versions, there will certainly be a few 

t UNIX is a trademark of Bell Laboratories. 

things which are different on your system from 
what is described here. We have tried to minim
ize the problem, but be aware of it. In cases of 
doubt, this paper describes Version 7 UNIX. 

This paper has four main sections: 

1. Getting Started: How to log in, how to type, 
what to do about mistakes in typing, how to 
log out. Some of this is dependent on which 
system you log into (phone numbers, for 
example) and what terminal you use, so this 
section must necessarily be supplemented by 
local information. 

2. Day-to-day Use: Things you need every day 
to use the system effectively: generally use
ful commands; the file system. 

3. Document Preparation: Preparing manu
scripts is one of the most common uses for 
UNIX systems. This section contains advice, 
but not extensive instructions on any of the 
formatting tools. 

4. Writing Programs: UNIX is an excellent sys· 
tem for developing programs. This section 
talks about some of the tools, but again is 
not a tutorial in any of the programming 
languages provided by the system. 



2 

I. GETTING STARTED 

Loaging In 

You must have a UNIX login name, which 
you can get from whoever administers your sys
tem. You also need to know the phone number, 
unless your system uses permanently connected 
terminals. The UNIX system is capable of deal
ing with a wide variety of terminals: Terminet 
300s; Execuport, TI and similar portables; video 
(CRT) terminals like the HP 2640, etc.; high
priced graphics terminals like the Tektronix 
4014; plotting terminals like those from GSI and 
DASI; and even the venerable Teletype in its 
various forms. But note: UNIX is strongly 
oriented towards devices with lower case. If your 
terminal produces only upper case (e.g., model 
33 Teletype, some video and portable terminals), 
life will be so difficult that you should look for 
another terminal. 

Be sure to set the switches appropriately on 
your device. Switches that might need to be 
adjusted include the speed, upper/lower case 
mode, full duplex, even parity, and any others 
that local wisdom advises. Establish a connec
tion using whatever magic is needed for your ter
minal; this may involve dialing a telephone call 
or merely flipping a switch. In either case, UNIX 
should type "login:" at you. If it types garbage, 
you may be at the wrong speed; check the 
switches. If that fails, push the "break" or 
"interrupt" key a few times, slowly. If that fails 
to produce a login message, consult a guru. 

When you get a login: message, type your 
login name in lower case. Follow it by a 
RETURN; the system will not do anything until 
you type a RETURN. If a password is required, 
you will be asked for it, and (if possible) printing 
will be turned off while you type it. Don't forget 
RETURN. 

The culmination of your login efforts is a 
"prompt character," a single character that in di· 
cates that the system is ready to accept com
mands from you. The prompt character is usu
ally a dollar sign S or a percent sign %. (You 
may also get a message of the day just before the 
prompt character, or a notification that you have 
mail) 

Typing Commands 

Once you've seen the prompt character, you 
can type commands, which are requests that the 
system do something. Try typing 

date 

followed by RETURN. You should get back 
something like 

UNIX for Beginners 

Mon Jan 16 14:17:10 EST 1978 

Don't forget the RETURN after the command, or 
nothing will happen. If you think you 're being 
ignored, type a RETURN; something should hap
pen. RETURN won't be mentioned again, but 
don't forget it - it has to be there at the end of 
each line. 

Another command you might try is who, 
which tells you everyone who is currently logged 
in: 

who 

gives something like 

mb 
ski 
gam 

ttyOI 
tty05 
ttyll 

Jan 16 
Jan 16 
Jan 16 

09:11 
09:33 
13:07 

The time is when the user logged in; "ttyxx" is 
the system's idea of what terminal the user is on. 

If you make a mistake typing the command 
name, and refer to a non-existent command, you 
will be told. For example, if you type 

whom 

you will be told 

whom: not found 

Of course, if you inadvertently type the name of 
some other command, it will run, with more or 
less mysterious results. 

Strange Terminal Behavior 

Sometimes you can get into a state where 
your terminal acts strangely. For example, each 
letter may be typed twice, or the RETURN may 
not cause a line-feed or a return to the left mar
gin. You can often fix this by logging out and 
logging back in. Or you can read the description 
of the command stty in Section 1 of the UNIX 
User's Manual. To get intelligent treatment of 
tab characters (which are much used in UNIX) if 
your terminal doesn't have tabs, type 

stty -tabs 

and the system will convert each tab into the 
right number of blanks for you. If your terminal 
does have computer-settable tabs, the command 
tabs will set the stops co~rectly for you. 

Mistakes in Typing 

If you make a typing mistake, and see it 
before RETURN has been typed, there arc two 
ways to recover. The sharp-character # erases 
the last character typed; in fact successive uses of 
# erase characters back to the beginning of the 
line (but not beyond). So if you type badly, you 
can correct as you go: 



UNIX for Beginners 

dd#attel#e 

is the same as date. 

The at-sign @ erases all of the characters 
typed so far on the current input line, so if the 
line is irretrievably fouled up, type an @ and 
start the line over. 

What if you must enter a sharp or at-sign as 
part of the text? If you precede either I or @ 
by a backslash \, it loses its erase meaning. So 
to enter a sharp or at-sign in something, type \# 
or \@. The system will always echo a new-line 
at you after your at-sign, even if preceded by a 
backslash. Don't worry - the at-sign has been 
recorded. 

To erase a backslash, you have to type two 
sharps or two at-signs, as in\##. The backslash 
is used extensively in UNIX to indicate that the 
following character is in some way special. 

Read-ahead 

UNIX has full read-ahead, which means that 
you can type as fast as you want, whenever you 
want, even when some command is typing at 
you. If you type during output, your input char
acters will appear intermixed with the output 
characters, but they will be stored away and 
interpreted in the correct order. So you can type 
several commands one after another without 
waiting for the first to finish or even begin. 

Stopping a Program 

You can stop most programs by typing the 
character "DEL" (perhaps called "delete" or 
"rubout" on your terminal). The "interrupt" or 
"break" key found on most terminals can also 
be used. In a few programs, like the text editor, 
DEL stops whatever the program is doing but 
leaves you in that program. Hanging up the 
phone will stop most programs. 

Logging Out 

The easiest way to log out is to hang up the 
phone. You can also type 

login 

and Jet someone else use the terminal you were 
on. It is usually not sufficient just to turn off the 
terminal. Most UNIX systems do not use a 
time-out mechanism, so you 'II be there forever 
unless you hang up. 

Mail 

When you Jog in, you may sometimes get 
the message 

You have mail. 

3 

UNIX provides a postal system so you can com
municate with other users of the system. To 
read your mail, type the command 

mail 

Your mail will be printed, one message at a time, 
most recent message first. After each message, 
mail waits for you to say what to do with it. The 
two basic responses are d, which deletes the mes
sage, and RETURN, which does not (so it will 
still be there the next time you read your mail
box). Other responses are described in the 
manual. (Earlier versions of mail do not process 
one message at a time, but are otherwise simi
lar.) 

How do you send mail to someone else? 
Suppose it is to go to "joe" (assuming "joe" is 
someone's login name). The easiest way is this: 

mail joe 
now type in the text of the letter 
on as many lines as you like ... 
After the last line of the letter 
type the character "control-d", 
that is, hold down "control" and type 
a letter "d". 

And that's it. The "control-d" sequence, often 
called "EOF'' for end-of-file, is used throughout 
the system to mark the end of input from a ter
minal, so you might as well get used to it. 

For practice, send mail to yourself. (This 
isn't as strange ·as it might sound - mail to one
self is a handy reminder mechanism.) 

There are other ways to s.end mail - you 
can send a previously prepared letter, and you 
can mail to a number of people all at once. For 
more details see mail(l ). (The notation mall( I) 
means the command mail in Section I of the 
UNIX User's Manual.) 

Writing to other users 

At some point, out of the blue will come a 
message like 

Message from joe tty07 ... 

accompanied by a startling beep. It means that 
Joe wants to talk to you, but unless you take 
explicit action you won't be able to talk back. To 
respond, type the command 

write.joe 

This establishes a two-way communication path. 
Now whatever Joe types on his terminal will 
appear on yours and vice versa. The path is 
slow, rather like talking to the moon. (If you are 
in the middle of something, you have to get to a 
state where you can type a command. Normally, 
whatever program you are running has to 



4 

terminate or be terminated. If you're editing, 
you can escape temporarily from the editor ~ 
read the editor tutorial.) 

A protocol is needed to keep what you type 
from getting garbled up with what Joe types. 
Typically it's like this: 

Joe types write smith and waits. 
Smith types write joe and waits. 
Joe now types his message (as many lines 
as he likes). When he's ready for a 
reply, he signals it by typing (o), which 
stands for "over". 
Now Smith types a reply, also terminated 
by (o). 
This cycle repeats until someone gets 
tired; he then signals his intent to quit 
with (oo), for "over and out". 
To terminate the conversation, each side 
must type a "control-d" character alone 
on a line. ("Delete" also works.) When 
the other person types his "control-d", 
you will get the message EOF on your 
terminal. 

If you write to someone who isn't logged in, 
or who doesn't want to be disturbed, you'll be 
told. If the target is logged in but doesn't answer 
after a decent interval, simply type "control-d". 

On-line Manual 

The UNIX User's Manual 1s typically kept 
on-line. If you get stuck on something, and 
can't find an expert to assist you, you can print 
on your terminal some manual section that 
might help. This is also useful for getting the 
most up-to-date information on a command. To 
print a manual section, type "man command
name". Thus to read up on the who command, 
type 

man who 

and, of course, 

man man 

tells all about the man command. 

Computer Aided Instruction 

Your UNIX system may have available a pro
gram called learn, which provides computer 
aided instruction on the file system and basic 
commands, the editor, document preparation, 
and even C programming. Try typing the com
mand 

learn 

If learn exists on your system, it will tell you 
what to do from there. 

UNIX for Beginners 

II. DAY-TO-DAY USE 

Creating Files - The Editor 

If you have to type a paper or a letter or a 
program, how do you get the information stored 
in the machine? Most of these tasks are done 
with the UNIX "text editor" ed. Since ed is 
thoroughly documented in ed( 1) and explained 
in A Tutorial Introduction to the UNIX Text Editor, 
we won't spend any time here describing how to 
use it. All we want it for right now is to make 
some files. (A file is just a collection of informa
tion stored in the machine, a simplistic but ade
quate definition.) 

To create a file called junk with some text in 
it, do th~ following: 

ed junk (invokes the text editor) 
a (command to "ed" to add text) 
now type in 
whatever text you want ... 

(signals the end of adding text) 

The "." that signals the end of adding text must 
be at the beginning of a line by itself. Don't for
get it, for until it is typed, no other ed com
mands will be recognized - everything you type 
will be treated as text to be added. 

At this point you can do various editing 
operations on the text you typed in, such as 
correcting spelling mistakes, rearranging para
graphs and the like. Finally, you must write the 
information you have typed into a file with the 
editor command w: 

ed will respond with the number of characters it 
wrote into the file junk. 

Until the w command, nothing is stored per
manently, so if you hang up and go home the 
information is lost.• But after w the information 
is there permanently; you can re-access it any 
time by typing 

ed junk 

Type a q command to quit the editor. (If you try 
to quit without writing, ed will print a ? to rem
ind you. A second q gets you out regardless.) 

Now create a second file called temp in the 
same manner. You should now have two files, 
junk and temp. 

• This is not strictly true - if you hang up while editing, 
the data you were working on is saved in a file called 
l!d.ltup, which you can continue with at your nelll seuion. 



UNIX for Beginners 

What files are out there? 

The Is (for "list") command lists the names 
(not contents) of any of the files that UNIX 
knows about. If you type 

Is 

the response will be 

junk 
temp 

which are indeed the two files just created. The 
names are sorted into alphabetical order 
automatically, but other variations are possible. 
For example, the command 

Is -t 

causes the files to be listed in the order in which 
they were last changed, most recent first. The 
-I option gives a "long" listing: 

Is -I 

will produce something like 

-rw-rw-rw- l bwk 41 Jul 22 2:56 junk 
-rw-rw-rw- l bwk 78 Jul 22 2:57 temp 

The date and time are of the last change to the 
file. The 41 and 78 are the number of characters 
(which should agree with the numbers you got 
from ed). bwk is the owner of the file, that is, 
the person who created it. The -rw-rw-rw
tells who has permission to read and write the 
file, in this case everyone. 

Options can be combined: ls -It gives the 
same thing as Is -1, but sorted into time order. 
You can also name the files you're interested in, 
and Is will list the information about them only. 
More details can be found in ls(l ). 

The use of optional arguments that begin 
with a minus sign, like - t and - It, is a com
mon convention for UNIX programs. In general, 
if a program accepts such optional arguments, 
they precede any file name arguments. It is also 
vital that you separate the various arguments 
with spaces: Is - I is not the same as Is -1. 

Printing Files 

Now that you've got a file of text, how do 
you print it so people can look at it? There are a 
host of programs that do that, probably more 
than are needed. 

One simple thing is to use the editor, since 
printing is often done just before making 
changes anyway. You can say 

ed junk 
l,Sp 

ed will reply with the count of the characters in 
junk and then print all the lines in t~e file. 

5 

After you learn how to use the editor, you can 
be selective about the parts you print. 

There are times when it's not feasible to use 
the editor for printing. For example, there is a 
limit on how big a file ed can handle (several 
thousand lines). Secondly, it will only print one 
file at a time, and sometimes you want to print 
several, one after another. So here are a couple 
of alternatives. 

First is cat, the simplest of all the printing 
programs. cat simply prints on the terminal the 
contents of all the files named in a list. Thus 

cat junk 

prints one file, and 

cat junk temp 

prints two. The files are simply concatenated 
(hence the name "cat") onto the terminal. 

pr produces formatted printouts of files. As 
with cat, pr prints all the files named in a list. 
The difference is that it produces headings with 
date, time, page number and file name at the top 
of each page, and extra lines to skip over the 
fold in the paper. Thus, 

pr junk temp 

will print junk neatly, then skip to the top of a 
new page and print temp neatly. 

pr can also produce multi-column output: 

pr -3 junk 

prints junk in 3-column format. You can use 
any reasonable number in place of "3" and pr 
will do its best. pr has other capabilities as well; 
see pr(l). 

It should be noted that pr is not a format
ting program in the sense of shuffling lines 
around and justifying margins. The true for
matters are nroff and troff, which we will get to 
in the section on document preparation. 

There are also programs that print files on a 
high-speed printer. Look in your manual under 
opr and lpr. Which to use depends on what 
equipment is attached to your machine. 

Shuffling Files About 

Now that you have some files in the file sys
tem and some experience in printing them, you 
can try bigger things. For example, you can 
move a file from one place to another (which 
amounts to giving it a new name), like this: 

mv junk precious 

This means that what used to be "junk" is now 
"precious". If you do an Is command now, you 
will get · 



6 

precious 
temp 

Beware that if you move a file to another one 
that already exists, the already existing contents 
are lost forever. 

If you want to make a copy of a file (that is, 
to have two versions of something), you can use 
the cp command: 

cp precious templ 

makes a duplicate copy of precious in tempt. 

Finally, when you get tired of creating and 
moving files, there is a command to remove files 
from the file system, called rm. 

rm temp tempi 

will remove both of the files named. 

You will get a warning message if one of the 
named files wasn't there, but otherwise rm, like 
most UNIX commands, does its work silently. 
There is no prompting or chatter, and error mes
sages are occasionally curt. This terseness is 
sometimes disconcerting to newcomers, but 
experienced users find it desirable. 

What's in a File Name 

So far we have used file names without ever 
saying what's a legal name, so it's time for a 
couple of rules. First, file names are limited to 
14 characters, which is enough to be descriptive. 
Second, although you can use almost any charac
ter in a file name, common sense says you 
should stick to ones that are visible, and that you 
should probably avoid characters that might be 
used with other meanings. We have already 
seen, for example, that in the Is command, 
Is -t means to list in time order. So if you had 
a file whose name was -t, you would have a 
tough time listing it by name. Besides the minus 
sign, there are other characters which have spe
cial meaning. To avoid pitfalls, you would do 
well to use only letters, numbers and the period 
until you 're familiar with the situation. 

On to some more positive suggestions. Sup
pose you 're typing a large document like a book. 
Logically this divides into many small pieces, like 
chapters and perhaps sections. Physically it must 
be divided too, for ed will not handle really big 
files. Thus you should type the document as a 
number of files. You might have a separate file 
for each chapter, called 

cha pl 
chap2 
etc .... 

Or, if each chapter were broken into several files, 
you might have 

chapl.1 
chapl.2 
chapl.3 

chap2.1 
chap2.2 

UNIX for Beginners 

You can now tell at a glance where a particular 
file fits into the whole. 

There are advantages to a systematic naming 
convention which are not obvious to the novice 
UNIX user. What if you wanted to print the 
whole book? You could say 

pr chapl.1 chapl.2 chapl.3 ... 

but you would get tired pretty fast, and would 
probably even make mistakes. Fortunately, 
there is a shortcut. You can say 

pr chap• 

The • means "anything at all," so this translates 
into "print all files whose names begin with 
chap". listed in alphabetical order. 

This shorthand notation is not a property of 
the pr command, by the way. It is system-wide, 
a service of the program that interprets com
mands (the "shell," sh(l)). Using that fact, 
you can see how to list the names of the files in 
the book: 

Is chap• 

produces 

chapl.1 
chapl.2 
chapl.3 

The • is not limited to the last position in a file 
name - it can be anywhere and can occur 
several times. Thus 

rm •junk• •temp• 

removes all files that contain junk or temp as 
any part of their name. As a special case, • by 
itself matches every file name, so 

pr • 

prints all your files (alphabetical order), and 

rm• 

removes all files. (You had better be very sure 
that's what you wanted to say!) 

The • is not the only pattern-matching 
feature available. Suppose you want to print 
only chapters 1 through 4 and 9. Then you can 
say 



UNIX for Beginners 

pr chap(12349)• 

The ( ... I means to match any of the characters 
inside the brackets. A range of consecutive 
letters or digits can be abbreviated, so you can 
also do this with 

pr chap[l-49)• 

Letters can also be used within brackets: (a -z) 
matches any character in the range a through z. 

The ? pattern matches any single character, 
so 

Is ? 

lists all files which have single-character names, 
and 

Is -I chap?.1 

lists information about the first file of each 
chapter (chapl.l, chap2.I, etc.). 

Of these niceties, • is certainly the most use
ful, and you should get used to it. The others 
are frills, but worth knowing. 

If you should ever have to turn off the spe
cial meaning of •. ? , etc., enclose the entire 
argument in single quotes, as in 

Is '?' 

We'll see some more examples of this shortly. 

What's in a File Name, Continued 

When you first made that file called junk, 
how did the system know that there wasn't 
another junk somewhere else, especially since 
the person in the next office is also reading this 
tutorial? The answer is that generally each user 
has a private directory, which contains only the 
files that belong to him. When you log in, you 
are "in" your directory. Unless you take special 
action, when you create a new file, it is made in 
the directory that you are currently in; this is 
most often your own directory, and thus the file 
is unrelated to any other file of the same name 
that might exist in someone else's directory. 

The set of all files is organized into a (usu
ally big) tree, with your files located several 
branches into the tree. It is possible for you to 
"walk" around this tree, and to find any file in 
the system, by starting at the root of the tree and 
walking along the propef set of branches. Con
versely, you can start where you are and walk 
toward the root. 

Let's try the latter first. The basic tools is 
the command pwd ("print working directory"), 
which prints the name of the directory you are 
currently in. 

7 

Although the details will vary according to 
the system you are on, if you give the command 
pwd, it will print something like 

/usr /your_name 

This says that you are currently in the directory 
your-name, which is in turn in the directory 
/usr, which is in turn in the root directory ca.lied 
by convention just /. (Even if it's not called 
/usr on your system, you will get something 
analogous. Make the corresponding changes and 
read on.) 

If you now type 

Is /usr/your_name 

you should get exactly the same list of file names 
as you get from a plain Is: with no arguments, Is 
lists the contents of the current directory; given 
the name of a directory, it lists the contents of 
that directory. 

Next, try 

Is /usr 

This should print a Jong series of names, among 
which is your own login name your-name. On 
many systems, usr is a directory that contains 
the directories of all the normal users of the sys
tem, like you. 

The next step is to try 

Is / 

You should get a response something like this 
(although again the details may be different): 

bin 
dev 
etc 
lib 
tmp 
UST 

This is a collection of the basic directories of files 
that the system knows about; we are at the root 
of the tree. 

Now try 

cat /usr /your_name/junk 

(if junk is still around in your directory). The 
name 

/usr/your_name/junk 

is called the path-name of the file that you nor
mally think of as "junk". "Path-name" has an 
obvious meaning: it represents the full name of 
the path you have to follow from the root 
through the tree of directories to get to a particu
lar file. It is a universal rule in the UNIX system 
~hat anywhere you can use an ordinary file name, 
you can use a path-name. 



8 

Here is a picture that may make this clearer: 

(root) 

bin 
/I\ 

/I\ 
etc usr dev tmp 

/l\/l\/I\ II\ 

adam eve mary 

I / \ funk 
junk temp 

Notice that Mary's junk is unrelated to Eve's. 

This isn't too exciting if all the files of 
interest are in your own directory, but if you 
work with someone else or on several projects 
concurrently, it becomes handy indeed. For 
example, your friends ain print your book by 
saying 

pr /usr /your_name/chap• 

Similarly, you can find out what files your neigh
bor has by saying 

Is /usr/nelghbor_name 

or make your own copy of one of his files by 

cp /usr /your_neigbbor /bis_file your_file 

If your neighbor doesn't want you poking 
around in his files, or vice versa, privacy can be 
arranged. Each file and directory has read-write
execute permissions for the owner, a group, and 
everyone else, which ain be set to control access. 
See ls(l) and cbmod(l) for details. As a matter 
of observed fact, most users most of the time 
find openness of more benefit than privacy. 

As a final experiment with path-names, try 

Is /bin /usr/bln 

Do some of the names look familiar? When you 
run a program, by typing its name after the 
prompt character, the system simply looks for a 
file of that name. It normally looks first in your 
directory (where it typically doesn't find it), then 
in /bin and finally in /usr/bin. There is nothing 
magic about commands like cat or Is, except that 
they have been collected into a couple of places 
to be easy to find and administer. 

What if you work regularly with someone 
else on common information in his directory? 
You could just log in as your friend each time 
you want to, but you can also say "I· want to 
work on his files instead of my own". This is 
done by changing the directory that you are 
currently in: 

cd /usr /your_friend 

UNIX /or Beginners 

Now when you use a file name in something like 
cat or pr, it refers to the file in your friend's 
directory. Changing directories doesn't affect 
any permissions associated with a file - if you 
couldn't access a file from your own directory, 
changing to another directory won't alter that 
fact. Of course, if you forget what directory 
you're in, type 

pwd 

to find out. 

It is usually convenient to arrange your own 
files so that all the files related to one thing are 
in a directory separate from other projects. For 
example, when you write your book, you might 
want to keep all the text in a directory ailled 
book. So make one with 

mkdir book 

then go to it with 

cd book 

then start typing chapters. The book is now 
found in (presumably) 

/usr /your_name/book 

To remove the directory book, type 

rm book/• 
rmdir book 

The first command removes all files from the 
directory: the second removes the empty direc
tory. 

You can go up one level in the tree of files 
by saying 

cd •. 

" .. " is the name of the parent of whatever direc
tory you are currently in. For completeness, "." 
is an alternate name for the directory you are in. 

Using Files instead of the Terminal 

Most of the commands we have seen so far 
produce output on the terminal: some, like the 
editor, also take their input from the terminal. It 
is universal in UNIX systems that the terminal 
can be replaced by a file for either or both of 
input and output. As one example, 

Is 

makes a list of files on your terminal. But if you 
say 

Is >file_list 

a list of your files will be placed in the file 
file_list (which will be created if it doesn't 
already exist, or overwritten if it does). The 
symbol > means "put the output on the 



UNIX for Beginners 

following file, rather than on the terminal." 
Nothing is produced on the terminal. As 
another example, you could combine several files 
into one by capturing the output of cat in a file: 

cat fl fl f3 >temp 

The symbol >> operates very much like > 
does, except that it means "add to the end of." 
That is, 

cat n fl f3 >>temp 

means to concatenate n, f2 and f3 to the end of 
whatever is already in temp, instead of overwrit
ing the existing contents. As with >, if temp 
doesn't exist, it will be created for you. 

In a similar way, the symbol < means to 
take the input for a program from the following 
file, instead of from the terminal. Thus, you 
could make up a script of commonly used editing 
commands and put them into a file called script. 
Then you can run the script on a file by saying 

ed file <script 

As another example, you can use ed to prepare a 
letter in file let, then send it to several people 
with 

mall adam eve mary joe <let 

Pipes 

One of the novel contributions of the UNIX 
system is the idea of a pipe. A pipe is simply a 
way to connect the output of one program to the 
input of another program, so the two run as a 
sequence of processes - a pipeline. 

For example, 

pr f g h 

will print the files f, g, and b, beginning each on 
a new page. Suppose you want them run 
together instead. You could say 

cat f g h >temp 
pr <temp 
rm temp 

but this is more work than necessary. Clearly 
what we want is to take the output of cat and 
connect it to the input of pr. So let. us use a n 
pipe: 

cat r g h I pr 
The vertical bar I means to take the output from 
cat, which would normally have gone to the ter
minal, and put it into pr to be neatly formatted. 

There arc many other examples of pipes. 
For example, 

9 

Is I pr -3 

prints a list of your files in three columns. The 
program wc counts the number of lines, wor~s 
and characters in its input, and as we saw earlier, 
who prints a list of currently-logged on people, 
one per line. Thus 

who I we 

tells how many people are logged on. And of 
course 

Is I wc 

counts your files. 

Any program that reads from the terminal 
can read from a pipe instead; any program that 
writes on the terminal can drive a pipe. You can 
have as many elements in a pipeline as you wish. 

Many UNIX programs are written so that 
they will take their input from one or more files 
if file arguments arc given; if no arguments arc 
given they will read from the terminal, and thus 
can be used in pipelines. pr is one example: 

pr -3 a b c 

prints files a, b and c in order in three columns. 
But in 

cat a b c I pr -3 

pr prints the information coming down the pipe
line, still in three columns. 

The Shell 

We have already mentioned once or twice 
the mysterious "shell," which is in fact sh(J ). 
The shell is the program that interprets what you 
type as commands and arguments. It also looks 
after translating •, etc., into lists of file names, 
and <, >, and I into changes of input and out
put streams. 

The shell has other capabilities too. For 
example, you can run two programs with one 
command line by separating the commands with 
a semicolon; the shell recognizes the semicolon 
and breaks the line into two commands. Thus 

date; who 

does both commands before returning with a 
prompt character. 

You can also have more than one program 
running simultaneously if you wish. For exam- · 
pie, if you are doing something time-consuming, 
like the editor script of an earlier section, and 
you. don't want to wait around for the results 
before starting something else, you can say 

ed file <script & 



10 

The ampersand at the end of a command line 
says "start this command running, then take 
further commands from the terminal immedi
ately," that is, don't wait for it to complete. 
Thus the script will begin, but you can do some
thing else at the same time. Of course, to keep 
the output from interfering with what you 're 
doing on the terminal, it would be better to say 

ed file <script >script.out & 

which saves the output lines in a file called 
script.out. 

When you initiate a command with &, the 
system replies with a number called the process 
number, which identifies the command in case 
you later want to stop it. If you do, you can say 

kill process_number 

If you forget the process number, the command 
ps will tell you about everything you have run
ning. (If you are desperate, kill 0 will kill all 
your processes.) And if you're curious about 
other people, ps a will tell you about all pro
grams that are currently running. 

You can say 

(command_I; command_l; commaod_3) & 

to start three commands in the background, or 
you can start a background pipeline with 

command_l I commaod_l & 

Just as you can tell the editor or some simi
lar program to take its input from a file instead 
of from the terminal, you can tell the shell to 
read a file to get commands. (Why not? The 
shell, after all, is just a program, albeit a clever 
one.) For instance, suppose you want to set tabs 
on your terminal, and find out the date and 
who's on the system every time you log in. 
Then you can put the three necessary commands 
(tabs, date, who) into a file, let's call it startup, 
and then run it with 

sh startup 

This says to run the shell with the file startup as 
input. The effect is as if you had typed the con
tents of startup on the terminal. 

If this is to be a regular thing, you can elim
inate the need to type sh: simply type, once only, 
the command 

chmod +x startup 

and ther~after you need only say 

startup 

UNIX for Beginners 

to run the sequence of commands. The 
chmod{l) command marks the file executable; 
the shell recognizes this and runs it as a 
sequence of commands. 

If you want startup to run automatically 
every time you log in, create a file in your login 
directory called .profile, and place in it the line 
startup. When the shell first gains control when 
you log in, it looks for the .profile file and does 
whatever commands it finds in it. We'll get back 
to the shell in the section on programming. 

III. DOCUMENT PREPARATION 

UNIX systems are used extensively for docu
ment preparation. There are two major format
ting programs, that is, programs that produce a 
text with justified right margins, automatic page 
numbering and titling, automatic hyphenation, 
and the like. nroff is designed to produce output 
on terminals and line-printers. troff (pro
nounced "tee-roff") instead drives a photo
typesetter, which produces very high quality out
put on photographic paper. This paper was for
matted with troff. 

Formatting Packages 

The basic idea of nroff and troff is that the 
text to be formatted contains within it "format
ting commands" that indicate jn detail how the 
formatted text is to look. For example, there 
might be commands that specify how long lines 
are, whether to use single or double spacing, and 
what running titles to use on each page. 

Because nroff and troff are relatively hard to 
learn to use effectively, several "packages" of 
canned formatting requests are available to let 
you specify paragraphs, running titles, footnotes, 
multi-column output, and so on, with little effort 
and without having to learn nroff and troff. 
These packages take a modest effort to learn, but 
the rewards for using them are so great that it is 
time well spent. 

In this section, we will provide a hasty look 
at the "manuscript" package known as -ms. 
Formatting requests typically consist of a period 
and two upper-case letters. such as .TL, which is 
used to introduce a title, or .PP to begin a new 
paragraph. 

A document is typed so it looks something 
like this: 



UNIX for Beginners 

.TL 
title of document 
.AU 
author name 
.SH 
section heading 
.PP 
paragraph ... 
.PP 
another paragraph 
.SH 
another section beading 
.PP 
etc. 

The lines that begin with a period are the for
matting requests. For example, .PP calls for 
starting a new paragraph. The precise meaning 
of .PP depends on what output device is being 
used (typesetter or terminal. for instance), and 
on what publication the document will appear in. 
For example, - ms normally assumes that a 
paragraph is preceded by a space (one line in 
nroff, \h line in troff), and the first word is 
indented. These rules can be changed if you 
like, but they are changed by changing the 
interpretation of .PP, not by re-typing the docu
ment. 

To actually produce a document in standard 
format using - ms, use the command 

troff - ms files ... 

for the typesetter, and 

nroff - ms files ... 

for a terminal. The - ms argument tells troff 
and nroff to use the manuscript package of for
matting requests. 

There are several similar packages; check 
with a local expert to determine which ones are 
in common use on your machine. 

Supporting Tools 

In addition to the basic formatters, there is a 
host of supporting programs that help with docu
ment preparation. The list in the next few para
graphs is far from complete, so browse through 
the manual and check with people around you 
for other possibilities. 

eqn and neqn let you integrate mathematics 
into the text of a document, in an easy-to-learn 
language that closely resembles the way you 
would speak it aloud. For example, the eqn 
input 

sum from i=O to n x sub i ~=~ pi over 2 

produces the output 

11 

The program tbl provides an analogous ser
vice for preparing tabular material; it does all the 
computations necessary to align complicated 
columns with elements of varying widths. 

spell and typo detect possible spelling mis
takes in a document. spell works by comparing 
the words in your document to a dictionary, 
printing those that are not in the dictionary. It 
knows enough about English spelling to detect 
plurals and the like, so it does a very good job. 
typo looks for words which are "unusual", and 
prints those. Spelling mistakes tend to be more 
unusual, and thus show up early when the most 
unusual words are printed first. 

grep looks through a set of files for lines 
that contain a particular text pattern (rather like 
the editor's context search does, but on a bunch 
of files). For example, 

grep 'Ing$' chap• 

will find all lines that end with the letters ing in 
the files chap•. (It is almost always a good prac
tice to put single quotes around the pattern 
you're searching for, in case it contains charac
ters like • or $ that have a special meaning to the 
shell.) grep is often useful for finding out in 
which of a set of files the misspelled words 
detected by spell are actually located. 

diff prints a list of the differences between 
two files, so you can compare two versions of 
something automatically (which certainly beats 
proofreading by hand). 

we counts the words, lines and characters in 
a set of files. tr translates characters into other 
characters; for example it will convert upper to 
lower case and vice versa. This translates upper 
into lower: 

tr A - Z a - z <Input >output 

sort sorts files in a variety of ways; cref 
makes cross-references; ptx makes a permuted 
index (keyword-in-context listing). sed provides 
many of the editing facilities of ed, but can apply 
them to arbitrarily long inputs. awk provides the 
ability to do both pattern matching and numeric 
computations, and to conveniently process fields 
within lines. These programs are for more 
advanced users, and they are not limited to 
document preparation. Put them on your list of 
things to learn about. 

Most of these programs are either indepen
dently documented (like eqn and tbl), or are 
sufficiently simple that the description in the 
UNIX User's Manual is adequate explanation. 



12 

Hints for Preparing Documents 

Most documents go through several versions 
(always more than you expected) before they are 
finally finished. Accordingly, you should do 
whatever possible to make the job of changing 
them easy. 

First, when you do the purely mechanical 
operations of typing, type so that subsequent 
editing will be easy. Start each sentence on a 
new line. Make lines short, and break lines at 
natural places, such as after commas and semi
colons, rather than randomly. Since most people 
change documents by rewriting phrases and 
adding, deleting and rearranging sentences, these 
precautions simplify any editing you have to do 
later. 

Keep the individual files of a document 
down to modest size, perhaps ten to fifteen 
thousand characters. larger files edit more 
slowly, and of course if you make a dumb mis
take it's better to have clobbered a small file 
than a big one. Split into files at natural boun
daries in the document, for the same reasons 
that you start each sentence on a new line. 

The second aspect of making change easy is 
to not commit yourself to formatting details too 
early. One of the advantages of formatting pack
ages like - ms is that they permit you to delay 
decisions to the last possible moment. Indeed, 
until a document is printed, it is not even 
decided whether it will be typeset or put on a line 
printer. 

As a rule of thumb, for all but the most 
trivial jobs, you should type a document in terms 
of a set of requests like .PP, and then define 
them appropriately, either by using one of the 
canned packages (the better way) or by defining 
your own nroff and troff commands. As long as 
you have entered the text in some systematic 
way, it can always be cleaned up and re
formatted by a judicious combination of editing 
commands and request definitions. 

IV. PROGRAMMING 

There will be no attempt made to teach any 
of the programming languages available but a 
few words of advice are in order. One of the 
reasons why the UNIX system is a productive 
programming environment is that there is 
already a rich set of tools available, and facilities 
like pipes, 1/0 redirection, and the capabilities of 
the shell often make it possible to do a job by 
pasting ·together programs that already exist 
instead of writing from scratch. 

UNIX for Beginners 

The Shell 

The pipe mechanism lets you fabricate quite 
complicated operations out of spare parts that 
already exist. For example, the first draft of the 
spell program was (roughly) 

cat ... 
I tr ... 
I tr ... 
I sort 
I uniq 
I comm 

collect the files 
put each word on a new line 
delete punctuation, etc. 
into dictionary order 
discard duplicates 
print words in text 

but not in dictionary 

More pieces have been added subsequently, but 
this goes a long way for such a small effort. 

The editor can be made to do things that 
would normally require special programs on 
other systems. For example, to list the first and 
last lines of each of a set of files, such as a book, 
you could laboriously type 

ed 
e chapl.l 
lp 
$p 
e chapl.2 
Ip 
Sp 
etc. 

But you can do the job much more easily. One 
way is to type 

Is chap• >temp 

to get the list of file names into a file. Then edit 
this file to make the necessary series of editing 
commands (using the global commands of ed), 
and write it into script. Now the command 

ed <script 

will produce the same output as the laborious 
hand typing. Alternately (and more easily), you 
can use the fact that the shell will perform loops, 
repeating a set of commands over and over again 
for a set of arguments: 

for i in chap• 
do 

ed Si <script 
done 

This sets the shell variable i to each file name in 
turn, then does the command. You can type this 
command at the terminal, or put it in a file for 
later execution. 

Programming the Shell 

An option often overlooked by newcomers is 
that the shell is itself a programming language, 
with variables, control flow (if-else, while, for, 



.. 

UNIX for Beginners 

case), subroutines, and interrupt handling. Since 
there are many building-block programs, you can 
sometimes avoid writing a new program merely 
by piecing together some of the building blocks 
with shell command files. 

We will not go into any details here; exam
ples and rules can be found in the UNIX Shell 
Tutorial, by G. A. Snyder and J. R. Mashey. 

Programming in C 

If you are undertaking anything substantial, 
C is the only reasonable choice of programming 
language: everything in the UNIX system is tuned 
to it. The system itself is written in C, as are 
most of the programs that run on it. It is an 
easy language to use once you get started. C is 
introduced and fully described in The C Program
ming Language by B. W. Kernighan and D. M. 
Ritchie (Prentice-Hall, 1978); several sections 
describe the system interfaces, that is, how you 
do 1/0 and similar functions. Read UNIX Pro
gramming for more complicated things. 

Most input and output in C is best handled 
with the standard I/0 library, which provides a 
set of 1/0 functions that exist in compatible 
form on most machines that have C compilers. 
In general, it's wisest to confine the system 
interactions in a program to the facilities pro
vided by this library. 

C programs that don't depend too much on 
special features of UNIX (such as pipes) can be 
moved to other computers that have C com
pilers. The list of such machines grows daily; in 
addition to the original PDP- I I, it currently 
includes at least Honeywell 6000, IBM 370, Inter
data 8/32, Data General Nova and Eclipse, 
HP 2100, Harris /7, VAX 11/780, SEL 86, and 
Zilog Z80. Calls to the standard 1/0 library will 
work on all of these machines. 

There are a number of supporting programs 
that go with C. lint checks C programs for 
potential portability problems, and detects errors 
such as mismatched argument types and unini
tialized variables. 

For larger programs (anything whose source 
is on more than one file) make allows you to 
specify the dependencies among the source files 
and the processing steps needed to make a new 
version; it then checks the times that the pieces 
were last changed and does the minimal amount 
of recompiling to create a consistent updated ver
sion. 

The debugger adb is useful for digging 
through the dead bodies of C programs, but is 
rather hard to learn to use effectively. The most 
effective debugging tool is still careful thought, 
coupled with judiciously placed print statements. 

13 

The C compiler provides a limited instru
mentation service, so you can find out where 
programs spend their time and what parts are 
worth optimizing. Compile the routines with ~he 
-p option; after the test run, use prof to print 
an execution profile. The command time will 
give you the gross run-time statistics of a pro
gram, but they are not super accurate or repro
ducible. 

Other Languages 

If you have to use Fortran, there are two 
possibilities. You might consider Ratfor, which 
gives you the decent control structures and free
form input that characterize C, yet lets you write 
code that is still portable to other environments. 
Bear in mind that UNIX Fortran tends to produce 
large and relatively slow-running programs. 
Furthermore, supporting software like adb, prof, 
etc., are all virtually useless with Fortran pro
grams. There may also be a Fortran 77 compiler 
on your system. If so, this is a viable alternative 
to Ratfor, and has the non-trivial advantage that 
it is compatible with C and related programs. 
(The Ratfor processor and C tools can be used 
with Fortran 77 too.) 

If your application requires you to translate a 
language into a set of actions or another 
language, you are in effect building a compiler, 
though probably a small one. In that case, you 
should be using the yacc compiler-compiler, 
which helps you develop a compiler quickly. The 
lex lexical analyzer generator does the same job 
for the simpler languages that can be expressed 
as regular expressions. It can be used by itself, 
or as a front end to recognize inputs for a 
yacc-based program. Both yacc and lex require 
some sophistication to use, but the initial effort 
of learning them can be repaid many times over 
in programs that are easy to change later on. 

Most UNIX systems also make available 
other languages, such as Algol 68, APL, Basic, 
Lisp, Pascal, and Snobol. Whether these are 
useful depends largely on the local environment: 
if someone cares about the language and has 
worked on it, it may be in good shape. If not, 
the odds are strong that it will be more trouble 
than it's worth. 

V. ADDITIONAL READING. 

See the UNIX Documentation Road Map by 
G. A. Snyder and J. R. Mashey for additional 
reading suggestions. 

January 1981 



... 

1. INTRODUCTION 

UNIX Shell Tutorial 

G. A. Snyder 
J. R. Mashey 

Bell Laboratories 
Murray Hill, New Jersey 07974 

UNIX 

B.4.1 

In any programming project, some effort is used to build the end product. The remainder is 
consumed in building the supporting tools and procedures used to manage and maintain that 
end product. The second effort can far exceed the first, especially in larger projects. A good 
command language can be an invaluable tool in such situations. If it is a flexible programming 
language, it can be used to solve many internal support problems without requiring compilable 
programs to be written, debugged, and maintained; its most important advantage is the ability 
to get the job done now. For a perspective on the motivations for using a command language 
in this way, see [l,4,5,6). 

When users log into a UNIXt system, they communicate with an instance of the shell that reads 
commands typed at the terminal and arranges for their execution. Thus, the shell's most 
important function is to provide a good interface for human beings. In addition, a sequence of 
commands may be preserved for repeated use by saving it in a file, called a shell procedure, a 
command file, or a runcom, according to local preference. 

Some UNIX users need little knowledge of the shell to do their work; others make heavy use of 
its programming features. This tutorial may be read in several different ways, depending on the 
reader's interests. A brief discussion of the UNIX environment is found in §2. The discussion 
in §3 covers aspects of the shell that are important for everyone, while all of §4 and most of §5 
are mainly of interest to those who write shell procedures. A group of annotated shell pro
cedure examples is given in §6. Finally, a brief discussion of efficiency is offered in §7; this is 
found in its proper place (at the end), and is intended for those who write especially time
consuming shell procedures. 

Complete beginners should not be reading this tutorial, but should work their way through 
other available tutorials first. See [14] for an appropriate plan of study. All the commands men
tioned below are described in Section 1 of the UNIX User's Manual [7], while system calls are 
described in Section 2 and subroutines in Section 3 thereof; references of the form name(N) 
point to entry name in Section N of that manual. 

2. OVERVIEW OF THE UNIX ENVIRONMENT 

Full understanding of what follows depends on familiarity with UNIX; [13] is useful for that, 
and it would be helpful to read [8] and at least one of [9, 10). For completeness, a short over
view of the most relevant concepts is given below. 

2.1 File System 

The UNIX file system's overall structure is that of a rooted tree composed of directories and 
·other files. A simple file name is a sequence of characters other than a slash (/). A path name 
is a sequence of directory names followed by a simple file name, each separated from the previ
ous one by a I. If a path name begins with a I, the search for the file begins at the root of the 
entire tree; otherwise, it begins at the user's cu"ent directory (also known as the working direc
tory). The first kind of name is often called afull (or absolute) path name because it is invariant 

t UNIX is a trademark of Bell Laboratories. 



2 UNIX Shell Tutorial 

with regard to the user's current directory. The latter is often called a relative path name, 
because it specifies a path relative to the current directory. The user may change the current 
directory at any time by using the cd command. In most cases, a file name and its correspond
ing path name may be used interchangeably. Some sample names are: 

I 

/bin 

absolute path name of the root directory of the entire file structure. 

directory containing most of the frequently used public commands. 

/a 1/tf/jtb/bin a full path name typical of multi-person programming projects. This 
one happens to be a private directory of commands belonging to per
son j tb in project tf; a. 1 is the name of a file system. 

bin/x 

me·mox 

a relative path name; it names file x in subdirectory bin of the 
current directory. If the current directory is /,it names /bin/x. If, 
on the other hand, the current directory is I a 1 /tf I j tb, it names 
/a1/tf/jtb/bin/x. 

name of a file in the current directory. 

The UNIX file system provides special shorthand notations for the current directory and the 
parent directory of the current directory: 

is the generic name of the current directory; • /memox names the same file as 
memox if such a file exists in the current directory. 

is the generic name of the parent directory of the current directory; if you type: 

cd •• 

then the parent directory of your current working directory will become your new 
current directory. 

2.2 UNIX Processes 

rdt" Beginners should skip this section on first reading. 

An image is a computer execution environment, including contents of memory, register values, 
name of the current directory, status of open files, information recorded at login time, and vari
ous other items. A process is the execution of an image; most UNIX commands execute as 
separate processes. One process may spawn another using the fork system call, which dupli
cates the image of the original (parent) process. The new (child) process continues to execute 
the same program as the parent. The two images are identical, except that each program can 
determine whether it is executing as parent or child. Each program may continue execution of 
the image or may abandon it by issuing an exec system call, thus initiating execution of 
another program. Jn any case, each process is free to proceed in parallel with the other, 
although the parent most commonly issues a wait system call to suspend execution until a 
child terminates (exits). 

Figure 1 illustrates these ideas. Program A is executing (as process I) and wishes to run 
program B. It forks and spawns a child (process 2) that continues to run program A. The child 
abandons A by execing B, while the parent goes to sleep until the child exits. 

. . 
A child inherits its parent's open files. This mechao~sm permits processes to. share common 
input streams in various ways. In particular, an open. file .Possesses a pointer that indicates a 
position in the file and is modified by various operations on the file; read and write system 
calls copy a requested number of bytes from and to a file, beginning at the position given by 
the current value of the pointer. As a side effect, the pointer is incremented by the number of 
bytes transferred, yielding the effect of sequential 1/0; lseek can be used to obtain random
access 1/0; it sets the pointer to an absolute position within the file, or to a position off set 
either from the end of the file or from the current pointer position. 



UNIX Shell Tutorial 3 

FORK WAIT 

PROCESS I 
PROGR AMA 

irPARENT~ ~-- -- - - - - - - --- ---- . 
(ASLEEP) . . . . . 

: 
PROCESS 2 

PROGRAM A EXEC PROGRAM B J 
CHILD B l 

fX IT 

Figure 1 

When a process terminates, it can set an eight-bit exit status (see S? in §3.4.4) that is available 
to its parent. This code is usually used to indicate success (zero) or failure (non-zero). 

Signals indicate the occurrence of events that may have some impact on a process. A signal 
may be sent to a process by another process, from the terminal, or by UNIX itself. A child pro
cess inherits its parent's signals. For most signals, a process can arrange to be terminated on 
receipt of a signal, to ignore it completely, or to catch it and take appropriate action, as 
described in §4.4.11. For example, an INTERRUPT signal may be sent by depressing an 
appropriate key (de/, break, or rubout). The action taken depends on the requirements of the 
specific program being executed: 

• The shell invokes most commands in such a way that they immediately die when an 
interrupt is received. For example, the pr (print) command normally dies, allowing the 
user to terminate unwanted output. 

• The shell itself ignores interrupts when reading from the terminal, because it should con
tinue execution even when the user terminates a command like pr. 

• The editor ed chooses to catch interrupts so that it can halt its current action (especially 
printing) without allowing itself to be terminated. 

3. SHELL BASICS 

The shell (i.e., the sh command) implements the command language visible to most UNIX 
users. It reads input from a terminal or a file and arranges for the execution of the requested 
commands. It is a program written in the C language [ 11]; it is not part of the operating sys
tem, but is an ordinary user program. The discussion below is adapted from [2,3,7,121. 

3.1 Commands 

A simple command is a sequence of non-blank arguments separated by blanks or tabs. The first 
argument (numbered zero) usually specifies the name of the command to be executed; any 
remaining arguments, with a few exceptions, are passed as arguments to that command. A 
command may be as simple as: 

who 

which prints the login names of users who are currently logged into the system. The following 
line requests the pr command to print files a, b, and c: 

pr a b c 



4 UNIX Shell Tutorial 

If the first argument of a command names a file that is executable 1 and is actually a compiled 
program, the shell (as parent) spawns a ne·w (child) process that immediately executes that pro
gram. If the file is marked as being executable, but is not a compiled program, it is assumed to 
be a shell procedure, i.e., a file of ordinary text containing shell command lines, as well as pos
sibly lines meant to be read by other programs. In this case, the shell spawns another instance 
of itself (a sub-shell) to read the file and execute the commands included in it. The shell 
for ks to do this, but no exec call is made. The following command requests that the on-line 
UNIX User's Manual [7] entries that describe the who and pr commands be printed on the ter
minal: 

man who pr 

(Incidentally, the man command itself is actually implemented as a shell procedure.) From the 
user's viewpoint, compiled programs and shell procedures are invoked in exactly the same way. 
The shell determines which implementation has been used, rather than requiring the user to do 
so. This preserves the uniformity of invocation and the ease of changing the choice of imple
mentation for a given command. The actions of the shell in executing any of these commands 
are illustrated in Figure 1 above. 

3.2 How the Shell Finds Commands 

The shell normally searches for commands in a way that permits them to be found in three dis
tinct locations in the file structure. The shell first attempts to find the command (as given on 
the command line) in the current directory; if this fails, it prepends the string /bin to the 
name, and, finally, /usr /bin. The effect is to search, in order, the current directory, then 
the directory /bin, and finally, /usr/bin. For example, the pr and man commands are 
actually the files /bin/pr and /usr/bin/man, respectively. A more complex path name 
may be given, either to locate a file relative to the user's current directory, or to access a com
mand via an absolute path name. If a command name as given begins with a /, • I, or •• I 
(e.g., /bin/sort or .. /cmd), the prepending is not performed. Instead, a single attempt is 
made to execute the command as given. 

This mechanism gives the user a convenient way to execute public commands and commands 
in or near the current directory, as well as the ability to execute any accessible command 
regardless of its location in the file structure. Because the current directory is usually searched 
first, anyone can possess a private version of a public command without affecting other users. 
Similarly, the creation of a new public command will not affect a user who already has a private 
command with the same name. The particular sequence of directories searched may be 
changed by resetting the PATH variable, as described in §3.4.2. 

3.3 Generation of Argument Lists 

Command arguments are very often file names. A list of file names can be automatically gen
erated as arguments on a command line, by specifying a pattern that the shell matches against 
the file names in a directory. 

Most characters in such a pattern match themselves, but there are also special meta-characters 
that may be included in a pattern. These special characters are: *• which matches any string 
including the null string; ? , which matches any one character; any sequence of characters 
enclosed within square brackets2 ( [ ••• ] ), which matches any one of the enclosed characters; 
and any sequence of characters preceded by a I and enclosed within [ ... ] , which matches 

I. As in,dicated by an appropriate set of permission bits associated with that file. 

2. Be warned that square brackets are also used below for another purpose: in descriptions of commands, they indicate 
that the enclosed argument is optional. See also §5. I below. 



UNIX Shell Tutorial 5 

any one character other than one of the enclosed characters. Inside square brackets, a pair of 
characters separated by a - includes in the set all characters lexically within the inclusive range 
of that pair, so that [a-de J is equivalent to [ abcde l. 

For example, * matches all file names in the current directory, *temp* matches all file names 
containing temp, [a-fh matches all file names that begin with a through f, [ 10-9] 
matches all single-character names other than the digits, and * . c matches all file names ending 
in • c, while /a 1/tf/l>in/? matches all single-character file names found in /a 1/tf/l>in. 
This capability saves much typing and, more importantly, makes it possible to organize informa
tion in large collections of small files that are named in disciplined ways. 

Pattern-matching has some restrictions. If the first character of a file name is a period (. ), it 
can be matched only by an argument that literally begins with a period. If a pattern does not 
match any file names, then the pattern itself is returned as the result of the match, for exam
ple: 

echo *•c 

will print: 

•.C 

if the current directory contains no files ending in • c. 

Directory names should not contain the characters *• ? , [, or l, because this may cause 
infinite recursion during pattern matching attempts.3 

3.4 Shell Variables 

The shell has several mechanisms for creating variables. A variable is a name representing a 
string value. Certain variables are usually referred to as parameters; these are the variables 
which are normally set only on a command line; there are positional parameters (§3.4.1) and key
word parameters (§4.1). Other variables are simply names to which the user or the shell itself 
may assign string values. 

3.4. l Positional Parameters. When a shell procedure is invoked, the shell implicitly creates 
positional parameters: the argument in position zero on the command line (the name of the shell 
procedure itself) is called SO, the first argument is called S 1, and so on. The shift com
mand (§4.3) may be used to access arguments in positions numbered higher than nine. 

One can explicitly force values into these positional parameters by using the set command: 

set abc def 9hi 

assigns the string al>c to the first positional parameter (S 1), def to the second ($2), and 9hi 
to the third (S3); it also unsets S4, SS, etc., even if they were previously set. SO may not be 
assigned a value in this way-it always refers to the name of the shell procedure, or, in the 
login shell, to the name of the shell. 

3.4.2 User-defined Variables. The shell also recognizes alphanumeric variables to which 
string values may be assigned. Positional parameters may not appear on the left-hand side of 
an assignment statement; they can only be set as described above. A simple assignment is of 
the form: 

name =string 

3. This is a bug that may be fixed in the future. 



6 UNIX Shell Tutorial 

Thereafter, Sname will yield the value string. A name is a sequence of letters, digits, and 
underscores that begins with a letter or an· underscore. Note that no spaces surround the = in 
an assignment statement. 

More than one assignment may appear in an assignment statement, but beware: the shell per
forms the assignments from right to left; the following command line results in the variable a 
acquiring the value abc: 

a=Sb b;;abc 

The following are examples of simple assignments. Double quotes around the right-hand side 
allow blanks, tabs, semi-colons, and new-lines to be included in string, while also allowing vari
able substitution (also known as parameter substitution) to occur; that is, references to positional 
parameters and other variable names that are prefaced by S are replaced by the corresponding 
values, if any; single quotes inhibit variable substitution: 

MAIL=/usr/mail/gas 
var="echo S1 S2 $3 $4" 
stars•***** 
asterisks•'Sstars' 

The variable var has as its value the string consisting of the values of the first four positional 
parameters, separated by blanks. No quotes are needed around the string of asterisks being 
assigned to stars because pattern matching (expansion of*• ?, [ ... J) does not apply in this 
context. Note that the value of Sasterisks is the literal string $stars, not the string 
* * * * *• because the single quotes inhibit substitution. 

In assignments, blanks are not reinterpreted after variable substitution, so that the following 
example results in $first and Ssecond having the same value: 

first .. 'a string with embedded blanks' 
second=Sf irst 

In accessing the value of a variable, one may enclose the variable's name (or the digit designat
ing the positional parameter) in braces {} to delimit the variable name from any following 
string.4 In particular, if the character immediately following the name is a letter, digit, or 
underscore (digit only for positional parameters), then the braces are required: 

a"''This is a string' 
echo "S{a}ent test" 

The following variables are used by the shell. Some of them are set by the shell, and all of 
them can be set and reset by the user: 

HOME 

MAIL 

is initialized by the login program to the name of the user's login directory, i.e., 
the directory that becomes the current directory upon completion of a login; cd 
without arguments uses $HOME as the directory to switch to. Using this variable 
helps one to keep full path names out of shell procedures. This is a big help when 
the path name of your login directory is changed (e.g., to balance disk loads). 

is the path name of a file where your mail is deposited. If MAIL is set, then the 
shell checks to see if anything has been added to the file it names and announces 
the arrival of new mail every time you return to command level (e.g., by leaving 
the editor). MAIL must be set by the user. (The presence of mail in the standard 
mail file is also announced at login, regardless of whether MAIL is set.) 

4. See §4.4.7 and § 5.7 for other meanings of braces in the shell. 



UNIX Shell Tutorial 7 

PATH is the variable that specifies where the shell is to look when it is searching for 
commands. Its value is an ordered list of directory path names separated by 
colons. A null character anywhere in that list represents the current directory. 
The shell initializes PATH to the list :/bin:/usr/bin where, by convention; a 
null character appears in front of the first colon. Thus if you wish to search your 
current directory last, rather than first, you would type: 

PATH=/bin:/usr/bin:: 

where the two colons together represent a colon followed by a null followed by a 
colon, thus naming the current directory. A user often has a personal directory of 
commands (say, $HOME/bin) and causes it to be searched before the /bin and 
/usr /bin directories by using: 

PATH=:SHOME/bin:/bin:/usr/bin 

The setting of PATH to other than the default value is normally done in a user's 
. profile file (§3.9.2). 

CDPATH is the variable that specifies where the shell is to look when searching for the 
argument of the cd command whenever that argument is not null and does not 
begin with /, • /, or •• / (see cd(l), §2.1, and §4.5). The value of CDPATH is 
an ordered list of directory path names separated by colons. A null character any
where in that list represents the current directory. By convention, if the list 
begins with a colon, a null character is assumed to precede that colon. Initially, 
CDPATH is unset, resulting in only the current directory being searched. Thus if 
you wish the cd command to first search your current directory and then your 
home directory, you would type: 

CDPATH=:SHOME 

The setting of CDPATH to other than the default value is normally done in a 
user's • profile file (§3.9.2). 

Note that if the cd command changes to a directory that is not a descendent of 
the current directory, it writes the full name of the new directory on the diagnos
tic output(§3.6. l, §3.6.2). 

PS 1 is the variable that specifies what string is to be used as the primary prompt string. 
If the shell is interactive, it prompts with the value of PS 1 when it expects input. 
The default value of PS 1 is "S " (a S followed by a blank). 

PS2 is the variable that specifies the secondary prompt string. If the shell expects 
more input when it encounters a new-line in its input, it will prompt with the 
value of PS2. The default value of PS2 is .. > " (a >followed by a blank). 

IFS is the variable that specifies which characters are internal field separators. These 
are the characters the shell uses during blank interpretation. (If you want to parse 
some delimiter-separated data easily, you can set IFS to include that delimiter.) 
The shell initially sets IFS to include the blank, tab, and new-line characters. 

3.4.3 Command Substitution. Any command line can be placed within grave accents 
( • ... ') to capture the output of the commanq. This concept is known as command substitution. 
The command or commands enclosed between grave accents are first executed by the shell and 
then their output replaces the whole expression, grave accents and all. This feature is often 
combined with shell variables: 

today='date' 

assigns the string representing the current date to the variable today (e.g., 
Tue Nov 27 16:01 ;09 EST 1979). 



8 UNIX Shell Tutorial 

users='who l we -1' 

saves the number of logged-in users in the variable users. Any command that writes to the 
standard output can be enclosed in grave accents. Grave accents (§3.5) may be nested; the 
inside sets must be escaped with \. For example: 

logmsg='echo Your login directory is \'pwd\'' 

Shell variables can also be given values indirectly by using the read command. The read 
command takes a line from the standard input (usually your terminal) and assigns consecutive 
words on that line to any variables named: 

read first init last 

will take an input line of the form: 

G. A. Snyder 

and have the same effect as if you had typed: 

first=G. init=A. last=Snyder 

The read command assigns any excess "words" to the last variable. 

3.4.4 Predefined Special Variables. 

~ Beginners should skip this section on first reading. 

Several variables have special meanings; the following are set only by the shell: 

S# records the number of positional arguments passed to the shell, not counting the 
name of the shell procedure itself; S# thus yields the number of the highest
numbered positional parameter that is set. Thus, sh x a b c sets S# to 3. One of 
its primary uses is in checking for the presence of the required number of arguments: 

if test S# -lt 2 
then 

echo 'two or more args required'; exit 
fi 

S? is the exit status (also referred to as return code, exit code, or value) of the last com
mand executed. Its value is a decimal string. Most UNIX commands return O to 
indicate successful completion. The shell itself returns the current value of S? as its 
exit status. 

SS is the process number of the current process; because process numbers are unique 
among all existing processes, this string of up to five digits is often used to generate 
unique names for temporary files. UNIX provides no mechanism for the automatic 
creation and deletion of temporary files: a file exists until it is explicitly removed. 
Temporary files are generally undesirable objects: the UNIX pipe mechanism is far 
superior for many applications. However, the need for uniquely-named temporary 
files does occasionally occur. The following example also illustrates the recom
mended practice of creating temporary files in a directory used only for that purpose: 

temp=SHOME/temp/$$ # use current process number 
ls > Stemp I to form unique temp file 

commands, some of which use Stemp, go here 
rm Stemp # clean up at end 

$ t· is the process number of the last process run in the background (using &-see §4.4). 
Again, this is a string of up to five digits. 

S- is a string consisting of names of execution flags (§3.9.3, §4.7) currently turned on in 
the shell; s- might have the value xv if you are tracing your output. 



UNIX Shell Tutorial 9 

3.5 Quoting Mechanisms 

Many characters have a special meaning to the shell which is sometimes necessary to conceal. 
Single quotes (' ') and double quotes ( 11 11 ) surrounding a string, or backslash (\) before a sin
gle character, provide this function in somewhat different ways. (Grave accents (' ') are some
times called back quotes, but are used only for command substitution (§3.4.3) in the shell and 
do not hide special meanings of any characters.) 

Within single quotes, all characters (except • itself) are taken literally, with any special mean
ing removed. Thus: 

stuff~'echo $? $*; ls * ; we' 

results only in the string echo S? S*; ls * I wc being assigned to the variable stuff, but 
not in any other commands being executed. 

Within double quotes, the special meaning of certain characters does persist, while all other 
characters are taken literally. The characters that retain their special meaning are S, ', and " 
itself. Thus, within double quotes, variables are expanded and command substitution takes 
place; however, any commands in a command substitution are not affected by double quotes 
outside of the grave accents, so that characters such as * retain their special meaning. 

To hide the special meaning of S, ', and 11 within double quotes, you can precede these char
acters with a backslash (\). Outside of double quotes, preceding a character with \ is 
equivalent to placing single quotes around that character. A \ followed by a new-line causes 
that new-line to be ignored, thus allowing continuation of long command lines. 

3.6 Redirection of Input and Output 

In general, most commands neither know nor care whether their input (output) is coming from 
(going to) a terminal or a file. Thus, a command can be used conveniently either at a terminal 
or in a pipeline (see §3. 7). A few commands vary their actions depending on the nature of 
their input or output, either for efficiency's sake, or to avoid useless actions (such as attempting 
random-access 1/0 on a terminal). 

3.6. l Standard Input and Standard Output. When a command begins execution, it usually 
expects that three files are already open: a standard input, a standard output, and a diagnostic 
(error) output. A number called a file descriptor is associated with each of these files; by conven
tion, file descriptor O is associated with standard input, file descriptor 1 with standard output, 
and file descriptor 2 with diagnostic output. A child process normally inherits these files from 
its parent; all three files are initially connected to the terminal ( 0 to the keyboard, 1 and 2 to 
the printer or screen). The shell permits them to be redirected elsewhere before control is 
passed to an invoked command. An argument to the shell of the form <file or >file opens the 
specified file as the standard input or output, respectively (in the case of output, destroying the 
previous contents of file, if any). An argument of the form >>file directs the standard output 
to the end of file, thus providing a way to append data to it without destroying its existing con
tents. In either of the two output cases, the shell creates file if it does not already exist (thus 
> output alone on a line creates a zero-length file). The following appends to file log the 
list of users who are currently logged on: 

who >> 109 

Such redirection arguments are only subject to variable and command substitution; neither 
blank interpretation nor pattern matching of file names occurs after these substitutions. Thus: 

echo 'this is a test' > *.ggg 

and: 

cat < ? 



10 UNIX Shell Tutorial 

will produce, respectively, a one-line file named *. ggg (a rather disastrous name for a file) 
and an error message (unless you have a file named ? , which is also not a wise choice for a file 
name-see end of §3.3). 

3.6.2 Diagnostic and Other Outputs. Diagnostic output from UNIX commands is tradition
ally directed to the file associated with file descriptor 2. (There is often a need for an error 
output file that is different from standard output so that error messages do not get lost down 
pipelines-see §3.7.) One can redirect this error output to a file by immediately prepending the 
number of the file descriptor (i.e., 2 in this case) to either output redirection symbol ( > or 
>>). The following line will append error messages from the cc command to file ERRORS: 

cc testfile.c 2>> ERRORS 

Note that the file descriptor number must be prepended to the redirection symbol without any 
intervening blanks or tabs; otherwise, the number will be passed as an argument to the com
mand. 

This method may be generalized to allow one to redirect output associated with any of the first 
ten file descriptors (numbered 0-9) so that, for instance, if cmd puts output on file descriptor 
9, the following line will capture that output in file savedata: 

cmd 9> savedata 

A command often generates standard output and error output, and might even have some other 
output, perhaps a data file. In this case, one can redirect independently all the different out
puts. Suppose that cmd directs its standard output to file descriptor 1, its error output to file 
descriptor 2, and builds a data file on file descriptor 9. The following would direct each of 
these three outputs to a different file: 

cmd > standard 2> error 9> data 

Other forms of input/output redirection are described in §4.4.8, §4.4.9, and §5.6. 

3. 7 Command Lines and Pipelines 

A sequence of one or more commands separated by I (or ") make up a pipeline. In a pipeline 
consisting of more than one command, each command is run as a separate process connected to 
its neighbor(s) by pipes, i.e., the output of each command (except the last one) becomes the 
input of the next command in line. A filter is a command that reads its standard input, 
transforms it in some way, then writes it as its standard output. A pipeline normally consists of 
a series of filters. Although the processes in a pipeline are permitted to execute in parallel, 
they are synchronized to the extent that each program needs to read the output of its predeces
sor. Many commands operate on individual lines of text, reading a line, processing it, writing it 
out, and looping back for more input. Some must read larger amounts of data before producing 
output; sort is an example of the extreme case that requires all input to be read before any 
output is produced. 

The following is an example of a typical pipeline: nroff is a text formatter whose output may 
contain reverse line motions; col converts these motions to a form that can be printed on a 
terminal lacking reverse-motion capability; greek is used to adapt the output to a specific ter
minal, here specified by -Thp. The Hag -cm indicates one of the commonly used formatting 
options, and text is the name of the file to be formatted: 

nroff -cm text I ~ol I greek -Thp 

3.8 Examples 

The following examples illustrate the variety of effects that can be obtained by combining a few 
commands in the ways described above. It may be helpful to try these examples at a terminal: 



UNIX Shell Tutorial 11 

•who 
Print (on the terminal) the list of logged-in users. 

• who>> log 
Append the list of logged-in users to the end of file log. 

• who : wc -1 
Print the number of logged-in users. (The argument to wc is minus ell.) 

• who : pr 
Print a paginated list of logged-in users. 

• who : sort 
Print an alphabetized list of logged-in users. 

• who : grep pw 
Print the list of logged-in users whose login names contain the string pw. 

• who I grep pw I sort I pr 
Print an alphabetized, paginated list of logged-in users whose login names contain the 
string pw. 

• { date; who : wc -1; } > > log 
Append (to file log) the current date followed by the count of logged-in users (see 
§4.4.7 for the meaning of { ••• } in this context). 

•who I sed 's/ •*II': sort I uniq-d 
Print only the login names of all users who are logged in more than once. 

The who command does not by itself provide options to yield all these results-they are 
obtained by combining who with other commands. Note that who just serves as the data 
source in these examples. As an exercise, replace who I by < /etc/passwd in the above 
examples to see how a file can be used as a data source in the same way. Notice that redirec
tion arguments may appear anywhere on the command line. 

3.9 Changing the State of the Shell and the .profile File 

The state of a given instance of the shell includes the values of positional parameters (§3.4. I), 
user-defined variables (§3.4.2), environment variables (§4. l), modes of execution (§4. 7), and 
the current working directory. 

The state of a shell may be altered in various ways. These include the cd command, several 
flags that can be set by the user, and a file in one's login directory called . prof i 1 e that is 
treated specially by the shell. 

3.9.1 Cd. The cd command changes the current directory to the one specified as its argu
ment. This can (and should) be used to change to a convenient place in the directory struc
ture; cd is often combined with ( ) to cause a sub-shell to change to a different directory and 
execute a group of commands without affecting the original shell. The first sequence below 
extracts the component files of the archive file I a 1 It f I q . a and places them in whatever 
directory is the current one; the second places them in directory I a 1 It f: 

ar z /a1/tf/q.a .. 
(cd /a1/tf; ar x q.a) 

3.9.2 The .profile File. When you log in, the shell is invoked to read your commands. 
First, however, the shell checks to see if a file named /etc/profile exists on your UNIX 
system, and if it does, commands are read from it; /etc/profile is used by system 
administrators to set up variables needed by all users. Type: 

cat /etc/profile 



12 UNIX Shell Tutorial 

to see what your system administrator has already done for you. After this, the shell proceeds 
to see if you have a file named . profile in your login directory. If so, commands are read 
and executed from it. For a sample . profile, see profile(5). Finally, the shell is ready to 
read commands from your standard input- usually the terminal. 

3.9.3 Execution Flags: set. The set command provides the capability of altering several 
aspects of the behavior of the shell by setting certain shell flags. In particular, the x and v flags 
may be useful from the terminal. Flags may be set by typing, for example: 

set -xv 

(to turn on flags x and v). The same flags may be turned off by typing: 

set +xv 

These two flags have the following meaning: 

-v Input lines are printed as they are read by the shell. This flag is particularly useful for 
isolating syntax errors. The commands on each input line are executed after that 
input line is printed. 

-x Commands and their arguments are printed as they are executed. (Shell control com
mands, such as for, while, etc., are not printed, however.) Note that -x causes a 
trace of only those commands that are actually executed, whereas -v prints each line 
of input until a syntax error is detected. 

The set command is also used to set these and other flags within shell procedures (see §4.7). 

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES 

4.1 A Command's Environment 

All the variables (with their associated values) that are known to a command at the beginning 
of execution of that command constitute its environment. This environment includes variables 
that the command inherits from its parent process and variables specified as keyword parameters 
on the command line that invokes the command. 

The variables that a shell passes to its child processes are those that have been named as argu
ments to the export command. The export command places the named variables in the 
environments of both the shell and all its future child processes. 

Keyword parameters are variable-value pairs that appear in the form of assignments, normally 
before the procedure name on a command line (but see also -k flag in §4.7). Such variables 
are placed in the environment of the procedure being invoked. For example: 

# key_command 
echo Sa Sb 

is a simple procedure that echoes the values of two variables; if it is invoked as: 

a=key1 b=key2 key_command 

then the output is: 

key1 key2 

A procedure's keyword parameters are not included in the argument count $# (§3.4.4). 

A prQcedure may access the value of any variable in its environment; however, if changes are 
made to the value of a variable, these changes are not reflected in the environment-they are 
local to the procedure in question. In order for these changes to be placed in the environment 
that the procedure passes to its child processes, the variable must be named as an argument to 
the export command within that procedure (but see §4.2 below) .. To obtain a list of variables 
that have been made exportable from the current shell, type: 



UNIX Shell Tutorial 13 

export 

(You will also get a list of variables that have been made readonly-see §4.5 below.) To get 
a list of name-value pairs in the current environment, type: 

env 

4.2 Invoking the Shell 

The shell is an ordinary command and may be invoked in the same way as other commands: 

sh proc [ arg ... ] A new instance of the shell is explicitly invoked to read proc. 
Arguments, if any, can be manipulated as described in §4.3. 

sh -v proc [arg ... ] This is equivalent to putting set-vat the beginning of proc. 
Similarly for the x, e, u, and n flags (§3.9.3, §4.7). 

proc [ arg ... ] If proc is marked executable, and is not a compiled, executable pro
gram, the effect is similar to that of sh proc [ args . . . ] . An 
advantage of this form is that proc may be found by the search pro
cedure described in §3.2 and §3.4.2. Also, variables that have been 
exported in the shell will still be exported from proc when this 
form is used (because the shell only forks to read commands 
from proc). Thus any changes made within proc to the values of 
exported variables will be passed on to subsequent commands 
invoked from within proc. 

There are several shell invocation flags that are sometimes useful for more advanced shell pro
gramming. They are described in §5.8. 

4.3 Passing Arguments to the Shell; shift 

When a command line is scanned, any character sequence of the form Sn is replaced by the nth 
argument to the shell, counting the name of the shell procedure itself as S 0. This notation 
permits direct reference to the procedure name and to as many as nine positional parameters 
(§3.4.1). Additional arguments can be processed using the shift command or by using a 
for loop (§4.4.4). 

The shift command shifts arguments to the left; i.e., the value of S 1 is thrown away, S 2 
replaces S 1, S 3 replaces S 2, etc.; the highest-numbered positional parameter becomes unset. 
($0 is never shifted.) The command shift n is a shorthand notation for n consecutive 
shifts; shift O does nothing. For example, consider the shell procedure ripple below: 
echo writes its arguments to the standard output; while is discussed in §4.4.3 (it is a looping 
command); lines that begin with #.are comments. 

# ripple command 
while test S# I= 0 
do 

done 

echo S1 S2 SJ S4 SS S6 S7 SB S9 
shift 

If the procedure were invoked by: 

ripple a b c 

it would print: 

a b c 
b c 
c 



14 UNIX Shell Tutorial 

The notation S * causes substitution of all positional parameters except SO. Thus, the echo 
line in the ripple example above could· be written more compactly as: 

echo ** 
These two echo commands are not equivalent: the first prints at most nine positional parame
ters; the second prints all of the current positional parameters. The S * notation is more con
cise and less error-prone. One obvious application is in passing an arbitrary number of argu
ments to a command such as the nroff text formatter: 

nroff -h -rW120 -T450 -cm $* 

It is important to understand the sequence of actions used by the shell in scanning command 
lines and substituting arguments. The shell first reads input up to a new-line or semicolon, and 
then parses that much of the input. Variables are replaced by their values and then command 
substitution (via grave accents) is attempted. 1/0 redirection arguments are detected, acted 
upon, and deleted from the command line. Next the shell scans the resulting command line 
for internal field separators, that is, for any characters specified by IFS to break the command 
line into distinct arguments; explicit null arguments (specified by "" or • •) are retained, while 
implicit null arguments resulting from evaluation of variables that are null or not set are 
removed. Then file name generation occurs, with all meta-characters being expanded. The 
resulting command line is executed by the shell. 

Sometimes, one builds command lines inside a shell procedure. In this case, one might want to 
have the shell rescan the command line after all the initial substitutions and expansions are 
done. The special command eval is available for this purpose; eval takes a command line as 
its argument and simply rescans the line, performing any variable or command substitutions 
that are specified. Consider the following (simplified) situation: 

command•who 
output=' : we -1' 
eval Scommand Soutput 

This segment of code results in the pipeline who I wc -1 being executed. 

The output of eval cannot be redirected; uses of eval can, however, be nested. 

4.4 Control Commands 

The shell provides several flow-of-control commands that are useful in creating shell pro
cedures. To explain them, we first need a few definitions. 

A simple command is as defined in §3. l. 1/0 redirection arguments can appear in a simple com
mand line and are passed to the shell, not to the command. 

A command is a simple command or any of the shell control commands described below. A 
pipeline is a sequence of one or more commands separated by I. (For historical reasons, " is a 
synonym for I in this context.) The standard output of each command but the last in a pipe
line is connected (by a pipe(2)) to the standard input of the next command. Each command in 
a pipeline is run separately; the shell waits for the last command to finish. The exit status of a 
pipeline is non-zero if the exit status of either the first or last process in the pipeline is non
zero. (This is a bit weird, and. may be changed in the future.) 

A command list is a sequence of one or more pipelines separated by ; , &, &&, or I I, and 
optionally terminated by ; or &. A semicolon (;) causes sequential execution of the previous 
pipeline (i.e., the shell waits for the pipeline to finish before reading the next pipeline), while & 
causes ,asynchronous execution of the preceding pipeline; both sequential and asynchronous 
execution are thus allowed. An asynchronous pipeline continues execution until it terminates 
voluntarily, or until its processes are killed. In the first example below, the shell executes 
who, waits for it to terminate, then executes date and waits for it to terminate; in the second 
example, the shell invokes both commands in order, but does not wait for either one to finish. 



·' 

UNIX Shell Tutorial 

Figure 2 shows the actions of the shell involved in executing these two command lists: 

who >log; date 
who >109& date& 

SH FORK WAIT FORK WAIT 

2,3 

SH FORK 

r 

3 

2 

~ ---(- --)- ----..----. r -- -(A-SL-EE-P)- - - • 
ASLEEP : 

EXEC 
WHO 

EXEC 
WHO 

FORK 

r 

WHO 

EXIT 

EXEC 
DATE 

WHO 

Figure 2 

EXEC 
DATE 

DATE 

(FREE TO DO OTHER COMMANDS) 

DATE 
J 
l 

EXIT 

J 
I 

EXIT 

EXIT 

IS 

More typical uses of & include off-line printing, background compilation, and generation of jobs 
to be sent to other computers. For example, if you type: 

nohup cc prog.c& 

you may continue working while the C compiler runs in the background. A command line end
ing with & is immune to interrupts and quits, but it is wise to make it immune to hang-ups as 
well. The nohup command is used for this purpose. Without nohup, if you hang up while 
cc in the above example is still executing, cc will be killed and your output will disappear. 

lt;it" The & operator should be used with restraint, especially on heavily-loaded systems. Other users 
will not consider you a good citizen if you start up a large number of simultaneous, asynchronous 
processes without a compelling reason for doing so. 

The && and I I operators, which are of equal precedence (but lower than & and : ), cause con
ditional execution of pipelines. In cmd 1 I I cmd2, cmd 1 is executed and its exit status exam
ined. Only if cmd 1 fails (i.e., has a non-zero exit status) is cmd2 executed. This is thus a 
more terse notation for: 

if cmd1 
test S? I• 0 

then 
cmd2 

fi 

See wri temail in §6 for an example of use of I I 
I 1. 



16 UNIX Shell Tutorial 

The &.&. operator yields the complementary. test: in cmd 1 &.&. cmd2, the second command is 
executed only if the first succeeds (has a zero exit status). In the sequence below, each com
mand is executed in order until one fails: 

cmd1 && cmd2 && cmd3 && ... && cmdn 

A simple command in a pipeline may be replaced by a command list enclosed in either 
parentheses or braces. The output of all the commands so enclosed is combined into one 
stream that becomes the input to the next command in the pipeline. The following line prints 
two separate documents in a way similar to that shown in a previous example (§3.7): 

{ nroff -cm text1; nroff -cm text2; } I col I greek -Thp 

See §4.4. 7 for further details on command grouping. 

All of the following commands are formally described in sh( I). 

4.4. I Structured Conditional: if. The shell provides an if command. The simplest form 
of the if command is: 

if command list 
then command list 
fi 

The command list following if is executed and if the last command in the list has a zero exit 
status, then the command list that follows then is executed; f i indicates the end of the if 
command. 

In order to cause an alternative set of commands to be executed in the case where the command 
list following if has a non-zero exit status, one may add an else-clause to the form given 
above. This results in the following structure: 

if command list 
then command list 
else command list 
fi 

Multiple tests can be achieved in an if command by using the el if clause. For example: 

if test -f "S1" # is $1 a file? 
then pr $1 
el if test -d n $1" # else, is $1 a directory? 
then (cd $1; pr *) 
else echo $1 is neither a file nor a directory 
fi 

The above example is executed as follows: if the value of the first positional parameter is a file 
name, then print that file; if not, then check to see if it is the name of a directory. If so, 
change to that directory and print all the files there. Otherwise, echo the error message. 

The if command may be nested (but be sure to end each one with a f i). The new-lines in 
the above examples of if may be replaced by semicolons. 

The exit status of the if command is the exit status of the last command executed in any 
then clause or else clause. If no such command was executed, if returns a zero exit status. 

4.4.2 Multi-way Branch: case. A multiple way branch is provided by the case command. 
The basic format of case is: 



UNIX Shell Tutorial 

case string in 
pattern l command list ; ; 

pattern ) command list ; ; 
esac 

17 

The shell tries to match string against each pattern in turn, using the same pattern-matching 
conventions as in file-name generation (§3.3). If a match is found, the command list following 
the matched pattern is executed; the ; ; serves as a break out of the case and is required after 
each command list except the last. Note that only one pattern is ever matched, and that 
matches are attempted in order, so that if * is the first pattern in as case, no other patterns 
will ever be looked at. 

More than one pattern may be associated with a given command list by specifying alternate pat
terns separated by I . For example: 

case Si in 
*.C) cc Si 

; ; 
*.hl*.Sh) 

; ; 
# do nothing 

*l echo "Si of unknown type" 

esac 

.. • • 

In the above example, no action is taken for the second set of patterns because the null com
mand is specified; * is used as a default pattern, because it matches any word. 

The exit status of case is the exit status of the last command executed in the case com
mand. If no commands were executed, then case has a zero exit status. 

4.4.3 Conditional Looping: while and until. A while command has the general 
form: 

while command list 
do 

command list 
done 

The commands in the first command list are executed, and if the exit status of the last command 
in that list is zero, then the commands in the second list are executed. This sequence is 
repeated as long as the exit status of the first command list is zero. A loop can be executed as 
long as the first command list returns a non-zero exit status by replacing while with until. 

Any new-line in the above example may be replaced by a semicolon. The exit status of a 
while (until) command is the exit status of the last command executed in the second com
mand list. If no such command is executed, while (until) has exit status zero. 

4.4.4 Looping over a List: for. Often, one wishes to perform some set of operations for 
each in a set of files, or execute some command once for each of several arguments. The for 
command can be used to accomplish this. The for command has the format: 

for variable in WOl"d list 
do 

command list 
done 

where word list is a list of strings separated by blanks. The commands in the command list are 
executed once for each word in word list. Variable takes on as its value each word from word 
list, in turn; word list is fixed after it is evaluated the first time. For example, the following for 
loop will cause each of the C source files xec. c, cmd. c, and word. c in the current direc
tory to be diffed with a file of the same name in the directory /usr/src/cmd/sh: 



18 UNIX Shell Tutorial 

for cfile in xec cmd word 
do diff Scfile.c /uar/arc/cmd/sh/Scfile.c 
done 

One can omit the .. in word list" part of a for command; this will cause the current set of 
positional parameters to be used in place of word list. This is very convenient when one wishes 
to write a command that performs the same set of commands for each of an unknown number 
of arguments. See null in §6 for an example of this feature. 

4.4.S Loop Control: break and continue. The break command can be used to ter
minate execution of a while, until, or a for loop; continue requests the execution of 
the next iteration of the loop. These commands are effective only when they appear between 
do and done. 

The break command terminates execution of the smallest (i.e., innermost) enclosing loop, 
causing execution to resume after the nearest following unmatched done. Exit from n levels is 
obtained by break n. 

The continue command causes execution to resume at the nearest enclosing while, 
until, or for, i.e., the one that begins the innermost loop containing the continue; one 
can also specify an argument n to continue and execution will resume at the nth enclosing 
loop: 

# This procedure is interactive; 'break' and 'continue' 
# commands are used to allow the user to control data entry. 
while true 
do echo "Please enter data" 

read response 
case "Sresponse" in 

•done") break #no more data 

•• 
"") continue 

•• 
process the data here 
; ; 

esac 
done 

4.4.6 End-of-file and exit. When the shell reaches the end-of-file, it terminates execution, 
returning to its parent the exit status of the last command executed prior to the end-of-file. 
The exit command simply reads to the end-of-file and returns, setting the exit status to the 
value of its argument, if any. Thus, a procedure can be terminated "normally" by using 
exit 0. 

4.4. 7 Command Grouping: Parentheses and Braces. There are two methods for grouping 
commands in the shell. As mentioned in §3.9. l, parentheses ( ) cause the shell to spawn a 
sub-shell that reads the enclosed commands. Both the right and left parentheses are recognized 
wherever they appear in a command line-they can appear as literal parentheses only by being 
quoted. For example, if you type garble (stuff) the shell interprets this as four separate 
words: garble, (, stuff, and ). 

This sub-shell capability is useful if one wishes to perform some operations without affecting 
the values of variables in the current shell, or to temporarily change directory and execute 
some commands in the new directory without having to explicitly return to the current direc
tory. The current environment is passed to the sub-shell and variables that are exported in 
the current shell are also exported in the sub-shell. Thus: 

current•'pwd'; cd /usr/docs/sh tut; 
nohup mm -Tlp se_? I lpr& cd $current 



UNIX Shell Tutorial 19 

and: 

(cd /usr/docs/sh_tut; nohup mm -Tlp sc_? I lpr~) 

accomplish the same result: a copy of this tutorial is printed on the line printer; however, the 
second example automatically puts you back in your original working directory. In the second 
example above, blanks or new-lines surrounding the parentheses are allowed but not necessary. 
The shell will prompt with SPS2 if a ) is expected. See also the example in §3.9.l. 

Braces { } may also be used to group commands together. 5 Both the left and the right brace are 
recognized only if they appear as the first (unquoted) word of a command. The opening brace 
{ may be followed by a new-line (in which case the shell will prompt for more input). Unlike 
in the case of parentheses, no sub-shell is spawned for braces; the enclosed commands are sim
ply read by the shell. The braces are convenient when you wish to use the (sequential) output 
of several commands as input to one command; see the last example in §4.4 above. 

The exit status of a set of commands grouped by either parentheses or braces is the exit status 
of the last enclosed executed command. 

4.4.8 Input/Output Redirection and Control Commands. The shell normally does not 
fork when it recognizes the control commands (other than parentheses) described above. How
ever, each command in a pipeline is run as a separate process in order to direct input (output) 
to (from) each command. Also, when redirection of input/output is specified explicitly for a 
control command, a separate process is spawned to execute that command. Thus, when if, 
while, until, case, or for is used in a pipeline consisting of more than one command, 
the shell forks and a sub-shell runs the control command. This has certain implications; the 
most noticeable one is that any changes made to variables within the control command are not 
effective once that control command finishes (similar to the effect of using parentheses to group 
commands). The control commands run slightly slower when redirection is specified. 

1211"' Beginners should skip to Section 4.5 on first reading. 

4.4.9 hr-line Input Documents. Upon seeing a command line of the form: 

command < < eofstring 

where eofstring is any arbitrary string, the shell will take the subsequent lines as the standard 
input of command until a line is read consisting only of eofstring (possibly preceded by one or 
more tab characters). By appending a minus ( -) to < <, leading tab characters are deleted from 
each line of the input document before the shell passes the line to command. 

The shell creates a temporary file containing the input document and performs variable and 
command substitution (§3.4.3) on its contents before passing it to the command. Pattern 
matching on file names is performed on the arguments of command lines in command substitu
tions. In order to prohibit all substitutions, one may quote any character of eofstring:6 

command < < 'eofstring 

The in-line input document feature is especially useful for small amounts of input data (e.g., an 
editor "script"), where it is more convenient to place the data in the shell procedure than to 
keep it in a separate file. For instance, one could type: · 

5. See §3.4.2 and §5.7 for other meanings of braces in the shell. 

6. Typically, eofstnng consists of a single character; I is often used for this purpose. 



20 

cat <<- xyz 

xyz 

This message will be printed on the 
terminal with leadinq tabs removed. 

UNIX Shell Tutorial 

This in-line input document feature is most useful in shell procedures. See edf ind, 
edlast, and mmt in §6. Note that in-line input documents may not appear within grave 
accents. 7 

4.4.10 Transfer to Another File and Back: the Dot (.) Command. A command line of 
the form: 

• proc 

causes the shell to read commands from proc without spawning a new process. Changes made 
to variables in proc are in effect after the dot command finishes. This is thus a good way to 
gather a number of shell variable initializations into one file. Note that an exit command in a 
file executed in this manner will cause an exit from your current shell; if you are at login level, 
you will be logged out. 

4.4. I I Interrupt Handling: trap. As noted in §2.2, a program may choose to catch an 
interrupt from the terminal, ignore it completely, or be terminated by it. Shell procedures can 
use the trap command to obtain the same effects. 

trap arg signal-list 

is the form of the trap command, where arg is a string to be interpreted as a command list 
and signal-list consists of one or more signal numbers (as described in signal(2)). The com
mands in arg are scanned at least once, when the shell first encounters the trap command. 
Because of this, it is usually wise to use single rather than double quotes to surround these 
commands. The former inhibit immediate command and variable substitution; this becomes 
important, for instance, when one wishes to remove temporary files and the names of those 
files have not yet been determined when the trap command is first read by the shell. The fol
lowing procedure will print the name of the current directory on the file errdirect when it 
is interrupted, thus giving the user information as to how much of the job was done: 

trap 'echo 'pwd' >errdirect' 2 3 15 
for i in /bin /usr/bin /usr/qas/hin 
do 

cd Si 
commands to be executed in directory Si here 

done 

while the same procedure with double (rather than single) quotes 
(trap "echo 'pwd' >errdirect" 2 3 15) will, instead, print the name of the directory 
from which the procedure was executed. 

Signal 11 (SEGMENTATION VIOLATION) may never be trapped, because the shell itself 
needs to catch it to deal with memory allocation. Zero is not a UNIX signal, but is effectively 
interpreted by the trap command as a signal generated by exiting from a shell (either via an 
exit command, or by "falling through" the end of a procedure). If arg is not specified, then 
the action taken upon receipt of any of the signals in signal-list is reset to the default system 
action. If arg is an explicit null string ('' or ""), then the signals in signal-list are ignored by 
the shell. 

7. This is a implementation bug that should (and may) be fixed eventually. 



UNIX Shell Tutorial 21 

The most frequent use of trap is to assure removal of temporary files upon termination of a 
procedure. The second example of §3.4.4 would be written more typically as follows: 

temp=SHOME/temp/$$ 
trap 'rm Stemp; trap O; exit' O 1 2 3 15 
ls > Stemp 

commands. some of which use Stemp, go here 

In this example, whenever signals 1 (HANGUP), 2 (INTERRUPT), 3 (QUIT), or 15 
(SOFTWARE TERMINATION) are received by the shell procedure, or whenever the shell pro
cedure is about to exit, the commands enclosed between the single quotes will be executed. 
The exit command must be included, or else the shell continues reading commands where it 
left off when the signal was received. The trap O turns off the original trap on exits from the 
shell, so that the exit command does not reactivate the execution of the trap commands. 

Sometimes it is useful to take advantage of the fact that the shell continues reading commands 
after executing the trap commands. The following procedure takes each directory in the current 
directory, changes to it, prompts with its name, and executes commands typed at the terminal 
until an end-of-file (control-d) or an interrupt is received. An end-of-file causes the read 
command to return a non-zero exit status, thus terminating the while loop and restarting the 
cycle for the next directory; the entire procedure is terminated if interrupted when waiting for 
input, but during the execution of a command, an interrupt terminates only that command: 

dir .. 'pwd' 
for i in • 
do if test 

then 

fi 
done 

-d Sdir/Si 
cd Sdir/Si 
while echo 

trap 
read 

do trap 
eval 

done 

"Si:" 
exit 2 
x 
: 2 # iqnore interrupts 
Sx 

Several traps may be in effect at the same time; if multiple signals are received simultane
ously, they are serviced in ascending order. To check what traps are currently set, type: 

trap 

It 1s important to understand some things about the way in which the shell implements the 
trap command in order not to be surprised. When a signal (other than 11) is received by the 
shell, it is passed on to whatever child processes are currently executing. When those (syn
chronous) processes terminate, normally or abnormally, the shell then polls any traps that hap
pen to be set and executes the appropriate trap commands. This process is straightforward, 
except in the case of traps set at the command (outermost, or login) level; in this case, it is 
possible that no child process is running, so the shell waits for the termination of the first pro
cess spawned after the signal is received before it polls the traps. 

For internal commands, the shell normally polls traps on completion of the command; an 
exception to this rule is made for the read command, for which traps are serviced immedi
ately, so that read can be interrupted while waiting for input. 

4. 5 Special Shell Commands 

There are several special commands that are internal to the shell (some of which have already 
been mentioned). These commands should be used in preference to other UNIX commands 
whenever possible, because they are, in general, faster and mote efficient. The shell does not 
fork to execute these commands, so no additional processes are spawned; the trade-off for this 
efficiency is that redirection of input/output is not allowed for most of these special commands. 



22 UNIX Shell TUlorial 

Several of the special commands have already been described in §4.4 because they affect the 
flow of control. They are break, continue, exit, dot (. ), and trap. The set com
mand described in §3.4. l and §3.9.3 is also a special command. Descriptions of the remaining 
special commands are given here: 

The null command; this command does nothing; the exit status is zero 
(true). Beware: any arguments to the null command are parsed for 
syntactic correctness; when in doubt, quote such arguments. Parame
ter substitution takes place, just as in other commands. 

cd arg Make arg the current directory. If arg does not begin with /, • I, or 
.. /, cd uses the CDPATH shell variable (§3.4.2) to locate a parent 
directory that contains the directory arg. If arg is not a directory, or 
the user is not authorized to access it, a non-zero exit status is 
returned. Specifying cd with no arg is equivalent to typing 
cd $HOME. 

exec arg... If arg is a command, then the shell executes it without forking. No 
new process is created. Input/output redirection arguments are allowed 
on the command line. If only input/output redirection arguments 
appear, then the input/output of the shell itself is modified accordingly. 
See merge in §6 for an example of this use of exec. 

newgrp arg . . . The newgrp( I) command is executed, replacing the shell; newgrp in 
turn spawns a new shell; see newgrp(I). Beware: Only variables in the 
environment will be known in the shell that is spawned by the newgrp 
command. Any variables that were exported will no longer be 
marked as such. 

read var . . . One line (up to a new-line) is read from standard input and the first 
word is assigned to the first variable, the second word to the second 
variable, and so on. All left-over words are assigned to the last vari
able. The exit status of read is zero unless an end-of-file is read. 

readonly var... The specified variables are made readonly so that no subsequent 
assignments may be made to them. If no arguments are given, a list of 
all readonly and of all exported variables is given. 

test A conditional expression is evaluated. More details are given in §5.l 
below. 

times The accumulated user and system times for processes run from the 
current shell are printed. 

umask nnn The user file creation mask is set to nnn; see umask(2) for details. If 
nnn is omitted, then the current value of the mask is printed. 

ul imi t n This command imposes a limit of n blocks on the size of files written 
by the shell and its child processes (files of any size may be read). If n 
is omitted, the current value of this limit is printed. The default value 
for n varies from on installation to another. 

wait n The shell waits for the child process whose process number is n toter
minate; the exit status of the wait command is that of the process 
waited on. If n is omitted or is not a child of the current shell, then all 
currently active processes are waited for and the return code of the 
wait command is zero. 



UNIX Shell Tutorial 23 

4.6 Creation and Organization of Shell Procedures 

A shell procedure can be created in two simple steps: first, one builds an ordinary text file; then 
one changes its mode to make it executable, thus permitting it to be invoked by proc args, rather 
than by sh proc args. The second step may be omitted for a procedure to be used once or twice 
and then discarded, but is recommended for longer-lived ones. Here is the entire input needed 
to set up a simple procedure (the executable part of draft in §6): 

ed 
a 
nroff -rC3 -T450-12 -cm ** 
w draft 
q 
chmod +x draft 

It may then be invoked as draft file 1 file2. Note that shell procedures must always be 
at least readable, so that the shell itself can read commands from the file. 

If draft were thus created in a directory whose name appears in the user's PATH variable, the 
user could change working directories and still invoke the draft command. 

Shell procedures may be created dynamically. A procedure may generate a file of commands, 
invoke another instance of the shell to execute that file, and then remove it. An alternate 
approach is that of using the dot command (.) to make the current shell read commands from 
the new file, allowing use of existing shell variables and avoiding the spawning of an additional 
process for another shell. 

Many users prefer to write shell procedures instead of C programs. First, it is easy to create 
and maintain a shell procedure because it is only a file of ordinary text. Second, it has no 
corresponding object program that must be generated and maintained. Third, it is easy to 
create a procedure on the fly, use it a few times, and then remove it. Finally, because shell 
procedures are usually short in length, written in a high-level programming language, and kept 
only in their source-language form, they are generally easy to find, understand, and modify. 

By convention, directories that contain only commands and/or shell procedures are usually 
named bin. Most groups of users sharing common interests have one or more bin directories 
set up to hold common procedures. Some users have their PATH variable list several such 
directories. Although you can have a number of such directories, it is unwise to go 
overboard-it may become difficult to keep track of your environment, and efficiency may 
suffer (§7.3). 

4. 7 More about Execution Flags 

There are several execution flags available in the shell that can be useful in shell procedures: 

- e The shell will exit immediately if any command that it executes exits with a non-zero 
exit status. 

-u When this flag is set, the shell treats the use of an unset variable as an error. This 
flag can be used to perform a global check on variables. 

-t The shell exits after reading and executing the commands on the remainder of the 
current input line. 

-n This is a don't execute flag. On occasion, one may want to check a procedure for syn
tax errors, but not to execute the commands in the procedure. Writing set -nv at 
the beginning of the file will accomplish this. 

-k All arguments of the form variable:value are treated as keyword parameters. When 
this flag is not set, only such arguments that appear before the command name are 
treated as keyword parameters. 



24 UNIX Shell Tutorial 

5. MISCELLANEOUS SUPPORTING COMMANDS AND FEATURFS 

Shell procedures can make use of any UNIX command. The commands described in this sec· 
tion are either used especially frequently in shell procedures, or are explicitly designed for such 
use. More detailed descriptions of each of these commands can be found in Section 1 of the 
UNIX User's Manual [7]. 

5.1 Conditional Evaluation: test 

The test command evaluates the expression specified by its arguments and, if the expression 
is true, returns a zero exit status; otherwise, a non-zero (false) exit status is returned; test 
also returns a non-zero exit status if it has no arguments. Often it is convenient to use the 
test command as the first command in the command list following an if or a while. Shell 
variables used in test expressions should be enclosed in double quotes if there is any chance 
of their being null or not set. 

On some UNIX systems, the square brackets ( [ l) may be used as an alias for test; e.g., 
[ expression ] has the same effect as test expression. 

The following is a partial list of the primaries that can be used to construct a conditional expres
sion: 

- r file true if the named file exists and is readable by the user. 

-w file true if the named file exists and is writable by the user. 

-xfile true if the named file exists and is executable by the user. 

- s file true if the named file exists and has a size greater than zero. 

-djile true if the named file exists and is a directory. 

-£file true if the named file exists and is an ordinary file. 

-p file true if the named file exists and is a named pipe (fifo). 

- z sl true if the length of string sl is zero. 

-n sl true if the length of the string sl is non-zero. 

-tfildes true if the open file whose file descriptor number is fildes is associated with a 
terminal device. If fildes is not specified, file descriptor 1 is used by default. 

sl = s2 true if strings sl and s2 are identical. 

sl I = s2 true if strings sl and s2 are not identical. 

sl true if sl is not the null string. 

nl - eq n2 true if the integers nl and n2 are algebraically equal; other algebraic comparis
ons are indicated by -ne, -gt, -ge, -1 t, and - le. 

These primaries may be combined with the following operators: 

unary negation operator. 

-a 

-o 

( expr ) 

binary logical and operator. 

binary logical or operator; it has lower precedence than -a .. · . 

parentheses for grouping; they must be escaped to remove their significance to 
the shell; in the absence of parentheses, evaluation proceeds from left to right. 

Note that all primaries, operators, file names, etc., are separate arguments to test. 



UNIX Shell Tutorial 25 

5.2 Reading a Line: l.ine 

The 1 ine command takes one line from standard input and prints it on standard output. This 
is useful when you need to read a line from a file, or capture the line in a variable. The fu.nc
tions of line and of the read command that is internal to the shell differ in that 
input/output redirection is possible only with line. If the user does not require input/output 
redirection, read is faster and more efficient. An example of a usage of 1 ine for which 
read would not suffice is: 

firstline='line < somefile' 

5.3 Simple Output: echo 

The echo command, invoked as echo [ arg ... ] copies its arguments to the standard output, 
each followed by a single space, except for the last argument, which is normally followed by a 
new-line; often, it is used to prompt the user for input, to issue diagnostics in shell procedures,. 
or to add a few lines to an output stream in the middle of a pipeline. Another us.e is to verify 
the argument list generation process before issuing a command that does something drastic. 
The command ls is often replaced by echo*• because the latter is faster and prints fewer 
lines of output. 

The echo command recognizes several escape sequences. A '\n yields a new-line character; a 
'\c removes the new-line from the end of the echoed line. The following prompts the user, 
allowing one to type on the same line as the prompt: 

echo 'enter name:\c' 
read name 

The echo command also recognizes octal escape sequences for all characters, whether printable 
or not: echo "'\ 0 O 7" typed at a terminal will cause the bell on that terminal to ring. 

5.4 Expression Evaluation: expr 

The expr command provides arithmetic and logical operations on integers and some pattern 
matching facilities on its arguments. It evaluates a single expression and writes the result on 
the standard output; expr can be used inside grave accents to set a variable. Typical examples 
are: 

# increment $a 
a='expr $a + 1' 
# put third through last characters of 
# $1 into substrin9 
substring='expr "S1" : ' .. \(.*\)'' 
# obtain length of S1 
c='expr "$1" : '.•'' 

The most common uses of expr are in counting iterations of a loop and in using its pattern 
matching capability to pick apart strings; see expr( l) for more details. 

5.5 true and false 

The true and false commands perform the obvious functions of exiting with zero and 
non-zero exit status, respectively. The true command is often used to implement an uncon-,. 
ditional loop. 

5.6 Input/Output Redirection Using File Descriptors. 

r;r Beginners should skip this section on first reading. 

Above (§3.6.2), we mentioned that a command occasionally directs output to some file associ
ated with a file descriptor other than 1 or 2. In languages such as C, one can associate output 
with any file descriptor by using the write(2) system call. The shell provides its own mechan
ism for creating an output file associated with a particular file descriptor. By typing: 



26 UNIX Shell Tutorial 

fdl>&.fd2 

where fdl and fd2 are valid file descriptors, one can direct output that would normally be associ
ated with file descriptor fdl onto the file associated with fd2. The default value for fdl and fd2 
is 1. If, at execution time, no file is associated with fd2, then the redirection is void. The 
most common use of this mechanism is that of directing standard error output to the same file 
as standard output. This is accomplished by typing: 

command 2>&.1 

If one wanted to redirect both standard output and standard error output to the same file, one 
would type: 

command 1 > file 2 > &. 1 

The order here is significant: first, file descriptor 1 is associated with file; then file descriptor 2 is 
associated with the same file as is cu"ently associated with file descriptor 1. If the order of the 
redirections were reversed, standard error output would go to the terminal, and standard output 
would go to file, because at the time of the error output redirection, file descriptor 1 still would 
have been associated with the terminal. 

This mechanism can also be generalized to the redirection of standard input. One could type: 

fda<&.fdb 

to cause both file descriptors fda and fdb to be associated with the same input file; if fda or fdb 
is not specified, file descriptor O is assumed. Such input redirection is useful for commands 
that use two or more input sources. Another use of this notation is for sequential reading and 
processing of a file; see merge in §6 for an example of use of this feature. 

S. 7 Conditional Substitution 

Normally, the shell replaces occurrences of Svariable by the string value assigned to variable, if 
any. However, there exists a special notation to allow conditional substitution, dependent upon 
whether the variable is set and/or not null. By definition, a variable is set if it has ever been 
assigned a value. The value of a variable can be the null string, which may be assigned to a 
variable in any one of the following ways: 

A= 
bed="" 
Ef g•'' 
set •• "" 

The first three of these examples assign the null string to each of the corresponding shell vari
ables. The last example sets the first and second positional parameters to the null string, and 
unsets all other positional parameters. 

The following conditional expressions depend upon whether a variable is set and not null (note 
that, in these expressions, variable refers to either a digit or a variable name and the meaning of 
braces differs from that described in §3.4.2 and §4.4.7): 

S {variable: -string} If variable is set and is non-null, then substitute the value Svariab/e in 
place of this expression. Otherwise, replace the expression with string. 
Note that the value of variable is nor.changed by the evaluation of this 
expression. 

S {variable: =string} If variable is set and is non-null, then substitute the value $variable in 
place of this expression; otherwise, set variable to string, and then sub
stitute the value SVariable in place of this expression. Positional 
parameters may not be assigned values in this fashion. 



UNIX Shell Tutorial 27 

${variable: ?string} If variable is set and is non-null, then substitute the value of variable 
for the expression; otherwise, print a message of the form: 

variable : string 

and exit from the current shell. (If the shell is the login shell, it is 
not exited.) If string is omitted in this form, then the message: 

variaNe: parameter null or not set 

is printed instead. 

$ {variable: +string} If variable is set and is non-null, then substitute string for this expres
sion, otherwise, substitute the null string. Note that the value of vari
able is not altered by the evaluation of this expression. 

These expressions may also be used without the colon (: ), in which case the shell does not 
check whether variable is null or not; it only checks whether variable has ever been set. 

The two examples below illustrate the use of this facility: 

I. If PATH has ever been set and is not null, then keep its current value; otherwise, set it 
to the string : /bin: /usr/bin. Note that one needs an explicit assignment to set 
PATH in this form: 

PATH=${PATH:-':/bin:/usr/bin'} 

2. If HOME is set and is not null, then change directory to it, otherwise set it to the given 
value and change directory to it; note that HOME is automatically assigned a value in this 
case: 

cd ${HOME:='/usr/qas'} 

5.8 Invocation Flags 

There are four flags that may be specified on the command line invoking the shell; these flags 
may not be turned on via the set command: 

- i If this flag is specified, or if the shell's input and output are both attached to a termi
nal, the shell is interactive. In such a shell, INTERRUPT (signal 2) is caught and 
ignored, while QUIT (signal 3) and SOFTWARE TERMINATION (signal 15) are 
ignored. 

- s If this flag is specified or if no input/output redirection arguments are given, the shell 
reads commands from standard input. Shell output is written to file descriptor 2. 
The shell you get upon logging into the system effectively has the - s flag turned on. 

-c When this flag is turned on, the shell reads commands from the first string following 
the flag. Remaining arguments are ignored. Double quotes should be used to 
enclose a multi-word string, in order to allow for variable substitution. 

-r When this flag is specified on invocation, then the restricted shell is invoked. This is a 
version of the shell in which certain actions are disallowed. In particular, the cd 
command produces an error message, and the user cannot.set PATH. See sh(l) for a 
more detailed description. 



28 UNIX Shell Tutorial 

6. EXAMPLES OF SHELL PROCEDURES 

w Some examples in this section are quite dijficuh for beginners. For ease of reference, the exam
ples are arranged alphabetically by name, rather than by degree of difficulty. 

copypairs: 

# usa9e: eopypairs file1 file2 ••• 
# copy file1 to file2, file3 to file4, 
while test "$2" I= "" 
do 

done 

cp $1 $2 
shift; shift 

if test "$1" I= "" 
then echo "SO: odd number of arguments" 
fi 

Note: This procedure illustrates the use of a while loop to process a list of positional parame
ters that are somehow related to one another. Here a while loop is much better than a 
for loop, because you can adjust the positional parameters via shift to handle related 
arguments. 

copyto: 

# 
# 
# 
if test 

usage: copyto 
copy argument 
two arguments 
$# -lt 2 

dir file ..• 
files to 'dir', makin9 sure that at least 
exist and that 'dir' is a directory 

then echo "$0: usage: copyto directory file ... " 
elif test I -d S1 
then 
else 

fi 

echo "SO: S1 is not a directory"; 
dir•S 1; shift 
for eachf ile 
do 

cp Seachfile Sdir 
done 

Note: This procedure uses an if command with two tests in order to screen out improper 
usage. The for loop at the end of the procedure loops over all of the arguments to 
copyto but the first; the original S 1 is shifted off. 

distinct: 

# usa9e: distinct 
# reads standard input and reports list of alphanumeric strings 
# that differ only in case, giving lower-ease form of each 
tr -cs '[A-z][a-zJ[0-9]' '[\012*]' I sort -u I 

tr '[A-Zl' '[a-zl' I sort I uniq -d 

Note: This procedure is an example of the kind of process that is created by the left-to-right 
construction of a long pipeline. It may not be immediately obvious how this works. 
(You may wish to consult tr(l), sort(l), and uniq(l) if you are completely unfamiliar 
with these commands.) The tr translates all i;:haracters except letters and digits into 
new-line characters, and then squeezes out repeated new-line characters. This leaves 
c;ach string (in this case, any contiguous sequence of letters and digits) on a separate 
line. The sort command sorts the lines and emits only one line from any sequence of 
one or more repeated lines. The next tr converts everything to lower case, so that 
identifiers differing only in case become identical. The output is sorted again to bring 
such duplicates together. The uniq -d prints (once) only those lines that occur more 
than once, yielding the desired list. 



UNIX Shell Tutonu1 29 

The process of building such a pipeline uses the fact that pipes and files can usually be 
interchanged; the two lines below are equivalent, assuming that sufficient disk space is 
available: 

draft: 

cmd1 I cmd2 I cmd3 
cmd1 > temp1; < temp1 cmd2 > temp2; < temp2 cmd3; rm temp[12] 

Starting with a file of test data on the standard input and working from left to right, each 
command is executed taking its input from the previous· file and putting its output in the 
next file. The final output is then examined to make sure that it contains the expected 
result. The goal is to create a series of transformations that will convert the input to the 
desired output. As an exercise, try to mimic distinct with such a step-by-step pro
cess, using a file of test data containing: 

ABC:DEF/DEF 
ABC1 ABC 
Abe abc 

Although pipelines can give a concise notation for complex processes, exercise some res
traint, lest you succumb to the "one-line syndrome" sometimes found among users of 
especially concise languages. This syndrome often yields incomprehensible code. 

# usage: draft file(s) 
# prints the draft (-rC3) of a document on a DASI 450 
# terminal in 12-pitch using memorandum macros (MM). 
nroff -rel -T450-12 -cm S• 

Note: Users often write this kind of procedure for convenience in dealing with commands that 
require the use of many distinct flags that cannot be given default values that are reason
able for all (or even most) users. 

edfind: 

# 
I 
# 
# 
ed -
H 

s 1 

usage: edfind file arg 
find the last occurrence in 'file' of a line whose 
beginning matches 'arg', then print 3 lines (the one 
before, the line itself, and the one after) 
<<I 

?A$2?;-,+p 
I 

Note: This procedure illustrates the practice of using editor ( ed) in-line input scripts into 
which the shell can substitute the values of variables. It is a good idea to turn on the H 
option of ed when embedding an ed script in a shell procedure (see ed(l)). 

edlast: 

# usage: edlast file 
I prints the last line of file, then deletes that line 
ed - S1 <<-\eof # no variable substitutions in "ed" script 

H 
Sp 
Sd 
w 
q 

eof 
echo Done. 



30 UNIX Shell Tutorial 

Note: This procedure contains an in-line input document or script (see §4.4.9); it also illus
trates the effect of inhibiting substitution by escaping a character in the eofstring (here, 
eof) of the input redirection. If this had not been done, Sp and Sd would have been 
treated as shell variables. 

fsplit: 

# usage: fsplit file1 file2 
# read standard input and divide it into three parts: 
# append any line containing at least one letter 
# to file1, any line containing at least one digit 
# but no letters to file2, and throw the rest away 
total•O lost=O 
while read next 
do 

total="'expr Stotal + 1' II 
case "$next" in 
•[A-Za-zl•) 

echo "Snext" >> S1 ' ' •[0-9].) 
echo "Snext" >> S2 ' . . ) 
lost="'expr Slost + 1'" 

esac 
done 
echo "Stotal lines read, Sloat thrown away" 

Note: In this procedure, each iteration of the while loop reads a line from the input and 
analyzes it. The loop terminates only when read encounters an end-of-file. 

w Don't use the shell to read a line at a time unless you must-it can be grotesquely slow (§7.2.1). 

initvars: 

I usage: . initvars 
I use carriage return to indicate "no change" 
echo "initializations? \c" 
read response 
if test "Sresponse" = y 
then echo "PS1=\c"; read temp 

fi 

PS1=S{temp:-SPS1} 
echo "PS2=\c"; read temp 

PS2=S{temp:-SPS2} 
echo "PATH•\c"; read temp 

PATH=S{temp:-SPATH} 
echo "TERM=\c"; read temp 

TERM•S{temp:-STERM} 

Note: This procedure would be invoked by a user at the terminal, or as part of a • profile 
file. The assignments are effective even when the procedure is finished, because the dot 
command is used to invoke it. To better understand the dot command, invoke ini t
vars as indicated above and check the values of PS 1, PS2, PATH, and TERM; then 
make ini tvars executable, type ini tvars, assigning different values to the three 
variables, and check again the values of these three shell variables after ini tvars ter
minates. It is assumed that PS 1, PS2, PATH, and TERM have been e:xported, 
presumably by your • profile (§3.9.2, §4.1) .. 



UNIX Shell Tutorial 

merge: 

I usage: merge src1 src2 [ dest ] 
I merge two files, every other line. 
I the first argument starts off the merge, 
I excess lines of the longer file are appended to 
I the end of the resultant file 
exec 4<$1 5<$2 
dest=S{3-S1.m} #default destination file is named $1.m 
while true 
do 

done 

ed -

eof 
while 
do . ' 

I alternate reading from the files; 
# 'more' represents the file descriptor 
I of the longer file 

line <&4 >>Sdest I I { more=5; break ;} 
line <&5 >>Sdest I I { more=4; break ;} 

Sdest <<\eof 
H 
Sd 
w 
q 

line <&Smore 
done 

>> 

# delete the last line of destination 
I file, because it is blank. 

$dest 
I read the remainder of the longer 
# file - the body of the 'while' loop 
I does nothing; the work of the loop 
I is done in the command list following 
I 'while' 

31 

Note: This procedure illustrates a technique for reading sequential lines from a file or files 
without creating any sub-shells to do so. When the file descriptor is used to access a file, 
the effect is that of opening the file and moving a file pointer along until the end of the 
file is read. If the input redirections used src 1 and src2 explicitly rather than the 
associated file descriptors, this procedure would never terminate, because the first line of 
each file would be read over and over again. 

mkfiles: 

I usage: mkfiles pref [ quantity 
I makes 'quantity' (default= 5) files, named pref1, pref2, ... 
quantity•S{2-5} 
i=1 
while test n$i" -le n$quantity" 
do 

> $1$i 
i="'expr Si + 1'" 

done 

Note: This procedure uses input/output redirection to create zero-length files. The expr com
mand is used for counting iterations of the while loop. Compare this procedure with 
procedure null below. 



32 UNIX Shell Tutorial 

mmt: 

if test "S#" = o; then cat <<\I 
Usage: "mmt [ options 1 files" where "options" are: 
-a => output to terminal 
-e => preprocess input with eqn 
-t => preprocess input with tbl 
-Tst => output to STARE 
-T4014 => output to Tektronix 4014 
-Tvp => output to Versatec printer 

•> use instead of "files" when mmt used inside a pipeline. 
Other options as required by TROFF and the MM macros. 
I 

exit 1 
fi 
PATH='/bin:/usr/bin'; O='-q'; o='lgcat -ph'; 
# Assumes typesetter is accessed via gcat(1) 
# If typesetter is on-line, use O=''; o•'' 
while test -n "S1" -a I -r "S1" 
do case "S1" in 

# 

esac 
shift 

done 

-a) 
-Tst) 

-T4014) 
-Tvp) 
-e) 
-t) 
-) 
*) 

O•'-a'; o='' ;; 
0•'-9'; o•':gcat 

Above line for STARE only 
O•'-t'; 
O='-t'; 
e•'eqn';; 
f='tbl';; 
break;; 
a="Sa S1";; 

O•': tc'; i 
o= • i vpr -t' ; ; 

if test -z "S1"; 
if ~est "SO" = '-g'; 
d•"S•" 

then echo 'mmt: no input file'; exit 1; fi 
then x•"-f$1"; fi 

if test "Sd" = '-'; 
if test -n "Sf"; 

then shift; 
then f="tbl 

X•,,; 
S• I"; 

if test -n "Se" 
then if test -n "Sf" 

fi 
fi 

then e='eqni• 
else e="eqn S•I"; 

eval "Sf Se troff SO -cm Sa Sd So Sx"; exit 0 

d• #,; 
d -,,. - . 

d='' 

fi 
fi 

Note: This is a slightly simplified version of an actual UNIX command (although this is not the 
version included in UNIX Release 4.0). It uses many of the features available in the 
shell; if you can follow through it without getting lost, you have a good understanding of 
shell programming. Pay particular attention to the process of building a command line 
from shell variables and then using eval to execute it. 

null: 

# usage: null file 
# create each of the named files as an empty file 
for eachfile 
do 

> Seachfile 
done 

/.'ote: This procedure uses the fact that output redirection creates the (empty) output file if that 
file does not already exist. Compare this procedure with procedure mkf i le s above. 



UNIX Shell Tutonal 

phone: 

# usage: 
# prints 
echo 'inits 
grep n,. $1" <<\I 
abc 1234 
def 2234 
ghi 3342 
xyz 4567 
I 

phone initials 
the phone number(s) of person with given initials 
ext home' 

999-2345 
583-2245 
988-1010 
555-1234 

33 

Note: This procedure is an example of using an in-line input document or script to maintain a 
small data base. 

write mail: 

# usage: writemail message user 
# if user is logged in, write message on terminal; 
# otherwise, mail it to user 
echo "$1" I {write "$2" I I mail "$2" ;} 

Note: This procedure illustrates command grouping. The message specified by S 1 is piped to 
the write command and, if write fails, to the ma i 1 command. 

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING 

7.1 Overall Approach 

This section outlines strategies for writing efficient shell procedures, i.e., ones that do not waste 
resources unreasonably in accomplishing their purposes. In the authors' opinion, the primary 
reason for choosing the shell procedure as the implementation method is to achieve a desired 
result at a minimum human cost. Emphasis should always be placed on simplicity, clarity, and 
readability, but efficiency can also be gained through awareness of a few design strategies. In 
many cases, an effective redesign of an existing procedure improves its efficiency by reducing 
its size, and often increases its comprehensibility. Jn any case, one should not worry about 
optimizing shell procedures unless they are intolerably slow or are known to consume a lot of 
resources. 

The same kind of iteration cycle should be applied to shell procedures as to other programs: 
write code, measure it, and optimize only the few important parts. The user should become 
familiar with the time command, which can be used to measure both entire procedures and 
parts thereof. Its use is strongly recommended; human intuition is notoriously unreliable when 
used to estimate timings of programs, even when the style of programming is a familiar one. 
Each timing test should be run several times, because the results are easily disturbed by, for 
instance, variations in system load. 

7 .2 Approximate Measures of Resource Consumption 

7.2.1 Number of Processes Generated. When large numbers of short commands are exe
cuted, the actual execution time of the commands may well be dominated by the overhead of 
creating processes. The procedures that incur significant amounts of such overhead are those 
that perform much looping and those that generate command sequences to be interpreted by 
another shell. 

If you are worried about efficiency, it is important to know which commands are currently built 
into the shell, and which are not. Here is the alphabetical list of those that are built-in: 



34 

break 
exit 
readonly 
ulimit 

case 
export 
set 
umask 
{. .. } 

cd 
for 
shift 
until 

continue 
if 
test 
wait 

eval 
newqrp 
times 
while 

UNIX Shell Tutorial 

exec 
read 
trap 

( ••• ) executes as a child process, i.e., the shell does a fork, but no exec. Any command not 
in the above list requires both fork and exec. 

The user should always have at least a vague idea of the number of processes generated by a 
shell procedure. In the bulk of observed procedures, the number of processes spawned (not 
necessarily simultaneously) can be described by: 

processes = k•n + c 

where k and c are constants, and n is the number of procedure arguments, the number of lines 
in some input file, the number of entries in some directory, or some other obvious quantity. 
Efficiency improvements are most commonly gained by reducing the value of k, sometimes to 
zero. Any procedure whose complexity measure includes n 2 terms or higher powers of n is 
likely to be intolerably expensive. 

As an example, here is an analysis of procedure fsplit of §6. For each iteration of the loop, 
there is one expr plus either an echo or another expr. One additional echo is executed at 
the end. If n is the number of lines of input, the number of processes is 2•n + 1. On the 
other hand, the number of processes in the following (equivalent) procedure is 12, regardless 
of the number of lines of input: 

I faster fsplit 
trap 'rm tempSS; trap 
start1=0 start2=0 
b•' [A-Za-zl' 

0 ; exit' 0 1 2 3 15 

cat > tempSS # read standard input into 
# save original lengths of 

if test -s 0 $1"; then start1•'wc -1 < $1'; fi 
if test -s "S2"; then start2='wc -1 < S2'; fi 

temp file 
$1. $2 

qrep 0 Sb" tempSS >> $1 # lines with letters onto S1 
grep -v 0 sb" tempSS I 9rep '[0-91' >> s2 

total="'wc -1 < temp$$'" 
end1="'wc -1 < s1·~ 

end2= 0 'wc -1 < $2'" 

# lines with only numbers onto S2 

lost•"'expr Stotal - \( Send1 - Sstart1 \) - \( Send2 - Sstart2 \)'" 
echo "Stotal lines read, Slost thrown away" 

This version is often ten times faster than fsplit, and it is even faster for larger input files. 

Some types of procedures should not be written using the shell. For example, if one or more 
processes are generated for each character in some file, it is a good indication that the pro
cedure should be rewritten in C. 

w- Shell procedures should not be used to scan or build files a character at a time. 

7.2.2 Number of Data Bytes Accessed. It is worthwhile considering any action that 
reduces the number of bytes read or written. This may be important for those procedures 
whose time is spent passing data around among a few processes, rather than in creating large 
numbers of short processes. Some filters shrink their output, others usually increase it. It 
always .pays to put the shrinkers first when the order is irrelevant. Which of the following is 
likely to be faster? 

sort file I grep pattern 
grep pattern file I sort 



UNIX Shell Tutorial 35 

7.2.3 Directory Searches. Directory searching can consume a great deal of time, especially 
in those applications that utilize deep directory structures and long path names. Judicious use 
of cd can help shorten long path names and thus reduce the number of directory searches 
needed. As an exercise, try the following commands (on a fairly quiet system): 8 

time sh -c 'ls -1 /usr/bin/• >/dev/null' 
time sh -c 'cd /usr/bin; ls -1 • >/dev/null' 

7 .3 Efficient Organization 

7.3.1 Directory-Search Order and the PATH Variable. The PATH variable is a convenient 
mechanism for allowing organization and sharing of procedures. However, it must be used in a 
sensible fashion, or the result may be a great increase in system overhead that occurs in a sub
tle, but avoidable, way. 

The process of finding a command involves reading every directory included· in every path 
name that precedes the needed path name in the current PATH variable. As an example, con
sider the effect of invoking nroff (i.e., /usr/bin/nroff) when SPATH is 
: /bin: /usr/bin. The sequence of directories read is: . , I, /bin, /, /usr, and 
/usr/bin, i.e., a total of six directories. A long path list assigned to PATH can increase this 
number significantly. 

The vast majority of command executions are of commands found in /bin and, to a somewhat 
lesser extent, in /usr /bin. Careless PATH setup may lead to a great deal of unnecessary 
searching. The following four examples are ordered from worst to best (but only with respect 
to the efficiency of command searches): 

:/a1/tf/jtb/bin:/usr/lbin:/bin:/usr/bin 
:/bin:/a1/tf/jtb/bin:/usr/lbin:/usr/bin 
:/bin:/usr/bin:/a1/tf/jtb/bin:/usr/lbin 
/bin::/usr/bin:/a1/tf/jtb/bin:/usr/lbin 

The first one above should be avoided. The others are acceptable, the choice among them is 
dictated by the rate of change in the set of commands kept in /bin and /usr /bin. 

A procedure that is expensive because it invokes many short-lived commands may often be 
speeded up by setting the PATH variable inside the procedure such that the fewest possible 
directories are searched in an optimum order; the mmt example in §6 does this. 

7.3.2 Good Ways to Set up Directories. It is wise to avoid directories that are larger than 
necessary. You should be aware of several magic sizes. A directory that contains entries for up 
to 30 files (plus the required . and .. ) fits in a single disk block and can be searched very 
efficiently. One that has up to 286 entries is still a small file; anything larger is usually a disaster 
when used as a working directory. It is especially important to keep login directories small, 
preferably one block at most. Note that, as a rule, directories never shrink. 

ACKNOWLEDGEMENTS 

The UNIX shell was initially written by S. R. Bourne [2,31. Its design is based, in part, on the 
original UNIX shell [15] and on the PWB/UNIX shell [12], some features having been taken 
from both. Similarities also exist with the command interpreters of the Cambridge Multiple 
Access System and of the MIT Compatible Time-Sharing System. T. E. Fritz and several other 
colleagues provided helpful comments during the writing of this tutorial; T. A. Dolotta, in addi
tion, provided a great deal of editorial assistance. 

8. You may have to do some reading in the UNIX User's Manual [7] to understand exactly what is going on in these 
examples. 



36 UNIX Shell Tutorial 

REFERENCF.S 

[l] Bianchi, M. H., and Wood, J. L. A User's Viewpoint on the Programmer's Workbench. Proc. 
Second Int. Conf on Software Engineering, pp. 193-99 (Oct. 13-15, 1976 ). 

[2] Bourne, S. R. The UNIX Shell. The Bell System Technical Journal, Vol. 57, No. 6, Part 2, pp. 
1971-90 (July-Aug. 1978). 

[3] Bourne, S. R. An Introduction to the UNIX Shell. Bell Laboratories (1979). 

[4] Dolotta, T. A., Haight, R. C., and Mashey, J. R. The Programmer's Workbench. The Bell System 
Technical Journal, Vol. 57, No. 6, Part 2, pp. 2177-200 (July-Aug. 1978). 

[5] Dolotta, T. A., and Mashey, J. R. An Introduction to the Programmer's Workbench. Proc. Second 
Int. Conf on Software Engineering, pp. 164-68 (Oct. 13-15, 1976). 

(6) Dolotta, T. A., and Mashey, J. R. Using a Command Language as the Primary Programming Tool. 
Jn: Beech, D. (ed.), Command Language Directions (Proc. of the Second 1FIP Working Conf. on 
Command Languages), pp. 35-55. Amsterdam: North Holland (1980). 

[7] Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G., eds. UNIX User's Manual-Release 3.0. Bell 
Laboratories (June 1980). 

[8] Kernighan, B. W., and Mashey, J. R. The UNIX Programming Environment. COMPUTER, 
Vol. 14, No. 4, pp. 12-24 (April 1981); an earlier version of this paper was published in 
Software-Practice & Experience, Vol. 9, No. 1, pp. 1-15 (Jan. 1979). 

(9) Kernighan, B. W., and Plauger, P. J. Software Tools. Proc. First Nat. Conf on Software Engineer
ing. pp. 8-13 (Sept. 11-12, 1975). 

[10) Kernighan, B. W., and Plauger, P. J. Software Tools. Reading, MA: Addison-Wesley (1976). 

[11) Kernighan, B. W., and Ritchie, D. M. The C Programming Language. Englewood Cliffs, NJ: 
Prentice-Hall (1978). 

(12) Mashey, J. R. PWB/UNIX Shell Tutorial. Bell Laboratories (1977). 

[13] Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing System. The Bell System Technical 
Journal, Vol. 57, No. 6, Part 2, pp. 1905-29 (July-Aug. 1978). 

(14) Snyder, G. A., and Mashey, J. R. UNIX Documentation Road Map. Bell Laboratories (January 
1981 ). 

[15) Thompson, K. The UNIX Command Language. In: Structured Programming-Infotech State of the 
Art Report, pp. 375-84. Infotech International Limited, Nicholson House, Maidenhead, Berkshire, 
England (1976). 

January 1981 



CONTENTS 

1. INTRODUCTION . . . . . . . . . . . . . . 

2. OVERVIEW OF THE UNIX ENVIRONMENT 
2.1 File System 1 
2.2 UNIX Processes 2 

3. SHELL BASICS . . . 
3.1 Commands 3 
3.2 How the Shell Finds Commands 4 
3.3 Generation of Argument Lists 4 
3.4 Shell Variables 5 

3.4.1 Positional Parameters. 5 
3.4.2 User-defined Variables. 5 
3.4.3 Command Substitution. 7 
3.4.4 Predefined Special Variables. 8 

3.5 Quoting Mechanisms 9 
3.6 Redirection of Input and Output 9 

3.6.1 Standard Input and Standard Output. 9 
3.6.2 Diagnostic and Other Outputs. 10 

3.7 Command Lines and Pipelines 10 
3.8 Examples 10 
3.9 Changing the State of the Shell and the • profile File 11 

3.9.1 Cd. 11 
3.9.2 The .profile File. 11 
3.9.3 Execution Flags: set. 12 

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES . . . . . . . . 
4.1 A Command's Environment 12 
4.2 Invoking the Shell 13 
4.3 Passing Arguments to the Shell; shift 13 
4.4 Control Commands 14 

4.4.1 Structured Conditional: if. 16 
4.4.2 Multi-way Branch: case. 16 
4.4.3 Conditional Looping: while and until. 17 
4.4.4 Looping over a List: for. 17 
4.4.5 Loop Control: break and continue. 18 
4.4.6 End-of-file and exit. 18 
4.4. 7 Command Grouping: Parentheses and Braces. 18 
4.4.8 Input/Output Redirection and Control Commands. 19 
4.4.9 In-line Input Documents. 19 
4.4.10 Transfer to Another File and Back: the Dot (.) Command. 20 
4.4.11 Interrupt Handling: trap. 20 

4.5 Special Shell Commands 21 
4.6 Creation and Organization of Shell Procedures 23 
4. 7 More about Execution Flags 23 

5. MISCELLANEOUS SUPPORTING COMMANDS AND FEATURES 
5.1 Conditional Evaluation: test 24 
5.2 Reading a Line: line 25 
5.3 Simple Output: echo · 25 
5.4 Expression Evaluation: expr 25 
5.5 true and false 25 
5.6 Input/Output Redirection Using File Descriptors. 25 

- i -

3 

12 

24 



5. 7 Conditional Substitution 26 
5.8 Invocation Flags 27 

6. EXAMPLES OF SHELL PROCEDURES 
copypairs: 28 
copyto: 28 
distinct: 28 
draft: 29 
edfind: 29 
edlast: 29 
fsplit: 30 
initvars: 30 
merge: 31 
mkfiles: 31 
mmt: 32 
null: 32 
phone: 33 
writemail: 33 

28 

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING . . . . . . . . . . . . 33 
7.1 Overall Approach 33 
7 .2 Approximate Measures of Resource Consumption 33 

7.2.1 Number of Processes Generated. 33 
7.2.2 Number of Data Bytes Accessed. 34 
7.2.3 Directory Searches. 35 

7 .3 Efficient Organization 35 
7.3.1 Directory-Search Order and the PATH Variable. 35 
7.3.2 Good Ways to Set up Directories. 35 

ACKNOWLEDGEMENTS 35 

REFERENCES . . . . . . 36 

- ii -



An Introduction to the UNIX Shell 

S. R. Bourne 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

The shell is a command programming language that provides an interface to the 
UNIXt operating system. Its features include control-flow primitives, parameter 
passing, variables and string substitution. Constructs such as while, if then else, 
case and for are available. Two-way communication is possible between the 
shell and commands. String-valued parameters, typically file names or flags, 
may be passed to a command. A return code is set by commands that may be 
used to determine control-flow, and the standard output from a command may 
be used as shell input. 

The shell can modify the environment in which commands run. Input and out
put can be redirected to files, and processes that communicate through 'pipes' 
can be invoked. Commands are found by searching directories in the file sys
tem in a sequence that can be defined by the user. Commands can be read 
either from the terminal or from a file, which allows command procedures to be 
stored for later use. 

l.O INTRODUCTION 

UNIX 

B.4.2 

The shell is both a command language and a programming language that provides an interface 
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell. 
The first section covers most of the everyday requirements of terminal users. Some familiarity 
with UNIX is an advantage when reading this section; see, for example, UNIX for Beginners.I 
Section 2 describes those features of the shell primarily intended for use within shell pro
cedures. These include the control-flow primitives and string-valued variables provided by the 
shell. A knowledge of a programming language would be a help when reading this section. 
The last section describes the more advanced features of the shell. References of the form 
"see pipe (2)" are to a section of the UNIX User's Manual. 2 

1.1 Simple Commands 

Simple commands consist of one or more words separated by blanks. The first word is the 
name of the command to be executed; any remaining words are passed as arguments to the 
command. For example, 

who 

is a command that prints the names of users logged in. The command 

Is -1 

prints a list of files in the current directory. The argument -/ tells ls to print status informa
tion, size and the creation date for each file. 

t UNIX is a trademark of Bell Laboratories. 



2 Shell 

1.2 Background Commands 

To execute a command the shell normally creates a new process and waits for it to finish. A 
command may be run without waiting for it to finish. For example, 

cc pgm.c & 

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the 
shell not to wait for the command to finish. To help keep track of such a process the shell 
reports its process number following its creation. A list of currently active processes may be 
obtained using the ps command. 

1.3 Input/Output Redirection 

Most commands produce output on the standard output that is initially connected to the termi
nal. This output may be sent .to a file by writing, for example, 

Is -I >file 

The notation >file is interpreted by the shell and is not passed as an argument to Is. If file does 
not exist then the shell creates it; otherwise the original contents of file are replaced with the 
output from Is. Output may be appended to a file using the notation 

ls -1 >>file 

In this case file is also created if it does not already exist. 

The standard input of a command may be taken from a file instead of the terminal by writing, 
for example, 

WC <file 

The command wc reads its standard input (in this case redirected from file) and prints the 
number of characters, words and lines found. If only the number of lines is required then 

we -I <file 

could be used. 

l.4 Pipelines and Filters 

The standard output of one command may be connected to the standard input of another by 
writing the 'pipe' operator, indicated by I, as in, 

ls -1 I wc 

Two commands connected in this way constitute a pipeline and the overall effect is the same as 

ls -1 >file; wc <file 

except that no file is used. Instead the two processes arc connected by a pipe (see pipe (2)) and 
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting wc when 
there is nothing to read and halting ls when the pipe is full. 

A filter is a command that reads its standard input, transforms it in some way, and prin~s the 
result as output. One such filter, grep, selects from its input those lines that contain some 
specified string. For example, 

ls I grep old 

prints tbose lines, if any, of the output from Is that contain the string old. Another useful filter 
is sort. For example, 

who I sort 

will print an alphabetically sorted list of logged in users. 



Shell 

A pipeline may consist of more than two commands, for example, 

ls I grep old I wc -I 

prints the number of file names in the current directory containing the string old. 

1.5 File Name Generation 

Many commands accept arguments which are file names. For example, 

ls -1 main.c 

prints information relating to the file main.c. 

3 

The shell provides a mechanism for generating a list of file names that match a pattern. For 
example, 

ls-I *.C 

generates, as arguments to Is, all file names in the current directory that end in .c. The charac
ter * is a pattern that will match any string including the null string. In general patterns are 
specified as follows. 

• Matches any string of characters including the null string. 

? Matches any single character. 

[ ••• J Matches any one of the charactt:rs enclosed. A pair of characters separated by a 
minus will match any character lexically between the pair. 

For example, 

[a-z]• 

matches all names in the current directory beginning with one of the letters a through z. 

/usr/fred/test/? 

matches all names in the directory /usr/fred/test that consist of a single character. If no file 
name is found that matches the pattern then the pattern is passed, unchanged, as an argument. 

This mechanism is useful both to save typing and to select names according to some pattern. It 
may also be used to find files. For example, 

echo /usr/fred/•/core 

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard 
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen
sive, requiring a scan of all sub-directories of /usr/fred. 

There is one exception to the general rules given for patterns. The character '.' at the start of a 
file name must be explicitly matched. 

echo* 

will therefore echo all file names in the current directory not beginning with '.' . 

echo·* 

will echo all those file names that begin with '.'. This avoids inadvertent matching of the 
names ·.' and ' •• ', which mean 'the current directory' and 'the parent directory', respectively. 
(Notice that Is suppresses information for the files '.' and ' • .' .) 

1.6 Quoting 

Characters that have a special meaning to the shell, such as < > * ? I & , are called metachar
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a 
\is quoted and loses its special meaning, if any. The\ is elided so that: 



4 

echo\? 

will echo a single ? , and 

echo\\ 

Shell 

will echo a single \. To allow long strings to be continued over more than one line the 
sequence \new-line is ignored. The \ is convenient for quoting single characters. When more 
than one character needs quoting the above mechanism is clumsy and error prone. A string of 
characters may be quoted by enclosing the string between single quotes. For example, 

echo xx-••••-xx 

will echo 

The quoted string may not contain a single quote but may contain new-lines, which are 
preserved. This quoting mechanism is the most simple and is recommended for casual use. A 
third quoting mechanism using double quotes is also available that prevents interpretation of 
some but not all metacharacters. Discussion of the details is deferred to section 3.4. 

1. 7 Prompting 

When the shell is used from a terminal it will issue a prompt before reading a command. By 
default this prompt is 'S ' . It may be changed by saying, for example, 

PSI =yesdear 

that sets the prompt to be the string yesdear. If a new-line is typed and further input is needed 
then the shell will issue the prompt '> '. Sometimes this can be caused by mistyping a quote 
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com
mand. This prompt may be changed by saying, for example, 

PS2==more 

l.8 The Shell and login 

Following login ( 1) the shell is called to read and execute commands typed at the terminal. If 
the user's login directory contains the file .profile then it is assumed to contain commands and 
is read by the shell before reading any commands from the terminal. 

l.9 Summary 

• ls 
Print the names of files in the current directory. 

• Is >file 
Put the output from ls into file. 

• Is I wc -I 
Print the number of files in the current directory. 

• Is I grep old , 
Print those file names containing the string old. 

• Is I grep old I WC -I 
Print the number of files whose name contains the string old. 

• cc pgm.c & 
Run cc in the background. 



Shell 5 

2.0 SHELL PROCEDURES 

The shell may be used to read and execute commands contained in a file. For example, 

sh file [ args •.. ] 

calls the shell to read commands from file. Such a file is called a command procedure or shell 
procedure. Arguments may be supplied with the call and are referred to in file using the posi
tional parameters $1, $2, . . • . For example, if the file wg contains 

who I grep $1 

then 

sh wg fred 

is equivalent to 

who I grep fred 

UNIX files have three independent attributes, read, write and execute. The UNIX command 
chmod ( 1) may be used to make a file executable. For example, 

chmod +x wg 

will ensure that the file wg has execute status. Following this, the command 

wg fred 

is equivalent to 

sh wg fred 

This allows shell procedures and programs to be used interchangeably. In either case a new 
process is created to run the command. 

As well as providing names for the positional parameters, the number of positional parameters 
in the call is available as SI • The name of the file being executed is available as SO. 

A special shell parameter $• is used to substitute for all positional parameters except $0. A 
typical use of this is to provide some default arguments, as in 

nroff -T 450 -cm $• 

which simply prepends some arguments to those already given. 

2.1 Control Flow-for 

A frequent use of shell procedures is to loop through the arguments ($1, Sl, ••• ) executing 
commands once for each argument. An example of such a procedure is tel that searches the file 
/usr/lib/telnos that contains lines of the form 

fred mh0123 
bert mh0789 

The text of tel is 

for i 
do grep Si /usr/lib/telnos; done 

The command 

tel fred 

prints those lines in /usr/lib/telnos that contain the string/red. 



6 Shell 

tel fred bert 

prints those lines containing/red followed by those for bert. 

The for loop notation is recognized by the shell and has the general form 

for name in wl w2 ••• 
do command-list 
done 

A command-list is a sequence of one or more simple commands separated or terminated by a 
new-line or semicolon. Furthermore, reserved words like do and done are only recognized fol
lowing a new-line or semicolon. name is a shell variable that is set to the words wl w2 ••• in 
turn each time the command-list following do is executed. If in wl w2 • • • is omitted then the 
loop is executed once for each positional parameter; that is, in $* is assumed. 

Another example of the use of the for loop is the create command whose text is 

for i do >$i; done 

The command 

create alpha beta 

ensures that two empty files alpha and beta exist and are empty. The notation >file may be 
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new
line) is required before done. 

2.2 Control Flow-case 

A multiple way branch is provided for by the case notation. For example, 

case$# in 
1) cat >>$1 ;; 
2) cat >>$2 <$1 ;; 
*) echo ·usage: append [ from ] to· ; ; 

esac 

is an append command. When called with one argument as 

append file 

SI is the string 1 and the standard input is copied onto the end of file using the cat command. 

append file l file2 

appends the contents of ft/el onto file2. If the number of arguments supplied to append is other 
than 1 or 2 then a message is printed indicating proper usage. 

The general form of the case command is 

case word in 
pattern) command-list;; 

esae 

The shell attempts to match word with each pattern, in the order in which the patterns appear. 
If a match is found the associated command-list is executed and execution of the case is com
plete, Since * is the pattern that matches any string it can be used for the default case. 

A word of caution: no check is made to ensure that only one pattern matches the case argu
ment. The first match found defines the set of commands to be executed. In the example 
below the commands following the second * will never be executed. 



Shell 

case$# in. 
•) . ' . ;; 
*) ... ;; 

esac 

7 

Another example of the use of the case construction is to distinguish between different forms 
of an argument. The following example is a fragment of a cc command. 

for i 
do case Si in 

-[ocs]) ••• ,, 
-•) echo ·unknown flag $i' ;; 
*.c) /lib/cO $i .•• ;; 
•) echo 'unexpected argument $i' ;; 
esac 

done 

To allow the same commands to be associated with more than one pattern the case command 
provides for alternative patterns separated by a I . For example, 

is equivalent to 

case $i in 
-xl-y) 

esac 

case $i in 
-[xy]) 

esac 

The usual quoting conventions apply so that 

case $i in 
\?) 

will match the character ? . 

2.3 Here Documents 

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep. 
An alternative is to include this data within the shell procedure as a here document, as in 

for i 
do grep $i <<! 

fred mh0123 
bert mh0789 

done 

In this example the shell takes the lines between <<! and ! as the standard input for grep. 
The string ? is arbitrary, the document being terminated by a line that consists of the string fol
lowing<<. 

Parameters are substituted in the document before it is made available to grep as illustrated by 
the following procedure called edg .. 



8 

The call 

ed $3 <<% 
g/$1/s//$2/g 
w 

% 

edg stringl string2 file 

is then equivalent to the command 

ed file<<% 
g/stringl/s//string2/g 
w 
% 

Shell 

and changes all occurrences of stringl in file to string2. Substitution can be prevented using \ to 
quote the special character $ as in 

ed $3 <<+ 
l ,\Ss/$1/$2/g 
w 

+ 
(This version of edg is equivalent to the first except that ed will print a ? if there are no 
occurrences of the string $1 .) Substitution within a here document may be prevented entirely 
by quoting the terminating string, for example, 

grep Si<<\# 

# 

The document is presented without modification to grep. If parameter substitution is not 
required in a here document this latter form is more efficient. 

2.4 Shell Variables 

The shell provides string-valued variables. Variable names begin with a letter and consist of 
letters, digits and underscores. Variables may be given values by writing, for example, 

user-fred box=mOOO acct=mhOOOO 

which assigns values to the variables user, box and acct. A variable may be set to the null 
string by saying, for example, 

Iiull= 

The value of a variable is substituted by preceding its name with S; for example, 

echo $user 

will echo fred. 

Variables may be used interactively to provide abbreviations for frequently used strings. For 
example, 

b= /usr/fred/bin 
mv pgm Sb 

will move the file pgm from the current directory to the directory /usr/fred/bin. A more gen· 
eral notation is available for parameter (or variable) substitution, as in 

echo S{user} 

which is equivalent to: 



Shell 9 

echo $user 

and is used when the parameter name is followed by a letter or digit. For example, 

tmp= /tmp/ps 
ps a >${tmp}a 

will direct the output of ps to the file /tmp/psa, whereas, 

ps a >Stmpa 

would cause the value of the variable tmpa to be substituted. 

Except for $? the following are set initially by the shell. $? is set after executing each com
mand. 

$? The exit status (return code) of the last command executed as a decimal string. 
Most commands return a zero exit status if they complete successfully, otherwise 
a non-zero exit status is returned. Testing the value of return codes is dealt with 
later under if and while commands. 

SI The number of positional parameters (in decimal). Used, for example, in the 
append command to check the number of parameters. 

$$ The process number of this shell (in decimal). Since process numbers are 
unique among all existing processes, this string is frequently used to generate 
unique temporary file names. For example, 

ps a > /tmp/ps$$ 

rm /tmp/ps$$ 

$ ! The process number of the last process run in the background (in decimal). 

$- The current shell flags, such as -x and -v . 

Some variables have a special meaning to the shell and should be avoided for general use. 

$MAIL When used interactively the shell looks at the file specified by this variable 
before it issues a prompt. If the specified file has been modified since it was last 
looked at the shell prints the message you have mail before prompting for the 
next command. This variable is typically set in the file .profile, in the user's 
login directory. For example, 

MAIL= /usr/mail/fred 

$HOME The default argument for the cd command. The current directory is used to 
resolve file name references that do not begin with a /, and is changed using the 
cd command. For example, 

cd /usr/fred/bin 

makes the current directory /usr/fred/bin. 

cat wn 

will print on the terminal the file wn in this directory. The command cd with no 
argument is equivalent to 

cd $HOME 

This variable is also typically set in the the user's login profile. 

SPATH A list of directories that contain commands (the search path). Each time a com
mand is executed by the shell a list of directories is searched for an executable 



10 Shell 

file. If $PATH is not set then the current directory, /bin, and /usr/bin are 
searched by default. Otherwise SP A TH consists of directory names separated by 
• For example, 

PATH= :/usr/fred/bin:/bin:/usr/bin 

specifies that the current directory (the null string before the first : ), 
/usr/fred/bin, /bin and /usr/bin are to be searched in that order. In this way 
individual users can have their own 'private' commands that are accessible 
independently of the current directory. If the command name contains a / then 
this directory search is not used; a single attempt is made to execute the com
mand. 

$PS1 The primary shell prompt string, by default, '$ '. 

$PS2 The shell prompt when further input is needed, by default, '> '. 
SIFS The set of characters used by blank interpretation (see section 3.4). 

2.5 The test Command 

The test command, although not part of the shell, is intended for use by shell programs. For 
example, 

test -f file 

returns zero exit status if file exists and non-zero exit status otherwise. In general test evaluates 
a predicate and returns the result as its exit status. Some of the more frequently used test argu
ments are given here, see test ( 1) for a complete specification. 

test s 
test -f file 
test -r file 
test -w file 
test -d file 

true if the argument s is not the null string 
true if file exists 
true if file is readable 
true if file is writable 
true if file is a directory 

2.6 Control Flow-while 

The actions. of the for loop and the case branch are determined by data available to the shell. 
A while or until loop and an if then else branch are also provided whose actions are deter
mined by the exit status returned by commands. A while loop has the general form 

while command-list 1 

do command-list 1 

done 

The value tested by the while command is the exit status of the last simple command following 
while. Each time round the loop command-list1 is executed; if a zero exit status is returned 
then command-list 2 is executed; otherwise, the loop terminates. For example, 

is equivalent to 

while test $1 
do ••• 

shift 
done 

for i 
do ••• 
done 

shift is a shell command that renames the positional parameters $2, $3, ••• as SI, $2, • • • and 
loses $1. 



Shell II 

Another kind of use for the while/until loop is to wait until some external event occurs and 
then run some commands.· In an until loop the termination condition is reversed. For exam
ple, 

until test -f file 
do sleep 300; done 
commands 

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. 
(Presumably another process will eventually create the file.) 

2.7 Control Flow-if 

Also available is a general conditional branch of the form, 

if command-list 
then command-list 
else command-list 
ft 

that tests the value returned by the last simple command following if. 

The if command may be used in conjunction with the test command to test for the existence of 
a file as in 

if test -f file 
then process file 
else do something else 
fi 

An example of the use of if, case and for constructions is given in section 2.10. 

A multiple test if command of the form 

if ••• 
then 
else if ••• 

then 
else if ••• 

fi 
fi 

fi 

may be written using an extension of the if notation as, 

if •.. 
then 
elif 
then 
elif 

fi 

The following example is the touch command which changes the 'last modified' time for a list 
of files. The command may be used in conjunction with make (I) to force recompilation of a 
list of files. 



12 

flag= 
for i 
do case Si in 

-c) ftag=N ;; 
*) if test -f Si 

then In Si junk$$; rm junk$$ 
elif test Sftag 
then echo file \-Si\- does not exist 
else >Si 
fi 

esac 
done 

Shell 

The -c flag is used in this command to force subsequent files to be created if they do not 
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari
able flag is set to some non-null string if the -c argument is encountered. The commands 

In ••• ; rm ••• 

make a link to the file and then remove it thus causing the last modified date to be updated. 

The sequence 

if commandl 
then command2 
fi 

may be written 

commandl && command2 

Conversely, 

commandl I I command2 

executes command2 only if command] fails. In each case the value returned is that of the last 
simple command executed. 

2.8 Command Grouping 

Commands may be grouped in two ways, 

{ command-list ; } 

and 

( command-list ) 

In the first command-list is simply executed. The second form executes command-list as a 
separate process. For example, 

(cd x; rm junk ) 

executes rm junk in the directory x without changing the current directory of the invoking shell. 

The commands 

cd x; rm junk 

have the same effect but leave the invoking shell in the directory x. 



Shell 13 

2.9 Debugging Shell Procedures 

The shell provides two tracing mechanisms to help when debugging shell procedures. The first 
is invoked within the procedure as 

set -v 

( v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to 
help isolate syntax errors. It may be invoked without modifying the procedure by saying 

sh -v proc ••• 

where proc is the name of the shell procedure. This flag may be used in conjunction with the 
-n flag which prevents execution of subsequent commands. (Note that saying set -n at a ter
minal will render the terminal useless until an end-of-file is typed.) 

The command 

set -x 

will produce an execution trace. Following parameter substitution each command is printed as 
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be 
turned off by saying 

set -

and the current setting of the shell flags is available as $-. 

2.10 The man Command 

The following is the man command which is used to print entries from the UNIX manual. It is 
called, for example, as: 

man sh 
man -t ed 
man 2 fork 

The first prints the manual entry for sh; because no section of the manual is specified, all sec
tions of the manual are searched and the entry is found in Section l. The second example 
typesets (-t option) the manual entry for ed. The last prints the fork manual entry from Sec
tion 2. 



14 

cd /usr/man 
: ·colon is the comment command' 
: 'default is nroff ($N), section 1 ($s)· 
N=n s=l 
for i 
do case $i in 

[I-9]*) s=$i ;; 
-t) N=t ;; 
-n) N=n ;; 
-•) echo unknown flag \.$i\' ;; 
*) if test -f man$s/$i.$s 

esac 
done 

then ${N}roff man0/${N}aa man$s/$i.$s 
else : 'look through all manual sections· 

found=no 

fi 

for j in 1 2 3 4 5 6 7 8 9 
do if test -f man$j/$i.$j 

then man $j $i 
found=yes 

ti 
done 
case $found in 

no) echo '$i: manual page not found' 
esac 

Figure 1. A version of the man command 

3.0 KEYWORD PARAMETERS 

Shell 

Shell variables may be given values by assignment or when a shell procedure is invoked. An 
argument to a shell procedure of the form name=va/ue that precedes the command name 
causes value to be assigned to name before execution of the procedure begins. The value of 
name in the invoking shell is not affected. For example, 

user= fred command 

will execute command with user set to /red. The -k flag causes arguments of the form 
name= value to be interpreted in this way anywhere in the argument list. Such names are some
times called keyword parameters. If any arguments remain they are available as positional 
parameters $1, $2, .••• 

The set command may also be used to set positional parameters from within a procedure. For 
example, 

set-* 

will set St to the first file name in the current directory, $2 to the next, and so on. Note that 
the first argument, -, ensures correct treatment when the first file name begins with a - . 

3.1 Parameter Transmission 

When a shell procedure is invoked both positional and keyword parameters may be supplied 
with the call. Keyword parameters are also made available implicitly to a shell procedure by 
specifying in advance that such parameters are to be exported. For example, 



Shell 15 

export user box 

marks the variables user and box for export. When a shell procedure is invoked copies are 
made of all exportable variables for use within the invoked procedure. Modification of such 
variables within the procedure does not affect the values in the invoking shell. It is generally 
true of a shell procedure that it may not modify the state of its caller without explicit request 
on the part of the caller. (Shared file descriptors are an exception to this rule.) 

Names whose value is intended to remain constant may be declared readonly. The form of this 
command is the same as that of the export command, 

readonly name ... 

Subsequent attempts to set readonly variables are illegal. 

3.2 Parameter Substitution 

If a shell parameter is not set then the null string is substituted for it. For example, if the vari
able d is not set 

echo $d 

or 

echo ${d} 

will echo nothing. A default string may be given as in 

echo ${d-.} 

which will echo the value of the variable d if it is set and '.' otherwise. The default string is 
evaluated using the usual quoting conventions so that 

echo ${d-'•'} 

will echo * if the variable d is not set. Similarly 

echo S{d-$1} 

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be 
assigned a default value using the notation 

echo ${d=.} 

which substitutes the same string as 

echo ${d-.} 

and if d were not previously set then it will be set to the string '.'. (The notation ${ ... = ..• } 

is not available for positional parameters.) 

If there is no sensible default then the notation 

echo ${d?message} 

will echo the value of the variable d if it has one, otherwise message is printed by the shell and 
execution of the shell procedure is abandoned. If message is absent then a standard message is 
printed. A shell procedure that requires some parameters to be set might start as follows. 

: ${user?} ${acct?} ${bin?} 

Colon (:) is a command that is built in to the shell and does nothing once its arguments have 
been evaluated. If any of the variables user, acct or bin are not set then the shell will abandon 
execution of the procedure. 



16 Shell 

3.3 Command Substitution 

The standard output from a command can be substituted in a similar way to parameters. The 
command pwd prints on its standard output the name of the current directory. For example, if 
the current directory is /usr/fred/bin then the command 

d='pwd' 

is equivalent to 

d= /usr/fred/bin 

The entire string between grave accents C ... ') is taken as the command to be executed and is 
replaced with the output from the command. The command is written using the usual quoting 
conventions except that a • must be escaped using a\. For example, 

ls ·echo "$ 1" • 

is equivalent to 

. ls $1 

Command substitution occurs in all contexts where parameter substitution occurs (including 
here documents) and the treatment of the resulting text is the same in both cases. This 
mechanism allows string processing commands to be used within shell procedures. An example 
of such a command is basename which removes a specified suffix from a string. For example, 

basename main.c .c 

will print the string main. Its use is illustrated by the following fragment from a cc command. 

case $A in 

•.c) B="basename $A .c· 

esac 

that sets B to the part of SA with the suffix .c stripped. 

Here are some composite examples. 

• for i in "Is -C; do ••• 
The variable i is set to the names of files in time order, most recent first. 

• set ·date·; echo $6 $2 $3, S4 
will print, e.g., 1977 Nov l, 23:59:59 

3.4 Evaluation and Quoting 

The shell is a macro processor that provides parameter substitution, command substitution and 
file name generation for the arguments to commands. This section discusses the order in which 
these evaluations occur and the effects of the various quoting mechanisms. 

Commands are parsed initially according to the grammar given in appendix A. Before a com
mand is executed the following substitutions occur. 

• parameter substitution, e.g. $user 

• command substitution, e.g. 'pwd' 

Only one evaluation occurs so that if, for example, the value of the variable Xis the 
string $y then 

echo SX 

will echo $y. 



Shell 

• 

17 

blank interpretation 

Following the above substitutions the resulting characters are broken into non-blank 
words (blank interpretation). For this purpose •blanks' are the characters of the 
string SIFS. By default, this string consists of blank, tab and new-line. The nutl 
string is not regarded as a word unless it is quoted. For example, 

echo --

will pass on the null string as the first argument to echo, whereas 

echo $null 

will call echo with no arguments if the variable null is not set or set to the null 
string. 

• file name generation 

Each word is then scanned for the file pattern characters •, ? and [ ... ] and an 
alphabetical list of file names is generated to replace the word. Each such file name 
is a separate argument. 

The evaluations just described also occur in the list of words associated with a for loop. Only 
substitution occurs in the word used for a case branch. 

As well as the quoting mechanisms described earlier using\ and - ..• - a third quoting mechan
ism is provided using double quotes. Within double quotes parameter and command substitu
tion occurs but file name generation and the interpretation of blanks does not. The following 
characters have a special meaning within double quotes and may be quoted using\. 

For example, 

$ 

• 
\ 

parameter substitution 
command substitution 
ends the quoted string 
quotes the special characters $ • • \ 

echo "Sx" 

will pass the value of the variable x as a single argument to echo. Similarly, 

echo "$•" 

will pass the positional parameters as a single argument and is equivalent to 

echo "$1 $2 •• ." 

The notation $@ is the same as S• except when it is quoted. 

echo"$@" 

will pass the positional parameters, unevaluated, to echo and is equivalent to 

echo "$I" "$2" ••• 

The following table gives, for each quoting mechanism, the shell metacharacters that are 
evaluated. 



18 Shell 

metacharacter 
\ $ * 
n n n n n t 
y n n t n n 
y y n y t n 

t terminator 
y interpreted 
n not interpreted 

Figure 2. Quoting mechanisms 

In cases where more than one evaluation of a string is required the built-in command eva/ may 
be used. For example, if the variable X has the value $y, and if y has the value pqr then 

eval echo $X 

will echo the string pqr. 

In general the eval command evaluates its arguments (as do all commands) and treats the result 
as input to the shell. The input is read and the resulting command(s) executed. For example, 

is equivalent to 

wg= • eval who I grep" 
$wg fred 

who I grep fred 

In this example, eval is required since there is no interpretation of metacharacters, such as I , 
following substitution. 

3.5 Error Handling 

The treatment of errors detected by the shell depends on the type of error and on whether the 
shell is being used interactively. An interactive shell is one whose input and output are con
nected to a terminal (as determined by gtty (2)). A shell invoked with the -i flag is also 
interactive. 

Execution of a command (see also 3.7) may fail for any of the following reasons. 

• Input/output redirection may fail. For example, if a file does not exist or cannot be 
created. 

• The command itself does not exist or cannot be executed. 

e The command terminates abnormally, for example, with a "bus error" or "memory fault". 
See Figure 2 below for a complete list of UNIX signals. 

• The command terminates normally but returns a non-zero exit status. 

In all of these cases the shell will go on to execute the next command. Except for the last case 
an error message will be printed by the shell. All remaining errors cause the shell to exit from 
a command procedure. An interactive shell will return to read another command from the ter
minal. Such errors include the following. 

• Syntax errors. e.g., if .•• then •.. done 

• A signal such as interrupt. The shell waits for the current command, if any, to finish exe
c.ution and then either exits or returns to the terminal. 

• Failure of any of the built-in commands such .as ed. 

The shell flag -e causes the shell to terminate if any error is detected. 



Shell 

1 
2 
3* 
4* 
5• 
6* 
7* 
8* 
9 
10* 
11* 
12* 
13 
14 
15 

hangup 
interrupt · 
quit 
illegal instruction 
trace trap 
JOT instruction 
EMT instruction 
floating point exception 
kill {cannot be caught or ignored) 
bus error 
segmentation violation 
bad argument to system call 
write on a pipe with no one to read it 
alarm clock 
software termination (from kill (I)) 

Figure 3. UNIX signals 

19 

Those signals marked with an asterisk produce a core dump if not caught. However, the shell 
itself ignores quit which is the only external signal that can cause a dump. The signals in this 
list of potential interest to shell programs are 1, 2, 3, 14 and 15. 

3.6 Fault Handling 

Shell procedures normally terminate when an interrupt is received from the terminal. The trap 
command is used if some cleaning up is required, such as removing temporary files. For exam
ple, 

trap ·rm /tmp/ps$$; exit· 2 

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com
mands 

rm /tmp/ps$$; exit 

exit is another built-in command that terminates execution of a shell procedure. The exit is 
required; otherwise, after the trap has been taken, the shell will resume executing the pro
cedure at the place where it was interrupted. 

UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig
nal is never sent to the process. They can be caught, in which case the process must decide 
what action to take when the signal is received. Lastly, they can be left to cause termination of 
the process without it having to take any further action. If a signal is being ignored on entry to 
the shell procedure, for example, by invoking it in the background (see 3. 7) then trap com
mands (and the signal) are ignored. 

The use of trap is illustrated by this modified version of the touch command (Figure 4). The 
cleanup action is to remove the file junk$$. 



20 

flag= 
trap 'rm -f junk$$; exit' 1 2 3 15 
for i 
do case $i in 

-c) ftag=N ;; 
*) if test -f Si 

then In $i junk$$; rm junk$$ 

esac 
done 

elif test $flag 
then echo file \'$i\' does not exist 
else >Si 
fi 

Figure 4. The touch command 

Sitt/I 

The trap command appears before the creation of the temporary file; otherwise it would be pos
sible for the process to die without removing the file. 

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe
cuted on exit from the shell procedure. 

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to 
trap. The following fragment is taken from the nohup command. 

trap •• l 2 3 15 

which causes hangup, inJerrupt, quit and kill to be ignored both by the procedure and by invoked 
commands. 

Traps may be reset by saying 

trap 2 3 

which resets the traps for signals 2 and 3 to their default values. A list of the current values of 
traps may be obtained by writing 

trap 

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the 
trap command. scan takes each directory in the current directory, prompts with its name, and 
then executes commands typed at the terminal until an end of file or an interrupt is received. 
Interrupts are ignored while executing the requested commands but cause termination when 
scan is waiting for input. 

d='pwd' 
for i in * 
do if test -d $d/$i 

then cd $d/$i 
while echo "Si:" 

trap exit 2 
read x 

fi 
done 

do trap : 2; eval $x; done 

Figure 5. The scan command 

read x is a built-in command that reads one line from the standard input and places the result in 
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is 
received. 



Shell 21 

3.7 Command Execution 

To run a command (other than a built-in) the shell first creates a new process using the system 
call fork. The execution environment for the command includes input, output and the states of 
signals, and is established in the child process before the command is executed. The built-in 
command exec is used in the rare cases when no fork is required and simply replaces the shell 
with a new command. For example, a simple version of the nohup command looks like 

trap - • 1 2 3 15 
exec S* 

The trap turns off the signals specified so that they are ignored by subsequently created com
mands and exec replaces the shell by the command specified. 

Most forms of input/output redirection have already been described. In the following word is 
only subject to parameter and command substitution. No file name generation or blank 
interpretation takes place so that, for example, 

echo ••• >•.c 

will write its output into a file whose name is •.c. Input/output specifications are evaluated left 
to right as they appear in the command. 

> word The standard output (file descriptor I) is sent to the file word which is created if it 
does not already exist. 

>> word The standard output is sent to file word. If the file exists then output is appended 
(by seeking to the end); otherwise the file is created. 

<word 

<<word 

>&digit 

<&digit 

<&
> &-

The standard input (file descriptor 0) is taken from the file word. 

The standard input is taken from the lines of shell input that follow up to but not 
including a line consisting only of word. If word is quoted then no interpretation 
of the document occurs. If word is not quoted then parameter and command sub
stitution occur and\ is used to quote the characters\$ ' and the first character of 
word. In the latter case \new-line is ignored (c.f. quoted strings). 

The file descriptor digit is duplicated using the system call dup (2) and the result is 
used as the standard output. 

The standard input is duplicated from file descriptor digit. 

The standard input is closed. 

The standard output is closed. 

Any of the above may be preceded by a digit in which case the file descriptor created is that 
specified by the digit instead of the default 0 or 1. For example, 

••• 2>file 

runs a command with message output (file descriptor 2) directed to file . 

• • • 2>&1 

runs a command with its standard output and message output merged. (Strictly speaking file 
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two 
streams.) 

The environment for a command run in the background such as 

list •.c I lpr &. 

is modified in two ways. Firstly, the default standard input for such a command is the empty 
file /dev /null. This prevents two processes (the shell and the command), which are running 
in parallel, from trying to read the same input. Chaos would ensue if this were not the case. 
For example, 



22 Shell 

ed file & 

would allow both the editor and the shell to read from the same input at the same time. 

The other modification to the environment of a background command is to •turn off the QUIT 
and INTERRUPT signals so that they are ignored by the command. This allows these signals 
to be used at the terminal without causing background commands to terminate. For this reason 
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even 
for a short time. Note that the shell command trap has no effect for an ignored signal. 

3.8 luoking the Shell 

The following flags are interpreted by the shell when it is invoked. If the first character of 
argument zero is a minus, then commands are read from the file .profile. 

-c string If the -c flag is present then commands are read from string. 

-s If the -s flag is present or if no arguments remain then commands are read from 
the standard input. Shell output is written to file descriptor 2. 

-i If the -i flag is present or if the shell input and output are attached to a terminal (as 
told by gtty) then this shell is interactive. In this case TERMINATE is ignored (so 
that kill 0 does not kill an interactive shell) and INTERRUPT is caught and ignored 
(so that wait is interruptable). In all cases QUIT is ignored by the shell. 

Acknowledgements 

The design of the shell is based in part on the original UNIX she113 and the PWB/UNIX shell,4 

some features having been taken from both. Similarities also exist with the command inter
preters of the Cambridge Multiple Access Systems and of CTSS.6 

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design 
of the shell. I am also grateful to the members of the Computing Science Research Center and 
to Joe Maran7.ano for their comments on drafts of this document. 

References 

[I] B. W. Kernighan, UNIXforBeginners. Bell Laboratories (1978). 

[2] T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds.), UNIX User's Manual-Release 
3.0, Bell Laboratories (June I 980). 

[3] K. Thompson, "The UNIX Command Language," Structured Programming- Infotech State 
of the Art Report, pp. 375-384, Infotech International Ltd., Nicholson House, Mainden 
head, Berkshire, England (March 1975). 

[4] J. R. Mashey, PWB/UNIX Shell Tutorial, Bell Laboratories (September 1977). 

[5] D. F. Hartley (ed.), The Cambridge Multiple Access System-Users Reference Manual, 
University Mathematical Laboratory, Cambridge, England (1968). 

[6] P. A. Crisman (ed.), The Compatible Time-Sharing System. M.l.T. Press, Cambridge, Mass. 
{1965). 



Shell 

Appendix A-Grammar 

item: word 
input-output 
name= value 

simple-command: item 
simple-command item 

command: simple-command 
( command-list ) 
{ command-list } 
for name do command-list done 
for name in word ••• do command-list done 
while command-list do command-list done 
until command-list do command-list done 
case word in case-part ... esac 
if command-list then command-list else-part fi 

pipeline: command 
pipeline I command 

andor: pipeline 
andor && pipeline 
andor I I pipeline 

command-list: andor 

input-output: 

file: 

case-part: 

pattern: 

else-part: 

empty: 

word: 

name: 

digit: 

command-list ; 
command-list & 
command-list ; andor 
command-list & andor 

>file 
<file 
>>word 
<<word 

word 
& digit 
&-

pattern ) command-list ;; 

word 
pattern I word 

elif command-list then command-list else-part 
else command-list 
empty 

a sequence of non-blank characters 

a sequence of letters, digits or underscores starting with a letter 

0123456789 

23 



24 

Appendix B-Meta-characters and Reserved Words 

a) syntactic 

I pipe symbol 

&& 'andf symbol 

11 'orr symbol 

command separator 
.. case delimiter .. 
& background commands 

( ) command grouping 

< input redirection 

<< input from a here document 

> output creation 

>> output append 

b) patterns 

* match any character(s) including none 

? match any single character 

[ ••• ] match any of the enclosed characters 

c) substitution 

S{ ••• }substitute shell variable 

~ •.. ~ substitute command output 

d) quoting 

\ quote the next character 

- ... - quote the enclosed characters except for • 

• • quote the enclosed characters except for S ~ \ • 

e) reserved words 

if then else elif fi 
case in esac 
for while until do done 
{ } 

January 1981 

Shell 



A TROFF Tutorial 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Troff is a text-formatting program for driving a phototypesetter on the UNIXt and 
GCOS operating systems to produce high-quality printed text; this paper is an example 
of troff output. 

The phototypesetter itself normally runs with four fonts, containing roman, italic 
and bold letters (as on this page), a full Greek alphabet, and a substantia! number of 
special characters and mathematical symbols. Characters can be printed in a range of 
sizes, and placed anywhere on the page. 

Troff allows the user full control over fonts, sizes, and character positions, as well as 
the usual features of a formatter-right-margin justification, automatic hyphenation, 
page titling and numbering, and so on. It also provides macros, arithmetic variables 
and operations, and conditional testing, for more complicated formatting tasks. 

This document is an introduction to the most basic use of troff. It presents just 
enough information to enable the user to do simple formatting tasks such as making 
view graphs, and to make incremental changes to existing packages of troff macros. In 
most respects, the UNIX formatter nroff is identical to troff, so this document also 
serves as a tutorial on nroff. 

UNIX 

C.1.1 

1. Introduction 

Troff [I] is a text-formatting program for 
phototypesetting high-quality, printed output on 
the UNIX and GCOS operating systems. This 
document is an example of troff output. 

The single most important rule of using troff 
is not to use it directly, but through some 
intermediary. In many ways, troff resembles an 
assembly language-a remarkably powerful and 
flexible one-but nonetheless such that many 
operations must be specified at a level of detail 
and in a form that is too hard for most people to 
use effectively. 

For two special applications, there are pro
grams that provide an interface to troff for the 
majority of users. Eqo [2] provides an easy to 
learn language for typesetting mathematics; the 
eqn user need know no troff whatsoever to 
typeset mathematics. Thi [3] provides the same 
convenience for producing tables of arbitrary 
complexity. 

For producing straight text (which may well 
contain mathematics or tables), there are a 
number of "macro packages" that define format
ting rules and operations for specific styles of 
documents, and reduce the amount of direct 
contact with troff. In particular, the "ms" [4] 
and MM [5] packages for Bell Labs internal 
memoranda and external papers provide most of 
the facilities needed for a wide range of docu
ment preparation. There are also packages for 
view graphs and for other special applications. 
Typically you will find these packages easier to 
use than troff once you get beyond the most 
trivial operations; you should always consider 
them first. 

t UNIX is a trademark of Bell Laboratories. 

In the few cases where existing packages 
don't do the whole job, the solution is not to 
write an entirely new set of troff instructions 
from scratch, but to make small changes to adapt 
packages that already exist. 



2 

In accordance with this philosophy of letting 
someone else do the work, the part of troff 
described here is only a small part of the whole, 
although it tries to concentrate on the more use
ful parts. In any case, there is no attempt to be 
complete. Rather, the emphasis is on showing 
how to do simple things. and how to make incre
mental changes to what already exists. The con
tents of the remaining sections are; 

2. Point Sizes and Line Spacing 
3. Fonts and Special Characters 
4. Indents and Line Lengths 
5. Tabs 
6. Local Motions: Drawing Lines and Characters 
7. Strings 
8. Introduction to Macros 
9. Titles, Pages, and Numbering 

10. Number Registers and Arithmetic 
l l. Macros with Arguments 
12. Conditionals 
13. Environments 
14. Diversions 

Appendix; Typesetter Character Set 

The troff described here is the C-language 
version running on UNIX, as documented in [1]. 

To use troff you have to prepare not only the 
actual text you want printed, but some informa
tion that tells how you want it printed. For troff 
the text and the formatting information are often 
intertwined quite intimately. Most troff com
mands (sometimes referred to as requests) are 
placed on a line separate from the text itself, 
beginning with a period (one command per line). 
For example, 

Some text. 
.ps 14 
Some more text. 

will change the "point size", that is, the size of 
the letters being printed, to "14-point" (one 
point is 1/72 inch) like this; 

Some text. Some more text. 
Occasionally, though, something special 

occurs in the middle of a line-to produce 

Area = 7rr 2 

you have to type 

Area = \(*p\flr\fR\l\s8\u2\d\s0 

(which we will explain shortly). The backslash 
character. \ is used to introduce troff commands 
and special characters within a line of text. 

TROFF Tutorial 

2. Point Sizes and Line Spacing 

As mentioned above, the command .ps sets 
the point size. One point is 1 /72 inch. so 6-point 
characters are at most I/ 12 inch high, and 36-
point characters are Y.i inch. There are 15 point 
sizes, listed below: 
6 point: Pack my box with five dozen liquor jugs. 
7 point Pack my box with five dozen liquor jugs. 
8 point: Pack my box with five dozen liquor jugs. 
9 point: Pack my box with five dozen liquor jugs. 
10 point: Pack my box with five dozen liquor 
11 point: Pack my box with five dozen 
12 point: Pack my box with five dozen 
14 point: Pack my box with five 

16 p_oint 18 point 20 point 

22 24 28 36 
If the number after .ps is not one of these 

legal sizes, it is rounded up to the next valid 
value, with a maximum of 36. If no number fol
lows .ps, troff reverts to the previous size, what
ever it was. Troff begins with point size 10, 
which is usually fine. This document is in 9-
point. 

The point size can also be changed in the 
middle of a line or even a word with the in-line 
command \s. To produce 

UNIX runs on a v AX-11 /780 

type 

\s8UNlX\s10 runs on a \s8VAX-\sl011/780 

As above, \s should be followed by a legal point 
size, except that \sO causes the size to revert to 
its previous value. Notice that \slOl l can be 
understood correctly as "size 10, followed by an 
11 ", if the size is legal, but not otherwise.. Be 
cautious with similar constructions. 

Relative size changes are also legal and use
ful: 

\s - 2UNIX\s + 2 

temporarily decreases the size, whatever it is, by 
two points, then restores it. Relative size 
changes have the advantage that the size 
difference is independent of the starting size of 
the document. The amount of the relative 
change is restricted to a single digit. 

The other parameter that determines what 
the type looks like is the spacing between lines, 
which is set independently of the point size. 
Vertical spacing is measured from the bottom of 
one line to the bottom of the next. The com
mand to control vertical spacing is .vs. For run
ning text, it is usually best to set the vertical 



TROFF Tutorial 

spacing about 20% bigger than the character size. 
For example, so far in this document, we have 
used "9 on 11 ", that is, 

.ps 9 

. vs 11 p 

If we changed to 

.ps 9 

.vs 9p 

the running text would look like this. After a 
few lines, you will agree it looks a little cramped. 
The right vertical spacing is partly a matter of 
taste, depending on how much text you want to 
squeeze into a given space, and partly a matter 
of traditional printing style. By default, troff 
uses 10 on 12. 

Point size and vertical spacing 
make a substantial difference in the 
amount of text per square inch. 
This is 12 on 14. 

Point size and vertical spacing make a substantial difference in the 
amount of text per square inch. For example. 10 on 12 uses about twice 
as much space as 7 on 8. This is 6 on 7. which is even smaller. It packs a 
lot moric. words per line, but you can go blind trying to read it. 

When used without arguments, .ps and .vs 
revert to the previous size and vertical spacing 
respectively. 

The command .sp is used to get extra vertical 
space. Unadorned, it gives you one extra blank 
line (one .vs, whatever that has been set to). 
Typically, that's more or less than you want, so 
.sp can be followed by information about how 
much space you want: 

.sp 2i 

means "two inches of vertical space". 

.Sp 2p 

means "two points of vertical space"; and 

.sp 2 

means "two vertical spaces"-two of whatever 
.vs is set to (this can also be made explicit with 
.sp 2v); troff also understands decimal fractions 
in most places, so 

.sp l.5i 

is a space of 1.5 inches. These same scale fac
tors can be used after .vs to define line spacing, 
and in fact after most commands that deal with 
physical dimensions. 

It should be noted that all size numbers are 
converted internally to "machine units", which 
are 1/432 inch (1/6 point). For most purposes, 
this is enough resolution that you don't have to 
worry about the accuracy of the representation. 
The situation is not quite so good vertically, 
where resolution is 1/144 inch (Y.i point). 

3 

3. Fonts and Special Characters 

Troff and the typesetter allow four different 
fonts at any one time. Normally three fonts 
(Times roman, italic, and bold) and one colloc
tion of special characters are permanently 
mounted: 

abcdefghijklmnopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefgbijklmnopqrstuvwxyz 0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

The Greek, mathematical, and other symbols on 
the special font are listed in the Appendix. 

Troff prints in roman unless told otherwise. 
To switch into bold, use the .ft command 

.ft B 

and for italics, 

.ft I 

To return to roman, use .ft R; to return to the 
previous font, whatever it was, use either .ft p or 
just .ft. The "underline" command 

.ul 

causes the next input line to print in italics. .ul 
can be followed by a count to indicate that more 
than one line is to be italicized. 

Fonts can also be changed within a line or 
word with the in-line command \f: 

bold/ ace text 

is produced by 

\fBbold\flface\fR. text 

If you want to do this so the previous font, 
whatever it was, is left undisturbed (a good prac
tice), insert extra \fP commands, like this: 

\fBbold\fP\flface\fP\fR. text\fp 

Because only the immediately previous font is 
remembered, you have to restore the previous 
font after each change or you can lose it. The 
same is true of .ps and .vs when used without an 
argument. 

There are other fonts available besides the 
standard set, although you can still use only four 
at any given time. The command .fp tells troff 
what fonts are physically mounted on the 
typesetter: 

.fp 3 H 

says that the Helvetica font is mounted on posi
tion 3. (For a complete list of fonts and what 
they look like, see the troll' manual.) Appropri
ate .fp commands should appear at the beginning 



4 

of your document if you do not use the stan
dard fonts. 

It is possible to make a document relatively 
independent of the actual fonts used to print it 
by using font numbers instead of names; for 
example, \f3 and .ft 3 mean "whatever font is 
mounted at position 3'', and thus work for any 
setting. Normal settings are roman font on J, 
italic on 2, bold on 3, and special on 4. 

There is also a way to get "synthetic" bold 
fonts by overstriking letters with a slight offset. 
Look at the .bd command in [I]. 

Special characters have .four-character names 
beginning with \(, and they may be inserted any
where. For example, 

~+·h=~ 

is produced by 

\(14 + \(12 = \(34 

In particular, Greek letters are all of the form 
\(•?, where ? is an upper- or lower-case Roman 
letter reminiscent of the Greek. Thus to get 

l;(a:X,9) ..... co 

in bare troff we have to type 

\(*S(\(*a\(mu\(*b) \(- > \(if 

That line is unscrambled as follows: 

\(*S ~ 

( ( 
\(*a a 
\(mu x 
\(*b fJ 
) ) 
\(-> ..... 
\(if co 

A complete list of these special names is given in 
the Appendix. 

In eqn [2] the same effect can be achieved 
with the input 

SIGMA ( alpha times beta ) - > inf 

which is less concise, but clearer to the unini
tiated. 

Notice that each four-character name is a sin
gle character as far as troff is concerned-the 
"translate" command 

.tr \(mi\{ em 

is perfectly clear, meaning 

.tr--

that is, to translate - into-. 

Some characters are automatically translated 
into others: grave ' and acute - accents 

TROFF Tutorial 

(apostrophes) become open and close single 
quotes ' '; the combination of " ... " is generally 
preferable to the double quotes • ... •. Similarly, 
a typed minus sign - becomes a hyphen -. To 
print an explicit - sign, use \-. To get a 
backslash printed, use \e. 

4. Indents and Line Lengths 

Tro8' stans with a line length of 6.5 inches, 
too wide for 8Y.iXII inch paper. To reset the 
line length, use the .ll command, as in 

.II 6i 

As with .sp, the actual length can be specified in 
several ways; inches are probably the most intui
tive. 

The maximum line length provided by the 
typesetter is 7 .5 inches, by the way. To use the 
full width, you will have to reset the default phy
sical left margin ("page offset"), which is nor
mally slightly less than one inch from the left 
edge of the paper. This is done by the .po com
mand. 

.po 0 

sets the offset as far to the left as it will go. 

The indent command .in causes the left mar
gin to be indented by some specified amount 
from the page offset. If we use .in to move the 
left margin in, and .U to move the right margin 
to the left, we can make offset blocks of text: 

.in 0.3i 

.II -0.Ji 
... text to be set as a block ... 

.II +0.3i 

.in -0.3i 

will create a block that looks like this: 

Pater noster qui est in caelis 
sanctificetur nomen tuum; adveniat 
regnum tuum; fiat voluntas tua, sicut in 
caelo, et in terra .... Amen. 

Notice the use of"+" and "-"to specify the 
amount of change. These change the previous 
setting by the specified amount, rather than just 
overriding it. The distinction is quite important: 
.U +Ii makes lines one inch longer; .U Ii makes 
them one inch long. 

With .in, .U and .po, the previous value is 
used if no argument is specified. 

To indent a single line, use the "temporary 
indent" command .ti. For example, all para· 
graphs in this memo effectively begin with the 
command 

.ti 3 



TROFF Tutorial 

Three of what? The default unit for .ti, as for 
most horizontally oriented commands (.11, .in, 
.po), is ems; an cm is roughly the width of the 
letter "m" in the current point size. (Precisely, 
a em in size p is p points.) Although inches arc 
usually clearer than ems to people who don't set 
type for a Jiving, ems have a place: they arc a 
measure of size that is proportional to the 
current point size. If you want to make text that 
keeps its proportions regardless of point size, you 
should use ems for all dimensions. Ems can be 
specified as scale factors directly, as in .ti 2.Sm. 

Lines can also be indented negatively if the 
indent is already positive: 

.ti -0.3i 

causes the next line to be moved back three 
tenths of an inch. Thus to make a decorative 
initial capital, we indent the whole paragraph, 
then move the letter "P" back with a .ti com
mand: 

Pater noster qui est in caelis 
sanctificctur nomen tuum; adveniat 
regnum tuum; fiat voluntas tua, 

sicut in caclo, et in tcrra. . . . Amen. 

Of course, there is also some trickery to make 
the "P" bigger (just a "\s36P\s0"), and to move 
it down from its normal position (see Section 6 
on local motions). 

5. Tabs 

Tabs (the ASCII "horizontal tab" character) 
can be used to produce output in columns, or to 
set the horizontal position of output. Typically 
tabs are used only in unfilled text. Tab stops are 
set by default every half inch from the current 
indent, but can be changed by the .ta command. 
To set stops every inch, for example, 

.ta Ii 2i 3i 4i 5i 6i 

Unfortunately the stops are left-justified only 
(as on a typewriter), so lining up columns of 
right-justified numbers can be painful. If you 
have many numbers, or if you need more com
plicated table layout, don't use troff directly; use 
the tbl program described in [3]. 

For a handful of numeric columns, you can 
do it this way: Precede every number by enough 
blanks to make it line up when typed. 

.nf 

.ta li 2i 3i 
I tab 2 tab 3 

40 tab 50 tab 60 
700 tab 800 tab 900 
.fi 

5 

Then change each leading blank into the string 
\0. This is a character that does not print, but 
that has the same width as a digit. When 
printed, this will produce 

I 
40 

700 

2 
50 

800 

3 
60 

900 

It is also possible to fill up tabbed-over space 
with a character other than a blank by setting the 
"tab replacement character" with the .tc com
mand: 

.ta I .Si 2.5i 

.tc \(ru (\(ru is "_") 
Name tab Age tab 

produces: 

Name--------Age-----

To reset the tab replacement character to a 
blank, use .tc without argument. (Lines can also 
be drawn with the \I command; see Section 6.) 

Troff also provides a very general mechanism 
called "fields" for setting up complicated 
columns (it is used by tbl). We will not go into 
it in this paper. 

6. Local Motions: Drawing Lines and Char
acters 

Remember "Area = rr 2" and the big "P" 
in the Paternoster. How are they done? Troff 
provides a host of commands for placing charac
ters of any size at any place. You can use them 
to draw special characters or to tune your output 
for a particular appearance. Most of these com
mands are straightforward, but messy to read 
and tough to type correctly. 

If you won't use eqn, subscripts and super
scripts arc most easily done with the half-line 
local motions \u and \d. To go back up the page 
half a point-size, insert a \u at the desired place; 
to go down, insert a \d. (\u and \d should always 
be used in pairs, as explained below.) Thus 

Area = \(*pr\u2\d 

produces: 

Area= rr2 

To make the "2" smaller, bracket it with 
\s-2 ... \sO. Since \u and \d refer to the current 
point size, be sure to put them either both inside 
or both outside the size changes, or you will get 
an unbalanced vertical motion. 

Sometimes the space given by \u and \d isn't 
the right amount. The \v command can be used 
to request an arbitrary amount of vertical 
motion. The in-line command 



6 

\v'(amount)' 

causes motion up or down the page by the 
amount specified in "(amount)". For example, 
to move the "P" down, we used 

.in +0.6i (move paragraph in) 

.11 -0.3i (shorten lines) 

.ti -0.3i (move P back) 
\v'2\s36P\s0\v'-2'ater noster qui est 
in caelis ... 

A minus sign causes upward motion, while no 
sign or a plus sign means down the page. Thus 
\v'-2' causes an upward vertical motion of two 
line spaces. 

There are many other ways to specify the 
amount of motion: 

\v'O.li' 
\v'3p' 
\v'-0.Sm' 

and so on are all legal. Notice that the scale 
specifier i or p or m goes inside the quotes. Any 
character can be used in place of the quotes; this 
is also true of all other troff commands described 
in this section. 

Since troff does not take within-the-line vert
ical motions into account when figuring out 
where it is on the page, output lines can have 
unexpected positions if the left and right ends 
aren't at the same vertical position. Thus \v, 
like \u and \d, should always balance upward 
vertical motion in a line with the same amount 
in the downward direction. 

Arbitrary horizontal motions are also avail
able: \h is quite analogous to \v, except that the 
default scale factor is ems instead of line spaces. 
As an example, 

\h'-0.li' 

causes a backwards motion of a tenth of an inch. 
As a practical matter, consider printing the 
mathematical symbol "> >". The default spac
ing is too wide, so eqn replaces this by 

>\h'-0.3m'> 

to produce >>. 

Frequently \h is used with the "width func
tion" \w to generate motions equal to the width 
of some character string. The construction 

\w'thing' 

is a number equal to the width of "thing" in 
machine units (I /432 inch). All troff computa
tions are ultimately done in these units. To 
move horizontally the width of an "x", we can 
say 

TROFF Tutorial 

\h\w'x'u' 

As we mentioned above, the default scale factor 
for all horizontal dimensions is m, ems, so here 
we must have the u for machine units, or the 
motion produced will be far too large. Troff is 
quite happy with the nested quotes, by the way, 
so long as you don't leave any out. 

As a live example of this kind of construc
tion, all of the command names in the text, like 
.sp, were done by overstriking with a slight 
offset. The commands to print .spare 

.sp\h'-\w'.sp'u\h'2u'.sp 

That is, put out ".sp". move left by the width of 
".sp", move right 2 units, and print ".sp" again. 
(Of course there is a way to avoid typing that 
much input for each command name, which we 
will discuss in Section 11.) 

There are also several special-purpose troff 
commands for local motion. In Section 5, we 
have already seen \0, which is an unpaddable 
white space of the same width as a digit. 
"Unpaddable" means that it will never be 
widened or split across a line by line justification 
and filling. There is also \(blank), which is an 
unpaddable character the width of a space, \l 
which is half that width, \A, which is one quar
ter of the width of a space, and \&. which has 
zero width; this last one may be used, for exam
ple, to "protect" from troff a line of text that 
begins with a ". ". 

The command \o. used like 

\o'set of characters' 

causes (up to 9) characters to be overstruck, cen
tered on the widest. This is nice for accents, as 
in: 

syst\o"e\ "•me t\o"e\."l\o"e\'"phonique 

which makes: 

systeme telephonique 

The accents are \ • and \', or \(p and \(aa; 
remember that each· is just one character to trofl'. 

You can make your own overstrikes with 
another special convention, \z, the zero-motion 
command; \zx suppresses the normal horizontal 
motion after printing the single character x, so 
another charaoter can be laid on top of it. 
Although sizes can be changed within \o, it 
centers the characters on the widest, and there 
can be no horizontal or vertical motions, so \z 
m!lY be the only way to get what you want: 



TROFF Tutorial 

is produced by 

.sp 2 
\s8\z\(sq\sl4\z\(sq\s22\z\(sq\s36\(sq 

The .sp is needed to leave room for the result. 

As another example, an extra-heavy semi
colon that looks like 

; instead of ; or ; 

can be constructed with a big comma and a big 
period above it: 

\s + 6\z,\v'-0.25m'.\v'0.25m'\s0 

"0.25m" is an empirical constant. 

A more ornate overstrike is given by the 
bracketing function \b, which piles up characters 
vertically, centered on the current baseline. 
Thus we can get big brackets, constructing them 
with piled-up smaller pieces: 

by typing in only this: 

.sp 
\b'\(lt\(lk\(lb' \b'\(lc\(lr x \b'\(rc\(rr \b'\(rt\(rk\(rb' 

Troff also provides a convenient facility for 
drawing horizontal and vertical lines of arbitrary 
length with arbitrary characters. \l'li' draws a 
line one inch long, like this: ------
The length can be followed by the character to 
use if the _ isn't appropriate; \l'O.Si.' draws a 
half-inch line of dots: ............... The construc-
tion \L is entirely analogous, except that it draws 
a vertical line instead of horizontal. 

7. Strinas 

Obviously if a paper contains a large number 
of occurrences of an acute accent over a letter 
"e". typing \o"e\'" for each e would be a great 
nuisance. 

Fortunately, troff provides a way in which 
you can store an arbitrary collection of text in a 
"string", and thereafter use the string name as a 
shorthand for its contents. Strings are one of 
several troff mechanisms whose judicious use 
lets you type a document with Jess effort .a.nd 
organize it so that extensive format changes can 
be made with few editing· changes. 

A reference to a string is replaced by what
ever text the string was defined as. Strings arc 
defined with the command .els. The line: 

.ds c \o"c\'" 

defines the string e to have the value \o*e\'*. 

7 

String names may be either one or two char· 
acters long, and are referred to by \..: for one 
character names or \•(xy for two character 
names. Thus to get telephone, given the 
definition of the string c as above, we can say 
t\•el\•ephone. 

If a string must begin with blanks, define it 
as 

.ds xx • text 

The double quote signals the beginning of the 
definition. There is no trailing quote; the end of 
the line terminates the string. 

A string may actually be several lines long; if 
troff encounters a \ at the end of any line, it is 
thrown away and the next line added to the 
current one. So you can make a long string sim
ply by ending each line but the last with a 
backslash: 

.ds xx this\ 
is a very\ 
long string 

Strings may be defined in terms of other 
strings, or even in terms of themselves; we will 
discuss some of these possibilities later. 

8. Introduction to Macros 

Before we can go much further in troff, we 
need to learn a bit about the macro facility. In 
its simplest form, a macro is just a shorthand 
notation quite similar to a string. Suppose we 
want every paragraph to start in exactly the same 
way-with a space and a temporary indent of two 
ems: 

.sp 

.ti +2m 

Then to save typing, we would like to collapse 
these into one shorthand line, a troff "com· 
mand" like 

.PP 

that would be treated by troff exactly as 

.sp 

.ti +2m 

.PP is called a macro. The way we tell troff what 

.PP means is to define ft with the .de command: 

.de PP 

.sp 

.ti +2m 

The first line names the macro (we used ".PP" 
for "paragraph'', and upper case so it wouldn't 
conflict with any name that troff might already 
know about). The last line " .. " marks the end 



8 

of the definition. In between is the text, which 
is simply inserted whenever troff' sees the "com-
mand" or macro call · 

. PP 

A macro can contain any mixture of text and 
formatting commands. 

The definition of .PP has to precede its first 
use: undefined macros are simply ignored. 
Names are restricted to one or two characters. 

Using macros for commonly occurring 
sequences of commands is critically important. 
Not only docs it save typing, but it makes later 
changes much easier. Suppose we decide that 
the paragraph indent is too small, the vertical 
space is much too big, and roman font should be 
forced. Instead of changing the whole docu
ment, we need only change the definition of .PP 
to something like 

.de PP 

.sp 2p 

.ti +3m 
• ft R 

\"paragraph macro 

and the change takes effect everywhere we used 
.PP. 

\• is a troff command that causes the rest of 
the line to be ignored. We use it here to add 
comments to the macro definition (a wise idea 
once definitions get complicated). 

As another example of macros, consider 
these two which start and end a block of offset, 
unfilled text, like most of the examples in this 
paper: 

.de BS \" start indented block 

.sp 

.nf 

.in +0.3i 

.de BE 

.sp 

.fi 
• in -0.3i 

\ • end indented block 

Now we can surround text like 

Copy to 
John Doe 
Richard Roberts 
Stanley Smith 

by the commands .BS and .BE. and it will come 
out as it did above. Notice that we indented by 
.in +0.3i instead of .in 0.3i. This way we can 
nest our uses of .E and .BE to get blocks within 
blocks. 

TROFF Tutorial 

If later on we decide that the indent should 
be 0.5i, then it is only necessary to change the 
definitions of .E and .BE, not the whole paper . 

9. Titles, Pa1es, and Numbering 

This is an area where things get tougher, 
because nothing is done for you automatically. 
Of necessity, some of this section is a cookbook, 
to be copied literally until you get some experi
ence. 

Suppose you want a title at the top of each 
page, saying simply: 

left top center top right top 

It would be nice if one could just say: 

.he 1eft top'center top'right top' 

.fo 1cft bottom'center bottom'right bottom' 

to get headers and footers automatically on every 
page (as was possible in an older system called 
roft'). Alas, this doesn't work in troff, a serious 
hardship for the novice. Instead you have to do 
a lot of specification . 

You have to say what the actual title is 
(easy); when to print it (easy enough); and what 
to do at and around the title line (harder). Tak
ing these in reverse order, first we define a 
macro .NP (for "new pa~e") to process titles 
and the like at the end of one page and the 
beginning of the next: 

.de NP 
'bp 
'sp O.Si 
.ti 1cft top'center top'right top' 
'sp 0.3i 

To make sure we're at the top of a page, we 
issue a "begin page" command 'bp, which 
causes a skip to top-of-page (we'll explain the ' 
shortly). Then we space down half an inch, print 
the title (the use of .tl should be self explana
tory: later we will discuss parameterizing the 
titles), space another 0.3 inches, and we're done . 

To ask for .NP at the bottom of each page, 
we have to say something like "when the text is 
within an inch of the bottom of the page, start 
the processing for a new page". This is done 
with a "when" command .wh: 

.wh -li NP 

(No "." is used before NP: this is simply the 
name of a macro, not a macro call.) The minus 
sign means "measure up from the bottom of the 
page", so " - li" means "one inch from t~e bot
tom". 



TROFF Tutorial 

The .wh command appears in the input out
side the definition of .NP;· typically the input 
would be 

.de NP 

.wh -Ii NP 

Now what happens? As text is actually being 
output, troff keeps track of its vertical position 
on the page, and after a line is printed within 
one inch from the bottom, the .NP macro is 
activated. (In the jargon, the .wh command sets 
a trap at the specified place, which is "sprung" 
when that point is passed.) .NP causes a skip to 
the top of the next page (that's what the 'bp was 
for), then prints the title with the appropriate 
margins. 

Why 'bp and 'sp instead of .hp and .sp? The 
answer is that .sp and .hp, like several other 
commands, cause a break to take place. That is, 
all the input text collected but not yet printed is 
flushed out as soon as possible, and the next 
input line is guaranteed to start a new line of 
output. If we had used .sp or .hp in the .NP 
macro, this would cause a break in the middle of 
the current output line when a new page is 
started. The effect would be to print the left
over part of that line at the top of the page, fol
lowed by the next input line on a new output 
line. This is not what we want. Using ' instead 
of . for a command tells troff that no break is to 
take place-the output line currently being filled 
should not be forced out before the space or new 
page. 

The list of commands that cause a break is 
short and natural: 

.bp .br .ce .fi .nf .sp .in .ti 

All others cause no break, regardless of whether 
you use a . or a '. If you really need a break, add 
a .hr command at the appropriate place. 

One other thing to beware of-if you're 
changing fonts or point sizes a lot, you may find 
that if you cross a page boundary in an unex
pected font or size, your titles come out in that 
size and font instead of what you intended. 
Furthermore, the length of a title is independent 
of the current line length, so titles will come out 
at the default length of 6.5 inches unless you 
change it, which is done with the .It command. 

There are several ways to fix the problems of 
point sizes and fonts in titles. For the simplest 
applications, we can change .NP to set the proper 
size and font for the title, then restore the previ
ous values, like this: 

.de NP 
'bp 
'sp 0.5i 
.ft R \" set title font to roman 
.ps 10 \" and size to I 0 point 
.It 6i \" and length to 6 inches 
.ti 'left'center'right' 
.ps \" revert to previous size 
.ft P \" and to previous font 
'sp 0.3i 

9 

This version of .NP does not work if the 
fields in the .ti command contain size or font 
changes. To cope with that requires troff's 
"environment" mechanism, which we will dis
cuss in Section 13. 

To get a footer at the bottom of a page, you 
can modify .NP so it does some processing 
before the 'bp command, or split the job into a 
footer macro invoked at the bottom margin and 
a header macro invoked at the top of the page. 
These variations are left as exercises. 

Output page numbers are computed automat
ically as each page is produced (starting at I), 
but no numbers are printed unless you ask for 
them explicitly. To get page numbers printed, 
include the character % in the .ti line at the posi
tion where you want the number to appear. For 
example 

.ti"-%_,, 

centers the page number inside hyphens. You 
can set the page number at any time with either 
.hp n, which immediately starts a new page num
bered n, or with .pn n, which sets the page 
number for the next page but doesn't cause a 
skip to the new page. Again, .hp +n sets the 
page number to n more than its current value: 
.hp means .hp + 1. 

JO. Number Registers and Arithmetic 

Troff has a facility for doing arithmetic, and 
for defining and using variables with numeric 
values, called number registers. Number regis
ters, like strings and macros, can be useful in 
setting up a document so it is easy to change 
later. And of course they serve for any sort of 
arithmetic computation. 

Like strings, number registers have one or 
two character names. They are set by the .or 
command, and arc referenced anywhere by \nx 
(one character name) or \n(xy (two character 
name). 

There are quite a few pre-defined number 
registers maintained by troff, among them % for 
the current page number; nl for the. current 



10 

vertical position on the page; dy, mo and yr for 
the current day, month and year; and .s and .f 
for the current size and font. (The font is a 
number from l to 4.) Any of these can be used 
in computations like any other register, but 
some, like .sand .f, cannot be changed with .nr. 

As an example of the use of number regis
ters, in the "ms" macro package (4), most 
significant parameters are defined in terms of the 
values of a handful of number registers. These 
include the point size for text, the vertical spac
ing, and the line and title lengths. To set the 
point size and vertical spacing for the following 
paragraphs, for example, a user may say 

.nr PS 9 

.nrVSll 

The paragraph macro .PP is defined (roughly) as 
follows: 

.de PP 

.ps \\n(PS 

.vs \\n(VSp 

.ft R 

.sp 0.5v 

.ti +3m 

\" reset size 
\" spacing 
\" font 
\" half a line 

This sets the font to Roman and the point size 
and line spacing to whatever values are stored in 
the number registers PS and VS. 

Why are there two backslashes? This is the 
eternal problem of how to quote a quote. When 
troff originally reads the macro definition, it 
peels off one backslash to see what's coming 
next. To ensure that another is left in the 
definition when the macro is used, we have to 
put in two backslashes in the definition. If only 
one backslash is used, point size and vertical 
spacing will be frozen at the time the macro is 
defined, not when it is used. 

Protecting by an extra layer of backslashes is 
only needed for \n, \•. \$ (which we haven't 
come to yet), and\ itself. Things like \s, \f, \h, 
\v, and so on do not need an extra backslash, 
since they are converted by troff to an internal 
code immediately upon being seen. 

Arithmetic expressions can appear anywhere 
that a number is expected. As a trivial example, 

.nr PS \\n(PS-2 

decrements PS by 2. Expressions can use the 
arithmetic operators +, - , •, /, % (mod), the 
relation.al operators >. >=, <, <=. "", and 
! = (not equal), and parentheses. 

Although the arithmetic we have done so far 
has been straightforward, ·more complicated 
things are somewhat tricky. First, number regis
ters hold only integers. Troff arithmetic uses 

TROFF Tutorial 

truncating integer division, just like Fortran. 
Second, in the absence of parentheses, evalua
tion is done left-to-right without any operator 
precedence (including relational operators). 
Thus 7•-4+3/13 becomes"-!". 

Number registers can occur anywhere in an 
expression, and so can scale indicators like p, i, 
m, and so on (but no spaces). Although integer 
division causes truncation, each number and its 
scale indicator is converted to machine units 
(l /432 inch) before any arithmetic is done, so 
li/2u evaluates to 0.5i correctly. 

The scale indicator u often has to appear 
when you wouldn't expect it-in particular, when 
arithmetic is being done in a context that implies 
horizontal or vertical dimensions. For example, 

.II 7 /2i 

would seem obvious enough-3Yi inches. Sorry. 
Remember that the default units for horizontal 
parameters like .U are ems. That's really "7 
ems/ 2 inches", and when translated into 
machine units, it becomes zero. How about 

.II 7i/2 

Sorry, still no good-the "2" is "2 ems", so 
"7i/2" is small, even if not zero. You must use 

.II 7i/2u 

So again, a safe rule is to attach a scale indicator 
to every number, even constants. 

For arithmetic done within a .or command, 
there is no implication of horizontal or vertical 
dimension, so the default units are "units", and 
7i/2 and 7i/2u mean the same thing. Thus 

.nr II 7i/2 

.II \\n(llu 

does just what you want, so long as you don't 
forget the u on the .U command. 

11. Macros with Arguments 

The next step is to define macros that can 
change from one use to the next according to 
parameters supplied as arguments. To make this 
work, we need two things: first, when we define 
the macro, we have to indicate that some parts 
of it will be provided as arguments when the 
macro is called. Then when the macro is called 
we have to provide actual arguments to be 
plugged into the definition .. 

Let us illustrate by defining a macro .SM that 
will print its argument two points smaller than 
the surrounding text. That is, the macro call 

.SM TROFF 

will produce TROFF. 



TROFF Tutorial 

The definition of .SM is 

.de SM 
\s-2\\$l\s+2 

Within a macro definition, the symbol \\Sn 
refers to the nth argument that the macro was 
called with. Thus \\$1 is the string to be placed 
in a smaller point size when .SM is called. 

As a slightly more complicated version, the 
following definition of .SM permits optional 
second and third arguments that will be printed 
in the normal size: 

.de SM 
\ \$3\s -· 2\ \$1\s+2\ \$2 

Arguments not provided when the macro 1s 
called are treated as empty, so 

.SM TROFF ), 

produces TROFF), while 

. SM TROFF ). ( 

produces (TROFF). It is convenient to reverse 
the order of arguments because trailing punctua
tion is much more common than leading. 

By the way, the number of arguments that a 
macro was called with is available in number 
register .$. 

The following macro .BD is the one used to 
make the "bold roman" we have been using for 
troff command names in text. It combines hor
izontal motions, width computations, and argu
ment rearrangement: 

.de BD 
\&\ \$3\fl\\$ l\h'--\w'\ \$1'u +2u'\ \$1\fP\\$2 

The \h and \w commands need no extra 
backslash, as we discussed above. The \& is 
thert~ in case the argument begins with a period. 

Two backslashes are needed with the \\$n 
commands, though, to protect one of them when 
the macro is being defined. Perhaps a second 
example will make this clearer. Consider a 
macro called .SH which produces section head
ings rather like those in this paper, with the sec
tions numbered automatically, and the title in 
bold in a smaller size. The use is 

.SH "Section title ... " 

(If the argument to a macro is to contain blanks, 
then it must be surrounded by double quotes, 
unlike a string, where only one leading quote is 
permitted.) 

Here is the definition of the .SH macro: 

.nr SH 0 

.de SH 

.sp 0.3i 

\" initialize section number 

.ft B 

.nr SH \\n(SH+ I 

.ps \\n(PS-1 
\\n(SH. \\$1 
.ps \\n(PS 
.sp 0.3i 
.ft R 

\" increment number 
\" decrease PS 
\" number. title 
\" restore PS 

11 

The section number is kept in number register 
SH, which is incremented each time just before it 
is used. (A number register may have the same 
name as a macro without conflict but a string 
may not.) 

We used \\n(SH instead of \n(SH and 
\\n(PS instead of \n(PS. If we had used \n(SH, 
we would get the value of the register at the time 
the macro was defined, not at the time it was 
used. If that's what you want, fine, but not here . 
Similarly, by using \\n(PS, we get the point size 
at the time the macro is called. 

As an example that does not involve 
numbers, recall our .NP macro which had a 

.ti 'left'center'right' 

We could make these into parameters by using 
instead 

.ti '\\•(LT'\\•(CT'\\•(RT' 

so the title comes from three strings called LT, 
CT and RT. If these are empty, then the title 
will be a blank line. Normally CT would be set 
to something like 

.ds CT - % -

to give just the page number between hyphens, 
but a user could supply private definitions for 
any of the strings. 

12. Conditionals 

Suppose we want the .SH macro to leave two 
extra inches of space just before Section I, but 
nowhere else. The cleanest way to do that is to 
test inside the .SH macro whether the section 
number is 1, and add some space if it is. The .if 
command provides the conditional test that we 
can adJ just before the heading line is output: 

.if\\n(SH=l .sp 2i \" Section 1 only 

The condition after the .if can be any arith
metic or logical expression. If the condition is 
logically true, or arithmetically greater than zero, 
the rest of the line is treated as if it were 
text-here a command. If the condition is false, 



12 

or zero or negative, the rest of the line is 
skipped. 

It is possible to do more than one command 
if a condition is true. Suppose several operations 
are to be done before Section 1. One possibility 
is to define a macro Sl and invoke it if we are 
about to do Section I (as determined by an .if). 

.de Sl 
... processing for Section l ... 

• de SH 

.if \\n(SH= 1 .SI 

An alternate way is to use the extended form 
of the .if, like this: 

.if \\n (SH= 1 \{ ... processing 
for Section 1 ... \} 

The braces \{ and \} must occur in the positions 
shown or you will get unexpected extra Jines in 
your output. Troff also provides an "if-else" 
construction, which we will not go into here. 

A condition can be negated by preceding it 
with !; we get the same effect as above (but less 
clearly) by using 

. if !\\n(SH> 1 .Sl 

There are a handful of other conditions that 
can be tested with .if. For example, is the 
current page even or odd? 

.if e .ti "even page title" 

. if o .ti "odd page title" 

gives facing pages different titles when used 
inside an appropriate new page macro. 

Two other conditions are t and o, which tell 
you whether the formatter is troff or nroff. 

.if t troff stuff .. . 

.if n nroff stuff .. . 

Finally, string comparisons may be made in 
an .if: 

.if 'stringl 'string2' stuff 

does "stuff" if string/ is the same as string}. 
The character separating the strings can be any
thing reasonable that is not contained in either 
string. The strings themselves can reference 
strings with \•, arguments with \$, and so on. 

13. Environments 

As we mentioned, there is a potential prob
lem when going across a page boundary: parame
ters like size and font for a page title may well be 

TROFF Tutorial 

different from those in effect in the text when 
the page boundary occurs. Troff provides a very 
general way to deal with this and similar situa
tions. There are three "environments", each of 
which has independently settable versions of 
many of the parameters associated with process
ing, including size, font, line and title lengths, 
fill/no-fill mode, tab stops, and even partially 
collected lines. Thus the titling problem may be 
readily solved by processing the main text in one 
environment and titles in a separate one with its 
own suitable parameters . 

The command .cv n shifts to environment n; 
o must be 0, l or 2. The command .ev with no 
argument returns to the previous environment. 
Environment names are maintained in a stack, 
so calls for different environments may be nested 
and unwound consistently. 

Suppose we say that the main text is pro
cessed in environment 0, which is where troff 
begins by default. Then we can modify the new 
page macro .NP to process titles in environment 
1 like this: 

.de NP 

.ev 1 

.It 6i 

.ft R 

.ps 10 

\" shift to new environment 
\" set parameters here 

... any other processing ... 
.ev \" return to previous environment 

One can also initialize an environment's parame
ters outside the .NP macro, but the version 
shown keeps all the processing in one place and 
is thus easier to understand and change . 

14. Diversions 

There are numerous occasions in page layout 
when it is necessary to store some text for a 
period of time without actually printing it. Foot
notes are the most obvious example: the text of 
the footnote usually appears in the input well 
before the place on the page where it is to be 
printed is reached. In fact, the place where it is 
output normally depends on how big it is, which 
implies that there must be a way to process the 
footnote at least enough to decide its size 
without printing it. 

Troff provides a mechanism called a diver
sion for doing this processing. Any part of the 
output may be diverted into a macro instead of 
being printed, and then at some convenient time 
the macro may be put back into the input. 

·The command .di xy begins a diversion-all 
subsequent output is collected into the macro xy 
until the command .di with no arguments is 
encountered. This terminates the diversion. 



TROFF Tutorial 

The processed text is available at any time 
thereafter, simply by giving the command 

. xy 

The vertical size of the last finished diversion is 
contained in the built-in number register do. 

As a simple example, suppose we want to 
implement a "keep-release" operation, so that 
text between the commands .KS and .KE will 
not be split across a page boundary (as for a 
figure or table). Clearly, when a .KS is encoun
tered, we have to begin diverting the output so 
we can find out how big it is. Then when a .KE 
is seen, we decide whether the' diverted text will 
fit on the current page, and print it either there if 
it fits, or at the top of the next page if it doesn't. 
So: 

.de KS 

.br 

.ev 1 

.fl 

.di XX 

\ • start keep 
\" start fresh line 
\"collect in new environment 
\" make it filled text 
\" collect in XX 

.de KE \" end keep 

.br \" get last partial line 

.di \" end diversion 

.if \\n(dn>=\\n(.t .hp \".hp if doesn't fit 

.nf \" bring it back in no-fill 

.XX \"text 

.ev \ • return to normal environment 

Recall that number register nl is the current 
pos1hon on the output page. Since output was 
being diverted, this remains at its value when the 
diversion started; do is the amount of text in the 
diversion; .t (another built-in register) is the dis
tance to the next trap, which we assume is at the 
bottom margin of the page. If the diversion is 
large enough to go past the trap, the .if is 
satisfied, and a .bp is issued. In either case, the 
diverted output is then brought back with .XX. It 
is essential to bring it back in no-fill mode so 
troff will do no further processing on it. 

This is not the most general keep-release, 
nor is it robust in the face of all conceivable 
inputs, but it would require more space than we 
have here to write it in full generality. This sec
tion is not intended to teach everything about 
diversions, but to sketch out enough that you 
can read existing macro packages with some 
comprehension. 

Acknowledgements 

I am deeply indebted to J. F. Ossanna, the 
author of troff, for his repeated patient explana
tions of fine points, and for his continuing wil
lingness to adapt troff to make other uses easier. 

13 

I am also grateful to Jim Blinn, Ted Dolotta, 
Doug Mcilroy, Mike Lesk, and Joel Sturman for 
helpful comments on this paper . 

References 

[1 J J. F. Ossanna. NROFF/TROFF User's Manual, 
Bell Laboratories. 

[2] B. W. Kernighan and L. L. Cherry. A System 
for Typesetting Mathematics- User's Guide 
(Second Edition), Bell Laboratories. 

(3) M. E. Lesk. TBL-A Program to Format 
Tables. Bell Laboratories. 

[4] M. E. Lesk. Typing Documents on UNIX, Bell 
Laboratories. 

[5] J. R. Mashey and D. W. Smith. 
MM-Memorandum Macros, Bell Labora
tories. 



14 TROFF Tutorial 

Appendix: Typesetter Character Set 

The following characters exist in roman, italic, and bold; they are entered as themselves: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
ab c def g hi j k 1 mn op qr st u v w x y z 
I 2 3 4 5 6 7 8 9 0 
! s %& < > = I l l + • ; : .. I ? 

The following characters also exist in roman, italic, and bold; to get the one on the left, type the one-, 
two-, or four-character name on the right (in what follows, the symbol • is the acute accent or apostrophe 
on most keyboards, while • is the other-or grave-accent; - is the minus sign on the keyboard): 

ff \(ff fi \(fi fl \(fl 
fil \(Fl \(ru 1,4 \(14 
~ \(12 \(em c \(co 

t \(dg \- ¢ \(ct 

• \(bu 
\(fm D \(sq (in bold, \(sq prints as•> 

The following characters appear only on the special font: 

\ \e \(rn 
,. 

+ \(pl \(mi x \(mu 
\(eq ~ \(=- ~ \(>= 

* \(!= ± \(+- .., \(no 
\(ap = \(-= oc \(pt 

-+ \(-> ..... \(<- T \(ua 

I \(is a \(pd 00 \(if 
c \(sb :J \(sp u \(cu 

~ \(ib ~ \(ip E \(mo 
§ \(sc :j: \(dd ""'1 \(lh 

r \(It 1 \(rt r \(le 

l \(lb J \(rb l \(If 

~ \(lk ~ \(rk I \(bv 

I \(br \(or 0 \(ci 
\(ts 

ffi \(Fi 
34 \(34 

\(de 
ill \(rg 

,. 
\(di 

:5 \(<= 
\(sl 

V' \(gr 
1 \(da 
y \(sr 
n \(ca 
0 \(es 
~ \(rh 

\(re 
\(rf 

• \(•* 
@ \(bs 

The special-font ("math") characters named \{pl, \(mi,\{ .. , \(sl, and \(eq (i.e.,+,-, •./,and=) are 
not the same as the "current-font" characters named+,\-,•,/, and=- (i.e.,+,-,•,/, and-). 

The following characters are also found only on the special font; they are entered as themselves (but 
remember to escape with a\ the I and @if these are your "erase" and "kill" characters); 

# @ < > 
The following pairs of input names are synonyms for each other: ,. \(ga \(aa \(ul \(hy 

All Greek letters are also on the special font; all the lower-case letters (including the terminal sigma s 
from the list above) and some upper-c-.asc letters (r, t:i., 8, A, :S:. II, I, T, +,•,and D); the remaining 
upper-case Greek letters arc "faked" by using the corresponding upper-case Roman letters; precede the 
Roman letter by\(• to get the corresponding Greek letter (for example, \{*a prints as a): 

abgdezyhiklmncoprs tufxqw 
a~~5tf~6iKXµv~o~purv~x~w 

ABGDEZYHlKLMNCOPRSTUFXQW 
ABfAEZH8IKAMNZOilPITT~X~O 

January 1981 



Introduction 

NROFF/TROFF User's Manual 
Joseph F. Ossanna 

Bell Laboratories 
Murray Hill, New Jersey 07974 

UNIX 

C.1.2 

NROFF and TROFF are text processors under the UNIXt Time-Sharing System [l] that format text for 
typewriter-like terminals and for a phototypesetter, respectively. They accept lines of text interspersed 
with lines of format control information and format the text into a printable, paginated document hav
ing a user-designed style. NROFF and TROFF offer unusual freedom in document styling, including: 
arbitrary style headers and footers; arbitrary style footnotes; multiple automatic sequence numbering for 
paragraphs, sections, etc; multiple column output; dynamic font and point-size control; arbitrary hor
izontal and vertical local motions at any point; and a family of automatic overstriking, bracket construc
tion, and line drawing functions. 

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare 
input acceptable to both. Conditional input is provided that enables the user to embed input expressly 
destined for either program. NROFF can prepare output directly for a variety of terminal types and is 
capable of utilizing the full resolution of each terminal. 

Usage 

The general form of invoking NROFF (or TROFF) at UNIX command level is: 

nroff options files 
troff options files 

or 

where options represents any of a number of option arguments and files represents the list of files con
taining the document to be formatted. An argument consisting of a single minus {-) is taken to be a 
file name corresponding to the standard input. If no file names are given input is taken from the stan
dard input. The options, which may appear in any order so long as they appear before the files, are: 

Option Effect 

-olist Print only pages whose page numbers appear in list, which consists of comma-separated 
numbers and number ranges. A number range has the form N-M and means pages N 
through M; a initial -N means from the beginning to page N; and a final N- means 
from N to the end. 

-nN Number first generated page N. 

- sN Stop every N pages. NROFF will halt prior to every N pages {default N= I) to allow 
paper loading or changing, and will resume upon receipt of a new-line. TROFF will stop 
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and 
will resume after the phototypesetter ST ART button is pressed. See § 1.2 of the Adden
dum for additional details. 

- mname Prepends the macro file /usr/lib/tmac.name to the input files. 

-raN The number register whose (one-character) name is a is set to N. 

-i Read standard input after the input files are exhausted. 

-q Invoke the simultaneous input-output mode of the rd request. 

t UNIX is a trademark of Bell Laboratories. 

- 1 -



NROFF/TROFF User's Manual 
October 11, 1976 

NROFF Only 

-Tname Specifies the name of the ou.tput terminal type. Currently defined names are 37 for the 
(default) TELETYPE® Model 37, tn300 for the GE TermiNet 300 (or any terminal 
without half-line capabilities), 300 for the DASI 300, 300s for the DASI 300s, and 450 
for the DASI 450; 300-12, 300s-12, and 450-12, respectively, are used to print in 12-
pitch ( 12 characters per inch) on the three DASI terminals. 

-e Produce equally-sJ>aced words in adjusted lines, using full terminal resolution. 

TROFF Only 

-t Direct output to the standard output instead of the phototypesetter. 

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run. 

-w Wait until phototypesetter is available, if currently busy. 

-b TROFF will report whether the phototypesetter is busy or available. No text processing 
is done. 

-a Send a printable (ASCII) approximation of the results to the standard output. 

-pN Print all characters in point size N while retaining all prescribed spacings and motions, 
to reduce phototypesetter elapsed time. 

-g Prepare output for the Murray Hill Computation Center phototypesetter and direct it to 
the standard output. 

ar See §I of the Addendum for additional and modified command-line options. 

Each option is invoked as a separate argument; for example: 

nroff -04,8-10 -T300-12 -mabc filel file2 

requests formatting of pages 4, 8, 9, and 10 of the document contained in files named ftlel and filel, 
specifies the output terminal as a DASI 300 in 12-pitch, and invokes the macro package abc. 

Various pre- and postprocessors are available for use with NROFF and TROFF. These include the equa
tion preprocessors NEQN and EQN (2) (for NROFF and TROFF respectively), the table-construction 
preprocessor TBL [3], and the constant-width preprocessor CW [1]. A reverse-line postprocessor COL 
[1] is available for multiple-column NROFF output on terminals without reverse-line ability; COL 
expects the TELETYPE Model 37 escape sequences that NROFF produces by default. 4014 (1] is a 
TELETYPE Model 37-simulator postprocessor for printing NROFF output on a Tektronix 4014. TC [1] is 
phototypesetter-simulator postprocessor for TROFF that produces an approximation of phototypesetter 
output on a Tektronix 4014. For example, in: 

tbl files I eqn I troff -t options I tc 

the first I indicates the piping of TBL's output to EQN's input; the second the piping of EQN's output to 
TROFF's input; and the third indicates the piping of TROFF's output to TC. GCAT [I] can be used to 
send TROFF (-g) output to the Murray Hill Computation Center. 

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the 
Index; a set of Tutorial Examples (see also [4]); and an Addendum. 

Joseph F. Ossanna 

References 

[1] T. A. Dolotta, S. B. Olsson, and A.G. Petruccelli (eds.). UNIX User's Manual-Release 3.0, June 1980, Bell 
Laboratories. 

(2] B. W. Kernighan and L. L. Cherry. Typesetting Mathematics-User's Guide (Second Edition). Bell Laboratories. 
[3] M. E. Lesk. TBL-A Program to Format Tables, Bell Laboratories. 
[4] 8. W. Kernighan. A TROFF Tutorial, Bell Laboratories. 

• 2 -



NROFF/TROFF User's Manual 
October 11, 1976 

I/No 

SUMMARY AND INDEX 

Request 
Form 

Initial 
Value* Argument Notes# Explanation 

1. General Explanation 

2. Font and Character Size Control 

.ps ±N 

.SS N 

.csFNM 

.bdFN 

.bd SF N 

.ft F 

.fpNF 

IO point 
12/36 em 
off 
off 
off 
Roman 
R,1,B,S 

3. Page Control 

.pl±N II in 

.bp ±N N=l 

.pn ±N N=I 

.po ±N O; 26/27 in 

.neN 

.mk R none 

.rt ±N none 

previous 
ignored 

previous 
ignored 

11 in 

ignored 
previous 
N=lV 
internal 
internal 

E 
E 
p 
p 
p 
E 

l' 

Bt,v 

l' 

D,Y 
D 
D,Y 

Point size; also \s ± N. t 
Space-character size set to N/36 em. t 
Constant character space (width) mode (font F).t 
Em holden font F by N-1 units. t 
Em holden Special Font when current font is F. t 
Change to font F = x, xx, or 1-4. Also \fx, \f(xx, \fN. 
Font named F mounted on physical position 1 <N<4 .. 

Page length. 
Eject current page; next page number N. 
Next page number N. 
Page offset. 
Need N vertical space (V = vertical spacing). 
Mark current vertical place in register R. 
Return (upward only) to marked vertical place. 

4. Text Filling, Adjusting, and Centering 

• br B Break . 
. fl fill 
.nf fill 
. ad c adj, both 
.na adjust 
.ce N off 

5. Vertical Spacing 

.Ys N l/6in;l2pts 

.Is N N=l 

.sp N 

.SYN 
• os 
.ns space 
.rs 

adjust 

N=l 

previous 
previous 
N=lV 
N=lV 

6. Line Length and Indenting 

• II ±N 6.5 in previous 
.in ±N N=O previous 
.ti ±N ignored 

B,E 
B,E 
E 
E 
B,E 

E,p 
E 
B,Y 
l' 

D 
D 

Fill output lines . 
No filling or adjusting of output lines. 
Adjust output lines with mode c . 
No output line adjusting. 
Center following N input text lines. 

Vertical base line spacing (V). 
Output N-1 Vs after each text output line. 
Space vertical distance Nin either direction. 
Save vertical distance N. 
Output saved vertical distance . 
Turn no-space mode on. 
Restore spacing; turn no-space mode off. 

E,m Line length . 
B,E, m Indent. 
B,E,m Temporary indent. 

7. Macros, Strings, Diversion, and Position Traps 

.de xx yy .yy=.. Define or redefine macro xx; end at call of yy . 

. am xx yy .yy= .. Append to a macro . 
• ds xx string - ignored Define a string xx containing string . 
• as xx string - ignored Append string to string xx. 

• Values separated by ";" are for NROFF and TROFF respectively. 

I Notes are explained at the end of this Summary and Index. 

t No effect in NROFF. * The use of "·" as control character (instead of ". ") suppresses the break function. 

- 3 -



NROFF/TROFF User's Manual 
October 11, 1976 

Request Initial 
FDl'm Value 

.rm xx 

.rn xx yy 
• di xx 
.da xx 
• wh N xx 
• ch xx N 
.dt N xx 
.it N xx 
.em.xx none 

8. Number Registers 

. nr R ±NM 

. af R c arabic 
• rr R 

If No 
Argument 

ignored 
ignored 
end 
end 

off 
off 
none 

9. Tabs, Leaders, and Fields 

• ta Nt ... 0.8; 0.5in none 
. tc c 
• le c 
• fc ab 

none 

off 

none 
none 
off 

Notes Explanation 

Remove request, macro, or string. 
Rename request, macro, or string xx to yy. 

D Divert output to macro xx . 
D Divert and append to xx. 
v Set location trap; negative is w.r.t. page bottom . 
v Change trap location . 
D,v Set a diversion trap. 
E Set an input-line count trap. 

End macro is xx. 

u Define and set number register R; auto-increment by M . 
Assign format to register R (c=l, i, I, a, A) . 
Remove register R . 

E,m Tab settings; left type, unless t=R(right), C(centered) . 
E Tab repetition character . 
E Leader repetition character . 

Set field delimiter a and pad character b . 

10. Input and Output Conventions and Character Translations 

. ec c \ 

.eo on 

.lg N -; on 

.ul N off 

.cu N off 

.uf F Italic 
• cc c 
. cl c 

\ 

on 
N=l 
N=l 
Italic 

Set escape character . 
Turn off escape character mechanism. 
Ligature mode on if N>O . 

E Underline (italicize in TROFF) N input lines. 
E Continuous underline in NROFF; like ul in TROFF. 

Underline font set to F (to be switched to by ul). 
E Set control character to c . 
E Set no-break control character to c . 

.tr abed.... none 0 Translate a to b, etc. on output. 

11. Local Horizontal and Vertical Motions, and the Width Function 

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions 

13. Hyphenation. 

.nb no hyphen. -

.hy N no hyphen. hyphenate 
• he c \% \% 
.hw word/ ... ignored 

14. Three Part Titles • 

. ti "lefl"center"right 

. pc c % off 

E 
E 
E 

• It ±N 6.5 in previous · E,m 

15. Output Line Numbering • 

• nm ±N J:.1 SI off 
.nnN N=l 

E 
E 

No hyphenation. 
Hyphenate; N = mode. 
Hyphenation indicator character c . 
Exception words. 

Three part title. 
Page number character . 
Length of title . 

Number mode on or off, set parameters. 
Do not number next N lines. 

- 4 -



NROFF/TROFF User's Manual 
October 11, 1976 

I/No Request 
Form 

Initial 
Value Argument Notes Explanation 

16. Conditional Acceptance of Input 

.if c anything 

. if !c anything 
• if N anything 
.if !N anything 
.if ·string] ·string2. anything 
• if ! ·string] -string2 · anything 
.le c anything 
• el anything 

17. Environment Switching. 

• ev N N=O previous 

u 
u 

u 

18. Insertions from the Standard Input 

. rd prompt prompt= BEL-
• ex 

19. Input/Output File Switching 

. so filename 

.nx filename 
• pi program 

20. Miscellaneous 

.mccN 

end-of-file 

E,m 

If condition c true, accept anything as input, 
for multi-line use \{anything\}. 
If condition c false, accept anything . 
If expression N > 0, accept anything . 
If expression N < 0, accept anything . 
If string] identical to string2, accept anything . 
If string] not identical to string2, accept anything. 
If portion of if-else; all above forms (like if) . 
Else portion of if-else . 

Environment switched (push down) . 

Read insertion . 
Exit from NROFF/TROFF . 

Switch source file (push down) . 
Next file. 
Pipe output to program (NROFF only) . 

Set margin character c and separation N. 
.tm string 
• ig yy 

off 
new-line 
.yy= .. 
all 

Print string on terminal (UNIX standard message output). 
Ignore till call of yy . 

.pm t Print macro names and sizes; 

. fl B 
if t present, print only total of sizes. 
Flush output buffer . 

21. Output and Error Messages 

Notes: 

B Request normally causes a break. 
D Mode or relevant parameters associated with current diversion level. 
E Relevant parameters are a part of the current environment. 
0 Must stay in effect until logical output. 
P Mode must be still or again in effect at the time of physical output. 

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored. 

Alphabetical Request and Section Number Cross Reference 

ab • c2 10 de 7 ev 17 hw 13 lg 10 nf 4 pc 14 rm 7 
ad 4 cc 10 di 7 ex 18 hy 13 II 6 nh 13 pi 19 rn 7 
af 8 ce 4 ds 7 fc 9 ie 16 Is 5 nm 15 pl 3 rr 8 
am 7 ch 7 dt 7 fi 4 if i6 It 14 nn 15 pm 20 rs 5 
as 7 co • ec 10 fl 20 ig 20 me 20 nr 8 pn 3 rt 3 
bd 2 cs 2 el 16 fp 2 in 6 mk 3 ns 5 po 3 so 19 
bp 3 cu 10 em 7 ft 2 it 7 na 4 nx 19 ps 2 sp 5 
br 4 da 7 eo 10 he 13 le 9 ne 3 OS 5 rd 18 SS 2 

•This request is described in §2.1 of the Addendum. 

- 5 -

sv 5 ul 10 
ta 9 VS 5 
tc 9 wh 7 
ti 6 • 
ti 14 
tm 20 
tr JO 
uf 10 



NROFF/TROFF User's Manual 
October 11, 1976 

Escape Sequences for Characters, Indicators, and Functions 

Section Escape 
Refe,ence Sequence 

10.l \\ 
10.1 \e 

2. l 
,. 

2.1 
,. 

2.1 \-
7 \. 

11.1 \(space) 
11.1 \0 
l l. l \I 
11.l ,-
4.l \& 

10.6 \! 
10.7 ,. 
7.3 \$N 

13 \% 
2. l \(xx 
7.1 \•x, \•(xx 
9.1 \a 

12.3 \b.abc ... 
4.2 \c 

11.1 \d 
2.2 \fx,\f(xx,\fN 

11.1 \h·N· 
11.3 \k.x 
12.4 \I.Ne 
12.4 \L.Nc 
8 \nx,\n(xx 

12.1 \o.abc ... · 
4. l \p 

11.1 \r 
2.3 \sN,\s±N 
9.l \t 

11.1 \u 
11.1 \•/N 
11.2 \•(string 
5.2 \x·N· 

12.2 \zc 
16 \{ 
16 \} 
10.7 \(new-line) 

\X 

Meaning 

\ (to prevent or delay the interpretation of\) 
Printable version of the current escape character. 
· (acute accent); equivalent to \(aa 
· (grave accent); equivalent to \(ga 
- Minus sign in the current font 
Period (dot) (see de) 
Unpaddable space-size space character 
Digit width space 
1/6 em narrow space character (zero width in NROFF) 
l/12em half-narrow space character (zero width in NROFF) 
Non-printing, zero width character 
Transparent line indicator 
Beginning of comment 
Interpolate argument I sN<9 
Default optional hyphenation character 
Character named xx 
Interpolate string x or xx 
Non-interpreted leader character 
Bracket building function 
Interrupt text processing 
Forward (down) l/2 em vertical motion (l/2 line in NROFF) 
Change to font named x or xx, or position N 
Local horizontal motion; move right N (negative left) 
Mark horizontal input place in register x 
Horizontal line drawing function (optionally with c) 
Vertical line drawing function (optionally with c) 
Interpolate number register x or xx 
Overstrike characters a, b, c, ... 
Break and spread output line 
Reverse l em vertical motion (reverse line in NROFF) 
Point-size change function 
Non-interpreted horizontal tab 
Reverse (up) 1/2 em vertical motion (1/2 line in NROFF) 
Local vertical motion; move down N (negative up) 
Interpolate width of string 
Extra line-space function (negative before, positive after) 
Print c with zero width (without spacing) 
Begin conditional input 
End conditional input 
Concealed (ignored) new-line 
X, any character not listed above 

The escape sequences\\,\.,\",\$,\•, \a, \n, \t, and \(new-line) are interpreted in copy mode (§7.2). 

tiif" See §3 of the Addendum for additional escape sequences. 

- 6 -



NROFF/TROFF User's Manual 
October II, 1976 

Predefined General Number Re~isters 

Section 
Reference 

3 
11.2 
7.4 
7.4 

11.3 
15 

4.1 
11.2 
11.2 

Register 
Name 

% 
ct 
di 
dn 
dw 
dy 
hp 
In 
mo 
nl 
sh 
st 
yr 

Description 

Current page number. 
Character type (set by width function). 
Width (maximum) of last completed diversion. 
Height (vertical size) of last completed diversion. 
Current day of the week (1-7). 
Current day of the month (I-31). 
Current horizontal place on input line. 
Output line number. 
Current month (1-12). 
Vertical position of last printed text base-line. 
Depth of string below base line (generated by width function). 
Height of string above base line (generated by width function). 
Last two digits of current year. 

Predefined Read-Only Number Registers 

Section Register 
Reference Name 

7.3 .s 
. A 

11.1 . H 
. T 

11.1 . v 
5.2 .a 

. c 
7.4 .d 
2.2 • f 
4 • h 
6 . i 
6 .I 
4 .n 
3 • o 
3 ·P 
2.3 .s 
7.5 . t 
4.1 .u 
5.1 .v 

11.2 .w 
• x 
• y 

7.4 .z 

Description 

Number of arguments available at the current macro level. 
Set to 1 in TROFF, if -a option used; always l in NROFF . 
Available horizontal resolution in basic units . 
Set to 1 in NROFF, if -T option used; always 0 in TROFF . 
Available vertical resolution in basic units . 
Post-line extra line-space most recently utilized using \x·N·. 
Number of lines read from current input file . 
Current vertical place in current diversion; equal to nl, if no diversion. 
Current font as physical quadrant ( 1-4) . 
Text base-line high-water mark on current page or diversion . 
Current indent . 
Current line length. 
Length of text portion on previous output line. 
Current page off set . 
Current page length. 
Current point size. 
Distance to the next trap . 
Equal to 1 in fill mode and 0 in no-fill mode. 
Current vertical line spacing. 
Width of previous character. 
Reserved version-dependent register . 
Reserved version-dependent register . 
Name of current diversion. 

!I. 

_. See §4 of the Addendum for additional predefined number registers. 

. 7 . 



NROFF/TROFF User's Manual 
October 11, 1976 

1. General Explanation 

REFERENCE MANUAL 

J .1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control 
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a con
trol character-normally • (period) or · (acute accent)-followed by a one or two character name that 
specifies a basic request or the substitution of a user-defined macro in place of the control line. The 
control character · suppresses the break function-the forced output of a partially filled line-caused by 
certain requests. The control character may be separated from the request/macro name by white space 
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or new-line. Con
trol lines with unrecognized names are ignored. 

Various special functions may be introduced anywhere in the input by means of an escape character, 
normally\. For example, the function \nR causes the interpolation of the contents of the number regis
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis
introduced, two-character name as in \n(xx. 

J .2. Formatter and device resolution. For historical reasons, TROFF internally uses 432 units/inch, and 
has a horizontal resolution of 1/432 inch and a vertical resolution of 1/144 inch. NROFF internally uses 
240 units/inch, corresponding to the least common multiple of the horizontal and vertical resolutions of 
various current typewriter-like output devices. TROFF rounds horizontal/vertical numerical parameter 
input to its internal horizontal/vertical resolution. NROFF similarly rounds numerical input to the 
actual resolution of the output device indicated by the -T option (default TELETYPE Model 37). 

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale 
indicators shown in the following table, where Sis the current type size in points, Vis the current verti
cal line spacing in basic units, and C is a nominal character width in basic units. 

Scale Number of basic units 
Indicator Meanin...s_ TROFF NROFF 

i Inch 432 240 
c Centimeter 432X50/127 240X50/127 
p Pica = 1/6 inch 72 240/6 
m Em = S points 6XS c 
n En= Em/2 3XS C, same as Em 
p Point = 1/72 inch 6 240/72 
u Basic unit 1 1 
v Vertical line space v v 

none Default, see below 

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent; 
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same 
and constructed characters such as -> (--+) are often extra wide. The default scaling is ems for the 
horizontally-oriented requests and functions II, in, ti, ta, It, po, me, \b, and \I; Vs for the vertically
oriented .requests and functions pl, wb, ch, dt, sp, sv, ne, rt, \v, \x, and \L; p for the vs request; and 
u for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number regis
ter containing an already appropriately scaled number is interpolated to provide numerical input, the 
unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling. 
The number, N, may be specified in decimal-fraction form but the parameter finaJly stored is rounded 
to an integer number of basic units. 

- 8 -



NROFF/TROFF User's Manual 
October 11, 1976 

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical 
or horizontal place N. For vertically-oriented requests and functions, IN becomes the distance in basic 
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For 
all other requests and functions, IN becomes the distance from the current horizontal place on the input 
line to the horizontal place N. For example, 

.sp l3.2c 

will space in the required direction to 3.2 centimeters from the top of the page. 

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses, 
the arithmetic operators +, -, /, •, % (mod), and the logical operators <, >, <=, >=, = (or=), 
& (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is 
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is 
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default 
scaling, the desired scale indicator must be attached to every number in an expression for which the 
desired and default scaling differ. For example, if the number register x contains 2 and the current 
point size is I 0, then 

.II ( 4.25i+\n xP+3 )/lu 

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points. 

I .5. Notation. Numerical parameters are indicated in this manual in two ways. ± N means that the 
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected 
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable 
numerical input is either ignored or truncated to a reasonable value. For example, most requests 
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests 
ps, ft, po, l'S, ls, 11, in, and It restore the previous parameter value in the absence of an argument. 

Single character arguments are indicated by single lower case letters and one/two character arguments 
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character 
mnemonics. 

2. Font and Character Size Control 

2. I. Character set. The TROFF character set consists of the so-called Commercial IT character set plus a 
·Special Mathematical Font character set-each having 102 characters. These character sets are shown 

in the attached Table I. All ASCII graphic characters are included, with some on the Special Font. With 
three exceptions, these ASCII characters are input as themselves, and non-ASCII characters are input in 
the form \(xx where xx is a two-character name given in the attached Table II. The three ASCII excep
tions are mapped as follows: 

ASCII Input Printed by TROFF 
Character Name Character Name . 

acute accent 
, 

close quote 
' grave accent ' open quote 
- minus - hy_l)_hen 

The characters , , and may be input by \., \., and \- respectively or by their names (Table II). 
The ASCII characters @, I. •, ·, ·, <, >, \, {, }, -, ", and _ exist only on the Special Font and are 
printed as a 1-em space if that font is not mounted. (ASCH control characters are discussed in §10.1.) 

NROFF understands the entire TROFF character set, but can in general print only ASCII characters, 
additional characters as may be available on the output device, such characters as may be able to be 
constructed by overstriking or other combination, and those that can reasonably be mapped into other 
printable characters. The exact behavior is determined by a driving table prepared for each device. The 
characters ·, ·, and _ print as themselves. 

- 9 -



NROFF/TROFF User's Manual 
October 11, 1976 

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (8), and 
the Special Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These 
fonts are used in this document. The current font, initially Roman, may be changed (among the 
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(xx, or \fN 
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary 
to change to the Special Font; characters on that font are automatically handled. A request for a named 
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of 
the fp request. The list of known fonts is installation dependent. In the subsequent discussion of 
font-related requests, F represents either a one/two-character font name or the numerical font position, 
1-4. The current font is available (as numerical position) in the read-only number register .f. 

NROFF understands font control and normally underlines Italic characters (see §10.5). 

2.3. Character size. Available character point sizes are 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 
and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is used to change or restore the point 
size. Alternatively, the point size may be changed between any two characters by imbedding a \sN at 
the desired point to set the size to N, or a \s±N (1 <N<9) to increment/decrement the size by N; \sO 
restores the previous size. Requested point size values that are between two valid sizes yield the larger 
of the two. The current size is available in the .s register. NROFF ignores type size control. 

Request Initial If No 
Form Value Argument Notes• Explanation 

.ps ±N IO point previous 

.ssN 12/36 em ignored 

.csFNM off 

.bd F N off 

.bd SF N off 

E 

E 

p 

p 

p 

Point size set to ±N. Alternatively, imbed \sN or 
\s±N. Any positive size value may be requested; if 
invalid, the next larger valid size will result, with a max
imum of 36. A paired sequence +N, -N will work 
because the previous requested value is also remem
bered. Ignored in NROFF. 

Space-character size is set to N/36 ems. This size is the 
minimum word spacing in adjusted text. Ignored in 
NROFF. 

Constant character space (width) mode is set on for font 
F (if mounted); the width of every character will be 
taken to be N/36 ems. If M is absent, the em is that of 
the character's point size; if M is given, the em is M
points. All affected characters are centered in this space, 
including those with an actual width larger than this 
space. Special Font characters occurring while the 
current font is F are also so treated. If N is absent, the 
mode is turned off. The mode must be still or again in 
effect when the characters are physically printed. Ignored 
in NROFF. 

The characters in font F will be artificially emboldened by 
printing each one twice, separated by N-1 basic units. A 
reasonable value for N is 3 when the character size is in 
the vicinity of 10 points. If N is missing the embolden 
mode is turned off. The column heads above were 
printed with .bd I 3. The mode must be still or again in 
effect when the characters are physically printed. See 
§2.2 of the Addendum for the effect of bd in NROFF. 

The characters in the Special Font will be emboldened 
'whenever the current font is F. This manual was printed 

• Notes are explained at the end of the Summary and Index above. 

- 10 -



NROFF/TROFF User's Manual 
October I I, I 976 

.ft F Roman previous 

.fpN F R,l,B,S ignored 

3. Page control 

E 

with .bd SB 3. The mode must be still or again in effect 
when the characters are physically printed. 

Font changed to F. Alternatively, imbed \fF. The font 
name P is reserved to mean the previous font. 

Font position. This is a statement that a font named Fis 
mounted on position N (1-4). It is a fatal error if Fis 
not known. The phototypesetter has four fonts physically 
mounted. Each font consists of a film strip which can be 
mounted on a numbered quadrant of a wheel. The 
default mounting sequence assumed by TROFF is R, I, B, 
and S on positions l, 2, 3 and 4. 

Top and bottom margins are not automatically provided; it is conventional to define two macros and to 
set traps for them at vertical positions 0 (top) and -N (N from the bottom). See §7 and Tutorial 
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or 
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the 
first page must be completed before this transition. In the following, references to the current diversion 
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the 
former considered as the top diversion level). 

The usable page width on the phototypesetter is about 7.54 inches, beginning about I/27 inch from the 
left edge of the 8 inch wide, continuous roll paper. The physical limitations on NROFF output are 
output-device dependent. 

Request Initial 
Form Value 

.pl ±N 11 in 

.hp ±N N=I 

.pn ±N N=I 

I/No 
Argument 

l l in 

ignored 

.po ±N O; 26/27 int previous 

.ne N N=IV 

Notes Explanation 

l' 

B*,v 

' 

D,v 

Page length set to ±N. The internal limitation is about 
75 inches in TROFF and about 136 inches in NROFF. 
The current page length is available in the .p register. 

Begin page. The current page is ejected and a new page 
is begun. If ±N is given, the new page number will be 
±N. Also see request ns. 

Page number. The next page (when it occurs) will have 
the page number ±N. A pn must occur before the ini
tial pseudo-page transition to affect the page number of 
the first page. The current page number is in the % 
register. 

Page offset. The current left margin is set to ± N. The 
TROFF initial value provides about l inch of paper mar
gin including the physical typesetter margin of 1/27 inch. 
In TROFF the maximum (line-length)+ (page-offset) is 
about 7 .54 inches. See §6. The current page off set is 
available in the .o register. 

Need N vertical space. If the distance, D, to the next 
trap position (see §7.5) is less than N, a forward vertical 
space of size D occurs, which will spring the trap. If 
there are no remaining traps on the page, D is the dis
tance to the bottom of the page. If D < V, another line 
could still be output and spring the trap. In a diversion, 

• The use of "·" as control character (instead of ". ") suppresses the break function. 

t Values separated by";" are for NROFF and TROFF respectively. 

- 11 -



NROFF/TROFF User's Manual 
October 11, 1976 

.mk R none internal 

.rt ±N none internal 

D 

D,v 

4. Text Filling, Adjusting, and Centering 

D is the distance to the diversion trap, if any, or is very 
large. 

Mark the current vertical place in an internal register 
(both associated with the current diversion level), or in 
register R, if given. See rt request. 

Return upward only to a marked vertical place in the 
current diversion. If ±N (w.r.t. current place) is given, 
the place is ± N from the top of the page or diversion or, 
if N is absent, to a place marked by a previous mk. Note 
that the sp request (§5.3) may be used in all cases 
instead of rt by spacing to the absolute place stored in a 
explicit register; e.g., using the sequence .mk R ... 
• sp l\nRu. ' 

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out
put text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to 
assemble a part of it into the output line. The spaces between the words on the output line are then 
increased to spread out the line to the current line length minus any current indent. A word is any string 
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair 
of words that must be kept together (neither split across output lines nor spread apart in the adjustment 
process) can be tied together by separating them with the uripaddable space character "\ " (backslash
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be 
controlled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization 
to character-size spaces; however, the command-line option -e causes uniform spacing with full output 
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The 
text length on the last line output is available in the .n register, and text base-line position on the page 
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page 
is in the .h register. 

An input text line ending with • , ? , or ! is taken to be the end of a sentence, and an additional space 
character is automatically provided during filling. Multiple inter-word space characters found in the 
input are retained, except for trailing spaces; initial spaces also cause a break. 

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the 
word and have the resulting output line spread out to fill the current line length. 

A text input line that happens to begin with a control character can be made to not look like a control 
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify 
output translation of some convenient character into the control character using tr (§10.5). 

4.2. lnterrupted text. The copying of a input line in no-fill (i.e., non-fill) mode can be interrupted by ter
minating the partial line with a \c. The next encountered input text line will be considered to be a con
tinuation of the same iine of input text. Similarly, a word within filled text may be interrupted by ter
minating the word (and line) with \c; the next encountered text will be taken as a continuation of the 
interrupted word. If the intervening control lines cause a break, any partial line will be forced out along 
with any partial word. 

Request Initial 
Foma Value 

.hr 

.fi fill on 

If No 
Argument Notes 

B 

B,E 

Explanation 

Break. The filling of the line currently being collected is 
stopped and the line is output without adjustment. Text 
lines beginning with space characters and empty text 
lines (blank lines) also cause a break. 

Fill subsequent output lines. The register .u is 1 "in fill 
mode and 0 in no-fill mode. 

- 12 -



NROFF/TROFF User's Manual 
October 11, 1976 

.nf fill on 

.ad c adj,both adjust 

.na adjust 

.ce N off N=l 

5. Vertical Spacing 

B,E 

E 

E 

B,E 

No-fill. Subsequent output lines are neither filled nor 
adjusted. Input text lines are copied directly to output 
lines without regard for the current line length. 

Line adjustment is begun. If fill mode is not on, adjust
ment will be deferred until fill mode is back on. If the 
type indicator c is present, the adjustment type is 
changed as shown in the following table. 

Indicator Adjust Type 

I adjust left margin only 
r adjust right margin only 
c center 

born adjust both margins . 
absent unchanged 

See §2.2 of the Addendum for additional details. 

No-adjust. Adjustment is turned off; the right margin 
will be ragged. The adjustment type for ad is not 
changed. Output line filling still occurs if fill mode is on. 

Center the next N input text lines within the current 
(line-length minus indent). If N=O, any residual count 
is cleared. A break occurs after each of the N input 
lines. If the input line is too long, it will be left adjusted. 

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be 
set using the vs request with a resolution of l/144inch=l/2 point in TROFF, and to the output device 
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points 
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document). 
The current V is available in the . v register. Multiple-V line separation (e.g. double spacing) may be 
requested with Is. 

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it 
to have extra vertical space before and/or after it, the extra-line-space function \x·N- can be imbedded 
in or attached to that word. In this and other functions having a pair of delimiters around their parame
ter (here·), the delimiter choice is arbitrary, except that it can't look like the continuation of a number 
expression for N. If N is negative, the output line containing the word will be preceded by N extra 
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical 
space. If successive requests for extra space apply to the same line, the maximum values are used. 
The most recently utilized post-line extra line-space is available in the .a register. 

5.3. Blocks of venical space. A block of vertical space is ordinarily requested using sp, which honors the 
no-space mode and which does not space past a trap. A contiguous block of vertical space may be 
reserved using s v. 

Request Initial 
Form Value 

.vsN 1/6in; 12pts 

.lsN N=l 

If No 
Argument 

previous 

previous 

Notes 

E,p 

E 

Explanation 

Set vertical base-line spacing size V. Transient extra 
vertical space available with \x"N - (see above). 

line spacing set to ±N. N-1 Vs (blank lines) are 
appended to each output text line. Appended blank lines 
are omitted, if the text or previous appended blank line 
reached a trap position. 

- 13 -



NROFF/TROFF User's Manual 
October 11, 1976 

.sp N N=lV 

.n N N=lV 

.os 

.ns space 

.rs space 

Blank text line 

6. Line Length and Indenting 

B,v 

y 

D 

D 

B 

Space vertically in either direction. If N is negative, the 
motion is backward (upward) and is limited to the dis· 
tance to the top of the page. Forward (downward) 
motion is truncated to the distance to the nearest trap. If 
the no-space mode is on, no spacing occurs (see ns and 
rs below). 

Save a contiguous vertical block of size N. If the dis· 
tance to the next trap is greater than N, N vertical space 
is output. No-space mode has no effect. If this distance 
is less than N, no vertical space is immediately output, 
but N is remembered for later output (see os). Subse
quent SY requests will overwrite any still remembered N. 

Output saved vertical space. No-space mode has no 
effect. Used to finally output a block of vertical space 
requested by an earlier SY request. 

No-space mode turned on. When on, the no-space mode 
inhibits sp requests and bp requests without a next page 
number. The no-space mode is turned off when a line of 
output occurs, or with rs. 
Restore spacing. The no-space mode is turned off. 

Causes a break and outputs a blank line exactly like sp 1. 

The maximum line length for fill mode may be set with II. The indent may be set with in; an indent 
applicable to only the next output line may be set with ti. The line length includes indent space but not 
page offset space. The line-length minus the indent is the basis for centering with ce. The effect of II, 
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the 
length of text on an output line is less than or equal to the line length minus the indent. The current 
line length and indent are available in registers .I and .i respectively. The length of three-part. titles pro
duced by ti (see §14) is independently set by It. 

Request Initial If No 
Fonn Value Argument Notes Explanation 

.II ±N 6.5 in 

• in ±N N-0 

.ti ±N 

previous 

previous 

ignored 

E,m Line length is set to ±N. In TROFF the maximum 
(line-length)+ {page-offset) is about 7 .54 inches . 

B,E,m Indent is set to ±N. The indent is prepended to each 
output line. 

B,E,m Temporary indent. The next output text line will be 
indented a distance ±N with respect to the current 
indent. The resulting total indent may not be negative. 
The current indent is not changed. 

7. Macros, Strings, Dhersion, and Position Traps 

7.1. Macros and· strings. ·A macro is a named set of arbitrary lines that may be invoked by 'name or with 
a trap. A string is a named string of rharacters, not including a new-line character, .that may be interpo
lated by name at any point. Request, macro, and string names share the same name list. Macro and 
string names may be one or two characters long and may usurp previously defined request, macro, or 
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created 
by de and di, and appended to by am and da; di and da cause normal output to be stored in a macro. 
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a 
control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may 
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \•x and 
\•(xx respectively. Stri~g references and macro invocations may be nested. 

- 14 -



NROFF/TROFF User's Manual 
October 11, 1976 

7.2. Copy mode inpu.t interpretation . . During the definition and extension of strings and macros (not by 
diversion) the input is read in copy mode. The input is copied without interpretation except that: 

• The contents of number registers indicated by \n are interpolated. 
•Strings indicated by\• are interpolated. 
• Arguments indicated by\$ are interpolated. 
• Concealed new-lines indicated by \{new-line) arc eliminated. 
• Comments indicated by\" arc eliminated. 
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9). 
• \\ is interpreted as \. 
• \. is interpreted as ".". 

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \\n 
will copy as \n which will be interpreted as a number register indicator when the macro or string is 
reread. 

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to 
nine arguments. The argument separator is the space character, and arguments may be surrounded by 
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in 
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a 
line, a concealed new-line may be used to continue on the next line. 

When a macro is invoked the input level is pushed down and any arguments available at the previous 
level become unavailable until the macro is completely read and the previous level is restored. A 
macro's own arguments can be interpolated at any point within the macro with \SN, which interpolates 
the Nth argument ( 1 :5N:59). If an invoked argument doesn't exist, a null string results. For exam
ple, the macro xx may be defined by 

.de xx \"begin definition 
Today is \\$1 the \\$2. 

\"end definition 

and called by 

.xx Monday 14th 

to produce the text 

Today is Monday the 14th. 

Note that the\$ was concealed in the definition with a prepended \. The number of currently available 
arguments is in the .$ register. 

No arguments are available at the top (non-macro) level in this implementation. Because string 
referencing is implemented as a input-level push down, no arguments are available from within a string. 
No arguments are available within a trap-invoked macro. 

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time) 
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument 
reference time. 

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing 
(see Tutorial §TS) or determining the horizontal and vertical size of some text for conditional changing 
of pages or columns. A single diversion trap may be set at a specified vertical position. The number 
registers dn and di respectively contain the vertical and horizontal size of the most recently ended 
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when 

·reread in no-fill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is 
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way 
to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism 
described in §10.6. 

- 15 -



NROFF/TROFF User's Manual 
October 11, 1976 

Diversions may be nested and certain parameters and registers are associated with the current diversion 
level (the top non-diversion level may be thought of as the 0th diversion level). These are the diver
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the 
current vertical place (.d register), the current high-water text base-line (.h register), and the current 
diversion name (.z register). 

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input
line-count trap. Macro-invocation traps may be planted using wh at any page position including the top. 
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no 
effect unless or until moved to within the page or rendered effective by an increase in page length. 
Two traps may be planted at the same position only by first planting them at different positions and 
then moving one of the traps; the first planted trap will conceal the second unless and until the first one 
is moved (see Tutorial Examples §TS). If the first one is moved back, it again conceals the second 
trap. The macro associated with a page trap is automatically invoked when a line of text is output 
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the 
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail
able in the .t register; if there are no traps between the current position and the bottom of the page, the 
distance returned is the distance to the page bottom. 

A macro-invocation trap effective in the current diversion may be planted using dt. The .t register 
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of 
input-line-count traps, see it below. 

Request Initial If No 
Form Value Argument Notes Explanation 

.de xx yy 

• am xx yy 

.ds xx string -

. as xx string -

.rm xx 

.rn xx yy 

.di xx 

.da xx 

.wh N xx 

.yy= •• 

.yy= .. 

ignored 

ignored 

ignored 

ignored 

end 

end D 

Define or redefine the macro xx. The contents of the 
macro begin on the next input line. Input lines are 
copied in copy mode until the definition is terminated by a 
line beginning with .yy, whereupon the macro yy is 
called. In the absence of yy, the definition is terminated 
by a line beginning with " .. ". A macro may contain de 
requests provided the terminating macros differ or the 
contained definition terminator is concealed; " .. " can be 
concealed as "\\ •. " which will copy as "\ •• " and be 
reread as " •• ". 

Append to macro (append version of de) . 

Define a string xx containing string. Any initial double
quote in string is stripped off to permit initial blanks. 

Append string to string xx (append version of ds) . 

Remove request, macro, or string. The name xx is 
removed from the name list and any related storage 
space is freed. Subsequent references will have no effect. 

Rename request, macro, or string xx to yy. If yy exists, it 
is first removed. 

· Divert' output to macro xx. Normal text processing 
occurs during diversion except that page offsetting is not 
done. The diversion ends when the request di or da is 
encountered without an argument; extraneous requests 
of this type should not appear when nested diversions are 
being used. 

Divert, appending to xx {append version of di). 

Install a trap to invoke xx at page position N; a negative N 
will be interpreted with respect to the page bottom. Any 

- 16 -



NROFF/TROFF User's Manual 
October 11, 1976 

.ch xx N 

.dt N xx off 

.it N xx off 

.em xx none none 

8. Number Registers 

v 

D,v 

E 

macro previously planted at N is replaced by xx. A zero 
N refers to the top of a page. In the absence of xx, the 
first found trap at N, if any, is removed. 

Change the trap position for macro xx to be N. In the 
absence of N. the trap, if any, is removed. 

Install a diversion trap at position N in the current diver
sion to invoke macro xx. Another dt will redefine the 
diversion trap. If no arguments are given, the diversion 
trap is removed. 

Set an input-line-count trap to invoke the macro xx after 
N lines of text input have been read (control or request 
lines don't count). The text may be in-line text or text 
interpolated by in-line or trap-invoked macros. 

The macro xx will be invoked when all input has ended. 
The effect is the same as if the contents of xx had been 
at the end of the last file processed. 

A variety of parameters are available to the user as predefined, named number registers (see Summary 
and Index, page 7). Jn addition, the user may define his own named registers. Register names are one 
or two characters long and do not conflict with request, macro, or string names. Except for certain 
predefined read-only registers, a number register can be read, written, automatically incremented or 
decremented, and interpolated into the input in a variety of formats. One common use of user-defined 
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used 
any time numerical input is expected or desired and may be used in numerical expressions (§1.4). 

Number registers are created and modified using nr, which specifies the name, numerical value, and 
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence. 
If the registers x and xx both contain N and have the auto-increment size M, the following access 
sequences have the effect shown: 

Effect on Value 
Se_9_uence Register Interpolated 

\nx none N 
\n(xx none N 
\n+x x incremented by M N+M 
\n-x x decremented by M N-M 
\n+(xx xx incremented by M N+M 
\n-(xx xx decremented by M N-M 

When interpolated, a number register is converted to decimal (default), decimal with leading zeros, 
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha
betic according to the format specified by af. 

Request Initial If No 
Form Value Argument 

.nr R ±NM 

.af R c arabic 

Notes Explanation 

u The number register R is assigned the value ±N with 
respect to the previous value, if any. The increment for 
auto-incrementing is set to M. 

Assign format c to register R. The available formats are: 

- 17 -



NROFF/TROFF User's Manual 
October 11, 1976 

.rrR ignored 

9. Tabs, Leaders, and Fields 

Numbering 
Format S~uence 

1 0, l ,2,3,4,5, ... 
001 000,001,002,003,004,005,. .. 

i O,i,ii,iii,iv, v ,. .. 
I O,l,Il,IIl,IV, V , ... 
a 0 ,a, b,c,. .. ,z,aa,a b, ... ,zz,aaa, ... 
A O,A,B,C, ... ,Z,AA,AB, ... ,ZZ,AAA, ... 

An arabic format having N digits specifies a field width of 
N digits (example 2 above). The read-only registers and 
the width function (§I I.2) are always arabic. 

Remove register R. If many registers are being created 
dynamically, it may become necessary to remove no 
longer used registers to recapture internal storage space 
for newer registers. 

9. I. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the 
leader character) can both be used to generate either horizontal motion or a string of repeated charac
ters. The length of the generated entity is governed by internal tab stops specifiable with ta. The 
default difference is that tabs generate motion and leaders generate a string of periods; tc and le offer 
the choice of repeated character or motion. There are three types of internal tab stops-left adjusting, 
right adjusting, and centering. In the following table: D is the distance from the current position on the 
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac
ters following the tab (or leader) up to the next tab (or leader) or end of line; and Wis the width of 
next-string. 

Tab Length of motion or Location of 
~e r~eated characters next-stritJ.g_ 
Left D Following D 

Right D-W Right adjusted within D 
Centered D-W/2 Centered on ri_g_ht end of D 

The length of generated motion is allowed to be negative, but that of a repeated character string cannot 
be. Repeated character strings contain an integer number of characters, and any residual distance is 
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as 
next-string terminators. 

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and 
leader respectively, and are equivalent to actual tabs and leaders in copy mode. 

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings 
separated by padding indicator characters. The field length is the distance on the input line from the 
position where the field begins to the next tab stop. The difference between the total length of all the 
sub-strings and the field length is incorporated as horiz.ontal padding space that is divided among the 
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field 
delimiter is # and the padding indicator is - , I" xxx" right I specifies a right-adjusted string with the 
string xxx centered in the remaining space. 

- 18 -



NROFF/TROFF User's Manual 
October 11, 1976 

Request 
Form 

.ta Nt ... 

.tc c 

.le c 

Initial 
Value 

8n; 0.5in 

none 

If No 
Argument 

none 

none 

none 

Notes Explanation 

E,m Set tab stops and types. t= R, right adjusting; t=:C, 
centering; t absent, left adjusting. TROFF tab stops are 
preset every 0.5in.; NROFF every 8 nominal character 
widths. The stop values are separated by spaces, and a 
value preceded by + is treated as an increment to the 
previous stop value. 

E The tab repetition character becomes c, or is removed 
specifying motion. 

E The leader repetition character becomes c, or is removed 
specifying motion . 

• fc a b off off The field delimiter is set to a; the padding indicator is set 
to the space character or to b, if given. In the absence of 
arguments the field mechanism is turned off. 

10. Input and Output Conventions and Character Translations 

10.1. Input character translations. Ways of typing in the graphic character set were discussed in §2.1. 
The ASCII control characters SOH (§9.1), horizontal tab (§9.I). and backspace (§10.3) are discussed 
elsewhere; the new-line delimits input lines. In addition, STX, ETX, ENQ, ACK, BEL, SO, SI, and ESC 
may be used as delimiters or translated into a graphic with tr (§10.5); TROFF normally passes none of 
these characters to its output (but it passes all 8 if invoked with the -a command-line option); NROFF 
passes the last 4, with their effect depending on the output device used. All others are ignored. 

The escape character \ introduces escape sequences~auses the following character to mean another 
character, or to indicate some function. A complete list of such sequences is given in the Summary 
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name. 
The escape character \ can be input with the sequence \\. The escape character can be changed with 
ec, and all that has been said about the default \ becomes true for the new escape character. \e can be 
used to print whatever the current escape character is. If necessary or convenient, the escape mechan
ism may be turned off with eo, and restored with ec. 

Request 
Form 

• ec c 

lnilial 
ffalue 

\ 

If No 
Argument Notes Explanation 

\ Set escape character to \, or to c, if given . 

.eo on Turn escape mechanism off. 

10.2. Ligatures. Five ligatures are available in the current TROFF character set: ft, fl, tr, ffi, and m. 
They may be input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(Fl respectively. The ligature mode 
is normally on in TROFF, and automatically invokes ligatures during input. 

Request 
Form 

.lgN 

Initial 
Value 

off; on 

/fNo 
Argument Notes Explanation 

on Ligature mode is turned on if N is absent or non-zero, 
and turned off if N=O. If N=2, only the two-character 
ligatures are automatically invoked. Ligature mode is 
inhibited for request, macro, string, register, or file 
names, and in copy mode. No effect in NROFF . 

. 10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is 
replaced by a backward horizontal motion having the width of the space character. Underlining as a 
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1. 

NROFF automatically underlines characters in the underline font specifiable with uf (normally Times 
Italic on font position 2--see §2.2). In addition to ft and \fF, the underline font is selected by ul and 
cu. Underlining is restricted to an output-device-dependent subset of reasonable characters. 

- 19 -



NROFF/TROFF User's Manual 
October 11, 1976 

If No Request 
Form 

Initial 
Value Argument Notes· Explanation 

.ulN off 

.cuN off 

.uf F Italic 

N=l 

N=l 

. Italic 

E 

E 

Underline in NROFF (italicize in TROFF) the next N 
input text lines. Actually, switch to underline font, saving 
the current font for later restoration; other font changes 
within the span of a ul will take effect, but the restora
tion will undo the last change. Output generated by ti 
(§14) is affected by the font change, but does not decre
ment N. If N> 1, there is the risk that a trap interpo
lated macro may provide text lines within the span; 
environment switching can prevent this. 

A variant of ul that causes every character to be under
lined in NROFF. Identical to ul in TROFF. 

Underline font set to F. In NROFF, F may not be on 
position I (initially Times Roman). 

10.4. Control characters. Both the control character • and the no-break control character • may be 
changed, if desired. Such a change must be compatible with the design of any macros used in the span 
of the change, and particularly of any trap-invoked macros. 

Request Initial If No 
Form Value Argument Notes Explanation 

.cc c 

.cl c 

E 

E 

The basic control character is set to c, or reset to ".". 

The no-break control character is set to c, or reset to "··. 

10.5. Outpu.t translation. One character can be made a stand-in for another character using tr. All text 
processing (e.g., character comparisons) takes place with the input (stand-in) character which appears to 
have the width of the final character. The graphic translation occurs at the moment of output (includ
ing diversion). 

Request Initial 
Form Value 

.tr abed.... none 

I/No 
Argument Notes Explanation 

0 Translate a into b, c into d, etc. If an odd number of 
characters is given, the last one will be mapped into the 
space character. To be consistent, a particular translation 
must stay in effect from inpu.t to outpu.t time. 

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently 
output (without the initial \!); the text processor is otherwise unaware of the line's presence. This 
mechanism may be used to pass control information to a post-processor or to imbed control lines in a 
macro created by a diversion. 

10.7. Comme11ts and concealed new-lines. An uncomfortably long input line that must stay one line (e.g., 
a string definition, or no-filled text) can be split into many physical lines by ending all but the last one 
with the escape\. The sequence \(new-line) is .always ignored-except in a comment. Comments may 
be imbedded at the end of any line by prefacing them with\•. The new-line at the end of a comment 
cannot be concealed. A line beginning with \9 will appear as a blank line and behave like .sp 1; a com
ment can be on a line by itself by beginning the line with .\ •. 

11. Local Horizontal and Vertical Motions, and the Width Function 

11.J. Local Motions. The functions \v·N· and \h·N· can be used for local vertical and horizontal motion 
respectively. The distance N may be negative; the positive directions are rightward and downward. A 
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary 
that the net vertical local motion within a word in .filled text and otherwise within a line balance to zero. 
The above and certain other escape sequences providing local motion are summarized in the following 
table. 

- 20 -



NROFF/TROFF User's Manual 
October 11, 1976 

Vertical Effect in 
Local Motion TROFF NROFF 

\•/N. Move distance N 

\u '!.z em up '!.z line up 
\d Yz em down Yz line down 
\r 1 em up 1 line up 

Horizontal Effect in 
Local Motion TROFF NROFF 

\b·N· Move distance N 
\(space) Unpaddable space-size space 
\0 Digit-size space 

\I 1/6 em space ignored ,- l /12 em space ignored 

As an example, E2 could be generated by the sequence E\s-2\v· -0.4m.2\v0.4m\s+2; it should be 
noted in this example that the 0.4 em vertical motions are at the smaller size. 

ll.2. Width Function. The width function \w.string· generates the numerical width of string (in basic 
units). Size and font changes may be safely imbedded in string, and will not affect the current environ
ment. For example, .ti -\w·1. · u could be used to temporarily indent leftward a distance equal to the 
size of the string "1. ". 

The width function also sets three number registers. The registers st and sb are set respectively to the 
highest and lowest extent of string relative to the baseline; then, for example, the total height· of the 
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means 
that all of the characters in string were short lower case characters without descenders (like e); 1 means 
that at least one character has a descender (like y); 2 means that at least one character is tall (like H); 
and 3 means that both tall characters and characters with descenders are present. 

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the 
input line to be stored in register x. As an example, the construction \kxword\h.l\nxu+2u"word will 
embolden word by backing up to almost its beginning and overprinting it, resulting in word. 

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions 

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over
strike function \o.string·. The characters in string are overprinted with centers aligned; the total width is 
that of the widest character. string should nor contain local vertical motion. As examples, \o· e\ .. pro
duces e, and \o\(mo\(sf produces i. 
12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to 
produce left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce $, and 
\(br\z\(rn\(ul\(br will produce the smallest possible constructed box D. 
12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces 
( ( l 1 J ~ ~I l J fl ) that can be combined into various bracket styles. The function \b.string. may be used 
to pile up vertically the characters in string (the first character on top and the last at the bottom); the 
characters are vertically separated by l em and the total pile is centered 1/2 em above the current base-

line ('!.z line in NROFF). For example, \b.\(lc\(lf.E\l\b.\(rc\(rf.\x· -o.sm"\x·o.sm· produces [E]. 

12.4. Line drawing. The function \I° Ne· will draw a string of repeated c 's towards the right for a dis
tance N. (\I is \(lower case L). If c looks like a continuation of an expression for N, it may insulated 
from N with a\&. If c is not specified, the_ (baseline rule) is used (underline character in NROFF). If 
N is negative, a backward horizontal motion of size N is made before drawing the string. Any space 
resulting from N /{size of c) having a remainder is put at the beginning (left end) of the string. In the 
case of characters that are designed to be connected such as baseline-rule_, underrule _, and root
en - , the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen
tered on a distance N. As an example, a macro to underscore a string can be written 

.de us 
\\$1\l .IO\(uf 

- 21 -



NROFF/TROFF User's Manual 
October 11, 1976 

or one to draw a box around a string 

.de bx 
\(br\l\\Sl\l\(br\ 1·lo\(rn\1 ·IO\(uf 

such that 

.us "underlined words" 

and 

.bx "words in a box" 

yield underlined words and !words in a box I. 
The function \L. Ne· will draw a vertical line consisting of the (optional) character c stacked vertically 
apart 1 em (I line in NROFF), with the first two characters overlapped, if necessary, to form a continu
ous line. The default character is the box rule I (\(hr); the other suitable character is the bold vertical I 
(\(bv). The line is begun without any initial motion relative to the current base line. A positive N 
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn 
no compensating motions are made; the instantaneous baseline is at the end of the line. 

The horizontal and vertical line drawing functions may be used in combination to produce large boxes. 
The zero-width box-rule and the 'h-em wide underrule were designed to form corners when using 1-em 
vertical spacings. For example the macro 

.de eb 

.sp -1 \"compensate for next automatic base-line spacing 

.nf \"avoid possibly overflowing word buffer 
\h. - .Sn\L.l\\nau-1\1\\n(.lu+ ln\(ul\L. -1\\nau+ l\f!Ou- .5n\( uf \"draw box 
.fl 

will draw a box around some text whose beginning vertical place was saved in number register a (e.g., 
· a- as do f r · 

13. Hyphenation. 

The automatic hyphenation may be switched off and on. When switched on with by, several variants 
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small 
exception word list. 

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic 
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens 
(minus), em-dashes (\(em), or hyphenation indicator characters-such as mother-in-law-are always 
subject to splitting after those characters, whether or not automatic hyphenation is on or off. 

Request Initial If No 
Form Value Argument Notes Explanation 

.nb 

.by N 

no hyphen. -

otf,N=O on,N~ 1 

.be c \% \% 

.bw word/ ... ignored 

E 

E 

E 

Automatic hyphenation is turned off. 

Automatic hyphenation is turned on for N > I, or off for 
N= 0. If N= 2, last lines (ones that will cause a trap) 
are not hyphenated. For N= 4 and 8, the last and first 
two characters respectively of a word are not split off. 
These values are additive; i.e., N= 14 will invoke all 
three restrictions. 

Hyphenation indicator character is set to c or to the 
default\%. The indicator does not appear in the output. 

Specify hyphenation points in words with imbedded 
minus signs. Versions of a word with terminal s are 

- 22 -



NROFF/TROFF User's Manual 
October l I, 1976 

14. Three Part Titles. 

implied; i.e., dig-it implies dig-its. This list is exam
ined initially and after each suffix stripping. The space 
available is small-about 128 characters. 

The titling function ti provides for automatic placement of three fields at the left, center, and right of a 
line with a title-length specifiable with It. ti may be used anywhere, and is independent of the normal 
text collecting process. A common use is in header and footer macros. 

Request Initial If No 
Fonn Value Argument Notes Explanation 

.ti · lefi" center 'right The strings left, center, and right are respectively left
adjusted, centered, and right-adjusted in the current 
title-length. Any of the strings may be empty, and over
lapping is permitted. If the page-number character (ini
tially %) is found within any of the fields it is replaced by 
the current page number having the format assigned to 
register %. Any character may be used as the string del
imiter. 

.pc c % off 

.It ±N 6.5 in previous 

15. Output Line Numbering. 

E,m 

The page number character is set to c, or removed. The 
page-number register remains %. 

Length of title set to ± N. The line-length and the title
length are independent. Indents do not apply to titles; 
page-offsets do. 

Automatic sequence numbering of output lines may be requested with nm. When in effect, a 
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are 

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length 
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical 
spaces, and lines generated by ti are not numbered. Numbering can be temporarily suspended with 

6 nn, or with an .nm followed by a later .nm +o. In addition, a line number indent /, and the 
number-text separation S may be specified in digit-spaces. Further, it can be specified that only 
those line numbers that are multiples of some number Mare to be printed (the others will appear 

9 as blank number fields). 

Request Initial If No 
Form Value Argument Notes Explanation 

. nm ±NM S I off 

• nn N N=l 

E 

E 

Line number mode. If ±N is given, line numbering is 
turned on, and the next output line numbered is num
bered ±N. Default values are M= 1, S= l, and/= 0. 
Parameters corresponding to missing arguments are 
unaffected; a non-numeric argument is considered miss
ing. In the absence of all arguments, numbering is 
turned off; the next line number is preserved for possible 
further use in number register In. 

The next N text output lines are not numbered . 

As an example, the paragraph portions of this section are numbered with M= 3: .nm 1 3 was 
placed at the beginning; .nm was placed at the end of the first paragraph; and .nm +o was placed 

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by 
\w·oooo· u) to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on 
numbering with the line number of the next line to be 5 greater than the last numbered line, with 

15 M= 5, with spacing S untouched, and with the indent I set to 3. 

- 23 -



NROFF/TROFF User's Manual 
October 11, 1976 

16. Conditional Acceptance of Input 

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expres
sion, string/ and string2 are strings delimited by any non-blank, non-numeric character not in the 
strings, and anything represents what is conditionally accepted. 

Request Initial If No 
Form Value Argument Notes Explanation 

.if c anything 

. if !c anything 

• if N anything 

. if !N anything 

.If ·string] · string2 · anything 

.if ! ·string I ·string 2 anything 

• ie c anything 

• el anything 

The built-in condition names are: 

u 

ll 

u 

Condition 
Name 

0 

e 
t 
n 

If condition c true, accept anything as input; in multi-line 
case use \{anything\}. 

If condition c false, accept anything . 

If expression N > 0, accept anything . 

If expression N < 0, accept anything . 

If string! identical to string], accept anything . 

If string] not identical to string2, accept anything. 

If portion of if-else; all above forms (like if) . 

Else portion of if-else . 

True If 
Current page number is odd 
Current page number is even 
Formatter is TROFF 
Formatter is NROFF 

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically 
(including motions and character size and font), anything is accepted as input. If a ! precedes the condi
tion, number, or string comparison, the sense of the acceptance is reversed. 

Any spaces between the condition and the beginning of anything are skipped over. The anything can be 
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, 
the first line must begin with a left delimiter\{ and the last line must end with a right delimiter\}. 

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent 
and matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested. 

Some examples are: 

.if e .ti ·Even Page % ... 

which outputs a title if the page number is even; and 

.ie \n%> 1 \{\ 
·sp O.Si 
.ti· Page% ... 
· sp I t.2i \} 
.el .sp 12.Si 

which treats page 1 differently from other pages. 

17. En,;ironment Switching. 

A number of the parameters that control the text processing are gathered together into an environment, 
which can be switched by the user. The environment parameters are those associated with requests 
noting E in their Notes column; in addition, partially collected lines and words are in the environment. 
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters, 

- 24 -



NROFF/TROFF User's Manual 
October 11, 1976 

number registers, 
parameter values. 

and macro and string definitions. All environments are initialized with default 

Request Initial 
Form Value 

.ev N N=O 

I/No 
Argument Notes Explanation 

previous Environment switched to environment O:S.N:S.2. Switch
ing is done in push-down fashion so that restoring a pre
vious environment must be done with .ev rather than 
specific reference. 

18. Insertions from the Standard Input 

The input can be temporarily switched to the system standard input with rd, which will switch back 
when two new-lines in a row are found (the extra blank line is not us~d). This mechanism is intended 
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key
board, a pipe, or a file. 

Request Initial 
Form Value 

.rd prompt 

.ex 

I/No 
Argument Notes Explanation 

prompt=BEL- Read insertion from the standard input until two new-
lines in a row are found. If the standard input is the 
user's keyboard, prompt (or a BEL) is written onto the 
user's terminal. rd behaves like a macro, and arguments 
may be placed after prompt. 

Exit from NROFF/TROFF. Text processing is terminated 
exactly as if all input had ended. 

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal, 
the command-line option -q will turn off the echoing of keyboard input and prompt only with BEL. 
The regular input and insertion input cannot simultaneously come from the standard input. 

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the 
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke 
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file. 

19. Input/Output File Switching 

Request Initial If No 
Form Value Argument Notes Explanation 

• so file name 

.nx filename 

. pi program 

20. Miscellaneous 

Request Initial 
Form Value 

.me cN 

end-of-file 

I/No 
Argument 

off 

Notes 

E,m 

Switch source file. The top input (file reading) level is 
switched to filename. When the new file ends, input is 
again taken from the original file; so's may be nested. 
See §2.2 of the Addendum for additional details. 

Next file is filename. The current file is considered 
ended, and the input is immediately switched to filename . 

Pipe output to program (NROFF only). This request 
must occur before any printing occurs. No arguments are 
transmitted to program. 

Explanation 

Specifies that a margin character c appear a distance N to 
the right of the right margin after each non-empty text 
line (except those produced by ti). If the output line is 
too-long (as can happen in no-fill mode) the character 
will be appended to the line. If N is not given, the 

- 25 -



NROFF/TROFF User's Manual 
October 11, 1976 

.tm string new-line 

.igyy 

.pm t all 

.fl 

21. Output and Error Messages. 

B 

previous N is used; the initial N is 0.2 inches in NROFF 
and 1 em in TROFF. The margin character used with this 
paragraph was a 12-point box-rule. 

After skipping initial blanks, string (rest of the line) is 
read in copy mode and written on the user's terminal. 

Ignore input lines. ig behaves exactly like de (§7) except 
that the input is discarded. The input is read in copy 
mode, and any auto-incremented registers will be 
affected. 

Print macros. The names and sizes of all of the defined 
macros and strings are printed on the user's terminal; if t 
is given, only the total of the sizes is printed. The sizes 
is given in blocks of 128 characters. 

Flush output buffer. Used in interactive debugging to 
force output. 

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto 
UNIX's standard message output. The latter is different from the standard output, where NROFF format
ted output goes. By default, both are written onto the user's terminal, but they can be independently 
redirected. 

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious 
errors having only local impact do not cause processing to terminate. Two examples are word overflow, 
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by 
an output line that grew too large to fit in the line buffer; in both cases, a message is printed, the 
offending excess is discarded, and the affected word or line is marked at the point of truncation with a * 
in NROFF and a ""' in TROFF. The philosophy is to continue processing, if possible, on the grounds 
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and 
an appropriate message is printed. Examples are the inability to create, read, or write files, and the 
exceeding of certain internal limits that make future output unlikely to be useful. 

- 26 -



NROFF/TROFF User's Manual 
October 11, 1976 

TUTORIAL EXAMPLES 

Tl. Introduction 

Although NROFF and TROFF have by design a 
syntax reminiscent of earlier text processors• 
with the intent of easing their use, it is almost 
always necessary to prepare at least a small set of 
macro definitions to describe most documents. 
Such common formatting needs as page margins 
and footnotes are deliberately not built into 
NROFF and TROFF. Instead, the macro and 
string definition, number register, diversion, 
environment switching, page-position trap, and 
conditional input mechanisms provide the basis 
for user-defined implementations. 

The examples to be discussed are intended to be 
useful and somewhat realistic, but won't neces
sarily cover all relevant contingencies. Explicit 
numerical parameters are used in the examples to 
make them easier to read and to illustrate typical 
values. In many cases, number registers would 
really be used to reduce the number of places 
where numerical information is kept, and to con
centrate conditional parameter initialization like 
that which depends on whether TROFF or NROFF 
is being used. 

Tl. Page Margins 

As discussed in §3, header and footer macros are 
usually defined to describe the top and bottom 
page margin areas respectively. A trap is planted 
at page position 0 for the header, and at - N (N 
from the page bottom) for the footer. The sim
plest such definitions might be 

.de hd \"define header 
'sp li 

.de fo 
'bp 

.wh 0 hd 

.wh -li fo 

\"end definition 
\*define footer 

\"end definition 

which provide blank 1 inch top and bottom mar
. gins. The header will occur on the first page, 
only if the definition and trap exist prior to the 

• For example: P. A. Crisman, Ed., The Compatible Timi!
Sharing System, MIT .Press, 1965, Section AH9.0l 
(Description of RUNOFF program on MIT's CTSS system). 

initial pseudo-page transition ( §3). In fill mode, 
the output line that springs the footer trap was 
typically forced out because some part or whole 
word didn't fit on it. If anything in the footer 
and header that follows causes a break, that word 
or part word will be forced out. In this and other 
examples, requests like bp and sp that normally 
cause breaks are invoked using the no-break con
trol character · to avoid this. When the 
header/footer design contain5. material requiring 
independent text processing, the environment 
may be switched, avoiding most interaction with 
the running text. 

A more realistic example would be 

.de hd \"header 

.if t .ti ·\(rn.\(rn· \"troff cut mark 

.if\ \n%> 1 \{\ 
· sp lo.Si- I \"ti base at O.Si 
.ti·· - % - \*centered page number 
.ps \*restore size 
.ft \•restore font 
.vs \} \"restore vs 
·sp lt.Oi \"space to l.Oi 
.ns \"turn on no-space mode 

.de fo \•rooter 

.ps 10 \"set footer/header size 

.ft R \"set font 

.vs Up \•set base-line spacing 

.if\\n%=1 \{\ 
'sp l\\n(.pu-O.Si-1 \•t1base0.5i up 
.ti •· - % - ·• \} \•first page number 
"bp 

.wh 0 hd 

.wh -li fo 

which sets the size, font, and base-line spacing 
for the header/fo.oter f!laterial, and ultimately 
restores them. The material in this case is a page 
number at the bottom of the first page and at the 
top of the remaining pages. If TROFF is used, a 
cut mark is drawn in the form of root-en's at each 
margin. The sp's refer to absolute positions to 
avoid dependence on the base-line spacing. 
Another reason for this in the footer is that the 
footer is invoked by printing a line whose vertical 
spacing swept past the trap position by possibly as 

- 27 -



NROFF/TROFF User's Manual 
October 11, 1976 

much as the base-line spacing. The no-space 
mode is turned on at the end of hd to render 
ineffective accidental occurrences of sp at the top 
of the running text. 

The above method of restoring size, font, etc. 
presupposes that such requests (that set previous 
value) are not used in the running text. A better 
scheme is save and restore both the current and 
previous values as shown for size in the follow
ing: 

• de fo 
.nr st \\n(.s \•current size 
.ps 
.nr s2 \\n(.s 
. ---
.de hd 
. ---
.ps \\n(s2 
.ps \\n(sl 

\*previous size 
\'rest of footer 

\'header stuff 
\'restore previous size 
\'restore current size 

Page numbers may be printed in the bottom mar
gin by a separate macro triggered during the 
footer's page ejection: 

.de bn \*bottom number 

.ti ·· - % - •• \'centered page number 

• wh -0.Si-h bn \'ti base O.Si up 

T3. Paragraphs and Headings 

The housekeeping associated with starting a new 
paragraph should be collected in a paragraph 
macro that, for example, does the desired 
preparagraph spacing, forces the correct font, 
size, base-line spacing, and indent, checks that 
enough space remains for more than one line, and 
requests a temporary indent. 

• de pg \'paragraph 
.br \'break 
• ft R \'force font, 
.ps 10 \'size, 
.vs llp \'spacing, 
• in 0 \'and indent 
.sp 0.4 \'prespace 
.ne l+\\n(.Vu \*want more than I line 
.ti 0.21 \'temp indent 

The first break in pg will force out any previous 
partial lines, and must occur before the vs. The 
forcing of font, etc. is partly a defense against 
prior error and partly to permit things like sec
tion heading macros to set parameters only once. 

The prespacing parameter is suitable for TROFF; 
a larger space, at least as big &.s the output device 
vertical resolution, would be more suitable in 
NROFF. The choice of remaining space to test 
for in the ne is the smallest amount greater than 
one line (the . V is the available vertical resolu
tion). 

A macro to automatically number section head
ings might look like: 

.de sc \*section 
• --- \'force font, etc • 
.sp 0.4 \'prespace 
.ne 2.4+\\n(.Vu \"want 2.4+ lines 
.fi 
\\n+S. 

.nr S 0 1 \'init S 

The usage is .sc, followed by the section heading 
text, followed by .pg. The ne test value includes 
one line of heading, 0.4 line in the following pg, 
and one. line of the paragraph text. A word con
sisting of the next section number and a period is 
produced to begin the heading line. The format 
of the number may be set by af (§8). 

Another common form is the labeled, indented 
paragraph, where the label protrudes left into the 
indent space . 

.de Ip 

.pg 

.in 0.5i 

.ta O.li O.Si 

.ti 0 
\t\\$1\t\c 

\"labeled paragraph 

\"paragraph indent 
\*label, para1raph 

\'flow into paragraph 

The intended usage is ".Ip label"; label will 
begin at 0.2 inch, and cannot exceed a length of 
0.3 inch without intruding into the paragraph . 
The label could be right adjusted against 0.4 inch 
by setting the tabs instead with .ta 0.4iR O.Si . 
The last line of Ip ends with \c so that it will 
become a part of the first line of the text that fol
lows . 

T4. Multiple Column Output 

The production of multiple column pages 
requires the footer macro to decide whether it 
was invoked by other than the last column, so 
that it will begin a new column rather than pro
duce the bottom margin. The header can initial
ize a column register that the footer will incre
ment and test. The following is arranged for two 
columns, but is easily modified for more. 

- 28 -



NROFF/TROFF User's Manual 
October 11, 1976 

.de hd 

. ---

.nr cl 0 I 

.mk 
\"init column count 
\•mark top of text 

.de fo \"footer 

.ie \\n+(cl<l \{\ 

.po +3.4i \"next column; 3.1 +0.3 

.rt \"back to mark 

.ns \} \"no-space mode 

.el\{\ 

.po\ \nMu \"restore left margin 

. ---

.II 3.li \"column width 

.nr M \\n(.o \•save left margin 

Typically a portion of the top of the first page 
contains full width text; the request for the nar· 
rower line length, as well as another .mk would 
be made where the two column output was to 
begin. 

TS. Footnote Processing 

The footnote mechanism to be described is used 
by imbedding the footnotes in the input text at 
the point of reference, demarcated by an initial 
.fn and a terminal .ef: 

.fn 
Footnote text and control lines ... 
.ef 

In the following, footnotes are processed in a 
separate environment and diverted for later 
printing in the space immediately prior to the 
bottom margin. There is provision for the case 
where the last collected footnote doesn't com
pletely fit in the available space. 

.de hd \"header . ---

.nr x 0 1 

.nr y 0-\\nb 

.ch fo -\\nbu 

.if\ \n( dn .fz 

,de fo 
.nr dn 0 
.if \\nx \{\ 

\ •init footnote count 
\"current footer place 
\"reset footer trap 
\•leftover footnote 

\"footer 
\"zero last diversion size 

.ev 1 \"expand footnotes in evl 

. nf \"retain vertical size 

.FN \"footnotes 

.rm FN \"delete it 

.if "\ \n( .z"fy" .di \"end overflow diversion 

.nr x 0 \"disable fx 

.ev \} \"pop environment 

. ---

.de fx \"process footnote overflow 

.if \\nx .di fy \"divert overflow 

.de fn \"start footnote 

.da FN \"divert (append) footnote 

.ev 1 \•in environment 1 

.if \\n +x= 1 .fs \"if first, include separator 

.fi \"fill mode 

.de ef \"end footnote 

.br \"finish output 

.nr z \\n(.v \"save spacing 

.ev \"pop ev 

.di \•end diversion 

.nr y -\\n(dn \"new footer position, 

.if\\nx=l .nr y -(\\n(.v-\\nz) \ 
\"uncertainty correction 

.ch fo \ \ny u \ •y is negative 

.if ( \\n(nl +Iv)> ( \ \n(.p+\ \ny) \ 

.ch fo \\n(nlu+lv \"it didn't fit 

.de fs 
\f lf 
.hr 

.de fz 

.fn 

.nf 

.fy 

.ef 

\"separator 
\"1 inch rule 

\"get leftover footnote 

\"retain vertical size 
\"where fx put it 

.nr b l.Oi \"bottom margin size 

.wh 0 bd \"header trap 

.wh lli fo \"footer trap, temp position 

.wh -\\nbu fx \"fx at footer position 

.ch fo -\\nbu \"conceal fx with fo 

The header hd initializes a footnote count regis
ter x, and sets both the current footer trap posi· 
tion register y and the footer trap itself to a nom
inal position specified in register b. In addition, 
if the register dn indicates a leftover footnote, fz 
is invoked to reprocess it. The footnote start 
macro fn begins a diversion (append) in environ
ment I, and increments the count x; if the count 
is one, the footnote separator fs is interpolated . 
The separator is kept in a separate macro to per· 
mil user .redefinition. The footnote end macro ef 
restores the previous environment and ends the 
diversion after saving the spacing size in register 
z; y is then decremented by the size of the 

- 29 -



NROFF/TROFF User's Manual 
October 11, 1976 

footnote, available in dn; then on the first foot
note, y is further decremented by the diff ererice 
in vertical base-line spacings of the two environ
ments, to prevent the late triggering the footer 
trap from causing the last line of the combined 
footnotes to overflow. The footer trap is then set 
to the lower (on the page) of y or the current 
page position (nl) plus one line, to allow for 
printing the reference line. If indicated by x, the 
footer fo rereads the footnotes from FN in no-fill 
mode in environment 1, and deletes FN. If the 
footnotes were too large to fit, the macro fx will 
be trap-invoked to redivert the overflow into fy, 
and the register dn will later indicate to the 
header whether fy is empty. Both fo and fx are 
planted in the nominal footer trap position in an 
order that causes fx to be concealed unless the fo 
trap is moved. The footer then terminates the 
overflow diversion, if necessary, and zeros x to 
disable fx, because the uncertainty correction 
together with a not-too-late triggering of the 
footer can result in the footnote rereading finish
ing before reaching the fx trap. 

A good exercise for the student is to combine 
the multiple-column and footnote mechanisms. 

T6. The Last Page 

After the last input file has ended, NROFF and 
TROFF invoke the end macro (§7), if any, and 
when it finishes, eject the remainder of the page. 
During the eject, any traps encountered are pro
cessed normally. At the end of this last page, 
processing terminates unless a partial line, word, 
or partial word remains. If it is desired that 
another page be started, the end-macro 

.de en 
\c 
.hp 

.em en 

will deposit a null partial word, and effect 
another last page. 

- 30 -



NROFF/TROFF User's Manual 
October 11, 1976 

Table I 

Font Style Examples 

The following font examples are printed in 12-point, with a vertical spacing of 14-point, and with non
alphanumeric characters separated by 14 em space. The original Special Mathematical Font was specially 
prepared for Bell Laboratories by Wang Laboratories, Inc., of Hudson, New Hampshire. The Times 
Roman, Italic, and Bold are among the many standard fonts available. 

Times Roman 

abcdefghijklmnopqrstuvwxyz 
ABCDEFG HIJKLMNOPQRSTUVWXYZ 
1234567890 
!$%&()"*+ - .,/:; =? [ll 
• D - - - '14 ~ 3,4 fi ft ff ffi fH • t I ¢ ® © 

Times Italic 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGH/JKLMNOPQRSTUVWXYZ 
1234567890 
!$%&( J "*+ - .,/::=?!JI 
• 0- -_ !4 0 ~fifl.ffffiffl o t It@@ 

Times Bold 

abcdefghijkl m nopqrstu v wxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
1234567890 
!$%&()"*+-.,/:;= ?lJI 
• ·- __ lf.a llz 3f.. fi ft ff ffi fR O t I<:@ (Cl 

Special Mathematical Font 

".\ft - . ~I<> {} # @+- = * 
a~~ot!~OtKAµv~o~purrv~x~w 
raeA:en~'l'tllw o v-> < == -- ::::: =t -H-T l x-;- ± u n c ::Jc ::J ooa 
§ 'V .... Jcx0 E+w~@10fl1JOIUfll 

- 31 -



NROFF/TROFF User's Manual 
October II, 1976 

Table II 

Input Naming Conventions for ·, ·, and 
and for Non-ASCII Special Characters 

Non-ASCII characters and minus on the standard fonts. 

Input Character Input Character 
Char Name Name Char Name Name 

close quote fi \(fi fi 
open quote fl \{fl fl 

\(em 3/4 Em dash ff \{ff ff 
hyphen or ffi \(Fi ffi 

\{hy hyphen fH \(Fl fH 
\- current font minus \(de degree 

• \(bu bullet t \(dg dagger 
D \(sq square \{fm foot mark 

\(ru rule ¢ \(ct cent sign 
'A \(14 1/4 ® \{rg registered 
'h \(12 1/2 ~ \{co copyright 
lJ.i \(34 3/4 

Non-ASCII characters and·,·,_,+,-,=, and• on the special font. 

The ASCII characters @, #, ", -, ·, <, >, \, {, }, ·, ", and _ exist only on the special font and are 
printed as a I-em space if that font is not mounted. The following characters exist only on the special 
font. except for the upper case Greek letter names followed by t which are mapped into upper case 
English letters in whatever font is mounted on font position one (default Times Roman). The special 
math plus, minus, and equals are provided to insulate the appearance of equations from the choice of 
standard· fonts. 

Input Character Input Character 
Char Name Name Char Name Name 

+ \{pl math plus K \(*k kappa 
\(mi math minus X \(*I lambda 
\(eq math equals µ. \(*m mu 

"' \(** math star II \(*n nu 

~ \(sc section ~ \{*c xi 
\(aa acute accent 0 \(*o omicron 
\(ga grave accent 'IT \(*p pi 
\(ul underrule p \(*r rho 

I \(sl slash (rnatching backslash) u \(*s sigma 
OI \(*a alpha S' \(ts terminal sigma 
/j \(*b beta T \{*t tau 

'Y \(*g gamma v \(*u upsilon 
0 \(*d delta 

"' 
\(*f phi 

~ \(*e epsilon x \(*x chi 

r \(*z zeta 1/1 \(*q psi ,, \(*y eta w \(*w , omega 
() \(*h theta A \(*A Alphat 

\(*i iota B \(*B Betat 

- 32 -



NROFF/TROFF User's Manual 
October 11, 1976 

Input Character Input Character 
Char Name Name Char Name Name 

r \(*G Gamma I \(br box vertical rule 
.:l \(*D Delta :j: \(dd double dagger 
E \(*E Epsilont tjJ' \(rh right hand 
z \(*Z Zetat "'1 \(lh left hand 
H \(*Y Etat @ \(bs Bell System logo 
0 \(*H Theta I \(or or 
I \(*I Iotat 0 \(ci circle 
K \(*K Kappat ( \(It left top of big curly bracket 
A \{*L Lambda l \(lb left bottom 
M \(*M Mut 1 \(rt right top 
N \(*N Nut J \(rb right bot - \(*C Xi ~ \(lk left center of big curly bracket .=. 
0 \(*O Omicront ~ \(rk right center of big curly bracket 
n \(*P Pi I \(bv bold vertical 
p \(*R Rhot l \(If left floor (left bottom of big 
~ \(*S Sigma square bracket) 
T \(*T Taut J \(rf right floor (right bottom) 
r \(*U Upsilon r \(le left ceiling (left top) 
cl> \(*F Phi l \(re right ceiling (right top) 
x \(*X Chit 
w \(*Q Psi 
n \(*W Omega 
V_ \(sr square root 

\(rn root en extender 
2::: \(>= >= 
< \(<= <= 
!!!: \( = = identically equal - \C= approx = 

\(ap approximates 

* \(!= not equal - \(-> right arrow - \(<- left arrow 

T \(ua up arrow 
1 \(da down arrow 
x \(mu multiply 

\(di divide 
± \(+- plus-minus 
u \(cu cup (union) 
n \(ca cap (intersection) 
c \(sb subset of 
::> \(sp superset of 
c \(ib improper subset 
:2 \(ip improper superset 
00 \(if infinity 
a \(pd partial derivative 
V' \(gr gradient 

\(no not 

I \(is integral sign 
0:: \(pt proportional to 
0 \(es empty set 
E \(mo member of 

- 33 -



NROFF/TROFF User's Manual 
January 1981 

Addendum to the 
NROFF/TROFF User's Manual 

w This addendum supercedes all previous addenda to this manual. 

1. Command-Line Options 

1.1 New options 

-cname Use the compacted version of macro package name, if it exists. If it does not, 
NROFF/TROFF will try the equivalent -mname option. The -c option should 
be used in preference to the -m, because it makes NROFF/TROFF execute 
significantly faster. 

-kname Produce a compacted macro package from this invocation of NROFF/TROFF. 
The compacted output is produced in files d.name and t.name. This option has 
no effect if a co request is not used in the NROFF/TROFF input. See Section 5 
below. 

- b (NROFF only.) Use output tabs during horizontal spacing to speed up output as 
well as to reduce output byte count. Device tabs settings are assumed to be 
every 8 nominal character widths, as are the settings of input (logical) tabs. 

-uN (NROFF only.) Set the emboldening factor (number of character overstrikes in 
NROFF) for the third font position (bold) to be N (zero if N is missing); see 
the bd request in Section 2.2 below and the .b number register in Section 4 
below. Note that it is not possible to turn off the emboldening in NROFF if the 
output device used is such that the overstriking is done locally by that device 
(e.g., DASI 300s). 

- z Suppress formatted output. Only diagnostics and messages from tm requests 
will occur. 

1. 2 Modified options 

-Tname There are additional defined device names for NROFF: 

2631 
2631-c 
2631-e 
382 
4000a 
832 
x 
Ip 

for the Hewlett-Packard 2631 printer in regular mode 
for the Hewlett-Packard 2631 printer in compressed mode 
for the Hewlett-Packard 2631 printer in expanded mode 
for the Anderson Jacobson 832 terminal 
for the Trendata 4000A terminal 
for the DCT832 terminal 
for printers equipped with the TX print train 
for (generic) printers that can underline and tab 

The X driving table includes special escape sequences for EBCDIC character 
codes that may be used by NROFF postprocessors. 

In TROFF, the -T option may be used to specify the output device. The 
default TROFF output device (which is also the only device supported at the 
moment) is the Wang Laboratories' C/A/T phototypesetter. Other devices may 
be supported via this mechanism in future releases of TROFF. 

-sN As well as stopping the output every N pages, this option also causes the ASCII 
BEL character to be sent to the terminal when stopping between pages. In 
TROFF, the message "page stop" is printed on the diagnostic output (normally, 
the terminal). 

- 34 -



NROFF/TROFF User's Manual 
January 1981 

2. Requests 

2.1 New requests 

.ab text 

.co 

Prints text on the diagnostic output {normally, the terminal) and terminates 
without further processing. If text is missing, the message "User Abort" is 
printed. This request does not cause a break. The output buffer is flushed. 

If the - kname command-line option was given, compact the current state of 
NROFF/TROFF. If the - kname option was not used, co has no effect. See 
Section 5 below . 

. ! cmd args The UNIX command cmd is executed and its output is interpolated at this point. 
The standard input for and is closed. 

2. 2 Modified requests 

.ad c 

.bd F N 

.so file 

The adjustment type indicator c may now also be a number obtained from the .j 
register; see Section 4 below. 

The emboldening request bd (q.v.) now also works in NROFF and causes over
printing of characters in the bold font. The default setting is .bd 3 3, specifying 
that characters on the font in position 3 (normally bold) are to be overstruck 3 
times (i.e., printed in place a total of 4 times). The -u command-line option 
may be used to change the emboldening factor (i.e., the second argument of 
bd); see Section I. I above. This request may affect the contents of the number 
register .b; see Section 4 below. Note that it is not possible to turn off the 
emboldening in NROFF if the output device used is such that the overstriking is 
done locally by that device (e.g., DASI 300s). 

The contents of file will be interpolated at the point the so request is encoun
tered. Previously, if an so was encountered inside a macro, the interpolation 
was delayed until the input level returned to the file level (i.e., at least until the 
end of the macro). 

3. New Escape Sequences 

\gx,\g(xx Return the format of register x or xx; return nothing if x (xx) has not yet been 
referenced. Can be saved and used later as the second argument of the af 
request (q.v.) to restore the previous format of a register. 

\jx,\j(.xx Mark in register x or xx the current horizontal position on the output line; see 
also the \k register described in §11.3 of this manual. 

4. New Predefined Number Registers 

• F 

.L 

.P 

. R 

.b 

.j 

Read-only. The value is a string that is the name of the current input file . 

Read-only. Contains the current line-spacing parameter, i.e., the value of the 
argument of the most recent Is request. 

Read-only. Contains the value 1 if the current page is being printed, and 0 oth
erwise, e.g., if the current page does not appear in the -o option list. 

Count of number registers that remain available for use . 

Emboldening factor of the current font (NROFF and TROFF); see the -u 
option in Section 1.1 above and the bd request in Section 2.2 above. 

Read-only. Indicates the current adjustment mode and type. Can be saved and 
used later as the argument to the ad request (q.v.) to restore a previous adjust
ment mode. 

- 35 -



NROFF/TROFF User's Manual 
January 1981 

.k Read-only. Contains the horizontal size of the text portion (not including the 
size of the current indent, if any) of the current, partially-collected output line, 
if any, in the current environment. 

c. Provides general register access to the input line-number in the current input 
file. Contains the same value as the read-only .c register. 

5. Compacted Macros 

5.1 User information. The time required by NROFF/TROFF to read in a macro package may be 
greatly lessened by using a pre-processed or compacted version of that package. The compacted 
version of a macro package is completely equivalent to the non-compacted version, except that 
a compacted macro package can not be read in by the so request. 

A compacted version of a macro package is obtained by the -cname command-line option, 
while the - mname option obtains the uncompacted version; see Section l. l above. Because 
-cname reverts to -mname if the named macro package has not been compacted, one should 
normally use -c rather than - m. 

5.2 Building a compacted macro package. If one has a macro package and wishes to make a 
compacted version of it, the following steps should be followed: 

l. Separate the compactable part from the non-compactable part: 

Only the following can be compacted: macro, string, and diversion definitions; number 
register definitions and values; environment settings; and trap settings. For example, the 
following are not compactable: end macro (em) requests and any commands that may 
interact with command-line settings (e.g., references, in the MM macro package, to the 
number register P, which can be set from the command line). 

All the non-compactable material must be placed at the end of the macro package, with a 
co request separating the compactable from non-compactable parts: 

. Compactable part . 
. co 
No·n-compactable part . 

The co request indicates to NROFF/TROFF when to compact its internal state. 

2. Produce compacted files: 

Once compactable and non-compactable segments have been set up as above, 
NROFF/TROFF may be run with the - kname option to build the compacted files; see 
Section 1.1 above. 

For example, if the macro file produced by Step l above is called macs, then the follow
ing may be used to build the compacted files: 

nroff - kmacs macs 
troff - kmacs macs 

or 

Each of these commands causes NROFF/TROFF to create two files in the current direc-
tory, d.macs and t.macs. 

3. Install compacted files: 

The two compacted files produced in Step 2 must be installed into the system macro 
library (/usr/lib/macros) with appropriate names: prepend cmp.n. to files produced by 
NROFF, and cmp.t. to files produced by TROFF: 

- 36 -



NROFF/TROFF User's Manual 
January 1981 

cp d.macs /usr/lib/macros/cmp.n.d.macs 
cp t.macs /usr/lib/macros/cmp.n.t.macs 

will install the two files produced by compacting macs with NROFF. 

4. Install non-compactable segment: 

The non-compactable segment from the original macro package must also be installed on 
the system as: 

/usr/lib/macros/ucmp.[nt].name 

where n of [nt] indicates the NROFF version, while t indicates the TROFF version. 

The non-compactable segment must be produced "by hand," e.g., by using the editor: 

ed macs 
r\.coS/+ l,Sw /usr/lib/macros/ucmp.n.macs 
Q 

would create the (NROFF) non-compactable segment. Note that the non-compactable 
segment must exist even if it is empty (i.e., if the entire macro package is compactable). 

Thus, once the macro package macs is compacted by both NROFF and TROFF, and the 
resulting files installed, the directory /usr/lib/macros will contain the following six files: 

cmp.[nt].d.macs 
cmp.[nt].t.macs 
ucmp.[nt].macs 

where the first t applies to the macros as compacted by TROFF, while n indicates the 
NROFF macros. (The d and the second t in the above names stand for "data" and 
"text." respectively.) 

5.3 Warnings. A compacted macro package depends heavily on the particular version of 
NROFF/TROFF that produced it. This means that each package needs to be compacted 
separately by both NROFF and TROFF. It also means that all compacted macro packages must 
be recompacted whenever a new version of NROFF or TROFF is installed. 

If NROFF/TROFF discovers that a macro package was produced by a different version of 
NROFF/TROFF than that attempting to read it, the -c option is abandoned and the correspond
ing - m option is attempted instead. 

Should NROFF/TROFF actually read a compacted package that was produced by a different ver
sion of NROFF/TROFF (e.g., because the version number of NROFF/TROFF was not updated, 
but the code was changed), very peculiar behavior will result. 

Finally, note that the existence of a compacted macro package in no way precludes the installa
tion of the same package in non-compacted form, as explained on page 1 of this manual. 

6. Other Important Changes 

I. NROFF/TROFF can accept several - m/-c options on the command line, causing all 
macro packages thus named to be read in turn. 

2. The conditionally accepted part of an ie or if request is now completely ignored if the test 
fails, rather than being read in copy mode. 

3. The cu request has been improved to provide up to about three lines of continuously 
underlined text; the underlining is not lost when cu is used inside a diversion. 

- 37 -



1. INTRODUCTION 

l.l Purpose 

MM-Memorandum Macros 

D. W. Smith 
J. R. Mashey 

E. C. Pariser (January 1980 Revision) 
N. W. Smith (June 1980 Revision) 

Bell Laboratories 
Piscataway, New Jersey 08854 

UNIX 

C.2.1 

This memorandum is the user's guide and reference manual for the Memorandum Macros (MM), a 
general-purpose package of text formatting macros for use with the UNIXt text formatters nroff and 
troff. 

The purpose of MM is to provide a unified, consistent, and flexible tool for producing many common 
types of documents. Although the UNIX time-sharing system provides other macro packages for vari
ous specialized formats, MM has become the standard, general-purpose macro package for most docu
ments. 

MM can be used to produce: 

• Letters 
• Reports 
• Technical Memoranda 
• Released Papers 
• Manuals 
• Books. 

The uses of MM range from single-page letters to documents of several hundred pages in length, such 
as user guides, design proposals, etc. 

1.2 Conventions 

Each section of this memorandum explains a single facility of MM. In general, the earlier a section 
occurs, the more necessary it is for most users. Some of the later sections can be completely ignored if 
MM defaults are acceptable. Likewise, each section progresses from normal-case to special-case facili
ties. We recommend reading a section in detail only until there is enough information to obtain the 
desired format, then skimming the rest of it, because some details may be of use to just a few people. 

Numbers enclosed in curly brackets ( {}) refer to section numbers within this document. For example, 
this is {1.2}. 

Sections that require knowledge of the formatters {l .4} have a bullet ( •) at the end of their headings. 

In the synopses of macro calls, square brackets ( []) surrounding an argument indicate that it is 
optional. Ellipses ( •.. ) show that the preceding argument may appear more than once. 

A reference of the form name(N) points to page name in section N of the UNIX User's Manuatlll. 

The examples of output in this manual are as produced by troff; nroff output would, of course, look 
somewhat different (Appendix C shows both nroff and troff outputs for a simple letter). In those cases 
in which the behavior of the two formatters is truly different, the nroff action is described first, with the 
troff action following in parentheses. For example: 

t UNIX is a trademark of Bell Laboratories. 



2 

The title is underlined (italic). 

means that the title is underlined in nroff and italic in troff 

1.3 Overall Structure of a Document 

Memorandum Macros 

The input for a document that is to be formatted with MM possesses four major segments, any of which 
may be omitted; if present, they must occur in the following order: 

• Parameter-setting- This segment sets the general style and appearance of a document. The user can 
control page width, margin justification, numbering styles for headings and lists, page headers and 
footers {9}, and many other properties of the document. Also, the user can add macros or redefine 
existing ones. This segment can be omitted entirely if one is satisfied with default values; it pro
duces no actual output, but only performs the setup for the rest of the document. 

• Beginning-This segment includes those items that occur only once, at the beginning of a document, 
e.g., title, author's name, date. 

• Body- This segment is the actual text of the document. It may be as small as a single paragraph, or 
as large as hundreds of pages. It may have a hierarchy of headings up to seven levels deep {4}. 
Headings are automatically numbered (if desired) and can be saved to generate the table of con
tents. Five additional levels of subordination are provided by a set of list macros for automatic 
numbering, alphabetic sequencing, and "marking" of list items {5}. The body may also contain 
various types of displays, tables, figures, references, and footnotes {7, 8, l l}. 

• Ending-This segment contains those items that occur once only, at the end of a document. 
Included here are signature(s) and lists of notations (e.g., "copy to" lists) {6.11}. Certain macros 
may be invoked here to print information that is wholly or partially derived from the rest of the 
document, such as the table of contents or the cover sheet for a document {10}. 

The existence and size of these four segments varies widely among different document types. 
Although a specific item (such as date, title, author name(s), etc.) may be printed in several different 
ways depending on the document type, there is a uniform way of typing it in. 

1 .4 Definitions 

The term formatter refers to either of the text-formatting programs nroff and troff. 

Requests are built-in commands recognized by the formatters. Although one seldom needs to use these 
requests directly {3. JO}, this document contains references to some of them. Full details are given in 
the NROFF/TROFF User's Manua/l 2J. For example, the request: 

.sp 

inserts a blank line in the output. 

Macros are named collections of requests. Each macro is an abbreviation for a collection of requests 
that would otherwise require repetition. MM supplies many macros, and the user can define additional 
ones. Macros and requests share the same set of names and are used in the same way. 

Strings provide character variables, each of which names a string of characters. Strings are often used in 
page headers, page footers, and lists. They share the pool of names used by requests and macros. A 
string can be given a value via the .ds (define string) request, and its value can be obtained by 
referencing its name, preceded by"\*" (for l-character names) or"\*(" (for 2-character names). For 
instance, the string DT in MM normally contains the current date, so that the input line: 

Today is \•(DT. 

may result in the following output: 

Today is March 27, 1981. 



Memorandum Macros 3 

The current date can be replaced, e.g.: 

.ds DT 01/01 /79 

or by invoking a macro designed for that purpose {6.7.1 }. 

Number registers fill the role of integer variables. They are used for flags, for arithmetic, and for 
automatic numbering. A register can be given a value using a .nr request, and be referenced by 
preceding its name by "\n" (for I-character names) or "\n(" (for 2-character names). For example, 
the following sets the value of the register d to I more than that of the register dd: 

.nr d I +\n{dd 

See { 14. I} regarding naming conventions for requests, macros, strings, and number registers. 
Appendix E list all macros, strings, and number registers defined in MM. 

1.5 Prerequisites and Further Reading 

1.5.1 Prerequisites. We assume familiarity with UNIX at the level given in UNIX for Beginners [JJ and A 
Tutorial Introduction to the UNIX Text Editor l4l, Some familiarity with the request summary in the 
NROFF/TROFF User's Manuatl 2l is helpful. 

1.5.2 Further Reading. NROFF/TROFF User's Manual lzl provides detailed descriptions of formatter 
capabilities, while A TROFF Tutorial l5l provides a general overview. See Typesetting Mathematics- User's 
Guide [61 for instructions on formatting mathematical expressions. See tb/(1) and TBL-A Program to 
Format Tables [7J for instructions on formatting tabular data. 

Examples of formatted documents and of their respective input, as well as a quick reference to the 
material in this manual are given in Typing Documents with MM181. 

2. INVOKING THE MACROS 

This section tells how to access MM, shows UNIX command lines appropriate for various output dev
ices, and describes command-line flags for MM. 

2.1 The mm Command 

The mm (1) command can be used to print documents using nroff and MM; this command invokes nroff 
with the -cm flag {2.2}. It has options to specify preprocessing by tb/ and/or by neqn and for postpro
cessing by various output filters. Any arguments or flags that are not recognized by mm(I), e.g. -rC3, 
are passed to nroff or to MM, as appropriate. The options, which can occur in any order but must appear 
before the file names, are: 

-e 
-t 

-c 
-E 
-y 
-12 
-T450 

neqn is to be invoked; also causes neqn to read /usr/pub/eqnchar (see eqnchar(7)). 
tbl (I) is to be invoked. 
co/(1) is to be invoked. 
the -e option of nroff is to be invoked. 
-mm (uncompacted macros) is to be used instead of -cm. 
12-pitch mode is to be used. Be sure the pitch switch on the terminal is set to 12. 
output is to a DASI 450. This is the default terminal type (unless $TERM is set). 
It is also equivalent to -T1620. 

-T450-12 output is to a DASI 450 in 12-pitch mode. 
-T300 output is to a DASI 300 terminal. 
-T300-12 output is to a DASI 300 in 12-pitch mode. 
-T300s output is to a DASI 300S. 
-T300s-12 output is to a DASI 300S in 12-pitch mode. 
-T4014 output is to a Tektronix 4014. 
-T37 output is to a TELETYPE® Model 37. 
-T382 output is to a DTC-382. 
-T4000a output is to a Trendata 4000A. 



4 

-TX 
-Thp 
-T43 
-T40/4 
-T745 

output is prepared for an EBCDIC line printer. 
output is to a HP264x (implies -c). 
output is to a TELETYPE Model 43 (implies -c). 
output is to a TELETYPE Model 40/4 (implies -c). 
output is to a Texas Instrument 700 series terminal (implies -c). 

Memorandum Macros 

-T2631 output is prepared for a HP2631 printer (where -T2631-e and -T263I -c may be 
used for expanded and compressed modes, respectively) (implies -c). 

-Tip output is to a device with no reverse or partial line motions or other special features 
(implies -c). 

Any other -T option given does not produce an error; it is equivalent to -Tip. 

A similar command is available for use with troff (see mmt (I)). 

2.2 The -cm or -mm Flag 

The MM package can also be invoked by including the -cm or - mm flag as an argument to the for
matter. The -cm ftag causes the pre-compacted version of the macros to be loaded. The -mm flag 
causes the file /usr/lib/tmac/tmac.m to be read and processed before any other files. This action 
defines the MM macros, sets default values for various parameters, and initializes the formatter to be 
ready to process the files of input text. 

2.3 Typical Command Lines 

The prototype command lines are as follows (with the various options explained in {2.4} and in the 
NROFF/TROFF User's Manua/121). 

• Text without tables or equations: 

mm [options] file-name ••• 
or nroff [options] -cm file-name 

mmt [options] file-name ••• 
or troff [options] -cm file-name .•. 

• Text with tables: 

mm -t [options] file-name ••• 
or tbl file-name ..• I nroff [options] -cm 

mmt -t [options] file-name ••• 
or tbl file-name •.• I troff [options] -cm 

• Text with equations: 

mm -e [options] file-name ... 
or neqn /usr/pub/eqnchar file-name •.. I nroff [options] -cm 

mmt -e [options] file-name ..• 
or eqn /usr/pub/eqnchar file-name ... I troff [options] -cm 

• Text with both tables and equations: 

mm -t -e [options] file-name 
or tbl file-name ••• I neqn /usr/pub/eqnchar - I nroff [options] -cm 

mmt -t -e [options] file-name ••• 
or tbl file-name ... I eqn /usr/pub/eqnchar ~ I troff' [options] -cm 

When formatting a document with nroff, the output should normally be processed for a specific type of 
term.inal, ·because the output may require some features that are specific to a given terminal, e.g., 
reverse paper motion or half-line paper motion in both directions. Some commonly-used terminal 
types and the command lines appropriate for them are given below. Sec {2.4} as well as 300(1), 
450(1), 4014(1), hp(l), col(l), and terminals(?) for further information. 



Memorandum Macros 5 

• DASI 450 in 10-pitch, 6 lines/i.nch mode, with 0.75 inch offset, and a line length of 6 inches (60 
characters) where this is the default terminal type so no -T option is needed (unless $TERM is set 
to another value): 

mm file-name .•• 
or nroff -T4SO - h -cm file-name ••• 

• DASI 450 in 12-pitch, 6 lines/inch mode, with 0.75 inch offset, and a line length of 6 inches (72 
characters): 

mm -12 file-name ••. 
or nroff -T4S0-12 -h -cm file-name ••• 

or, to increase the line length to 80 characters and decrease the offset to 3 characters: 

mm -12 -rW80 -r03 file-name ••• 
or nroff -:-T4S0-12 -rW80 -r03 -h -cm file-name ... 

• Hewlett-Packard HP264x CRT family: 

mm -Tbp file-name ••• 
or nroff -cm file-name . . • I col I hp 

• Any terminal incapable of reverse paper motion and also lacking hardware tab stops (Texas Instru
ments 700 series, etc.): 

mm -T745 file-name ••• 
or nroff -cm file-name • • • I col -x 

• Versatec printer (see vp (I) for additional details): 

vp [vp-options] "mm -rTl -c file-name ••• " 
or vp [vp-options] "nroff -rTl -cm file-name . . • I col" 

Of course, tbl(l) and eqn(l)/neqn, if needed, must be invoked as shown in the command line proto
types at the beginning of this section. · 

If two-column processing {12.4} is used with nroff. either the -c option must be specified to mm(l), 1 

or the nroff output must be postprocessed by col (I). In the latter case, the -T37 terminal type must 
be specified to nroff. the - h option must not be specified, and the output of col ( 1) must be processed 
by the appropriate terminal filter (e.g., 450(1)); mm(l) with the -c option handles all this automati
cally. 

2.4 Parameters that Can Be Set from the Command Line 

Number registers are commonly used within MM to hold parameter values that control various aspects of 
output style. Many of these can be changed within the text files via .nr requests. In addition, some of 
these registers can be set from the command line itself, a useful feature for those parameters that 
should not be permanently em bedded within the input text itself. If used, these registers (with the pos
sible exception of the register P- see below) must be set on the command line (or before the MM 
macro definitions are processed) and their meanings are: 

-rAn for n .= I has the effect -0f invoking the .AF macro without an argument {6.7.2}. If n = 2 
· allows for usage of the BCif 'System logo, if available, on a printing device (currently available for 

the Xerox 9700 only). '.". ~;:, · 

I. Note that mm(l) uses col(I) auto1Ill1;1ica!!Y for many of the ierminal types {2.1}. 



6 Memorandum Macros 

-rCn n sets the type of copy (e.g., DRAfT) to be printed at the bottom of each page. See {9.5}. 
n = 1 for OFFICIAL FILE COPY. 
n = 2 for DATE FILE COPY. 
n = 3 for DRAFT with single-spacing and default paragraph style. 
n = 4 for DRAFT with double-spacing and IO space paragraph indent. 

- rD I sets debug mode. This flag requests the formatter to attempt to continue processing even if MM 
detects errors that would otherwise cause termination. It also includes some debugging informa
tion in the default page header {9.2, 12.3}. 

-rEn controls the font of the Subject/Date/From fields. If n is 1 then these fields are bold (default for 
troff) and if n is 0 then these fields are roman (regular text-default for nroff). 

-rLk sets the length of the physical page to k lines. 2 The default value is 66 lines per page. This 
parameter is used, for example, when directing output to a Versatec printer. 

-rNn specifies the page numbering style. When n is 0 (default), all pages get the (prevailing) header 
{9.2}. When n is I, the page header replaces the footer on page 1 only. When n is 2, the page 
header is omitted from page 1. When n is 3, "section-page" numbering {4.5} occurs (see .FD 
{8.3} and .RP {11.4} for footnote and reference numbering in sections). When n is 4, the default 
page header is suppressed; however a user-specified header is not affected. When n is 5, 
"section-page" and "section-figure" numbering occurs. 

n Page I 

0 header 
1 header replaces footer 
2 no header 
3 "section-page" as footer 
4 no header 
5 same as 3-with "section-figure" 

header 
header 
header 

Pages 2.ff. 

same as page 1 
no header unless .PH defined 
same as _E?.ge I 

The contents of the prevailing header and footer do not depend on the value of the number 
register N; N only controls whether and where the header (and, for N = 3 or 5, the footer) is 
printed, as well as the page numbering style. In particular, if the header and footer are null {9.2, 
9 .. 5}, the value of N is irrelevant. 

-rOk offsets output k spaces to the right. 2 It is helpful for adjusting output positioning on some termi
nals. The default offset if this register is not set on the command line is 0. 75 inches. NOTE: 
The register name is the capital letter "O", not the digit zero (0). 

-rPn specifies that the pages of the document are to be numbered starting with n. This register may 
also be set via a .nr request in the input text. 

-rSn sets the point size and vertical spacing for the document. The default n is 10, i.e., IO-point type 
on 12-point vertical spacing, giving 6 lines per inch {12.9}. This parameter applies to troff only. 

-rTn provides register settings for certain devices. If n is 1, then the line length and page offset are 
set to 80 and 3, respectively. Setting n to 2 changes the page length to 84 lines per page and 
inhibits underlining; it is meant for output sent to the Versatec printer. The default value for n 
is 0. This parameter applies to nroff only. · 

-rUl controls underlining of section headings.· This flag causes only letters and digits to be under
lined:· Otherwise, all characters (including spaces) are underlined {4.2.2.4.2}. This parameter 

. applies to nroff only. 

2. For nroff. k is an unscaled number representing lines or character positions; for troff. k must be .5caled. 



!tlernorandurn !tlacros 7 

-rWkpage width (i.e., line length and title length) is set to k. 2 This can be used to change the page 
width from the default value of 6 inches (60 characters in 10 pitch or 72 characters in 12 pitch). 

l.5 Omission of -cm or - mm 

If a large number of arguments is required on the command line, it may be convenient to set up the 
first (or only) input file of a document as follows: 

zero or more initializations of registers listed in {2.4} 
.so /usr/lib/tmac/tmac.m 
remainder of text 

In this case, one must not use the -cm or -mm flag (nor the mm(l) or mmt(l) command); the .so 
request has the equivalent effect, but the registers in {2.4} must be initialized before the .so request, 
because their values are meaningful only if set before the macro definitions are processed. When using 
this method, it is best to "lock" into the input file only those parameters that are seldom changed. For 
example: 

.nr W 80 

.nr 0 IO 

.nr N 3 

.so /usr/lib/tmac/tmac.m 

.H 1 "INTRODUCTION" 

specifies, for nroff. a line length of 80, a page offset of 10, and "section-page" numbering. 

3. FORMATTING CONCEPTS 

3.1 Basic Terms 

The normal action of the formatters is to fill output lines from one or more input lines. The output 
lines may be justified so that both the left and right margins are aligned. As the lines are being filled, 
words may also be hyphenated {3.4} as necessary. It is possible to turn any of these modes on and off 
(see .SA {12.2}, Hy {3.4}, and the formatter .nf and .fi requestsl21). Turning off fill mode also turns off 
justification and hyphenation. 

Certain formatting commands (requests and macros) cause the filling of the current output line to 
cease, the line (of whatever length) to be printed, and the subsequent text to begin a new output line. 
This printing of a partially filled output line is known as a break. A few formatter requests and most of 
the MM macros cause a break. 

While formatter requests can be used with MM, one must fully understand the consequences and side
eff ects that each such request might have. Actually, there is little need to use formatter requests; the 
macros described here should be used in most cases because: 

- it is much easier to control (and change at any later point in time) the overall style of the document. 
- complicated features (such as footnotes or tables of contents) can be obtained with ease. 
- the user is insulated from the peculiarities of the formatter language. 

A good rule is to use formatter requests only when absolutely necessary {3.10}. 

In order to make it easy to revise the input text at a later time, input lines should be kept short and 
should be broken at the end of clauses; each new full sentence must begin on a new line . 

. 3.2 Arguments and Double Quotes 

For any macro call, a null argument is an argument whose width is zero. Such an argument often has a 
special meaning; the preferred form for a null argument is • ". Note that omitting an argument is not the 
same as supplying a null argument (for example, see the .MT macro in {6.6}). Furthermore, omitted 
arguments can occur only at the end of an argument list, while null arguments can occur anywhere. 



8 Memorandum Macros 

Any macro argument containing ordinary (paddable) spaces must be enclosed in double quotes ("). 3 

Otherwise, it will be treated as several separate arguments. 

Double quotes (") are not permitted as part of the value of a macro argument or of a string that is to be 
used as a macro argument. If you must, use two grave accents ( • ·) and/or two acute accents ( • ·) 
instead. This restriction is necessary because many macro arguments are processed (interpreted) a vari
able number of times; for example, headings are first printed in the text and may be (re)printed in the 
table of contents. 

3.3 Unpaddable Spaces 

When output lines are justified to give an even right margin, existing spaces in a line may have addi
tional spaces appended to them. This may harm the desired alignment of text. To avoid this problem, 
it is necessary to be able to specify a space that cannot be expanded during justification, i.e., an unpadd
able space. There are several ways to accomplish this. 

First, one may type a backslash followed by a space ("\ "). This pair of characters directly generates 
an unpaddable space. Second, one may sacrifice some seldom-used character to be translated into a 
space upon output. Because this translation occurs after justification, the chosen character may be used 
anywhere an unpaddable space is desired. The tilde C) is often used for this purpose. To use it in this 
way, insert the following at the beginning of the document: 

.tr 

If a tilde must actually appear in the output, it can be temporarily "recovered" by inserting: 

.tr 

before the place where it is needed. Its previous usage is restored by repeating the ".tr ~ ", but only 
after a break or after the line containing the tilde has been forced out. Note that the use of the tilde in 
this fashion is not recommended for documents in which the tilde is used within equations. 

3.4 Hyphenation 

The formatters do not perform hyphenation unless the user requests it. Hyphenation can be turned on 
in the body of the text by specifying: 

.nr Hy 1 

once at the beginning of the document. For hyphenation within footnotes and across pages, see {8.3}. 

If hyphenation is requested, the formatters will automatically hyphenate words, if need be. However, 
the user may specify the hyphenation points for a specific occurrence of any word by the use of a spe
cial character known as a hyphenation indicator, or may specify hyphenation points for a small list of 
words (about 128 characters). 

If the hyphenation indicator (initially, the two-character sequence "\%") appears at the beginning of a 
word, the word is not hyphenated. Alternatively, it can be used to indicate legal hyphenation point(s) 
inside a word. In any case, all occurrences of the hyphenation indicator disappear on output. 

The user may specify a different hyphenation indicator: 

.HC [hyphenation-indicator] 

The circumflex (") is often used for this purpose; this is done by inserting the following at the begin
ning of a document: 

3.' A double quote (") is a single character that must not be confused with two apostrophes or acute accents('·), or with two 
grave accents ( • • ). 



Memorandum Macros 9 

.HC" 

Note that any word containing hyphens or dashes-also known as em dashes-will be hyphenated 
immediately after a hyphen or dash if it is necessary to hyphenate the word, even if the formatter hyphe:. 
nation function is turned off 

The user may supply, via the .hw request, a small list of words with the proper hyphenation points indi
cated. For example, to indicate the proper hyphenation of the word "printout," one may specify: 

.hw print-out 

3.5 Tabs 

The macros .MT {6.6}. .TC {IO.I}. and .CS {10.2} use the formatter .ta request to set tab stops, and 
then restore the default values4 of tab settings. Thus, setting tabs to other than the default values is the 
user's responsibility. 

Note that a tab character is always interpreted with respect to its position on the input line, rather than 
its position on the output line. In general, tab characters should appear only on lines processed in 
"no-fill" mode {3. l }. 

Also note that tbl (I) {7 .3} changes tab stops, but does not restore the default tab settings. 

3.6 Special Use of the BEL Character 

The non-printing character BEL is used as a delimiter in many macros where it is necessary to compute 
the width of an argument or to delimit arbitrary text, e.g., in headers and footers {9}, headings {4}, and 
list marks {5}. Users who include BEL characters in their input text (especially in arguments to mac
ros) will receive mangled output. 

3.7 Bullets 

A bullet (•) is often obtained on a typewriter terminal by using an "o" overstruck by a ··+". For 
compatibility with troff, a bullet string is provided by MM. Rather than overstriking, use the sequence: 

\•(BU 

wherever a bullet is desired. Note that the bullet list (.BL) macros {5.3.3.2} use this string to automati
cally generate the bullets for the list items. 

3.8 Dashes, Minus Signs, and Hyphens 

Troff has distinct graphics for a dash, a minus sign, and a hyphen, while nroff does not. Those who 
intend to use nroff only may use the minus sign ( .. - ") for all three. 

Those who wish mainly to use troff should follow the escape conventions of the NROFF/TROFF User's 
Manua/ 121 • 

Those who want to use both formatters must take care during text preparation. Unfortunately, these 
characters cannot be represented in a way that is both compatible and convenient. We suggest the fol
lowing approach: 

Dash Type \•(EM for each text dash for both nroff and troff. This string generates an em dash 
(-) in troff and " __ ,;. ,"in nroff. Note that the dash list (.DL) mac~os {5.3.3.3} automati-
cally generate th~ em dash for each list item. · 

Hyphen Type •• _ .. and use as is for both formatters. Nroff will print it as is, and troff will print •• _ .. 
(a true hyphen). 

4. Every eight characters in nroff: ever}"Y.zY~h in troff 



10 Memorandum Macros 

Minus Type "\-" for a true minus s,ign, regardless of formatter. Nroff will effectively ignore the 
"\", while troff will print a true minus sign. 

3.9 Trademark String 

A trademark string \*(Tm is available with MM. This places the letters "TM" one-half line above the 
text that it follows. 

For example: 

The UNIX\•(Tm User's Manual is available from the library. 

yields: 

The UNIX™ User's Manual is available from the library. 

3.10 Use of Formatter Requests• 

Most formatter requests 121 should not be used with MM because MM provides the corresponding format
ting functions in a much more user-oriented and surprise-free fashion than do the basic formatter 
requests {3.1 }. However, some formatter requests are useful with MM, namely: 

.af .br 

.rm .rr 
.ce 
.rs 

.de 

.so 
.ds 
.sp 

.fi 

.ta 
.hw 
. ti 

.ls 

.ti 
.nf 
.tr 

.nr 

.! 
.nx 

The .fp, .lg, and .ss requests are also sometimes useful for troff. Use of other requests without fully 
understanding their implications very often leads to disaster. 

4. PARAGRAPHS AND HEADINGS 

This section describes simple paragraphs and section headings. Additional paragraph and list styles are 
covered in {5}. 

4.1 Paragraphs 

.P [type] 
one or more lines of text. 

This macro is used to begin two kinds of paragraphs. In a left-justified paragraph, the first line begins at 
the left margin, while in an indented paragraph, it is indented five spaces (see below). 

A document possesses a default paragraph style obtained by specifying ".P" before each paragraph that 
does not follow a heading {4.2}. The default style is controlled by the register Pt. The initial value of 
Pt is 0, which always provides left-justified paragraphs. All paragraphs can be forced to be indented by 
inserting the following at the beginning of the document: 

.nr Pt 1 

All paragraphs will be indented except after headings, lists, and displays if the following: 

.nr Pt 2 

is inserted at the beginning of the document. 

The amount a paragraph is indented is contained in the register Pi, whose default value is 5. To indent 
paragraphs by, say, IO spaces, insert: 

.nr Pi 10 . · 

at the beginning of the document. Of course, both the Pi and Pt register values must be greater than 
zero for any paragraphs to be indented. 

The number register Ps controls the amount of spacing between paragraphs. By default, Psis set to I, 
yielding one blank space (Y.z a vertical space). 



Memorandum Macros 11 

s:;;w- Values that specify indentation must be unscaled and are treated as "character positions," i.e., as a 
number of ens. In troff, an en is the number of points (1 point = 1/72 of an inch) equal to half the 
current point size. In nroff, an en is equal to the width of a character. 

Regardless of the value of Pt, an individual paragraph can be forced to be left-justified or indented. 
".P O" always forces left justification; ".P l" always causes indentation by the amount specified by the 
register Pi. 

If .P occurs inside a list, the indent (if any) of the paragraph is added to the current list indent {5}. 

Numbered paragraphs may be produced by setting the register Np to 1. This produces paragraphs num
bered within first level headings, e.g., 1.01, 1.02, 1.03, 2.01, etc. 

A different style of numbered paragraphs is obtained by using the 

.nP 

macro rather than the .P macro for paragraphs. This produces paragraphs that are numbered within 
second level headings and contain a "double-line indent" in which the text of the second line is 
indented to be aligned with the text of the first line so that the number stands out. 

.H 1 "FIRST HEADING" 

.H 2 "Second Heading" 

.nP 
one or more lines of text 

4.2 Numbered Headings 

.H level [heading-text] [heading-suffix] 
zero or more lines of text 

The .H macro provides seven levels of numbered headings, as illustrated by this document. Level 1 is 
the most major or highest; level 7 the lowest. 

The heading-suffix is appended to the heading-text and may be used for footnote marks which should not 
appear with the heading text in the Table of Contents. 

rar Strictly speaking, there is no need for a .P macro immediately after a .H (or .HU {4.3}), because the .H 
macro also performs the function of the .P macro, and an immediately following .Pis ignored {4.2.2.2}. 
It is, however, good practice to start every paragraph with a .P macro, thereby ensuring that all para
graphs uniformly begin with a .P throughout an entire document. 

4.2.l Normal Appearance. The normal appearance of headings is as shown in this document. The 
effect of .H varies according to the level argument. First-level headings are preceded by two blank lines 
(one vertical space); all others are preceded by one blank line (V2 a vertical space) . 

. H I heading-text gives a bold headingfo//owed by a single blank line (\.2 a vertic'll space). The 
following text begins on a new line and is indented according to the current 
paragraph type. Full capital letters should normally be used to make the 
heading stand out. 

.H 2 heading-text 

. . H n. heading-text 

yields a bold heading followed by a single blank line (\.2 a vertical space). The 
following text begins on a new line and is indented according to the current 
paragraph type. Normally, initial capitals are used. 

for 3 ::::Sn< 7, produces an underlined (italic) heading followed by two spaces . 
The following text appears on the same line, i.e., these are run-in headings. 

Appropriate numbering and spacing (horizontal and vertical) occur even if the heading text is omitted 
from a .H macro call. 



12 

Here are the first few .H calls of {4}: 

.H 1 "PARAGRAPHS AND HEADINGS" 

.H 2 "Paragraphs" 

.H 2 "Numbered Headings" 

.H 3 "Normal Appearance." 

.H 3 "Altering Appearance of Headings." 

.H 4 "Pre-Spacing and Page Ejection." 

.H 4 "Spacing After Headings." 

.H 4 "Centered Headings." 

.H 4 "Bold, Italic, and Underlined Headings" 

.H 5 "Control by Level." 

Memorandum Macros 

4.2.2 Altering Appearance of Headings. Users satisfied with the default appearance of headings may skip 
to {4.3}. One can modify the appearance of headings quite easily by setting certain registers and strings 
at the beginning of the document. This permits quick alteration of a document's style, because this 
style-control information is concentrated in a few lines, rather than being distributed throughout the 
document. 

4.2.2.l Pre-Spacing and Page Ejection. A first-level heading normally has two blank lines (one vertical 
space) preceding it, and all others have one blank line (Vl a vertical space). If a multi-line heading 
were to be split across pages, it is automatically moved to the top of the next page. Every first-level 
heading may be forced to the top of a new page by inserting: 

.nr Ej 1 

at the beginning of the document. Long documents may be made more manageable if each section 
starts on a new page. Setting Ej to a higher value causes the same effect for headings up to that level, 
i.e., a page eject occurs if the heading level is less than or equal to Ej. 

4.2.2.2 Spacing After Headings. Three registers control the appearance of text immediately following a 
.H call. They are Hb (heading break level), Hs (heading space level), and Hi (post-heading indent). 

If the heading level is less than or equal to Hb, a break {3.1} occurs after the heading. If the heading 
level is less than or equal to Hs, a blank line ('ha vertical space) is inserted after the heading. Defaults 
for Hb and Hs are 2. If a heading level is greater than Hb and also greater than Hs, then the heading 
(if any) is run into the following text. These registers permit headings to be separated from the text in 
a consistent way throughout a document, while allowing easy alteration of white space and heading 
emphasis. 

For any stand-a/one heading, i.e., a heading not run into the following text, the alignment of the next 
line of output is controlled by the register Hi. If Hi is 0, text is left-justified. If Hi is 1 (the default 
value), the text is indented according to the paragraph type as specified by the register Pt {4. l}. Finally, 
if Hi is 2, text is indented to line up with the first word of the heading itself, so that the heading 
number stands out more clearly. 

For example, to cause a blank line (V; a vertical space) to appear after the first three heading levels, to 
have no run-in headings, and to force the text following all headings to be left-justified (regardless of 
the value of Pt), the following should appear at the top of the document: 

.nr Hs 3 

.nr Hb 7 

.nr Hi 0 

4.2.2.3 Centered Headings. The register He can be used to obtain centered headings. A heading is cen
tered if its level is less than or equal to He, and if it is also stand-alone {4.2.2.2}. He is 0 initially (no 
centered headings). 



Memorandum Macros 13 

4.2.2.4 Bold, Italic, and Underlined Headings 

4.2.2.4. l Control by level. Any heading that is underlined by nro_ff is made italic by troff. The string 
HF (heading font) contains seven codes that specify the fonts for heading levels 1-7. The legal codes, 
their interpretations, and the defaults for HF are: · 

Formatter 
HF Code Default 

1 2 3 HF 

nroff no underline underline bold 3 3 2 2 2 2 2 
troff roman italic bold 3322222 

Thus, levels I and 2 are bold; levels 3 through 7 are underlined in nroff and italic in troff. The user 
may reset HF as desired. Any value omitted from the right end of the list is taken to be 1. For exam
ple, the following would result in five bold levels and two non-underlined (roman) levels: 

.ds HF 3 3 3 3 3 

4.2.2.4.2 Nroff Underlining Style. Nroff can underline in two ways. The normal style (.ul request) is to 
underline only letters and digits. The continuous style (.cu request) underlines all characters, including 
spaces. By default, MM attempts to use the continuous style on any heading that is to be underlined 
and is short enough to fit on a single line. If a heading is to be underlined, but is too long, it is under
lined the normal way (i.e., only letters and digits are underlined). 

All underlining of headings can be forced to the normal way by using the -rUl flag when invoking 
nroff {2.4}. 

4.2.2.4.3 Heading Point Sizes. The user may also specify the desired point size for each heading level 
with the HP string (for use with troff only) . 

• ds HP [psl] [ps2] [ps3] [ps4] [ps5] [ps6] [ps7] 

By default, the text of headings (.H and .HU) is printed in the same point size as the body except that 
bold stand-alone headings are printed in a size one point smaller than the body. The string HP, similar 
to the string HF, can be specified to contain up to seven values, corresponding to the seven levels of 
headings. For example: 

.ds HP 12 12 10 10 10 10 10 

specifies that the first and second level headings are to be printed in 12-point type, with the remainder 
printed in IO-point. Note that the specified values may also be relative point-size changes, e.g.: 

.ds HP +2 +2 -1 -1 

If absolute point sizes are specified, then those sizes will be used· regardless of the point size of the 
body of the document. If relative point sizes are specified, then the point sizes for the headings will be 
relative to the point size of the body, even if the latter is changed. 

Null or zero values imply that the default size will be used for the corresponding heading level. 

tiU"' Only the point size of the headings is affected. Specifying a large point size without providing increased 
vertical spacing (via .HX and/or .HZ) may cause overprinting. 

4.2.2.5 Marking Styles-Numerals and Concatenation .· 
.HM [argl] ... [arg7] 

The registers named HI through. H7 are used as counters for the seven levels of headings. Their 
. values are normally printed using Arabic numerals. The .HM macro (heading mark style) allows this 
choice to be overridden, thus providing "outline" and other document styles. This macro can have up 
to seven arguments; each argument is a string indicating the type of marking to be used. Legal values 
and their meanings are shown below; omitted values are interpreted as I, while illegal values have no 
effect. 



14 

Value 

I 
0001 

A 
a 
I 

InteT!!tation 
Arabic (default for all levels) 
Arabic with enough leading zeroes to get 

the specified number of digits 
Upper-case alphabetic 
Lower-case alphabetic 
Upper-case Roman 
Lower-case Roman 

Memorandum Macros 

By default, the complete heading mark for a given level is built by concatenating the mark for that level 
to the right of all marks for all levels of higher value. To inhibit the concatenation of heading level 
marks, i.e., to obtain just the current level mark followed by a period, set the register Ht (heading-mark 
type) to I. 

For example, a commonly-used "outline" style is obtained by: 

.HM l A I a i 

.nr Ht I 

4.3 Unnumbered Headings 

.HU heading-text 

.HU is a special case of .H; it is handled in the same way as .H, except that no heading mark is printed. 
In order to preserve the hierarchical structure of headings when .H and .HU calls are intermixed, each 
.HU heading is considered to exist at the level given by register Hu, whose initial value is 2. Thus, in 
the normal case, the only difference between: 

.HU heading-text 

and: 

.H 2 heading-text 

is the·printing of the heading mark for the latter. Both have the effect of incrementing the numbering 
counter for level 2, and resetting to zero the counters for levels 3 through 7. Typically, the value of 
Hu should be set to make unnumbered headings (if any) be the lowest-level headings in a document . 

• HU can be especially helpful in setting up appendices and other sections that may not fit well into the 
numbering scheme of the main body of a document {14.2.l}. 

4.4 Headings and the Table of Contents 

The text of headings and their corresponding page numbers can be automatically collected for a table of 
contents. This is accomplished by doing the following two things: 

• specifying in the register Cl what level headings are to be saved 
• invoking the .TC macro {10.1} at the end of the document 

Any heading whose level is less than or equal to the value of the register Cl (contents level) is saved 
and later displayed in the table of contents. The default value for Cl is 2, i.e., the first two levels of 
headings are saved. 

Due to the way the headings are saved, it is possible to exceed the formatter's storage capacity, particu
larly when saving many levels of many headings,· while also processing displays {7} and footnotes {8}. 
If this happens: the "Out of temp file space" diagnostic {Appendix D} will be issued; the only remedy 
is to save fewer levels and/or to have fewer words in the heading text. 

4.5 First-Level Headings and Page Numbering Style 

By default, pages are numbered sequentially at the top of the page. For large documents, it may be 
desirable to use page numbering of the form "section-page," where section is the number of the 



Memorandum Macros 15 

current first-level heading. This page numbering style can be achieved by specifying the -rN3 or 
-rN5 flag on the command line {9.9}. As a side effect, this also has the effect of setting Ej to 1, i.e., 
each section begins on a new page. In this style, the page number is printed at the bottom of the page, 
so that the correct section number is printed. 

4.6 User Exit Macros • 

t§' This section is intended only for users who are accustomed to writing formatter macros . 

. HX dlevel rlevel heading-text 

.HY dlevel rlevel heading-text 

.HZ dlevel rlevel heading-text 

The .HX, .HY, and .HZ macros are the means by which the user obtains a final level of control over 
the previously-described heading mechanism. MM does not define .HX, .HY, and .HZ; they are 
intended to be defined by the user. The .H macro invokes .HX shortly before the actual heading text is 
printed; it calls .HZ as its last action. After .HX is invoked, the size of the heading is calculated. This 
processing causes certain features that may have been included in .HX, such as .ti for temporary 
indent, to be lost. After the size calculation, .HY is invoked so that the user may respecify these 
features. All the default actions occur if these macros are not defined. If the .HX, .HY, or .HZ are 
defined by the user, the user-supplied definition is interpreted at the appropriate point. These macros 
can therefore influence the handling of all headings, because the .HU macro is actually a special case of 
the .H macro. 

If the user originally invoked the .H macro, then the derived level (dleve/) and the real level (rlevel) 
are both equal to the level given in the .H invocation. If the user originally invoked the .HU macro 
{4.3}, dlevel is equal to the contents of register Hu, and rlevel is 0. In both cases, heading-text is the text 
of the original invocation. 

By the time .H calls .HX, it has already incremented the heading counter of the specified level 
{4.2.2.5}, produced blank line(s) (vertical space) to precede the heading {4.2.2.1}. and accumulated the 
"heading mark", i.e., the string of digits, letters, and periods needed for a numbered heading. When 
.HX is called, all user-accessible registers and strings can be referenced, as well as the following: 

string }O If rlevel is non-zero, this string contains the "heading mark." Two unpaddable spaces 
(to separate the mark from the heading) have been appended to this string. If rlevel is 
0, this string is null. 

register ;O This register indicates the type of spacing that is to follow the heading {4.2.2.2}. A 
value of 0 means that the heading is run-in. A value of I means a break (but no blank 
line) is to follow the heading. A value of 2 means that a blank line (1/2 a vertical 
space) is to follow the heading. 

string }2 If register ;O is 0, this string contains two unpaddable spaces that will be used to 
separate the (run-in) heading from the following text. If register ;O is non-zero, this 
string is null. 

register ;3 This register contains an adjustment factor for a .ne request issued before the heading 
is actually printed. On entry to .HX, it has the value 3 if dlevel equals 1, and 1 other
wise. The .ne request is for the following number of lines: the contents of the register 
:O taken as blank lines. (halves of vertical space) plus the contents of regist.er ;3 as 
blank lines (halves of vertical space) plus the number of lines of the heading. 

The u~er may alter the values of }O, Ji, and ;3 within .HX as desired. The following are examples of 
actions that might be performed by defining .HX to include the lines shown: 



16 

Change first-level heading mark from format n. to n.O: 
.if \\$1=1 .ds }O \\n(Hl.O\D\D 

Memorandum Macros 

(0 stands for a space) 

Separate run-in heading from the text with a period and two unpaddable spaces: 
.if \\n(;O=O .ds }2 .\D\D 

Assure that at least 15 lines are left on the page before printing a first-level heading: 
.if \\$1=1 .nr ;3 15-\\n(;O 

Add 3 additional blank lines before each first-level heading: 
.if \\$1 =I .sp 3 

Indent level 3 run-in headings by 5 spaces: 
.if \\$1 =3 .ti 5n 

If temporary strings or macros are used within .HX, chose their names with care {14.1} . 

. HY is called after the •ne is issued. Certain features requested in .HX must be repeated. For exam
ple: 

.de HY 

.if \\$1 =3 .ti 5n 

.HZ is called at the end of .H to permit user-controlled actions after the heading is produced. For 
example, in a large document, sections may correspond to chapters of a book, and the user may want to 
change a page header or footer, e.g.: 

.de HZ 

.if\\$1=1 .PF ""Section \\$3"" 

4.7 Hints for Large Documents 

A large document is often organized for convenience into one file per section. If the files are num
bered, it is wise to use enough digits in the names of these files for the maximum number of sections, 
i.e., use suffix numbers 01 through 20 rather than I through 9 and IO through 20. 

Users often want to format individual sections of long doc.uments. To do this with the correct section 
numbers, it is necessary to set register H 1 to 1 less than the number of the section just before the 
corresponding ".H I" call. For example, at the beginning of section 5, insert: 

.nr HI 4 

~ This is a dangerous practice: it defeats the automatic (re)numbering of sections when sections are added 
or deleted. Remove such lines as soon as possible. 

5. LISTS 

This section describes many different kinds of lists: automatically-numbered and alphabetized lists, bul
let lists, dash lists, lists with arbitrary marks, and lists starting with arbitrary strings, e.g., with terms or 
phrases to be defined. 

5.1 Basic Approach 

In order to avoid repetitive typing of arguments to describe the appearance of items in a list, MM pro
vides a convenient way to specify lists. All lists are composed of the following parts: 

• A list-initialization macro that controls the appearance of the list: line spacing, indentation, marking 
with special symbols, and numbering or alphabetizing. 

• One or more List Item (.LI) macros, each followed by the actual text of the corresponding list item. 



Memorandum Macros 17 

• The List End (.LE) macro that terminates the list and restores the previous indentation. 

Lists may be nested up to six levels. The list-initialization macro saves the previous list status {inden
tation, marking style, etc.); the .LE macro restores it. 

With this approach, the format of a list is specified only once at the beginning of that list. In addition, 
by building on the existing structure, users may create their own customized sets of list macros with 
relatively little effort {5.4, Appendix A}. 

5.2 Sample Nested Lists 

The input for several lists and the corresponding output are shown below. The .AL and .DL macro 
calls {5.3.3} contained therein are examples of the list-initialization macros. This example will help us to 
explain the material in the following sections. Input text: 

.AL A 

.LI 
This is an alphabetized item. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
• AL 
.LI 
This is a numbered item. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
• DL 
.LI 
This is a dash item. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
• LI + l 
This is a dash item with a ·'plus'· as prefix. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
. LE 
.LI 
This is numbered item 2 . 
• LE 
.LI 
This is another alphabetized item, B. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
• LE 
.P 
This paragraph appears at the left margin. 



18 Memorandum Macros 

Output: 

A. This is an alphabetized item. This text shows the alignment of the second line of the item. The 
quick brown fox jumped over the lazy dog's back. 

1. This is a numbered item. This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back. 

- This is a dash item. This text shows the alignment of the second line of the item. The 
quick brown fox jumped over the lazy dog's back. 

+ - This is a dash item with a "plus" as prefix. This text shows the alignment of the second 
line of the item. The quick brown fox jumped over the lazy dog's back. 

2. This is numbered item 2. 

B. This is another alphabetized item, B. This text shows the alignment of the second line of the 
item. The quick brown fox jumped over the lazy dog's back. 

This paragraph appears at the left margin. 

5.3 Basic List Macros 

Because all lists share the same overall structure except for the list-initialization macro, we first discuss 
the macros common to all lists. Each list-initialization macro is covered in {5.3.3 }. 

5.3.J List Item 

.LI [mark] [I] 
one or more lines of text that make up the list item. 

The .LI macro is used with all lists. It normally causes the output of a single blank line ( 1h a vertical 
space) before its item, although this may be suppressed. If no arguments are given, it labels its item 
with the current mark, which is specified by the most recent list-initialization macro. If a single argu
ment is given to .LI, that argument is output instead of the current mark. If two arguments are given, 
the first argument becomes a prefix to the current mark, thus allowing the user to emphasize one or 
more items in a list. One unpaddable space is inserted between the prefix and the mark. For example: 

.BL 6 

.LI 
This is a simple bullet item . 
• LI + 
This replaces the bullet with a ··plus:· 
.LI + I 
But this uses ··plus·· as prefix to the bullet . 
• LE 

yields: 

• This is a simple bullet item. 

+ This replaces the bullet with a "plus." 

+ • But this uses "plus" as prefix ~o ttie bullet. 

~- The mark must not contain ordinary (paddable) spaces, because alignment of items will be lost if the right 
margin is ju.stifled { 3. 3 } . 

If the current mark (in the current list) is a null string, and the first argument of .LI is omitted or null, 
the resulting effect is that of a hanging indent, i.e., the first line of the following text is "outdented," 
starting at the same place where the mark would have started {5.3.3.6}. 



Memorandum .\1.acros 

5.3.2 List End 

.LE [l] 

19 

List End restores the state of the list back to that existing just before the most recent list-initialization 
macro call. If the optional argument is given, the .LE outputs a blank line ('h a vertical space). This 
option should generally be used only when the .LE is followed by running text, but not when followed 
by a macro that produces blank lines of its own, such as .P, .H, or .LI . 

• H and .HU automatically clear all list information, so one may legally omit the .LE(s) that would nor
mally occur just before either of these macros. Such a practice is not recommended, however, because 
errors will occur if the list text is separated from the heading at some later time (e.g., by insertion of 
text). 

5.3.3 List Initialization Macros. The following are the various list-initialization macros. They are actu
ally implemented as calls to the more basic .LB macro {5.4}. 

5.3.3.J Automatically-Numbered or Alphabetized Lists 

.AL [type] [text-indent] [1] 

The .AL macro is used to begin sequentially-numbered or alphabetized lists. If there are no arguments, 
the list is numbered, and text is indented Li, initially 6 (5) 5 spaces from the indent in force when the 
.AL is called, thus leaving room for a space, two digits, a period, and two spaces before the text. 

Spacing at the beginning of the list and between the items can be suppressed by setting the Ls (list 
space) register. Ls is set to the innermost list level for which spacing is done. For example: 

.nr Ls 0 

specifies that no spacing will occur around any list items. The default value for Ls is 6 (which is the 
maximum list nesting level). 

The type argument may be given to obtain a different type of sequencing, and its value should indicate 
the first element in the sequence desired, i.e., it must be l, A, a, l, or i {4.2.2.5}. 6 If type is omitted or 
null, then "l" is assumed. If text-indent is non-null, it is used as the number of spaces from the 
current indent to the text, i.e., it is used instead of Li for this list only. If text-indent is null, then the 
value of Li will be used. 

If the third argument is given, a blank line (V2 a vertical space) will not separate the items in the list. A 
blank line (V2 a vertical space) will occur before the first item, however. 

5.3.3.2 Bullet List 

.BL [text-indent] [I] 

.BL begins a bullet list, in which each item is marked by a bullet (•) followed by one space. If text
indent is non-null, it overrides the default indentation-the amount of paragraph indentation as given in 
the register Pi { 4.1}. 7 

If a second argument is specified, no blank lines will separate the items in the list. 

5. Values that specify indentation must be unscaled and are treated as "character positions," i.e., as the number of em. 

6. Note that the "0001" format is not permitted. 

7. So that, in the default case, the text of bullet and dash lists lines up with the first line of indented paragraphs. 



20 

5.3.3.3 Dash List 

.DL [text-indent] [I] 

.DL is identical to .BL, except that a dash is used instead of a bullet. 

5.3.3.4 Marked List 

.ML mark [text-indent] [I] 

Memorandum Macros 

.ML is much like .BL and .DL, but expects the user to specify an arbitrary mark, which may consist of 
more than a single character. Text is indented text-indent spaces if the second argument is not null; 
otherwise, the text is indented one more space than the width of mark. If the third argument is 
specified, no blank lines will separate the items in the list. 

~ The mark must not contain ordinary (paddable) spaces, because alignment of items will be lost if the right 
margin is justified {3.3}. 

5.3.3.5 Reference List 

.RL [text-indent] [I] 

A .RL call begins an automatically-numbered list in which the numbers are enclosed by square brackets 
( [] ). Text-indent may be supplied, as for .AL. If omitted or null, it is assumed to be 6, a convenient 
value for lists numbered up to 99. If the second argument is specified, no blank lines will separate the 
items in the list. 

5.3.3.6 Variable-Item List 

• VL text-indent [mark-indent] [1] 

When a list begins with a . VL, there is effectively no current mark; it is expected that each .LI will pro
vide its own mark. This form is typically used to display definitions of terms or phrases. Mark-indent 
gives the number of spaces from the current indent to the beginning of the mark, and it defaults to 0 if 
omitted or null. Text-indent gives the distance from the current indent to the beginning of the text. If 
the third argument is specified, no blank lines will separate the items in the list. Here is an example of 
• VL usage: 

.tr -

.VL 20 2 

.LI mark-I 
Here is a description of mark 1; 
··mark 1. • of the .LI line contains a tilde translated to an unpaddable space in order 
to avoid extra spaces between 
.. mark·· and .. 1 .. {3.3} . 
• LI second-mark 
This is the second mark, also using a tilde translated to an unpaddable space . 
. LI third-mark-longer-than-indent: 
This item shows the effect of a long mark; one space separates the mark 
from the text. 
.LI -
This item effectively has no mark because the 
tilde following the .LI is translated into a space . 
. LE 

yields: 



Memorandum Macros 21 

mark I Here is a description of mark 1; "mark I" of the .LI line contains a tilde 
translated to an unpaddable space in order to avoid extra spaces between "mark" 
and "1" {3.3}. 

second mark This is the second mark, also using a tilde translated to an unpaddable space. 

third mark longer than indent: This item shows the effect of a long mark; one space separates the 
mark from the text. 

This item effectively has no mark because the tilde following the .LI is translated 
into a space. 

The tilde argument on the last .LI above is required; otherwise a hanging indent would have been pro
duced. A hanging indent is produced by using • VL and calling .LI with no arguments or with a null first 
argument. For example: 

.VL 10 

.LI 
Here is some text to show a hanging indent. 
The first line of text is at the left margin. 
The second is indented 10 spaces . 
• LE 

yields: 

Here is some text to show a hanging indent. The first line of text is at the left margin. The second is 
indented IO spaces. 

1:;r The mark must not contain ordinary (paddable) spaces, because alignment of items will be lost if the right 
margin is justified {3.3 }. 

5.4 List-Begin Macro and Customized Lists• 

.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space] 

The list-initializ.ation macros described above suffice for almost all cases. However, if necessary, one 
may obtain more control over the layout of lists by using the basic list-begin macro .LB, which is also 
used by all the other list-initialization macros. Its arguments are as follows: 

Text-indent gives the number of spaces that the text is to be indented from the current indent. Nor
mally, this value is taken from the register Li for automatic lists and from the register Pi for bullet and 
dash lists. 

The combination of mark-indent and pad determines the placement of the mark. The mark is placed 
within an area (called mark area) that starts mark-indent spaces to the right of the current indent, and 
ends where the text begins (i.e., ends text-indent spaces to the right of the current indent). 8 Within the 
mark area, the mark is left-justified if pad is 0. If pad is greater than 0, say n, then n blanks are 
appended to the mark; th~ mark-indent value is ignored. The resulting string immediately precedes the 
text. That is, the mark is effectively right-justified pad spaces immediately to the left of the text. 

Type and mark interact to control the type of marking used. If .type is 0, simple marking is performed 
using the mark character(s) found in the mark argument. If type is greater than 0, automatic number
ing or alphabetizing is done, and mark is then interpreted as the first item in the sequence to be used 
for numbering or alphabetizing, i.e., it is chosen from the set ( l, A, a, I, i) as in {5.3.3.1 }. That is: 

8. The mark-indtlll argument is typically<>. 



22 

Tyl!!_ 

0 
0 

>0 
>0 

Mark 

omitted 
string 
omitted 
one of: 

1, A, a, I, i 

Result 

hanging indent 
string is the mark 
arabic numbering 
automatic numbering or 

alphabetic se_gyencing 

Memorandum Macros 

Each non-zero value of type from I to 6 selects a different way of displaying the marks. The following 
table shows the output appearance for each value of type: 

I x. 
2 x) 
3 (x) 
4 [x] 
5 <x> 
6 {x} 

where xis the generated number or letter. 

w The mark must not contain ordinary (paddable) spaces, because alignment of items will be lost if the right 
margin is justified { 3. 3}. 

LI-space gives the number of blank lines (halves of a vertical space) that should be output by each .LI 
macro in the list. If omitted, LI-space defaults to 1; the value 0 can be used to obtain compact lists. If 
LI-space is greater than 0, the .LI macro issues a .ne request for two lines just before printing the mark. 

LB-space, the number of blank lines (lh a vertical space) to be output by .LB itself, defaults to 0 if 
omitted. 

There are three reasonable combinations of LI-space and LB-space. The normal case is to set LI-space 
to 1 and LB-space to 0, yielding one blank line before each item in the list; such a list is usually ter
minated with a ".LE I" to end the list with a blank line. In the second case, for a more compact list, 
set LI-space to 0 and LB-space to I, and, again, use ".LE l" at the end of the list. The result is a list 
with one blank line before and after it. If you set both LI-space and LB-space to 0, and use ".LE" to 
end the list, a list without any blank lines will result. 

Appendix A shows how one can build upon the supplied list macros to obtain other kinds of lists. 

6. MEMORANDUM AND RELEASED PAPER STYLES 

One use of MM is for the preparation of memoranda and released papers, which have special require
ments for the first page and for the cover sheet. The information needed for the memorandum or 
released paper (title, author, date, case numbers, etc.) is entered in the same way for both styles; an 
argument to one macro indicates which style is being used. The following sections describe the macros 
used to provide this data. The required order is shown in {6.9}. 

If neither the memorandum nor released-paper style is desired, the macros described below should be 
omitted from the in_put text. If these macros are omitted, the first page will simply have the page 
header {9} followed by the body of the document. 

6.1 Title 

. TL [charging-case] [filing-case] 
one or more lines of title text 



Memorandum Macros 23 

The arguments to the .TL macro are the charging case number(s) and filing case number(s). 9 The title 
of the memorandum or paper follows the .TL macro and is processed in fill mode {3. l }. Multiple 
charging case numbers are entered as "sub-arguments" by separating each from the previous with a 
comma and a space, and enclosing the entire argument within double quotes. Multiple filing (faSe 
numbers are entered similarly. For example: 

.TL "12345, 67890" 987654321 
On the Construction of a Table of All Even Prime Numbers 

The .br request may be used to break the title on output into several lines as follows: 

.TL 12345 
First Title Line 
.br 
\!.br 
Second Title Line 

On output, the title appears after the word "subject" in the memorandum style. In the released-paper 
style, the title is centered and bold. 

If only a charging case number or only a filing case number is given, then it will be separated from the 
title in the memorandum style by a dash and. will appear on the same line as the title. If both case 
numbers are given and are the same, then "Charging and Filing Case" followed by the number will 
appear on a line following the title. If the two case numbers are different, then separate lines for 
"Charging Case" and "File Case" will appear after the title. 

6.2 Autbor(s) 

.AU name [initials] Uoc] [dept] [ext] [room] [arg] [arg] [arg] 

.AT [title] ... 

The .AU macro receives as arguments information that describes an author. If any argument contains 
blanks, it must be enclosed within double quotes. The first six arguments must appear in the order 
given (a separate .AU macro is required for each author). 

The .AT macro is used to specify the author's title. Up to nine arguments may be given. Each will 
appear in the Signature Block for memorandum style {6.11.1} on a separate line following the signer's 
name. The .AT must immediately follow the .AU for the given author. For example: 

.AU "J. J. Jones" JJJ PY 9876 5432 1,?:-234 

.AT Director "Materials Research Laboratory" 

In the "from" portion in the memorandum style, the author's name is followed by location and depart
ment number on one line and by room number and extension number on the next. The "x" for the 
extension is added automatically. The printing of the location, department number, extension number, 
and room number may be suppressed on the first page of a memorandum by setting the register Au to 
O; the default value for Au is 1. Arguments 7 through 9 of the .AU macro, if present, will follow this 
"normal" author information in the ''from" portion, each on a separate line. These last three argu
ments may be used for organizational numbering schemes, etc. For example: 

.AU "S. P. Lename" SPL IH 9988 7766 SH-444 9876-543210.0lMF 

The name, initials, location, and department are also used in the Signature Block {6.11.1 }. The author 
information in the "from" portion, as well as the names and initials in the Signature Block will appear 
in the same order as the .AU macros. 

9. The "charging case" is the case number to which time was charged for the development of the project described in the 
memorandum. The "filing case" is a number under which the memorandum is to be filed. 



24 Memorandum Macros 

The names of the authors in the released-paper style are centered below the title. After the name of 
the last author, "Bell Laboratories" and the location are centered. For the case of authors from 
different locations, see {6.8}. 

6.3 TM Number(s) 

.TM [number] ... 

If the memorandum is a Technical Memorandum, the TM numbers are supplied via the .TM macro. 
Up to nine numbers may be specified. Example: 

.TM 7654321 77777777 

This macro call is ignored in the released-paper and external-letter styles {6.6}. 

6.4 Abstract 

.AS [arg] [indent] 
text of the abstract 
.AE 

The .AS (abstract start) and .AE (abstract end) macros bracket the (optional) abstract. Abstracts are 
printed on page I of a document and/or on its cover sheet. 10 

In a released paper (first argument of the .MT macro is 4; see {6.6}) and in a Technical Memorandum, 
if the first argument of .AS is 0, the abstract will be printed on page 1 and on the cover sheet (if any); 
if the first argument of .AS is l, the abstract will appear only on the cover sheet (if any). 

In Memoranda for File and in all other documents (other than external letters), if the first argument of 
.AS is 0, the abstract will appear on page 1 and there will be no cover sheet printed; if the first argu
m_ent of .AS is 2, the abstract will appear only on the cover sheet, which will be produced automatically 
in this case (i.e., without invoking the .CS macro). It is not possible to get either an abstract or a cover 
sheet with an external letter (first argument of the .MT macro is 5). 

Notations {6.11.2} such as a "copy to" list are allowed on Memorandum for File cover sheets; the .NS 
and .NE macros must appear after the .AS 2 and .AE. Headings {4.2, 4.3} and displays {7} are not per
mitted within an abstract. 

The abstract is printed with ordinary text margins; an indentation to be used for both margins can be 
specified as the second argument of .AS. 11 

6.5 Other Keywords 

.OK [keyword] ••• 

Topical keywords should be specified on a Technical Memorandum cover sheet. Up to nine such key
words or keyword phrases may be specified as arguments to the .OK macro; if any keyword contains 
spaces, it must be enclosed within double quotes. 

6.6 Memorandum Types 

.MT [type] [addressee] 

The .MT macro controls the format of the top part of the first page of a memorandum or of a released 
paper, as well as the format of the cover sheets. Legal codes for type and the corresponding values are: 

JO. There arc three styles of cover sheet: released paper,'Technical Memorandum, and Memorandum for Fil~ {10.2}; the last one 
of these is also used for Engineer's Notes, Memoranda for Record, etc. Cover sheets for released papers and Technical 
Memoranda arc obtained by invoking the .CS macro {10.2}. ' ' 

11. Values that specify indentation must be unscaled and are treated as "character positions," i.e., as the number of ens. 



Memorandum Macros 

Code 

"" 
0 

none 
I 
2 
3 
4 
5 

"string" 

Value 
no memorandum type printed 
no memorandum type printed 
MEM_ORANDUM FOR FILE 
MEMORANDUM FOR FILE 
PROGRAMMER'S NOTFS 
ENGINEER'S NOTES 
released-paper style 
external-letter style 
string 

25 

If type indicates a memorandum style, then value will be printed after the last line of author informa
tion. If type is longer than one character, then the string, itself, will be printed. For example: 

.MT "Technical Note # 5" 

A simple letter is produced by calling .MT with a null (but not omitted!) or zero argument. 

The second argument to .MT is the name of the addressee of a letter; if present, that name and the 
page number replace the normal page header on the second and following pages of a letter: 

.MT I "John Jones" 

produces 

John Jones - 2 

This second argument may not be used for this purpose if the first argument is 4 (i.e., for the released
paper style) as explained in {6.8}. 

Jn the external-letter style (.MT 5), only the title (without the word .. subject:") and the date are 
printed in the upper left and right corners, respectively, on the first page. It is expected that preprinted 
stationery will be used, providing the author's company logo and address. 

6.7 Date and Format Changes 

6.7.1 Changing the Date. By default, the current date appears in the "date" part of a memorandum. 
This can be overridden by using: 

.ND new-date 

The .ND macro alters the value of the string DT, which is initially set to the current date. 

6.7.2 Alternate First-Page Format. One can specify that the words .. subject," "date," and "from" (in 
the memorandum style) be omitted and that an alternate company name be used: 

.AF [company-name] 

If an argument is given, it replaces "Bell Laboratories", without affecting the other headings. If the 
argument is null, "Bell Laboratories" is suppressed; in this case, extra blank lines are inserted to allow 
room for stamping the document with a Bell System logo or a Bell Laboratories stamp. .AF with no 
argument suppresses "Bell Laboratories" and the "Subject/Date/From" headings, thus allowing output 
on preprinted stationery. The use of .AF with no arguments is equivalent to the use of -rAI {2.4}. 
except that the latter must be used if it is necessary to change the line length.and/or page offset (which 
default to 5.8i and Ii, respectively, for preprinted forms). The command line options -rOk and -rWk 
{2.4} are not effective with .AF. The only .AF use appropriate for troff is to specify a replacement for 
"Bell Laboratories". 

The command line option -rEn {2.4} controls the font of the "Subject/Date/From" block. 



26 

6.8 Released-Paper Style 

The released-paper style is obtained by specifying: 

.MT 4 [l] 

Memorandum Macros 

This results in a centered, bold title followed by centered names of authors. The location of the last 
author is used as the location following "Bell Laboratories" (unless .AF {6.7.2} specifies a different 
company). If the optional second argument to .MT 4 is given, then the name of each author is fol
lowed by the respective company name and location. 

Information necessary for the memorandum style but not for the released-paper style is ignored. 

If the released-paper style is utilized, most BTL location codes 12 are defined as strings that are the 
addresses of the corresponding BTL locations. These codes are needed only until the .MT macro is 
invoked. Thus, following the .MT macro, the user may re-use these string names. In addition, the 
macros described in {6.11 J and their associated lines of input are ignored when the released-paper style 
is specified. 

Authors from non-BTL locations may include their affiliations in the released-paper style by specifying 
the appropriate .AF and defining a string (with a 2 character name such as XX) for the address before 
each .AU. For example: 

.TL 
A Learned Treatise 
.AF "Getem Inc." 
.ds XX "22 Maple Avenue, Somctown 09999" 
.AU "F. Swatter" "" XX 
.AF "Bell Laboratories" 
.AU "Sam P. Lename" "" CB 
.MT 4 I 

6.9 Order of Invocation of "Beginning" Macros 

The macros described in {6.l-6.7}, if present, must be given in the following order: 

.ND new-date 

. TL lchargi ng-case] [filing-case] 
one or more lines of text 
.AF [company-name] 
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg) [arg] 
.AT [title] ... 
• TM [number] ... 
. AS [arg] [indent) 
one or more lines of text 
.AE 
.NS [arg] 
one or more lines of text 
.NE 
.OK [keyword] .•• 
. MT [type] [addressee] 

The only required macros for a memorandum or a released paper are .TL, .AU, and .MT; all the others 
(and their associated input lines) may be omitted if the features they provide are not needed. Once 

12. Currently, the complete list is: AK, AL, ALF, CB, CH, CP, DR, FJ, HL, HO, HOH, HP, IH, TN, INH, IW, MH, MY, PY, 
RD, RR, WB, WH, and WV. 



Memorandum Macros 27 

.MT has been invoked, none of the above macros (except .NS and .NE) can be re-invoked because 
they are removed from the table of defined macros to save space. 

6.10 Example 

The input text for this manual begins as follows: 

.TL 
MM\*(EMMemorandum Macros 
.AU "D. W. Smith" DWS PY 
.AU "J. R. Mashey" JRM PY 
.AU "E. C. Pariser (January 1980 Revision)" ECP PY 
.AU "N. W. Smith (June 1980 Revision)" NWS PY 
.MT 4 

Appendix C shows the input and both nroff and troff outputs for a simple letter. 

6.11 Macros for the End of a Memorandum 

At the end of a memorandum (but not of a released paper), the signatures of the authors and a list of 
notations 13 can be requested. The following macros and their input are ignored if the released-paper 
style is selected. 

6.11. l Signature Block 

.FC [closing] 

.SG [arg] [ 1] 

.FC prints "Yours very truly," as a formal closing. It must be given before the .SG which prints the 
signer's name. A different closing may be specified as an argument to .FC. 

.SG prints the author name(s) after the formal closing, if any. Each name begins at the center of the 
page. Three blank lines are left above each name for the actual signature. If no arguments are given, 
the line of reference data 14 will not appear. A non-null first argument is treated as the typist's initials, 
and is appended to the reference data. Supply a null first argument to print the reference data with nei
ther the typist's initials nor the preceding hyphen. 

If there are several authors and if the second argument is given, then the reference data is placed on 
the same line as the name of the first, rather than last, author. 

The reference data contains only the location and department number of the first author. Thus, if 
there are authors from different departments and/or from different locations, the reference data should 
be supplied manually after the invocation (without arguments) of the .SG macro. For example: 

.SG 

.rs 

.sp -1 v 
PY /MH-9876/5432-JJJ/SPL-cen 

6.ll.2 "Copy to" and Other Notations 

.NS [arg] 
zero or more lines of the notation 
.NE 

D. See the BTL Office Guide [9], pp. 1.12-16. 

14. The following information is known as reference data: location code, department number, author's initials, and typist's 
initials, all separated by hyphens. See the BTL Office Guide l9l, page I.I I. 



28 Memorandum Macros 

After the signature and reference data, many types of notations may follow, such as a list of attach
ments or "copy to" lists. The various notations are obtained through the .NS macro, which provides 
for the proper spacing and for breaking the notations across pages, if necessary. 

The codes for arg and the corresponding notations are: 

Code Notations 
none Copy to 
"" Copy to 
0 Copy to 
1 Copy (with att.) to 
2 Copy (without att.) to 
3 Att. 
4 Atts. 
5 Enc. 
6 Encs. 
7 Under Separate Cover 
8 Letter to 
9 Memorandum to 

"string_" c~ (strin_g) to 

If arg consists of more than one character, it is placed within parentheses between the words "Copy" 
and "to." For example: 

.NS "with att. I only" 

will generate "Copy (with att. I only) to" as the notation. More than one notation may be specified 
before the .NE occurs, because a .NS macro terminates the preceding notation, if any. For example: 

.NS 4 
Attachment I-List of register names 
Attachment 2-List of string and macro names 
.NS I 
J. J. Jones 
.NS 2 
S. P. Lename 
G. H. Hurtz 
.NE 

would be formatted as: 

Atts. 
Attachment 1-List of register names 
Attachment 2-List of string and macro names 

Copy (with att.) to 
J. J. Jones 

Copy (without att.) to 
S. P. Lename 
G. H. Hurtz 

The .NS and .NE macros may also be used at the beginning following .AS 2 and .AE to place the nota
tion list on the Memorandum for File cover sheet {6.4}. If notations are given at the beginning without 
.AS 2, they will be saved and output at the end of the document. 

6.11. 3 Approval Signature Line 

.AV approver's-name 



Memorandum Macros 29 

The .A Y macro may be used aft~r the last notation block to automatically generate a line with spaces 
for the approval signature and date. For example, 

.AV "Jane Doe" 

produces: 

APPROVED: 

Jane Doe Date 

6.12 Forcing a One-Page Letter 

At times, one would like just a bit more space on the page, forcing the signature or items within nota
tions onto the bottom of the page, so that the letter or memo is just one page in length. This can be 
accomplished by increasing the page length through the -rLn option, e.g. -rL90. This has the effect 
of making the formatter believe that the page is 90 lines long and therefore giving it more room than 
usual to place the signature or the notations. This will only work for a single-page letter or memo. 

7. DISPLAYS 

Displays are blocks of text that are to be kept together- not split across pages. MM provides two styles 
of displays: 15 a static ( .DS) style and a .floating (.DF) style. Jn the static style, the display appears in the 
same relative position in the output text as it does in the input text; this may result in extra white space 
at the bottom of the page if the display is too big to fit there. In the floating style, the display "floats" 
through the input text to the top of the next page if there is not enough room for it on the current 
page; thus the input text that follows a floating display may precede it in the output text. A queue of 
floating displays is maintained so that their relative order is not disturbed. 

By default, a display is processed in no-fill mode, with single-spacing, and is not indented from the 
existing margins. The user can specify indentation or centering, as well as fill-mode processing. 

Displays and footnotes {8} may never be nested, in any combination whatsoever. Although lists {5} and 
paragraphs {4.1} are permitted, no headings (.H or .HU) {4.2, 4.3} can occur within displays or foot
notes. 

7.1 Static Displays 

.DS [format] [fill] [rindent] 
one or more lines of text 
.DE 

A static display is started by the .DS macro and terminated by the .DE macro. With no arguments, 
.DS will accept the lines of text exactly as they are typed (no-fill mode) and will not indent them from 
the prevailing left margin indentation or from the right margin. The rindent argument is the number of 
characters 16 that the line length should be decreased, i.e., an indentation from the right margin. 

The format argument to .DS is an integer or letter used to control the left margin indentation and 
centering with the following meanings: 

I 5. Displays are processed in an environment that is different from that of the body of the text (see the .ev requcstl21). 

16. This number must be unscaled in 11Tojfand is treated as eflS. It may be scaled in troff or else defaults to ems. 



30 

Format .. 
0 or L 
1 or I 
2 or C 
3 or CB 

Meanin_g_ 
no indent 
no indent 
indent by standard amount 
center each line 
center as a block 

The fill argument is also an integer or letter and can have the following meanings: 

Omitted arguments are taken to be zero. 

Fill 

"" 
0 or N 
I or F 

Meani'!K_ 
no-fill mode 
no-fill mode 
fill mode 

Memorandum Macros 

The standard amount of indentation is taken from the register Si, which is initially 5. Thus, by default, 
the text of an indented display aligns with the first line of indented paragraphs, whose indent is con
tained in the Pi register {4.1 }. Even though their initial values are the same, these two registers are 
independent of one another. 

The display format value 3 (CB) centers the entire display as a block (as opposed to .DS 2 and .DF 2, 
which center each line individually). That is, all the collected lines are left-justified, and then the 
display is centered, based on the width of the longest line. This format must be used in order for the 
eqn/neqn "mark" and "lineup" feature to work with centered equations (see section 7.4 below). 

By default, a blank line ('h a vertical space) is placed before and after static and ftoating displays. These 
blank lines before and after static displays can be inhibited by setting the register Ds to 0. 

The following example shows the usage of all three arguments for displays. This block of text will be 
filled and indented 5 spaces from both the left and the right margins (i.e., centered) . 

• OS. I F 5 
"We the people of the United States, in order to form a more perfect union, 
establish justice, ensure domestic tranquility, provide for the common defense, 
and secure the blessings of liberty to ourselves and our posterity, 
do ordain and establish this Constitution to the 
United States of America." 
.DE 

7.1 Floating Displays 

• DF [format] [fill] [rindent] 
one or more lines of text 
.DE 

A floating display is started by the .DF macro and terminated by the .DE macro. The arguments have 
the same meanings as for • OS {7.1 }, except that, for floating displays, indent, no indent, and centering 
are always calculated with respect to the initial left margin, because the prevailing indent may change 
between the time when the formatter first reads the floating display and the time that the display is 
printed. One blank line ('h a vertical space) always occurs both before and after a floating display. 

The user may exercise great control over the output positioning of floating displays through the use of 
two number registers, De and Df When a floating display is encountered by nroff or troff, it is pro
cessed and placed onto a queue of displays waiting to be output. Displays are always removed from the 
queue and printed in the order that they were entered 011 the queue, which is the order that they 
appeared in the input file. If a new ftoating display is encountered and the queue of displays is empty, 
then the new display is a candidate for immediate output on the current page. Immediate output is 
governed by the size of the display and the setting of the DJ register (see below). The De register (see 



Memorandum Macros 31 

below) controls whether or not text will appear on the current page after a floating display has been 
produced. 

As long as the queue contains one or more displays, new displays will be automatically entered there, 
rather than being output. When a new page is started (or the top of the second column when in two
column mode) the next display from the queue becomes a candidate for output if the DJ register has 
specified "top-of-page" output. When a display is output it is also removed from the queue. 

When the end of a section (when using section-page numbering) or the end of a document is reached, 
all displays are automatically removed from the queue and output. This will occur before a .SG, .CS, 
or .TC is processed. 

A display is said to "fit on the current page" if there is enough room to contain the entire display on 
the page, or if the display is longer than one page in length and less than half of the current page has 
been used. Also note that a wide (full page width) display will never fit in the second column of a 
two-column document. 

The registers, their settings, and their effects are as follows: 

De Action 
0 DEFAULT: No special action occurs. 
1 A page eject will always follow the output of each floating display, so 

only one floating display will appear on a page and no text will follow it. 

NOTE: For any other value, the action performed is the same as 
for the value 1. 

I!f_ Action 
0 Floating displays will not be output until end of section (when section

page numbering) or end of document. 
Output the new floating display on the current page if there is room, 
otherwise hold it until the end of the section or document. 

2 Output exactly one floating display from the queue at the top of a new 
page or column (when in two-column mode). 

3 Output one floating display on current page if there is room. Output 
exactly one floating display at the top of a new page or column. 

4 Output as many displays as will fit (at least one), starting at the top of a 
new page or column. Note that if register De is set to 1, each display 
will be followed by a page eject, causing a new top of page to be 
reached where at least one more display will be output. (This also 
applies to value 5, below.) 

5 DEFAULT: Output a new floating display on the current page if there is 
room. Output at least one, but as many displays as will fit starting at 
the top of a new page or column. 

NOTE: For any value greater than 5, the action performed is 
the same as for the value 5. 

The .WC macro {12.4} may also be used to control handling of displays in double-column mode and to 
control the break in the text before floating displays. 



32 

7.3 Tables 

.TS [H] 
global options; 
column descriptors. 
title lines 
[.TH [N]] 
data within the table . 
. TE 

Memorandum Macros 

The .TS {table start) and .TE {table end) macros make possible the use of the tb/(1) processor171. They 
are used to delimit the text to be examined by tbl ( 1) as well as to set proper spacing around the table. 
The display function and the tbl (1) delimiting function are independent of one another, however, so in 
order to permit one to keep together blocks that contain any mixture of tables, equations, filled and 
unfilled text, and caption lines the .TS/ .TE block should be enclosed within a display (.DS/ .DE). 
Floating tables may be enclosed inside floating displays (~DF /.DE). 

The macros .TS and .TE also permit the processing of tables that extend over several pages. If a table 
heading is needed for each page of a multi-page table, specify the argument ''H" to the .TS macro as 
above. Following the options and format information, the table heading is typed on as many lines as 
required and followed by the .TH macro. The .TH macro must occur when ''.TS H" is used. Note 
that this is not a feature of tbl(l), but of the macro definitions provided by MM. 

The table header macro .TH may take as an argument the letter N. This argument causes the table 
header to be printed only if it is the first table header on the page. This option is used when it is neces
sary to build long tables from smaller .TS H/ .TE segments. For example: 

.TS H 
global options; 
column descriptors. 
Title lines 
.TH 
data 
.TE 
.TS H 
global options; 
column descriptors. 
Title lines 
.TH N 
data 
.TE 

will cause the table heading to appear at the top of the first table segment, and no heading to appear at 
the top of the second segment when both appear on the same page. However, the heading will still 
appear at the top of each page that the table continues onto. This feature is used when a single table 
must be broken into segments because of table complexity (for example, too many blocks of filled 
text). If each segment had its own .TS H/.TH sequence, each segment would have its own header. 
However, if each table segment after the first uses .TS H/ .TH N then the table header will only appear 
at the beginning of the table and the top of each new page or column that the table continues onto. 

For nroff, the - e option ( - E for mm ( 1) {2.1}) may be used for terminals, such as the 450, that are 
capable of finer printing resolution. This will cause better alignment of features such as the lines form
ing the corner of a box. Note that -e is not effective with co/(1). 



Memorandum Macros 

7.4 Equations 

.DS 

.EQ [label] 
equation(s) 
.EN 
.DE 

33 

The equation setters eqn (I) and neqn161 expect to use the .EQ (equation start) and .EN (equation end) 
macros as delimiters in the same way that tbl(l) uses .TS and .TE; however, .EQ and .EN must occur 
inside a .DS/ .DE pair. 

w There is an exception to this rule: if .EQ and .EN are used only to specify the delimiters for in-line equa
tions or to spedfy eqn/neqn "defines," .DS and .DE must not be used: otherwise extra blank lines will 
appear in the output. 

The .EQ macro takes an argument that will be used as a label for the equation. By default, the label 
will appear at the right margin in the "vertical center" of the general equation. The Eq register may be 
set to 1 to change the labeling to the left margin. 

The equation will be centered for centered displays; otherwise the equation will be adjusted to the 
opposite margin from the label. 

7.5 Figure, Table, Equation, and Exhibit Captions 

. FG [title) [override) [flag) 

.TB [title) [override] [flag] 

.EC [title) [override] [flag] 

.EX [title) [override] [flag) 

The .FG (Figure Title), .TB (Table Title), .EC (Equation Caption) and .EX (Exhibit Caption) macros 
are normally used inside .OS/ .DE pairs to automatically number and title figures, tables, and equations. 
They use registers Fg. Tb, Ee, and Ex, respectively (see {2.4} on -rN5 to reset counters in sections). 
As an example, the call: 

.FG "This is an illustration" 

. yields: 

Figure 1. This is an illustration 

.TB replaces "Figure" by "TABLE"; .EC replaces "Figure" by "Equation", and .EX replaces "Fig
ure" by "Exhibit". Output is centered if it can fit on a single line; otherwise, all lines but the first are 
indented to line up with the first character of the title. The format of the numbers may be changed 
using the .af request of the formatter. The format of the caption may be changed from 
"Figure 1. Title" to "Figure 1 - Title" by setting the Of register to 1. 

The override string k used to modify the normal numbering. If flag is omitted or 0, override is used as a 
prefix to the number; if flag is 1, override is used as a suffix; and if flag is 2, override replaces the 
number. If -rN5 {2.4} is given, "section-figure" numbering is set automatically and user-specified 
override string is ignored. 

As a matter of style, table headings are usually placed ahead of the text of the tables, while figure, 
equation, and exhibit captions usually occur after the corresponding figures and equations. 

7.6 List of Figures, Tables, Equations, and Exhibits 

A List of Figures, List of Tables, List of Exhibits, and List of Equations may be obtained. They will be 
printed after the Table of Contents is printed if the number registers Lf, Lt, Lx, and Le (respectively) 
are set to 1. Lf, Lt, and Lx are 1 by default; Le is 0 by default. 



34 Memorandum Macros 

The titles of these Lists may be changed by redefining the following strings which are shown here with 
their default values: 

.ds Lf LIST OF FIGURES 

.ds Lt LIST OF TABLES 

.ds Lx LIST OF EXHIBITS 

.ds Le LIST OF EQUATIONS 

8. FOOTNOTES 

There are two macros that delimit the text of footnotes, 17 a string used to automatically number the 
footnotes, and a macro that specifies the style of the footnote text. 

8.1 Automatic Numbering of Footnotes 

Footnotes may be automatically numbered by typing the three characters "\•F" {i.e., invoking the 
string F) immediately after the text to be footnoted, without any intervening spaces. This will place the 
next sequential footnote number (in a smaller point size) a half-line above the text to be footnoted. 

8.2 Delimiting Footnote Text 

There are two macros that delimit. the text of each footnote: 

.FS [label] 
one or more lines of footnote text 
.FE 

The .FS (footnote start) marks the beginning of the text of the footnote, and the .FE marks its end. 
The label on the .FS, if present, will be used to mark the footnote text. Otherwise, the number 
retrieved from the string F will be used. Note that automatically-numbered and user-labeled footnotes 
may be intermixed. If a footnote is labeled (.FS label), the text to be footnoted must be followed by 
label, rather than by "\•F". The text between .FS and .FE is processed in fill mode. Another .FS, a 
.DS, or a .DF are not permitted between the .FS and .FE macros. Automatically numbered footnotes 
may not be used for information, such as the title and abstract, to be placed on the cover sheet, but 
labeled footnotes are allowed. Similarly, only labeled footnotes may be used with tables {7 .3 }. Exam
ples: 

1. Automatically-numbered footnote: 

This is the line containing the word\•F 
.FS 
This is the text of the footnote . 
• FE 
to be footnoted. 

2. Labelled footnote: 

This is a labeled• 
.FS * 
The footnote is labeled with an asterisk . 
• FE 
footnote. 

The text of the footnote (enclosed within the .FS/ .FE pair) should immediately follow the word to be 
footnoted in the input text, so that ••\•F" or label occurs at the end of a line of input and the next line 

17. Footnotes are processed in an environment that is different from that of the body of the text (see the .ev requestl2l). 



Memorandum Macros 35 

is the .FS macro call. It is alsq good practice to append a unpaddable space {3.3} to "\*F" or label 
when they follow an end-of-sentence punctuation mark (i.e., period, question mark, exclamation 
point). 

Appendix B illustrates the various available footnote styles as well as numbered and labeled footnotes. 

8.3 Format of Footnote Text • 

.FD [arg] [ 1] 

Within the footnote text, the user can control the formatting style by specifying text hyphenation, right 
margin justification, and text indentation, as well as left- or right-justification of the label when text 
indenting is used. The .FD macro is invoked to select the appropriate style. The first argument is a 
number from the left column of the following table. The formatting style for each number is given by 
the remaining four columns. For further explanation of the first two of these columns, see the 
definitions of the .ad, .hy, .na, and .nh requestsl2J. 

arg Hyphenation Adjust Text Indent Label Justijj_cation 

0 .nh .ad text indent label left justified 
1 .hy .ad " " 
2 .nh .na " " 
3 .hy .na " " 
4 .nh .ad no text indent " 
5 .hy .ad " " 
6 .nh .na " " 
7 .hy .na " " 
8 .nh .ad text indent label right justified 
9 .hy .ad " " 

10 .nh .na " " 
11 .hy .na " " 

If the first argument to .FD is out of range, the effect is as if .FD 0 were specified. If the first argu
ment is omitted or null, the effect is equivalent to .FD 10 in nroff and to .FD 0 in troff; these are also 
the respective initial defaults. 

If a second argument is specified, then whenever a first-level heading is encountered, automatically
numbered footnotes begin again with 1. This is most useful with the "section-page" page numbering 
scheme. As an example, the input line: 

.FD "" 1 

maintains the default formatting style and causes footnotes to be numbered afresh after each first-level 
heading. 

For long footnotes that continue onto the following page, it is possible that, if hyphenation is permit
ted, the last line of the footnote on the current page will be hyphenated. Except for this case (over 
which the user has control by specifying an even argument to .FD), hyphenation across pages is inhi
bited by MM. 

Footnotes are separated from the body of the text by a short rule. Footnotes that continue to the next 
page are separated from the body of the text by a full-width rule. In troff, footnotes are set in type that 
is two points smaller than the point size used in the body of the text. 

8.4 Spacing between Footnote Entries 

Normally, one blank line (a three-point vertical space) separates the footnotes when more than one 
occurs on a page. To change this spacing, set the register Fs to the desired value. For example: 

.nr Fs 2 

will cause two blank lines (a six-point vertical space) to occur between footnotes. 



36 Memorandum Macros 

9. PAGE HEADERS AND FOOTERS 

Text that occurs at the top of each page is known as the page header. Text printed at the bottom of 
each page is called the page footer. There can be up to three lines of text associated with the header: 
every page, even page only, and odd page only. Thus the page header may have up to two lines of text: 
the line that occurs at the top of every page and the line for the even- or odd-numbered page. The 
same is true for the page footer. 

This section first describes the default appearance of page headers and page footers, and then the ways 
of changing them. We use the term header (not qualified by even or odd) to mean the line of the page 
header that occurs on every page, and similarly for the term footer. 

9.1 Default Headers and Footers 

By default, each page has a centered page number as the header {9.2}. There is no default footer and 
no even/odd default headers or footers, except as specified in {9.9}. 

In a memorandum or a released paper, the page header on the first page is automatically suppressed 
provided a break does not occur before .MT is called. The macros and text of {6.9} and of {9} as well as 
.nr and .ds requests do not cause a break and are permitted before the .MT macro call. 

9.2 Page Header 

.PH [arg] 

For this and for the .EH, .OH, .PF, .EF, .OF macros, the argument is of the form: 

"'left-part· center-part· right-part·" 

If it is inconvenient to use the apostrophe ( ·) as the delimiter (i.e., because it occurs within one of the 
parts), it may be replaced uniformly by any other character. On output, the parts are left-justified, cen
tered, and right-justified, respectively. See {9.11} for examples. 

The .PH macro specifies the header that is to appear at the top of every page. The initial value (as 
stated in {9.1}) is the default centered page number enclosed by hyphens. The page number contained 
in the P register is an Arabic number. The format of the number may be changed by the .af request. 

If debug mode is set using the flag -rDl on the command line {2.4}, additional information, printed at 
the top left of each page, is included in the default header. This consists of the sccs[IO) Release and 
Level of MM (thus identifying the current version {12.3}), followed by the current line number within 
the current input file. 

9.3 Even-Page Header 

.EH [arg] 

The .EH macro supplies a line to be printed at the top of each even-numbered page, immediately fol
lowing the header. The initial value is a blank line. 

9.4 Odd-Page Header 

.OH [arg] 

This macro is the same as .EH, except that it applies to odd-numbered pages. 

9.5 Page Footer 

.PF [arg] 

The .PF macro specifies the line that is to appear at the bottom of each page. Its initial value is a blank 
line. If the -rCn flag is specified on the command line {2.4}, the type of copy follows the footer on a 
separate line. In particular, if -rC3 or -rC4 (DRAFf) is specified, then, in addition, the footer is ini
tialized to contain the date {6.7. l }, instead of being a blank line. 



Memorandum Macros 37 

9.6 Even-Page Footer 

.EF [arg] 

The .EF macro supplies a line to be printed at the bottom of each even-numbered page, immediately 
preceding the footer. The initial value is a blank line. 

9.7 Odd-Page Footer 

.OF [arg] 

This macro is the same as .EF, except that it applies to odd-numbered pages. 

9.8 Footer on the First Page 

By default, the footer is a blank line. If, in the input text, one specifies .PF and/or .OF before the end 
of the first page of the document, then these lines will appear at the bottom of the first page. 

The header (whatever its contents) replaces the footer on the first page only if the -rNl flag is specified 
on the command line {2.4}. 

9.9 Default Header and Footer with "Section-Page" Numbering 

Pages can be numbered sequentially within sections {4.5}. To obtain this numbering style, specify 
-rN3 or -rN5 on the command line. In this case, the default footer is a centered .. section-page" 
number, e.g. 7-2, and the default page header is blank. 

9.10 Use of Strings and Registers in Header and Footer Macros • 

String and register names may be placed in the arguments to the header and footer macros. If the 
value of the string or register is to be computed when the respective header or footer is printed, the invoca
tion must be escaped by four (4) backslashes. This is because the string or register invocation will be 
processed three times: 

• as the argument to the header or footer macro; 
• in a formatting request within the header or footer macro; 
• in a .ti request during header or footer processing. 

For example, the page number register P must be escaped with four backslashes in order to specify a 
header in which the page number is to be printed at the right margin, e.g.: 

.PH " ••• Page \ \\ \nP • " 

creates a right-justified header containing the word "Page" followed by the page number. Similarly, to 
specify a footer with the "section-page" style, one specifies (see {4.2.2.5} for meaning of HJ): 

.PF····- \\\\n(Hl-\\\\nP -·· 

As another example, suppose that the user arranges for the string a] to contain the current section 
heading which is to be printed at the bottom of each page. The .PF macro call would then be: 

.PF " •• \\\\•(a] .. " 

If only one or two backslashes were used, the footer would print a constant value for al. namely, its 
value when the .PF appeared in the input text. 

9.11 Header and Footer Example• 

The following sequence specifies blank lines for the header and footer lines, page numbers on the out
side edge of each page (i.e., top left margin of even pages and top right margin of odd pages), and 
"Revision 3" on the top inside margin of each page: 



38 

.PH "" 

.PF "" 

.EH ··\\\\nP· ·Revision 3·• 

.OH ··Revision 3• ·\\\\nP·" 

9.12 Generalized Top-of-Page Processing• 

r.... This section is intended only for users accustomed to writing formatter macros. 

Memorandum Macros 

During header processing, MM invokes two user-definable macros. One, the .TP macro, is invoked in 
the environment (see .ev request 121 ) of the header; the other, .PX, is a user-exit macro that is invoked 
(without arguments) when the normal environment has been restored, and with "no-space" mode 
already in effect. 

The effective initial definition of • TP (after the first page of a document) is: 

.de TP 
'sp 3 
.tl \\*(}t 
.if e ·11 \\*(}e 
.if o ·u \\•(}o 
'sp 2 

The string }t contains the header, the string }e contains the even-page header, and the string }o contains 
the odd-page header, as defined by the .PH, .EH, and .OH macros, respectively. To obtain more spe
cialized page titles, the user may redefine the .TP macro to cause any desired header processing {12.5}. 
Note that formatting done within the .TP macro is processed in an environment different from that of 
the body. 

For example, to obtain a page header that includes three centered lines of data, say, a document's 
number, issue date, and revision date, one could define .TP as follows: 

.de TP 

.sp 

.ce 3 
777-888-999 
Iss. 2, AUG 1977 
Rev. 7, SEP 1977 
.sp 

The .PX macro may be used to provide text that is to appear at the top of each page after the normal 
header and that may have tab stops to align it with columns of text in the body of the documeJ?.t. 

9.13 Generalized Bottom-of-Page Processin& 

.BS 
zero or more lines of text 
.BE 

Lines of text that are specified between the .BS (bottom-block start) and .BE (bottom-block end) mac
ros will be printed at the bottom of'each page, 18 after the footnotes (if any), but before the page footer. 
This block of text is removed by specifying an empty block, i.e.: 

18. The bottom block will appear on the table of contents pages and the cover sheet for Memorandum for File, but not on the 
Technical Memorandum or released-paper cover sheets. 



Memorandum Macros 

.BS 

.BE 

9.14 Top and Bottom Margins 

• VM [top] [bottom] 

39 

• VM (Vertical Margin) allows the user to specify extra space at the top and bottom of the page. This 
space precedes the page header and follows the page footer. • VM takes two unscaled arguments that 
are treated as v's. For example: 

.VM 10 15 

adds 10 blank lines to the default top of page margin, and 15 blank lines to the default bottom of page 
margin. Both arguments must be positive (default spacing at the top of the page may be decreased by 
redefining .TP). 

9.15 Proprietary Markings 

.PM [code] 

.PM, for Proprietary Marking, appends to the page footer a PRIVATE, NOTICE, BELL LABORA
TORIES PROPRIETARY, or BELL LABORATORIES RESTRICTED disclaimer. The code may be: 

Code Meaning J 
none turn off previous disclaimer, if any 
P PRIVATE 
N NOTICE 
BP BELL LABORATORIES PROPRIETARY 
BR BELL LABORATORIES RESTRICTED 

The disclaimers are in a form approved for use by the Bell System. 

9.16 Private Documents 

.nr Pv value 

The word "PRIVATE" may be printed centered and underlined on the second line of a document 
{preceding the page header). This is done by setting the Pv register: 

Value Meani1Jlf._ 
0 do not print PRJV ATE (default) 
1 PRIVATE on first page only 
2 PRIVATE on all ~es 

If Pv is 2, the user definable .TP may not be used because .TP is used by MM to print PRIVATE on all 
pages except the first page of a memorandum on which .TP is not invoked. 

10. TABLE OF CONTENTS AND COVER SHEET 

The table of contents and the cover sheet for a document are produced by invoking the .TC and .CS 
macros, respectively. 

w- This section will refer to cover sheets for Technical Memoranda and released papefs only. The mechan
ism for produdng a Memorandum for File cover sheet was discussed earlier {6.4}. 

These macros should normally appear only once at the end of the document, after the Signature Block 
, {6.11.1} and Notations {6.11.2} macros. They may occur in either order. 

The table of contents is produced at the end of the document because the entire document must be 
processed before the table of contents can be generated. Similarly, the cover sheet is often not needed, 
and is therefore produced at the end. 



40 Memorandum Macros 

10.1 Table of Contents 

• TC [sieve!] [spacing] [tlevel] [tab] [head I] [head2] [head3] [head4] [head5] 

The .TC macro generates a table of contents containing the headings that were saved for the table of 
contents as determined by the value of the Cl register {4.4}. The arguments to .TC control the spacing 
before each entry, the placement of the associated page number, and additional text on the first page of 
the table of contents before the word "CONTENTS." 

Spacing before each entry is controlled by the first two arguments; headings whose level is less than or 
equal to sieve/ will have spacing blank lines (halves of a vertical space) before them. Both sieve/ and 
spacing default to 1. This means that first-level headings are preceded by one blank line (Yi a vertical 
space). Note that sieve/ does not control what levels of heading have been saved: the saving of headings 
is the function of the Cl register {4.4}. 

The third and fourth arguments control the placement of the page number for each heading. The page 
numbers can be justified at the right margin with either blanks or dots ("leaders") separating the head
ing text from the page number, or the page numbers can follow the heading text. For headings whose 
level is less than or equal to tlevel (default 2), the page numbers are justified at the right margin. In 
this case, the value of tab determines the character used to separate the heading text from the page 
number. If tab is 0 (the default value), dots (i.e., leaders) are used; if tab is greater than 0, spaces are 
used. For headings whose level is greater than tleve/, the page numbers are separated from the heading 
text by two spaces (i.e., they are "ragged right"). 

All additional arguments (e.g., head!, head2, etc.), if any, are horizontally centered on the page, and 
precede the actual table of contents itself. 

If the .TC macro is invoked with at most four arguments, then the user-exit macro .TX is invoked 
(without arguments) before the word "CONTENTS" is printed; or the user-exit macro .TY is invoked 
and the word "CONTENTS" is not printed. By defining .TX or .TY and invoking .TC with at most 
four arguments, the user can specify what needs to be done at the top of the (first) page of the table of 
contents. For example, the following input: 

.de TX 

.ce 2 
Special Application 
Message Transmission 
.sp 2 
.in +ton 
Approved: \l' 3i • 
.in 
.sp 

.TC 

yields: 

Special Application 
Message Transmission 

CONTENTS 

If this macro were defined as .TY rather than .TX, the word "CONTENTS" would not appear. 
Defining .TY as an empty macro will suppress "CONTENTS" with no replacement: 



Memorandum Macros 41 

.de TY 

By default, the first level headings will appear in the table of contents at the left margin. Subsequent 
levels will be aligned with the text of headings at the preceding level. These indentations may be 
changed by defining the Ci string which takes a maximum of seven arguments corresponding to the 
heading levels. It must be given at least as many arguments as are set by the C/ register {4.4}. The 
arguments must be scaled. For example, with C/=5, 

.ds Ci .25i .5i • 75i li 1i 

or 

.ds Ci 0 2n 4n 6n Sn 

Two other registers are available to modify the format of the table of contents, Oc and Cp. By default, 
table of contents pages will have lower-case Roman numeral page numbering. If the Oc register is set 
to I, the .TC macro will not print any page number but will instead reset the P register to 1. It is the 
user's responsibility to give an appropriate page footer to place the page number. Ordinarily the same 
.PF used in the body of the document will be adequate. 

The List of Figures, Tables, etc. pages will be produced separately unless Cp is set to 1 which causes 
these lists to appear on the same page as the table of contents. 

10.2 Cover Sheet 

.CS [pages] [other] [total] [figs] [this] [refs] 

The .CS macro generates a cover sheet in either the released paper or Technical Memorandum style 
(see {6.4} for details of the Memorandum for File cover sheet). All the other information for the 
cover sheet is obtained from the data given before the .MT macro call {6.9}. If the Technical 
Memorandum style is used, the .CS macro generates the "Cover Sheet for Technical Memorandum." 
The data that appear in the lower left corner of the Technical Memorandum cover sheetl9l (the counts 
of: pages of text, other pages, total pages, figures, tables, and references) are generated automatically (0 
is used for the count of "other pages"). These values may be changed by supplying the corresponding 
arguments to the .CS macro. If the released-paper style is used, all arguments to .CS are ignored. 

11. REFERENCES 

There are two macros that delimit the text of references, a string used to automatically number the 
references, and an optional macro to produce reference pages within the document. 

11.1 Automatic Numbering of References 

Automatically numbered references may be obtained by typing \•(Rf (i.e., invoking the string Rf) 
immediately after the text to be referenced. This places the next sequential reference number (in a 
smaller point size) enclosed in brackets a half-line above the text to be referenced, as illustrated 
throughout this document. The reference count is kept in the number register Rf. 

11.2 Delimiting Reference Text 

The .RS and .RF macros are used to delimit the text of each reference. 

A line of text to be referenced\*(Rf. 
.RS [string-name] 
reference text 
.RF 



42 

11.3 Subsequent References 

.RS takes one argument, a string-name. For example: 

.RS aA 
reference text 
.RF 

Memorandum Macros 

The string aA is assigned the current reference number. It may be used later in the document, as the 
string call, \*{aA, to reference text which must be labeled with a prior reference number. The refer
ence is output enclosed in brackets a half-line above the text to be referenced. No .RS/ .RF pair is 
needed for subsequent references. 

11.4 Reference Page 

A reference page, entitled by default "References", will be generated automatically at the end of the 
document (before the Table of Contents and the Cover Sheet) and will be listed in the Table of Con
tents. This page contains the reference items (i.e., text enclosed within .RS/.RF pairs). Reference 
items will be separated by a space (I /2 space) unless the Ls register is set to 0 to suppress this spacing. 
The user may change the reference page title by defining the Rp string: 

.ds Rp "New Title" 

The .RP (Reference Page) macro may be used to produce reference pages anywhere else within a docu
ment (i.e., after each major section); .RP is not needed to produce a separate reference page with 
default spacings at the end of the document. 

.RP [argl] [arg2] 

The two arguments allow the user to control resetting of reference numbering and page skipping. 

a1:S.J Meaning 

0 reset reference counter (default) 
do not reset reference counter 

ar:.g_2 Meani'!K_ 
0 put on separate page (default) 
1 do not cause a following .SK 
2 do not cause a preceding .SK 
3 no .SK before or after 

If no .SK is issued by .RP, then a single blank line will separate the References from the following 
(preceding) text. The user may wish to adjust the spacing. For example, to produce references at the 
end of each major section: 

.sp 3 

.RP 1 2 

.H I "Next Section" 

12. MISCELLANEOUS FEATURES 

12.1 Bold, Italic, and Roman Fonts 

.B [bold-arg] [previous-font-arg] 

.I [italic-arg] [previous-font-arg] 

.R. 

When called without arguments, .B changes the font to bold and .I changes to underlining (italic). This 
condition continues until the occurrence of a .R, when the (regular) roman font is restored. Thus: 



Memorandum Macros 

.I 
here is some text. 
.R 

yields: 

here is some text. 

43 

If .B or .I is called with one argument, that argument is printed in the appropriate font (underlined in 
nroff for .I). Then the previous font is restored (underlining is turned off in nroff). If two or more 
arguments (maximum 6) are given to a .B or .I, the second argument is then concatenated to the first 
with no intervening space (1/12 space if the first font is italic), but is printed in the previous font; and 
the remaining pairs of arguments are similarly alternated. For example: 

.I italic " text " right -justified 

produces: 

italic text right-justified 

These macros alternate with the prevailing font at the time they are invoked. To alternate specific pairs 
of fonts, the following macros are available: 

.IB .BI .IR .RI .RB .BR 

Each takes a maximum of 6 arguments and alternates the arguments between the specified fonts. 

Note that font changes in headings are handled separately {4.2.2.4.1 }. 

Anyone using a terminal that cannot underline might wish to insert: 

.rm ul 

.rm cu 

at the beginning of the document to eliminate all underlining. 

12.2 Justification of Right Margin 

.SA [arg] 

The .SA macro is used to set right-margin justification for the main body of text. Two justification flags 
are used: current and default. .SA 0 sets both flags to no justification, i.e., it acts like the .na request. 
.SA I is the inverse: it sets both flags to cause justification, just like the .ad request. However, calling 
.SA without an argument causes the current flag to be copied from the default flag, thus performing 
either a .na or .ad, depending on what the default is. Initially, both flags are set for no justification in 
nroff and for justification in troff. 

In general, the request .na can be used to ensure that justification is turned off, but .SA should be used 
to restore justification, rather than the .ad request. In this way, justification or lack thereof for the 
remainder of the text is specified by inserting .SA 0 or .SA I once at the beginning of the document. 

12.3 SCCS Release Identification 

The string RE contains the SCCS1101 Release and Level of the current version of MM. For example, 
typing: 

This is version \•(RE of the macros. 

produces: 

This is version 15.128 of the macros. 

This information is useful in analyzing suspected bugs in MM. The easiest way to have this number 
appear in your output is to specify -rDI {2.4} on the command line, which causes the string RE to be 
output as part of the page header {9.2}. 



44 

12.4 Two-Column Output 

MM can print two columns on a page: 

.2C 
text and formatting requests (except another .2C) 
.IC 

Memorandum Macros 

The .2C macro begins two-column processing which continues until a .IC macro is encountered. In 
two-column processing, each physical page is thought of as containing two columnar "pages" of equal 
(but smaller) "page" width. Page headers and footers are not affected by two-column processing. The 
.2C macro does not "balance" two-column output. 

It is possible to have full-page width footnotes and displays when in two column mode, although the 
default action is for footnotes and displays to be narrow in two column mode and wide in one column 
mode. Footnote and display width is controlled by a macro, .WC (Width Control), which takes the fol
lowing arguments: 

arg_ Meaning_ 
N Normal default mode (-WF, - FF, -WD, 

FB) 
WF Wide Footnotes always (even in two 

column mode) 
-WF DEFAULT: turn off WF (footnotes follow 

column mode, wide in IC mode, narrow in 
2C mode, unless FF is set) 

FF First Footnote; all footnotes have the same 
width as the first footnote encountered for 
that page 

- FF DEFAULT: turn off FF (footnote style fol
lows the settings of WF or -WF) 

WD Wide Displays always (even in two column 
mode) 

-WD DEFAULT: Displays follow whichever 
column mode is in effect when the display 
is encountered 

FB DEFAULT: Floating displays cause a break 
when output on the current page 

- FB Floating displays on current page do not 
cause a break 

For example: ".WC WD FF" will cause all displays to be wide, and all footnotes on a page to be the 
same width, while ".WC N" will reinstate the default actions. If conflicting settings are given to • WC 
the last one is used. That is, ".WC WF -WF" has the effect of ".WC -WF". 

12.5 Column Headings for Two-Column Output• 

w This section is intended only for users accustomed to writing formatter macros. 

In two-column output, it is sometimes necessary to have headers over each column, as well as headers 
over the entire page {9}. This is accomplished by redefining the .TP macro {9.12} to provide header 
lines both for the entire page and for each of the columns. For example: 



Memorandum Macros 

.de TP 

.sp 2 

.ti 'Page \\nP.OVERALL .. 
• ti .• TITLE •• 

• sp 
.nf 
.ta 16C 31R 34 SOC 65R 
left-center-> right_, left ->center-> right 
->first column____,____, -second column 
.fi 
.sp 2 

45 

(where ____, stands for the tab character) 

The above example will produce two lines of page header text plus two lines of headers over each 
column. The tab stops are for a 65-en overall line length. 

12.6 Vertical Spacing 

.SP [lines] 

There exist several ways of obtaining vertical spacing, all with different effects: the .sp request spaces 
the number of lines specified, unless "no space" (.ns) mode is on, in which case the request is ignored. 
This mode is set at the end of a page header to eliminate spacing by a .sp or .bp request that happens to 
occur at the top of a page. This mode can be turned off by the .rs ("restore spacing") request. 

The .SP macro is used to avoid the accumulation of vertical space by successive macro calls. Several 
.SP calls in a row produce not the sum of their arguments, but their maximum; i.e., the following pro
duces only 3 blank lines: 

.SP 2 

.SP 3 

.SP 

Many MM macros utilize .SP for spacing. For example, ".LE l" {5.3.2} immediately followed by ".P" 
{4.1} produces only a single blank line ( 'h a vertical space) between the end of the list and the following 
paragraph. An omitted argument defaults to one blank line (one vertical space). Negative arguments 
are not permitted. The argument must be unscaled but fractional amounts are permitted. Like .sp, .SP 
is also inhibited by the .ns request. 

12.7 Skipping Pages 

.SK [pages] 

The .SK macro skips pages, but retains the usual header and footer processing. If pages is omitted, 
null, or 0, .SK skips to the top of the next page unless it is currently at the top of a page, in which case 
it does nothing. .SK n skips n pages. That is, .SK always positions the text that follows it at the top of 
a page, while .SK l always leaves one page that is blank except for the header and footer. 

12.8 Forcing an Odd Page 

.OP 

This macro is used to ensure that the text following it begins at the top of an odd-numbered page. If 
currently at the top of an odd page, no motion takes place. If currently on an even page, text resumes 
printing at the top of the next page. If currently on an odd page (but not at the top of the page) one 
blank page is produced, and printing resumes on the page after that. 



46 Memorandum Macros 

12.9 Setting the Point Size and Vertical Spaci~g 

In troff, the default point size (obtained from the MM register S {2.4}) is 10 points, and the vertical 
spacing is 12 points (i.e., 6 lines per inch). The prevailing point size and vertical spacing may be 
changed by invoking the .S macro: 

.S [point size] [vertical spacing] 

The mnemonics D (default value), C (current value), and P (previous value) may be used for both 
arguments. If an argument is negative, the current value is decremented by the specified amount; if an 
argument is positive, the current value is incremented by the specified amount; if an argument is 
unsigned, it is used as the new value; .S without arguments defaults to P. If the first argument is 
specified but the second is not, then D is used for the vertical spacing; the default value for vertical 
spacing is always 2 points greater than the current point size. 19 A null (" ") value for either argument 
defaults to C. Thus, if n is a numeric value: 

.s 

.S "" n 

.S n "" 

.Sn 

.s "" 

.s "" "" 

.Sn n 

.s pp 

.SC n 

.Sn C 

.Sn D 

.SC D 

.s cc 

.Sn n 

If the first argument is greater than 99, the default point size ( 10 points) is restored. If the second argu
ment is greater than 99, the default vertical spacing (current point size plus 2 points) is used. For 
example: 

.s 100 

.S 14 111 
.S IO 12 
.s 14 16 

The .SM macro allows one to reduce by 1 point the size of a string: 

.SM string! [string2] [string3] 

If the third argument is omitted, the first argument is made smaller and is concatenated with the second 
argument, if the latter is specified. If all three arguments are present (even if any are null), the second 
argument is made smaller and all three arguments are concatenated. For example: 

.SM X gives x 

.SM X Y gives XY 

.SM Y X Y gives YXY 

.SM UNIX gives UNIX 

.SM UNIX) gives UNIX) 

.SM ( UNIX ) gives (UNIX) 

.SM U NIX "" gives UNIX 

19. Footnotes {8} are two points smaller tha.n the body, with an additional three-point space between footnotes. 



Memorandum Macros 47 

12.10 Producing Accents 

The following strings may be used to produce accents for letters: 

Input Output 

Grave accent e\•' e 

Acute accent e\•' e 

Circumflex o\•" 
. 
0 

Tilde n\•' n. 
Cedilla c\•, '1 

Lower-case umlaut u\•: u 
Upper-case umlaut U\•; u 

12.11 Inserting Text Interactively• 

.RD [prompt] [diversion] [string] 

.RD (ReaD insertion) allows a user to stop the standard output of a document and to read text from 
the standard input until two consecutive new-lines are found. When the new-lines are encountered, 
normal output is resumed . 

. RD follows the formatting conventions in effect. Thus, the examples below assume that the .RD is 
invoked in no fill mode (.nf). 

The first argument is a prompt which will be printed at the terminal. If no prompt is given, .RD signals 
the user with a BEL on terminal output. 

The second argument, the name of a diversion, allows the user to save all the text typed in after the 
prompt in a macro whose name is that of the diversion. The third argument, the name of a string, 
allows the user to save for later reference the first line following the prompt in the named string. For 
example: 

.RD Name aA bB 

produces: 

Name: (user types) J. Jones 
16 Elm Rd., 
Piscataway 

The diverted macro .aA will contain: 

J. Jones 
16 Elm Rd., 
Piscataway 

The string bB (\•{bB) contains "J. Jones". 

A new-line followed by a control-d (EOF) also allows the user to resume normal output. 

13. ERRORS AND DEBUGGING 

13.1 Error Terminations 

When a macro discovers an error, the following actions occur: 

• A break occurs. 

• To avoid confusion regarding the location of the error, the formatter output buffer (which may con
tain some text) is printed. 



48 Memorandum Macros 

• A short message is printed giving the name of the macro that found the error, the type of error, and 
the approximate line number (in the current input file) of the last processed input line. (All the 
error messages are explained in Appendix D.) 

• Processing terminates, unless the register D {2.4} has a positive value. In the latter case, processing 
continues even though the output is guaranteed to be deranged from that point on. 

t.'if' The e"or message is printed by writing it directly to the user's terminal. If an output filter. such as 
300( 1), 450(1), or hp( 1) is being used to post-process nroff output. the message may be garbled by 
being intermixed with text held in that filter's output buffer. 

w- If any of cw(l), eqn(l)/neqn, and tbl(l) are being used. and if the -olist option of the formatter 
causes the last page of the document not to be printed. a harmless "broken pipe" message may result. 

13.2 Disappearance of Output 

This usually occurs because of an unclosed diversion (e.g., missing .DE or .FE). Fortunately, the mac
ros that use diversions are careful about it, and they check to make sure that illegal nestings do not 
occur. If any message is issued about a missing .DE or .FE, the appropriate action is to search back
wards from the termination point looking for the corresponding .DF, .DS, or .FS. 

The following command: 

grep -n ""\.[EDFRT][EFNQS]" files ... 

prints all the .DF, .DS, .DE, .EQ, .EN, .FS, .FE, .RS, .RF, .TS, and .TE macros found in files ••• , 
each preceded by its file name and the line number in that file. This listing can be used to check for 
illegal nesting and/or omission of these macros. 

14. EXTENDING AND MODIFYING THE MACROS • 

14.J Naming ConYentions 

In this section, the following conventions are used to describe names: 

n: digit 
a: lower-case letter 
A: upper-case letter 
x: n, a, or A: i.e., any letter or digit (any alphanumeric character) 
s: special character (any non-alphanumeric character) 

All other characters are literals (i.e., stand for themselves). 

Note that request, macro, and string names are kept by the formatters in a single internal table, so that 
there must be no duplication among such names. Number register names are kept in a separate table. 

14. J. l Names Used by Formatters 

requests: 

registers: 

aa (most common) 
an (only one, currently: c2) 

aa (normal) 
.x (normal) 
.s (only one, currently: .$) 
a. (only one, currently: c.) 
% (page number) 



Memorandum Macros 49 

14.J .2 Names Used by MM 

macros and strings: A, AA, Aa (accessible to users; e.g., macros P and HU, strings F, BU, and Lt) 
nA (accessible to users; only two, currently: IC and 2C) 
aA (accessible to users; only one, currently: nP) 
s (accessible to users; only the seven accents, currently {12.10}) 
)x, }x, ]x, >x, ?x (internal) 

registers: An, Aa (accessible to users; e.g., HI, Fg) 
A (accessible to users; meant to be set on the command line; e.g., C) 
:x, ;x, fl. x, ?x, !x (internal) 

14.1.3 Names Used by CW, EQN/NEQN, and TBL. Cw(l), the constant-width font preprocessor for 
troff, uses the following five macro names: .CD, .CN, .CP, .CW, and .PC; it also uses the number 
register names cE and cW. The equation preprocessors, eqn(I) and neqn use registers and string names 
of the form nn. The table preprocessor, tb/(1), uses T&, T#, and TW, and names of the form: 

a- a+ al nn na a #a #s 

I 4. I .4 User-Definable Names. Given the above, what is left for user extensions? To avoid "colli
sions" with already used names, use names that consist either of a single lower-case letter, or of a 
lower-case letter followed by a character other than a lower-case letter (remembering, however, that the 
names .c2 and .nP are already used). The following is a possible user naming convention: 

macros: aA (e.g., bG, kW) 
strings: as (e.g., c), f], p}) 
registers: a (e.g., f, t) 

14.2 Sample Extensions 

14.2.J Appendix Headings. The following is a way of generating and numbering appendix headings: 

.nr Hu 1 

.nr a 0 

.de aH 

.nr a + 1 

.nr P 0 

.PH ....... Appendix \\na-\\\\\\\\nP"" 

.SK 

.HU "\\$1" 

After the above initialization and definition, each call of the form ".aH "title"" begins a new page 
(with the page header changed to "Appendix a-n") and generates an unnumbered heading of title, 
which, if desired, can be saved for the table of contents. Those who wish apppendix titles to be cen
tered must, in addition, set the register He to 1 {4.2;2.3}. 

14.2.2 Hanging Indent with Tabs. The following example illustrates the use of the hanging-indent 
feature of variable-item lists {5.3.3.6}. First, a user-defined macro is built to accept four arguments that 
make up the mark. In the output, each argument is to be separated from the previous one by a tab; tab 
settings are defined later. Since the first argument may begin with a period or apostrophe, the "\&" is 
used so that the formatter will not interpret such a line as a formatter request or macro call. 20 The 
"\t" is translated by the formatter into a tab. The "\c" is used to concatenate the input teXl that fol
lows the macro call to the line built by the macro. The macro and an example of its use are: 

20. The two-character sequence "\&" is understood by the formatters to be a "zero-width" space, i.e., it causes no output 
characters to appear, but it removes the special meaning of a leading period or apostrophe. 



50 

.de ax 

.LI 
\&\\$1 \t\\$2\t\ \$3\t\\$4\t\c 

~a 9n 18n 27n 36n 
.VL 36 
.aX .nh off \- no 
No hyphenation. 
Automatic hyphenation is turned off. 
Words containing hyphens 
(e.g., mother-in-law) may still be split across lines . 
• ax .hy on \- no 
Hyphenate. 
Automatic hyphenation is turned on . 
• aX .hc\Ck: none none no 
Hyphenation indicator character is set to .. c" or removed. 
During text processing the indicator is suppressed 
and will not appear in the output. 
Prepending the indicator to a word has the effect 
of preventing hyphenation of that word . 
. LE 

Memorandum Macros 

(0 stands for a space) 

The resulting output is: 

.nh off 

• hy on 

. he c none 

15. CONCLUSION 

no 

no 

none no 

No hyphenation. Automatic hyphenation is turned off. Words 
containing hyphens (e.g., mother-in-law) may still be split 
across lines. 

Hyphenate. Automatic hyphenation is turned on . 

Hyphenation indicator character is set to "c" or removed . 
During text processing the indicator is suppressed and will not 
appear in the output. Prepending the indicator to a word has 
the effect of preventing hyphenation of that word. 

The following are the qualities that we have tried to emphasize in MM, in approximate order of impor
tance: 

• Robustness in the face of error- A user need not be an nroff/troff expert to use these macros. When 
the input is incorrect, either the macros attempt to make a reasonable interpretation of the error, or 
a message describing the error is produced. We have tried to minimize the possibility that a user 
would get cryptic system messages or strange output as a result of simple errors. 

• Ease of use for simple documents- It is not necessary to write complex sequences of commands to 
produce simple documents. Reasonable default values are provided, where at all possible. 

• Parameterization- There are many different preferences in the area of document styling. Many 
parameters are provided so that users can adapt the output to their respective needs over a wide 
rang'? of styles. 

• Extension by moderately expert users-We have made a strong effort to use mnemonic naming con
ventions and consistent techniques in the construction of the macros. Naming conventions are 
given so that a user can add new macros or redefine existing ones, if necessary. 



Memorandum Macros 51 

• Device independence-The most. common use of MM is to print documents on hard-copy typewriter 
terminals, using the nroff formatter. The macros can be used conveniently with both I 0- and 12-
pitch terminals. In addition, output can be scanned with an appropriate CRT terminal. The macros 
have been constructed to allow compatibility with troff, so that output can be produced both ·on 
typewriter-like terminals and on a phototypesetter. 

• Minimization of input-The design of the macros attempts to minimize repetitive typing. For exam
ple, if a user wants to have a blank line after all first- or second-level headings, he or she need only 
set a specific parameter once at the beginning of a document, rather than add a blank line after each 
such heading. 

• Decoupling of input format from output style-There is but one way to prepare the input text, although 
the user may obtain a number of output styles by setting a few global flags. For example, the .H 
macro is used for all numbered headings, yet the actual output style of these headings may be made 
to vary from document to document or, for that matter, within a single document. 

Acknowledgements. We are indebted to T. A. Dolotta for his continuing guidance during the develop
ment of MM. We also thank our many users who have provided much valuable feedback, both about 
the macros and about this manual. Many of the features of MM are patterned after similar features in a 
number of earlier macro packages, and, in particular, after one implemented by M. E. Lesk. Finally, 
because MM often approaches the limits of what is possible with the text formatters, during the imple
mentation of MM we have generated atypical requirements and encountered unusual problems; we 
thank the late J. F. Ossanna for his willingness to add new features to the formatters and to invent ways 
of having the formatters perform unusual but desired actions. 

REFERENCES 

1. Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G. (eds.). UNIX User's Manual- Release 3.0, Bell 
Laboratories (June 1980). 

2. Ossanna, J. F. NROFF/TROFF User's Manual. Bell Laboratories, October 1976. 

3. Kernighan, B. W. UNIX/or Beginners. Bell Laboratories, October 1974. 

4. Kernighan, B. W. A Tutorial Introduction to the UNIX Text Editor. Bell Laboratories, October 1974. 

5. Kernighan, B. W. A TROFF Tutorial. Bell Laboratories, August 1976. 

6. Kernighan, B. W. and Cherry, L. L. Typesetting Mathematics-User's Guide (Second Edition). Bell 
Laboratories, August 1978. 

7. Lesk, M. TBL-A Program to Format Tables. Bell Laboratories, September 1977. 

8. Smith, D. W. and Piskorik, E. M. Typing Documents with MM. Bell Laboratories, April 1980. 

9. Bell Laboratories Methods and Systems Department. Office Guide. Unpublished Memorandum, 
Bell Laboratories, April 1972 (as revised). 

10. Bonanni, L. E. and Salemi, C. A. The Source Code Control System User's Guide. Bell Laboratories, 
April 1979. 



52 Memorandum Macros 

Appendix A: USER.-DEFINED LIST STRUCTURES • 

y- This appendix is intended only for users accustomed to writing formatter macros. 

If a large document requires complex list structures, it is useful to be able to define the appearance for 
each list level only once, instead of having to define it at the beginning of each list. This permits con
sistency of style in a large document. For example, a generalized list-initialization macro might be 
defined in such a way that what it does depends on the list-nesting level in effect at the time the macro 
is called. Suppose that levels 1 through 5 of lists are to have the following appearance: 

A. 

[1] 

• 
a) 

+ 
The following code defines a macro (.aL) that always begins a new list and determines the type of list 
according to the current list level. To understand it, you should know that the number register :g is 
used by the MM list macros to determine the current list level; it is 0 if there is no currently active list. 
Each call to a list-initialization macro increments :g, and each .LE call decrements it . 

• de aL 
• \" register g is used as a local temporary to save :g before it is changed below 
.nr g \\n(:g 
.if \\ng=O .AL A \" give me an A . 
• if \\ng= 1 .LB \\n(Li 0 I 4 \" give me a [1] 
.if \\ng= 2 .BL \" give me a bullet 
.if \\ng=3 .LB \\n(Li 0 2 2 a\" give me an a) 
.if \\ng=4 .ML + \" give me a + 

This macro can be used (in conjunction with .LI and .LE) instead of .AL, .RL, .BL, .LB, and .ML. 
For example, the following input: 

.aL 

.LI 
first line . 
• aL 
.LI 
second line . 
• LE 
.LI 
third line . 
• LE 

will yield: 

A. first line. 

[l] second line. 

B. third line. 

There is another approach to lists that is similar to the .H mechanism. The list-initialization, as well as 
the .LI and the .LE macros are all included in a single macro. That macro (called .bL below) requires 



Memorandum Macros 53 

an argument to tell it what level of item is required; it adjusts the list level by either beginning a new 
list or setting the list level back to a previous value, and then issues a .LI macro call to produce the 
item: 

.de bL 

.ie \\n(.$ .nr g \\$1 \" if there is an argument, that is the level 

.el .nr g \ \n(:g \" if no argument, use current level 

.if \\ng-\\n(:g> 1 .)D "••ILLEGAL SKIPPING OF LEVEL" \" increasing level by more than 1 

.if \\ng>\\n(:g \{.aL \\ng-1 \" if g > :g, begin new list 
nr g \\n{:g\} \" and reset g to current level (.aL changes g) 

.if \\n{:g>\\ng .LC \\ng \" if :g > g, prune back to correct level 
~ \" if :g = g, stay within current list 
.LI \" in all cases, get out an item 

For .bL to work, the previous definition of the .• aL macro must be changed to obtain the value of g 
from its argument, rather than from :g. Invoking .bL without arguments causes it to stay at the current 
list level. The MM .LC macro (List Clear) removes list descriptions until the level is less than or equal 
to that of its argument. For example, the .H macro includes the call ".LC O". If text is to be resumed 
at the end of a list, insert the call ".LC O" to clear out the lists completely. The example below illus
trates the relatively small amount of input needed by this approach. The input text: 

The quick brown fox jumped over the lazy dog's back . 
• bL 1 
first line . 
. bL 2 
second line . 
. bL I 
third line . 
• bL 
fourth line . 
• LC 0 
fifth line. 

yields: 

The quick brown fox jumped over the lazy dog's back. 

A. first line. 

[ 1] second line. 

B. third line. 

C. fourth line. 
fifth line. 



54 Memorandum Macros 

Appendix ,B: SAMPLE FOOTNOTES 

The following example illustrates several footnote styles and both labeled and automatically-numbered foot
notes. The actual input for the immediately following text and for the footnotes at the bottom of this page is 
shown on the following page: 

With the footnote style set to the nroff default, we process a footnote 1 followed by another one.••••• 
Using the .FD macro, we changed the footnote style to hyphenate, right margin justification, indent, 
and left justify the label. Here is a footnote, 2 and another. t The footnote style is now set, again via 
the .FD macro, to no hyphenation, no right margin justification, no indentation, and with the label 
left-justified. Here comes the final one. 3 

I. This is the first footnote text example (.FD 10). This is the default style for nroff. The right margin is not justified. 
Hyphenation is not permitted. The text is indented, and the automatically generated label is right-justified in the text-indent 
space. 

*****This is the second footnote text example (.FD 10). This is also the default nroff style but with a long footnote label 
provided by the user. 

2. This is the third footnote example (.FD I). The right margin is justified, the footnote text is indented, the label is /efi
justified in the text-indent space. Although not necessarily illustrated by this example, hyphenation is permitted. The quick 
brown fox jumped over the lazy dog's back. 

t This is the fourth footnote example (.FD 1 ). The style is the same as the third footnote. 

3. This is .the fifth footnote example (.FD 6). The right margin is not justified, hyphenation is not permitted, the footnote text is 
not indented, and the label is placed at the beginning of the first line. The quick brown fox jumped over the lazy dog's back. 
Now is the time for all good men to come to the aid of their country. 



Memorandum Macros 

.FD IO 
With the footnote style set to the· 
.I nroff 
default, we process a footnote\•F 
.FS 
This is the first footnote text example (.FD IO). 
This is the default style for 
.I nroff. 
The right margin is 
.I not 
justified. 
Hyphenation is 
.I not 
permitted. 
The text is indented, and the automatically generated label is 
.I right -justified 
in the text-indent space . 
• FE 
followed by another one.•••••\D 

.FS ***** 
This is the second footnote text example (.FD IO). 
This is also the default 
.I nroff 
style but with a long footnote label provided by the user . 
• FE 
.FD 1 
Using the .FD macro, we changed the footnote style to 
hyphenate, right margin justification, indent, and left justify the label. 
Here is a footnote,\•F 
.FS 
This is the third footnote example (.FD 1). 
The right margin is justified, 
the footnote text is indented, the label is 
.I left -justified 
in the text-indent space. 
Although not necessarily illustrated by this example, hyphenation is permitted. 
The quick brown fox jumped over the lazy dog's back . 
• FE 
and another.\(dg\D 
.FS \{dg 
This is the fourth footnote example (.FD I). 
The style is the same as the third footnote . 
• FE 
.FD 6 

55 

(0 stands for a space) 

The footnote style is now set, again via the .FD macro, to no hyphenation, no right margin justification, 
no indentation, and with the label left-justified. 
Here comes the final one.\•F\D 
.FS 
This is the fifth footnote example (.FD 6). 
The right margin is 
.I not 
justified, hyphenation is 
.I not 
permitted, the footnote text is 
.I not 
indented, and the label is placed at the beginning of the first line. 
The quick brown fox jumped over the lazy dog's back. 
Now is the time for all good men to come to the aid of their country . 
• FE . 



56 Memorandum Macros 

Appendix C: SAMPLE LETTER 

rar The nroff and troff outputs corresponding io the input text below are shown on the following pages . 

. ND "May 31, 1979" 

.TL 334455 
Out-of-Hours Course Description 
.AU "D. W. Stevenson" DWS PY 9876 5432 lX-123 
.MT 0 
.DS 
J. M. Jones: 
.DE 
.P 
Please use the following description for the Out-of-Hours course 
.I 
Document Preparation on the UNIX• 
.R 
.FS • 
UNIX is a trademark of Bell Laboratories . 
• FE 
.I "Time-Sharing System:" 
.P 
The course is intended for clerks, typists, and others 
who intend to use the UNIX system for preparing documentation. 
The course will cover such topics as: 
.VL 18 
.LI Environment: 
utilizing a time-sharing computer system; 
accessing the system; using appropriate output terminals . 
. LI Files: 
how text is stored on the system; 
directories; manipulating files . 
• LI "Text editing:" 
how to enter text so that subsequent revisions are easier to make; 
how to use the editing system to add, delete, and move lines of text; 
how to make corrections . 
• LI "Text processing:" 
basic concepts; 
use of general-purpose formatting packages . 
• LI "Other facilities:" 
additional capabilities useful to the typist such as the 
.I "spell, diff," 
and 
.I grep 
commands, and a desk-calculator package . 
• LE 
.SG jrm 
.NS 
S. P. Lename 
H. 0. Del 
M. Hill 
.NE 



Memorandum Macros 

Bell Laboratories 

subject: Out-of-Hours Course Description -
Case 3:;4455 

date: May 31, 1979 

J. M. Jones: 

from: D. W. Stevenson 
PY 9876 
1X-123 x5432 

Please use the following description for the Out-of-Hours course 
Document Preparation .QD..tJlli. UNIX* Time-Sharing System: 

The course is intended for clerks, typists, and others who intend to use 
the UNIX system for preparing documentation. The course will cover such 
topics as: 

Environment: 

Fil es: 

Text editing: 

utilizing a time-sharing computer system; accessing 
the system; using appropriate output terminals. 

how text is stored on the system; directories; 
manipulating files. 

how to enter text so that subsequent revisions are 
easier to make; how to use the editing system to add, 
delete, and move lines of text; how to make 
corrections. 

Text processing: basic concepts; use of general-purpose formatting 
packages. 

Other facilities: additional capabilities useful to the typist such as 
the spell, ..Q.1.(f, and~ commands, and a desk
calculator package. 

PY-9876-DWS-jrm 

Copy to 
s. P. Lename 
H. 0. Del 
M. Hill 

D. W. Stevenson 

• UNlX is a trademark of Bell Laboratories. 

57 



58 Memorandum Macros 

@) 
Bell Laboratories 

subject: Out-of-Hours Course Description - Case 334455 date: May 31, 1979 

J.M. Jones: 

from: D. W. Stevenson 
PY 9876 
lX-123 x5432 

Please use the following description for the Out-of-Hours course Documen1 Preparation on the 
UNI~ Time-Sharing System: 

The course is intended for clerks, typists, and others who intend to use the UNIX system for 
preparing documentation. The course will cover such topics as: 

Environment: 

Files: 

Text editing: 

_Text processing: 

Other facilities: 

PY-9876-DWS-jrm 

Copy to 
S. P. Lename 
H. 0. Del 
M.Hill 

utilizing a time-sharing computer system; accessing the system; using 
appropriate output terminals. 

how text is stored on the system; directories; manipulating files. 

how to enter text so that subsequent revisions are easier to make; how to 
use the editing system to add, delete, and move lines of text; how to make 
corrections. 

basic concepts; use of general-purpose formatting packages. 

additional capabilities useful to the typist such as the spell. di.ff, and grep 
commands, and a desk-calculator package. 

D. W. Stevenson 

• UNIX is a trademark of Bell Laboratories. 



Memorandum Macros 59 

Appendix D: ERROR MESSAGES 

I. MM Error Messages 

An MM error message has a standard part followed by a variable part. The standard part has the form: 

ERROR:(filename )input line n: 

The variable part consists of a descriptive message, usually beginning with a macro name. The variable 
parts are listed below in alphabetical order by macro name, each with a more complete explanation: 21 

Check TL, AU, AS, AE, MT sequence The correct order of macros at the start of a memorandum is 
shown in {6.9}. Something has disturbed this order. If .AS 2 
was used, then the error message will be "Check TL, AU, 
AS, AE, NS, NE, MT sequence". 

CS:cover sheet too long The text of the cover sheet is too long to fit on one page. The 
abstract should be reduced or the indent of the abstract should 
be decreased {6.4}. 

DE:no OS or OF active .DE has been encountered but there has not been a previous 
.DS or .OF to match it. 

DF:illegal inside TL or AS Displays are not allowed in the title or abstract. 

DF:missing DE .DF occurs within a display, i.e., a .DE has been omitted or 
mistyped. 

DF:missing FE A display starts inside a footnote. The likely cause is the 
omission (or misspelling) of a .FE to end a previous footnote. 

DF:too many displays More than 26 floating displays are active at once, i.e., have 
been accumulated but not yet output. 

DS:illegal inside TL or AS Displays are not allowed in the title or abstract. 

DS:missing DE .OS occurs within a display, i.e., a .DE has been omitted or 
mistyped. 

DS:missing FE A display starts inside a footnote. The likely cause is the 
omission (or misspelling) of a .FE to end a previous footnote. 

FE:no FS active .FE has been encountered with no previous .FS to match it. 

FS:missing DE A footnote starts inside a display, i.e., a .DS or .DF occurs 
without a matching .DE. 

FS:missing FE A previous .FS was not matched by a closing .FE, i.e., an 
attempt is being made to begin a footnote inside another one. 

H:bad arg:value The first argument to .H must be a single digit from I to 7, 
but value has been supplied instead. 

H:missing arg .H needs at least 1 argument. 

H:missing DE A heading macro (.H or .HU) occurs inside a display. 

H:missing FE A heading macro (.H or .HU) occurs inside a footnote. 

21. This list is set up by ".LB 37 0 2 O" {5.4). 



60 Memorandum Macros 

HU:missing arg .HU needs 1 argument. 

LB:missing arg(s) .LB requires at least 4 arguments. 

LB:too many nested lists Another list was started when there were already 6 active lists. 

LE:mismatched .LE has occurred without a previous .LB or other list
initialization macro {5.3.3}. Although this is not a fatal error, 
the message is issued because there almost certainly exists 
some problem in the preceding text. 

LI:no lists active .LI occurs without a preceding list-initialization macro. The 
latter has probably been omitted, or has been separated from 
the .LI by an intervening .H or .HU. 

ML:missing arg .ML requires at least I argument. 

ND:missing arg .ND requires I argument. 

RF:no RS active .RF has been encountered with no previous .RS to match it. 

RP:missing RF A previous .RS was not matched by a closing .RF. 

RS:missing RF A previous .RS was not matched by a closing .RF. 

S:bad arg:value The incorrect argument value has been given for .S, see 
{12.9}. 

SA:bad arg:value The argument to .SA (if any) must be either 0 or 1. The 
incorrect argument is shown as value. 

SG:missing DE .SG occurs inside a display. 

SG:missing FE .SG occurs inside a footnote. 

SG:no authors .SG occurs without any previous .AU macro(s). 

VL:missing arg • VL requires at least 1 argument. 

WC:unknown option An incorrect argument has been given to .WC, see {12.4}. 



Memorandum Macros 61 

II. Formatter Error Messages 

Most messages issued by the formatter are self-explanatory. Those error messages over which the user 
has (some) control are listed below. Any other error messages should be reported to the local system
support group. 

"Cannot do ev" is caused by (a) setting a page width that is negative or extremely short; (b) setting a 
page length that is negative or extremely short; (c) reprocessing a macro package (e.g., performing 
a .so formatter request on a macro package that was already requested on the command line); and 
(d) requesting the trojf-sl option on a document that is longer than ten pages. 

"Cannot execute.filename" is given by the.! request if it cannot find the.filename. 

"Cannot open .filename" is issued if one of the files in the list of files to be processed cannot be 
opened. 

"Exception word list full" indicates that too many words have been specified in the hyphenation excep
tion list (via .hw requests). 

"Line overflow" means that the output line being generated was too long for the formatter's line 
buff er. The excess was discarded. See the "Word overflow" message below. 

"Non-existent font type" means that a request has been made to mount an unknown font. 

"Non-existent macro file" means that the requested macro package does not exist. 

"Non-existent terminal type" means that the terminal options refers to an unknown terminal type. 

"Out of temp file space" means that additional temporary space for macro definitions, diversions, etc. 
cannot be allocated. This message often occurs because of unclosed diversions (missing .FE or 
.DE), unclosed macro definitions (e.g., missing" •• "), or a huge table of contents. 

"Too many page numbers" is issued when the list of pages specified to the formatter -o option is too 
long. 

"Too many number registers" means that the pool of number register names is full. Unneeded regis
ters can be deleted by using the .rr request. 

'.'Too many string/macro names" is issued when the pool of string and macro names is full. Unneeded 
strings and macros can be deleted using the .rm request. 

"Word overflow" means that a word being generated exceeded the formatter's word buffer. The 
excess characters were discarded. A likely cause for this and for the "Line overflow" message 
above are very long lines or words generated through the misuse of \c or of the .cu request, or 
very long equations produced by eqn (I)/ neqn. 



62 Memorandum Macros 

Appendix E: SUMMARY OF MACROS, STRINGS, AND NUMBER REGISTERS 

I. Macros 

The following is an alphabetical list of macro names used by MM. The first line of each item gives the 
name of the macro, a brief description, and a reference to the section in which the macro is described. 
The second line gives a prototype call of the macro. 

Macros marked with an asterisk are not, in general, invoked directly by the user. Rather, they are 
"user exits" defined by the user and called by the MM macros from inside header, footer, or other 
macros. 

lC One-column processing {12.4} 
.lC 

2C Two-column processing {12.4} 
.2C 

AE Abstract end {6.4} 
.AE 

AF Alternate format of "Subject/Date/From" block {6.7.2} 
.AF [company-name] 

AL Automatically-incremented list start {5.3.3.1} 
.AL [type] [text-indent] [ 1] 

AS Abstract start {6.4} 
.AS [arg] [indent] 

AT Author's title {6.2} 
.AT [title] •.• 

AU Author information {6.2} 
.AU name [initials] [toe] [dept] (ext] [room] [arg] [arg] [arg] 

AV Approval signature {6.11.3} 
.AV [name] 

B Bold { 12. l} 
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev] 

BE Bottom Block End {9.13} 
.BE 

BI Bold/Italic { 12. l} 
.BI [bold-arg] [italic-arg] [bold] [italic] [bold] [italic] 

BL Bullet list start {5.3.3.2} 
.BL [text-indent] [1] 

BR Bold/Roman { 12.1} 
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman] 

BS Bottom ·Block Start {9.13} 

•BS 

CS . Cover sheet {I0.2} 
.CS [pages] [other] [total] [figs] [tbls] [refs] 

DE Display end {7.1} 
.DE 



Memorandum Macros 

D F Display floating start { 7 .2} 
. D F [format] [fill] [right-indent] 

DL Dash list start {5.3.3.3} 
.DL [text-indent] [l] 

DS Display static start {7. l} 
. DS [format] [fill] [right-indent] 

EC Equation caption {7.5} 
.EC [title] [override] [flag] 

EF Even-page footer {9.6} 
.EF [arg] 

EH Even-page header {9.3} 
.EH [arg] 

EN End equation display {7.4} 
.EN 

EQ Equation display start {7.4} 
.EQ [label] 

EX Exhibit caption {7 .5} 
.EX [title] [override] [flag] 

FC Formal closing {6.11} 
.FC [closing] 

FD Footnote default format {8.3} 
.FD [arg] [I] 

FE Footnote end {8.2} 
.FE 

FG Figure title {7.5} 
.FG [title] [override] [flag] 

FS Footnote start {8.2} 
.FS [label] 

H Heading-numbered {4.2} 
.H level [heading-text] [heading-suffixl 

HC Hyphenation character {3.4} 
.HC [hyphenation-indicator] 

HM Heading mark style (Arabic or Roman numerals, or letters) {4.2.2.5} 
.HM [argl] ... [arg7] 

HU Heading-unnumbered {4.3} 
.HU heading-text 

HX • Heading user exit X (before printing heading) {4.6} 
.HX dlevel rlevel heading-text 

HY * Heading user exit Y (before printing heading) {4.6} 
.HY dlevel rlevel heading-text 

HZ• Heading user exit Z (after printing heading) {4.6} 
.HZ dlevel rlevel heading-text 

63 



64 Memorandum Macros 

I Italic (underline in nroff) {12.1} 
.I [italic-arg] [previous-font-arg] [italic] [prev] [italic] [prev] 

IB Italic/Bold { 12. I} 
.IB [italic-arg] [bold-arg] [italic] [bold] [italic] [bold] 

IR Italic/Roman { 12.1} 
.IR [italic-arg] [Roman-arg] [italic] [Roman] [italic] [Roman] 

LB List begin {5.4} 
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space] 

LC List-status clear {Appendix A} 
.LC [list-level] 

LE List end {5.3.2} 
.LE [1] 

LI List item {5.3.1} 
.LI [mark] [ 1] 

ML Marked list start {5.3.3.4} 
.ML mark [text-indent] (1] 

MT Memorandum type {6.6} 
.MT [type] [addressee] or .MT [4] [1] 

ND New date {6.7.1} 
.ND new-date 

NE Notation end {6.11.2} 
.NE 

NS Notation start {6. I l.2} 
.NS [arg] 

nP Double-line indented paragraphs {4.1} 
.nP 

OF Odd-page footer {9.7} 
.OF [arg] 

OH Odd-page header {9.4} 
.OH [arg] 

OK Other keywords for the Technical Memorandum cover sheet {6.5} 
.OK [keyword] ... 

OP Odd page { 12.8} 
.OP 

P Paragraph {4.1} 
.P [type] 

PF Page footer {9.5} 
.PF [arg] 

PH Page header {9.2} 
.PH [arg] 

PM Proprietary Marking {9.15} 
.PM [code] 



Memorandum Macros 

PX* Page-header user exit {9.12} 
.PX 

R Return to regular (roman) font (end underlining in nroff) { 12. l} 
.R 

RB Roman/Bold { 12.1} 
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold] 

RD Read insertion from terminal { 12.11} 
.RD [prompt] [diversion] [string] 

RF Reference end {11.2} 
.RF 

RI Roman/Italic { 12.1} 
.RI [Roman-arg] [italic-arg] [Roman] [italic] [Roman] [italic] 

RL Reference list start {5.3.3.5} 
.RL [text-indent] [1] 

RP Produce Reference Page {11.4} 
. RP [arg] [arg] 

RS Reference start {11.2} 
.RS [string-name] 

S Set troff point size and vertical spacing {12.9} 
.S [size] [spacing] 

SA Set adjustment (right-margin justification) default {12.2} 
.SA [arg] 

SG Signature line {6.11.1} 
.SG [arg] [ l] 

SK Skip pages {12.7} 
.SK [pages] 

SM Make a string smaller {12.9} 
.SM stringl [string2] [string3] 

SP Space vertically {12.6} 
.SP [lines] 

TB Table title {7.5} 
. TB [title] [override] [flag] 

TC Table of contents {10.1} 
.TC [sieve!] [spacing] [tlevel] [tab] [headl] [head2] [head3] [head4] [headS] 

TE Table end {7.3} 
.TE 

TH Table header {7.3] 
.TH [N] 

TL Title of memorandum {6.1} 
• TL [charging-case] [filing-case] 

TM Technical Memorandum number(s) {6.3} 
.TM [number] ..• 

65 



66 Memorandum Macros 

TP • Top-of-page macro {9.12} 
.TP 

TS Table start {7.3} 
.TS [H] 

TX "' Table-of-contents user exit {10.1 J 
.TX 

TY • Table-of-contents user exit (suppresses "CONTENTS") {I 0.1} 
.TY 

VL Variable-item list start {5.3.3.6} 
. VL text-indent [mark-indent] [l] 

VM Vertical margins {9.14} 
. VM [top] [bottom] 

WC Width Control {12.4} 
.WC [format) 

II. Strings 

The following is an alphabetical list of string names used by MM, giving for each a brief description, 
section reference, and initial (default) value(s). See {1.4} for notes on setting and referencing strings. 

BU Bullet {3. 7} 
nroff: e 
troff: • 

Ci Table-of-contents indent list, up to seven args for heading levels (must be scaled) {10.l} 

DT Date (current date, unless overridden) {6.7.1} 
Month day, year (e.g., March 27, 1981) 

EM Em dash string, produces an em dash in troff and a double hyphen in nrojf {3.8}. 

F Footnote numberer {8.1} 
nroff: \u\\n+(:p\d 
troff: \v· - .4m '\s- 3\\n + (:p\sO\v· .4m • 

HF Heading font list, up to seven codes for heading levels l through 7 {4.2.2.4.1} 
3 3 2 2 2 2 2 (levels l and 2 bold, 3-7 underlined in nroff, and italic in troff) 

HP Heading point size list, up to seven codes for heading levels 1 through 7 {4.2.2.4.3} 

Le Title for LIST OF EQUATIONS {7.6} 

Lf Title for LIST OF FIGURES {7.6} 

Lt Title for LIST OF TABLES {7.6} 

Lx Title for LIST OF EXHIBITS {7.6} 

RE SCCS Release and Level of MM {12.3} 
Release.Level (e.g., 15.128) 

Rf Reference numberer {11.1} 

Rp Title for References {11.4} 

Tm Trademark string; places the letters "TM" one half-line above the text that it follows {3.9}. 

Seven accent strings are also available {12.10}. 



Memorandum Macros 67 

If the released-paper style is use~, then, in addition to the above strings, certain BTL location codes are 
defined as strings; these location strings are needed only until the .MT macro is called {6.8}. Currently, 
the following are recognized: AK, AL, ALF, CB, CH, CP, DR, FJ, HL, HO, HOH, HP, IH, IN, INH, 
IW, MH, MV, PY, RD, RR, WB, WH, and WV. 

III. Number Registers 

This section provides an alphabetical list of register names, giving for each a brief description, section 
reference, initial (default) value, and the legal range of values (where [m:n] means values from m ton 
inclusive). 

Any register having a single-character name can be set from the command line. An asterisk attached to 
a register name indicates that that register can be set only from the command line or before the MM 
macro definitions are read by the formatter {2.4, 2.5}. See {I .4} for notes on setting and referencing 
registers. 

A* Handles preprinted forms and the Bell System logo {2.4} 
0, [0:2] 

Au Inhibits printing of author's location, department, room, and extension in the "from" portion 
of a memorandum {6.2} 
1, [0:1] 

C * Copy type (Original, DRAFT, etc.) {2.4} 
0 (Original), {0:4] 

Cl Contents level (i.e., level of headings saved for table of contents) {4.4} 
2, [0:7] 

Cp Placement of List of Figures, etc. { 10.1} 
l (on separate pages), (0:1] 

D * Debug flag {2.4} 
0, (0:1] 

De Display eject register for floating dislays {7.2} 
0, [0:1] 

Df Display format register for floating displays {7.2} 
5, [0:5] 

Ds Static display pre- and post-space {7 .1} 
1, {O:l] 

E * Controls font of the Subject/Date/From fields {2.4} 
0 (nroff) 1 (troff), [O:l] 

Ee Equation counter, used by .EC macro {7.5} 
0, [O:?], incremented by 1 for each .EC call. 

Ej Page-ejection flag for headings {4.2.2. l} 
0 (no eject), (0:7] 

Eq Equation label placement {7.4} 
0 (right-adjusted), [O: 1] 

Ex Exhibit counter, used by .EX macro {7.5} 
0, [O:?]. incremented by 1 for each .EX call. 

Fg Figure counter, used by .FG macro {7.5} 
0, [O:?], incremented by 1 for each .FG call. 



68 Memorandum Macros 

Fs Footnote space (i.e., spacing between footnotes) {8.4} 
1, [O:?] . 

Hl-H7 Heading counters for levels 1-7 {4.2.2.5} 
0, [O:?], incremented by .H of corresponding level or .HU if at level given by register Hu. 
H2-H7 are reset to 0 by any heading at a lower-numbered level. 

Hb Heading break level (after .H and .HU) {4.2.2.2} 
2, [0:7] 

He Heading centering level for .Hand .HU {4.2.2.3} 
0 (no centered headings), [0:7] 

Hi Heading temporary indent (after .H and .HU) {4.2.2.2} 
1 (indent as paragraph), (0:2) 

Hs Heading space level (after .H and .HU) {4.2.2.2} 
2 (space only after .H I and .H 2), [0:7) 

Ht Heading type (for .H: single or concatenated numbers) {4.2.2.5} 
0 (concatenated numbers: 1.1.1, etc.), (0: l] 

Hu Heading level for unnumbered heading (.HU) {4.3} 
2 (.HU at the same level as .H 2), (0:7) 

Hy Hyphenation control for body of document {3.4} 
0 (automatic hyphenation off), (0:1] 

L • Length of page {2.4} 
66, (20:?] (lli, [2i:?] in troff) 22 

Le List of Equations {7.6} 
0 (list not produced) [O: 1] 

Lf List of Figures {7.6} 
1 (list produced) [ 0: I] 

Li List indent {5.3.3.1} 
6 (nroff) 5 (troff), [O:?] 

Ls List spacing between items by level {5.3.3.1} 
6 (spacing between all levels) [0:6) 

Lt List of Tables {7.6} 
I (list produced) (0: 1] 

Lx List of Exhibits {7 .6} 
I (list produced) (0: l] 

N • Numbering style {2.4} 
0, [0:5] 

Np Numbering style for paragraphs {4.1} 
0 (unnumbered) [0:1] 

0 • Offset of page {2.4} 
.75i, [O:?] (0.5i, [Oi:?] in tro.ff) 22 

22. For nroff. these values arc unscaled numbers representing lines or character positions; for troff. these values must be scaled. 



Memorandum Macros 

Oc Table of Contents page numbering style {10. I} 
0 (lower-case Roman), lo: r] 

Of Figure caption style {7 .5} 
0 (period separator), [0:1) 

P Page number, managed by MM {2.4} 
0, [O:?] 

Pi Paragraph indent {4.1} 
5 (nroff) 3 (troff), [O:?] 

Ps Paragraph spacing {4.1} 
I (one blank space between paragraphs), [O:?] 

Pt Paragraph type {4.1} 
0 (paragraphs always left-justified), [0:2) 

Pv "PRIVATE" header {9.16} 
0 (not printed), [0:2) 

Rf Reference counter, used by .RS macro {I I.I} 
0, [O:?], incremented by 1 for each .RS call. 

S * Troff default point size {2.4} 
10, [6:36) 

Si Standard indent for displays {7. I} 
5 (nroff) 3 (troff), [O:?] 

T * Type of nroff output device {2.4} 
0, [0:2) 

Tb Table counter, used by .TB macro {7.5} 
0, [O:?], incremented by 1 for each .TB call. 

U * Underlining style (nroff) for .Hand .HU {2.4} 
0 (continuous underline when possible), [0:1) 

W * Width of page (line and title length) {2.4} 
6i, (10:1365] (6i, [2i:7.54i] in tro.ff) 23 

January 1981 

, .. 

23. For nroff. these values are unscaled numbers representing lines or character positions; for troff, these values must be scaled. 

69 



MM- Memorandum Macros 

TABLE OF CONTENTS 

1. INTRODUCTION 
l . l Purpose 1 
1.2 Conventions 
1.3 Overall Structure of a Document 2 
1.4 Definitions 2 
1.5 Prerequisites and Further Reading 3 

2. INVOKING THE MACROS • 
2.1 The mm Command 3 
2.2 The -cm or -mm Flag 4 
2.3 Typical Command Lines 4 
2.4 Parameters that Can Be Set from the Command Line 
2.5 Omission of -cm or -mm 7 

3. FORMATTING CONCEPTS . . . . 
3.1 Basic Terms 7 
3.2 Arguments and Double Quotes 7 
3.3 Unpaddable Spaces 8 
3.4 Hyphenation 8 
3.5 Tabs 9 
3.6 Special Use of the BEL Character 9 
3.7 Bullets 9 
3.8 Dashes, Minus Signs, and Hyphens 9 
3.9 Trademark String 10 
3.10 Use of Formatter Requests • 10 

4. PARAGRAPHS AND HEADINGS 

5. 

4.1 Paragraphs l 0 
4.2 Numbered Headings 11 
4.3 Unnumbered Headings 14 
4.4 
4.5 
4.6 
4.7 

LISTS 
5.1 
5.2 
5.3 
5.4 

Headings and the Table of Contents 14 
First-Level Headings and Page Numbering Style 14 
User Exit Macros • 15 
Hints for Large Documents 16 

Basic Approach 16 
Sample Nested Lists 17 
Basic List Macros 18 
List-Begin Macro and Customized Lists • 21 

6. MEMORANDUM AND RELEASED PAPER STYLES 
6.1 Title 22 
6.2 Author(s) 23 
6.3 TM Number(s) 24 
6.4 Abstract 24 
6.5 Other Keywords 24 
6.6 Memorandum Types 24 
6.7 Date and Format Changes 25 
6.8 Released-Paper Style 26 
6.9 Order of Invocation of "Beginning" Macros 26. 
6.10 Example 27 

- i -

5 

. 

3 

. . . . . . . . . . 7 

10 

16 

22 



6.11 Macros for the End of a Memorandum 27 
6.12 Forcing a One-Page Letter 29 

7. DJSPLA YS • . . . . . 
• • • • • • • II II II II II • • • • • 

7 .1 Static Dis plays 29 
7.2 Floating Displays 30 
7.3 Tables 32 
7.4 Equations 33 
7.5 Figure, Table, Equation, and Exhibit Captions 33 
7.6 List of Figures, Tables, Equations, and Exhibits 33 

8. FOOTNOTES • • • • • • • • • . • . . . . . . . . . . . . . 
8.1 Automatic Numbering of Footnotes 34 
8.2 Delimiting Footnote Text 34 
8.3 Format of Footnote Text• 35 
8.4 Spacing between Footnote Entries 35 

9. PAGE HEADERS AND FOOTERS . . . . . . . . . . . . . . . . 
9.1 Default Headers and Footers 36 
9.2 Page Header 36 
9.3 Even-Page Header 36 
9.4 Odd-Page Header 36 
9.5 Page Footer 36 
9.6 Even-Page Footer 37 
9.7 Odd-Page Footer 37 
9.8 Footer on the First Page 37 
9.9 Default Header and Footer with "Section-Page" Numbering 37 
9.10 Use of Strings and Registers in Header and Footer Macros • 37 
9.11 Header and Footer Example • 37 
9.12 Generalized Top-of-Page Processing • 38 
9.13 Generalized Bottom-of-Page Processing 38 
9.14 Top and Bottom Margins 39 
9.15 Proprietary Markings 39 
9.16 Private Documents 39 

I 0. TABLE OF CONTENTS AND COVER SHEET 
10.1 Table of Contents 40 

. . . . . . . " . . . . . . . 
10.2 .Cover Sheet 41 

. l. REFERENCES 
11.1 Automatic Numbering of References 41 
11.2 Delimiting Reference Text 41 
11.3 Subsequent References 42 
11.4 Reference Page 42 

. . . . . . . . . . . . . " . 

2. MISCELLANEOUS FEATURES . . . . . . . . . . . . . . . . . . 
12. l Bold, Italic, and Roman Fonts 42 
12.2 Justification of Right Margin 43 
12.3 SCCS Release Identification 43 
12.4 Two-Column Output 44 
12.5 Column Headings for Two-Column Output• 44 
12.6 Vertical Spacing 45 
12. 7 Skipping Pages 45 
12.8 Forcing an Odd Page 45 
12.9 Setting the Point Size and Vertical Spacing 46 
12.10 ·Producing Accents 47 
12.11 Inserting Text Interactively • 4 7 

• II • 

29 

34 

36 

39 

41 

42 



13. ERRORS AND DEBUGGING 
13.1 Error Terminations 47 

................... 
13.2 Disappearance of Output 48 

14. EXTENDING AND MODIFYING THE MACROS• • 
14. I Naming Conventions 48 
14.2 Sample Extensions 49 

15. CONCLUSION 

REFERENCES 

Appendix A: USER-DEFINED LIST STRUCTURES e • 

Appendix B: SAMPLE FOOTNOTES 

Appendix C: SAMPLE LETTER • • 

. . . . . . . . . . . . . 

47 

48 

50 

51 

52 

54 

56 

Appendix D: ERROR MESSAGES • • • • • 59 

Appendix E: SUMMARY OF MACROS, STRINGS, AND NUMBER REGISTERS 62 

- iii -



LIST OF FIGURES 

Figure 1. This is an illustration . . . . . . . . . . . . . . . . . . . . . . 33 

- iv -



@ 
UNIX 

C.2.2 

Typing Documents with MM 

D. W. Smith and E. M. Piskorik 

Bell Laboratories 
Piscataway, New Jersey 08854 

This guide shows several examples of documents 
prepared with MM, a set of general-purpose format
ting macros used with the UNIXt text formatters 
nroff and troff (as well as with the eqn/neqn and tbl 
programs) to produce memoranda, letters, books, 
manuals, etc. References to manuals for these pro
grams are given on p. 16. 

In the examples, input is shown in this 
Helvetlca Medium type. 

The resulting output is shown (boxed) in this 
Times Roman type. 

Substitutable arguments are shown in this 
Times Italic type. 

Square brackets ([ ... ]) indicate that the 
enclosed substitutable argument is optional. 

All output shown in the examples was done with 
troff; nroff output would look somewhat different.* 

Contents 
Paragraphs and Headings . . . . . . . . . . . 2 
Paragraph and Heading Parameters . . . . 2 
Lists and List Types . . • • . . • . . • • . . • 4 
Nested Lists. . . . . . . . . . . . . . . . . . . . 5 
Italic, Bold, and Underlining ....•.... 5 
Displays ...................... 6 
Footnotes ..................... 6 
Simple Letter- Example . . . . . . . . . . . 7 
Technical Memorandum - Example . . . . 9 
Memorandum-Style Macros ......... l l 
Two-Column Output ..•••.•.•••.•• 13 
Equations ..................... 14 
Tables ........................ 15 
How to Get Output ............... 16 
References .................... 16 

t UNIX is a trademark of Bell Laboratories. 

* For example, what is called here a "blank line" is a 
blank line in nroff, but is !Ii of a vertical space in trqff, 
while text that is underlined in nroff is italic in troff. 

January 1981 



2 

Paragraphs and Headings 
m· Output for the fol/owing is shown on p. 3 . 

. H 1 "PARAGRAPHS AND HEADINGS" 

.P 
This section describes the types of paragraphs 
and t'ie kinds of headings that are avallable . 
. H 2 Paragraphs 
.P 
Paragraphs are specified by the .P macro. 
Usually, they are flush left. 
The number register Pt is used 
to change the paragraph style . 
. H 2 Headings 
.H 3 "Numbered Headings." 
There are seven levels of numbered headings. 
Level 1 is the most major or highest; 
level 7, the lowest . 
• P 
Headings are specified with the .H macro, 
whose first argument Is the level of heading 
(1 through 7) . 
. P 
On output, level· 1 headings are preceded by two 
blank llnes; all others, by one blank llne. 
Level· 1 and level·2 headings 
are normally bold and stand-alone; 
levels 3 through 7 are normally run-in 
and underlined (Italic) . 
. H 3 "Unnumbered Headings." 
The macro .HU is a speclal case 
of .H, in that no heading number is printed. 
Each .HU heading has the level given by 
the register Hu, whose initial value is 2. 
Usually, the value of that 
register is set to make unnumbered headings 
occur at the lowest heading level in a document. 

Paragraph and Heading Parameters 
Below are some of the many parameters that can 
change the appearance of headings and paragraphs, 
together with their default values and their meanings 
(level I is the most major or highest, while level 7 is 
the lowest): 

.nr Pi 5 paragraph indent in characters (or fns) . 

. nr Pt 0 never indent paragraphs (default) . 

. nr Pt 1 always indent paragraphs . 

. nr Pt 2 indent paragraphs except after 
headings, lists, and displays . 

. ds HF 3 3 2 2 2 2 2 
font specification for each of the 7 
heading levels: 

1 indicates roman, 
2 indicates italic, 
3 indicates bold. 



3 

-1 -

I. PARAGRAPHS AND HEADINGS 

This section describes the types of paragraphs and 
the kinds of headings that arc available. 

I. I Paragraphs 

Paragraphs are specified by the . P macro. 
Usually, they arc flush left. The number register 
Pt is used to change the paragraph style. 

1.2 Headings 

I .2. I Numbered Headinfl.s. There are seven levels 
of numbered heading~. Level I is the most 
major or highest; level 7, the lowest. 

Headings are specified with the .H macro, whose 
first argument is the level of heading (I through 
7). 

On output, level- I headings are preceded by two 
blank lines; all others, by one blank line. Level-I 
and level-2 headings are normally bold and 
stand-alone; levels 3 through 7 are normally run
in and underlined (italic). 

1.2.2 Unnumbered Headings. The macro .HlJ is a 
special case of .H, in that no heading number is 
printed. Each .HU heading has lhe level given 
by the register Hu, whose initial value is 2. 
Usually, the value of that register is set lo make 
unnumbered headings occur at the lowest 
heading level in a document. 

.HM 1 1 1 1 1 1 1 
"marking" style for each heading level; 
the above yields an all-numeric 
marking style. Available styles arc: 
1, 0001, A, a, I, and I. 

.nr Hb 2 lowest heading level that is stand-alone 
(i.e., not run-in with the following text) . 

. nr He 0 lowest heading level that is centered . 

. nr Hs 2 lowest heading level after which 
there is a blank line . 

. nr Ht 0 heading "marks" will be concatenated . 

. nr Hu 2 unnumbered headings (.HU) arc 
equivalent to numbered headings at this 
level for spacing, font, and counting . 

. nr Cl 2 lowest heading level to be saved for 
the table of contents . 

. nr EJ 0 lowest heading level that forces the 
start of a new page. 



4 

Default Hcadi'!!. S!Y!c 

To _K!t: Tjpf!: 

n. HEADING .H 1 'HEADING' 
.P 

Text ••• Text ... 
n.n Heading . H 2 •Heading• 

.P 
Text ... Text ... 
n.n.n Heading. Text ••• .H 3 •Heading.• 

Text ... 

Lists and List Types 
All lists have a list-begin macro, one or more list 
items-each consisting of a .LI macro followed by 
the list item text-and the list-end macro .LE: 

list-begin macro 
.LI 
text of first list item 
.LI 
text of ucond /i.H item 

.LE 

where the list-begin macro is one of the following: 

.AL [type] [indent] automatic list (type is: 

. BL [indent] 

.DL [indent] 

.ML mark [indent] 

• RL [indent] 
.VL indent 

1, A, a, I, or i; default is 1 ) . 
bullet list. 
dash list. 
marked list (mark is the 
desired mark) . 
reference list. 
variable list. 

indent is the number of characters of indentation 
(from the current indent) at which the list is to 
start; if it is optional and omitted, the default inden
tation for the given list style is used; mark will 
appear to the left of the indentation. 

f'U" Output for the foil owing is shown on p. 5 . 
. AL 
.LI 
Pencilpusher, I., and Hardwired, X. 
A New Kind of Set Screw . 
. I "Proc. IEEE' 
.B 75 
(1976), 235-41 . 
. LI 
Nalls, H., and Irons, R. 
Fasteners for Printed Circuit Boards . 
. I 'Proc. ASME" 
.B 123 
(1974), 23-24 . 
• LE 



5 

1. Pencilpusher, I., and Hardwired, X. A New 
Kind of Set Screw. Proc. IEEE 15 (1976). 
235-41. 

2. Nails, II., and Irons, R. Fasteners for 
Printed Circuit Hoards. Proc. A')'ME 123 
(1974), 23-24. 

Nested Lists 
This Is ordinary text to show 
the margins of the page . 
. AL 1 
.LI 
First-level Item . 
. AL a 
.LI 
Second-level item . 
. LI 
Another second-level item, but a longer one . 
. LE 
.LI 
Return to previous list 
(and to previous value of indentation) at this point . 
. LI 
Third (and last) first-level Item . 
. LE 
.P 
Now we're out of the lists 
and at the left margin that existed 
at the beginning of this example. 

This is ordinary text lo show the margins of the 
page. 

1. First-level item. 

a. Second-level item. 

b. Another second-level item, but a 
longer one. 

2. Return lo previous list (and lo previous 
value of indentation) at this point. 

3. Third (and last) first-level-item. 

Now we're out of the lists and al the left margin 
that existed at the beginning of this example. 

Italic, Bold, and Underlining 
The macros .I, .B, and .R arc used to change to, 
respectively, the italic, bold, and roman fonts (sec 
examples on pp. 4 and 7). A single argument given 
to either .I or .B results in that argument being 
printed in the indicated font. If two or more argu
ments are given (maximum of 6), the first is printed 
in the indicated font, the second in the prevailing 
font, etc., without any space between them. The 
macro .IB prints its successive arguments alternately 
in italic and bold; there are also .Bl, .IR, .RI, .RB, 
and .BR macros. 



6 

Displays 
Displays are blocks of text that are to be kept 
together- not split across pages. A static display 
(.DS) appears in the same relative position in the 
output text as it docs in the input text; this may 
result in extra white space at the bottom of a page if 
a static display is too big to fit there. A floating 
display (.OF), on the other hand, will "float" 
through the input text to the top of the next page if 
there is not enough room for it on the current page; 
thus, the text that follows a floating display in the 
input may precede it in the output. Displays can be 
positioned at the left margin, indented, or centered . 

.DS (format] lfill] [ind] 
text ... 

. DF lformat I lfi//] [ind] 
text ... 

. DE .DE 

where ind is the amount of indentation from the 
right, and where format and fill have the following 
meanings: 

J2rmat: Means: Jjjl: Means: 

L flush left"' N no fill"' 
I indented F fill 
c centered 
CB centered block • default 

Highland Avenue, Mountain Station, 
South Orange, Maplewood, Miiiburn, Short Hiiis; 
.OS I 
and now 
for something 
completely different 
.DE 
Summit, Chatham, Madison, 
Convent Station, Morristown, New Providence, 
Murray Hiii, Berkeley Heights. 

Highland Avenue, Mountain Station, South 
Orange, Maplewood, Millburn, Short Hills; 

and now 
for something 
completely different 

Summit, Chatham, Madison, Convent Station, 
Morristown, New Providence, Murray Hill, 
Berkeley Heights. 

Footnotes 
Two styles of footnote marking are shown on p. 7. 
In the first, the asterisk is the mark placed on the 
footnote and the following .FS macro, while in the 
second, a number is automatically generated to mark 
the footnote. The macros .FS and .FE are used to 
delimit the footnote text that is to appear at the bot
tom of the page. 



7 

Among the most Important occupants 
of Iha workbench are the long-nosed pliers. 
Without this basic tool,• 
.FS • 
As first shown by Tiger & Leopard ( 197 5 ) . 
. FE 
few assemblies could be completed. 
They may lack Iha popular\•F 
.FS 
According to Panther & Lion ( 1979) . 
. FE 
appeal of the sledgehammer 

Among the most important occupants of the 
workbench arc the long-nosed pliers. Without 
this basic tool,* few assemblies could be 
completed. They may lack the popular 1 appeal of 
the sledgehammer ... 

• As first shown by Tiger & Leopard ( 1975). 
I. According to Panther & Lion (1979). 

Simple Letter- Example 
J'U' Output for the following is shown on p. 8 . 

. ND "May 1, 1979" 

.TL 
MM Class 
.AU "J. J. Jones" JJJ PY 9999 5001 10·100 
.AT "Education Center" 
.MT 0 
.DS 
To All Students: 
.DE 
.P 
There will be a class on the document preparation 
facllltles of MM on May 15-18. 
This class lasts for 4 half·day (morning) sessions, 
each consisting of a lecture 
and practice exercises on the system . 
. P 
The meeting rooms for Iha class are: 
.OS I 
.ta 15n 
Monday->40·-502 
Tuasday-.40·502 
Wednesday->2B-639 
Thursday-.2C·641 . 
. DE 
.P 

(n represents character positions) 
( _, indicates an input tab) 

Please read the following before attending class: 
.DL 
.LI 
.I "UNIX for Beginners," 
Sections I and II . 
. LI 
.I 
A Tutorial Introduction to the UNIX Text Editor . 
. R 
.LE 
Input example continued on next page. rm· 



8 

subject: MM Class 

To All Students: 

@ 
Bell Laboratories 

date: May I, 1979 

from: J_ J_ Jones 
PY 9999 
IQ-100 x5001 

There will be a class on the document preparation 
facilities of MM on May 15-18. This class lasts 
for 4 half-day (morning) sessions, each consisting 
of a lecture and practice exercises on the system. 
The meeting rooms for the class are: 

Monday 40-502 
Tuesday 40-502 
Wednesday 28-639 
Thursday 2C-641. 

Please read the following before attending class: 
- UNIX jar Beginners, Sections I and II. 
- A Tutorial Introduction to the UNIX Text Editor. 
These can be obtained from the Computing 
Information Library. 

PY-9999-JJJ-ae 
Copy to 
G. H. Hurtz 
S. P. LeName 

J_ J. Jones 
Education Center 

·li,j Input example continued from previous page . 
. P 
These can be obtained from the Computing 
Information Library . 
. SG ae 
.NS 
G. H. Hurtz 
S. P. LeName 
.NE 



9 

Technical Memorandum- Example 
r..r Output for the following is shown on pp. 10-12 . 

. ND "June 29, 1979" 

.TL 12345 666666 
On Constructing a Table of All 
Even Prime Numbers 
.AU "S- P. Le Name• SPL PY 9999 4000 1 Z-123 
.AU "G. H. Hurtz• GHH PY gggg 4001 1Z·121 
-™ 76543210 
.AS 1 
_p 

This is an abstract for a technical memorandum 
that will appear only on the 
cover sheet . 
. P 
The TM number appears on the cover sheet 
and on the first page . 
.. Other Keywords .. appear only on the cover sheet . 
. P 
The abstract may consist of one or more 
paragraphs; It must flt on the cover sheet. 
.AE 
.OK "Prime Numbers• Even 
.MT 
.H 1 "INTRODUCTORY MATERIAL" 
.P 
The body of the memorandum immediately 
follows the .MT macro; the body 
may contain headings, paragraphs, lists, etc. 
A brief example of llsts follows: 
.AL A 
.LI 
This is the first item in an ali'.)habetical 
llst In the body of this memorandum . 
. LI 
This is the second item In that list . 
• AL 
.LI 
This is the first item in a (numbered) sub-list . 
. LI 
This is the second Item in that sub-list . 
. LE 
.LE 
.P 
In addition to alphabetized and numbered llsts, 
there exist bullet lists, variable lists, etc . 
. H 2 "First Second-Level Heading" 
.P 
This Is the first paragraph under the second-level 
heading; notice how that heading is numbered and 
where the heading and text are printed . 
. H 1 "SECOND FIRST·LEVEL HEADING" 
.P 
This is the first paragraph under the 
second first-level heading of the memorandum. 
Input example continued on next page. rr 



10 

subject: On Constructing a 
Table of All Even 
Prime Numbers 
Charge Case 12345 
File Case 666666 

@ 
Bell Laboratories 

date: June 29, 1979 

from: S. P. LeName 
PY 9999 
IZ-123 x4000 

G. ff. Hurtz 
PY 9999 
lZ-121 x4001 

TM 76543210 

MEMORANDUM FOR Fii.i-: 

I. INTRODUCTORY MATERIAL 

The body of tho memorandum immediately follows the 
.MT macro; the body may contain headings. paragraphs, 
lists, etc. A brief example of lists follows: 

A. This is the first item in an alphabetical list in the 
body uf this memurandum. 

B. This is the second item in that list. 

I. This is the first item in a (numbered) sub-list. 

2. This is the second item in that sub-list. 

In addition to alphabetized and numbered lists, there 
exist bullet lists, variable lists, etc. 

1.1 Pint Second-Level Headina 

This is the first paragraph under the second-level 
heading; notice how that heading is numbered and 
where the heading and text are printed. 

-~Input example continued from previous page . 
. HU REFERENCES 
.RL 
.LI 
Pencilpusher, I., and Hardwired, X. 
A New Kind of Set Screw . 
.I "Proc. IEEE" 
.B 75 
(1976), 235·41 . 
. LI 
Nails, H., and Irons, R. 
Fasteners for Printed Circuit Boards . 
. I "Proc. ASME" 
.B 123 
(1974), 23·24 . 
. LE 
.SG tad 
.NS 3 
List of Even Primes 
.NS 2 
G. B. Brown 
C. P. Jones 
.NE 
.cs 



11 

• 2 -

2. SECOND FIRST-LEVEL HEADING 

This is the first paragraph under the second first-level 
heading of the memorandum. 

REFERENCES 

[I] Pencilpusher, L, and Hardwired, X. A New Kind of 
Set Screw. Pm<:. /t,'t.'E 15 (I 976), 235-41. 

[2] Nails, H., and Irons, R. Fasteners for Printed 
Circuit Boards. Proc. ASME 123 (1974), 23-24. 

S. P. LeName 

PY-9999-SPL/Gllll-tad G. H. Hurtz 

All. 
List of Even Primes 

Copy (without att.) to 
G. B. Brown 
C. P. Jones 

Memorandum-Style Macros 
Macros for a memorandum-style document must be 
invoked in the order shown on pp. 9-10. Once the 
"memorandum type" (.MT) macro has been 
invoked, none of the macros that precede it can be 
used. The .MT macro controls the format of the 
"subject, date, from" portion of the first page of the 
memorandum. Different arguments to the .MT 
macro will produce different kinds of memoranda: 

Code: 

.MT 0 

.MT 

.MT 1 

.MT 2 

.MT 3 

.MT 4 

.MT 5 

Means: 

no memorandum type is printed 
MEMORANDUM FOR FILE 
MEMORANDUM FOR FILE 
PROGRAMMER'S NOTES 
ENGINEER'S NOTES 
Released-paper style 
External letter 



12 

@ Bell Laboratories Cover Sheet for TM 

The information contained herein ... not for publication ... 

Title: On Constructing a Table of Date: June 29, 1979 
All Even Prime Numbers 

Other Keywords: Prime Numbers 
Even 

Author(s) Location F.xt. 
S. P. LeName PY lZ-123 4000 
G. H. Hurtz PY lZ-121 4001 

ABSTRACT 

TM: 76543210 

Charging Ca•c: 12345 
Filing Case: 666666 

This is an abstract fur a technical 
memorandum lhal will appear only on the 
cover sheet. 

The TM number appears on the cover sheet 
and on the first page. "Other Keywords" 
appear only on the cover sheet. 

The abstract may consist of one or more 
paragraphs; it must fit on the cover shed. 

Pages Te.t: 2 Other: 1 Total: 3 

No. Figures: 0 No. Tables: 0 No. Refs.: 2 

Z-0000-X SEb RbYbR.sb SIDE FOR DISTRIBUTION l.JST 

The input and the resulting output for a simple 
letter are shown on pp. 7-8. Note that the .TM, 
.AS/.AE, and .OK macros are not used there, and 
that the .MT macro has a 0 argument. Documents 
of the type shown on pp. 2-3 (essentially plain text) 
arc produced by omitting, as well, all the other 
"memorandum-style" macros: .ND, .TL, .AU, .AT, 
and .MT at the beginning of the document, and 
.SG, .NS/.NE, and .CS at the end. 

Like the .MT macro, the notations macro (.NS) may 
also take different arguments to produce a variety of 
notations following the signature line and/ or on the 
Memorandum for File (MF) cover sheet: 



Code: 

.NS 

.NS 0 

.NS 1 

.NS 2 

.NS 3 

. NS 4 

. NS 5 

.NS 6 

. NS 7 

.NS 8 

.NS 9 

13 

Means: 

Copy to 
Copy to 
Copy (with att.) to 
Copy (without att.) to 
Att. 
Atts . 
Enc . 
En cs . 
Under Separate Cover 
Letter to 
Memorandum to 

If the .CS macro is included in the input file (sec 
last line of p. 10), a technical memorandum cover 
sheet is generated (sec p. 12). An MF cover sheet 
may be obtained by specifying .AS 2; in an MF. 
notations may appear after the .AE. The .TC macro 
generates a table of contents; .CS and .TC can 
occur only at the end of a document. 

Two-Column Output 
.nr Pt 1 
.hy 14 
.OS C 
The Declaration of Independence 
.DE 
.2C 
.P 
When In the Course of human events, It becomes 
necessary for one people to dissolve the political 
bands which have connected them with another, 
and to assume among the powers of the earth, the 
separate and equal station to which the Laws of 
Nature and of Nature's God entitle them, a decent 
respect to the opinions of mankind requires that 
they should declare the causes which impel them 
to the separation . 
. P 
We hold these truths to be self-evident, that all 
men are created equal, ... 

The Declaration of Independence 

When in the Course of 
human events, it becomes 
necessary fur one people 
to dissolve the political 
bands which have con
nected them with another, 
and tu assume among the 
powers of the earth, the 
separate and equal station 
to which the Laws of 
Nature and of Nature's 

God entitle them, a 
decent respect to the opin
ions of mankind requires 
that they should declare 
the causes which impel 
them to the separation. 

We hold these truths 
to be self-evident, that all 
men are created equal, ... 



14 

Equations 
!\ stand-alone equation is built within a display . 

. OS C 

.Ea 
x sup 2 over a sup 2 -=- sqrt I pz sup 2 + qz + r I 
.EN 
.DE 

.OS I 

.Ea 

x2 
- 2 = Vpz 2+qz+r 
a 

bold V bar sub nu-- -left [ plle I a above b above 
c } right 1 + left [ matrix { col { A( 11) above . 
above . I col I . above . above . I col I . above . 
above A(33) } } right 1 times left [ pile { alpha 
above beta above gamma I right l 
.EN 
.DE 

_=[a] [A(ll) . . l [a] V, b+ ... X/3 
c . . A (33) 'Y 

In-line equations may appear in running text if a 
character has been defined to mark the left and right 
ends of the equation. Normally, $ is used as that 
character and is so defined by typing the following 
three lines at the beginning of the document: 

.Ea 
delim $$ 
.EN 

The quantities $a dot$, Sb dotdot$, $xi tilde 
times y vec $ are the values that ... 

The quantities a, b", ~Xy are the values that 

This facility can be used for preparing text that con
tains subscripts and superscripts: 

The quantity $ a sub j sup 3 $ is ... 

I The quantity a/ is ... 

For more examples, sec p. 15 and Reference 4. 



15 

Tables 
Global table options are center. expand, box, 
allbox, doublebox, and tab(x). 

The meanings of the key-letters describing the 
alignment of each entry are: 

c center n 
right-adjust a 
left-adjust s 

numerical 
alphabetic subcolumn 
spanned 

t'1r In the input below. ___, indicates a tab . 

. OF ---, 

.TS 
allbox; 
cB s s 
cc c 

AT&T Common Stock 
Year Price Dividend 
1973 46-55 2. 8-7 __ ---I 

4 40-53 3.24 
n n n. 

5 45-52 3.40 
6 51-59 .95* 

AT&T Common Stock 
Year->Price->Dlvldend 
197 3->46-55->2.87 
4-<40-53-<3.24 
S->45-52-->3.40 
6-<51-59-<.95• 

* First quarter only. 

.TE 

.DE 
• First quarter only . 

. EQ 
delim $$ 
.EN 
.DS L 
.TS 
box; 
Ii ci 
I I. 
Name->Definition 

.sp 0.5v 
Sina-<$ sin ( x ) = 1 over 2J 
( e sup jx a sup -jx ) $ 
.sp O.Sv 
Zeta-<$ zeta ( s ) ~ 
sum from k=1 to inf k sup -s ""( Ra's > 1 )$ 
.TE 
.DE 

Name De.fi!iition 

Sine 

Zeta f(s)=};k-, (Re s>I) 
k-1 

For more examples, see Reference 3. 



16 

How to Get Output 
Documents with text only: 

nroff: mm [options] files or 
nroff [options] -cm files 

troff: mmt [options) files or 
troff [options I -cm files 

Text and tables: 
nroff:· mm - t [options] files or 

tbl files I nroff -cm [options] 
troff- mmt -t [options] files or 

tbl files / troff -cm [options] 
Text, tables, and equations: 

nrqff: mm -t - c [options] files or 
tbl files I neqn I nroff [options] cm 

troff: mmt - t - e [options] files or 
tbl files I eqn I troff [options) -cm 

Some of the options that may be specified on the 
above command lines arc: 

-ok,m-n print only pages k, and m through n. 
-rC 1 Ot'FICIAL FILE COPY in footer. 
-rC2 DATE FILE COPY in footer. 
-rC3 DRAFT in footer, single spaced, 
-rC4 DRAFT in footer, double spaced, 
-rln set page length to n lines.* 
-rN 1 page header at bottom of first page only. 
-rN2 no page number on first page. 
-rN3 section-page numbering. 
-rOn set page offset to n characters.* 
-rWn set line width to n characters."' 
-Tx terminal is type x. 

The mm command recognizes the nroff' options 
-T450, -T300, -T300s, etc., to indicate termi
nal type; if such an option is not given, mm tries to 
find the $TERM variable in the environment. If no 
$TERM variable is found, mm uses 450 as the 
value of TERM. The -12 option tells mm to use 
12-pitch, if possible. Sec Reference 6 for details. 

References 
L MM-Memorandum Macros by D. W. Smith and 

J. R. Mashey. 
2. A Tutorial Introduction to the UNIX Text Editor by 

B. W. Kernighan. 
3. TBL-A Program to Format Tables by M. E. Lesk. 
4. Typesetting Mathematics- User's Guide (Second 

Edition) by B. W. Kernighan and L. L. Cherry. 

5. NROFF/TROFF User's Manual by J. F. Ossanna. 
6. UNIX User's Manual-Release 3.0 by T. A. 

Dolotta, S. B. Olsson, and A. G. Petruccelli, eds. 

* For nr<!ff. n must be an unscaled number representing 
lines or character positions. For troff. n must be scaled. 



A Macro Package for View Graphs and Slides 

T. A. Dolotta 

1. INTRODUCTION 

D. W. Smith 

Bell Laboratories 
Murray Hill, New Jersey 07974 

UNIX 

C.2.3 

This manual describes a package of UNIXt troff( 1) 1 macros called MV, designed for typesetting 
view graphs and slides. This manual assumes that the reader has a basic knowledge of the 
UNIX system, the UNIX editor ed( I), and troff [3,8]. 

With these macros, one can easily prepare view graphs in a variety of dimensions (see Table I 
below), as well as 35mm slides and 2X2 "super-slides." These transparencies can be made in 
a variety of styles, in different fonts, with oversize titles, and with highlighted subordination 
levels. Because the text from which the foils are typeset is stored on UNIX, the contents of a 
foil can be readily changed to include new data, or can be incorporated into a new presentation; 
the text of the foils can be passed through spel/(1), preprocessed by eqn (1), tb/( 1), cw( 1), etc. 

It is not possible to include artwork, graphics, or multicolored text in foils made with this pack
age except by manual cut-and-paste. 

2. SIMPLE EXAMPLFS 

Before explaining the macros in detail, we illustrate the formatting process with two examples. 

2.1 Trivial Example 

If you are familiar enough with the UNIX editor ed( 1) to create the following text file, naming 
it trivial: 

.Sw 
Six stages of a project: 
.B 
wild enthusiasm 
,B 
disillusionment 
.B 
total confusion 
.B 
search for the guilty 
.B 
punishment of the innocent 
.B 
promotion of the non-participants 

and if you then utter the following UNIX command: 

mvt trivial 

you will be rewarded with the first view graph in the Appendix. The • Sw is a foil-start macro; 
by looking at that view graph, you should be able to figure out what the . B macro does. 

t UNIX is a trademark of Bell Laboratories. 

I. The notation name(N) indicates entry name in Section N of the UNIX User's Ma111J.al [2]. 



2 View Graphs and Slides 

2.2 Less Trivial Example 

The foil that results from typesetting the following input is the second view graph in the 
Appendix:2 

.Vw 2 "Less Trivial" "June 29, 1980" 

.T "What the Walrus Said" 
''~he time has come,'' the Walrus said, 
.BR 
''To talk of many things: 
. I . 5 
.B 
Of shoes\(emand ships\(emand sealing wax\(em 
.B 
Of cabbages\(emand kings\(em 
.B 
And why the sea is boiling hot\(em 
.B 
And whether pigs have wings.'' 

The • Vw is another foil-start macro. We will see exactly what it does in the next section. A bit 
later on, we will also find out what the other macros in this example (. T, • BR, and • I) are all 
about. 

3. THE MACROS THEMSELVES 

The time has come to explain all the MV macros in detail. 3 

3.1 Foil-Start Macros 

Each foil must start with a foil-start macro. There are nine foil-start macros for generating nine 
different-sized foils; the names (and the corresponding mounting-frame sizes) of these macros 
are shown in Table I. 

Macro Name 

.vs 

.vw 

.Vh 

.vw 

.VH 

.Sw 

.Sh 

.SW 

.SH 

TABLE I 
Foil-Start Macros 

Size* and Type 

7X7 view graph or 
2X2 super-slide 

7 X 5 view graph 
5 X 7 view graph 
9X7 view graph 
7X9 view graph 
7X5 35mm slide 
5X7 35mm slide 
9X7 35mm slide 
7X9 35mm slide 

BTL Frame Numberf 

E-7351 or E-7351-R 
E-7351-B 
E-7351-A 
E-8814 or E-9148 
E-8814 or E-9148 
E-7351-B 
E-7351-A 
E-8814 or E-9148 
E-8814 or E-9148 

• Size of the mounting frame opening (width times height) in inches. 

t BTL stock item number. 

The naming convention for these nine macros is that the first character of the name (V or s) 
distinguishes between view graphs and slides, while the second character indicates whether the 
foil is square (S), small wide (w), small high (h), big wide (W), or big high (H). Slides are 

2. The input string '\ (em is the troff name for the "em dash" (long dash). 

3. The MY macros are summarized in mv(7). 



View Graphs and Slides 3 

"skinnier" than the corresponding view graphs: the ratio of the longer dimension to the shorter 
one is larger for slides than for view graphs. As a result, slide foils can be used for view 
graphs, but not vice versa; on the other hand, view graphs can accommodate a bit more text. 

Note that . VW and • SW produce foils that are 7X5.4 inches because commonly available 
typesetter paper is less than 9 inches wide; these foils must be enlarged by a factor of 9/7 
before they can be used as 9-inch-wide by 7-inch-high view graphs. 

Each foil-start macro causes the previous foil (if any) to be terminated, foil separators to be 
produced, and certain heading information to be generated. The default heading information 
consists of three lines of right-justified data: 

• The current date in the form mo/dy/yr . 
• BTL 
•@FOIL n 

where n is the sequence number in the current "run"; as explained below, this heading infor
mation is replaced by the three arguments of the foil-start macro, if those arguments arc given. 

The actual projection area is marked by "cross-hairs" (plus signs) that fit into the corners of 
the view graph mount, helping one to position the foil for mounting. 

All foils other than the square (.VS) foil also have a set of (horizontal or vertical) "crop 
marks"; these indicate how much of the foil will be seen if it is made into a slide, rather than 
into a view graph. 

The default heading information can be changed by specifying three optional arguments to the 
foil-start macro (we use the square brackets [] to indicate that the argument they enclose is 
optional): 

.XX [ n ] [ id ] [ date ] 

where XX stands for one of the nine foil-start macros, n is the foil identifier (typically a 
number), id is other identifying information (typically the initials of the person creating the 
foil), and date is usually the date. The resulting heading information consists of three lines of 
right-justified text: id, date, and FOIL n. If date and id are omitted on a foil-start macro, then 
the corresponding values (if any) from the previous foil-start macro are used. 

See the Appendix for examples of all this. 

3.2 Level Macros 

The MV macros provide four levels of indentation, called • A, • B, • C, and • D. Each of these 
level macros causes the text that follows it to be placed at the corresponding level of indentation. 

3.2.l The . A Level 

The leftmost (left margin) level is obtained by: 

.A [ x ] 

The . A level is automatically invoked by each of the foil-start macros. Each . A macro spaces a 
half-line from the preceding text, unless the x argument is specified (x can be any character or 
string of characters); x suppresses the spacing. 

The • A macro can also be invoked through the • I macro (see §3.4). 

3.2.2 The • B Level 

• B [ mark [ size ] ] 

The • B level items are marked by a bullet (in a slightly reduced point size). The text that fol
lows the . B macro is spaced one half-line from the preceding text. 



4 View Graphs and Slides 

The • B level mark may be changed by specifying the desired mark (which may be any charac
ter string4) as the first argument (mark). Without the second argument, the point size of the 
mark is not reduced. Thus, one can produce a numbered list as follows: 

.vs 
This is a list of things: 
• B 1. 
This is thing number 1 . 
• B 2. 
This is thing number 2 . 
. B 3. 
This is the third and last thin9 on this foil. 

It is possible to change the point size of the mark: the second argument (size), if given, 
specifies the desired point-size change. An unsigned or positive ( +) argument is taken as an 
increment; a negative ( -) argument is a decrement; an argument greater than 99 causes the 
mark to be reduced in !lize just as if it were the default mark, namely the bullet. After the 
mark is printed, the previous point size is restored. All these point-size changes are completely 
invisible to the user. 

3.2.3 The • C Level 

• C [ mark [ size ] ] 

The • C level is just like the . B level except that it is indented farther to the right than the • B 

level and the default mark is a long (em) dash ( - ) , also in a slightly reduced point size. 

3.2.4 The . D Level 

• D [ mark [ size ] ] 

The . D level's default mark is a bullet (smaller than that used for the • B level); the • D level 
is indented farther to the right than the . C level and it does not space from the previous text; it 
just causes the following text to start on a new line (in other words, it causes a break-see 
§3.1 O). Otherwise, it behaves just like the • B and • C levels. 

3.2.5 More about Levels 

• The • A. macro never generates a mark of any sort; it is the .. left-margin" macro. 
• Repeated . A calls are ignored, but each successive call of any of the other three level mac

ros generates the corresponding mark. 
• The amount of vertical pre-spacing done by each level macro can be changed with the • DV 

macro (see §3.7). 
• Example 3 in the Appendix is devoted to the level macros. 

3.3 Titles 

The title macro . T creates a centered title from its argument: 

• T string 

The size of the title is four points larger than the prevailing point size. Remember that the 
argument must be enclosed within double quotes (" ••• ") if it contains blanks. Any indenta
tion established by the . I macro (see §3.4) has no effect on titles; they are always centered 
within the foil's horizontal dimension. 

See Examples 2; 3, and 4 in the Appendix. 

4. All character-string arguments that contain blanks must be quoted ( • ••• "). 



View Graphs and Slides 5 

3.4 Global Indents 

The entire text (except titles) of the foil may be shifted right or left by the • I macro: 

. I [ indent ] [ a [ x l l 

The first argument is the amount of indentation that is to be used to establish a new left mar
gin. This argument may be signed positive or negative, indicating right or left movement from 
the current margin. If unsigned, the argument specifies the new margin, relative to the initial 
default margin. If the argument is not dimensioned, it is assumed to be in inches (see [3,8] for 
legal troff units). If the argument is null or omitted, O i is assumed, causing the margin to 
revert to the initial default margin. 

If a second argument is specified, the . I macro calls the • A macro (see §3.2.1) before exiting. 
The third argument, if present, is passed to the • A macro. 

See Examples 2, 4, S, and 7 in the Appendix. 

3.5 Point Sizes and Line Lengths 

Each foil-start macro begins the foil with an appropriate default point size5 and line length. The 
prevailing point size and the line length may be changed by invoking the . s macro: 

.s [ ps ] [ u ] 
If ps is null, the previous point size is restored. If ps is signed negative, the point size is decre
mented by the specified amount. If ps is signed positive, it is used as an increment, and if ps is 
unsigned, it is used as the new point size. If psis greater than 99, the initial default point size is 
restored (see Table II). Vertical spacing is always l.25 times the current point size. 

The second argument, if given, specifies the line length. It may be dimensioned. If it is not 
dimensioned and less than 10, it is taken as inches; if it is not dimensioned and greater than or 
equal to 10, it is taken as troff units (l/432nds of an inch); see also §7.3. 

See Examples 4, 5, and 6 in the Appendix. 

3.6 Default Fonts 

The macros assume that the Helvetica (also known as Geneva) Regular font, mounted in posi
tion 1, is the default font. Additional fonts can be mounted and the default font can be 
changed: 

. DF n font [ n font .•• 

The • DF macro informs troff that font is in position n. The first-named font is the default font. 
Up to four pairs of arguments may be specified. 

The • DF macro must immediately precede a foil-start macro; the initial setting is equivalent to: 

.DF 1 H 2 I 3 B 4 S 

See Examples 4 and 5 in the Appendix. 

3.7 Default Vertical Space 

The vertical space macro allows one to change the vertical pre-spacing done by each of the four 
level macros (see §3.2): 

• DV [ a ] [ b ] [ c ] [ d ] 

5. The default point sizes for each type of foil are given in Table n. 



6 View Graphs and Slides 

The first argument (a) is the spacing for • A, b is for . B, c is for • c, and d is for . D; all non
null arguments must be dimensioned; null arguments leave the corresponding spacing 
unaffected; the initial setting is equivalent to: 

.DV .Sv .Sv .Sv Ov 

3.8 Underlining 

The underline macro • U takes one or two arguments: 

. u string/ C strlng2 l 

The first argument is the string of characters to be underlined. The second argument, if 
present, is not underlined, but concatenated to the first argument. 

Example: 

.u phototypesetter 

produces: 

phototypesetter 

while: 

.U under line 

produces: 

.llllSW:li n e 

See also Example 4 in the Appendix. 

3.9 Synonyms 

The MV macro package also recognizes the following upper-case synonyms for the correspond
ing lower-case troff requests: 

.AD .BR .CE .FI .HY .NA .NF .NH .NX .SO .SP .TA .TI 

See [8] for definitions of the corresponding troff requests. 

3.10 Breaks 

The . s, . DF, • DV, and • U macros do not cause a break; the . I macro causes a break only if it 
is invoked with more than one argument; all the other MV macros always cause a break. The 
tro.ffsynonyms(see§3.9) .AD, .BR, .CE, .FI, .NA, .NF, .SP,and .Tialsocauseabreak. 

3.11 Text Filling, Adjusting, and Hyphenation 

By default, the MV macros fill, but neither adjust nor hyphenate text. This is an aesthetic 
judgement that seems correct for foils. These defaults can, of course, be changed by using the 
. AD, . FI, • HY, • NA, • NF, and . NH macros (see §3.9). 

4. THE TROFF PREPROCESSORS 

It is possible to use the various troff preprocessors to typeset foils that require more powerful 
formatting capabilities. 

4.1 TBL for tables 

The tbl( 1) program can be used to set up columns of data within a view graph or slide. The 
. TS and . TE macros arc not defined in the MV macro package, but are merely flags to tb/(1); 
see [5], as well as Examples 4 and 7 in the Appendix. 



View Graphs and Slides 7 

4.2 EQN for Mathematical Expressions 

The eqn (1) program can be used to typeset mathematical expressions and formulas on foils, 
provided one is careful to specify the proper fonts and point sizes; see [4], as well as Examples 5 
and 7 in the Appendix. The • EQ and • EN macros are not defined in the MY macro package: 

4.3 CW for Constant-Width Program Examples 

The constant-width font simulates computer-terminal and line-printer output, and can be some
times effective in presenting computer-related topics; see cw(l), as well as Examples 5 and 6 in 
the Appendix. 

5. THE FINISHED PRODUCT 

5.1 Phototypesetter Output 

The typeset output is obtained via the command: 

mvt [ options ] file_name ••• 

where file_name contains the text and the macro invocations for the foils, and options can be 
one or more of the following: 

-a preview output on a terminal (other than a Tektronix 4014-see §5.2) 
-e invoke eqn(l) 
-t invoke tb/(1) 
-Ttenn direct output to term, where term can be o.ne of the following: 

st STARE 
4014 Tektronix 4014 
vp Versatec printer 

Using a hyphen ( - ) in place of file_name causes the mvt command to read the standard input 
{rather than a file), as in the following example using the cw(l) preprocessor (see §4.3): 

cw [ options ] fi/e_name • , • i mvt [ options ] -

5.2 Output Approximation on a Terminal 

One can obtain an approximation of the typeset output by entering the command: 

mvt - a file_name ••• 

The resulting output shows the formatted foils except that: 

• Point-size changes are not visible. 
• Font changes cannot be seen. 
• Titles that are too long appear proper. 
• All horizontal motions are reduced to one horizontal space to the right. 
• All vertical motions are reduced to one vertical space down. 

Thus, for example, it appears that the lines of text following a . B, • C, or . D macro do not 
align properly (even though, in fact, they do). 

Although alignment cannot be determined from this approximation, one can observe line 
breaks and the amount of vertical space used by the text. If the foil is not full, the macro pack
age prints the number of blank lines (in the then current point size) that remain on the foil; if 
the foil is full, a warning is printed. If the text did overflow the foil, text will be printed after 
the "cross-hairs." 



8 View Graphs and Slides 

5.3 Making Actual View Graphs and Slides 

The output of the typesetter is so-called "mechanical paper," which is white, opaque photo
graphic paper with black letters. There are several very simple processes (e.g., Thermofax, 
Bruning) for making transparent foils from opaque paper. Because some of these processes 
involve heat, and because mechanical paper is heat sensitive, one should first make copies of 
the typesetter output on a good-quality office copier, and then use these copies for making the 
transparencies. 

Getting slides made is a much more complicated photographic process that is best left to profes
sionals. It is possible to make both positive (opaque letters on transparent background) and 
negative {transparent letters on opaque background) slides, as well as colored-background 
slides, etc. 

6. OPINIONS AND SUGGFSTIONS 

The following suggestions and authors' opinions have been derived from experience, from the 
examination of several other macro packages for making foils [6, 7, 10, 11, 12], and from some 
publications that discuss good and bad foil-making practices [1,9]: 

e- Foils 3, 4, and 7 in the Appendix violate some or most of the "rules" given below. 

• The most useful foil sizes are . VS and • Vw (or . Sw). This is because most projection 
screens are either square, or "wide" (i.e., are wider than they are tall), and also because the 
resulting foils are smaller, easier to carry, and require no enlargement before use. 

• The default point size for each type of foil (see Table II) is the smallest point size that will 
result in a foil that is legible by an audience of more than a dozen people. Reducing the 
point size below the default should be avoided. If you have more text than fits onto a foil, 
don't reduce the point size; use two or more foils instead. 

• Don't abuse font changes. Most novice foil-makers tend to use too many typefaces, result
ing in foils that look cluttered and distract the viewer. Be sure you need to use a different 
typeface (e.g., for special emphasis); when in doubt, stick to a single typeface. You should 
almost never use more than two different typefaces· on a single foil. 

• Even though this package contains a macro for underlining, don't use it: underlined typeset 
text almost always looks awful; instead, if necessary, use a different typeface. 

• The Helvetica sans-serif font (which is the default font used by this package) is "fatter" and 
is, in foils, considered easier to read than, for instance, the Times Roman serif font used for 
typesetting normal, "running" text (such as the text in this paragraph). On the other hand, 
the Times Roman font will allow you to "squeeze" a bit more text onto a foil. If you 
intend to use italic and/or bold typefaces in your foils, you probably want to mount (via the 
. DF macro-see §3.6) either the Helvetica Regular, Italic, and Medium:6 

.DF 1 H 2 HI 3 HM 

or the Times Roman regular, italic, and bold: 

,DF 1 R 2 I 3 B 

Bold typefaces tend to be a bit overwhelming. On the whole, the choice of fonts is primarily 
a matter of personal aesthetics. The examples in the Appendix use the following fonts: 

6. Helvetica Medium is really a bold typeface. 



View Graphs and Slides 

1. 2, and 3: 
4 and 7: 
5 and 6: 

H (default) 
Rand I 
Rand cw 

9 

• If possible, use the . SP macro to insert a bit of additional white space (say, • Sv or 1v, 
where v means "vertical space") at the top of each foil (i.e., increase the top margin). 

• Some people believe that foils should not contain any lower-case alphabetic characters to 
maximize legibility; to the best of our knowledge, this is exactly the opposite of the truth: 
"normal" upper-and-lower-case text is far more legible than upper-case-only text. 7 Upper
and-lower-case alphabets have evolved and been refined over millenia precisely because they 
result in more legible text. Furthermore, such text is less "bulky" than upper-case-only 
text, so one can get more information onto a foil without crowding it. 

• Make all the foils for a presentation as consistent as possible; changing fonts, typefaces, 
point sizes, etc., from foil to foil tends to jar and distract the viewer. While it is possible to 
introduce emphasis and draw the viewer's attention to particular item~ with such changes, 
this only works if you do it very purposefully and very sparingly; overuse of these tech
niques is almost always counter-productive. 

In summary, the dictum that "the medium is the message" doesn't apply to foil making; so 
when in doubt: 

• Don't change point sizes. 
• Don't change fonts or typefaces. 
• Don't underline! 
• Use many "sparse" foils, rather than few "dense" ones. 
• Use fewer words, rather than more. 
• Use larger point sizes, rather than smaller. 
• Use larger top and bottom margins, rather than smaller. 
• Use normal upper-and-lower-case text, rather than upper-case only. 

7. WARNINGS 

7.1 Use of Troff Requests 

In general, it is not advisable to intermix arbitrary troff requests with the MY macros, because 
this often leads to undesirable (and sometimes downright astonishing) results. The "safe" 
requests are the ones for which upper-case synonyms have been defined in the MY package 
(see §3.9). Other troff requests should be used sparingly (if at all), and with care and discipline. 
Particularly dangerous are the requests that affect point size, indentation, page offset, line and 
title lengths, and vertical spacing between lines. Use the • S and • I macros instead (see §3.5 
and §3.4). 

7.2 Reserved Names 

Certain names are used internally by this macro package. In particular, all two-character names 
starting with either ) or ] are reserved. Names that are the same as names of the MV macros 
and strings described in this manual, or the same as any troff names [8], cannot be used either. 
Furthermore, if any of the preprocessors (see §4) are used, their reserved names must also be 
avoided. 

7. The only exception to this rule are foils sc:t in a point size so small that lower-case characters simply can't be: read; 
this is usually the case for foils produced on a normal typewriter. 



10 View Graphs and Slides 

7.3 Miscellaneous 

The . s macro changes the point size and vertical spacing immediately, but a line-length change 
requested with that macro does not take effect until the next level-macro call. 

Specifying a third argument to the . S macro usually results in a disaster. 

The string Tm (invoked as '* (Tm) generates a trademark symbol. 

The tilde ( -) is defined by the MY macros as a "non-paddable" space; that is, the tilde may be 
used wherever a fixed-size (non-adjustable) space is desired. To override this definition, 
include the following line in your input file: 

.tr --

8. DIMENSIONAL DETAILS 

Table II shows, for each style of view graph, the default point size, the maximum number of 
lines of text (at the default point size), and the height, width, and "aspect ratio," both nominal 
and actual. 

TABLE II 
Default Point Size, Dimensions, and Aspect Ratios 

Nominal Actual (Textl 
Macro Point Max. Width Height Aspect 1 Width Height Aspect 1 --
Name Size Lines (inches) (inches) Ratio AR (inches) (inches) Ratio AR 

.vs 18 21 7 7 1 1 6 6.8 1.13 .88 

.vw 14 19 7 5 .71 1.4 6 4.8 .8 1.25 

.Vh 14 27 5 7 1.4 .71 4.2 6.8 1.6 .62 

.vw 14 21 7 5.4 .77 1.3 6 5.2 .87 1.15 

.VH 18 28 7 9 1.3 .77 6 8.8 1.5 .68 

.sw 14 18 7 4.6 .67 1.5 6 4.4 .73 1.4 

.Sh 14 27 4.6 7 1.5 .67 3.8 6.8 1.8 .56 

.SW 14 18 7 4.6 .67 1.5 6 4.4 .73 1.4 

.SH 18 28 6 9 1.5 .67 5 8.8 1.76 .51 

NOTES: "Max. Lines" is the maximum number of lines of text at the default point size. 
"Aspect Ratio" {AR) is the ratio of height over width. 
Remember that, normally, each • A, • B, and . c macro generates a 'h-line space. 
The . SW {if used as a view graph) and • VW foils must be enlarged by a factor of 9/7. 

ACKNOWLEDGEMENTS 

We thank the many users of MV who provided the feedback necessary to refine the various 
features of this package in the early stages of its development and who were willing to use it 
despite the fact that, during the first several years of its existence, the only available user 
"documentation" was by word of mouth. 



View Graphs and Slides 11 

REFERENCES 

[l] Bell Laboratories. Visual Aid Standards (1973-out of print). 

[2] Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G. (eds.). UNIX User's Manual
Release 3.0, Bell Laboratories (June 1980). 

[3] Kernighan, B. W. A TROFF Tutorial, Bell Laboratories. 

[4] Kernighan, B. W., and Cherry, L. L. Typesetting Mathematics- User's Guide (Second 
Edition), Bell Laboratories. 

[5] Lesk, M. TBL-A Program to Format Tables, Bell Laboratories. 

[6] McGill, R. VMAC-Commands for Preparing Vu-graphs or Posters, Bell Laboratories 
(1976). 

[7] Noll, J. C. ATS Bulletin 77-5, Bell Laboratories (1977). 

[8] Ossanna, J. F. NROFF/TROFF User's Manual, Bell Laboratories. 

[9] Perry, R. E. Audience Requirements for Technical Speakers, American Federation of Infor
mation Processing Societies (1971). 

[IO] Renkel, W. H. VGEL-View.Graph Extended Language, Bell Laboratories (1978). 

[11] Sturman, J. N. MVIEW-A Set of Macrocommands for the Generation of View Graphs, Bell 
Laboratories (1978). 

[12] Vogel, G. C. Easy Phototypeset View Graphs, Bell Laboratories (1977). 



+ 

+ 

12 View Graphs and Slides 

APPENDIX 

This Appendix contains seven examples. The input for Examples 1 and 2 is given in §2 above. 
The input for each of the other examples precedes the corresponding view graph. Note that the 
output of Example 6 is, essentially, the input for Example 7. 

EXAMPLE 1: 

Six stages of a project: 

• wild enthusiasm 

• disillusionment 

• total confusion 

• search for the guilty 

• punishment of the innocent 

• promotion of the non-participants 

9/15/81 
BTL 

@FOIL 1 

+ 

+ 



+ 

+ 

View Graphs and Slides 

EXAMPLE 2: 

What the Walrus Said 
"The time has come," the Walrus said, 
"To talk of many things: 

• Of shoes-and ships-and sealing wax-

• Of cabbages-and kings-

• And why the sea is boiling hot-

• And whether pigs have wings." 

13 

June 29, 1980 
Less Trivial 

@FOIL 2 

+ 

+ 



14 

EXAMPLE 3: 

.Vh 3 "Levels & Marks" 

.T "Foil Levels & Level Marks" 
This is the .A (left margin) level; 
.B 
this is the .B level, 
.B 
as is this; 
.c 
this is the .c level, 
.c 
as is this; 
.D 
and this is the .D level, 
.D 
as is this . 
• A 
The large bullet, the dash, and the small 
bullet are the default ''marks'' for 
levels .B, .c, and .D, respectively. 
However, these three levels can also 
be marked arbitrarily: 
.B B. 
Like this (this is the .B level); 
.c 3. 
like this (this is the .c level); 
. D d • 
like this (this is the .D level), or 
• D iv . 
like this, or even 
.D \{rh-\(bu +4 
like this . 
• A 
The .A level cannot be marked. 
.B 
An arbitrary number of lines of text 
can be included in any item at any level; 
the text will be filled, but neither adjusted 
nor hyphenated, just like this .B level item. 

View Graphs and Slides 



View Graphs and Slides 15 

June 29, 1980 
Levels & Marks 

@'FOIL 3 

+ + 

Foi I Levels & Level Marks 
This is the .A (left margin) level; 

• this is the .B level, 

• as is this; 

this is the .C level, 

as is this; 
• and this is the .D level, 
• as is this. 

The large bullet, the dash, and the small 
bullet are the default 11marks" for levels .B, 
.C, and .D, respectively. However, these 
three levels can also be marked arbitrarily: 

B. Like this (this is the .B level); 

3. like this (this is the .C level); 
d. like this (this is the .D level), or 
iv. like this, or even 

ttff" • like this. 

The .A level can not be marked. 

• An arbitrary number of lines of text can 
be included in any item at any level; 
the text will be filled, but neither 
adjusted nor hyphenated, just like this 
.8 level item. 

+ + 



16 

EXAMPLE 4: 

.DF 1 R 

.VS 4 Complex 

.T "Of Bits & Bytes & Words" 

.s -4 

.I 3 A x 

.ft I 
But let your communication be, Yea, yea; 
Nay, nay: for whatsoever is more than these 
cometh of evil.• 
.ft 
.I +1 a nospace 
Matthew 5:37 
.BR 
.s 
. I 0 .A 
Binary notation has been around for a 
.s +6 
long 
.s 
time • 
• B 
The above verse tells us to use: 
.c 1) 
binary notation, 
.ft I 
and 
.ft 
.c 2) 
redundancy 
.D \(rh 
(in communicating) 
,B 
Binary notation is 
.u not 
suited for human use, above verse to 
the contrary notwithstanding • 
• SP 
.s -2 
.TS 
box 
c : c I c I c 
1 : c I c : c . 
System Bits/Byte 

IBM-7090/94 
IBM-360/370 
PDP-11170 
.TE 
.s 
.s -4 

.u ------------

.BR 

6 
8 
8 

Bytes/word 

6 
4 
2 

36 
32 
16 

* The use of this verse in this context 
is plagiarized from C. Shannon . 
. s 

Bits/Word 

View Graphs and Slides 



+ 

+ 

View Graphs and Slides 17 

June 29, 1980 
Complex 

@,FOIL 4 

Of Bits & Bytes & Words 
But let your communication be, 
Yea, yea; Nay, nay: for whatsoever 
is more than these cometh of evil.* 

Matthew 5:37 

Binary notation has been around for a long time. 

• The above verse tells us to use: 

1 ) binary notation, and 

2) redundancy 
w (in communicating) 

• Binary notation is not suited for human use, 
above verse to the contrary notwithstanding. 

System Bits/Byte Bytes/Word Bits/Word 

IBM 7090/94 6 6 36 
IBM 360/370 8 4 32 
PDP 11/70 8 2 16 

* The use of this verse in this context is plagiarized from C. Shannon. 

+ 

+ 



18 

EXAMPLE 5: 

.de CW 

.I .5 a 

.NF 

.de CN 

.FI 

.I 0 a 

.DF 1 R 2 I 3 CW 

.VS 5 new & EQNn 

.EQ 
gsize 18 
.EN 
.s 100 5.5 
Input: 
.cw 
.EQ 
sum from k=1 to inf m sup k-1 
-=- 1 over 1-m 
.EN 
.CN 
Output: 
.I 2 a 
.EQ 
sum from k=1 to inf m sup k-1 
-=- 1 over 1-m 
.EN 
.I 0 a 
Input: 
.cw 
The equation $ f(t) -=- 2 pi 
int sin ( omega t ) dt $ 
is used here in running text, 
rather than being displayed • 
. CN 
Output: 
.I . 5 a 
,EQ 
delim SS 
.EN 
.AD 
The equation S f(t) -=- 2 pi 
int sin ( omega t ) dt $ 
is used here in running text, 
rather than being displayed . 
. EQ 
delim off 
9size 10 
.EN 

View Graphs and Slides 



View Graphs and Slides 19 

June 29, 1980 
CW & EQN 

@FOIL 5 

+ + 

Input: 

.EQ 
sum from k=1 to inf m sup k-1 
., =., 1 over 1-m 
.EN 

Output: 

00 1 ~ mk-I 
1-m k=I 

Input: 

The equation $ f (t) 2 
. -=,.,, p1 

int sin ( omega t ) dt $ . used here in running text, lS 

rather than being displayed. 

Output: 

The equation f (t) = 211" J sin(wt )dt 
. 
IS 

used here 
. . 

text, rather than In running 
being displ~yed. 

+ + 



20 

EXAMPLE 6: 

.vs 6 "The Works: Input" 
Input: 
.s -4 
.cw 
.TS 
center doublebox ; 
Cip+4 I Cip+4 s S 
"ILLL 
" I c c I c 
A : c : c : c 
Li I C I C I N 
Users\(->Hardware 
\(-> \(-> \(-> 
\(->UNIX\;(Tm\(->Model\(->Serial 
\(->System\(->\A\(->Number 

OS Dev.\(->A\(->VAX\(->54 
SGS Dev.\(->B\(->11/70\(->3275 
Low-End\(->C\(->11/23\(->221 

And now •.. \(->T{ 
.NA 
Some filled text and an equation: 
T}\(->T{ 
S zeta (s) • prod 
from k•1 to inf k sup -s S 
.AD 
T}\(->1.2 
.TE 
.CN 

View Graphs and Slides 

{\(-> • tab) 



+ 

+ 

View Graphs and Slides 

Input: 

.TS 
center 
Cip+4 
,.. L 

doublebox ; 
Cip+4 S S 

L L 

A 

c 
c : 

c : c 
c : c 

Li I c I c : N I 

Users-+Hardware 
............ 
-+UNIX\*(Tm-+Model-+Serial 
-+System-+\"-+Number 

= 
OS Dev.-+A-+VAX-+54 
SGS Dev.-+B-+11/70-+3275 
Low-End-+C-+11/23-+221 

-
And now ••• -+T{ 
.NA 

(-+ = tab) 

Some filled text and an equation: 
T}-+T{ 
$ zeta (s) = prod 
from k=1 to inf k sup -s $ 

.AD 
T}-+1.2 
.TE 

21 

June 29, 1980 
The Works: Input 

@FOIL 6 

+ 

+ 



22 

EXAMPLE 7: 

.vs 7 "The Works: Output" 

.EQ 
deli111 U 
gsize 14 
.EN 
Output: 
.I 0 a 
.SP 
.TS 
center doublebox ; 
Cip+4 Cip+4 S S 
A : L L L 
A : c 
,., : c 
Li ; C 
Users 

c : c 
c : c 

; C ; N 
Hardware 

- -UNIX\•(Tm 
System \"' 

• 
OS Dev. 
SGS Dev. 
Low-End 

And now 
.NA 

A 
B 
c 

T{ 

Model 
Number 

VAX 
11/70 
11/23 

serial 

54 
3275 
221 

some filled text and an equation: 
T} T{ 
$ zeta (s) = prod 
from k=1 to inf k sup -s S 
.AD 
T} 1. 2 
.TE 
.EQ 
delim off 
gsize 10 
.EN 

View Graphs and Slides 



View Graphs and Slides 

+ 

Output: 

Users UNIX TM 

System 

OS Dev. A 
SGS Dev. B 
Low-End c 
And now ... Some 

filled text 
and an 
equation: 

+ 

January 1981 

Hardware 

Model 

VAX 
11/70 
11/23 

00 

t(s )=II k-s 
k=l 

23 

June 29, 1980 
The Works: Output 

@FOIL 7 

+ 

Serial 
Number 

54 
3275 

221 
1.2 

+ 



TBL-A Program to Format Tables 

M. E. Lesk 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Tb/ is a document formatting preprocessor for troff or nroff which makes 
even fairly complex tables easy to specify and enter. It is available on the 
PDP-11 UNIXt system, and on Honeywell 6000 GCOS. Tables are made up of 
columns which may be independently centered, right-adjusted, left-adjusted, or 
aligned by decimal points. Headings may be placed over single columns or 
groups of columns. A table entry may contain equations, or may consist of 
several rows of text. Horizontal or vertical lines may be drawn as desired in the 
table, and any table or element may be enclosed in a box. For example: 

1970 Federal Budget Transfers 
(in billions of dollartl_ 

State 
Taxes Money 

Net collected s_p_ent 
New York 22.91 21.35 -l.56 
New Jersey 8.33 6.96 ·-1.37 
Connecticut 4.12 3.10 -1.02 
Maine 0.74 0.67 -0.07 
California 22.29 22.42 +0.13 
New Mexico 0.70 1.49 +0.79 
Georgia 3.30 4.28 +0.98 
Mississippi 1.15 2.32 +1.17 
Texas 9.33 11.13 +l.80 

INTRODUCTION 

UNIX 

C.3.1 

Tb/ turns a simple description of a table into a troff or nroff [l] program (list of requests) 
that prints the table. Tb/ may be used on the PDP-11 UNIX [2] system and on the Honeywell 
6000 GCOS system. It attempts to isolate a portion of a job that it can successfully handle and 
leave the remainder for other programs. Thus tbl may be used with the equation formatting 
program eqn [3] and/or various nroff/troff layout macro packages [4,5,6], but does not duplicate 
their functions. 

This memorandum is divided into two parts. First we give the rules for preparing tbl 
input; then some examples are shown. The description of rules is precise but technical, and the 
beginning user may prefer to read the examples first, as they show some common table 
arrangements. A section explaining how to invoke tbl precedes the examples. To avoid repeti
tion, henceforth read "troff" as "troff or nroff." 

t UNIX is a trademark of Bell Laboratories. 



2 TBL 

The input to th/ is text for a document, with tables preceded by a ".1S" (table start) 
command and followed by a ".TE" (table end) command. Thi processes the tables, generating 
troff formatting requests, and leaves the remainder of the text unchanged. The ".TS" and 
••.TE" lines are copied, too, so that troff layout macros (such as the memorandum formatting 
macros [4,6]) can use these lines to delimit and place tables as they see fit. In particular, any 
arguments on the ".TS" or ".TE" lines are copied but otherwise ignored, and may be used by 
document layout macro requests. The format of the input is as follows: 

text 
.TS 
table 
.TE 
text 
.1S 
table 
.TE 
text 

where the format of each table is as follows: 

.TS 
options; 
fonnat. 
data 
.TE 

Each table is independent, and must contain formatting information followed by the data to be 
entered in the table. The formatting information, which describes the individual columns and 
rows of the table, may be preceded by a few options that affect the entire table. A detailed 
description of tables is given in the next section. 

INPUT COMMANDS 

As indicated above, a table contains, first, global options, then a format section describing 
the layout of the table entries, and then the data to be printed. The format and data arc always 
required, but not the options. The various parts of the table are entered as follows: 

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this 
line must follow the • TS line immediately and must contain a list of option names 
separated by spaces, tabs, or commas, and must be terminated by a semicolon. The 
allowable options are: 

center - center the table (default is left-adjust); 

expand 

box 

all box 

- make the table as wide as the current line length; 

- enclose the table in a box; 

- enclose each item in the table in a box; 

doublebox. · - enclose the table in two boxes; · 

tab (x) - use x instead of tab to separate data items. 

linesize (n) - set lines or rules (e.g., from box) in h-point type; 

delim (xy) - recognize x and y as the eqn delimiters. 

The tbl program tries to keep boxed tables on one page by issuing appropriate "need" 
'c. ne) requests. These requests are calculated from the number of lines in the tables, and 
if there are spacing requests embedded in the input, the . ne requests may be inaccurate; 
use normal troff procedures, such as keep-release macros, in that case. The user who 



TBL 3 

must have a multi-page boxed table should use macros designed for this purpose, as 
explained below und,er 'Usage.' 

2) FORMAT. The format section of the table specifies the layout of the columns. Each line 
in this section corresponds to one line of the table (except that the last line correspond-s to 
all following lines up to the next .T&, if any-see below), and each line contains a key
letter for each column of the table. It is good practice to separate the key letters for each 
column by spaces or tabs. Each key-letter is one of the following: 

L or I to indicate a left-adjusted column entry; 

R or r to indicate a right-adjusted column entry; 

C or c to indicate a centered column entry; 

Nor n to indicate a numerical column entry, to be aligned with other numerical 
entries so that the units digits of numbers line up; 

A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned ori 
the left, and positioned so that the widest is centered within the column (see 
example on page 13); 

S or s to indicate a spanned heading, i.e., to indicate that the entry from the previous 
column continues across this column (not allowed for the first column of the 
table, obviously); or 

to indicate a vertically spanned heading, i.e., to indicate that the entry from the 
previous row continues down through this row (not allowed for the first row of 
the table, obviously). 

When numerical alignment is specified, a location for the decimal point is sought. The 
rightmost dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining 
a digit, the rightmost digit is used as a units digit; if no alignment is indicated, the item is 
centered in the column. However, the special non-printing character string \& may be 
used to override unconditionally dots and digits, or to align alphabetic data; this string 
lines up where a dot normally would, and then disappears from the final output. In the 
example below, the items shown at the left will be aligned (in a numerical column) as 
shown on the right: 

13 
4.2 
26.4.12 
abc 
abc\& 
43\&3.22 
749.12 

13 
4.2 

26.4.12 
abc 

abc 
433.22 

749.12 

Note: If numerical data are used in the same column with wider L or r type table entries, 
the widest number is centered relative to the wider L or r items (L is used instead of I for 
readability; they have the same meaning as key-letters). Alignment within the numerical 
items is preserved. This is similar to the behavior of a type data, as explained above. 
However, alphabetic subcolumns (requested by the a key-letter) are always slightly 
indented relative to L items; if necessary, the column width is increased to force this. 
This is not true for n type entries. 

Warning: The n and a items should not be used in the same column. 

For readability, the key-letters describing each column should be separated by spaces. 
The end of the format section is indicated by a period. The layout of the key-letters in 
the format section resembles the layout of the actual data in the table. Thus a simple for
mat might appear as: 



4 TBL 

c s s 
l n n . 

which specifies a table of three columns. The first line of the table contains a heading cen
tered across all three columns; each remaining line contains a left-adjusted item in the 
first column followed by two columns of numerical data. A sample table in this format 
might be: 

Overall title 
Item-a 34.22 9.1 
ltem-b 12.65 .02 
Items: c,d,e 23 5.8 
Total 69.87 14.92 

There are some additional features of the key-letter system: 

Horizontal lines - A key-letter may be replaced by '-' (underscore) to indicate a hor
izontal line in place of the corresponding column entry, or by '=' to indicate a dou
ble horizontal line. If an adjacent column contains a horizontal line, or if there are 
vertical lines adjoining this column, this horizontal line is extended to meet the 
nearby lines. If any data entry is provided for this column, it is ignored and a warn
ing message is printed. 

Venical lines - A vertical bar may be placed between column key-letters. This will 
cause a vertical line between the corresponding columns of the table. A vertical bar 
to the left of the first key-letter or to the right of the last one produces a line at the 
edge of the table. If two vertical bars appear between key-letters, a double vertical 
line is drawn. 

Space between columns - A number may follow the key-letter. This indicates the 
amount of separation between this column and the next column. The number nor
mally specifies the separation in ens (one en is about the width of the letter 'n').* If 
the expand option is used, then these numbers are multiplied by a constant such that 
the table is as wide as the current line length. The default column separation 
number is 3. If the separation is changed the worst case (largest space requested) 
governs. 

Vertical spanning - Normally, vertically spanned items extending over several rows of 
the table are centered in their vertical range. If a key-letter is followed by t or T, 
any corresponding vertically spanned item will begin at the top line of its range. 

Font changes - A key-letter may be followed by a string containing a font name or 
number preceded by the letter for F. This indicates that the corresponding column 
should be in a different font from the default font (usually Roman). All font names 
are one or two letters; a one-letter font name should be separated from whatever 
follows by a space or tab. The single letters B, b, (, and i are shorter synonyms for 
fB and fl. Font-change requests given with the table entries override these 
specifications. 

Point size changes - A key-letter may be followed by the letter p or P and a number to 
indicate the point size of the corresponding table entries. The number may be a 
signed digit, in which case it is taken as an increment or decrement from the current 
point size. If both a point size and a column separation value are given, one or 
more blanks must separate them. 

Vertical spacing changes - A key-letter may be followed by the letter v or V and a 
number to indicate the vertical line spacing to be used within a multi-line 
corresponding table entry. The number may be a signed digit, in which case it is 
taken as an increment or decrement from the current vertical spacing. A column 

• More precisely, an en is a number of points (I point - 1/72 inch) equal to half the current type size. 



TBL 5 

separation value must be separated by blanks or some other specification from a 
vertical spacing request. This request has no effect unless the corresponding table 
entry is a text block (see below). 

Column width indication - A key-letter may be followed by the letter w or W and a width 
value in parentheses. This width is used as a minimum column width. If the largest 
element in the column is not as wide as the width value given after the w, the larg
est element is assumed to be that wide. If the largest element in the column is 
wider than the specified value, its width is used. The width is also used as a default 
line length for included text blocks. Normal troff units can be used to scale the 
width value; if none are used, the default is ens. If the width specification is a unit
less integer the parentheses may be omitted. If the width value is changed in a 
column, the last one given controls. 

Equal-width columns - A key-letter may be followed by the letter e or E to indicate 
equal-width columns. All columns whose key-letters are followed by e or E are 
made the same width. This permits the user to get a group of regularly spaced 
columns. 

Staggered columns - A key-letter may be followed by the letter u or U to indicate that 
the corresponding entry is to be moved up one-half line. This makes it easy, for 
example, to have a column of differences between numbers in an adjoining column. 
The al/box option does not work with staggered columns. 

Zero-width item - A key-letter may be followed by the letter z or Z to indicate that the 
corresponding data item is to be ignored in calculating column widths. This may be 
useful, for example, in allowing headings to run across adjacent columns where 
spanned headings would be inappropriate. 

Note: The order of the above features is immaterial; they need not be separated by 
spaces, except as indicated above to avoid ambiguities involving point size and font 
changes. Thus a numerical column entry in italic font and 12-point type with a 
minimum width of 2.5 inches and separated by 6 ens from the next column could be 
specified as 

npl2w(2.5i)fl 6 

Alternative notation - Instead of listing the format of successive lines of a table on con
secutive lines of the format section, successive line formats may be given on the 
same line, separated by commas, so that the format for the example above might 
have been written: 

css,lnn. 

Default - Column descriptors missing from the end of a format line are assumed to be 
L. The longest line in the format section, however, defines the number of columns 
in the table; extra columns in the data are ignored silently. 

3) DATA. The data for the table are typed after the format. Normally, each table line is 
typed as one line of data. Very long input lines can be broken: any line whose last charac
ter is \ is combined with the following line (and the \ vanishes). The data for different 
columns (the table entries) are separated by tabs, or by whatever character has been 
specified in the option tabs option. There are a few special cases: 

Troff requests within tables - An input line beginning with a '.' followed by anything but 
a number is assumed to be a request to troff and is passed through unchanged, 
retaining its position in the table. So, for example, space within a table may be pro
duced by ".sp" requests in the data. 

Full width horizontal lines - An input line containing only the character _ (underscore) 
or == (equal sign) is taken to be a single or double line, respectively, extending the 
full width of the table. 



6 TBL 

Single column horizontal lines - An input table entry containing only the character_ or = 
is taken to be a single or double line extending the full width of the column. Such 
lines are extended to meet horizontal or vertical lines adjoining this column. To 
obtain these characters explicitly in a column, either precede them by \& or follow 
them by a space before the usual tab or new-line. 

Short horizontal lines - An input table entry containing only the string\_ is taken to be a 
single line as wide as the contents of the column. It is not extended to meet adjoin
ing lines. 

Repeated characters - An input table entry containing only a string of the form \Rx 
where x is any character is replaced by repetitions of the character x as wide as the 
data in the column. The sequence of x 's is not extended to meet adjoining 
columns. 

Vertically spanned items - An input table entry containing only the character string \A 
indicates that the table entry immediately above spans downward over this row. It is 
equivalent to a table format key-letter of '~ '. 

Text blocks - In order to include a block of text as a table entry, precede it by T{ and 
follow it by T}. Thus the sequence 

••• T{ 
block of 
text 
T} ••• 

is the way to enter, as a single entry in the table, something that cannot con
veniently be typed as a simple string between tabs. Note that the T} end delimiter 
must begin a line; additional columns of data may follow after a tab on the same 
line. See the example on page 11 for an illustration of included text blocks in a 
table. If more than thirty or so text blocks are used in a table, various limits in the 
troff program are likely to be exceeded, producing diagnostics such as 'too many 
string/macro names' or 'too many number registers.' 

Text blocks are pulled out from the table, processed separately by troff. and replaced 
in the table as a solid block. If no line length is specified in the block of text itself, 
or in the table format, the default is to use L XC /(N + 1) where L is the current line 
length, C is the number of table columns spanned by the text, and N is the total 
number of columns in the table. The other parameters (point size, font, etc.) used 
in setting the block of text are those in effect at the beginning of the table (including 
the effect of the ".TS" macro) and any table format specifications of size, spacing, 
and font, using the p, ' and f modifiers to the column key-letters. Requests within 
the text block itself are also recognized, of course. However, troff requests within 
the table data but not within the text block do not affect that block. 

Warnings: Although any number of lines may be present in a table, only the first 200 
lines are used in setting up the table; a multi-page table, of course, may be arranged 
as several single-page tables if this proves to be a problem. Other difficulties with 
formatting may arise because, in the calculation of column widths all table entries 
are assumed to be in the font and size being used when the ''.TS" command was 
encountered, except for font and size changes indicated (a) in the table format sec
tion and (b) within the table data (as in the entry \s+3\fiData\fP\sO). Therefore, 
although arbitrary troff requests may be sprinkled in a table, care must be taken to 
avoid confusing the width calculations; use requests such as '.ps' with care. 

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi
lar lines, as with sub-headings or summarizations, the ". T&" (table continue) command 
can be used to change column parameters. The outline of such a table input is: 



TBL 

.TS 
options; 
format. 
data 

.T& 
format. 
data 
.T& 
format. 
data 
.TE 

7 

as in the examples on pages 10 and 13. Using this procedure, each table line ·can be close 
to its corresponding format line. 

Warning: It is not possible to change the number of columns, the space between columns, 
the global options such as box, or the selection of columns to be made equal-width. 
Furthermore, ". T&" is not recognized after the first 200 lines of a table. 

USAGE 
On UNIX, th/ can be run on a simple table with the command 

tbl input-file I troff 

but for more complicated use, where there are several input files, and they contain equations 
and ms (or mm) macro requests as well as tables, the normal command would be 

tbl file- I file-2 • • • I eqn I troff - ms (or -mm) 

and, of course, the usual options may be used on the troff and eqn commands. The usage for 
nroff is similar to that for troff. but only TELETYPE~ Model 37 and Diablo-mechanism (DASI or 
GSI) terminals can print boxed tables directly. If a file name is .. - ", the standard input is read 
at that point. 

For the convenience of users employing line printers without adequate driving tables or 
post-filters, there is a special -TX command-line option to th/ which produces output that does 
not have fractional line motions in it. The only other command-line options recognized by th/ 
are -ms and -mm which are turned into commands to fetch the corresponding macro files; 
usually it is more convenient to place these arguments on the troff part of the command line, 
but they are accepted by th/ as well. 

Note that when eqn and tbl are used together on the same file th/ should be used first. If 
there are no equations within tables, either order works, but it is usually faster to run th/ first, 
since eqn normally produces a larger expansion of the input than th/. However. if there are 
equations within tables (using the delim mechanism in eqn), tbl must be first or the output will 
be scrambled. Users must also beware of using equations in n-style columns; this is nearly 
always wrong, since th/ attempts to split numerical format items into two parts and this is not 
possible with equations. The user can defend against this by giving the delim(xx) table option; 
this prevents splitting of numerical columns within the delimiters. For example, if the eqn del
imiters are $$, giving delim($$) causes a numerical column such as 1245 S+ - 16$ to be 
divided after 1245, not after 16. 

Tb/ accepts up to about 35 columns, but the actual number that can be processed may be 
smaller, depending on availability of troff number registers. The user must avoid number regis
ter names used by tbl, which include two-digit numbers from 31 to 99 and strings of the form 
4x, Sx, f x, x+, xi, -x, and x-, where x is any lower-case letter. The names 11. I - , and 
I - are also used in certain circumstances. To conserve register names, the n and a formats 
share a register; hence the restriction above that they may not be used in the same column. 



8 TBL 

For aid in writing layout macros, tbl defines a number register TW which is the table 
width; it is defined by the time that the ".TE" macro is invoked and may be used in the 
expansion of that macro. More importantly, to assist in laying out multi-page boxed tables the 
macro T# is defined to produce the bottom lines and side lines of a boxed table, and then 
invoked at its end. By use of this macro in the page footer a multi-page table can be boxed. In 
particular, the ms and mm macros can be used to print a multi-page boxed table with a repeated 
heading by giving the argument H to the ".TS" macro. If the table start macro is written 

.TSH 
a line of the form 

.TH 
must be given in the table after any table heading (or at the start if none). Material up to the 
".TH" is placed at the top of each page of table; the remaining lines in the table are placed on 
several pages as required. Note that this is not a feature of th/, but of the ms and mm macros. 

EXAMPLES 

Here are some examples illustrating features of tbl. The symbol © in the input 
represents a tab character. 

Input: 

.TS 
box; 
CCC 

111. 
Language ©Authors ([)Runs on 

Fortran ©Many ©Almost anything 
PL/I ©IBM ©360/370 
C ©BTL © l 1/45,H6000,370 
BLISS ©Carnegie-Mellon ©PDP-10,11 
IDS ©Honeywell ©H6000 
Pascal ©Stanford ©370 
.TE 

Input: 

.TS 
all box; 
cs s 
CCC 

n n n. 
AT&T Common Stock 
Year([) Price ©Dividend 
1971 ©41-54 ©$2.60 
2 ©41-54 ©2. 70 
3 ©46-55 ®2.87 
4 ©40-53 ©3.24 
5 ©45-52 ~3 .40 
6©51-59©.95* 
.TE 
··(first quarter only) 

Output: 

Language Authors Runs on 

Fortran Many Almost anything 
PL/l IBM 360/370 
c BTL l l/45,H6000,370 
BLISS Carnegie-Mellon PDP-10,11 
IDS Honeywell H6000 
Pascal Stanford 370 

Output: 

AT&T Common Stock 
Year Price Dividend 
1971 41-54 $2.60 

2 41-54 2.70 
3 46-55 2.87 
4 40-53 3.24 
5 45-52 3.40 
6 51-59 .95* 

• {first quarter only) 



TBL 

Input: 

.lS 
box; 
cs s 
clclc 
I I I In. 
Major New York Bridges 
.... 
Bridge ©Designer ©Length 

-
Brooklyn lf>J. A. Roebling©1595 
Manhattan ©G. Lindenthal If> 14 70 
Williamsburglf>L. L. Buck©l600 

-
Queensborough ©Palmer & ©1182 
© Hornbostel 

If> (f) 1380 
Tri borough lf>O. H. Ammann©_ 
© lf>383 

-
Bronx Whitestone ©O. H. Ammann (f)2300 
Throgs Neck©O. H. Ammann(f)1800 

-

Output: 

Maj_or New York Bridg_es 

Bri<!s_e Des!g_ner 
Brooklyn J. A. Roehling 
Manhattan G. Lindenthal 
Williamsbu!S_ L. L. Buck 
Queensborough Palmer & 

Hornbostel 

Tri borough 0. H. Ammann 

Bronx Whitestone 0. H. Ammann 
Thro~ Neck 0. H. Ammann 
George Washington 0. H. Ammann 

George Washington ©O. H. Ammann ©3500 
.TE 

Input: Output: 

.TS Stack 
cc 46 
np-2 In I. 2 23 
([)Stack 

3 15 
©_ 
1 @46 4 6.5 

®- s 2.1 

2©23 
Ci>_ 
3©15 
©_ 
41f>6.S 
([)_ 

5©2.1 
(f)_ 

.TE 

9 

Length 
1595 
1470 
1600 
1182 

1380 

383 
2300 
1800 
3500 



IO 

Input: 

.1S 
box; 
LLL 
LL_ 
LLILB 
LL 
LL L. 
january ©february ©march 
april ©may 
junc (i)july Ci> Months 
august ©september 
october ©november ©december 
.TE 

Input: 

.1S 
box; 
cm s s s. 
Composition of Foods 

.T& 
c I cs s 
c I cs s 
c le le I c. 
Food ©Percent by Weight 
\"' © 
\"' ©Protein ©Fat ©Carbo
\"' ©\"' ([)\"' ([)hydrate 

.T& 
1 In In In. 
Apples ©.4©.5 ©13.0 
Halibut ('f) 18 .4 CVS .2 © ••• 
Lima beans ©7 .5 © .8 ©22.0 
Milk ©3.3 ©4.0 ©5.0 
Mushrooms ([)3.5 ©.4 ©6.0 
Rye bread©9.0©.6©52.7 
.TE 

Output: 

february march 

july Months 

January 
april 
june 
august 
octobcr 

may l 
September ~----1 
novcmber december 

Output: 

Com_e_osition of Foods 
Percent by Weight 

Food 
Fat Carbo-Protein 

1!r_drate 
Apples .4 .5 13.0 
Halibut 18.4 5.2 ... 
Lima beans 7.5 . 8 22.0 
Milk 3.3 4.0 5.0 
Mushrooms 3.5 .4 6.0 
R_ye bread 9.0 .6 52.7 

TBL 



TBL 

Input: Output: 

.TS New York Area Rocks 
all box; 
cfl s s 
c cw(li) cw(li) 
lp9 lp9 lp9 • 
New York Area Rocks 
Era ®Formation ©Age (years) 
Precambrian ©Reading Prong©> 1 billion 
Paleozoic (i)Manhattan Prong ©400 million 
Mesozoic ©T{ 
.na 
Newark Basin, incl. 
Stockton, Lockatong, and Brunswick 
formations; also Watchungs 
and Palisades. 
.ad 
T} ©200 million 
Cenozoic {[)Coastal Plain (f)T{ 
.na 
On Long Island 30,000 years; 
Cretaceous sediments redeposited 
by recent glaciation . 
• ad 
T} 
.TE 

Input: 

.EQ 
delim $$ 
.EN 

Era 
Precambrian 

Paleozoic 

Mesozoic 

Cenozoic 

Output: 

Name 

Gamma 

Sine 

Error 

Formation 
Reading Prong 

Manhattan Prong 

Newark Basin, 
incl. Stockton, 
Lockatong, and 
Brunswick for-
mations; also 
Watchungs and 
Palisades. 

Coastal Plain 

Definition 

00 

I'(z)= Jo tz-le-'dt 

sin(x )= ~i (etx-e-tx) 

2 z l 
erf{z )- Y-i J0 e-1 dt 

Age (years) 

>I billion 

400 million 

200 million 

On Long Island 
30,000 years; 
Cretaceous sedi-
ments redepo-
sited by recent 
glaciation. 

.TS 
doublebox; 
cc 
I I. 

Bessel 
1 ... 

J 0(z)=- f cos(zsin8)d8 
'Ir Jo 

Name ©Definition 
.sp 
.vs +2p 

Zeta 
00 

t(s)=~k-s (Re s>l) 
k-1 

Gamma©$GAMMA (z) =int sub 0 sup inf t sup {z-1} e sup -t dt$ 
Sine ©Ssin (x) = 1 over 2i ( e sup ix - e sup -ix )$ 
Error©$ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$ 
Bessel©$ J sub 0 (z) = I over pi int sub 0 sup pi cos ( z sin theta ) d theta S 
Zeta ©S zeta (s) = sum from k-1 to inf k sup -s --( Re-s > I)$ 
.vs -2p 
.sp 2p 
.TE 

11 



12 

Input: 

.TS 
box, tab( : ) ; 
ch s s s s 
cp-2 s s s s 
cllclclclc 
cllclclclc 
r2 II n2 I n2 I n2 I n. 
Readability of Text 
Line Width and Leading for 10-Point Type ... 
Line: Set: I-Point: 2-Point: 4-Point 
Width: Solid: Leading: Leading: Leading 

9 Pica : \ - 9. 3 : \-6. 0 : \ - 5. 3 : \ - 7 .1 
14 Pica :\-4.5 :\-0.6 :\-0.3 :\- l. 7 
19 Pica:\-5.0:\-5.1: 0.0:\-2.0 
31 Pica:\-3.7:\-3.8:\-2.4:\-3.6 
43 Pica :\-9. l :\-9.0 :\-5.9 :\-8.8 
.TE 

TBL 

Output: 

Readability of Text 
Line Width and Leadill_S_ for JO-Point ~e 

Line Set I-Point 2-Point 4-Point 
Width Solid Leading Leading Leading 

9 Pica -9.3 -6.0 -5.3 -7.l 
14 Pica -4.5 -0.6 -0.3 -1.7 
19 Pica -5.0 -5.1 0.0 -2.0 
31 Pica -3.7 -3.8 -2.4 -3.6 
43 Pica -9.l -9.0 -5.9 -8.8 



TBL 

Input: 

.TS 
cs 
cip-2 s 
I n 
an. 
Some London Transport Statistics 
(Year 1964) 
Railway route miles ©244 
Tube©66 
Sub-surface ©22 
Surface © 156 
.sp .5 
.T& 
I r 
a r. 
Passenger traffic \- railway 
Journeys ©674 million 
Average length ©4.55 miles 
Passenger miles ©3,066 million 
.T& 
Ir 
a r. 
Passenger traffic \ - road 
Journeys ©2,252 million 
Average length ©2.26 miles 
Passenger miles ©5,094 million 
.T& 
I n 
an. 
.sp .5 
Vehicles ©12,521 
Railway motor cars ©2,905 
Railway trailer cars© 1,269 
Total railway ©4, 174 
Omnibuses ©8,347 
.T& 
1 n 
an • 
• sp .5 
Staff ©73, 739 
Administrative, etc. (f)5,582 
Civil engineering ©5,134 
Electrical eng. ©1,714 
Mech. eng. \- railway ©4,310 
Mech. eng. \- road©9,152 
Railway operations ©8,930 
Road operations ©35,946 
Other©2,971 
.TE 

Output: 

Some London Transport Statistics 
(Year 1964) 

Railway route miles 
Tube 
Sub-surface 
Surface 

Passenger traffic - railway 
Journeys 
Average length 
Passenger miles 

Passenger traffic - road 
Journeys 
Average length 
Passenger miles 

Vehicles 
Railway motor cars 
Railway trailer cars 
Total railway 
Omnibuses 

Staff 
Administrative, etc. 
Civil engineering 
Electrical eng. 
Mech. eng. - railway 
Mech. eng. - road 
Railway operations 
Road operations 
Other 

244 
66 
22 

156 

674 million 
4.55 miles 

3,066 million 

2,252 million 
2.26 miles 

5,094 million 

12,521 
2,905 
1,269 
4,174 
8,347 

73,739 
5,582 
5,134 
1,714 
4,310 
9,152 
8,930 

35,946 
2,971 

13 



14 

Input: 

.ps 8 

.vs lOp 

.TS 
center box; 
cs s 
ci s s 
CCC 
IB In. 
New Jersey Representatives 
(Democrats) 
.sp .5 
Name ('f)Qffice address ©Phone 
.sp .5 
James J. Florio ©23 S. White Horse Pike, Somerdale 08083 li>609-627-8222 
William J. Hughes ©2920 Atlantic Ave., Atlantic City 08401 ©609-345-4844 
James J. Howard©801 Bangs Ave., Asbury Park 07712t'V20l-774-l600 
Frank Thompson, Jr. ©10 Rutgers Pl., Trenton 08618 ©609-599-1619 
Andrew Maguire© 115 W. Passaic St., Rochelle Park 07662 ©201-843-0240 
Robert A. Roe©U.S.P.O., 194 Ward St., Paterson 07510('f)20l-523-5152 
Henry Helstoski ©666 Paterson Ave., East Rutherford 07073 ©201-939-9090 
Peter W. Rodino, Jr. t'VSuite l435A, 970 Broad St., Newark 07102 ©201-645-3213 
Joseph G. Minish ©308 Main St., Orange 07050 ©201-645-6363 
Helen S. Meyner©32 Bridge St., Lambertville 08530©609-397-1830 
Dominick V. Daniels (1)895 Bergen Ave., Jersey City 07306 ©201-659-7700 
Edward J. Patten©Natl. Bank Bldg., Perth Amboy 08861 t'V20l-826-4610 
.sp .5 
.T& 
ci s s 
lB In. 
(Republicans) 
.sp .5v 
Millicent Fenwick ©41 N. Bridge St., Somerville 08876 ©201-722-8200 
Edwin B. Forsythe ©301 Mill St., Moorestown 08057 ('f)609-235-6622 
Matthew J. Rinaldo©l96l Morris Ave., Union 07083©201-687-4235 
.TE 
.ps 10 
• vs 12p 

TBL 



TBL 15 

Output: 

New Jersey Representatives 
(Democrats) 

Name Office address Phone 

James J. Florio 23 S. White Horse Pike, Somerdale 08083 609-627-8222 
William J. Hughes 2920 Atlantic Ave., Atlantic City 08401 609-345-4844 
James J. Howard 801 Bangs Ave., Asbury Park 07712 201-774-1600 
Frank Thompson, Jr. IO Rutgers Pl., Trenton 08618 609-599-1619 
Andrew Maguire 115 W. Passaic St., Rochelle Park 07662 201-843-0240 
Robert A. Roe U.S.P.O., 194 Ward St, Paterson 07510 201-523-5152 
Henry Helstoski 666 Paterson Ave., East Rutherford 07073 201-939-9090 
Peter W. Rodino, Jr. Suite 1435A, 970 Broad St., Newark 07102 201-645-3213 
Joseph G. Minish 308 Main St., Orange 07050 201-645-6363 
Helen S. Meyner 32 Bridge St., Lambertville 08530 609-397-1830 
Dominick V. Daniels 895 Bergen Ave., Jersey City 07306 201-659-7700 
Edward J. Patten Natl. Bank Bldg., Perth Amboy 08861 201-826-4610 

(Republicans) 

Miiiicent Fen1t'ick 41 N. Bridge St., Somerville 08876 201-722-8200 
Ed1t'in B. Forsythe 301 Mill St., Moorestown 08057 609-235-6622 
Matthe" J. Rinaldo 1961 Morris Ave., Union 07083 201-687-4235 

This is a paragraph of normal text placed here only to indicate where the left and right margins 
are. In this way the reader can judge the appearance of centered tables or expanded tables, and 
observe how such tables are formatted. 

Input: 

.TS 
expand; 
c s s s 
cc cc 
11 n n. 
Bell Labs Locations 
Name ©Address ©Area Code C'ilPhone 
Holmdel ({)Holmdel, N. J. 07733 (I.)201 ©949-3000 
Murray Hill©Murray Hill, N. J. 07974©201 ©582-6377 
WhippanyC'ilWhippany, N. J. 07981 (I.)201 (I.)386-3000 
Indian Hill ©Naperville, Illinois 60540 ©312 ©690-2000 
.TE 

Output: 

Name 
Holmdel 
Murray Hill 
Whippany 
Indian Hill 

Bell Labs Locations 
Address 

Holmdel, N. J. 07733 
Murray Hill, N. J. 07974 
Whippany, N. J. 07981 
Naperville, Illinois 60540. 

Area Code 
201 
201 
201 
312 

Phone 
949-3000 
582-6377 
386-3000 
690-2000 



16 

Input: 

•TS 
box: 
cb s s s 
c I c I c s 
ltiw( 1 i) I ltw(2i) I tpS I tw( 1 • 6i)p8. 
Some Interesting Places 

Name© Description ©Practical Information 

Tl 
American Museum of Natural History 
Tl©TI 
The collections fill 11. S acres (Michelin) or 25 acres (MTA) 
of exhibition halls on four floors. 
There is a full-sized replica 
of a blue whale and the world's largest star sapphire (stolen in 1964). 
Tl©Hours©l0·5, ex. Sun 11-5, Wed. to 9 
\-©\ft (i)Location©T( 
Central Park West & 79th St. 
Tl 
\ft©\• ©Admission<I>Donation: $1.00 asked 
\ft©\ ft ©Subway© AA to Slst St. 
\ft©\ - ©Telephone©212-873-4225 

Bronx Zoo©T{ 
About a mile long and .6 mile wide, this is the largest zoo in America. 
A lion eats 18 pounds 
of meat a day while a sea lion eats 1 S pounds of fish. 
T}©Hours©TI 
10-4:30 winter, to 5:00 summer 
Tl 
\ - ©\ft ©Location ©Tl 
J85th St. & Southern Blvd, the Bronx. 
Tl 
\ft©\- <I>Admission<I>Sl .00, but Tu.We.Th free 
\ft©\ ft ®Subway©2, 5 to East Tremont Ave. 
\ft©\- ©Tclephonet'.f>212·933·1759 

Brooklyn Museum©TI 
Five floors of galleries contain American and ancient art. 
There are American period rooms and architectural ornaments saved 
from wreckers, such as a classical figure from Pennsylvania Station. 
T}©Hours©Wed-Sat, 10-5, Sun 12-5 
\ft ©\ • ©Location ©T{ 
Eastern Parkway & Washington Ave., Brooklyn. 
Tl 
\ft©\- ©Admission©Free 
\-©\ft tf>Subway©2,3 to Eastern Parkway. 
\ft©\• ©Telephone®212-638-5000 

T{ 
New· York Historical Society 
T}©T{ 
All the original paintings for Audubon's 
.I 
Birds of America 
.R 
are here, as are exhibits of American decorative arts, New York history, 
Hudson River school paintings, carriages, and glass paperweights. 
Tl ©Hours ©Tl 
Tues-Fri & Sun, 1·5: Sat 10-5 
Tl 
\ • ©\ • ©Location ©T{ 
Central Park West & 17th St. 
Tl . 
\- ©\- ©Admission©Free 
\-©\ft ©Subway© AA to Slst St. 
\ft©\- ©Telephone©212·873·3400 
.TE 

TBL 



TBL 17 

Output: 

Some Interesting Places 
Name Description Practical Information 

American The collections fill 11.5 acres Hours 10-5, ex. Sun 11-5, Wed. to 9 

Museum of (Michelin) or 25 acres (MT A) Location Central Park West & 19th St. 

Natural History of exhibition halls on four Admission Donation: $1 .00 asked 

floors. There is a full-sized Subway AA to Slst St. 

replica of a blue whale and the Telephone 212-873-4225 

world's largest star sapphire 
(stolen in 1964). 

Bronx Zoo About a mile long and .6 mile Hours 10-4:30 winter, to 5:00 summer 

wide, this is the largest zoo in Location 185th St. & Southern Blvd, the 

America. A lion eats 18 Bronx. 

pounds of meat a day while a Admission $1.00, but Tu,We,Th free 

sea lion eats 15 pounds of fish. Subway 2, 5 to East Tremont Ave. 

Telephone 212-933-1759 

Brooklyn Museum Five floors of galleries contain Hours Wed-Sat, 10-5, Sun 12-5 

American and ancient art. Location Eastern Parkway & Washington 

There are American period Ave., Brooklyn. 

rooms and architectural orna- Admission Free 

men ts saved from wreckers, Subway 2,3 to Eastern Parkway. 

such as a classical figure from Telephone 212-638-5000 

Pennsylvania Station. 
New-York Histor- All the original paintings for Hours Tues-Fri & Sun, 1-5; Sat 10-5 

ical Society Audubon's Birds of Amen·ca are Location Central Park West & 17th St. 

here, as are exhibits of Ameri- Admission Free 

can decorative arts, New York Subway AA to 8lst St. 

history, Hudson River school Telephone 212-873-3400 

paintings, carriages, and glass 
l'_a perw eights. 

ACKNOWLEDGEMENTS 
Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted 

with the design of the program. He has also written many of the more intelligible sentences in 
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent 
on the work of the late J. F. Ossanna, whose assistance with this program in particular had been 
most helpful. This program is patterned on a table formatter written by J. F. Gimpel. The 
assistance of T. A. Dolotta, B. W. Kernighan, and J. N. Sturman is gratefully acknowledged. 

REFERENCES 
[1] 
[2] 

[3] 

[4] 
[5] 

[6] 

J. F. Ossanna. NROFF/TROFF User's Manual, Bell Laboratories, 1976. 
D. M. Ritchie and K. Thompson. The UNIX Time-Sharing System, CACM 17(7):365-75 
(July 1974). 
B. W. Kernighan and L. L. Cherry. A System for Typesetting Mathematics, CACM 
18(3):151-56 (Mar. 1975). 
M. E. Lesk. Typing Documents on UNIX, Bell Laboratories, 1976. 
M. E. Lesk and B. W. Kernighan. Computer Typesetting of Technical Journals on UNIX, 
Proc. AF/PS NCC, vol. 46, pp. 879-88 (1977). 
D. W. Smith and J. R. Mashey. MM-Memorandum Macros, Bell Laboratories, 1980. 



18 TBL 

List of Thi Command Characters and Words 

Command Meaning Section 
aA Alphabetic subcolumn 2 
all box Draw box around all items 1 
bB Boldface item 2 
box Draw box around table 1 
cc Centered column 2 
center Center table in page 1 
delim (xy) Define eqn delimiters 1 
doublebox Draw double box around table 1 
eE Equal-width columns 2 
expand Make table full line width 1 
f F Font change 2 
ii Italic item 2 
IL Left adjusted column 2 
linesize (n) Set size for rules l 
nN Numerical column 2 
nnn Column separation 2 
pP Point size change 2 
rR Right adjusted column 2 
sS Spanned item 2 
tT Vertical spanning at top 2 
tab {x) Change data separator character 1 
T{ .•. T} Text block 3 
uU Staggered columns 2 
l' v Vertical spacing change 2 
wW Minimum width value 2 
zZ Zero-width item 2 
.xx Included troff request 3 
I Vertical line 2 
11 Double vertical line 2 

Vertical span 2 
,~ Vertical span 3 - Double horizontal line 2,3 

Horizontal line 2,3 
\_ Short horizontal line 3 
\Rx Repeat character 3 

Name of standard input Usage 

January 1981 



UNIX 

C.3.2 

Typesetting Mathematics-User's Guide (Second Edition) 

Brian W. Kernighan 

Lorinda L. Cherry 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This is the user's guide for a system for typesetting mathematics, using the photo
typesetters on the UNIXt and GCOS operating systems. 

Mathematical expressions are described in a language designed to be easy to use by people 
who know neither mathematics nor typesetting. Enough of the language to set in-line expres
sions like lim (tan x)sin 2x = 1 or display equations like 

x-TT/2 

I Skzk I s zk/k G(z) - e'n G<z> - exp l:, -k- - I1 e k 

k;,I k;,J 

++s,z+ st~' + ... J11+ s:' + :!.~; + ... ) ... 

-l:. 
m;,o 

can be learned in an hour or so. 

The language interfaces directly with the phototypesetting language TROFF, so mathemati
cal expressions can be embedded in the running text of a manuscript, and the entire document 
produced in one process. This user's guide is an example of its output. 

The same language may be used with the UNIX formatter NROFF to set mathematical 
expressions on DASI and GSI terminals and Model 37 TELETYPE® terminals. 

1. Introduction 
EQN is a program for typesetting 

mathematics on the Graphics Systems pho
totypesetters on UNIX and GCOS. The EQN 
language was designed to be easy to use by 
people who know neither mathematics nor 
typesetting. Thus EQN knows relatively lit
tle about mathematics. In particular, 
mathematical symbols like +, -, x, 
parentheses, and so on have no special 
meanings. EQN is quite happy to set 

t UNIX is a trademark of Bell Laboratories. 

garbage (but it will look good). 

EQN works as a preprocessor for the 
typesetter formatter, TROFF [1], so the nor
mal mode of operation is to prepare a docu
ment with both mathematics and ordinary 
text interspersed, and let EQN set the 
mathematics while TROFF does the body of 
the text. 

On UNIX, EQN will also produce 
mathematics on DASI and GSI terminals and 
on Model 37 TELETYPE terminals. The 



2 

input is identical, but you have to use the 
programs NEQN and NROFF instead of EQN 
and TROFF. Of course, some things won't 
look as good because terminals don't pro
vide the variety of characters, sizes and 
fonts that a typesetter does, but the output 
is usually adequate for proofreading. 

To use EQN on UNIX, 

eqn files I troff 

GCOS use is discussed in section 26. 

2. Displayed Equations 

To tell EQN where a mathematical 
expression begins and ends, we mark it with 
lines beginning .EQ and .EN. Thus if you 
type the lines 

.EQ 
x=y+z 
.EN 

your output will look like 

x=y+z 

The .EQ and .EN are copied through 
untouched; they are not otherwise processed 
by EQN. This means that you have to take 
care of things like centering, numbering, 
and so on yourself. The most common way 
is to use the TROFF and NROFF macro 
packages '-ms' and '-mm' (3,4], which 
allow you to center, indent, left-justify, and 
number equations. 

With the '-ms' package, equations are 
centered by default. To left-justify an equa
tion, use .EQ L instead of .EQ. To indent it, 
use .EQ I. Any of these can be followed by 
an arbitrary 'equation number' which will be 
placed at the right margin. For example, 
the input 

.EQ I (3.la) 
x = f(y/2) + y/2 
.EN 

produces the output 

x-f(y/2)+y/2 (3. la) 

There is also a shorthand notation so 
in-line· expressions like 1T? can be entered 
without .EQ and .EN. We will talk about it 
in section 19. 

EQN User's Guide 

3. Input spaces 

Spaces and new-lines within an expres
sion are thrown away by EQN. (Normal text 
is left absolutely alone.) Thus between .EQ 
and.EN, 

and 

and 

x=y+z 

x=y+z 

x .... y 

+z 

and so on all produce the same output 

x=y+z 

You should use spaces and new-lines freely 
to make your input equations readable and 
easy to edit. In particular, very long lines 
are a bad idea, since they are often hard to 
fix if you make a mistake. 

4. Output spaces 

To force extra spaces into the output, 
use a tilde " - " for each space you want: 

x-=-y-+-z 

gives 

x=y+z 

You can also use a circumflex ".,,, which 
gives a space half the width of a tilde. It is 
mainly useful for fine-tuning. Tabs may 
also be used to position pieces of an expres
sion, but the tab stops must be set by 
TROFF commands. 

5. Symbols, Special Names, Greek 

EQN knows some mathematical sym
bols, some mathematical names, and the 
Greek alphabet. For example, 

x=2 pi int sin (omega t)dt 

produces · 

x,,,;,21T J sin(wt)dt 

Here the spaces in the input are necessary 
to tell EQN that int, pi, sin and omega are 
separate entities that should get special 
treatment. The sin, digit 2, and parentheses 
are set in roman type instead of italic; pi and 
omega are made Greek; and int becomes the 



EQl\. Cser 's Guide 

integral sign. 

When in doubt, leave spaces around 
separate parts of the input. A very common 
error is to type /(pi) without leaving spaces 
on both sides of the pi. As a result, EQN 
does not recognize pi as a special word, and 
it appears as /(pi) instead of /('Tr). 

A complete list of EQN names appears 
in section 23. Knowledgeable users can also 
use TROFF four-character names for any
thing EQN doesn't know about, like \ (bs for 
the Bell System sign @. . 

6. Spa.ces, A1ain 

The only way EQN can deduce that 
some sequence of letters might be special is 
if that sequence is separated from the letters 
on either side of it. This can be done by 
surrounding a special word by ordinary 
spaces for tabs or new-lines), as we did in 
the previous section. 

You can also make special words stand 
out by surrounding them with tildes or 
circumflexes: 

x-=-rptinCsin-c-omega-c)-dt 

is much the same as the last example, 
except that the tildes not only separate the 
magic words like sin, omega, and so on, but 
also add extra spaces, one space per tilde: 

x = 2 11' J sin ( w t ) dt 

Special words can also be separated by 
braces { } and double quotes " ... ", which 
have special meanings that we will see soon. 

7. Subscripts and Superscripts 

Subscripts and superscripts are 
obtained with the words sub and sup. 

x sup 2 + y sub k 

gives 

x2+Yk 

EQN takes care of all the size changes and 
vertical motions needed to make the output 
look right. The words sub and sup must be 
surrounded by spaces; x sub2 will give you 
xsub2 instead of x 2• Furthermore, don't 
forget to leave a space for a tilde, etc.) to 
mark the end of a -subscript or superscript. 
A common error is to say something like 

y = (x sup 2) + 1 

which causes 

y-(x2>+1 

instead of the intended 

y=(x2)+1 

3 

Subscripted subscripts and super
scripted superscripts also work: 

x sub i sub 1 

is 

A subscript and superscript on the same 
thing are printed one above the other if the 
subscript comes first: 

x sub i sup 2 

is 

X·2 
I 

Other than this special case, sub and 
sup group to the right, so x sup y sub z 
means xy', not xY z· 

8. Braces for Grouping 

Normally, the end of a subscript or 
superscript is marked simply by a blank for 
tab or tilde, etc.> What if the subscript or 
superscript is something that has to be typed 
with blanks in it? In that case, you can use 
the braces { and } to mark the beginning and 
end of the subscript or superscript: 

e sup {i omega t} 

is 
eiwl 

Rule: Braces can always be used to force 
EQN to treat something as a unit, or just to 
make your intent perfectly clear. Thus: 

x sub {i sub I} sup 2 

is 

with braces, but 

x sub i sub 1 sup 2 

is 



4 

which is rather different. 

Braces can occur within braces if 
necessary: 

is 

e sup {i pi sup {rho + 1}} 

. p+I 
e'" 

The general rule is that anywhere you could 
use some single thing like x. you can use an 
arbitrarily complicated thing if you enclose it 
in braces. EQN will look after all the details 
of positioning it and making it the right size. 

In all cases, make sure you have the 
right number of braces. Leaving one out or 
adding an extra will cause EQN to complain 
bitterly. 

Occasionally you will have to print bra
ces. To do this, enclose them in double 
quotes, like "{". Quoting is discussed in 
more detail in section 14. 

9. Fractions 
To make a fraction, use the word over: 

a+b over 2c -1 

gives 

a+b=l 
2c 

The line is made the right length and posi
tioned automatically. Braces can be used to 
make clear what goes over what: 

{alpha + beta} over {sin (x)} 

is 

a+~ 
sin(x) 

What happens when there is both an over 
and a sup in the same expression? In such 
an apparently ambiguous case, EQN does the 
sup before the over, so 

-b sup 2 over pi 

-b2 . 2 
is -- instead of - b ". The rules which 

'fr 

decide which operation is done first in cases 
like this are summarized in section 23. 
When in doubt, however, use braces to 
make clear what goes with what. 

EQN User's Guide 

10. Square Roots 
To draw a square root, use sqrt: 

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c} 

is 

.Ja+b+ I 
Jax2+bx+c 

Warning - square roots of tall quantities 
look lousy, because a root-sign big enough 
to cover the quantity is too dark and heavy: 

sqrt {a sup 2 over b sub 2} 

is 

-Jf; 
Big square roots are generally better written 
as something to the power 1h: 

(a 2/bJ'h 
which is 

(a sup 2 lb sub 2 ) sup half 

11. Summation, Integral, Etc. 
Summations, integrals, and similar 

constructions are easy: 

sum from i-0 to {i- inf} x sup i 

produces 
i-CIO 

}:x' 
;-o 

Notice that we used braces to indicate where 
the upper part ;-oo begins and ends. No 
braces were necessary for the lower part 
;-O, because it contained no blanks. The 
braces will never hurt, and if the from and to 
parts contain any blanks, you must use bra
ces around them. 

The from and to parts are both 
optional, but if both are used, they have to 
occur in that order. 

Other useful characters can replace the 
sum in our example: 

int prod union inter 

become, respectively, 

I II u n 
Since the thing before the from can be any
thing, even something in braces, from-to can 



EQN User's Guide 

often be used in unexpected ways: 

lim from {n - > inf} x sub n =O 

is 

lim Xn=O 
n-oo 

12. Size and Font Changes 

By default, equations are set in 10-
point type (the same size as this guide), 
with standard mathematical conventions to 
determine what characters are in roman and 
what in italic. Although EQN makes a vali
ant attempt to use esthetically pleasing sizes 
and fonts, it is not perfect. To change sizes 
and fonts, use size n and roman, italic, bold 
and fat. Like sub and sup, size and font 
changes affect only the thing that follows 
them, and revert to the normal situation at 
the end of it. Thus 

is 

and 

gives 

bold x y 

xy 

size 14 bold x = y + 
size 14 {alpha + beta) 

X=y+a+{3 
As always, you can use braces if you want to 
affect something more complicated than a 
single letter. For example, you can change 
the size of an entire equation by 

size 12 { ... J 

Legal sizes which may follow size are 
6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 
28, 36. You can also change the size by a 
given amount; for example, you can say 
size + 2 to make the size two points bigger, 
or size -3. to make it three points smaller. 
This has the advantage that you don't have' 
to know what the current size is. 

If you are using fonts other than 
roman, italic and bold, you can say font X 
where Xis a one character TROFF name or 
number for the font. Since EQN is tuned 
for roman, italic and bold, other fonts may 
not give quite as .good an appearance. 

5 

The fat operation takes the current 
font and widens it by overstriking: fat grad is 
V and fat {x sub 11 is X;. 

If an entire document is to be in ·a 
non-standard size or font, it is a severe nui
sance to have to write out a size and font 
change for each equation. Accordingly, you 
can set a "global" size or font which 
thereafter affects all equations. At the 
beginning of any equation, you might say, 
for instance, 

.EQ 
gsize 16 
gfont R 

.EN 

to set the size to 16 and the font to roman 
thereafter. In place of R, you can use any 
of the TROFF font names. The size after 
gsize can be a relative change with + or-. 

Generally, gsize and gfont will appear at 
the beginning of a document but they can 
also appear throughout a document: the glo
bal font and size can be changed as often as 
needed. For example, in a footnote* you 
will typically want the size of equations to 
match the size of the footnote text, which is 
two points smaller than the main text. 
Don't forget to reset the global size at the 
end of the footnote. 

13. Diacritical Marks 

To get funny marks on top of letters, 
there are several words: 

x dot x 
x dotdot x 
x hat x 
x tilde x 
x vec x 
x dyad x 
x bar x 
x under x 

The diacritical mark is placed at· the right 
height. The bar and under are made the 
right length for the entire construct, as in 
x+y+z; other marks are centered. 

fLike this one, in which we have a few random 
expressions like x1 and rr2. The sizes for these 
were set by the command gsize -2. 



6 

14. Quoted Text 

Any input entirely within quotes 
( " ... ") is not subject to any of the font 
changes and spacing adjustments normally 
done by the equation setter. This provides a 
way to do your own spacing and adjusting if 
needed: 

italic "sin(x)" + sin (x) 

IS 

sin (x) +sin (x) 

Quotes are also used to get braces and 
other EQN keywords printed: 

"{ size alpha }" 

is 

{ size alpha } 

and 

roman"{ size alpha}" 

is 

{ size alpha } 

The construction "" is often used as a 
place-holder when grammatically EQN needs 
something, but you don't actually want any
thing in your output. For example, to make 
2He, you can't just type sup 2 roman He 
because a sup has to be a superscript on 
something. Thus you must say 

"" sup 2 roman He 

To get a literal quote use "\"". 
TROFF characters like \ (bs can appear 
unquoted, but more complicated things like 
horizontal and vertical motions with \h and 
\ v should always be quoted. {If you've 
never heard of \h and \ v, ignore this sec
tion.) 

lS. Lining Up Equations 

Sometimes it's necessary to line up a 
series of equations at some horizontal posi
tion, often at an equals sign. This is done 
with two operations called mark and lineup. 

The word mark may appear once at 
any place in an equation. It remembers the 
horizontal position where it appeared. Suc
cessive equations can contain one 
occurrence of the word lineup. The place 
where lineup appears is made to line up with 

EQN User's Guide 

the place marked by the previous mark if at 
all possible. Thus, for example, you can say 

.EQ I 
x+y mark= z 
.EN. 
.EQ I 
x lineup = 1 
.EN 

to produce 

x+y-z 

x=l 

For reasons too complicated to talk about, 
when you use EQN and '-ms', use either 
.EQ I or .EQ L. mark and lineup don't work 
with centered equations. Also bear in mind 
that mark doesn't look ahead; 

x mark -1 

x+y lineup -z 

isn't going to work, because there isn't 
room for the x+y part after the mark 
remembers where the x is. 

16. Big Brackets, Etc. 
To get big brackets [], braces {}, 

parentheses (), and bars II around things, 
use the left and right commands: 

left { a over b + 1 right } 
-=-left (cover d right) 
+ left [ e right ] 

is 

The resulting brackets are made big enough 
to cover whatever they enclose. Other char
acters can be used besides these, but the are 
not likely to look very good. One exception 
is the floor and ceiling characters: 

left. floor x over y right floor . 
< = left ceiling a over b right ceiling 

produces 

Several warnings about brackets are in 
order. First, braces are typically bigger than 
brackets and parentheses, because they are 



EQ:\" User's Guide 

made up of three, five, seven, etc., pieces, 
while brackets can be. made up of two, 
three, etc. Second, big left and right 
parentheses often look poor, because the 
character set is poorly designed. 

The right part may be omitted: a "left 
something" need not have a corresponding 
"right something". If the right part is omit
ted, put braces around the thing you want 
the left bracket to encompass. Otherwise, 
the resulting brackets may be too large. 

If you want to omit the left part, things 
are more complicated, because technically 
you can't have a right without a correspond
ing left. Instead you have to say 

left "" ..... right ) 

for example. The left"" means a "left noth
ing''. This satisfies the rules without hurt
ing your output. 

17. Piles 
There is a general facility for making 

vertical piles of things; it comes in several 
flavors. For example: 

A -=- left [ 
pile { a above b above c } 
-- pile { x above y above z } 

right ] 

will make 

A = [~ ~I 
The elements of the pile (there can be as 
many as you want) are centered one above 
another, at the right height for most pur
poses. The keyword above is used to 
separate the pieces; braces are used around 
the entire list. The elements of a pile can 
be as complicated as needed, even contain
ing more piles. 

Three other forms of pile exist: /pile 
makes a pile with the elements left-justified; 
rpile makes a right-justified pile; and cpile 
makes a centered pile, just like pile. The 
vertical spacing between the pieces is some
what larger for 1-, r- and cpiles than it is for 
ordinary piles. 

roman sign (x)-=
left { 

!pile {l above 0 above -1} 
-- !pile 
lirx>O above irx=O above irx<O} 

makes 

sign(x) -1~ 
-1 

if x>O 
if x-=O 
if x<O 

7 

Notice the left brace without a matching 
right one. 

18. Matrices 

It is also possible to make matrices. 
For example, to make a neat array like 

you have to type 

matrix { 

X; x2 

Y; Y 2 

ecol { x sub i above y sub i } 
ecol { x sup 2 above y sup 2 } 

} 

This produces a matrix with two centered 
columns. The elements of the columns are 
then listed just as for a pile, each element 
separated by the word above. You can also 
use /col or real to left or right adjust 
columns. Each column can be separately 
adjusted, and there can be as many columns 
as you like. 

The reason for using a matrix instead 
of two adjacent piles, by the way, is that if 
the elements of the piles don't all have the 
same height, they won't line up properly. A 
matrix forces them to line up, because it 
looks at the entire structure before deciding 
what spacing to use. 

A word of warning about matrices -
each column must have the same number of 
elements in it. The world will end if you get -
this wrong. 

19. Shorthand for In-line Equations 
In a mathematical document, it is 

necessary to follow mathematical conven
tions not just in display equations, but also 
in the body of the text, for example by mak
ing variable names like x italic. Although 



8 

this could be done by surrounding the 
appropriate parts with .EQ and .EN, the con
tinual repetition of .EQ and .EN is a nui
sance. Furthermore, with '-ms', .EQ and 
.EN imply a displayed equation. 

EQN provides a shorthand for short 
in-line expressions. You can define two 
characters to mark the left and right ends of 
an in-line equation, and then type expres
sions right in the middle of text lines. To 
set both the left and right characters to dol
lar signs, for example, add to the beginning 
of your document the three lines 

. EQ 
delim $$ 
.EN 

Having done this, you can then say things 
like 

Let $alpha sub i$ be the primary 
variable, and let $beta$ be zero. 
Then we can show that $x sub 1$ is 
$>=0$. 

This works as you might expect - spaces, 
new-lines, and so on are significant in the 
text, but not in the equation part itself. 
Multiple equations can occur in a single 
input line. 

Enough room is left before and after a 
line that contains in-line expressions that 

n 
something like L,xi does not interfere with 

. i-1 

the lines surrounding it. 

To turn off the delimiters, 

.EQ 
delim off 
.EN 

Warning: don't use braces, tildes, 
circumflexes, or double quotes as delimiters 
- chaos will result. Also, in-line font 
changes must be closed before in-line equa
tions are encountered. 

20. Definitions 

EQN provides a facility so you can give 
a frequently-used string of characters a 
name, and thereafter just type the name 
instead of the whole string. For example, if 
the sequence 

x sub i sub 1 + y sub i sub I 

EQN User's Guide 

appears repeatedly throughout a paper, you 
can save re-typing it each time by defining it 
like this: 

define xy 'x sub i sub I + y sub i sub 1' 

This makes xy a shorthand for whatever 
characters occur between the single quotes 
in the definition. You can use any character 
instead of quote to mark the ends of the 
definition, so long as it doesn't appear inside 
the definition. 

Now you can use xy like this: 

.EQ 
f(x) - xy ... 
.EN 

and so on. Each occurrence of xy will 
expand into what it was defined as. Be care
ful to leave spaces or their equivalent 
around the name when you actually use it, 
so EQN will be able to identify it as special. 

There are several things to watch out 
for. First, although definitions can use pre
vious definitions, as in 

.EQ 
define xi ' x sub i ' 
define xil ' xi sub 1 ' 
.EN 

don't define something in terms of itself! A 
favorite error is to say 

define X ' roman X ' 

This is a guaranteed disaster, since X is now 
defined in terms of itself. If you say 

define X ' roman "X" ' 

however, the quotes protect the second X, 
and everything works fine. 

EQN keywords can be redefined. You 
can make I mean over by saying 

define I r over I 

or redefine over as I with 

define over I I r 

If you need different things to print on 
a terminal and on the typesetter, it may be 
worth defining a symbol differently in NEQN 
and EQN. This can be done with ndefine and 
tdejine. A definition made with ndefine only 
takes effect if you are running NEQN; if you 
use tdefine, the definition only applies for 



EQl•,' User's Guide 

EQ!\. Names defined with plain define apply 
to both EQN and NEQN. . 

21. Local Motions 

Although EQN tries to get most things 
at the right place on the paper, it isn't per
fect, and occasionally you will need to tune 
the output to make it just right. Small extra 
horizontal spaces can be obtained with tilde 
and circumflex. You can also say back n and 
fwd n to move small amounts horizontally. 
n is how far to move in 1/lOO's of an em 
(an em is about the width of the letter 'm'.) 
Thus back 50 moves back about half the 
width of an m. Similarly you can move 
things up or down with up n and down n. As 
with sub or sup, the local motions affect the 
next thing in the input, and this can be 
something arbitrarily complicated if it is 
enclosed in braces. 

22. A Large Example 

Here is the complete source for the 
three display equations in the abstract of this 
guide. 

.EQI 
G(z)-mark =- e sup (In - G(1) J 
-=-exp left ( 
sum from k >=I (S sub k z sup k) over k right ) 
-=- prod from k> -I e sup (S sub k z sup k /k) 
.EN 
.EQ I 
lineup = left ( I + S sub I z + 
( S sub I sup 2 z sup 2 ) over 2! + ... right ) 
left ( I+ I S sub 2 z sup 2 l over 2 
+ { S sub 2 sup 2 z sup 4 ) over I 2 sup 2 cdot 2! ) 
+ ... right) ... 
.EN 
.EQ I 
lineup - sum from m >, =O left ( 
sum from 
pile I k sub I ,k sub 2 , ... , k sub m >-0 
above 
k sub I +2k sub 2 + ... +mk sub m =ml 
{ S sub I sup {k sub I) ) over (I sup k sub I k sub I ! J -
{ S sub 2 sup {k sub 2) ) over (2 sup k sub 2 k sub 2 ! J -

{ S sub m sup {k sub ml } over (m sup k sub m k sub m ! J 
right ) z sup m 
.EN 

23. Keywords, Precedences, Etc. 

If you don't use braces, EQN will do 
operations in the order shown in this list. 

dyad vec under bar tilde hat dot dotdot 
fwd back down up 
fat roman italic bold size 
sub sup sqrt over 
from to 

These operations group to the left: 

over sqrt left right 

All others group to the right. 

9 

Digits, parentheses, brackets, punctua
tion marks, and these mathematical words 
are converted to Roman font when encoun
tered: 

sin cos tan sinh cash tanh arc 
max min Jim log In exp 
Re Im and if for det 

These character sequences are recognized 
and translated as shown. 

>= 
<-= 

!= 
+-
- > 
<-
< < 
>> 
inf 
partial 
half 
prime 
approx 
nothing 
cdot 
times 
del 
grad 

, ... , 
sum 

int 

prod 
union 
inter 

~ 

± --
<< 
>> 
00 

x 
\1 
\1 

, ... , 
:E 
f 
II 
u 
n 

To obtain Greek letters, simply spell 
them out in whatever case you want: 

DELTA A 
GAMMA f 

iota 
kappa K 



10 

LAMBDA A 
OMEGA 0 
PHI <!» 
PI TI 
PSI 'I' 
SIGMA I: 
THETA 0 
UPSILON Y 
XI S 
alpha 
beta 
chi 
delta 
epsilon 
eta 
gamma 

E 

Tl 
i' 

lambda A. 
mu µ, 
nu v 
omega w 
omicron o 
phi cf> 

pi 1T 

psi tfJ 
rho p 
sigma 
tau 
theta 
upsilon 
xi 
zeta 

CT 

'T 

9 
v 

These are all the words known to EQN 
(except for characters with names), together 
with the section where they are discussed. 

above 
back 
bar 
bold 
ecol 
col 
cpile 
define 
delim 
dot 
dotdot 
down 
dyad 
fat 
font 
from 
fwd 
gfont 
gsize 
hat 
italic 
lcol 
left 
lineup 

17, 18 
21 
13 
12 
18 
18 
17 
20 
19 
13 
13 
21 
13 
12 
12 
11 
21 
12 
12 
13 
12 
18 
16 
15 

24. Troubleshooting 

!pile 
mark 
matrix 
ndefine 
over 
pile 
rcol 
right 
roman 
rpile 
size 
sqrt 
sub 
sup 
tdefine 
tilde 
to 
under 
up 
vec 

' { } 
" " 

17 
15 
18 
20 
9 
17 
18 
16 
12 
17 
12 
10 
7 
7 
20 
13 
11 
13 
21 
13 
4, 6 
8 
8, 14 

If you make a mistake in an equation, 
like leaving out a brace (very common) or 
having one too many (very common) or 
having a sup with nothing before it (com
mon), EQN will tell you with the message 

EQN User's Guide 

syntax error between lines x and y, file z 

where x and y are approximately the lines 
between which the trouble occurred, and z is 
the name of the file in question. The line 
numbers are approximate - look nearby as 
well. There are also self-explanatory mes
sages that arise if you leave out a quote or 
try to run EQN on a non-existent file. 

If you want to check a document 
before actually printing it (on UNIX only), 

eqn files >/dev/null 

will throw away the output but print the 
messages. 

If you use something like dollar signs 
as delimiters, it is easy to leave one out. 
This causes very strange troubles. The pro
gram checkeq (on GCOS, use .lcheckeq 
instead) checks for misplaced or missing 
dollar signs and similar troubles. 

In-line equations can only be so big 
because of an internal buffer in TROFF. If 
you get a message "word overflow", you 
have exceeded this limit. If you print the 
equation as a displayed equation this mes
sage will usually go away. The message 
"line overflow" indicates you have 
exceeded an even bigger buffer. The only 
cure for this is to break the equation into 
two separate ones. 

On a related topic, EQN does not break 
equations by itself - you must split long 
equations up across multiple lines by your
self, marking each by a separate .EQ .... EN 
sequence. EQN does warn about equations 
that are too long to fit on one line. 

25. Use on UNIX 

To print a document that contains 
mathematics on the UNIX typesetter, 

eqn files I troff 

If there are any TROFF options, they go 
after the TROFF part of the command. For 
example, 

eqn files I troff -ms (or -mm) 

To run the same document on the GCOS 
typesetter, use 

eqn files I troff -g (other options) I gcat 



J::QN User's Guide 

A compatible version of EQN can be 
used on devices like TELETYPE terminals 
and DASI and GSI terminals which have 
half-line forward and reverse capabilities. 
To print equations on a Model 37 TELETYPE 
terminal, for example, use 

neqn files I nroff 

The language for equations recognized by 
NEQN is identical to that of EQN, although 
of course the output is more restricted. 

To use a GSI or DASI terminal as the 
output device, 

neqn files I nroff -Tx 

where x is the terminal type you are using, 
such as 300 or 300s. 

EQN and NEQN can be used with the 
TBL program [2] for setting tables that con
tain mathematics. Use TBL before [N]EQN, 
like this: 

tbl files 
tbl files 

eqn I troff 
neqn I nroff 

26. Acknowledgments 
We are deeply indebted to J. F. 

Ossanna, the author of TROFF, for his wil
lingness to extend TROFF to make our task 
easier, and for his continuous assistance 
during the development and evolution of 
EQN. We are also grateful to A. V. Aho for 
advice on language design, to S. C. Johnson 
for assistance with the YACC compiler
compiler, and to all the EQN users who have 
made helpful suggestions and criticisms. 

References 
[1] J. F. Ossanna. NROFFffROFF User's 

Manual, Bell Laboratories, 1976. 

(2) M. E. Lesk. Typing Documents on 
UNIX, Bell Laboratories, 1976. 

[3] M. E. Lesk. TBL-A Program for Set
ting Tables, Bell Laboratories, 1976. 

[4] D. W. Smith and J_ R. Mashey. 
MM - Memorandum Macros, Bell 
Laboratories, 1980. 

January 1981 

II 



A System for Typesetting Mathematics 

Brian W. Kernighan 

Lorinda L. Cherry 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This paper describes the design and implementation of a system for typesetting 
mathematics. The language has been designed to be easy to learn and to use by people 
(for example, secretaries and mathematical typists) who know neither mathematics nor 
typesetting. Experience indicates that the language can be learned in an hour or so, for 
it has few rules and fewer exceptions. For typical expressions, the size and font 
changes, positioning, line drawing, and the like necessary to print according to 
mathematical conventions are all done automatically. For example, the input 

sum from i =0 to infinity x sub i = pi over 2 

produces 

The syntax of the language is specified by a small context-free grammar; a 
compiler-compiler is used to make a compiler that translates this language into typeset
ting commands. Output may be produced on either a phototypesetter or on a terminal 
with forward and reverse half-line motions. The system interfaces directly with text 
formatting programs, so mixtures of text and mathematics may be handled simply. 

This paper is a revision of a paper originally published in CACM, March, 1975. 

UNIX 

C.3.3 

1. Introduction 

"Mathematics is known in the trade as 
difficult, or penalty, copy because it is slower, 
more difficult, and more expensive to set in type 
than any other kind of copy normally occurring 
in books and journals." [1 J 

A second difficulty is the two dimensional 
character of mathematics, which the superscript 
and limits in the preceding example showed in its 
simplest form. This is carried further by 

One difficulty with mathematical text is the 
multiplicity of characters, sizes, and fonts. An 
expression such as 

lim (tan x)sin 2x =.I 
,.-,,,./2 

requires an intimate mixture of roman, italic and 
greek letters, in three sizes, and a special charac
ter or two. ("Requires" is perhaps the wrong 
word, but mathematics has its own typographical 
conventions which are quite different from those 
of ordinary text.) Typesetting such an expression 
by traditional methods is still an essentially 
manual operation. 

b1 ao+-------
b2 

01+ b3 
a2+----'-

a3+ · · · 

and still further by 



2 

These examples also show line-drawing, built-up 
characters like braces and radicals, and a spec-· 
trum of positioning problems. (Section 6 shows 
what a user has to type to produce these on our 
system.) 

2. Photocomposltlon 

Photocomposition techniques can be used 
to solve some of the problems of typesetting 
mathematics. A phototypesetter is a device 
which exposes a piece of photographic paper or 
film, placing characters wherever they are 
wanted. The Graphic Systems phototypesetterl2] 
on the UNIXt operating system[3] works by shin· 
ing light through a character stencil. The charac
ter is made the right size by lenses, and the light 
beam directed by fiber optics to the desired place 
on a piece of photographic paper. The exposed 
paper is developed and typically used in some 
form of photo-offset reproduction. 

On UNIX, the phototypesetter is driven by 
a formatting program called TROFF (41. TROFF 
was designed for setting running text. It also 
provides all of the facilities that one needs for 
doing mathematics, such as arbitrary horizontal 
and vertical motions, line-drawing, size changing, 
but the syntax for describing these special opera
tions is difficult to learn, and difficult even for 
experienced users to type correctly. 

For this reason we decided to use TROFF 
as an "assembly language," by designing a 
language for describing mathematical expres
sions, and compiling it into TROFF. 

3. Language Desian 

The fundamental principle upon which we 
based our language design is that the language 
should be easy to use by people (for example, 
secretaries) who know neither mathematics nor 
typesetting. 

This principle implies several things. First, 
"normal" mathematical conventions about 
operator precedence, parentheses, and the like 
cannot be used, for to give special meaning to 
such characters means that the user has to 
understand what he or she is typing. Thus the 
language should not assume, for instance, that 
parentheses are always balanced, for they are not 
in the half-open interval (a,b]. Nor should it 
assume that .Ja+b can be replaced by (a+bP'>, 
or that 1/(1-x) is better written as -1

1 <or vice 
-x 

versa). 

Second, there should be relatively few 
rules, keywords, special symbols and operators, 

t UNIX is a trademark of Bell Laboratories. 

A System for Typesetting Mathematics 

and the like. This keeps the language easy to 
learn and remember. Furthermore, there should 
be few exceptions to the rules that do exist: if 
something works in one situation, it should work 
everywhere. If a variable can have a subscript, 
then a subscript can have a subscript, and so on 
without limit. 

Third, "standard" things should happen 
automatically. Someone who types 
"x""'y+z+l" should get "x==y+z+l". Sub
scripts and superscripts should automatically be 
printed in an appropriately smaller size, with no 
special intervention. Fraction bars have to be 
made the right length and positioned at the right 
height. And so on. Indeed a mechanism for 
overriding default actions has to exist, but its 
application is the exception, not the rule. 

We assume that the typist has a reasonable 
picture (a two-dimensional representation) of the 
desired final form, as might be handwritten by 
the author of a paper. We also assume that the 
input is typed on a computer terminal much like 
an ordinary typewriter. This implies an input 
alphabet of perhaps 100 characters, none of them 
special. 

A secondary, but still important, goal in 
our design was that the system should be easy to 
implement, since neither of the authors had any 
desire to make a long-term project of it. Since 
our design was not firm, it was also necessary 
that the program be easy to change at any time. 

To make the program easy to build and to 
change, and to guarantee regularity ("it should 
work everywhere"), the language is defined by a 
context-free grammar, described in Section 5. 
The compiler for the language was built using a 
compiler-compiler. 

A priori, the grammar/compiler-compiler 
approach seemed the right thing to do. Our sub
sequent experience leads us to believe that any 
other course would have been folly. The original 
language was designed in a few days. Construc
tion of a working system sufficient to try 
significant examples required perhaps a person
month. Since then, we have spent a modest 
amount of additional time over several years 
tuning, adding facilities, and occasionally chang
ing the language as users ·i:nake criticisms and 
suggestions. 

We also decided quite early that we would 
let TROFF do our work for us whenever possible. 
TROFF is quite a powerful program, with a macro 
facility, text and arithmetic variables, numerical 
computation and testing, and conditional branch
ing. Thus we have been able to avoid writing a 
lot of mundane but tricky software. For exam
ple, we store no text strings, but simply pass 



A System for Typesetting Mathematics 

them on to TROFF. Thus we avoid having to 
write a storage management package. Further
more, we have been able to isolate ourselves 
from most details of the particular device and 
character set currently in use. For example, we 
let TROFF compute the widths of all strings of 
characters; we need know nothing about them. 

A third design goal is special to our 
environment. Since our program is only useful 
for typesetting mathematics, it is necessary that it 
interface cleanly with the underlying typesetting 
language for the benefit of users who want to set 
intermingled mathematics and text (the usual 
case). The standard mode of operation is that 
when a document is typed, mathematical expres
sions are input as part of the text, but marked by 
user settable delimiters. The program reads this 
input and treats as comments those things which 
are not mathematics, simply passing them 
through untouched. At the same time it con
verts the mathematical input into the necessary 
TROFF commands. The resulting ioutput is 
passed directly to TROFF where the comments 
and the mathematical parts both become text 
and/ or TROFF commands. 

4. The Language 
We will not try to describe the language 

precisely here; interested readers may refer to 
the appendix for more details. Throughout this 
section, we will write expressions exactly as they 
are handed to the typesetting program 
(hereinafter called "EQN"), except that we won't 
show the delimiters that the user types to mark 
the beginning and end of the expression. The 
interface between EQN and TROFF is described at 
the end of this section. 

As we said, typing x = y + z + 1 should pro
duce x=y+z+l, and indeed it does. Variables 
are made italic, operators and digits become 
roman, and normal spacings between letters and 
operators are altered slightly to give a more 
pleasing appearance. 

Input is free-form. Spaces and new lines 
in the input are used by EQN to separate pieces 
of the input; they are not used to create space in 
the output. Thus 

x y 
+z+l 

also gives x=y+z+l. Free-form input is easier 
to type initially; subsequent editing is also easier, 
for an expression may be typed as many short 
lines. 

Extra white space can be forced into the 
output by several characters of various sizes. A 
tilde " - " gives a space equal to the normal word 
spacing in text; a circumflex gives half this 

3 

much, and a tab character spaces to the next tab 
stop. 

Spaces (or tildes, etcJ also serve to delimit 
pieces of the input. For example, to get 

f (t)=2Tr J sin(wt)dt 

we write 

f(t) = 2 pi int sin ( omega t )dt 

Here spaces are necessary in the input to indicate 
that sin, pi, int. and omega are special, and poten
tially worth special treatment. EQN looks up 
each such string of characters in a table, and if 
appropriate gives it a translation. In this case, pi 
and omega become their greek equivalents, int 
becomes the integral sign (which must be moved 
down and enlarged so it looks "right"), and sin 
is made roman, following conventional 
mathematical practice. Parentheses, digits and 
operators are automatically made roman wher
ever found. 

Fractions are specified with the keyword 
over: 

a+b over c+d+e = 1 

produces 

a+b 
c+d+e 

Similarly, subscripts and superscripts are 
introduced by the keywords sub and sup: 

x2+y2=z2 

is produced by 

x sup 2 + y sup 2 - z sup 2 

The spaces after the 2's are necessary to mark 
the end of the superscripts; similarly the keyword 
sup has to be marked off by spaces or some 
equivalent delimiter. The return to the proper 
baseline is automatic. Multiple levels of sub
scripts or superscripts are of course allowed: 
"x sup y sup z" is xY'. The construct "some
thing sub something sup something" is recog
nized as a special case, so "x sub i sup 2" is x/ 
instead of x;2. 

More complicated expressions can now be 
formed with these primitives: 

IT=.£+.L 
ax2 a2 b2 

is produced by 

{partial sup 2 f} over {partial x sup 2} = 

x sup 2 over a sup 2 + y sup 2 over b sup 2 

Braces {} are used to group objects together; in 
this case they indicate unambiguously what goes 
over what on the left-hand side of the 



4 

expression. The language defines the precedence 
of sup to be higher than that of over, so ,no 
braces are needed to get the correct association 
on the right side. Braces can always be used 
when in doubt about precedence. 

The braces convention is an example of 
the power of using a recursive grammar to define 
the language. It is part of the language that if a 
construct can appear in some context, then any 
expression in braces can also occur in that con
text. 

There is a sqrt operator for making square 
roots of the appropriate size: "sqrt a+ b" pro
duces .Ja+b, and 

x - {-b +- sqrt(b sup 2 -4ac}} over 2a 

is 

-b±.Jb2-4ac x-------
2a 

Since large radicals look poor on our typesetter, 
sqrt is not useful for tall expressions. 

Limits on summations, integrals and simi
lar constructions are specified with the keywords 
from and to. To get 

we need only type 

sum from i=O to inf x sub i -> 0 

Centering and making the I: big enough and the 
limits smaller are all automatic. The from and to 
parts are both optional, and the central part (e.g., 
the I:) can in fact be anything: 

is 

lim from (x -> pi /2) ( tan-x) = inf 

lim (tan x)-co 
x-1'/2 

Again, the braces indicate just what goes into the 
from part. 

There is a facility for making braces, 
brackets, parentheses, and vertical bars of the 
right height, using the keywords left and right: 

left [ x + y over 2a right i- - -1 

makes 

( x2:Y )- 1 

A left n~ed not have a corresponding right, as we 
shall see in the next example. Any characters 
may follow left and right, but generally only vari
ous parentheses and bars are meaningful. 

Big brackets, etc., are often used with 
another facility, called piles, which make vertical 

A System for Typesetting Mathematics 

piles of objects. For example, to get 

we can type 

1
1 if x>O 

sign (x) = 0 if x-0 
-1 if x<O 

sign (x) - - - - left { 
rpile (1 above 0 above -1) 
--!pile {if above if above if) 
--!pile {x>O above x-0 above x<O) 

The construction "left {" makes a left brace big 
enough to enclose the "rpile { ... )", which is a 
right-justified pile of "above . . . above ... ". 
"!pile" makes a left-justified pile. There are also 
centered piles. Because of the recursive language 
definition, a pile can contain any number of ele
ments; any element of a pile can of course con
tain piles. 

Although EQN makes a valiant attempt to 
use the right sizes and fonts, there are times 
when the default assumptions are simply not 
what is wanted. For instance the italic sign in the 
previous example would conventionally be in 
roman. Slides and transparencies often require 
larger characters than normal text. Thus we also 
provide size and font changing commands: "size 
12 bold {A -x-=-y}" will produce A X = y. 
Size is followed by a number representing a char
acter size in points. (One point is 1/72 inch; this 
paper is set in 9 point type.) 

. If necessary, an input string can be quoted 
in " ... ", which turns off grammatical significance, 
and any font or spacing changes that might oth
erwise be done on it. Thus we can say 

lim- roman "sup" -x sub n = 0 

to ensure that the supremum doesn't become a 
superscript: 

lim sup x.=O 

Diacritical marks, long a problem in tradi
tional typesetting, are straightforward: 

:!+x+.V+X+ r-z+z 
is made by typing 

x dot under + x hat + y tilde 
+ X hat + Y dotdot = z+Z bar 

There are also facilities for globally chang
ing default sizes and fonts, for example for mak
ing viewgraphs or for setting chemical equations. 
The language allows for matrices, and for lining 
up equations at the same horizontal position. 

Finally, there is a definition facility, so a 
user can say 



A System for Typesetting Mathematics 

define name • ... • 

at any time in the document; henceforth, any 
occurrence of the token "name" in an expres
sion will be expanded into whatever was inside 
the double quotes in its definition. This lets 
users tailor the language to their own 
specifications, for it is quite possible to redefine 
keywords like sup or over. Section 6 shows an 
example of definitions. 

The EQN preprocessor reads intermixed 
text and equations, and passes its output to 
TROFF. Since TROFF uses lines beginning with a 
period as control words (e.g., ".ce" means 
"center the next output line"), EQN uses the 
sequence ".EQ" to mark the beginning of an 
equation and ".EN" to mark the end. The 
".EQ" and ".EN" are passed through to TROFF 
untouched, so they can also be used by a 
knowledgeable user to center equations, number 
them automatically, etc. By default, however, 
".EQ" and ".EN" are simply ignored by TROFF, 
so by default equations are printed in-line. 

".EQ" and ".EN" can be supplemented 
by TROFF commands as desired; for example, a 
centered display equation can be produced with 
the input: 

.ce 

.EQ 
x sub i - y sub i ... 
.EN 

Since it is tedious to type ".EQ" and 
".EN" around very short expressions (single 
letters, for instance), the user can also define 
two characters to serve as the left and right del
imiters of expressions. These characters are 
recognized anywhere in subsequent text. For 
example if the left and right delimiters have both 
been set to "#", the input: 

Let #x sub i#, #y# and #alpha# be positive 

produces: 

Let x,, y and a be positive 

Running a preprocessor is strikingly easy 
on UNIX. To typeset text stored in file "f", one 
issues the command: 

eqn f I troff 

The vertical bar connects the output of one pro
cess (EQN) to the input of another (TROFF). 

5. Language Theory 
The basic structure of the language is not a 

particularly original one. Equations are pictured 
as a set of "boxes," pieced together in various 
ways. For example, something with a subscript 

5 

is just a box followed by another box moved 
downward and shrunk by an appropriate amount. 
A fraction is just a box centered above another 
box, at the right altitude, with a line of correct 
length drawn between them. 

The grammar for the language is shown 
below. For purposes of exposition, we have col
lapsed some productions. In the original gram
mar, there are about 70 productions, but many 
of these are simple ones used only to guarantee 
that some keyword is recognized early enough in 
the parsing process. Symbols in capital letters 
are terminal symbols; lower case symbols are 
non-terminals, i.e., syntactic categories. The 
vertical bar I indicates an alternative; the brack
ets [ ] indicate optional material. A TEXT is a 
string of non-blank characters or any string 
inside double quotes; the other terminal symbols 
represent literal occurrences of the corresponding 
keyword. 

eqn : box I eqn box 

box text 
{ eqn l 
box OVER box 
SQRT box 
box SUB box I box SUP box 
[LI CI R ]PILE ( list ) 
LEFT text eqn [ RIGHT text ] 
box [ FROM box ] [ TO box ] 
SIZE text box 
[ROMAN I BOLD I IT ALIC] box 
box [HAT I BAR I DOT I DOTDOT I TILDE] 
DEFINE text text 

list eqn I list ABOVE eqn 

text : TEXT 

The grammar makes it obvious why there 
are few exceptions. For example, the observa
tion that something can be replaced by a more 
complicated something in braces is implicit in the 
productions: 

eqn : box I eqn box 
box : text I { eqn ) 

Anywhere a single character could be used, any 
legal construction can be used. 

Clearly, our grammar is highly ambiguous. 
What, for instance, do we do with the input 

a over b over c ? 

Is it 

(a over b) over c 

or is it 

a over (b over cl ? 



6 

To answer questions like this, the grammar 
is supplemented with a small set of rules that 
describe the precedence and associativity of 
operators. In particular, we specify (more or less 
arbitrarily) that over associates to the left, so the 
first alternative above is the one chosen. On the 
other hand, sub and sup bind to the right, 
because this is closer to standard mathematical 
practice. That is, we assume x 0 b is x<abl, not 
(xa) b. 

The precedence rules resolve the ambiguity 
in a construction like 

a sup 2 over b 

We define sup to have a higher precedence than 
2 

over, so this construction is parsed as ab instead 
1 

of ab. 

Naturally, a user can always force a partic
ular parsing by placing braces around expres
sions. 

The ambiguous grammar approach seems 
to be quite useful. The grammar we use is small 
enough to be easily understood, for it contains 
none of the productions that would be normally 
used for resolving ambiguity. Instead the sup
plemental information about precedence and 
associativity (also small enough to be under
stood) provides the compiler-compiler with the 
information it needs to make a fast, deterministic 
parser for the specific language we want. When 
the language is supplemented by the disambi
guating rules, it is in fact LR(l) and thus easy to 
parse[5l. 

The output code is generated as the input 
is scanned. Any time a production of the gram
mar is recognized, (potentially) some TROFF 
commands are output. For example, when the 
lexical analyzer reports that it has found a TEXT 
(i.e., a string of contiguous characters), we have 
recognized the production: 

text : TEXT 

The translation of this is simple. We generate a 
local name for the string, then hand the name 
and the string to TROFF, and let TROFF perform 
the storage management. All we save is the 
name of the string, i~s height, and its baseline. 

As another example, the translation associ
ated with the production 

box : box OVER box 

is: 

A System for Typesetting Mathematics 

Width of output box -
slightly more than largest input width 

Height of output box = 
slightly more than sum of input heights 

Base of output box -
slightly more than height of bottom input box 

String describing output box = 

move down; 
move right enough to center bottom box; 
draw bottom box (i.e., copy string for bottom box); 
move tip; move left enough to center top box; 
draw top box (i.e., copy string for top box); 
move down and left; draw line full width; 
return to proper base line. 

Most of the other productions have equally sim
ple semantic actions. Picturing the output as a 
set of properly placed boxes makes the right 
sequence of positioning commands quite obvi
ous. The main difficulty is in finding the right 
numbers to use for esthetically pleasing position
ing. 

With a grammar, it is usually clear how to 
extend the language. For instance, one of our 
users suggested a TENSOR operator, to make 
constructions like 

Grammatically, this is easy: it is sufficient to add 
a production like 

box : TENSOR { list } 

Semantically, we need only juggle the boxes to 
the right places. 

6. Experience 

There are really three aspects of 
interest-how well EQN sets mathematics, how 
well it satisfies its goal of being "easy to use," 
and how easy it was to build. 

The first question is easily addressed. This 
entire paper has been set by the program. 
Readers can judge for themselves whether it is 
good enough for their purposes. One of our 
users commented that although the output is not 
as good as the best hand-set material, it is still 
better than average, and much better than the 
worst. In any case, who cares? Printed books 
cannot compete with the birds and flowers of 
illuminated manuscripts on esthetic grounds, 
either, but they have some clear economic 
advantages. 

Some of the deficiencies in the output 
could be cleaned up with more work on our part. 
For example, we sometimes leave too much 
space between a roman letter and an italic one. 
If we were willing to keep track of the fonts 



A System for Typesetting Mathematics 

involved, we could do this better more of the 
time. 

Some other weaknesses are inherent in our 
output device. It is hard, for instance, to draw a 
line of an arbitrary length without getting a per· 
ceptible overstrike at one end. 

As to ease of use, at the time of writing, 
the system has been used by two distinct groups. 
One user population consists of mathematicians, 
chemists, physicists, and computer scientists. 
Their typical reaction has been something like: 

(1) It's easy to write, although I make the fol
lowing mistakes ... 

(2) How do I do ... ? 

(3) It botches the following things... Why 
don't you fix them? 

(4) You really_ need the following features ... 

The learning time is short. A few minutes 
gives the general flavor, and ty,ping a page or two 
of a paper generally uncovers most of the 
misconceptions about how it works. 

The second user group is much larger, the 
secretaries and mathematical typists who were 
the original target of the system. They tend to 
be enthusiastic converts. They find the language 
easy to learn (most are largely self-taught), and 
have little trouble producing the output they 
want. They are of course less critical of the 
esthetics of their output than users trained in 
mathematics. After a transition period, most 
find using a computer more interesting than a 
regular typewriter. 

The main difficulty that users have seems 
to be remembering that a blank is a delimiter; 
even experienced users use blanks where they 
shouldn't and omit them when they are needed. 
A common instance is typing 

f(x sub i) 

which produces 

instead of 

f(xn 

f(x;) 

Since the EQN language knows no mathematics, 
it cannot deduce that the right parenthesis is not 
part of the subscript. 

The language is somewhat prolix, but this 
doesn't seem excessive considering how much is 
being done, and it is certainly more compact than 
the corresponding TROFF commands. For exam
ple, here is the source for the continued fraction 
expression in Section 1 of this paper: 

a sub 0 + b sub 1 over 
la sub 1 + b sub 2 over 

{a sub 2 + b sub 3 over 
{a sub 3 + ... }}} 

7 

This is the input for the large integral of Section 
1; notice the use of definitions: 

define emx "le sup mx}" 
define mab "{m sqrt ab}" 
define sa "{sqrt a}" 
define sb "{sqrt b)" 
int dx over {a emx - be sup -mx} -=· 
left { !pile { 

1 over {2 mab} -log-
{sa emx - sb} over (sa emx + sb} 

above 
1 over mab - tanh sup -1 ( sa over sb emx ) 

above 
-1 over mab - coth sup -1 ( sa over sb emx ) 

As to ease of construction, we have 
already mentioned that there are really only a 
few person-months invested. Much of this time 
has gone into two things-fine-tuning (what is 
the most esthetically pleasing space to use 
between the numerator and denominator of a 
fraction?), and changing things found deficient 
by our users (shouldn't a tilde be a delimiter?). 

The program consists of a number of 
small, essentially unconnected modules for code 
generation, a simple lexical analyzer, a canned 
parser which we did not have to write, and some 
miscellany associated with input files and the 
macro facility. The program is now about 1600 
lines of c [6), a high-level language reminiscent 
of BCPL. About 20 percent of these lines are 
"print" statements, generating the output code. 

The semantic routines that generate the 
actual TROFF commands can be changed to 
accommodate other formatting languages and 
devices. For example, in less than 24 hours, one 
of us changed the entire semantic package to 
drive NROFF, a variant of TROFF, for typesetting 
mathematics on teletypewriter devices capable of 
reverse line motions. Since many potential users 
do not have access to a typesetter, but still have 
to type mathematics, this provides a way to get a 
typed version of the final output which is close 
enough for debugging purposes, and sometimes 
even for ultimate use. · 

7. Conclusions 

We think we have shown that it is possible 
to do acceptably good typesetting of mathematics 
on a phototypesetter, with an input language that 
is easy to learn and use and that satisfies many 
users' demands. Such a package can be 



8 

implemented in short order, given a compiler
compiler and a decent typesetting program 
underneath. 

Defining a language, and building a com
piler for it with a compiler-compiler seems like 
the only sensible way to do business. Our 
experience with the use of a grammar and a 
compiler-compiler has been uniformly favorable. 
If we had written everything into code directly, 
we would have been locked into our original 
design. Furthermore, we would have never been 
sure where the exceptions and special cases were. 
But because we have a grammar, we can change 
our minds readily and still be reasonably sure 
that if a construction works in one place it will 
work everywhere. 

Ack now led&ements 

We are deeply indebted to J. F. Ossanna, 
the author of TROFF, for his willingness to 
modify TROFF to make our task easier and for 
his continuous assistance during the develop
ment of our program. We are also grateful to 
A. V. Aho for help with language theory, to 
S. C. Johnson for aid with the compiler-compiler, 
and to our early users A. V. Aho, S. I. Feldman, 
S. C. Johnson, R. W. Hamming, and M. D. 
Mcilroy for their constructive criticisms. 

References 

[l) A Manual of Style, 12th Edition, University 
of Chicago Press, 1969, p. 295. 

(2) Model C/A!T Phototypesetter, Graphic Sys
tems, Inc., Hudson, NH. 

[3] Ritchie; D. M., and Thompson, K. The 
UNIX Time-Sharing System, CACM 
17(7):365-75 (July 1974). 

(4] Ossanna, J. F. NROFF/TROFF User's 
Manual, Bell Laboratories. 1977. 

[SJ Aho, A. V., and Johnson, S. C. LR Pars
ing, Comp. Surv. 6(2):99-124 (June 1974). 

(6) Kernighan, B. W., and Ritchie, D. M. The 
C Programming language, Prentice-Hall, 
Inc., Englewood Cliffs, NJ, 1978. 

January 1981 

A System for Typesetting Mathematics 



The C Programming Language- Reference Manual* 

I. INTRODUCTION 

Dennis M. Ritchie 

-Bell Laboratories 
Murray Hill, New Jersey 07974 

UNIX 

D.1.1 

This manual describes the C language on the DEC PDP-11, the DEC VAX· l l /780, the Honeywell 
6000, the IBM System/370, and the Interdata 8/32. Where differences exist, it concentrates on the PDP-
11, but tries to point out implementation-dependent details. With few exceptions, such dependencies fol
low directly from the properties of the hardware; the various compilers arc generally quite compatible. 

2. LEXICAL CONVENTIONS 
There are six classes of tokens: identifiers, keywords, constants, strings, operators, and other separa

tors. Blanks, tabs, new-lines, and comments (collectively, "white space") as described below are ignored 
except as they serve to separate tokens. Some white space is required to separate otherwise adjacent 
identifiers, keywords, and constants. 

If the input stream has been parsed into tokens up to a given character, the next token is taken to 
include the longest string of characters which could possibly constitute a token. 

2.1 Comments 
The characters I* introduce a comment, which terminates with the characters *I. Comments do 

not nest. 

2.2 Identifiers (Names) 
An identifier is a sequence of letters and digits; the first character must be a letter; the underscore _ 

counts as a letter. Upper- and lower-case letters arc different. No more than the first eight characters are 
significant, although more may be used. External identifiers, which are used by various assemblers and 
loaders, are more restricted: 

DEC PDP-11 
DEC VAX-II 
Honeywell 6000 
IBM 360/370 
Interdata 8/32 

2.3 Keywords 

7 characters, 2 cases 
7 characters, 2 cases 
6 characters, 1 case 
7 characters, 1 case 
8 characters, 2 cases 

The following identifiers arc reserved for use as keywords, and may not be used otherwise: 

auto do float re9ister switch 
break double for return typedef 
case else 9oto short union 
char entry if sizeof unsigned 
continue en um int static void 
default extern lon9 struct while 

The entry keyword is not currently ill'plcmcntcd by any compiler but is reserved for future use. Some 
implementations also reserve the words fortran and asm. 

• This manual is reprinted, with minor changes, from TM C Programming Language by Brian W. Kernighan 
and Dennis M. Ritchie, Prentice Hall, Inc., 1978. It specifics the language definition as of September, 1980. 



2 C Reference Manual 

2.4 Constants 
There are several kinds of constants, as listed below. Hardware characteristics that affect sizes are 

summarized in §2.6. 

2.4.1 Integer constants 
An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit 

zero), decimal otherwise. A sequence of digits preceded by Ox or OX (digit zero) is taken to be a hexa
decimal integer. The hexadecimal digits include a or A through f or F with values 10 through 15. A 
decimal constant whose value exceeds the largest signed machine integer is taken to be long; an octal or 
hex constant which exceeds the largest unsigned machine integer is likewise taken to be long. 

2.4.2 Explicit long constants 
A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a 

long constant. As discussed below, on some machines integer and long values may be considered identi
cal. 

2.4.3 Character constants 
A character constant is a character enclosed in single quotes, as in 'x'. The value of a character 

constant is the numerical value of the character in the machine's character set. 
Certain non-graphic characters, the single quote ' and the backslash \, may be represented according 

to the following table of escape sequences: 

new-line NL (LF) \n 
horizontal tab HT \t 
vertical tab VT \v 
backspace BS \b 

carriage return CR \r 

form feed FF \f 
backslash \ \\ 
single quote \' 
bit pattern ddd \ddd 

The escape \ddd consists of the backslash followed by l, 2, or 3 octal digits which are taken to specify the 
value of the desired character. A special case of this construction is \0 (not followed by a digit), which 
indicates the character NUL If the character following a backslash is not one of those specified, the 
backslash is ignored. 

2.4.4 Floating constants 
A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an 

optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits. 
Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e 
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision. 

2.4.S Enumeration constants 
Names declared as enumerators (see §8.5) are constants of the corresponding enumeration type. They 
behave like int constants. 

2.S Strings 
A string is a sequence of characters surrounded by double quotes, as in " ••• ". A string has type 

"array of characters" and storage class static (see §4 below) and is initialized with the given charac
ters. All strings, even when written identically, are distinct. The compiler places a null byte \0 at the 
end of each string so that programs which scan the string can find its end. In a string, the double quote 
character " must be preceded by a \; in addition, the same escapes as described for character constants 
may be. used. Finally, a \and the immediately following new-line are ignored. 



C Reference Manual 3 

2.6 Hardware characteristics 
The following table summarizes certain hardware properties that vary from machine to machine. 

DEC PDP-11 DEC VAX-II Honeywell 6000 IBM 370 Interdata 8/32 
ASCII ASCII ASCII EBCDIC ASCII 

char 8 bits 8 bits 9 bits 8 bits 8 bits 
int 16 32 36 32 32 
short 16 16 36 16 16 
long 32 32 36 32 32 
float 32 32 36 32 32 
double 64 64 72 64 64 
range ± 10:1:38 ± 10:1:38 ± 10:1:38 ± 10:i:16 ± 10:i:16 

3. SYNTAX NOTATION 
In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal 

words and characters in constant-width type. Alternative categories are listed on separate lines. An 
optional terminal or non-terminal symbol is indicated by the subscript "opt," so that 

{ expressionOfll } 

indicates an optional expression enclosed in braces. The syntax is summarized in §18. 

4. WHAT'S IN A NAME? 
C bases the interpretation of an identifier upon two attributes of the identifier: its storage class and its 

type. The storage class determines the location and lifetime of the storage associated with an identifier; 
the type determines the meaning of the values found in the identifier's storage. 

There are four declarable storage classes: automatic, static, external, and register. Automatic vari
ables are local to each invocation of a block (§9.2), and are discarded upon exit frol)l the block; static 
variables are local to a block, but retain their values upon reentry to a block even after control has left 
the block; external variables exist and retain their values throughout the execution of the entire program, 
and may be used for communication between functions, even separately compiled functions. Register 
variables are (if possible) stored in the fast registers of the machine; like automatic variables they are 
local to each block and disappear on exit from the block. 

C supports several fundamental types of objects: 
Objects declared as characters (char) are large enough to store any member of the implementation's 

character set, and if a genuine character from that character set is stored in a character variable, its value 
is equivalent to the integer code for that character. Other quantities may be stored into character vari
ables, but the implementation is machine-dependent. 

Up to three sizes of integer, declared short int, int, and long int, are available. Longer 
integers provide no less storage than shorter ones, but the implementation may make either short 
integers, or long integers, or both, equivalent to plain integers. "Plain" integers have the natural size 
suggested by the host machine architecture; the other sizes are provided to meet special needs. 

Each enumeration (§8.5) is conceptually a separate type with its own set of named constants. The 
properties of an en um type are identical to those of int type. 

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n where n is the 
number of bits in the representation. (On the PDP-I I, unsigned long quantities are not supported.) 

Single-precision floating point (float) and double-precision floating point (double) may be 
synonymous in some implementations. 

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred 
to as arithmetic types. Types char, int of all sizes, and enum will collectively be called integral types. 
floa.t and double will collectively be called floating types. 

The void type specifies an empty set of values. It is used as the type returned by functions that 
generate no value. 

Besides the fundamental arithmetic types there is a conceptually infinite class of derived types con
structed from the fundamental types in the following ways: 



4 

arrays of objects of most types; 
functions which return objects of a given type; 
pointers to objects of a given type; 
structures containing a sequence of objects of various types; 
unions capable of containing any one of several objects of various types. 

In general these methods of constructing objects can be applied recursively. 

S. OBJECTS AND LVALUF.S 

C Reference Manual 

An object is a manipulatable region of storage; an /value is an expression referring to an object. An 
obvious example of an lvalue expression is an identifier. There are operators which yield )values: for 
example, if E is an expression of pointer type, then •E is an )value expression referring to the object to 
which E points. The name ")value" comes from the assignment expression E 1 = E2 in which the left 
operand E 1 must be an lvalue expression. The discussion of each operator below indicates whether it 
expects )value operands and whether it yields an )value. 

6. CONVERSIONS 
A number of operators may, depending on their operands, cause conversion of the value of an 

operand from one type to another. This section explains the result to be expected from such conver
sions. §6.6 summarizes the conversions demanded by most ordinary operators; it will be supplemented as 
required by the discussion of each operator. 

6.1 Characters and integers 
A character or a short integer may be used wherever an integer may be used. In all cases the value 

is converted to an integer. Conversion of a shorter integer to a longer always involves sign extension; 
integers are signed quantities. Whether or not sign-extension occurs for characters is machine dependent, 
but it is guaranteed that a member of the standard character set is non-negative. Of the machines treated 
here, only the PDP-ll and V AX-11 sign-extend. On these machines, char variables range in value from 
-128 to 127. The more explicit type unsigned char forces the values to range from 0 to 255. 

On machines that treat characters as signed, the characters of the ASCII set are all positive. How
ever, a character constant specified with an octal escape suffers sign extension and may appear negative; 
for example, '\ 3 7 7 ' has the value - 1. 

When a longer integer is converted to a shorter or to a char, it is truncated on the left; excess bits 
are simply discarded. 

6.2 Float and double 
All floating arithmetic in C is carried out in double-precision; whenever a float appears in an 

expression it is lengthened to double by zero-padding its fraction. When a double must be converted 
to float, for example by an assignment, the double is rounded before truncation to float length. 

6.3 Floating and integral 
Conversions of floating values to integral type tend to be rather machine-dependent; in particular the 

direction of truncation of negative numbers varies from machine to machine. The result is undefined if 
the value will not fit in the space provided. 

Conversions of integral values to floating type are well behaved. Some loss of precision occurs if the 
destination lacks sufficient bits. 

6.4 Pointers and integers 
An expression of integral type may be added to or subtracted from a pointer; in such a case the first 

is converted as specified in the discussion of the addition operator. 
Two pointers to objects of the same type may be subtracted; in this case the result is converted to an 

integer as specified in the discussion of the subtraction operator. 

6.5 Unsigned 
Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to 

unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed 
integer (modulo zwordaize). In a 2's complement representation, this conversion is conceptual and there is 
no actual change in the bit pattern. 

When an unsigned integer is converted to long, the value of the result is the same numerically as 
that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left. 



C Reference Manual 5 

6.6 Arithmetic conversions 
A great many operators cause conversions and yield result types in a similar way. This pattern will 

be called the "usual arithmetic conversions." 

First, any operands of type ch&r or short are converted to int, and any of type f lo& t are con
verted to double. 
Then, if either operand is doub 1 e , the other is converted to double and that is the type of the 
result. 
Otherwise, if either operand is long, the other is converted to long and that is the type of the 
result. 
Otherwise, if either operand is unsigned, the other is converted to unsigned and that is the 
type of the result. 
Otherwise, both operands must be int, and that is the type of the result. 

6.7 Void 
The (nonexistent) value of a void object may not be used in any way, and neither explicit nor implicit 
conversion may be applied. Because a void expression denotes a nonexistent value, such an expression 
may be used only as an expression statement (§9.1) or as the left operand of a comma expression 
(§7.15). 

An expression may be converted to type void by use of a cast. For example, this makes explicit the 
discarding of the value of a function call used as an expression statement. 

7. EXPRESSIONS 
The precedence of expression operators is the same as the order of the major subsections of this sec

tion, highest precedence first. Thus, for example, the expressions referred to as the operands of + (§7.4) 
are those expressions defined in §§7. I· 7 .3. Within each subsection, the operators have the same pre
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein. 
The precedence and associativity of all the expression operators is summarized in the grammar of §18. 

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers 
itself free to compute subexpressions in the order it believes most efficient, even if the subexpressions 
involve side effects. The order in which side effects take place is unspecified. Expressions involving a 
commutative and associative operator ( *• +, &., l, A) may be rearranged arbitrarily, even in the presence 
of parentheses; to force a particular order of evaluation an explicit temporary must be used. 

The handling of overflow and divide check in expression evaluation is machine-dependent. Most 
existing implementations of C ignore integer overflows; treatment of division by 0, and all floating-point 
exceptions, varies between machines, and is usually adjustable by a library function. 

7 .1 Primary expressions 
Primary expressions involving . , ->, subscripting, and function calls group left to right. 

primary-expression: 
identifier 
constant 
string 
( expression 

primary-expression [ expression ] 
primary-expression ( expression-list°"' ) 
primary-expression • identifier 
primary-expression - > identifier 

expression-list: 
expression 
expression-list , expression 

An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type 
is specified by its declaration. If the type of the identifier is "array of ... ", however, then the value of 
the identifier-expression is a pointer to the first object in the array, and the type of the expression is 
"pointer to ... ". Moreover, an array identifier is not an lvalue expression. Likewise, an identifier which 
is declared "function returning ... ", when used except in the function-name position of a call, is con
verted to "pointer to function returning ... ". 



6 C Reference Manual 

A constant is a primary expression. Its type may be int, long, or double depending on its form. 
Character constants have type int; floating constants are double. 

A string is a primary expression. Its type is originally "array of char"; but following the same rule 
given above for identifiers, this is modified to "pointer to char" and the result is a pointer to the first 
character in the string. (There is an exception in certain initializers; see §8.6.) 

A parenthesized expression is a primary expression whose type and value are identical to those of the 
unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue. 

A primary expression followed by an expression in square brackets is a primary expression. The 
intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer to ... ", the 
subscript expression is int, and the type of the result is " ... ". The expression E 1 [ E2 l is identical (by 
definition) to * ( ( E 1) + ( E2) ) . All the clues needed to understand this notation are contained in this 
section together with the discussions in §§ 7.1, 7.2, and 7.4 on identifiers, *· and + respectively; §14.3 
below summarizes the implications. 

A function call is a primary expression followed by parentheses containing a possibly empty, 
comma-separated list of expressions which constitute the actual arguments to the function. The primary 
expression must be of type "function returning ... ", and the result of the function call is of type " ... ". 
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is contextually 
declared to represent a function returning an integer: thus in the most common case, integer-valued 
functions need not be declared. 

Any actual arguments of type float are converted to double before the call: any of type char or 
short are converted to int; and as usual, array names are converted to pointers. No other conver
sions are performed automatically; in particular, the compiler does not compare the types of actual argu
ments with those of formal arguments. If conversion is needed, use a cast; see §7.2, 8.7. 

In preparing for the call to a function, a copy is made of each actual parameter: thus, all argument
passing in C is strictly by value. A function may change the values of its formal parameters, but these 
changes cannot affect the values of the actual parameters. On the other hand, it is possible to pass a 
pointer on the understanding that the function may change the value of the object to which the pointer 
points. An array name is a pointer expression. The order of evaluation of arguments is undefined by the 
language; take note that the various compilers differ. 

Recursive calls to any function are permitted. 
A primary expression followed by a dot followed by an identifier is an expression. The first expres

sion must be a structure or a union, and the identifier must name a member of the structure or union. 
The value is the named member of the structure or union, and it is an lvalue if the first expression is an 
lvalue. 

A primary expression followed by an arrow (built from a - and a >) followed by an identifier is an 
expression. The first expression must be a pointer to a structure or a union and the identifier must name 
a member of that structure or union. The result is an !value referring to the named member of the struc
ture or union to which the pointer expression points. Thus the expression E 1->MOS is the same as 
( *E 1) • MOS. Structures and unions are discussed in §8.5. 

7 .2 Unary operators 
Expressions with unary operators group right-to-left. 

unary-expression: 
* expression 
& /value 
- expression 
I expression 

expression 
++/value 
-- /value 
/value ++ 
/value --
( type-name l expression 
s i z e of expression 
sizeof C type-name ) 

The unary * operator means indirection: the expression must be a pointer, and the result is an lvalue 
referring to the object to which the expression points. If the type of the expression is "pointer to ... ", 
the type of the result is " ... ". 



C Reference Manual 7 

The result of the unary &. operator is a pointer to the object referred to by the !value. If the type of 
the I value is " ... ", the type of the result is "pointer to ... ". 

The result of the unary - operator is the negative of its operand. The usual arithmetic conversions 
are performed. The negative of an unsigned quantity is computed by subtracting its value from 2", where 
11 is the number of bits in an int. There is no unary + operator. 

The result of the logical negation operator I is I if the value of its operand is 0, 0 if the value of its 
operand is non-zero. The type of the result is int. It is applicable to any arithmetic type or to pointers. 

The • operator yields the one's complement of its operand. The usual arithmetic conversions are 
performed. The type of the operand must be integral. 

The object referred to by the Ivalue operand of prefix + + is incremented. The value is the new value 
of the operand, but is not an !value. The expression ++xis equivalent to x+• 1. See the discussions of 
addition (§7.4) and assignment operators (§7.14) for information on conversions. 

The )value operand of prefix - - is decremented analogously to the prefix + + operator. 
When postfix + + is applied to an Ivalue the result is the value of the object referred to by the I value. 

After the result is noted, the object is incremented in the same manner as for the prefix + + operator. 
The type of the result is the same as the type of the lvalue expression. 

When postfix - - is applied to an !value the result is the value of the object referred to by the )value. 
After the result is noted, the object is decremented in the manner as for the prefix - - operator. The 
type of the result is the same as the type of the lvalue expression. 

An expression preceded by the parenthesized name of a data type causes conversion of the value of 
the expression to the named type. This construction is called a cast. Type names are described in §8.7. 

The sizeof operator yields the size, in bytes, of its operand. (A byte is undefined by the language 
except in terms of the value of sizeof. However, in all existing implementations a byte is the space 
required to hold a char.) When applied to an array, the result is the total number of bytes in the array. 
The size is determined from the declarations of the objects in the expression. This expression is semanti
cally an uns iqned constant• and may be used anywhere a constant is required. Its major use is in com
munication with routines like storage allocators and 1/0 systems. 

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the 
size, in bytes, of an object of the indicated type. 

The construction sizeof(type) is taken to be a unit, so the expression sizeof(type )-2 is the 
same as ( sizeof (type)) -2. 

7 .3 Multiplicative operators 
The multiplicative operators *• I, and " group left-to-right. The usual arithmetic conversions are 

performed. 

multiplicative-expression: 
expression * expression 
expression I expression 
expression % expression 

The binary * operator indicates multiplication. The * operator is associative and expressions with 
several multiplications at the same level may be rearranged by the compiler. 

The binary I operator indicates division. When positive integers are divided truncation is toward 0, 
but the form of truncation is machine-dependent if either operand is negative. On all machines covered 
by this manual, the remainder has the same sign as the dividend. It is always true that 
(a.lb) •b + a%b is equal to a. (if b is not 0). 

The binary " operator yields the remainder from the division of the first expression by the second. 
The usual arithmetic conversions are performed. The operands must not be float. 

7 .4 Additive operators 
The additive operators + and - group left-to-right. The usual arithmetic conversions are performed. 

There are some additional type possibilities for each operator. 

• As of this writing, sizeof expressions are unsigned only for the PDP-I I compiler; other compilers treat 
them as integers. 



8 

additive-expression: 
expression + expression 
expression - expression 

C Reference Manual 

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of 
any integral type may be added. The latter is in all cases converted to an address offset by multiplying it 
by the length of the object to which the pointer points. The result is a pointer of the same type as the 
original pointer, and which points to another object in the same array, appropriately offset from the origi
nal object. Thus if P is a pointer to an object in an array, the expression P+ 1 is a pointer to the next 
object in the array. 

No further type combinations are allowed for pointers. 
The + operator is associative and expressions with several additions at the same level may be rear

ranged by the compiler. 
The result of the - operator is the difference of the operands. The usual arithmetic conversions are 

performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the 
same conversions as for addition apply. 

If two pointers to objects of the same type are subtracted, the result is converted (by division by the 
length of the object) to an int representing the number of objects separating the pointed-to objects. 
This conversion will in general give unexpected results unless the pointers point to objects in the same 
array, since pointers, even to objects of the same type, do not necessarily differ by a multiple of the 
object-length. 

7 .S Shift operators 
The shift operators <<and >>group left-to-right. Both perform the usual arithmetic conversions on 

their operands, each of which must be integral. Then the right operand is converted to int; the type of 
the result is that of the left operand. The result is undefined if the right operand is negative, or greater 
than or equal to the length of the object in bits. 

shift-expression: 
expression < < expression 
expression > > expression 

The value of E 1 «E2 is E 1 (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are 0-filled. 
The value of E 1 »E2 is E 1 right-shifted E2 bit positions. The right shift is guaranteed to be logical (O
fi.11) if E 1 is unsigned; otherwise it may be arithmetic (fill by a copy of the sign bit). 

7 .6 Relational operators 
The relational operators group left-to-right, but this fact is not very useful; a<b<c docs not mean 

what it seems to. 

relational-expression: 
expression < expression 
expression > expression 
expression < = expression 
expression > • expression 

The operators < (less than), > (greater than), <"" (less than or equal to) and >;;; (greater than or equal 
to) all yield 0 if the specified relation is false and 1 if it is true. The type of the result is int. The usual 
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative 
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the 
pointers point to objects in the same array. 

7. 7 F.q uality operators 

equality-expression; 
expression ="' expression 
expression I • expression 

The =• (equal to) and the I= (not equal to) operators are exactly analogous to the relational opera
tors except for their lower precedence. (Thus a<b ==== c<d is 1 whenever a<b and c<d have the same 
truth-value). 



C Refertnce Manual 9 

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to which 0 
has been assigned is guaranteed not to point to any object, and will appear to be equal to O; in conven
tional usage, such a pointer is considered to be null. 

7 .8 Bitwise AND operator 

and-expression: 
expression &. expression 

The & operator is associative and expressions involving &. may be rearranged. The usual arithmetic 
conversions are performed; the result is the bitwise AND function of the operands. The operator applies 
only to integral operands. 

7 .9 Bitwise exclusive OR operator 

exclusive-or-expression: 
expression " expression 

The " operator is associative and expressions involving " may be rearranged. The usual arithmetic 
conversions are performed; the result is the bitwise exclusive OR function of the operands. The operator 
applies only to integral operands. 

7.10 Bitwise inclusive OR operator 

inclusive-or-expression: 
expression ; expression 

The ; operator is associative and expressions involving ; may be rearranged. The usual arithmetic 
conversions are performed; the result is the bitwise inclusive OR function of its operands. The operator 
applies only to integral operands. 

7. I I Logical AND operator 

logical-and-expression: 
expression && expression 

The && operator groups left-to-right. It returns I if both its operands are non-zero, 0 otherwise. 
Unlike &, && guarantees left-to-right evaluation; moreover the second operand is not evaluated if the 
first operand is 0. 

The operands need not have the same type, but each must have one of the fundamental types or be 
a pointer. The result is always int. 

7 .12 Logical OR operator 

logical-or-expression: 
expression ; ; expression 

The ; ; operator groups left-to-right. It returns I if either of its operands is non-zero, and 0 other
wise. Unlike : , : : guarantees left-to-right evaluation; moreover, the second operand is not evaluated if 
the value of the first operand is non-zero. 

The operands need not have the same type, but each must have one of the fundamental types or be 
a pointer. The result is ahvays int. 

7 .13 Conditional operator 

conditional-expression: 
expression ? expression : expression 

Conditional expressions group right-to-left. The first expression is evaluated and if it is non-zero, 
the result is the value of the second expression, otherwise that of third expression. If possible, the usual 
arithmetic conversions are performed to bring the second and third expressions to a common type; other
wise, if both arc pointers of the same type, the result has the common type; otherwise, one must be a 
pointer and the other the constant 0, and the result has the type of the pointer. Only one of the second 
and third expressions is evaluated. 



10 C Reference Manual 

7.14 Assignment operators 
There are a number of assignment operators', all of which group right-to-left. All require an lvalue as 

their left operand, and the type of an assignment expression is that of its left operand. The value is the 
value stored in the left operand after the assignment has taken place. The two parts of a compound 
assignment operator are separate tokens. 

assignment-expression: 
/value "' expression 
/value + = expression 
/value - = expression 
/value * • expression 
/value I= expression 
/value %= expression 
/value > > • expression 
/value < < • expression 
/value &. • expression 
/value A = expression 
/value I = expression 

In the simple assignment with =, the value of the expression replaces that of the object referred to 
by the !value. If both operands have arithmetic type, the right operand is converted to the type of the 
left preparatory to the assignment. Second, both operands may be structures or unions of the same type. 
Finally, if the left operand is a pointer, the right operand must in general be a pointer of the same type; 
however the constant 0 may be assigned to a pointer, and it is guaranteed that this value will produce a 
null pointer distinguishable from a pointer to any object. 

The behavior of an expression of the form E 1 op• E2 may be inferred by taking it as equivalent to 
E 1 = E 1 op ( E2); however, E 1 is evaluated only once. In +"' and -:, the left operand may be a 
pointer, in which case the (integral) right operand is converted as explained in §7 .4; all right operands 
and all non-pointer left operands must have arithmetic type. 

7. l S Comma operator 

comma-expression: 
expression , expression 

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left 
expression is discarded. The type and value of the result arc the type and value of the right operand. 
This operator groups left-to-right. In contexts where comma is given a special meaning, for example in 
lists of actual arguments to functions (§7.I) and lists of initializers (§8.6), the comma operator as 
described in this section can only appear in parentheses; for example, 

f(a, (t:3, t+2), cl 

has three arguments, the second of which has the value 5. 

8. DECLARATIONS 
Declarations are used to specify the interpretation which C gives to each identifier; they do not 

necessarily reserve storage associated with the identifier. Declarations have the form 

declaration: 
decl-specifiers declarator-list,,,,, ; 

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of a 
sequence of type and storage class specifiers. 

decl-specifiers: 
type-specifier decl-specijiersOfll 
Sc-specifier decl-specifiers OfJI 

The list n{ust be self-consistent in a way described below. 



C Reference Manual 

8.1 Storage class specifiers 
The sc-specifiers are: 

sc-specifier: 
auto 
static 
extern 
register 
typedef 

11 

The typedef specifier does not reserve storage and is called a "storage class specifier" only for syntac
tic convenience; it is discussed in §8.8. The meanings of the various storage classes were discussed in §4. 

The auto, static, and register declarations also serve as definitions in that they cause an 
appropriate amount of storage to be reserved. In the extern case there must be an external definition 
(§10) for the given identifiers somewhere outside the function in which they are declared. 

A register declaration is best thought of as an auto declaration, together with a hint to the com
piler that the variables declared will be heavily used. Only the first few such declarations are effective. 
Moreover, only variables of certain types will be stored in registers; on the PDP-11, they are int or 
pointer. One other restriction applies to register variables: the address-of operator & cannot be applied to 
them. Smaller, faster programs can be expected if register declarations are used appropriately, but future 
improvements in code generation may render them unnecessary. 

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never 
automatic. 

8.2 Type specifiers 
The type-specifiers are 

type-specifier: 
char 
short 
int 
long 
unsigned 
float 
double 
void 
struct-or-union-specifier 
typedef-name 
enum-specifier 

The words long, short, and unsigned may be thought of as adjectives; the following combinations 
are acceptable. 

short int 
long int 
unsigned int 
unsigned char 
long float 

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a 
declaration. If the type-specifier is missing from a declaration, it is taken to be int. 

Specifiers for structures, unions and enumerations are discussed in §8.5; declarations with typedef 
names are discussed in §8.8. 

8 .3 Declarators 
The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of 

which may have an initializer. 



12 

declarator-list: 
init-declarator 
/nit-declarator , declarator-list 

init-declarator: 
declarator initializer Ofll 

C Reference Manual 

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage class of 
the objects to which the declarators refer. Declarators have the syntax: 

declarator: 
identifier 
( declarator 
* declarator 
declarator ( ) 
declarator [ constant-expression""' ] 

The grouping is the same as in expressions. 

8.4 Meaning of declarators 
Each declarator is taken to be an assertion that when a construction of the same form as the declara

tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator 
contains exactly one identifier; it is this identifier that is declared. 

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier head
ing the declaration. 

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex 
declarators may be altered by parentheses. See the examples below. 

Now imagine a declaration 

T D1 

where T is a type-specifier (like int, etc.) and D 1 is a declarator. Suppose this declaration makes the 
identifier ~ave type " ... T," where the " ... " is empty if D 1 is just a plain identifier (so that the type of 
x in "int x" is just int). Then if D1 has the form 

the type of the contained identifier is " ... pointer to T." 
If D 1 has the form 

D ( ) 

then the contained identifier has the type " ... function returning T." 
If D 1 has the form 

D [constant-expression ] 

or 

D [] 

then the contained identifier has type " ... array of T." In the first case the constant expression is an 
expression whose value is determinable at compile time, and whose type is int. (Constant expressions 
are defined precisely in §15.) When several "array of' specifications are adjacent, a multi-dimensional 
array is created; the constant expressions which specify the bounds of the arrays may be missing only for 
the first member of the sequence. This elision is useful when the array is external and the actual 
definition, which allocates storage, is given elsewhere. The first constant-expression may also be omitted 
when the declarator is followed by initialization. In this case the size is calculated from the number of 
initial elements supplied. 

An array may be constructed from one of the basic types. from a pointer, from a structure or union, 
or from another array (to generate a multi-dimensional array). 

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as 
follows: functions may not return arrays or functions, although they may return pointers to such things; 
there are no arrays of functions, although there may be arrays of pointers to functions. Likewise a struc
ture or union may not contain a function, but it may contain a pointer to a function. 



C Reference Manual 13 

As an example, the declaration 

int i, id.p, f(), •fip(), (•pfi) (); 

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function f ip 
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is espe
cially useful to compare the last two. The binding of •f ip ( ) is * ( f ip ( l l, so that the declaration sug
gests, and the same construction in an expression requires, the calling of a function f ip, and then using 
indirection through the (pointer) result to yield an integer. In the declarator (•pf i) ( ) , the extra 
parentheses are necessary, as they are also in an expression, to indicate that indirection through a pointer 
to a function yields a function, which is then called; it returns an integer. 

As another example, 

float fa[17l, •afp[17l; 

declares an array of float numbers and an array of pointers to float numbers. Finally, 

static int x3d[3)[5][7); 

declares a static three-dimensional array of integers, with rank 3X5X7. In complete detail, x3d is an 
array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven 
integers. Any of the expressions x3d, x3d [ i], x3d [ i] [ j], x3d [ i] [ j] [ k] may reasonably appear 
in an expression. The first three have type "array," the last has type int. 

8.5 Structure, union and enumeration declarations 
A structure is an object consisting of a sequence of named members. Each member may have any 

type. A union is an object which may, at a given time, contain any one of several members. Structure 
and union specifiers have the same form. 

struct-or-union-speclfier: 
struct-01'-union { struct-decl-list } 
struct-or-union identifier { struct-decl-list } 
struct-or-union identifier 

struct-or-union: 
struct 
union 

The struct-dccl-list is a sequence of declarations for the members of the structure or union: 

struct-decl-list: 
struct-declaration 
struct-declaration struct-decl-list 

struct-declaration: 
type-specifier struct-declarator-list 

struct-dec/arator-list: 
struct-declarator 
struct-declarator , struct-declarator-list 

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A struc
ture member may also consist of a specified number of bits. Such a member is also called a field; its 
length is set off from the field name by a colon. 

struct-declarator: 
declarator 
declarator : constant-expression 
: constant-expression 

Within a structure, the objects declared have addresses which increase as their declarations arc read left
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type; 
therefore, there may be unnamed holes in a structure. Field members are packed into machine integers; 
they do not straddle words. A field which does not fit into the space remaining in a word is put into the 
next word. No field may be wider than a word. 



14 C Reference Manual 

Fields arc assigned right-to-left on the PDP-11 and VAX-I I, left-to-right on other machines. 
A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful 

for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width 
of 0 specifics alignment of the next field at a word boundary. The "next field" presumably is a field, not 
an ordinary structure member, because in the latter case the alignment would have been automatic. 

The language does not restrict the types of things that are declared as fields, but implementations arc 
not required to support any but integer fields. Moreover, even int fields may be considered to be 
unsigned. On the PDP-I I, fields are not signed and have only integer values; on the VAX- I I, fields 
declared with int are treated as containing a sign. For these reasons, it is strongly recommended that 
fields be declared as uns i qned. In all implementations, there are no arrays of fields, and the address-of 
operator &. may not be applied to them, so that there are no pointers to fields. 

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is 
sufficient to contain any of its members. At most one of the members can be stored in a union at any 
time. 

A structure or union specifier of the second form, that is, one of 

struct identifier { struct-decl-list } 
union identifier { struct-decl-list } 

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse
quent declaration may then use the third form of specifier, one of 

struct identifier 
union identifier 

Structure tags allow definition of self-referential structures; they also permit the long part of the declara
tion to be given once and used several times. It is illegal to declare a structure or union which contains 
an instance of itself, but a structure or union may contain a pointer to an instance of itself. 

The names of members and tags do not conflict with each other or with ordinary variables. A partic
ular name may not be used twice in the same structure, but the same name may be used in several 
different structures in the same scope. 

A simple example of a structure declaration is 

struct tnode { 

} ; 

char tword[20l; 
int count; 
struct tnode •left; 
struct tnode •right; 

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this 
declaration has been given, the declaration 

struct tnode s, •sp; 

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort. 
With these declarations, the expression 

sp->count 

refers to the count field of the structure to which sp points: 

s.left 

refers to the left subtree pointer of the structure s; and 

s.riqht->tword[O] 

refers to the first character of the tword member of the right subtree of s. 
Enumerations are unique types with named constants. However, the current language treats 

enumeration variables and constants as being of int type. 



C Reference Manual 

enum-specifier:· 
enum { enum-list } 
enum identifier { enum-list } 
enum identifier 

enum-list: 
enumerator 
enum-list enumerator 

enumerator: 
identifier 
identifier "' constant-expression 

15 

The identifiers in an enum-list are declared as constants, and may appear wherever constants are 
required. If no enumerators with = appear, then the values of the corresponding constants begin at O and 
increase by I as the declaration is read from left to right. An enumerator with = gives the associated 
identifier the value indicated; subsequent identifiers continue the progression from the assigned value. 

The names of enumerators in the same scope must all be distinct from each other and from those of 
ordinary variables. 

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a 
struct-specifier; it names a particular enumeration. For example, 

enum color { chartreuse, burgundy, claret=10, winedark }; 

enum color •cp, col; 

col "' claret; 
cp •' &col; 

if (•cp == burgundy) 

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer 
to an object of that type, and col as an object of that type. The possible values are drawn from the set 
{0,1,10,11). 

8.6 Initialization 
A declarator may specify an initial value for the identifier being declared. The initializer is preceded 

by =, and consists of an expression or a list of values nested in braces. 

initializer: 
= expression 
"' { initializer-list } 
• { initializer-list , } 

initializer-list: 
expression 
initializer-list , initializer-list 
{ initializer-list } 

All the expressions in an initializer for a static or external variable must be constant expressions, 
which are described in §I 5, or expressions which reduce to the address of a previously declared variable, 
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary 
expressions involving constants, and previously declared variables and functions. 

Static and external variables which are not initialized are guaranteed to start off as O; automatic and 
register variables which are not initialized are guaranteed to start off as garbage. 

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a sin
gle expression, perhaps in braces. The initial value of the object is taken from the expression; the same 
conversions as for assignment are performed. 

When the declared variable is an aggregate (a structure or array) then the initializer consists of a 
brace-enclosed, comma-separated list of initializers for the members of the aggregate, written in increas
ing sµbscript or member order. If the aggregate contains subaggregates, this rule applies recursively to 
the members of the aggregate. If there are fewer initializers in the list than there are members of the 



16 C Reference Manual 

aggregate, then the aggregate is padded with O's: It is not permitted to initialize unions or automatic 
aggregates. 

Braces may be elided as follows. If the initializer begins with a left brace, then the succeeding 
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to 
be more initializers than members. If, however, the initializer does not begin with a left brace, then only 
enough elements from the list arc taken to account for the members of the aggregate; any remaining 
members are left to initialize the next member of the aggregate of which the current aggregate is a part. 

A final abbreviation allows a char array to be initialized by a string. In this case successive charac
ters of the string initialize the members of the array. 

For example, 

int x[) • { 1, 3, 5 }; 

declares and initializes x as a I-dimensional array which has three members, since no size was specified 
and there are three initializers. 

float y[4][3) • { 
{1,3,5}, 
{ 2, 4, 6 }, 
{3,5,7}, 

} ; 

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y [ o l, namely 
y [ O 1 [ 0 1, y [ 0 ] [ 1 J, and y [ 0 l [ 2 ) . Likewise the next two lines initialize y [ 1 1 and y [ 2 ) . The ini
tializer ends early and therefore y [ 3 J is initialized with 0. Precisely the same effect could have been 
achieved by 

float y[4)[3) = { 
1, 3, 5, 2, 4, 6, 3, s, 7 

} ; 

The initializer for y begins with a left brace, but that for y[ 01 docs not, therefore 3 elements from the 
list are used. Likewise the next three are taken successively for y [ 1 J and y [ 2 J. Also, 

float y[4][3] ; { 
{ 1 }, { 2 }, { 3 }, { 4 } 

} ; 

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0. 
Finally, 

char msg[J • •syntax error on line Xs,n•; 

shows a character array whose members are initialized with a string. 

8.7 Type names 
Jn two contexts (to specify type conversions explicitly by means of a cast, and as an argument of 

sizeof) it is desired to supply the name of a data type. This is accomplished using a "type name," 
which in essence is a declaration for an object of that type which omits the name of the object. 

type-name: 
type-specifier abstract-declaratOI' 

abstract-declaratOI': 
empty 
( abstract-declarator ) 
«- abstract-declaratOI' 
abstl'act-declarator { ) 
abstract-declarator [ constant-expression• ) 

To avoid ambiguity, in the construction 

( abstract-declarator ) 

the abstract-declarator is required to be non-empty. Under this restriction, it is possible to identify 
uniquely the location in the abstract-declarator where the identifier would appear if the construction were 



C Rtftrtnct Manual 17 

a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier. 
For example, 

int 
int * 
int •[3] 
int ( * )[ 3 l 
int * () 
int (•)() 

name respectively the types "integer," "pointer to integer," "array of 3 pointers to integers," "pointer 
to an array of 3 integers," "function returning pointer to integer," and "pointer to function returning an 
integer." 

8.8 Typedef 
Declarations whose "storage class" is typedef do not define storage, but instead define identifiers 

which can be used later as if they were type keywords naming fundamental or derived types. 

typedef-name: 
idenllfter 

Within the scope of a declaration involving typedef, each identifier appearing as part of any declarator 
therein becomes syntactically equivalent to the type keyword naming the type associated with the 
identifier in the way described in §8.4. For example, after 

typedef int MILES, •XLICKSP; 
typedef struct { double re, im;} complex; 

the constructions 

MILES distance; 
extern KLICKSP metricp; 
complex z, •zp; 

are all legal declarations: the type of distance is int, that of metricp is "pointer to int," and that 
of z is the specified structure. zp is a pointer to such a structure. 

typedef docs not introduce brand new types, only synonyms for types which could be specified in 
another way. Thus in the example above distance is considered to have exactly the same type as any 
other int object. 

9. STATEMENTS 
Except as indicated, statements are executed in sequence. 

9.1 Expression statement 
Most statements are expression statements, which have the form 

eXf)l'ession ; 

Usually expression statements are assignments or function calls. 

9.2 Compound statement, or block 
So that several statements can be used where one is expected, the compound statement (also, and 

equivalently, called "block") is provided: 

compound-statemenl: 
{ declaration-list• statement-ltstOfll } 

declaration-list: 
declaration 
declaration declaration-list 

statement-list: 
statement 
statement statement-list 



18 C Reference Manual 

If any of the identifiers in the dechi.ration-Iist were previously declared, the outer declaration is pushed 
down for the duration of the block, after which h resumes its force. 

Any initializations of auto or register variables are performed each time the block is entered at 
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations 
are not performed. Initializations of static variables are performed only once when the program 
begins execution. Inside a block, extern declarations do not reserve storage so initialization is not per
mitted. 

9.3 Conditional statement 
The two forms of the conditional statement are 

i f ( expression ) statement 
if ( expression ) statement e 1 s e statement 

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. Jn the 
second case the second substatement is executed if the expression is 0. As usual the "else" ambiguity is 
resolved by connecting an else with the last encountered else-less if. 

9.4 While statement 
The while statement has the form 

while ( expression ) statement 

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The 
test takes place before each execution of the statement. 

9.S Do statement 
The do statement has the form 

do statement while expression ) ; 

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes 
place after each execution of the statement. 

9.6 For statement 
The for statement has the form 

for ( expression-Jop1 expression-2op1 ; expression-3op1 ) statement 

This statement is equivalent to 

expression-/ ; 
while (expression-2) 

statement 
expression-3 ; 

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each 
iteration, such that the loop is exited when the expression becomes 0; the third expression often specifies 
an incrementing that is performed after each iteration. 

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while 
clause equivalent to while ( 1); other missing expressions are simply dropped from the expansion 
above. 

9.7 Switch statement 
The switch statement causes control to be transferred to one of several statements depending on 

the value of an expression. It has the form 

switch ( expression ) statement 

The usual arithmetic conversion is performed on the expression, but the result must be int. The state
ment is typically compound. Any statement within the statement may be labeled with one or more case 
prefixes as follows; 

case constant-expression : 



C Reference Manual 19 

where the constant expression must be int. No two of the case constants in the same switch may have 
the same value. Constant expressions are precisely defined in § 15. 

There may also be at most one statement prefix of the form 

default : 

When the switch statement is executed, its expression is evaluated and compared with each case con
stant. If one of the case constants is equal to the value of the expression, control is passed to the state
ment following the matched case prefix. If no case constant matches the expression, and if there is a 
default prefix, control passes to the prefixed statement. If no case matches and if there is no 
default then none of the statements in the switch is executed. 

case and default prefixes in themselves do not alter the flow of control, which continues unim
peded across such prefixes. To exit from a switch, see break, §9.8. 

Usually the statement that is the subject of a switch is compound. Declarations may appear at the 
head of this statement, but initializations of automatic or register variables are ineffective. 

9.8 Break statement 
The statement 

break 

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to 
the statement following the terminated statement. 

9.9 Continue statement 
The statement 

continue 

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for 
statement; that is to the end of the loop. More precisely, in each of the statements 

while ( ... ) 

contin: 
} 

do { 

contin: 
} while ( ... ); 

for ( ... ) { 

contin: 
} 

a continue is equivalent to goto contin. (Following the cont in: is a null statement, §9.13.) 

9.10 Return statement 
A function returns to its caller by means of the return statement, which has one of the forms 

return ; 
return expression ; 

In the first case the returned value is undefined. In the second case, the value of the expression is 
returned to the caller of the function. If required, the expression is converted, as if by assignment, to the 
type of the function in which it appears. Flowing off the end of a function is equivalent to a return with 
no returned value. 

9.11 Goto statement 
Control may be transferred unconditionally by means of the statement 

qoto identifier ; 

The identifier must be a label (§9.12) located in the current function. 

9.12 Labeled statement 
Any statement may be preceded by label prefixes of the form 

identifier : 

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The 
scope of a label is the current function, excluding any sub-blocks in which the same identifier has been 
redeclared. See § 11. 



20 C Reference Manual 

9.13 Null statement 
The null statement has the form 

A null statement is useful to carry a label just before the } of a compound statement or to supply a null 
body to a looping statement such as while. 

10. EXTERNAL DEFINITIONS 
A C program consists of a sequence of external definitions. An external definition declares an 

identifier to have storage class extern (by default) or perhaps static, and a specified type. The 
type-specifier (§8.2) may also be empty, in which case the type is taken to be int. The scope of external 
definitions persists to the end of the file in which they are declared just as the effect of declarations per
sists to the end of a block. The syntax of external definitions is the same as that of all declarations, 
except that only at this level may the code for functions be given. 

lO.l External function definitions 
Function definitions have the form 

function-definition: 
decl-speciflersOfJlfunction-dec/arator function-body 

The only sc-specifiers allowed among the decl-specifiers are extern or static; see §l l.2 for the dis
tinction between them. A function declarator is similar to a declarator for a "function returning ... " 
except that it lists the formal parameters of the function being defined. 

function-declarator: 
declarator ( parameter-list OfJI ) 

parameter-list: 
identifier 
identifier , parameter-list 

The function-body has the form 

function-body: 
declaration-list compound-statement 

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list. 
Any identifiers whose type is not given are taken to be int. The only storage class which may be 
specified is register; if it is specified, the corresponding actual parameter will be copied, if possible, 
into a register at the outset of the function. 

A simple example of a complete function definition is 

int max(a, b, c} 
int a, b, c; 
{ 

int m; 

m = (a > b) ? a : b; 
return((m > c) ? m: cl; 

Here int is the type-specifier; max (a, b, c) is the function-declarator; int a, b, c; is the 
declaration-list for the formal parameters: { • • • } is the block giving the code for the statement. 

C converts all float actual parameters to double, so formal parameters declared float have 
their declaration adjusted to read double. Also, since a reference to an array in any context (in particu
lar as an actual parameter) is taken to mean a pointer to the first element of the array, declarations of 
formal parameters declared "array of ... " are adjusted to read "pointer to ... ". 



C Reference Manual 21 

10.2 External data definitions 
An external data definition has the form 

data-definition: 
declaration 

The storage class of such data may be extern (which is the default) or static, but not auto or 
re qi s ter. 

11. SCOPE RULFS 
A C program need not all be compiled at the same time: the source text of the program may be kept 

in several files, and precompiled routines may be loaded from libraries. Communication among the func
tions of a program may be carried out both through explicit calls and through manipulation of external 
data. 

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an 
identifier, which is essentially the region of a program during which it may be used without drawing 
"undefined identifier" diagnostics; and second, the scope associated with external identifiers, which is 
characterized by the rule that references to the same external identifier are references to the same object. 

11.1 Lexical scope 
The lexical scope of identifiers declared in external definitions persists from the definition through 

the end of the source file in which they appear. The lexical scope of identifiers which are formal parame
ters persists through the function with which they are associated. The lexical scope of identifiers declared 
at the head of a block persists until the end of the block. The lexical scope of labels is the whole of the 
function in which they appear. 

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block 
constituting a function, any declaration of that identifier outside the block is suspended until the end of 
the block. 

Remember also (§8.5) that identifiers associated with ordinary variables on the one hand and those 
associated with structure and union members and tags on the other form two disjoint classes which do 
not conflict. Members and tags follow the same scope rules as other identifiers. typedef names are in 
the same class as ordinary identifiers. They may be redeclared in inner blocks, but an explicit type must 
be given in the inner declaration: 

typedef float distance; 

auto int distance; 

The int must be present in the second declaration, or it would be taken to be a declaration with no 
declarators and type distance•. 

11.2 Scope of externals 
If a function refers to an identifier declared to be extern, then somewhere among the files or 

libraries constituting the complete program there must be an external definition for the identifier. All 
functions in a given program which refer to the same external identifier refer to the same object, so care 
must be taken that the type and size specified in the definition are compatible with those specified by each 
function which references the data. 

The appearance of the extern keyword in an external definition indicates that storage for the 
identifiers being declared will be allocated in another file. Thus in a multi-file program, an external data 
definition without the extern specifier must appear in exactly one of the files. Any other files which 
wish to give an external definition for the identifier must include the extern in the definition. The 
identifier can be initialized only in the declaration where storage is allocated. 

Identifiers declared static at the top level in external definitions are not visible in other files. 
Functions may be declared static. 

• It is agreed that the ice is thin here. 



22 C Reference Manual 

12. COMPILER CONTROL LINES 
The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and 

inclusion of named files. Lines beginning with # communice.te with this preprocessor. These lines have 
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts 
(independent of scope) until the end of the source program file. 

12.l Token replacement 
A compiler-control line of the form 

#define identifier token-string 

causes the preprocessor to replace subsequent instances of the identifier with the given string of tokens. 
Semicolons in, or at the end of, the token-string are part of that string. A line of the form 

#define identifier ( identifier , • • • , identifier ) token-string 

where there is no space between the first identifier and the (, is a macro definition with arguments. Sub
sequent instances of the first identifier followed by a (, a sequence of tokens delimited by commas, and a 
) are replaced by the token string in the definition. Each occurrence of an identifier mentioned in the 
formal parameter list of the definition is replaced by the corresponding token string from the call. The 
actual arguments in the call are token strings separated by commas; however commas in quoted strings or 
protected by parentheses do not separate arguments. The number of formal and actual parameters must 
be the same. Strings and character constants in the token-string are scanned for formal parameters, but 
strings and character constants in the rest of the program are not scanned for defined identifiers. to 
replacement. 

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long 
definition may be continued on another line by writing \ at the end of the line to be continued. 

This facility is most valuable for definition of "manifest constants," as in 

#define TABSIZE 100 

int table[TABSIZE]; 

A control line of the form 

#undef identifier 

causes the identifier's preprocessor definition to be forgotten. 

12.2 File inclusion 
A compiler control line of the form 

#include "fi/enanw n 

causes the replacement of that line by the entire contents of the file filename. The named file is searched 
for first in the directory of the original source file, and then in a sequence of specified or standard places. 
Alternatively, a control line of the form 

#include <filename> 

searches only the specified or standard places, and not the directory of the source file. (How the places 
are specified is not part of the language.) 

#include's may be nested. 

12.3 Conditional compilation 
A compiler control line of the form 

#if constant-expression 

checks whether the constant expression evaluates to non-zero. (Constant expressions are discussed in 
§15; thti following additional restriction applies here: the constant expression may not contain sizeof or 
an enumeration constant.) A control line of the form 

#ifdef identifier 

checks whether the identifier is currently defined in the preprocessor; that is, whether it has been the 
subject of a #define control line. A control line of the form 



C Reference Manual 23 

#ifndef identifier 

checks whether the identifier is currently undefined in the preprocessor. 
All three forms are followed by an arbitrary number of lines, possibly containing a control line 

#else 

and then by a control line 

#endif 

If the checked condition is true then any lines between #else and #endif are ignored. If the checked 
condition is false then any lines between the test and an #else or, lacking an #else, the #endif, arc 
ignored. 

These constructions may be nested. 

12.4 Line control 
For the benefit of other preprocessors which generate C programs, a line of the form 

#line constant "filename" 

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source 
line is given by the constant and the current input file is named by the identifier. If the identifier is 
absent the remembered file name docs not change. 

13. IMPLICIT DECLARATIONS 
It is not always necessary to specify both the storage class and the type of identifiers in a declaration. 

The storage class is supplied by the context in external definitions and in declarations of formal parame
ters and structure members. In a declaration inside a function, if a storage class but no type is given, the 
identifier is assumed to be int; if a type but no storage class is indicated, the identifier is assumed to be 
auto. An exception to the latter rule is made for functions, because auto functions do not exist. If 
the type of an identifier is "function returning ... ", it is implicitly declared to be extern. 

In an expression, an identifier followed by ( and not already declared is contextually declared to be 
"function returning int". 

14. TYPES REVISITED 
This section summarizes the operations which can be performed on objects of certain types. 

14.1 Structures and unions 
Structures and unions may be assigned, passed as arguments to functions, and returned by functions. 
Other plausible operators, such as equality comparison and structure casts, are not implemented. 

In a reference to a structure or union member, the name on the right must specify a member of the 
aggregate named or pointed to by the expression on the left. In general, a member of a union may not 
be inspected unless the value of the union has been assigned using that same member. However, one 
special guarantee is made by the language in order to simplify the use of unions: if a union contains 
several structures that share a common initial sequence, and if the union currently contains one of these 
structures, it is permitted to inspect the common initial part of any of the contained structures. For 
example, the following is a legal fragment: 



24 

union { 
struct { 

int 
} n; 
struct { 

int 
int 

ni; 
struct { 

type; 

type; 
intnode; 

int type; 
float floatnode; 

} nf; 
} u; 

u.nf.type = FLOAT; 
u.nf.floatnode • 3.14; 

if (u.n.type == FLOAT) 
... sin(u.nf.floatnode) 

14.2 Functions 

C Reference Manual 

There are only two things that can be done with a function: call it, or take its address. If the name 
of a function appears in an expression not in the function-name position of a call, a pointer to the func
tion is generated. Thus, to pass one function to another, one might say 

int f(); 

9(£); 

Then the definition of q might read 

g(funcp) 
int C •funcp) (); 
{ 

} 

Notice that f must be declared explicitly in the calling routine since its appearance in q ( f ) was not fol
lowed by (. 

14.3 Arrays, pointers, and subscripting 
Every time an identifier of array type appears in an expression, it is converted into a pointer to the 

first member of the array. Because of this conversion, arrays arc not lvalues. By definition, the subscript 
operator [ ] is interpreted in such a way that E 1 C E2 l is identical to * ( ( E 1 J + ( E2) ) . Because of the 
conversion rules which apply to +, if E 1 is an array and E2 an integer, then E 1 [ E2] refers to the E2-th 
member of E 1. Therefore, despite its asymmetric appearance, subscripting is a commutative operation. 

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array 
of rank iXjX - - - Xk, then E appearing in an expression is converted to a pointer to an (n-1)-dimensional 
array with rank )X · · · Xk. If the * operator, either explicitly or implicitly as a result of subscripting, is 
applied to this pointer, the result is the pointed-to (n-1)-dimensional array, which itself is immediately 
converted into a pointer. 

For example, consider 

int x[3][5]; 

Here x is a 3X5 array of integers. When x appears in an expression, it is converted to a pointer to (the 
first of three) 5-membered arrays of integers. In the expression x [ i], which is equivalent to * ( x+ i), 
x is first converted to a pointer as described; then i is converted to the type of x, which involves multi
plying i by the length the object to which the pointer points, namely 5 integer objects. The results are 



C Reference Manual 25 

added and indirection applied to yield an array (of 5 integers) which in turn is converted to a pointer to 
the first of the integers. If there is another subscript the same argument applies again; this time the 
result is an integer. 

It follows from all this that arrays in C arc stored row-wise (last subscript varies fastest) and that the 
first subscript in the declaration helps determine the amount of storage consumed by an array but plays 
no other part in subscript calculations. 

14.4 Explicit pointer conversions 
Certain conversions involving pointers are permitted but have implementation-dependent aspects. 

They arc all specified by means of an explicit type-conversion operator, §§7.2 and 8.7. 
A pointer may be converted to any of the integral types large enough to hold it. Whether an int or 

long is required is machine dependent. The mapping function is also machine dependent, but is 
intended to be unsurprising to those who know the addressing structure of the machine. Details for 
some particular machines are given below. 

An object of integral type may be explicitly converted to a pointer. The mapping always carries an 
integer converted from a pointer back to the same pointer, but is otherwise machine dependent. 

A pointer to one type may be converted to a pointer to another type. The resulting pointer may 
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in 
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an 
object of a smaller size and back again without change. 

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and 
return a char pointer; it might be used in this way. 

extern char *&lloc(); 
double *dp; 

dp = (double*) alloc(sizeof(doublell; 
*dP • 22.0 I 7.0; 

al loo must ensure (in a machine-dependent way) that its return value is suitable for conversion to a 
pointer to double; then the use of the function is portable. 

The pointer representation on the PDP-11 corresponds to a 16-bit integer and measures bytes. 
chars have no alignment requirements; everything else must have an even address. 

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary objects are aligned on a 
boundary equal to their length, except that doub 1 e quantities need be aligned only on even 4-byte 
boundaries. Aggregates are aligned on the strictest boundary required by any of their constituents. 

On the Honcywcll 6000, a pointer corresponds to a 36-bit integer; the word part is in the left 18 bits, 
and the two bits that select the character in a word lie just to their right. Thus cha.r pointers measure 
units of 216 bytes; everything else is measured in units of 218 machine words. double quantities and 
aggregates containing them must lie.on an even word address (0 mod 219). 

The IBM 370 and the Interdata 8/32 are similar. On each, pointers arc 32-bit quantities that measure 
bytes; elementary objects arc aligned on a boundary equal to their length, so pointers to short must be 
0 mod 2, to int and float 0 mod 4, and to double 0 mod 8. Aggregates are aligned on the strictest 
boundary required by any of their constituents. 

15. CONSTANT EXPRFSSIONS 
In several places C requires expressions which evaluate to a constant: after case, as array bounds, 

and in initializers. In the first two cases, the expression can involve only integer constants, character con
stants, enumeration constants, and sizeof expressions, possibly connected by the binary operators 

+ * I % &. 

or by the unary operators 

or by the ternary operator 

? : 

<< >> =.. I• < > <= >; 

Parentheses can be used for grouping, but not for function calls. 
More latitude is permitted for initializers; besides constant expressions as discussed above, one can 

also apply the unary &. operator to external or static objects, and to external or static arrays subscripted 
with a constant expression. The unary &. can also be applied implicitly by appearance of unsubscripted 



26 C Reference Manual 

arrays and functions. The basic rule is that initializers must evaluate either to a constant or to the 
address of a previously declared external or static .object plus or minus a constant. 

Less latitude is allowed for constant expressions after #if; sizeof expressions and enumeration 
constants are not permitted. 

16. PORTABILITY CONSIDERATIONS 
Certain parts of C are inherently machine dependent. The following list of potential trouble spots is 

not meant to be all-inclusive, but to point out the main ones. 
Purely hardware issues like word size and the properties of ftoating point arithmetic and integer divi

sion have proven in practice to be not much of a problem. Other facets of the hardware are reftected in 
differing implementations. Some of these, particularly sign extension (converting a negative character 
into a negative integer) and the order in which bytes are placed in a word, are a nuisance that must be 
carefully watched. Most of the others arc only minor problems. 

The number of register variables that can actually be placed in registers varies from machine to 
machine, as does the set of valid types. Nonetheless, the compilers all do things properly for their own 
machine; excess or invalid register declarations are ignored. 

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to write 
programs that depend on any of these properties. 

The order of evaluation of function arguments is not specified by the language. It is right to left on 
the PDP· 11 and V AX-11, left to right on the others. The order in which side effects take place is also 
unspecified. 

Since character constants are really objects of type int, multi-character character constants may be 
permitted. The specific implementation is very machine dependent, however, because the order in which 
characters are assigned to a word varies from one machine to another. 

Fields are assigned to words and characters to integers right-to-left on the PDP-11 and VAX-11 and 
left-to-right on other machines. These differences are invisible to isolated programs which do not indulge 
in type punning (for example, by converting an int pointer to a char pointer and inspecting the 
pointed-to storage), but must be accounted for when conforming to externally-imposed storage layouts. 

The language accepted by the various compilers differs in minor details. Most notably, the current 
PDP-11 compiler will not initialize structures containing bit-fields, and does not accept a few assignment 
operators in certain contexts where the value of the assignment is used. 

17. ANACHRONISMS 
Because C is an evolving language, certain obsolete constructions may be found in older programs. 

Although some versions of the compiler support such anachronisms, they have by and large disappeared, 
leaving only a portability problem behind. 

Earlier versions of C used the form =op instead of op= for assignment operators. This leads to 
;': biguities, typified by 

which assigns - 1 to x, but previously decremented x. 
The syntax of initializers has changed: previously, the equals sign that introduces an initializer was 

not present, so instead of 

int x = 1; 

one used 

int x 1; 

The change was made because the initialization 

int f ( 1) 

resembles a function declaration closely enough to confuse the compilers. 
A structure or union member reference is a chain of member references (qualifications) that are 

prefixed by either a pointer to a structure or union or a structure or union proper. Because each 
qualification implies the addition of an offset within an address computation, older compilers (which 
failed to check for membership in the appropriate structure or union) allowed omission of those 
qualifications with an offset of zero. Complete qualification is now required. 

Previous versions of the compiler were lax in detecting mixed assignments involving pointers and 
arithmetic quantities. These arc now remarked upon. 



C Reference Manual 27 

18. SYNTAX SUMMARY 
This summary of C syntax· is intended more for aiding comprehension than as an exact statement of 

the language. 

18.1 Expressions 
The basic expressions are: 

expression: 
primary 
* expression 
&. /value 
- expression 
I expression 

expression 
++/value 
-- /value 
!value ++ 
/value --
size of expression 
( type-name ) expression 
expression binop expression 
expression ? expression : expression 
/value asgnop expression 
expression , expression 

primary: 
identifier 
constant 
string 

/value: 

( expression 
primary ( expression-list,,,,, ) 
primary [ expression l 
primary . identifier 
primary - > identifier 

identifier 
primary [ expression ] 
/value • identifier 
primary - > identifier 
* expression 
( /value ) 

The primary-expression operators 

() [] -> 

have highest priority and group left-to-right. The unary operators 

* &. ++ sizeof ( type-name ) 

have priority below the primary operators but higher than any binary operator, and group right-to-left. 
Binary operators group left-to-right; they have priority decreasing as indicated below. The conditional 
operator groups right to left. 



28 

binop_· 

* I " + 
>> << 
< > <= >• 

•• I= 
& 

&.& 
I I 
I I 

? : 

Assignment operators all have the same priority, and all group right-to-left. 

asgnop_· 
= += -= •= I• "= >>= <<• &= 

The comma operator has the lowest priority, and groups left-to-right. 

18.2 Declarations 

declaration: 
decl-spedjiers init-dec/arator-list,,,. ; 

dec/-speciflers: 
type-specifier tkcl-speciflers OfJf 

sc-specifier decl-speciflers OfJI 

Sc-specifier: 
auto 
static 
extern 
register 
typedef 

type-specifler.-
c ha r 
short 
int 
long 
unsigned 
float 
double 
void 
struct-or-union-specifler 
typedef-name 
en um-specifier 

enum-specifier: 
enum { enum-list } 
enum identifier { enum-list } 
enum identifier 

enum-list: 
enumerator 
enum-list , enumerator 

C Reference Manual 

= ~. 



C Reference Manual 

enumerator: 
identifier 
identifier = constant-expression 

init-declarator-list: 
init-declarator 
init-declarator , init-declarator-list 

init-declarator: 
declarator initializer Of# 

declarator: 
identifier 
( declarator 
• declarator 
declarator ( ) 
declarator [ constant-expression°" ] 

struct-or-union-specifier: 
struct { struct-decl-list } 
struct identifier { struct-decl-list } 
struct identifier 
union { struct-decl-list } 
union identifier { struct-decl-list } 
union identifier 

struct-dec/-list: 
struct-declaration 
struct-declaration struct-dec/-list 

struct-declaration: 
type-specifier struct-dec/arator-list 

struct-declarator-list: 
struct-dec/arator 
struct-declarator , struct-declarator-list 

struct-dec/arator: 
declarator 
declarator : constant-expression 
: constant-expression 

initializer: 
= expression 
= { initializer-list } 
= { initializer-list , } 

initializer-list: 
expression 
initializer-list , initializer-list 
{ initializer-list } 

type-name: 
type-specifier abstract-declarator 

29 



30 

abstract-declarator: 
empty 
( abstract-declarator 
* abstract-declarator 
abstract-declarator ( } 
abstract-declarator C constant-expressionOfll 1 

typedef-name: 
identifier 

18.3 Statements 

compound-statement: 
{ declaration-list,,,_ statement-list,,,_ } 

declaration-list: 
declaration 
declaration declaration-list 

statement-list: 
statement 
statement statement-list 

statement: 
compound-statement 
expression ; 
if ( expression } statement 
if ( expression } statement else statement 
wh i l e ( expression ) statemenl 
do statement while ( expression ) 

C Reference Manual 

for ( expression-1,,,_ ; ex:pression-2,,,,, expression-3,,,,, ) statement 
switch ( expression ) statement 
case constant-expression statement 
default : statement 
break ; 
continue ; 
return ; 
return expression 
goto identifier ; 
ilientifier : statement 

18.4 External definitions 

program: 
external-definition 
external-definition program 

external-definition: 
function-definition 
data-definition 

function-definition: 
type-specifier Of/I function-declarator function-body 

Junction-declarator: 
declarator ( parameter-listOfll ) 



C Reference Manual 31 

parameter-/is.t: 
identifier 
identifier , parameter-list 

function-body: 
declaration-list compound-statement 

data-definition: 
extern..,. type-specifier..,. init-dec/arator-listopr 
static..,. type-specifier..,. init-dec/arator-/ist..,. 

18.S Preprocessor 

January 1981 

#define identifier token-string 
#define identifier( identifier , 
#undef identifier 
#include "filename n 

#include <filename> 
#if constant-expression 
#ifdef identifier 
#ifndef identifier 
#else 
#end if 
#line constant "filename" 

, identifier ) token-string 



A Guide to the C Library for UNIX Users 

C. D. Perez 

Bell Laboratories 
Murray Hill, New Jersey 07974 

1. INTRODUCTION 

UNIX 

D.1.2 

The C language on the UNIXt system has been traditionally provided with a rich supply of 
often-used routines formed into libraries selectable at load time. When the interest in portabil
ity heightened, the C library kept pace with other software being modified, and the library 
known as /lib/libS. a superseded the older attempts at portability [l]. This new library (2) con
centrated on input-output functions that removed the user from close contact with operating
system features. It also introduced new string functions and some memory-allocation routines. 

It is to the advantage of the C programmer to become acquainted with the C library functions 
and to keep up-to-date with new versions. To select routines from the C library is to choose 
available code that has been tuned for portability and efficiency. This document is meant to 
acquaint the programmer with a selection of functions from the C library that are commonly 
used and to point out differences among functions, special features, and occasionally precau
tions about function usage. The veteran user of the C library will find in this compendium an 
update to previously published information about the library. 

Section 2 describes the current changes and additions to the contents of /lib/libS. a since the 
Ritchie document was published. The bulk of the information appears in Attachment A, which 
is intended to be a user's reference tool. Function descriptions appear alphabetically within log
ical groupings. Where it seems helpful, examples are supplied. The values returned by the 
functions are identified in a way that suggests their use in portable code. 

2. UPDATE INFORMATION 

2.1 General 

The standard library f/ibflibS. a no longer exists separate from the rest of the C library; these 
routines have been incorporated into the standard UNIX C library, /lib/libc. a This library encom
passes input-output functions, routines for character type recognition and translation, space 
allocation, file status and a few miscellaneous routines of general use as well as many functions 
specific to the operating system. 

Three files exist with definitions of constants, and macros that are used by many of the C 
library functions. Stdio.h contains the definitions of NULL, EOF, FILE, and BUFSIZ. The 
standard input file (stdin), standard output file (stdout), and standard error file (stderr) are also 
defined there. These are included in a program with #include <stdio.h>. The file 
ctype. h provides the macro definitions for the variety of character classifications that is now pos
sible. Any program using those facilities must contain the line #include <ctype. h>. The 
functions that handle signals need to include the signal definitions. This can be done with 
#include <signal. h>. 

t UNIX is a trademark of Bell Laboratories. 



2 A Guide to the C library 

2.2 Space Allocation. 

Calloc was designed to be used for acquiring space initialized to zero; ma/foe is now available to 
allocate a chunk of uninitialized space, and realloc to change the size of an already allocated 
amount of space. Cfree has been renamed free, and returns space acquired by any of the above 
three functions. 

2.3 Input-Output Functions 

The function /open may now be supplied with new options that allow updating of a file ( r +, 

w+, a+). An added routine/dopen acts as a bridge between the low-level UNIX input-output 
functions and the "standard" technique of opening a stream. Print/ provides more versatile 
formatting. For operating systems that support the concept of pipes, and the shell, the func
tions papen and pclose add a facility for creating a pipe between the calling process and a com
mand supplied as the argument. 

2.4 Status 

To acquire information about a file,feof,ferror, andfileno have been available. Now a function 
named clearerr is added. It resets the error condition indicated by /error while the stream 
remains open. 

2.5 Character Types 

New macros added to the collection in dype. h are isalnum (alphanumeric test), ispunct (for 
recognizing punctuation characters), iscntrl (to identify certain control characters), isascii (to 
find ASCII characters), isgraph (having visible graphic representation), and isxdigit (hexadecimal 
digits with either upper-case or lower-case letters). Toascii can be used to translate characters 
into ASCII; toupper and to/ower are useful in changing the case of a letter. 

2.6 Some Conventions 

When the overhead of a function call could be substantial, because the routine suggests repeti
tive use, it is likely to have been implemented as a macro. Getchar is an illustration of this. 
Any "function" coded as a macro is noted in its description. In these cases the user should 
beware of the hazards of macro expansion on complex arguments. Cases should be avoided 
where arguments are automatically incremented or decremented, are evaluated more than once, 
contain their own macros or function calls, or whose order of operations is unclear after expan
sion. In short, only simple arguments are safe to use with macros. In a few cases the C library 
provides both a function call and a faster macro version to perform a similar task. 

Some function names have changed in order to follow the established convention. To insure 
that the uniqueness of function names is preserved even if truncation occurs on some systems, 
those functions dealing with entire strings are named str ... ; those functions that consider only 
the first n characters of a string are named strn . ... 

2. 7 Other Additions 

Software signals are implemented by two functions, gsignal and ssignal, to generate and catch 
error conditions respectively [3]. This facility allows the user to raise signals to be handled in 
whatever way seems useful; the C Library code will eventually raise signals so that calling pro
grams, such as UNIX commands, might be enhanced to respond to such signals. 

Tmpnam can be used to create a name for a temporary file. Ctermid retrieves the terminal 
identifier from the system, while cuserid retrieves the user ID. In each of these three functions, 
the user may choose to supply space for the safe storage of that name, or accept an internal 
storage place of suitable size. 

Tmpfile provides an unnamed temporary file that continues in existence until the termination of 
the process that requested it. 



A Guide to the C Library 3 

3. ACKNOWLEDGEMENTS 

The author is grateful to J. F. Maranzano and L. Rosier for their careful reading of this docu
ment, and to A. R. Koenig for his help during its preparation. T. A. Dolotta helped to format 
this document. 

4. REFERENCES 

[1] Lesk, M. E. The Portable C Library, Bell Laboratories (May 1975). 

[2] Ritchie, D. M. A New Input/Output Package, Bell Laboratories (May 1977). 

[3] Koenig, A. R. A Proposal for Software Signals, private communication (Apr. 14, 1978). 

[4] Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G. (eds.). UNIX User's Manual-
Release 3.0, Bell Laboratories (June I 980). 



4 A Guide to the C Library 

Attachment A 

COMMON C LIBRARY FUNCTIONS 

FILE ACCESS 

fclose 

fdopen 

file no 

fopen 

#include <stdio.h> 
int fclose (stream) 
FILE •stream; 

Fclose closes a file that was opened by /open, frees any buffers after emptying them, 
and returns zero on success, non-zero on error. Exit calls /close for all open files as 
part of its processing. 

#include <stdio.h> 
FILE •fdopen (jildes, type) 
int ft/des: 
char •type; 

Fdopen is used strictly on UNIX systems and therefore is not a portable function. 
Its value is in providing a bridge between the low-level input-output (I/O) facilities 
of UNIX and the standard 1/0 functions. Fdopen associates a stream with a valid 
file descriptor obtained from a UNIX system call (e.g., open). Type is the same 
mode (r, w, a, r+, w+, a+) that was used in the original creation of a file 
identified by f i ldes. Fdopen returns a pointer to the associated stream, or NULL 
if unsuccessful. 

Example: 

int fd; 
char *name = "myfile"; 
FILE *Strm; 

fd = open(name,O); 

if((strm = fdopen(fd,"r")) ==NULL) 
fprintf(stderr,"Error on %d\n",fd); 

#include <stdio.h> 
int fileno (stream) 
FI LE •stream; 

Implemented as a macro on UNIX, (and contained in the file stdio. h), file no returns 
an integer file descriptor associated with a valid stream. Any existing non-UNIX 
implementations may have different meanings for the integer which is returned. 
Fi/eno is used by many other standard functions in the C library. 

#include <stdio.h> 
FILE •/open (filename, type) 
char •filename, •type; 

Fopen opens a file named filename and returns a pointer to a structure 
(hereafter referred to as stream), containing the data necessary to handle a 
stream of data. Type is one of the following character strings: 

r used to open for reading. 
w used to open for writing, which truncates an existing file to zero length 

or creates a new file. 



A Guide lO the C Library 5 

freopen 

fseek 

a used. to append, that is, open for writing at the end of a file, or create a 
new file. 

r+ update reading, which means open for reading and allow writing, posi
tions the file pointer at the beginning of the file. 

w+ update writing, which means open for writing and allow reading, trun
cates an existing file to zero length or creates a new file. 

a+ update appending, which means open for writing, positions to the end of 
the file and allows for subsequent reads and writes (all writes being 
forced to current end-of-file position). If the file does not exist; it will 
be created. 

For the update options, fseek or rewind can be used to trigger the change from 
reading to writing, or vice versa. (Reaching EOF on input will also permit writing 
without further formality.) Fopen returns a NOLL pointer if filename cannot be 
opened. On non-UNIX implementations, file names may be different from UNIX
like names. The update functions are particularly applicable to stream I/O and 
allow the creation of temporary files for both reading and writing. The non-UNIX 
implementations contain many options other than those mentioned above. 

Example: 

FILE *fp; 
char •file; 

if((fp; fopen(file,"r"ll ••NULL) 
fprintf(stderr, "Cannot open %s\n",file); 

#include <stdio.h> 
FILE •freopen (newfile, type, stream) 
char •newfile, •type; 
Fl LE •stream; 

Freopen accepts a pointer, stream, to a previously opened file; the old file is 
closed, and then the new file is opened. The principal motivation for freopen is the 
desire to attach the names stdin, stdout, and stderr to specified files. On a success
ful freopen, the stream pointer is returned; otherwise, NULL is returned, indicating 
that either the closing of stream failed, or the file closing took place and the reo
pening failed. Freopen is of limited portability; it can not be implemented in all 
environments. 

Example: 

char *newfile; 
FILE •nfile; 

if((nfile ~ freopen(newfile,"r",stdout)) ==NULL) 
fprintf(stderr,"Cannot reopen %s\n",newfilel; 

#include <stdio.h> 
int /seek (stream, offset, ptrname) 
Fl LE •stream; 
long offset; 
int ptrname; 

Fseek positions a stream to a location offset distance from the beginning, 
current position, or end of a file, depending on the values 0, I, 2, respectively, for 
ptrname. On UNIX the offset unit is bytes; other implementations may be 
different. (For example, on GCOS the offset is three 12-bit fields of block, logical
record number, and offset-into-record number.) The return values are 0 on suc
cess and EOF on failure. Fseek may be used with both buffered and unbuffered 
files. As implemented, the function cannot be ported to the OS/370 environment. 



6 

pclose 

po pen 

rewind 

setbuf 

Example: 

To position to the end of a file: 

FILE *Stream; 

fseek(stream,OL,2}; 

#include <stdio.h> 
int pclose (stream) 
FI LE •stream; 

A Guide to the C Library 

Pclose closes a stream opened by popen. It returns the exit status of the command 
that was issued as the first argument of its corresponding popen, or -1 if the 
stream was not opened by popen. The function name pclose means an entirely 
different thing in the OS/370 environment. 

#include <stdio.h> 
FILE •popen (command, type) 
char •command, •type; 

Papen is used to create a pipe between the calling process and a command to _be 
executed. The first argument is a shell command line; type is the 1/0 mode for the 
pipe, and may be either r for reading or w for writing. The function returns a 
stream pointer to be used for 1/0 on the standard input or output of the command. 
A NULL pointer is returned if an error occurs. 

Example: 

FILE *PStrm; 

if((pstrm=popen("tr mvp MVP","w"))== NULL) 
fprintf(stderr,"popen error\n"}; 

fprintf(pstrm,"a message via the pipe ... \n"I; 
if(pclose(pstrm) ;; -1) 

fprintf(stderr,"Pclose error\n"}; 

results in: 

a Message Via the PiPe 

#include <stdio.h> 
int rewind(stream) 
FI LE •stream; 

Rewind sets the position of the next operation at the beginning of the file associ
ated with stream, retaining the current mode of the file. It is the equivalent of 
/seek (stream,OL,O);. 

#include <stdio.h> 
setbuf (stream, buf) 
FI LE •stream; 
char •buf; 

This function allows the user to choose his own buff er for 1/0, or to choose the 
unbuffered mode. Use it after opening and before reading or writing; it reduces 
the number of system read/write requests. When buf is set to NULL, 1/0 is 
unbuffered. The default status for all 1/0 streams is buffered unless the stream is 
connected to a communication-line device. When the character routine putc is 
used with an output stream that is unbuffered, there will result one system call 
per character transferred. On the other hand, when any of the string output rou
tines printf, fprintf, /write, puts, and fpu,ts is used with an output stream that is 
unbuffered, buffering will be temporarily and transparently established so that the 
resultant output character string will be passed to the system in one system call. 



A Guide to the C Library 7 

The choice to buffer 1/0 brings with it the responsibility for flushing any data that 
may remain in a last, partially-filled buffer. Fflush or /close perform this task. The 
constant BUFS IZ in stdio. h tells how big the character array buf is. It is well
chosen for the machine on which UNIX is running. (On GCOS the function is 
implemented as a null macro, because GCOS does not need such a function.) 

Example: 

setbuf (stdout, malloc(BUFSIZ)); 

FILE STATUS 

clearerr #include <stdio.h> 
clearerr( stream) 
FI LE •stream; 

Clearerr is used to reset the error condition on stream. The need for clearerr 
arises on UNIX implementations where the error indicator is not reset after a query. 

f eof #include <stdio.h> 
int feof (stream) 

ferror 

FI LE •stream; 

Feof, which is implemented as a macro on UNIX, returns non-zero if an input 
operation on stream has reached end of file; otherwise, a zero is returned. Feof 
should be used in conjunction with any 1/0 function whose return value is not a 
clear indicator of an end-of-file condition. Such functions are fread and getw. 

Example: 

int *Xj 
FILE •S'tream; 

do 
*X++; getw(stream); 

while( lfeof(stream)); 

#include <stdio.h> 
int ferror (stream) 
FI LE *stream; 

Ferror tests for an indication of error on stream. It returns a non-zero value 
(true) when an error is found, and a zero otherwise. Calls to ferror do not clear 
the error condition, hence the c/earerr function is needed for that purpose. The 
user should be aware that, after an error, further use of the file may cause strange 
results. On UNIX ferror is implemented as a macro. 

Example: 

FILE *Stream; 
int •x; 

while( lferror(streamll 
putw(•x++,streaml; 

ftell #include <stdio.h> 
long fie/I (stream) 
FILE •stream; 

Fte/I is used to determine the current off set relative to the beginning of the file 
associated with stream. It returns the current value of the offset; in UNIX it 
returns the offset value in bytes. On error, a value of -1 is returned. This func
tion is useful in obtaining an offset for subsequentfseek calls. 



8 A Guide to the C Library 

INPUT FUNCTIONS 

fgetc #include <stdio.h> 
int f getc (stream) 
FILE •stream; 

This is the function version of the macro getc and acts identically to getc. Because 
fgetc is a function and not a macro,it can be used in debugging to set breakpoints 
on fgetc and when the side effects of macro processing of the argument is a prob
lem. Furthermore, it can be passed as an argument. 

fgets #include <stdio.h> 
char •/gets (s,n,stream) 
char *s: 

fread 

fscanf 

int n; 
FILE •stream; 

Fgets reads from stream into the area pointed to by s either n-1 characters or 
an entire string including its new-line terminator, whichever comes first. A final 
null character is affixed to the data read. It returns the pointer s on success, and 
NULL on end-of-file or error. Fgets differs from the function gets in that it can 
read from other than stdin, and that it appends the new-line at the end of input 
when the size of the string is longer than or equal to n. More importantly, it pro
vides control over the size of the string to be read that is not available with gets. 

Example: 

char msg[MAX]; 
FILE *myfile; 

while(fgets(msg,MAX,myfile) I= NULL) 
printf("%s\n",msg); 

#include <stdio.h> 
intfread((char •)ptr, sizeof (•ptr), nitems, stream) 
Fl LE •stream; 

This function reads from stream the next ni terns whose size is the same as the 
size of the item pointed to by ptr, into a sufficiently large area starting at ptr. It 
returns the number of items read. In UNIX, fread makes use of the function getc. 
It is often used in combination with feof and /error to obtain a clear indication of 
the file status. 

Example: 

FILE •pstm; 
char mesg[100]; 

while(fread((char *)mesg,sizeof(*mesg),1,pstm) •• 1) 
printf("%s\n",mesg); 

#include <stdio.h> 
int fscanf (stream, format{, argptr] . .. ) 
char *format; 
FI LE •stream; 

Fscanf accepts input from the file associated with stream, and deposits it into the 
storage area pointed to by the respective argument pointers after conversion accord
ing to the specified formats. Format specifications are those that appear in the 
UNIX User's Manual [4] entry for scaef(3S). Fscanf differs from sea'!{ in that it can 
read from other than stdin. The function returns the number of successfully depo· 
sited input arguments, or EOF on error or unexpected end-of-input. 



A Guide to the C Library 9 

Example: 

FILE *file; 
long pay; 
char name[15l; 
char pan[ 7]; 

fscanf(file,"%6s%14s%ld\n",pan,name,&pay); 
if(pay<50000) 

printf("S%ld raise for %s.\n",pay/10,name); 

If the input data is: 

020202MaryJones 15000 

the resulting output is: 

S1500 raise for MaryJones. 

getc #include <stdio.h> 
int getc (stream) 

getchar 

Fl LE •stream; 

Getc returns the next character from the named stream. On UNIX it is imple
mented as a macro to avoid the overhead of a function call. On error or end-of-file 
it returns an EOF. Fgetc should be used when it is necessary to avoid the side 
effects of argument processing by the macro getc. 

#include <stdio.h> 
int get char() 

This is identical to getc (stdin). 

gets #include <stdio.h> 
char •gets(s) 
char •s; 

Gets reads a string of characters up to a new-line from stdin and places them in the 
area pointed to by s. The new-line character which ended the string is replaced by 
the null character. The return values are s on success, NULL on error or end-of
file. The simple example below presumes the size of the string read into msg will 
not exceed SIZE in length. If used in conjunction with strlen, a dangerous 
overflow can be detected, though not prevented. 

Example: 

char msg[SIZEl; 
char *Si 

s = msg; 
while (gets(s) 1- NULL) 

printf("%s\n",s); 

getw #include <stdio.h> 
int getw (stream) 
Fl LE •stream; 

Getw reads the next word from the file associated with stream. On success it 
returns the word; on error or end of file, it returns EOF. However, because EOF 
could be a valid word, this function is best used with feof and fe"or. 



10 

scanf 

sscanf 

ungctc 

Example: 

FILE *Stream; 
int *X; 

do 
*X++; getw(strearn); 

while ( lfeof(stream)J; 

#include <stdio.h> 
int scanf (format[, argptr] ... ) 
char *format; 

A Guide to the C Library 

Scanf reads input from stdin and deposits it, according to the specified formats, in 
the storage area pointed to by the respective argument pointers. The correct for
mat specifications can be found in the UNIX User's Manual [4] entry for scanf(3S). 
For input from other streams than stdin use fscanf; for input from a character array 
use sscanf. The return values are the number of successfully deposited input argu
ments, or EOF on error or unexpected end-of-input. 

Example: 

long number; 

scanf("%ld",&nurnber); 
printf("%ld is %s", number, nurnber%2? "odd": "even"); 

#include <stdio.h> 
sscanf ( s, format [, pointer} . .. ) 
char *S; 
char •format; 

Sscanf accepts input from a character string s and deposits it, according to the 
specified formats, in the storage area pointed to by the respective argument 
pointers. Format specifications appear in the UNIX User's Manual [4] entry for 
scanf(3S). This function returns the number of successfully deposited arguments. 

Example: 

char datestd] 
char month[4]; 
char ye ad 5]; 

{"THU MAR 29 11:04:40 EST 1979"}; 

sscanf(datestr,"%*3s%3s%*2S%*8S%•3s%4s",month,year); 
printf("%s, %s\n",month,year); 

The result is: 

MAR, 1979 

#include <stdio. h> 
int ungetc (c, stream) 
int c; 
FI LE *Stream; 

Ungetc puts the character c back on the file associated with stream. One charac
ter (but never EOF) is assured of being put back. If successful, the function 
returns c; otherwise, EOF is returned. 

Example: 

while(isspace (c getc(stdin))) 

ungetc(c,stdin); 

This code puts the first character that is not white space back onto the standard 
input stream. 



A Guide to the C Library 11 

OUTPUT FUNCTIONS 

fflush 

fprintf 

fputc 

#include <stdio.h> 
intfflush (stream) 
FI LE •stream; 

Ff/ush takes action to guarantee that any data contained in file buffers and not yet 
written out will be written. It is used by /close to Hush a stream. No action is 
taken on files not open for writing. The return values are zero for success, EOF on 
error. 

#include <stdio.h> 
int fprintf (stream, format!. arg J ... ) 
FILE •stream; 
char •format; 

Fprintf provides formatted output to a named stream. The function print/ may be 
used if the destination is stdout. Specifications for formats are available in the 
UNIX User's Manual [4] entry for printf(3S). On success, fprintf returns the 
number of characters transmitted; otherwise, EOF is returned. 

Example: 

int *filename; 
int c; 

if(c==EOF) 

#include <stdio.h> 
intfputc (c,stream) 
int c; 
FILE •stream; 

fprintf(stderr,"EOF on Xs\n",filename); 

Fputc performs the same task as pule; that is, it writes the character c to the file 
associated with stream, but is implemented as a function rather than a macro. It 
is preferred to putc when the side effects of macro processing of arguments are a 
problem. On success, it returns the character written; on failure it returns EOF. 

Example: 

FILE *in, •out; 
int c; 

while ((c • fgetc(in)) I= EOF) 
fputc(c,out); 

fputs #include <stdio.h> 
int fputs( s,stream) 
char •s; 

fwrite 

FILE •stream; 

Fputs copies a string to the output file associated with stream. In UNIX it uses 
the function putc to do this. It is different from puts in two ways: it allows any out
put stream to be specified, and it does not affix a new-line to the output. For an 
example, see puts. 

#include <stdio.h> 
int/write ((char •)ptr, sizeof (•ptr),nitems,stream) 
FI LE •stream; 

Beginning at ptr, this function writes up to ni terns of data of the type pointed 
to by ptr into output stream. It returns the number of items actually written. 



12 

printf 

A Guide to the C Library 

For the GOOS implementation, ptr must be on a machine-word boundary. Like 
fread this function should be used in conjunction with fe"or to detect the error 
condition. 

Example: 

char mesg[] •{"My message to write out\n"}; 
FILE •pstrm; 

if(fwrite(mesg,(sizeof(•mesg)-1),1,pstrm) I= 1) 
fprintf(stderr,"Output error\n"); 

#include <stdio.h> 
int printf(format/, arg} ... ) 
char •format: 

Print/ provides formatted output on stdout. The specifications for the available for
mats are given in the UNIX User's Manual (4) entry for print/(3S). Fprintf and 
sprint/ are related functions that write output onto other than the standard output. 
In case of error, implementations are not consistent in their output. On success, 
print/ returns the number of characters transmitted; otherwise, EOF is returned. 

Example: 

int num • 10; 
char msg[] = {"ten"}; 
printf("%d - %0 - Xs\n", num, num, msg); 

results in the line: 

10 - 12 - ten; 

putc #include <stdio.h> 
int putc (c,stream) 
int c; 

putchar 

FILE •stream; 

Pule writes the character c to the file associated with stream. On success, it returns 
the character written; on error it returns EOF. Because it is implemented as a 
macro, side effects may result from argument processing. In such cases, the 
equivalent functionfputc should be used. 

Example: 

#define PROMPT() 

If include <stdio.h> 
int putchar(c) 
int c: 

putc('\7',stderr) 

Putchar is defined as putc (c, stdout). It returns the character written on success, or 
EOF on error. 

Example: 

char •cp; 
char x[SIZEl; 

for(cp:x;cp<(x+SIZE);cp++) 
put char C •cp); 

puts If include <stdio.h> 
int puts(s) 
char *S; 



A Guide to the C Ubrary 13 

putw 

sprintf 

The function copies the string pointed to by s without its terminating null character 
to stdout. A hew-line character is appended. The UNIX implementation uses the 
macro putchar (which calls pule). 

Example: 

puts("I will append a new-line"); 
fputs("\tsome more data ", stdout); 
puts("and now a new-line"); 

The resulting output is: 

I will append a new-line 
some more data and now a new-line 

#include <stdio.h> 
int putw(w,stream) 
Fl LE •stream; 
int w; 

Putw appends word w to the output stream. As with getw, the proper way to 
check for an error or end-of-file is to use the feof and /error functions. 

Example: 

int info; 

while( lfeof(stream)) 
putw(info,stream); 

#include <stdio.h> 
int sprintf(s, format, [, arg] ... ) 
char •s; 
char •format; 

Sprintf allows for formatted output to be placed in a character array pointed to by s. 
Sprint/ adds a null at the end of the formatted output. See the UNIX User's Manual 
(4) entry for printf(3S) for the specification of formats. It is the user's responsibil
ity to provide an array of sufficient length. Other related functions, printf and 
fprintf, handle similar kinds of formatted output. Sprint/ can be used to build for
matted arrays in memory, to be changed dynamically before output, or to be used 
to call other routines. The comparable input function is sscanf. On success, sprintf 
returns the number of characters transmitted; otherwise, EOF is returned. 

Example: 

char cmd [ 1 O O] ; 
char •doc • "/usr/src/cmd/cp.c" 
int width = 50; 
int length "' 60; 

sprintf(cmd,"pr -w%d -1%d %s\n",width,length,doc); 
system(cmd); 

The above code executes the pr command to print the source of the cp command. 

STRING FUNCTIONS 

strcat char •strcat(dst,src) 
char .Jst, •src; 

Streat appends characters in the string pointed to by s re to the end of the string 
pointed to by dst, and places a null character after the last character copied. It 
returns a pointer to dst. To concatenate strings up to a maximum number of 
characters, use strncat. 



14 

strchr 

strcmp 

strcpy 

strlen 

A Guide to the C Library 

Example: 

ehar •myfile; 
char dir[L_cuserid+S] n/usr/n; 

myfile = (streat(dir,cuserid(O))); 

The result is the concatenation of the login name onto the end of the string dir. 

char •strchr(s,c) 
char *S; 
int c; 

Strchr searches a string pointed to by s, for the leftmost occurrence of the charac· 
ter c. It returns a pointer to the character found, or NULL if c does not occur in 
the string. 

Example: 

int length; 
ehar •a; 
register char •b; 

length= ((b=strchr(a,' ')) == NULL?O:b - a); 

The resulting 1 ength is the number of characters up to the first blank in the 
string pointed to by a. 

char *Strcmp(sl,s2) 
char *SI, •s2; 

Strcmp compares the characters in the string s 1 and s 2. It returns an integer 
value, greater than, equal to, or less than zero, depending on whether s 1 is lexico
graphically greater than, equal to, or less than s2. 

Example: 

#define EQ(x,y) lstrcmp(x,y) 

char *strcpy ( dst. src) 
char *list, •src; 

Strcpy copies the characters (including the null terminator) from the string pointed 
to by src into the string pointed to by dst. A pointer to dst is returned. 

Example: 

ehar dst[] = "UPPER CASE"; 
char src[] = "this is lower casen; 

printf("%s\n",strcpy(dst,src+8ll; 

results in: 

lower case 

int strlen(s) 
char *S; 

Str/en counts the number of characters starting at the character pointed to by s up 
to, but not including, the first null character. It returns the integer count. 

Example: 

char nextitem[SIZEl; 
ehar series[MAXl; 

if(strlen(series)) strcat(series,","l; 
strcat(series,nextitem); · 



A Guide to the C Library 15 

strncat 

strnc111p 

strncpy 

strrchr 

char •strncat(d~t. src, n) 
char •dst, •src; 
int n; 

Strncat appends a maximum of n characters of the string pointed to by src and 
then a null character to the string pointed to by dst. It returns a pointer to dst. 

Example: 

char dst[] = "cover"; 
char src[] = "letter"; 

printf("%s\n",strncat(dst,src,3JJ; 

The output is: 

coverlet 

int strncmp(sl ,s2,n) 
char •sl, •s2; 
int n; 

Strncmp compares two strings for at most n characters and returns an integer 
greater than, equal to, or less than zero as s 1 is lexicographically greater than, 
equal to or less than s 2. 

Example: 

char filename [] = "/dev/ttyx"; 

if(strncmp (filename+S, "tty",3) == OJ 
printf("success\n"J; 

char •strncpy(dst,src,n) 
char •dst, •src; 
int n; 

Strncpy copies n characters of the string pointed to by src into the string pointed 
to by dst. Null padding or truncation of src occurs as necessary. A pointer to 
dst is returned. 

Example: 

char buf [MAX]; 
char date [29] = {"Fri Jun 29 09:35:44 EDT 1979"}; 
char •day = buf; 

strncpy(day,date,3); 

After executing this code, day points to the string Fri. 

char •strrchr(s,c) 
char •s; 
int c; 

Strrchr searches a string pointed to by s, for the rightmost occurrence of the char
acter c. It returns a pointer to the character found, or NULL if c does not occur in 
the string. 

Example: 

char reverse[] = "NAME NO ONE MAN"; 

printf(strrchr (reverse,'M'll; 

results in: 

MAN 



16 A Guide to the C Library 

CHARACTER CLASSIFICATION 

isalnum 

isalpha 

isascii 

iscntrl 

isdigit 

is graph 

islower 

is print 

#include <ctype.h> 
int isalnum ( c) 
int c; 

This macro determines whether or not the character c is an alphanumeric character 
( [A-Za-z0-9 J). It returns zero for false and non-zero for true. 

#include <ctype.h> 
int isalpha ( c) 
int c; 

This macro determines whether or not the character c is an alphabetic character 
( [A- z a - z ] ) . It returns zero for false and non-zero for true. 

#include <ctype.h> 
int isascii ( c) 
int c; 

This macro determines whether or not the integer value supplied is an ASCII char
acter; that is, a character whose octal value ranges from 000 to 177. It returns zero 
for false and non-zero for true. 

#include <ctype.h> 
int iscntrl(c 
int c; 

This macro determines whether or not the character c when mapped to ASCII is a 
control character (that is, octal 177 or 000-037). It returns zero for false and non
zero for true. 

#include <ctype.h> 
int isdigit ( c) 
int c; 

This macro determines whether or not the character c is a digit. It returns zero for 
false and non-zero for true. 

#include <ctype.h> 
int isgraph(c) 
int c; 

This macro determines whether or not the character c has a graphic representation 
(that is, is an ASCII code between octal 041 and 176 inclusive). 

#include <ctype.h> 
int islower(c) 
int c; 

This macro determines whether or not the character c is a lower-case letter. It 
returns zero for false and non-zero for true. 

#include <ctype.h> 
int isprint ( c) 
int c; 

This macro determines whether or not the character c is a printable character. 
(This includes spaces.) It returns zero for false and non-zero for true. 



A Guith to the C Ubrary 17 

ispunct 

is space 

is upper 

isxdigit 

#include <ctype.h> 
int ispunct(c) 
int c; 

This macro determines whether or not the character c is a punctuation character 
(neither a control character nor an alphanumeric). It returns zero for false and 
non-zero for true. 

#include <ctype.h> 
int isspace ( c) 
int c; 

This macro determines whether or not the character c is a form of white space 
(that is, a blank, horizontal or vertical tab, carriage return, form-feed or new-line). 
It returns zero for false and non-zero for true. 

#include <ctype.h> 
int isupper(c) 
int c; 

This macro determines whether or not the character c is an upper-case letter. It 
returns zero for false and non-zero for true. 

#include <ctype.h> 
int isxdigit(c) 
int c; 

This macro determines whether or not the character c is a hexadecimal digit 
(upper- and lower-case letters are equivalent). It returns zero for false and non
zero for true. 

CHARACTER TRANSLATION 

toascii 

tolower 

#include <ctype.h> 
int toascii ( c) 
int c; 

The macro toascii maps the input character into its ASCII equivalent: it usually does 
nothing in the UNIX environment. In a non-ASCII environment, it is useful when 
one needs to convert into ASCII any characters that are used as indices into tables 
that are sorted in the ASCII collating sequence. 

Example: 

FILE *Oddstrm; 

if( lisdiqit (toascii(getw(oddstrmllll 
fprintf(stderr,"bad data\n"); 

#include <ctype.h> 
int tolower (c) 
int c; 

If the argument c passed to the function tolower is an upper-case letter, the lower
case representation of c is returned; otherwise, c is returned. For a faster routine, 
use _to/ower, which is implemented as a macro; however, its argument must be an 
upper-case letter. 

Example: 

if(tolower(qetchar(}) I= 'y') 
exit(O); 



18 

to upper #include <dype.h> 
int toupper ( c) 
int c: 

A Guide to the C Library 

If the argument c passed to the function toupper is a lower-case letter, the upper
case representation of c is returned; otherwise, c is returned. For a faster routine, 
use _toupper; however, its argument must be a lower-case letter. 

Example: 

if(toupper (getchar()) I= 'Y') 
exit(O); 

SPACE ALLOCATION 

calloc char •calloc(n. size) 
unsigned n, size: 

Calloc allocates enough storage for an array of n items aligned for any use, each of 
size bytes. The space is initialized to zero. Calloc returns a pointer to the begin
ning of the allocated space, or a NULL pointer on failure. 

Example: 

char *t; 
int n; 
unsigned size; 

if(t=calloc((unsigned)n, size) ==NULL) 
fprintf(stderr,"Out of space.\n"); 

free free(ptr) 

malloc 

realloc 

char •ptr; 

Free is used in conjunction with the space allocating functions malloc, cal/oc, or 
realloc. Ptr is a pointer supplied by one of these routines. The effect is to free 
the space previously allocated. 

char •malloc( size) 
unsigned size: 

Ma/foe allocates size bytes of storage beginning on a word boundary. It returns a 
pointer to the beginning of the allocated space, or a NULL pointer on failure to 
acquire space. For space initialized to zero, see calloc. 

Example: 

int n; 
char •t; 
unsigned size; 

if(t=malloc((unsigned)n) -- NULL) 
fprintf(stderr,"Out of space.\n"); 

char •realloc (ptr, size) 
char •ptr; 
unsigned size; 

Given ptr which was supplied by a call to malloc or ca/Joe, and a new byte size, 
size, realloc returns a pointer to the block of space of size bytes. This function 
is useful to do storage compacting along with malloc andfree. 



A Guide to the C Library 19 

MISCELLANEOUS FUNCTIONS 

ctermid 

cuserid 

gsignal 

ssignal 

#include <stdio.h> 
char •ctermid(s) 
char •s: 

Ctermid provides a string that can be used as a file name, (/dev/tty), to identify 
the controlling terminal for the running process. Unlike the function ttyname it is 
disassociated from the machine-dependent concept of a file descriptor. If an argu
ment of zero is supplied, the string is stored internally and will be overwritten on 
the next call to ctermid. A non-zero argument is treated as a pointer to a 
sufficiently large storage area where the string is placed. 

#include <stdio.h> 
char •cuserid ( s) 
char •s; 

Cuserid composes a string representation of the login name of the owner of the 
current process. A zero argument results in the string being stored in an internal 
area; in this case a pointer to that area is returned on success, and a NULL on 
failure. A non-zero argument is assumed to be a pointer to a repository of size 
L cuserid (contained in ctype.h). On failure a null character will be inserted in 
place of a string and a NULL is returned. 

E.xample: 

puts (cuserid((char *l NULL)); 

#include <signal.h> 
int gsigna/ ( sig) 
int sig; 

Along with ssignal, gsignal implements a facility for software signals. A software 
signal is raised by a call to gsigna/. Raising a software signal causes the action esta
blished by ssignal to be taken. The argument s i g identifies the signal to be set. If 
s ig is a value defined in signal. h, then gsignal returns that value. If an action 
function was established for s i g, then the action is reset to the default value, the 
action function is performed with argument sig, and the return value is the return 
value of the action function. In any abnormal case, gsignal returns the value 0 and 
takes no other action. 

Example: 

char *buf; 
if((buf = qets(string))==NULL) gsignal(2); 

#include <signal.h> 
int ( * ssigna/ ( sig, action)) () 
int sig, (•action)(); 

Ssignal along with gsignal implements a software signal facility. An action for a 
software. signal is established by a call to ssigna/. Sig is the number identifying the 
type of signal for which an action is to be established. The numbers currently 
defined are found in signal.h. Action is either the name of a user-defined action 
function or one of the constants defined in signal. h. Ssignal returns the action pre
viously established for that signal type; in abnormal circumstances ssignal returns a 
default of zero. 



20 

system 

Example: 

main() { 
int error ( ) ; 
ssiqnal(2, error); 

} 
error (x) { 
int x; 

A Guide to the C Library 

printf("Software signal %d has been caught.\n",x); 
} 

#include <stdio.h> 
system (string) 
char •string; 

System passes the argument string to the operating system as a command line. 
It returns the exit status of the command executed. 

Example: 

if( I system ("cmp -s file1 file2")) 
printf("The two files are identical.\n"); 

tmpnam #include <stdio.h> 
char •tmpnam ( s) 
char •s; 

Tmpnam generates a file name that can be used for a temporary file. If s is zero, it 
returns a pointer to a character string containing that name in an internal storage 
area. For a non-zero value in s, the file name is stored in a sufficiently large area 
pointed to bys (see L_ tmpnam in ctype.h) ands is the return value as well. 

tmpfile #include <stdio.h> 
Fl LE •tmpfile () 

Tmpfi/e creates a scratch file opened for update. It stays in existence only during 
the life of the process issuing the function call and is inherited across forks. It 
returns a pointer to the FILE associated with the opened stream. On error, it 
returns NULL. 

January J 98 J 



LINT, a C Program Checker 

· S. C. Johnson 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Lint is a command which examines C source programs, detecting a 
number of bugs and obscurities. It enforces the type rules of C more strictly 
than the C compilers. It may also be used to enforce a number of portability 
restrictions involved in moving programs between different machines and/or 
operating systems. Another option detects a number of wasteful, or error 
prone, constructions which nevertheless are, strictly speaking, legal. 

Lint accepts multiple input files and library specifications, and checks 
them for consistency. 

The separation of function between lint and the C compilers has both his
torical and practical rationale. The compilers turn C programs into executable 
files rapidly and efficiently. This is possible in part because the compilers do 
not do sophisticated type checking, especially between separately compiled pro
grams. Lint takes a more global, leisurely view of the program, looking much 
more carefully at the compatibilities. 

This document discusses the use of lint, gives an overview of the imple
mentation, and gives some hints on the writing of machine independent C 
code. 

Introduction and Usage 

UNIX 

D.1.3 

Suppose there are two C1 source files, file/. c and file2.c, which are ordinarily compiled 
and loaded together. Then the command 

lint file l .c file2.c 

produces messages describing inconsistencies and inefficiencies in the programs. The program 
enforces the typing rules of C more strictly than the C compilers (for both historical and practi
cal reasons) enforce them. The command 

lint - p file l .c file2.c 

will produce, in addition to the above messages, additional messages which relate to the porta
bility of the programs to other operating systems and machines. Replacing the - p by - h will 
produce messages about various error-prone or wasteful constructions which, strictly speaking, 
are not bugs. Saying - hp gets the whole works. 

The next several sections describe the major messages; the document closes with sections 
discussing the implementation and giving suggestions for writing portable C. An appendix 
gives a summary of the lira options. 



2 LINT 

A Word about Philosophy 

Many of the facts which lint needs may be impossible to discover. For example, whether 
a given function in a program ever gets called may depend on the input data. Deciding whether 
exit is ever called is equivalent to solving the famous "halting problem," known to be recur
sively undecidable. 

Thus, most of the lint algorithms arc a compromise. If a function is never mentioned, it 
can never be called. If a function is mentioned, lint assumes it can be called; this is not neces
sarily so, but in practice is quite reasonable. 

Lint tries to give information with a high degree of relevance. Messages of the form "xxx 
might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of 
real bugs they uncover. If this fraction of real bugs is too small, the messages lose their credi
bility and serve merely to clutter up the output, obscuring the more important messages. 

Keeping these issues in mind, we now consider in more detail the classes of messages 
which lint produces. 

Unused Variables and Functions 

As sets of programs evolve and develop, previously used variables and arguments to func
tions may become unused; it is not uncommon for external variables, or even entire functions, 
to become unnecessary, and yet not be removed from the source. These .. errors of commis
sion" rarely cause working programs to fail, but they are a source of inefficiency, and make 
programs harder to understand and change. Moreover, information about such unused vari
ables and functions can occasionally serve to discover bugs; if a function does a necessary job, 
and is never called, something is wrong! 

Lint complains about variables and functions which are defined but not otherwise men
tioned. An exception is variables which are declared through explicit extern statements but are 
never referenced; thus the statement 

extern float sin( ) ; 

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C 
compiler. In some cases, these unused external declarations might be of some interest; they 
can be discovered by adding the -x flag to the lint invocation. 

Certain styles of programming require many functions to be written with similar inter
faces; frequently, some of the arguments may be unused in many of the calls. The - v option 
is available to suppress the printing of complaints about unused arguments. When -v is in 
effect, no messages arc produced about unused arguments except for those arguments which 
are unused and also declared as register arguments; this can be considered an active (and 
preventable) waste of the register resources of the machine. 

There is one case where information about unused, or undefined, variables is more dis
tracting than helpful. This is when lint is applied to some, but not all, files out of a collection 
which are to be loaded together. In this case, many of the functions and variables defined may 
not be used, and, conversely, many functions and variables defined elsewhere may be used. 
The - u flag may be used to suppress the spurious messages which might otherwise appear. 

Set/Used Information 

Lint attempts to detect cases where a variable is used before it is set. This is very difficult 
to do well; many algorithms take a good deal of time and space, and still produce messages 
about p·erfectly valid programs. Lint detects local variables (automatic and register storage 
classes) whose first use appears physically earlier in the input file than the first assignment to 
the variable. It assumes that taking the address of a variable constitutes a "use," since the 
actual use may occur at any later time, in a data dependent fashion. 

The restriction to the physical appearance of variables in the file makes the algorithm very 
simple and quick to implement, since the true flow of control need not be discovered. It does 



LINT 3 

mean that lint can complain about some programs which are legal, but these programs would 
probably be considered bad on stylistic grounds (e.g. might contain at least two goto's). 
Because static and external variables are initialized to 0, no meaningful information can be 
discovered about their uses. The algorithm deals correctly, however, with initialized automatic 
variables, and variables which are used in the expression which first sets them. 

The set/used information also permits recognition of those local variables which are set 
and never used; these form a frequent source of inefficiencies, and may also be symptomatic of 
bugs. 

Flow of Control 

Lint attempts to detect unreachable portions of the programs which it processes. It will 
complain about unlabeled statements immediately following goto, break, continue, or return 
statements. An attempt is made to detect loops which can never be left at the bottom, detect
ing the special cases while( I ) and for(;;) as infinite loops. Lint also complains about loops 
which cannot be entered at the top; some valid programs may have such loops, but at best they 
are bad style, at worst bugs. 

Lint has an important area of blindness in the flow of control algorithm: it has no way of 
detecting functions which are called and never return. Thus, a call to exit may cause unreach
able code which lint does not detect; the most serious effects of this are in the determination of 
returned function values (see the next section). 

One form of unreachable statement is not usually complained about by lint; a break state
ment that cannot be reached causes no message. Programs generated by yacc, 2 and especially 
lex ,3 may have literally hundreds of unreachable break statements. The -0 flag in the C com
piler will often eliminate the resulting object code inefficiency. Thus, these unreached state
ments are of little importance, there is typically nothing the user can do about them, and the 
resulting messages would clutter up the lint output. If these messages are desired, lint can be 
invoked with the -b option. 

Function Values 

Sometimes functions return values which are never used; sometimes programs incorrectly 
use function "values" which have never been returned. Lint addresses this problem in a 
number of ways. 

Locally, within a function definition, the appearance of both 

return( expr ); 

and 

return ; 

statements is cause for alarm; lint will give the message 

function name contains return(e) and return 

The most serious difficulty with this is detecting when a function return is implied by flow of 
control reaching the end of the function. This can be seen with a simple example: 

f ( a ) { 
if ( a ) return ( 3 ) ; 
g (); 
} 

Notice that, if a tests false, f will call g and then return with no defined return value; this will 
trigger a complaint from lint. If g, like exit, never returns, the message will still be produced 
when in fact nothing is wrong. 



4 LINT 

In practice, some potentially serious bugs have been discovered by this feature; it also 
accounts for a substantial fraction of the "noise" messages produced by lint. 

On a global scale, lint detects cases where a function returns a value, but this value is 
sometimes, or always, unused. When the value is always unused, it may constitute an 
inefficiency in the function definition. When the value is sometimes unused, it may represent 
bad style (e.g., not testing for error conditions). 

The dual problem, using a function value when the function does not return one, is also 
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of 
occasions in "working" programs; the desired function value just happened to have been com
puted in the function return register! 

Type Checking 

Lint enforces the type checking rules of C more strictly than the compilers do. The addi
tional checking is in four major areas: across certain binary operators and implied assignments, 
at the structure selection operators, between the definition and uses of functions, and in the use 
of enumerations. 

There are a number of operators which have an implied balancing between types of the 
operands. The assignment, conditional ( ? : ), and relational operators have this property; the 
argument of a return statement, and expressions used in initialization also suffer similar 
conversions. In these operations, char, short, int, long, unsigned, float, and double types may 
be freely intermixed. The types of pointers must agree exactly, except that arrays of x's can, of 
course, be intermixed with pointers to x's. 

The type checking rules also require that, in structure references, the left operand of the 
- > be a pointer to structure, the left operand of the • be a structure, and the right operand of 
these operators be a member of the structure implied by the left operand. Similar checking is 
done for references to unions. 

Strict rules apply to function argument and return value matching. The types float and 
double may be freely matched, as may the types char, short, int, and unsigned. Also, pointers 
can be matched with the associated arrays. Aside from this, all actual arguments must agree in 
type with their declared counterparts. 

With enumerations, checks are made that enumeration variables or members are not 
mixed with other types, or other enumerations, and that the only operations applied are =, ini
tialization, = =, ! =, and function arguments and return values. 

Type Casts 

The type cast feature in C was introduced largely as an aid to producing more portable 
programs. Consider the assignment 

p = I ; 

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment 

p = (char *)l ; 

in which a cast has been used to convert the integer to a character pointer. The programmer 
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It 
seems harsh for lint to continue to complain about this. On the other hand, if this code is 
moved to another machine, such code should be looked at carefully. The -c flag controls the 
printing of comments about casts. When -c is in effect, casts are treated as though they were 
assignments subject to complaint; otherwise, all legal casts are passed without comment, no 
matter how strange the type mixing seems to be. 



LINT 5 

Non-portable Character Use 

On the PDP-II, characters are signed quantities, with a range from -128 to 127. On 
most of the other C implementations, characters take on only positive values. Thus, lint will 
flag certain comparisons and assignments as being illegal or non-portable. For example, the 
fragment 

char c; 

if( (c = getchar()) < 0 ) ... 

works on the PDP-I I, but will fail on machines where characters always take on positive values. 
The real solution is to declare c an integer, since getchar is actually returning integer values. In 
any case, lint will say "non-portable character comparison". 

A similar issue arises with bit-fields; when assignments of constant values are made to 
bit-fields, the field may be too small to hold the value. This is especially true because on some 
machines bit-fields are considered as signed quantities. While it may seem unintuitive to con
sider that a two bit field declared of type int cannot hold the value 3, the problem disappears if 
the bit-field is declared to have type unsigned. 

Assignments of longs to ints 

Bugs may arise from the assignment of long to an int, which loses accuracy. This may 
happen in programs which have been incompletely converted to use typedefs. When a typedef 
variable is changed from int to long, the program can stop working because some intermediate 
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons 
for assigning longs to ints, the detection of these assignments is enabled by the -a flag. 

Strange Constructions 

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the mes
sages hopefully encourage better code quality, clearer style, and may even point out bugs. The 
- b flag is used to enable these checks. For example, in the statement 

•p++; 
the * does nothing; this provokes the message "null effect" from lint. The program fragment 

unsigned x ; 
if( x < 0) ... 

is clearly somewhat strange; the test will never succeed. Similarly, the test 

if( x > 0 ) ... 

is equivalent to 

if( x != 0 ) 

which may not be the intended action. Lint will say "degenerate unsigned comparison" in 
these cases. If one says 

if( 1 ! = 0 ) ... 

lint will report "constant in conditional context", since the comparison of I with 0 gives a con
stant result. 

Another construction detected by lint involves operator precedence. Bugs which arise 
from misunderstandings about the precedence of operators can be accentuated by spacing and 
formatting, making such bugs extremely hard to find. For example, the statements 

if( x&077 = = 0 ) ... 

or 



6 LINT 

x<<2 + 40 

probably do not do what was intended. The best solution is to parenthesize such expressions, 
and lint encourages this by an appropriate message. 

Finally, when the - h flag is in force lint complains about variables which are redeclared 
in inner blocks in a way that conflicts with their use in outer blocks. This is legal, but is con
sidered by many (including the author) to be bad style, usually unnecessary, and frequently a 
bug. 

Ancient History 

There are several forms of older syntax which are being officially discouraged. These fall 
into two classes, assignment operators and initialization. 

The older forms of assignment operators (e.g., = +, = - , ... ) could cause ambiguous 
expressions, such as 

a =-1; 

which could be taken as either 

a=- 1; 

or 

a = -1; 

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro 
substitution. The newer, and preferred operators ( + =, - =, etc. ) have no such ambiguities. 
To spur the abandonment of the older forms, lint complains about these old fashioned opera
tors. 

A similar issue arises with initialization. The older language allowed 

int x 1 ; 

to initialize x to 1. This also caused syntactic difficulties: for example, 

int x ( -1 ) ; 

looks somewhat like the beginning of a function declaration: 

int x ( y ) { ... 

and the compiler must read a fair ways past x in order to sure what the declaration really is .. 
Again, the problem is even more perplexing when the initializer involves a macro. The current 
syntax places an equals sign between the variable and the initializer: 

int x = -I ; 

This is free of any possible syntactic ambiguity. 

Pointer Alignment 

Certain pointer assignments may be reasonable on some machines, and illegal on others, 
due entirely to alignment restrictions. For example, on the PDP- 11, it is reasonable to assign 
integer pointers to double pointers, since double precision values may begin on any integer 
boundary. On the Honeywell 6000, double precision values must begin on even word boun
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are 
assigned to other pointers, and such alignment problems might arise. The message "possible 
pointer alignment problem" results from this situation whenever either the -p or - h flags are 
in effect. 



LINT 7 

Multiple Uses and Side Effects 

In complicated expressions, the best order in which to evaluate subexpressions may be 
highly machine dependent. For example, on machines (like the PDP-11) in which the stack 
runs backwards, function arguments will probably be best evaluated from right-to-left; on 
machines with a stack running forward, left-to-right seems most attractive. Function calls 
em bedded as arguments of other functions may or may not be treated similarly to ordinary 
arguments. Similar issues arise with other operators which have side effects, such as the assign
ment operators and the increment and decrement operators. 

In order that the efficiency of C on a particular machine not be unduly compromised, the 
C language leaves the order of evaluation of complicated expressions up to the local compiler, 
and, in fact, the various C compilers have considerable differences in the order in which they 
will evaluate complicated expressions. In particular, if any variable is changed by a side effect, 
and also used elsewhere in the same expression, the result is explicitly undefined. 

Lint checks for the important special case where a simple scalar variable is affected. For 
example, the statement 

a[i] = b[i++]; 

will draw the complaint: 

warning: i evaluation order undefined 

Implementation 

Lint consists of two programs and a driver. The first program is a version of the Portable 
C Compiler4, 5 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file 
which is passed to a code generator, as the other compilers do, lint produces an intermediate 
file which consists of lines of ascii text. Each line contains an external variable name, an 
encoding of the context in which it was seen (use, definition, declaration, etc.). a type specifier, 
and a source file name and line number. The information about variables local to a function or 
file is collected by accessing the symbol table, and examining the expression trees. 

Comments about local problems are produced as detected. The information about exter
nal names is collected onto an intermediate file. After all the source files and library descrip
tions have been collected, the intermediate file is sorted to bring all information collected about 
a given external name together. The second, rather small, program then reads the lines from 
the intermediate file and compares all of the definitions, declarations, and uses for consistency. 

The driver controls this process, and is also responsible for making the options available 
to both passes of lint . 

Portability 

C on the Honeywell and IBM systems is used, in part, to write system code for the host 
operating system. This means that the implementation of C tends to follow local conventions 
rather than adhere strictly to UNIXt system conventions. Despite these differences, many C 
programs have been successfully moved to GCOS and the various IBM installations with little 
effort. This section describes some of the differences between the implementations, and 
discusses the lint features which encourage portability. 

Uninitialized external variables are treated differently in different implementations of C. 
Suppose two files both contain a declaration without initialization, such as 

t UNIX is a trademark of Bell Laboratories. 



8 LINT 

int a; 

outside of any function. The UNIX loader will resolve these declarations, and cause only a sin
gle word of storage to be set aside for a. Under the GCOS and IBM implementations, this is not 
feasible (for various stupid reasons!) so each such declaration causes a word of storage to be set 
aside and called a. When loading or library editing takes place, this causes fatal conflicts which 
prevent the proper operation of the program. If lint is invoked with the -p flag, it will detect 
such multiple definitions. 

A related difficulty comes from the amount of information retained about external names 
during the loading process. On the UNIX system, externally known names have seven 
significant characters, with the upper/lower case distinction kept. On the IBM systems, there 
are eight significant characters, but the case distinction is lost. On GCOS, there are only six 
characters, of a single case. This leads to situations where programs run on' the UNIX system, 
but encounter loader problems on the IBM or GCOS systems. Lint -p causes all external sym
bols to be mapped to one case and truncated to six characters, providing a worst-case analysis. 

A number of differences arise in the area of character handling: characters in the UNIX 
system are eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on 
GCOS. Moreover, character strings go from high to low bit positions ("left to right") on GCOS 
and IBM, and low to high ("right to left") on the PDP-11. This means that code attempting to 
construct strings out of character constants, or attempting to use characters as indices into 
arrays, must be looked at with great suspicion. Lint is of little help here, except to flag multi
character character constants. 

Of course, the word sizes are different! This causes less trouble than might be expected, 
at least when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36 
bits). The main problems are likely to arise in shifting or masking. C now supports a bit-field 
facility, which can be used to write much of this code in a reasonably portable way. Frequently, 
portability of such code can be enhanced by slight rearrangements in coding style. Many of the 
incompatibilities seem to have the flavor of writing 

x &= 0177700; 

to clear the low order six bits of x. This suffices on the PDP- I I, but fails badly on GCOS and 
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing 

x &= - 077; 

which will work on all these machines. 

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other 
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned. 
Characters are considered signed integers on the PDP-11, and unsigned on the other machines. 
This persistence of the sign bit may be reasonably considered a bug in the PDP- I I hardware 
which has infiltrated itself into the C language. If there were a good way to discover the pro
grams which would be affected, C could be changed; in any case, lint is no help here. 

The above discussion may have made the problem of portability seem bigger than it in 
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of 
the program, although they can involve some work to straighten out. The most serious bar to 
the portability of UNIX system utilities has been the inability to mimic essential UNIX system 
functions on the other systems. The inability to seek to a random character position in a text 
file, or to establish a pipe between processes, has involved far more rewriting and debugging 
than any of the differences in C compilers. On the other hand, lint has been very helpful in 
moving t.he UNIX operating system and associated utility programs to other machines. 



LINT 9 

Shutting up Lint 

There are occasions when the programmer is smarter than lint. There may be valid rea
sons for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, as 
specified above, the flow of control information produced by lint often has blind spots, causing 
occasional spurious messages about perfectly reasonable programs. Thus, some way of com
municating with lint, typically to shut it up, is desirable. 

The form which this mechanism should take is not at all clear. New keywords would 
require current and old compilers to recognize these keywords, if only to ignore them. This has 
both philosophical and practical problems. New preprocessor syntax suffers from similar prob
lems. What was finally done was to cause a number of words to be recognized by lint when 
they were embedded in comments. This required minimal preprocessor changes; the preproces
sor just had to agree to pass comments through to its output, instead of deleting them as had 
been previously done. Thus, lint directives are invisible to the compilers, and the effect on sys
tems with the older preprocessors is merely that the lint directives don't work. 

The first directive is concerned with flow of control information; if a particular place in 
the program cannot be reached, but this is not apparent to lint, this can be asserted by the 
directive 

/* NOTREACHED •/ 

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking 
for the next expression, the directive 

/• NOSTRICT */ 
can be used; the situation reverts to the previous default after the next expression. The - l' 

Hag can be turned on for one function by the directive 

/• ARGSUSED •/ 

Complaints about variable number of arguments in calls to a function can be turned off by the 
directive 

/* V ARARGS •/ 

preceding the function definition. In some cases, it is desirable to check the first several argu
ments, and leave the later arguments unchecked. This can be done by following the 
V ARARGS keyword immediately with a digit giving the number of arguments which should be 
checked; thus, 

/• V ARARGS2 •/ 

will cause the first two arguments to be checked, the others unchecked. Finally, the directive 

/• LINTLIBRARY •/ 

at the head of a file identifies this file as a library declaration file; this topic is worth a section by 
itself. 

Library Declaration Files 

Lint accepts certain library directives, such as 

-ly 

and tests the source files for compatibility with these libraries. This is done by accessing library 
description files whose names are constructed from the library directives. These files all begin 
with the directive 

/* LINTLIBRARY */ 
which is followed by a series of dummy function definitions. The critical parts of these 



10 LINT 

definitions are the declaration of the function return type, whether the dummy function returns 
a value, and the number and types of arguments to the function. The V ARARGS and 
ARGSUSED directives can be used to specify features of the library functions. 

Lint library files are processed almost exactly like ordinary source files. The only 
difference is that functions which are defined on a library file, but are not used on a source file, 
draw no complaints. Lint does not simulate a full library search algorithm, and complains if the 
source files contain a redefinition of a library routine (this is a feature!). 

By default, lint checks the programs it is given against a standard library file, which con
tains descriptions of the programs which are normally loaded when a C program is run. When 
the -p flag is in effect, another file is checked containing descriptions of the standard 1/0 
library routines which are expected to be portable across various machines. The -n flag can be 
used to suppress all library checking. 

Bugs, etc. 

Lint was a difficult program to write, partially because it is closely connected with matters 
of programming style, and partially because users usually don't notice bugs which cause lint to 
miss errors which it should have caught. (By contrast, if lint incorrectly complains about some
thing that is correct, the programmer reports that immediately!) 

Several areas remain to be further developed. The checking of structl,lres and arrays is 
rather inadequate; size incompatibilities go unchecked; no attempt is made to match structure 
and union declarations across files. Some stricter checking of the use of typedef is clearly desir
able, but what checking is appropriate, and how to carry it out, is still to be determined. 

Lint shares the preprocessor with the C compiler. At some point it may be appropriate 
for a special version of the preprocessor to be constructed which checks for things such as 
unused macro definitions, macro arguments which have side effects which are not expanded at 
all, or are expanded more than once, etc. 

The central problem with lint is the packaging of the information which it collects. There 
are many options which serve only to turn off, or slightly modify, certain features. There are 
pressures to add even more of these options. 

In conclusion, it appears that the general notion of having two programs is a good one. 
The compiler concentrates on quickly and accurately turning the program text into bits which 
can be run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be 
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler 
can be fast since it knows that lint will cover its flanks. Finally, the programmer can concen
trate at one stage of the programming process solely on the algorithms, data structures, and 
correctness of the program, and then later retrofit, with the aid of lint, the desirable properties 
of universality and portability. 

References 

[I] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, Engle
wood Cliffs, New Jersey (1978). 

[2] S. C. Johnson. ..YACC-Yet Another Compiler-Compiler," Bell Laboratories (July 
1975). 

[3] M. E. Lesk. "LEX-A Lexical Analyzer Generator," Bell Laboratories (October 1975). 

[4] S. C. Johnson and D. M. Ritchie. ..UNIX Time-Sharing System: Portability of C Pro
grams and the UNIX System," Bell Sys. Tech. J. 57(6), pp. 2021-2048 (1978). 

[5] S. C: Johnson. "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on 
Principles of Programming Languages, pp. 97-104 (January 1978). 



LINT 

Appendix: Current Lint Options 

The lint command currently has the form 

lint [-options ] files ... library-descriptors ... 

l l 

The version of lint included in UNIX Release 3.0 interprets some of its options differently 
than previous versions. The following options have their interpretation reversed in the new 
lint: 

Option New lnte1J?!!lation 

-a Suppress complaints about assignments of long values to 
variables that are not long. 

-b Suppress com.J!.laints about break statements that cannot be reached. 
-c Suppress complaints about casts that have _questionable _p_ortabili~ 
-b Do not apply heuristics (which attempt to intuit bugs, 

im~ove style, and reduce waste). 
-x Do not report variables ref erred to by external declarations, but never 

used. 

The following options have the same interpretation as in the past: 

OJ!!jon lntt!J!!!tation 

-n Do not check for compatibility with either the standard or the portable lint 
library. 

-.l. Attempt to check portability_ to other dialects of C (IBM and Honeywell). 
-u Suppress complaints about functions and external variables used and not defined, 

or defined and not used. 
-v Suppress com~aints about unused arguments in functions. 

January 1981 



A Portable FORTRAN 77 Compiler 

S. I. Feldman 

P. J. Weinberger 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

The Fortran language has just been revised. The new language, known as For
tran 77, became an official American National Standard on April 3, 1978. We 
report here on a compiler and run-time system for the new extended language. 
This is believed to be the first complete Fortran 77 system to be implemented. 
This compiler is designed to be portable, to be correct and complete, and to 
generate code compatible with calling sequences produced by C compilers. In 
particular, this Fortran is quite usable on UNIXt systems. In this paper, we 
describe the language compiled, interfaces between procedures, and file formats 
assumed by the I/O system. An appendix describes the Fortran 77 language. 

I. INTRODUCTION 

UNIX 

D.2.1 

Fortran 77 became an official American National Standard [I] on April 3, I 978. Fortran 
77 supplants 1966 Standard Fortran [2]. We report here on a compiler and run-time system for 
the new extended language. The compiler and computation library were written by S. I. Feld
man, the 1/0 system by P. J. Weinberger. We believe ours to be the first complete Fortran 77 
system to be implemented. This compiler is designed to be portable to a number of different 
machines, to be correct and complete, and to generate code compatible with calling sequences 
produced by compilers for the C language [3]. In particular, it is in use on UNIX systems. Two 
families of C compilers are in use.at Bell Laboratories, those based on D. M. Ritchie's PDP-11 
compiler[4] and those based on S. C. Johnson's portable C compiler [5]. This Fortran compiler 
can drive the second passes of either family. In this paper, we describe the language compiled, 
interfaces between procedures, and file formats assumed by the 1/0 system. We will describe 
implementation details in companion papers. 

l.l. Usage 

At present, versions of the compiler run on and compile for the PDP-11, the VAX-
11/780, and the Interdata 8/32 UNIX systems. The command to run the compiler is: 

f 77 flags file . . . 

f 77 is a general-purpose command for compiling and loading Fortran and Fortran-related files. 
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran 
compiler. C and assembler source files will be compiled by the appropriate programs. Object 
files will be loaded. (The f77 and cc commands cause slightly different loading sequences to be 
generated, since Fortran programs need a few extra libraries and a different startup routine than 
do C programs.) The following file name suffixes are understood: 

t UNIX is a trademark of Bell Laboratories. 



2 

.f 

.e 

.r 

.c 

.s 

.o 

Fortran source file 
EFL source file 
Ratfor source file 
C source file 
Assem bier source file 
Object file 

FORTRAN77 

The following flags are understood: 

-S Generate assembler output for each source file, but do not assemble it. Assem-

-c 

-m 

-f 

-p 

-of 
-w 
-w66 

-0 

-c 
-onetrip 

-u 

-u 
-12 

-E 
-R 

bler output for a source file x.f, x.e, x.r, or x.c is put on file x.s. 

Compile but do not load. Output for x.f, x.e, x.r, x.c, or x.s is put on file x.o. 

Apply the M4 macro preprocessor to each EFL or Ratfor source file before 
using the appropriate compiler. 

Apply the EFL or Ratfor processor to all relevant files, and leave the output 
from x.e or x.r on x.f. Do not compile the resulting Fortran program. 

Generate code to produce usage profiles. 

Put executable module on file f (Default is a.out). 

Suppress all warning messages. 

Suppress warnings about Fortran 66 features used. 

Invoke the C object code optimizer. 

Compile code the checks that subscripts are within array bounds. 

Compile code that performs every do loop at least once; see Section 2.10. 

Do not convert upper case letters to lower case. The default is to convert For
tran programs to lower case. 

Make the default type of a variable undefined; see Section 2.3. 

On machines which support short integers, make the default integer constants 
and variables short. (-14 is the standard value of this option; see Section 
2.14.) All logical quantities will be short. 

The remaining characters in the argument are used as an EFL flag argument. 

The remaining characters in the argument are used as a Ratfor flag argument. 

-F Ratfor and and EFL source programs are pre-processed into Fortran files, but 
those files are not compiled or removed. 

Other flags, all library names (arguments beginning -1), and any names not ending with one of 
the understood suffixes are passed to the loader. 

1.2. Documentation Conventions 

In running text, we write Fortran keywords and other literal strings in boldface lower case. 
Examples will be presented in lightface lower case. Names representing a class of values will be 
printed in italics. 

1.3. Implementation Strategy 

The compiler and library are written entirely in C. The compiler generates C compiler 
intermediate code. Since there are C compilers running on a variety of machines, relatively 
small changes will make this Fortran compiler generate code for any of them. Furthermore, 
this approach guarantees that the resulting programs are compatible with C usage. The runtime 
computational library is complete. The mathematical functions are computed to at least 63 bit 
precision. The runtime 1/0 library makes use of D. M. Ritchie's Standard C 1/0 package [8] 
for transferring data. With the few exceptions described below, only documented calls are 
used, so it should be relatively easy to modify to run on other operating systems. 



FORTRAN 77 3 

2. LANGUAGE EXTENSIONS 

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences 
briefly in the Appendix. The most important additions are a character string data type, file
oriented input/output statements, and random access 1/0. Also, the language has been cleaned 
up considerably. 

In addition to implementing the language specified in the new Standard, our compiler 
implements a few extensions described in this section. Most are useful additions to the 
language. The remainder are extensions to make it easier to communicate with C procedures 
or to permit compilation of old ( 1966 Standard) programs. 

2.1. Double Complex Data Type 

The new type double complex is defined. Each datum is represented by a pair of double 
precision real variables. A double complex version of every complex built-in function is 
provided. The specific function names begin with z instead of c. 

2.2. Internal Files 

The Fortran 77 standard introduces "internal files" (memory arrays), but restricts their 
use to formatted sequential 1/0 statements. Our 1/0 system also permits internal files to 
be used in direct and unformatted reads and writes. 

2.3. Implicit Undefined statement 

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state
ment is integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an 
implicit statement for overriding this rule. As an aid to. good programming practice, we 
permit an additional type, undefined. The statement 

implicit undefined(a-z) 

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic 
for each variable that is used but does not appear in a type statement. Specifying the -u 
compiler flag is equivalent to beginning each procedure with this statement. 

2.4. Recursion 

Procedures may call themselves, directly or through a chain of other.procedures. 

2.5. Automatic Storage 

Two new keywords are recognized, static and automatic. These keywords may appear as 
"types" in type statements and in implicit statements. Local variables are static by 
default; there is exactly one copy of the datum, and its value is retained between calls. 
There is one copy of each variable declared automatic for each invocation of the pro
cedure. Automatic variables may not appear in equhalence, data, or save statements. 

2.6. Source Input Format 

The Standard expects input to the compiler to be in 72 column format: except in com
ment lines, the first five characters are the statement number, the next is the continuation 
character, and the next sixty-six are the body of the line. (If there are fewer than 
seventy-two characters on a line, the compiler pads it with blanks; characters after the 
seventy-second are ignored). 



4 FORTRAN77 

In order to make it easier to type Fortran programs, our compiler also accepts input in 
variable length lines. An ampersand ( .. &") in the first position of a line indicates a con· 
tinuation line; the remaining characters form the body of the line. A tab character in one 
of the first six positions of a line signals the end of the statement number and continua· 
tion part of the line; the remaining characters form the body of the line. A tab elsewhere 
on the line is treated as another kind of blank by the compiler. 

In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent 
with ordinary UNIX system usage, our compiler expects lower case input. By default, the 
compiler converts all upper case characters to lower case except those inside character 
constants. However, if the -U compiler flag is specified, upper case letters are not 
transformed. In this mode, it is possible to specify external names with upper case letters 
in them, and to have distinct variables differing only in case. Regardless of the setting of 
the flag, keywords will only be recognized in lower case. 

2.7. Include Statement 

The statement 

include 'stuff' 

is replaced by the contents of the file stuff'. includes may be nested to a reasonable 
depth, currently ten. 

2.8. Binary Initialization Constants 

A logical, real, or integer variable may be initialized in a data statement by a binary con
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is 
binary, and only zeroes and ones are permitted. If the letter is o, the strin.g is octal, with 
digits 0-7. If the letter is z or x, the string is hexadecimal, with digits 0-9, a-f. Thus, 
the statements 

integer a{3) 
data a/ b'IOIO', o'12', z'a' / 

initialize all three elements of a to ten. 

2.9. Character Strings 

For compatibility with C usage, the following backslash escapes arc recognized: 

\n new-line 
\t tab 
\b backspace 
\f form feed 
\0 null 
\' apostrophe (does not terminate a string) 
\" quotation mark (does not terminate a string) 
\\ \ 
\x" x, where x is any other character 

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system 
recognize both the apostrophe ( ' ) and the double-quote ( " ). If a string begins with one 
variety of quote mark, the other may be embedded within it without using the repeated 
quote or backslash escapes. 

Every unequivalenced scalar local character variable and every character string constant is 
aligned on an integer word boundary. Each character string constant appearing outside a 
data statement is followed by a null character to ease communication with C routines. 



FORTRAN 77 5 

2.10. Hollerith 

Fortran 77 does not have the old Hollerith (n h) notation, though the new Standard 
recommends implementing the old Hollerith feature in order to improve compatibility 
with old programs. In our compiler, Hollerith data may be used in place of character 
string constants, and may also be used to initialize non-character variables in data state
ments. 

2.11. Equivalence Statements 

As a very special and peculiar case, Fortran 66 permits an element of a multiply
dimensioned array to be represented by a singly-subscripted reference in equivalence 
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now 
be different from l. Our compiler permits single subscripts in equivalence statements, 
under the interpretation that all missing subscripts are equal to 1. A warning message is 
printed for each such incomplete subscript. 

2.12. One-Trip DO Loops 

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini
tial value is already past the limit value, as in 

do 10 i = 2, 1 

The 1966 Standard stated that the effect of such a statement was undefined, but it was 
common practice that the range of a do loop would be performed at least once. In order 
to accommodate old programs, though they were in violation of the 1966 Standard, the 
-onetrip compiler flag causes non-standard loops to be generated. 

2.13. Commas in Formatted Input 

The 1/0 system attempts to be more lenient than the Standard when it seems worthwhile. 
When doing a formatted read of non-character variables, commas may be used as value 
separators in the input record, overriding the field lengths given in the format statement. 
Thus, the format 

(ilO, f20.10, i4) 

will read the record 

-345,.0Se-3, 12 

correctly. 

2.14. Short Integers 

On machines that support halfword integers, the compiler accepts declarations of type 
integel'*2. (Ordinary integers follow the Fortran rules about occupying the same space as 
a REAL variable; they are assumed to be of C type long int; halfword integers are of C 
type short int.) An expression involving only objects of type intege.-.2 is of that type. 
Generic functions return short or long integers depending on the actual types of their 
arguments. If a procedure is compiled using the -12 flag, all small integer constants will 
be of type integer•2. If the precision of an integer-valued intrinsic function is not deter
mined by the generic function rules, one will be chosen that returns the prevailing length 
(integer•2 when the -12 command flag is in effect). When the -12 option is in effect, all 
quantities of type logical will be short. Note that these short integer and logical quantities 
do not obey the standard rules for storage association. 



6 FORTRAN77 

2.15. Additional Intrinsic Functions 

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. 
Jn addition, there are functions for performing bitwise Boolean operations ( or, and, xor, 
and not) and for accessing the UNIX command arguments ( getarg and iargc ). 

3. VIOLATIONS OF THE STANDARD 

We know only three ways in which our Fortran system violates the new standard: 

3.1. Double Precision Alignment 

The Fortran standards (both 1966 and 1977) permit common or equivalence statements to 
force a double precision quantity onto an odd word boundary, as in the following example: 

real a(4) 
double precision b,c 

equivalence (a(l),b), (a(4),c) 

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities 
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this 
alignment rule is not observed. It is possible to tell which equivalenced and common 
variables suffer from a forced odd alignment, but every double precision argument would 
have to be assumed on a bad boundary. To load such a quantity on some machines, it 
would be necessary to use separate operations to move the upper and lower halves into 
the halves of an aligned temporary, then to load that double precision temporary; the 
reverse would be needed to store a result. We have chosen to require that all double pre
cision real and complex quantities fall on even word boundaries on machines with 
corresponding hardware requirements, and to issue a diagnostic if the source code 
demands a violation of the rule. 

3.2. Dummy Procedure Arguments 

If any argument of a procedure is of type character, all dummy procedure arguments of 
that procedure must be declared in an external statement. This requirement arises as a 
subtle corollary of the way we represent character string arguments and of the one-pass 
nature of the compiler. A warning is printed if a dummy procedure is not declared exter
nal. Code is correct if there are no character arguments. 

3.3. T and TL Formats 

The implementation of the t (absolute tab) and ti (leftward tab) format codes is defective. 
These codes allow rereading or rewriting part of the record which has already been pro
cessed. (Section 6.3.2 in the Appendix.) The implementation uses seeks, so if the unit is 
not one which allows seeks, such as a terminal, the program is in error. (People who can 
make a case for using ti should let us know.) A benefit of the implementation chosen is 
that there is no upper limit on the length of a record, nor is it necessary to predeclare any 
record lengths except where specifically required by Fortran or the operating system. 

4. INTER-PROCEDURE INTERFACE 

To be able to write C procedures that call or are called by Fortran procedures, it is neces
sary to know the conventions for procedure names, data representation, return values, and 
argument lists that the compiled code obeys. 



FORTRAN 77 7 

4.1. Procedure Names 

On UNIX systems, the name of a common block or a Fortran procedure has an underscore 
appended to it by the compiler to distinguish it from a C procedure or external variable with the 
same user-assigned name. Fortran library procedure names have embedded underscores to 
avoid clashes with user-assigned subroutine names. 

4.2. Data Representations 

The following is a table of corresponding Fortran and C declarations: 

Fortran 

integeT*2 x 
integer x 
logical x 
real x 
double precision x 
complex x 
double complex x 
character*6 x 

short int x; 
long int x; 
long int x; 
float x; 
double x; 

c 

struct { float r, i; } x; 
struct { double dr, di; } x; 
char x[6]; 

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory). 

4.3. Return Values 

A function of type integer, logical, real, or double precision declared as a C function that 
returns the corresponding type. A complex or double complex function is equivalent to a C 
routine with an additional initial argument that points to the place where the return value is to 
be stored. Thus, 

complex function f( ... ) 

is equivalent to 

f_(temp, ... ) 
struct { float r, i; } •temp; 

A character-valued function is equivalent to a C routine with two extra initial arguments: a data 
address and a length. Thus, 

charactel'* 15 function g( ... ) 

is equivalent to 

g_(result, length, ... ) 
char result[]; 
long int length; 

and could be invoked in C by 

char chars[lS]; 

g_(chars, 15L, ... ); 

Subroutines are invoked as if they were integer-valued functions whose value specifies which 
alternate return to use. Alternate return arguments (statement labels) are not passed to the 
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has 
no entry points with alternate return arguments, the returned value is undefined.) The state
ment: 



8 

call nret( * 1, •2, •3) 

is treated exactly as if it were the computed goto 

goto (1, 2, 3), nret( ) 

4.4. Argument Lists 

FORTRAN77 

All Fortran arguments are passed by address. In addition, for every argument that is of 
type character or that is a dummy procedure, an argument giving the length of the value is 
passed. (The string lengths are long int quantities passed by value). The order of arguments is 
then: 

Extra arguments for complex and character functions 
Address for each datum or function 
A long int for each character or procedure argument 

Thus. the call in 

external f 
charactef*7 s 
integer b(3) 

call sam(f, b(2), s) 

is equivalent to that in 

int f(); 
char s[7]; 
long int b[3]; 

sam_(f, &b[l], s, OL, 7L); 

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1 
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major 
order. 

S. FILE FORMATS 

S.1. Structure of Fortran Files 

Fortran requires four kinds of external files: sequential formatted and unformatted, and 
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary 
files which are assumed to have the proper internal structure. 

Fortran 1/0 is based on "records". When a direct file is opened in a Fortran program, 
the record length of the records must be given, and this is used by the Fortran 1/0 system to 
make the file look as if it is made up of records of the given length. In the special case that the 
record length is given as l, the files are not considered to be divided into records, but are 
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or 
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to 
a single record.) 

The peculiar requirements on sequential unformatted files make it unlikely that they will 
ever be read or written by any means except Fortran 1/0 statements. Each record is preceded 
and followed by an integer containing the record's length in bytes. 

The Fortran 1/0 system breaks sequential formatted files into records while reading by 
using each new-line as a record separator. The result of reading off the end of a record is 
undefined according to the Standard. The 1/0 system is permissive and treats the record as 
being extended by blanks. On output, the 1/0 system will write a new-line at the end of each 



FORTRAN 77 9 

record. It is also possible for programs to write new-lines for themselves. This is an error, but 
the only effect will be that the single record the user thought he wrote will be treated as more 
than one record when being read or backspaced over. 

5.2. Portability Considerations 

The Fortran I/O system uses only the facilities of the standard C 1/0 library, a widely 
available and fairly portable package, with the following two nonstandard features: The I/O sys
tem needs to know whether a file can be used for direct I/O, and whether or not it is possible 
to backspace. Both of these facilities are implemented using the fseek routine, so there is a 
routine canseek which determines if fseek will have the desired effect. Also, the inquire state
ment provides the user with the ability to find out if two files are the same, and to get the name 
of an already opened file in a form which would enable the program to reopen it. (The UNIX 
operating system implementation attempts to determine the full pathname.) Therefore there are 
two routines which depend on facilities of the operating system to provide these two services. 
In any case, the I/O system runs on the PDP-I I, VAX-I 1/780, and Interdata 8/32 UNIX sys
tems. 

5.3. Pre-Connected Files and File Positions 

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the 
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the stan
dard error unit. All are connected for sequential formatted 1/0. 

All the other units are also preconnected when execution begins. Unit n is connected to 
a file named fort.n. These files need not exist, nor will they be created unless their units are 
used without first executing an open. The default connection is for sequential formatted I/O. 

The Standard does not specify where a file which has been explicitly opened for sequential 
I/0 is initially positioned. In fact, the I/0 system attempts to position the file at the end, so a 
write will append to the file and a read will result in an end-of-file indication. To position a file 
to its beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as 
they come from the program's parent process. 

REFERENCES 

1. SIGPLAN Notices 11,3 (1976), as amended in X3J3 internal documents through "/90.1". 

2. USA Standard FORTRAN, USAS XJ.9-1966, New York: United States of America Standards 
Institute, March 7, 1966. Clarified in CACM 12:289 (I969) and CACM 14:628 (1971). 

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood Cliffs: 
Prentice-Hall (1978). 

4. D. M. Ritchie, private communication. 

5. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on 
Principles of Programming Languages (Jan. 1978). 

6. S. I. Feldman, "An Informal Description of EFL," internal memorandum, Bell Labora
tories. 

7. B. W. Kernighan, RATFOR-A Preprocessor for a Rational Fortran, Bell Laboratories (Jan. 
I977). 

8. D. M. Ritchie, private communication. 



IO FORTRAN 77 

Appendix: DIFFERENCES BETWEEN FORTRAN 66 AND FORTRAN 77 

The following is a very brief description of the differences between the 1966 [2] and the 
1977 [I] Standard languages. We assume that the reader is familiar with Fortran 66. We do 
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most 
important aspects of the new language. At present the only current information on the 1977 
Standard is in publications of the X3J3 Subcommittee of the American National Standards 
Institute. The following information is from the "/92" document. This draft Standard is writ
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or 
textbooks are available yet. 

1. FEATURES DELETED FROM FORTRAN 66 

l. l. Hollerith 

All notions of "Hollerith" (n h) as data have been officially removed, although our com
piler, like almost all in the foreseeable future, will continue to support this archaism. 

1.2. Extended Range 

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per
missible to jump out of the range of a do loop, then jump back into it. Extended range 
has been removed in the Fortran 77 language. The restrictions are so special, and the 
implementation of extended range is so unreliable in many compilers, that this change 
really counts as no loss. 

2. PROGRAM FORM 

2.l. Blank Lines 

Completely blank lines are now legal comment lines. 

2.2. Program and Block Data Statements 

A main program may now begin with a statement that gives that program an external 
name: 

program work 

Block data procedures may also have names. 

block data stuff 

There is now a rule that only one unnamed block data procedure may appear in a pro
gram. (This rule is not enforced by our system.) The Standard does not specify the effect 
of the program and block data names, but they are clearly intended to aid conventional 
loaders. 

2.3. ENTRY Statement 

Multiple entry points are now legal. Subroutine and function subprograms may have addi
tional entry points, declared by an entry statement with an optional argument list. 

entry extra(a, b, c) 

Execution begins at the first statement following the entry line. All variable declarations 
must precede all executable statements in the procedure. If the procedure begins with a 
subroutine statement, all entry points are subroutine names. If it begins with a function 
statement, each entry is a function entry point, with type determined by the type declared 
for the entry name. If any entry is a character-valued function, then all entries must be. 
In a function, an entry name of the same type as that where control entered must be 
assigned a value. Arguments do not retain their values between calls. (The ancient trick 



FORTRAN 77 11 

of calling one entry point with a large number of arguments to cause the procedure to 
"remember" the locations of those arguments, then invoking an entry with just a few 
arguments for later calculation, is still illegal. Furthermore, the trick doesn't work in our 
implementation, since arguments are not kept in static storage.) 

l.4. DO Loops 

do variables and range parameters may now be of integer, real, or double precision types. 
(The use of floating point do variables is very dangerous because of the possibility of 
unexpected roundoff, and we strongly recommend against their use). The action of the 
do statement is now defined for all values of the do parameters. The statement 

do 10 i = 1, u, d 

performs max(O, l(u -1)/d J) iterations. The do variable has a predictable value when 
exiting a loop: the value at the time a goto or return terminates the loop; otherwise the 
value that failed the limit test. 

l.5. Alternate Returns 

In a subroutine or subroutine entry statement, some of the arguments may be noted by 
an asterisk, as in 

subroutine s(a, •, b, •) 

The meaning of the "alternate returns" is described in section 5.2 of the Appendix. 

3. DECLARATIONS 

3.1. CHARACTER Data Type 

One of the biggest improvements to the language is the addition of a character-string data 
type. Local and common character variables must have a length denoted by a constant 
expression: 

characteT*l 7 a, b(3,4) 
character~'( 6 + 3) c 

If the length is omitted entirely, it is assumed equal to 1. A character string argument 
may have a constant length, or the length may be declared to be the same as that of the 
corresponding actual argument at run time by a statement like 

character*(•) a 

(There is an intrinsic function len that returns the actual length of a character string). 
Character arrays and common blocks containing character variables must be packed: in an 
array of character variables, the first character of one element must follow the last charac
ter of the preceding element, without holes. 

3.l. IMPLICIT Statement 

The traditional implied declaration rules still hold: a variable whose name begins with i, j, 
k, I, m, or n is of type integer, other variables are of type real, unless otherwise declared. 
This general rule may be overridden with an implicit statement: 

implicit real(a-c,g), complex( w-z), characteT*(l 7) (s) 

declares that variables whose name begins with an a ,b, c, or K are real, those beginning 
with w, x, y, or z are assumed complex, and so on. It is still poor practice to depend on 
implicit typing, but this statement is an industry standard. 



12 FORTRAN77 

3.3. PARAMETER Statement 

It is now possible to give a constant a symbolic name, as in 

parameter {x=l7, y=x/3, pi=3.14I59d0, s='hello') 

The type of each parameter name is governed by the same implicit and explicit rules as 
for a variable. The right side of each equal sign must be a constant expression (an 
expression made up of constants, operators, and already defined parameters). 

3.4. Array Declarations 

Arrays may now have as many as seven dimensions. (Only three were permitted in 
1966). The lower bound of each dimension may be declared to be other than 1 by using a 
colon. Furthermore, an adjustable array bound may be an integer expression involving 
constants, arguments, and variables in common. 

real a(-5:3, 7, m:n), b(n+I:2•n) 

The upper bound on the last dimension of an array argument may be denoted by an aster
isk to indicate that the upper bound is not specified: 

integer a(S, •), b{•), c(O:l, -2:•) 

3.5. SA VE Statement 

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily 
retain their values between invocations of that procedure. At any instant in the execution 
of a program, if a common block is declared neither in the currently executing procedure 
nor in any of the procedures in the chain of callers, all of the variables in that common 
block also become undefined. (The only exceptions are variables that have been defined 
in a data statement and never changed). These rules permit overlay and stack implemen
tations for the affected variables. Fortran 77 permits one to specify that certain variables 
and common blocks are to retain their values between invocations. The declaration 

save a, /b/, c 

leaves the values of the variables a and c and all of the contents of common block b 
unaffected by a return. The simple declaration 

save 

has this effect on all variables and common blocks in the procedure. A common block 
must be sued in every procedure in which it is declared if the desired effect is to occur. 

3.6. INTRINSIC Statement 

All of the functions specified in the Standard are in a single category, .. intrinsic func
tions", rather than being divided into "intrinsic" and "basic external" functions. If an 
intrinsic function is to be passed to another procedure, it must be declared intrinsic. 
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be 
passed. 

4. EXPRESSIONS 

4.1. Character Constants 

Character string constants are marked by strings surrounded by apostrophes. If an apos
trophe is to be included in a constant, it is repeated: 

'a be' 
'ain"t' 



FORTRAN 77 13 

There are no null (zero-length) character strings in Fortran 77. Our compiler has two 
different quotation marks, ( I) and ( • ). (See Section 2.9 in the main text.) 

4.2. Concatenation 

One new operator has been added, character string concatenation, marked by a double 
slash (" //"). The result of a concatenation is the string containing the characters of the 
left operand followed by the characters of the right operand. The strings 

'ab' // 'cd' 
'abed' 

are equal. The strings being concatenated must be of constant length in all concatenations 
that are not the right sides of assignments. (The only concatenation expressions in which 
a character string declared adjustable with a "•(•)" modifier or a substring denotation 
with nonconstant position values may appear are the right sides of assignments). 

4.3. Character String Assignment 

The left and right sides of a character assignment may not share storage. (The assumed 
implementation of character assignment is to copy characters from the right to the left 
side.) If the left side is longer than the right, it is padded with blanks. If the left side is 
shorter than the right, trailing characters are discarded. 

4.4. Substrings 

It is possible to extract a substring of a character variable or character array element, using 
the colon notation: 

a(i,j) (m:n) 

is the string of (n -m +I) characters beginning at the m'h character of the character array 
element a;1 . Results are undefined unless m ::;;n. Substrings may be used on the left 
sides of assignments and as procedure actual arguments. 

4.5. Exponentiation 

It is now permissible to raise real quantities to complex powers, or complex quantities to 
real or complex powers. (The principal part of the logarithm is used). Also, multiple 
exponentiation is now defined: 

a••~•c == a** (~*C) 

4.6. Relaxation of Restrictions 

Mixed mode expressions are now permitted. (For instance, it is permissible to combine 
integer and complex quantities in an expression.) 

Constant expressions are permitted where a constant is allowed, except in data state
ments. (A constant expression is made up of explicit constants and parameters and the 
Fortran operators, except for exponentiation to a floating-point power). An adjustable 
dimension may now be an integer expression involving constants, arguments, and vari
ables in B common .. 

Subscripts may nov. be general integer expressions; the old cv ± c' rules have been 
removed. do loop bounds may be general integer, real, or double precision expressions. 
Computed goto expressions and 1/0 unit numbers may be general integer expressions. 



14 FORTRAN77 

S. EXECUTABLE STATEMENTS 

S.l. IF-THEN-ELSE 

At last, the if-then-else branching structure has been added to Fortran. It is called a 
"Block Ir'. A Block If begins with a statement of the form 

if ( ... ) then 

and ends with an 

end if 

statement. Two other new statements may appear in a Block If. There may be several 

else if( ... ) then 

statements, followed by at most one 

else 

statement. If the logical expression in the Block If statement is true, the statements fol
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif 
statement in the group is executed. If none of the elseif conditions are true, control 
passes to the statements following the else statement, if any. (The else must follow all 
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If 
structures). A case construct may be rendered 

if (s .eq. 'ab') then 

else if (s .eq. 'cd') then 

else 

end if 

S.2. Alternate Returns 

Some of the arguments of a subroutine call may be statement labels preceded by an aster
isk, as in 

call joe(j, •10, m, •2) 

A return statement may have an integer expression, such as 

return k 

If the entry point has n alternate return (asterisk) arguments and if 1 :s:k <n, the return 
is followed by a branch to the corresponding statement label; otherwise the usual return to 
the statement following the call is executed. 

6. INPUT /OUTPUT 

6.J. Format Variables 

A format may be the value of a character expression (constant or otherwise), or be stored 
in a character array, as in 

write(6, '(i5)') x 



FORTRAN77 15 

6.2. END=, ERR=, and IOSTAT= Clauses 

A read or write statement may contain end=, err=, and iostat= clauses, as in 

write(6, IOI, err=20, iostat=a(4)) 
read(S, 101, err=20, end-30, iostat=x) 

Here 5 and 6 are the units on which the 1/0 is done, 101 is the statement number of the 
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error 
occurs during 1/0, control returns to the program at statement 20. If the end of the file is 
reached, control returns to the program at statement 30. In any case, the variable 
referred to in the iostat= clause is given a value when the I/O statement finishes. (Yes, 
the value is assigned to the name on the right side of the equal sign.) This value is zero if 
all went well, negative for end of file, and some positive value for errors. 

6.3. Formatted 1/0 

6.3.l. Character Constants 

Character constants in formats are copied literally to the output. Character constants can
not be read into. 

write( 6,'(i2," isn""t 11,i I )1 7, 4 

produces 

7 isn't 4 

Here the format is the character constant 

(i2,' isn"t ',il) 

and the character constant "isn't" is copied into the output. 

6.3.2. Positional Editing Codes 

t, ti, tr, and x codes control where the next character is in the record. trn or nx specifies 
that the next character is n to the right of the current position. tin specifies that the next 
character is n to the left of the current position, allowing parts of the record to be recon
sidered. tn says that the next character is to be character number n in the record. (See 
section 3.4 in the main text.) 

6.3.3. Colon 

A colon in the format terminates the 1/0 operation if there are no more data items in the 
1/0 list, otherwise it has no effect. In the fragment 

x='("hello", :, "there", i4)' 
write(6, x) I2 
write(6, x) 

the first write statement prints hello there 12, while the second only prints hello. 

6.3.4. Optional Plus Signs 

According to the Standard, each implementation has the option of putting plus signs in 
front of non-negative numeric output. The sp format code may be used to make the 
optional plus signs actually appear for all subsequent items while the format is active. The 
ss format code guarantees that the l/0 system will not insert the optional plus signs, and 
the s format code restores the default behavior of the 1/0 system. (Since we never put 
out optional plus signs, ss ands codes have the same effect in our implementation.) 



16 FORTRAN77 

6.3.5. Blanks on Input 

Blanks in numeric input fields, other than leading blanks will be ignored following a bn 
code in a format statement, and will be treated as zeros following a bz code in a format 
statement. The default for a unit may be changed by using the open statement. (Blanks 
are ignored by default.) · 

6.3.6. Unrepresentable Values 

The Standard requires that if a numeric item cannot be represented in the form required 
by a format code, the output field must be filled with asterisks. (We think this should 
have been an option.) 

6.3.7. Iw.m 

There is a new integer output code, iw.m. It is the same as iw, except that there will be at 
least m digits in the output field, including, if necessary, leading zeros. The case iw. 0 is 
special, in that if the value being printed is 0, the output field is entirely blank. iw.1 is 
the same as iw. 

6.3.8. Floating Point 

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. 
On output we always use e. The e and d format codes also have identical meanings. A 
leading zero before the decimal point in e output without a scale factor is optional with 
the implementation. (We do not print it.) There is a gw.d format code which is the same 
as ew.d and fw.d on input, but which chooses f or e formats for output depending. on the 
size of the number and of d. 

6.3.9. "A" Format Code 

A codes are used for character values. aw use a field width of w, while a plain a uses the 
length of the character item. 

6.4. Standard Units 

There arc default formatted input and output units. The statement 

read 10, a, b 

reads from the standard unit using format statement 10. The default unit may be expli
citly specified by an asterisk, as in 

read(•, 10) a,b 

Similarly, the standard output units is specified by a print statement or an asterisk unit: 

print 10 
write(•, 10) 

6.5. List-Directed Formatting 

List-directed 1/0 is a kind of free form input for sequential 1/0. It is invoked by using an 
asterisk as the format identifier, as in 

read( 6, •) a, b,c 



FORTRAN77 17 

On input, values are separated by strings of blanks and possibly a comma. Values, except 
for character strings, cannot contain blanks. End of record counts as a blank, except in 
character strings, where it is ignored. Complex constants are given as two real constants 
separated by a comma and enclosed in parentheses. A null input field, such as between 
two consecutive commas, means the corresponding variable in the 1/0 list is not changed. 
Values may be preceded by repetition counts, as in 

4•(3.,2.) 2•, 4*'hello' 

which stands for 4 complex constants, 2 null values, and 4 string constants. 

For output, suitable formats are chosen for each item. The values of character strings are 
printed; they are not enclosed in quotes, so they cannot be read back using list-directed 
input. 

6.6. Direct 1/0 

A file connected for direct access consists of a set of equal-sized records each of which is 
uniquely identified by a positive integer. The records may be written or read in any order, 
using direct access 1/0 statements. 

Direct access read and write statements have an extra argument, rec=, which gives the 
record number to be read or written. 

read(2, rec= 13, err=-20) (a(i), i= 1, 203) 

reads the thirteenth record into the array a. 

The size of the records must be given by an open statement (see below). Direct access 
files may be connected for either formatted or unformatted 1/0. 

6.7. Internal Files 

Internal files are character string objects, such as variables or substrings, or arrays of type 
character. In the former cases there is only a single record in the file, in the latter case 
each array element is a record. The Standard includes only sequential formatted 1/0 on 
internal files. (1/0 is not a very precise term to use here, but internal files are dealt with 
using read and write). There is no list-directed 1/0 on internal files. Internal files are 
used by giving the name of the character object in place of the unit number, as in 

charactel'*80 x 
read(5,"(a)") x 
read(x,"(i3,i4)") nl,n2 

which reads a card image into x and then reads two integers from the front of it. A 
sequential read or write always starts at the beginning of an internal file. 

(We also support a compatible extension, direct 1/0 on internal files. This is like direct 
1/0 on external files, except that the number of records in the file cannot be changed.) 

6.8. OPEN, CLOSE, and INQUIRE Statements 

These statements are used to connect and disconnect units and files, and to gather infor
mation about units and files. 

6.8.1. OPEN 

The open statement is used to connect a file with a unit, or to alter some properties of the 
connection. The following is a minimal example. 

open(l, file=='fort.junk') 

open takes a variety of arguments with meanings described below. 



18 FORTRAN 77 

unit= a small non-negative integer which is the unit to which the file is to be connected. 
We allow, at the time of this writing, 0 through 9. If this parameter is the first one 
in the open statement, the unit=· can be omitted. 

iostat= is the same as in read or write. 

err= is the same as in read or write. 

file= a character expression, which when stripped of trailing blanks, is the name of the 
file to be connected to the unit. The filename should not be given if the 
status= scratch. 

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown 
is assumed. If scratch is given, a temporary file will be created. Temporary files are 
destroyed at the end of execution. If new is given, the file will be created if it 
doesn't exist, or truncated if it does. The meaning of unknown is processor depen
dent; our system treats it as synonymous with old. 

access= sequential or direct, depending on whether the file is to be opened for sequen
tial or direct 1/0. 

form= formatted or unformatted. 

reel= a positive integer specifying the record length of the direct access file being opened. 
We measure all record lengths in bytes. On UNIX systems a record length of 1 has 
the special meaning explained in section 5. I of the text. 

blank= null or zero. This parameter has meaning only for formatted 1/0. The default 
value is null. zero means that blanks, other than leading blanks, in numeric input 
fields are to be treated as zeros. 

Opening a new file on a unit which is already connected has the effect of first closing the 
old file. 

6.8.2. CLOSE 

close severs the connection between a unit and a file. The unit number must be given. 
The optional parameters are iostat= and err= with their usual meanings, and status-= 
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete 
means the file will be removed. A simple example is 

close(3, err= 17) 

6.8.3. INQUIRE 

The inquire statement gives information about a unit ("inquire by unit") or a file 
("inquire by file"). Simple examples are: 

inquire(unit=3, namexx) 
inquire(file=]unk', number=n, exist=!) 

file= a character variable specifies the file the inquire is about. Trailing blanks in the file 
name are ignored. 

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or 
unit= must be used. 

iostat=, err= are as before. 

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and 
is set to .false. otherwise. 

opened= a logical variable. The logical variable is set to .true. if the file is connected to 
a unit or if the unit is connected to a file, and it is set to .false. otherwise. 



FORTRAN 77 19 

number= an integer variable to which is assigned the number of the unit connected to 
the file, if any. 

named= a logical variable to which is assigned .true. if the file has a name, or .false. 
otherwise. 

name= a character variable to which is assigned the name of the file (inquire by file) or 
the name of the file connected to the unit (inquire by unit). The name will be the 
full name of the file. 

access= a character variable to which will be assigned the value 'sequential' if the con
nection is for sequential 1/0, 'direct' if the connection is for direct 1/0. The value 
becomes undefined if there is no connection. 

sequential= a character variable to which is assigned the value 'yes' if the file could be 
connected for sequential 1/0, 'no' if the file could not be connected for sequential 
1/0, and 'unknown' if we can't tell. 

direct= a character variable to which is assigned the value 'yes' if the file could be con
nected for direct 1/0, 'no' if the file could not be connected for direct 1/0, and 'unk
nown' if we can't tell. 

form= a character variable to which is assigned the value 'formatted' if the file is con
nected for formatted 1/0, or 'unformatted' if the file is connected for unformatted 
1/0. 

formatted= a character variable to which is assigned the value 'yes' if the file could be 
connected for formatted 1/0, 'no' if the file could not be connected for formatted 
1/0, and 'unknown' if we can't tell. 

unformatted= a character variable to which is assigned the value 'yes' if the file could be 
connected for unformatted 1/0, 'no' if the file could not be connected for unformat
ted 1/0, and 'unknown' if we can't tell. 

reel= an integer variable to which is assigned the record length of the records in the file 
if the file is connected for direct access. 

nextrec= an integer variable to which is assigned one more than the number of the the 
last record read from a file connected for direct access. 

blank= a character variable to which is assigned the value 'null' if null blank control is in 
effect for the file connected for formatted 1/0, 'zero' if blanks are being converted to 
zeros and the file is connected for formatted 1/0. 

The gentle reader will remember that the people who wrote the standard probably weren't 
thinking of his needs. Here is an example. The declarations are omitted. 

open(l, file="/dev/console") 

On a UNIX system this statement opens the console for formatted sequential 1/0. An inquire 
statement for either unit 1 or file "/dev /console" would reveal that the file exists, is connected 
to unit 1, has a name, namely "/dev /console", is opened for sequential 1/0, could be connected 
for sequential 1/0, could not be connected for direct 1/0 (can't seek), is connected for format
ted 1/0, could be connected for formatted 1/0, could not be connected for unformatted 1/0 
(can't seek), has neither a record length nor a next record number, and is ignoring blanks in 
numeric fields. 

In the UNIX system environment, the only way to discover what permissions you have for 
a file is to open it and try to read and write it. The err= parameter will return system error 
numbers. The inquire statement does not give a way of determining permissions. 

January I 98 I 



RATFOR - A Preprocessor for a Rational FORTRAN 

Brian W. Kernighan 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Although Fortran is not a pleasant language to use, it does have the advantages 
of universality and (usually) relative efficiency. The Ratfor language attempts to con
ceal the main deficiencies of Fortran while retaining its desirable qualities, by providing 
decent control flow statements: 

• statement grouping 

• if-else and switch for decision-making 

• while, for, do, and repeat-until for looping 

• break and next for controlling loop exits 

and some "syntactic sugar": 

• free form input (multiple statements/line, automatic continuation) 

• unobtrusive comment convention 

• translation of>,>=, etc., into .GT., .GE., etc. 

• return(eitpression) statement for functions 

• define statement for symbolic parameters 

• include statement for including source files 

Ratfor is implemented as a preprocessor which translates this language into Fortran. 

Once the control flow and cosmetic deficiencies of Fortran are hidden, the result
ing language is remarkably pleasant to use. Ratfor programs are markedly easier to 
write, and to read, and thus easier to debug, maintain and modify than their Fortran 
equivalents. 

It is readily possible to write Ratfor programs which are portable to other environ
ments. Ratfor is written in itself in this way, so it is also portable; versions of Ratfor 
are now running on at least two dozen different types of computers at over five hundred 
locations. 

This paper- discusses design criteria for a Fortran preprocessor, the Ratfor 
language and its implementation, and user experience. 

UNIX 

D.2.2 

1. INTRODUCTION 

Most programmers will agree that Fortran 
is an unpleasant language to program in, yet 
there are many occasions when they are forced 
to use it. For example, Fortran is often the only 
language thoroughly supported on the local com
puter. Indeed, it is the closest thing to a 

universal programming language currently avail
able: with care it is possible to write large, truly 
portable Fortran programs (1]. Finally, Fortran 
is often the most "efficient" language available, 
particularly for programs requiring much compu
tation. 

This paper is a revised and expanded version of one published in SoftWare-Practice and Experience, October 
1975. The Ratfor described here is the one in use at Bell Laboratories. 



2 

But Fortran is unpleasant. Perhaps the 
worst deficiency is in the control flow statements 
- conditional branches and loops - which 
express the logic of the program. The condi
tional statements in Fortran are primitive. The 
Arithmetic IF forces the user into at least two 
statement numbers and two (implied) GOTO's; it 
leads to unintelligible code, and is eschewed by 
good programmers. The Logical IF is better, in 
that the test part can be stated clearly, but hope
lessly restrictive because the statement that fol
lows the IF can only be one Fortran statement 
(with some further restrictions!). And of course 
there can be no El.SE part to a Fortran IF: there is 
no way to specify an alternative action if the IF is 
not satisfied. 

The Fortran DO restricts the user to going 
forward in an arithmetic progression. It is fine 
for "I to Nin steps of l (or 2 or ... )'', but there 
is no direct way to go backwards, or even (in 
ANSI Fortran [2]) to go from I to N-1. And of 
course the DO is useless if one's problem doesn't 
map into an arithmetic progression. 

The result of these failings is that Fortran 
programs must be written with numerous labels 
and branches. The resulting code is particularly 
difficult to read and understand, and thus hard to 
debug and modify. 

When one is faced with an unpleasant 
language, a useful technique is to define a new 
language that overcomes the deficiencies, and to 
translate it into the unpleasant one with a 
preprocessor. This is the approach taken with 
Ratfor. (The preprocessor idea is of course not 
new, and preprocessors for Fortran are especially 
popular today. A recent listing [3] of preproces
sors shows more than 50, of which at least half a 
dozen are widely available.) 

2. LANGUAGE DESCRIPTION 

Design 

Ratfor attempts to retain the merits of 
Fortran (universality, portability, efficiency) 
while hiding the worst Fortran inadequacies. 
The language is Fortran except for two aspects. 
First, since control flow is central to any pro
gram, regardless of the specific application, the 
primary task of Ratfor is to conceal this part of 
Fortran from the user, by providing decent con
trol flow structures. These structures arc 
sufficient and comfortable for structured pro
gramming in the narrow sense of programming 
without GOTO's. Second, since the preprocessor 
must examine an entire program to translate the 
control structure, it is possible at the same time 
to clean up many of the "cosmetic" deficiencies 
of Fortran, and thus provide a language which is 

RATFOR 

easier and more pleasant to read and write. 

Beyond these two aspects - control flow 
and cosmetics - Ratfor does nothing about the 
host of other weaknesses of Fortran. Although 
it would be straightforward to extend it to pro
vide character strings, for example, they are not 
needed by everyone, and of course the prepro
cessor would be harrier to implement. 
Throughout, the design principle which has 
determined what should be in Ratfor and what 
should not has been Ratfor doesn't know any For
tran. Any language feature which would require 
that Ratfor really understand Fortran has been 
omitted. We will return to this point in the sec
tion on implementation. 

Even within the confines of control flow 
and cosmetics, we have attempted to be selective 
in what features to provide. The intent has been 
to provide a small set of the most useful con
structs, rather than to throw in everything that 
has ever been thought useful by someone. 

The rest of this section contains an infor
mal description of the Ratfor language. The con
trol flow aspects will be quite familiar to readers 
used to languages like Algol, PL/I, Pascal, etc., 
and the cosmetic changes are equally straightfor
ward. We shall concentrate on showing what the 
language looks like. 

Statement Grouping 

Fortran provides no way to group state
ments together, short of making them into a 
subroutine. The standard construction "if a con
dition is true, do this group of things," for 
example, 

if (x > 100) 
{call error("x>lOO"); err ... l; return} 

cannot be written directly in Fortran. Instead a 
programmer is forced to translate this relatively 
clear thought into murky Fortran, by stating the 
negative condition and branching around the 
group of statements: 

10 

if (x .le. 100) goto JO 
call error(5hx> I 00) 
err= 1 
return 

When the program 'doesn't work, or when it 
must be modified, this must be translated back 
into a clearer form before one can be sure what 
it does. 

Ratfor eliminates this error-prone and 
confusing back-and-forth translation; the first. 
form is the way the computation is written in 
Ratfor. A group of statements can be treated as 
a unit by enclosing them in the braces { and }. 



RATFOR 

This is true throughout the language: wherever a 
single Ratfor statement can be used, there can be 
several enclosed in braces. (Braces seem clearer 
and less obtrusive than begin and end or do and 
end, and of course do and end already have For
tran meanings.) 

Cosmetics contribute to the readability of 
code, and thus to its understandability. The 
character ">" is clearer than ".GT.", so Ratfor 
translates it appropriately, along with several 
other similar shorthands. Although many For
tran compilers permit character strings in quotes 
(like "x>lOO"), quotes are not allowed in ANSI. 

Fortran, so Ratfor converts it into the right 
number of H's: computers count better than 
people do. 

Ratfor is a free-form language: statements 
may appear anywhere on a line, and several may 
appear on one line if they are separated by semi· 
colons. The example above could also be written 
as 

if (x > 100) { 
call error("x> 100") 
err= I 
return 

In this case, no semicolon is needed at the end 
of each line because Ratfor assumes there is one 
statement per line unless told otherwise. 

Of course, if the statement that follows the 
if is a single statement (Ratfor or otherwise), no 
braces are needed: 

if (y <= 0.0 & z <= 0.0) 
write(6, 20) y, z 

No continuation need be indicated because the 
statement is clearly not finished on the first line. 
In general Ratfor continues lines when it seems 
obvious that they are not yet done. (The con
tinuation convention is discussed in detail later.) 

Although a free-form language permits 
wide latitude in formatting styles, it is wise to 
pick one that is readable, then stick to it. In par
ticular, proper indentation is vital, to make the 
logical structure of the program obvious to the 
reader. 

The "else" Clause 

Ratfor provides an else statement to han· 
die the construction "if a condition is true, do 
this thing, otherwise do that thing." 

if(a<-b) 
{ sw - O; write(6, 1) a, b} 

else 
{ sw = l; write(6, 1) b, a J 

This writes out the smaller of a and b, then the 

3 

larger, and sets sw appropriately. 

The Fortran equivalent of this code is cir
cuitous indeed: 

if (a .gt. b) goto 10 
SW= 0 
wrhe(6, 1) a, b 
goto 20 

10 SW= 1 
write(6, 1) b, a 

20 

This is a mechanical translation; shorter forms 
exist, as they do for many similar situations. But 
all translations suffer from the same problem: 
since they are translations, they are less clear and 
understandable than code that is not a transla
tion. To understand the Fortran version, one 
must scan the entire program to make sure that 
no other statement branches to statements 10 or 
20 before one knows that indeed this is an if
else construction. With the Ratfor version, there 
is no question about how one gets to the parts of 
the statement. The if-else is a single unit, which 
can be read, understood, and ignored if not 
relevant. The program says what it means. 

As before, if the statement following an if 
or an else is a single statement, no braces are 
needed: 

if(a <= b) 
SW= 0 

else 
SW= I 

The syntax of the if statement is 

if (legal Fortran condition) 
Rat/or statement 

else 
Ratfor statement 

where the else part is optional. The legal Fortran 
condition is anything that can l~gally go into a 
Fortran Logical IF. Ratfor docs not check this 
clause, since it does not know enough Fortran to 
know what is permitted. The Ratfor statement is 
any Ratfor or Fortran statement, or any collec
tion of them in braces. 

Nested irs 

Since the statement that follows an if or an 
else can be any Ratfor statement, this leads 
immediately to the possibility of another if or 
else. As a useful example, consider this problem: 
the variable f is to be set to -1 if x is less than 
zero, to + 1 if x is greater than 100, and to 0 
otherwise. Then in Ratfor, we write 



4 

if (x < 0) 
f .... -I 

else if (x > 100) 
f = +1 

else 
f - 0 

Here the statement after the first else is another 
if-else. Logically it is just a single statement, 
although it is rather complicated. 

This code says what it means. Any ver
sion written in straight Fortran will necessarily be 
indirect because Fortran does not let you say 
what you mean. And as always, clever shortcuts 
may turn out to be too clever to understand a 
year from now. 

Following an else with an if is one way to 
write a multi-way branch in Ratfor. In general 
the structure 

if ( ... ) 

else if( ... ) 

else if ( ... ) 

else 

provides a way to specify the choice of exactly 
one of several alternatives. (Ratfor also provides 
a switch statement which does the same job in 
certain special cases; in more general situations, 
we have to make do with spare parts.) The tests 
arc laid out in sequence, and each one is fol
lowed by the code associated with it. Read down 
the list of decisions until one is found that is 
satisfied. The code associated with this condition 
is executed, and then the entire structure is 
finished. The trailing else part handles the 
"default" case, where none of the other condi
tions apply. If there is no default action, this 
final else part is omitted: 

if (x < 0) 
x - 0 

else if (x > 100) 
x = 100 

If-else ambiguity 

There. is one thing to notice about compli
cated structures involving nested if's and else's. 
Consider 

RATFOR 

if (x > 0) 
if (y > O) 

write(6, 1) x, y 
else 

write(6, 2) y 

There are two ifs and only one else. Which if 
does the else go with? 

This is a genuine ambiguity in Ratfor, as it 
is in many other programming languages. The 
ambiguity is resolved in Ratfor (as elsewhere) by 
saying that in such cases the else goes with the 
closest previous un-else'ed If. Thus in this case, 
the elSe goes with the inner if, as we have indi
cated by the indentation. 

It is a wise practice to resolve such cases 
by explicit braces, just to make your intent clear. 
In the case above, we would write 

if (x > 0) { 
if (y > O) 

write(6, 1) x, y 
else 

write(6, 2) y 

which does not change the meaning, but leaves 
no doubt in the reader's mind. If we want the 
other association, we must write 

if (x > 0) { 
if (y > 0) 

write(6, I) x, y 

else 
write(6, 2) y 

The "switch" Statement 

The switch statement provides a clean way 
to express multi-way branches which branch on 
the value of some integer-valued expression. 
The syntax is 

switch (expression) { 

case exprl : 
statements 

case e:x:pr2, txpr3 : 
statements 

default: 
statements 

E.ach case is followed by a list of comma
separated integer expressions. The expression 
inside switch is compared against the case 
expressions exprl, expr2, and so on in turn until 
one .matches, at which time the statements fol
lowing 'that case arc executed. If no cases match 



RATFOR 

expression, and there is a default section, the 
statements with it are dope; if there is no 
default, nothing is done. In all situations, as 
soon as some block of statements is executed, 
the entire switch is exited immediately. 
(Readers familiar with C [4] should beware that 
this behavior is not the same as the C switch.) 

The "do" Statement 

The do statement in Ratfor is quite similar 
to the DO statement in Fortran, except that it 
uses no statement number. The statement 
number, after all, serves only to mark the end of 
the DO, and this can be done just as easily with 
braces. Thus 

do i = 1, n { 
x(i) = 0.0 
y(i) = 0.0 
z(i) - 0.0 

is the same as 

10 

do JO i = 1, n 
x(i) == 0.0 
y(i) = 0.0 
z(i) = 0.0 

continue 

The syntax is: 

do legal-Fortran-DO-text 
Raif or statement 

The part that follows the keyword do has to be 
something that can legally go into a Fortran DO 
statement. Thus if a local version of Fortran 
allows DO limits to be expressions (which is not 
currently permitted in ANSI Fortran), they can be 
used in a Ratfor do. 

The Ratfor statement part will often be 
enclosed in braces, but as with the if, a single 
statement need not have braces around it. This 
code sets an array to zero: 

do i - I, n 
x(i) - 0.0 

Slightly more complicated, 

do i =I, n 
do j = l, n 

m(i, j) = 0 

sets the entire array m to zero, and 

do i = 1, n 
do j = I, n 

if (i < j) 
m(i, j) = -J 

else if (i = = j) 
m(i, j) = 0 

else 
m(i, j) = +I 

5 

sets the upper triangle of m to -1, the diagonal 
to zero, and the lower triangle to + 1. (The 
operator ... - is "equals'', that is, ".EQ.".) In 
each case, the statement that follows the do is 
logically a single statement, even though compli
cated, and thus needs no braces. 

"break" and "next" 

Ratfor provides a statement for leaving a 
loop early, and one for beginning the next itera
tion. break causes an immediate exit from the 
do; in effect it is a branch to the statement after 
the do. next is a branch to the bottom of the 
loop, so it causes the next iteration to be done. 
For example, this code skips over negative 
values in an array: 

do i - I, n { 
if (x(i) < 0.0) 

next 
process positive element 

break and next also work in the other Ratfor 
looping constructions that we will talk about in 
the next few sections. 

break and next can be followed by an 
integer to indicate breaking or iterating that level 
of enclosing loop; thus 

break 2 

exits from two levels of enclosing loops, and 
break l is equivalent to break. next 2 iterates 
the second enclosing loop. (Realistically, multi
level break's and next's are not likely to be 
much used because they lead to code that is hard 
to understand and somewhat risky to change.) 

The "while" Statement 

. One of the problems with the Fortran DO 

statement is that it generally insists upon being 
done once, regardless of its limits. If a loop 

. begins 

. DO I= 2, l 

this will typically be done once with set to 2, 
even though common sense would suggest that 
perhaps it shouldn't be. Of course a Ratfor do 
can easily be preceded by a test 



6 

ifU <= k) 
do i = j, k 

but this has to be a conscious act, and is often 
overlooked by programmers. 

A more serious problem with the DO state
ment is that it encourages that a program be 
written in terms of an arithmetic progression 
with small positive steps, even though that may 
not be the best way to write it. If code has to be 
contorted to fit the requirements imposed by the 
Fortran DO, it is that much harder to write and 
understand. 

To overcome these difficulties, Ratfor pro
vides a while statement, which is simply a loop: 
"while some condition is true, repeat this group 
of statements". It has no preconceptions about 
why one is looping. For example, this routine to 
compute sin(x) by the Maclaurin series combines 
two termination criteria. 

real function sin(x, e) 
fl returns sin(x) to accuracy e, by 
fl sin(x) = x - X**3/3! + X**5/5! - ... 

sin= x 
term = x 

i = 3 
while (abs(term)>e & i<lOO) { 

term = -term • X**2 / float(i•(i-1)) 
sin = sin + term 
i=i+2 

return 
end 

Notice that if the routine is entered with 
term already smaller than e, the loop will be 
done zero times, that is, no attempt will be made 
to compute X**3 and thus a potential underflow 
is avoided. Since the test is made at the top of a 
while loop instead of the bottom, a special case 
disappears - the code works at one of its boun
daries. (The test i<lOO is the other boundary 
- making sure the routine stops after some 
maximum number of iterations.) 

As an aside, a sharp character "fl" in a 
line marks the beginning of a comment; the r;c:st 
of the line is comment. Comments and code i::an 
co-exist on the same line - one can make mar
ginal remarks, which is not possible with 
Fortran's "C in column l" convention. Blank 

· lines are also permitted anywhere (they are not 
in Fortran); they should ·be used to emphasize 
the natural divisions of a program. · 

RATFOR 

The syntax of the while statement is 

while (legal Fortran condition) 
Ratfor statement 

As with the if, legal Fortran condition is some
thing that can go into a Fortran Logical IF, and 
Ratfor statement is a single statement, which may 
be multiple statements in braces. 

The while encourages a style of coding not 
normally practiced by Fortran programmers. For 
example, suppose oextch is a function which 
returns the next··fiiput character both as a func
tion value and in its argument. Then a loop to 
find the first non-blank character is just 

while (nextch(ich) = = iblank) 

A semicolon by itself is a null statement, which 
is necessary here to mark the end of the while; 
if it were not present, the w bile would control 
the next statement. When the loop is broken, 
ich contains the first non-blank. Of course the 
same code can be written in Fortran as 

100 if (nextch(ich) .eq. iblank) goto 100 

but many Fortran programmers (and a few com
pilers) believe this line is illegal. The language at 
one's disposal strongly influences how one thinks 
about a problem. 

The "for" Statement 

The for statement is another Ratfor loop, 
which attempts to carry the separation of loop
body from reason-for-looping a step further than 
the while. A for statement allows explicit initiali
zation and increment steps as part of the state
ment. For example, a oo loop is just 

for (i = l; i <- n; i = i + l) ... 

This is equivalent to 

i == 1 
while (i <= n) { 

i = i + 1 

The initialization and increment of i have been 
moved into the for statement, making it easier to 
see.at a glance what controls the loop. 

The for and while versions have the 
advantage that they will be done zero times if o 

·is less than 1; this is not true of the do. 

The loop of the sine routine in the previ
ous section can be re-written with a for as 



RATFOR 

for (i=3; abs(term) > e & i < 100; i=i+2) { 
term = -term * x**2 / float(i*(i-1)) 
sin = sin + term 

The syntax of the for statement is 

for ( init ; condition ; increment ) 
Ratfor statement 

init is any single Fortran statement, which gets 
done once before the loop begins. increment is 
any single Fortran statement, which gets done at 
the end of each pass through the loop, before 
the test. condition is again anything that is legal 
in a logical IF. Any of init, condition, and incre
ment may be omitted, although the semicolons 
must always be present. A non-existent condition 
is treated as always true, so for(;;) is an 
indefinite repeat. (But see the repeat-until in 
the next section.) 

The for statement is particularly useful for 
backward loops, chaining along lists, loops that 
might be done zero times, and similar things 
which are hard to express with a DO statement, 
and obscure to write out with !F's and GOTO's. 
For example, here is a backwards DO loop to find 
the last non-blank character on a card: 

for (i = 80; i > 0; i = i - 1) 
if (card(i) ! = blank) 

break 

("!="is the same as ''.NE."). The code scans 
the columns from 80 through to 1. If a non
blank is found, the loop is immediately broken. 
(break and next work in for's and wbile's just as 
in do's). If i reaches zero, the card is all blank. 

This code is rather nasty to write with a 
regular Fortran DO, since the loop must go for
ward, and we must explicitly set up proper condi
tions when we fall out of the loop. (Forgetting 
this is a common error.) Thus: 

DO 10 J = 1, 80 
I-81-J 
IF (CARD(I) .NE. BLANK) GO TO 11 

10 CONTINUE 
I = 0 

11 

The version that uses the for handles the termi
nation condition properly for free; i is zero when 
we fall out of the for loop. 

The increrrient in a for need not be an 
arithmetic progression; the following program 
walks along a list (stored in an integer array ptr) 
until a zero pointer is found, adding up elements 
from a parallel array of values: 

7 

sum = 0.0 
for (i = first; i > O; i = ptr(i)) 

sum = sum + value(i) 

Notice that the code works correctly if the list. is 
empty. Again, placing the test at the top of a 
loop instead of the bottom eliminates a potential 
boundary error. 

The "repeat-until" statement 

In spite of the dire warnings, there are 
times when one really needs a loop that tests at 
the bottom after one pass through. This service 
is p~ovided by the repeat-until: 

repeat 
Ratfor statement 

until (legal Fortran condition) 

The Ratfor statement part is done once, then the 
condition is evaluated. If h is true, the loop is 
exited; if it is false, another pass is made. 

The until part is optional, so a bare repeat 
is the cleanest way to specify an infinite loop. Of 
course such a loop must ultimately be broken by 
some transfer of control such as stop, return, or 
break, or an implicit stop such as running out of 
input with a READ statement. 

As a matter of observed fact [8], the 
repeat-until statement is much less used than the 
other looping constructions; in particular, it is 
typically outnumbered ten to one by for and 
while. Be cautious about using it, for loops that 
test only at the bottom often don't handle null 
cases well. 

More on break and next 

break exits immediately from do, while, 
for, and repeat-until. next goes to the test part 
of do, while and repeat-until, and to the incre
ment step of a for. 

"return" Statement 

The standard Fortran mechanism for 
returning a value from a function uses the name 
of the function as a variable which can be 
assigned to; the last value stored in it is the 
function value upon return. For example, here 
is a routine equal which returns l if two arrays 
are identical, and zero if they differ. The array 
ends are marked by the special value -1. 



8 

* equaJ_compare strl to str2; 
# return 1 if equal, 0 if not 

integer function equal(strl, str2) 
integer strl(lOO), str2{100) 
integer i 

for (i = 1; strl (i) = = str2(i); i - i + 1) 
if(strl(i) == -1) { 

equal == 0 
return 
end 

equal= I 
return 

In many languages (e.g., PL/I) one instead 
says 

return (expression) 

to return a value from a function. Since this is 
often clearer, Ratfor provides such a return 
statement - in a function F, return(expression) 
is equivalent to 

{ F = expression; return I 
For example, here is equal again: 

# equal_ compare strl to str2; 
# return 1 if equal, 0 if not 

integer function equal(strl, str2) 
integer strl (JOO), str2(100) 
integer i 

for (i = 1; strl (i) = = str2(i); i - i + 1) 
if (strl(i) == -1) 

return(O) 
end 

return( 1) 

If there is no parenthesized expression after 
return, a normal RETURN is made. (Another 
version of equal is presented shortly.) 

Cosmetics 

As we said above, the visual appearance of 
a language has a substantial effect on how easy it 
is to read and understand programs. Accord· 
ingly, Ratfor provides a number of cosmetic 
facilities which may be used to make programs 
more readable. 

Free-form Input 

Statements can be placed anywhere on a 
line; long statements are continued automati
cally, as are long conditions in if, while, for, and 
until. Blank lines are ignored. Multiple state
ments may appear on one line, if they are 
separated by semicolons. No semicolon is 
needed at the end of a line, if Ratfor can make 

RATFOR 

some reasonable guess about whether the state
ment ends there. Lines ending with any of the 
characters 

+ • & 

are assumed to be continued on the next line. 
Underscores are discarded wherever they occur; 
all others remain as part of the statement. 

Any statement that begins with an all
numeric field is assumed to be a Fortran label, 
and placed in columns 1-5 upon output. Thus 

write(6, 100); l-00 format("hello") 

is converted into 

write(6, 100) 
JOO format(5hhello) 

Translation Services 

Text enclosed in matching single or double 
quotes is converted to oH ... but is otherwise 
unaltered (except for formatting - it may get 
split across card boundaries during the reformat
ting process). Within quoted strings, the 
backslash '\' serves as an escape character: the 
next character is taken literally. This provides a 
way to get quotes (and of course the backslash 
itself) into quoted strings: 

"\ \ \'" 

is a string containing a backslash and an apos
trophe. (This is not the standard convention of 
doubled quotes, but it is easier to use and more 
general.) 

Any line that begins with the character'%' 
is left absolutely unaltered except for stripping 
off the '%' and moving the line one position to 
the left. This is useful for inserting control 
cards, and other things that should not be 
transmogrified (like an existing Fortran pro
gram). Use '%' only for ordinary statements, 
not for the condition parts of if, while, etc., or 
the output may come out in an unexpected place. 

The following character translations are 
made, except within single or double quotes or 
on a line beginning with a '%'. 

. eq. != .ne . 
> . gt. >- .ge . 
< .It. <= .le . 
& .and. .or . 

.not. . not. 

In addition, the following translations are pro
vided for input devices with restricted character 
sets. 

[ 
$( 

] 
$) 



RATFOR 

"define" Statement 

Any string of alphanumeric characters can 
be defined as a name; thereafter, whenever that 
name occurs in the input (delimited by non
alphanumerics) it is replaced by the rest of the 
definition line. (Comments and trailing white 
spaces are stripped off). A defined name can be 
arbitrarily long, and must begin with a letter. 

define is typically used to create symbolic 
parameters: 

define ROWS 100 
define COLS 50 

dimension a(ROWS), b(ROWS, COLS) 

if (i > ROWS I j > COLS) ... 

Alternately, definitions may be written as 

define(ROWS, 100) 

In this case, the defining text is everything after 
the comma up to the balancing right parenthesis; 
this allows multi-liµe definitions. 

It is generally a wise practice to use sym
bolic parameters for most constants, to help 
make clear the function of what would otherwise 
be mysterious numbers. As an example, here is 
the routine equal again, this time with symbolic 
constants. 

define 
define 
define 
define 

YES 
NO 
EOS 
ARB 

l 
0 
-) 

100 

# equal_ compare strl to str2; 
# return YES if equal, NO if not 

integer function equal(strl, str2) 
integer strl (ARB), str2(ARB) 
integer i 

for (i = I; strl(i) == str2(i); i = i + l) 
if (strl (i) = = EOS) 

return(YES) 
return(NO) 
end 

"include" Statement 

The statement 

include file 

inserts the file found on input stream file into the 
Ratfor input in place of the include statement. 
The standard usage is to place COMMON blocks 
on a file, and include that file whenever a copy is 
needed: 

9 

subroutine x 
include commonblocks 

end 

suroutine y 
include commonblocks 

end 

This ensures that all copies of the COMMON 
blocks are identical 

Pitfalls, Botches, Blemishes and other Failings 

Ratfor catehes certain syntax errors, such 
as missing braces, else clauses without an if, and 
most errors involving missing parentheses in 
statements. Beyond that, since Ratfor knows no 
Fortran, any errors you make will be reported by 
the Fortran compiler, so you will from time to 
time have to relate a Fortran diagnostic back to 
the Ratfor source. 

Keywords are reserved - using If, else, 
etc., as variable names will typically wreak havoc. 
Don't leave spaces in keywords. Don't use the 
Arithmetic IF. 

The Fortran nH convention is not recog
nized anywhere by Ratfor; use quotes instead. 

3. IMPLEMENTATION 

Ratfor was originally written in C [4) on 
the UNIXt operating system [5). The language is 
specified by a context free grammar and the 
compiler constructed using the YACC compiler
compiler [6). 

The Ratfor grammar is simple and straight
forward, being essentially: 

prog : stat 
I prog stat 

stat ; if ( ... ) stat 
I if ( ... ) stat else stat 
I while ( ... ) stat 
I for ( ... ; ... ; ... ) stat 
I do ... stat 
I repeat stat 
I repeat stat until ( ... ) 
I switch ( ... ) { case ... : prog ... 

I return 
I break 
I next 
I digits stat 
I I prog } 

default: prog l 

I anything unrecognizable 

t UNIX is a trademark of Bell Laboratories. 



10 

The observation that Ratfor knows no Fortran 
follows directly from the rule that says a state
ment is "anything unrecognizable". In fact most 
of Fortran falls into this category, since any 
statement that does not begin with one of the 
keywords is by definition "unrecognizable." 

Code generation is also simple. If the first 
thing on a source line is not a keyword (like if, 
else, etc.) the entire statement is simply copied 
to the output with appropriate character transla
tion and formatting. (Leading digits are treated 
as a label.) Keywords cause only slightly more 
complicated actions. For example, when if is 
recognized, two consecutive labels L and L+ I 
are generated and the value of L is stacked. The 
condition is then isolated, and the code 

if (.not. (condition)) goto L 

is output. The statement part of the if is then 
translated. When the end of the statement is 
encountered (which may be some distance away 
and include nested if's, of course), the code 

L continue 

is generated, unless there is an else clause, in 
which case the code is 

goto L+ 1 
L continue 

In this latter case, the code 

L+ 1 continue 

is produced after the statement part of the else. 
Code generation for the various loops is equally 
simple. 

One might argue that more care should be 
taken in code generation. For example, if there 
is no trailing else, 

if (i > 0) x =a 

should be left alone, not converted into 

if (.not. (i .gt. 0)) goto 100 
x =a 

100 continue 

But what are optimizing compilers for, if not to 
improve code? It is a rare program indeed where 
this kind of "inefficiency" will make even a 
measurable difference. In the few cases where it 
is important, the offending lines can be protected 
by'%'. 

The use of a compiler-compiler is 
definitely the preferred method of software 
development. The language is well-defined, with 
few syntactic irregularities. Implementation is 
quite simple; the original construction took 
under a week. The language is sufficiently sim
ple, however, that an ad hoc recognizer can be 

RATFOR 

readily constructed to do the same job if no 
compiler-compiler is available. 

The C version of Ratfor is used on UNIX 
and on the Honeywell GCOS systems. C com
pilers are not as widely available as Fortran, 
however, so there is also a Ratfor written in 
itself and originally bootstrapped with the C ver
sion. The Ratfor version was written so as to 
translate into the portable subset of Fortran 
described in [l], so it is portable, having been 
run essentially without change on at least twelve 
distinct machines. (The main restrictions of the 
portable subset are: only one character per 
machine word; subscripts in the form C*V±c; 
avoiding expressions in places like DO loops-;· con
sistency in subroutine argument usage, and in 
COMMON declarations. Ratfor itself will not gra
tuitously generate non-standard Fortran.) 

The Ratfor version is about 1500 lines of 
Ratfor (compared to about 1000 lines of C); this 
compiles into 2500 lines of Fortran. This expan
sion ratio is somewhat higher than average, since 
the compiled code contains unnecessary 
occurrences of COMMON declarations. The exe
cution time of the Ratfor version is dominated 
by two routines that read and write cards. 
Clearly these routines could be replaced by 
machine coded local versions; unless this is 
done, the efficiency of other parts of the transla
tion process is largely irrelevant. 

4. EXPERIENCE 

Good Things 

"It's so much better than Fortran" is the 
most common response of users when asked 
how well Ratfor meets their needs. Although 
cynics might consider this to be vacuous, it does 
seem to be true that decent control flow and 
cosmetics converts Fortran from a bad language 
into quite a reasonable one, assuming that For
tran data structures are adequate for the task at 
hand. 

Although there are no quantitative results, 
users feel that coding in Ratfor is at least twice 
as fast as in Fortran. More important, debugging 
and subsequent revision arc much faster than in 
Fortran. Partly this is simply because the code 
can be read. The looping statements which test 
at the top instead of the bottom seem to elim
inate or at least reduce the occurrence of a wide 
class of boundary errors. And of course it is 
easy to do structured programming in Ratfor; 
this self-discipline also contributes markedly to 
reliability. 

One interesting and encouraging fact is 
that programs written in Ratfor tend to be as 
readable as programs written in more modern 



RATFOR 

languages like Pascal. Once one is freed from 
the shackles of Fortran's clerical detail and rigid 
input format, it is easy to write code that is read
able, even esthetically pleasing. For example, 
here is a Ratfor implementation of the linear 
table search discussed by Knuth [7]: 

A(m+I) = x 
for (i = 1; A(i) ! = x; i = i + I) 

if (i > m) { 
m = i 
B(i) = 

else 
B(i) = B(i) + 1 

A large corpus (5400 lines) of Ratfor, including 
a subset of the Ratfor preprocessor itself, can be 
found in [8]. 

Bad Things 

The biggest single problem is that many 
Fortran syntax errors are not detected by Ratfor 
but by the local Fortran compiler. The compiler 
then prints a message in terms of the generated 
Fortran, and in a few cases this may be difficult 
to relate back to the offending Ratfor line, espe
cially if the implementation conceals the gen
erated Fortran. This problem could be dealt with 
by tagging each generated line with some indica
tion of the source line that created it, but this is 
inherently implementation-dependent, so no 
action has yet been taken. Error message 
interpretation is actually not so arduous as might 
be thought. Since Ratfor generates no variables, 
only a simple pattern of IF's and GOTO's, data
related errors like missing DIMENSION statements 
are easy to find in the Fortran. Furthermore, 
there has been a steady improvement in Ratfor's 
ability to catch trivial syntactic errors like unbal
anced parentheses and quotes. 

There are a number of implementation 
weaknesses that are a nuisance, especially to new 
users. For example, keywords are reserved. 
This rarely makes any difference, except for 
those hardy souls who want to use an Arithmetic 
IF. A few standard Fortran constructions are not 
accepted by Ratfor, and this is perceived as a 
problem by users with a large corpus of existing 
Fortran programs. Protecting every line with a 
'%' is not really a complete solution, although it 
serves as a stop-gap. The best long-term solu
tion is provided by the program Struct [9], which 
converts arbitrary Fortran programs into Ratfor. 

Users who export programs often complain 
that the generated Fortran is "unreadable" 
because it is not tastefully formatted and con
tains extraneous CONTINUE statements. To some 

11 

extent this can be ameliorated (Ratfor now has 
an option to copy Ratfor comments into the gen
erated Fortran), but it has always seemed that 
effort is better spent on the input language than 
on the output esthetics. · 

One final problem is partly attributable to 
success - since Ratfor is relatively easy to 
modify, there are now several dialects of Ratfor. 
Fortunately, so far most of the differences are in 
character set, or in invisible aspects like code 
generation. 

S. CONCLUSIONS 

Ratfor demonstrates that with modest 
effort it is possible to convert Fortran from a bad 
language into quite a good one. A preprocessor 
is clearly a useful way to extenl;I or ameliorate 
the facilities of a base language. .. 

When designing a language, it is important 
to concentrate on the essential requirement of 
providing the user with the best language possi
ble for a given effort. One must avoid throwing 
in "features" - things which the user may trivi
ally construct within the existing framework. 

One must also avoid getting sidetracked on 
irrelevancies. For instance it seems pointless for 
Ratfor to prepare a neatly formatted listing of 
either its input or its output. The user is 
presumably capable of the self-discipline required 
to prepare neat input that reflects his thoughts. 
It is much more important that the language pro
vide free-form input so he can format it neatly. 
No one should read the output anyway except in 
the most dire circumstances. 

Acknowledgements 

C. A. R. Hoare once said that "One thing 
[the language designer] should not do is to 
include untried ideas of his own." Ratfor follows 
this precept very closely - everything in it has 
been stolen from someone else. Most of the 
control flow structures are taken directly from 
the language C [4] developed by Dennis Ritchie; 
the comment and continuation conventions are 
adapted from Altran [IO]. 

I am grateful to Stuart Feldman, whose 
patient simulation of an innocent user during the 
early days of Ratfor led to several design 
improvements and the eradication of bugs. He 
also translated the C parse-tables and YACC 

parser into Fortran for the first Ratfor version of 
Ratfor. 



12 

Appendix: Usage on UNIX. 

Beware - local customs vary. Check with 
a native before going into the jungle. 

The program ratfor is the basic translator; 
it takes either a list of file names or the standard 
input and writes Fortran on the standard output. 
Options include -6x, which uses x as a con
tinuation character in column 6 (UNIX uses & in 
column 1), and -C, which causes Ratfor com
ments to be copied into the generated Fortran. 

The program re provides an interface to 
the ratfor command which is much the same as 
cc. Thus 

re [options] files 

compiles the files specified by files. Files with 
names ending in .r are Ratfor source; other files 
are assumed to be for the loader. The flags -C 
and -6x described above are recognized, as are 

-c compile only; don't load 
-f save intermediate Fortran .f files 
-r Ratfor only: implies -c and -f 
-2 use big Fortran compiler 

(for large programs) 
-U flag undeclared variables 

(not universally available) 

Other flags arc passed on to the loader. 

RATFOR 

References 

[l] B. G. Ryder, "The PFORT Verifier," 
Software- Practice & Experience, October 
1974. 

(2) American National Standard Fortran. 
American National Standards Institute, 
New York, 1966. 

[3] For-word: Fortran Development Newslener, 
August 1975. 

[4) B. W. Kernighan and D. M. Ritchie, The C 
Programming Language, Prentice-Hall, Inc., 
1978. 

[5] D. M. Ritchie and K. L. Thompson, "The 
UNIX Time-sharing System." CACM, July 
1974. 

[6] S. C. Johnson, "YACC - Yet Another 
Compiler-Compiler." Bell Laboratories, 
1978. 

(7) D. E. Knuth, "Structured Programming 
with goto Statements." Computing Surveys, 
December 1974. 

[8] B. W .. Kernighan and P. J. Plauger, 
Software Tools, Addison-Wesley, 1976. 

(9) B. S. Baker, "Struct - A Program which 
Structures Fortran", Bell Laboratories 
internal memorandum, December 1975. 

[IO] A. D. Hall, "The Altran System for 
Rational Function Manipulation - A Sur
vey." CACM, August 1971. 

January 1981 



l. INTRODUCTION 

1.1. Purpose 

The Programming Language EFL 

S. I. Feldman 

Bell Laboratories 
Murray Hill, New Jersey 07974 

UNIX 

D.2.3 

EFL is a clean, general purpose computer language intended to encourage portable pro
gramming. It has a uniform and readable syntax and good data and control ftow structuring. 
EFL programs can be translated into efficient Fortran code, so the EFL programmer can take 
advantage of the ubiquity of Fortran, the valuable libraries of software written in thi!.t language, 
and the portability that comes with the use of a standardized language, without suffering from 
Fortran's many failings as a language. It is especially useful for numeric programs. Thus, the 
EFL language permits the programmer to express complicated ideas in a comprehensible way, 
while permitting access to the power of the Fortran environment. 

1.2. History 

EFL can be viewed as a descendant of B. W. Kernighan's Ratfor [l]; the name originally 
stood for "Extended Fortran Language". A. D. Hall designed the initial version of the 
language and wrote a preliminary version of a compiler. I extended and modified the language 
and wrote a full compiler (in C) for it. The current compiler is much more than a simple 
preprocessor: it attempts to diagnose all syntax errors, to provide readable Fortran output, and 
to avoid a number of niggling restrictions. To achieve this goal, a sizable two-pass translator is 
needed. 

1.3. Notation 

In examples and syntax specifications, boldface type is used to indicate literal words and 
punctuation, such as while. Words in italic type indicate an item in a category, such as an 
expression. A construct surrounded by double brackets represents a list of one or more of those 
items, separated by commas. Thus, the notation 

(item I 
could refer to any of the following: 

item 
item, item 
item, item, item 

The reader should have a fair degree of familiarity with some procedural language. There 
will be occasional references to Ratfor and to Fortran which may be ignored if the reader is 
unfamiliar with those languages. 



2 EFL 

2. LEXICAL FORM 

2.1. Character Set 

The following characters are legal in an EFL program: 

letters abcdefghijklm 
nopqrstuvwxyz 

digits 0123456789 
white space blank tab 
quotes ' . 
sharp # 
continuation 
braces { } 
parentheses ( ) 
other • ; + • I 

< > & - I $ 

Letter case (upper or lower) is ignored except within strings, so "a" and "A" are treated as 
the same character. All of the examples below are printed in lower case. An exclamation mark 
("!") may be used in place of a tilde ("~"). Square brackets ("[" and "]") may be used in 
place of braces("{" and "}"). 

2.2. Lines 

EFL is a line-oriented language. Except in special cases (discussed below), the end of a 
line marks the end of a token and the end of a statement. The trailing portion of a line may be 
used for a comment. There is a mechanism for diverting input from one source file to another, 
so a single line in the program may be replaced by a number of lines from the other file. Diag
nostic messages are labeled with the line number of the file on which they are detected. 

2.2.1. White Space 

Outside of a character string or comment, any sequence of one or more spaces or tab 
characters acts as a single space. Such a space terminates a token. 

2.2.2. Comments 

A comment may appear at the end of any line. It is introduced by a sharp ( #) character, 
and continues to the end of the line. (A sharp inside of a quoted string does not mark a com
ment.) The sharp and succeeding characters on the line are discarded. A blank line is also a 
comment. Comments have no effect on execution. 

2.2.3. Include Files 

It is possible to insert the contents of a file at a point in the source text, by referencing it 
in a line like 

include joe 

No statement or comment may follow an include on a line. In effect, the include line is 
replaced by the lines in the named file, but diagnostics refer to the line number in the included 
file. Includes may be nested at least ten deep. 

2.2.4. Continuation 

Lines may be continued explicitly by using the underscore (_) character. If the last char
acter of a line (after comments and trailing white space have been stripped) is an underscore, 
the end of line and the initial blanks on the next line are ignored. Underscores are ignored in 
other contexts (except inside of quoted strings). Thus 



EFL 

equals 109. 

1_000_000_ 
000 

3 

There are also rules for continuing lines automatically: the end of line is ignored when
ever it is obvious that the statement is not complete. To be specific, a statement is continued if 
the last token on a line is an operator, comma, left brace, or left parenthesis. (A statement is 
not continued just because of unbalanced braces or parentheses.) Some compound statements 
are also continued automatically; these points are noted in the sections on executable state
ments. 

2.2.5. Multiple Statements on a Line 

A semicolon terminates the current statement. Thus, it is possible to write more than one 
statement on a line. A line consisting only of a semicolon, or a semicolon following a semi
colon, forms a null statement. 

2.3. Tokens 

A program is made up of a sequence of tokens. Each token is a sequence of characters. 
A blank terminates any token other than a quoted string. End of line also terminates a token 
unless explicit continuation (see above) is signaled by an underscore. 

2.3.1. Identifiers 

An identifier is a letter or a letter followed by letters or digits. The following is a list of 
the reserved words that have special meaning in EFL. They will be discussed later. 

array 
automatic 
break 
call 
case 
character 
common 
complex 
continue 
debug 
default 
define 
dimension 
do 
double 
doubleprecision 
else 
end 
equivalence 

exit 
external 
false 
field 
for 
function 
go 
goto 
if 
implicit 
include 
initial 
integer 
internal 
lengthof 
logical 
long 
next 
option 

precision 
procedure 
read 
readbin 
real 
repeat 
return 
select 
short 
sizeof 
static 
struct 
subroutine 
true 
until 
value 
while 
write 
writebin 

The use of these words is discussed below. These words may not be used for any other pur
pose. 

2.3.2. Strings 

A character string is a sequence of characters surrounded by quotation marks. If the 
string is bounded by single-quote marks ( '), it may contain double quote marks ( • ), and vice 
versa. A quoted string may not be broken across a line boundary. 



4 

'hello there' 
*ain't misbehavin'* 

2.3.3. Integer Constants 

An integer constant is a sequence of one or more digits. 

2.3.4. Floating Point Constants 

0 
57 
123456 

EFL 

A floating point constant contains a dot and/or an exponent field. An exponent field is a 
letter d or e followed by an optionally signed integer constant. If I and J are integer constants 
and E is an exponent field, then a floating constant has one of the following forms: 

.I 
I. 
JJ 
IE 
J.E 
.IE 
IJE 

2.3.5. Punctuation 

Certain characters are used to group or separate objects in the language. These are 

parentheses ( ) 
braces { } 
comma 
semicolon 
colon 
end-of-line 

The end-of-line is a token (statement separator) when the line is neither blank nor continued. 

2.3.6. Operators 

The EFL operators are written as sequences of one or more non-alphanumeric characters. 

+ - • I "'"' < <- > >= =- ~ ... 
&& II & I 
+= /= ··-= &&= II- &= I= 
-> $ 

A dot(".") is an operator when it qualifies a structure element name, but not when it acts as a 
decimal point in a numeric constant. There is a special mode (see the Atavisms section) in 
which some of the operators may be represented by a string consisting of a dot, an identifier, 
and a dot (e.g., .It. ). 



EFL 5 

2.4. Macros 

EFL has a simple macro substitution facility. An identifier may be defined to be equal to 
a string of tokens; whenever that name appears as a token in the program, the string replaces it. 
A macro name is given a value in a define statement like 

define count n+=l 

Any time the name count appears in the program, it is replaced by the statement 

n+=l 

A define statement must appear alone on a line; the form is 

define name rest-of-line 

Trailing comments are part of the string. 

3. PROGRAM FORM 

3.1. Files 

A file is a sequence of lines. A file is compiled as a single unit. It may contain one or 
more procedures. Declarations and options that appear outside of a procedure affect the 
succeeding procedures on that file. 

3.2. Procedures 

Procedures are the largest grouping of statements in EFL. Each procedure has a name by 
which it is invoked. (The first procedure invoked during execution, known as the main pro
cedure, has the null name.) Procedure calls and argument passing are discussed in Section 8. 

3.3. Blocks 

Statements may be formed into groups inside of a procedure. To describe the scope of 
names, it is convenient to introduce the ideas of block and of nesting level. The beginning of a 
program file is at nesting level zero. Any options, macro definitions, or variable declarations 
there are also at level zero. The text immediately following a procedure statement is at level 1. 
After the declarations, a left brace marks the beginning of a new block and increases the nest
ing level by 1; a right brace drops the level by 1. (Braces inside declarations do not mark 
blocks.) (See Section 7.2). An end statement marks the end of the procedure, level 1, and the 
return to level 0. A name (variable or macro) that is defined at level k is defined throughout 
that block and in all deeper nested levels in which that name is not redefined or redeclared. 
Thus, a procedure might look like the following: 

I block o 
procedure george 
real x 
x=2 

if(x > 2) 
{ I new block 
integer x I a different variable 
dox-= 1,7 

write(,x) 

I end of block 
end I end of procedure, return to block 0 



6 EFL 

3.4. Statements 

A statement is terminated by end of line or by a semicolon. Statements are of the follow
ing types: 

Option 
Include 
Define 

Procedure 
End 

Declarative 
Executable 

The option statement is described in Section 10. The include, define, and end statements have 
been described above; they may not be followed by another statement on a line. Each pro
cedure begins with a procedure statements and finishes with an end statement; these are dis
cussed in Section 8. Declarations describe types and values of variables and procedures. Exe
cutable statements cause specific actions to be taken. A block is an example of an executable 
statement; it is made up of declarative and executable statements. 

3.5. Labels 

An executable statement may have a label which may be used in a branch statement. A 
label is an identifier followed by a colon, as in 

read(, x) 
if( x < 3) goto error 

error: fatal(*bad input") 

4. DATA TYPES AND VARIABLES 

EFL supports a small number of basic (scalar) types. The programmer may define objects 
made up of variables of basic type; other aggregates may then be defined in terms of previously 
defined aggregates. 

4.1. Basic Types 

The basic types are 

logical 
integer 
field(m :n) 
real 
complex 
long real 
long complex 
character(n) 

A logical quantity may take on the two values true and false. An integer may take on any 
whole number value in some machine-dependent range. A field quantity is an integer restricted 
to a particular closed interval ([m :n ]). A "real" quantity is a floating point approximation to a 
real or rational number. A long real is a more precise approximation to a rational. (Real quan
tities are represented as single precision floating point numbers; long reals are double precision 
floating point numbers.) A complex quantity is an approximation to a complex number, and is 
represented as a pair of reals. A character quantity is a fixed-length string of n characters. 



EFL 

4.2. Constants 

There is a notation for a constant of each basic type. 

A logical may take on the two values 

true 
false 

7 

An integer or field constant is a fixed point constant, optionally preceded by a plus or minus 
sign, as in 

17 
-94 
+6 
0 

A long real ("double precision") constant is a floating point constant containing an exponent 
field that begins with the letter d. A real ("single precision") constant is any other floating 
point constant. A real or long real constant may be preceded by a plus or minus sign. The fol
lowing are valid real constants: 

17.3 
-.4 
7.9e-6 ( = 7.9XI0-6) 

14e9 ( = l .4XI010) 

The following are valid long real constants 

7.9d-6 ( = 7.9Xl0-6) 

Sd3 

A character constant is a quoted string. 

4.3. Variables 

A variable is a quantity with a name and a location. At any particular time the variable 
may also have a value. (A variable is said to be undefined before it is initialized or assigned its 
first value, and after certain indefinite operations are performed.) Each variable has certain 
attributes: 

4.3. l. Storage Class 

The association of a name and a location is either transitory or permanent. Transitory 
association is achieved when arguments are passed to procedures. Other associations are per
manent (static). (A future extension of EFL may include dynamically allocated variables.) 

4.3.2. Scope of Names 

The names of common areas are global, as are procedure names: these names may be 
used anywhere in the program. All other names are local to the block in which they are 
declared. 

4.3.3. Precision 

Floating point variables are either of normal or long precision. this attribute may be 
stated independently of the basic type. 



8 EFL 

4.4. Arnys 

It is possible to declare rectangular ·arrays (of any dimension) of values of the same type. 
The index set is always a cross-product of intervals of integers. The lower and upper bounds of 
the intervals must be constants for arrays that are local or common. A formal argument array 
may have intervals that are of length equal to one of the other formal arguments. An element 
of an array is denoted by the array name followed by a parenthesized comma-separated list of 
integer values, each of which must lie within the corresponding interval. (The intervals may 
include negative numbers.) Entire arrays may be passed as procedure arguments or in 
input/output lists, or they may be initialized; all other array references must be to individual 
clements. 

4.5. Structures 

It is possible to define new types which are made up of elements of other types. The 
compound object is known as a structure: its constituents are called members of the structure. 
The structure may be given a name, which acts as a type name in the remaining statements 
within the scope of its declaration. The elements of a structure may be of any type (including 
previously defined structures), or they may be arrays of such objects. Entire structures may be 
passed to procedures or be used in input/output lists; individual elements of structures may be 
referenced. The uses of structures will be detailed below. The following structure might 
represent a symbol table: 

5. EXPRESSIONS 

struct tableentry 
{ 
character(8) name 
integer hashvalue 
integer numberofelements 
field(O:I) initialized, used, set 
fteld(O:lO) type 
} 

Expressions arc syntactic forms that yield a value. An expression may have any of the 
following forms, recursively applied: 

primary 
( expression ) 
unary-operator expression 
expression binary-operator expression 

In the following table of operators, all operators on a line have equal precedence and have 
higher precedence than operators on later lines. The meanings of these operators are described 
in sections 5.3 and 5.4. 

-> . .. 
• I unary+ - ++ -
+ -
< <= > >= == ~= 
& && 
111 
$ 

+= •= /= ••= &= I- &&= II= 



EFL 9 

Examples of expressions are 

a<b &:&: b<c 
-(a + sin(x)) / (5+cos(x))**l 

S.1. Primaries 

Primaries are the basic elements of expressions, as follows: 

S.1.1. Constants 

Constants are described in Section 4.2. 

S.1.2. Variables 

Scalar variable names are primaries. They may appear on the left or the right side of an 
assignment. Unqualified names of aggregates (structures or arrays) may only appear as pro
cedure arguments and in input/output lists. 

5.1.3. Array Elements 

An element of an array is denoted by the array name followed by a parenthesized list of 
subscripts, one integer value for each declared dimension: 

a(S) 
b(6, -3,4) 

S.1.4. Structure Members 

A structure name followed by a dot followed by the name of a member of that structure 
constitutes a reference to that element. If that element is itself a structure, the reference may 
be further qualified. 

5.1.5. Procedure Invocations 

a.b 
x(3).y(4).z(5) 

A procedure is invoked by an expression of one of the forms 

procedurename ( ) 
procedurename ( expression ) 
procedurename ( expression-I, ... , expression-n ) 

The procedurename is either the name of a variable declared external or it is the name of a 
function known to the EFL compiler (see Section 8.5), or it is the actual name of a procedure, 
as it appears in a procedure statement. If a procedurename is declared external and is an argu
ment of the current procedure, it is associated with the procedure name passed as actual argu
ment; otherwise it is the actual name of a procedure. Each expression in the above is called an 
actual argument. Examples of procedure invocations are 

f(x) 
work() 
g(x, y+3, 'xx') 

When one of these procedure invocations is to be performed, each of the actual argument 
expressions is first evaluated. The types, precisions, and bounds of actual and formal argu
ments should agree. If an actual argument is a variable name, array element, or structure 
member, the called procedure is permitted to use the corresponding formal argument as the left 
side of an assignment or in an input list; otherwise it may only use the value. After the formal 
and actual arguments are associated, control is passed to the first executable statement of the 



10 EFL 

procedure. When a return statement is executed in that procedure, or when control reaches 
the end statement of that procedure, the function value is made available as the value of the 
procedure invocation. The type of the value is determined by the attributes of the pr<>
cedurename that are declared or implied in the calling procedure, which must agree with the 
attributes declared for the function in its procedure. In the special case of a generic function, 
the type of the result is also affected by the type of the argument. See Chapter 8 for details. 

S.1.6. Input/Output Expressions 

The EFL input/output syntactic forms may be used as integer primaries that have a non
zero value if an error occurs during the input or output. See Section 7.7. 

S.1.7. Coercions 

An expression of one precision or type may be converted to another by an expression of 
the form 

attributes ( expression ) 

At present, the only attributes permitted are precision and basic types. Attributes are separated 
by white space. An arithmetic value of one type may be coerced to any other arithmetic type; a 
character expression of one length may be coerced to a character expression of another length; 
logical expressions may not be coerced to a nonlogical type. As a special case, a quantity of 
complex or long complex type may be constructed from two integer or real quantities by pass
ing two expressions (separated by a comma) in the coercion. Examples and equivalent values 
are 

integer(S.3) == S 
long real(S) = 5.0dO 
complex(5,3) = 5+3i 

Most conversions are done implicitly, since most binary operators permit operands of different 
arithmetic types. Explicit coercions are of most use when it is necessary to convert the type of 
an actual argument to match that of the corresponding formal parameter in a procedure call. 

5. t .8. Sizes 

There is a notation which yields the amount of memory required to store a datum or an 
item of specified type: 

sizeof ( leftside ) 
sizeof ( attributes ) 

In the first case, leftside can denote a variable, array, array element, or structure member. The 
value of sizeof is an integer, which gives the size in arbitrary units. If the size is needed in 
terms of the size of some specific unit, this can be computed by division: 

sizeof(x) / sizeof(integer) 

yields the size of the variable x in integer words. 

The distance between consecutive elements of an array may not equal sizeof because cer
tain data types require final padding on some machines. The lengthof operator gives this larger 
value, again in arbitrary units. The syntax is 

lengthof ( leftside ) 
lengthof ( attributes ) 



EFL 11 

5.2. Parentheses 

An expression surrounded by parentheses is itself an expression. A parenthesized expres
sion must be evaluated before an expression of which it is a part is evaluated. 

5.3. Unary Operators 

All of the unary operators in EFL are prefix operators. The result of a unary operator has 
the same type as its operand. 

5.3.1. Arithmetic 

Unary + has no effect. A unary - yields the negative of its operand. 

The prefix operator + + adds one to its operand. The prefix operator - - subtracts one 
from its operand. The value of either expression is the result of the addition or subtraction. 
For these two operators, the operand must be a scalar, array element, or structure member of 
arithmetic type. (As a side effect, the operand value is changed.) 

5.3.l. Logical 

The only logical unary operator is complement (-). This operator is defined by the equa
tions 

- true = false 
- false = true 

5.4. Binary Operators 

Most EFL operators have two operands, separated by the operator. Because the character 
set must be limited, some of the operators are denoted by strings of two or three special charac
ters. All binary operators except exponentiation are left associative. 

5.4. t. Arithmetic 

The binary arithmetic operators are 

+ addition 
subtraction 

* multiplication 
/ division 
** exponentiation 

Exponentiation is right associative: a••~•c = a••(b••c) = a (b<) The operations have the con
ventional meanings: 8+2 = 10, 8-2 = 6, 8•2 = 16, 8/2 = 4, 8••2 = 82 = 64. 

The type of the result of a binary operation A op B is determined by the types of its 
operands: 

Type of B 

Type of A integer real long real complex long complex 

integer integer real long real complex long complex 
real real real long real complex long complex 
long real long real long real long real long complex long complex 
complex complex complex long cotnplex complex long complex 
long complex long complex long complex long complex long complex long complex 

If the type of an operand differs from the type of the result, the calculation is done as if the 
operand were first coerced to the type of the result. If both operands are integers, the result is 
of type integer, and is computed exactly. (Quotients are truncated toward zero, so 8/3=2.) 



12 EFL 

5.4.l. Logical 

The two binary logical operations in EFL, and and or, are defined by the truth tables: 

A B A and B A or B 
false false false false 
false true false true 
true false false true 
true true true true 

F.ach of these operators comes in two forms. In one form, the order of evaluation is specified. 
The expression 

a && b 

is evaluated by first evaluating a; if it is false then the expression is false and b is not evaluated; 
otherwise the expression has the value of b. The expression 

a II b 

is evaluated by first evaluating a; if it is true then the expression is true and b is not evaluated; 
otherwise the expression has the value of b. The other forms of the operators (& for and and I 
for or) do not imply an order of evaluation. With the latter operators, the compiler may speed 
up the code by evaluating the operands in any order. 

5.4.3. Relational Operators 

There are six relations between arithmetic quantities. These operators are not associative. 

EFL Operator Meaning 

< < less than 
<= <: less than or equal to 

equal to 
~= * not equal to 
> > greater than 
>= > greater than or equal 

Since the complex numbers are not ordered, the only relational operators that may take com
plex operands are = = and ~ = . The character collating sequence is not defined. 

5.4.4. Assignment Operators 

All of the assignment operators are right associative. The simple form of assignment is 

basic-left-side = expression 

A basic-left-side is a scalar variable name, array element, or structure member of basic type. 
This statement computes the expression on the right side, and stores that value (possibly after 
coercing the value to the type of the left side) in the location named by the left side. The 
value of the assignment expression is the value assigned to the left side after coercion. 

There is also an assignment operator corresponding to each binary arithmetic and logical 
operator. In each case, a op= b is equivalent to a =a op b. (The operator and equal sign 
must not be separated by blanks.) Thus, n + -= l adds 2 to n. The location of the left side is 
evaluated only once. 

5.5. Dynamic Structures 

EFL does not have an address (pointer, reference) type. However, there is a notation for 
dynamic structures, 

leftside - > structure name 



EFL 13 

This expression is a structure with the shape implied by structurename but starting at the loca
tion of leftside. In effect, this overlays the structure template at the specified location. The left
side must be a variable, array, array element, or structure member. The type of the leftside 
must be one of the types in the structure declaration. An element of such a structure is 
denoted in the usual way using the dot operator. Thus, 

place( i) - > st.elt 

refers to the elt member of the st structure starting at the ;tli element of the array place. 

5.6. Repetition Operator 

Inside of a list, an element of the form 

integer-constant-expression $ constant-expression 

is equivalent to the appearance of the expression a number of times equal to the first expres
sion. Thus, 

(3, 3$4, 5) 

is equivalent to 

(3, 4, 4, 4, 5) 

5. 7. Constant Expressions 

If an expression is built up out of operators (other than functions) and constants, the 
value of the expression is a constant, and may be used anywhere a constant is required. 

6. DECLARATIONS 

Declarations statement describe the meaning, shape, and size of named objects in the EFL 
language. 

6.1. Syntax 

A declaration statement is made up of attributes and variables. Declaration statements are 
of two form: 

attributes variable-list 
attributes { declarations 

In the first case, each name in the variable-list has the specified attributes. In the second, each 
name in the declarations also has the specified attributes. A variable name may appear in more 
than one variable list, so long as the attributes are not contradictory. Each name of a nonargu
ment variable may be accompanied by an initial value specification. The declarations inside the 
braces are one or more declaration statements. Examples of declarations are 

integer k=2 

long real b(7,3) 

common(cname) 
{ 
integer i 
long real array(5,0:3) x, y 
cbaracter(7) ch 
} 



14 EFL 

6.2. Attributes 

6.2.1. Basic Types 

The following are basic types in declarations 

logical 
integer 
field(m :n) 
character(k) 
real 
complex 

In the above, the quantities k, m, and n denote integer constant expressions with the proper
ties k>O and n>m. 

6.2.2. Arrays 

The dimensionality may be declared by an array attribute 

array(b i. ... ,b,,) 

Each of the b; may either be a single integer expression or a pair of integer expressions 
separated by a colon. The pair of expressions form a lower and an upper bound; the single 
expression is an upper bound with an implied lower bound of 1. The number of dimensions is 
equal to n, the number of bounds. All of the integer expressions must be constants. An 
exception is permitted only if all of the variables associated with an array declarator are formal 
arguments of the procedure; in this case, each bound must have the property that 
upper-lower+ I is equal to a formal argument of the procedure. (The compiler has limited abil
ity to simplify expressions, but it will recognize important cases such as (O:n-1). The upper 
bound for the last dimension (b,,) may be marked by an asterisk ( • ) if the size of the array is 
not known. The following are legal array attributes: 

6.2.3. Structures 

array(S) 
array(S, l:S, -3:0) 
array(S, •) 
array(O:m-1, m) 

A structure declaration is of the form 

struct structname { declaration statements } 

The structname is optional; if it is present, it acts as if it were the name of a type in the rest of 
its scope. Each name that appears inside the declarations is a member of the structure, and has 
a special meaning when used to qualify any variable declared with the structure type. A name 
may appear as a member of any number of structures, and may also be the name of an ordinary 
variable, since a structure member name is used only in contexts where the parent type is 
known. The following are valid structure attributes 

struct xx 
{ 
integer a, b 
real x(S) 
} 

struct { xx z(3); character(S) y } 

The last line defines a structure containing an array of three xx's and a character string. 



EFL 15 

6.l.4. Precision 

Variables of floating' point (real or complex) type may be declared to be long to ensure 
they have higher precision than ordinary floating point variables. The default precision is short. 

6.2.5. Common 

Certain objects called common areas have external scope, and may be referenced by any 
procedure that has a declaration for the name using a 

common ( commonareaname) 

attribute. All of the variables declared with a particular common attribute are in the same 
block; the order in which they are declared is significant. Declarations for the same block in 
differing procedures must have the variables in the same order and with the same types, preci
sion, and shapes, though not necessarily with the same names. 

6.l.6. External 

If a name is used as the procedure name in a procedure invocation, it is implicitly 
declared to have the external attribute. If a procedure name is to be passed as an argument, it 
is necessary to declare it in a statement of the form 

external [ name ) 

If a name ·has the external attribute and it is a formal argument of the procedure, then it is 
associated with a procedure identifier passed as an actual argument at each call. If the name is 
not a formal argument, then that name is the actual name of a procedure, as it appears in the 
corresponding procedure statement. 

6.3. Variable List 

The elements of a variable list in a declaration consist of a name, an optional dimension 
specification, and an optional initial value specification. The name follows the usual rules. The 
dimension specification is the same form and meaning as the parenthesized list in an array 
attribute. The initial value specification is an equal sign ( =) followed by a constant expression. 
If the name is an array, the right side of the equal sign may be a parenthesized list of constant 
expressions, or repeated elements or lists; the total number of elements in the list must not 
exceed the number of elements of the array, which are filled in column-major order. 

6.4. The Initial Statement 

An initial value may also be specified for a simple .variable, array, array element, or 
member of a structure using a statement of the form 

initial [ var = val l 
The var may be a variable name, array element specification, or member of structure. The 
right side follows the same rules as for an initial value specification in other declaration state
ments. 

7. EXECUTABLE STATEMENTS 

Every useful EFL program contains executable statements, otherwise it would not do any
thing and would not need to be run. Statements are frequently made up of other statements. 
Blocks are the most obvious case, but many other forms contain statements as constituents. 

To increase the legibility of EFL programs, some of the statement forms can be broken 
without an explicit continuation. A square (0) in the syntax represents a point where the end 
of a line will be ignored. 



16 EFL 

7.1. Expression Statements 

7.1.1. Subroutine Call 

A procedure invocation that returns no value is known as a subroutine call. Such an 
invocation is a statement. Examples are 

work(in, out) 
run() 

Input/output statements (see Section 7 .7) resemble procedure invocations but do not 
yield a value. If an error occurs the program stops. 

7.1.l. Assignment Statements 

An expression that is a simple assignment ( =) or a compound assignment ( + = etc.) is a 
statement: 

a=b 
a -= sin(x)/6 
x •= y 

7.2. Blocks 

A block is a compound statement that acts as a statement. A block begins with a left 
brace, optionally followed by declarations, optionally followed by executable statements, fol
lowed by a right brace. A block may be used anywhere a statement is permitted. A block is 
not an expression and does not have a value. An example of a block is 

integer i I this variable is unknown outside the braces 

big= 0 
do i "'" l,n 

} 

if (big < a( i)) 
big .. a(i) 

7.3. Test Statements 

Test statements permit execution of certain statements conditional on the truth of a predi-
cate. 

7.3.l. If Statement 

The simplest of the test statements is the if statement, of form 

if ( logical-expression ) D statement 

The logical expression is evaluated; if it is true, then the statement is executed. 

7 .3.2. If-Else 

A more general statement is of the form 

if ( logical-expression ) 0 statement-I D else D statement-2 

If the expression is true then statement-/ is executed, otherwise statement-2 is executed. Either 
of the consequent statements may itself be an if-else so a completely nested test sequence is 
possible: 



EFL 

if(x<y) 
if(a<b) 

k = l 
else 

k = 2 
else 

if(a<b) 
m=l 

else 
m=l 

17 

An else applies to the nearest preceding un-elsed if. A more common use is as a sequential 
test: 

7.3.3. Select Statement 

if(x- -1) 
k = l 

else if(x= =3 I x= =5) 
k=l 

else 
k = 3 

A multiway test on the value of a quantity is succinctly stated as a select statement, which 
has the general form 

select( expression ) D block 

Inside the block two special types of labels are recognized. A prefix of the form 

case [ constant ] : 

marks the statement to which control is passed if the expression in the select has a value equal 
to one of the case constants. If the expression equals none of these constants, but there is a 
label default inside the select, a branch is taken to that point; otherwise the statement following 
the right brace is executed. Once execution begins at a case or default label, it continues until 
the next case or default is encountered. The else-if example above is better written as 

select(x) 
{ 
case 1: 

k = l 
case 3,5: 

k = 2 
default: 

k = 3 

Note that control does not "fall through" to the next case. 

7.4. Loops 

The loop forms provide the best way of repeating a statement or sequence of operations. 
The simplest (while) form is theoretically sufficient, but it is very convenient to have the more 
general loops available, since each expresses a mode of control that arises frequently in practice. 



18 EFL 

7.4.l. While Statement 

This construct has the form 

while ( logical-expression ) 0 statement 

The expression is evaluated; if it is true, the statement is executed, and then the test is per
formed again. If the expression is false, execution proceeds to the next statement. 

7.S. For Statement 

The for statement is a more elaborate looping construct. It has the form 

for ( initial-statement , 0 logical-expression , 0 iteration-statement ) 0 body-statement 

Except for the behavior of the next statement (see Section 7.6.3), this construct is equivalent 
to 

initial-statement 
while ( logical-expression ) 

{ 
body-statement 
iteration-statement 
} 

This form is useful for general arithmetic iterations, and for various pointer-type operations. 
The sum of the integers from 1 to 100 can be computed by the fragment 

n=O 
for(i-= 1, i <- 100, i +- 1) 

n += i 

Alternatively, the computation could be done by the single statement 

for( {n=O; i=l}, i<=lOO, {n+=i; ++i}) 

Note that the body of the for loop is a null statement in this case. An example of following a 
linked list will be given later. 

7.5.l. Repeat Statement 

The statement 

repeat 0 statement 

executes the statement, then does it again, without any termination test. Obviously, a test 
inside the ltatement is needed to stop the loop. 

7.5.2. Repeat ••• Until Statement 

The while loop performs a test before each iteration. The statement 

repeat 0 statement 0 until ( logical-expression ) 

executes the statement, then evaluates the logical; if the logical is true the loop is complete; 
otherwise control returns to the statement. Thus, the body is always executed at least once. 
The until refers to the nearest preceding repeat that has not been paired with an until. In 
practice, this appears to be the least frequently used looping construct. 



EFL 19 

7.5.3. Do Loops 

The simple arithmetic progression is a very common one in numerical applications. EFL 
has a special loop form for ranging over an ascending arithmetic sequence 

do variable = expression-I, expression-2, expression-3 
statement 

The variable is first given the value expression-I. The statement is executed, then expression-3 
is added to the variable. The loop is repeated until the variable exceeds expression-2. If 
expression-3 and the preceding comma are omitted, the increment is taken to be I. The loop 
above is equivalent to 

t2 = expression-2 
t3 = expression-3 
for( variable = expression-1 , variable <= t2 , variable + = t3) 

statement 

(The compiler translates EFL do statements into Fortran DO statements, which are in turn usu
ally compiled into excellent code.) The do variable may not be changed inside of the loop, and 
expression-I must not exceed expression-2. The sum of the first hundred positive integers could 
be computed by 

n - 0 
do i = 1, 100 

n += i 

7 .6. Branch Statements 

Most of the need for branch statements in programs can be averted by using the loop and 
test constructs, but there are programs where they are very useful. 

7.6.1. Goto Statement 

The most general, and most dangerous, branching statement is the simple unconditional 

goto label 

After executing this statement, the next statement performed is the one following the given 
label. Inside of a select the case labels of that block may be used as labels, as in the following 
example: 



20 EFL 

select(k) 

case 1: 
error(7) 

case 2: 
k=2 
goto case 4 

case 3: 
k-5 
goto case 4 

case 4: 
ftxup(k) 
goto default 

default: 
prmsg( •ouch•) 

(If two select statements are nested, the case labels of the outer select are not accessible from 
the inner one.) 

7.6.2. Break Statement 

.A safer statement is one which transfers control to the statement following the current 
select or loop form. A statement of this sort is almost always needed in a repeat loop: 

repeat 
l 
do a computation 
if (finished) 

break 

More general forms permit controlling a branch out of more than one construct. 

break 3 

transfers control to the statement following the third loop and/or select surrounding the state
ment. It is possible to specify which type of construct (for, while, repeat, do, or select) is to 
be counted. The statement 

break while 

breaks out of the first surrounding while statement. Either of the statements 

break 3 for 
break for 3 

will transfer to the statement after the third enclosing for loop. 

7.6.3. Next Statement 

The next statement causes the first surrounding loop statement to go on to the next itera
tion: the next operation performed is the test of a while, the iteration-statement of a for, the 
body of a repeat, the test of a repeat ... until, or the increment of a do. Elaborations similar to 
those for break are available: 



EFL 

next 
next 3 
next 3 for 
next for 3 

A next statement ignores select statements. 

7.6.4. Return 

21 

The last statement of a procedure is followed by a return of control to the caller. If it is 
desired to effect such a return from any other point in the procedure, a 

return 

statement may be executed. Inside a function procedure, the function value is specified as an 
argument of the statement: 

return ( expression ) 

7. 7. Input/Output Statements 

EFL has two input statements (read and readbin), two output statements (write and wri
tebin), and three control statements (endfile, rewind, and backspace). These forms may be 
used either as a primary with a integer value or as a statement. If an exception occurs when 
one of these forms is used as a statement, the result is undefined but will probably be treated as 
a fatal error. If they are used in a context where they return a value, they return zero if no 
exception occurs. For the input forms, a negative value indicates end-of-file and a positive 
value an error. The input/output part of EFL very strongly reflects the facilities of Fortran. 

7.7.1. Input/Output Units 

Each 1/0 statement refers to a ''unit", identified by a small positive integer. Two special 
units are defined by EFL, the standard input unit and the standard output unit. These particular 
units are assumed if no unit is specified in an 1/0 transmission statement. 

The data on the unit are organized .into records. These records may be read or written in a 
fixed sequence, and each transmission moves an integral number o( records. Transmission 
proceeds from the first record until the end of file. 

7.7.2. Binary Input/Output 

The readbin and writebin statements transmit data in a machine-dependent but swift 
manner. The statements are of the form 

write bin ( unit , binary-output-list ) 
readbin( unit , binary-input-list ) 

Each statement moves one unformatted record between storage and the device. The unit is an 
integer expression. A binary-output-list is an iolist (see below) without any format specifiers. A 
binary-input-list is an iolist without format specifiers in which each of the expressions is a vari
able name, array element, or structure member. 

7.7.3. Formatted Input/Output 

The read and write statements transmit data in the form of lines of characters. Each 
statement moves one or more records (lines). Numbers are translated into decimal notation. 
The exact form of the lines is determined by format specifications, whether provided explicitly 
in the statement or implicitly. The syntax of the statements is 



22 EFL 

write( unit , formatted-output-list ) 
read(· unit , formalled-input-list ) 

The lists are of the same form as for binary 1/0, except that the lists may include format 
specifications. If the unit is omitted, the standard input or output unit is used. 

7. 7.4. lolists 

An iolist specifies a set of values to be written or a set of variables into which values are 
to be read. An iolist is a list of one or more ioexpressions of the form 

expression 
{ iolist } 
do-specification { iolist } 

For formatted 1/0, an ioexpression may also have the forms 

ioexpression : format-specifier 
: format-specifier 

A dt>-specification looks just like a do statement, and has a similar effect: the values in the 
braces are transmitted repeatedly until the do execution is complete. 

7. 7.5. Formats 

The following are permissible format-specifiers. The quantities w, d, and k must be 
integer constant expressions. 

i(w) 
f(w,d) 

e(w,d) 

l(w) 

c 
c(w) 
s(k) 
x(k) 
• 

integer with w digits 
floating point number of w characters, 
d of them to the right of the decimal point. 
floating point number of w characters, 
d of them to the right of the decimal point, 
with the exponent field marked with the letter e 
logic.al field of width w characters, 
the first of which is t or f 
(the rest are blank on output, ignored on input) 
standing for true and false respectively 
character string of width equal to the length of the datum 
character string of width w 
skip k lines 
skip k spaces 
use the characters inside the string as a Fortran format 

If no format is specified for an item in a formatted input/output statement, a default form is 
chosen. 

If an item in a list is an array name, then the entire array is transmitted as a sequence of 
elements, each with its own format. The elements are transmitted in column-major order, the 
same order used for array initializations. 

7.7.6. Manipulation Statements 

The three input/output statements 

backspace( unit) 
rewind( unit) 
endftle( unit ) 

look like ordinary procedure calls, but may be used either as statements or as integer expres
sions which yield non-zero if an error is detected. backspace causes the specified unit to back 



EFL 23 

up, so that the next read will re-read the previous record, and the next write will over-write it. 
rewind moves the device to its beginning, so that the next input statement will read the first 
record. endfile causes the file to be marked so that the record most recently written will be the 
last record on the file, and any attempt to read past is an error. 

8. PROCEDURES 

Procedures are the basic unit of an EFL program, and provide the means of segmenting a 
program into separately compilable and named parts. 

8.1. Procedure Statement 

Each procedure begins with a statement of one of the forms 

procedure 
attributes procedure procedurename 
attributes procedure procedurename ( ) 
attributes procedure procedurename ( [ name ] ) 

The first case specifies the main procedure, where execution begins. In the two other cases, the 
attributes may specify precision and type, or they may be omitted entirely. The precision and 
type of the procedure may be declared in an ordinary declaration statement. If no type is 
declared, then the procedure is called a subroutine and no value may be returned for it. Other
wise, the procedure is a function and a value of the declared type is returned for each call. 
Each name inside the parentheses in the last form above is called afonnal argument of the pro
cedure. 

8.2. End Statement 

Each procedure terminates with a statement 

end 

8.3. Argument Association 

When a procedure is invoked, the actual arguments are evaluated. If an actual argument 
is the name of a variable, an array element, or a structure member, that entity becomes associ
ated with the formal argument, and the procedure may reference the values in the object, and 
assign to it. Otherwise, the value of the actual is associated with the formal argument, but the 
procedure may not attempt to change the value of that formal argument. 

If the value of one of the arguments is changed in the procedure, it is not permitted that 
the corresponding actual argument be associated with another formal argument or with a com
mon element that is referenced in the procedure. 

8.4. Execution and Return Values 

After actual and formal arguments have been associated, control passes to the first execut
able statement of the procedure. Control returns to the invoker either when the end statement 
of the procedure is reached or when a return statement is executed. If the procedure is a func
tion (has a declared type), and a return(va/ue) is executed, the value is coerced to the correct 
type and precision and returned. 

8.S. Known Functions 

A number of functions are known to EFL, and need not be declared. The compiler knows 
the types of these functions. Some of them are generic; i.e., they name a family of functions 
that differ in the types of their arguments and return values. The compiler chooses which ele
ment of the set to invoke based upon the attributes of the actual arguments. 



24 EFL 

8.5.1. Minimum and Maximum Functions 

The generic functions are min and max. The min calls return the value of their smallest 
argument; the max calls return the value of their largest argument. These are the only func
tions that may take different numbers of arguments in different calls. If any of the arguments 
are long real then the result is long real. Otherwise, if any of the arguments are real then the 
result is real; otherwise all the arguments and the result must be integer. Examples are 

8.5.2. Absolute Value 

min(5, x, -3.20) 
max(i, z) 

The abs function is a generic function that returns the magnitude of its argument. For 
integer and real arguments the type of the result is identical to the type of the argument; for 
complex arguments the type of the result is the real of the same precision. 

8.5.3. Elementary Functions 

The following generic functions take arguments of real, long real, or complex type and 
return a result of the same type: 

sin 
cos 
exp 
log 
loglO 
sqrt 

sine function 
cosine function 
exponential function (e;o;). 
natural (base e) logarithm 
common (base 10) logarithm 
square root function ( Vx). 

In addition, the following functions accept only real or long real arguments: 

atan atan (x )=tan-1x 

atan2 atan 2(x ,y )-tan-1~ 
y 

8.5.4. Other Generic Functions 

The sign functions takes two arguments of identical type; sign(x J') - sgn (y) Ix I. The 
mod function yields the remainder of its first argument when divided by its second. These 
functions accept integer and real arguments. 

9. ATAVISMS 

Certain facilities are included in the EFL language to ease the conversion of old Fortran or 
Ratfor programs to EFL. 

9.1. Escape Lines 

In order to make use of nonstandard features of the local Fortran compiler, it is occasion
ally necessary to pass a particular line through to the EFL compiler output. A line that begins 
with a percent sign ("% ") is copied through to the output, with the percent sign removed but 
no other change. Inside of a procedure, each escape line is treated as an executable statement. 
If a sequence of lines constitute a continued Fortran statement, they should be enclosed in 
braces. 



EFL 

9.2. Call Statement 

A subroutine call may be preceded by the keyword call. 

call joe 
call work(17) 

9.3. Obsolete Keywords 

The following keywords are recognized as synonyms of EFL keywords: 

9.4. Numeric Labels 

Fortran 

double precision 
function 
subroutine 

EFL 

long real 
procedure 
procedure (untyped) 

25 

Standard statement labels are identifiers. A numeric (positive integer constant) label is 
also permitted; the colon is optional following a numeric label. 

9.5. Implicit Declarations 

If a name is used but does not appear in a declaration, the EFL compiler gives a warning 
and assumes a declaration for it. If it is used in the context of a procedure invocation, it is 
assumed to be a procedure name; otherwise it is assumed to be a local variable defined at nest
ing level 1 in the current procedure. The assumed type is determined by the firsi letter of the 
name. The association of letters and types may be given in an implicit statement, with syntax 

implicit ( letter-list ) type 

where a letter-list is a list of individual letters or ranges (pair of letters separated by a minus 
sign). If no implicit statement appears, the following rules are assumed: 

implicit (a-h, o-z) real 
implicit (i-n) integer 

9.6. Computed Goto 

Fortran contains an indexed multi-way branch; this facility may be used in EFL by the 
computed GOTO: 

goto ( ( label) ), expression 

The expression must be of type integer and be positive but be no larger than the number of 
labels in the list. Control is passed to the statement marked by the label whose position in the 
list is equal to the expression. 

9. 7. Goto Statement 

In unconditional and computed &Oto statements, it is permissible to separate the go and to 
words, as in 

go to xyz 

9.8. Dot Names 

Fortran uses a restricted character set, and represents certain operators by multi-character 
sequences. There is an option {dots=on; see Section 10.2) which forces the compiler to recog
nize the forms in the second column below: 



26 EFL 

< .It. 
<= .le. 
> .gt. 
>= .ge • 

. eq. 
~ ... .ne. 
& .and. 
I .or . 
&& . andand. 
II .oror • 

. not . 
true • true. 
false .false. 

In this mode, no structure element may be named It, le, etc. The readable forms in the left 
column are always recognized. 

9.9. Complex Constants 

A complex constant may be written as a parenthesized list of real quantities, such as 

(1.5, 3.0) 

The preferred notation is by a type coercion, 

complex( 1.5, 3.0) 

9.10. Function Values 

The preferred way to return a value from a function in EFL is the return(va/ue) construct. 
However, the name of the function acts as a variable to which values may be assigned; an ordi
nary return statement returns the last value assigned to that name as the function value. 

9.11. Equivalence 

A statement of the form 

equivalence vh v 2, ... , v,. 

declares that each of the V; starts at the same memory location. Each of the V; may be a vari
able name, array element name, or structure member. 

9.12. Minimum and Maximum Functions 

There are a number of non-generic functions in this category, which differ in the required 
types of the arguments and the type of the return value. They may also have variable numbers 
of arguments, but all the arguments must have the same type. 



EFL 27 

Function Aq~ument Type Result Type 
aminO integer real 
aminl real real 
minO integer integer 
mint real integer 
dminl long real long real 

amaxO integer real 
amaxl real real 
maxO integer integer 
maxl real integer 
dmaxl long real long real 

10. COMPILER OPTIONS 

A number of options can be used to control the output and to tailor it for various com
pilers and systems. The defaults chosen are conservative, but it is sometimes necessary to 
change the output to match peculiarities of the target environment. 

Options are set with statements of the form 

option [ opt ) 

where each opt is of one of the forms 

optionname 
optionname = optionvalue 

The optionvalue is either a constant (numeric or string) or a name associated with that option. 
The two names yes and no apply to a number of options. 

10.1. Default Options 

Each option has a default setting. It is possible to change the whole set of defaults to 
those appropriate for a particular environment by using the system option. At present, the only 
valid values are system=unix and system=gcos. 

10.2. Input Language Options 

The dots option determines whether the compiler recognizes .It. and similar forms. The 
default setting is no. 

10.3. Input/Output Error Handling 

The ioerror option can be given three values: none means that none of the 1/0 statements 
may be used in expressions, since there is no way to detect errors. The implementation of the 
ibm form uses ERR= and END== clauses. The implementation of the fortran77 form uses 
IOSTAT= clauses. 

10.4. Continuation Conventions 

By default, continued Fortran statements are indicated by a character in column 6 (Stan
dard Fortran). The option continue=columnl puts an ampersand (&) in the first column of 
the continued lines instead. 



28 EFL 

10.5. Default Formats 

If no format is specified for a datum in an iolist for a read or write statement, a default is 
provided. The default formats can be changed by setting certain options 

Option T~:J:~e 
iformat integer 
rformat real 
dformat long real 
zformat complex 
zdformat long complex 
lformat logical 

The associated value must be a Fortran format, such as 

option rformat=fll.6 

10.6. Alignments and Sizes 

In order to implement character variables, structures, and the sizeof and lengthof opera
tors, it is necessary to know how much space various Fortran data types require, and what 
boundary alignment properties they demand. The relevant options are 

Fortran Type 
integer 
real 
long real 
complex 
logical 

Size Option 
isize 
rsize 
dsize 
zsize 
lsize 

Alignment Option 
ialign 
ralign 
dalign 
zalign 
lalign 

The sizes are given in terms of an arbitrary unit; the alignment is given in the same units. The 
option charperint gives the number of characters per integer variable. 

10. 7. Default Input/Output Units 

The options ftnin and ftnout are the numbers of the standard input and output units. 
The default values are ftnin==5 and ftnout=6. 

10.8. Miscellaneous Output Control Options 

Each Fortran procedure generated by the compiler will be preceded by the value of the 
procheader option. 

No Hollerith strings will be passed as subroutine arguments if hollincall=no is specified. 

The Fortran statement numbers normally start at 1 and increase by I. It is possible to 
change the increment value by using the deltastno option. 

11. EXAMPLES 

In order to show the fiavor or programming in EFL, we present a few examples. They are 
short, but show some of the convenience of the language. 

11.l. File Copying 

The following short program copies the standard input to the standard output, provided 
that the input is a formatted file containing lines no longer than a hundred characters. 



EFL 

procedure I main program 
character( 100) line 

while( read( , line) ... = 0 ) 
write( , line) 

end 

29 

Since read returns zero until the end of file (or a read error), this program keeps reading and 
writing until the input is exhausted. 

11.2. Matrix Multiplication 

The following procedure multiplies the mXn matrix a by the nXp matrix b to give the 
mXp matrix c. The calculation obeys the formula c;i = ~a1kbkJ· 

procedure matmul(a,b,c, m,n,p) 
integer i, j, k, m, n, p 
long real a(m,n), b(n,p), c(m,p) 

do i = 1,m 
do j = 1,p 

{ 
c(i,j) = 0 
do k -= 1,n 

c(i,j) + = a(i,k) • b(k,j) 

end 

11.3. Searching a Linked List 

Assume we have a list of pairs of numbers (x ,y). The list is stored as a linked list sorted 
in ascending order of x values. The following procedure searches this list for a particular value 
of x and returns the corresponding y value. 

define LAST 0 
define NOTFOUND -1 

integer procedure nl(list, first, x) 

I list is an array of structures. 
I Each structure contains a thread index value, an x, and a y value. 

struct 
{ 
integer nextindex 
integer x, y 
} list(•) 

integer first, p, arg 

for(p = first, p-=LAST && list(p).x<=x, p = list(p).nextindex) 
if(list(p).x = = x) 

return(NOTFOUND) 
end 

return( list(p).y ) 

The search is a single for loop that begins with the head of the list and examines items until 
either the list is exhausted (p== =LAST) or until it is known that the specified value is not on 



30 EFL 

the list (list(p).x > x). The two tests in the conjunction must be performed in the specified 
order to avoid using an invalid subscript in the list(p) reference. Therefore, the && operator is 
used. The next element in the chain is found by the iteration statement p=list(.p).nextindex. 

11.4. Walking a Tree 

As an example of a more complicated problem, let us imagine we have an expression tree 
stored in a common area, and that we want to print out an infix form of the tree. Each node is 
either a leaf (containing a numeric value) or it is a binary operator, pointing to a left and a right 
descendant. In a recursive language, such a tree walk would be implement by the following 
simple pseudocode: 

if this node is a leaf 
print its value 

otherwise 
print a left parenthesis 
print the left node 
print the operator 
print the right node 
print a right parenthesis 

In a nonrecursive language like EFL, it is necessary to maintain an explicit stack to keep track 
of the current state of the computation. The following procedure calls a procedure outch to 
print a single character and a procedure outval to print a value. 

procedure walk(first) I print out an expression tree 

integer first I index of root node 
integer currentnode 
integer stackdepth 
common(nodes) struct 

struct 

{ 
character( 1) op 
integer leftp, rightp 
real val 
} tree(lOO) I array of structures 

integer nextstate 
integer nodep 
J stackframe(lOO) 

define NODE 
define STACK 

tree( currentnode) 
stackframe( stackdepth) 

I nextstate values 
define DOWN 
define LEFf 
define RIGHT 

1 
2 
3 

I initialize stack with root node 
stackdepth = 1 

· STACK.nextstate == DOWN 
STACK.nodep = first 



EFL 

while( stackdepth > 0 ) 

end 

{ . 

currentnode = ST ACK.nodep 
select(ST ACK.nextstate) 

{ 
case DOWN: 

if( NODE.op = == • 1 ) f a leaf 
{ 
outval( NODE.val ) 
stackdepth - ""' 1 
} 

else { I a binary operator node 
outch( "(" ) 
STACK.nextstate = LEFT 
stackdeptb + = 1 
STACK.nextstate =DOWN 
STACK.nodep = NODE.leftp 
} 

case LEFT: 
outch( NODE.op ) 
STACK.nextstate = RIGHT 
stackdepth + = 1 
STACK.nextstate = DOWN 
STACK.nodep = NODE.rigbtp 

case RIGHT: 

} 

outcb( ")* ) 
stackdepth - = 1 

12. PORT ABILITY 

31 

One of the major goals of the EFL language is to make it easy to write portable programs. 
The output of the EFL compiler is intended to be acceptable to any Standard Fortran compiler 
(unless the fortran77 option is specified). 

12.1. Primitives 

Certain EFL operations cannot be implemented in portable Fortran, so a few machine
dependent procedures must be provided in each environment. 

12.1.1. Character String Copying 

The subroutine eflasc is called to copy one character string to another. If the target string 
is shorter than the source, the final characters are not copied. If the target string is longer, its 
end is padded with blanks. The calling sequence is 

subroutine eflasc(a, la, b, lb) 
integer a(•), la, b(•), lb 

and it must copy the first lb characters from b to the first la characters of a. 



32 EFL 

12.1.2. Character String Comparisons 

The function eflcmc is invoked to determine the order of two character strings. The 
declaration is 

integer function eflcmc(a, la, b, lb) 
integer a(•), la, b(•), lb 

The function returns a negative value if the string a of length la precedes the string b of length 
lb. It returns zero if the strings are equal, and a positive value otherwise. If the strings are of 
differing length, the comparison is carried out as if the end of the shorter string were padded 
with blanks. 

13. ACKNOWLEDGEMENTS 

A. D. Hall originated the EFL language and wrote the first compiler for it; he also gave 
inestimable aid when I took up the project. B. W. Kernighan and W. S. Brown made a number 
of useful suggestions about the language and about this report. N. L. Schryer has acted as wil
ling, cheerful, and severe first user and helpful critic of each new version and facility. 
J. L. Blue, L. C. Kaufman, and D. D. Warner made very useful contributions by making seri
ous use of the compiler, and noting and tolerating its misbehaviors. 

14. REFERENCE 

[I] B. W. Kernighan. RATFOR-A Preprocessor for a Rational FORTRAN. Bell Laboratories. 



EFL 33 

APPENDIX A. RELATION BETWEEN EFL AND RATFOR 

There are a number of differences between Ratfor and EFL, since EFL is a defined 
language while Ratfor is the union of the special control structures and the language accepted 
by the underlying Fortran compiler. Ratfor running over Standard Fortran is almost a subset of 
EFL. Most of the features described in the Atavisms section are present to ease the conversion 
of Ratfor programs to EFL. 

There are a few incompatibilities: The syntax of the for statement is slightly different in 
the two languages: the three clauses are separated by semicolons in Ratfor, but by commas in 
EFL. (The initial and iteration statements may be compound statements in EFL because of this 
change). The input/output syntax is quite different in the two languages, and there is no FOR
MAT statement in EFL. There are no ASSIGN or assigned GOTO statements in EFL. 

The major linguistic additions are character data, factored declaration syntax, block struc
ture, assignment and sequential test operators, generic functions, and data structures. EFL per
mits more general forms for expressions, and provides a more uniform syntax. (One need not 
worry about the Fortran/Ratfor restrictions on subscript or DO expression forms, for example.) 



34 EFL 

APPENDIX B. COMPILER 

B.1. Current Version 

The current version of the EFL compiler is a two-pass translator written in portable C. It 
implements all of the features of the language described above except for long complex 
numbers. Versions of this compiler run under the GCOS and UNIXt operating systems. 

B.2. Diagnostics 

The EFL compiler diagnoses all syntax errors. It gives the line and file name (if known) 
on which the error was detected. Warnings are given for variables that are used but not expli
citly declared. 

B.3. Quality of Fortran Produced 

The Fortran produced by EFL is quite clean and readable. To the extent possible, the 
variable names that appear in the EFL program are used in the Fortran code. The bodies of 
loops and test constructs are indented. Statement numbers are consecutive. Few unneeded 
GOTO and CONTINUE statements are used. It is considered a compiler bug if incorrect For
tran is produced (except for escaped lines). The following is the Fortran procedure produced 
by the EFL compiler for the matrix multiplication example (Section 11.2): 

subroutine matmul(a, b, c, m, n, p) 
integer m, n, p 
double precision a(m, n), b(n, p), c(m, p) 
integer i, j, k 
do 3 i = 1, m 

do 2 j = I, p 
c(i, j) = 0 
do I k = I, n 

c(i, j) = c(i, j)+a(i, k)*b(k, j) 
1 continue 
2 continue 
3 continue 

end 

t UNIX is a trademark of Bell Laboratories. 



EFL 

The following is the procedure for the tree walk (Section 11.4): 

subroutine walk(first) 
integer first 
common /nodes/ tree 
integer tree(4, 100) 
real tree1(4, 100) 
integer staame(2, 100), stapth, curode 
integer constl(l) 
equivalence (tree(l,1), treel(l,l)) 
data constl(l)/4h / 

c print out an expression tree 
c index of root node 
c array of structures 
c nextstate nlues 
c initialize stack with root node 

stapth == 1 
staame(l, stapth) = 1 
staame(2, stapth) - first 

1 if (stapth .le. 0) goto 9 
curode = staame(2, stapth) 
goto 7 

2 if (tree(l, curode) .ne. constl(l)) goto 3 

c a leaf 
call ouhal(tree1(4, curode)) 

stapth = stapth-1 
goto 4 

3 call outch ( 1 h () 
c a binary operator node 

staame(l, stapth) 2 
stapth = stapth + 1 
staame(l, stapth) - 1 
staame(2, stapth) = tree(l, curode) 

4 goto 8 
5 call outch(tree(l, curode)) 

staame(l, stapth) = 3 
stapth = stapth+l 
staame(l, stapth) = 1 
staame(2, stapth) tree(3, curode) 
aoto 8 

6 call outch(lh)) 
stapth - stapth-1 
goto 8 

7 if (staame(l, stapth) .eq. 3) goto 6 
if (staame(l, staptb) .eq. 2) goto S 
if (staame(l, stapth) .eq. 1) goto 2 

8 continue 
goto 1 

9 continue 
end-

35 



36 EFL 

APPENDIX C. CONSTRAINTS ON THE DESIGN OF THE EFL LANGUAGE 

Although Fortran can be used to simulate any finite computation, there are realistic limits 
on the generality of a language that can be translated into Fortran. The design of EFL was con
strained by the implementation strategy. Certain of the restrictions are petty (six character 
external names), but others arc sweeping (lack of pointer variables). The following paragraphs 
describe the major limitations imposed by Fortran. 

C.1. External Names 

External names (procedure and COMMON block names) must be no longer than six 
characters in Fortran. Further, an external name is global to the entire program. Therefore, 
EFL can support block structure within a procedure, but it can have only one level of external 
name if the EFL procedures are to be compilable separately, as are Fortran procedures. 

C.2. Procedure Interface 

The Fortran standards, in eff cct, permit arguments to be passed between Fortran pro
cedures either by reference or by copy-in/copy-out. This indeterminacy of specification shows 
through into EFL. A program that depends on the method of argument transmission is illegal 
in either language. 

There are no procedure-valued variables in Fortran: a procedure name may only be passed 
as an argument or be invoked; it cannot be stored. Fortran (and EFL) would be noticeably 
simpler if a procedure variable mechanism were available. 

C.3. Pointers 

The most grievous problem with Fortran is its lack of a pointer-like data type. The imple
mentation of the compiler would have been far easier if certain hard cases could have been 
handled by pointers. Further, the language could have been simplified considerably if pointers 
were accessible in Fortran. (There arc several ways of simulating pointers by using subscripts, 
but they founder on the problems of external variables and initialization.) 

C.4. Recursion 

Fortran procedures are not recursive, so it was not practical to permit EFL procedures to 
be recursive. (Recursive procedures with arguments can be simulated only with great pain.) 

C.5. Storage Allocation 

The definition of Fortran does not specify the lifetime of variables. It would be possible 
but cumbersome to implement stack or heap storage disciplines by using COMMON blocks. 

January 1981 



UNIX Programming (Second Edition) 

Brian W. Kernighan 

Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This paper is an introduction to programming on the UNIXt system. The 
emphasis is on how to write programs that interface to the operating system, 
either directly or through the standard 1/0 library. The topics discussed include 

• handling command arguments 

• rudimentary 1/0; the standard input and output 

• the standard 1/0 library; file system access 

• low-level 1/0: open, read, write, close, seek 

• processes: exec, fork, pipes 

• signals-interrupts. etc. 

There is also an appendix that describes the standard 1/0 library in detail. 

1. INTRODUCTION 

UNIX 

D.3.1 

This paper describes how to write programs that interface with the UNIX operating system 
in a non-trivial way. This includes programs that use files by name, that use pipes, that invoke 
other commands as they run, or that attempt to catch interrupts and other signals during execu
tion. 

This document collects material which is scattered throughout several sections of the UNIX 
User's Manual [1]. There is no attempt to be complete; only generally useful material is dealt 
with. It is assumed that you will be programming in C, so you must be able to read the 
language roughly up to the level of The C Programming Language [2]. Some of the material in 
sections 2 through 4 is based on topics covered more carefully there. You should also be fami
liar with UNIX itself at least to the level of UNIX for Beginners [3]. 

2. BASICS 

2.1 Program Arguments 

When a C program is run as a command, the arguments on the command line are made 
available to the function main as an argument count argc and an array argv of pointers to 
character strings that contain the arguments. By convention, argv [ 0 l is the command name 
itself, so argc is always greater tha~ 0. 

The following program illustrates the mechanism: it simply echoes its arguments back to 
the terminal. (This is essentially the echo command.) 

t UNIX is a trademark of Bell laboratories. 



2 

main(argc, argv) 
int argc; 
char •argv[]; 
{ 

int i; 

/* echo arguments */ 

for (i == 1; i < ar9c; i++) 

UNIX Programming 

printf("%s%c", ar9v[i], (i<argc-1) ? ' ' : '\n'l; 

argv is a pointer to an array whose individual elements are pointers to arrays of characters; 
each is terminated by \0, so they can be treated as strings. The program starts by printing 
argv [ 1 ] and loops until it has printed them all. 

The argument count and the arguments are parameters to main. If you want to keep them 
around so other routines can get at them, you must copy them to external variables. 

2.2 The "Standard Input .. and "Standard Output" 

The simplest input mechanism is to read the .. standard input," which is generally the 
user's terminal. The function getchar returns the next input character each time it is called. 
A file may be substituted for the terminal by using the <convention: if prog uses getchar, 
then the command line 

pro9 <file 

causes prog to read file instead of the terminal. prog itself need know nothing about 
where its input is coming from. This is also true if the input comes from another program via 
the pipe mechanism: 

otherprog : pro9 

provides the standard input for prog from the standard output of otherprog. 

getchar returns the value EOF when it encounters the end of file (or an error) on what
ever you are reading. The value of EOF is normally defined to be - 1, but it is unwise to take 
any advantage of that knowledge. As will become clear shortly, this value is automatically 
defined for you when you compile a program, and need not be of any concern. 

Similarly, put char ( c) puts the character c on the "standard output," which is also by 
default the terminal. The output can be captured on a file by using >: if prog uses put char, 

prog >outfile 

writes the standard output on out f i 1 e instead of the terminal. out file is created if it 
doesn't exist; if it already exists, its previous contents are overwritten. And a pipe can be used: 

pro9 : otherprog 

puts the standard output of prog into the standard input of otherprog. 

The function printf, which formats output in various ways, uses the same mechanism as 
putchar does, so calls to printf and putchar may be intermixed in any order; the out
put will appear in the order of the calls. 

Similarly, the function scanf provides for formatted input conversion; it will read the 
standard input and break it up into strings, numbers, etc., as desired. scanf uses the same 
mechanism as getchar, so calls to them may also be intermixed. 

Many programs read only one input and write one output; for such programs 1/0 with 
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always 
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the 
output of one program to the input of the next. For example, the following program strips out 
all ASCII control characters from its input (except for new-line and tab). 



UNIX Progranvning 

#include <stdio.h> 

main() 
{ 

I* ccstrip: strip non-graphic characters */ 

The line 

int c; 
while ( (c = qetchar( l l I= EOF) 

if ((c >= ' ' && c < 0177) : : c == '\t' : : c -- '\n') 
putchar(c); 

exit( OJ; 

#include <stdio.h> 

3 

should appear at the beginning of each source file. It causes the C compiler to read a file 
(jusrjincludejstdio.h) of standard routines and symbols that includes the definition of EOF. 

If it is necessary to treat multiple files, you can use cat to collect the files for you: 

cat file 1 file2 . . . : cc strip >output 

and thus avoid learning how to access files from a program. By the way, the call to exit at 
the end is not necessary to make the program work properly, but it assures that any caller of 
the program will sec a normal termination status (conventionally 0) from the program when it 
completes. Section 6 discusses status returns in more detail. 

3. THE STANDARD 1/0 LIBRARY 

The "Standard 1/0 Library" is a collection of routines intended to provide efficient and 
portable 1/0 services for most C programs. The standard 1/0 library is available on each sys
tem that supports C, so programs that confine their system interactions to its facilities can be 
transported from one system to another essentially without change. 

In this section, we will discuss the basics of the standard 1/0 library. The appendix con
tains a more complete description of its capabilities. 

3.1 File Access 

The programs written so far have all read the standard input and written the standard out
put, which we have assumed are magically pre-defined. The next step is to write a program that 
accesses a file that is not already connected to the program. One simple example is we, which 
counts the lines, words and characters in a set of files. For instance, the command 

we x.c y.c 

prints the number of lines, words and characters in x. c and y. c and the totals. 

The question is how to arrange for the named files to be read-that is, how to connect the 
file system names to the 1/0 statements which actually read the data. 

The rules are simple. Before it can be read or written a file has to be opened by the stan
dard library function f open. f open takes an external name (like x. c or y. c), does some 
housekeeping and negotiation with the operating system, and returns an internal name which 
must be used in subsequent reads or writes of the file. 

This internal name is actually a pointer, called a file pointer, to a structure which contains 
information about the file, such as the location of a buff er, the current character position in the 
buffer, whether the file is being read or written, and the like. Users don't need to know the 
details, because part of the standard 1/0 definitions obtained by including stdio.his a struc
ture definition called FILE. The only declaration needed for a file pointer is exemplified by 

FILE •fp, *fOpen(); 



4 UNIX Programming 

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a 
type name, like int, not a structure tag. 

The actual call to fopen in a program is 

fp; fopen(name, model; 

The first argument of fopen is the name of the file, as a character string. The second argu
ment is the mode, also as a character string, which indicates how you intend to use the file. 
The only allowable modes are read ("r"), write ("w"), or append ("a"). 

If a file that you open for writing or appending does not exist, it is created (if possible). 
Opening an existing file for writing causes the old contents to be discarded. Trying to read a 
file that does not exist is an error, and there may be other causes of error as well (like trying to 
read a file when you don't have permission). If there is any error, fopen will return the null 
pointer value NULL (which is defined as zero in stdio. h). 

The next thing needed is a way to read or write the file once it is open. There are several 
possibilities, of which getc and putc are the simplest. getc returns the next character from 
a file; it needs the file pointer to tell it what file. Thus 

c "' getc(fp) 

places in c the next character from the file referred to by fp; it returns EOF when it reaches 
end of file. putc is the inverse of getc: 

putc(c, fp) 

puts the character c on the file fp and returns c. getc and putc return EOF on error. 

When a program is started, three files are opened automatically, and file pointers are pro
vided for them. These files are the standard input, the standard output, and the standard error 
output; the corresponding file pointers are called stdin, stdout, and stderr. Normally 
these are all connected to the terminal, but may be redirected to files or pipes as described in 
Section 2.2. stdin, stdout and stderr are pre-defined in the 1/0 library as the standard 
input, output and error files; they may be used anywhere an object of type FILE * can be. 
They are constants, however, not variables, so don't try to assign to them. 

With some of the preliminaries out of the way, we can now write we. The basic design is 
one that has been found convenient for many programs: if there are command-line arguments, 
they are processed in order. If there are no arguments, the standard input is processed. This 
way the program can be used stand-alone or as part of a larger process. 



UNIX Programming 

#include <stdio.h> 

main(argc, argv) 
int argc; 

I* we: count lines, words, chars */ 

char *argv[]; 
{ 

int c, i, inword; 
FILE •fp, *fOpen(); 
long linect, wordct, charct; 
long tlinect = o, twordct = 0, tcharct = O; 

i = 1; 
fp = stdin; 
do { 

if (argc > 1 && (fp=fopen(argv[i], "r")l ==NULL) { 
fprintf(stderr, "we: can't open %s\n", argv[i]); 
continue; 

linect = wordct = charct = inword 
while ((c = qetc(fp)) I• EOF) { 

charct++; 
if (c •• '\n') 

linect++; 
if Cc == ' ' : : c •• '\t' : : c 

inword = O; 
else if (inword == 0) { 

inword = 1; 
wordct++; 

0. 
' 

'\n') 

printf("%7ld %7ld %7ld", linect, wordct, charct); 
printf(argc > 1? "%s\n" : "\n", argv[i]); 
fclose(fp); 
tlinect += linect; 
twordct += wordct; 
tcharct += charct; 

} while (++i < argc); 
if (argc > 2) 

printf("%7ld %7ld %7ld total\n", tlinect, twordct, 
tcharct) ; 

exit ( 0) ; 

5 

The function fprintf is identical to printf, save that the first argument is a file pointer 
that specifies the file to be written. 

The function fclose is the inverse of fopen; it breaks the connection between the file 
pointer and the external name that was established by fopen, freeing the file pointer for 
another file. Since there is a limit on the number of files that a program may have open simul
taneously, it's a good idea to free things when they are no longer needed. There is also another 
reason to call fclose on an output file-it flushes the buffer in which putc is collecting out
put. (fclose is called automatically for each open file when a program terminates normally.) 

3.2 Error Handling-Stderr and Exit 

stderr is assigned to a program in the same way that stdin and stdout are. Output 
written on stderr appears on the user's terminal even if the standard output is redirected. 
we writes its diagnostics on stderr instead of stdout so that if one of the files can't be 
accessed for some reason, the message finds its way to the user's terminal instead of disappear
ing down a pipeline or into an output file. 



6 UNIX Programming 

The program actually signals errors in another way, using the function exit to terminate 
program execution. The argument of exit is available to whatever process called it (see Sec
tion 6), so the success or failure of the program can be tested by another program that uses this 
one as a sub-process. By convention, a return value of 0 signals that all is well; non-zero 
values signal abnormal situations. 

exit itself calls f close for each open output file, to flush out any buffered output, then 
calls a routine named _exit. The function _exit causes immediate termination without any 
buffer flushing; it may be called directly if desired. 

3.3 Miscellaneous 1/0 Functions 

The standard 1/0 library provides several other 1/0 functions besides those we have illus
trated above. 

Normally output with putc, etc., is buffered (except to stderr); to force it out immedi
ately, use fflush(fp). 

fscanf is identical to scanf, except that its first argument is a file pointer (as with 
fprintf) that specifics the file from which the input comes; it returns EOF at end of file. 

The functions sscanf and sprintf are identical to fscanf and fprintf, except that 
the first argument names a character string instead of a file pointer. The conversion is done 
from the string for sscanf and into it for sprintf. 

fgets ( buf, size, fp) copies the next line from fp, up to and including a new-line, 
into buf; at most size-1 characters are copied; it returns NULL at end of file. 
fputs ( buf, fp) writes the string in buf onto file fp. 

The function ungetc ( c, fp) "pushes back" the character c onto the input stream fp; 
a subsequent call to getc, fscanf, etc., will encounter c. Only one character of push-back 
per file is permitted. 

4. LOW-LEVEL 1/0 

This section describes the bottom level of 1/0 on the UNIX system. The lowest level of 
1/0 in UNIX provides no buffering or any other services; it is in fact a direct entry into the 
operating system. You are entirely on your own, but on the other hand, you have the most 
control over what happens. And since the calls and usage are quite simple, this isn't as bad as 
it sounds. 

4.1 File Descriptors 

In the UNIX operating system, all input and output is done by reading or wntmg files, 
because all peripheral devices, even the user's terminal, are files in the file system. This means 
that a single, homogeneous interface handles all communication between a program and peri
pheral devices. 

In the most general case, before reading or writing a file, it is necessary to inform the sys
tem of your intent to do so, a process called "opening" the file. If you are going to write on a 
file, it may also be necessary to create it. The system checks your right to do so (does the file 
exist? do you have permission to access it?), and if all is well, returns a small positive integer 
called a file descriptor. Whenever 1/0 is to be done on the file, the file descriptor is used instead 
of the name to identify the file. (This is roughly analogous to the use of READ ( 5 , ••• ) and 
WRITE ( 6, ••• ) in Fortran.) All information about an open file is maintained by the system; 
the user program refers to the file only by the file descriptor. 

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file 
descriptors are more fundamental. A file pointer is a pointer to a structure that contains, 
among other things, the file descriptor for the file in question. 



UNIX Programming 7 

Since input and output involving the user's terminal are so common, special arrangements 
exist to make this convenient. When the command interpreter (the "shell") runs a program, it 
opens three files. with file descriptors 0, I, and 2, called the standard input, the standard out
put. and the standard error output. All of these are normally connected to the terminal, so if a 
program reads file descriptor 0 and writes file descriptors I and 2, it can do terminal 1/0 
without worrying about opening the files. 

If 1/0 is redirected to and from files with <and >,as in 

prog <inf ile >outfile 

the shell changes the default assignments for file descriptors 0 and l from the terminal to the 
named files. Similar observations hold if the input or output is associated with a pipe. Nor
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all 
cases, the file assignments are changed by the shell, not by the program. The program does not 
need to know where its input comes from nor where its output goes, so long as it uses file 0 for 
input and l and 2 for output. 

4.2 Read and Write 

All input and output is done by two functions called read and write. For both, the first 
argument is a file descriptor. The second argument is a buffer in your program where the data 
is to come from or go to. The third argument is the number of bytes to be transferred. The 
calls are 

n_read • read(fd, buf, n); 

n_written = write(fd, buf, n); 

Each call returns a byte count which is the number of bytes actually transferred. On reading, 
the number of bytes returned may be less than the number asked for, because fewer than n 
bytes remained to be read. (When the file is a terminal, read normally reads only up to the 
next new-line, which is generally less than what was requested.) A return value of zero bytes 
implies end of file, and - 1 indicates an error of some sort. For writing, the returned value is 
the number of bytes actually written; it is generally an error if this isn't equal to the number 
supposed to be written. 

The number of bytes to be read or written is quite arbitrary. The two most common values 
are I, which means one character at a time ("unbuffered"), and 512, which corresponds to a 
physical block size on many peripheral devices. This latter size will be most efficient, but even 
character at a time 1/0 is not inordinately expensive. 

Putting these facts together, we can write a simple program to copy its input to its output. 
This program will copy anything to anything, since the input and output can be redirected to 
any file or device. 

#define 

main() 

BUFSIZE 512 /* best size for PDP-11 UNIX */ 

/* copy input to output */ 
{ 

char buf[BUFSIZE]; 
int n; 

while ((n: read(O, buf, BUFSIZE)J > 0) 
write(1, buf, n); 

exit( OJ; 

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes 
to be written by write; the next call to read after that will return zero. 



8 UNIX Programming 

It is instructive to see how read and write can be used to construct higher level routines 
like getchar, putchar, etc. For example, here is a version of getchar which does 
unbuffered input. 

#define CMASK 0377 I• for making char's > 0 •I 

getchar() /•unbuffered single character input•/ 
{ 

char c; 

return((read(O, &c, 1) > 0) ? c & CMASK : EOF); 

c must be declared char, because read accepts a character pointer. The character being 
returned must be masked with 0 3 7 7 to ensure that it is positive; otherwise sign extension may 
make it negative. (The constant O 3 7 7 is appropriate for the PDP-I I but not necessarily for 
other machines.) 

The second version of getchar does input in big chunks, and hands out the characters 
one at a time. 

#define 
#define 

CMASK 
BUFSIZE 

0377 I• for making char's > 0 •I 
512 

9etchar(l /•buffered version•/ 
{ 

} 

static char 
static char 
static int 

buf[BUFSIZE]; 
•bufp • buf; 
n "' O; 

if (n == O) I• buffer is empty •/ 
n = read(O, buf, BUFSIZE); 
bufp "' buf; 

return((--n >= 0) ? •bufp++ & CMASK 

4.3 Open, Creat, Close, Unlink 

EOF); 

Other than the default standard input, output and error files, you must explicitly open files 
in order to read or write them. There are two system entry points for this, open and creat 
[sic]. 

open is rather like the fopen discussed in the previous section, except that instead of 
returning a file pointer, it returns a file descriptor, which is just an int. 

int fd; 

fd • open(name, rwmode); 

As with fopen, the name argument is a character string corresponding to the external file 
name. The access mode argument is different, however: rwmode is 0 for read, I for write, and 
2 for read and write access. open returns - 1 if any error occurs; otherwise it returns a valid 
file descriptor. 

It is an error to try to open a file that does not exist. The entry point creat is provided 
to create new files, or to re-write old ones. 

fd = creat(name, pmode); 

returns a file descriptor if it was able to create the file called name, and - 1 if not. If the file 
already exists, creat will truncate it to zero length; it is not an error to creat a file that 
already exists. 



UNIX Programming 9 

If the file is brand new, ere at creates it with the protection mode specified by the pmode 
argument. In the UNIX file system, there are nine bits of protection information associated 
with a file, controlling read, write and execute permission for the owner of the file, for the 
owner's group, and for all others. Thus a three-digit octal number is most convenient for 
specifying the permissions. For example, 0755 specifies read, write and execute permission 'for 
the owner, and read and execute permission for the group and everyone else. 

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one 
file to another. (The main simplification is that our version copies only one file, and does not 
permit the second argument to be a directory.) 

#define NULL 0 
#define BUFSIZE 512 
#define PMODE 0644 I• RW for owner, R for group, others •/ 

main(ar9c, argv) 
int argc; 

I• cp: copy f 1 to f2 •/ 

char •argv [ ] ; 
{ 

int f1, f2, n; 
char buf[BUFSIZE]; 

if (argc I= 3) 
error("Usage: cp from to", NULL); 

if ((f1 = open(argv[1], 0)) ="' -1) 
error("cp: can't open %s", argv[1]); 

if ((f2 = creat(argv[2], PMODE)) == -1) 
error("cp: can't create %s", argv[2]); 

while ((n = read(f1, buf, BUFSIZE)) > 0) 
if (write(f2, buf, n) I= n) 

error("cp: write error", NULL); 
exit( OJ; 

error(s1, s2) /• print error message and die •/ 
char •s1, •s2; 

printf(s1, s2l; 
printf("\n"); 
exit( 1); 

As we said earlier, there is a limit (typically 15-25) on the number of files which a program 
may have open simultaneously. Accordingly, any program which intends to process many files 
must be prepared to re-use file descriptors. The routine close breaks the connection between 
a file descriptor and an open file, and frees the file descriptor for use with some other file. Ter
mination of a program via exit or return from the main program closes all open files. 

The function unlink(filename) removes the file filename from the file system. 

4.4 Random Access-Seek and Lseek 

File 1/0 is normally sequential: each read or write takes place at a position in the file 
right after the previous one. When necessary, however, a file can be read or written in any 
arbitrary order. The system call lseek provides a way to move around in a file without actu
ally reading or writing: 

lseek(fd, offset, origin); 

forces the current position in the file whose descriptor is fd to move to position offset, 
which is taken relative to the location specified by origin. Subsequent reading or writing will 



IO UNIX Programming 

begin at that position. offset is a long; fd and origin are int's. origin can be 0, 1, 
or 2 to specify that offset is to be measured from the beginning, from the current position, 
or from the end of the file respectively. For example, to append to a file, seek to the end 
before writing: 

lseek(fd, OL, 2); 

To get back to the beginning ("rewind"), 

lseek(fd, OL, 0); 

Notice the O L argument; it could also be written as (long) O. 

With lseek, it is possible to treat files more or less like large arrays, at the price of slower 
access. For example, the following simple function reads any number of bytes from any arbi
trary place in a file. 

get(fd, pos, buf, n) /* read n bytes from position pos */ 
int fd, n; 
long pos; 
char *buf; 
{ 

lseek(fd, pos, 0); /*get to pos •/ 
return(read(fd, buf, n)); 

Before Version 7, the basic entry point to the UNIX 1/0 system was called seek. seek is 
identical to lseek, except that its offset argument is an int rather than a long. Accord
ingly, since PDP-11 integers have only 16 bits, the offset specified for seek is limited to 
65,535; for this reason, origin values of 3, 4, 5 cause seek to multiply the given offset by 
512 (the number of bytes in one physical block) and then interpret origin as if it were 0, l, 
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks, first one 
which selects the block, then one which has origin equal to 1 and moves to the desired byte 
within the block. 

4.5 Error Processing 

The routines discussed in this section, and in fact all the routines which are direct entries 
into the system can incur errors. Usually they indicate an error by returning a value of -1. 
Sometimes it is nice to know what sort of error occurred; for this purpose all these routines, 
when appropriate, leave an error number in the external cell errno. The meanings of the 
various error numbers are listed in the introduction to Section 2 of the UNIX User's Manual 
[l], so your program can, for example, determine if an attempt to open a file failed because it 
did not exist or because the user lacked permission to read it. Perhaps more commonly, you 
may want to print out the reason for failure. The routine perror will print a message associ
ated with the value of errno; more generally, sys_errno is an array of character strings 
which can be indexed by errno and printed by your program. 

5. PROCESSES 

It is often easier to use a program written by someone else than to invent one's own. This 
section describes how to execute a program from within another. 

5.1 The .. System" Function 

The easiest way to execute a program from another is to use the standard library routine 
system. system takes one argument, a command string exactly as typed at the terminal 
(except for the new-line at the end) and executes it. For instance, to time-stamp the output of 
a program, 



UNIX Programming 

main() 
{ 

system( "date"); 
/• rest of processing •/ 

11 

If the command string has to be built from pieces, the in-memory formatting capabilities of 
sprintf may be useful. 

Remember than getc and putc normally buffer their input; terminal 1/0 will not be 
properly synchronized unless this buffering is defeated. For output, use ff 1 ush; for input, 
see setbuf in the appendix. 

5.2 Low-Level Process Creation-Excel and Execv 

If you're not using the standard library, or if you need finer control over what happens, you 
will have to construct calls to other programs using the more primitive routines that the stan
dard library's system routine is based on. 

The most basic operation is to execute another program without returning, by using the rou
tine execl. To print the date as the last action of a running program, use 

execl("/bin/date", "date", NULL); 

The first argument to execl is the file name of the command; you have to know where it is 
found in the file system. The second argument is conventionally the program name (that is, 
the last component of the file name), but this is seldom used except as a place-holder. If the 
command takes arguments, they are strung out after this; the end of the list is marked by a 
NULL argument. 

The exec 1 call overlays the existing program with the new one, runs that, then exits. 
There is no return to the original program. 

More realistically, a program might fall into two or more phases that communicate only 
through temporary files. Here it is natural to make the second pass simply an execl call from 
the first. 

The one exception to the rule that the original program never gets control back occurs 
when there is an error, for example if the file can't be found or is not executable. If you don't 
know where date is located, say 

execl("/bin/date", "date", NULL); 
execl("/usr/bin/date", "date", NULL); 
fprintf(stderr, "Someone stole 'date'\n"l; 

A variant of execl called execv is useful when you don't know in advance how many 
arguments there are going to be. The call is 

execv(filename, argpl; 

where argp is an array of pointers to the arguments; the last pointer in the array must be 
NULL so execv can tell where the list ends. As with execl, filename is the file in which 
the program is found, and argp [ 0 J is the name of the program. (This arrangement is identi
cal to the·e.rgv array for program arguments.) 

Neither of these routines provides the niceties of normal command execution. There is no 
automatic search of multiple directories-you have to know precisely where the command is 
located. Nor do you get the expansion of metacharacters like <, >, *• ?, and [] in the argu
m~nt list. If you want these, use execl to invqke the shell sh, which then does all the work. 
Construct a string commandline that contains the complete command as it would have been 
typed at the terminal, then say 



12 UNIX Programming 

execl("/bin/sh", "sh", "-c~, commandline, NULL); 

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says to treat the next 
argument as a whole command line, so it does just what you want. The only problem is in con
structing the right information in commandline. 

5.3 Control of Processes- Fork and Wait 

So far what we've talked about isn't really all that useful by itself. Now we will show how 
to regain control after running a program with execl or execv. Since these routines simply 
overlay the new program on the old one, to save the old one requires that it first be split into 
two copies; one of these can be overlaid, while the other waits for the new, overlaying program 
to finish. The splitting is done by a routine called fork: 

proc_id =fork(); 

splits the program into two copies, both of which continue to run. The only difference between 
the two is the value of proc_id, the "process id." In one of these processes (the "child"), 
proc_id is zero. In the other (the "parent"), proc_id is non-zero; it is the process 
number of the child. Thus the basic way to call, and return from, another program is 

if (fork() •• 0) 
execl("/bin/sh", "sh", "-c", cmd, NULL); /., in child .,; 

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the 
program. In the child, the value returned by fork is zero, so it calls execl which does the 
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If 
there is any error, fork returns -1). 

More often, the parent wants to wait for the child to terminate before continuing itself. 
This can be done with the function wait: 

int status; 

if (fork()== 0) 
execl( ... ) ; 

wait(&.statusJ; 

This still doesn't handle any abnormal conditions, such as a failure of the exec 1 or fork, or 
the possibility that there might be more than one child running simultaneously. (The wait 
returns the process id of the terminated child, if you want to check it against the value;: returned 
by fork.) Finally, this fragment doesn't deal with any funny behavior on the part of the child 
(which is reported in status). Still, these three lines are the heart of the standard library's 
system routine, which we'll show in a moment. 

Tlie status returned by wait encodes in its low-order eight bits the system's idea of the 
child's termination status; it is 0 for normal termination and non-zero to indicate various kinds 

, of problems. The next higher eight bits are taken from the argument of the call to exit 
which caused a normal termination of the child process. It is good coding practice for all pro
grams to return meaningful status. 

When a program is called by the shell, the three file descriptors 0, l, and 2 are set up point
ing at the right files, and all other possible file descriptors are available for use. When this pro
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei
ther fork nor the exec calls affects open files in any way. If the parent is buffering output 
that must come out before output from the child, the parent must flush its buffers before the 
execl. Conversely, if a caller buffers an input stream, the called program will lose any infor
mation that has been read by the caller. 



UNIX Programming 13 

5.4 Pipes 

A pipe is an I/0 channel intended for use between two cooperating processes: one process 
writes into the pipe, while the other reads. The system looks after buffering the data and syn
chronizing the two processes. Most pipes are created by the shell, as in 

ls l pr 

which connects the standard output of ls to the standard input of pr. Sometimes, however, it 
is most convenient for a process to set up its own plumbing; in this section, we will illustrate 
how the pipe connection is established and used. 

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two 
file descriptors are returned; the actual usage is like this: 

int fd[2]; 

stat= pipe(fd); 
if (stat == -1) 

I• there was an error ... */ 

f d is an array of two file descriptors, where f d [ 0 l is the read side of the pipe and f d [ 1 ] is 
for writing. These may be used in read, write and close calls just like any other file 
descriptors. 

If a process reads a pipe which is empty, it will wait until data arrives: if a process writes 
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of 
the pipe is closed, a subsequent read will encounter end of file. 

To illustrate the use of pipes in a realistic setting, let us write a function called 
popen ( cmd, mode), which creates a process cmd Uust as system does), and returns a file 
descriptor that will either read or write that process, according to mode. That is, the call 

fout = popen("pr", WRITE); 

creates a process that executes the pr command; subsequent write calls using the file 
descriptor f out will send their data to that process through the pipe. 

popen first creates the the pipe with a pipe system call; it then forks to create two 
copies of itself. The child decides whether it is supposed to read or write, closes the other side 
of the pipe, then calls the shell (via execl) to run the desired process. The parent likewise 
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests 
work properly. For example, if a child that intends to read fails to close the write end of the 
pipe, it will never see the end of the pipe file, just because there is one writer potentially active. 



14 

#include <stdio.h> 

#define 
#define 
#define 
static 

READ 0 
WRITE 1 
tst(a, b) (mode •• READ ? (b) 
int popen_pid; 

popen(cmd, mode) 
char •cmd; 
int mode; 
{ 

int p[2]; 

if (pipe ( p) < O) 
return(NULL); 

if ((popen_pid =fork()) == 0) { 
close(tst(p[WRITE], p[READ])); 
close(tst(O, 1ll; 

(&)) 

dup(tst(p[READ], p[WRITE])); 
close(tst(p[READ], p[WRITE])); 
execl("/bin/sh", "sh", "-c", cmd, 0); 

UNIX Programming 

_exit(1); I• disaster has occurred if we get here•/ 

} 

if (popen_pid == -1) 
return(NULLJ; 

close(tst(p[READ], p[WRITE])); 
return(tst(p[WRITEl, p[READ])); 

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child 
process that will read data from the parent. Then the first close closes the write side of the 
pipe, leaving the read side open. The lines 

close(tst(O, 1)); 
dup(tst(p[READ], p[WRITE])); 

are the conventional way to associate the pipe descriptor with the standard input of the child. 
The close closes file descriptor 0, that is, the standard input. dup is a system call that 
returns a duplicate of an already open file descriptor. File descriptors are assigned in increasing 
order and the first available one is returned, so the effect of the dup is to copy the file descrip· 
tor for the pipe (read side) to file descriptor O; thus the read side of the pipe becomes the stan
dard input. (Yes, this is a bit tricky, but it's a standard idiom.) Finally, the old read side of the 
pipe is closed. 

A similar sequence of operations takes place when the child process is supposed to write 
from the parent instead of reading. You may find it a useful exercise to step through that case. 

The job is not quite done, for we still need a function pc lose to close the pipe created by 
popen. The main reason for using a separate function rather than close is that it is desir· 
able to wait for the termination of the child process. First, the return value from pclose 
indicates whether the process succeeded. Equally important when a process creates several chil
dren is that only a bounded number of unwaited-for children can exist, even if some of them 
have terminated; performing the wait lays the child to rest. Thus: 



UNIX Programming 

#include <si~nal.h> 

pclose(fd) 
int fd; 

I• close pipe fd •/ 

{ 

register r, (•hstat) (), (•istat) ( l, (•qstat) (); 
int status; 
extern int popen_pid; 

close(fd); 
istat signal(SIGINT, SIG_IGN); 
qstat. signal(SIGQUIT, SIG_IGN); 
hstat • signal(SIGHUP, SIG_IGN); 
while ((r = wait(&statusJJ I= popen_pid && r I= -1); 
if (r == -1) 

status • -1; 
signal(SIGINT, istat); 
signal(SIGQUIT, qstatJ; 
signal(SIGHUP, hstatJ; 
return( status); 

15 

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this 
is the topic of the next section. 

The routine as written has the limitation that only one pipe may be open at once, because 
of the single shared variable popen_pid; it really should be an array indexed by file descrip
tor. A popen function, with slightly different arguments and return value is available as part 
of the standard 1/0 library discussed below. As currently written, it shares the same limitation. 

6. SIGNALS-INTERRUPTS AND ALL THAT 

This section is concerned with how to deal gracefully with signals from the outside world 
(like interrupts), and with program faults. Since there's nothing very useful that can be done 
from within C about program faults, which arise mainly from illegal memory references or from 
execution of peculiar instructions, we'll discuss only the outside-world signals: interrupt, which 
is sent when the DEL character is typed; quit, generated by the FS character; hangup, caused by 
hanging up the phone; and terminate, generated by the kill command. When one of these 
events occurs, the signal is sent to all processes which were started from the corresponding ter
minal; unless other arrangements have been made, the signal terminates the process. In the 
quit case, a core image file is written for debugging purposes. 

The routine which alters the default action is called signal. It has two arguments: the 
first specifies the signal, and the second specifies how to treat it. The first argument is just a 
number code, but the second is the address is either a function, or a somewhat strange code 
that requests that the signal either be ignored, or that it be given the default action. The 
include file signal. h gives names for the various arguments, and should always be included 
when signals are used. Thus 

#include <signal.h> 

siqnal(SIGINT, SIG_IGN); 

causes interrupts to be ignored, while 

signal(SIGINT, SIG_DFL); 

restores the default action of process termination. In all cases, signal returns the previous 
value of the signal. The second argument to signal may instead be the name of a function 
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the 
named routine will be called when the signal occurs. Most commonly this facility is used to 



16 UNIX Programming 

allow the program to clean up unfinished business before terminating, for example to delete a 
temporary file: 

#include <signal.h> 

main () 
{ 

int onintr(); 

if (signal(SIGINT, SIG_IGN) I= SIG_IGN) 
signal(SIGINT, onintr); 

I* Process ... */ 

exit(O); 

onintr () 
{ 

unlink(tempfile); 
exit ( 1 ) ; 

Why the test and the double call to signal? Recall that signals like interrupt are sent to 
all processes started from a particular terminal. Accordingly, when a program is to be run non
interactively (started by &) , the shell turns off interrupts for it so it won't be stopped by inter
rupts intended for foreground processes. If this program began by announcing that all inter
rupts were to be sent to the onintr routine regardless, that would undo the shell's effort to 
protect it when run in the background. 

The solution, shown above, is to test the state of interrupt handling, and to continue to 
ignore interrupts if they are already being ignored. The code as written depends on the fact 
that s i gna 1 returns the previous state of a particular signal. If signals were already being 
ignored, the process should continue to ignore them; otherwise, they should be caught. 

A more sophisticated program may wish to intercept an interrupt and interpret it as a 
request· to stop what it is doing and return to its own command-processing loop. Think of a 
text editor: interrupting a long printout should not cause it to terminate and lose the work 
already done. The outline of the code for this case is probably best written like this: 

#include <signal.h> 
#include <setjmp.h> 
jmp_buf sjbuf; 

main () 
{ 

} 

int (•istat)(), onintr(); 

istat = siqnal(SIGINT, SIG_IGN); I• save original status*/ 
setjmp(sjbufl; /*save current stack position•/ 
if (istat I• SIG_IGN) 

signal(SIGINT, onintr); 

I• main processing loop •/ 

onintr () 
{ 

printf("\ninterrupt\n"); 
longjmp(sjbuf); /•return to saved state*/ 

The include file setjmp. h declares the type jmp_buf an object in which the state can be 
saved. sjbuf is such an object; it is an array of some sort. The setjmp routine then saves 
the state of things. When an interrupt occurs, a call is forced to the onintr routine, which 



UNIX Programming 17 

can print a message, set flags, or whatever. longjmp takes as argument an object stored into 
by setjmp, and restores control to the location after the call to setjmp, so control (and the 
stack level) will pop back to the place in the main routine where the signal is set up and the 
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs. 
This is necessary; most signals are automatically reset to their default action when they occur. 

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for 
example in the middle of updating a linked list. If the routine called on occurrence of a signal 
sets a flag and then returns instead of calling exit or longjmp, execution will continue at 
the exact point it was interrupted. The interrupt flag can then be tested later. 

There is one difficulty associated with this approach. Suppose the program is reading the 
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and 
returns. If it were really true, as we said above, that "execution resumes at the exact point it 
was interrupted," the program would continue reading the terminal until the user typed another 
line. This behavior might well be confusing, since the user might not know that the program is 
reading; he presumably would prefer to have the signal take effect instantly. The method 
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after 
the signal, returning an error code which indicates what happened. 

Thus programs which catch and resume execution after signals should be prepared for 
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads 
from a terminal, wait, and pause.) A program whose onintr program just sets intflag, 
resets the interrupt signal, and returns, should usually include code like the following when it 
reads the standard input: 

if (9etchar() == EOFJ 
if (intflag) 

I* EOF caused by interrupt •/ 
else 

I• true end-of-file •I 

A final subtlety to keep in mind becomes important when signal-catching is combined with 
execution of other programs. Suppose a program catches interrupts, and also includes a method 
(like "!" in the editor) whereby other programs can be executed. Then the code should look 
something like this: 

if (fork(}== 0) 
execl( ... l; 

signal(SIGINT, SIG_IGN); I• ignore interrupts */ 
wait(&statusJ; /•until the child is done•/ 
si9nal(SIGINT, onintr); I• restore interrupts*/ 

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call 
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to 
its main loop, and probably read your terminal. But the calling program will also pop out of its 
wait for the subprogram and read your terminal. Having two processes reading your terminal is 
very unfortunate, since the system figuratively flips a coin to decide who should get each line of 
input. A simple way out is to have the parent program ignore interrupts until the child is done. 
This reasoning is reflected in the standard 1/0 library function system: 



18 

#include <signal.h> 

system(s) I• run command string s •I 
char •s; 
{ 

} 

int status, pid, w; 
register int ( •istat) (), ( •qstat) (); 

if ((pid •fork())== 0) { 
execl("/bin/sh", "sh", "-c", s, O); 

_exit(127); 

istat = signal(SIGINT, SIG_IGN); 
qstat = signal(SIGQUIT, SIG_IGN); 
while ((w = wait(&status)) I• pid && w I= -1) 

if (W == -1) 
status = -1; 

signal(SIGINT, istat); 
signal(SIGQUIT, qstat); 
return( status); 

UNIX Programming 

As an aside on declarations, the function signal obviously has a rather strange second 
argument. It is in fact a pointer to a function delivering ari integer, and this is also the type of 
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are 
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they 
are defined for the PDP-11; the definitions should be sufficiently ugly and nonportable to 
encourage use of the include file. 

#define 
#define 

REFERENCES 

SIG_DFL 
SIG_IGN 

(int < •) ( ) ) 0 
(int ( *) ( ) ) 1 

[1] Dolotta, T. A., Olsson, S. B., and Petruccelli. A. G. (eds.). UNIX User's Manual-Release 
3.0, Bell Laboratories (June 1980). 

[2] 8. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, Inc., 
1978. 

[3] 8. W. Kernighan. UNIX for Beginners-Second Edition, Bell Laboratories, 1978. 



UNIX Programming 

Appendix -The Standard 1/0 Library 

D. M. Ritchie 

Bell Laboratories 
Murray Hill, New Jersey 07974 

The standard 1/0 library was designed with the following goals in mind. 

19 

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita
tion in using it no matter how critical the application. 

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose 
use mars the understandability and portability of many programs using older packages. 

3. The interface provided should be applicable on all machines, whether or not the programs 
which implement it are directly portable to other systems, or to machines other than the 
PDP-11 running a version of UNIX. 

l. GENERAL USAGE 

Each program using the library must have the line 

#include <stdio.h> 

which defines certain macros and variables. The routines are in the normal C library, so no 
special library argument is needed for loading. All names in the include file intended only for 
internal use begin with an underscore _ to reduce the possibility of collision with a user name. 
The names intended to be visible outside the package are 

std in The name of the standard input file 

stdout The name of the standard output file 

stderr The name of the standard error file 

EOF is actually -1, and is the value returned by the read routines on end-of-file or error. 

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an 
error 

FILE expands to struct _iob and is a useful shorthand when declaring pointers to 
streams. 

BUFSIZ is a number (viz. 512) of the size suitable for an 1/0 buffer supplied by the user. 
See setbuf, below. 

getc, qetchar, putc, putchar, feof, ferror, fileno 
are defined as macros. Their actions are described below; they are mentioned here 
to point out that it is not possible to redeclare them and that they are not actually 
functions; thus, for example, they may not have breakpoints set on them. 

The routines in this package offer the convenience of automatic buffer allocation and out
put flushing where appropriate. The names stdin, stdout, and stderr are in effect con· 
stants and may not be assigned to. 

2. CALLS 

FILE *fopen(filename, type) char *filename, *type; 
opens the file and, if needed, allocates a buff er for it. f i 1 ename is a character string 
specifying the name. type is a character string (not a single character). It may be "r 11 , 

11 w11 , or 11 a 11 to indicate intent to. read, write, or append. The value returned is a file 
poiriter. If it is NULL the attempt to open failed. 



20 UNIX Programming 

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr; 
The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If 
the attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the 
new file. Often the reopened stream is stdin or stdout. 

int getc(ioptr) FILE *ioptr; 
returns the next character from the stream named by ioptr, which is a pointer to a file 
such as returned by fopen, or the name stdin. The integer EOF is returned on end-of
file or when an error occurs. The null character \0 is a legal character. 

int fqetc(ioptr) FILE *ioptr; 
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an 
argument, etc. 

putc(c, ioptr) FILE *ioptr; 
putc writes the character c on the output stream named by ioptr, which is a value 
returned from fopen or perhaps stdout or stderr. The character is returned as 
value, but EOF is returned on error. 

fputc(c, ioptr) FILE *ioptr; 
acts like put c but is a genuine function, not a macro. 

fclose(ioptr) FILE *ioptr; 
The file corresponding to ioptr is closed after any buffers are emptied. A buff er allocated 
by the 1/0 system is freed. fclose is automatic on normal termination of the program. 

fflush(ioptr) FILE *ioptr; 
Any buffered information on the (output) stream named by ioptr is written out. Output 
files are normally buffered if and only if they are not directed to the terminal; however, 
stderr always starts off unbuffered and remains so unless setbuf is used, or unless it is 
reopened. 

exit(errcode); 
terminates the process and returns its argument as status to the parent. This is a special 
version of the routine which calls fflush for each output file. To terminate without 
flushing, use _exit. 

feof(ioptr) FILE *ioptr; 
returns non-zero when end-of-file has occurred on the specified input stream. 

ferror(ioptr) FILE *ioptr; 
returns non-zero when an error has occurred while reading or writing the named stream. 
The error indication lasts until the file has been closed. 

getchar (); 
is identical to getc (std in). 

putchar(c); 
is identical to putc ( c, stdout). 

char *fgets(s, n, ioptr) char *S; FILE *ioptr; 
reads up to n-1 characters from the stream ioptr into the character pointer s. The read 
terminates with a new-line character. The new-line character is placed in the buff er fol
lowed by a null character. fgets returns the first argument, or NULL if error or end-of-
file occurred. ' - · 

fputs(s, ioptr) char *S; FILE *ioptr; 
writes the null-terminated string (character array) s on the stream ioptr. No new-line is 
appended. No value is returned. 



UNIX Programming 21 

ungetc(c, ioptr) FILE *ioptr; 
The argument character c is pushed back on the input stream named by ioptr. Only one 
character may be pushed back. 

printf(format, a1, ... ) char •format; 
fprintf(ioptr, format, a1, ... ) FILE *ioptr; char •format; 
sprintf(s, format, a1, ... )char •s, •format; 

printf writes on the standard output. fprintf writes on the named output stream. 
sprintf puts characters in the character array (string) named by s. The specifications 
are as described in entry printf(3) UNIX User's Manual [1]. 

scanf(format, a1, ... ) char •format; 
fscanf(ioptr, format, a1, ... ) FILE •ioptr; char •format; 
sscanf(s, format, a1, ... ) char •s, •format; 

scanf reads from the standard input. fscanf reads from the named input stream. 
sscanf reads from the character string supplied as s. scanf reads characters, interprets 
them according to a format, and stores the results in its arguments. Each routine expects 
as arguments a control string format, and a set of arguments, each of which must be a 
pointer, indicating where the converted input should be stored. 

scanf returns as its value the number of successfully matched and assigned input items. 
This can be used to decide how many input items were found. On end of file, EOF is 
returned; note that this is different from 0, which means that the next input character does 
not match what was called for in the control string. 

fread(ptr, sizeof(•ptr), nitems, ioptr) FILE *ioptr; 
reads ni tems of data beginning at ptr from file ioptr. No advance notification that 
binary 1/0 is being done is required; when, for portability reasons, it becomes required, it 
will be done by adding an additional character to the mode-string on the fopen call. 

fwrite(ptr, sizeof(•ptr), nitems, ioptr) FILE *ioptr; 
Like fread, but in the other direction. 

rewind(ioptr) FILE •ioptr; 
rewinds the stream named by ioptr. It is not very useful except on input, since a 
rewound output file is still open only for output. 

system(string) char •string; 
The string is executed by the shell as if typed at the terminal. 

getw(ioptr) FILE •ioptr; 
returns the next word from the input stream named by ioptr. EOF is returned on end
of-file or error, but since this a perfectly good integer f eof and f error should be used. 
A "word" is 16 bits on the PDP-1 l. 

putw(w, ioptr) FILE *ioptr; 
writes the integer w on the named output stream. 

setbuf(ioptr, buf) FILE *ioptr; char •buf; 
s etbuf may be used after a stream has been opened but before I/0 has started. If buf is 
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must 
be a character array of sufficient size: ·•'. 

char buf[BUFSIZ]; 

fileno(ioptr) FILE *ioptr; 
returns the integer file descriptor associated with the file. 



22 UNIX Programming 

fseek(ioptr, offset, ptrname) FILE •ioptr; long offset; 
The location of the next byte in the stream named by ioptr is adjusted. offset is a 
long integer. If ptrname is 0, the offset is measured from the beginning of the file; if 
ptrname is I, the offset is measured from the current read or write pointer; if ptrname 
is 2, the offset is measured from the end of the file. The routine accounts properly for any 
buffering. (When this routine is used on non-UNIX systems, the offset must be a value 
returned from ftell and the ptrname must be O). 

long ftell(ioptr) FILE •ioptr; 
The byte off set, measured from the beginning of the file, associated with the named stream 
is returned. Any buffering is properly accounted for. (On non-UNIX systems the value of 
this call is useful only for handing to fseek, so as to position the file to the same place it 
was when ft el 1 was called.) · 

getpw(uid, buf) char •buf; 
The password file is searched for the given integer user ID. If an appropriate line is found, 
it is copied into the character array buf, and 0 is returned. If no line is found correspond
ing to the user ID then 1 is returned. 

char •malloc(num); 
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any 
purpose. NULL is returned if no space is available. 

char •calloc(num, size); 
allocates space for num items each of size size. The space is guaranteed to be set to 0 
and the pointer is sufficiently well aligned to be usable for any purpose. NULL is returned 
if no space is available . 

cfree(ptr) char •ptr; 
Space is returned to the pool used by cal loc. Disorder can be expected if the pointer 
was not obtained from calloc. 

The following are macros whose definitions may be obtained by including <ctype. h>. 

i sa lpha ( c) returns non-zero if the argument is alphabetic. 

i supper ( c) returns non-zero if the argument is upper-case alphabetic. 

is lower ( c) returns non-zero if the argument is lower-case alphabetic. 

i sd i git ( c ) returns non-zero if the argument is a digit. 

is space ( c) returns non-zero if the argument is a spacing character: tab, new-line, carriage 
return, vertical tab, form feed, space. 

i spun ct ( c) returns non-zero if the argument is any punctuation character, i.e., not a space, 
letter, digit or control character. 

isalnum ( c) returns non-zero if the argument is a letter or a digit. 

isprint ( c) returns non-zero if the argument is printable-a letter, digit, or punctuation char
acter. 

is en tr 1 ( c) returns non-zero if the argument is a control character. 

isascii ( c) returns non-zero if the argument is an ASCII character, i.e., less than octal 
0200. 

toupper ( c) returns the upper-case character corresponding to the lower-case letter c. 

to lower ( c) returns the lower-case character corresponding to the upper-case letter c. 

January 1981 



Make-A Program for Maintaining Computer Programs 

S. I. Feldman 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

Jn a programming project, it is easy to lose track of which files need to be 
reprocessed or recompiled after a change is made in some part of the source. 
Make provides a simple mechanism for maintaining up-to-date versions of pro
grams that result from many operations on a number of files. It is possible to 
tell make the sequence of commands that create certain files and the list of files 
that require other files to be current before the operations can be done. When
ever a change is made in any part of the program, the make command will 
create the proper files simply, correctly, and with minimum effort. 

The basic operation of make is to find the name of a needed target in the 
description, ensure that all of the files on which it depends exist and are up to 
date, and then create the target if it has not been modified since its generators 
were. The description file really defines the graph of dependencies; make does 
a depth-first search of this graph to determine what work is really necessary. 

Make also provides a simple macro substitution facility and the ability to 
encapsulate commands in a single file for convenient administration. 

Make was originally designed to run on the UNIXt time-sharing system. 

Introduction 

UNIX 

D.4.1 

It is common practice to divide large programs into smaller, more manageable pieces. 
The pieces may require quite different treatments: some may need to be run through a macro 
processor, some may need to be processed by a sophisticated program generator (e.g., Yacc [ l] 
or Lex [2]). The outputs of these generators may then have to be compiled with special 
options and with certain definitions and declarations. The code resulting from these transfor
mations may then need to be loaded together with certain libraries under the control of special 
options. Related maintenance activities involve running complicated test scripts and installing 
validated modules. Unfortunately, it is very easy for a programmer to forget which files depend 
on which others, which files have been modified recently, and the exact sequence of operations 
needed to make or exercise a new version of the program. After a long editing session, one 
may easily lose track of which files have been changed and which object modules are still valid, 
since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine 
that has been changed or that uses changed declarations will result in a program that will not 
work, and a bug that can be very hard to track down. On the other hand, recompiling every
thing in sight just to be safe is very wasteful. 

The program described in this report mechanizes many of the activities of program 
development and maintenance. If the information on inter-file dependences and command 
sequences is stored in a file, the simple command 

t UNIX is a trademark of Bell Laboratories. 



2 MAKE 

make 

is frequently sufficient to update the interesting files, regardless of the number that have been 
edited since the last "make". In most cases, the description ·file is easy to write and changes 
infrequently. It is usually easier to type the make command than to issue even one of the 
needed operations, so the typical cycle of program development operations becomes 

think - edit - make - test ... 

Make is most useful for medium-sized programming projects; it does not solve the prob
lems of maintaining multiple source versions or of describing huge programs. Make was 
designed for use on UNIX, but a version runs on GCOS. 

Basic Features 

The basic operation of make is to update a target file by ensuring that all of the files on 
which it depends exist and are up to date, then creating the target if it has not been modified 
since its dependents were. Make does a depth-first search of the graph of dependences. The 
operation of the command depends on the ability to find the date and time that a file was last 
modified. 

To illustrate, let us consider a simple example: A program named prog is made by compil
ing and loading three C-language files x.c, y.c, and z.c with the IS library. By convention, the 
output of the C compilations will be found in files named x.o, y.o, and z.o. Assume that the 
files x.c and y.c share some declarations in a file named defs, but that z.c does not. That is, x.c 
and y.c have the line 

#include "defs" 

The following text describes the relationships and operations: 

prog : x.o y.o z.o 
cc x.o y.o z.o -IS - o prog 

x.o y.o : defs 

If this information were stored in a file named makefile, the command 

make 

would perform the operations needed to recreate prog after any changes had been made to any 
of the four source files x.c, y.c, z.c, or defs. 

Make operates using three sources of information: a user-supplied description file (as 
above), file names and "last-modified" times from the file system, and built-in rules to bridge 
some of the gaps. In our example, the first line says that prog depends on three ".o" files. 
Once these object files are current, the second line describes how to load them to create prog. 
The third line says that x.o and y.o depend on the file defs. From the file system, make discov
ers that there are three ".c" files corresponding to the needed ".o" files, and uses built-in 
information on how to generate an object from a source file (i.e., issue a "cc -c" command). 

The following long-winded description file is equivalent to the one above, but takes no 
advantage of make's innate knowledge: 



MAKE 3 

prog: x.o y.o z.o 
cc x.o y.o z.o -IS -o prog 

x.o: x.c clefs 
cc -c x.c 

y.o: y.c clefs 
cc -c y.c 

z.o : z.c 
cc -c z.c 

If none of the source or object files had changed since the last time prog was made, all of 
the files would be current, and the command 

make 

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.c 
(but not z.c) would be recompiled, and then prog would be created from the new ".o" files. If 
only the file y.c had changed, only it would be recompiled, but it would still be necessary to 
reload prog. 

If no target name is given on the make command line, the first target mentioned in the 
description is created; otherwise the specified targets are made. The command 

make x.o 

would recompile x.o if x.c or defs had changed. 

If the file exists after the commands are executed, its time of last modification is used in 
further decisions; otherwise the current time is used. It is often quite useful to include rules 
with mnemonic names and commands that do not actually produce a file with that name. 
These entries can take advantage of make 's ability to generate files and substitute macros. 
Thus, an entry "save" might be included to copy a certain set of files, or an entry "cleanup" 
might be used to throw away unneeded intermediate files. In other cases one may maintain a 
zero-length file purely to keep track of the time at which certain actions were performed. This 
technique is useful for maintaining remote archives and listings. 

Make has a simple macro mechanism for substituting in dependency lines and command 
strings. Macros are defined by command arguments or description file lines with embedded 
equal signs. A macro is invoked by preceding the name by a dollar sign; macro names longer 
than one character must be parenthesized. The name of the macro is either the single character 
after the dollar sign or a name inside parentheses. The following are valid macro invocations: 

$(CFLAGS) 
$2 
$(xy) 
$Z 
$(Z) 

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned 
values during input, as shown below. Four special macros change values during the execution 
of the command: $•, $@, $?,and $<. They will be discussed later. The following fragment 
shows the use: 

OBJECTS = x.o y.o z.o 
LIBES = -IS 
prog: $(OBJECTS) 

cc $(OBJECTS) $(LIBES) -o prog 

The command 



4 MAKE 

make 

loads the three object files with the IS library. The command 

make "LIBES= - II - IS" 

loads them with both the Lex ("-II") and the Standard ("-IS") libraries, since macro 
definitions on the command line override definitions in the description. (It is necessary to 
quote arguments with embedded blanks in UNIX commands.) 

The following sections detail the form of description files and the command line, and dis
cuss options and built-in rules in more detail. 

Description Files and Substitutions 

A description file contains three types of information: macro definitions, dependency 
information, and executable commands. There is also a comment convention: all characters 
after a sharp ( #) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp 
( #) are totally ignored. If a non-comment line is too long, it can be continued using a 
backslash. If the last character of a line is a backslash, then the backslash, the new-line, and all 
following blanks and tabs are replaced by a single blank. 

A macro definition is a line containing an equal sign not preceded by a colon or a tab. 
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are 
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs 
are stripped.) The following are valid macro definitions: 

2 = xyz 
abc = -II -Iy -IS 
LIBES = 

The last definition assigns LIBES the null string. A macro that is never explicitly defined has 
the null string as value. Macro definitions may also appear on the make command line (see 
below). 

Other lines give information about target files. The general form of an entry is: 

targetl [target2 ... ] : [:] [dependentl .. .] [; commands] [ # ... ] 
[(tab) commands] [# ... ] 

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits, 
periods, and slashes. (Shell metacharacters "•" and "?" are expanded.) A command is any 
string of characters not including a sharp (#-except in quotes) or new-line. Commands may 
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi
ately following a dependency line. 

A dependency line may have either a single or a double colon. A target name may appear 
on more than one dependency line, but all of those lines must be of the same (single or double 
colon) type. 

1. For the usual single-colon case, at most one of these dependency lines may have a com
mand sequence associated with it. If the target is out of date with any of the dependents 
on any of the lines, and a command sequence is specified (even a null one following a 
semicolon or tab), it is executed; otherwise a default creation rule may be invoked. 

2. In the double-colon case, a command sequence may be associated with each dependency 
line; if the target is out of date with any of the files on a particular line, the associated 
commands are executed. A built-in rule may also be executed. This detailed form is of 
particular value in updating archive-type files. 

If a target must be created, the sequence of commands is executed. Normally, each com
mand line is printed and then passed to a separate invocation of the Shell after substituting for 



MAKE 5 

macros. (The printing i~ suppressed in silent mode or if the command line begins with an @ 
sign). Make normally stops if any command signals an error by returning a non-zero error 
code. (Errors are ignored if the "-i" flags has been specified on the make command line, if 
the fake target name ··.1GNORE" appears in the description file, or if the command string in 
the description file begins with a hyphen. Some UNIX commands return meaningless status). 
Because each command line is passed to a separate invocation of the Shell, care must be taken 
with certain commands (e.g., cd and Shell control commands) that have meaning only within a 
single Shell process; the results are forgotten before the next line is executed. 

Before issuing any command, certain macros are set. $@ is set to the name of the file to 
be "made". $? is set to the string of names that were found to be younger than the target. If 
the command was generated by an implicit rule (see below), $< is the name of the related file 
that caused the action, and $• is the prefix shared by the current and the dependent file names. 

If a file must be made but there are no explicit commands or relevant built-in rules, the 
commands associated with the name ".DEFAULT" are used. If there is no such name, make 
prints a message and stops. 

Command Usage 

The make command takes four kinds of arguments: macro definitions, flags, description 
file names, and target file names. 

make [ flags ] [ macro definitions ] [ targets ] 

The following summary of the operation of the command explains how these arguments are 
interpreted. 

First, all macro definition arguments (arguments with embedded equal signs) are analyzed 
and the assignments made. Command-line macros override corresponding definitions found in 
the description files. 

Next, the flag arguments are examined. The permissible flags are 

-1 Ignore error codes returned by invoked commands. This mode is entered if the fake tar
get name ".IGNORE" appears in the description file. 

-s Silent mode. Do not print command lines before executing. This mode is also entered if 
the fake target name ".SILENT" appears in the description file. 

-r Do not use the built-in rules. 

- n No execute mode. Print commands, but do not execute them. Even lines beginning with 
an "@" sign are printed. 

-t Touch the target files (causing them to be up to date) rather than issue the usual com
mands_ 

-q Question. The make command returns a zero or non-zero status code depending on 
whether the target file is or is not up to date. 

-p Print out the complete set of macro definitions and target descriptions 

-d Debug mode. Print out detailed information on files and times examined. 

-f Description file name. The next argument is assumed to be the name of a description 
file. A file name of •• - " denotes the standard input. If there are no "-f" arguments, 
the file named makefile or Makefile in the current directory is read. The contents of the 
description files override the built-in rules if they are present). 

Finally, the remaining arguments are assumed to be the names of targets to be made; they 
are done in left to right order. If there are no such arguments, the first name in the description 
files that does not begin with a period is "made". 



6 MAKE 

Implicit Rules 

The make program uses a table of interesting suffixes and a set of transformation rules to 
supply default dependency information and implied commands. (The Appendix describes these 
tables and means of overriding them.) The default suffix list is: 

.o Object file 

.c C source file 

.e Efl source file 

.r Ratfor source file 
f Fortran source file 
.s Assembler source file 
.y Yacc-C source grammar 
.yr Yacc-Ratfor source grammar 
.ye Yacc-Efl source grammar 
.I Lex source grammar 

The following diagram summarizes the default transformation paths. If there are two paths 
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is 
named in the description. 

.0 

.c .r .e j .s .y .yr .ye .I .d 

~ 
.y ./ .yr .ye 

If the file x.o were needed and there were an x.c in the description or directory, it would 
be compiled. If there were also an x.l, that grammar would be run through Lex before compil
ing the result. However, if there were no x.c but there were an x.l, make would discard the 
intermediate C-language file and use the direct link in the graph above. 

It is possible to change the names of some of the compilers used in the default, or the flag 
arguments with which they are invoked by knowing the macro names used. The compiler 
names are the macros AS, CC, RC, EC, YACC, Y ACCR, Y ACCE, and LEX. The command 

make CC=newcc 

will cause the "newcc" command to be used instead of the usual C compiler. The macros 
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands 
to be issued with optional flags. Thus, 

make "CFLAGS= ---0" 

causes the optimizing C compiler to be used. 

Example 

As an example of the use of make, we will present the description file used to maintain 
the make command itself. The code for make is spread over a number of C source files and a 
Yacc grammar. The description file contains: 



MAKE 7 

'II Description file for the Make command 

P = und -3 I opr -r2 # send to GCOS to be printed 
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c 
OBJECTS = version.o main.a doname.o misc.a files.a dosys.o gram.o 
LIBES= -IS 
LINT = lint - p 
CFLAGS = -0 

make: $(OBJECTS) 
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make 
size make 

$(OBJECTS): defs 
gram.o: lex.c 

cleanup: 
-rm •.o gram.c 
-du 

install: 
@size make /usr/bin/make 
cp make /usr/bin/make ; rm make 

print: $(FILES) # print recently changed files 

test: 

pr$? I SP 
touch print 

make -dp I grep -v TIME> lzap 
/usr/bin/make -dp I grep -v TIME >2zap 
diff I zap 2zap 
rm lzap 2zap 

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c 

arch: 

$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c 
rm gram.c 

ar uv /sys/source/s2/make.a $(FILES) 

Make usually prints out each command before issuing it. The following output results from 
typing the simple command 

make 

in a directory containing only the source and description file: 

cc -c version.c 
cc -c main.c 
cc -c doname.c 
cc -c misc.c 
cc -c files.c 
cc -c dosys.c 
yacc gram.y 
mv y.tab.c gram.c 
cc -c gram.c 
cc version.a main.o doname.o misc.o files.o dosys.o gram.a -IS -o make 
13188+3348+3044 = I9580b = 046174b 

Although none of the source files or grammars were mentioned by name in the description file, 
make found them using its suffix rules and issued the needed commands. The string of digits 
results from the "size make" command; the printing of the command line itself was suppressed 



8 MAKE 

by an @ sign. The @ sign on the size command in the description file suppressed the printing 
of the command, so only the sizes are written. 

The last few entries in the description file are useful maintenance sequences. The "print" 
entry prints only the files that have been changed since the last "make print" command. A 
zero-length file print is maintained to keep track of the time of the printing; the $? macro in the 
command line then picks up only the names of the files changed since print was touched. The 
printed output can be sent to a different printer or to a file by changing the definition of the P 
macro: 

make print "P = opr -sp" 
make print "P= cat >zap" 

Suggestions and Warnings 

or 

The most common difficulties arise from make 's specific meaning of dependency. If file 
x.c has a "#include "defs"" line, then the object file x.o depends on defs; the source file x.c 
does not. (If defs is changed, it is not necessary to do anything to the file x.c, while it is neces
sary to recreate x.o.) 

To discover what make would do, the "-n" option is very useful. The command 

make -n 

orders make to print out the commands it would issue without actually taking the time to exe
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition 
to an include file), the "-t" (touch) option can save a lot of time: instead of issuing a large 
number of superfluous recompilations, make updates the modification times on the affected file. 
Thus, the command 

make -ts 

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary, 
since this mode of operation subverts the intention of make and destroys all memory of the 
previous relationships. 

The debugging flag ("-d") causes make to print out a very detailed description of what it 
is doing, including the file times. The output is verbose, and recommended only as a last 
resort. 

Acknowledgements 

I would like to thank S. C. Johnson for suggesting this approach to program maintenance 
control. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs 
during development of make. 

References 

l. S. C. Johnson. YACC- Yet Another Compiler-Compiler, Bell Laboratories. 

2. M. E. Lesk. LEX-A Lexical Analyzer Generator, Bell Laboratories. 



MAKE 9 

Appendix. Suffixes and Transformation Rules 

The make program itself does not know what file name suffixes are interesting or how to 
transform a file with one suffix into a file with another suffix. This i'lformation is stored in an 
internal table that has the form of a description file. If the "-r" flag is used, this table is not 
used. 

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make 
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a 
transformation rule for that combination, make acts as described earlier. The transformation 
rule names are the concatenation of the two suffixes. The name of the rule to transform a ".r" 
file to a ".o" file is thus ".r.o". If the rule is present and no explicit command sequence has 
been given in the user's description files, the command sequence for the rule ".r.o" is used. If 
a command is generated by using one of these suffixing rules, the macro $• is given the value 
of the stem (everything but the suffix) of the name of the file to be made, and the macro $< is 
the name of the dependent that caused the action. 

The order of the suffix list is significant, since it is scanned from left to right, and the first 
name that is formed that has both a file and a rule associated with it is used. If new names are 
to be appended. the user can just add an entry for ".SUFFIXES" in his own description file; 
the dependents will be added to the usual list. A ".SUFFIXES" line without any dependents 
deletes the current list. (It is necessary to clear the current list if the order of names is to be 
changed). The following is an excerpt from the default rules file: 

.SUFFIXES : .o .c .e .r .f .y .yr .ye .I .s 
YACC=yacc 
YACCR=yacc -r 
YACCE=yacc -e 
YFLAGS= 
LEX=lex 
LFLAGS= 
CC=cc 
AS=as -
CFLAGS= 
RC=ec 
RFLAGS= 
EC=ec 
EFLAGS= 
FFLAGS= 
.c.o : 

S(CC) $(CFLAGS) -c $< 
.e.o .r.o .f.o : 

.s.o: 

.y.o : 

.y.c: 

January 1981 

$(EC) S(RFLAGS) S(EFLAGS) $(FFLAGS) -c $< 

$(AS) - o $@ $< 

S(Y ACC) S(YFLAGS) $< 
$(CC) S(CFLAGS) -c y.tab.c 
rm y.tab.c 
mv y.tab.o $@ 

S(YACC) $(YFLAGS) S< 
mv y.tab.c $@ 



An Augmented Version of MAKE 

E. G. Bradford 

Bell Laboratories 
Whippany, New Jersey 07981 

ABSTRACT 

UNIX 

D.4.2 

This paper describes an augmented version of the UNIXt make command. With 
one debatable exception, this version is completely upward compatible with the 
old version. This paper describes and gives examples only of additional features. 
The reader is assumed to have read the original make paper by S. I. Feldman. 1 

Further possible developments for make are also discussed. 

I. INTRODUCTION 

This paper describes in some detail an augmented version of the make program. Some 
justification will be given for the chosen implementation and examples will demonstrate the 
additional features. 

2. MOTIVATION FOR THE CURRENT IMPLEMENTATION 

The make program was originally written for personal use by S. I. Feldman. However, it 
became popular on the BTL Research UNIX machine and a more formal version was built and 
installed for general use. Further developments of make have not been necessary in the BTL 
Research environment, and thus have not been done. 

Elsewhere, make was perceived as an excellent program administrative tool and has been used 
extensively in at least one project for over two years. However, make had many shortcomings: 
handling of libraries was tedious; handling of the SCCS2 file-name format was difficult or impos
sible; environment variables were completely ignored by make; and the general lack of ability to 
maintain files in a remote directory. These shortcomings hindered large scale use of make as a 
program support tool. 

Make has been modified to handle the problems above. The additional features are within the 
original syntactic framework of make and few if any new syntactical entities have been intro
duced. A notable exception is the include file capability. Further, most of the additions result 
in a "Don't know how to make ... " message from the old version of make. 

3. THE ADDITIONAL FEATURES 

The following paragraphs describe with examples the additional features of the make program. 
In general, the examples are taken from existing makefiles. Also, the appendices are working 
makefiles. 

3.1 The En~ironment Variables 

Environment variables are read and added to the macro definitions each time make executes. 
Precedence is a prime consideration in doing this properly. For example, if the environment 
variable CC is set to occ, does it override the command line? Does it override the definition in 
the makefile? The following describes make's interaction with the environment. 

t UNIX is a trademark of Bell Laboratories. 

I. MAKE-A Program for Mainlaining Computer Programs by S. I. Feldman. 

2. SOUFce Code Comro/ System User's Guide by L. E. Bonanni and C. A. Salemi. 



2 An Augmented Version of MAKE 

A new macro, MAKEFLAGS is maintained by make. It is defined as the collection of all input 
flag arguments into a string (without minus signs). It is exported, and thus accessible to 
further invocations of make. Command line flags and assignments in the makefile update 
MAKEFLAGS. Thus, to describe how the environment interacts with make, we also need to 
consider the MAKEFLAGS macro (environment variable). 

When executed, make assigns macro definitions in the following order: 

1. Read the MAKEFLAGS environment variable. If it is not present or null, the internal make 
variable MAKEFLAGS is set to the null string. Otherwise, each letter in MAKEFLAGS is 
assumed to be an input flag argument and is processed as such. (The only exceptions are 
the -f, -p, and -r flags.) 

2. Read and set the input flags from the command line. The command line adds to the previ
ous settings from the MAKEFLAGS environment variable. 

3. Read macro definitions from the command line. These are made not reseuable. Thus any 
further assignments to these names are ignored. 

4. Read the internal list of macro definitions. These are found in the file rules.c of the source 
for make. (See Appendix A for the complete makefile which represents the internally 
defined macros and rules.) They give default definitions for the C compiler (CC=cc), the 
assembler (AS=as), etc. 

5. Read the environment. The environment variables arc treated as macro definitions and 
marked as exported (in the shell sense). Note, MAKEFLAGS will be read and set again. 
However, because it is not an internally defined variable (in rules.c), this has the effect of 
doing the same assignment twice. The exception to this is when MAKEFLAGS is assigned 
on the command line. (The reason it was read previously, was to be able to turn the debug 
flag on before anything else was done.) 

6. Read the makefile(s). The assignments in the makefile(s) will override the environment. 
This order was chosen so when one reads a makefile and executes make one knows what to 
expect. That is, one gets what one sees unless the -e flag is used. The -e is an addi
tional command-line flag that tells make to have the environment override the makefile 
assignments. Thus if make -e ... is typed, the variables in the environment override the 
definitions in the makefile. (Note, there is no way to override the command line assign
ments.) Also note that if MAKEFLAGS is assigned it will override the environment. (This 
would be useful for further invocations of make from the current makefile.) 

It may be clearer to list the precedence of assignments. Thus, in order from least binding to 
most binding, we have: 

1. Internal definitions (from rules.c). 
2. Environment. 
3. Makefile(s). 
4. Command line. 

The -e flag has the effect of changing the order to: 

1. Internal definitions (from rules.c). 
2. Makefile(s). 
3. Environment. 
4. Command line. 

This ordering is general enough to allow a programmer to define a makefile or set of makefiles 
whose parameters are dynamically definable. 

3.l Recursive Makefiles 

Another feature was added to make concerning the environment and recursive invocations. If 
the sequence $(MAKE) appears anywhere in a shell command line, the line will be executed 
even if the -n flag is set. Because the -n flag is exported across invocations of make, 



An Augmented Version of MAKE 3 

(through the MAKEFLAGS variable) the only thing which will actually get executed is the make 
command itself. This feature is useful when a hierarchy of makefile(s) describes a set of 
software subsystems. For testing purposes, make -n . . . can be executed and everything that 
would have been done will get printed out; including output from lower level invocations of 
make. 

3.3 Format of Shell Commands within Make 

Make remembers embedded new-lines and tabs in shell command sequences. Thus, if the pro
grammer puts a for loop in the makefile with indentation, when make prints it out, it retains the 
indentation and backslashes. The output can still be piped to the shell and is readable. This is 
obviously a cosmetic change; no new functionality is gained. 

3.4 Archive Libraries 

Make has an improved interface to archive libraries. Due to a lack of documentation, most 
people are probably not aware of the current syntax for addressing members of archive libraries. 
The previous version of make allows a user to name a member of a library in the following 
manner: 

lib( object.a) 

or: 

lib((_localtime)) 

where the second method actually refers to an entry point of an object file within the library. 
(Make looks through the library, locates the entry point and translates it to the correct object 
file name.) 

To use this procedure to maintain an archive library, the following type of makefile is required: 

lib:: lib(ctime.o) 
$(CC) -c -o ctime.c 
ar rv lib ctime.o 
rm ctime.o 

lib:: lib(fopen.o) 
$(CC) -c -0 fopen.c 
ar rv lib fopen.o 
rm fopen.o 

and so on for each object 

This is tedious and error prone. Obviously, the command sequences for adding a C file to a 
library are the same for each invocation, the file name being the only difference each time. 
(This is true in most cases.) Similarly for assembler and YACC and LEX files. 

The current version gives the user access to a rule for building libraries. The handle for the 
rule is the .a suffix. Thus a .c.a rule is the rule for compiling a C source file, adding it to the 
library, and removing the .o cadaver. Similarly, the .y.a, the .s.a and the .I.a rules rebuild 
YACC, assembler, and LEX files, respectively. The current archive rules defined internally are 
.c.a, .c ... a, and .s-.a. (The tilde (""') syntax will be described shortly.) The user may define 
in his makefile any other rules he may need. 

The above two-member library is then maintained with the following shorter makefile: 

lib: lib(ctime.o) lib(fopen.o) 
@echo lib up-to-date. 

The internal rules are already defined to complete the preceding library maintenance. The 
actual .c.a rules is as follows: 



4 

.c.a: 
$(CC) -c $(CFLAGS) $< 
ar rv $@ $•.o 
rm -f $•.o 

An Augmented Version of MAKE 

Thus, the $@ macro is the .a target (lib) and the $< and S. macros are set to the out-of-date 
C file and the file name without suffix, respectively ( ctime.c and Clime). The S< macro (in the 
preceding rule) could have been changed to 5*.c. 

It might be useful to go into some detail about exactly what make does when it sees the con
struction: 

lib: lib(ctime.o) 
@echo lib up-to-date 

Assume the object in the library is out-of-date with respect to ctime.c. Also, there is no ctime.o 
file: 

1. Do lib. 
2. To do lib, do each dependent of lib. 
3. Do lib(ctime.o). 
4. To do lib(ctime.o), do each dependent of lib(ctime.o). (There are none.) 
5. Use internal rules to try to build lib(ctime.o). (There is no explicit rule.) Note that 

lib(ctime.o) has a parenthesis in the name so identify the target suffix as .a. (This is the 
key. There is no explicit .a at the end of the lib library name. The parenthesis forces the 
.a suffix.) In this sense, the .a is hard-wired into make. 

6. Break the name lib(ctime.o) up into lib and ctime.o. Define two macros, $@ (=lib) and S• 
( =ctime). 

7. Look for a rule .X.a and a file 5*.X. The first .X (in the .SUFFIXES list) which fulfills 
these conditions is .c so the rule is .c.a and the file is ctime.c. Set $< to be clime .c and 
execute the rule. (In fact, make must then do ctime.c. However, the search of the current 
directory yields no other candidates, whence, the search ends.) 

8. The library has been updated. Do the rule associated with the lib: dependency; namely: 

echo lib up-to-date 

It should be noted that to let ctime.o have dependencies, the following syntax is required: 

lib(ctime.o): $(INCDIR)/stdio.h 

Thus, explicit references to .o files are unnecessary. There is also a new macro for referencing 
the archive member name when this form is used. $% is evaluated each time$@ is evaluated. 
If there is no current archive member, $% is null. If an archive member exists, then $% evalu
ates to the expression between the parentheses. 

An example makefile for a larger library is given in Appendix B. The reader will note also that 
there are no lingering •.o files left around. The result is a library maintained directly from the 
source files (or more generally, from the SCCS files). 

3.5 SCCS File Names: Tbe Tilde 

The syntax of make does not directly permit referencing of prefixes. For most types of files on 
UNIX machines this is acceptable, because nearly everyone uses a suffix to distinguish different 
types of files. SCCS files are the exception. Here, s. precedes the file-name part of the com
plete path name. 

To allow make easy access to the prefix s. requires either a redefinition of the rule naming syn
tax of make or a trick. The trick is to use the tilde ( - ) as an identifier of SCCS files. Hence, 
.c"".o refers to the rule which transforms an SCCS C source file into an object. Specifically, the 
internal rule is: 



An Au~nted Version of MAKE 

.c-.o: 
S(GET) S(GFLAGS) -p $< > $•.c 
$(CC) $(CFLAGS) -c $•.c 
-rm -f $•.c 

5 

Thus the tilde appended to any suffix transforms the file search into an SCCS file-name search 
with the actual suffix named by the dot and all characters up to (but not including) the tilde. 
The following SCCS suffixes are internally defined: 

.c-

.y

.s .... 

. sh

.h-

The following rules involving SCCS transformations are internally defined: 

C"'" 

.sh-: 

.C"'.O: 

.s- .o: 

.y"'.O: 

.I- .o: 

.y- .c: 

.C"' .a: 

.s- .a: 

.h-.h: 

Obviously, the user can define other rules and suffixes which may prove useful. The tilde gives 
him a handle on the SCCS file-name format so that this is possible. 

3.6 The Null Suffix 

In the UNIX source code, there are many commands that consist of a single source file. It 
seemed wasteful to maintain an object of such files for make's pleasure. The current imple
mentation supports single-suffix rules, or, if one prefers, a null suffix. Thus, to maintain the 
program cat one needs a rule in the makefile of the following form: 

.c: 
$(CC) -n -0 $< -o $@ 

In fact, this .c: rule is internally defined so no makefile is necessary at all! One need only type: 

make cat dd echo date 

(these are notable single-file programs) and all four C source files are passed through the above 
shell command line associated with the .c: rule. The internally defined single-suffix rules are: 

.c: 
C-· . . 

.sh: 

.sh"': 

Others may be added in the makefile by the user. 

3. 7 Include Files 

Make has an include file capability. If the string include appears as the first seven letters of a 
line in a makefile and is followed by a blank or a tab, the following string is assumed to be a file 
name that the current invocation of make will read. The file descriptors are stacked for reading 
include files so no more that about sixteen levels of nested includes is supported. 



6 An Augmented Version of MAKE 

3.8 luislble SCCS Makefiles 

secs makefiles are invisible to make. That is, if make is typed and only a file named 

s .makefile exists, make will do a get(l) on it, then read it and remove it; likewise for -f argu-
ments and include files. · 

3.9 Dynamic Dependency Parameters 

A new dependency parameter has been defined. It has meaning only on the dependency line in 
a makefile. SS@ refers to the current "thing" to the left of the colon (which is$@). Also the 
form SS(@F) exists which allows access to the file part of$@. Thus, in the following: 

cat: $$@.c 

the dependency is translated at execution time to the string cat.c. This is useful for building 
large numbers of executable files, each of which has only one source file. For instance the 
UNIX command directory could have a makefile like: 

CMDS = cat dd echo date cc cmp comm ar Id chown 

$(CMOS): $$@.c 
$(CC) -0 $? -o $@ 

Obviously, this is a subset of all the single-file programs. For multiple-file programs, a direc
tory is usually allocated and a separate makefile is made. For any particular file which has a 
peculiar compilation procedure, a specific entry must be made in the makefile. 

The second useful form of the dependency parameter is SS(@F). It represents the file-name 
part .of SS@. Again, it is evaluated at execution time. Its usefulness becomes evident when 
trying to maintain the /usr/include directory from a makefile in the /usr/src/head directory. 
Thus the /usr/src/head/makefile would look like: 

INCDIR = /usr/include 

INCLUDES = \ 

$(INCDIR)/stdio.h \ 
$(INCDIR)/pwd.h \ 
S(INCIDR)/dir.h \ 
$(INCDIR) /a.out.h 

${INCLUDES): $$(@F) 
cp $? $@ 
chmod. 0444 $@ 

This would completely maintain the /usr/include directory whenever one of the above files in 
/usr/src/head was updated. 

3.10 Extensions of S., $@, and S< 

The internally generated macros S., $@, and $< are useful generic terms for current targets 
and out-of-date relatives. To this list has been added the following related macros: S(@D), 
S(@F), S(•D), S(*F), $( <D), and $( <F). The D refers to the directory part of the single
letter macro. The F refers to the file-name part of the single-letter macro. These additions are 
useful when building hierarchical makefiles. They allow access to directory names for purposes 
of using the cd command of the shell. Thus, a shell command can be: 

cd S( <D); $(MAKE) $( <F) 

An interesting example of the use of these features can be found in the set of makefiles in 
Appendix C. 



An Augtn£nted Version of MAKE 7 

3.1 I Output Translations 

Macros in shell commands can now be translated when evaluated. The form is as follows: 

$(macro:stringl =string2) 

The meaning is that $(macro) is evaluated. For each appearance of string! in the evaluated 
macro, string2 is substituted. The meaning of finding string] in $(macro) is that the evaluated 
S(macro) is considered as a bunch of strings each delimited by white space (blanks or tabs). 
Thus the occurrence of string! in $(macro) means that a regular expression of the following 
form has been found: 

.•<stringl >[TAB I BLANK] 

This particular form was chosen because make usually concerns itself with suffixes. A more 
general regular expression match could be implemented if the need arises. The usefulness of 
this type of translation occurs when maintaining archive libraries. Now, all that is necessary is 
to accumulate the out-of-date members and write a shell script which can handle all the C pro
grams (i.e., those file ending in .c). Thus the following fragment will optimize the executions 
of make for maintaining an archive library: 

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)c.o) 
$(CC) -c $(CFLAGS) $(?:.o=.c) 
ar rv $(LIB) $? 
rm $? 

A dependency of the preceding form would be necessary for each of the different types of 
source files (suffices) which define the archive library. These translations are added in an effort 
to make more general use of the wealth of information that make generates. 

4. CONCLUSIONS 

The augmentations described above have increased the size of make significantly, but it is our 
belief that this increase in size is a reasonable price to pay for the resulting additional features. 



8 An Augmented Version of MAKE 

Appendix A:, Internal Definitions 

The following makefile will exactly reproduce the internal rules of the current version of make. 
Thus if make - r . . . is typed and a makefile includes this makefile the results would be identi
cal to excluding the -r option and the include line in the makefile. Note that this output can 
be reproduced by: 

make -fp - < /dev/null 2>/dev/null 

The output will appear on the standard output.) 

fl. LIST OF SUFFIXFS 
.SUFFIXFS: .o .c .c- .y ·Y"' .I .I .... s .S"" .sh .sh- .h .h-

# PRFSET V ARIABLFS 
MAKE= make 
YACC= yacc 
YFLAGS= 
LEX=lex 
LFLAGS= 
LD=ld 
LDFLAGS= 
CC=cc 
CFLAGS=-0 
AS=as 
ASFLAGS= 
GET=get 
GFLAGS= 

# SINGLE SUFFIX RULFS 
.c: 

C-· . . 

.sh: 

.sh"': 

$(CC) -n -0 $< -o $@ 

$(GET) $(GFLAGS) -p $< > $•.c 
S(CC) -n -0 $•.c -o $• 
-rm -f $•.c 

cp $< $@ 

$(GET) $(GFLAGS) -p $< > $•.sh 
cp $•.sh $• 
-rm -f $•.sh 

# DOUBLE SUFFIX RULFS 
.c.o: 

.C"'.O: 

.c-.c: 

'.S.O: 

$(CC) $(CFLAGS) -c $< 

$(GET) $(GFLAGS) -p $< > $•.c 
$(CC) $(CFLAGS) -c $•.c 
-rm -f $•.c 

$(GET) $(GFLAGS) -p $< > $•.c 

$(AS) $(ASFLAGS) -o $@ $< 



An Augmented Version of MAKE 

.s-.o: 

.y.o: 

.y"'.O: 

.l.o: 

.l- .o: 

.y.c : 

.y"'.C: 

.I.c : 

.c.a: 

.C"".a: 

.s-.a: 

.h .... h: 

$(GET) $(GFLAGS) -p $< > $•.s 
$(AS) $(ASFLAGS) -o $•.o $•.s 
-rm -f $•.s 

$(YACC) $(YFLAGS) $< 
$(CC) $(CFLAGS) -c y.tab.c 
rm y.tab.c 
mv y.tab.o $@ 

$(GET) $(GFLAGS) -p $< > $•.y 
$(YACC) $(YFLAGS) $•.y 
$(CC) $(CFLAGS) -c y.tab.c 
rm -f y.tab.c $•.y 
mv y.tab.o $•.o 

$(LEX) $(LFLAGS) $< 
$(CC) $(CFLAGS) -c lex.yy.c 
rm lex.yy.c 
mv lex.yy.o $@ 

$(GET) $(GFLAGS) -p $< > $•.I 
$(LEX) $(LFLAGS) $•.I 
$(CC) $(CFLAGS) -c lex.yy.c 
rm -f lex.yy.c $•.I 
mv lex.yy.o $•.o 

$(YACC) $(YFLAGS) $< 
mv y.tab.c $@ 

$(GET) $(GFLAGS) -p $< > $•.y 
$(YACC) $(YFLAGS) $•.y 
mv y.tab.c $•.c 
-rm -f $•.y 

$(LEX) $< 
mv lex.yy.c $@ 

$(CC) -c ${CFLAGS) $< 
ar rv $@ $•.o 
rm -f $•.o 

$(GET) $(GFLAGS) -p $< > $•.c 
$(CC) -c $(CFLAGS) $•.c 
ar rv $@ $•.o 
rm -f $•.[co] 

$(GET) $(GFLAGS) -p $< > $•.s 
$(AS) $(ASFLAGS) -o $•.o $•.s 
ar rv $@ $•.o 
-rm -f $•.[so] 

$(GET) $(GFLAGS) -p $< > $•.h 

9 



10 An Augmented Version of MAKE 

Appendix B: A Library Makefile 

The following library maintaining makefile is from current work on LSX. It completely main
tains the LSX operating system library. 

# @( # )/usr/src/cmd/make/make.tm 3.2 
LIB = lsxlib 

PR = vpr -b LSX 

INSDIR = /rl/fl.opO/ 
INS = eval 

lsx:: $(LIB) low.o mch.o 
ld -x low.o mch.o $(LIB) 
mv a.out lsx 
@size lsx 

# Here, $(INS) is either : or Hal. 
lsx:: 

print: 

$(INS) ·cp lsx $(INSDIR)lsx && \ 
strip $(INSDIR)lsx && \ 
ls -1 S(INSDIR)lsx· 

$(PR) header.s low.s mch.s •.h •.c Makefile 

$(LIB}: \ 

. s.o: 

.o.a: 

$(LIB)(clock.o) \ 
$(LIB)(main.o) \ 
$(LIB)(tty.o) \ 
$(LIB)(trap.o) \ 
$(LIB)(sysent.o) \ 
$(LIB){sys2.o) \ 
$(LIB)(sys3.o) \ 
$(LIB)(sys4.o) \ 
S(LIB){sysl.o) \ 
$(LIB)(sig.o) \ 
S(LIB)(fio.o) \ 
$(LIB)(kl.o) \ 
${LIB)(alloc.o) \ 
$(LIB)(nami.o) \ 
$(LIB)(iget.o) \ 
$(LIB)(rdwri.o) \ 
$(LIB){subr.o) \ 
$(LIB)(bio.o) \ 
$(LIB){decfd.o) \ 
$(LIB)(slp.o) \ 
$(LIB)(space.o) \ 
S(LIB)(puts.o) 
@echo $(LIB) now up-to-date . 

as -o $•.o header.s $•.s 

ar rv $@ $< 
rm -f $< 



An Augmented Version of MAKE 

.s.a: 
as -o $•.o header.s $•.s 
ar rv $@ S•.o 
rm -f $•.o 

.PRECIOUS: $(LIB) 

11 



12 An Augmented Version of MAKE 

Appendix C: Example of Recurshe Use of Makefiles 

The following set of makefiles maintain the operating system for Col um bus UNIX. They are 
included here to provide realistic examples of the use of make. Each one is named 70.mk. 
The following command forces a complete rebuild of the operating system: 

FRC=FRC make -f 70.mk 

where the current directory is ucb. Here, we have used some of the conventions described in 
A. Chellis's paper entitled Proposed Structure for UNIX(I'S and UNIX/RT Makefiles. FRC is a con
vention for FoRCing make to completely rebuild a target starting from scratch . 

• /ucb makefile 

# @(#)/usr/src/cmd/make/make.tm 3.2 
# ucb/70.mk makefile 

VERSION = 70 

DEPS = \ 
os/Iow.S(VERSION).o \ 
os/mch.$(VERSION).o \ 
os/conf.S(VERSION).o \ 
os/libl.${VERSION).a \ 
io/lib2.$(VERSION) .a 

# This makefile will re-load unix.S{VERSION) if any 
# of the S(DEPS) is out-of-date wrt unix.S(VERSION). 
If Note, it will not go out and check each member 
# of the libraries. To do this, the FRC macro must 
# be defined. 

unix.S{VERSION): S(DEPS) S(FRC) 
load -s $(VERSION) 

$(DEPS): S(FRC) 
cd S(@D); $(MAKE) -f S(VERSION).mk S(@F) 

all: unix.$(VERSION) 
@echo unix.S(VERSION) up-to-date. 

includes: 
cd head/sys; ${MAKE) -f $(VERSION).mk 

FRC: includes; 



An Augmented Version of MAKE 

# 
# 

@( # )/usr/src/cmd/make/make.tm 
ucb/os/70.mk makefile 

VERSION = 70 

LIB = libl.$(VERSION).a 
COMPOOL= 

LIBOBJS = \ 
$(LIB)(main.o) \ 
$(LIB)(alloc.o) \ 
$(LIB)(iget.o) \ 
$(LIB)(prf.o) \ 
$(LIB)(rdwri.o) \ 
$(LIB)(slp.o) \ 
$(LIB)(subr.o) \ 
$(LIB)(text.o) \ 
$(LIB)(trap.o) \ 
$(LIB)(sig.o) \ 
$(LIB)(sysent.o) \ 
$(LIB)(sysl.o) \ 
$(LIB)(sys2.o) \ 
$(LIB)(sys3.o) \ 
$(LTB)(sys4.o) \ 
$(LIB)(sys5.o) \ 
$(LIB)(syscb.o) \ 
$(LIB)(maus.o) \ 
$(LIB)(messag.o) \ 
$(LIB)(nami.o) \ 
$(LIB)(fio.o) \ 
$(LIB)(clock.o) \ 
$(LIB)(acct.o) \ 
$(LIB)( errlog.o) 

ALL = \ 
conf.$(VERSION).o \ 
low.$(VERSION).o \ 
mch.$(VERSION) .o \ 
$(LIB) 

all: $(ALL) 
@echo ~$(ALLr now up-to-date. 

$(LIB)::$(LIBOBJS) 

$(LIBOBJS): $(FRC); 

FRC: 
rm -f $(LIB) 

clobber: clean up 
-rm -f $(LIB) 

clean cleanup:; 

install: all; 

.PRECIOUS: $(LIB) 

13 

3.2 



14 An Augmented Version of MAKE 

# @( # )/usr/src/cmd/make/make.tm 3.2 
# ucb/io/70.mk makefile · 

VERSION = 70 

LIB = lib2.$(VERSION).a 
ffiMPOOL= 

LIB20BJS = \ 
$(LIB)(mx 1.o) \ 
$(LIB)(mx2.o) \ 
S(LIB)(bio.o) \ 
$(LIB)(tty.o) \ 
$(LIB)(malloc.o) \ 
S(LIB)(pipe.o) \ 
${LIB)(dhdm.o) \ 
$(LIB)( dh.o) \ 
$(LIB)(dhfdm.o) \ 
S(LIB)(dj.o) \ 
$(LIB)(dn.o) \ 
$(LIB)(ds40.o) \ 
S(LIB)(dz.o) \ 
$(LIB)(alarm.o) \ 
S(LIB)(hf.o) \ 
$(LIB)(hps.o) \ 
${LIB)(hpmap.o) \ 
${LIB)(hp45.o) \ 
$(LIB)(hs.o) \ 
S(LIB)(ht.o) \ 
$(LIB)Uy.o) \ 
$(LIB)(kl.o) \ 
S(LIB)(lfh.o) \ 
$(LIB)(lp.o) \ 
S(LIB)(mem.o) \ 
$(LIB)(nmpipe.o) \ 
$(LIB)(rf.o) \ 
S(LIB)(rk.o) \ 
$(LIB)(rp.o) \ 
S(LIB)(rx.o) \ 
S(LIB)(sys.o) \ 
$(LIB)(trans.o) \ 
$(LIB)(ttdma.o) \ 
S(LIB)(tec.o) \ 
$(LIB)(tex.o) \ 
S(LIB)(tm.o) \ 
S{LIB)(vp.o) \ 
$(LIB)(vs.o) \ 
S(LIB)(vtlp.o) \ 
${LIB)(vtll.o) \ 
S(LIB)(fakevtlp.o) \ 
$(LIB)(vt61.o) \ 
$(LIB)(vt100.o) \ 
S(LIB)(vtmon.o) \ 
$(LIB)(vtdbg.o) \ 
$(LIB)(vtutil.o) \ 



An Augmented Version of MAKE 

$(LIB) ( vtast.o) \ 
S(LIB)(partab.o) \ 
$(LIB)(rh.o) \ 
S(LIB)(devstart.o) \ 
S(LIB)(dmcl l .o) \ 
${LIB)(rop.o) \ 
$(LIB)(ioctl.o) \ 
${LIB) (fakemx.o) 

all: $(LIB) 
@echo $(LIB) is now up-to-date. 

$(LIB):: S(LIB20BJS) 

$(LIB20BJS): S(FRC) 

FRC: 
rm -f $(LIB) 

clobber: cleanup 
-rm - f $(LIB) •.o 

clean cleanup:; 

install: all; 

.PRECIOUS: $(LIB) 

.s.a: 

# 
# 

$(AS) $(ASFLAGS) -o $•.o $< 
ar rev $@ $•.o 
rm $•.o 

@( # )/usr/src/cmd/make/make.tm 
ucb/head/sys/70.mk makefile 

COMPOOL = /usr/include/sys 

HEADERS=\ 
$(COMPOOL)/buf.h \ 
S(COMPOOL)/bufx.h \ 
$(COMPOOL)/conf.h \ 
S{COMPOOL)/confx.h \ 
$(COMPOOL)/crtctl.h \ 
$(COMPOOL)/dir.h \ 
S(COMPOOL)/dml I.h \ 
$(COMPOOL)/elog.h \ 
${COMPOOL)/file.h \ 
$(COMPOOL)/filex.h \ 
S(COMPOOL)/filsys.h \ 
${COMPOOL)/ino.h \ 
$(COMPOOL)/inode.h \ 
S(COMPOOL)/inodex.h \ 
${COMPOOL)/ioctl.h \ 

15 

3.2 



16 

all: 

S(COMPOOL)/ipcomm.h \ 
S(COMPOOL)/ipcommx.h \ 
$(COMPOOL)/lfsh.h \ 
$(COMPOOL)/lock.h \ 
$(COMPOOL)/maus.h \ 
$(COMPOOL)/mx.h \ 
S(COMPOOL)/param.h \ 
$(COMPOOL)/proc.h \ 
$(COMPOOL)/procx.h \ 
$(COMPOOL)/reg.h \ 
$(COMPOOL)/seg.h \ 
$(COMPOOL)/sgtty.h \ 
$(COMPOOL)/sigdef.h \ 
$(COMPOOL)/sprof.h \ 
$(COMPOOL)/sprofx.h \ 
$(COMPOOL)/stat.h \ 
$(COMPOOL)/syserr.h \ 
$(COMPOOL)/sysmes.h \ 
$(COMPOOL)/sysmesx.h \ 
$(COMPOOL)/systm.h \ 
S(COMPOOL)/text.h \ 
$(COMPOOL)/textx.h \ 
$(COMPOOL)/timeb.h \ 
S(COMPOOL)/trans.h \ 
$(COMPOOL)/tty.h \ 
$(COMPOOL)/ttyx.h \ 
$(COMPOOL)/types.h \ 
$(COMPOOL)/user.h \ 
$(COMPOOL)/userx.h \ 
$(COMPOOL)/version.h \ 
${COMPOOL)/votrax.h \ 
$(COMPOOL)/vtl l.h \ 
S(COMPOOL)/vtmn.h 

$(FRC) $(HEADERS) 
@echo Headers are now up-to-date. 

${HEADERS): s.$$(@F) 

FRC: 

$(GET) -s -p $(GFLAGS) $? > xtemp 
move xtemp 444 src sys $@ 

rm - f $(HEADERS) 

.PRECIOUS: $(HEADERS) 

.h ..... h: 
get -s $< 

.DEFAULT: 
cpmv $? 444 src sys $@ 

January 1981 

An Augmented Version of MAKE 



SDB-A Symbolic Debugger 

H. P. Katse.ff 

Bell Laboratories 
Holmdel, New Jersey 07733 

ABSTRACT 

Sdb is a symbolic debugging program currently implemented for the 
languages C and F77 on the UNIXt operating system. Sdb allows one to 
interact with a debugged program at the source language level. When debug
ging a "core image" from an aborted program, sdb reports which line in the 
source program caused the error and allows all variables, including array and 
structure elements, to be accessed symbolically and displayed in the correct 
format. 

One may place breakpoints at selected statements or single step on a line 
by line basis. To facilitate specification of lines in the program without a source 
listing, sdb provides a mechanism for examining the source text. 

Procedures may be called directly from the debugger. This feature is use
ful both for testing individual procedures and for calling user-provided routines 
which provide formatted printout of structured data. 

1. INTRODUCTION 

UNIX 

D.5.1 

This document describes a symbolic debugger, sdb, as implemented for C and F77 pro
grams on the UNIX operating system. Sdb is useful both for examining "core images" of 
aborted programs and for providing an environment in which execution of a program can be 
monitored and controlled. 

2. EXAMINING CORE IMAGES 

In order to use sdb, it is necessary to compile the source program with the "-g" flag. 
This causes the compiler to generate additional information about the variables and statements 
of the compiled program. When the debug flag is specified, sdb can be used to obtain a trace of 
the called procedures at the time of the abort and interactively display the values of variables. 

2.1. Invoking Sdb 

A typical sequence of shell commands for debugging a core image is: 

$ cc -g foo.c -o foo 
$ foo 
Bus error - core dumped 
$ sdb foo 
main:25: x[i] = O; 

• 

t UNIX is a trademark of Bell Laboratories. 



2 SDB 

The program foo was compiled with.the "-g" flag and then executed. An error occurred 
which caused a core dump. Sdb is then invoked to examine the core dump to determine the 
cause of the error. It reports that the Bus error occurred in procedure main at line 25 (line 
numbers are always relative to the beginning of the file) and outputs the source text of the 
offending line. Sdb then prompts the user with a "•" indicating that it awaits a command. 

It is useful to know that sdb has a notion of current procedure and current line. In this 
example, they are initially set to "main" and "25" respectively. 

In the above example sdb was called with one argument, "foo". In general it takes three 
arguments on the command line. The first is the name of the executable file which is to be 
debugged; it defaults to a.out when not specified. The second is the name of the core file, 
defaulting to core and the third is the name of the directory containing the source of the pro
gram being debugged. Sdb currently requires all source to reside in a single directory. The 
default is the working directory. In the example the second and third arguments defaulted to 
the correct values, so only the first was specified. 

It is possible that the error occurred in a procedure which was not compiled with the 
debug flag. In this case, sdb prints the procedure name and the address at which the error 
occurred. The current line and procedure are set to the first line in main. Sdb will complain if 
main was not compiled with "-g" but debugging can continue for those routines compiled with 
the debug flag. 

2.2. Printing a Stack Trace 

It is often useful to obtain a listing of the procedure calls which led to the error. This is 
obtained with the t command. For example: 

•t 
sub(x=2,y=3) [foo.c:25] 
inter(i= 16012) [foo.c:96] 
main(argc = l ,argv =Ox7fffff54,envp= Ox7fffff5c) [foo.c: 15] 

This indicates that the error occurred within the procedure sub at line 25 in file foo.c. Sub was 
called with the arguments x=2 and y=3 from inter at line 96. Inter was called from main at 
line 15. Main is always called by the shell with three arguments, often referred to as argc, argv 
and envp. Note that argv and envp are pointers, so their values are printed in hexadecimal. 

2.3. Examining Variables 

Sdb can be used to display variables in the stopped program. Variables are displayed by 
typing their name followed by a slash, so 

•errflg/ 

causes sdb to display the value of variable errjlg. Unless otherwise specified, variables are 
assumed to be either local to or accessible from the current procedure. To specify a different 
procedure, use the form 

•sub:i/ 

to display variable i in procedure sub. F77 users can specify a common block name in the same 
manner. Section 3.2 will explain how to change the current procedure. 

Sdb supports a limited form of pattern matching for variable and procedure names. The 
symbol "•" is used to match any sequence of characters of a variable name and "?" to match 
any single character. Consider the following commands: 

•x•/ 
•sub:y?/ 
••! 



SDB 3 

The first prints the values of all variables beginning with "x", the second prints the values of 
all two letter variables in procedure sub beginning with "y", and the last prints all variables. In 
the first and last examples, only variables accessible from the current procedure are printed. 
The command 

••:•/ 
displays the variables for each procedure on the call stack. 

Sdb normally displays the variable in a format determined by its type as declared in the 
source program. To request a different format, a specifier is placed after the slash. The 
specifier consists of an optional length specification followed by the format. The length 
specifiers are: 

b one byte. 
b two bytes (half-word). 
I four bytes (long word). 

The lengths are only effective with the formats d, o, x and u. If no length is specified, the 
word length of the host machine, (i.e., 4 for the DEC VAX-11/780) is used. A numeric length 
specifier may be used for the s or a commands. These commands normally print characters 
until either a null is reached or 128 characters are printed. The number specifies how many 
characters should t?e printed. 

There are a number of format specifiers available: 

c character. 
d decimal. 
u decimal unsigned. 
o octal. 
x hexadecimal. 
f 32-bit single-precision floating point. 
g 64-bit double-precision floating point. 
s assume variable is a string pointer and print characters until a null is reached. 
a print characters starting at the variable's address until a null is reached. 
p pointer to procedure. 

interpret as a machine-language instruction. 

As an example, the variable i can be displayed in hexadecimal with the following command 

•i/x 

Sdb also knows about structures, one dimensional arrays and pointers so that all of the 
following commands work. 

•array[2]/ 
•sym.id/ 
•psym->usage/ 
*Xsym[20].p->usage/ 

The only restriction is that array subscripts must be numbers. Note that, as a special case 

•psym->/d 

displays the location pointed to by.psym in decimal. 

Core locations can also be displayed by specifying their absolute addresses. The command 

•1024/ 

displays location 1024 in decimal. As in C, numbers may also be specified in octal or hexade
cimal so the above command is equivalent to both of 



4 

•02000/ 
•Ox400/ 

It is possible to intermix numbers and variables, so that 

•1000.x/ 

refers to an element of a structure starting at address 1000 and 

•1000->x/ 

refers to an element of a structure whose address is at 1000. 

The address of a variable is printed with the "=" command, so 

SDB 

displays the address of i. Another feature whose usefulness will become apparent later is the 
command 

*·I 
which redisplays the last variable typed. 

3. SOURCE FILE DISPLAY AND MANIPULATION 

Sdb has been designed to make it easy to debug a program without constant reference to a 
current source listing. Facilities are provided which perform context searches within the source 
files of the program being debugged and to display selected portions of the source files. The 
commands are similar to those of the UNIX editors ed [l] and ex [2]. Like these editors, sdb 
has a notion of current file and line within the file. Sdb also knows how the lines of a file are 
partitioned into procedures, so that it also has a notion of current procedure. As noted in other 
parts of this document, the current procedure is used by a number of sdb commands. 

3.1. Displaying the Source File 

Four command exist for displaying lines in the source file. They are useful for perusing 
the source program and for determining the context of the current line. The commands are: 

p Print the current line. 
w Window. Print a window of 10 lines around the current line. 
z Print 10 lines starting at the current line. Advance the current line by 10. 
control-d Scroll. Print the next 10 lines and advance the current line by IO. This com-

mand is used to cleanly display long segments of the program. 

When a line from a file is printed, it is preceded by its line number. This not only gives 
an indication of its relative position in the file, but is also used as input by some sdb commands. 

3.2. Changing the Current Source File or Procedure 

The e command is used to change the current source file. Either of the forms 

•e procedure 
•e file.c 

may be used. The first causes the file containing the named procedure to become the current 
file and the current line becomes the first line of the procedure. The other form causes the 
named file to become current. In this case the current line is set to the first line of the named 
file. Finally, an e command with no argument causes the current procedure and file named to 
be printed. 



SDB 5 

3.3. Changing the Current Line in the Source File 

As mentioned in Section 3.1, the z and control-d commands have a side effect of chang
ing the current line in the source file. This section describes other commands that change the 
current line. 

There are two commands for searching for instances of regular expressions in source files. 
They are 

•/regular expression/ 
*?regular expression? 

The first command searches forward through the file for a line containing a string that matches 
the regular expression and the second searches backwards. The trailing "/" and ••?" may be 
omitted from these commands. Regular expression matching is identical to that of ed. 

The + and - commands may be used to move the current line forwards or backwards by 
a specified number of lines. Typing a new-line advances the current line by one and typing a 
number causes that line to become the current line in the file. These commands may be 
catenated with the display commands so that 

•+15z 

advances the current line by 15 and then prints 10 lines. 

4. A CONTROLLED ENVIRONMENT FOR PROGRAM TESTING 

One very useful feature of sdb is breakpoint debugging. After entering the debugger, cer
tain lines in the source program may be specified to be breakpoints. The program is then started 
with a sdb command. Execution of the program proceeds as normal until it is about to execute 
one of the lines at which a breakpoint has been set. The program stops and sdb reports which 
breakpoint the program is stopped at. Now, sdb commands may be used to display the trace of 
procedure calls and the values of variables. If the user is satisfied that the program is working 
correctly to this point, some breakpoints can be deleted and others set, and then program exe
cution may be continued from the point where it stopped. 

A useful alternative to setting breakpoints is single stepping. Sdb can be requested to exe
cute the next line of the program and then stop. This feature is especially useful for testing 
new programs, so they can be verified on a statement by statement basis. Note that if an 
attempt is made to single step through a procedure which has not been compiled with the .. -g" 
flag, execution proceeds until a statement in a procedure compiled with the debug ftag is 
reached. 

4.1. Setting and Deleting Breakpoints 

Breakpoints can be set at any line in a procedure which contains executable code. The 
command format is: 

*12b 
•proc:l2b 
•proc:b 
•b 

The first form sets a breakpoint at line 12 in the current procedure. The line numbers are rela
tive to the beginning of the file, as printed by the source file display commands. The second 
form sets a breakpoint at line 12 of procedure proc and the third sets a breakpoint at the first 
line of proc. The last sets a breakpoint at the current line. 

Breakpoints are deleted similarly with the commands: 



6 

•12d 
•proc:l2d 
•proc:d 

SDB 

In addition, if the command d is given alone, the breakpoints are deleted interactively. Each 
breakpoint location is printed and a line is read from the user. If the line begins with a "y" or 
"d", the breakpoint is deleted. 

A list of the current breakpoints is printed in response to a B command and the D com
mand deletes all breakpoints. It is sometimes desirable to have sdb automatically perform a 
sequence of commands at a breakpoint and then have execution continue. This is achieved 
with another form of the b command: 

•12 b t;x/ 

causes both a trace-back and the value of x to be printed each time execution gets to line 12. 
The a command is a special case of the above command. There are two forms: 

•proc: a 
•proc:l2 a 

The first prints the procedure name and its arguments each time it is called and the second 
prints the source line each time it is about to be executed. 

4.2. Running the Program 

The r command is used to begin program execution. It restarts the program as if it were 
invoked from the shell. The command 

•r args 

runs the program with the given arguments, as if they had been typed on the shell command 
line. If no arguments are specified, then the arguments from the last execution of the program 
are used. To run a program with no arguments, use the R command. 

After the program is started, execution continues until a breakpoint is encountered, a sig
nal such as INTERRUPT or QUIT occurs or the program terminates. In all cases, after an 
appropriate .message is printed, control returns to sdb. 

The c command may be used to continue execution of a stopped program. A line number 
may be specified, as in: 

•proc:I2 c 

This places a temporary breakpoint at the named line. The breakpoint is deleted when the c 
command finishes. There is also a C command which continues, but passes the signal which 
stopped the program back to the program. This is useful for testing user-written signal 
handlers. Execution may be continued at a specified line with the g command. For example, 

•17 g 

continues at line 17 of the current procedure. A use for this command is to avoid executing a 
section of code which is known to be bad. The user should not attempt to continue execution 
in a different procedure than that of the breakpoint. 

The s command is used to run the program for a single line. It is useful for slowly exe
cuting the prograin to examine its behavior in detail. An important alternative is the S com
mand. This command is like the s command, but does not stop within called procedures. It is 
often used when one is confident that the called procedure works correctly, but is interested in 
testing the calling routine. 



SDB 7 

4.3. Calling Procedures 

It is possible to call· any of the procedures of the program from the debugger. This 
feature is useful both for testing individual procedures with different arguments and for calling 
a procedure which prints structured data in a nice way. There are two ways to call a procedure:. 

•proc(argl, arg2, ... ) 
•proc(argl, arg2, ... )/ 

The first simply executes the procedure. The second is intended for calling functions: It exe
cutes the procedure and prints the value that it returns. The value is printed in decimal unless 
some other format is specified. Arguments to procedures may be integer, character or string 
constants, or values of variables which are accessible from the current procedure. 

An unfortunate bug in the current implementation is that if a procedure is called when 
the program is not stopped at a breakpoint (such as when a core image is being debugged), all 
variables are initialized before the procedure is started. This makes it impossible .to use a pro
cedure which formats data from a dump. 

5. MACHINE LANGUAGE DEBUGGING 

Sdb has facilities for examining programs at the machine language level. It is possible to 
print the machine language statements associated with a line in the source and to place break
points at arbitrary addresses. Sdb can also be used to display or modify the contents of the 
machine registers. 

5.1. Displaying Machine Language Statements 

To display the machine language statements associated with line 25 in procedure main, use 
the command 

•main:25? 

The ? command is identical to the / command except that it displays from text space. The 
default format for printing text space is the i format, which interprets the machine language 
instruction. The control-d command may be used to print the next 10 instructions. 

Absolute addresses may be specified instead of line numbers by appending a ":" to them 
so that 

•Oxl024:? 

displays the contents of address Ox1024 in text space. Note that the command 

•Oxl024? 

displays the instruction corresponding to line Ox1024 in the current procedure. It is also possi
ble to set or delete a breakpoint by specifying its absolute address: 

•Ox1024:b 

sets a breakpoint at address Ox1024. 

5.2. Manipulating Registers 

The x command prints the values of all the registers. Also, individual registers may be 
named instead of variables by appending a ·3" to their name, so that 

•r3%!22 

changes the value of register r3 to 22. 



8 SDB 

6. OTHER COMMANDS 

To exit the debugger, use the q command. 

The ! command is identical to that in ed and is used to have the shell execute a com
mand. 

It is possible to change the values of variables when the program is stopped at a break
point. This is done with the command 

•variable!value 

which sets the variable to the given value. The value may be a number, character constant or 
the name of another variable. If the variable is of type float or double, the value can also be a 
floating-point constant. 

ACKNOWLEDGEMENT 

I thank Bill Joy and Chuck Haley for their comments and constructive criticisms. 

REFERENCES 

[I] Dolotta, T. A., Olsson, S. B., and Petruccelli, A.G. (eds.). UNIX User's Manual-Release 
3.0, Bell Laboratories (June 1980). 

[2) Joy, W. N. Ex Reference Manual, Computer Science Division, University of California, 
Berkeley, November 1977. 



SDB 

$ cat testdiv2.c 
main(argc, argv, envp) 
char ••argv, **en vp; { 

int i; 

Appendix 1. EXAMPLE OF USAGE 

i = div2(- l); 
printf("-1/2 = %d\n", i); 

} 
div2(i) { 

int j; 
j = i>>l; 
returnU); 

$cc -g testdiv2.c 
$a.out 
-1/2 = -1 
$ sdb 
No core image 
•(div2 
7: div2(i) { 
•z 
7: div2(i) { 
8: int j; 
9: j=i>>l; 
10: returnU); 
11: } 
•div2:b 
div2:9 b 
•r 
a.out 
Breakpoint at 
div2:9: j = i>>l; 

# Warning message from sdb 
# Search for procedure "div2" 
# It starts on line 7 
# Print the next few lines 

# Place a breakpoint at the beginning of "div2" 
# Sdb echoes proc name and line number 
# Run the procedure 
# Sdb echoes command line executed 
# Executions stops just before line 9 

•t # Print trace of subroutine calls 
div2(i = -1) [testdiv2.c:9] 
main(argc= 1,argv =Ox7fffff50,envp=Ox7fffff58) [testdiv2.c:4] 
•i/ # Print i 
-1 
*S 

div2:10: returnU); 
•j/ 
-1 
•9d 
•div2(1)/ 
0 
•div2(-2)/ 
-1 
•div2(-3)/ 
-2 
•q 
$ 

January 1981 

# Single step 
# Execution stops just before line 10 
# Print j 

# Delete the breakpoint 
# Try running "div2" with different arguments 

9 



-. 

A Tutorial Introduction to ADB 

J. F. Maranzano 

S. R. Bourne 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

UNIX 

D.5.2 

Debugging tools generally provide a wealth of information about the inner 
workings of programs. These tools have been available on UNIXt to allow 
users to examine "core" files that result from aborted programs. A new 
debugging program, ADB, provides enhanced capabilities to examine "core" 
and other program files in a variety of formats, run programs with embedded 
breakpoints and patch files. 

ADB is an indispensable but complex tool for debugging crashed systems 
and/or programs. This document provides an introduction to ADB with exam
ples of its use. It explains the various formatting options, techniques for 
debugging C programs, examples of printing file system information and patch
ing. 

1. Introduction 

ADB is a new debugging program that is available on UNIX. It provides capabilities to 
look at "core" files resulting from aborted programs, print output in a variety of formats, patch 
files, and run programs with embedded breakpoints. This document provides examples of the 
more useful features of ADB. The reader is expected to be familiar with the basic commands 
on UNIX with the C language, and with References I, 2 and 3. 

2. A Quick Survey 

2.1. Invocation 

ADB is invoked as: 

adb objfile corefile 

where obifile is an executable UNIX file and corefile is a core image file. Many times this will 
look like: 

adb a.out core 

or more simply: 

adb 

where the defaults are a.out and core respectively. The file name minus (-) means ignore this 
argument as in: 

adb - core 

t UNIX is a trademark of Bell Laboratories_. 



2 ADB 

ADB has requests for examining locations in either file. The ? request examines the con
tents of objfile, the / request examines the cortfile. The general form of these requests is: 

address ? format 

or 

address / format 

2.2. Current Address 

ADB maintains a current address, called dot, similar in function to the current pointer in 
the UNIX editor. When an address is entered, the current address is set to that location, so 
that: 

0126?i 

sets dot to octal l 26 and prints the instruction at that address. The request: 

.,10/d 

prints IO decimal numbers starting at dot. Dot ends up referring to the address of the last item 
printed. When used with the ? or / requests, the current address can be advanced by typing 
new-line; it can be decremented by typing -. 

Addresses are represented by expressions. Expressions are made up from decimal, octal, 
and hexadecimal integers, and symbols from the program under test. These may be combined 
with the operators +, - , •, % (integer division), & (bitwise and), I (bitwise inclusive or), (i 
(round up to the next multiple), and • (not). (All arithmetic within ADB is 32 bits.) When 
typing a symbolic address for a C program, the user can type name or _name; ADB will recog
nize both forms. 

2.3. Formats 

To print data, a user specifies a collection of letters and characters that describe the format 
of the printout. Formats are "remembered" in the sense that typing a request without one will 
cause the new printout to appear in the previous format. The following are the most commonly 
used format letters. 

b one byte in octal 
c one byte as a character 
o one word in octal 
d one word in decimal 
f two words in floating point 

PDP 11 instruction 
s a null terminated character string 
a the value of dot 
u one word as unsigned integer 
n print a new-line 
r print a blank space 

backup dot 

Format letters arc also available for "long" values, for example, 'D' for long deeimal, and 'F' 
for double floating point. For other formats see the ADB manual. 

2.4. General Request Meanings 

The general form of a request is: 

address,count command modifier 

which sets 'dot' to address and executes the command count times. 



ADB 

The following table illustrates some general ADB command meanings: 

Command Meaning 
? Print contents from a.out file 
/ Print contents from core file 

Print value of "dot" 
Breakpoint control 

$ Miscellaneous requests 
Request separator 
Escape to shell 

3 

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q 
or $Q (or cntl-D) must be used to exit from ADB. 

3. Debugging C Programs 

3.1. Debugging A Core Image 

Consider the C program in Figure 1. The program is used to illustrate a common error 
made by C programmers. The object of the program is to change the iower case "t" to upper 
case in the string pointed to by charp and then write the character string to the file indicated by 
argument I. The bug shown is that the character "T" is stored in the pointer charp instead of 
the string pointed to by charp. Executing the program produces a core file because of an out of 
bounds memory reference. 

ADB is invoked by: 

adb a.out core 

The first debugging request: 

Sc 

is used to give a C back-trace through the subroutines called. As shown in Figure 2 only one 
function (main) was called and the arguments argc and argv have octal values 02 and 0177762 
respectively. Both of these values look reasonable; 02 = two arguments, 0177762 = address 
on stack of parameter vector. 
The next request: 

SC 

is used to give a C back-trace plus an interpretation of all the local variables in each function 
and their values in octal. The value of the variable cc looks incorrect since cc was declared as a 
character. 

The next request: 

Sr 

prints out the registers including the program counter and an interpretation of the instruction at 
that location. 

The request: 

Se 

prints out the values of all external variables. 

A map exists for each file handled by ADB. The map for the a.out file is referenced by ? 
whereas the map for core file is referenced by/. Furthermore, a good rule of thumb is to use ? 
for instructions and / for data when looking at programs. To print out information about the 
maps type: 

Sm 



4 ADB 

This produces a report of the contents of the maps. More about these maps later. 

In our example, it is useful to see the contents of the string pointed to by charp. This is 
done by: 

-charp/s 

which says use charp as a pointer in the core file and print the information as a character string. 
This printout clearly shows that the character buffer was incorrectly overwritten and helps iden
tify the error. Printing the locations around charp shows that the buffer is unchanged but that 
the pointer is destroyed. Using ADB similarly, we could print information about the arguments 
to a function. The request: 

main.argc/d 

prints the decimal core image value of the argument argc in the function main. 
The request: 

•main.arg• ,3/o 

prints the octal values of the three consecutive cells pointed to by argv in the function main. 
Note that these values are the addresses of the arguments to main. Therefore: 

0177770/s 

prints the ASCII value of the first argument. Another way to print this value would have been 

•*/s 

The • means ditto which remembers the last address typed, in this case main.argc; the • 
instructs ADB to use the address field of the core file as a pointer. 

The request: 

.-o 

prints the current address (not its contents) in octal which has been set to the address of the 
first argument. The current address, dot, is used by ADB to "remember" its current location. 
It allows the user to reference locations relative to the current address, for example: 

.-10/d 

3.2. Multiple Functions 

Consider the C program illustrated in Figure 3. This program calls functions f. g, and h 
until the stack is exhausted and a core image is produced. 

Again you can enter the debugger via: 

adb 

which assumes the names a.out and core for the executable file and core image file respectively. 
The request: 

Sc 

will fill a page of back-trace references to f. g, and h. Figure 4 shows an abbreviated list (typing 
DEL will terminate the output and bring you back to ADB request level). 

The request: 

,SSC 

prints the five most recent activations. 

Notice that each function (f.g.h) has a counter of the number of times it was called. 

The request: 



ADB 5 

fcnt/d 

prints the decimal value of the counter for the function f Similarly gent and hcnt could be 
printed. To print the value of an automatic variable, for example the decimal value of x in the 
last call of the function h, type: 

b.x/d 

It is currently not possible in the exported version to print stack frames other than the most 
recent activation of a function. Therefore, a user can print everything with SC or the 
occurrence of a variable in the most recent call of a function. It is possible with the SC request, 
however, to print the stack frame starting at some address as address$C. 

3.3. Setting Breakpoints . 
Consider the C program in Figure 5. This program, which changes tabs into blanks, is 

adapted from Software Tools by Kernighan and Plauger, pp. 18-27. · 

We will run this program under the control of ADB (see Figure 6a) by: 

adb a.out -

Breakpoints are set in the program as: 

The requests: 

address:b [request] 

settab+4:b 
fopen+4:b 
getc+4:b 
tabpos+4:b 

set breakpoints at the start of these functions. C does not generate statement labels. Therefore 
it is currently not possible to plant breakpoints at locations other than function entry points 
without a knowledge of the code generated by the C compiler. The above addresses are 
entered as symbol+4 so that they will appear in any C back-trace since the first instruction of 
each function is a call to the C save routine (csv). Note that some of the functions are from 
the C library. 

To print the location of breakpoints one types: 

Sb 

The display indicates a count field. A breakpoint is bypassed count -1 times before causing a 
stop. The command field indicates the ADB requests to be executed each time the breakpoint is 
encountered. In our example no command fields are present. 

By displaying the original instructions at the function settab we see that the breakpoint is 
set after the jsr to the C save routine. We can display the instructions using the ADB request: 

settab,5? ia 

This request displays five instructions starting at settab with the addresses of each focation 
displayed. Another variation is: 

settab,5?i 

which displays the instructions with only the starting address. 

Notice that we accessed the addresses from the a.out file with the ? command. In general 
when asking for a printout of multiple items, ADB will advance the current address the number 
of bytes necessary to satisfy the request; in the above example five instructions were displayed 
and the current address was advanced 18 (decimal) bytes. 



6 

To run the program one simply types: 

:r 

· To delete a breakpoint, for instance the entry to the function settab, one types: 

settab+4:d 

To continue execution of the program from the breakpoint type: 

:c 

ADB 

Once the program has stopped (in this case at the breakpoint for /open), ADB requests can 
be used to display the contents of memory. For example: 

SC 

to display a stack trace, or: 

tabs,3/8o 

to print three Jines of 8 locations each from the array called tabs. By this time (at location 
/open) in the C program, settab has been called and should have set a one in every eighth loca
tion of tabs. 

3.4. Advanced Breakpoint Usaxe 

We continue execution of the program with: 

:c 

See Figure 6b. Getc is called three times and the contents of the variable c in the function main 
are displayed each time. The single character on the left hand edge is the output from the C 
program. On the third occurrence of getc the program stops. We can look at the full buffer of 
characters by typing: 

ibuf+6/20c 

When we continue the program with: 

:c 

we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data. 

Several breakpoints of tabpos will occur until the program has changed the tab into 
equivalent blanks. Since we feel that tabpos is working, we can remove the breakpoint at that 
location by: 

tabpos+4:d 

If the program is continued with: 

:c 

i.t resumes normal execution after ADB prints the message 

a.out:running 

The UNIX quit and interrupt signals act on ADB itself rather than on the program being 
debugged. If such a signal occurs then the program being' debugged is stopped and control is 
returned to ADB. The signal is saved by ADB and is passed on to the test program if: 

:c 

is typed. This can be useful when testing interrupt handling routines. The signal is not passed 
on to the test program if one types: 

:c 0 



ADB 7 

Now let us reset the breakpoint at settab and display the instructions located there when 
we reach the breakpoint. This is accomplished by: 

settab+4:b settab,S?ia i 
It is also possible to execute the ADB requests for each occurrence of the breakpoint but only 
stop after the third occurrence by typing: 

getc+4,3:b main.c?C i 
This request will print the local variable c in the function main at each occurrence of the break
point. The semicolon is used to separate multiple ADB requests on a single line. 

Warning: setting a breakpoint causes the value of dot to be changed; executing the pro
gram under ADB does not change dot. Therefore: 

settab+4:b .,5?ia 
fopen+4:b 

will print the last thing dot was set to (in the example fopen+4) not the current location (set
tab+4) at which the program is executing. 

A breakpoint can be overwritten without first deleting the old breakpoint. For example: 

settab+4:b settab,3?ia; ptab/o + 
could be entered after typing the above requests. 

Now the display of breakpoints: 

Sb 

shows the above request for the settab breakpoint. When the breakpoint at settab is encoun
tered the ADB requests are executed. Note that the location at settab+4 has been changed to 
plant the breakpoint; all the other locations match their original value. 

Using the functions, f, g and h shown in Figure 3, we can follow the execution of each 
function by planting non-stopping breakpoints. We call ADB with the executable program of 
Figure 3 as follows: 

adb ex3 -

Suppose we enter the following breakpoints: 

b+4:b 
g+4:b 
f+4:b 
:r 

bcnt/d; b.bi/; b.br/ 
gent/ d; g.gi/; g.gr / 
fcnt/d; f.fi/; f.fr/ 

Each request line indicates that the variables are printed in decimal (by the specification d). 
Since the format is not changed, the d can be left off all but the first request. 

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint 
line are not examined until the program under test is run. That means any errors in those ADB 
requests are not detected until run time. At the location of the error ADB stops running the 
program. 

t Owing to a bug in early versions of ADB these statements must be written as: 
settab+4:b settab,S?ia;O 
ietc+4,3:b maln.c?C;O 
settab+4:b settab,S?ia; ptab/o;O 

Note that ;O will set dot to zero and stop at the breakpoint. 



8 ADB 

The second point is the way ADB handles register variables. ADB uses the symbol table to 
address variables. Register variables, like f fr above, have pointers to uninitialized places on the 
stack. Therefore the message "symbol not found". 

as: 
Another way of getting at the data in this example is to print the variables used in the call 

f+4:b 
g+4:b 
:c 

fcnt/d; f.a/; f.b/; f.ft/ 
gcnt/d; g.p/; g.q/; g.gi/ 

The operator / was used instead of ? to read values from the core file. The output for each 
function, as shown in Figure 7, has the same format. For the function f, for example, it shows 
the name and value of the external variable Jent. It also shows the address on the stack and 
value of the variables a, b and fi. · 

Notice that the addresses on the stack will continue to decrease until no address space is 
left for program execution at which time (after many pages of output) the program under test 
aborts. A display with names would be produced by requests like the following: 

f+4:b fcnt/d; f.a;-a="d; f.bf"b="d; f.fi/*ti.-"d 

In this format the quoted string is printed literally and the d produces a decimal display of the 
variables. The results are shown in Figure 7. 

3.5. Other Breakpoint Facilities 

• Arguments and change of standard input and output are passed to a program as: 

:r argl argl ... <infile >outfile 

This request kills any existing program under test and starts the a.out afresh. 

• The program being debugged can be single stepped by: 

:s 

If necessary, this request will start up the program being debugged and stop after executing 
the first instruction. 

• ADB allows a program to be entered at a specific address by typing: 

address:r 

• The count field can be used to skip the first n breakpoints as: 

,n:r 

The request: 

,n:c 

may also be used for skipping the first n breakpoints when continuing a program. 

• A program can be continued at an address different from the breakpoint by: 

address:c 

• The program being debugged runs as a separate process and can be killed by: 

:k 



ADB 9 

4. Maps 

UNIX supports several executable file formats. These are used to tell the loader how to 
load the program file. File type 407 is the most common and is generated by a C compiler 
invocation such as cc pgm.c. A 410 file is produced by a C compiler command of the form cc 
- n pgm.c, whereas a 411 file is produced by cc -i pgm.c. ADB interprets these different file 
formats and provides access to the different segments through a set of maps (see Figure 8). To 
print the maps type: 

Sm 

Jn 407 files, both text (instructions) and data are intermixed. This makes it impossible 
for ADB to differentiate data from instructions and some of the printed symbolic addresses look 
incorrect; for example, printing data addresses as offsets from routines. 

In 410 files (shared text), the instructions are separated from data and ?• accesses the 
data part of the a.out file. The ?• request tells ADB to use the second part of the map in the 
a.out file. Accessing data in the core file shows the data after it was modified by the execution 
of the program. Notice also that the data segment may have grown during program execution. 

In 411 files (separated I & D space), the instructions and data are also separated. How
ever, in this case, since data is mapped through a separate set of segmentation registers, the 
base of the data segment is also relative to address zero. In this case since the addresses over
lap it is necessary to use the h operator to access the data space of the a.out file. In both 410 
and 41 l files the corresponding core file does not contain the program text. 

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 41 l 
respectively. The b, e, and f fields are used by ADB to map addresses into file addresses. The 
"fl" field is the length of the header at the beginning of the file (020 bytes for an a.out file and 
02000 bytes for a core file). The "f2" field is the displacement from the beginning of the file 
to the data. For a 407 file with mixed text and data this is the same as the length of the 
header; for 410 and 41 l files this is the length of the header plus the size of the text portion. 

The "b" and "e" fields are the starting and ending locations for a segment. Given an 
address, A, the location in the file (either a.out or core) is calculated as: 

bl:SA:Sel ~file address= (A-bl)+fl 
b2<A <e2 9 file address = (A -bl) +f2 

A user can access locations by using the ADB defined variables. The $v request prints the vari
ables initialized by ADB: 

b base address of data segment 
d length of the data segment 
s length of the stack 
t length of the text 
m execution type ( 407,410,411) 

In Figure 9 variables not present are zero; they can be used by expressions such as: 

<b 

in the address field. Similarly, values of variables can be changed by an assignment request 
such as: 

02000>b 

that sets b to octal 2000. These variables are useful to know if the file under examination is an 
executable or core image file. 

ADB reads the header of the core image file to find the values for these variables. If the 
second file specified does not seem to be a core file, or if it is missing then the header of the 
executable file is used instead. 



10 ADB 

5. Adunced Usage 

It is possible with ADB to combine formatting requests to provide elaborate displays. 
Below are several examples. 

5.1. Formatted dump 

The line: 

<b,-1/4o4-8Cn 

prints 4 octal words followed by their ASCII interpretation from the data space of the core 
image file. Broken down, the various request pieces mean: 

< b The base address of the data segment. 

<b, -1 Print from the base address to the end of file. A negative count is 
used here and elsewhere to loop indefinitely or until some error con
dition (like end of file) is detected. 

The format 4o4~8Cn is broken down as follows: 

4o Print 4 octal locations. 

4 Backup the current address 4 locations (to the original start of the 
field). 

SC Print 8 consecutive characters using an escape convention; each 
character in the range 0 to 037 is printed as @ followed by the 
corresponding character in the range 0140 to 0177. An @ is printed 
as@@. 

n Print a new-line. 

The request: 

<b,<d/4o4-8Cn 

could have been used instead to allow the printing to stop at the end of the data segment ( <d 
provides the data segment size in bytes). 

The formatting requests can be combined with ADB's ability to read in a script to produce 
a core image dump script. ADB is invoked as: 

adb a.out core < dump 

to read in a script file, dump, of requests. An example of such a script is: 

120Sw 
4095$s 
$\' 
==3n 
Sm 
=3n"C Stack Back-trace" 
SC 
=3n•c External Variables" 
Se 
==3n•Registers• 
Sr 
OSs 



ADB 

=3n"Data Segment"' 
<b,-1/8ona 

11 

The request 120Sw sets the width of the output to 120 characters (normally, the width is 
80 characters). ADB attempts to print addresses as: 

symbol + offset 

The request 4095$s increases the maximum permissible offset to the nearest symbolic address 
from 255 (default) to 4095. The request .,. can be used to print literal strings. Thus, headings 
are provided in this dump program with requests of the form: 

=3n"C Stack Back-trace• 

that spaces three lines and prints the litenu string. The request Sv prints all non-zero ADB vari
ables (see Figure 8). The request OSs sets the 'maximum offset for symbol matches to zero 
thus suppressing the printing of symbolic labels in favor of octal values. Note that this is only 
done for the printing of the data segment. The request: 

<b,-1/8ona 

prints a dump from the base of the data segment to the end of file with an octal address field 
and eight octal numbers per line. 

Figure 11 shows the results of some formatting requests on the C program of Figure 10. 

S.2. Directory Dump 

As another illustration (Figure 12) consider a set of requests to dump the contents of a 
directory (which is made up of an integer inumber followed by a 14 character name): 

adb dir -
= n8t"Inum 1118t"'Name"' 
0,-1? u8t14cn 

In this example, the u prints the inumber as an unsigned decimal integer, the 8t means that 
ADB will space to the next multiple of 8 on the output line, and the 14c prints the 14 character 
file name. 

5.3. Hist Dump 

Similarly the contents of the ilist of a file system, (e.g. /dev/src, on UNIX systems distri
buted by the UNIX Support Group; see· UNIX Programmer's Manual Section 5) could be 
dumped with the following set of requests: 

adb /dev /src -
OlOOO>b 
?m <b 
<b, -1? "'flags1118ton "'links, uid,gid.8t3bn • ,size"8tbrdn "addr"'8t8un "'ti mes•8t2Y2na 

In this example the value of the base for the map was changed to 02000 (by saying ?m<b) 
since that is the start of an ilist within a file system. An artifice (brd above) was used to print 
the 24 bit size field as a byte, a space, and a decimal integer. The last access time and last 
modify time are printed with the 2Y operator. Figure 12 shows portions of these requests as 
applied to a directory and file system. 



12 ADB 

5.4. Con~erting values 

ADB may be used to convert values from one representation to another. For example: 

072 = odx 

will print 

072 58 #3a 

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is 
remembered so that typing subsequent numbers will print them in the given formats. Charac
ter values may be converted similarly, for example: 

'a' = co 

prints 

a 0141 

It may also be used to evaluate expressions but be warned that all binary operators have the 
same precedence which is lower than that for unary operators. 

6. Patching 

Patching files with ADB is accomplished with the write, w or W, request (which is not like 
the ed editor write command). This is often used in conjunction with the locate, I or L request. 
In general, the request syntax for I and w are similar as follows: 

?I value 

The request I is used to match on two bytes, L is used for four bytes. The request w is used to 
write two bytes, whereas W writes four bytes. The value field in either locate or write requests 
is an expression. Therefore, decimal and octal numbers, or character strings are supported. 

In order to modify a file, ADB must be called as: 

adb -w filel file2 

When called with this option, fl/el and file2 are created if necessary and opened for both read
ing and writing. 

For example, consider the C program shown in Figure 10. We .can change the word 
"This" to "The " in the executable file for this program, ex7, by using the following requests: 

adb -w ex7 -
?I 'Th' 
?W 'The' 

The request ?I starts at dot and stops at the first match of "Th" having set dot to the address 
of the location found. Note the use of ? to write to the a.out file. The form 1* would have 
been used for a 411 file. 

More frequently the request will be typed as: 

?I 'Th'; ?s 

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB 
request will set dot to the address of the "Th" characters. 

As another example of the utility of the patching facility, consider a C program that has 
an internal logic flag. The user can set the flag through ADB and run the program, e.g.: 

adb a.out -
:s argt arg2 
ftag/w 1 
:c 



ADB 13 

The :s request is normally used to single step through a process or start a process in single step 
mode. In this case it starts a.DUI as a subprocess with arguments argl and arg2. If there is a 
subprocess running ADB writes to it rather than to the file so the w request causes flag to be 
changed in the memory of the subprocess. 

7. Anomalies 

Below is a list of some strange things that users should be aware of. 

1. Function calls and arguments are put on the stack by the C save routine. Putting break
points at the entry point to routines means that the function appears not to have been 
called when the breakpoint occurs. 

2. When printing addresses, ADB uses either text or data symbols from the a.out file. This 
sometimes causes unexpected symbol names to be printed with data (e.g. savr5+022). 
This does not happen if ? is used for text (instructions) and / for data. 

3. ADD cannot handle C register variables in the most recently activated function. 

8. Acknowledgements 

The authors are grateful for the thoughtful comments on how to organize this document 
from R. 8. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes 
necessary to accommodate tracing within ADD. He also participated in discussions during the 
writing of ADD. His earlier work with DB and CDD led to many of the features found in ADB. 

9. References 

1. D. M. Ritchie and K. Thompson. "The UNIX Time-Sharing System," CACM, July 1974. 

2. B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, 1978. 

3. T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds). UNIX User's Manual-Release 
3.0, Bell Laboratories (June 1980). 

4. B. W. Kernighan and P. J. Plauger. Software Tools. Addison-Wesley, 1976. 



14 

Figure l: C program witb pointer bug 

struct buf { 
int tildes; 
int nlcft; 
char •nextp; 
char buff[512]; 
Jbb; 

struct buf *Obuf; 

char -charp "this is a sentence."; 

main(argc,argv) 
int argc; 
char iMargv; 
{ 

char cc; 

if(argc < 2) { 
printf("lnput file missing\n"); 
exit(8); 

if((fcreat(argv[l],obuf)) < O){ 
printf("%s : not found\n", argv[l]); 
cxit(8); 

charp""' 'T'; 
printf("debug I %s\n" ,charp); 

while( cc= -charp+ +) 
putc( cc,obuf); 

mush(obuf); 

ADB 



ADB 

Figure 2: ADB output for C program of Figure 1 

adb a .out core 
$c 
·main(02,0l 77762) 
SC 
·main(02,0l 77762) 

argc: 02 
argv: 0177762 
cc; 02124 

Sr 
ps 0170010 
pc 0204 

. 
main+Ol52 

sp 0177740 
r5 0177752 
r4 01 
r3 0 
r2 0 
rl 0 
rO 0124 . 
main+Ol52; mov _obuf,(sp) 

Se 
savr5: 0 
_obuf: 0 
_charp: 0124 
_errno: 0 
_fout; 0 
Sm 
text map 

. ex!· 
bl ... 0 el - 02360 
b2 = 0 e2 = 02360 
data map 

. corel • 
bl - 0 el - 03500 
b2 - 0175400 e2 = 0200000 

fl = 020 
f2 = 020 

fl - 02000 
f2 = 05500 

-charp/s 
0124: TI I I I I I I I I I I I I I I I I I I I I I I I ! I I I I I I I 111 I I 11 I Lx 

charp/s 
_charp; T 

_charp+02: this is a sentence. 

_charp+026: Input file missing 
main.argc/d 
0177756: 2 
•maio.ara• /3o 
0177762: 0177770 0177776 0177777 
0177770/s 
0177770: a.out 
•maio.ara• /3o 
0177762: 0177770 0177776 0177777 

··1· 
0177770: a.out 
.=o 

0177770 
.-10/d 
0177756: 2 
Sq 

15 

Nh@x&_ 



16 

Figure 3: Multiple function C program for stack trace Illustration 

int fcnt,gcnt,bcnt; 
h(x,y) 
{ 

g(p,q) 
{ 

f(a,b) 
{ 

main() 
{ 

int bi; register int hr; 
hi= x+l; 
hr= x-y+l; 
hcnt++ ; 
hj: 
f(hr,hi); 

int gi; register int gr; 
gi = q-p; 
gr= q-p+l; 
gent++; 
gj: 
h(gr,gi); 

int fi; register int fr; 
fi - a+2•b; 
fr - a+b; 
fcnt++; 
fj: 
g(fr,fi); 

f(l,J); 

ADB 



ADB 17 

Figure 4: ADB output for C program of Figure 3 

adb 
Sc 
.h(04452,04451) 
·g(04453,0l l 124) 
·rco2.04451 > 
.h(04450,04447) 
·g(04451,011120) 
·rco2.04447) 
.h(04446,04445) 
·g(04447 ,011114) 
·rco2,04445) 
.h(04444,04443) 
HIT DEL KEY 
adb 
,SSC 
.h(04452,0445 l) 

x: 04452 
y: 04451 
hi: '! 

·g(04453,0l l 124) 
p: 04453 
q: 011124 
gi: 04451 
gr: '! 

·rco2.044s 1 > 
a: 02 
b: 04451 
fi: 011124 
fr: 04453 

.h(04450,04447) 
x: 04450 
y: 04447 
hi: 04451 
hr: 02 

·g(04451,011120) 
p: 04451 
q: 011120 
gi: 04447 
gr: 04450 

fcnt/d 
_fcnt: 1173 
gcnt/d 
_gent: 1173 
hcnt/d 

- bent: 1172 
h.x/d 
022004: 2346 
Sq 



18 

Fl1ure 5: C prOIJ'•m to decode tabs 

I define MAXLINE 80 
I define YES I 
#define NO 0 
#define T ABSP 8 

char input[) "data"; 
char ibuf[5 l 8]; 
int tabs[MAXLINE]; 

main() 
( 

int col, *Ptah; 
char c; 

ptab =tabs; 
settab(ptab); /•Set initial tab stops •/ 
col - I; 
if(fopen(input,ibuf) < 0) { 

} 

printf("%s : not found\n",input): 
exit(8); 

wbile((c - getc(ibuf)) !- -1) { 
switch(c) ( 

case '\t': /• TAB •/ 
whilc(tabpos(col) !=YES) ( 

putchar(' '); /•put BLANK•/ 
col++: 

break; 
case '\n':/• NEWLINE•/ 

putchar('\n'); 
col= l; 

default: 
break; 

putchar(c); 
col++; 

/• Tabpos return YES if col is a tab stop •/ 
tabpos(col) 
int col: 
{ 

if(col > MAXLINE) 
return(YES); 

else 
return(tabs[col)); 

/• Settab - Set initial tab stops •/ 
scttab(tabp) 
int •tabp;· 
I 

inti; 

for(i - O; i<- MAXLINE:·i++) 
(i%TABSP) ? (tabs[i) - NO) : (tabs[i) - YES); 

ADB 



ADB 

Figure 6a: ADB output for C program of Figure ~ 

adb a.out -
settab+4:b 
fopen+4:b 
aetc+4:b 
tabpos+4:b 
Sb 
breakpoints 
count bkpt 
1 •tabpos+04 

_getc+04 
_fopen+04 
·settab+04 

settab,5?ia . settab: jsr . settab+04: tst . settab+06: cir . settab+012: cmp . 
settab+020: blt . 
settab+022: 

settab,5?i . 
settab: jsr 

tst 
cir 
cmp 
bit 

:r 
a.out: running 

command 

rS,csv 
-(sp) 
0177770(r5) 
S0120,0177770(r5) . settab+076 

rS,csv 
-(sp) 
0177770(r5) 
$0120,0177770(r5) . settab+076 

breakpoint ·settab+04: tst -(sp) 
settab+4:d 
:c 
a.out: running 
breakpoint _fopen+04: mov 04(rS),nulstr+012 
SC 
_fopen(02302,02472) 
·main(Ol ,0177770) 

col: 01 
c: 0 
pt.ab: 03500 

tabs,3/8o 
03500: 01 0 0 0 0 0 

01 0 0 0 0 0 
01 0 0 0 0 0 

19 

0 0 
0 0 
0 0 



20 

Figure 6b: ADB output for C proaram of Figure 5 

:c 
a.out: running 
breakpoint _gctc+04: mov 
lbuf+6/20c 
_clcanu +0202: This is 
:c 
a.out: running 
breakpoint •tabpos+04: cmp 
tabpos+4:d 
settab+4:b settab,5?ia 
settab+4:b settab,5?ia; 0 
getc+4,3:b maln.c?C; 0 
settab+4:b settab,S?la; ptab/o; 0 
Sb 
breakpoints 
count bkpt 
1 •tabpos+04 
3 _getc+04 
I _fopcn+04 

command 

main.c?C;O 

04(r5),rl 

a test of 

$0120,04(r5) 

I ·scttab+04 
·settab: 
·scttab+04: 
·scttab+06: 
·settab+Ol2: 
·settab+020: 
·settab+022: 
0177766: 
0177744: 

jsr 
bpt 
cir 
cmp 
bit 

settab,5?ia;ptab?o;O 
rS,csv 

T0177744: 
h0177744: 
i0177744: 
sOl 77744: 

0177770 
@• 
T 
h 
j 

s 

0177770(r5) 
S0120,0l 77770(r5) 
·settab+076 

ADB 



ADB 

Figure 7: ADB output for C program with breakpoints 
atlb n3 -
111+4:b !tent/ti; h.hi/; b.br/ 
g+4:b gent/ti; g.gi/; g.gr/ 
f+4:b fcnt/tl; f.fi/; f.fr/ 
:r 
ex3; running 
_fent: 0 
0177732: 214 
symbol not found 
f+4:b fent/tl; r.a/; f.b/; f.fl/ 
g+4:b gent/ti; g.pf; g.q/; g.£1/ 
h+4:b bent/ti; b.x/; b.y/; b.bi/ 
:c 
ex3: running 
_fent: 0 
0177746: I 
0177750: I 
0177732: 214 
_gent: 0 
0177726: 2 
0177730: 3 
0177712: 214 
_bent: 0 
0177706: 2 
0177710: 1 
0177672: 214 
Jent: 1 
0177666: 2 
0177670: 3 
0177652: 214 
_gent 1 
0177646: 5 
0177650: 8 
0177632: 214 
HIT DEL 
f+4:b fcnt/d; f.aj"a - "ti; f.b/"b = "d; f.fij"fi - "ti 
g+4:b gent/ti; £.pf"p = "d; g.qj"q - "ti; £.gif"gi = "d 
b +4:b bcnt/d; b.xf"x - "ti; b.y /"b = "d; b.bif"bl = "ti 
:r 
ex3: running 
_fcnt: 0 
0177746: a - 1 
0177750: b = 1 
0177732: fi - 214 
_gent: O 
0177726: p - 2 
0177730: q = 3 
0177712: gi - 214 
_bent: 0 
0177706: x - 2 
0177710: y = 1 
0177672: hi - 214 
_fcnt: 1 
0177666: a - 2 
0177670: b = 3 
0177652: fi - 214 
HIT DEL 
Sq 

21 



22 ADB 

Figure 8: ADB address maps 

407 files 

a.out hdr text+data 

0 D 

core hdr text+data stack 
...... 1 

0 D s E 

410 files (shared text) 

a.out hdr text data 

0 T B D 

core hdr data stack 
..... .1 

B D s E 

411 files (separated I and D space) 

a.out hdr text data 

0 T 0 D 

core hdr data stack 
..... .1 

0 D s E 

The following adb variables are set. 

407 410 411 

b base of data 0 B 0 
d length of data D 0-B D 
s length of stack s s s 
t length of text 0 T T 



ADB 

Figure 9: ADB output for maps 

adb map407 core407 
Sm 
text map 
bl= 0 
b2 = 0 
data map 
bl - 0 

·map407' 
el 
e2 

'core407" 

b2 = 0175400 
el 
e2 

Sv 
variables 
d - 0300 
m - 0407 
s = 02400 
Sq 

adb map410 core410 
Sm 
text map ·map410' 
bl = 0 el 
b2 = 020000 e2 
data map 'core4l0' 
bl == 020000 el 
b2 = 0175400 e2 
Sv 
variables 
b - 020000 
d = 0200 
m = 0410 
s = 02400 
t - 0200 
Sq 

adb map411 core411 
Sm 
text map 
bl = 0 
b2 ... 0 
data map 
bl= 0 

'map411 • 
el 
e2 

• core41 l' 
el 

b2 = 0175400 e2 
$v 

variables 
d = 0200 
m = 0411 
s - 02400 
t = 0200 
Sq 

= 0256 
= 0256 

- 0300 
= 0200000 

fl = 020 
f2 - 020 

fl = 02000 
f2 = 02300 

= 0200 fl = 020 
= 020116 f2 - 0220 

== 020200 fl = 02000 
= 0200000 f2 = 02200 

= 0200 
- 0116 

= 0200 
= 0200000 

fl ... 020 
f2 - 0220 

fl = 02000 
f2 = 02200 

23 



24 

Figure 10: Simple C program for illustratio& formatting and patchin1 

char 
int 
int 
long 
ft oat 
char 
main() 
{ 

strl [] "This is a character string"; 
one l: 
number 456; 
lnum 1234; 
fpt 1.25; 
str2[] "This is the second character string"; 

one - 2; 

ADB 



ADB 25 

Figure 11: ADB output Illustrating fancy formats 

adb map410 core410 
<b,-1/Sona 
020000: 0 064124 071551 064440 020163 020141 064143 071141 

_strl +016: 061541 062564 020162 072163 064562 063556 0 02 

_number: 
_number: 0710 0 02322 040240 0 064124 0715 51 064440 

_str2+06: 020163 064164 020145 062563 067543 062156 061440 060550 

_str2+026: 060562 072143 071145 071440 071164 067151 0147 0 

savr5+02:0 0 0 0 0 0 0 0 

<b,20/4o4-8Cn 
020000: 0 064124 071551 064440 @•@'This i 

020163 020141 064143 071141 s a char 
061541 062564 020162 072163 acter st 
064562 063556 0 02 ring@•@•@b@' 

_number: 0710 0 02322 040240 H@a@'@.R@d @@ 
0 064124 071551 064440 @•@•This i 
020163 064164 020145 062563 S the SC 

067543 062156 061440 060550 cond cha 
060562 072143 071145 071440 racter s 
071164 067151 0147 0 tring@•@•@• 
0 0 0 0 @•@•@•@•@•@•@•@• 
0 0 0 0 @•@•@•@•@•@•@•@• 

data address not found 
<b,20/4o4"8t8cna 
020000: O 064124 071551 064440 This i 
_strl +06: 020163 020141 064143 071141 s a char 
_strl +016: 061541 062564 020162 072163 acter st 
_strl +026: 064562 063556 0 02 ring 
_number: 
_number: 0710 0 02322 040240 HR 
_fpt+02: 0 064124 071551 064440 This i 
_str2+06: 020163 064164 020145 062563 s these 
_str2+016: 067543 062156 061440 060550 · cond cha 
_str2+026: 060562 072143 071145 071440 racter s 
_str2+036: 071164 067151 0147 0 tring 
savr5+02: 0 0 0 0 
savr5+012: 0 0 0 0 
data address not found 
<b,10/2b8(lcn 
020000: 0 0 

_strl: 0124 0150 Th 
0151 0163 is 
040 0151 
0163 040 s 
0141 040 a 
0143 0150 ch 
0141 0162 ar 
0141 0143 ac 
0164 0145 te 

SQ 



26 

Figure ll: Directory and ioode dumps 

adb dir -
-ot"loode"t"Name• 
o,-1 ?ut14co 

I node Name 
0: 652 

82 
5971 cap.c 
5323 cap 
0 

adb /dev /src -
OlOOO>b 

pp 

?m<b 
new map 
bl = 02000 
b2 -= 0 

'/dev/src· 
el 
e2 

5, 
variables 
b = 02000 

- 0100000000 fl = 0 
-o f2""'0 

<b,-1 ?"ftaes"8too•lioks,uld,gid08t3bn"slze08tbrdn"addr"8t8uo•times•stlY2oa 
02000: flags 073145 

links,uid,gid 0163 0164 0141 
size 0162 10356 
addr 28770 8236 25956 27766 25455 8236 25956 25206 
timesl976 Feb 5 08:34:56 1975 Dec 28 10:55:15 

02040: flags 024555 
links,uid,gid 012 0163 0164 
size 0162 25461 
addr 8308 30050 8294 25130 15216 26890 29806 10784 
times1976 Aug 17 12:16:511976 Aug 17 12:16:51 

02100: flags 05173 
links,uid,gid 011 0162 0145 
size 0147 29545 
addr 25972 8306 28265 8308 25642 15216 2314 25970 
timesl977 Apr 2 08:58:01 1977 Feb 5 10:21:44 

ADB 



' . 

ADB 

ADD Summary 

Command Summary 

a) formatted printing 

? format 

I format 

=format 

?w expr 

/w expr 

'!'I expr 

print from a.out file according to for
ltlllt 

print from core file according to for
mat 

print the value of dot 

write expression into a.out file 

write expression into COl'e file 

locate expression in a.out file 

b) breakpoint and program control 

:b set breakpoint at dot 
:c continue running program 
:d delete breakpoint 
:k kill the program being debugged 
:r run a.out file under ADB control 
:s single step 

c) miscellaneous printing 

Sb print current breakpoints 
Sc C stack trace 
Se 
Sf 
Sm 
Sq 
Sr 
Ss 
5, 
Sw 

external variables 
floating registers 
print ADB segment maps 
exit from ADB 
general registers 
set offset for symbol match 
print ADB variables 
set output line width 

d) calling the shell 

call shell to read rest of line 

e) assignment to variables 

>name assign dot to variable or register name 

Format Summary 

a 
b 
c 
d 
f 
I 
0 

n 
r 
s 
nt 
u 
x 
y 

• • 

the value of dot 
one byte in octal 
one byte as a character 
one word in decimal 
two words in floating point 
PDP 11 instruction 
one word in octal 
print a new-line 
print a blank space 
a null terminated character string 
move to next n space tab 
one word as unsigned integer 
hexadecimal 
date 
backup dot 
print string 

Expression Summary 

a) expression components 

decimal Integer e.g. 256 
octal Integer e.g. 0277 
hexadecimal e.g. #ff 
symbols e.g. Hag _main main.argc 
nrlables e.g. <b 
registers e.g. <pc <rO 
(expression) expression grouping 

b) dyadic operators 

+ add 

• 
% 
&: 
I 

' 

subtract 
multiply 
integer division 
bitwise and 
bitwise or 
round up to the next multiple 

c) monadic operators 

not 

• contents of location 
integer negate 

January 1981 

27 


	00_Annotated_Table_of_Contents
	A.1.1_Overview_and_Synopsis_of_Facilities
	A.2.1_The_UNIX_Time-Sharing_System
	B.1.1_UNIX_Documentation_Roadmap
	B.2.1_Editor_Tutorial
	B.2.2_Advanced_Editing
	B.2.3_Sed
	B.3.1_UNIX_for_Beginners
	B.4.1_UNIX_Shell_Tutorial
	B.4.2_Shell
	C.1.1_TROFF_Tutorial
	C.1.2_NROFF_TROFF_Users_Manual
	C.2.1_Memorandum_Macros
	C.2.2_Typing_Documents_with_MM
	C.2.3_View_Graphs_and_Slides
	C.3.1_Tbl
	C.3.2_Eqn_Users_Guide
	C.3.3_A_System_for_Typesetting_Mathematics
	D.1.1_C_Reference_Manual
	D.1.2_A_Guide_to_the_C_Library
	D.1.3_Lint
	D.2.1_Fortran_77
	D.2.2_Ratfor
	D.2.3_EFL
	D.3.1_Unix_Programming
	D.4.1_Make
	D.4.2_An_Augmented_Version_of_Make
	D.5.1_Sdb
	D.5.2_Adb

